

A PROCESS MODELING BASED METHOD FOR IDENTIFICATION AND

IMPLEMENTATION OF SOFTWARE DEVELOPMENT TOOL INTEGRATION-

TUPLES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

K. ALPAY ERTÜRKMEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

THE DEPARTMENT OF INFORMATION SYSTEMS

MARCH 2010

Approval of the Graduate School of Informatics

 Prof. Dr. Nazife BAYKAL

 Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of Doctor of

Philosophy.

 Assist. Prof. Dr. Tuğba TAŞKAYA TEMİZEL

 Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in

scope and quality, as a thesis for the degree of Doctor of Philosophy.

 Assoc. Prof. Dr. Onur DEMİRÖRS

 Supervisor

Examining Committee Members

Prof. Dr. Semih BİLGEN (METU, EEE) _____________________

Assoc. Prof. Dr. Onur DEMİRÖRS (METU, II) _____________________

Dr. Kıvanç Dinçer (BILKENT, CS) _____________________

Assist. Prof. Dr. Kayhan İmre (HACETTEPE, BİL) _____________________

Assist. Prof. Dr. Altan Koçyiğit (METU, II) _____________________

iii

I hereby declare that all information in this document has been obtained and presented

in accordance with academic rules and ethical conduct. I also declare that, as required

by these rules and conduct, I have fully cited and referenced all material and results

that are not original to this wok.

 Name, Last name: K. ALPAY ERTÜRKMEN

 Signature :

iv

ABSTRACT

A PROCESS MODELING BASED METHOD FOR IDENTIFICATION AND

IMPLEMENTATION OF SOFTWARE DEVELOPMENT TOOL INTEGRATION-

TUPLES

Ertürkmen, K. Alpay

Ph.D., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Onur Demirörs

March 2010, 223 pages

Software development is highly dependent on the use of tools. These tools support

and automate activities performed in different sub-domains of software development.

However, they don‘t adequately provide or support integration facilities, and act as

―islands of automation‖. This restricts their benefits to only specific parts of the

process. To reap the benefits of integration, this thesis provides a process modeling

based method named PLETIN to identify and implement software development tool

integration-tuples. The method aims to present solutions for issues observed in tool

integration for software development organizations by delivering an integrated tool

set. The proposed solution approach is based on the idea that if there were no

integrations between tools at all, users would perform the necessary actions to

cooperate different tools. PLETIN is a method for the identification of the candidate

integration situations (integration-tuples) from the interactions of users with the

tools. These tuples constitute the requirements used to develop integration facilities.

v

The software development process definitions are used as inputs to create process

models and provide actual implementations. The research is supported with case-

study work to identify the significance of the problems and the applicability of the

method as a solution to issues in tool integration.

Keywords: software development process, software development tools, tool

integration, process modeling

vi

ÖZ

YAZILIM GELİŞTİRME ARAÇ ENTEGRASYONLARININ AYIRT EDİLMESİ VE

UYGULANMASI İÇİN SÜREÇ MODELLEME TABANLI BİR METOD

Ertürkmen, K. Alpay

Doktora, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Doç. Dr. Onur Demirörs

Mart 2010, 223 sayfa

Yazılım geliştirme süreci çeşitli araçların kullanımına ciddi anlamda bağımlılık

gösterir. Bu araçlar yazılım geliştirme sürecinin farklı alt-alanlarında gerçekleştirilen

işleri destekler ve otomatikleştirir. Fakat bu araçlar yeterli entegrasyon imkanlarını

sağlamayarak ya da desteklemeyerek birer ―otomasyon adası‖ olarak

davranmaktadır. Bu davranış, araçların faydalarının sürecin sadece belirli parçalarına

kısıtlanmasına sebep olmaktadır. Entegrasyonun faydalarından yararlanılabilmesi

için bu tez, yazılım geliştirme araç entegrasyonlarının tanımlanması ve

gerçekleştirilmesi için kullanılan süreç modelleme tabanlı PLETIN adında bir metod

sunmaktadır. Bahsi geçen metod, entegre bir araç grubu oluşturulmasını yardımcı

olarak yazılım geliştiren kurumların yaşadığı araç entegrasyonu temelli sorunlara

çözümler sağlamayı hedeflemektedir. Önerilen çözüm yaklaşımı, eğer ortamda

herhangi bir entegrasyon olmasaydı farklı araçları birarada çalıştırabilmek için

gereken işlemleri kullanıcıların yapması gerektiği varsayımına dayanmaktadır.

PLETIN kullanıcıların araçlar ile etkileşimlerinden, aday entegrasyon durumlarının

vii

tanımlanmasını mümkün kılmaktadır. Bu durumlar entegrasyonların

gerçekleştirilmesinde temel alınan gereksinimleri oluşturur. Yazılım geliştirme süreç

tanımları girdi olarak kullanılıp süreç modelleri ve gerçek uygulamalar geliştirilir.

Yapılan araştırma, sorunların ciddiyeti ve metodun araç entegrasyonu problemine

uygulanabilirliğinin anlaşılabilmesi için durum-çalışması ile desteklenmiştir.

Anahtar Kelimeler: yazılım geliştirme süreci, yazılım geliştirme araçları, araç

entegrasyonu, süreç modelleme.

viii

To my beloved wife, Gökçe Banu

ix

ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to my supervisor Assoc. Prof. Dr.

Onur Demirörs for his guidance throughout my graduate studies.

I wish to express a lot of thanks to Prof. Dr. Semih Bilgen and Assist. Prof. Dr. Altan

Koçyiğit for their valuable suggestions and comments throughout the steering

meetings of this study.

I would also like to thank Dr. Kıvanç Dinçer and his team, Öcal Fidanboy, Burcu

Akkan, Cenkler Yakın for their support on the case studies.

I also want to express my gratefulness to my wife Gökçe Banu for all her patience,

love, support and tolerance. Without her understanding this work would never been

possible.

Finally, I would like to thank to my parents and dear sister, for their support and

love.

x

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ ... vi

ACKNOWLEDGEMENTS ... ix

TABLE OF CONTENTS .. x

LIST OF TABLES .. xiii

LIST OF FIGURES .. xiv

CHAPTER

1. INTRODUCTION .. 1

1.1. The Context ... 7

1.2. Solution Approach .. 8

1.3. Contributions .. 10

1.4. Organization of the Thesis ... 12

2. RELATED RESEARCH ... 14

2.1. Tool Integration Approaches ... 15

2.1.1. Early Message-Passing/Control Integration Approaches 18

2.1.2. Application Lifecycle Framework (ALF) .. 20

2.1.3. ToolNet System .. 22

2.1.4. Data-Sharing Approaches .. 24

2.1.5. Agent-based Approaches ... 25

2.1.6. Process Centered Software Engineering Environments (PCSEEs) 27

3. THE PLETIN METHOD .. 29

3.1. Modeling Approach .. 33

3.2. Method Stages ... 36

xi

3.3. Context Definition (Stage I) ... 37

3.4. Process Definition (Stage II) .. 39

3.4.1. Actor and Action Identification ... 42

3.4.2. Process Flow Identification .. 44

3.4.3. Tool and Tool Interaction Identification .. 45

3.5. Process Mapping (Stage III) .. 47

3.5.1. Identification of Atomic Actions ... 47

3.5.2. Identification of Implicit Sequences .. 49

3.5.3. Development of Custom Integration Implementations 54

3.6. Process Execution (Stage IV) ... 56

3.7. Roles ... 59

3.8. Notation ... 60

3.9. Comparison of the PLETIN Method with Previous Efforts 60

3.10. Limitations of PLETIN .. 63

4. ENABLING TECHNOLOGIES ... 66

4.1. Business Process Modeling Notation (BPMN) ... 66

4.1.1. Choice of BPMN .. 67

4.1.2. BPMN Elements .. 68

4.2. Intalio|BPM Community Edition .. 74

4.3. Eclipse and Apache Tomcat .. 78

5. CASE STUDIES ... 79

5.1. Multiple Case Study Design ... 81

5.1.1. Case Study I Design ... 81

5.1.2. Case Study II Design .. 84

5.2. Case Selection ... 85

5.3. Execution of Case Study I .. 85

5.3.1. Tool Use Exploration Phase ... 86

5.3.2. Identification Phase .. 87

5.3.3. Implementation Phase .. 90

5.3.4. Discussion on Implicit Sequences for Case Study I ... 93

5.4. Results for Case Study I ... 95

5.5. Execution of Case Study II .. 101

5.5.1. Context Definition Phase ... 103

xii

5.5.2. Process Definition Phase .. 106

5.5.3. Process Mapping Phase .. 107

5.5.4. Discussion on Implicit Sequences for Case Study II 108

5.6. Results for Case Study II ... 110

5.7. Validity Threats .. 112

5.8. Discussion .. 113

6. CONCLUSIONS .. 118

REFERENCES ... 123

APPENDICES .. 131

APPENDIX A: COMPLETE LIST OF OPERATIONS DERIVED FROM

PROCESS MODELS (CASE STUDY I) ... 131

APPENDIX B: COMPLETE LIST OF OPERATIONS DERIVED FROM

PROCESS MODELS (CASE STUDY II) .. 133

APPENDIX C: PROCESS LIST (CASE STUDY I) .. 134

APPENDIX D: PROCESS MAPPING (CASE STUDY II) 137

APPENDIX E: PROCESS MODELS (CASE STUDY I) 141

APPENDIX F: PROCESS MODELS (CASE STUDY II) 165

APPENDIX G: DEFINITIONS FOR WEB SERVICES (CASE STUDY I) ... 191

APPENDIX H: APPLICATION CODE DEVELOPED FOR WEB SERVICES

(CASE STUDY I) ... 213

VITA .. 223

xiii

LIST OF TABLES

Table 1 Types of process with respect to the number of tool interactions ... 37

Table 2 Sample process list for RE process area ... 38

Table 3 Types of implicit sequences ... 50

Table 4 BPMN elements ... 68

Table 5 Processes areas not directly related to software development.. 86

Table 6 Process areas included in the scope of Case Study I .. 87

Table 7 Tool interactions with respect to process areas .. 95

Table 8 Distribution of candidate integration sequences with respect to process areas 96

Table 9 Distribution of tuples with respect to process areas ... 96

Table 10 Execution frequency of tuple ... 97

Table 11 Distribution of operations to tools .. 100

Table 12 Differences between the two target organizations .. 102

Table 13 List of processes selected for analysis... 105

xiv

 LIST OF FIGURES

Figure 1 Types of tools ... 2

Figure 2 A fictional monolothic tool and its process support .. 4

Figure 3 A fictional tool suite and its process support .. 5

Figure 4 A fictional tool set from several vendors with point-to-point integrations 6

Figure 5 Process model for PLETIN.. 11

Figure 6 Artifact relationships in PLETIN .. 12

Figure 7 Control integration/Data sharing approach [13] ... 19

Figure 8 ALF architecture [6] ... 20

Figure 9 ALF mechanism [6] ... 21

Figure 10 ToolNet architecture ... 22

Figure 11 Tool integration sophistication vs. sustainability [1] .. 23

Figure 12 Toaster model [62] .. 24

Figure 13 Data sharing approach ... 25

Figure 14 Architecture for agent-based tool integration ... 26

Figure 15 Process model for PLETIN.. 31

Figure 16 Conceptual map for the PLETIN method .. 35

Figure 17 Process model for PLETIN Stage I, Context Definition .. 40

Figure 18 Relationships of PLETIN BPMN Elements ... 41

Figure 19 Process model for PLETIN Stage II, Process Definition .. 43

Figure 20 Sample User Representations on Process Model .. 44

Figure 21 Sample process flow with BPMN notation .. 45

Figure 22 Sample tool interaction represented as a process model .. 46

Figure 23 Two actions grouped into a sequence ... 46

Figure 24 Process model for PLETIN Stage III, Process Mapping ... 48

Figure 25 Sequence breakdown ... 49

Figure 26 A sample interrupted implicit sequence .. 51

Figure 27 A sample compound implicit sequence .. 52

Figure 28 Placeholder tasks for tools .. 55

Figure 29 Web-service invocations by the process manager ... 58

xv

Figure 30 Supported BPMN elements in Intalio|Designer .. 74

Figure 31 Web-service definitions imported to the workspace .. 74

Figure 32 Data mapping in Intalio|Designer .. 75

Figure 33 Intalio|Designer process deployment dialog ... 75

Figure 34 Intalio|BPM Community Edition process operations interface ... 76

Figure 35 Intalio|BPM Community Edition process detail interface ... 77

Figure 36 Intalio|BPM Community Edition process instance detail interface 77

Figure 37 Eclipse "web-service wizard" .. 78

Figure 38 Process model for Case Study I Design .. 82

Figure 39 Sample BPMN model for Case Study I, Phase I, RE5214 ... 89

Figure 40 Sample tool interaction represented as a process model .. 90

Figure 41 Two actions grouped into a sequence ... 91

Figure 42 Web service definitions imported to the workspace .. 92

Figure 43 Sample completed BPMN model for Case Study I, RE5214 .. 92

Figure 44 Process model for TS512 ... 93

Figure 45 Process model for TS521 ... 94

Figure 46 Integration map for the case study .. 98

Figure 47 Existing integration map of the organization .. 98

Figure 48 Number of tuples constituting the integration map ... 99

Figure 49 Process model of Case Study II ... 101

Figure 50 Process model of Case Study II, Phase I ... 104

Figure 51 Process model of Case Study II, Phase II .. 106

Figure 52 Sample process model for Case Study II, Phase II (UG-070-87) 107

Figure 53 Sample process model for Case Study II, Phase III .. 108

Figure 54 Process model for KY-020-62142 ... 109

Figure 55 Sequence KY-020-62142 decomposed ... 110

Figure 56 Process model of Case Study II, Phase III .. 111

Figure 57 Effort distribution for Case Study II .. 112

Figure 58 Process list (CASE STUDY I) - Part 1 .. 135

Figure 59 Process list (CASE STUDY I) - Part 2 .. 136

Figure 60 Process Mapping for Case Study II – Part 1 ... 138

Figure 61 Process Mapping for Case Study II - Part 2 ... 139

Figure 62 Process Mapping for Case Study II - Part 2 ... 140

Figure 63 Process Model for BRPG2 - Part 1 ... 142

Figure 64 Process Model for BRPG2 - Part 2 ... 143

Figure 65 Process Model for CMG510 .. 144

Figure 66 Process Model for CM513 .. 145

xvi

Figure 67 Process Model for CM533 .. 146

Figure 68 Process Model for CMG21-Part 1 .. 147

Figure 69 Process Model for CG21-Part 2 ... 148

Figure 70 Process Model for CMG21-Part 3 .. 149

Figure 71 Process Model for CMTG211 ... 150

Figure 72 Process Model for CMTG212 ... 151

Figure 73 Process Model for CMTG213-216 Part 1 ... 152

Figure 74 Process Model for CMTG21-216 Part2 .. 153

Figure 75 Process Model for RE5213.. 154

Figure 76 Process Model for RE5214.. 155

Figure 77 Process Model for RE52212 Part 1... 156

Figure 78 Process Model for RE52212 Part 2... 157

Figure 79 Process Model for RE5222.. 158

Figure 80 Process Model for RMTG21 .. 159

Figure 81 Process Model for RMTG22 .. 160

Figure 82 Process Model for RMTG23 .. 161

Figure 83 Process model for TS514 ... 162

Figure 84 Process Model for TS524 .. 163

Figure 85 Process Model for VV542 ... 164

Figure 86 Process Model for KY-020-621-Part 1 .. 166

Figure 87 Process Model for KY-020-621-Part 2 .. 167

Figure 88 Process Model for KY-020-621-Part 3 .. 168

Figure 89 Process Model for KY-020-621-Part 4 .. 169

Figure 90 Process Model for UG-010-84 .. 170

Figure 91 Process Model for UG-040-83 .. 171

Figure 92 Process Model for UG-070-81 .. 172

Figure 93 Process Model for UG-070-82 .. 173

Figure 94 Process Model for UG-070-83 .. 174

Figure 95 Process Model for UG-070-86 .. 175

Figure 96 Process Model for UG-070-87 .. 176

Figure 97 Proces Model for UG-070-89 .. 177

Figure 98 Process Model for UG-190-82 .. 178

Figure 99 Process Model for UG-190-89-Part1 .. 179

Figure 100 Process Model for UG-190-89-Part2 .. 180

Figure 101 Process Model for UG-190-89-Part3 .. 181

Figure 102 Process Model for UG-190-810-Part 1 ... 182

Figure 103 Process Model for UG-190-810-Part 2 ... 183

xvii

Figure 104 Process Model for UG-190-810-Part 3 ... 184

Figure 105 Process Model for UG-190-810-Part 4 ... 185

Figure 106 Process Model for UG-190-811 .. 186

Figure 107 Process Model for UG-190-812-Part 1 ... 187

Figure 108 Process Model for UG-190-812-Part 2 ... 188

Figure 109 Process Model for UG-190-813-Part 1 ... 189

Figure 110 Process Model for UG-190-813-Part 2 ... 190

1

CHAPTER 1

1. INTRODUCTION

The scope of software development in modern organizations is getting broader as the

business needs and software complexity increases. Once formally defined only as

design and coding of software systems, software development now encompasses

planning, requirements definition, requirements management, design, coding,

building, testing, configuration management and maintenance of software systems.

