

A TEST ORIENTED SERVICE AND OBJECT MODEL

FOR SOFTWARE PRODUCT LINES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

NAZİF BÜLENT PARLAKOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

APRIL 2010

Approval of the thesis

A TEST ORIENTED SERVICE AND OBJECT MODEL

FOR SOFTWARE PRODUCT LINES

submitted by NAZİF BÜLENT PARLAKOL in partial fulfillment of the

requirements for the degree of Master of Science in Computer Engineering

Department, Middle East Technical University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Adnan Yazıcı

Head of Department, Computer Engineering

Asst. Prof. Dr. Pınar Şenkul

Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Ali H. Doğru

Computer Engineering Dept., METU

Asst. Prof. Dr. Pınar Şenkul

Computer Engineering Dept., METU

Asst. Prof. Dr. Tolga Can

Computer Engineering Dept., METU

Esen Kaçar, M.Sc.

MVS Spatial Data Systems

Ahmet Serkan Karataş, M.Sc.

K & K Technology

 Date: 29.04.2010

iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last name : Nazif Bülent Parlakol

Signature :

iv

ABSTRACT

A TEST ORIENTED SERVICE AND OBJECT MODEL

FOR SOFTWARE PRODUCT LINES

Parlakol, Nazif Bülent

M.Sc., Department of Computer Engineering

Supervisor: Asst. Prof. Dr. Pınar Şenkul

April 2010, 99 pages

In this thesis, a new modeling technique is proposed for minimizing regression testing effort

in software product lines. The “Product Flow Model” is used for the common representation

of products in application engineering and the “Domain Service and Object Model”

represents the variant based relations between products and core assets. This new approach

provides a solution for avoiding unnecessary work load of regression testing using the

principles of sub-service decomposition and variant based product/sub-service traceability

matrices. The proposed model is adapted to a sample product line targeting the banking

domain, called Loyalty and Campaign Management System, where loyalty campaigns for

credit cards are the products derived from core assets. Reduced regression test scope after the

realization of new requirements is demonstrated through a case study. Finally, efficiency

improvement in terms of time and effort in the test process with the adaptation of the

proposed model is discussed.

Keywords: Software Product Line, Product Flow Model, Service and Object Model, Test

Oriented Modeling, Regression Testing

v

ÖZ

YAZILIM ÜRETİM BANTLARI İÇİN

TESTE YÖNELİK HİZMET VE NESNE MODELİ

Parlakol, Nazif Bülent

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Yrd. Doç. Dr. Pınar Şenkul

Nisan 2010, 99 sayfa

Bu tezde, yazılım üretim bantlarında regresyon test maliyetlerinin en aza indirgenmesi için

yeni bir modelleme tekniği önerilmiştir. “Ürün Akış Modeli” uygulama mühendisliğindeki

ürünlerin ortak gösterimi için kullanılmakta ve “Alan Servis ve Nesne Modeli” ürünler ve

merkez varlıklar arasındaki değişkenlere bağlı ilişkileri göstermektedir. Bu yeni yaklaşım

alt-servis ayrıştırması prensiplerini ve değişkenlere bağlı ürün/merkez varlık izlenebilirlik

matrislerini kullanarak gereksiz regresyon test yükünden kaçınmak için bir çözüm

sağlamaktadır. Önerilen model, merkez varlıklardan kredi kartı sadakat kampanyalarının

ürün olarak türetildiği, bankacılık alanını hedef alan örnek bir yazılım üretim bandı olan

Sadakat ve Kampanya Yönetim Sistemi’ne uyarlanmıştır. Yeni gereksinimlerin

gerçeklenmesi sonrasında indirgenmiş regresyon test kapsamı örnek olay incelemesi yoluyla

gösterilmiştir. Sonuç olarak, önerilen modelin uyarlanması ile test sürecindeki zaman ve

maliyet anlamında verimlilik artışı ele alınmıştır.

Anahtar Kelimeler: Yazılım Üretim Bandı, Ürün Akış Modeli, Hizmet ve Nesne Modeli,

Teste Yönelik Modelleme, Regresyon Testi

vi

To the future

vii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to Assoc. Prof. Dr. Ali H.

Doğru for his valuable guidance, support and concern on this thesis.

I would like to thank my supervisor Asst. Prof. Dr. Pınar Şenkul, and I want to express

sincere appreciation to Esen Kaçar and Asst. Prof. Dr. Tolga Can for being in the examining

committee and all their valuable comments.

I would like to convey special thanks to A. Serkan Karataş for his great support and

encouragement. He was again with me as he has always been before.

I would like to thank all my colleagues working with me for the LCMS project, for their

effort in the success of the project, and especially to Rana Toprak, the most sophisticated and

the smartest analyst I have ever worked with, for her miscellaneous impact and remarkable

support on the completion of this thesis.

I am deeply grateful to my wife Fatma Parlakol for her endless love and motivating support

during this study.

And finally, I owe my little daughter Sıla Parlakol an apology for spending considerable time

working on this thesis instead of playing with her.

viii

TABLE OF CONTENTS

ABSTRACT .. iv

ÖZ .. v

DEDICATION .. vi

ACKNOWLEDGEMENTS .. vii

TABLE OF CONTENTS .. viii

LIST OF TABLES .. xii

LIST OF FIGURES ... xv

LIST OF ABBREVIATIONS ... xvii

CHAPTER

1. INTRODUCTION ... 1

2. SOFTWARE PRODUCT LINES IN GENERAL ... 3

2.1. What is a Software Product Line ... 3

2.2. Software Product Line Processes ... 4

2.2.1. Domain Engineering .. 5

2.2.2. Application Engineering .. 6

2.3. Software Product Line Management .. 7

2.4. Software Product Line Practice Areas ... 8

2.5. Transition to a Software Product Line ... 11

2.5.1. Transition Strategies and Approaches ... 11

2.5.2. Organization Aspects ... 13

2.5.2.1. Hierarchical Organization Structures 14

2.5.2.2. Orientation-Based Organization Structures 17

2.5.2.3. Matrix Organization Structures .. 18

ix

2.5.3. Software Product Line Maturity .. 19

2.6. Benefits of Software Product Line Engineering ... 22

3. VARIABILITY IN SOFTWARE PRODUCT LINES 25

3.1. Principles of Variability ... 25

3.2. Binding Times .. 27

3.3. Variability in Time and Space .. 28

3.4. Levels of Variability .. 29

3.5. Implementing Variability ... 30

3.6. Representation of Variability ... 31

3.6.1. Feature Models .. 33

3.6.2. Orthogonal Variability Model ... 33

4. TESTING A SOFTWARE PRODUCT LINE .. 35

4.1. The Testing Context ... 36

4.2. Software Product Line Testing vs. Single System Testing 38

4.3. Creating Reusable Test Artifacts .. 39

4.4. Domain Testing (Testing Core Assets) .. 40

4.5. Application Testing (Testing Products) ... 43

5. CURRENT SYSTEM SPECIFICATION ... 45

5.1. Loyalty and Campaign Management System ... 45

5.2. Evolution of LCMS as a Software Product Line .. 47

5.2.1. Organizational Structure and Processes .. 47

5.2.2. Domain Engineering for LCMS .. 48

5.2.3. Application Engineering for LCMS .. 49

5.2.4. Commonality and Variability in LCMS .. 51

5.3. Problem Definition: Overhead in Regression Testing 53

6. TEST ORIENTED SERVICE AND OBJECT MODEL 54

6.1. Application Engineering – Product Flow Model ... 54

6.2. Domain Engineering – Service and Object Model 56

x

6.2.1. Specifications for Domain Object Modeling 56

6.2.2. Specifications for Domain Service Modeling 57

6.3. Test Orientation of the Model .. 61

7. CASE STUDY: MODELING LCMS ... 62

7.1. Scope .. 62

7.2. Implementation of the Proposed Model on LCMS 62

7.2.1. Product Flow Model for LCMS .. 63

7.2.2. Modeling Domain Objects of LCMS .. 65

7.2.3. Modeling Domain Services of LCMS ... 65

7.3. Defining Test Scope after Extensions to LCMS .. 68

7.3.1. Latest Requirements .. 69

7.3.2. Building a New Application Product ... 69

7.3.3. Extending Core Assets .. 69

7.3.3.1. Changes in Domain Objects ... 70

7.3.3.2. Changes in Domain Services .. 70

7.3.4. Test Scope after Extensions ... 71

8. CONCLUSIONS AND FUTURE WORK .. 73

8.1. Conclusions .. 73

8.2. Future Work ... 76

REFERENCES .. 77

APPENDICES ... 80

A. DOMAIN OBJECT SPECIFICATIONS OF LCMS 80

A.1. Target Lists ... 80

A.2. Campaign Counters ... 81

A.3. Ledger Records ... 81

A.4. Transaction Logs ... 82

A.5. Reports .. 83

B. DOMAIN SERVICE SPECIFICATIONS OF LCMS 84

xi

B.1. Campaign Entrance Control ... 84

B.2. Target Group Decision ... 88

B.3. Campaign Counter Update ... 91

B.4. Ledger Record Creation ... 95

B.5. Transaction Log Creation ... 98

xii

LIST OF TABLES

TABLES

Table 2.1 Software product line practice areas ... 9

Table 2.2 Compatibility relation of maturity levels to organizational structures 21

Table 2.3 Compatibility relation of maturity levels to artifacts 22

Table 3.1 Variability Mechanisms .. 30

Table 3.2 Feature Relation Types ... 33

Table 4.1 Static testing techniques for non-software core assets 42

Table 5.1 Application size of LCMS .. 46

Table 5.2 Usage of LCMS products on distribution channels 51

Table 5.3 Examples of external variability in LCMS ... 52

Table 5.4 Examples of internal variability in LCMS ... 52

Table 6.1 Document template for domain object specification 57

Table 6.2 Document template for domain service description 58

Table 6.3 Document template for sub-service decomposition 58

Table 6.4 Matrix template for sub-service dependencies on variants 59

Table 6.5 Matrix template for product bindings on variants 59

Table 6.6 Matrix template for variant based product/sub-service traceability 60

Table 7.1 Domain object specifications for Reward Pools ... 65

Table 7.2 Domain service description for Reward Pool Update 66

Table 7.3 Sub-service decomposition for Reward Pool Update 67

Table 7.4 Sub-service dependencies for Reward Pool Update 67

Table 7.5 Product bindings for Reward Pool Update ... 67

Table 7.6 Traceability matrix for Reward Pool Update ... 68

xiii

Table 8.1 Efficiency throughput for the test oriented service and object model 74

Table A.1 Domain object specifications for Target Lists .. 80

Table A.2 Domain object specifications for Campaign Counters 81

Table A.3 Domain object specifications for Ledger Records 81

Table A.4 Domain object specifications for Transaction Logs 82

Table A.5 Domain object specifications for Reports .. 83

Table B.1 Domain service description for Campaign Entrance Control 84

Table B.2 Sub-service decomposition for Campaign Entrance Control 85

Table B.3 Sub-service dependencies for Campaign Entrance Control 86

Table B.4 Product bindings for Campaign Entrance Control 86

Table B.5 Traceability matrix for Campaign Entrance Control 87

Table B.6 Domain service description for Target Group Decision 88

Table B.7 Sub-service decomposition for Target Group Decision 89

Table B.8 Sub-service dependencies for Target Group Decision 89

Table B.9 Product bindings for Target Group Decision ... 90

Table B.10 Traceability matrix for Target Group Decision .. 90

Table B.11 Domain service description for Campaign Counter Update 91

Table B.12 Sub-service decomposition for Campaign Counter Update 92

Table B.13 Sub-service dependencies for Campaign Counter Update 92

Table B.14 Product bindings for Campaign Counter Update 93

Table B.15 Traceability matrix for Campaign Counter Update 94

Table B.16 Domain service description for Ledger Record Creation 95

Table B.17 Sub-service decomposition for Ledger Record Creation 96

Table B.18 Sub-service dependencies for Ledger Record Creation 96

Table B.19 Product bindings for Ledger Record Creation .. 96

Table B.20 Traceability matrix for Ledger Record Creation .. 97

Table B.21 Domain service description for Transaction Log Creation 98

Table B.22 Sub-service decomposition for Transaction Log Creation 99

xiv

Table B.23 Sub-service dependencies for Transaction Log Creation 99

Table B.24 Product bindings for Transaction Log Creation ... 99

Table B.25 Traceability matrix for Transaction Log Creation 99

xv

LIST OF FIGURES

FIGURES

Figure 2.1 Overview of basics in a software product line [5] 4

Figure 2.2 The software product line engineering framework [2] 5

Figure 2.3 The three essential software product line activities [1] 8

Figure 2.4 Software product line practice areas [5] ... 10

Figure 2.5 Relations among practice areas of a software product line [5] 10

Figure 2.6 Development department model [9] ... 15

Figure 2.7 Business units model [9] ... 15

Figure 2.8 Domain engineering unit model [9] .. 16

Figure 2.9 Hierarchical domain engineering units model [9] 16

Figure 2.10 Product-oriented organization [3] ... 17

Figure 2.11 Process-oriented organization [3] ... 18

Figure 2.12 Sample matrix organization with testing as a separate functional unit 19

Figure 2.13 Maturity levels for software product lines [10] .. 20

Figure 2.14 Reduction in development costs in a software product line [6] 23

Figure 2.15 Enhancement of quality due to reduction in the number of defects [6] 23

Figure 2.16 Reduction in time to market [2] .. 24

Figure 3.1 Partially instantiated binding times through development stages [6] 27

Figure 3.2 Variability in time for domain and application engineering [15] 28

Figure 3.3 Levels of abstraction for variability [17] .. 29

Figure 3.4 Graphical notation for orthogonal variability model [3] 34

Figure 4.1 Test and development processes [25] ... 37

Figure 4.2 Test implementation in product line engineering [22] 37

xvi

Figure 4.3 Information flow on application testing [2] .. 43

Figure 5.1 Distribution channels integrated to LCMS ... 46

Figure 5.2 Sample channel integration of LCMS ... 47

Figure 6.1 Graphical notation for product flow model ... 55

Figure 7.1 Product flow model for LCMS .. 64

Figure 8.1 Efficiency graph for the test oriented service and object model 75

xvii

LIST OF ABBREVIATIONS

LCMS - Loyalty and Campaign Management System

POS - Point Of Sale

RFM - Recency, Frequency, Monetary Value

CCB - Common Cash Back

PCB - Private Cash Back

XCB - Cross Cash Back

CIF - Customer Information File

CMS - Card Management System

KLOC - Kilo Lines of Code

JCL - Job Control Language

1

CHAPTER 1

INTRODUCTION

A new approach to software reuse, which is known as software product line development,

has gained considerable attention both by industry and academia over the past few years.

Studies have shown that organizations can yield remarkable improvements in productivity,

time to market, product quality and customer satisfaction by applying this approach. The

characteristic that distinguishes software product lines from previous efforts is predictive

versus opportunistic software reuse. The basic concept of software product line engineering

is the separation of the process as Domain Engineering including the core assets and

Application Engineering constructing specific products by the effective reuse of core assets.

Software product line engineering aims at supporting a range of products which may serve

different customers or market segments. Instead of understanding each individual system by

itself, software product line engineering looks at the product line as a whole and concentrates

on the variation among the individual systems. The variability and commonality of products

must be managed throughout software product line engineering.

Testing activities in a product line organization vary in scope from encompassing the entire

product line to focusing on a specific product or even examining an individual component

that is one part of a product. This wide range of testing activities addresses more complexity

when compared with a typical single system development. Furthermore, the changes in core

assets or extensions to the common platform of the product line, mostly occurring for

unpredictable variability, might possibly affect the existing products. Therefore, regression

test scope might dramatically increase as the product line scope evolves.

Software product lines make good use of modeling techniques like feature models or

orthogonal variability model, for the representation of variability, but neither of these

conventional models provide a complete solution for defining the regression test scope. For

2

overcoming the additional time and effort spent on regression testing, the relations between

core assets and products based on variation points must explicitly be defined in order to

correctly point out the impact of changes in core assets on the products. A new modeling

technique, called Test Oriented Service and Object Model for Software Product Lines, is

proposed in this thesis, which aims to reduce the regression test scope after developing new

products in a software product line.

The decomposition of core assets into smaller indivisible unitary elements and variant based

association of these elements with products constitute the underlying rationale of the

proposed modeling approach. The model formally indicates the changes in the core assets

with their relations to the products based on variation points when extensions to a product

family require changes in the core assets of domain engineering. This new approach results

in the opportunity of discarding the dispensable parts from the regression test scope.

The model is implemented on Loyalty and Campaign Management System (LCMS) which is

being developed and maintained as a sample software product line. The product family of

LCMS is composed of loyalty campaigns which are derived by using the core assets. The

problem of determining the regression test scope after construction of a new campaign or

modification of existing campaigns in LCMS is tried to be solved using Test Oriented

Service and Object Model for Software Product Lines.

The organization of this thesis is as follows: After an introduction in Chapter 1, a general

research on various aspects of software product lines is presented in Chapter 2. Variability in

software product lines is described in Chapter 3 and testing process in a software product

line is discussed in Chapter 4. Chapter 5 introduces the current system specification for

LCMS. Chapter 6 proposes the Test Oriented Service and Object Model for Software

Product Lines and presents the general principles of the model. In Chapter 7, as a case study,

the implementation of the new modeling technique on LCMS including the adaptation of

new business requirements is presented and reduced regression test scope for new features is

determined. Finally, Chapter 8 concludes this thesis and presents the future work.

3

CHAPTER 2

SOFTWARE PRODUCT LINES IN GENERAL

Many approaches have been presented for software reuse over the years. However, none of

them could provide a complete and effective solution for software projects being completed

on time and within the budget. A new approach, called Software Product Line Engineering,

supports large-grained intra-organization software reuse and has been highly challenging

over the last few years. Although there might be some risks in changing the way doing the

business, organizations can gain considerable business benefits by applying product line

development approach.

2.1. What is a Software Product Line

In the early stages of software engineering, almost all software products were relatively

small and simple. However, the situation has changed drastically in time and recently the

size and complexity have increased for software products and other products having

embedded software. Therefore, there is a strong need for product line engineering approach

in software development. Product line engineering is not a new concept in manufacturing, or

in other engineering areas. However, it is a relatively new paradigm in software engineering

to develop software applications (software-intensive systems and software products) using

platforms and mass customization [2]. In other words, a software product line can be defined

as a set of software-intensive systems sharing a common, managed set of features that satisfy

the specific needs of a particular market segment or mission and that are developed from a

common set of core assets in a prescribed way [1].

Since the requirements frequently change even before the deployment of the product and

many products are initiated from the existing ones instead of being initially developed, the

classical development-and-then-maintenance model have been inappropriate for today’s way

4

of software development [7]. Therefore, software product line engineering approach is likely

to be the most effective way in terms of rapid development resulting in shortened time to

market, reduced costs and increased product quality.

Reuse is the key concept for software product lines for decreasing costs and increasing

quality. Almost all software development methodologies concentrate opportunistic reuse, but

software product lines differ from the other methodologies because reuse is planned, enabled

and forced, thus predictive. Software product lines reuse assets which are intentionally

developed for reuse. Therefore, a software product line differs from a single-system

development with reuse and also it is not a collection of releases and versions of single

products. Besides, a software product line is not just a component-based development, just a

reconfigurable architecture or just a set of technical standards. Overview of the basic

structure involved in a software product line is shown in Figure 2.1.

