

USING SEMANTIC WEB SERVICES FOR DATA INTEGRATION IN

BANKING DOMAIN

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÇAĞLAR OKAT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

 THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

MAY 2010

Approval of the thesis:

USING SEMANTIC WEB SERVICES FOR DATA INTEGRATION IN

BANKING DOMAIN

submitted by ÇAĞLAR OKAT in partial fulfillment of the requirements for

the degree of Master of Science in Computer Engineering Department,

Middle East Technical University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı

Head of Department, Computer Engineering

Assoc. Prof. Dr. Ali H. Doğru

Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Asst. Prof. Dr. Pınar ġenkul

Computer Engineering Dept., METU

Assoc. Prof. Dr. Ali H. Doğru

Computer Engineering Dept., METU

Asst. Prof. Dr. Tolga Can

Computer Engineering Dept., METU

Celal Kavuklu (M.Sc.)

Akbank T.A.ġ.

Hacer Yalım (M.Sc.)

Computer Engineer

Date: 05.05.2010

 iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Last name : Çağlar Okat

Signature :

 iv

 ABSTRACT

USING SEMANTIC WEB SERVICES FOR DATA INTEGRATION IN

BANKING DOMAIN

Okat, Çağlar

M. S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ali Hikmet Doğru

May 2010, 94 pages

A semantic model oriented transformation mechanism is developed for the

centralization of intra-enterprise data integration. Such a mechanism is especially

crucial in the banking domain which is selected in this study. A new domain ontology

is constructed to provide basis for annotations. A bottom-up approach is preferred for

semantic annotations to utilize existing web service definitions. Transformations

between syntactic web service XML responses and semantic model concepts are

defined in transformation files. Transformation files are stored and executed in a

separate central transformation repository to enhance abstraction and reusability. An

RDF-Store is implemented to store transformed RDF data. Inference power of

semantic model is exposed by executing semantic queries in the RDF-Store.

Keywords: Semantic Web, Ontology, Semantic Web Service, Enterprise Application

Integration, SAWSDL Specification.

 v

 ÖZ

BANKACILIK ALANINDA VERİ ENTEGRASYONU İÇİN

ANLAMBİLİMSEL WEB HİZMETLERİNİN KULLANILMASI

Okat, Çağlar

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Ali Hikmet Doğru

Mayıs 2010, 94 sayfa

Kurum içi veri entegrasyonunun merkezileĢtirilmesi için anlambilimsel model odaklı

bir dönüĢüm mekanizması geliĢtirildi. Böyle bir mekanizma bankacılık alanında

özellikle önemli olduğundan dolayı, bu çalıĢma için bankacılık alanı seçildi.

ĠĢaretlemelere temel oluĢturması için yeni bir alan ontolojisi oluĢturuldu. Mevcut web

hizmeti tanımlarından faydalanabilmek için aĢağıdan-yukarıya bir yaklaĢım tercih

edildi. Sözdizimsel web hizmetlerinin XML cevapları ile anlambilimsel model

kavramları arasındaki dönüĢümler dönüĢüm dosyalarında tanımlandı. Soyutlama ve

yeniden kullanılabilirliği artırmak için dönüĢüm dosyaları ayrı bir merkezi dönüĢüm

havuzunda saklandı ve çalıĢtırıldı. DönüĢtürülmüĢ RDF verisini saklamak için bir

RDF-Deposu geliĢtirildi. Anlambilimsel modelin çıkarım yapma gücünü ortaya

çıkarmak için RDF-Deposu üzerinde anlambilimsel sorgular çalıĢtırıldı.

Anahtar Kelimeler: Anlambilimsel Ağ, Ontoloji, Anlambilimsel Web Hizmetleri,

Kurumsal Uygulama Entegrasyonu, SAWSDL.

 vi

To My Wife and Family

 vii

 ACKNOWLEDGEMENTS

I would like to thank my supervisor, Assoc. Prof. Dr. Ali Hikmet Doğru, for his

guidance and encouragement throughout the research. I also would like to thank to my

wife and family for their great support.

 viii

 TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ .. v

ACKNOWLEDGEMENTS ... vii

TABLE OF CONTENTS ... viii

LIST OF TABLES ... x

LIST OF FIGURES .. xi

CHAPTER

1. INTRODUCTION ... 1

1.1. Scope of this work .. 2

1.2. Organization of the Thesis .. 2

2. BACKGROUND ... 3

2.1. Enterprise Application Integration ... 3

2.1.1. Enterprise Application Integration Definition 3

2.1.2. Layers in Enterprise Application Integration 4

2.1.3. Problems in Enterprise Application Integration 10

2.2. Semantic Web Technologies ... 11

2.2.1. The Semantic Web .. 11

2.2.2. Ontologies ... 14

2.2.3. Semantic Web Services ... 18

2.2.4. RDF-Stores .. 24

2.3.Integration of Customer Data ... 25

3. USING SEMANTIC TECHNOLOGIES FOR ENTERPRISE APPLICATION

INTEGRATION .. 28

3.1. Advantages ... 28

 ix

3.2. Semantic Approaches for EAI Layers .. 29

3.2.1. Process Layer .. 30

3.2.2. Transformation Layer .. 30

4. RELATED WORK .. 32

5. SEMANTIC WEB SERVICES BASED DATA INTEGRATION 34

5.1. Enterprise Integration Scenario .. 34

5.2. Semantic Integration Methodology .. 35

5.3. System Design and Implementation ... 37

5.3.1. Setup Phase ... 39

5.3.2. Execution Phase .. 57

6. CONCLUSION ... 75

REFERENCES .. 77

APPENDICES ... 82

A. CUSTOMER ONTOLOGY ... 82

A.1. Semantic Model in OWL .. 82

B. XSLT TRANSFORMATION FILES ... 88

B.1. XSLT Transformation File for GetCustomerNames 88

B.2. XSLT Transformation File for GetCustomerAddress 89

B.3. XSLT Transformation File for GetCustomerValue 91

B.4. XSLT Transformation File for GetCustomerStatus 93

 x

 LIST OF TABLES

TABLES

Table 2.1 Sample verbal attribute definition for a web service 26

Table 4.1 Comparison of related work and our work .. 33

Table 5.1 Definitions of source system web services .. 40

Table 5.2 Domain and range values of model properties 43

Table 5.3 Namespace declarations .. 44

Table 5.4 Notation 3 (N3) representation for hasAddressType property 44

Table 5.5 Transformations/mappings for the GetCustomerNames web service.... 51

Table 5.6 Transformations/mappings for the GetCustomerAddress web service.. 52

Table 5.7 Transformations/mappings for the GetCustomerValue web service 55

Table 5.8 Transformations/mappings for the GetCustomerStatus web service 56

Table 5.9 N3 representation of RDF triples for GetCustomerNames service 62

Table 5.10 N3 representation of RDF triples for GetCustomerAddress service 64

Table 5.11 N3 representation of RDF triples for GetCustomerValue service 66

Table 5.12 N3 representation of RDF triples for GetCustomerStatus service 67

Table 5.13 Average execution times for one consumer application request 73

 xi

LIST OF FIGURES

FIGURES

Figure 2.1 Translators to resolve semantic heterogeneity 13

Figure 2.2 Shared ontology to resolve semantic heterogeneity 14

Figure 2.3 The corresponding RDF/XML serialization .. 16

Figure 2.4 RDF graph representation for the semantic model 17

Figure 2.5 A sample RDFS semantic model ... 17

Figure 2.6 Relations between web, web services, and semantics 19

Figure 2.7 Top level of the OWL-S service ontology ... 21

Figure 2.8 WSMO top level concepts ... 22

Figure 2.9 Association of WSDL elements and semantic domain model 24

Figure 5.1 High-level view of the proposed system .. 35

Figure 5.2 A high-level representation of the setup phase 38

Figure 5.3 A high-level representation of the execution phase 39

Figure 5.4 WSDL file defining the GetCustomerNames web service 40

Figure 5.5 A high-level representation of domain ontology classes 42

Figure 5.6 Is-a relationship graph of the semantic model 42

Figure 5.7 RDF/XML representation of the RDF triples for hasAddressType 45

Figure 5.8 RDF-Graph representation of VIPCustomer class 45

Figure 5.9 Customer ontology construction using Protégé 46

Figure 5.10 Semantic annotation for a source system ... 48

Figure 5.11 SAWSDL document for GetCustomerNames web service 48

Figure 5.12 Semantic annotation of WSDL documents using Radiant 49

Figure 5.13 XSLT transformation file for GetCustomerNames web service 51

 xii

Figure 5.14 XSLT transformation file for GetCustomerAddress web service. 53

Figure 5.15 XSLT transformation file for GetCustomerValue web service. 55

Figure 5.16 XSLT transformation file for GetCustomerStatus web service. 57

Figure 5.17 Process flow diagram of the Semantic Data Integrator Process. 59

Figure 5.18 Architecture of Central Transformation Repository. 61

Figure 5.19 A sample XML block for GetCustomerNames service. 61

Figure 5.20 Transformed RDF block for GetCustomerNames service. 62

Figure 5.21 A sample XML block for GetCustomerAddress service. 62

Figure 5.22 Transformed RDF block for GetCustomerAddress service. 63

Figure 5.23 A sample XML block for GetCustomerValue service. 65

Figure 5.24 Transformed RDF block for GetCustomerValue service. 65

Figure 5.25 A sample XML block for GetCustomerStatus service. 66

Figure 5.26 Transformed RDF block for GetCustomerStatus service................... 66

Figure 5.27 Merged RDF triples in RDF-Store. .. 68

Figure 5.28 High-level architecture of RDF-Store .. 69

Figure 5.29 Semantic query statement in SPARQL .. 70

Figure 5.30 Inference rule for VIPCustomer class. ... 71

Figure 5.31 SPARQL statement executed for VIPCustomer class membership ... 72

 1

 CHAPTER 1

INTRODUCTION

In recent years, enterprises have increased the volume of interactions they have

with other enterprises to catch up with the globalizing world markets. The business

requirements and demands become more varied and complex. This necessitates the

departments of the enterprises to be in tight relation with each other. Providing

immediate and reliable responses to the rapidly changing world conditions become

more important.

One of the main purposes of software systems used in enterprises is to get

aligned with the changing business needs. Many different types of applications with

different technologies can take place inside an enterprise system. To enable them

better for critical software architecture parameters like adaptability, reliability and

scalability, well-designed integration efforts are needed.

Recently, Web service enabled Service Oriented Architectures are gaining

popularity for Enterprise Application Integration. Web services offer a flexible

integration environment for the enterprise architecture since they abstract the

background implementation details from the calling applications. However they offer

only syntactic definitions for their service and input/output definitions. This increases

the complexity to use the web services for designing complex business processes and

performing complex data transformations between source systems.

Semantic web technologies are emerging in recent years. Semantic web

provides semantic models, annotation frameworks and enhancements for service

discovery and composition. These technologies are also applied to standard web

services to express their operations and exchange structures in semantic concepts.

Semantics makes web service discovery, composition and integration easier and more

reliable.

 2

1.1. Scope of this work

Purpose of this thesis is to semantically annotate standard web services and use

them to perform enterprise information integration in a more reliable and elegant way.

 A domain ontology is developed using the Protégé Ontology Editor. Based on

this ontology, web services are annotated according to Semantic Annotations for

WSDL (SAWSDL) specification by utilizing the Radiant Annotation Tool.

Semantic data transformations are defined in XSLT language which are stored

and executed in a Central Transformation Repository.

 An RDF-Store is utilized as the semantic storage unit for resulting semantic

data so that inference mechanisms can be applied to extract information that is

scattered through the enterprise systems and currently implicit.

Data integration is managed through a Semantic Data Integrator Process, which

is responsible for collecting data from source systems, performing transformations

using transformation service and persisting semantic data into the RDF-Store.

1.2. Organization of the Thesis

Beyond this introductory chapter, the thesis is organized as follows: In Chapter

2, necessary background on Enterprise Application Integration and Semantic Web

Technologies are included. Chapter 3 describes the usage of semantic web services for

Enterprise Application Integration. In Chapter 4, related work in the usage of semantic

web services for Enterprise Application Integration is presented. Chapter 5 presents

the design, implementation and test results of proposed semantic web services based

data integration system. Chapter 6 provides conclusions and further work for this

study.

 3

 CHAPTER 2

BACKGROUND

2.1. Enterprise Application Integration

2.1.1. Enterprise Application Integration Definition

Globalization forced enterprises to do business with firms from all around the

world. Merger and acquisitions between corporations increased to adapt this new

competitive environment. Information exchange of an enterprise was limited to

suppliers and clients in the old times which now include partners, government,

subsidiaries, and agencies [1]. Minimizing response times for new business

requirements become more important in the rapidly changing world, which requires

designing adaptable software systems. Technological improvements lead to wider

usage of software applications and increase in data storage capabilities. These factors

enlarged inter-enterprise communication and messaging which lead to development of

new protocols and message exchange networks (RosettaNet, SWIFT). Information

exchange between various systems of different companies is generally referred as

inter-EAI or Business to Business (B2B) integration [29].

Large enterprises have many numbers of departments working in tight

coordination with each other to fulfil complex business demands. Each department

may need different types of software applications with different characteristics. These

applications are designed at different time periods, by different teams using different

technologies. They generally focus on doing their own job without caring for

integration. Types of applications in an enterprise information system can be grouped

as batch applications, transactional applications, client/server applications, web

applications, real-time applications and software packages. Differentiating features of

those application types are format of events and data they publish, volume of events

they can deal with and their data exchange capacity [1]. Information exchange

 4

between various systems inside the same company is generally referred as intra-EAI

or Application to Application (A2A) integration [29].

As a result, enterprise information systems suffer from heterogeneity in

hardware platforms, having multiple interfaces for applications and incapability in

exchanging information.

Enterprise Application Integration (EAI) is methods/tools/services used to bring

heterogeneous applications into communication as part of a distributed enterprise [1].

In this definition, communication is defined as exchanging messages without

knowing internal structure of each other but obeying their respective constraints.

Communication inside an application is not within the interest of EAI. In addition,

communication between similar applications (the applications built with similar or

same technologies) is not a part of EAI studies.

2.1.2. Layers in Enterprise Application Integration

Any integration architecture can be modelled based on three basic levels:

 Transport and Connectivity. This layer captures events or information

generated by source applications and delivers them to the receiving

applications.

 Information Adaptation: Transport and delivery is not enough to

complete integration. Adaptation of events or information is necessary

for the consumption of receiving applications. Determination of the

recipient applications is also another task of this layer.

 Business Process Automation: Multi-step processes are generally

required by enterprises to accomplish business demands.

Complementary functions are used for integration between those

processes.