As a direct consequence of the widening in the scope of software development

processes, the number of stakeholders, the complexity of the development processes

and the effort spent increases.

Software development has thus become a complex sequence of information

transformations, with a pre-defined aim and several levels of input and knowledge

[9]. These information transformations create outputs that are used as inputs in

succeeding steps towards the goal. These transformations are specialized into

separate processes like requirements engineering, software design, coding, and

software testing. As in any engineering domain, tools have been developed to

support software engineers by increasing the efficiency of the execution of processes.

Tools are used to handle the complexity surrounding software development

processes [38]. There is much evidence in the literature on how tool use provides

benefits for software development in terms of quality and cost [36], [57], [45].

2

Tools that support software development can be classified into two groups (See

Figure 1): the first group contains monolithic development benches created and

supported by a single vendor or organization [34]. These development benches target

a single platform, and are designed to support as much of the whole software

development process as possible. Monolithic tools generally only support specific

development technologies and target platforms. They are large, very complex and do

not provide flexibility. They are costly to build and acquire, hard to maintain and

modify for different goals.

The second group is composed of individual tools supporting one or more discrete

software development phases/sub-domains [60]. Software development

organizations targeting different platforms/technologies or those operating in

heterogeneous environments (like complex enterprise applications or open systems)

require a variety of tools. Monolithic tools do not provide support for a mix of target

platforms/technologies and are not suitable for modification.

Figure 1 Types of tools

Vendors develop distinct tools for different platforms and technologies that can be

used to operate in heterogeneous environments. Another source for these tools are

communities of open source developers. These tools range from simple time tracking

solutions to complex continuous integration systems. They are specialized to support

3

and automate specific (or several) sub-processes of software development, like

requirements management or version control [45]. Being specialized on supporting

and automating certain parts of the complete process, they constitute ―islands of

automation‖ if they do not provide sufficient integration facilities [63], [54], [36].

[45] and [38] state that, "for improved productivity, quality and reduced risk, IT

infrastructures need to be highly integrated and interoperable‖. [63] defines tool

integration as:

―the techniques used to form coalitions of tools to provide an environment

that supports some, or all, of the activities within a software engineering

process‖.

Wasserman [60] identifies tool integration as:

―an intention to produce complete environments that support the entire

software development lifecycle‖.

Thomas and Nejmeh [57] developed a more specific approach stating:

‗‗Tool integration is about the extent to which tools agree. The subject of

these agreements may include data format, user-interface conventions, use of

common functions, or other aspects of tool construction‘‘.

Monolithic tools are developed by a single group, and are inherently integrated. They

aim to support the whole software development process, but generally support a

fraction of it in practice. They also have the following limitations:

1. Monolithic tools are expensive to develop and acquire, because they are large

and complex.

2. Monolithic tools don‘t support interchangeable components by definition.

They have rigid structures that are not interoperable or interchangeable with

3
rd

 party components. Organizations using monolithic tools become ―vendor-

dependant‖ because of this limitation.

3. Monolithic tools aim to support the complete development process, but end

up supporting a fraction of it (See Figure 2).

4

4. Monolithic tools do not support different technologies and platforms.

Figure 2 A fictional monolothic tool and its process support

These constraints render monolithic tools an infeasible solution for most

organizations. The alternative for these organizations is to use separate tools to

support different sub-domains, technologies, and platforms.

Integration of discrete tools that support different sub-domains is not trivial and

presents its own challenges. Integration between the tools is mostly realized by tool-

vendors, or in some rare cases by independent 3
rd

 party developers.

Integration implementations developed by vendors are strategic and favor the

vendor‘s own set of tools. They are used to establish a suite of integrated tools [14].

An integrated tool suite resembles a monolithic tool, which is developed from the

ground-up by a single vendor to support the whole process (See Figure 3). However

since each organization has different requirements stemming from varying

organizational processes, customers, technologies, and target platforms, tool suites

can be rarely satisfactory. A rigid, one-size-fits-all solution is not acceptable for the

5

variety of requirements. These solutions in the form of monolithic tools and tool

suites prevent organizations from creating their own tool sets based on their own

organizational requirements and constraints [1]. Organizations can‘t use tools they

choose but have to depend on bundles designed and provided by vendors. This is

called vendor-dependency. The choice of a single vendor tool suite can even

constrain the platforms and technologies an organization can support and operate in.

Figure 3 A fictional tool suite and its process support

Occasionally, vendors develop integration implementations to support tools from

other vendors. These mostly originate from strategic relationships between vendors.

Being integrated to a very popular commercial tool or widely used open source

software can positively influence the market for the tool, and this can be the reason

for intra-vendor integration implementations. Depending on this kind of integrations

between the tools, organizations can develop tool sets satisfying their requirements

(See Figure 4).

6

These implementations are generally specific to a particular version of the tools.

Since there is no standard framework of defined and widely accepted interfaces,

tools do not provide standardized interfaces. Integration implementations built to

support a specific version of a tool can become obsolete as their internals change

with new iterations. Organizations depending on these integration facilities are

locked down to certain older versions and they can‘t upgrade their tool infrastructure

if they can‘t give up the functionality provided by the integration [54]. This is called

―version-dependency‖. These point-to-point (bilateral) integration implementations

are "fragile, partial and inflexible" [38], [1], [13]. This limits the organizations'

freedom of choosing best in class, most suitable and economic technologies and tools

to develop their own tool set. The resulting software development infrastructure is

rigid, inferior, expensive, hard to maintain and vendor-dependant, while the number

of implementations required increase exponentially with the number of tools in use.

Figure 4 A fictional tool set from several vendors with point-to-point integrations

7

1.1. The Context

The literature survey performed for this thesis unveiled many approaches to tool

integration in literature. [62] provides an excellent bibliography of research with

significance in the domain. Research on tool integration is mostly formulative,

focused mostly on providing solutions, rather than descriptive, focused on

understanding and describing the domain [63]. This makes it harder to categorize

proposed solutions, compare and evaluate them and develop new solutions based on

existing ones. However, there are several proposed categorizations for tool

interaction including [63] and [44], which are detailed in Chapter 2. Broadly, tool

integration efforts range from standardization efforts and architectural models to

modern XML/XMI oriented approaches. These efforts define guidelines or standards

on how should tools be built, how should they their structure be, and how should

they communicate.

Wasserman, in his 1989 paper [60] defines five types of tool integration: platform,

presentation, data, control and process. Most approaches in the literature focus on

data integration, on how data is shared and objects are managed.

Previous research frequently emphasizes the importance of aligning tool integration

with processes. However, an answer to the question ―how tool integration can be

developed based on organizational processes?‖ is often discarded, or solutions

similar to Process Centered Software Engineering Environments (PCSEEs) that

support processes without focus on integrating existing ones are proposed.

The work in this thesis was inspired by an Eclipse project named Application

Lifecycle Framework (ALF) [6]. It is one of the most recent efforts on tool

integration. Unfortunately it has been terminated before being finalized. The details

of ALF are available in Section 2.1.2. The approach ALF takes is "to create a multi-

layered interoperability framework leveraging SOA technologies". It is based on the

orchestration of tools to provide processes that can be repetitively and efficiently

executed. In short, the aim of the ALF project is to develop a standard-based tool

integration environment. In this environment tools communicate using a common

8

vocabulary. The tools are expected to provide/expose ALF-compliant services so that

they can be orchestrated to execute the processes.

Unfortunately, the ALF project was terminated while it is in Eclipse incubation

stage, due to insufficient community participation except from tool vendor Serena

[25]. The most important phase of the project, as stated in the ―Termination Review‖,

was the determination of ―a set of domain vocabularies that define the events, objects

and attributes‖. The vocabularies constitute a core component of services that are

used to orchestrate the processes. This phase required a high-level of participation

since the aim was to develop a common vocabulary that is widely accepted in the

industry. The technique employed was to bring together experts from the industry,

receive their opinions to start discussions and reach an agreement at later stages.

However, the lack of participation from the community, and possible bias from the

contribution of a single vendor resulted in the project being archived and the

termination of further developments.

1.2. Solution Approach

To prevent vendor and version dependency, a tool integration infrastructure that is

based on open standards and open technologies is required. The integration

infrastructure must empower organizations to develop a tool set satisfying their own

requirements. Organizations must be able to choose best-in-class tools, and

complement them with any other tool to develop tool sets that have sufficient

features for them conforming to their economical constraints. The framework must

support tool interoperability and interchangeability. Organizations must be able to

change any tool they use with another one without much effort, and incorporate any

tool to their tool set [1]. Today‘s fast changing businesses mandates software to be

flexible, adaptable and integrated. Tools infrastructures must be built to assist with

the adaptation and integration process [36].

Software development cannot be imagined without the use of tools. Many software

development organizations are already invested on tools to support their processes,

integrated or not. Guidelines or models for better-integrated tool sets would not

9

provide benefits for organizations that already own tools. Solutions with a focus on

existing tool sets would have a practical value.

Organizational processes affect the quality, cost and effort spent for software

development. Many organizations are aware of the need to integrate the

organization‘s process with tool support. Organizations even consider processes and

tools to be inseparable [54]. The proposed solution must consider, be aligned to or

even be based on organizational processes and tools must be integrated with respect

to processes, rather than features of each other. This is stated by [14] as follows:

―tools are not simply integrated with each other, but are integrated with

respect to specific process requirements. Further, entire tools are not

integrated, but rather specific tool services (in the example, data flow

diagram editing with documentation tool data interchange formats and

document templates) are combined with some specific process result

(production of standard documentation) to produce an integration of tool

services.

While this n-ary relationship between tool services and process elements is

conceptually tidy, in practice it is not easy to disentangle the process

elements from the tool services (again, not surprising since CASE services

tend to support end-user activities).‖

There are two important questions left without emphasis in the literature:

1. How an already existing, much divergent tool set can be integrated?

2. What do the organizational processes expect from the tool set in terms of

integration?

A solution answering these questions will have practical value in terms of being

applicable to existing tool sets, while providing integration facilities that satisfy

organizational requirements rather than fictional technical possibilities.

Briefly, a solution providing the following features is required:

1. Support open standards and technologies

10

2. Support tool interoperability and tool exchange (letting organizations choose

whatever tools they see fit)

3. Support existing tools

4. Support organizational processes

5. Provide information for future tool developments

1.3. Contributions

In this thesis, a method to derive the tool integration requirements of an organization

from its software development processes is proposed. The proposed solution is based

on the following perspective:

Assuming a situation where there are no integrations between the tools in a

software development environment, cooperation of them must be maintained

manually. As an example, to make it possible for different tools that are not

integrated to work on the same data set, the data must be fed to each tool

manually. Similarly, for a tool to operate on the information created by

another tool, data should be moved between the tools by a user manually. In

other words, users must perform actions necessary to keep the tools working

together (cooperate). In this situation, process definitions (or models derived

from these definitions if they exist) would contain sequences of actions (what

we name integration-tuples or sequences, and use interchangeably in this

thesis) performed to maintain tool integrations.

A process model is an abstract representation of software production activities and

their relationship [9]. The investigation of these models can result in an

understanding of how users interact with tools in software development to maintain

non-existing tool integrations.

In the proposed method, process models are developed to visualize the process

definitions. The integration requirements extracted from the process models are used

to define and build custom interfaces for the tool set employed by the organization.

Business processes are developed from process models, which mimic the manual

11

actions performed by users. These business processes consume the interfaces

(implemented as web-services) developed for the tools when executed automatically.

Thus, user actions are performed by the integration infrastructure on behalf of them

and tools are integrated based on the requirements derived from organizational

processes. See Figure 6 depicting the relationships of various artifacts used by the

method.

Figure 5 Process model for PLETIN

Ultimately, the integrations are realized as business processes that are executed

automatically instead of manually by users. They have the following features:

1. They are developed based on organizational software development processes

and process models representing them.

2. They executed automatically on a business process execution server.

3. They consume custom tool interfaces. These interfaces are developed for the

tools so that they can satisfy integration requirements.

The conduct of the PLETIN method is detailed in Chapter 3. The process model for

PLETIN is given in Figure 5. In the end, the users would observe that manual actions

they carried out to maintain tool cooperation are no longer necessary. Rather, they

can execute actions to affect multiple tools automatically. Individual tools would act

as a coalition of integrated tools with the help of the automated business processes.

Users would perceive the tool set as integrated.

Since tool integration in literature is mostly formulative, multiple case studies were

performed to understand tool use in an organization, and the extent of the problems

with tool integration. Based on this knowledge, the proposed method named PLETIN

12

(Process Level Tool Integration) was developed. The method was applied at two

different organizations to identify integration requirements and develop a prototype

implementation. Feedback obtained was used to improve the method and evaluate its

feasibility.

Figure 6 Artifact relationships in PLETIN

1.4. Organization of the Thesis

The remainder of the thesis is organized into five chapters.

In Chapter 2, related research on software development tool integration approaches

are described. Different approaches are compared to our approach to identify their

advantages and limitations.

Chapter 3 describes the PLETIN method proposed by this thesis in detail. Each stage

of the method, activities performed in these stages, inputs and outputs are discussed.

13

Chapter 4 discusses the technologies enabling the implementation of the PLETIN

method.

Chapter 5 presents the multiple case study approach taken to understand the domain,

to develop the method and evaluate it. Design and execution details of the case

studies are given along with results and discussion.

Chapter 6 presents the conclusions reached and summarizes the contribution of this

research. New questions that are raised by our research and the subjects that require

further investigation are also described in this chapter.

14

CHAPTER 2

2. RELATED RESEARCH

Wicks and Dewar provide a detailed background on tool integration in literature

[62]. They define tool integration in software engineering as [63]:

―the techniques used to form coalitions of tools to provide an environment

that supports some, or all, of the activities within a software engineering

process‖

Wasserman identifies ―the desire to link tools‖ in a software engineering

environment as a ―key issue‖ and defines it as supporting the entire software

development lifecycle. Integration efforts aim to bring together tools supporting and

benefitting the complete lifecycle of software development ―through automation,

with consequent productivity and quality improvements [63].

Thomas and Nejmeh [57] developed a more specific approach stating:

―Tool integration is about the extent to which tools agree. The subject of

these agreements may include data format, user-interface conventions, use of

common functions, or other aspects of tool construction‖.

15

2.1. Tool Integration Approaches

Brown [13] states tool integration can be defined in two levels: conceptual (what is

tool integration?) and mechanical (how do we provide integration?). He also

categorizes tool integration literature into three groups:

1. New mechanisms and formulations for tool integration.

2. Examining semantics of tool integration including works of Wasserman [60],

Thomas and Nejmeh [57], Wallnau and Feiler [14], [15].

3. Analysis of the relationship between integration and process (where little

work is available).

Wasserman suggests a conceptual categorization in his paper [60] with the following

types of tool integration:

1. Platform integration: various tools should be interoperable.

2. Presentation integration: tools should share a common ―look and feel‖.

3. Data integration: tool integration requires both sharing of data among tools

and managing the relationships among data objects produced by different

tools.

4. Control integration: tools should also be able to notify one another of events.

5. Process integration: major benefits from tools are achieved when they are

used to support a well-defined software engineering process.

Another conceptual categorization for tool integration is given in [13] where Brown

defines five levels:

1. Carrier level: Tools have a common form for data exchange like a byte

stream.

2. Lexical level: Tools have common lexical conventions, a vocabulary with no

relationship between words.

3. Syntactic level: Tools have common schemas, common rules for the creation

of data structures.

16

4. Semantic level: Tools have a common understanding of the shared data.

5. Method level: Tools have information on the environment and process they

support.

According to Brown [13], two most observed mechanical approaches to tool

integration are:

1. Data sharing, mostly ―through a common database in which all tools deposit

their data‖, or through techniques like a common object models, interface

languages, or message exchange formats.

2. Control integration, based on actions and control signals where software

development is seen as ―a collection of services provided by different tools‖.

 ―Data integration‖ or ―data sharing‖ is the most frequently used approach in the

literature. However Brown suggests that ―control integration‖ strategy based on

message passing would be more effective [13]. In their discussion on the state-of-

the-art of CASE technologies [19] suggests that tool integration must be placed

within a context of an organizational framework.