Figure 2.1: Overview of basics in a software product line [5]

2.2. Software Product Line Processes

The software product line engineering paradigm is based on the separation of the whole

software development into two processes called domain engineering and application

engineering. Figure 2.2 shows the framework for software product lines including domain

and application engineering processes with their sub-processes and their interactions.

5

Figure 2.2: The software product line engineering framework [2]

2.2.1. Domain Engineering

Domain Engineering is the process in which the commonality and the variability of the

product line are defined and realized [2]. This process deals with all types of core assets

composing the reusable platform which is used to build up new products. The variability and

commonality between products are mainly managed in domain engineering. The major aim

of domain engineering is to define and construct reusable artifacts ensuring adequate

variability and commonality for building different products. Also, domain engineering

should manage the scope of the product line by defining the set of applications planned.

The sub-processes of domain engineering which are shown in Figure 2.2 are [2]:

 Product Management: The economic aspects and the market strategy of the product

line are managed throughout product portfolio and scope of the product line.

 Domain Requirements Engineering: All common and variable requirements for the

products are created and managed through elicitation, documentation, negotiation,

verification/validation and management phases [3].

6

 Domain Design: The reference architecture is defined, providing a common, high-

level structure for all applications.

 Domain Realization: The reusable software components are designed in detail and

created after a make/buy/mine/commission decision [3].

 Domain Testing: The reusable software components are validated and verified.

The reusable development artifacts of domain engineering which are created in these sub-

processes are [2]:

 Product Roadmap deals with the scope of the software product line platform and

provides a plan for future development of the product portfolio. This artifact is the

output of Product Management sub-process, but it is not shown in the framework

picture in Figure 2.2 since it is not a software development artifact.

 Domain Variability Model defines the variability of the software product line in

terms of variation points and variants as the output of all sub-processes of domain

engineering.

 Domain Requirements are documented in natural languages or conceptual models

and include all variable and common requirements for core assets of the product line

as the output of the Domain Requirements Engineering sub-process.

 Domain Architecture determines the structure and the texture of the applications in

the software product line as the output of the Domain Design sub-process.

 Domain Realization Artifacts are comprised of the detailed design and source code

of the reusable software components and interfaces as the output of Domain

Realization sub-process.

 Domain Test Artifacts include test plans, test cases and scenarios for domain

realization artifacts as the output of Domain Testing sub-process.

2.2.2. Application Engineering

Application Engineering is the process in which the applications of the product line are built

by reusing domain artifacts and exploiting the product line variability [2]. This process is

responsible for combining the core assets, binding the variabilities and reusing the

commonalities from domain engineering in order to build different products. The product-

specific assets, which are not in scope of domain engineering, are also managed in

application engineering.

7

The sub-processes of application engineering which are shown in Figure 2.2 are [2]:

 Application Requirements Engineering: All requirements are collected and

analyzed to specify a certain product.

 Application Design: The product architecture is derived from the reference

architecture.

 Application Realization: The considered application is created, i.e. the desired

product is implemented.

 Application Testing: An application is proved to have sufficient quality and is

satisfying the requirements by using verification and validation activities.

The reusable development artifacts of application engineering which are created in these

sub-processes are [2]:

 Application Variability Model defines the bindings of variabilities and variability

extensions for a particular application as the output of all sub-processes of

application engineering.

 Application Requirements consists of all specifications for a particular application

as the output of the Application Requirements Engineering sub-process.

 Application Architecture determines the overall structure for a particular application

in the software product line as the output of the Application Design sub-process.

 Application Realization Artifacts are comprised of the detailed design of

components and interfaces of a particular application and the executable product as

the output of Application Realization sub-process.

 Application Test Artifacts include all test documents for a particular application as

the output of Application Testing sub-process.

2.3. Software Product Line Management

In the previous sections, the two major processes of a software product line, domain

engineering consisting of developing core assets and application engineering dealing with

product development has been presented. Besides these two, there is one more essential

activity for a product line, which is called management. The products are built from core

assets, but also core assets may be built from existing products. The synchronization between

8

these activities is arranged by management. The three essential activities of a software

product line can be shown in Figure 2.3.

Figure 2.3: The three essential software product line activities [1]

Software product line management can be defined as the combination of technical

management and organizational management. Technical management provides the

cooperation and alignment of core asset and product development activities. This level of

management ensures that the groups responsible for core asset and product development

work together when necessary, they follow the defined processes of the product line and

have a common knowledge base. Organizational management mainly concentrates on the

organizational structure and resource allocation. This level of management also plays a

critical role in the success of a product line by coordinating, supervising and training the

resources, developing an acquisition strategy, managing external interfaces like customers

and suppliers, and creating a product line adoption plan.

2.4. Software Product Line Practice Areas

In order to make a software product line functional, well defined and more detailed practices

should be performed under the essential activities. These practices are categorized in

different practice areas. A practice area is defined as a body of work or a collection of

activities that an organization must master to successfully carry out the essential work of a

product line [1]. In software product line engineering, the practice areas are organized in

three categories:

 Software engineering practice areas apply the convenient technology to build and

maintain both core assets and products.

9

 Technical management practice areas concentrate on the engineering aspects for

building core assets and products.

 Organizational management practice areas deal with the orchestration of the whole

software product line effort in terms of resources, business and funding.

The practice areas under each of these categories [1] are listed in Table 2.1.

Table 2.1: Software product line practice areas

Software Engineering

Practice Areas

Architecture Definition

Architecture Evaluation

Component Development

Commercial off-the-shelf Utilization

Mining Existing Assets

Requirements Engineering

Software System Integration

Testing

Understanding Relevant Domains

Technical Management

Practice Areas

Configuration Management

Data Collection, Metrics, and Tracking

Make/Buy/Mine/Commission Analysis

Process Definition

Scoping

Technical Planning

Technical Risk Management

Tool Support

Organizational Management

Practice Areas

Building a Business Case

Customer Interface Management

Developing an Acquisition Strategy

Funding

Launching and Institutionalizing

Market Analysis

Operations

Organizational Planning

Organizational Risk Management

Structuring the Organization

Technology Forecasting

Training

All these practice areas can be applied to both core asset development and product

development activities. They all serve for achieving the efficient functionality of a software

product line. It should be noted that, the practice areas mentioned above constitute a

10

complete set for a mature product line. An organization at the early stages of product line

approach might not master all of these practice areas in the beginning, but it should have the

intention to proceed in all in order to achieve the goal of a successful product line.

The three categories of practice areas are not independent, on the contrary, they are closely

related to and supporting each other. Organizational management practice areas enable and

orchestrate the others, while technical management practice areas manage and support

software engineering practice areas, as shown in Figure 2.4. The relationship between the

practice areas for a software product line is shown in Figure 2.5 in more detail.

Figure 2.4: Software product line practice areas [5]

Figure 2.5: Relations among practice areas of a software product line [5]

11

2.5. Transition to a Software Product Line

2.5.1. Transition Strategies and Approaches

Transition from traditional software development to software product line approach is not

very easy for organizations in many aspects. Eternal factors like the resistance of the

development team, difficulty in understanding the product line paradigm, coarse and

stationary structure of the organization, etc. may result in unpredictable time and effort for

the transition. Some case studies have shown that some transitions facing those difficulties

may require a huge effort of 2 to 5 years. However, there are also success stories which

overcome the obstacles in a proper way and reduce the transition time to a minimal level of 2

months [6].

Some of the reasons for the large time and effort diversity in transition strategies may be

stated as follows [6]:

i. If software development artifacts are somehow reusable, this reduces the transition

time and effort. The transition will be easier if this reusability comes from an

existing library or even from re-engineering of an existing product, rather than

building those artifacts from scratch.

ii. If the initial state has similar products instead of developing a completely new one,

the transition can be considered as an enhancement of a software product line. These

existing products might have been developed by conventional techniques, but it is

still better than creating a new product from the beginning. Artifacts from existing

products can often be reused and re-engineered for enhancement of a software

product line in order to save time and effort.

Although the time and effort were extremely high in the early times, there are recent

enhancements in software product line transition strategies. So called lightweight approaches

use the techniques below for lower costs of transition to software product lines [6]:

i. In order to minimize the effect on the organization, processes, software and

architecture, the differences between single-system and product line engineering is

minimized.

12

ii. An incremental adoption strategy starting from a small subset of assets, products or

resources is implemented.

iii. Existing software product line tools and techniques are used whenever possible.

iv. Reactive approaches, in which transition starts with one or few products, are used in

order to defer the effort required for all products.

v. Development life-cycle is constructed so as to minimize the complex and costly

merging and product-specific configuration management overhead.

The transition approaches, using different combinations of these techniques and having self

advantages and disadvantages, can be presented as follows [2] [5]:

Reactive (Pilot-Project) Approach: Start with one or few products.

 From the initially developed few products, first core assets and then future products

are started to be generated.

 Robust, extensible and appropriate architecture and other core assets should be

created initially for future needs.

 The transition cost will be lower, but the scope of the product line will evolve

dramatically.

Tactical Approach: Start with only some specific sub-processes and methods.

 Transition starts in problematic sub-processes partially and probably informally.

 After a short initial phase, the other complementary sub-processes and the plan for

further progress should be developed in order to complete the transition.

 This approach concentrates on the urgent needs of the organization. But it has the

risk to fail because of not forcing an overall transition plan.

Proactive (Big Bang) Approach: Build a software product line at once.

 First, domain engineering is performed completely.

 When the core assets are built, application engineering starts and products are

developed using the core assets.

 The organization will not be productive until the transition is complete.

 This approach requires a predictive knowledge and well understanding of software

product line paradigm, and upfront investment for future benefits.

Incremental Approach: Develop a software product line step by step.

13

 Initially, part of the core asset base including the architecture and components for

early requirements are developed.

 Using the initial core asset base, develop one or more products.

 Develop part of the rest of the core asset base.

 Develop more products.

 Repeat developing the rest of the core asset base and developing new products.

Comparing the four approaches, the most effective way of adopting a software product line

seems to be the incremental approach. It proposes a smooth transition which does not change

everything at once. When incremental approach is applied, some part of the organization can

start transition to a software product line, while the others still can continue developing

software traditionally. This means, no drastic and sudden change in the whole structure of

the organization.

Any of the key practice areas defined in Section 2.4 can be considered in an incremental

transition. However, the most appropriate way is to start with the practice area in which

inefficiencies or bottlenecks are likely to appear. After eliminating the highest inefficiency

problem, then the next bottleneck in the sequence can be the subject for the next iteration in

the incremental transition [8].

2.5.2. Organization Aspects

Transition to software product line methodology requires changes in the way of doing

business, but only the changes in processes and technical management aspects will not be

sufficient for success. The initiative for software reuse with product line approach should be

supported by an appropriate organizational structure.

There are many factors affecting the decision for the right organizational structure for a

company. Some of these factors can be stated as the market, history and the culture of the

company, power distribution in the company, experience of the employees and practice of

the organization. The organizational structures should be evaluated with regard to some

essential properties [2]:

Decision making: Just a small - but sufficient - number of people from both domain and

application engineering should be involved in decision making. This will help for efficiency

and avoid from spending long time to make decisions.

14

Overhead time: The overhead time, which is spent for coordinating the work, should not

exceed the time spent for effective work. The overlaps and dependencies between

organizational units should be minimized.

Reflecting responsibilities: The explicitly assigned responsibilities for a position in the

organization should reflect the implicit ones. For example, for a software product line, it is

important that the organizational structure ensures the presence of domain engineering,

application engineering and the coordination between them.

Motivation: The employees should be motivated and encouraged in an equitable way for

their valuable contribution to overall success of the company. For example, there should be

no difference in valuation of the staff working for domain and application engineering in a

software product line.

Customer focus: Organizational units should never lose their customer focus whether they

have direct contact with customers or not. In software product lines, precautions should be

taken for especially domain engineering units which are usually not in direct contact with the

end-users.

The structure of a software product line organization can be analyzed in two different ways.

The first categorization of structures depends on the hierarchical construction of the

organization. Another point of view is the orientation of the organizational units on either

products or processes, or matrix organizations compromising orientation on both. The

following two sections investigate the organizational structures for software product lines

with respect to these two different aspects.

2.5.2.1. Hierarchical Organization Structures

The following hierarchical structures are suggested for handling the responsibility of the

reusable assets within the organization, based on the size of the organization [9]:

Development Department: All software development is centered to and performed in a

single department. Staff can be assigned to both core asset development and product

development depending on the current needs of the organization as shown in Figure 2.6. No

organizational specialization exists on either the domain engineering or application

engineering. This model can be applicable in small organizations with up to 30 developers. If

the number of staff members exceeds 30, some kind of organizational restructuring is

typically required.

15

Figure 2.6: Development department model [9]

Business Units: The development team is divided into units that are centered and specialized

on a specific product of the product line as shown in Figure 2.7. Each business unit is

responsible for one or a subset of the products in the product line. Although this model is

effective in its sharing and evolution of assets, the primary disadvantage is the absence of a

unit within the organization which directly focuses on domain engineering. The business unit

model is applicable to organizations with between 30 and 100 staff members.

Figure 2.7: Business units model [9]

Domain Engineering Unit: This is the traditional and mostly suggested approach for

software product line development. In this model, the domain engineering unit is responsible

for the design, development and evolution of the reusable assets, i.e. the product line

architecture and shared components that make up the reusable part of the product line as

shown in Figure 2.8. In addition, business units, often referred to as product engineering

units, are responsible for developing and evolving the products based on the core assets. The

16

general concern with this model is that the domain engineering group might lose focus of the

customer requirements. However, organizations usually need a domain engineering group

with core asset focus if the number of staff members exceeds 100.

Figure 2.8: Domain engineering unit model [9]

Hierarchical Domain Engineering Units: This model includes several levels of product

lines and domain engineering units as shown in Figure 2.9. If the variability and the number

of products is very large or if the number of staff members exceeds several hundred it might

be necessary to adopt this model. The more number of levels in this model increases the

complexity for management and it can be assumed that an organization must be on a

considerable process maturity level to be successful in this approach. It can also be added

that if the scope of a product line can not be captured with this model, then the scope can be

assumed to have been set too wide.

Figure 2.9: Hierarchical domain engineering units model [9]

17

2.5.2.2. Orientation-Based Organization Structures

The organizational model for software product lines can be classified into three basic

structures according to their focus on products, processes, or a combination of both [3].

Product-Oriented Organization: The guiding principle for this model is the distinction of

domain engineering and application engineering units. Usually, a separate unit for core

assets and several units for product development is constructed and each unit have its own

internal structure for development activities like requirements analysis, design and

realization, as shown in Figure 2.10. This corresponds to the domain engineering unit model

mentioned above as a hierarchical organization structure. If the scope of the product line

grows and it becomes impossible to manage all core assets in a single unit, then domain

engineering may be split into several units as in hierarchical domain engineering units

model. The main advantage of the product-oriented organization is the ease of

communication and interaction between closely related software engineering activities which

are performed in the same unit.

Figure 2.10: Product-oriented organization [3]

Process-Oriented Organization: The structure is set up on the software development

activities rather than the products built through these activities. The organization units are

constructed to perform specific phases of development as shown in Figure 2.11. The most

important advantage of this model is the flexibility of assigning resources to both domain

18

engineering and application engineering. The developers themselves will be comfortable in

building products during application engineering if they focus on reusability while

developing core assets during domain engineering. This results in understanding usability as

the primary notion of software product line engineering concept. On the other hand, the most

common drawback in process-oriented structures is the governance of communication and

collaboration among the organizational units participating in different development phases of

the same application or product. So, this model best suits for relatively small organizations

where communication is not likely a problem.

Figure 2.11: Process-oriented organization [3]

2.5.2.3. Matrix Organization Structures

For comprising both the needs for products and processes, which are two conflicting

grouping criteria, matrix structures can be adopted. The matrix structure reflects the semantic

perception of a software product line. Product orientation taking the customer’s needs into

consideration and process orientation with deep knowledge on how to do the work are

combined in matrix structures. On the other hand, problems may arise in matrix structures

because of the complexity of management and decision making difficulties in the crossing

points. In the representation of a matrix organization, the application engineering products

are aligned vertically as project units and the processes of product development are aligned

horizontally as functional units. Domain engineering can be added to the matrix horizontally

as a functional unit, vertically as a project unit, or separately outside the matrix [2]. Besides

19

application and domain engineering units, the other important activities like testing, asset

management and product management should also be placed in the organization [3]. They

are closely related to all other development activities and there are several ways of allocating

these activities in the structure. An example matrix organization in which domain

engineering is located as a project unit and testing is located separately as a functional unit is

presented in Figure 2.12.

Figure 2.12: Sample matrix organization with testing as a separate functional unit

2.5.3. Software Product Line Maturity

Regardless of the transition approach or the structure of the organization, a software product

line is supposed to evolve through a number of maturity levels which are shown in Figure

2.13. Brief descriptions of the maturity levels are as follows [10]:

Standardized Infrastructure: The infrastructure, on which the products are built, like

operating system, database management system or user interfaces, is standardized.

Platform: A platform, consisting the standardized infrastructure and all common

functionalities of the products in scope, is created.

20

Software product line: Functionality common to several but not all products becomes also

part of the shared artifacts.

Configurable product base: The organization develops only one configurable product base,

rather than developing a number of different products. The base is configured into a product

at the organization or at the customer site.

Product Population: Shared product line artifacts are used to derive an extended set of

products.

Program of product lines: Especially for very large systems, a software architecture is

defined for the overall system whose components are configurable software product lines.

Figure 2.13: Maturity levels for software product lines [10]

In addition to the maturity levels applied to the overall software product line approach

discussed above, different maturity levels can also be defined for the architecture,

components and products which are the primary artifacts of the software product line [10].

Maturity levels for product line architecture:

 Under-specified architecture: The commonalities between the products are defined.

 Specified architecture: Both the commonalities and variabilities between the

products are defined, but there might be product-specific changes in the common

architecture.

 Enforced architecture: All commonalities and variabilities between the products are

defined and all products share the common architecture.

21

Maturity levels for shared components:

 Specified component: The interfaces and specifications are defined for the product-

specific components in the architecture.

 Multiple component implementations: There are multiple components which are

shared by at least two products.

 Configurable component implementation: Only one highly configurable component

is shared by all products.

Maturity levels for products:

 Architecture conformance: Products conform to the shared architecture of the

product line.

 Platform-based product: Products share the components capturing commonalities

only. Variabilities are handled individually by products.

 Configurable product base: All products are built from shared artifacts providing all

functionality including both commonalities and variabilities.

Correspondence between the organizational structure and the maturity levels should be taken

into consideration while a transition process is initiated. The organizational structure and the

maturity levels for artifacts should be aligned with the applicable maturity level of software

product line. Regarding the experience and best practices in the industry, Table 2.2 and

Table 2.3 indicate the compatibility relation of software product line maturity levels to

organizational structures and artifacts, respectively [10]. (Note that + stands for the full

compatibility whereas + / - stands for partial convenience of intersections in the tables.)