2.1.2.1. Transport and Connectivity

2.1.2.1.1 Data and Event Transport

A multi-channel communication bus is required for information transportation.

Such a system should be designed so that it does not give more privilege to any of the

 5

participating channels to prevent expensive conversions. Main channels of an

enterprise can be listed as the following:

 Database Management Systems (DBMS): Main responsibility of

database management systems is creation, maintenance and storage of

data. In addition they also offer some basic mechanisms for data

replication. The target of replication is generally another DBMS.

 File Transfer: File transfer is the oldest method used for data integration

in enterprises. File transfer systems support different types of networks

(TCP/IP, X.25, SNA etc.). Many different file exchange protocols exist

(FTP, PeSIT and ETEBAC in banking, OFTP in automotive etc.).

Basic functionalities such as data compression, continuation without

restarting transfer after interruption and guarantee of delivery are

expected from a file exchange protocol. File Transfer Protocol (FTP) is

the most commonly utilized one which is relatively simpler but is not

secure enough and poorly performing in heavy volume transfers.

Management services are developed to offer secure and totally

automated transfers.

 Message Oriented Middleware (MOM): Message Oriented Middleware

allows application-to-application integration by exchanging events as

messages. A queue is the basic transportation infrastructure in this

system. If the applications are running on different machines,

installation of queues to each machine offers more functionality. MOM

functionality can be divided into services as transport services, internal

services and management services. Transport services are required to

support different types of networks, message grouping, guarantee of

delivery and message compression. Internal services involve message

persistence, various types of access to queues (FIFO, direct access etc.)

and restart on interruption. Management services provide APIs for

sending/receiving messages and logging for administrative purposes.

Publication/subscription mechanisms are also adapted to MOM

systems so that an application can put a message to queue without

caring which receiving applications will use it.

 6

 Internet: Application integration architectures benefits widely from the

advantages of internet protocols. The main standards are HTTP, SMTP

and FTP and many complex protocols are built upon them. HTTP is

developed by W3C (World Wide Web Consortium) [40] as a

client/server protocol aimed for exchange of any type of data. Today,

HTTP is primarily used in the implementation of web applications that

manage exchanges of HTML (Hypertext Markup Language) pages

through browsers. SMTP is a protocol used to send messages between

servers over the Internet. A messaging client and a suitable protocol

(Post Office Protocol 3 (POP3) or Internet Message Access Protocol

(IMAP)) are used in the receiving server to retrieve the message. SOAP

(Simple Object Access Protocol) is a protocol for data exchange in

decentralized, distributed systems which utilizes XML standard. There

are three parts of a SOAP message: an envelope section to define the

messages and how to process them, a set of coding rules to express

application-defined data types, a convention to represent remote

procedure calls and their responses. SOAP specification only explains

how to implement it on HTTP, but it is widely used with various other

standards. SOAP can be used as a foundation layer for web service

protocol stack [1].

2.1.2.1.2 Connectivity

The only responsibility of multi-channel bus communication is transportation of

data and events to the receiving application with the original format of the source

application. The format of the information is frequently required to be changed for the

receiving applications understanding. Adapters (also known as connectors) are

separate software units that are used for this process. Adapters can be divided into two

different types:

 Light (Technical) Adapters: Light (Technical) Adapters utilize existing

functionalities of the platform they run on, so do not need the

installation of any additional units on the host application platform.

Their role only includes accomplishment of the interaction between the

integrated application and the integration solution. They ensure the

appropriate transport of information for each participating application.

 7

The platform which hosts the core of the integration solution provides

the infrastructure for all transformation and routing processes.

There are a number of advantages of this type of adapters:

transformation is done solely on the core of the integration solution,

deployment is easy, it offers completely adaptable solutions and has the

capacity to manage complex transformation rules.

 Thick (Business) Adapters: Thick (Business) Adapters are used to

ensure decentralized transformation functions. This type of adapters

requires components to be installed on the platform which hosts both

the application to be integrated and the core of the integration solution.

They transform the sending application‟s proprietary format into a

canonical format, or transform the canonical format to the receiving

application‟s proprietary format.

There are a number of advantages of this type of adapters: a repository

of standardized business events can be constructed by the usage of a

pivot or canonical format, gives possibility for a complete set of

parameters delivered with the integration solution through the use of a

canonical format [1].

2.1.2.2. Information Adaptation

The capture, transport and delivery of information to the recipients in their own

format are not enough to address all the problems of integration. Transformation of the

content of the messages and events to the recipient applications expectations should

also be satisfied. In addition it must be possible to determine these receiver

applications and deliver what they expect at the right time.

2.1.2.2.1 Transformation

A message or event should go under transformation under two conditions: when

the syntax or format of the message or event is not expressed in a way that is directly

understandable by the recipient applications, when the message or event includes

information used to create other events.

Many different types of data formats exist in an enterprise. Data formats can be

classified as following:

 8

 Flat Format (Fixed Length): Data items have the same length and are

always located at a prearranged position. This format has the best

performance.

 Flat Format (Variable Length): In this format, the value and length of

data for each data item should both exist in the data document. The

position of a specific data item will depend on the actual length of the

data that precedes it. Order of data items is always in the same way.

 Flat Format (with Delimiters): There are two subtypes for this format:

sequenced and non-sequenced. In sequenced data, data order is always

the same and separated by a fixed character (i.e. commas). In non-

sequenced data, data order is not fixed therefore both delimiter and

keywords are used to identify the data items.

 Hierarchical (Tree Structure) Format: A combination of above formats

can be utilized to construct this format. Composite data structures can

be created by assembling other data items which can be simple or

composite. Additionally, data items can be repeated multiple times to

constitute a composite item.

 XML Formats: XML (eXtensible Markup Language) is the most popular

format among hierarchical formats and is a standard from the W3C

(World Wide Web Consortium) [40]. XML language describes the

logical structure by textual schema documents. A tag system is used to

define the elements and their relationships with the other elements

constituting the structure. The primary objectives of this language are

separation of the form and the content of a document, formalization of

their structure, standardization of the tags and making their computing

treatment easier [1].

Transformations can be analyzed in two types:

 Syntactical Transformation: The main aim of syntactical transformation

is the modification of the representation of a message or event in order

to make it usable for the processing application. The whole message or

any data item constituting the message may go under transformation.

 9

The order of information inside the message or the form for an item

representation can be modified.

 Semantic Transformation: The main aim of semantic transformation is

the modification of the meaning of all or part of the information for an

original message or event, or from that event or message, to infer other

events.

2.1.2.2.2 Routing

Routing is performed for determination of the recipients for the messages or

events produced by a source application. There are many different ways to accomplish

this task. In a widely adopted spaghetti system the recipients of the information are

directly reached by the source applications. In such a system, the source application

should know the target applications and routing functionality should be performed by

itself.

A publication/subscription mechanism can be used to provide the independence

of participating applications. The events are published by the generating applications

and events become available for the interested applications which are subscribed to

receive them.

2.1.2.2.3 Defining the Rules

The key operations of message and event adaptation like transformation, routing

and storage require rule definitions. The best approach for management of rules is

centralizing them in a global dictionary and then delegating the distribution to the

integration infrastructure. This dictionary may contain different types of objects like

the definition of the events and their structure, rules for identification of these events,

rules for applicable transformations, the rules for routing and the rules for caching

mechanisms and publication and subscription information [1].

2.1.2.3. Business Process Automation

A business process is defined by the Workflow Management Coalition (WfMC)

as follows:

 10

“A business process is a collection of one or more linked procedures or

activities that together accomplish a business objective, in the context of an

organizational structure that define roles and relationships.”

A single organizational unit or numerous organizational units can constitute a

business process. Triggering conditions for the initialization and possible outputs are

defined before the execution of a process.

Auto-execution of a business process can be carried out after modeling of the

process. The model describes the activities which will be performed, the relationships

between the activities, the conditions for initialization and the end of the process, and

all participants included in each activity.

The automation of a process is achieved by defining the business rules which

will be executed during the process lifetime. This allows externalization of the coding

rules for the applications so that changes in the business rule do not lead to

modifications in the application.

2.1.3. Problems in Enterprise Application Integration

Main problems in EAI can be classified as following:

 Data Propagation and Consistency: Frequently, data belonging to the same

domain is stored redundantly in different software systems for organizational,

technical or geographical reasons. Two methods can be used to achieve

consistency. First one is the repository approach. In this approach data is

directly copied from the original database tables or files to the database tables

or files of the other applications. The second is the event based approach. In

this approach, an event is transmitted from the original application to the other

applications and each receiver application updates its own data store.

 Creating Composite applications: Composite applications are developed by

using data or services of other applications. Client applications on the Web

are typical examples for this type of integration.

 Management of Multi-Step Processes: Business processes are comprised of

several operational steps which have asynchronous and uni-directional

interactions with logical interdependence. However, processing performed by

 11

each step is also dependent on the processing performed in the upper levels by

the previous steps [1].

2.2. Semantic Web Technologies

2.2.1. The Semantic Web

"The Semantic Web is a vision: the idea of having data on the Web defined and

linked in such a way that it can be used by machines not just for display purposes, but

for automation, integration and reuse of data across various applications." (Semantic

Web Activity Statement)

The fundamental building block of the current World Wide Web (WWW) [40]

is HTML (Hyper Text Markup Language) [41], which is useful for publishing

information. HTML is made up of a symbol set contained in a web page intended for

displaying information in a web browser. The main target of information delivery on

the current web is human consumption. Humans read, analyze and evaluate the web

pages to understand the content. The meaning of the content is not understandable by

computers and software agents [10].

If the information on the Web can be described in a different way, so that it can

be interpreted by software systems not just for browsing purposes, but also for

interoperability and integration between systems and applications, more benefit can be

obtained from distributed information. The objective of the Semantic Web is

providing the information in such a way that computers can interpret it. This will

enable automated processing of information exchanges between computers and

software systems. The Semantic Web is the extension of the current one where

information is distributed with unambiguous meaning, allowing computers a better

understanding.

The primary aim of the development efforts for the creation of the Semantic

Web is adding machine readable information to the data and documents. There are a

number of different approaches for giving meaning to resources. New standards and

languages are continuously being researched and developed [10].

The distinction between the syntax and semantics is important for the evaluation

of Semantic Web concepts.

 12

 Syntax: In computer science, syntactically correct program means that the

program is valid with respect to the syntactical rules of the compiler and

no error messages are generated when it is compiled. However, this is

not adequate for semantic correctness. In the integration process, XML

format only ensures the syntactical correctness of the exchanged data

between information systems. Integration efforts based solely on

syntactical methods do not take account of the study of concepts such

as meaning and truth [10].

 Semantics: The main point in the study of semantics is association of

meaning to data items. The objectives of semantics and syntax are

completely different. Semantics is related with the meaning of

something, while syntax is concerned with the formal structure in which

something is expressed [10].

Heterogeneities frequently occur in software systems due to disagreement about

the meaning, interpretation or intended use of data. Semantic technologies can be

helpful in resolving those complexities. Information heterogeneity can be analyzed in

four different categories, namely system heterogeneity, syntactic heterogeneity,

structural heterogeneity, and semantic heterogeneity:

 System heterogeneity : System heterogeneity occurs due to applications

and data residing in different hardware platforms and operating systems

 Syntactic heterogeneity: Syntactic heterogeneity arises due to using

different representations and encodings for data. XML supports ability

to deal with syntactic heterogeneity.

 Structural heterogeneity: Structural heterogeneity is encountered when

different information systems store their data in different document

layouts and formats, data models, data structures and schemas. Some

technologies dealing with this type of heterogeneity are XML, XPath,

and XQuery [50].

 Semantic heterogeneity: Semantic heterogeneity occurs due to expression

of the meaning of data in different ways. Semantic heterogeneity

focuses on the content of an information item and its intended meaning.

 13

Sharing and exchanging information in a semantically consistent way is

the key factor for successful resolution of this type of heterogeneity.

Ontology languages like RDF and OWL constitutes the basis for

semantic modelling [10].

Two different solutions can be applied to solve the mentioned semantic

heterogeneities. First solution is the classical approach that relies on developing

adapters for translation of information between the terminologies of pairs of systems.

If the number of systems joining interactions is small, this solution may be useful.

However, this solution suffers from scalability, as the number of participating systems

becomes more and more, the cost for development and the degree of semantic

heterogeneity increases. Assuming execution of bidirectional translations, the

interoperability of n systems can only be satisfied with (n-l)+(n-2)+...+l translators.

The translators needed for integration of four different systems are shown in Figure

2.1:

Figure 2.1 Translators to resolve semantic heterogeneity. [10]

Semantic technologies offer better solutions for resolution of semantic

heterogeneities. Data provided by each distributed system is semantically defined with

the concepts in a shared ontology. This solution only requires the development of 'n'

Translator

A

B D

C

 14

links to interconnect systems. Links between systems in the existence of a shared

ontology is shown in Figure 2.2:

Figure 2.2 Shared ontology to resolve semantic heterogeneity.[10]

2.2.2. Ontologies

Computer Science adopts the ontology term from philosophy by slightly

changing its meaning:

“An ontology is a formal explicit specification of a shared conceptualization.”

[16]

Ontologies constitute a bridge between human and machine understanding

through formal and consensual terminologies. As a result of this key property,

ontologies can be shared and reused between human and computers. Recent progress

in the development of Semantic technologies increased the interest on ontology

development.

Ontologies can be divided into three different types:

 Generic Ontologies: Generic Ontologies are used to model domain

independent knowledge like time and space. Some examples for generic

ontologies are CYC [43] and WordNet [42]. Software systems related

with various domains make use of generic ontologies.

A

B D

C

Shared

Ontology

 15

 Domain Ontologies: Domain Ontologies encapsulate the knowledge

belonging to a certain domain. An example can be UNSPSC [44] which

provides a scheme on product classification. Domain ontologies are

shared between all the potential participants in that domain.

 Application Ontologies: Application Ontologies capture the knowledge

necessary just for a specific application. Application ontologies are not

considered as real ontologies by some authorities, because they are not

really shared. An ontology developed for a particular Web site can be

an example for this type ontologies.[16]

.

2.2.2.1. Resource Description Framework (RDF)

The Resource Description Framework (RDF) [17] was developed as the first

language for adding machine-readable semantic metadata to existing data on the Web.

Basic data model of RDF is the subject–predicate–object triple, commonly written as

P(S, O). Subject is the thing that a statement is made about. Predicate is the property

that is specified for the subject. Object is the value of this property for the subject.

Uniform Resource Identifiers (URIs) are used to identify each resource uniquely.

There are several different serializations for representation of RDF triples.