Rader et al. [54] defines five different levels (situations as it is called in the paper) in

which an organization may have a tool infrastructure:

1. Isolated CASE tools

2. Clusters of CASE tools

3. Migration toward framework-based integration technology (database or

message-passing framework)

4. Loosely integrated collections of CASE tool clusters

5. Complete integrated CASE environment

Although most organizations Rader et al. observed aim for Situation 4, Situation 5 is

the focus of research.

17

The mechanical categorization in the literature is very diverse because of very

different approaches taken to provide tool integration. [63] categorizes formulative

work for the tool integration problem into three separate groups:

1. Process Centered Software Engineering Environments including but not

limited to MARVEL [43], SPADE-1 [8], ADELE [10] and agent-based

approaches [68]. PCSEEs (See Section 2.1.6) take a process-oriented

approach to software development based on Osterweil‘s work [52] and aim to

develop an environment supporting software development by defining and

imposing certain rules or guidance on processes. Although PCSEs do not

provide facilities for tool integration [33], they provide an integrated support

environment for the processes using tools.

2. Contemporary XML/XMI (extensible Markup Language/XML Metadata

Interchange) [67], [66] oriented approaches based on different XML or XML

based interchange languages. These languages are used for data sharing, or

meta-model exchange. They originate from CDIF (CASE Data Interchange

Format) [55].

3. Novel approaches including the use of ontologies, web services, Internet-

based services, agent-based architectures (See Section 2.1.5), viewpoints and

the ECMA (European Computer Manufacturers Association) Toaster model

[28].

[6] suggests another categorization of tool integration efforts:

1. Standardization efforts or middleware services (CAIS [49], PCTE [3], CDIF

[55], CORBA [50], RTP OTIF [51], agent based [22], etc.) which provide a

common data and control interface for different tools to operate.

2. Architecture models, infrastructures and tool suites (ECMA Toaster Model

[23], ToolBus architecture [11] etc.) define how tools should be developed so

that they can provide services necessary for tool integration.

18

3. Basic tool integration mechanism schemes (data sharing, data linkage, data

interchange, message passing, publish/subscribe services [35], [56]) to

facilitate tool integration.

Basically, all these categorizations can be reduced to fundamental integration

mechanisms Brown suggested: ―data sharing‖ and ―control integration‖. Integration

schemes either provide a standardized way for tools to exchange information, or

tools are viewed as services and actions in the environment trigger the use/invocation

of them, respectively. Data sharing approaches result in a consistent and re-usable

representation of information during software development, however they impose

performance overhead on tools and the process of integration because of the

―necessary agreement required between the tools to define a common syntax and

semantics for their data (e.g. a common data schema)‖ [13]. Since the schema must

be defined beforehand, it is harder to succeed with tools organizations already own.

In control integration based approaches, tools communicate with each other directly

by passing messages rather than using a shared data repository.

Although many integration frameworks have been proposed in the literature, none of

them have been widely adopted in practice [63]. The industry is still relying on

individual tools for specific sub-processes of software development. Their

integration is performed in an inefficient point-to-point manner, resulting in vendor

and version-dependency.

The next sections of this chapter detail approaches similar to or significant for the

method proposed in this thesis while discussing advantages and limitations of each.

2.1.1. Early Message-Passing/Control Integration Approaches

Brown, in his 1993 paper states that tool integration approaches up to the time of his

writing had been focused on ―data sharing‖, but he suggests focus should be placed

on ―control integration‖ approach based on message passing instead [13]. In his

work, he evaluates and compares three implementations named FIELD, Softbench by

HP and ToolTalk by Sun. In this implementations and the conceptual model

presented in his work, tools communicate using messages, which have a standard

content structure. An interface for tools are developed that can communicate using

19

this standard message structure. Tools broadcast messages when events occur. All

the tools in the system receive the messages and those with interest in these events

use the message content to perform corresponding actions (See Figure 7).

The approach defined by Brown is used in ALF, which is discussed in the next

section. The shortcoming of this approach is a need to develop a messaging protocol

that is supported by all the tools in the system. Brown discusses this in the section

―How Easy Is Encapsulation?‖, and agrees on the amount of required effort.

Message passing/control integration approaches are criticized in the literature for

lacking the possibility to specify functional data dependencies between complex,

structured documents [30]. These dependencies are specified by data sharing

approaches.

Figure 7 Control integration/Data sharing approach [13]

The PLETIN method proposed in this thesis does not depend on predefined messages

protocols, but use the information implicitly or explicitly provided by the users

instead. This information is derived from process definitions/models and is converted

to a web-service definition for the specific tool. This method, if applied to a large

number of cases can be used to establish a common understanding of what

information users exchange with the tools. This can be used as a foundation to

20

construct standard domain ontology and message protocols, which most message

passing/control integration approaches try to achieve.

2.1.2. Application Lifecycle Framework (ALF)

One of the most recent efforts on tool integration is an Eclipse project named ALF

(Application Lifecycle Framework) [6]. The approach ALF takes for tool integration

is "to create a multi-layered interoperability framework leveraging SOA

technologies". ALF is based on the orchestration of tools to provide processes that

can be repetitively executed. ALF lets the consumer control how the tools are

orchestrated together [38].

Basically ALF aims to bring different tools developed by different vendors together

by providing an integration infrastructure and orchestrates them to execute a process.

The architecture of ALF is given in Figure 8. To be able to orchestrate and execute

processes, ALF requires the tools to expose a defined set of services, i.e. be ALF-

compliant. Besides, ALF requires a common vocabulary for interoperability, used to

define the compliant services.

Figure 8 ALF architecture [6]

21

Similar to control integration/message passing approaches, every event in the ALF

environment is captured by the ALF event manager. Based on the nature of these

events, ALF event manager initiates pre-defined processes (called service flows) that

interact with the services provided by tools (See Figure 9). The events can be

generated by the actions of the users, or by other tools in response to service flow

executions. This way the ALF can respond automatically to changes in the

environment and integrate the tool set over these process flows and service

interactions.

In short, the aim of the ALF project is to develop a standard-based tool integration

environment. In this environment tools communicate using a common vocabulary.

The tools are expected to provide/expose ALF-compliant services so that they can be

orchestrated to execute the processes.

Unfortunately, the ALF project was terminated while it is in Eclipse incubation

stage, due to insufficient community participation except from tool vendor Serena

[25]. The most important phase of the project, as stated in the ―Termination Review‖,

was the determination of ―a set of domain vocabularies that define the events, objects

and attributes‖. The technique employed was to bring together experts from the

industry, receive their opinions to start discussions and reach an agreement at later

stages. However, the lack of participation from the community, and possible bias

from the contribution of a single vendor resulted in the project being archived and

the termination of further developments.

Figure 9 ALF mechanism [6]

22

Consulting expert opinion is a method commonly employed to understand domains.

However, we believe that using data and information based on actual practices can

provide a better understanding of the software engineering domain. The solution

proposed by this thesis depends on organizational processes to provide a tangible

basis for the integration requirements, rather than expert opinion, which is arguably

abstract.

2.1.3. ToolNet System

Altheide et.al. in their paper [1] state, although IDEs and tool integration

mechanisms have been a ―hot research topic‖ since the beginning of 90s, there are no

widely used practical solutions.

Figure 10 ToolNet architecture

 To guide the development of a practical solution, they describe a sustainable tool

integration mechanism that can:

1. Exchange and explore data between tools while maintaining consistency

23

2. Support process integration with a high degree of automation

3. Support interchangeability of tools with similar functionality

4. Easy realization of minor changes for new releases of tools

5. Employ currently used standard tools

6. Focus on integration tasks

They group existing tool integration efforts into two: use of a single repository

mostly found in tool suites, and bi-lateral integration between two tools, which is

widely used in practice. Focusing on the weakness of both approaches, they propose

a solution where a single interface for each tool is defined connected to an

integration backbone. This architecture is called the ―ToolNet‖ architecture (See

Figure 10). ToolNet is designed to be very simple, and sustainable. However to

guarantee sustainability, it is designed to be simple (See Figure 11) so it cannot

provide sophisticated patterns of interaction or tool-specific functionality . Rather it

aims to provide a basic integration infrastructure with as much tools incorporated as

possible. A service-oriented approach is proposed for reaching sustainability,

extensibility to more complex functionality and interchangeability of tools.

Figure 11 Tool integration sophistication vs. sustainability [1]

The implementation of ToolNet has similarities with ALF and PLETIN, in which

service-based adapters are used to wrap tool functionality and communicate with the

environment. However, ToolNet develops adapters for specific functionality like

reporting or consistency checking and ALF uses community-driven vocabularies that

tools should support. On the other hand, PLETIN uses organizational processes as

24

requirements to develop which functionality is required and aligns the integration

infrastructure to organizational aims.

2.1.4. Data-Sharing Approaches

As Brown suggested, early efforts in integration was based on a shared repository

and a common understanding and definition of the domain objects. [36] suggests:

―The broadening of scope to other development concerns forced attention to

be paid to support for data integration: sharing data and integrating tools with

respect to the data they share. One common theme was repository-based

integration, an integration model that posited a common model for the shared

information and provided support for its storage and management of

concurrent and secure access. PCTE [50] is a well known exemplar of this

approach.‖

Figure 12 Toaster model [62]

ECMA [28] defines a reference model for frameworks of (integrated) software

engineering environments. It presents a ―Toaster Model‖ depicted in Figure 12 on

how tool integration must be realized. Implementations like Portable Common Tool

Environment (PCTE) followed ECMA, using the same, shared repository/database

approach (See Figure 13).

25

Figure 13 Data sharing approach

This approach evolved to the development of meta-models for model exchange and

resulted in standards like EIA/CDIF [29], MOF [47], XMI [66] and their various

variants, due to the lack of expressiveness of the modeling techniques at the time

[36]. These standards for metadata exchange are commonly used for the integration

of UML-based [58] CASE tools [2]. However, integration for non UML-based

CASE tools is still a challenge. All information in these tools needs to be represented

using the common metadata exchange format for integration.

[35] differentiates between activities and concerns. Activities are ―concrete actions

and situations that take place in system development projects‖. Examples are pair

programming sessions, unit testing, refactoring etc. Concerns are on the other hand

―what the project is really about‖. Examples are analysis, design etc. Each action can

contribute to more than concern. Thus:

―providing support for specific concerns is problematic. Tool integration should

focus on integrating tools supporting specific activities. This leads to a

requirement to integrate tools with heterogeneous data and process support.‖

2.1.5. Agent-based Approaches

Corradini et. al. propose an agent-based approach to tool integration in [22]. They

propose two levels of abstraction to the complexity of tool integration. The first one

26

is a wrapper agent for each tool for tools interoperation, while the second one is a set

of utilities used to compile workflows into agent pools.

These abstractions create a three-tier infrastructure as given in Figure 14:

1. User layer focuses on workflows

2. System layer contains the agent environment

3. Run-time layer interacts with the tools

Figure 14 Architecture for agent-based tool integration

The proposed solution extends UML Activity Diagrams [58] to capture workflows,

which are compiled to agent activities running on an agent platform. The agents

generated from the workflows interact with the wrapper agents transforming tool

services to execute the workflows.

This approach presents similarities to PLETIN, where models are used to define

workflows and the execution of workflows result in invocation of services provided

by the tools. However the PLETIN method emphasizes the modeling effort in which

the wrapper services developed as tool interfaces are defined directly from the

27

process models, rather than supporting generic services. This is a more process

oriented approach and would result in extended functionality in terms of satisfying

organizational requirements.

2.1.6. Process Centered Software Engineering Environments (PCSEEs)

Osterweil‘s paper [52] ―posted the need for semi-automated support for the software

process, in addition to tool support for artifact development‖. This gave rise to the

development of PSEEs [36].

Barthelmess defines PCSEEs (or Process Centered Software Development

Environments, PCSDEs) as ―systems that provide automated support for software

development activities‖ [9]. According to [9] PCSEEs:

―allow for the definition and enactment of procedures performed by groups of

developers working on a common project. A PCSDE stores definitions of

processes in terms of steps that need to be performed, artifacts produced and

transformed by these steps, of users that should perform the steps, sometimes

given in terms of roles, and of constraints on execution, such as precedence

among steps.‖

Barthelmess [9] presents a review of PCSEEs in the literature. He describes and

categorizes PCSEEs with respect to how they describe processes (coverage of

descriptions) as:

1. Rule-based (MARVEL, OIKOS, EPOS, Merlin)

2. Task-based/Step-Directed (SPADE, APPL/A)

3. Artifact-Based (PROSYT, Shamus)

4. Role-Based (Pasteur, SOCCA).

He then evaluates and compares these efforts based on:

1. Latitude of interpretation (how policies are enforced, process descriptions are

evolved, deviations are handled)

2. User-environment interaction

28

3. Inter-user communication

4. Management assessment

PCSEEs are significant for this thesis since their goal is to support and constrain the

software development processes either by supplying rules or pre-defining

transformations and goals (like artifacts). The approach proposed in this thesis

employs process definitions to understand how tools are used in software

development and provide models to dictate tool behavior. Similarly, PCSEEs define

rules/graphs to guide or constrain people on how they work. A completely integrated

tool set along with process guidance thus presents similarities to a PCSEE.

PCSEEs aim to support the collaborative processes, which is extremely hard since

collaborative processes are characterized by ―the impossibility of completely pre-

defining their unfolding due to the high degree of change‖ [9]. The PLETIN method

proposed in this thesis, however, focuses on the menial tasks performed by users to

maintain cooperation of tools, in other words tool integration. The repetitiveness of

these tasks renders them perfect candidates for formal description and automation

contrary to the challenges collaborative tasks provide.

29

CHAPTER 3

3. THE PLETIN METHOD

The PLETIN (shorthand for Process LEvel Tool INtegration) method is a four-stage

method developed to identify and then implement integration-tuples from process

definitions in a software development environment.

PLETIN is developed based on a case study conducted as a part of this thesis. It has

been developed iteratively during the conduct, and new findings were applied

recursively to steps already completed whenever necessary.

The PLETIN method is based on the scenario where there are no integrations

between the tools in a software development environment, cooperation of the must

be maintained manually. As an example, to make it possible for different tools that

are not integrated to work on the same data set, the data must be fed to each tool

manually. Similarly, for a tool to operate on the information created by another tool,

data should be moved between the tools by a user manually. In other words, users

must perform actions necessary to keep the tools working together (cooperate). In

this situation, process definitions (or models derived from these definitions if they

exist) would contain sequences of actions (what we name integration-tuples or

sequences, and use interchangeably in this thesis) performed to maintain tool

integrations. These sequences are required to keep the tools working cooperatively.

Thus, user actions account for non-existing integration facilities of the tools. For

simplicity, we call these facilities integration-tuples (or sequences). An integration-

30

tuple is a candidate tool integration situation. In our scenario users maintain

integration-tuples manually. A method designed to investigate the process models

can be used to understand how users interact with the tools to maintain these tuples.

Based on this knowledge, requirements for the services to support these actions can

be inferred and implemented to build a tool integration framework.

The first stage of PLETIN is called the context definition stage, where the scope is

defined. In this stage software development processes for which tool interactions are

either non-existent, constrained to a single interaction or inherently complex are

excluded. The scope can be defined by direct examination of process definitions or

models. This information is usually already available to the software engineering

process group (SEPG) that has developed (or is developing) the process definitions.

Organizing a meeting with the process group, or inclusion of an experienced process

group member in the scope meeting can help exclusion of process definitions that

provide insufficient information for further work. This stage uses process definitions

(or process models) as inputs and outputs a list of processes that is going to be

examined further in the later stages of the method.

Process components are identified based on the scope and represented on a formal

process model in the process definition stage. In this stage user interactions with

tools are analyzed to uncover candidate tool integration situations. A process model

is developed for each process definition to visualize the interactions with tools.

Process definition stage uses the scope identified in the first stage as input and

produces process models visualizing tool interactions as outputs. Tool interactions

that satisfy certain criteria are labeled as sequences (integration-tuples). These

sequences are mapped to existing services or APIs provided by the tools to develop

an integration infrastructure.

31

F
ig

u
re

 1
5

 P
ro

ce
ss

 m
o

d
el

 f
o

r
P

L
E

T
IN

32

A process model including mappings between actions and services is developed in

the process mapping stage. The aim of this stage is to understand how users interact

with tools and to develop services that can respond to the actions performed by users.

This stage of PLETIN uses process models developed in the previous stage as input

and produces a detailed description of atomic actions performed by users on tools

and services that can respond to these actions as outputs. Actions and services are

combined into a business process that is represented as a process model. This

business process can be executed on a business process execution engine.

These models are deployed on a process execution engine for actual implementation.

Process executions are monitored and necessary feedback for process change is

developed in the process execution stage. The process model for PLETIN is given in

Figure 15.