Table 2.2: Compatibility relation of maturity levels to organizational structures

SOFTWARE PRODUCT LINE MATURITY LEVELS

Standardized

Infrastructure
Platform

Software

Product

Line

Configurable

Product Base

Product

Population

Program of

Product

Lines

O
R

G
A

N
IZ

A
T

IO
N

A
L

S
T

R
U

C
T

U
R

E

Development

Department + + +

Business

Units + + +

Domain

Engineering

Unit
+ + +

Hierarchical

Domain

Engineering Units
+ +

22

Table 2.3: Compatibility relation of maturity levels to artifacts

SOFTWARE PRODUCT LINE MATURITY LEVELS

Standardized

Infrastructure
Platform

Software

Product Line

Configurable

Product Base

Product

Population

Program of

Product Lines
S

O
F

T
W

A
R

E
 P

R
O

D
U

C
T

 L
IN

E
 A

R
T

IF
A

C
T

S

A
R

C
H

IT
E

C
T

U
R

E

Under-specified
architecture + + +

Specified

architecture + + +

Enforced

architecture +

C
O

M
P

O
N

E
N

T
S

 Specified

component + / - + + / -

Multiple

component
implementations

 + / - + + + / -

Configurable

component
implementation

 + / - + +

P
R

O
D

U
C

T
S

Architecture

conformance +

Platform-based
product + + +

Configurable

product base + +

2.6. Benefits of Software Product Line Engineering

High quality products, quick time to market, effective use of limited resources, lower costs

and mass customization result in improved efficiency and productivity, which are the key

concepts underlying the universal business goals. Strategic software reuse through a properly

managed product line plays a critical role in achieving these critical business goals. An initial

investment is required for transition to a software product line, but the benefits in

engineering, business and customer point of view will exceed the costs at the end.

Software product line approach improves efficiency and productivity of software

development processes by:

 Achieving systematic reuse goals,

 Coping with complexity and evolution,

 Improving cost estimation,

 Reduction in the time and effort to develop and maintain a new product,

 Reduction in code size due to the removal of duplicated code,

 Increasing total number of products that can be effectively deployed and managed,

 And, enhancement of quality due to reduction in the number of defects per product.

23

The graph in Figure 2.14 illustrates the total engineering effort required for developing and

maintaining a set of software products. The effective reuse of core assets and shared

components in software product lines reduces the total effort compared to conventional

software development. Moreover, if a lightweight transition strategy is applied with smaller

up-front investment, the reduction in effort, i.e. cost, becomes more significant [6].

Figure 2.14: Reduction in development costs in a software product line [6]

In addition to effective reuse, the commonality and sharing in software product lines are

important factors for quality benefits in terms of reducing the number of defects. Many

products will take the advantage if a defect in a shared core asset is detected and fixed.

Figure 2.15 illustrates the downward trend in the number of defects through consecutive

releases of a particular product and a set of products [6].

Figure 2.15: Enhancement of quality due to reduction in the number of defects [6]

24

The technical benefits of software product line approach discussed above bring out important

impulses in business aspects and customer point of view. The major business gains of an

organization coming along with a software product line approach can be listed as:

 Reduced time to market for new products,

 Better product quality and improved company reputation,

 Increased agility to expand into new markets,

 Maintaining market presence,

 Higher profit margins,

 And, improved competitive product value.

Besides, customer satisfaction is proved to increase due to:

 Common look and feel of products,

 And, higher quality with lower prices.

Among all the business benefits, the most critical success factor for a product is the time to

market. In conventional single product development, the time to market is roughly constant

for a particular product. In software product lines, although time to market seems higher

initially because of building the common artifacts first, it is significantly reduced as many

products are created in time, as shown in Figure 2.16 [2].

Figure 2.16: Reduction in time to market [2]

25

CHAPTER 3

VARIABILITY IN SOFTWARE PRODUCT LINES

A product line with no variability can be considered as a single system. The key concepts of

a software product line are variability, the features that differ between some pair of products,

and commonality, the features shared by a set of products. More formal and precise

definitions for commonality and variability can be stated in terms of sets:

“A commonality is an assumption held uniformly across a given set of objects (S).

Frequently, such assumptions are attributes with the same values for all elements of S.

Conversely, a variability is an assumption true of only some elements of S, or an attribute

with different values for at least two elements of S.” [11]

Besides commonality and variability among the products in a software product line, another

important issue is handled in application engineering, which is called product-specific

features. These are the characteristics which are only part of a single product. They need not

be integrated into the product line framework, but the architecture should be able to support

them [3].

3.1. Principles of Variability

Defining variability is the sum of all activities concerned with the identification and

documentation of variability. Variability is defined during domain engineering and it is

exploited during application engineering when appropriate variants are bound. In order to

characterize variability in more detail, it is essential to define the terms variability subject

and variability object. A variability subject is a variable item of the real world or a variable

property of such an item and a variability object is a particular instance of a variability

subject [2].

26

In software product line engineering, variability subjects and the corresponding variability

objects are embedded into the context of a software product line and they represent a subset

of all possible variations from the real world. These variability subjects and objects are

necessary to realize a particular software product line. A variation point is a representation of

a variability subject within domain artifacts enriched by contextual information. A variant is

a representation of a variability object within domain artifacts [2]. Variations can be

classified into three categories [12]:

Optional: A specific functionality of one product may not be contained in another.

Alternative: An instance from a set of alternatives can be selected for a specific property of a

product.

A set of alternatives: Multiple instances of different alternatives can be selected for a

specific product.

A variation point can be in three mutually exclusive states [13]:

Implicit: In the early phases of development there are many open design decisions which

have not been deliberately left open so there is not a single point in the system that can be

denoted as a variation point. These types of variation points are implicit.

Designed: The variation point is designed when the decision is left open intentionally.

Bound: When a decision is made for a designed variation point at a later stage, the variation

point is bound to a variant.

The way of adding variants to the system can be predicted when a variation point is

designed. Each variation point is associated with a set of variants that can be bound to it. In

terms of the ability of adding new variants, a distinction is made between variation points as

open and closed [13]:

Open variation points: New variants can be added.

Closed variation points: New variants can not be added.

Another important classification of variability is done according to the visibility of the

variability to customers. Since customers want applications customized to their individual

needs, they must be aware of at least a part of the variability of a software product line. On

the other hand, variability is an integral part of domain artifacts and thus a major concern of

the organization that develops the software product line. These two views are differentiated

27

by the terms external and internal variability. External variability is the variability of domain

artifacts that is visible to customers, while internal variability is the variability of domain

artifacts that is hidden from customers [2].

3.2. Binding Times

Each sub-process in application engineering binds the variability introduced by the

corresponding sub-process in domain engineering. This has to be done in a consistent way to

ensure that the required variant is built correctly. The moment of variability resolution in

realization is often called the binding time of the variability. That is, the time at which the

decisions for a variation point are bound is referred to as the binding time [6]. The design

may intend moving the binding time to later phases in realization in order to increase

flexibility. The trend to decide later on the binding time makes the binding time variable [2].

Examples of different binding times for software product lines include source reuse time,

development time, static code instantiation time, build time, package time, customer

customizations, install time, startup time and runtime [6].

A software product line can benefit from multiple binding times which allow some decisions

to be bound earlier and others later in the lifecycle. With multiple binding times, the software

product outputs from binding decisions at one production stage become partially instantiated

software asset inputs for binding decisions at the next production stage as illustrated in

Figure 3.1 [6].

Figure 3.1: Partially instantiated binding times through development stages [6]

28

3.3. Variability in Time and Space

The fundamental distinction between variability in time and variability in space is essential

for software product line engineering. Variability in time is the existence of different

versions of an artifact that are valid at different times. Variability in space is the existence of

an artifact in different shapes at the same time [2].

The evolution of development artifacts over time is an indispensable fact in software

engineering since these artifacts have to be adapted to technological changes. This kind of

change is denoted as variability in time which also applies to single system engineering.

However, there is an important difference between single systems and software product lines

in terms of variability in time. It is relatively easy to introduce changes in predefined

locations identified by variation points in the domain artifacts of a software product line.

Since the need for variation is recognized and introduced earlier, less effort is required for

maintaining the requirements for changes in later phases of development [2]. Figure 3.2

illustrates the evolution of variability for the software artifacts in domain engineering and

application engineering over time [15].

Figure 3.2: Variability in time for domain and application engineering [15]

Since single-system engineering does not focus on more than one product in a certain time,

variability in time is relevant for only software product lines, in which the goal is building

similar products that differ within a defined scope usually at the same time. Therefore – in

contrast to single software system development – understanding and handling variability in

space is an important issue of software product line engineering [2].

29

3.4. Levels of Variability

Variability occurs at different levels like product-line level, architecture level, component

level, sub-component level, and the code level [16]. More precisely, variability points can be

introduced at various levels of abstraction which are linked to different points in the lifecycle

[17]:

 Architecture Description

 Design Documentation

 Source Code

 Compiled Code

 Linked Code

 Running Code

In Figure 3.3, the different transformations a system goes through during development are

outlined. During each of these transformations, variability can be applied on the

representation stating the level of abstraction subject to the transformation [17].

Figure 3.3: Levels of abstraction for variability [17]

30

3.5. Implementing Variability

A variability mechanism is a technique that enables automatic configuration of the

variability in an application’s requirements, models, implementation and test specifications.

Variability in software product lines can be implemented in several ways during component

development. Mechanisms supporting different types of variability are shown in Table 3.1

[4].

Table 3.1: Variability Mechanisms

Mechanism
Time of

Specialization

Type of

Variation

Point

Type of

Variant
Type of Variability

inheritance
at class

definition time

virtual

operation

subclass or

subtype

Specialization is done by modifying or

adding to existing definitions.

extension
at requirements

time

extension

point
extension

One use of a system can be defined by

adding to the definition of another use.

uses
at requirements

time
use point use case

One use of a system can be defined by

including the functionality of another use.

configuration
previous to

runtime

configuration

item slot

configuration

item

A separate resource, such as file, is used

for the specialization of the component.

parameters

at component

implementation

time

parameter
bound

parameter

A functional definition is written in terms

of unbound elements that are supplied

when actual use is made of the definition.

template

instantiation

at component

implementation

time

template

parameter

template

instance

A type specification is written in terms of

unbound elements that are supplied when

actual use is made of the specification.

generation
before or

during runtime

parameter or

language

script

bound

parameter or

expression

A tool produces definitions from user

input.

Variability mechanisms are used to automate the configuration of the applications of a

software product line. Variability mechanisms in software product lines can further be

classified in more detail at the code level as follows [14]:

 Aggregation/Delegation

 Inheritance

 Parameterization

 Overloading

 Properties

 Dynamic Class Loading

 Static Libraries

 Dynamic Link Libraries

 Conditional Compilation

 Frames

31

 Reflection

 Aspect-oriented programming

 Design Patterns

Several quality criteria have been described for evaluating variability mechanisms with

respect to the construction of product line assets [14]. Some of these quality criteria can be

listed as follows:

Binding time: The time at which the variability is bound to the asset, which can be at pre-

compile time, at compile time, at initialization time, and at run-time.

Scope: The smallest entity of variability supported by the mechanism.

Flexibility: The binding times supported by the variability mechanism.

Efficiency: The overhead required to support the variability in the asset using the

mechanism.

Separation of Concerns: The ease with which the variability and commonality in the assets

can be decoupled using the variability mechanism.

Traceability: The ease with which the assets can be traced to the features and requirements

of the software product line.

Modifiability or adaptability: The ease with which the assets can be modified during product

line evolution using the variability mechanism.

Configurability: The ease with which the assets can be combined and configured for

different application configurations of a product line using the variability mechanism.

3.6. Representation of Variability

A complete documentation of variability should at least include all the information needed to

answer the following questions [2]:

What varies? The variable properties of the different development artifacts have to be

explicitly defined and documented by variation points.

Why does it vary? The causes of external and internal variabilities should be defined.

Stakeholder needs, laws, standards or product management decisions can result in external

variabilities. Besides, the realization of an external variability or another internal variability

can be possible causes of internal variabilities. The causes of all internal and external

variabilities should be captured in textual annotations of variation points and variants.

32

How does it vary? The available variants should be explicitly documented and they should

be linked to corresponding domain model elements by trace links which are called artifact

dependencies.

For whom is it documented? The stakeholders may differ for variation points and/or its

variants. For example, variability documentation for customers is different from variability

documentation for software developers. This distinction is based on the different audiences

for internal and external variabilities and should be explicitly distinguished in the

documentation.

The three main advantages of explicit variability documentation can be listed as

improvement of making decisions, communication and traceability. Decision making is

improved by explicitly documented variability since engineers are forced to document the

justifications for introducing a certain variation point or a variant. Providing a high-level

abstraction of variable artifacts within explicit variability documentation improves

communication about the variability of a software product line. Explicitly documented

variability also allows for improved traceability of variability between its sources and the

corresponding variable artifacts [2].

An important aspect of successful product line development is defining an architecture that

enables systematic reuse and modeling the architectural details in order to explicitly

represent the variability. A high level architectural representation of variability in a software

product line can be introduced using the following basic notation [12]:

 Optional variant: There exists exactly one implementation that could be included in a

product.

 Alternative variant: There exist multiple realizations of this variant and exactly one

must be included in the product.

 Set of alternative variants: There exist multiple realizations of this variant and at

least one must be included in the product.

 Optional alternative: There exist multiple realizations of this variant and one of it

could be included in the product.

 Optional set of alternatives: There exist multiple realizations of this variant and a

collection of it could be included in the product.

33

3.6.1. Feature Models

Many research contributions have suggested the integration of variability in traditional

software development diagrams or models. Feature models are one of these approaches.

Every variation in a product line context can be connected with a corresponding feature

which supports variations for specific cases and conditions. Table 3.2 provides an overview

of feature relation types and the inclusion criteria of a feature in a product line instance [14].

Table 3.2: Feature Relation Types

Relation Type Meaning

Mandatory
The feature must be always included whenever

its parent is included.

Optional
The feature is an independent complement that

may be included or not.

Alternative
Only one of the alternative feature can be

included in a product.

Or
A non empty subset of the features can be

included in a product.

Requires
Whenever a feature, X, is included, another

feature, Y, must also be included if X requires Y.

Excludes
If features X and Y exclude each other, no

products can include both X and Y.

After the introduction of the feature models, a number of important extensions have been

devised. For instance, in the original feature models, feature diagrams are allowed to be

trees, while in some of the extensions they are allowed to be in the form of directed acyclic

graphs. An important extension has been the introduction of the UML like cardinalities.

Another critical extension has been the introduction of the attributes of features, which

provide extra information about the features. These feature models are called extended

feature models [26].

3.6.2. Orthogonal Variability Model

Modeling variability within the traditional software development models has some

significant shortcomings. So, an orthogonal variability model that defines the variability of a

software product line is proposed, which relates the variability defined to other software

34

development models such as feature models, use case models, design models, component

models, and test models. The orthogonal variability model provides a cross-sectional view of

the variability across all software development artifacts. The notational elements of

orthogonal variability model which are shown in Figure 3.4 are as follows [3]:

Variation point: Description of differences that exist in the final systems.

Variant: The different possibilities that exist to satisfy a variation point.

Variability Dependencies: A basis to denote the different variants that are possible to fill a

variation point. The notation includes a cardinality to determine the possible number of

simultaneously selected variants.

Constraint dependencies: Description of dependencies among certain variant selections.

There are two forms of constraint dependency:

Requires: The selection of a specific variant may require the selection of another

variant (perhaps for a different variation point).

Excludes: The selection of a specific variant may prohibit the selection of another

variant (perhaps for a different variation point).

Figure 3.4: Graphical notation for orthogonal variability model [3]

35

CHAPTER 4

TESTING A SOFTWARE PRODUCT LINE

Software testing is a process which is used by a person or program to find out the quality,

correctness and completeness of a software. An operation is done on the artifact under test

and the result of the operation is compared with the expected result from the specification.

Any irregularity of the expected result is called failure. Testing a program means to try to

find out if there is any failure.

The success of a product line organization depends on a well organized and executed test

process. Testing identifies the defects coming from the previous stages of the development

lifecycle and ensures that the completed products fulfill the required qualifications and

specifications. The test process should be designed to take the advantage of the methods used

for scoping and scaling in a product line organization. Test-related activities should be

sequenced and scheduled. Every construction activity should be followed by a testing

activity which aims to verify and validate the output of the construction activity [25].

The degree to which a software owns a desired combination of attributes describes the

quality of that software [23]. There are two major categories of quality attributes:

Observable by execution (operational): Performance, security, availability, usability, etc.

Not observable by execution (development): Modifiability, portability, reusability,

integrability, testability, etc.

In a software product line, quality attribute requirements can be grouped as product line

quality attributes which are related to application engineering and domain relevant quality

attributes which are related to domain engineering. Product line quality attributes are

considered development attributes or non observable by execution, whereas domain relevant

quality attributes are usually operational or observable by execution [23].

36

Product line quality attributes are usually specific to application engineering where a set of

related existing and future products are considered. They are related to variability or

flexibility. Assessing the variability of a product line ensures that it is possible to get all the

functionality of the products in the scope. Variability also ensures modifiability that allows

evolution over time and configurability in the scope to get a set of related products.

Domain relevant quality attributes are usually addressed in domain engineering in a software

product line. Due to the different quality requirements of products like different levels of

security or performance expectations, the related assets in the domain engineering should

ensure the assessment of those quality attributes for all products in the product line.

Inadequate testing will result in low software quality. The major risks that may rise by not

doing enough or efficient testing include the following [1]:

 Insufficient unit testing will result in low quality of components.

 Lack of adequate testing tools will increase the effort for reaching an acceptable

level of coverage.

 Inadequate specifications make it difficult to design testing activities.

 Insufficient integration testing will cause longer construction times for products.

 The expected level of reuse of test assets will not be realized if sufficient resources

are not dedicated for testing.

4.1. The Testing Context

Testing in the context of a product line includes testing the core assets in domain

engineering, the product-specific assets in application engineering, and their interactions.

Testing is managed within the context of the other phases in the lifecycle and the testing

activities are related to the construction activities in the development process. Appropriate

test techniques are selected for each specific development process. Figure 4.1 shows that

each testing activity immediately follows the related construction activity. Each testing

activity should be designed not only to validate the output of the previous construction

activity, but to identify the defects that escaped from the earlier test activities also. All these

testing activities define a test process [25].

37

Figure 4.1: Test and development processes [25]

Product line principles should be applied to testing practices in the same manner as they are

applied to development practices. This approach in test implementation, which is presented

in Figure 4.2, lets testing benefit from the characteristics of product line engineering. During

domain engineering, tests for core assets should be prepared simultaneously to the assets

themselves. These test assets feed a test infrastructure. During application engineering, assets

from this test infrastructure should be reused to lower the time required for testing and

consequently for overall product development [22].

Figure 4.2: Test implementation in product line engineering [22]

Product line testing then can be done at three levels [22]:

Component Level: Traditional test techniques can be applied to execute component tests.

Feature Level: After the components have passed their component level tests, integration of

these components should start with feature level validation.

Product Level: After the components and their integration are successful, the whole product

should be validated against requirements.