Notation 3 (N3) is a compact serialization of RDF triples. Notation 3 (N3) uses

qnames for the representation of resources belonging to an RDF triple. A qname is a

URI abbreviation scheme and composed of two parts: a namespace and an identifier.

Namespace and identifier are separated with a column sign. So the qname

representation for the identifier Turkey in the namespace geo is simply geo:Turkey.

Bindings for the namespaces should be declared before their usage in a triple.

An example namespace declaration is shown as follows where ex is the namespace of

qname and http://example.org/# is the actual URI of the namespace:

@prefix ex: <http://example.org/#>

Notation 3 (N3) serialization of an example RDF triple is shown below where

#ahmet and hasAge are identifiers defined in the namespace ex:

ex:ahmet ex:hasAge "25" .

 16

Although Notation 3 (N3) is suitable for human consumption, software systems

need more structured representations. For this reason there is also an XML

serialization of RDF called RDF/XML [51]. The subject is referenced using the XML

attribute rdf:about, and the triples with this subject appear as subelements within this

definition. The corresponding RDF/XML serialization for the above RDF triple is

shown in Figure 2.3:

<rdf:RDF

 xmlns:rdf=”http://www.w3.org/1999/02/22−rdf−syntax−ns#”

 xmlns:ex=”http://example.org/#”>

 <rdf:Description about=”#ahmet”>

 <ex:hasAge>25</ex: hasAge >

 </rdf:Description>

</rdf:RDF>

Figure 2.3 The corresponding RDF/XML serialization.

RDF triples can also be represented as graphs where nodes symbolize subjects

and objects (resources), and edges symbolize predicates. An object of a triple can be

the subject of another triple which yields to a directed graph. Furthermore, RDF

allows making statements about other statements, which means that any RDF

statement can be utilized as a subject in a triple [16]. Suppose another RDF triple is

added to the above semantic model as following:

ex:ayse ex:isMarriedWith ex:ahmet .

Resulting RDF graph representation for the semantic model is shown in Figure

2.4.

 17

Figure 2.4 RDF graph representation for the semantic model.

2.2.2.2. Resource Description Framework Schema (RDFS)

RDF Schema (RDFS) [18] extends RDF with basic ontological modelling

primitives. RDFS can be thought as an extension of RDF with a vocabulary for

defining classes, class hierarchies, properties, property hierarchies, and property

restrictions. RDFS classes and properties can be expressed in RDF. A sample RDFS

semantic model is shown in Figure 2.5:

Figure 2.5 A sample RDFS semantic model.

RDF(S) (the combination of RDF and RDF Schema) has expressive limitations

so more expressive languages are developed for the Semantic Web.

#ali #PhD_Student
rdf:type

#Student rdfs:Class

#zeynep #MSc_Student

rdf:type

rdfs:subClassOf

rdfs:subClassOf

rdf:type

#ayse #ahmet 25
isMarriedWith hasAge

 18

2.2.2.3. Web Ontology Language (OWL)

The Web Ontology Language OWL [19] is an expressive ontology language

which is based upon RDFS. OWL has three species of increasing expressiveness:

 OWL Lite: OWL Lite is the least expressive of the OWL species. It adds

simple cardinality restrictions, local range restrictions, existential

restrictions, equality, and different types of properties (inverse,

transitive and symmetric) on top of RDFS.

 OWL DL: OWL DL adds full support for negation, disjunction,

enumerations, value restrictions, cardinality restrictions, compared with

OWL Lite.

 OWL Full: OWL Full does not have restrictions on the use of vocabulary

and the use of RDF statements in contrast with OWL Lite and OWL

DL. OWL Full allows both the specification of classes-as-instances and

the use of language constructs in the language itself [16].

2.2.3. Semantic Web Services

Web services are modular, self-describing, self-contained applications that are

accessible over the Internet [11]. Currently, Web services are described using the Web

Services Description Language [12], which provides syntactical information. The Web

Services Description Language (WSDL) does not contain semantic descriptions, it

only specifies the structure of message components using XML Schema constructs.

Semantic Web services technologies intend to add semantic definitions to the web

service descriptions besides syntactic definitions.

Relations between web, web services, semantic web and semantic web services

are shown in Figure 2.6:

 19

Figure 2.6 Relations between web, web services and semantics [10]

2.2.3.1. Semantic Annotation of Web Services

Semantically annotating a Web service implies explaining the exact semantics

of the Web service data and functionality elements. Domain models and ontologies

provides the necessary reference information for annotation. Web service elements are

associated with the semantic concepts. Ambiguities in the interpretation of

functionality or data of a Web service are eliminated by this way. The purpose of

annotating Web services is to enable unambiguous and automated service discovery

and composition. For example, two Web services may have the same names to

represent their operations, inputs and outputs, but they could have totally different

purposes in usage [10].

The parts of the web service to be annotated change due to application-specific

requirements. Whole Web service or just a small part of it may be annotated.

Operations, data input and output structures, preconditions and effects of the

operations and non-functional aspects of the Web Service can be annotated.

There are four types of semantics associated with Web services:

 Data Semantics: Data semantics includes the formal definition of data

input and output messages of a web service. It is used in service

discovery and information integration.

Semantic

Web

WWW

Semantic

Web Services

Web Services Dynamic

Static

Syntax Semantics

 20

 Functional Semantics: Functional semantics is the formal definition of

the capabilities of a web service. It is used in discovery and

composition of web services.

 Non-functional Semantics: Non-functional semantics is the formal

definition of quantitative or non-quantitative constraints like QoS

(Quality of Service), requirements like minimum cost, policy

requirements like message encryption. It is used in discovery,

composition and interoperability of web services.

 Execution Semantics: Formal definition of the execution or flow of

services in a process or of operations within a service. It is used in

process verification and exception handling [10].

The need for semi-automatic annotation of Web services increases with the

widespread usage of Web Services and domain models. The main aim in the

annotation process is the association of Web Service elements with the most

appropriate concepts in a semantic model. Automatic generation of the mapping rules

is still impossible [29]. Current mapping tools can only be used to validate the

mappings or to suggest possible mappings. Human intervention is still necessary at

some point in the mapping process [45].

The most well-known efforts in the semantic markup of Web services have

been OWL-S (OWL-based Web Service Ontology) [13], WSMO (Web Services

Modeling Ontology) [14], WSDL-S (WSDL-S, Web Service Semantics) [15] and

SAWSDL (Semantic Annotations for WSDL) [4] specification. While WSMO and

OWL-S define their own rich semantic models for Web services (top-down approach),

WSDL-S and SAWSDL specifications work in a bottom-up fashion by preserving the

information already present in the WSDL.

2.2.3.1.1 OWL-S

OWL-S presents an upper level ontology to describe web services. Web service

providers use this ontology constructs to add semantic definitions to their Web

services. The ontology comprises of a service profile (offerings of the service), service

 21

model (usage of the service) and service grounding (interaction ways with the

service). Top level of the OWL-S service ontology is shown in Figure 2.7:

Figure 2.7: Top level of the OWL-S service ontology [13].

The Service class has to be present in every modelled Web Service instance.

The Service class has three properties named presents, describedBy and supports,

which point to classes ServiceProfile, ServiceModel, and ServiceGrounding

respectively. The ServiceProfile property is used for service discovery, the

ServiceModel and ServiceGrounding properties are used together for consumption of

the service. OWL-S rules are expressed with the Semantic Web Rule Language

(SWRL).

2.2.3.1.2 WSMO

Web Service Modelling Ontology WSMO, also a W3C submission, is another

conceptual model for Semantic Web services. Some terms related with WSMO are:

 WSML (Web Services Modelling Language): WSML is the formal

description language for all the constructs of WSMO environment.

 WSMX (Web Service Execution Environment): It is the execution

environment for WSMO-based systems.

presents

Service

ServiceProfile

ServiceGrounding

ServiceModel

(what it does)

supports

(how to access it)

described by

(how it works)

 22

 WSMF (Web Service Modelling Framework): It is the modelling

framework that WSMO is based on.

WSMO ontologies provide the terminology infrastructure that is used by other

WSMO elements for addition of semantic knowledge. There are three levels of

mediation in WSMO: Data Level (for mediation of heterogeneous Data Sources),

Protocol Level (for mediation of heterogeneous Communication Patterns) and Process

Level (for mediation of heterogeneous Business Processes). There are four top-level

concepts in WSMO: Goals, Ontologies, Mediators and Web Services. WSMO top

level concepts are shown in Figure 2.8:

Figure 2.8: WSMO top level concepts [16].

WSMO and OWL-S, both adopt top-down approach, they provide service

ontologies to build semantic Web services.

Provide the

formally specified

terminology of the

information used

by all other

components

Goals

Ontologies

Mediators

Web

Services

Objectives that a client

wants to achieve by using

Web Services

Semantic description

of Web Services:

 Capability

(functional)

 Interfaces

(usage)

Connectors between

components with mediation

facilities for handling

heterogeneties

 23

2.2.3.1.3 SAWSDL

The Semantic Annotations for WSDL and XML Schema (SAWSDL) [4]

specification is also a W3C Recommendation. It is built on existing Web service

standards the community is already familiar with, and shows good promise of

acceptance and quick realization [10]. SAWSDL specification does not specify a

language for representing the semantic models in contrast with WSMO and OWL-S.

Instead, it provides mechanisms for mapping of existing WSDL components with

semantic concepts. The semantic concepts defined out of the WSDL document and

referenced by extended attributes. SAWSDL specification is based on previous

member submission WSDL-S [15].

The key design principles for SAWSDL specification are:

 Existing extensibility framework of WSDL is utilized as a base for semantic

annotations for Web services.

 It allows building domain models in any preferred language (not necessarily in

OWL as required by OWL-S) or reuse existing domain models.

 Semantic annotations are utilized for both Web Service discovery and Web

Service invocation.

Based on these design principles, SAWSDL specification defines the following

three new extensibility attributes to WSDL 2.0 elements to enable semantic annotation

of WSDL components:

 modelReference: modelReference is an extension attribute specifying the

association between a WSDL element and a concept in some semantic model.

This attribute can provide only direct associations with the semantic model

concepts, cannot point to mappings. It can be used especially to annotate

XML Schema type definitions, element declarations, and attribute declarations

as well as WSDL interfaces, operations, and faults.

 liftingSchemaMapping and loweringSchemaMapping: They are two extension

attributes that are added to XML Schema element declarations and type

 24

definitions for specifying mappings between semantic data and XML.

liftingSchemaMapping lifts data from XML to a semantic model, whereas

loweringSchemaMapping lowers data from a semantic model into an XML

structure. [10].

Association of WSDL elements and semantic domain model is shown in Figure

2.9:

Figure 2.9: Association of WSDL elements and semantic domain model.[16]

2.2.4. RDF-Stores

An RDF-Store holds RDF data, similar to relational databases storing tabular

data. As RDF triples are inserted, they are merged with the existing data in the storage.

Semantic query languages, similar to relational query languages, are utilized to inquiry

the data in the RDF-Store [39]. RDF-Stores also allow for inference on the existing

RDF triples. Inferencing is done in response to queries only.

 ComplexType

 Element1

 Annotation

 Element2

 Annotation

Interface

 Operation

 Precondition

 Annotation

 Effect

 Annotation

Types

WSDL

Domain Model

 25

2.3. Integration of Customer Data

Enterprises are turning from product-centric sales strategies to customer-centric

sales strategies in recent years. This change in attitude includes many business sectors

like financial organizations, health institutions and telecommunications. It is realised

that the number of best customers is finite, so the new sources of revenue do not have

to come only from acquiring new customers, but also from understanding and

improving the characteristics and relationships of the existing customers with the

enterprise [46]. By knowing the customers better, enterprises may increase cross-

sell/up-sell opportunities and effectiveness of marketing campaigns, reduce customer

complaints and decrease customer service times. To achieve those business

requirements, enterprise software systems should develop more reliable, adaptable,

automated and intelligent ways for managing customer data.

 In large enterprises, customer data that is required for the consuming

applications can be scattered through many different applications and systems even

this data represent information from the same domain. Customer data is frequently

required to be collected from various systems before used by consumers like Customer

Relationship Management (CRM) or Call Centre applications. The possible source

systems can be grouped as below:

 Different departments of the same enterprise may hold customer-related

information. For example in a bank, generally there is a central

customer database which is the main storage for the customer data,

however for some reasons some of the other departments may also hold

similar customer information. For instance, credit card and loan

departments may also store different addresses or phone numbers of the

customers in their own systems. The reasons for this sort of

disarrangements can be stated as providing usage and performance

benefits for the departmental applications, using software packages that

are not easily adaptable, utilizing different technologies from the central

domain system which makes integration difficult.

 Group companies sometimes need to share data between themselves. For

example an insurance company can supply customer information to a

bank from the same group. The same individual possibly owns records

 26

in both companies so the information is needed to be combined before

usage .It is highly possible that the web service offered by the other

company provides data in a company-specific format so mappings and

transformations are necessary.

 Mergers and acquisitions frequently happen between the companies in

the same industry for many reasons. After a merger or acquisition, the

resulting company has two different systems which may have

information representing same individuals. For example, when two

banks are merged, there can be many people that have accounts in both

of them. The resulting company may prefer to keep the software

systems separate, so the data for the same customers need to be

conciliated before consumption [47].

In a Web Service enabled Service Oriented Architecture environment inside an

enterprise, integration efforts are lead by sharing WSDL files between interacting

parties. Necessary transformations arising from heterogeneous data structures are tried

to be solved by manual efforts. Standard web service definitions are syntactic, and do

not provide any information on the meaning of the exchanged attributes. Generally,

web service providers prepare verbal definitions of the attributes and share with the

consumers of the service. These definitions tend to be inadequate and subjective

which increase the time required for integration. Software development becomes more

error-prone due to misunderstandings between different software teams. Sample

verbal attribute definition for a web service is shown in Table 2.1:

Table 2.1 Sample verbal attribute definition for a web service.

Source Attribute Verbal Definition

Name The name of the customer

AddressType The type of customer address (i.e. home, work)

Profitability The profitability of customer

PhoneNumber The phone number of the customer

Many questions may arise after receiving such a definition document. For the

previous sample, some of them can be:

 27

 Does the name attribute contain name and surname together or just the

last name?

 How the AddressType attribute encoded? What can be the possible values

for this field?

 Does the Profitability attribute represent the gross profit or net profit after

taxes?

 Does the PhoneNumber attribute contain the country code also? Are there

spaces between country code and the actual number?

Certainly, those issues can be solved eventually by exchanging a series of

enriched documents and definitions and integration occurs successfully occurs in

current syntactic systems. Utilizing semantic technologies can reduce those efforts and

provide a more organized and reliable way for information integration.