PLETIN is a tool integration technique based on organizational process definitions,

rather than data interchange formats or ad-hoc standardization frameworks. As stated

by [52] ―software processes are software too‖. Tools provide automation facilities for

specific sub-processes of software development. Integration of these separate

―islands of automation‖ would result in a more complete and continuous execution of

software development. Thus, the tool integration effort must be treated like software

too. PLETIN aims to develop an understanding of user interactions with tools to

build requirements necessary to develop an integration framework. The

implementation approach is based on Service Oriented Approach (SOA), where

fragments of systems are connected together using a standard based framework.

Using PLETIN, organizations can integrate existing toolsets based on the

requirements generated by their own processes. In the long run, an industry-wide

understanding of requirements for tool integration can be developed. These

requirements can be employed by, or even forced upon vendors to develop standard-

based, interoperable, interchangeable tools supporting software development

processes.

33

PLETIN requires the existence of and is based on process definitions. So the quality

of its outputs is directly correlated to the quality of process definitions. If process

definitions are not available in an organization, it would be much more beneficial to

combine a process definition/modeling/improvement effort with the execution of the

PLETIN method.

3.1. Modeling Approach

Assuming every activity (except those performed internally by individual tools) in

software development is performed manually and there is no integration between the

tools used, consider the following: a user would like to cooperate some tools. To

achieve this goal, he is required to perform a sequence of successive, simple

operations on different tools, moving data between them.

An example for such a sequence is: ―Team Leader creates a baseline in requirements

management tool, named <projectName>-YYYY-MM-DD. He then creates a build

label in software configuration management tool, with the same name as the

baseline‖. It is clear from the example that there is a sequence of two actions on two

different tools performed to maintain cooperation of different tools for a common

goal. Some more generic examples are:

 Create Data1 on ToolA, create Data1 on ToolB.

 Read Data2 on ToolC, create Data2 on ToolD.

 Update Data3 on ToolE, delete Data3 on ToolF.

These sequences of actions that are performed by users on different tools, hint the

existence of candidate integration situations between tools. The user merely cascades

changes or moves information to another tool. Such mundane tasks are very good

candidates for automated execution, and they can be executed through integration

implementations.

Knowledge on candidate integration situations can be used as requirements for

interoperable, interchangeable tools. Tool designs can incorporate interfaces/services

that can satisfy the requirements presented by the processes employed in software

34

development organizations. These requirements are derived from the knowledge on

candidate integration situations. On a more practical level, these can be realized into

actual implementations through the use of business process execution environments.

PLETIN is a method to identify and optionally realize possible integrations between

different software engineering tools. PLETIN can either use existing process

definitions of the organization or can be executed in parallel with a process

definition/modeling effort. PLETIN presents guidance for the process of converting

process definitions into service definitions that can be used as requirements to

develop custom interfaces for the tools. These correspond to integration

implementations.

The approach of PLETIN is based on the identification of sequences of tool

interactions in user processes. Sequences satisfying criteria for the number of tool

interactions and complexity and type of user interaction are chosen. These sequences

are treated as candidate integration situations between different tools.

PLETIN identifies user actions that contain tool interactions. To be able to identify

those interactions, ―users‖, ―manual user actions‖, ―tools‖, ―user interactions‖ with

these tools, and ―messages‖ sent and received between these components are

discovered from process definitions. The relationships between these components are

developed into process models. Sequences of tool interactions are identified from

process models. These interactions are then later implemented in a process execution

environment. A conceptual map for the terms used by the PLETIN method is given

in Figure 16.

PLETIN looks for ―simple‖ user actions that contain tool interactions to identify

candidate tool integration situations. For this, inspection of only certain processes is

required. Not all processes in software development contain such interactions.

PLETIN does not demand the analysis of processes and actions that don‘t have tool

interactions or only have a single interaction throughout the complete process.

It should also be noted that sequences of actions that are classified as complex can

have complex data mappings, demand decision-making and even creative

35

capabilities. For the scope of this work, such interactions are left out of scope since

the implementation and even the definition of them may require substantial effort.

Figure 16 Conceptual map for the PLETIN method

In the context of this thesis, a tool interaction is subjectively classified as simple if it

is a CRUD (Create, Read, Update, Delete and Execute) operation. The definition is

similar to those used in persistent storage or database systems. See Section 3.10 for a

detailed discussion.

To decrease the effort and time spent applying the method, scope should be defined.

In the context of PLETIN, the scope is defined such that only the processes with

multiple, yet simple, user-tool interactions are included. This information can be

directly obtained from the process group in a meeting, or revealed through an

inspection of process definitions. More detail is given on the specific activities on the

Section 3.3.

In this work, Business Process Modeling Notation (BPMN) [17] is used as the

modeling notation and Intalio|BPM Community Edition [37] is selected as the

36

process design, deployment and execution environment. Intalio|Designer is the

process modeling component of Intalio BPM Suite used to develop BPMN models.

Further discussion on the selection of the modeling notation is available in Section

4.1.1. Since the PLETIN method can co-exist with concurrent process modeling

work, it can be modified to use another modeling notation if the notation supports the

representation of the following required components: users, tools, manual user

actions, tool interactions and messages. The actual implementation of integrations

also require certain functions from the underlying platform like the ability to execute

processes directly from process models, easy/one-button deployment, data mapping

and process instance monitoring. Intalio|BPM Community Edition used for this work

provides these features out-of-the-box. A detailed description of the BPM Suite is

given in Section 4.2. However, any process modeling environment providing process

execution facilities similar to importing web-service definitions, direct invocation of

web-services, data mapping can be used for the purpose with slight modifications.

3.2. Method Stages

PLETIN is designed so that it is executed in a software development organization

and monitored and improved continuously. With PLETIN, an integration framework

for the tools is laid out according to the requirements set by actual processes of the

organization. Based on this integration framework, tools or the integration

implementations can be changed at later stages. This brings inter-operability to tools.

PLETIN has four stages. During the context definition stage, the scope of the

modeling process is defined. Based on the scope, process components are identified

and represented on a formal process model in the process definition stage. In this

stage user interactions with tools are analyzed to uncover candidate tool integrations

situations. Tool integrations that satisfy certain criteria are labeled and mapped to

existing services or APIs provided by the tools to develop an integration

infrastructure. A process model including mappings between actions and services is

developed in the process mapping stage. These models are deployed on a process

execution engine for actual implementation. Process executions are monitored and

37

necessary feedback for process change is developed in the process execution stage.

The process model for PLETIN is given in Figure 15.

Each stage of the method is explained in the subsequent sections and process models

using BPMN notation defining each stage are presented.

3.3. Context Definition (Stage I)

The first stage of PLETIN defines the scope of the effort. In this stage those

processes where tool interactions during software development are either non-

existent, constrained to a single interaction or inherently complex are excluded.

Table 1 Types of process with respect to the number of tool interactions

Type of

process

Process definition contains Information provided

Type 0 No tools

No tool interactions possible, no integration

opportunities.

Type I Single tool

Single interaction

A single tool does not present an integration

opportunity. At least two tools are required.

Type II Single tool

Multiple simple interactions

Although a sequence of interactions on a

single tool does not present an integration

situation it is of interest from an automation

perspective.

Type III Multiple tools

Multiple simple interactions

Multiple tool interactions may present

integration situations if interactions are

simple.

Type IV Only complex interactions Complex interactions cannot be represented

adequately on process models, and executed

The promise of PLETIN is the fact that successive user interactions with multiple

tools constitute candidate integration situations between the tools. Thus the basic

requirement of PLETIN is the existence of successive interactions with one or more

38

tools in process definitions. Process definitions having no tool interaction can‘t

provide any information on possible integrations. A process definition having a

single tool resembles the case where there are no tools since interactions with a

single tool can‘t provide information on possible integration. However, multiple

―simple‖ interactions with a single tool might provide automation opportunities

instead of integration situations. The scope of the effort can be defined to include

such processes if automation is one of the primary goals of the effort. Table 1

represents the types of processes and the information they provide.

Table 2 Sample process list for RE process area

Process

Code

Process Name Tools Process

Type

RE51 Preparation RM, SCM III

RE5211 Elicit needs SCM I

RE5212 Establish customer requirements RM I

RE5213 Review customer requirements RM, SCM III

RE5214 Validate customer requirements RM, SCM III

RE5221 Establish software requirements UML, RM, SCM III

RE52211 Define product components and

interface requirements

RM, TT, SCM,

UML

III

RE52212 Establish software requirements RM II

RE52213 Review software requirements RM, TT, SCM,

UML

III

RE5222 Validate software requirements RM, SCM III

RE531 Manage changes to requirements and

inconsistencies between requirements

and work products

RM, SCM III

39

Following the information in Table 1, the scope is defined to include processes of

Type III. Optionally, processes of Type II can also be included. All other types of

processes are excluded. The definition of scope can be achieved by direct

examination of process definitions or models. This information is usually already

available to the process group that has developed (or is developing) the process

definitions. So organizing a meeting with the process group, or inclusion of an

experienced process group member in the scope meeting can help exclude process

definitions providing no information for further work. A ―process list‖ in the form of

a table including process name, process code, the tools used in the process and the

process type (Type 0, I, II, or III) is sufficient for filtering and future reference. A

sample table is given in Table 2.

As depicted in Figure 17, the stage begins with the project initiation. Process

modelers organize a meeting with the Software Engineering Process Group (SEPG)

to get information on the process definitions. If SEPG does not exist or is not

available, this information can be extracted from process definitions. However,

SEPG can provide the information faster and more accurately.

In this stage, evaluating criteria like process execution frequency, average error rate

during manual process execution and user feedback on the process nature

(repetitiveness) is beneficial. This information can be used to prioritize the analysis

and possibly implementation of process definitions. This provides larger benefits to

be reaped earlier. The data can be appended to the ―process list‖.

3.4. Process Definition (Stage II)

In the context definition stage processes that are suitable for the application of the

method are selected for further analysis. In process definition stage, processes

including multiple tool interactions are analyzed to extract information on candidate

tool integration situations. Process components including actors, actions, process

flow, tools and messages are identified. Details on the identification of each

component are given in the next subsections.

40

F
ig

u
re

 1
7

 P
ro

ce
ss

 m
o

d
el

 f
o

r
P

L
E

T
IN

 S
ta

g
e

I,
 C

o
n

te
x

t
D

ef
in

it
io

n

41

The identified components are represented on a process model for visual analysis and

identification of tool interaction sequences. The complete manual process is

represented as a single BPMN pool in a BPMN diagram. This BPMN pool is marked

―not-executable‖ since the actions are performed manually. All actors are

represented as individual BPMN lanes in this BPMN pool. Actions are represented

as BPMN tasks assigned to actors. Process flow is represented using BPMN

gateways, BPMN events and the flow of tasks. Each software development tool is

represented in a separate BPMN pool.

Figure 18 Relationships of PLETIN BPMN Elements

They are depicted as external to the software development process so that the

required interfaces are visible. The internal processes of the tools are left outside of

the scope of this modeling effort. So the pools for the tools are represented as empty,

as a ―black box‖.

The actions that have interactions with tools are connected to BPMN pools that

represent tools. The connections are done with BPMN message elements. They are

used to identify information exchanged with the tools. The relationship between

BPMN elements used during the implementation of PLETIN is given in Figure 18.

Actions with simple tool interactions within the model are highlighted because the

method requires the identification of them. Actions with complex interactions are left

as they are.

42

The next step is to identify highlighted interactions that are successive. If there are

more than one action that have simple interactions with tools (so that they are

highlighted in the model) executed in succession, this group of actions are identified

as a sequence. A sequence is represented on the process model as highlighted actions

grouped together using the ―BPMN Group‖ element. Process model for the process

definition stage of PLETIN is given in Figure 19.

Figure 23 is a part of a process model, presenting a sequence of two simple

successive actions constituting a sequence. This sequence is highlighted using

―BPMN Group‖ element. A sample process model created in this stage is given in

Figure 22.

3.4.1. Actor and Action Identification

Every step taken to achieve a goal in a process definition is an action. Actions are

usually described in single sentences. The subject who performs the action is noted

as the actor [9]. The verb and the object define the action. An example is as follows:

―Team Leader creates a baseline in requirements management tool.‖ In this example,

Team Leader is the actor because he is the one that performs the action. ―Create a

baseline‖ is the action, performed by the actor.

The PLETIN method represents each actor identified from the process as an

individual BPMN lane in a common BPMN pool. This pool is labeled

―<ProcessCode>-PeopleProcess‖, where <ProcessCode> is to be substituted by the

unique identifier of the process under analysis, for example ―RE5214‖.

This pool contains lanes for all the roles taking part in the process. These roles

perform actions and interact with the software development tools. A sample

representation as BPMN lanes of four different users (DTM, TL, PMA, Customer)

participating in a process is given in Figure 20.

43

F
ig

u
re

 1
9

 P
ro

ce
ss

 m
o

d
el

 f
o

r
P

L
E

T
IN

 S
ta

g
e

II
,
P

ro
ce

ss
 D

ef
in

it
io

n

44

3.4.2. Process Flow Identification

Process flow defines in what order the tasks are executed. It includes the following

information:

 Start/End conditions of a process

 Sub-processes

 Task dependencies

 Parallel task execution

 Process branching and merging

 Intermediate events and conditions during process execution

Figure 20 Sample User Representations on Process Model

This information is extracted from the process definitions and represented as a

BPMN process model through the use of BPMN constructs like BPMN gateways,

BPMN events and BPMN tasks. A sample process flow is presented in Figure 21.

Detailed description of BPMN constructs is available in section labeled BPMN .

45

Figure 21 Sample process flow with BPMN notation

3.4.3. Tool and Tool Interaction Identification

Tools are represented as independent, empty BPMN pools in process models. They

are marked as ―not-executable‖ since the tool itself executes the actions. An empty,

not-executable pool provides a black-box perspective in the process model. While

the interface for the tool interaction is clearly visible, the complexity of inner-tool

operation is hidden from the process model.

Every tool in the process model must be connected to a task with BPMN messages.

These messages represent the requests made by the user to the tool and the responses

provided by the tool. The messages are connected to ―BPMN data objects‖ to

represent the content of the messages, which are critical for PLETIN. The message

contents are used to determine the input/output parameters required for the

implementation of integration.

Tool interactions are classified whether they are complex or not. An action is

classified as simple if it is one of the CRUD operations: Create, Read, Update,

Delete or Execute. Simple tool interactions are highlighted with a distinctive color

(e.g. orange) on the process model. If these interactions make up a sequence there

exists a candidate integration situation. A sample for the representation of tool

interaction in a process model is given in Figure 22.

46

Figure 22 Sample tool interaction represented as a process model

The highlighted tool interactions are grouped together using BPMN group objects to

represent a sequence. A sample of such grouping is given in Figure 23. These

sequences, consisting of multiple, simple tool interactions present candidate tool

integration situations. Their structure and interfaces are identified in the next stage of

PLETIN, process mapping where necessary information for developing custom

integrations is developed.

Figure 23 Two actions grouped into a sequence

47

3.5. Process Mapping (Stage III)

Process definition stage outputs a process model similar the one given in Figure 22.

Sequences of user interactions are represented on the model. The information

captured by this process model is used as an input for the process mapping stage.

The process flow for the process mapping stage is given in Figure 24. It is the most

critical stage in PLETIN. The aim of this stage is to understand the details on how

users interact with tools to develop actual implementations that can interact with the

tools on behalf of the users.

3.5.1. Identification of Atomic Actions

Each action in the identified sequences is broken down to atomic actions performed

by the user. An atomic action represents the smallest, indivisible unit of action a user

performs while interacting with a tool. Examples of atomic actions include

authentication, file checkout, command issue etc. Observing a user performing

processes can unveil atomic actions easily.

―BPMN sub-process‖ objects are placed on the model to substitute the actions

highlighted in the previous stage, representing simple tool interactions. The

highlighted actions are broken down to atomic actions. Atomic actions are also

represented as BPMN tasks. They are placed inside the BPMN sub-process

corresponding to the action they are created from. Thus, every highlighted action

identified in the previous stage is replaced with a sub-process including its atomic

actions. A sample breakdown is given in Figure 25.

For each atomic action in the model, a corresponding ―placeholder‖ BPMN task is

created in the BPMN pools representing tools. These placeholder tasks in tools

represent the services tools should provide. Based on the relationships represented on

the process model, actual services are developed that are going to substitute these

tasks. The atomic actions and placeholder tasks of the tools are connected by BPMN

message elements to represent the interface required for the integrations. A sample is

given in Figure 28.