38

Software product line testing should be designed for sharing testing core assets such as test

cases, test plans, test tools, testing data, test scripts and testing reports, etc. All these assets

should be reusable throughout the entire product line for all products instead of testing each

similar application as an independent product. In another words, software product line

testing is a reuse-based test derivation for testing specific products within a family of related

similar products [19].

4.2. Software Product Line Testing vs. Single System Testing

In a single system development, the system is validated if the specific product operates

correctly. However, the validation of a software product line is completed when every

instance of the product line is assured to work correctly. The testing process for a single

system should be expanded to address the domain and application engineering processes of a

software product line. The test item, test design and test procedure documents can be

extended during domain engineering, and then customized for a target application during

application engineering [21].

Testing in a product line organization must examine the core assets software, the product-

specific software and the interactions between them. Unlike single system development

projects, responsibilities for testing may be distributed across different parts of the

organization and testing represents an activity whose efforts are reused across a set of

products. In order to take the full advantage of the benefits of reuse, planning is necessary.

Critical success factors for software product line testing include structuring the testing

software for reuse, including architectural support for testing, reusing assets for system

integration testing, performing regression tests, and keeping track of acceptance tests [1].

There are two test processes as domain testing and application testing in software product

lines and test activities are distributed between these two processes [2]. The main difficulty

of domain testing is that there is no single, executable configuration of components that can

be tested. Appropriate strategies are necessary for both ensuring early validation of the

product line in domain engineering and achieving planned reuse of test artifacts by

application engineering. Variable test artifacts provided by domain testing help in saving

considerable effort since they are not created from scratch for each application. Variability in

test artifacts originates from the variability introduced in requirements, design, and

realization. But additional variability which is specific for testing artifacts like the test

execution environment or test documentation should also be taken into account.

39

Similar to single system testing, ensuring an acceptable quality of a product is the goal of

application testing in software product lines. This goal requires executing a set of tests that

satisfies a certain coverage. Difference from single system testing arises at the point that the

product to be tested is created partly during domain engineering and partly during

application engineering. This brings out some repetition for testing the requirements and

components which are identical in domain engineering. However, newly created test cases

should be developed for application-specific artifacts. Besides, application testing should

validate the variability binding for the new application complies with both the requirements

specification and domain restrictions which are not an issue in single system engineering.

Although some application-specific features require creating new test artifacts from scratch,

most of the test artifacts come from domain testing or previous application testing activities,

which can be reused after binding appropriate variants.

The variability of the product lines also requires variable test artifacts to ensure reusability of

the tests. In a single system product the tests are static assigned to the existing components.

A software product line member must be transformed from a chosen set of features and their

related components before starting the test process. If a variant of a component is created, the

responsible development team has to change the assigned test set to get it to work with the

new variant.

In contrast to single-system engineering, testing activities in product line engineering have to

consider product line variability as well as the differentiation between the two development

processes. In order to achieve the required quality in a software product line, several test

strategies like Brute Force Strategy, Pure Application Strategy, Sample Application Strategy

or Commonality and Reuse Strategy can be applied [2].

4.3. Creating Reusable Test Artifacts

In software product lines, new products can be developed by reconfiguring the existing

components on a predefined platform. But a component working correctly for one product is

not guaranteed to work correctly for all others after being reconfigured. Even worse, the

reconfiguration of components or changes in environment for new products may have

negative effects on previously working ones. It is obvious that the components and related

variants need to be tested individually when they are first created, but this is not enough.

Since they may fail to provide their services due to residual defects, wrong usage or

environment, they have to be tested again each time they are deployed to a new product [24].

40

A solution for this problem can be the strategy of reuse of core assets in software product

line testing which can reduce testing effort during development, improve software quality,

and potentially decrease the time-to-market of products and services [19].

Reuse in test artifacts depends on the key concept of variability in software product lines.

Using the same variability mechanism for both development and testing is an effective and

efficient approach that provides a correspondence between the product and its tests. This

correspondence enhances the maintenance of the test assets. Using the same variability

mechanism for implementing the variation in the product component and the test component

makes both the components equally modifiable [20].

The test artifacts are produced by various testing activities, and some of them can be

considered as core assets of the product line. These artifacts include test plans, test cases, test

reports, test data, test software and test scripts. Test artifacts should be managed and their

versions should be controlled under a certain configuration management system, in much the

same way with the other development artifacts [25].

Test artifacts should be defined and structured in a way that they are reusable and modifiable

as to be core assets. Proper definition of standardized and customizable non-executable

artifacts containing test plans, designs and reports improve efficiency in the testing process.

Executable test artifacts such as test cases and test scripts become also core assets if they are

designed to permit the principles of variability. They have to be closely related to the code

they intend to test, i.e. they have to be associated with the corresponding product

development assets [25].

4.4. Domain Testing (Testing Core Assets)

Testing concepts are applied to domain engineering in two ways. First, testing itself produces

reusable core assets like documents, test data sets and test software. Next, software core

assets like components and non-software core assets like requirements model, analysis

model, architecture, and detailed design should be considered. [1]

For testing software core assets in domain engineering, the test cases for domain artifacts are

available and executed. The rest of the tests which are not covered by domain testing are

executed in application testing. Although there is no single and complete executable

41

application to test in domain engineering, the typical five activities of the test process still

can be performed in domain testing:

Test Planning: Test plans should be prepared based on domain artifacts like domain

requirements, architecture, design and variability model of the product line.

Test Specification: Creation of reusable test cases is aimed.

Test Execution: Test cases are applied to the related domain assets and defects are corrected.

Test Recording: Documenting the test execution makes the tests repeatable and the test

results verifiable.

Test Completion: The test record is analyzed and the error classes and the origins of errors

are determined.

For testing non-software core assets in domain engineering, static test methods like

inspection and evaluation can be applied. These inspection and evaluation activities result in

several challenges for existing testing techniques [18]:

 Unit testing needs to distinguish among standard, optional and variant components.

 Integration testing needs to consider two different levels of integration on the overall

architecture configuration and the individual products.

 Conformance testing of a product and its code can reuse information produced at the

architecture level.

 Regression testing two different implementations of the same product architecture

can be realized by applying techniques already proposed for product based

regression testing.

 The information produced by testing a product in the architecture can be reused in

order to test other products, using a development-level regression testing technique.

 Information used to test the implementation of a certain product in the architecture

can be reused in order to test the conformance of another implementation with

respect to its product.

Table 4.1 briefly describes the static testing techniques and the levels of coverage for non-

software core assets in domain engineering. Increased coverage results in increased detection

of defects [25].

42

Table 4.1: Static testing techniques for non-software core assets

Asset Test Technique Coverage Measure

Requirements

Model

Inspection by a team of domain

experts who have not participated

in developing the requirements.

The team develops a set of

scenarios that define its visions for

the system.

1. Every use case should be touched

by at least one of the expert’s

scenarios.

2. Each variation point is sampled

with multiple scenarios.

Analysis

Model

Inspection by a team of domain

experts who created the

requirements and designers who

will use the analysis model as input

to architectural design.

1. One test scenario for each use

case’s default “usual course”.

2. One test scenario for several

highly probable variants of the use

case’s “usual course”.

3. Test set expanded to include test

scenarios for the use case’s

alternative and exceptional course.

Architecture

Inspection by a team of analysts

who created the analysis model and

designers who will use the

architecture model as input to

detailed design.

An executable model may be used

instead of a manual inspection if it

is available.

1. One test scenario for each use

case’s default “usual course”.

2. One test scenario for several

highly probable variants of the use

case’s “usual course”.

3. Test set expanded to include test

scenarios for the use case’s

alternative and exceptional course.

4. One test scenario for each

identified architectural quality.

Detailed

Design

Inspection by a team of architects

who created the architecture model

and developers who will code the

interface implementations.

The quality scenarios are used to

guide a more in-depth analysis of

the design.

A syntax checker can be used if the

Object Constraint Language or

other parsable specification

language is used.

1. One test scenario for each use

case’s default “usual course”.

2. One test scenario for several

highly probable variants of the use

case’s “usual course”.

3. Test scenarios for the use case’s

alternative and exceptional course.

4. Test scenarios for architectural

qualities are re-analyzed.

43

4.5. Application Testing (Testing Products)

Application testing aims to ensure the products properly meet the requirements. The quality

and the functionality of the product is validated and verified by complementing the test

activities performed in domain testing and reusing domain test artifacts. Unit test, integration

test and system test are the levels of application testing and they are associated with

application realization, design and requirements analysis phases in the development

lifecycle, respectively. The results of each test level provide feedback for the related

development activity. Figure 4.3 shows the information flow between application test levels

and the related development sub-processes [2].

Figure 4.3: Information flow on application testing [2]

Application test artifacts are usually derived from domain test artifacts according to the

guidance of the application test process description. The basic five activities of the test

process can be performed in application testing as follows:

Test Planning: A product-specific application test plan is prepared.

Test Specification: Logical test cases, detailed test cases and the respective test case

scenarios are created for the application.

Test Execution: The test cases are performed on the application and defects are.

Test Recording: The results of the execution are recorded.

Test Completion: The test record is analyzed for determining the error classes and the

origins of errors. Besides, the detected errors are reported to the associated development sub-

processes.

44

Application test process should be supported by tests related to variability and commonality

which are the key concepts of software product lines. The bindings for variants and

component configurations should be checked for correctness in terms of variability by

performing the following two types of tests [2]:

Variant Absence Test: An application should not include any variants which were not

defined to be included in that application.

Application Dependency Test: The application should be in conformance with the constraint

and variability dependencies specified in the domain and application variability models.

Variability is not also an issue to be tested itself, but also has influence on different levels of

application testing [2]:

Application Unit Test: All single components should be validated that they work properly

for all possible combination of variants.

Application Integration Test: The interactions between common components, bound

variants of variable components and application-specific components should be validated.

Application System Test: Although predefined domain system test artifacts can be used for

commonalities, system test cases for application-specific variants should still be executed.

The system test coverage can be enhanced by applying different types of requirement based

tests like Application Commonality Tests for reused common artifacts, Application Variant

Tests for reused variable or adapted requirements and Application-Specific Tests for new

requirements.

45

CHAPTER 5

CURRENT SYSTEM SPECIFICATION

Today’s competitive market in banking, especially in issuing credit cards, requires

introducing new card brands and loyalty programs for both acquiring new customers and

keeping the existing ones. Credit cards are also very effective instruments for banking in

terms of cross-sell opportunities. Banks, especially the leader ones in the finance sector,

persist on assuring the loyalty of individual customers and make important investment on

loyalty and customer relationship management programs.

Loyalty and Campaign Management System is an important project for achieving the loyalty

goals of banks. The basics and general structure of LCMS as a software product line will be

presented in this chapter.

5.1. Loyalty and Campaign Management System

Loyalty and Campaign Management System is a multi-organizational, real-time & online

core system for loyalty and campaign management in banking domain which can be used by

various transactions coming from different distribution channels. It is completely designed,

developed and still being maintained by software product line engineering methodology.

Although it can be highly customized for the requirements of a specific bank, it can still be

used in a multi-organizational way, i.e. use the products of LCMS can be shared and used by

other banks which are business partners of that specific bank.

The scope of LCMS comprises all loyalty campaigns especially for credit cards. The reward

pool management and complementary services supporting campaigns are also in scope of

LCMS. Besides credit card campaigns, LCMS provides a general campaign management

system for several banking operations and reward mechanisms for debit cards as well.

46

Regarding the technical specifications of the application, the architecture is distributed over

different platforms. The core campaign modules serving different legacy transactions are

COBOL programs running on IBM mainframe Z/OS, taking the advantage of power,

robustness and high performance of mainframes. Campaign definition and management

interfaces are Java and JSP applications running on UNIX/WAS servers and operating on the

database through JDBC. Some application services run on different platforms specific for

distribution channels like internet banking, call center or branches. The database is also on

mainframe IBM DB2 for Z/OS and the data model consists of 183 relational tables. The

overall application size including only the core components and applications specific to

LCMS and excluding the distribution channel integrations are shown in Table 5.1.

Table 5.1: Application size of LCMS

Type # of Files Lines Of Code

Cobol Programs 147 118.968

Cobol Copy Books 71 4.848

Cobol Declaration Files 183 8.767

Job Control Language (JCL) Files 130 18.535

Java & JSP Programs 695 138.406

The products provided by LCMS are integrated to many distribution channels. All channels

have their interfaces on different platforms, but they all use the core services of LCMS.

Figure 5.1 shows all the distribution channels which are integrated to LCMS and Point of

Sale (POS) integration is shown in Figure 5.2 as a sample channel integration.

Figure 5.1: Distribution channels integrated to LCMS

47

Figure 5.2: Sample channel integration of LCMS

5.2. Evolution of LCMS as a Software Product Line

The products of LCMS were developed iteratively in an incremental manner. Starting with

the basic core assets in domain engineering, most critical campaigns and services were

developed first and the overall system was constructed incrementally in time. As the system

was growing, special care has been taken for the sake of product line engineering principles.

5.2.1. Organizational Structure and Processes

During the initial phases of LCMS project, the organization was process oriented.

Responsibilities for different processes in the lifecycle were distinguished between process

oriented units. The requirements analysis was performed by the System Development Team,

whereas the Software Development Team was responsible for design and realization. The

tests were also distributed over different groups in the organization according to the test

levels. Unit and integration tests were performed by Software Development Team, and then

System Development Team executed system tests. Finally, user acceptance tests and

regression tests are performed by the operation team of the bank. However, the

organizational structure has changed recently. Today, in a product oriented organization all

processes (Requirements Analysis, Design, Realization and Testing) are in the responsibility

of the LCMS Application Development Team.

48

5.2.2. Domain Engineering for LCMS

The domain engineering of LCMS consists of domain objects and domain services. Domain

objects are essential core assets, whose instances are the basic structures in campaign and

service management. Domain services are the other type of reusable software core assets

which are used in construction of all products. Domain objects and services are used for

managing the variability and commonality among different products of LCMS. They support

building products with lower costs and reduced time to market by enforcing high level of

reusability.

The domain objects, whose instances compose the infrastructure of the platform, are:

 Reward Pools: Database objects that store all the store information about the rewards like

cash back or miles.

 Target Lists: Database objects that hold static or dynamic lists of cards or customers

which are included in or excluded from specific campaigns or services.

 Campaign Counters: Database objects that hold the count or cumulative amount of

transactions performed for specific campaigns.

 Ledger Records: Database objects that hold the monetary records created by campaigns

or services for general ledger.

 Transaction Logs: Database objects that hold the detailed information records for

transactions performing insert or update operations on the database.

 Reports: Printable objects that contain both detailed and summarized information about

transactions which are produced automatically or on demand for audit or monetary

agreement purposes.

The domain services, which are the basic building blocks for products of LCMS, are:

 Campaign Entrance Control: Checks if a transaction will run a specific campaign in

terms of lower and upper transaction amount limits of the campaign, start and end dates

of the campaign and the days of week on which the campaign is supposed to be active.

 Target Group Decision: Decides whether the cardholder making the transaction is in the

target group of the campaign and return the reward multiplier regarding following

parameters: Customer and Credit Card Segment, Credit Card Type, Transaction Type,

Target List Definition, Date of Member Since, Card Ownership (Primary/Additional)

49

 Reward Pool Update: Updates the reward pool balance with the reward calculated by a

campaign mechanism.

 Campaign Counter Update: Updates the counters of campaigns which need to count the

transaction numbers or amount.

 Ledger Record Creation: Creates records for general ledger in case of monetary

outcomes while running campaigns.

 Transaction Log Creation: Creates log records for all transactions which perform an

update or insert operation on the database.

5.2.3. Application Engineering for LCMS

Application engineering of LCMS deals with building products using domain services as

reusable components and domain objects for application infrastructure. The products of

LCMS are categorized as campaigns and application services. The campaigns and

application services are all taking the advantage of reusability on the core assets; however,

they all have different product-specific workflows and business logic. These application-

specific assets are also handled in application engineering process of LCMS.

There are several campaigns in the scope of LCMS, each one having different reward

calculation mechanisms:

 Cash Back Campaigns: Cash back reward is calculated for credit or debit card

transactions with respect to the transaction type or the type of the purchased goods.

 Recency, Frequency, Monetary Value (RFM) Campaigns: Cash back reward is

calculated for credit or debit card transactions with respect to the recency or frequency of

visits to a specific merchant, the number of purchased goods or the cumulative monetary

amount paid in a specific merchant.

 Installment Campaigns: Additional installment is calculated for credit card transactions

with respect to the transaction amount.

 Irregular Campaigns: Regardless of the transactions performed, rewards which are

calculated outside of LCMS are charged to reward balances of customers.

 Central Campaigns: Any type of rewards can be calculated centrally, independent from

channel or transaction type. Transaction/Turnover Counting, Host Generated Reward,

Progressive Acquisition, Targeted Acquisition, Reward for Card Issuing Channel and

Central Installment can be listed as different sub-types of central campaigns each having

50

different reward calculation rule sets. Central campaigns are the most complicated

products of LCMS which can be run on all channels for any type of transactions.

 Discount Campaigns: Total or partial amount of the purchase is given back to the

customer as a discount in predefined time periods with a special randomizing algorithm.

 Postponement Campaigns: The payback of a credit card sale is postponed with respect to

the several parameters like POS type, transaction type or amount.

 Surprise Packages: The amount and count of rewards are defined initially as reward

packages, and distributed randomly to customers after performing credit card

transactions.

 Banking Campaigns: Rewards can not only be calculated for credit card transactions, but

also for a set of banking operations like currency exchange or buying/selling investment

funds, etc. with respect to the type and amount of the operation.

In addition to campaigns, there are other products called application services which are

mainly dealing with the governance of the whole system:

 Advance Services: On a commitment accepted by the customer, extra reward can be

earned as an advance. The commitment of the customer may either be performing a

certain amount of monthly turnover with the credit card, or closing the advance by

winning rewards in a predefined period. The system controls the conditions of the

commitment periodically and if there is a failure, a monetary penalty is charged.

 Ticket Sale Services: Customers can buy plane or bus tickets paying with the rewards

like cash back or miles that they can earn from campaigns or advance services.

 Conversion Services: Balances of different reward pools can be converted to each other

with respect to some defined rules and multipliers.

 Transfer Services: Balances can be transferred between the same types of reward pools.

 Sign-Up Services: Customers can sign up for the target list of a certain campaign through

several channels like SMS, Internet or Call Center.

 Audit & Correction Services: There are special services that can be used only by some

authorized users for audit and correction purposes. Viewing the transaction log records or

updating the reward pool balances are examples for these services.

 Campaign Assignment Services: The campaigns are assigned to distribution channels

(POS, Virtual POS, Visa, etc) and/or merchant grouping entities (merchant category,

group, chain, terminal, etc).

51

Table 5.2 presents the usage of all campaigns and application services from different

distribution channels.

Table 5.2: Usage of LCMS products on distribution channels

5.2.4. Commonality and Variability in LCMS

All products in scope of LCMS, i.e. campaigns and application services, have some common

procedures and business flows. This commonality is managed by the reusable core assets.