Customer data domain can be a good candidate for development of a semantic

based integration system in an enterprise for several reasons:

 There can be many sources producing customer data and consumers need

to consolidate it before use to provide effectiveness. As a result large

scale integration efforts frequently occur in enterprises on this domain.

 Nature of customer domain allows performing inferences, which

contributes to powerful analytic systems.

 Investment on software systems improving customer data has a potential

for high return on investment.

 28

CHAPTER 3

USING SEMANTIC TECHNOLOGIES FOR

ENTERPRISE APPLICATION INTEGRATION

In order to overcome information integration problems, enterprise software

systems should solve issues in three main subjects:

 the diverse formats of content

 the disparate nature of content

 the need to derive intelligence from this content [10]

Current software systems, applications and tools allow working with the

syntactic metadata but it is not sufficient to handle above problems. Semantic

metadata provides reliable and machine-interpretable definitions for information. By

annotating existing documents with semantic model concepts, software agents can

automatically understand the full meaning of information context.

Web Service enabled Service-Oriented Architectures (SOAs) used in EAI take

advantage of Web Service Description Language (WSDL) which provides an

abstraction layer for the involved interfaces. Data exchange structures in Web service

technology is based on XML, which has no semantic model support currently [29].

3.1. Advantages

Semantics can provide advantages to the next generation of information

integration and analysis systems in the following areas [26]:

 29

 Main power of semantic models emerges for merging data coming from

different source systems. Semantic technologies offer flexibility and

simplicity for extraction, organization, standardization and unification

of heterogeneous information. Source system information can be in

different contents like structured, semi-structured and unstructured and

in different formats like database tables and XML.

 For some information domains, metadata definitions and rules can be

scattered through different software applications and systems. Each

different system may interpret the attributes and rules in the domain

differently, which increases complexity for interoperability. Building a

semantic model for this kind of domains, composes all the metadata

elements, their relations and rules running on them in a single and

central place. All the other user applications for the domain refers to

this semantic model, so it is easier to track and control the usage of the

domain data throughout the enterprise. Enterprise-wide rules can be

imposed more straightforwardly.

 Inferencing provides powerful ways for analyzing and correlating

extracted information to discover previously unknown or non-obvious

relationships between domain attributes and/or entities based on

semantics which enriches the available information. Much better

business decisions can be made by utilizing inferred data [10].

 Semantic models allow machine understandable metadata and content

definitions which enables higher levels of automation in the process of

data extraction, data transformation and interoperability.

 Semantic querying produces efficient, fast and high-quality (contextual)

result sets which increases performance of data analysis efforts.

3.2. Semantic Approaches for EAI Layers

Various aspects of semantic technologies can be utilized to solve EAI problems.

Semantic methods can differentiate for each layer of EAI.

 30

3.2.1. Process Layer

The most important problem to be solved in the process layer is that different

services may provide semantically same functionality although each has different

message exchange patterns [27]. If you take an example of opening an account, one

system might offer it with one single invocation whereas the other system requires

first the creation of a user, followed by activation of the user and finally opening the

account. In the first situation, one invocation is enough for the service success,

whereas in the second situation several invocations are necessary to achieve the same

functionality. Specific execution order is also important. Activation of the customer

cannot be before the user creation. These differences can lead to heterogeneities after

the discovery of the Web Service within a Service Oriented Architecture. For a

successful invocation of the Web Service, the two interacting parties should be able to

adapt their information exchange models or to use an external system for mediation to

fulfil the process.

In a classical approach, participants readjust their exchange patterns before

every invocation of Web services to solve heterogeneities. This approach hinders a

dynamic invocation. [29].

In the semantic approach, process or behaviour mediation is used [28]. By

applying Semantic Web Service principles, mediator systems analyze the runtime

behaviour of web services by utilizing the semantic annotations that are created for

them. Possible heterogeneities that may arise between client and the Web Service are

compensated in order to acquire equivalent processes. Some examples can be

generation of dummy acknowledgement messages, aggregating multiple messages in

one single message, changing the order of messages or removing some of the

messages to provide interoperability between the two interacting parties [29].

3.2.2. Transformation Layer

Although ontologies are used as shared conceptualizations of the same problem

domain within an Enterprise software environment, there is always probability that

different systems in the same enterprise, or different parties that the enterprise interact

may use distinct semantic models for the same domain. In such a case where services

use dissimilar ontologies the EAI infrastructure has to provide solutions to transform

between them. This semantic transformation is also called mediation [28]. Mediation

 31

preserves the semantics of the involved systems, while allowing them for

interoperability.

Mapping tools exist for automatic generation of transformation rules but auto-

generation of the mapping rules with the sole decision of the tool is still impossible.

The best results achieved in research projects are mapping tools that are able to

suggest or validate possible mappings, however intervention by domain experts is still

required at some stage in the mapping process [30]. In traditional transformation

efforts, mediation takes place at the level of XML Schema. However in semantic

transformation architectures, it is resolved at the level of ontologies. In traditional

systems, two different XML Schema mapping rules have to be defined, in the

semantic approach only one mediator definition between the participants is enough.

The major difference is, the discovery and reuse of mappings between two dissimilar

ontologies can be performed at runtime, while mappings between XML Schema

definitions should be bound at design time.

It is possible that different ontology representations can be used in interacting

parties (like WSMO and OWL-S). In this case, ontology mediation has to be applied

to the conceptual model of the involved ontology representations as well [30].

However, these transformation problems are of restricted nature since the set of

available ontology representation languages is limited [29].

 32

 CHAPTER 4

RELATED WORK

In this chapter, overview of the previous work that has been produced in

semantic web services usage for Enterprise Application Integration area is presented.

In [29], the authors have proposed to extend the concept of Service-Oriented

Architectures by using Semantic Web Services. They call this new type of architecture

as Semantic Service Oriented Architecture (SSOA). They apply the Web Service

Modeling Ontology (WSMO) framework to this architecture and show how EAI

benefits by it. This allows dynamic discovery and invocation of services published in

the architecture.

The authors have shown how the functionality improvements occur in the

transformation and process layers. In the proposed architecture, mediation takes place

at a higher level of ontologies, instead of mapping between XML Schemas as it is

done in traditional SOA. As a result, the number of required mappings greatly reduces.

SWS principles are applied in the process layer in order to obtain equivalent public

processes by dynamically compensating clients or web service communication

patterns.

 Only a conceptual model is not sufficient for achieving dynamic environments.

The authors exposed some challenges and standardization efforts on Semantic Web

Service frameworks to establish this goal. Their findings include definition of

standards for business document ontologies, ontologies for description of Service

Level Agreements, negotiation protocols and policy declarations as logical conditions

(reliability, security etc.).

The authors make research on the possibilities of dynamic discovery and

invocation in intra-EAI scenarios under definite assumptions. They applied WSMX

framework in an integration use case.

 33

In [31], the authors proposed a dynamic data mediation approach based on

semantics among participating Web Services in a Collaborative Business Processes

framework. Moreover, they presented a tool for semantic annotation of web services

for the end users which allows for graphical definition of the needed up and down

casting XSLT [7] transformations.

In addition, they presented a real-life B2B integration scenario to demonstrate

the applicability of the proposed approach within a franchisor-franchisees network.

Within this scenario, data heterogeneities are dynamically resolved at execution time.

In [32] the authors described a methodology to overcome problems arising from

syntax-based standards in Enterprise Applications Integration (EAI) by using a

Semantic Web Services based approach. The methodology involves multiple

validation and integration steps that are needed to be executed both at design time and

run time. Generalized and normalized ontologies are developed at design time which

allow similarity analysis of the ontological models based on models. During run time,

previously developed semantic models and automated inferencing tools are used for

semantic translation of business document instances.

As a result of their experimental work, they conclude that the Semantic Web

technologies are mature enough for solving reasonably realistic Enterprise Application

Integration problems.

The distinctive attribute of this work is, it is targeting the operations inside one

organization. Other approaches usually target inter-enterprise operations and they

depend on service discovery. Our approach on the other hand can utilize the inference

capability based on the ontology defined for the enterprise, while the other‟s inference

capabilities depend on the matching performance of the semantic search. Comparison

of related work mentioned above and our work is shown in Table 4.1:

Table 4.1 Comparison of related work and our work

 [29] [31] [32] Our Work

Approach Top-down Bottom-up Bottom-up Bottom-up

Target Inter-EAI Inter-EAI Inter-EAI Intra-EAI

Discovery Yes Yes Yes No

 34

 CHAPTER 5

 SEMANTIC WEB SERVICES BASED DATA

INTEGRATION

5.1. Enterprise Integration Scenario

A software system is designed and implemented by using semantic web services

for integration of customer data inside an enterprise. Web Service enabled Service

Oriented Architecture is assumed to be used widely in the enterprise before semantic

technologies are applied. The software systems constituting the enterprise network

like the departmental software systems and partner companies are assumed to interact

with web service technologies.

Since it is an intra-enterprise environment, the web services that will be

involved in the integration phase are known at the beginning. Web service discovery is

not required to be performed.

In the integration scenario, it is assumed that all the source systems relate their

customer data with a globally unique key like Turkish citizenship number. Consumer

application supplies the citizenship number of the customer to the semantically

enriched integrator process. Semantic integrator process collects, transforms and

standardizes all the data related with this customer. After data is mediated, the final

response is delivered back to the consumer application.

Main goals in this study are:

 Developing an enterprise integration framework that requires no

modification in the source web services,

 35

 Encapsulation of all the mapping, transformation and standardization

operations in a central unit which can smoothly integrate with the

existing Web Service enabled Service Oriented Architecture,

 Providing an infrastructure to reduce integration problems that can occur

as a result of misunderstandings on the meaning of exchanged data

patterns,

 Extracting implicit knowledge from the domain data which is scattered

through different source systems

High-level view of the proposed system is represented in Figure 5.1:

Figure 5.1 High-level view of the proposed system.

5.2. Semantic Integration Methodology

The central building block of the semantic integration system is the domain

ontology. A new ontology is built from scratch instead of using one of the existing

ontologies like ENIO [38]. Even similar concepts exists, ontologies modelling the

Proposed System

Consumer

Application

Citizenship

Number

Integrated

Data

Returned

 36

same domain may have dissimilarities very often. Since the main aim in this work is

intra-enterprise systems, it is preferred to build a dedicated ontology.

The initial architecture consists of standard web services and they are required

to be converted to semantically enabled correspondents. Two main approaches exist

for constructing semantic web services in the literature. These are top-down approach

and bottom-up approach. Top-down approach requires rebuilding of a semantic

version of each web service in order to achieve annotation. It also introduces new

execution frameworks and modelling languages which will increase the development

and testing costs. In contrast, bottom-up approach provides mechanisms for mapping

of existing WSDL components with semantic concepts [10]. It is based on

technologies already known by the Web Service community. So it can support

relatively easy integration with existing technologies. Domain models can be

externalized which allow decomposition of WSDL definitions and semantic

annotation definitions. Domain models can be built on any ontology language, which

will give flexibility to ontology development. Enterprises tend to possess more

integrated, low cost, easily adaptable software systems, so a bottom-up approach is

chosen to build semantic web services. SAWSDL [4] specification is preferred for the

web service annotation standard because it is the newest W3C recommendation

amongst bottom-up approaches.

A central transformation repository and a transformation web service are

proposed as part of the semantic integration framework. There is no standard

representation for schema mapping transformations in the SAWSDL specification.

liftingSchemaMapping or loweringSchemaMapping attributes may point to any string.

Uniform Resource Identifiers (URIs) are frequently used for this purpose. Client

processor of the SAWSDL document reads the file pointed to by the URI and

performs the transformation itself [31]. Storing transformations in a transformation

repository increases reusability, security and modularity. This repository can supply

web services so transformations can be performed in a central place. This usage is

more suitable in an Enterprise SOA Architecture where interoperability is achieved by

web services.

An RDF-Store is implemented as part of the proposed system. Information

collected from service providers are first transformed into RDF triples and then stored

in this RDF-Store. When all the necessary data is collected for the given request, the

 37

merged data is pulled out by executing semantic query statements. The RDF-Store

data is erased after the execution of a request. RDF-Store implementations can be

categorized into two with regard of data storage technique: Persistent RDF-Stores and

in-memory RDF Stores. Since the data is erased and the RDF-Store only holds the

data which is collected for the current request, an in-memory RDF-Store

implementation is preferred for the framework. The intention is to speed up insertion

and querying processes.

5.3. System Design and Implementation

The whole integration system implementation can be divided in two phases:

setup phase and execution phase.

In the setup phase, enterprise software systems are modified so that semantic

technologies based integration can occur. First, WSDL documents of the source

system web services are identified. Domain ontology is created to provide the basis

for semantic operations. Necessary transformations for the integration are defined

using semantic model elements and response XML structure of WSDL documents.

Source system web services are semantically annotated with transformations so that

SAWSDL documents are created. A high-level representation of the setup phase is

shown in Figure 5.2. Numbers in circles show the creation order of system elements:

 38

Figure 5.2 A high-level representation of the setup phase.

After the completion of the setup phase, semantic data integrator process is

ready to execute. As the initial step, the domain ontology is loaded to the in-memory

RDF-Store and SAWSDL document of each service is parsed to extract

transformations. During the execution phase, data is gathered from the source system

web services and transformed according to the needs of the consumer application,

made to persist in the in-memory RDF-Store and semantically queried to capture the

collected data and possible inferences. The result of the query is served to the

consumer. A high-level representation of the execution phase is shown in Figure 5.3.

Numbers in circles show the execution order. Curved arrows represent automatically

executing operations:

Source System

WSDL

Transformations

Created

SAWSDL

Created

Domain

Ontology

Ontology

Created

Response XML

Structurte

Semantic Model

Elements

Transformations Are

Used for Semantic

Annotation

1

2

3

 39

Figure 5.3 A high-level representation of the execution phase.

5.3.1 Setup Phase

In this section, detailed information about the setup phase is given.

5.3.1.1 Identification of the Source Systems

As a first step, the source systems which produce the required data should be

identified. In the scenario, the enterprise integration infrastructure is web service-

enabled Service Oriented Architecture, so all the systems are assumed to supply a web

service for their data. The WSDL files are gathered from four different sources.

Definitions of source system web services are shown in Table 5.1:

Parse

SAWSDL

Source System

Web Services

Semantic Integrator Process

SAWSDL

Documents

RDF-Store

Central

Transformation

Repository

Citizenship

Number

Domain

Ontology

Load Ontology

Semantic

Query
RDF

Data

Return

Integrated

Data

XML

Data

RDF

Data
XML

Data

Query

Results

Reasonings

are executed

2

1

3 4

5 7

8

9

10

11

12

6

Transformations

are executed

 40

Table 5.1 Definitions of source system web services

Web Service Name Web Service Definition

Range
GetCustomerNames provides the first name, middle name and last name of a

customer.