48

F
ig

u
re

 2
4

 P
ro

ce
ss

 m
o

d
el

 f
o

r
P

L
E

T
IN

 S
ta

g
e

II
I,

 P
ro

ce
ss

 M
a

p
p

in
g

49

We should note that, the portion of the process model represented in Figure 28 is the

final version of the atomic actions. It has been modified after the initial atomic action

definitions are analyzed and requirements are compared to the existing facilities

provided by the tools. The details of the comparison activity are given in the next

section on the development of custom integration implementations. It is

recommended that actual implementations be based on a web-services infrastructure;

however, this constrains how the information is handled during execution. Since

complex objects like ―session‖ or ―connection‖ are not transportable in a web-

services environment, information on how and where to login is embedded into

every action (tool interaction) for the final version of the atomic action definitions.

Figure 25 Sequence breakdown

The implicit and explicit information provided by the atomic actions are noted in the

process model as BPMN data objects connected to BPMN messages. The responses

generated by the tools are also recorded. Since there are many messages passed in

even simple process definitions, recording message contents on the process model

itself may introduce clutter. A better approach would be to record this information in

a separate location, like a spreadsheet. This information is used as the requirements

for integration implementations.

3.5.2. Identification of Implicit Sequences

The approach PLETIN uses is to analyze process definitions to identify candidate

integration situations in software development. The integration situations are

50

uncovered in the form of "sequences" of actions users normally perform manually to

maintain tool cooperation.

However there are cases where a candidate or existing tool integration may not

manifest itself as a sequence in process models, but remain hidden. These are called

"implicit sequences". Users of the method would get aware of implicit sequences if a

very well known integration situation or a tool is not visible in the outputs of the

method.

Table 3 Types of implicit sequences

Type of Implicit Sequence Method of identification

Interrupted a. Observe data flows (process artifacts)

b. Examine Submit/Update/Put actions

Compound a. Examine existing integration maps, tool features

b. Look for mentions of two or more tools in

integration definitions

Unmentioned/Omitted a. Examine existing integration maps, tool features

b. Improve process definitions by observation

Complex Change interaction complexity decision criteria

There are 4 types of implicit sequences. Types of implicit sequences and methods for

their identification are given in Table 3. Details are as follows:

Interrupted Implicit Sequences

Two simple tool interactions separated by a single manual/complex action (by

definition) don't constitute a sequence. Only simple tool interactions in succession

are considered as such. In this case, even if this interrupted sequence were a valid

candidate integration situation, it would not be detected by PLETIN.

Interrupted implicit sequences are observed when a software development artifact

like a document is generated using a tool and submitted to another tool after one or

51

more manual operations. A common example is the submission of a document

generated by a tool to configuration management system, only after it has been

reviewed and accepted. In this case, generate document and submit actions are

simple tool interactions. However, they are separated by a manual review and

approval process, which prevents the construction of a sequence. The link between

these two actions is the document (the process artifact) employed by both actions. A

sample representation for an interrupted implicit sequence is given in Figure 28.

Interrupted implicit sequences can be uncovered by giving special consideration to

data flows in process models. Process models can be modified to include BPMN

Data Objects representing software development process artifacts like documents.

This information can be obtained from process definitions during Process Definition

stage of PLETIN. Another simpler approach would be to pay special attention to

Submit/Update/Put actions where information/data is provided by the action to a

tool. These types of actions require a source for the information they are providing.

The source could be the output of a tool interaction. If that is the case, the

decomposition of the Submit/Update/Put action into its atomic components, a

sequence of interactions can be identified.

Figure 26 A sample interrupted implicit sequence

However, users of the PLETIN method should be aware of the fact that, changing the

order of actions in a process definition can change the output of the process. This

may have unintended consequences in process execution.

52

Compound Implicit Sequences

A compound implicit sequence occurs if a tool interaction by a user triggers a tool-

tool interaction. In other words, when a user performs an action that results in the

tool interacting with another tool, the second interaction would not be visible in the

process model depicting the interaction. Compound implicit sequences are observed

if there are already existing integration implementations between tools and they are

already employed by the organization. In this case, the integration is considered as a

functionality of the tool and is not explicitly described in the process definition or

subsequent process model. A sample compound implicit sequence is represented in

Figure 27.

Figure 27 A sample compound implicit sequence

Compound implicit sequences can be uncovered by analyzing existing integration

maps (See Figure 47 for an example). These maps represent already existing

integration implementations between tools. Existing integration implementations that

are not identified as candidate integration situations by PLETIN must be analyzed

and depicted as process models by decomposing the user interaction into several

53

interactions as if the user is maintaining the integration manually. Although existing

integration maps may contain information on this type of implicit sequences, actual

process execution must be sought for, to produce correct process models. Another

alternative is to look for tool interactions in process definitions mentioning more than

two tools.

It should be noted that, existing integration implementations already employed by the

organization might be omitted from process definitions. This type of implicit

sequences is discussed below. Thus, identification of compound implicit sequences

may result in improved processes for the organization.

Unmentioned/Omitted Implicit Sequences

PLETIN uses process definitions developed in organizations as input. The quality of

PLETIN's outputs depends on the quality of its inputs. Any omissions in these

process definitions will result in missed/undetected integration opportunities. If the

process definition effort by the organization prior to the implementation of PLETIN

had omitted/unmentioned some of the tool interactions, sequences of these

interactions would not be detected by PLETIN.

This type of implicit sequences is the hardest to remedy because they are inherently

missing from method inputs rather than being implicit. Existing integration maps can

be used to uncover unmentioned implicit sequences, similar to compound implicit

sequences. Observation of actual process execution is another approach. However,

actual observation may not give better results than existing process definitions

because it is prone to the same problems.

Complex Implicit Sequences

During the Context Definition stage of PLETIN, each tool interaction performed by

users is classified to be simple or complex. For a more detailed discussion on the

context definition phase of PLETIN and classification of actions with respect to

complexity, see Section 3.3. Only simple interactions are highlighted on process

models. Sequences are constructed only from simple interactions. Thus, a sequence

54

consisting of complex interactions would not be included in the scope of the method

and would not be visible in the outputs of the method.

Complex implicit sequences are artificially introduced by the subjective

identification of simple tool interactions during the context definition stage of

PLETIN. Changing the decision criteria to implement more complex interactions

would result in the detection of this type of implicit sequences, since complex

interactions would instead be labeled as simple.

3.5.3. Development of Custom Integration Implementations

The placeholder tasks represent the services tools should provide. They define draft

web-service definitions that will respond to the user actions. A descriptive name is

given to each placeholder task. These names are later used as the name of the web-

service. The name should also specify the tool type. If tools already provide web-

services conforming to the interface specifications defined in this process model then

they can directly be used. However, if no web-services are provided, custom

implementation that satisfies the integration requirements is necessary.

During custom development, web-services are designed so that they replace the

placeholder tasks. Inputs and outputs required for the web-service design are already

available on the process model. They are shown as input and output messages for the

placeholder tasks.

Existing web-services or APIs provided by the tools are investigated to develop web-

service implementations that can fulfill the requirements. Web-services are

implemented using these facilities provided by the tools, or from scratch. Top-down,

and bottom-up service identification techniques similar to those employed in SOA

service definition methodologies are used [7].

Preliminary web-service definitions and process models are reviewed for reuse

opportunities and improvement. For example ―login‖ operation can be and should be

embedded into each service definition because complex objects like ―session‖ and

―connection‖ cannot be transported using SOA messaging protocols. This review can

result in changes on both the web-service definitions and process models.

55

Figure 28 Placeholder tasks for tools

After the web-service definitions and process models are reviewed and any

inconsistencies are resolved, web-service implementations are created and deployed

to an application server of choice. Process modelers can perform web-service

implementation if the group has familiarity with the concepts. However, it would be

more beneficial if external support can be obtained in the form of experienced

software developers from the organization, or from vendors.

Web-service definitions in the form of WSDL files are imported into Intalio|Designer

workspace. Intalio|Designer enables its users to import WSDL files directly from a

network location and then add these web-service definitions to process models by

drag-and-drop. Regular BPMN tasks are used to invoke these web-services. Web-

service definitions are inserted in the model as tasks, substituting the placeholder

tasks created in the identification of atomic actions stage.

A new BPMN pool is created for each sequence in the process model and labeled as

―<ProcessCode>Seq<SequenceNumber>‖. An example is: ―RE5214Seq7‖. This

helps easy identification of the sequences both in process models, and during actual

process execution. Tasks that are grouped as a sequence, converted to a sub-process

and broken down into atomic actions are moved into this new BPMN pool. This pool

is marked as ―executable‖ since its contents will be executed on a business process

56

execution engine to perform actions on behalf of the users. Tasks not labeled as part

of a sequence are left in the people process pool. A BPMN ―start message event‖ is

added to the beginning of the new pool. Also, a BPMN ―end message event‖ is

added to the end of the process in the pool. A new task is created that invokes the

start message event, named ―Invoke sequence <SequenceNumber>‖. This task is a

replacement for the sequence removed from the people process pool. A BPMN

message connection is created between this new task ―Invoke sequence

<SequenceNumber>‖ and the ―start message event‖ in the pool representing the

sequence. The end message event is also connected to the task ―Invoke sequence

<SequenceNumber>‖ using a BPMN message connection to send a response after

the process is being executed. An example for this task is visible in Figure 29.

BPMN pools representing different tools can be combined into a single BPMN pool

called ―<ProcessName>-Tools‖ or can be left independent. All pools representing

tools should be marked as ―not-executable‖.

Each atomic step in a sequence invokes a corresponding web-service. These web-

service representations created from WSDL files are imported into Intalio|Designer

workspace. BPMN message connections are used for invocations. Data mappings are

created so that information input by the user and information returned by tools as

web-service responses are routed to correct places. For a sample data mapping, see

Figure 32. An example process model with web-service invocations is available in

Figure 29.

When the process is complete and error-free it is deployed to the Intalio|Server.

3.6. Process Execution (Stage IV)

Processes deployed to the Intalio|Server are reviewed for consistency and

completeness. Test runs are performed and execution is monitored. Suitable changes

are implemented if necessary.

After all requested changes are applied to process models, process models are

accepted to be consistent, and it is validated that they conform to manual execution

of processes in practice; users can start executing processes that employ custom

57

implementations for integration. The ―people process‖ portion of process models

developed by the PLETIN method visually represents how users can execute manual

processes. It is used for process communication in the organization.

Sequences extracted from the process definitions were converted to separate, more

detailed description of how users perform the actions in the process mapping stage.

These sequences of actions are replaced by a single task that expects the user to

invoke a sequence. Users can logon to Intalio|BPM Community Edition web

interface to execute the sequence by selecting it from the list of processes. They are

required to provide information necessary for the execution of the process. This way,

by selecting the suitable sequence and providing information, users initiate the

sequence that performs actions on behalf of them. The execution of the sequence is

completely invisible to the user. Users are not concerned with which tools are used,

which actions to perform or even which documents to handle. While providing an

integration framework for different tools, PLETIN also provides partial automation

for software development processes.

However it should be noted that as organizations, processes are subject to change.

Thus, the integration infrastructure must be able to sustain this change and the

PLETIN method must be applied iteratively to new or changed (improved) process

definitions to create new or modify existing integration situations. The PLETIN

method, once implemented must be executed in an iterated matter indefinitely.

58

F
ig

u
re

 2
9

 W
eb

-s
er

v
ic

e
in

v
o

ca
ti

o
n

s
b

y
 t

h
e

p
ro

ce
ss

 m
a

n
a
g

er

59

3.7. Roles

The following is a brief description of each role that takes part in the execution of the

PLETIN method:

1. Process Modelers: This role is responsible for the application of the PLETIN

method. A process modeler uses process definitions or process models to

identify process components including actors, actions, tools, process flow and

messages. These components are used to identify simple tool interactions,

which are grouped and labeled as sequences/integration-tuples. Sequences

constitute the requirements for the development of web-services that will be

consumed by processes executed by an execution engine to perform tasks on

behalf of users. The process models this role develops result in the

development of the tool integration framework. Process modelers are

required to be familiar with process modeling, have an understanding of the

organization and software development in general. It will be beneficial if

modelers are familiar with the BPMN notation, BPM techniques and SOA

technology in general. Process modelers are not required to develop web-

services and integration implementations if there are people with

development expertise in the project staff. However, during the process

mapping stage, process modelers are required to develop web-service

definitions and validate the implementations. A project manager should

manage the efforts of the process modelers. They should work together with

the SEPG to obtain detailed information on process definitions, resolve

ambiguities and identify inconsistencies. Support from SEPG on the ―context

definition‖ stage would provide helpful to quickly identify processes with no

tool interactions.

During our research, a single person conducted the case studies and method

implementation. The number of process definitions, their complexity and the

ease of access to information can be used to determine the number of process

modelers suitable for the project size.

60

2. SEPG: SEPG is a group of people responsible for the definition and

management of processes in an organization. Since the PLETIN method

requires extensive information on processes, SEPG support for the process

modelers are crucial for the success of the project.

3. Developers: Developers are external to the execution of the method. However

during the ―development of custom integration implementations‖ step in

process mapping stage, modelers can benefit from the experience of this role

to develop integration implementations faster and better.

4. Users: End users are not involved in the application of the PLETIN method

until test runs of the processes. After the processes are verified and deployed,

end users logon to Intalio|BPM Community Edition web interface to initiate

the execution of the processes.

3.8. Notation

During the development of PLETIN and the case studies, BPMN was used for

process modeling. Detailed information on BPMN is available in Section 4.1. BPMN

provided facilities to represent all the information required for the visual

representation and further execution of the processes. Thus there was no need to

modify standard BPMN notation. However, the following two conventions were

developed for PLETIN:

1. Tasks in process definitions with simple tool interactions were highlighted

(with a color of modelers ‗choice) for easy identification. An example is

available in Figure 22 and Figure 23.

2. Highlighted tasks executed in a sequence are grouped together using BPMN

group objects to represent sequences in process models. An example is

available in Figure 23.

3.9. Comparison of the PLETIN Method with Previous Efforts

The development of PLETIN was inspired by the approach taken by ALF (See

Section 2.1.2). ALF is a control integration effort, where events are captured from

61

the environment and corresponding service flows are executed. PLETIN, on the

other hand, depends on users initiating processes in a specific step of the manual

process.

PLETIN presents similarities to past control integration efforts discussed in Section

2.1.1 where a message passing method is used. In PLETIN, messages exchanged

between users and tools, and between tools are identified and re-created by web-

services and encapsulated in web-service technologies.

PLETIN also have similarities to ToolNet System discussed in Section 2.1.3.

ToolNet System develops an interface for all the tools in the environment, called the

ToolNet Adapter. ToolNet Adapter supports the least common denominator

functionalities so that tools can communicate with each other. ToolNet‘s approach is

to provide sustainability by providing a small subset of functionality over a large

number of tools. Although this may work in simple scenarios, support for

organizational processes would definitely suffer.

Our research showed that, although much research has been done for data sharing

approaches discussed in Section 2.1.4, none has been widely accepted. We believe

that the reasons behind this are as follows:

1. Data-sharing approaches require a complete perspective on the software

development processes. However, information on every aspect of software

development, including common data representations and common message

formats are not available.

2. Data-sharing approaches are not sustainable. A new tool, a new functionality of a

tool or a new conceptual representation requires the definition of new common

representations compatible with the existing ones. This is not feasible.

3. Data-sharing approaches are not suitable for existing tool sets, where an arbitrary

selection of tools are available. In such an environment developing a common

data representation presents significant challenges.

In their paper [57] Thomas and Nejmeh details the types of integration developed by

Wasserman. Discarding the platform integration type, they discuss the details of

presentation, process, control and data integration types. Regarding the aspects of

62

tool integration put forward by Thomas and Nejmeh, we can say that PLETIN

supports the following:

1. Control Integration

a. Provision (to what extent are a tool‘s services used by other tools in

the environment?)

b. Use (to what extent does a tool use the services provided bu other

tools in the environment?)

2. Process Integration

a. Process step (how well do relevant tools combine to support the

performance of a process step?)

3. Data Integration

a. Interoperability (how much work must be done for a tool to

manipulate data produced by another?)

PLETIN also partially supports the following aspects, if these concerns are included

in the process definitions used:

1. Process Integration

a. Event (how well do relevant tools agree on the events required to

support a process?)

b. Constraint (how well do relevant tools cooperate to enforce a

constraint)

2. Data Integration

a. Non-redundancy (how much data managed by a tool is duplicated in

or can be derived from the data managed by the other?)

b. Data consistency (how well do two tools cooperate to maintain the

semantic constraints on the data they manipulate?)

c. Data exchange (how much work must be done to make the non-

persistent data generated by one tool usable by the other?)

d. Synchronization (how well does a tool communicate changes it makes

to the values of non-persistent common data?)

63

PLETIN uses process models to identify and describe user integrations with tools.

This approach is also taken by PCSEEs (See Section 2.1.6) in the literature, where

generally software development processes are represented as process models.