For example, every campaign performs a check in the entrance if the cardholder who

performed the transaction running this campaign is in the target list. Besides, all the

campaigns create a transaction log and most of them create records for general ledger if there

is a monetary outcome. All these commonalities are handled in terms of reusability as the

basic principle of software product line engineering. Although all campaigns and services

share something in common, internal and external variabilities result in the diversity of

products. The variabilities among products are handled in two ways, first by reconfigurable

and parametric assets in domain engineering artifacts, and then by product-specific

constraints in application engineering. Table 5.3 presents some examples of external

variabilities and Table 5.4 presents some product constraints on campaign entrance controls

as internal variabilities managed in LCMS.

52

Table 5.3: Examples of external variability in LCMS

Variation Point Binding Time Variants

bankCode Campaign Execution localBank

 otherBank

poolType Campaign Definition Common Cash Back (CCB)

 Private Cash Back (PCB)

 Cross Cash Back (XCB)

 Miles

 Lottery

amountControlType Campaign Definition transactionAmount

 provisionAmount

counterLevel Campaign Definition customerLevel

 cardLevel

 campaignLevel

counterType Campaign Execution RFM_local

 RFM_other

 central

dateControlType Campaign Definition dateControl

 timeControl

dayOfWeekControl Campaign Definition allDaysOfWeek

 someDaysOfWeek

Table 5.4: Examples of internal variability in LCMS

Products Internal Variabilities (Product Constraints)

Cash Back

Campaigns

Cash Back Campaigns can update CCB/XCB/PCB pool

balance depending on the campaign definition.

RFM

Campaigns

RFM Campaigns can update CCB/XCB/PCB pool balance

depending on the campaign definition.

Installment

Campaigns
Installment Campaigns do not update any pool balance.

Irregular

Campaigns

Irregular Campaigns can update CCB/XCB/PCB/Miles pool

balance depending on the campaign definition.

Central

Campaigns

Central Campaigns can update CCB/XCB/PCB/Miles pool

balance depending on the campaign definition.

Discount

Campaigns
Discount Campaigns do not update any pool balance.

53

5.3. Problem Definition: Overhead in Regression Testing

The products and services of LCMS highly take advantage of reusability; however, most of

the time, this high level of reusability causes difficulties in defining the regression test scope

after a new product is derived or existing products are enhanced by new features. When new

requirements bring out changes in core assets, every existing product using these core assets

needs to be tested whether it works correctly and properly after the changes and

reconfiguration in its components. Testing almost all products, as if they are developed from

scratch, results in huge regression testing effort and makes the advantage of reusability

inoperative. In order to solve this problem, this study addresses a formal modeling of domain

core assets which will explicitly show the interdependencies and relations between products,

core assets and variation points. The proposed test oriented service and object model is

expected to help in determining the necessary regression test scope, thus reducing the testing

effort, after adapting the changes in core assets due to the development of a new product or

enhancement of existing products in LCMS.

54

CHAPTER 6

TEST ORIENTED SERVICE AND OBJECT MODEL

Throughout the incremental development of products in s software product line, it is hard to

determine the effect of changes in core assets to existing products that are already using

those assets. The test oriented model which will be proposed in this chapter aims to clearly

present the common structure of the products in application engineering, and the detailed

specifications of core assets in domain engineering including their relations and

dependencies to the products and variants.

The test oriented service and object model should be applicable to all products in a software

product line. This include both the modeling the general structure of products in application

engineering and the reusable core assets in domain engineering, and the relations between

them.

6.1. Application Engineering – Product Flow Model

In application engineering, the implementation is based on binding the variants of core assets

in order to reconfigure them for the new product, and product-specific features that

distinguish a product from the others. For test oriented modeling, the first step, which is

performed in application engineering, is constructing a product flow model presenting the

common structure for similar products reflecting the combination of core assets and product-

specific features. Besides, the product flow model should include the execution flow in order

to support the inclusion of late bindings which might occur in the runtime.

The high level representation of the products in the flow model should be applicable to all

products in the product family. The product flow model, explicitly defining the internal and

external variabilities for each product; therefore, should reflect the overall structure, the

55

execution flow and both optional and mandatory features of the products in the scope of a

software product line containing the following items:

 Domain services and related domain objects used by the product

 Application-specific assets and features

 Decision points in the workflow of the products

 Product constraints as internal variabilities

 Mandatory and optional flow blocks or features

 Explicit entry and exit points for the execution of the product

The product flow model will be a combination of figures coming from conventional flow

diagrams and representations of variability in feature models or orthogonal variability model.

Figure 6.1 shows the graphical notation of the product flow model for application

engineering.

Figure 6.1: Graphical notation for product flow model

56

6.2. Domain Engineering – Service and Object Model

After the construction of the high level product flow model in application engineering, test

oriented service and object model for software product lines goes into deeper detail of the

core assets in domain engineering. The model includes specifications for both domain

objects and services; sub-service decomposition of domain services; and finally test

orientation comes with the dependency and traceability matrices produced for all domain

services based on product bindings and sub-services.

6.2.1. Specifications for Domain Object Modeling

Domain objects are the conceptual core assets whose instances build up the infrastructure of

a software product line. In the test oriented service and object model, domain objects are

usually referenced with their relations to domain services and application products. In the

model, specifications for each domain object should include the following information:

Domain Object Description: The definition and properties of the domain object including its

role and objectives should be explicitly stated.

Related Domain Services: Domain objects are usually related to domain services. Domain

services directly operating on the instances of a certain domain object are usually affected

from changes on that domain object. This implies the importance of determining the

relations between domain objects and services.

Related Products: Some products may have direct dependency on domain objects. The

model should associate such products with the domain objects since they probably will be in

scope of the regression test when there is a change in the related domain object.

Domain Object Instances: The realization of domain objects by creating instances can be

done in several ways. Databases, files, printable reports or any other actual entities can be

instances of domain objects. Creating a new instance or modifying an existing instance of a

domain object obviously affects the related domain services and application products;

therefore, they absolutely have to be considered when defining the test scope.

In the model, the specifications for domain objects including all the necessary test oriented

relation and dependency information should be managed in a standard way. The template

shown in Table 6.1 should be used for the standardized documentation of domain object

specification.

57

Table 6.1: Document template for domain object specification

CORE ASSET NAME CORE ASSET TYPE

<DomainObjectName> Domain Object

CORE ASSET DESCRIPTION

<Description and properties of the domain object>

RELATED DOMAIN SERVICES

<Domain_Service_1>

 . . .

<Domain_Service_n>

RELATED PRODUCTS

<Application_Product_1>
<Dependency between the domain object and

Application_Product_1>

<Application_Product_n>
<Dependency between the domain object and

Application_Product_n>

DOMAIN OBJECT INSTANCES

<Domain_Object_Instance_1>
<Definition and properties of

Domain_Object_Instance_1>

<Domain_Object_Instance_n>
<Definition and properties of

Domain_Object_Instance_n>

6.2.2. Specifications for Domain Service Modeling

Domain services are the software core assets which are highly reusable in the construction of

products in a software product line. The proposed model first requires well definition of

domain services according to a standard description format. This description should include

the essential information about the domain service such as request and response parameters

and variabilities handled by that service. Domain services are composed of sub-services.

Internal and external variabilities specified in the requirements of a product determine the

configuration of a domain service, i.e. combination of sub-services that will be used in that

domain service. Test orientation of the model come out with this sub-service decomposition

of domain services when the traceability of sub-services and products based on variants are

explicitly stated in dependency matrices. For the completion of the test oriented service and

object model for software product lines, the following steps should be proceeded for each

domain service:

Domain Service Description: The description should include all the essential information

about the functionality, input/output parameters, and internal/external variabilities of a

domain service. Modeling the domain services starts with the documentation of service

descriptions that should be prepared in a standard format presented in Table 6.2.

58

Table 6.2: Document template for domain service description

CORE ASSET NAME CORE ASSET TYPE

<DomainServiceName> Domain Service

CORE ASSET DESCRIPTION

<Description and functionality of the domain service>

REQUEST PARAMATERS

<requestParameter_1> <Definition for requestParameter_1>

 . . .

<requestParameter_n> <Definition for requestParameter_n>

RESPONSE PARAMATERS

<responseParameter_1> <Definition for responseParameter_1>

 . . .

<responseParameter_n> <Definition for responseParameter_n>

VARIATION POINTS AND VARIANTS (External Variabilities)

Variation Point Source Variants

<VP_1> <Source of VP_1> <Variant_a for VP_1>

 <Variant_b for VP_1>

 . . .

<VP_2> <Source of VP_2> <Variant_x for VP_2>

 <Variant_y for VP_2>

 . . .

PRODUCTS USING THE CORE ASSET

Products Constraints (Internal Variabilities)

<Product_1>
<Constraints as internal variabilities for

Product_1>

 . . .

<Product_n>
<Constraints as internal variabilities for

Product_n>

Sub-Service Decomposition of Domain Services: A sub-service is a single logical unit of

software which performs a specific task and has a special role in the functionality of a

domain service. The composition of related sub-services constitutes a domain service. In

product construction, the selected domain services are reconfigured in order to use not all but

the necessary sub-services based on variants. For each domain service, the sub-service

decomposition should be documented using the template shown in Table 6.3.

Table 6.3: Document template for sub-service decomposition

SUB-SERVICE DECOMPOSITION

Sub-Service Name Sub-Service Definition

<sub_service_1> <Definition for functionality of sub_service_1>

 . . .

<sub_service_n> <Definition for functionality of sub_service_n>

59

Sub-Service Dependencies on Variants: For each domain service, the affinity of sub-

services with the probable variants for all variation points should be shown in a dependency

matrix given in Table 6.4. For each sub-service, the rows of the matrix should either be filled

with a check sign (√) or a cross sign (X), indicating that the sub-service is used or not used,

respectively, for the variants placed in the corresponding columns of the matrix. In other

words, if there is a check sign (√) in the intersection of a sub-service and variant, it means

that variant requires the execution of that sub-service and if there is a cross sign (X), it

means that variant excludes the execution of that sub-service. If a sub-service has no

dependency on a variant, their intersection in the matrix can have the value Not Applicable

(N/A) indicating the irrelevancy between them.

Table 6.4: Matrix template for sub-service dependencies on variants

SUB-SERVICE DEPENDENCIES ON VARIANTS

SUB-SERVICES
VARIATION POINT: <VP_1>

<Variant_a for VP_1> <Variant_b for VP_1> . . .

<sub_service_1>

 . . .

<sub_service_n>

SUB-SERVICES
VARIATION POINT: <VP_2>

<Variant_x for VP_2> <Variant_y for VP_2> . . .

<sub_service_1>

 . . .

<sub_service_n>

Product Bindings on Variants: The next step is showing the possible bindings of the

products on every variation point by preparing another matrix as in the template given in

Table 6.5. For each product, the rows of the matrix should either be filled with a check sign

(√) or a cross sign (X), indicating that the product can or can not bind the variant placed in

the corresponding column of the matrix. If a variant is irrelevant for a product, their

intersection in the matrix can have the value Not Applicable (N/A).

Table 6.5: Matrix template for product bindings on variants

PRODUCT BINDINGS ON VARIANTS

PRODUCTS
VARIATION POINT: <VP_1>

<Variant_a for VP_1> <Variant_b for VP_1> . . .

<Product_1>

 . . .

<Product _n>

PRODUCTS
VARIATION POINT: <VP_2>

<Variant_x for VP_2> <Variant_y for VP_2> . . .

<Product _1>

 . . .

<Product _n>

60

Variant Based Product/Sub-Service Traceability: With the help of the previous two

complementary matrices indicating the sub-service dependencies and product bindings on

variants, the relations of products and sub-services can easily be consolidated in a single

traceability matrix as shown in Table 6.6. The cells in the matrix can again include a check

sign (√), a cross sign (X) or not applicable (N/A). A check sign (√) means that a product

executes a certain sub-service when a specific variant is bound. A cross sign (X) means that

the sub-service is not executed for a product when a specific variant is bound. Not applicable

(N/A) states that the sub-service and the variant are irrelevant for that product.

This traceability contributes in defining the test scope after the adaption of a new product to

the model. When changes are done in domain services due to the requirements of the new

product, i.e. a new sub-service is added or an existing sub-service is changed, the impact of

this change is limited to only the products which have a check sign for that changed sub-

service in a certain row.

Table 6.6: Matrix template for variant based product/sub-service traceability

VARIANT BASED PRODUCT/SUB-SERVICE TRACEABILITY

VARIANTS SUB-SERVICES
PRODUCTS

<Product_1> . . . <Product_n>

V
A

R
IA

T
IO

N
 P

O
IN

T
:

<
V

P
_

1
>

<
V

a
ri

a
n

t_
a

fo
r

V
P

_
1

>

<sub_service_1>

 . . .

<sub_service_n>

<
V

a
ri

a
n

t_
b

fo
r

V
P

_
1

>

<sub_service_1>

 . . .

<sub_service_n>

.
.

.

<sub_service_1>

 . . .

<sub_service_n>

V
A

R
IA

T
IO

N
 P

O
IN

T
:

<
V

P
_

2
>

<
V

a
ri

a
n

t_
x

fo
r

V
P

_
2

>

<sub_service_1>

 . . .

<sub_service_n>

<
V

a
ri

a
n

t_
y

fo
r

V
P

_
2

>

<sub_service_1>

 . . .

<sub_service_n>

.
.

.

<sub_service_1>

 . . .

<sub_service_n>

61

6.3. Test Orientation of the Model

The proposed model aims to help defining regression test scope after extensions for new

products or enhancements to existing products. Test orientation of the model is primarily

based on the following properties:

1) Similar to the advantages of service oriented architecture, the decomposition of domain

services into loosely coupled sub-services provides certain distinction of functionality.

2) The relations and interactions of independent sub-services to both products and domain

core assets are explicitly defined.

3) The effect of selected variants to domain services and products are clearly designated on

sub-service level with the traceability matrices.

After extensions to a software product line, the changes in the variant based product/sub-

service traceability matrices can be used in regression test scope determination as follows:

1) A new product is added as a column: If there is no change in the existing rows of the

traceability matrix, then the new product uses all domain services as they are and has no

effect on other products.

2) A new sub-service is changed or added as a row: If there is a check sign in a row for

that sub-service indicating that it is used by a certain existing product with some

specific variant, then that product should be in regression test scope.

3) A new variation point or variant is changed or added as multiple rows for sub-services:

Similar to addition of a new row for a new sub-service, if there is a check sign in one of

the new rows for an existing product, then this product is obviously affected from the

changes and should be considered in the regression test.

62

CHAPTER 7

CASE STUDY: MODELING LCMS

7.1. Scope

The case study on the application of the proposed test oriented service and object model for

software product lines includes the following steps:

1) The model is adapted on a predefined scope of products in LCMS, including the

extensions for latest requirements which are denoted by a different color (blue) for

clarity. These extensions include both construction of a new product and changes in

existing products.

2) The extensions in the model provide a basis for determining what is affected after the

realization of new requirements. The coverage of regression test scope after extensions

is determined and proved to be complete with the help of the principles of the applied

model.

7.2. Implementation of the Proposed Model on LCMS

LCMS, as a software product line, consists of two categories of products, campaigns and

application services, which are briefly described in Chapter 5. The application services

mainly have the functionality of maintaining and supporting the system, and there were only

a few changes in application services after they had been developed. The problem in testing

is usually faced when a new campaign is to be added into the scope or when new

functionality is assigned to existing campaigns. Therefore, for overcoming the increasing

time and effort in testing when new campaigns are developed or when enhancements are

done on existing campaigns, the test oriented service and object model is applied to the

portion of the system including campaigns only.

63

The campaigns on which the model applied was selected as the ones initially developed and

having a common structure constructed with effective reuse of core assets. First the product

flow model is generated and then the core assets specifications were applied to the following

campaigns of LCMS, which were constructed sequentially in time:

 Cash Back Campaigns

 RFM Campaigns

 Installment Campaigns

 Irregular Campaigns

 Central Campaigns

 Discount Campaigns

7.2.1. Product Flow Model for LCMS

The product flow model reflects the common structure and the execution flow applicable for

the selected campaigns of LCMS. Each campaign starts with entrance controls and target

group decision for ensuring the execution. Then, reward is calculated in a campaign specific

method and optional steps are followed like updating the reward pool or counters and

creating records for general ledger. Finally each campaign execution ends with creating

transaction log records. The relation between domain objects and domain services is also

depicted in the product flow model of LCMS campaigns. The model includes the decision

points for both internal variabilities bound by the constraints and specifications of the

campaign and external variabilities especially bound in the runtime. The complete product

flow model for the selected campaigns of LCMS is shown in Figure 7.1.

64

Figure 7.1: Product flow model for LCMS

65

7.2.2. Modeling Domain Objects of LCMS

For each domain object in the context of LCMS, the specifications are documented

conveniently with the templates required for the model. The specification of Reward Pools,

one of the major domain objects in LCMS, is presented in Table 7.1.

Table 7.1: Domain object specifications for Reward Pools

CORE ASSET NAME CORE ASSET TYPE

Reward Pools Domain Object

CORE ASSET DESCRIPTION

Database objects that store all the store information about the rewards like cash back or

miles.

RELATED DOMAIN SERVICES

rewardPoolUpdate

RELATED PRODUCTS

Cash Back Campaigns
Cash Back Campaigns directly update the cash back

(CCB/PCB/XCB) reward pools.

RFM Campaigns
RFM Campaigns directly update the cash back

(CCB/PCB/XCB) and lottery reward pools.

Irregular Campaigns
Irregular Campaigns directly update all the reward

pools (cash back/miles).

Central Campaigns
Central Campaigns directly update all the reward

pools (cash back/miles/lottery).

DOMAIN OBJECT INSTANCES

Cash Back Pool
A database table as an instance of Reward Pools for

cash back on a basis of card numbers.

Miles Pool
A database table as an instance of Reward Pools for

miles on a basis of customer ID numbers.

Lottery Pool
A database table as an instance of Reward Pools for

lottery on a basis of card numbers.

The specifications for the rest of the domain objects, i.e. Target Lists, Campaign Counters,

Ledger Records, Transaction Logs and Reports, are given in Appendix A.

7.2.3. Modeling Domain Services of LCMS

All domain services of LCMS are documented and related dependency and traceability

matrices for each domain service are prepared according to the principles of the test oriented

service and object model. The specifications for Reward Pool Update are presented in this

section and the specifications for the remaining domain services can be seen in Appendix B.

66

Table 7.2 shows the domain service description for Reward Pool Update including the

primary definitions about the functionality of the service. Other additional information

including request and response parameters of the service and related internal and external

variation points with their origination sources are also explained in the description document.

Table 7.2: Domain service description for Reward Pool Update

CORE ASSET NAME CORE ASSET TYPE

rewardPoolUpdate Domain Service

CORE ASSET DESCRIPTION

Updates the reward pool balance with the reward calculated by a campaign mechanism.

REQUEST PARAMATERS

poolID Unique identification number of the reward pool

poolType Type of the pool to be updated

cardNo Credit Card number performing the transaction

customerID Customer ID of the cardholder performing the transaction

bankCode Bank code of the credit card (localBank or otherBank)

RESPONSE PARAMATERS

responseCode 1:Pool update successful, 0:Pool update failure

reasonCode Reason code if pool update failed

finalPoolBalance Final balance of the pool after update

VARIATION POINTS AND VARIANTS (External Variabilities)

Variation Point Source Variants

poolType Campaign Definition CCB

 PCB

 XCB

 Miles

 Lottery

PRODUCTS USING THE CORE ASSET

Products Constraints (Internal Variabilities)

Cash Back Campaigns
Cash Back Campaigns can update CCB/XCB/PCB pool balance

depending on the campaign definition.