GetCustomerAddress provides the address information of a customer.

GetCustomerValue

provides the total of balance for the deposit accounts of

the customer and the profitability of the customer for the

enterprise.

GetCustomerStatus provides information on the relationship between the

customer and the enterprise.

A section of WSDL file defining the GetCustomerNames web service is shown

in Figure 5.4:

Figure 5.4 continued
 <wsdl:types>

 <xsd:schema targetNamespace="http://127.0.0.1:8080/GetCustName/">

 <xsd:element name="NamesRequest">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="citizenshipNo" type="xsd:string" minOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="NamesResponse">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="firstname" type="xsd:string" minOccurs="1" />

 <xsd:element name="middlename" type="xsd:string" minOccurs="0">

 </xsd:element>

 41

 <xsd:element name="lastname" type="xsd:string" minOccurs="1"></xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:schema>

 </wsdl:types>

Figure 5.4 WSDL file defining the GetCustomerNames web service.

5.3.1.2 Construction of the Domain Ontology

Basic construct of the semantic integration system is the domain ontology. The

ontology contains necessary classes and class hierarchies, properties and property

hierarchies, the relations between classes and properties, data validation rules,

inference rules to produce asserted statements. All the other semantic elements of the

system, like RDF-Store and web service annotations refer to the ontology.

First the attributes that will be a part of the model are identified. The needs of

the consuming application and the information that are present in the source systems

are analysed for this purpose. The attributes are grouped into reasonable classes.

Generally the attributes of the same class is supplied by the same source system but

the system allows different sources to provide information for the same class. A high-

level representation of domain ontology classes is shown in Figure 5.5:

 42

Figure 5.5 A high-level representation of domain ontology classes.

Is-a relationship graph of the semantic model is shown in Figure 5.6:

Figure 5.6 Is-a relationship graph of the semantic model.

Customer class represents the fundamental demographics information for the

customer, Address class represents the address of the customer, Value class represents

the value of the customer assets for the enterprise, Status class represents the formal

Domain

Ontology

Customer

Customer

Address

Customer

Status

Customer

Value

VIP

Customer

 43

relations of the enterprise and customer, VIPCustomer class represents if the customer

is eligible to be a VIP customer or not. There are two predefined class identifiers in

the model: the classes owl:Nothing and owl:Thing. owl:Thing class extension

represents the set of all individuals. owl:Nothing class extension represents the empty

set. Consequently, every class in the model is a subclass of owl:Thing class and

owl:Nothing class is a subclass of every class [19].

For modelling of attributes, owl:DatatypeProperty is used. Domain value of the

properties point to the classes they belong to and range values are simple literal types

like string, int. Domain and range values of model properties are shown in Table 5.2:

Table 5.2 Domain and range values of model properties.

Data Property Domain Range

hasName Customer String

hasLastName Customer String

hasAddressType Address Int

hasCountryCode Address String

hasCityCode Address Int

hasCountyName Address String

hasDistrictName Address String

hasStreetName Address String

hasApartmentName Address String

hasFlatNo Address Int

hasBalance Value String

hasProfitability Value String

isOnBlackList Status String

hasAgreementNo Status String

hasBranchName Status String

Namespace declarations used in Notation 3 (N3) representations of RDF triples

of the domain model are shown in Table 5.3:

 44

Table 5.3 Namespace declarations

Namespace declarations

@prefix cust: <http://www.semanticweb.org/ontologies/2010/0/customer.owl#>

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

@prefix owl: <http://www.w3.org/2002/07/owl#>

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>

Notation 3 (N3) representations of RDF triples for hasAddressType property of

the Address class are shown in Table 5.4:

Table 5.4 Notation 3 (N3) representation for hasAddressType property

Subject Predicate Object

cust:hasAddressType rdf:type owl:DatatypeProperty

cust:hasAddressType rdfs:domain cust:Address

cust:hasAddressType rdfs:range xsd:int

OWL models can also be expressed as XML documents in RDF-XML format.

The RDF/XML representation of the RDF triples for hasAddressType property of the

Address class is shown in Figure 5.7:

 45

 <owl:DatatypeProperty rdf:about="#hasAddressType">

 <rdfs:domain rdf:resource="#Address"/>

 <rdfs:range rdf:resource="&xsd;int"/>

 </owl:DatatypeProperty>

Figure 5.7 RDF/XML representation of the RDF triples for hasAddressType property.

Property Restriction feature of OWL is used to describe rules which infer new

relations by utilizing asserted triples. VIPCustomer class is constructed by the

intersection of a restriction class containing individuals whose hasBalance property

has value “High” and another restriction class containing individuals whose

isOnBlackList property has value “False”. RDF-Graph representation of

VIPCustomer class is shown in Figure 5.8:

Figure 5.8 RDF-Graph representation of VIPCustomer class.

VIPCustomer

owl:equivalentClass

HighHasBalanceOwners and FalseIsOnBlackListOwners

owl:intersectionOf owl:intersectionOf

hasBalance has “High” isOnBlackList has “False”

owl:onProperty owl:hasValue

hasBalance “High”

owl:onProperty owl:hasValue

isOnBlackList “False”

 46

Ontology construction is done with the Protégé Ontology Editor. Protégé is a

tool which implements an extensive set of knowledge-modelling features and actions

that can be used in the creation, modification and visualization of semantic models in

different formats [3]. A snapshot of constructed customer ontology in Protégé

Ontology Editor is shown in Figure 5.9:

Figure 5.9 Customer ontology construction using Protégé

The benefits of the domain ontology is not only limited to the integration

environment. It can be used as a central referral resource for this domain by all the

other software departments and business reporting units in the enterprise.

Web Ontology Language (OWL) is used as the ontology language because it

has sufficient expressive power and tool support required by an enterprise ontology.

RDF/XML representation of whole semantic model of the customer ontology is

represented in Appendix A.

 47

5.3.1.2 Semantic Annotation of Source System Web Services

Semantic annotation of the web services is the initial step for the conversion of

the legacy data models into the semantic data model. Annotation constructs the

connection between syntax-based xml representation of data and the semantically

enriched representation of data.

In this thesis work, a bottom-up approach is applied to build semantic web

services. The basic motivation of the bottom-up approaches is using the existing

WSDL files to create semantic annotations.

Semantic Annotations for WSDL (SAWSDL) [4] specification is used as the

annotation standard because it is the newest and most widely used bottom-up

paradigm and has the strongest tool/API support.

SAWSDL specification allows annotating any part of the WSDL file. For a

semantic data integration goal, “wsdl:types” can be thought as the best component to

add semantics because request/response data definitions are made here. In this thesis

work, since the request objects do not need to enter a transformation operation, only

the response objects are annotated. In SAWSDL specification, when an XML tag is

annotated, all the elements under that top-most element can be reached from the

transformation file used in the annotation. So as to establish a standard throughout the

integration system, it is preferred to annotate only the top level of the response object.

SAWSDL specification allows for three different types of annotation extension

attribute: liftingSchemaMapping, modelReference and loweringSchemaMapping.

Among them only liftingSchemaMapping is required to be used for this work. This

attribute points to a transformation file which contains the mappings to convert the

syntactic XML data to semantic RDF data. modelReference is not used because its

functionality can be covered by a liftingSchemaMapping transformation.

loweringSchemaMapping is not needed because RDF-to-XML data conversion is not

performed by web service executions in this system. Semantic annotation for a source

system is represented in Figure 5.10:

 48

Figure 5.10 Semantic annotation for a source system.

SAWSDL document for GetCustomerNames web service is shown in Figure

5.11:

 <!-- response object !-->

 <xs:element name="NamesResponse"

sawsdl:liftingSchemaMapping="NamesResponseTransformation.xslt">

 <xs:complexType>

 <xs:sequence>

 <xs:element minoccurs="1" name="firstname" />

 <xs:element minoccurs="0" name="middlename" type="xs:string"/>

 <xs:element minoccurs="1" name="lastname" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

Figure 5.11 SAWSDL document for GetCustomerNames web service

There is some number of graphical tools for creation of SAWSDL documents

from standard WSDL documents. Radiant tool [5], developed by Large Scale

Distributed Information Systems Lab (LSDIS) in University of Georgia, is used in this

implementation. This tool is a plug-in for the Eclipse IDE [6] and provides a useful

Source WSDL +
liftingSchemaMapping attribute

&

Transformation File Name

=>
Semantically

Annotated

WSDL

 49

GUI for annotation of WSDL files using ontologies. A screenshot of the Radiant tool

is shown in Figure 5.12:

Figure 5.12 Semantic annotation of WSDL documents using Radiant

5.3.1.3 Defining Data Transformation Mappings

Semantically annotated web service definitions point to transformation files that

contain the necessary mappings. The main purpose of the transformations is to convert

the syntactic XML data produced by source systems into the semantic model based

RDF data.

Source system attributes can be processed in three ways under a transformation

operation:

 The source attribute can be totally ignored. Source systems do not have to

return data dedicated to the consumer application, so unrelated

attributes are not transformed into RDF. This is one of the advantages

 50

of the bottom-up approach against top-down approach, where the web

service should be completely translated. This advantage reduces the

needed time and cost for adaptation of semantic technology into an

enterprise software system.

 The source attribute can be directly mapped to an ontology attribute. This

can happen when the meaning and format of the source attribute is

exactly the same with the target attribute. For example the source

attribute lastname can be directly mapped to the ontology attribute

hasLastName, if they both mean the family name of a customer that is

of type string.

 The source attribute goes under some transformations or concatenates

with another source attribute before mapping a target attribute. This is

the most frequently encountered situation because different source

systems generally have different attributes for the concepts of the same

domain. For example the source system may have two different

attributes for the names (other than last name) of a customer: first name

and middle name. But the enterprise-wide usage may be having only

one attribute for the names of the customer, where the first name and

the middle name are hold concatenated with a space between them. As

the domain ontology relies on the enterprise-wide most accepted usage,

a transformation should occur between the source and semantic model.

SAWSDL specification does not enforce a strict transformation/mapping

standard. XSL Transformations (XSLT) [7] is preferred as the transformation

language. XSLT is used for transformation of one XML document into another XML

document with a different schema structure. Since the RDF data and semantic model

can be serialized as RDF/XML format, XSLT is a convenient language for semantic

data transformation operations. A transformation expressed in XSLT describes rules

for transforming source XML structure into target XML structure. XSLT makes use of

the functions and expression language defined by XPath [33] for processing.

5.3.1.3.1 GetCustomerNames Web Service Transformation

GetCustomerNames service returns the first name, middle name and last name

of a customer. However, the domain ontology holds the names in just two attributes,

 51

name and last name, instead of three. As a result, a transformation is necessary to

format the source data. Transformation/mapping definitions for the

GetCustomerNames web service is represented in Table 5.5:

Table 5.5 Transformations/mappings for the GetCustomerNames web service

Source Attribute Ontology Attribute Transformation/Mapping

firstname hasName Concatenate (firstname,‟ „, middlename)

=> hasName middlename

lastname hasLastName lastname => hasLastName

Part of the XSLT transformation file for GetCustomerNames web service is

shown in Figure 5.13:

 <owl:Thing rdf:about= "#{citizenshipNo}" >

 <rdf:type rdf:resource="#Customer"/>

 <hasName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:value-of select="concat(firstname , ' ', middlename)"/>

 </hasName>

 <hasLastName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:value-of select="lastname"/>

 </hasLastName>

 <hasCitizenshipNo rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:value-of select="citizenshipNo"/>

 </hasCitizenshipNo>

 </owl:Thing>

Figure 5.13 XSLT transformation file for GetCustomerNames web service.

 52

5.3.1.3.2 GetCustomerAddress Web Service Transformation

GetCustomerAddress service returns the address information of a customer.

Response data coming from this service should also go under transformation for some

reasons. The Address Type attribute, which demonstrates the type of the address as

home, work or factory, is enumerated differently in the source system and central

ontology. The other transformation need is because of enterprise-wide standardization.

The consuming applications need to add some keywords to some attributes of the

address information for increased comprehensibility. For example “str.” keyword is

added at the end of street name, “apt.” keyword is added at the end of apartment name.

Transformation/mapping definitions for the GetCustomerAddress web service is

represented in Table 5.6:

Table 5.6 Transformations/mappings for the GetCustomerAddress web service

Source Attribute Ontology Attribute Transformation/Mapping

addresstype hasAddressType

If (addresstype = H) => 1

If (addresstype = W) => 2

If (addresstype = F) => 3

countrycode hasCountryCode countrycode => hasCountryCode

citycode hasCityCode citycode => hasCityCode

countyname hasCountyName countyname => hasCountyName

districtname hasDistrictName districtname => hasDistrictName

streetname hasStreetName Concatenate(streetname,‟ „,‟str.‟) =>

hasStreetName

apartmentname hasApartmentName Concatenate(apartmentname,‟ „,‟apt.‟) =>

hasApartmentName

flatno hasFlatNo flatno => hasFlatNo

 53

Part of the XSLT transformation file for GetCustomerAddress web service is

shown in Figure 5.14:

Figure 5.14 continued
 <owl:Thing rdf:about= "#{citizenshipNo}" >

 <rdf:type rdf:resource="#Address"/>

 <hasAddressType rdf:datatype="http://www.w3.org/2001/XMLSchema#int">

 <xsl:choose>

 <xsl:when test="addresstype = 'H'"> 1 </xsl:when>

 <xsl:when test="addresstype = 'W'"> 2 </xsl:when>

 <xsl:when test="addresstype = 'F'"> 3 </xsl:when>

 <xsl:otherwise> 1 </xsl:otherwise>

 </xsl:choose>

 </hasAddressType>

 <hasStreetName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:value-of select="concat(streetname , ' str.')"/>

 </hasStreetName>

 <hasApartmentName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:value-of select="concat(apartmentname , ' apt.')"/>

 </hasApartmentName>

 <hasCountryCode rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:value-of select="countrycode"/>

 </hasCountryCode>

 <hasCityCode rdf:datatype="http://www.w3.org/2001/XMLSchema#int">

 <xsl:value-of select="citycode"/>

 </hasCityCode>

 54

 <hasCountyName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:value-of select="countyname"/>

 </hasCountyName>

 <hasDistrictName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:value-of select="districtname"/>

 </hasDistrictName>

 <hasFlatNo rdf:datatype="http://www.w3.org/2001/XMLSchema#int">

 <xsl:value-of select="flatno"/>

 </hasFlatNo>

 <hasCitizenshipNo rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:value-of select="citizenshipNo"/>

 </hasCitizenshipNo>

 </owl:Thing>

Figure 5.14 XSLT transformation file for GetCustomerAddress web service.