However, PCSEEs convert these process models to rules and constraints, represented

in specialized languages. These rules and constraints are used to guide and constrain

the process flow. PLETIN does not transform the models, but include more detail on

the interactions to develop automatically executable versions of the user tool

interactions to develop tool integration implementations.

In their paper, Mi and Scacchi [46] suggest process models should be used to realize

integration. They state that interfaces between the tools can be derived from process

models, as proposed in this work. They also focus on an existing integrated toolset,

and provide process flexibility. However, contrary to these approaches, PLETIN

focuses on the identification of candidate integration situations. PLETIN aims to

understand ―when to integrate?‖ and ―what tools to integrate?‖ to support ―which

processes?‖. PLETIN takes a process-oriented approach to find out which integration

functionality will be the most beneficial for the execution of the processes. We

haven‘t been able to find out such an approach in the literature.

Briefly, PLETIN presents a process-focused approach to tool integration, which

provides practical benefit to organizations with already existing tool sets. We believe

that these are the missing aspects of tool interaction hindering popular adoption of

frameworks in practice.

3.10. Limitations of PLETIN

The following is a list of areas that have been identified as the limitations of the

approach proposed in this thesis. These can be improved by further research and the

use of newer technologies.

1. The PLETIN method uses existing process definitions and process models as

inputs. It does not aim to define, or improve organizational processes. To

apply PLETIN in an organization without process definitions or in an

organization planning for process improvement, it is recommended that a

64

process definition/modeling effort is completed, or PLETIN is implemented

parallel to such an effort. An extension to PLETIN, that analyzes process

evidence (e.g. tool logs) to develop process definitions can be developed and

employed in organizations without process definitions.

2. The PLETIN method discards all user interactions with tools that are

classified other than Create, Read, Update, Delete and Execute. This is a

subjective and arbitrary constraint and can be improved by further

formalisms, more complex mappings and more complex representations of

the nature of the actions.

3. During the development of PLETIN an assumption was made suggesting all

tools are ―grey boxes‖ to the modelers [59]. A ―grey box‖ tool means

although the source code is not available for the tool, an API or an extension

language is provided [31], [32]. PLETIN in its current form is still useful for

―white box‖ tools where the tool is custom developed or open sourced.

However, in case of a ―black box‖ tool where the modelers have access to

only binary executables, then an enveloping approach where a wrapper

converting internal tool objects to necessary format is required [59].

4. It is not possible to resolve ―implicit sequences‖ (see Section 3.5.2) with re-

organization using PLETIN. Such re-organization is considered as part of a

process improvement and left out of scope of this thesis

5. The PLETIN method is developed and applied using BPMN as the process

modeling notation and Intalio|BPM Community Edition for implementation.

Use of other notations and execution infrastructures were not considered,

however they could provide valuable insights on data and process

representation.

6. The application of PLETIN method in many organizations across software

development industry would create a knowledge base of integration

requirements and a basic understanding of the components of an ontology

including objects, actions, roles and messages. Development of an ontology

65

was left outside the scope of this thesis, but it would definitely help a better

understanding of the software domain.

7. PLETIN in its current form executes processes specifically initiated by the

users from the web interface. In a software development environment, events

generated by other tools, or external sources are not taken into account.

However, this is easy considering that PLETIN uses a BPEL engine, which

can capture external events and initiate corresponding processes.

8. Complex mappings of data between tools were not accounted for in the scope

of this thesis. It can be implemented as a new tool (similar to the project

repository developed for the first case study), or the facilities provided by the

business process execution engine can be employed.

9. In the case of already existing (legacy) but inferior integration solutions or

new integration functionality delivered with a new release of the tool,

PLETIN can be modified to employ or discard the existing functionality.

However, the comparison of a solution custom developed based on the

PLETIN method and an existing solution is not in the scope of this thesis.

66

CHAPTER 4

4. ENABLING TECHNOLOGIES

4.1. Business Process Modeling Notation (BPMN)

BPMN is a standard modeling notation initially developed by Business Process

Management Initiative (BPMI). Object Management Group (OMG) [50] currently

maintains the standard since the two organizations merged.

BPMN aims to provide a notation [17]:

―that is readily understandable by all business users, from the business

analysts that create the initial drafts of the processes, to the technical

developers responsible for implementing the technology that will perform

those process, and finally, to the business people who will manage and

monitor those processes‖.

BPMN, having multiple target user groups is simple, yet sufficiently expressive.

Both high-level manual processes and low-level automated processes can be

modeled using the notation.

Another goal stated in the BPMN Specification Version 1.1 [17] is to ensure BPMN

can be used to visualize languages designed for the execution of business processes,

67

such as BPEL4WS (Business Process Execution Language for Web Services) [16],

later renamed to WSBPEL [64].

The design of BPMN was preceded by the review of other notations like UML

Activity Diagram, UML EDOC Business Processes, IDEF, ebXML BPSS, Activity-

Decision Flow (ADF) Diagram, RosettaNet, LOVeM, and Event-Process Chains

(EPCs) to consolidate best ideas from these [17].

4.1.1. Choice of BPMN

BPMN has been chosen as the notation used in this thesis for the following reasons:

1. BPMN is designed from the ground-up to model both manual and automated

processes. The BPMN specification does not provide a direct mapping

between BPMN and execution languages like BPEL4WS or WSBPEL.

However, there exists a significant overlap between BPMN and BPEL4WS

constructs and many tools supporting BPMN modeling provide facilities for

converting BPMN to execution languages. Modeling and execution of

business processes in this thesis was implemented on Intalio|BPM

Community Edition (See Section 4.2). Intalio|BPM Community Edition

provides direct-deployment of BPMN models as executable business

processes on Intalio|BPM Community Edition. The modeling workspace

provided by Intalio, Intalio|Designer enables modelers to include information

like data-mapping and web-service invocation.

2. Ease of visually representing executable business processes using BPMN

enables the implementation infrastructure in this work to employ web-

services. Web-services are a standards-based method of communication for

applications of different platforms. They are widely accepted and provide a

direct solution for cooperating different tools of different vendors and

platforms.

3. BPMN‘s aim to support all business users lets users develop models on both

ends of the detail spectrum. Modelers can create high-level models involving

entities external to the organization, use black-box perspectives to identify

interactions and create people-oriented visual representations of manual

68

process definitions. Using the same notation, detailed models of processes to

be executed automatically can be developed. This dual modality is critical for

the aim of this thesis, because the PLETIN method aims to understand user

interactions with tools from models representing manual processes, to

develop an integration framework that can execute these interactions on

behalf of the users automatically. Such an undertaking requires a flexible

notation that can support both high-level people processes and low-level

automatic execution of processes.

4. BPMN is maintained by OMG, who also develops the UML specification. It

is an open, widely accepted and actively developed standard. This assures the

relevancy and continuity of the BPMN specification as a business process

modeling standard. Using open and standard components for integration

efforts is critical for its acceptance.

5. The last but not the least is our familiarity with the notation.

4.1.2. BPMN Elements

BPMN is used for business process modeling. It has common elements with other

process modeling notations. Table 4 gives a list of elements supported by BPMN.

This information is from the BPMN 1.1 Specification [17].

Table 4 BPMN elements

Element Description Notation

Event An event is something that ―happens‖

during the course of a business

process. These events affect the flow

of the process and usually have a

cause (trigger) or an impact (result).

Events are circles with open centers

to allow internal markers to

differentiate different triggers or

results. There are three types of

Events, based on when they affect the

flow: Start, Intermediate, and End.

69

As the name implies, the Start Event

indicates where a particular process

will start.

Intermediate Events occur between a

Start Event and an End Event. They

will affect the flow of the process,

but will not start or (directly)

terminate the process.

As the name implies, the End Event

indicates where a process will.

Start and most Intermediate Events

have ―Triggers‖ that define the cause

for the event There are multiple ways

that these events can be triggered.

End Events may define a ―Result‖

that is a consequence of a Sequence

Flow ending. Start Events can only

react to (―catch‖) a Trigger. End

Events can only create (―throw‖) a

Result. Intermediate Events can catch

or throw Triggers. For the Events,

Triggers that catch, the markers are

unfilled, and for Triggers and Results

that throw, the markers are filled.

Activity An activity is a generic term for work

that company performs. An activity

can be atomic or non-atomic

(compound). The types of activities

that are a part of a Process Model are:

Process, Sub-Process, and Task.

Tasks and Sub- Processes are

rounded rectangles. Processes are

contained within a Pool.

A Sub-Process is a compound

activity that is included within a

Process. It is compound in that it can

70

be broken down into a finer level of

detail (a Process) through a set of

sub-activities.

The details of the Sub-Process are not

visible in the Diagram. A ―plus‖ sign

in the lower- center of the shape

indicates that the activity is a Sub-

Process and has a lower- level of

detail.

The boundary of the Sub-Process is

expanded and the details (a Process)

are visible within its boundary. Note

that Sequence Flow cannot cross the

boundary of a Sub-Process.

Gateway A Gateway is used to control the

divergence and convergence of

Sequence Flow. Thus, it will

determine branching, forking,

merging, and joining of paths.

Internal Markers will indicate the

type of behavior control.

Icons within the diamond shape will

indicate the type of flow control

behavior. The types of control

include:

• Exclusive decision and merging.

Both Data-Based and Event-Based.

Data-Based can be shown with or

without the ―X‖ marker.

• Inclusive decision and merging.

• Complex -- complex conditions and

situations.

• Parallel forking and joining.

Each type of control affects both the

71

incoming and outgoing Flow.

Sequence

Flow

A Sequence Flow is used to show the

order that activities will be performed

in a Process.

Normal Sequence Flow refers to the

flow that originates from a Start

Event and continues through

activities via alternative and parallel

paths until it ends at an End Event.

Uncontrolled flow refers to flow that

is not affected by any conditions or

does not pass through a Gateway.

The simplest example of this is a

single Sequence Flow connecting two

activities. This can also apply to

multiple Sequence Flows that

converge on or diverge from an

activity. For each uncontrolled

Sequence Flow a ―Token‖ will flow

from the source object to the target

object.

Sequence Flow can have condition

expressions that are evaluated at

runtime to determine whether or not

the flow will be. If the conditional

flow is outgoing from an activity,

then the Sequence Flow will have a

mini-diamond at the beginning of the

line (see figure to the right). If the

conditional flow is outgoing from a

Gateway, then the line will not have a

mini-diamond (see figure in the row

above).

For Data-Based Exclusive Decisions

or Inclusive Decisions, one type of

flow is the Default condition flow.

72

This flow will be used only if all the

other outgoing conditional flow is not

true at runtime. These Sequence Flow

will have a diagonal slash will be

added to the beginning of the line.

Exception Flow occurs outside the

Normal Flow of the Process and is

based upon an Intermediate Event

that occurs during the performance of

the Process.

Message

Flow

A Message Flow is used to show the

flow of messages between two

participants that are prepared to send

and receive them. In BPMN, two

separate Pools in a Diagram will

represent the two participants (e.g.,

business entities or business roles).

Compensation Association occurs

outside the Normal Flow of the

Process and is based upon an event (a

Compensation Intermediate Event)

that is triggered through the failure of

a Transaction or a Compensate

Event. The target of the Association

must be marked as a Compensation

Activity.

Association An Association is used to associate

information with Flow Objects. Text

and graphical non-Flow Objects can

be associated with Flow Objects. An

arrowhead on the Association

indicates a direction of flow (e.g.,

data), when appropriate.

73

Pool A Pool represents a Participant in a

Process also acts as a ―swimlane‖ and

a graphical container for partitioning

a set of activities from other Pools,

usually in the context of B2B

situations.

Lane A Lane is a sub-partition within a

Pool and will extend the entire length

of the Pool, either vertically or

horizontally. Lanes are used to

organize and categorize activities.

Data

Object

Data Objects are considered Artifacts

because they do not have any direct

effect on the Sequence Flow or

Message Flow of the Process, but

they do provide information about

what activities require to be

performed and/or what they produce.

Group A grouping of activities that are

within the same category. This type

of grouping does not affect the

Sequence Flow of the activities

within the group. The category name

appears on the diagram as the group

label. Categories can be used for

documentation or analysis purposes.

Groups are one way in which

categories of objects can be visually

displayed on the diagram.

Text

Annotation

Text Annotations are a mechanism

for a modeler to provide additional

information for the reader of a

BPMN Diagram (―Text Annotation‖

on page 94).

74

4.2. Intalio|BPM Community Edition

The main tool used in the implementation of the PLETIN method is the open source

version of Intalio|BPM Community Edition. Intalio|BPM Community Edition is a

complete BPM solution providing two components: Intalio|BPM Community Edition

and Intalio|Designer. Intalio|Designer is the process modeling component. It supports

BPMN modeling in an Eclipse-based environment.

Figure 30 Supported BPMN elements in Intalio|Designer

Intalio|Designer provides the following facilities that is used during the application

of the PLETIN method:

1. Development of process models using the BPMN notation. (See Figure 30)

Figure 31 Web-service definitions imported to the workspace

75

2. Validation of BPMN models, highlighting missing elements, consistency

check and ability to execute check.

Figure 32 Data mapping in Intalio|Designer

3. Ability to import web-service definitions in the form of WSDL files directly

into the designer workspace to embed them into the process models.

Processes can invoke and consume these web-services during execution. (See

Figure 31

4. Data mapping to ensure data that is supplied by the user and generated during

the execution of the process is correctly routed. (See Figure 32)

5. One-click deployment of processes to Intalio|BPM Community Edition for

execution. (See Figure 33)

Figure 33 Intalio|Designer process deployment dialog

76

Process models developed in Intalio|Designer are deployed on the Intalio|Server,

where they are converted to BPEL and executed. Intalio|Server is a J2EE [40] based

BPM suite which embeds the Apache ODE BPEL engine [4]. It provides the

following facilities that, can be employed during the application of the PLETIN

method:

1. Web interface where users are only presented with information (including

available processes, process diagrams, execution summary for instances) and

actions they are permitted to access based on their role (See Figure 34 and

Figure 35).

Figure 34 Intalio|BPM Community Edition process operations interface

2. Ability to initiate processes through the web interface.

3. Ability to monitor process execution and access detailed information during

and after execution (See Figure 36).

77

4. Ability to work on different versions of the same process through automatic

versioning.

5. Ability to undeploy/retire processes.

Figure 35 Intalio|BPM Community Edition process detail interface

Using Intalio|BPM Community Edition it is possible to develop custom forms where

users enter required information for process execution and access forms available to

their roles.

Figure 36 Intalio|BPM Community Edition process instance detail interface

78

4.3. Eclipse and Apache Tomcat

Web-services used for integration implementations were developed using Java

language on Eclipse [24], an open source development platform. Web-services were

generated directly from standard Java classes using the ―web-service wizard‖ (See

Figure 37) provided by Eclipse and deployed to Apache Tomcat [5], an open source

software implementation of the Java Servlet [41] and JavaServer Pages [42]

technologies. API documentation is used to understand the APIs provided by

software development tools.

Figure 37 Eclipse "web-service wizard"

79

CHAPTER 5

5. CASE STUDIES

To develop a method that provides a solution for tool integration, we have performed

two case studies involving two target organizations. In the first case study (Case

Study I) we have focused on user interactions with tools to understand the extent of

tool use and then studied the issues with tool integration to verify their existence and

significance. Based on these findings we have developed the PLETIN method. On

the final phase of Case Study I we studied the applicability and efficiency of the

PLETIN method through a prototype implementation.

Case Study I provided insights into the issues with tool integration in software

development. A second case study (Case Study II) was designed and performed

focusing only on the conduct of PLETIN. The aim of Case Study II was to

understand the applicability of the PLETIN method on some other environment then

Organization I. A case study in a separate environment was required since the

method was developed based on the results of Case Study I and was dependant on

them.

The PLETIN method is based on the scenario where there are no integrations

between the tools in a software development environment; cooperation of them must

be maintained manually. As an example, to make it possible for different tools that

80

are not integrated to work on the same data set, the data must be fed to each tool

manually. Similarly, for a tool to operate on the information created by another tool,

data should be moved between the tools by a user manually. In other words, users

must perform actions necessary to keep the tools working together (cooperate). In

this situation, process definitions (or models derived from these definitions if they

exist) would contain sequences of actions (what we name integration-tuples or

sequences, and use interchangeably in this thesis) performed to maintain tool

integrations. These sequences are required to keep the tools working cooperatively.

Thus, user actions account for non-existing integration facilities of the tools. For

simplicity, we call these facilities integration-tuples (or sequences). An integration-

tuple is a candidate tool integration situation. In our scenario users maintain

integration-tuples manually. A method designed to investigate the process models

can be used to understand how users interact with the tools to maintain these tuples.