RFM Campaigns
RFM Campaigns can update CCB/XCB/PCB pool balance

depending on the campaign definition.

Installment Campaigns Installment Campaigns do not update any pool balance.

Irregular Campaigns
Irregular Campaigns can update CCB/XCB/PCB/Miles pool

balance depending on the campaign definition.

Central Campaigns
Central Campaigns can update CCB/XCB/PCB/Miles pool

balance depending on the campaign definition.

Discount Campaigns Discount Campaigns do not update any pool balance.

67

The most important key point in the test orientation of the proposed model is the sub-service

decomposition of domain services. Each sub-service can be considered as a single unit of

work which has a special role in the functionality of the domain service. The decomposition

of the services into indivisible functional units provides and ensures the independency that

minimizes the effect of changes. Table 7.3 presents the sub-services which comprise the

domain service Reward Pool Update.

Table 7.3: Sub-service decomposition for Reward Pool Update

SUB-SERVICE DECOMPOSITION

Sub-Service Name Sub-Service Definition

updatePoolCashBack
Updates the cash back pool balance with the reward calculated

by a campaign mechanism.

updatePoolMiles
Updates the miles pool balance with the reward calculated by a

campaign mechanism.

updatePoolLottery
Updates the Lottery pool balance with the reward calculated by

a campaign mechanism.

The next step for the domain service specification in the model is defining the sub-service

dependencies on variants. Each sub-service should be marked if it is used or not when a

specific variant is bound. Table 7.4 shows the sub-service dependencies on variants for

domain service Reward Pool Update.

Table 7.4: Sub-service dependencies for Reward Pool Update

SUB-SERVICE DEPENDENCIES ON VARIANTS

SUB-SERVICES
VARIATION POINT: poolType

CCB PCB XCB Miles Lottery

updatePoolCashBack √ √ √ X X

updatePoolMiles X X X √ X

updatePoolLottery X X X X √

After the relations of sub-services and variation points, the next matrix presents if variants

are bound by the products. The product bindings on variants of the domain service Reward

Pool Update is presented in Table 7.5.

Table 7.5: Product bindings for Reward Pool Update

PRODUCT BINDINGS ON VARIANTS

PRODUCTS
VARIATION POINT: poolType

CCB PCB XCB Miles Lottery

Cash Back Campaigns √ √ √ X X

RFM Campaigns √ √ √ X √

Installment Campaigns X X X X X

Irregular Campaigns √ √ √ √ X

Central Campaigns √ √ √ √ √

Discount Campaigns X X X X X

68

The final step in modeling a domain service is the construction of the “product and sub-

service traceability matrix” based on variants. This matrix is the final mark-up of the

relations and dependencies between products, sub-services, and variants, which will be the

key for defining the test scope after changes in the domain services. Table 7.6 shows the

functional variability matrix for products on variants for domain service Reward Pool

Update.

Table 7.6: Traceability matrix for Reward Pool Update

VARIANT BASED PRODUCT/SUB-SERVICE TRACEABILITY

VARIANTS SUB-SERVICES

PRODUCTS

C
a

sh
 B

a
ck

C
a

m
p

a
ig

n
s

R
F

M

C
a

m
p

a
ig

n
s

In
st

a
ll

m
e
n

t

C
a

m
p

a
ig

n
s

Ir
r
eg

u
la

r

C
a

m
p

a
ig

n
s

C
en

tr
a

l

C
a

m
p

a
ig

n
s

D
is

co
u

n
t

C
a

m
p

a
ig

n
s

V
A

R
IA

T
IO

N
 P

O
IN

T
:

p

o
o

lT
y

p
e
 C

C
B

 updatePoolCashBack √ √ N/A √ √ N/A

updatePoolMiles X X N/A X X N/A

updatePoolLottery X X N/A X X N/A

P
C

B
 updatePoolCashBack √ √ N/A √ √ N/A

updatePoolMiles X X N/A X X N/A

updatePoolLottery X X N/A X X N/A

X
C

B
 updatePoolCashBack √ √ N/A √ √ N/A

updatePoolMiles X X N/A X X N/A

updatePoolLottery X X N/A X X N/A

M
il

es
 updatePoolCashBack X X N/A X X N/A

updatePoolMiles X X N/A √ √ N/A

updatePoolLottery X X N/A X X N/A

L
o

tt
er

y

updatePoolCashBack X X N/A X X N/A

updatePoolMiles X X N/A X X N/A

updatePoolLottery X √ N/A X √ N/A

7.3. Defining Test Scope after Extensions to LCM

The adaptation of the test oriented service and object model on LCMS is presented in

previous sections and appendices. On this final version of the model, the last extensions to

LCMS are denoted by a different color (blue) for distinction. These extensions include both

building a new product in application engineering and changing the core assets in domain

engineering. The case study on the implementation of the proposed model to LCMS is

finalized with defining the regression test scope using the proposed model after these

extensions are adapted.

69

7.3.1. Latest Requirements

LCMS was comprised of initially developed Cash Back, RFM, Installment, Irregular and

Central Campaigns. The new requirements after these five campaigns were originated by the

decision of a new card brand. A new campaign type was supposed to be released in parallel

with issuing the new brand from scratch. Besides a new campaign, another expectation with

the new card brand was extending the existing campaigns with a new reward type. As an

addition to the existing reward pools like cash back and miles, the lottery pool has arisen in

the scope of the project as a new reward type. In order to keep the goals for time to market,

the deadline for the release of the new card brand was very strict as expected.

7.3.2. Building a New Application Product

The expected new product of LCMS was Discount Campaigns. With a special randomizing

algorithm, it was supposed to serve the customers free transactions. The design and

development of the new campaign was not a time consuming process with the benefits of

software product line engineering methodology. The structure of the new campaign was

directly applicable to the product flow model of the existing campaigns. By reconfiguring

core assets in terms of binding relevant variants and adding the appropriate sub-services to

domain services, the campaign was easily constructed. Discount Campaigns used all the

domain services except Reward Pool Update, since the reward of the campaign was just a

randomly decided free transaction, so there was no need for a pool for that instant reward.

In addition to combination and reconfiguration of core assets, the product-specific

functionality was also created as a new campaign mechanism for Discount Campaigns. The

application-specific test artifacts like test plans, test cases and test scripts were generated

which have traceability on the analysis and design assets. Some test scripts coming from

previous campaigns were reused for unit and integration tests of the new product. The

reusability in test artifacts reduced the time and effort spent for application tests for Discount

Campaigns as for every new product in a software product line.

7.3.3. Extending Core Assets

The extensions to core assets were done due to two reasons: One is for the new application

product Discount Campaigns, and the other is for the Lottery Pool as a new reward type for

already existing RFM and Central Campaigns.

70

7.3.3.1. Changes in Domain Objects

Reward Pools: There is no change in Reward Pools for Discount Campaigns. However, a

new instance is created as Lottery Pool for the new reward type added to existing campaigns.

This new instance requires changes in closely related domain service rewardPoolUpdate and

affects the products (RFM and Central Campaigns) that will use the lottery pool.

Target Lists: There is no change in Target Lists for either Discount Campaigns or Lottery

Pool. The new Discount Campaigns will reuse this domain object as it is.

Campaign Counters: There is no change in Campaign Counters for Lottery Pool. But the

Discount Campaigns require a new instance called Discount Counters. This new instance

will change the domain service campaignCounterUpdate. But this change will not affect any

of the existing products since Discount Counters will be a product-specific instance which

will only be used by Discount Campaigns.

Ledger Records: There is no change in Ledger Records due to new requirements. Discount

Campaigns will create ledger records, but this does not require any changes in existing

domain services or products since the ledger records are handled by parameterization defined

for each campaign.

Transaction Logs: There is no change in Transaction Logs due to new requirements.

Discount Campaigns will create log records, but this does not require any changes in existing

domain services or products since the log records need not to be changed.

Reports: New product-specific reports will be created for Discount Campaigns without

affecting the existing ones.

7.3.3.2. Changes in Domain Services

Campaign Entrance Control: There is no change due to the new requirements. Discount

Campaigns will use this domain service as it is.

Target Group Decision: There is no change due to the new requirements. Discount

Campaigns will use this domain service as it is.

71

Reward Pool Update: A new sub-service will be added to this domain service in order to

update the Lottery Pool. Also a new variant, lottery, is defined for the variation point pool

type. The new pool type will be applicable for RFM and Central Campaigns.

Campaign Counter Update: A new sub-service will be added to this domain service in order

to serve the Discount Campaigns. In addition, new variants are defined for variation points

counter level and counter type. The new campaign requires a campaign level counter and

discount as a new counter type. It is clear that all these changes in this domain service are

specific to Discount Campaigns and has no effect on the existing products.

Ledger Record Creation: A new sub-service will be added to this domain service in order to

create ledger records for the Discount Campaigns.

Transaction Log Creation: There is no change due to the new requirements. Discount

Campaigns will use this domain service as it is.

7.3.4. Test Scope after Extensions

The first clues for the regression test scope are arising by the changes in domain object

specifications in the model. Reward Pools, Campaign Counters and Reports are the domain

objects which seem to be changed due to the new requirements. However, they are abstract

objects and they are not sufficient for defining the test scope.

Changes in domain services are more determinative elements of the model for defining the

regression test scope after extensions. The traceability matrices for domain services will

strongly help in defining the test scope for regression tests.

There is no change in domain services Campaign Entrance Control, Target Group Decision

and Transaction Log Creation due to the new requirements. Only the integration of these

services for the new product will have to be verified and validated during the application-

specific system tests for Discount Campaigns.

The changes in Ledger Record Creation and Campaign Counter Update are also specific to

Discount Campaigns. Since the new sub-services are specific to Discount Campaigns and

they will not be used by any other product, existing products need not to be tested against

these extensions for the new campaign.

72

Regarding the changes in Reward Pool Update shown in Table 7.6, it is clear that RFM and

Central Campaigns with new lottery reward pool will be in regression test scope. However,

this new variant and sub-service has no relation with other products.

With the help of sub-service decomposition of domain services and traceability matrices,

which are the primary facilities of the proposed test oriented service and object model, it can

be stated that the changes in core assets for Discount Campaigns do not affect any other

existing products and no regression test is needed. Only the changes for the new reward pool,

lottery, requires testing of existing products, but this testing is also limited to not all but only

affected products.

As a result of the case study, in addition to the application-specific tests for Discount

Campaigns, the regression test scope after extensions is proven to be limited to only RFM

and Central Campaigns with lottery reward pool. This is a considerable improvement in

efficiency for the whole lifecycle of product development in LCMS, since all the products

are not in fact affected from a change in a commonly used domain service.

73

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1. Conclusions

This study proposed a test oriented service and object model for software product lines, and

implemented this model on the selected scope of products in LCMS for determining the

regression test scope after extensions to both application and domain engineering artifacts.

Formal modeling of core assets and products explicitly demonstrates which products should

be in the regression test scope since they are affected from the changes in the core assets.

The model is based on the principle of sub-service decomposition of domain services, which

relates the variants and products to independent units of the domain services. When the

changes in domain services are reduced to sub-services, it can be proved that an existing

product is not affected from a change in the domain service if it is not directly dependent to

that specific sub-service for any variant.

The benefits of this “Test Oriented Service and Object Model” is obviously realized when

the extensions are adapted to the traceability matrices as demonstrated in the case study.

During the incremental product generation in the previous phases of LCMS, development

time and effort for new campaigns were decreasing as expected due to the software product

line engineering approach. On the other hand, since the product line platform was evolving,

many changes were required in the core assets which resulted in testing nearly all existing

products again and again. However, after the implementation of the test oriented service and

object model, the reduced regression test scope was observed and the previous trend of

increasing testing efforts was reverted. Table 8.1 presents the efficiency gain in development

and testing products of LCMS by the utilization of the model, based on the following

assumptions and measurable metrics:

74

Product Size: The approximate size of a campaign in terms of kilo lines of code (KLOC).

Time for Development: The time spent for a campaign development until the beginning of

user acceptance and regression tests.

Efficiency in Development: Calculated by product size over time for development.

Time for Testing: The time spent for user acceptance and regression tests for a campaign.

Efficiency in Testing: Calculated by product size over time for testing.

Time to Market: The total time spent for the market release of a campaign.

Efficiency in Time to Market: Calculated by product size over time to market.

In the efficiency calculation, the time spent for the development and testing activities can be

used as a single metric for the total cost of developing and testing a product since the number

of people in the team remained constant for every product. The efficiency in development is

increasing by every campaign as expected in a software product line approach. However,

until Discount Campaigns, the efficiency in testing and efficiency in time to market is almost

the same for the five initial campaigns. After the adaptation of the model, the effort for user

acceptance and regression tests is significantly reduced for Discount Campaigns and the

efficiency in testing is considerably improved, indicating the overall success of the product

line approach which can be seen in the increase of efficiency in time to market.

Table 8.1: Efficiency throughput for the test oriented service and object model

Before modeling

LCMS

After modeling

LCMS

C
a

sh
 B

a
ck

C
a

m
p

a
ig

n
s

R
F

M

C
a

m
p

a
ig

n
s

In
st

a
ll

m
e
n

t

C
a

m
p

a
ig

n
s

Ir
r
eg

u
la

r

C
a

m
p

a
ig

n
s

C
en

tr
a

l

C
a

m
p

a
ig

n
s

D
is

co
u

n
t

C
a

m
p

a
ig

n
s

Product Size

(~KLOC)
3,00 5,00 2,00 1,00 5,00 4,00

Time for Development

(months)
2,50 6,00 1,50 0,80 3,00 2,00

Efficiency in Development

(complexity/time)
1,20 0,83 1,33 1,25 1,67 2,00

Time for Testing

(months)
2,00 4,00 3,00 1,00 5,00 1,50

Efficiency in Testing

(complexity/time)
1,50 1,25 0,67 1,00 1,00 2,67

Time to Market

(months)
4,50 10,00 4,50 1,80 8,00 3,50

Efficiency in Time To Market

(complexity/time)
0,67 0,50 0,44 0,56 0,63 1,14

75

Figure 8.1 helps for further clearance on the efficiency gain after the implementation of the

model. The model was applied to LCMS right before the development of Discount

Campaigns. Before using the model, if a domain service was changed due to a new

requirement or a new product, all the previous products using that domain service were in

the scope of the regression test. Until the adaptation of the model, although the efficiency in

development was increasing, the efficiency in testing was in a decreasing. This resulted in

only a slight increase in time to market. However, after the adaptation of the model with

Discount Campaigns, there was a considerable increase in the efficiency of testing process

which also resulted in reduced time to market.

Figure 8.1: Efficiency graph for the test oriented service and object model

Adaptation of the Model

76

8.2. Future Work

The contribution with the test oriented service and object model for software product lines in

this thesis covered both application and domain engineering. However, the concentration

was mainly on the core assets of the domain engineering with sub-service decomposition and

traceability matrices. The product flow model proposed for application engineering

environment was only a complementary reinforcement for reflecting the common structure

of the products and it was practiced superficially. Further research and improvement on the

product flow model, especially for the full integration and representation of variability, can

be a subject for future work.

The adaptation of the proposed model on a sample software product line was performed

manually as a case study in this thesis. Designing and implementing a modeling tool, which

will support the graphical notation for the product flow model, the documentation of core

asset specifications and the traceability matrices with a graphical user interface may utilize

the adaptation and maintenance of the model.

Finally, the test oriented service and object model can be enriched with integration and

management of reusable test artifacts where possible, for further efficiency improvement in

testing software product lines.

77

REFERENCES

[1] Paul Clements, Linda Northrop. “Software Product Lines: Practices and Patterns”.

Addison-Wesley Professional. Boston. 2001.

[2] Klaus Pohl, Günter Böckle, Frank J. van der Linden. "Software Product Line

Engineering: Foundations, Principles and Techniques". Springer-Verlag New York,

Secaucus, NJ. September 2005.

[3] Frank J. van der Linden, Klaus Schmid, Eelco Rommes. "Software Product Lines in

Action: The Best Industrial Practice in Product Line Engineering". Springer-Verlag

New York, Secaucus, NJ. July 2007.

[4] Ivar Jacobson, Martin Griss, Patrik Jonsson. "Software Reuse: Architecture, Process

and Organization for Business Success". ACM Press/Addison-Wesley Publishing Co.

1997.

[5] Paul Clements, Linda Northrop. “Software Product Lines”. Presentation, Software

Engineering Institute (SEI), Carnegie Mellon University. 2003.

[6] Charles W.Krueger. “Introduction to the Emerging Practice of Software Product Line

Development”. Methods & Tools, Volume 14, Number 3, pages 3-15. Fall 2006.

[7] Stephen R. Schach, Amir Tomer. “Development/Maintenance/Reuse: Software

Evolution in Product Lines”. First Conference on Software Product Lines: Experience

and Research Directions, pages 437-450, Denver, Colorado, United States. November

2000.

[8] Charles W. Krueger, William A. Hetrick, Joseph G. Moore. “Making an Incremental

Transition to Software Product Line Practice”. Methods & Tools, pages 16-27. Fall

2006.

[9] Jan Bosch. “Organizing for Software Product Lines”. 3rd International Workshop on

Software Architectures for Product Families (IWSAPF-3). March 2000.

[10] Jan Bosch. “Maturity and Evolution in Software Product Lines: Approaches, Artifacts

and Organization”. Second Conference Software Product Line Conference (SPLC2),

pp. 257-271. August 2002.

[11] James Coplien, Daniel Hoffman, David Weiss. “Commonality and Variability in

Software Engineering“. IEEE Software, pages 37-45. November/December 1999.

78

[12] Felix Bachmann, Len Bass. "Managing Variability in Software Architectures". 2001

Symposium on Software Reusability: Putting Software Reuse in Context, pages 126-

132, Toronto, Ontario, Canada. May 2001.

[13] Jilles Van Gurp, Jan Bosch, Mikael Svahnberg. "On the Notion of Variability in

Software Product Lines". Working IEEE/IFIP Conference on Software Architecture

(WICSA'01), page 45. August 28-31, 2001.

[14] Michalis Anastasopoulos, Cristina Gacek. “Implementing Product Line Variabilities”.

SIGSOFT Software Engineering Notes, Volume 26, Issue 3, pages 109-117. May

2001.

[15] Jan Bosch, Gert Florijn, Danny Greefhorst, Juha Kuusela, Henk Obbink, Klaus Pohl.

“Variability Issues in Software Product Lines”. 4th International Workshop on

Product Family Engineering (PFE-4). October 2001.

[16] Mikael Svahnberg, Jan Bosch. "Issues Concerning Variability in Software Product

Lines". International Workshop on Software Architectures for Product Families, pages

146-157. March 15-17, 2000.

[17] Jilles van Gurp, Jan Bosch, Mikael Svahnberg. "Managing Variability in Software

Product Lines". Landelijk Architectuur Congres, Amsterdam. 2000.

[18] Henry Muccini, Andre van der Hoek. “Towards Testing Product Line Architectures”.

Electronic Notes in Theoretical Computer Science, Volume 82, Issue 6, Pages 99-109.

September 2003.