5.3.1.3.3 GetCustomerValue Web Service Transformation

GetCustomerValue service returns the total of balance for the deposit accounts

of the customer and the profitability of the customer for the enterprise. Balance and

profitability data is returned as decimal values like 75.000, however consumer

application expects aggregate information like “Medium”. As a result a

transformation is required. Transformation/mapping definitions for the

GetCustomerValue web service is represented in Table 5.7:

 55

Table 5.7 Transformations/mappings for the GetCustomerValue web service

Source Attribute Ontology Attribute Transformation/Mapping

balance hasBalance

If (balance > 100.000) => “High”

If (balance > 10.000) => “Medium”

If (balance > 1.000) => “Low”

profitability hasProfitability If (profitability > 100.000) => “High”

If (profitability > 10.000) => “Medium”

If (profitability > 1.000) => “Low”

Part of the XSLT transformation file for GetCustomerValue web service is

shown in Figure 5.15:

Figure 5.15 continued
 <owl:Thing rdf:about= "#{citizenshipNo}" >

 <rdf:type rdf:resource="#Value"/>

 <hasBalance rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:choose>

 <xsl:when test="balance > 100000">High</xsl:when>

 <xsl:when test="balance > 10000">Middle</xsl:when>

 <xsl:when test="balance > 1000">Low</xsl:when>

 <xsl:otherwise> None </xsl:otherwise>

 </xsl:choose>

 </hasBalance>

 <hasProfitability rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:choose>

 56

 <xsl:when test="profitability > 100000">High</xsl:when>

 <xsl:when test="profitability > 10000">Middle</xsl:when>

 <xsl:when test="profitability > 1000">Low</xsl:when>

 <xsl:otherwise> None </xsl:otherwise>

 </xsl:choose>

 </hasProfitability>

 </owl:Thing>

Figure 5.15 XSLT transformation file for GetCustomerValue web service

5.3.1.3.4 GetCustomerStatus Web Service Transformation

GetCustomerStatus service returns information on the relationship between the

customer and the enterprise. Response data includes the name of the branch that

customer belongs, service agreement number and if the customer is on black list or

not. Block list information sometimes cannot be supplied in the source system,

however consumer application expects a value all the time. Transformation always

assigns the “False” value if the source system does not return a value.

Transformation/mapping definitions for the GetCustomerStatus web service is

represented in Table 5.8:

Table 5.8 Transformations/mappings for the GetCustomerStatus web service

Source Attribute Ontology Attribute Transformation/Mapping

isonblacklist isOnBlackList

If (isonblacklist = “ “) => “False”

Else isonblacklist => isOnBlackList

branchname hasBranchName branchname => hasBranchName

agreementno hasAgreementNo agreementno => hasAgreementNo

 57

Part of the XSLT transformation file for GetCustomerStatus web service is

shown in Figure 5.16:

 <owl:Thing rdf:about= "#{citizenshipNo}" >

 <rdf:type rdf:resource="#Status"/>

 <isOnBlackList rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:choose>

 <xsl:when test="isonblacklist = ' '"> False </xsl:when>

 <xsl:otherwise> <xsl:value-of select="isonblacklist"/> </xsl:otherwise>

 </xsl:choose>

 </isOnBlackList>

 <hasBranchName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:value-of select="branchname"/>

 </hasBranchName>

 <hasAgreementNo rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:value-of select="agreementno"/>

 </hasAgreementNo>

 </owl:Thing>

Figure 5.16 XSLT transformation file for GetCustomerStatus web service

Full transformation files for four web services can be found in Appendix B.

5.3.2 Execution Phase

In this section, detailed information about the execution phase is given.

 58

5.3.2.1 Semantic Data Integrator Process

Semantic Data Integrator Process is the main unit in the system. This process

orchestrates source system service calls, transformation service calls, in-memory

RDF-Store persistence, execution of semantic query statements and constructing the

response to the consumer application.

The process communicates with the consumer application by a web service.

This Integrator Service takes the citizenship number of the customer in request and

returns the consolidated, transformed, standardized and possibly enriched customer

data in response.

In the start-up, integrator process loads the domain ontology to the in-memory

RDF-Store and parses SAWSDL documents of each service to extract

transformations. As soon as the source XML data is transformed for each service,

resulting semantic data is united with the domain ontology statements to allow

semantic querying and reasoning before construction of the response. Process flow

diagram of the Semantic Data Integrator Process is represented in Figure 5.17:

 59

Figure 5.17 Process flow diagram of the Semantic Data Integrator Process.

In the development of semantic data integrator process, Eclipse IDE for Java

EE Developers v1.2.0 [6] is used as the IDE platform, J2EE v1.6 [34] as the

programming language and Apache Tomcat v6.0 [35] as the web server.

5.3.2.2 Extraction of Transformations from SAWSDL

When a new request is made against the integrator process from the consumer

application, the first operation is to extract the transformation information from the

SAWSDL documents of the source web services. Transformations file names are

Read Domain Ontology

OWL File

Load Domain Ontology

into RDF-Store

Parse SAWSDL

Documents to Extract

Transformations

Call Source System Web

Service

All Web

Services

Called?

NO

Execute

Transformations

Persist Resulting RDF

Data in the RDF-Store

Run Semantic Query to

Capture Collected Data

and Inferences

Yes

D

Return Integrated Data to

Consumer Application

 60

located in the liftingSchemaMapping attribute of the top-level element of response

object. To get the value of the attribute, SAWSDL document should be parsed.

EasySAWSDL API [36] is used to parse the SAWSDL documents. It is an

extension for EasyWSDL library which is a powerful WSDL parsing library.

After liftingSchemaMapping attribute is found, the value of the attribute is

stored in the process to use as the transformation file name.

5.3.2.3 Data Conciliation and Transformation

The integrator process initiates collecting data from source system web services

after transformation information is extracted from SAWSDL files. Response of each

web service is gathered by the integrator process and an XML block is prepared by

using the response data and the response object XML schema. The citizenship number

attribute, which is the input parameter for the integrator service, is also added to the

XML block. This attribute is the key field for all the information belonging to a

specified customer and information is integrated with the help of this key field. In

each transformation, citizenship number is placed as URI name of the individual so

that all RDF triples belonging to the same customer is aggregated under the same

individual. Constructed XML blocks are sent to the Central Transformation

Repository for XML-to-RDF conversion.

All the transformations are performed by the Central Transformation

Repository which is a separate unit independent of the integrator process. Central

Transformation Repository stores all the transformation definition files and provides a

transformation service to communicate with the other systems. Transformation

service takes the name of the transformation file and the XML block to be transformed

as input. Corresponding XSLT file is located in the transformation repository and the

XML block is converted into RDF/XML block by executing the transformation file.

Java API for XML Processing (JAXP) [9] library is used for the execution of

transformations. The architecture of Central Transformation Repository is shown in

Figure 5.18:

 61

Figure 5.18 Architecture of Central Transformation Repository.

5.3.2.3.1 Transformation Execution for GetCustomerNames

A sample XML block which will be transformed for GetCustomerNames web

service is shown in Figure 5.19:

<NamesResponse>

 <firstname> Mehmet </firstname>

 <middlename> Ali </middlename>

 <lastname> Kaya </lastname>

 <citizenshipNo> 16534878800 </citizenshipNo>

</NamesResponse>

Figure 5.19 A sample XML block for GetCustomerNames service.

A section of resulting RDF block after execution of the XSLT transformation to

the XML block for GetCustomerNames service is shown in Figure 5.20:

XML

Block

Central Transformation Repository

XSLT Files

JAXP

Engine
XSLT

Filename

RDF

Block

 62

 <owl:Thing rdf:about="#16534878800">

 <rdf:type rdf:resource="#Customer"/>

 <hasName rdf:datatype="string">Mehmet Ali</hasName>

 <hasLastName rdf:datatype="string">Kaya</hasLastName>

 <hasCitizenshipNo rdf:datatype="string">16534878800</hasCitizenshipNo>

 </owl:Thing>

Figure 5.20 Transformed RDF block for GetCustomerNames service.

Notation 3 (N3) representation of resulting RDF data triples for

GetCustomerNames service is shown in Table 5.9:

Table 5.9 N3 representation of RDF triples for GetCustomerNames service

Subject Predicate Object

cust:16534878800 rdf:type cust:Customer

cust:16534878800 cust:hasName “Mehmet Ali”

cust:16534878800 cust:hasLastName “Kaya”

cust:16534878800 cust:hasCitizenshipNo “16534878800”

5.3.2.3.2 Transformation Execution for GetCustomerAddress

A sample XML block will be transformed for GetCustomerAddress web service

is shown in Figure 5.21:

Figure 5.21 continued
 <AddressResponse>

 <addresstype> H </addresstype>

 <countrycode> TR </countrycode>

 63

 <citycode> 34 </citycode>

 <countyname> Pendik </countyname>

 <districtname> Barbaros </districtname>

 <streetname> Sedef </streetname>

 <apartmentname> Ocak </apartmentname>

 <flatno> 5 </flatno>

 <citizenshipNo> 16534878800 </citizenshipNo>

 </AddressResponse>

Figure 5.21 A sample XML block will be transformed for GetCustomerAddress

service.

A section of resulting RDF block after execution of the XSLT transformation to

the XML block for GetCustomerAddress service is shown in Figure 5.22:

Figure 5.22 continued
 <owl:Thing rdf:about="#16534878800">

 <rdf:type rdf:resource="#Address"/>

 <hasAddressType rdf:datatype="int"> 1 </hasAddressType>

 <hasStreetName rdf:datatype="string">Sedef str.</hasStreetName>

 <hasApartmentName rdf:datatype="string">Ocak apt.</hasApartmentName>

 <hasCountryCode rdf:datatype="string">TR</hasCountryCode>

 <hasCityCode rdf:datatype="int">34</hasCityCode>

 <hasCountyName rdf:datatype="string">Pendik</hasCountyName>

 <hasDistrictName rdf:datatype="string">Barbaros</hasDistrictName>

 <hasFlatNo rdf:datatype="int">5</hasFlatNo>

 <hasCitizenshipNo rdf:datatype="string">16534878800</hasCitizenshipNo>

 64

</owl:Thing>

Figure 5.22 Transformed RDF block for GetCustomerAddress service.

Notation 3 (N3) representation of resulting RDF data triples for

GetCustomerAddress service is shown in Table 5.10:

Table 5.10 N3 representation of RDF triples for GetCustomerAddress service.

Subject Predicate Object

cust:16534878800 rdf:type cust:Address

cust:16534878800 cust:hasAddressType 1

cust:16534878800 cust:hasStreetName “Ocak apt.”

cust:16534878800 cust:hasApartmentName “16534878800”

cust:16534878800 cust:hasCountryCode TR

cust:16534878800 cust:hasCityCode 34

cust:16534878800 cust:hasCountyName “Pendik”

cust:16534878800 cust:hasDistrictName “Barbaros”

cust:16534878800 cust:hasFlatNo 5

cust:16534878800 cust:hasCitizenshipNo “16534878800”

5.3.2.3.3 Transformation Execution for GetCustomerValue

A sample XML block will be transformed for GetCustomerValue web service is

shown in Figure 5.23:

 65

<ValueResponse>

<balance>250000</balance>

<profitability>90000</profitability>

<citizenshipNo>16534878800</citizenshipNo>

</ValueResponse>

Figure 5.23 A sample XML block for GetCustomerValue service.

A section of resulting RDF block after execution of the XSLT transformation to

the XML block for GetCustomerValue service is shown in Figure 5.24:

<owl:Thing rdf:about="#16534878800">

<rdf:type rdf:resource="#Value"/>

<hasBalance rdf:datatype="string">High</hasBalance>

<hasProfitability rdf:datatype=" string">Middle</hasProfitability>

<hasCitizenshipNo rdf:datatype="string">16534878800</hasCitizenshipNo>

</owl:Thing>

Figure 5.24 Transformed RDF block for GetCustomerValue service.

Notation 3 (N3) representation of resulting RDF data triples for

GetCustomerValue service is shown in Table 5.11:

 66

Table 5.11 N3 representation of RDF triples for GetCustomerValue service.

Subject Predicate Object

cust:16534878800 rdf:type cust:Value

cust:16534878800 cust:hasBalance “High”

cust:16534878800 cust:hasProfitability “Middle”

cust:16534878800 cust:hasCitizenshipNo “16534878800”

5.3.2.3.4 Transformation Execution for GetCustomerStatus

A sample XML block will be transformed for GetCustomerStatus web service is

shown in Figure 5.25:

<StatusResponse>

<isonblacklist>False</isonblacklist>

<agreementno>A45745</agreementno>

<branchname>ISTANBUL</branchname>

<citizenshipNo>16534878800</citizenshipNo>

</StatusResponse>

Figure 5.25 A sample XML block for GetCustomerStatus service.

A section of resulting RDF block after execution of the XSLT transformation to

the XML block for GetCustomerStatus service is shown in Figure 5.26:

Figure 5.26 continued
<owl:Thing rdf:about="#16534878800">

<rdf:type rdf:resource="#Status"/>

<isOnBlackList rdf:datatype="string">False</isOnBlackList>

<hasAgreementNo rdf:datatype="string">A45745</hasAgreementNo>

 67

<hasBranchName rdf:datatype="string">ISTANBUL</hasBranchName>

<hasCitizenshipNo rdf:datatype="string">16534878800</hasCitizenshipNo>

</owl:Thing>

Figure 5.26 Transformed RDF block for GetCustomerStatus service.

Notation 3 (N3) representation of resulting RDF data triples for GetCustomerStatus

service is shown in Table 5.12:

Table 5.12 N3 representation of RDF triples for GetCustomerStatus service.