Based on this knowledge, requirements for the services to support these actions can

be inferred and implemented to build a tool integration framework.

We have selected a multiple case study design as our research method since our

research presents ‗how‘ and ‗why‘ questions to understand the extent of tool use and

observe problems with tool integration. The behavioral nature of the problems we are

dealing with, and the difficulties of observing results in an experimental setting

prevents us from trying other methods where we are required to modify the behavior

we are investigating.

Case Study I was performed at Organization I, which is a software development

organization that has process maturity certified as CMMI Level 3. The organization

had clearly-defined process definitions using a multitude of tools for software

development.

Case Study II was performed at Organization II, which is a software/systems

development organization that has process maturity certified as CMMI Level 3.

Organization II encouraged use of tools in their software development processes,

however the use of tools is not mandatory.

81

Both organizations significantly contributed to this research by providing access to

their process definitions for analysis while answering our questions about tool use

and integration during the case studies.

This chapter is organized as follows: Section 5.1 describes how the multiple case

study approach was designed, including questions for individual case studies. Section

5.2 defines constraints on the case selection. Section 5.3 and Section 5.5 detail the

execution of the two case studies along with samples of artifacts produced. Section

5.4 and 5.6 present the results of the case studies. Section 5.7 is on the validity

threats for the case studies. Section 5.8 summarizes the results of the case studies and

provides a discussion on the results.

5.1. Multiple Case Study Design

A multiple case study design was used in this thesis. Two case studies were planned

to develop and then validate the applicability and efficiency of the PLETIN method.

The first case study was designed as an exploratory case study to observe and

validate the existence of tool integration issues in software development. Based on

these issues a method for tool integration was developed. The PLETIN method was

applied in two different organizations to observe its applicability and efficiency.

5.1.1. Case Study I Design

PLETIN is a process modeling method developed to provide a solution to tool

integration problem. PLETIN is used to identify tool integration-tuples required by

an organization and implement them. The main research question for the case study

was defined as:

"What is the applicability and effectiveness of the PLETIN method in

identifying and implementing tool integration-tuples in software

development?"

An integration-tuple is defined as an ordered list of independent tools or different

parts of the same tool providing separate features and an action. It can be represented

as ―(ToolA, ToolB…ToolN, ActionX)‖ where ToolA, ToolB, and ToolN stand for

tools and ActionX denotes the sub-process requiring these tools. The tuple

82

corresponds to an integration situation between the tools used to perform ―ActionX‖.

A tuple can be defined both for an existing implementation or only denote a

possibility of such an integration. Integration-tuples represent a series of simple (one

of Create, Read, Update, Delete and Execute operations) user interactions with tools,

thus they are interchangeably called sequences in this thesis.

The case study was designed to have three phases (See Figure 38). The first phase

was the tool use exploration phase. Its aim was to provide a basis for the other two

phases that focus on the development, implementation and evaluation of the method.

Figure 38 Process model for Case Study I Design

The identification phase aimed to unravel the extent of user interactions with tools

[26]. In this phase the goal was to understand if the tools and the tool integration

problem have an effect in practice. The research question for the first phase was:

"How extensively are tools used in software development?"

To answer this research question, software development process definitions were

analyzed to identify user interactions with tools. Process definitions not containing

any tool interaction were excluded at the beginning of the case study to reduce the

scope, since by definition they can't contain any tool interactions. Interactions in all

processes were identified to understand the extent of tool use, coupled with the ratio

of processes having interactions and the distribution of interactions in process areas.

The extent of tool interactions observed in the first phase indicated a strong

dependency on tools from users and software development processes. Because of this

dependence, existing features, strengths and limitations of the tools directly impact

the user and process performance. While an enhancement in tool features would

83

increase the process performance, a reduction would result in poor-performing

processes [44].

[45] suggests that an integrated toolset would give better results, benefitting the

execution of software development processes. The second phase of the case study

(the identification phase) focused on the existence and significance of the tool

integration problem to understand the status of tool integration in the organization, to

observe problems related to it in practice and interpret to what extent the PLETIN

method would be helpful [27]. The research question for this part was:

"What is the significance of tool integration problem in software

development?"

[45] states that for a tool to be used effectively in an information systems lifecycle

process it must fulfill ―the specific needs and expectations of the organisation, and its

associated stakeholders‖. To understand the state of tool integration, the

identification phase focused on what kind of integration features the users need in

order to execute their processes. These integration features required by the users (and

processes) were denoted by integration-tuples.

Process models based on process definitions conforming to certain criteria were

defined to identify these tuples. These models were used to identify sequences of

simple user interactions with tools, i.e. integration-tuples. This set of integration-

tuples established the requirements for tool integration based on organizational

processes. A gap analysis comparing these requirements to the existing state of tool

integration in the organization was executed. The frequency and the process area

distribution of these tuples were also noted. The results described the nature and

significance of the tool integration problem and guided our efforts on developing the

PLETIN method to provide a solution.

We have developed the PLETIN method to identify and implement integration-

tuples. Integration-tuples were identified at the end of the second phase. The third

phase of the case study was conducted to observe the applicability and efficiency of

the method in implementing integration-tuples [27]. The sequences identified in the

process models were broken down into atomic actions. Corresponding services (or

84

interfaces), which the organizational processes require from the tools, were defined.

The definitions of the services were built from input and output messages exchanged

and the action normally carried out manually by a user. Service definitions in the

form of WSDL files were combined into process models. This enabled the

implementation of integration-tuples as business processes executed by a business

process management suite. Business services were built such that they can consume

the implemented services on behalf of users. Data for the effort spent on the

implementation was recorded. Also, information on manual execution of the

processes was obtained and compared to the automated execution case.

The results of this case study show that software development processes are

dependent on the use of tools. The integration between tools are however not

satisfactory for the processes because many opportunities were missed. These missed

opportunities were significant and extended to all stages of software development.

The frequency of use ranged widely from once per requirement revision to once per

project. The results suggests that it is feasible to identify these opportunities and

provide custom implementations for them using the PLETIN method implemented in

the second and third phases of the case study.

5.1.2. Case Study II Design

To understand the applicability of PLETIN method on a separate but similar

environment the following questions were developed and answers were sought by

the application of the PLETIN method:

1. ―Is it possible to identify candidate tool integration situations from process

definitions using PLETIN?‖

2. ―Are there any similarities between the service definitions and business

processes developed from the two cases?‖

The first question is directly concerned with the feasibility and the ease of

application of the PLETIN method. It is crucial that the method developed for this

thesis is easy to use and provides useful results in an effective manner. An easy to

use and efficient method is a must for the adoption of the method. Although the ease

85

of use and practical results provided by the PLETIN method was observed in Case

Study I, an independent case study was required for unbiased results.

The second question aims for a comparison between the results of Case Study I, and

the newly planned case study. Users generally interact with tools in similar ways

even for performing different processes of different organizations. Radical departures

from the common interaction methods can also be observed, however rarely, because

the goals of software development are similar. Since the method is used to identify

user interactions with tools, it is expected that organizations produce similar results

with occasional differences between them. The second question aims to understand

and discuss the level of similarities and differences between two case studies.

5.2. Case Selection

The problem under analysis puts the following constraints on the target organization

for proper conduct of the case study:

1. The existence and active use of multiple tools for software development

2. A defined set of software development processes (preferably certified in

CMMI Maturity Level 3 [18], or comparative ISO 15504 [39] level)

Since this case study is part of a research on the tool integration problem in software

development organizations, the setting for conduct of the case study must have a

multitude of tools supporting the processes in use.

The case study requires the analysis of process definitions to extract user interactions

with tools. Analysis of process definitions was favored over the observation of actual

user interactions with tools so the method can be used in parallel with process

modeling and/or improvement efforts, while the method of observation do not affect

the results.

5.3. Execution of Case Study I

The case study was performed in a software development branch of a research

organization. This branch develops software for military and civilian systems. To

support their development efforts, they utilize multiple tools. These tools include

86

requirements management, configuration management, change management, test

management, automated functional testing, project planning, risk management and

time tracking. The processes for software development were already defined and the

organization had recently been evaluated to be CMMI Level 3. We have been able to

work on the process definitions and members of the Software Engineering Process

Group (SEPG) provided answers to our questions whenever we requested.

5.3.1. Tool Use Exploration Phase

In the beginning of the case study, a meeting was held with the department head and

the SEPG leader to develop the schedule for the case study work and the SEPG Q&A

sessions. After setting up the schedule and sessions, we started the scoping of the

case study. Process definitions had been grouped by the organization using a

categorization similar to the process area definitions in the CMMI model [21].

Working with the SEPG, we identified the process areas that are not directly related

to software development thus are irrelevant to our cast study. These process areas

focused on process and project management. A later analysis revealed that these

process areas have none or single tool interactions (per process definition) thus were

not suitable for our research. The process areas considered not relevant to our case

study are given in Table 5:

Table 5 Processes areas not directly related to software development

Process Name Process Abbr.

Process Management PcM

Measurement and Analysis MA

Software Quality Assurance SQA

Risk Management RkM

Organizational Training OT

Project Management PM

Decision Analysis and Resolution DAR

87

The remaining process areas that were related to software development defined the

scope of the case study. The process areas included in the scope of the case study are

given in Table 6.

85 process definitions constituting the 4 process areas (CM, RE, TS, VV) were

analyzed. User interactions with tools in all processes were identified to understand

the extent of tool use, coupled with the ratio of processes having interactions and the

distribution of interactions in process areas.

Table 6 Process areas included in the scope of Case Study I

Process Name Process Abbr.

Configuration Management CM

Requirements Engineering RE

Technical Solution TS

Verification and Validation VV

5.3.2. Identification Phase

The extent of tool interactions observed in the first phase indicated that users and

software development processes for the organization had a strong dependency on

tools. 90% of all analyzed process definitions contained tool interactions.

The aim of the identification phase was to understand if issues with tool integration

were significant for the organization. If it is, then the benefits of the toolset to

software development can be increased through better integration. For this we started

gathering information on the state of tool integration in the organization, problems

related to it in practice and their extent. Thus, the identification phase focused on the

existence and significance of the issues with tool integration while unraveling what

kind of integration features users need in order to execute their processes. These

integration features required by the users (and processes) were denoted by

integration-tuples.

To identify these tuples process definitions that included multiple interactions with

tools were selected. Processes including complex flows for decision-making, review,

88

design, creative development and collaboration were excluded because they didn‘t

provide any data on tool integration but rather focused on manual tasks only people

could perform. The outcomes of such processes can vary, i.e. they are not

deterministic [9]. The remaining process definitions were converted to process

models using the BPMN notation. A sample BPMN model developed in this phase is

given in Figure 39.

The models were used to visually identify sequences of simple user interactions with

tools, i.e. integration-tuples. To identify integration-tuples, process models

developed from process definitions were used. These process models represent tool

interactions by a BPMN message connection between a task performed by a user and

a BPMN pool representing a tool. Tasks containing tool interactions were classified

depending on whether they were complex or not. An action was classified as simple

if it was one of the CRUD operations: Create, Read, Update, Delete or Execute.

Simple tool interactions were highlighted with a distinctive color (e.g. orange) on the

process model. A sample for the representation of tool integrations in a process

model is given in Figure 40.

The highlighted tool interactions were grouped together using BPMN group objects

to represent a sequence. A sample of such grouping is given in Figure 41. These

sequences, consisting of multiple, simple tool integrations present tool integration

opportunities. See a detailed discussion in 3.4.3. These sequences of actions are

labeled as integration-tuples.

Integration-tuples were then organized into an ―integration map‖ providing a

graphical representation of the organizational process requirements for integration.

This integration map was compared to the ―current integration map‖ representing all

available integration implementations for the tool set, whether they were used by the

organization or not.

89

F
ig

u
re

 3
9

 S
a

m
p

le
 B

P
M

N
 m

o
d

el
 f

o
r

C
a

se
 S

tu
d

y
 I

,
P

h
a

se
 I

,
R

E
5

2
1

4

90

A gap analysis was performed comparing the two maps. This analysis comparing the

requirements to the existing state of tool integration clearly laid out the missing

integration implementations for the organization and the significance of the tool

integration problem experienced by the users. We also noted the frequency and the

process area distribution of these tuples. The results described the nature and

significance of the tool integration problem and guided our efforts on developing the

PLETIN method to provide a solution.

Figure 40 Sample tool interaction represented as a process model

5.3.3. Implementation Phase

The next step after the identification of unsatisfied integration-tuples was the

implementation step. Since the process models were already developed in the

previous phase, the implementation phase was concerned with the identification of

the implementation details.

The integration-tuples defined in the previous phase were used as the requirements or

high-level definitions for the services to be developed. The implementation effort

91

used top-down and bottom-up approaches for Service Oriented Application method

[7]. In this approach, both existing services and the requirements are reviewed,

modified and used to reach an acceptable solution. The integration-tuples

(sequences) and the actions constituting them were broken down into atomic actions.

The atomic actions were compared with existing services provided by the tools. If

there was a match, the service was used as the implementation of the action.

Figure 41 Two actions grouped into a sequence

In this thesis, web-services technology was used since they are standard-based. If the

tool did not provide a web-service implementation, a wrapper was developed. If the

specification of the action corresponded to several web-services, the web-services

could be combined into a new service, or the action definition could be further

broken down. The action definition could be modified to use already existing

services rather than implementing a new one, if the action was very similar to the

web-service. However, if there was no corresponding or similar existing web-service

for an action, then custom implementation was necessary.

In this case study, we have implemented the required web-services ourselves. In

other cases software developers in the organization can assist the process group, or

even vendor assistance can be sought for. Custom implementations were developed

complying with the requirements based on the atomic action, and input/output

messages depicted on the process model.

When all atomic actions were mapped to an existing service and required web-

service implementations were completed, they were imported into the BPMN

modeling workspace (See Figure 42). The web-services were deployed into a

separate BPMN pool labeled as ―Tools‖. Message connections were created between

92

the atomic actions and web-services. Atomic actions connected to web-services were

moved to a separate BPMN pool labeled as ―Process Manager‖ to accommodate the

processes to be executed by the integration framework on behalf of users. This way,

all actions normally performed manually by users were delegated to the integration

framework. Users could experience an integrated toolset since the framework

performs actions otherwise manually executed by them.

Figure 42 Web service definitions imported to the workspace

After the process models were completed and reviewed, they were deployed to the

Intalio|BPM Community Edition for review, testing and execution. A sample for the

process models completed and deployed for execution is given in Figure 43. For all

process models developed in the case study, see APPENDIX D: PROCESS

MAPPING (CASE STUDY II).

Figure 43 Sample completed BPMN model for Case Study I, RE5214

93

5.3.4. Discussion on Implicit Sequences for Case Study I

UML modeling tool is mentioned as utilized by the development team in TS process

area. Details on how the tool should be used are available in process definitions.

However, sequences of tool interactions with other tools are not observed and tool

appears to be used as standalone. This required further analysis for implicit

sequences in Case Study I and revealed two sequences.

The first one is classified as an omitted/unmentioned implicit sequence where

document generation action from the tool is not explicitly stated but exists as a tool

feature. Process model for TS512 is given in Figure 44, where a tool interaction

(generate document) is omitted and defined as a manual action. Tool features are

used to identify this interaction and sequence it makes up.

Figure 44 Process model for TS512

94

Another implicit sequence was revealed in process TS521. It was classified as an

interrupted sequence because the code generation from the UML/IDE tool does not

directly precede submission to configuration management tool in process definitions.

The submit action was further analyzed to uncover this implicit sequence. Process

model for this sequence is given in Figure 45.

Figure 45 Process model for TS521

Process definitions analyzed in CS1 does not include any mentions of IDEs except

TS521. However analysis of the tool features reveals existing integrations with other

tools like the configuration and change management tools. Unfortunately, the

integration of IDEs with other tools like SCM is specified in process definition

documents. This hints several possible unmentioned/omitted and compound implicit

sequences in process definitions. Improvement of these process definitions through

observation and process discovery is left as future work.

95

5.4. Results for Case Study I

The tool use exploration phase of the case study analyzed the process definitions of

the target organization. There were a total of 85 process definitions from the four

process areas we have investigated. 77 of these process definitions contained

interactions with tools. The distribution of these interactions with respect to process

areas is given in Table 7.

43 of 85 process definitions (51%) we have analyzed are labeled to be completely

creative (unstructured) processes, including review, approval, analysis, design and

development activities. These processes were considered not suitable for tool

integration.

30 of the 85 process definitions we have analyzed for the case study contained

candidate integration situations. The distribution of these candidates with respect to

the process areas is given in Table 8.

Table 7 Tool interactions with respect to process areas

Process Area # of proc.def. With tool interaction

CM 17 11

RE 11 11

TS 13 13

VV 18 17

Docs/Guidelines 26 25

Total 85 77 (90%)

It is notable that, the majority of the candidates were derived from supporting

documents and guidelines for tool use. This was expected since these documents

describe how the tools should be used and consider the features available from the

tools to a greater extent than the other definitions.