[19] Hui Zeng, Wendy Zhang, David Rine. "Analysis of Testing Effort by Using Core

Assets in Software Product Line Testing". International Workshop on Software

Product Line Testing (SPLiT 2004). 2004.

[20] John D. McGregor, Prakash Sodhani, Sai Madhavapeddi. "Testing Variability in a

Software Product Line". International Workshop on Software Product Line Testing

(SPLiT 2004). 2004.

[21] Erika Mir Olimpiew, Hassan Gomaa. "Reusable System Tests for Applications

Derived from Software Product Lines". International Workshop on Software Product

Line Testing (SPLiT 2005). 2005.

[22] Peter Knauber, William Hetrick. "Product Line Testing and Product Line

Development - Variations on a Common Theme". International Workshop on

Software Product Line Testing (SPLiT 2005). 2005.

[23] Leire Etxeberria, Goiuria Sagardui, Lorea Belategi. “Quality Aware Software Product

Line Engineering”. J. Braz. Comp. Soc., vol.14, no.1, pages 57-69. ISSN 0104-6500.

March 2008.

[24] Jonas Hörnstein, Håkan Edler. "Configuration and Testing of Components in Software

Product Lines". Second Conference on Software Engineering Research and Practise in

79

Sweden (SERPS´02). Blekinge Institute of Technology, Karlskrona, Sweden. October

24-25, 2002.

[25] John D. McGregor. "Testing a Software Product Line". Technical Report, CMU/SEI-

2001-TR-022. December 2001.

[26] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, Yves Bontemps.

"Generic Semantics of Feature Diagrams". Computer Networks 51, pages 456-479.

2007.

80

APPENDIX A

DOMAIN OBJECT SPECIFICATIONS OF LCMS

A.1. Target Lists

Table A.1: Domain object specifications for Target Lists

CORE ASSET NAME CORE ASSET TYPE

Target Lists Domain Object

CORE ASSET DESCRIPTION

Database objects that hold static or dynamic lists of cards or customers which are included in or

excluded from specific campaigns or services.

RELATED DOMAIN SERVICES

targetGroupDecision

RELATED PRODUCTS

Cash Back Campaigns
A list of customers can be included or excluded from the

target group of Cash Back Campaigns.

RFM Campaigns
A list of customers can be included or excluded from the

target group of RFM Campaigns.

Installment Campaigns
A list of customers can be included or excluded from the

target group of Installment Campaigns.

Central Campaigns
A list of customers can be included or excluded from the

target group of Central Campaigns.

Discount Campaigns
A list of customers can be included or excluded from the

target group of Discount Campaigns.

DOMAIN OBJECT INSTANCES

Include Lists

A database table as an instance of Target Lists for

including a set of cards/customers in the target group of a

campaign.

Exclude Lists

A database table as an instance of Target Lists for

excluding a set of cards/customers from the target group

of a campaign.

81

A.2. Campaign Counters

Table A.2: Domain object specifications for Campaign Counters

CORE ASSET NAME CORE ASSET TYPE

Campaign Counters Domain Object

CORE ASSET DESCRIPTION

Database objects that hold the count or cumulative amount of transactions performed for specific

campaigns.

RELATED DOMAIN SERVICES

campaignCounterUpdate

RELATED PRODUCTS

RFM Campaigns

The frequency of visits, the number of purchased goods or

the cumulative monetary amount is stored in counters of

RFM Campaigns.

Central Campaigns
Cumulative number or monetary amount of transactions

are counted and stored in counters of Central Campaigns.

Discount Campaigns
Number of discounts per a specific period is counted and

stored in counters of Discount Campaigns.

DOMAIN OBJECT INSTANCES

RFM Counters
A database table as an instance of Campaign Counters for

RFM Campaigns.

Central Counters
A database table as an instance of Campaign Counters for

Central Campaigns.

Discount Counters
A database table as an instance of Campaign Counters

for Discount Campaigns.

A.3. Ledger Records

Table A.3: Domain object specifications for Ledger Records

CORE ASSET NAME CORE ASSET TYPE

Ledger Records Domain Object

CORE ASSET DESCRIPTION

Database objects that hold the monetary records created by campaigns or services for general

ledger.

RELATED DOMAIN SERVICES

ledgerRecordCreation

RELATED PRODUCTS

Cash Back Campaigns
Cash Back Campaigns create ledger records for monetary

operations on cash back pool.

RFM Campaigns
RFM Campaigns create ledger records for monetary

operations on cash back pool.

Irregular Campaigns
Irregular Campaigns create ledger records for monetary

operations on cash back and miles pool.

Central Campaigns
Central Campaigns create ledger records for monetary

operations on cash back and miles pool.

Discount Campaigns
Discount Campaigns create ledger records for monetary

operations on discounts.

DOMAIN OBJECT INSTANCES

Ledger Record Table
A database table as an instance of Ledger Records for

monetary operations.

82

A.4. Transaction Logs

Table A.4: Domain object specifications for Transaction Logs

CORE ASSET NAME CORE ASSET TYPE

Transaction Logs Domain Object

CORE ASSET DESCRIPTION

Database objects that hold the detailed information records for transactions performing insert or

update operations on the database.

RELATED DOMAIN SERVICES

transactionLogCreation

RELATED PRODUCTS

Cash Back Campaigns
Cash Back Campaigns create transaction logs on reward

calculation.

RFM Campaigns
RFM Campaigns create transaction logs on reward

calculation and counter updates.

Installment Campaigns
Installment Campaigns create transaction logs on reward

calculation.

Irregular Campaigns
Irregular Campaigns create transaction logs on reward

calculation.

Central Campaigns
Central Campaigns create transaction logs on reward

calculation and counter updates.

Discount Campaigns
Discount Campaigns create transaction logs on discount

calculation and counter updates.

DOMAIN OBJECT INSTANCES

Daily Transaction Logs
A database table as an instance of Transaction Logs for

daily storage.

Transaction Log History
A database table as an instance of Transaction Logs for

historical storage.

83

A.5. Reports

Table A.5: Domain object specifications for Reports

CORE ASSET NAME CORE ASSET TYPE

Reports Domain Object

CORE ASSET DESCRIPTION

Printable objects that contain both detailed and summarized information about transactions which

are produced automatically or on demand for audit or monetary agreement purposes.

RELATED DOMAIN SERVICES

transactionLogCreation

ledgerRecordCreation

RELATED PRODUCTS

Cash Back Campaigns
Cash Back Campaigns are included in the reports in terms

of transaction logs and ledger records.

RFM Campaigns
RFM Campaigns are included in the reports in terms of

transaction logs and ledger records.

Installment Campaigns
Installment Campaigns are included in the reports in terms

of transaction logs.

Irregular Campaigns
Irregular Campaigns are included in the reports in terms

of transaction logs and ledger records.

Central Campaigns
Central Campaigns are included in the reports in terms of

transaction logs and ledger records.

Discount Campaigns
Discount Campaigns are included in the reports in terms

of transaction logs and ledger records.

DOMAIN OBJECT INSTANCES

Daily Monetary Agreement for Cash

Back

A printable report for monetary agreement of cash back

pool operations produced from ledger records every day.

Daily Monetary Agreement for Miles
A printable report for monetary agreement of miles pool

operations produced from ledger records every day.

Monthly Earning/Usage Report for

Cash Back

A printable report for earnings and usage of cash back

rewards produced from transaction logs every month.

Monthly Earning/Usage Report for

Miles

A printable report for earnings and usage of miles rewards

produced from transaction logs every month.

Daily Monetary Agreement for

Discount

A printable report for monetary agreement of discount

operations produced from ledger records every day.

Daily Discount Transaction Report
A printable report for discounts produced from

transaction logs every day.

84

APPENDIX B

DOMAIN SERVICE SPECIFICATIONS OF LCMS

B.1. Campaign Entrance Control

Table B.1: Domain service description for Campaign Entrance Control

CORE ASSET NAME CORE ASSET TYPE

campaignEntranceControl Domain Service

CORE ASSET DESCRIPTION

Control if the transaction will run a specific campaign in terms of:

 * Lower and upper transaction amount limits of the campaign

 * Start and End dates of the campaign

 * The days of week on which the campaign is supposed to be active

REQUEST PARAMATERS

campaignID Unique identification number of the campaign

campaignType
1:Cash Back 2:RFM 3:Installment 4:Irregular 5:Central

6:Discount

transactionAmount
Gross amount of the transaction including cash back

withdrawal

provisionAmount
Plain amount of the transaction excluding cash back

withdrawal

transactionDateTime The date and time on which the transaction is performed

bankCode Bank code of the credit card (localBank or otherBank)

RESPONSE PARAMATERS

responseCode 1:Included in the campaign, 0:Excluded from the campaign

reasonCode Reason code if excluded from the campaign

VARIATION POINTS AND VARIANTS (External Variabilities)

Variation Point Source Variants

amountControlType Campaign Definition transactionAmount

 provisionAmount

dateControlType Campaign Definition dateControl

 timeControl

dayOfWeekControl Campaign Definition allDaysOfWeek

 someDaysOfWeek

85

Table B.1 (continued): Domain service description for Campaign Entrance Control

PRODUCTS USING THE CORE ASSET

Products Constraints (Internal Variabilities)

Cash Back Campaigns
Campaign entrance controls are done based on transaction amount,

begin - end dates and campaign always runs on all days of week.

RFM Campaigns

Campaign entrance controls are done based on either transaction or

provision amount, begin - end dates and campaign always runs on all

days of week.

Installment Campaigns

Campaign entrance controls are done based on either transaction or

provision amount, begin - end dates and campaign might run on some

days of week.

Irregular Campaigns
There is no amount or date control for irregular campaigns and they

can run on all days of week.

Central Campaigns

Campaign entrance controls are done based on either transaction or

provision amount, begin - end times and campaign might run on some

days of week.

Discount Campaigns

Campaign entrance controls are done based on either transaction or

provision amount, begin - end dates and campaign might run on

some days of week.

Table B.2: Sub-service decomposition for Campaign Entrance Control

 SUB-SERVICE DECOMPOSITION

Sub-Service Name Sub-Service Definition

checkTransactionAmount
Check the transaction amount whether it is in between lower

and upper limits of the campaign.

checkProvisionAmount
Check the provision amount whether it is in between lower and

upper limits of the campaign.

checkStartEndDate
Check the transaction date whether it is in between start and

end date of the campaign.

checkStartEndTime
Check the transaction time whether it is in between start and

end time of the campaign.

checkDaysOfWeek
Check if the transaction day is one of the days of week on

which the campaign is supposed to be run.

86

Table B.3: Sub-service dependencies for Campaign Entrance Control

SUB-SERVICE DEPENDENCIES ON VARIANTS

SUB-SERVICES
VARIATION POINT: amountControlType

transactionAmount provisionAmount

checkTransactionAmount √ X

checkProvisionAmount X √

checkStartEndDate N/A N/A

checkStartEndTime N/A N/A

checkDaysOfWeek N/A N/A

SUB-SERVICES
VARIATION POINT: dateControlType

dateControl timeControl

checkTransactionAmount N/A N/A

checkProvisionAmount N/A N/A

checkStartEndDate √ X

checkStartEndTime X √

checkDaysOfWeek N/A N/A

SUB-SERVICES
VARIATION POINT: dayOfWeekControl

allDaysOfWeek someDaysOfWeek

checkTransactionAmount N/A N/A

checkProvisionAmount N/A N/A

checkStartEndDate N/A N/A

checkStartEndTime N/A N/A

checkDaysOfWeek √ X

Table B.4: Product bindings for Campaign Entrance Control

PRODUCT BINDINGS ON VARIANTS

PRODUCTS
VARIATION POINT: amountControlType

transactionAmount provisionAmount

Cash Back Campaigns √ X

RFM Campaigns √ √

Installment Campaigns √ √

Irregular Campaigns X X

Central Campaigns √ √

Discount Campaigns √ √

PRODUCTS
VARIATION POINT: dateControlType

dateControl timeControl

Cash Back Campaigns √ X

RFM Campaigns √ X

Installment Campaigns √ X

Irregular Campaigns X X

Central Campaigns X √

Discount Campaigns √ X

PRODUCTS
VARIATION POINT: dayOfWeekControl

allDaysOfWeek someDaysOfWeek

Cash Back Campaigns √ X

RFM Campaigns √ X

Installment Campaigns X √

Irregular Campaigns √ X

Central Campaigns X √

Discount Campaigns X √

87

Table B.5: Traceability matrix for Campaign Entrance Control

VARIANT BASED PRODUCT/SUB-SERVICE TRACEABILITY

VARIANTS SUB-SERVICES

PRODUCTS

C
a

sh
 B

a
ck

C
a

m
p

a
ig

n
s

R
F

M

C
a

m
p

a
ig

n
s

In
st

a
ll

m
e
n

t

C
a

m
p

a
ig

n
s

Ir
r
eg

u
la

r

C
a

m
p

a
ig

n
s

C
en

tr
a

l

C
a

m
p

a
ig

n
s

D
is

co
u

n
t

C
a

m
p

a
ig

n
s

V
A

R
IA

T
IO

N
 P

O
IN

T
:

a
m

o
u

n
tC

o
n

tr
o

lT
y

p
e

tr
a

n
sa

ct
io

n
A

m
o
u

n
t

checkTransactionAmount √ √ √ X √ √

checkProvisionAmount N/A N/A N/A N/A N/A N/A

checkStartEndDate N/A N/A N/A N/A N/A N/A

checkStartEndTime N/A N/A N/A N/A N/A N/A

checkDaysOfWeek N/A N/A N/A N/A N/A N/A

p
ro

v
is

io
n

A
m

o
u

n
t checkTransactionAmount N/A N/A N/A N/A N/A N/A

checkProvisionAmount X √ √ X √ √

checkStartEndDate N/A N/A N/A N/A N/A N/A

checkStartEndTime N/A N/A N/A N/A N/A N/A

checkDaysOfWeek N/A N/A N/A N/A N/A N/A

V
A

R
IA

T
IO

N
 P

O
IN

T
:

d
a

te
C

o
n

tr
o

lT
y

p
e

d
a

te
C

o
n

tr
o
l

checkTransactionAmount N/A N/A N/A N/A N/A N/A

checkProvisionAmount N/A N/A N/A N/A N/A N/A

checkStartEndDate √ √ √ X X √

checkStartEndTime N/A N/A N/A N/A N/A N/A

checkDaysOfWeek N/A N/A N/A N/A N/A N/A

ti
m

eC
o

n
tr

o
l

checkTransactionAmount N/A N/A N/A N/A N/A N/A

checkProvisionAmount N/A N/A N/A N/A N/A N/A

checkStartEndDate N/A N/A N/A N/A N/A N/A

checkStartEndTime X X X X √ X

checkDaysOfWeek N/A N/A N/A N/A N/A N/A

V
A

R
IA

T
IO

N
 P

O
IN

T
:

d
a

y
O

fW
ee

k
C

o
n

tr
o

l

a
ll

D
a
y

sO
fW

ee
k

 checkTransactionAmount N/A N/A N/A N/A N/A N/A

checkProvisionAmount N/A N/A N/A N/A N/A N/A

checkStartEndDate N/A N/A N/A N/A N/A N/A

checkStartEndTime N/A N/A N/A N/A N/A N/A

checkDaysOfWeek N/A N/A N/A N/A N/A N/A

so
m

eD
a

y
sO

fW
ee

k

checkTransactionAmount N/A N/A N/A N/A N/A N/A

checkProvisionAmount N/A N/A N/A N/A N/A N/A

checkStartEndDate N/A N/A N/A N/A N/A N/A

checkStartEndTime N/A N/A N/A N/A N/A N/A

checkDaysOfWeek X X √ X √ √

88

B.2. Target Group Decision

Table B.6: Domain service description for Target Group Decision

CORE ASSET NAME CORE ASSET TYPE

targetGroupDecision Domain Service

CORE ASSET DESCRIPTION

Decide whether the cardholder making the transaction is in the target group of the campaign and

return the reward multiplier regarding following parameters:

 * Customer Segment

 * Credit Card Segment

 * Credit Card Logo

 * Other Bank Card Logo

 * Transaction Function ID

 * Target List Definition

 * Date of Member Since

 * Card Ownership (Primary/Additional)

REQUEST PARAMATERS

campaignID Unique identification number of the campaign

campaignType
1:Cash Back 2:RFM 3:Installment 4:Irregular 5:Central

6:Discount

cardNo Credit Card number performing the transaction

customerID Customer ID of the cardholder performing the transaction

bankCode Bank code of the credit card (localBank or otherBank)

RESPONSE PARAMATERS

responseCode
1:Included in the target group,

0:Excluded from the target group

reasonCode reason code if excluded from the target group

rewardMultiplier
calculated regarding customer segment, credit card segment,

credit card logo or other bank's card logo

VARIATION POINTS AND VARIANTS (External Variabilities)

Variation Point Source Variants

bankCode Campaign Execution localBank

 otherBank

PRODUCTS USING THE CORE ASSET

Products Constraints (Internal Variabilities)

Cash Back Campaigns All functionality is operative for both local and other banks.

RFM Campaigns All functionality is operative for both local and other banks.

Installment Campaigns

All functionality is operative for both local and other banks

except checkFunctionID since this is not a business requirement

for Installment Campaigns.

Irregular Campaigns
Just getCustomerInfo and getCardInfo services are relevant for

local bank. Irregular Campaigns are not valid for other banks.

Central Campaigns

All functionality is operative for both local and other banks

except checkFunctionID since this is not a business requirement

for Central Campaigns.

Discount Campaigns

All functionality is operative for local bank except

checkFunctionID since this is not a business requirement for

discount campaigns. Discount campaigns are not valid for

other banks.

89

Table B.7: Sub-service decomposition for Target Group Decision

SUB-SERVICE DECOMPOSITION

Sub-Service Name Sub-Service Definition

getCustomerInfo
Inquire for customer information from Customer

Information File (CIF).

getCardInfo
Inquire for card information from Card Management

System (CMS).

checkCustomerSegment

Check whether customer's segment is included in the

campaign and get "Customer Segment Reward

Multiplier" if included.

checkCreditCardSegment

Check whether credit card's segment is included in

the campaign and get "Credit Card Segment Reward

Multiplier" if included.

checkLocalBankLogo

Check whether credit card's logo type is included in

the campaign and get "Credit Card Logo Reward

Multiplier" if included.

checkOtherBankLogo

Check whether other bank credit card's logo type is

included in the campaign and get "Other Bank

Credit Card Logo Reward Multiplier" if included.

checkFunctionID
Check whether the function ID of the transaction is

included in the campaign.

checkTargetList

Check whether a target list is defined for the

campaign and if defined, check whether the customer

ID or card No is included or excluded.

checkMemberSince
Check whether the membership of the cardholder is

older than the campaign limits.

checkCardOwnership

Check whether the credit card is Primary or

Additional and check if it is included in the

campaign constraints.