Subject Predicate Object

cust:16534878800 rdf:type cust:Status

cust:16534878800 cust:isOnBlackList “False”

cust:16534878800 cust:hasAgreementNo “A45745”

cust:16534878800 cust:hasBranchName “ISTANBUL”

cust:16534878800 cust:hasCitizenshipNo “16534878800”

5.3.2.4 Persistence in RDF-Store

 Transformations produce semantic data which are compatible with the domain

ontology. Before the execution of any service, the RDF-Store contains only the RDF

triples belonging to domain ontology. After the execution of each web service, RDF

data triples generated by the service are persisted into the RDF-Store and merged with

existing data. At the end of source system calls, RDF-Store holds all the information

collected for the specified customer. A section of merged RDF triples in RDF-Store is

shown in Figure 5.27:

 68

 <rdf:Description rdf:about="#16534878800">

 <rdf:type rdf:resource="#Customer"/>

 <rdf:type rdf:resource="#Address"/>

 <rdf:type rdf:resource="#Value"/>

 <rdf:type rdf:resource="#Status"/>

 <hasCountryCode rdf:datatype="string">TR</hasCountryCode>

 <hasCitizenshipNo rdf:datatype="string">16534878800</hasCitizenshipNo>

 <hasCountyName rdf:datatype="string">Pendik</hasCountyName>

 <hasName rdf:datatype="string">Mehmet Ali</hasName>

 <hasCityCode rdf:datatype="int">34</hasCityCode>

 <hasAddressType rdf:datatype="int"> 1 </hasAddressType>

 <hasApartmentName rdf:datatype="string">Ocak apt.</hasApartmentName>

 <hasLastName rdf:datatype="string">Kaya</hasLastName>

 <hasFlatNo rdf:datatype="int">5</hasFlatNo>

 <hasDistrictName rdf:datatype="string">Barbaros</hasDistrictName>

 <hasStreetName rdf:datatype="string">Sedef str.</hasStreetName>

 <hasBalance rdf:datatype="string">High</hasBalance>

 <hasProfitability rdf:datatype=" string">Middle</hasProfitability>

 <isOnBlackList rdf:datatype="string">False</isOnBlackList>

 <hasAgreementNo rdf:datatype="string">A45745</hasAgreementNo>

 <hasBranchName rdf:datatype="string">ISTANBUL</hasBranchName>

 </rdf:Description>

Figure 5.27 Merged RDF triples in RDF-Store.

High-level architecture of RDF-Store is represented in Figure 5.28:

 69

Figure 5.28 High-level architecture of RDF-Store.

For the implementation of RDF-Store, Jena Framework [37] is used. Jena is a

semantic web framework for Java which includes an RDF/OWL API, in-

memory/persistent storage and semantic query engine.

5.3.2.5 Semantic Query

Before construction of the response, the semantic information in the RDF-Store

should be queried to get the results. Semantic query takes citizenship number as input

parameter and returns whole the data related with this customer.

SPARQL [48] is used as the semantic query language since it has support for

the Jena-based RDF–Store. A section of the semantic query statement in SPARQL is

shown in Figure 5.29:

RDF Triples of

Domain

Ontology

RDF Triples

Generated by

Transformations

 Persistence API

In-Memory Storage

Inference Engine

Semantic Query Engine

RDF-Store

 70

 PREFIX customer: < http://www.semanticweb.org/ontologies/2010/0/customer.owl#>

 SELECT ?Name ?LastName ?AddressType ?ApartmentName ?CityCode

 ?CountryCode ?CountyName ?DistrictName ?FlatNo ?StreetName

 ?Balance ?Profitability ?IsOnBlackList ?AgreementNo ?BranchName

 WHERE {

 ?cust customer:hasCitizenshipNo 16534878800

 ?cust customer:hasName ?Name .

 ?cust customer:hasLastName ?LastName .

 ?cust customer:hasAddressType ?AddressType .

 ?cust customer:hasApartmentName ?ApartmentName .

 ?cust customer:hasCityCode ?CityCode .

 ?cust customer:hasCountryCode ?CountryCode .

 ?cust customer:hasCountyName ?CountyName .

 ?cust customer:hasDistrictName ?DistrictName .

 ?cust customer:hasFlatNo ?FlatNo .

 ?cust customer:hasStreetName ?StreetName .

 ?cust customer:hasBalance ?Balance .

 ?cust customer:hasProfitability ?Profitability .

 ?cust customer:isOnBlackList ?IsOnBlackList .

 ?cust customer:hasAgreementNo ?AgreementNo .

 ?cust customer:hasBranchName ?BranchName .

 }

Figure 5.29 Semantic query statement in SPARQL

 71

5.3.2.6 Inference

Property Restriction feature of OWL is used to describe rules which infer new

relations by utilizing asserted triples. VIPCustomer class is constructed by the

intersection of a restriction class containing individuals whose hasBalance property

has value “High” and another restriction class containing individuals whose

isOnBlackList property has value “False”.

Inference rules are modelled with Property Restriction classes. VIPCustomer

class is described as the individuals whose hasBalance property has value “High” and

whose isOnBlackList property has value “False”. If those conditions hold for an

individual, an inferred triple is added to the data store automatically. For the sample

individual #16534878800, two triples exists so a new triple is inferred indicating that

this individual belongs to VIPCustomer class. Inference rule for VIPCustomer class is

shown in Figure 5.30:

Figure 5.30 Inference rule for VIPCustomer class.

SPARQL statement executed to test if the individual belongs to VIPCustomer

class or not is represented in Figure 5.31:

Asserted Triples

#16534878800 hasBalance “High”

#16534878800 isOnBlackList “False”

=> #16534878800 rdf:type “#VIPCustomer” and

Inferred Triple

 72

 PREFIX customer: < http://www.semanticweb.org/ontologies/2010/0/customer.owl#>

 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

 SELECT ?Name

 WHERE {

 ?cust customer:hasCitizenshipNo "16534878800" .

 ?cust customer:hasName ?Name .

 ?cust rdf:type customer:VIPCustomer .

 }

Figure 5.31 SPARQL statement executed for VIPCustomer class membership.

5.3.2.7 Construction of Response

The response object of the integrator process is filled by the fields in the result

set of the semantic query. The response object is returned to the consumer application

as a regular web service response.

5.3.2.8 Integrator Process Execution Time Analysis

Key operations in Semantic Integrator Process are analysed in terms of their

execution times. The total response time for the Semantic Integrator Process against

one consumer application request is divided into four main operations:

 Source System Calls: This is the time elapsed for calling four different

source system web services and getting their response.

 Transformation Executions: This is the time elapsed for sending the

XML data block to the Central Transformation Repository, executing

the transformation inside it and getting the RDF data in response. The

time is calculated as the aggregation of four different source system

web services.

 73

 Persisting RDF Triples: This is the time elapsed for persisting the RDF

data inside the RDF-Store for four different source system web

services.

 Semantic Query and Inference: This is the time elapsed for semantically

querying the data, inferencing inside the RDF-Store and getting the

result set from the RDF-Store.

Average execution times of each operation for one consumer application

request are shown in Table 5.13. In the table, Operation Name column shows the

name of the operation in Semantic Integrator Process, Execution Time column shows

the execution time of the operation in milliseconds and Percentage column shows the

percentage of the execution time for this operation in the total execution time.

Table 5.13 Average execution times for one consumer application request.

Operation Name Execution Time (in ms) Percentage

Source System Calls 189 %39

Transformation Executions 128 %27

Persisting RDF Triples 32 %7

Semantic Query and Inference 134 %27

Total of All Operations 483 %100

From the Table 5.13, it is seen that most of the processing time is used for the

Source System Calls. However, the total cost of Transformation Executions, Persisting

RDF Triples and Semantic Query and Inference is %61 of total time and this is more

than the execution time of Source System Calls. This shows that operations that are

performed for establishing data integration take more time than producing raw data in

the source systems.

 74

Apache Derby [49] relational database management system is used for source

system data. Tests are performed on a personal computer with Intel Core 2 Duo

processor and 2 GB RAM.

 75

CHAPTER 6

CONCLUSION

In this work, semantic technologies are used to implement an Intra-Enterprise

Data Integration scenario where a Web Service enabled Service Oriented Architecture

is in use.

An important percentage of data integration problems occur as the result of

syntactic definition of web services. Misunderstandings on the meaning of exchanged

information are aimed to be reduced using semantic models. Data domain is modelled

by a semantic ontology which allowed for a formal definition of classes, properties

and rules constituting the domain. Transformations and mappings on the exchanged

data patterns are defined based on the semantic model so that development efforts

became more organized and systematic. Since a real-life project involving many

number of development teams working together cannot be implemented during this

study, it is not possible to give precise information about the magnitude of

improvement on development time.

Domain-specific standardization, transformation and mapping rules were

embedded inside the integrator processes in the syntax –based system which resulted

in the change of source code each time a new rule is required. In addition, generating a

comprehensive list of executing rules, which is frequently asked by the business units,

were difficult because review of source codes is needed. Rules performing same

operations were coded multiple times for different source systems. A main

contribution in this thesis work is building a Central Transformation Repository for

data transformations so that enterprise-wide standardization, transformation and

mapping rules are managed at a single point. Transformation definitions became

available to be shared and reused by different source systems. Enterprise-level

standardization rules can be controlled and listed by just analyzing the transformation

 76

files. This repository communicates with integrator process with a web service which

provides a smooth integration with the existing Service Oriented Architecture. The

transformation information in the repository is stored in separate XSLT files and

filename based retrieval is performed. Execution performance of repository can be

improved by storing the transformation files in a light-weight database and retrieving

transformation files using indexing mechanisms. Schema mapping files (XSLT files)

are created manually in the thesis work. Utilizing a visual tool for mappings can speed

up creation process.

Another purpose of the thesis work is applying semantic technologies with

minimum modification on source systems. To achieve this, a bottom-up approach is

applied for semantic annotation of web services. Only the required parts of the web

service definitions are involved in the annotation process.

Generally, main purpose on semantic annotation of web services in the

literature is to facilitate web service discovery and composition. Inferencing

capabilities of semantic models are used to improve the service matching algorithms.

However for an intra-enterprise data integration scenario as presented, web service

discovery is not required since all the web services which will be involved in the

process are already known at the beginning. A main contribution of this work is to

expose whole inference power of underlying semantic model to capture the implicit

data in an intra-enterprise environment, rather than relying on the quality of a service

matching algorithm to find the possible inferences which will limit the reasoning

power eventually. An RDF-Store based on Jena semantic web framework is developed

to provide inferencing on integrated data. By inferencing, implicit relationships on

integrated data are revealed so that additional information can be provided to

consumer application. Only a core subset of customer domain can be modelled during

this study. The semantic model can be more realistic by adding more classes and

property restrictions.

As a future work, the proposed framework can be used in the development

process of a real-life integration project to calculate the improvement on development

efforts. Central Transformation Repository development can be integrated with

semantic annotation tools to make transformation repository creation easier for

developers. Other XML transformation languages like XQuery [50] can be utilized in

place of XSLT to compare execution times.

 77

REFERENCES

[1] Bernard Manouvrier, Laurent Menard. “Application Integration: EAI, B2B,

BPM and SOA”. Wiley, 2008.

[2] RosettaNet. URL: http://www.rosettanet.org/, last access date 7 April 2010.

[3] Protégé Ontology Editor. URL: http://protege.stanford.edu/, last access date 8

April 2010.

[4] Semantic Annotations for WSDL. URL: http://www.w3.org/2002/ws/sawsdl/,

last access date 3 April 2010.

[5] Radiant: WSDL-S/SAWSDL Annotation Tool.

URL: http://lsdis.cs.uga.edu/projects/meteor-s/downloads/index.php?page=1,

last access date 13 April 2010.

[6] Eclipse IDE. URL: http://www.eclipse.org/, last access date 5 April 2010.

[7] XSL Transformations (XSLT). URL: http://www.w3.org/TR/xslt, last access

date 1 April 2010.

[8] SAWSDL4J Object Model.

URL: http://knoesis.wright.edu/opensource/sawsdl4j/project-info.html, last

access date 9 April 2010.

[9] Java API for XML Processing (JAXP). URL: https://jaxp.dev.java.net/, last

access date 21 April 2010.

[10] Jorge Cardoso and Amit P. Sheth. “Semantic Web Services, Processes and

Applications”. Springer, 2006.

[11] Curbera, F., W. Nagy, et al. “Web Services: Why and How”. Workshop on

Object-Oriented Web Services, OOPSLA, Tampa, Florida, USA. 2001

 78

[12] Chinnici, R., M. Gudgin, et al. Web Services Description Language (WSDL)

Version 1.2, W3C Working Draft 24, http://www.w3 .org/TR/2003AVD-wsdl

12-20030124/. 2003.

[13] OWL-S. URL:http://www.w3.org/Submission/OWL-S/, last access date 8 April

2010.

[14] WSMO. URL: http://www.wsmo.org/, last access date 15 April 2010.

[15] WSDL-S. URL: http://www.w3.org/Submission/WSDL-S/, last access date 26

April 2010.

[16] Dieter Fensel, Holger Lausen, Axel Polleres, Jos de Bruijn, Michael Stollberg,

Dumitru Roman, John Domingue. “Enabling Semantic Web Services: The Web

Service Modeling Ontology”. Springer, 2007.

[17] Resource Description Framework (RDF). URL: http://www.w3.org/RDF/, last

access date 28 April 2010.

[18] RDF Schema. URL: http://www.w3.org/TR/rdf-schema/, last access date 8

April 2010.

[19] Web Ontology Language (OWL). URL: http://www.w3.org/2004/OWL/, last

access date 13 April 2010.

[20] I. Horrocks, P. F. Patel-Schneider and F. van Harmelen. “From SHIQ and

RDF to OWL: The making of a web ontology language”. Journal of Web

Semantics, 1(1):7–26, 2003.

[21] P. F. Patel-Schneider, P. Hayes and I. Horrocks. “OWL Web Ontology

Language Semantics and Abstract Syntax”. W3C Recommendation, 10

February 2004.

[22] Verma, K., K. Sivashanmugam, et al. "METEOR-S WSDI: A Scalable

Infrastructure of Registries for Semantic Publication and Discovery of Web

Services." Journal of Information Technology and Management. 2004.

[23] Cardoso, J. and A. Sheth. "Semantic e-Workflow Composition." Journal of

Intelligent Information Systems (JUS). ZIO): 191-225. 2003.

 79

[24] Universal Description Discovery and Integration (UDDI).

URL:http://uddi.xml.org/, last access date 22 April 2010.

[25] Sheth, A. and R. Meersman. "Amicaloia Report: Database and Information

Systems Research Challenges and Opportunities in Semantic Web and

Enterprises." SIGMOD Record 31(4): pp. 98-106. 2002.

[26] Sheth, A. . “Semantic Meta Data For Enterprise Information Integration”. DM

Review Magazine. July 2003.

[27] C. Bussler. “The Role of Semantic Web Technology in Enterprise Application

Integration.”. IEEE Data Engineering Bulletin, 26(4):62–68, 2003.

[28] D. Fensel and C. Bussler. “The Web Service Modelling Framework WSMF”.

Electronic Commerce Research and Applications, 1(2), 2002.

[29] Armin Haller, Juan Miguel Gomez, Christoph Bussler. “Exposing Semantic

Web Service principles in SOA to solve EAI scenarios”. In the Proceedings of

the Workshop on Web Service Semantics: Towards Dynamic Business

Integration, in conjunction with WWW2005. Chiba, Japan. 2005

[30] A. Mocan and E. Cimpian. “Mediation”. WSMX Working Draft D13.3 v0.1,

URL: http://www.wsmo.org/2004/d13/d13.3/v0.1/20040906/, 2004, last access

date 24 April 2010.

[31] Thanassis Bouras, Panagiotis Gouvas, Gregoris Mentzas. “Dynamic Data

Mediation in Enterprise Application Integration”. Conference in O. Cunnigham

and M. Cunnigham (eds) Collaboration and the Knowledge Economy: Issues,

Applications and Case Studies, pp. 917-924, eChallenges e-2008 Conference,

22 - 24 October 2008, Stockholm, Sweden. 2008

[32] Nenad Anicic, Nenad Ivezic, Albert Jones. “An Architecture for Semantic

Enterprise Application Integration Standards”. IJMTM 10(2/3): 205-226 2007

[33] XML Path Language (XPath). URL: http://www.w3.org/TR/xpath/, last access

date 2 April 2010.

[34] Java Platform, Enterprise Edition (J2EE). URL: http://java.sun.com/javaee/, last

access date 8 April 2010.

 80

[35] Apache Tomcat. URL: http://tomcat.apache.org/, last access date 30 April 2010.

[36] Easy SAWSDL API. URL: http://easywsdl.ow2.org/extensions-sawsdl.html,

last access date 29 April 2010.

[37] Jena Semantic Web Framework for Java. URL: http://jena.sourceforge.net/, last

access date 28 April 2010.

[38] Bouras, A., Gouvas, P., & Mentzas, G. (2007). ENIO: An Enterprise

Application Integration Ontology. In the Proceedings of the 1st International

Workshop on Semantic Web Architectures for Enterprises (SWAE), DEXA‟07,

3-7 September, 2007, Regensburg, Germany.

[39] Dean Allemang and James Hendler. “Semantic Web for the Working

Ontologist”. Morgan Kaufmann Publications. 2008.

[40] World Wide Web Consortium (W3C). URL: http://www.w3.org/, last access

date 24 April 2010.

[41] Hypertext Markup Language (HTML). URL: http://www.w3.org/html/, last

access date 15 April 2010.

[42] WordNet Lexical Database. URL: http://wordnet.princeton.edu/, last access date

16 April 2010.

[43] CYC Ontology. URL: http://www.cyc.com/, last access date 12 April 2010.

[44] The United Nations Standard Products and Services Code (UNSPSC). URL:

http://www.unspsc.org/, last access date 11 April 2010.

[45] A. Mocan and E. Cimpian. Mediation. WSMX Working Draft D13.3 v0.1,

http://www.wsmo.org/2004/d13/d13.3/v0.1/20040906/, 2004.

[46] Alex Berson and Lawrence Dubov. “Master Data Management and Customer

Data Integration for Global Enterprise”. McGraw-Hill, 2007

[47] Jill Dyche and Evan Levy. “Customer Data Integration”. Wiley, 2006

[48] SPARQL Query Language. URL: http://www.w3.org/TR/rdf-sparql-query/, last

access date 10 April 2010.

 81

[49] Apache Derby. URL: http://db.apache.org/derby/, last access date 21 April

2010.

[50] XQuery. URL: http://www.w3.org/TR/xquery/, last access date 23 April 2010.

[51] RDF/XML syntax. URL: http://www.w3.org/TR/rdf-syntax-grammar/, last

access date 26 April 2010.

 82

APPENDIX A

CUSTOMER ONTOLOGY

A.1. Semantic Model in OWL

<?xml version="1.0"?>

<rdf:RDF xmlns="http://www.semanticweb.org/ontologies/2010/0/customer.owl#"

 xml:base="http://www.semanticweb.org/ontologies/2010/0/customer.owl"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:customer="http://www.semanticweb.org/ontologies/2010/0/customer.owl#">

 <owl:Ontology rdf:about=""/>

 <!-- ///

 // Data properties

 ///

 -->

 <!-- http://www.semanticweb.org/ontologies/2010/0/customer.owl#hasAddressType -->

 <owl:DatatypeProperty rdf:about="#hasAddressType">

 <rdfs:domain rdf:resource="#Address"/>

 83

 <rdfs:range rdf:resource="&xsd;int"/>

 </owl:DatatypeProperty>

 <!-- http://www.semanticweb.org/ontologies/2010/0/customer.owl#hasAgreementNo -->

 <owl:DatatypeProperty rdf:about="#hasAgreementNo">

 <rdfs:domain rdf:resource="#Status"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <!-- http://www.semanticweb.org/ontologies/2010/0/customer.owl#hasApartmentName -->

 <owl:DatatypeProperty rdf:about="#hasApartmentName">

 <rdfs:domain rdf:resource="#Address"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <!-- http://www.semanticweb.org/ontologies/2010/0/customer.owl#hasBalance -->

 <owl:DatatypeProperty rdf:about="#hasBalance">

 <rdfs:domain rdf:resource="#Value"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <!-- http://www.semanticweb.org/ontologies/2010/0/customer.owl#hasBranchName -->

 <owl:DatatypeProperty rdf:about="#hasBranchName">

 <rdfs:domain rdf:resource="#Status"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <!-- http://www.semanticweb.org/ontologies/2010/0/customer.owl#hasCitizenshipNo -->

 <owl:DatatypeProperty rdf:about="#hasCitizenshipNo">

 <rdfs:domain rdf:resource="#Address"/>

 84

 <rdfs:domain rdf:resource="#Customer"/>

 <rdfs:domain rdf:resource="#Status"/>

 <rdfs:domain rdf:resource="#Value"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <!-- http://www.semanticweb.org/ontologies/2010/0/customer.owl#hasCityCode -->

 <owl:DatatypeProperty rdf:about="#hasCityCode">

 <rdfs:domain rdf:resource="#Address"/>

 <rdfs:range rdf:resource="&xsd;int"/>

 </owl:DatatypeProperty>

 <!-- http://www.semanticweb.org/ontologies/2010/0/customer.owl#hasCountryCode -->

 <owl:DatatypeProperty rdf:about="#hasCountryCode">

 <rdfs:domain rdf:resource="#Address"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <!-- http://www.semanticweb.org/ontologies/2010/0/customer.owl#hasCountyName -->

 <owl:DatatypeProperty rdf:about="#hasCountyName">

 <rdfs:domain rdf:resource="#Address"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <!-- http://www.semanticweb.org/ontologies/2010/0/customer.owl#hasDistrictName -->

 <owl:DatatypeProperty rdf:about="#hasDistrictName">

 <rdfs:domain rdf:resource="#Address"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 85

 <!-- http://www.semanticweb.org/ontologies/2010/0/customer.owl#hasFlatNo -->

 <owl:DatatypeProperty rdf:about="#hasFlatNo">

 <rdfs:domain rdf:resource="#Address"/>

 <rdfs:range rdf:resource="&xsd;int"/>

 </owl:DatatypeProperty>

 <!-- http://www.semanticweb.org/ontologies/2010/0/customer.owl#hasLastName -->

 <owl:DatatypeProperty rdf:about="#hasLastName">

 <rdfs:domain rdf:resource="#Customer"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <!-- http://www.semanticweb.org/ontologies/2010/0/customer.owl#hasName -->

 <owl:DatatypeProperty rdf:about="#hasName">

 <rdfs:domain rdf:resource="#Customer"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <!-- http://www.semanticweb.org/ontologies/2010/0/customer.owl#hasProfitability -->

 <owl:DatatypeProperty rdf:about="#hasProfitability">

 <rdfs:domain rdf:resource="#Value"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <!-- http://www.semanticweb.org/ontologies/2010/0/customer.owl#hasStreetName -->

 <owl:DatatypeProperty rdf:about="#hasStreetName">

 <rdfs:domain rdf:resource="#Address"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 86

 <!-- http://www.semanticweb.org/ontologies/2010/0/customer.owl#isOnBlackList -->

 <owl:DatatypeProperty rdf:about="#isOnBlackList">

 <rdfs:domain rdf:resource="#Status"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <!-- ///

 // Classes

 ///

 -->

 <!-- http://www.semanticweb.org/ontologies/2010/0/customer.owl#Address -->

 <owl:Class rdf:about="#Address"/>

 <!-- http://www.semanticweb.org/ontologies/2010/0/customer.owl#Customer -->

 <owl:Class rdf:about="#Customer"/>

 <!-- http://www.semanticweb.org/ontologies/2010/0/customer.owl#Status -->

 <owl:Class rdf:about="#Status"/>

 <!-- http://www.semanticweb.org/ontologies/2010/0/customer.owl#VIPCustomer -->

 <owl:Class rdf:about="#VIPCustomer">

 <owl:equivalentClass>

 <owl:Class>

 <owl:intersectionOf rdf:parseType="Collection">

 <owl:Restriction>

 <owl:onProperty rdf:resource="#hasBalance"/>

 <owl:hasValue>High</owl:hasValue>

 </owl:Restriction>

 <owl:Restriction>

 87

 <owl:onProperty rdf:resource="#isOnBlackList"/>

 <owl:hasValue>False</owl:hasValue>

 </owl:Restriction>

 </owl:intersectionOf>

 </owl:Class>

 </owl:equivalentClass>

 </owl:Class>

 <!-- http://www.semanticweb.org/ontologies/2010/0/customer.owl#Value -->

 <owl:Class rdf:about="#Value"/>

</rdf:RDF>

<!-- Generated by the OWL API (version 2.2.1.1138) http://owlapi.sourceforge.net -->

 88

 APPENDIX B

XSLT TRANSFORMATION FILES

B.1. XSLT Transformation File for GetCustomerNames

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="NamesResponse">

 <rdf:RDF xmlns="http://www.semanticweb.org/ontologies/2010/0/customer.owl#"

 xml:base="http://www.semanticweb.org/ontologies/2010/0/customer.owl"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:customer="http://www.semanticweb.org/ontologies/2010/0/customer.owl#">

 <owl:Ontology rdf:about=""/>

 <owl:Thing rdf:about= "#{citizenshipNo}" >

 <rdf:type rdf:resource="#Customer"/>

 <hasName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:value-of select="concat(

 firstname , ' ',

 89

 middlename)"/>

 </hasName>

 <hasLastName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:value-of select="lastname"/>

 </hasLastName>

 <hasCitizenshipNo rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:value-of select="citizenshipNo"/>

 </hasCitizenshipNo>

 </owl:Thing>

 </rdf:RDF>

</xsl:template>

</xsl:stylesheet>

B.2. XSLT Transformation File for GetCustomerAddress

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="AddressResponse">

 <rdf:RDF xmlns="http://www.semanticweb.org/ontologies/2010/0/customer.owl#"

 xml:base="http://www.semanticweb.org/ontologies/2010/0/customer.owl"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:customer="http://www.semanticweb.org/ontologies/2010/0/customer.owl#">

 90

 <owl:Ontology rdf:about=""/>

 <owl:Thing rdf:about= "#{citizenshipNo}" >

 <rdf:type rdf:resource="#Address"/>

 <hasAddressType rdf:datatype="http://www.w3.org/2001/XMLSchema#int">

 <xsl:choose>

 <xsl:when test="addresstype = 'H'"> 1 </xsl:when>

 <xsl:when test="addresstype = 'W'"> 2 </xsl:when>

 <xsl:when test="addresstype = 'F'"> 3 </xsl:when>

 <xsl:otherwise> 1 </xsl:otherwise>

 </xsl:choose>

 </hasAddressType>

 <hasStreetName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:value-of select="concat(streetname , ' str.')"/>

 </hasStreetName>

 <hasApartmentName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:value-of select="concat(apartmentname , ' apt.')"/>

 </hasApartmentName>

 <hasCountryCode rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:value-of select="countrycode"/>

 </hasCountryCode>

 <hasCityCode rdf:datatype="http://www.w3.org/2001/XMLSchema#int">

 <xsl:value-of select="citycode"/>

 </hasCityCode>

 <hasCountyName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:value-of select="countyname"/>

 91

 </hasCountyName>

 <hasDistrictName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:value-of select="districtname"/>

 </hasDistrictName>

 <hasFlatNo rdf:datatype="http://www.w3.org/2001/XMLSchema#int">

 <xsl:value-of select="flatno"/>

 </hasFlatNo>

 <hasCitizenshipNo rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:value-of select="citizenshipNo"/>

 </hasCitizenshipNo>

 </owl:Thing>

 </rdf:RDF>

</xsl:template>

</xsl:stylesheet>

B.3. XSLT Transformation File for GetCustomerValue

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="ValueResponse">

 <rdf:RDF xmlns="http://www.semanticweb.org/ontologies/2010/0/customer.owl#"

 xml:base="http://www.semanticweb.org/ontologies/2010/0/customer.owl"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 92

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:customer="http://www.semanticweb.org/ontologies/2010/0/customer.owl#">

 <owl:Ontology rdf:about=""/>

 <owl:Thing rdf:about= "#{citizenshipNo}" >

 <rdf:type rdf:resource="#Value"/>

 <hasBalance rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:choose>

 <xsl:when test="balance > 100000">High</xsl:when>

 <xsl:when test="balance > 10000">Middle</xsl:when>

 <xsl:when test="balance > 1000">Low</xsl:when>

 <xsl:otherwise> None </xsl:otherwise>

 </xsl:choose>

 </hasBalance>

 <hasProfitability rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:choose>

 <xsl:when test="profitability > 100000">High</xsl:when>

 <xsl:when test="profitability > 10000">Middle</xsl:when>

 <xsl:when test="profitability > 1000">Low</xsl:when>

 <xsl:otherwise> None </xsl:otherwise>

 </xsl:choose>

 </hasProfitability>

 </owl:Thing>

 </rdf:RDF>

</xsl:template>

</xsl:stylesheet>

 93

B.4. XSLT Transformation File for GetCustomerStatus

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

<xsl:template match="StatusResponse">

 <rdf:RDF xmlns="http://www.semanticweb.org/ontologies/2010/0/customer.owl#"

 xml:base="http://www.semanticweb.org/ontologies/2010/0/customer.owl"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:customer="http://www.semanticweb.org/ontologies/2010/0/customer.owl#">

 <owl:Ontology rdf:about=""/>

 <owl:Thing rdf:about= "#{citizenshipNo}" >

 <rdf:type rdf:resource="#Status"/>

 <isOnBlackList rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:choose>

 <xsl:when test="isonblacklist = ' '"> False </xsl:when>

 <xsl:otherwise> <xsl:value-of select="isonblacklist"/> </xsl:otherwise>

 </xsl:choose>

 </isOnBlackList>

 <hasBranchName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:value-of select="branchname"/>

 94

 </hasBranchName>

 <hasAgreementNo rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 <xsl:value-of select="agreementno"/>

 </hasAgreementNo>

 </owl:Thing>

 </rdf:RDF>

</xsl:template>

</xsl:stylesheet>