Table B.8: Sub-service dependencies for Target Group Decision

SUB-SERVICE DEPENDENCIES ON VARIANTS

SUB-SERVICES
VARIATION POINT: bankCode

localBank otherBank

getCustomerInfo √ X

getCardInfo √ X

checkCustomerSegment √ X

checkCreditCardSegment √ X

checkLocalBankLogo √ X

checkOtherBankLogo X √

checkFunctionID √ √

checkTargetList √ X

checkMemberSince √ X

checkCardOwnership √ X

90

Table B.9: Product bindings for Target Group Decision

PRODUCT BINDINGS ON VARIANTS

PRODUCTS
VARIATION POINT: bankCode

localBank otherBank

Cash Back Campaigns √ √

RFM Campaigns √ √

Installment Campaigns √ √

Irregular Campaigns √ X

Central Campaigns √ √

Discount Campaigns √ X

Table B.10: Traceability matrix for Target Group Decision

VARIANT BASED PRODUCT/SUB-SERVICE TRACEABILITY

VARIANTS SUB-SERVICES

PRODUCTS

C
a

sh
 B

a
ck

C
a

m
p

a
ig

n
s

R
F

M

C
a

m
p

a
ig

n
s

In
st

a
ll

m
e
n

t

C
a

m
p

a
ig

n
s

Ir
r
eg

u
la

r

C
a

m
p

a
ig

n
s

C
en

tr
a

l

C
a

m
p

a
ig

n
s

D
is

co
u

n
t

C
a

m
p

a
ig

n
s

V
A

R
IA

T
IO

N
 P

O
IN

T
:

b

a
n

k
C

o
d

e

lo
ca

lB
a
n

k

getCustomerInfo √ √ √ √ √ √

getCardInfo √ √ √ √ √ √

checkCustomerSegment √ √ √ X √ √

checkCreditCardSegment √ √ √ X √ √

checkLocalBankLogo √ √ √ X √ √

checkOtherBankLogo X X X X X X

checkFunctionID √ √ X X X X

checkTargetList √ √ √ X √ √

checkMemberSince √ √ √ X √ √

checkCardOwnership √ √ √ X √ √

o
th

er
B

a
n

k

getCustomerInfo X X X X X X

getCardInfo X X X X X X

checkCustomerSegment X X X X X X

checkCreditCardSegment X X X X X X

checkLocalBankLogo X X X X X X

checkOtherBankLogo √ √ √ X √ √

checkFunctionID √ √ X X X X

checkTargetList X X X X X X

checkMemberSince X X X X X X

checkCardOwnership X X X X X X

91

B.3. Campaign Counter Update

Table B.11: Domain service description for Campaign Counter Update

CORE ASSET NAME CORE ASSET TYPE

campaignCounterUpdate Domain Service

CORE ASSET DESCRIPTION

Updates the counters of campaigns which need to count the transaction numbers or amount.

REQUEST PARAMATERS

counterType Type of the counter to be updated

counterLevel Level of the counter (card no/customer ID)

cardNo Credit Card number performing the transaction

customerID Customer ID of the cardholder performing the transaction

bankCode Bank code of the credit card (localBank or otherBank)

RESPONSE PARAMATERS

responseCode 1:Counter update successful, 0:Counter update failure

reasonCode Reason code if counter update failed

finalCounterValues Final values of the counter after update

VARIATION POINTS AND VARIANTS (External Variabilities)

Variation Point Source Variants

bankCode Campaign Execution localBank

 otherBank

counterLevel Campaign Definition customerLevel

 cardLevel

 campaignLevel

counterType Campaign Execution RFM_local

 RFM_other

 Central

 Discount

PRODUCTS USING THE CORE ASSET

Products Constraints (Internal Variabilities)

Cash Back Campaigns No counters for Cash Back Campaigns.

RFM Campaigns
RFM Campaigns have separate card level counters for local

and other bank credit cards.

Installment Campaigns No counters for Installment Campaigns.

Irregular Campaigns No counters for Irregular Campaigns.

Central Campaigns

Central Campaigns use the same counter for both local and

other banks. For local bank, the counter level can be either

card or customer. For other banks, the counter level can only

be card.

Discount Campaigns
Discount Campaigns have campaign level counters for only

local bank.

92

Table B.12: Sub-service decomposition for Campaign Counter Update

SUB-SERVICE DECOMPOSITION

Sub-Service Name Sub-Service Definition

updateRFMCounter_local
Update the card level RFM campaign counter for

local bank.

updateRFMCounter_other
Update the card level RFM campaign counter for

other banks.

updateCentralCounter_card
Update the card level Central campaign counter

for both local and other banks.

updateCentralCounter_customer
Update the customer level Central campaign

counter for local bank.

updateDiscountCounter
Update the campaign level Discount campaign

counter for local bank.

Table B.13: Sub-service dependencies for Campaign Counter Update

SUB-SERVICE DEPENDENCIES ON VARIANTS

SUB-SERVICES
VARIATION POINT: bankCode

localBank otherBank

updateRFMCounter_local √ X

updateRFMCounter_other X √

updateCentralCounter_card √ √

updateCentralCounter_customer √ X

updateDiscountCounter √ X

SUB-SERVICES

VARIATION POINT: counterLevel

customer

Level

card

Level
campaign

Level

updateRFMCounter_local X √ X

updateRFMCounter_other X √ X

updateCentralCounter_card X √ X

updateCentralCounter_customer √ X X

updateDiscountCounter X X √

SUB-SERVICES
VARIATION POINT: counterType

RFM_local RFM_other Central Discount

updateRFMCounter_local √ X X X

updateRFMCounter_other X √ X X

updateCentralCounter_card X X √ X

updateCentralCounter_customer X X √ X

updateDiscountCounter X X X √

93

Table B.14: Product bindings for Campaign Counter Update

PRODUCT BINDINGS ON VARIANTS

PRODUCTS
VARIATION POINT: bankCode

localBank otherBank

Cash Back Campaigns X X

RFM Campaigns √ √

Installment Campaigns X X

Irregular Campaigns X X

Central Campaigns √ √

Discount Campaigns √ X

PRODUCTS

VARIATION POINT: counterLevel

customer

Level

card

Level
campaign

Level

Cash Back Campaigns X X X

RFM Campaigns X √ X

Installment Campaigns X X X

Irregular Campaigns X X X

Central Campaigns √ √ X

Discount Campaigns X X √

PRODUCTS
VARIATION POINT: counterType

RFM_local RFM_other Central Discount

Cash Back Campaigns X X X X

RFM Campaigns √ √ X X

Installment Campaigns X X X X

Irregular Campaigns X X X X

Central Campaigns X X √ X

Discount Campaigns X X X √

94

Table B.15: Traceability matrix for Campaign Counter Update

VARIANT BASED PRODUCT/SUB-SERVICE TRACEABILITY

VARIANTS SUB-SERVICES

PRODUCTS

C
a

sh
 B

a
ck

C
a

m
p

a
ig

n
s

R
F

M

C
a

m
p

a
ig

n
s

In
st

a
ll

m
e
n

t

C
a

m
p

a
ig

n
s

Ir
r
eg

u
la

r

C
a

m
p

a
ig

n
s

C
en

tr
a

l

C
a

m
p

a
ig

n
s

D
is

co
u

n
t

C
a

m
p

a
ig

n
s

V
A

R
IA

T
IO

N
 P

O
IN

T
:

b
a

n
k

C
o

d
e

lo
ca

lB
a
n

k
 updateRFMCounter_local X √ X X X X

updateRFMCounter_other X X X X X X

updateCentralCounter_card X X X X √ X

updateCentralCounter_customer X X X X √ X

updateDiscountCounter X X X X X √

o
th

er
B

a
n

k
 updateRFMCounter_local X X X X X X

updateRFMCounter_other X √ X X X X

updateCentralCounter_card X X X X √ X

updateCentralCounter_customer X X X X X X

updateDiscountCounter X X X X X X

V
A

R
IA

T
IO

N
 P

O
IN

T
:

co
u

n
te

r
L

ev
el

cu
st

o
m

er
L

ev
el

updateRFMCounter_local X X X X X X

updateRFMCounter_other X X X X X X

updateCentralCounter_card X X X X X X

updateCentralCounter_customer X X X X √ X

updateDiscountCounter X X X X X X

ca
rd

L
ev

el
 updateRFMCounter_local X √ X X X X

updateRFMCounter_other X √ X X X X

updateCentralCounter_card X X X X √ X

updateCentralCounter_customer X X X X X X

updateDiscountCounter X X X X X X

ca
m

p
a

ig
n

L
ev

el

updateRFMCounter_local X X X X X X

updateRFMCounter_other X X X X X X

updateCentralCounter_card X X X X X X

updateCentralCounter_customer X X X X X X

updateDiscountCounter X X X X X √

V
A

R
IA

T
IO

N
 P

O
IN

T
:

co
u

n
te

r
T

y
p

e

R
F

M
_

lo
ca

l updateRFMCounter_local X √ X X X X

updateRFMCounter_other X X X X X X

updateCentralCounter_card X X X X X X

updateCentralCounter_customer X X X X X X

updateDiscountCounter X X X X X X

R
F

M
_

o
th

er
 updateRFMCounter_local X X X X X X

updateRFMCounter_other X √ X X X X

updateCentralCounter_card X X X X X X

updateCentralCounter_customer X X X X X X

updateDiscountCounter X X X X X X

C
en

tr
a

l

updateRFMCounter_local X X X X X X

updateRFMCounter_other X X X X X X

updateCentralCounter_card X X X X √ X

updateCentralCounter_customer X X X X √ X

updateDiscountCounter X X X X X X

D
is

co
u

n
t

updateRFMCounter_local X X X X X X

updateRFMCounter_other X X X X X X

updateCentralCounter_card X X X X X X

updateCentralCounter_customer X X X X X X

updateDiscountCounter X X X X X √

95

B.4. Ledger Record Creation

Table B.16: Domain service description for Ledger Record Creation

CORE ASSET NAME CORE ASSET TYPE

ledgerRecordCreation Domain Service

CORE ASSET DESCRIPTION

Creates records for general ledger in case of monetary outcomes while running campaigns.

REQUEST PARAMATERS

bankCode Bank code of the credit card (localBank or otherBank)

poolType Type of the pool to be updated

transactionInfo
Transaction information like date, channel, function, provision ID,

etc. required for general ledger

campaignID Unique identification number of the campaign

campaignType 1:Cash Back 2:RFM 3:Installment 4:Irregular 5:Central 6:Discount

ledgerAmount Reward amount in terms of TL for cash back or miles

debitAccountID Account ID in the general ledger for debit amount

creditAccountID Account ID in the general ledger for credit amount

RESPONSE PARAMATERS

responseCode
1:Ledger record creation successful,

0:Ledger record creation failure

reasonCode Reason code if ledger record creation failed

VARIATION POINTS AND VARIANTS (External Variabilities)

Variation Point Source Variants

bankCode Campaign Execution localBank

 otherBank

poolType Campaign Definition CCB

 PCB

 XCB

 Miles

 Lottery

PRODUCTS USING THE CORE ASSET

Products Constraints (Internal Variabilities)

Cash Back Campaigns

Cash Back Campaigns create records for general ledger for the

amount of cash back reward in terms of TL just for local bank. No

ledger records are created for other banks.

RFM Campaigns

RFM Campaigns create records for general ledger for the amount of

cash back reward in terms of TL just for local bank. No ledger

records are created for other banks.

Installment Campaigns No ledger records are created for Installment Campaigns.

Irregular Campaigns

Irregular Campaigns create records for general ledger for the

amount of cash back/miles reward in terms of TL just for local bank.

No ledger records are created for other banks.

Central Campaigns

Central Campaigns create records for general ledger for the amount

of cash back/miles reward in terms of TL just for local bank. No

ledger records are created for other banks.

Discount Campaigns

Discount Campaigns create records for general ledger for the

amount of discount reward in terms of TL just for local bank. No

ledger records are created for other banks.

96

Table B.17: Sub-service decomposition for Ledger Record Creation

SUB-SERVICE DECOMPOSITION

Sub-Service Name Sub-Service Definition

createCashBackLedgerRecord
Create ledger records for monetary outcome of cash

back rewards.

createMilesLedgerRecord
Create ledger records for monetary outcome of miles

rewards.

createDiscountLedgerRecord
Create ledger records for monetary outcome of

discount rewards.

Table B.18: Sub-service dependencies for Ledger Record Creation

SUB-SERVICE DEPENDENCIES ON VARIANTS

SUB-SERVICES
VARIATION POINT: bankCode

localBank otherBank

createCashBackLedgerRecord √ X

createMilesLedgerRecord √ X

createDiscountLedgerRecord √ X

SUB-SERVICES
VARIATION POINT: poolType

CCB PCB XCB Miles Lottery

createCashBackLedgerRecord √ √ √ X X

createMilesLedgerRecord X X X √ X

createDiscountLedgerRecord X X X X X

Table B.19: Product bindings for Ledger Record Creation

PRODUCT BINDINGS ON VARIANTS

PRODUCTS
VARIATION POINT: bankCode

localBank otherBank

Cash Back Campaigns √ X

RFM Campaigns √ X

Installment Campaigns X X

Irregular Campaigns √ X

Central Campaigns √ X

Discount Campaigns √ X

PRODUCTS
VARIATION POINT: poolType

CCB PCB XCB Miles Lottery

Cash Back Campaigns √ √ √ X X

RFM Campaigns √ √ √ X X

Installment Campaigns X X X X X

Irregular Campaigns √ √ √ √ X

Central Campaigns √ √ √ √ X

Discount Campaigns X X X X X

97

Table B.20: Traceability matrix for Ledger Record Creation

VARIANT BASED PRODUCT/SUB-SERVICE TRACEABILITY

VARIANTS SUB-SERVICES

PRODUCTS

C
a

sh
 B

a
ck

C
a

m
p

a
ig

n
s

R
F

M

C
a

m
p

a
ig

n
s

In
st

a
ll

m
e
n

t

C
a

m
p

a
ig

n
s

Ir
r
eg

u
la

r

C
a

m
p

a
ig

n
s

C
en

tr
a

l

C
a

m
p

a
ig

n
s

D
is

co
u

n
t

C
a

m
p

a
ig

n
s

V
A

R
IA

T
IO

N
 P

O
IN

T
:

b
a

n
k

C
o

d
e

lo
ca

lB
a
n

k
 createCashBackLedgerRecord √ √ X √ √ X

createMilesLedgerRecord X X X √ √ X

createDiscountLedgerRecord X X X X X √

o
th

er
B

a
n

k
 createCashBackLedgerRecord X X X X X X

createMilesLedgerRecord X X X X X X

createDiscountLedgerRecord X X X X X X

V
A

R
IA

T
IO

N
 P

O
IN

T
:

p
o

o
lT

y
p

e

C
C

B

createCashBackLedgerRecord √ √ X √ √ X

createMilesLedgerRecord N/A N/A N/A N/A N/A N/A

createDiscountLedgerRecord N/A N/A N/A N/A N/A N/A

P
C

B

createCashBackLedgerRecord √ √ X √ √ X

createMilesLedgerRecord N/A N/A N/A N/A N/A N/A

createDiscountLedgerRecord N/A N/A N/A N/A N/A N/A

X
C

B

createCashBackLedgerRecord √ √ X √ √ X

createMilesLedgerRecord N/A N/A N/A N/A N/A N/A

createDiscountLedgerRecord N/A N/A N/A N/A N/A N/A

M
il

es

createCashBackLedgerRecord N/A N/A N/A N/A N/A N/A

createMilesLedgerRecord X X X √ √ X

createDiscountLedgerRecord N/A N/A N/A N/A N/A N/A

L
o

tt
er

y

createCashBackLedgerRecord N/A N/A N/A N/A N/A N/A

createMilesLedgerRecord N/A N/A N/A N/A N/A N/A

createDiscountLedgerRecord N/A N/A N/A N/A N/A N/A

98

B.5. Transaction Log Creation

Table B.21: Domain service description for Transaction Log Creation

CORE ASSET NAME CORE ASSET TYPE

transactionLogCreation Domain Service

CORE ASSET DESCRIPTION

Creates log records for all transactions which perform an update or insert operation on the

database.

REQUEST PARAMATERS

bankCode Bank code of the credit card (localBank or otherBank)

transactionInfo
Transaction information like date, channel, function, provision ID,

etc required for logging

poolID Unique identification number of the reward pool

poolType Type of the reward pool updated

campaignID Unique identification number of the campaign

campaignType
1:Cash Back 2:RFM 3:Installment 4:Irregular 5:Central

6:Discount

cardNo Credit Card number performing the transaction

customerID Customer ID of the cardholder performing the transaction

transactionAmount Transaction amount in terms of TL

rewardAmount Reward amount in terms of cash back or miles

RESPONSE PARAMATERS

responseCode
1:Transaction log creation successful,

0:Transaction log creation failure

reasonCode Reason code if transaction log creation failed

VARIATION POINTS AND VARIANTS (External Variabilities)

Variation Point Source Variants

bankCode Campaign Execution localBank

 otherBank

PRODUCTS USING THE CORE ASSET

Products Constraints (Internal Variabilities)

Cash Back Campaigns
Transaction logs are created for Cash Back Campaign rewards for

local and other banks.

RFM Campaigns
Transaction logs are created for RFM Campaign rewards for local

and other banks.

Installment Campaigns
Transaction logs are created for Installment Campaign rewards

for local and other banks.

Irregular Campaigns
Transaction logs are created for Irregular Campaign rewards for

local bank only.

Central Campaigns
Transaction logs are created for Central Campaign rewards for

local and other banks.

Discount Campaigns
Transaction logs are created for Discount Campaign rewards for

local bank only.

99

Table B.22: Sub-service decomposition for Transaction Log Creation

SUB-SERVICE DECOMPOSITION

Sub-Service Name Sub-Service Definition

createLogRecord_local
Create log records for transactions by credit cards of

local bank.

createLogRecord_other
Create log records for transactions by credit cards of

other banks.

Table B.23: Sub-service dependencies for Transaction Log Creation

SUB-SERVICE DEPENDENCIES ON VARIANTS

SUB-SERVICES
VARIATION POINT: bankCode

localBank otherBank

createLogRecord_local √ X

createLogRecord_other X √

Table B.24: Product bindings for Transaction Log Creation

PRODUCT BINDINGS ON VARIANTS

PRODUCTS
VARIATION POINT: bankCode

localBank otherBank

Cash Back Campaigns √ √

RFM Campaigns √ √

Installment Campaigns √ √

Irregular Campaigns √ X

Central Campaigns √ √

Discount Campaigns √ X

Table B.25: Traceability matrix for Transaction Log Creation

VARIANT BASED PRODUCT/SUB-SERVICE TRACEABILITY

VARIANTS SUB-SERVICES

PRODUCTS

C
a

sh
 B

a
ck

C
a

m
p

a
ig

n
s

R
F

M

C
a

m
p

a
ig

n
s

In
st

a
ll

m
e
n

t

C
a

m
p

a
ig

n
s

Ir
r
eg

u
la

r

C
a

m
p

a
ig

n
s

C
en

tr
a

l

C
a

m
p

a
ig

n
s

D
is

co
u

n
t

C
a

m
p

a
ig

n
s

V
A

R
IA

T
IO

N
 P

O
IN

T
:

b
a

n
k

C
o

d
e

lo
ca

lB
a
n

k

createLogRecord_local √ √ √ √ √ √

createLogRecord_other X X X X X X

o
th

er
B

a
n

k

createLogRecord_local X X X X X X

createLogRecord_other √ √ √ X √ X