96

Table 8 Distribution of candidate integration sequences with respect to process areas

Process Area # of proc. def. # of candidates

CM 17 5

RE 11 4

TS 13 2

VV 18 1

Docs/Guidelines 26 18 (60%)

Total 85 30 (35.3 %)

Further analysis of these candidates revealed references and overlaps between

process definitions. For duplicate process definitions, those with the highest detail

were chosen. Process definitions in guidelines consistently had more detail.

Discarding these duplicates, a total of 26 integration-tuples were identified. Almost

half (42%) of all tuples were from guideline documents. Remaining tuples were

uniformly distributed to other process areas. The distribution of these tuples to

process areas is given in Table 9. The distribution of the execution frequency for the

tuples is given in Table 10.

Table 9 Distribution of tuples with respect to process areas

Process Area # of proc. def. # of tuples

CM 17 5

RE 11 6

TS 13 2

VV 18 2

Guidelines 26 11 (42%)

Total 85 26

97

The majority of integration-tuples are executed once per project. This is due to the

clear description of how a project is set up and closed in the process definitions.

Following per project executions; per SRS release, per change request (CR) or

requirement and per build or release executions are observed. The execution

frequency of tuples ranges from several times a day to once per project duration

(usually around 12-24 months). However, the highest number of executions for a

tuple is per CR or requirement since they are executed several times a day.

An integration map was assembled from these integration-tuples. It is given in Figure

46. The integration map visually represents the tuples for each tool to provide an

understanding of the requirements of process definitions. The thickness of the

connections between tools represents the number of tuples between. The actual

number of tuples constituting the integration map is given in Figure 48.

Table 10 Execution frequency of tuple

Frequency # of tuples Percentage (%)

Per project 9 36

Per SRS release 8 28

Per build or release 4 16

Per CR or requirement 5 20

Total 26 100

As it can be seen from the map, 26 tuples use the following 10 systems: software

configuration management tool (SCM) Borland StarTeam, requirements

management tool (RM) Borland CaliberRM, project repository (PR), UML Modeling

Tool (UML) Enterprise Architect, test management tool (TM) HP Mercury Quality

Center, project planning tool (PP), time tracking tool (TT), build management tool

(BuM), file system (File) and e-mail (e-mail) system. The most significant

integration requirements include File, PR, RM and SCM systems.

98

Figure 46 Integration map for the case study

Figure 47 depicts a similar map, built from the existing integration-tuples already in

use by the organization. Comparing the two maps, it is clear that the organization is

employing a small number of integration-tuples. All of these tuples are point-to-

point, and are supplied by vendors for specific versions of the tools in use. There are

no custom or 3
rd

 party integration-tuples in use.

Figure 47 Existing integration map of the organization

It should be noted that, project repository is a simple database storing project

information like the path to document templates, or login information. It is developed

for the purpose of integration during this case study. It consists of single key-value

pairs in a database table and a web-service responding to request including ―keys‖.

99

The organization we have performed our case study uses Borland StarTeam [12], a

software configuration management tool providing both configuration management

and change management features in a single package. For this case study we have

not separated its functionalities into two logical tools but rather adhered to the

existing features and labeled the tool as software configuration management (SCM)

tool.

The modeling effort produced 18 process diagrams. These diagrams are available in

APPENDIX D: PROCESS MAPPING (CASE STUDY II). It took 20 hours for a

single researcher to complete the modeling effort.

26 integration-tuples identified in the identification phase of the case study were

further examined in the third phase. From these 26 integration-tuples, a total of 232

operation calls were identified. Further examination of these calls revealed a need to

merge several calls (mostly login and context setting calls), and add new calls

(lookup calls from the project repository for context identification).

Figure 48 Number of tuples constituting the integration map

The final 145 individual calls constitute a set of 49 unique operations. The

distribution of these operations with respect to individual tools is given in Table 11.

100

The complete list of operations is listed in the APPENDIX A: COMPLETE LIST OF

OPERATIONS DERIVED FROM PROCESS MODELS (CASE STUDY I).

Services for SCM, RM, PR, file system and e-mail system were implemented.

Remaining implementations are planned and left as future work. Definitions for the

web-services developed are available in APPENDIX G: DEFINITIONS FOR WEB

SERVICES (CASE STUDY I), along with the actual implementations in

APPENDIX H: APPLICATION CODE DEVELOPED FOR WEB SERVICES

(CASE STUDY I). This corresponds to the implementation of 18 out of 26 (69%)

tuples with 40 out of 49 (81%) operations. This effort took a total time of 80 hours

for a single researcher who is familiar with the tools but is not an experienced

developer.

Table 11 Distribution of operations to tools

Individual tools # of operations

SCM 22

RM 11

File 5

PR 1

UML 1

BuM 1

TM 3

TT 2

PP 2

E-mail 1

Total 49

101

5.5. Execution of Case Study II

The selection for the second case was based on the constraints on the first case study.

A software and systems development organization employing multiple software

development tools having already existing process definitions was sought.

Organization II was chosen, which is specialized in military systems and have

processes that are assessed as CMMI ML 3. They use multiple software development

tools. However, the tools used in specific projects depend on the customer

requirements. The organization has around 320 personnel, developing and providing

consultancy for military systems and software projects.

The second case study (Case Study II) was executed following the completion of the

first. It was designed to have three phases, corresponding to the first three stages of

the PLETIN method: Context definition, process definition and process mapping.

The process model for Case Study II is given in Figure 49.

Figure 49 Process model of Case Study II

Case Study II was executed in two weeks by a single researcher. The effort spent for

each phase for the case study was recorded.

The constraints for the case selection were the same as the first case study. However,

there are fundamental differences between the two case studies. Table 12

summarizes these differences.

Because of the above stated differences between the two organizations, different

perspectives not available in Case Study I was observed. Organization II proved to

be a good match for the aim of Case Study II, and the thesis as a whole. While

conforming to the constraints developed for Case Study I, Case Study II provides the

following differences:

102

 There is no fixed tool set employed, enabling the observation of tool interactions

from a wider perspective of generic process definitions.

 Although there is no fixed tool set, the tools usually employed by Organization II

is almost completely different from the ones used in Organization I. This

provides a different understanding from Case Study I.

 Process definitions have a less detail compared to Organization I, testing the

ability of PLETIN to identify candidate integration situations from a different

detail level.

Table 12 Differences between the two target organizations

 Organization I Organization II

Tool set Employs a fixed set of tools

for all software

development projects.

Does not have a specific tool set.

Tools used can be different for

each project.

Tool use Tools are rigorously used in

every software development

project and constitute part

of the organizational

culture.

Tool use is not mandatory. The

choice is on the discretion of the

people responsible from the

project and requests from the

customers.

Process definitions Process descriptions contain

explicit description of tool

interactions or include

references to tool guideline

documents.

Process definitions describe how

the work should be done, either

manually or through the use of

tools. Details for tool

interactions are omitted,

however tool use is encouraged

explicitly.

Tool guidelines Has an extensive set of

guidelines for tool use.

There are no tool guidelines

(except an old guideline for

configuration management tool)

103

To observe the PLETIN‘s ability of producing consistent results, the candidate

integration situations identified in Case Study II was compared with the results of the

Case Study I. Similarities and differences were identified.

It should be noted that a prototype implementation was not considered as a part of

this case study. Implementation effort is the direct transformation of web-service and

business-process definitions and could in practice be performed by expert software

developers. For the analysis of the applicability of PLETIN, existence of actual web-

services and business processes is not necessary. Instead, web-service and business

process definitions in the form of executable process models are sufficient.

5.5.1. Context Definition Phase

The aim of this phase was to define the scope of the case study. To define the scope,

process definitions of Organization II were analyzed. Process definitions with no or

single tool integrations were filtered out. Process model for this phase is given in

Figure 50.

A meeting was held at the beginning of the case study attended by the researcher and

the Head of Process Group for Organization II. The aim of the meeting was to

establish mutual understanding for the conduct of the case study and acquire

information on the process definitions. A secondary goal was to identify process

definitions that can be excluded in bulk based on the experiences and knowledge of

the process group. The following were the agenda items:

 An overview of the research performed in this thesis, along with the goals and

constraints.

 An overview of the PLETIN method.

 Determination of the schedule, location and scope for the case study.

 Collection of information on the structure of organizational process

definitions.

 Identification of process definitions suitable for the application of the PLETIN

method.

104

Figure 50 Process model of Case Study II, Phase I

As in Organization I, process definitions were grouped into process areas similar to

the CMMI process model. The following 4 process areas were selected as suitable:

 Configuration Management (CM)

 Product Development – Requirements Analysis (RA)

 Product Development – Coding, Software Unit Test and Integration

(CODE)

 Product Development – Verification and Validation (VV)

Analysis of these 4 process areas defined the scope of the implementation. All

process definitions in these process areas were analyzed, resulting in a list of 15

processes containing multiple tool interactions. These processes were selected for

further analysis and component identification in the next phase. The list of processes

is given in Table 13.

It should be noted that the structure and format of these process areas present differ

slightly from the ones analyzed in Case Study I. Process definitions for Case Study II

are longer, and do not present clear sub-processes that have been identified as

process definitions in Case Study I. However there are sub-headings in process

definitions that we have used to identify these sub-processes. Besides differences in

format, significant similarities exist between the processes identified in both case

studies. This was expected since software development processes interacting with

tools are configuration management, requirements engineering, testing and coding.

Very little interaction exists for supporting processes like project or process

management.

105

Table 13 List of processes selected for analysis

Process Code Process Area

KY-020-621 CM

UG-010-84 RA

UG-040-83 RA

UG-070-81 CODE

UG-070-82 CODE

UG-070-83 CODE

UG-070-86 CODE

UG-070-87 CODE

UG-070-89 CODE

UG-190-810 VV

UG-190-811 VV

UG-190-812 VV

UG-190-813 VV

UG-190-82 VV

UG-190-89 VV

Compared to Case Study I, the process definitions include less detail. They focus on

what should be done for each process definition, contents, inputs and outputs without

details. This is because of the fact that Organization II does not mandate use of tools

for software development and leaves the decision to the people responsible from

individual projects. Thus, actions can be executed manually in some projects, or

using tools in other projects. This attribute of process definitions in Organization II is

favorable being a second case study where PLETIN would be used to identify

candidate tool integration situations from process definitions with less detail.

106

5.5.2. Process Definition Phase

The second phase of Case Study II focused on the development of process models

based on the process definitions. 15 process definitions identified as suitable for the

purposes of PLETIN in the first phase were further analyzed to identify process

components. Actors, actions, tools, process flow, interactions with tools, and

message contents were identified from process definitions to develop process

models. The process flow for this phase is given in Figure 51.

Figure 51 Process model of Case Study II, Phase II

After the process components were identified and represented as process models,

tool interactions were analyzed. They were classified as simple or complex, and

simple interactions were highlighted in the process model. For a detailed discussion

of this classification, see Section 3.4.3.

A total of 18 process models were developed for Case Study II corresponding to the

processes identified in the first phase. The process models represent the selected

processes using BPMN notation. A sample process model developed in this phase is

given in Figure 52. Process models developed in this phase are omitted since they

were transformed to their final form in the next phase of the case study, which are

given in APPENDIX F. PROCESS MODELS (CASE STUDY II).

The process models developed in this phase represent process definitions containing

tool interactions and highlight the interactions that are simple, thus suitable for

candidate tool integration situations. The next phase of the Case Study II,

corresponding to the Process Mapping stage of PLETIN would use these process

models as inputs to identify sequences of suitable tool interactions. From these

107

interactions web service and business process definitions would be extracted to

provide the necessary infrastructure for tool integration.

Figure 52 Sample process model for Case Study II, Phase II (UG-070-87)

5.5.3. Process Mapping Phase

Third phase of Case Study II used process models developed in the previous phase to

identify candidate tool integration situations. These situations were extracted from

sequences of simple tool interactions. Simple tool interactions were highlighted in

the previous phase to ease their identification. In this phase of the case study, these

interactions were inspected to see if they were forming up a sequence. A sequence of

simple interactions are said to exist if two or more simple interactions are executed in

sequence without any complex interaction or regular action in between. Interactions

forming up a sequence were labeled and identified with a unique sequence number.

Actions forming up the sequences were decomposed into atomic actions. The

decomposition information is given in APPENDIX D. PROCESS MAPPING (CASE

STUDY II). The sequences decomposed into atomic actions were then moved onto a

separate BPMN pool, representing the business process that is going to be executed

by the integration infrastructure (Business Process Execution Engine). Non-atomic

actions were represented as BPMN Sub-process element containing their atomic

decomposition. Web-service definitions were developed based on these atomic

actions. A list of web-service operations required by the user interactions are given in

APPENDIX B. COMPLETE LIST OF OPERATIONS DERIVED FROM

PROCESS MODELS (CASE STUDY II).

108

Figure 53 Sample process model for Case Study II, Phase III

Tasks representing web-services required from the tools were added to a separate

BPMN pool in the model named ―Tools‖. These tasks are connected to atomic

actions in the sequence using BPMN message elements to represent the information

exchange between the business process executed by the integration infrastructure and

services provided by the tools. A sample process model finalized in this phase is

given in Figure 56.

A discussion on the comparison of the web-service definitions developed from the

two case studies is given in a later section. The process model of this phase is given

in Figure 53.

5.5.4. Discussion on Implicit Sequences for Case Study II

Our analysis on implicit sequences for Case Study II revealed three compound

implicit sequences for Case Study II. These sequences were labeled as KY-020-

62135, KY-020-62142 and KY-020-62110. KY-020-62135 and KY-020-62110 were

already captured by the sequence labeled KY-020-621 because they were succeeding

or preceding another simple tool interaction, thus were making up a sequence.

However, KY-020-62142 was not labeled as a sequence, but identified as a

standalone action. The process model for this process is given in Figure 54.

109

Figure 54 Process model for KY-020-62142

The implicit sequence consists of the software configuration management tool

(SCM) sending an e-mail to relevant stakeholders. Thus the existing integration

implementation between SCM and the e-mail system is employed. However, since

the initial tool interaction by the user was with the SCM, and the e-mail integration is

a feature of this system, it was not identified initially. However, since the process

definition contains two mentions of tools a compound implicit sequence was

observed (See Table 3). The sequence is easily visible when the action is

decomposed (See Figure 55).

An interrupted implicit sequence was observed and labeled as UG-070-81. This

sequence was discovered when the ―Store code in CM‖ action was classified as

Submit/Update/Put and the source of the information/data was found to be ―Generate

code‖ action for the UML/IDE tool.

Process definitions analyzed in Case Study II does not include any mentions other

than UG-070-81 of UML modeling tools. However, analysis of the tool features

reveals existing integrations with other tools like the configuration and change

management tools. Unfortunately, neither the use of the UML tool, nor its

integrations (in terms of storing the documents) with the configuration management

tool is specified in process definitions documents. This hints several possible

110

unmentioned/omitted implicit sequences in process definitions. Improvement of

these process definitions through observation and discovery is left as future work.

Figure 55 Sequence KY-020-62142 decomposed

5.6. Results for Case Study II

Case Study II was conducted in two weeks following the completion of Case Study I.

Following the initial meeting with the process group, process definitions from 4

process areas were analyzed. A total of 15 process definitions were classified as

suitable for the purposes of the PLETIN method. These 15 process definitions were

represented as 18 separate process models.

Analysis of tool interactions in these process models revealed 25 sequences,

consisting of 58 invocations of 14 different operations provided by 7 different

systems. These systems are: Change Management Tool (ChM) IBM Rational

ClearQuest, Software Configuration Management Tool (SCM) IBM Rational

ClearCase, Test Management Tool (TM) HP Mercury Quality Center, UML

Modeling Tool (UML) Rational Rose, File System, E-mail System, and Document

Generator (DocGen). Requirements Management Tool (RM) IBM Doors is also used

111

in the organization, however sequences derived from process definitions did not

contain any interactions with it. The list of all operations is available in APPENDIX

B. COMPLETE LIST OF OPERATIONS DERIVED FROM PROCESS MODELS

(CASE STUDY II).

Figure 56 Process model of Case Study II, Phase III

We should note that:

1. In the scope of Case Study II, DocGen represents an abstract set of

functionality containing all document generation capabilities of software

development tools.

2. Unlike Case Study I, system classification in Case Study II does not contain a

Project Repository (PR) where information regarding the projects is stored.

During Case Study I, a need for a system like PR was revealed in the second

iteration of web-service definition when existing functionality of the tool set

was compared to initial definitions. In Case Study II, details regarding the

tool set was omitted due to several constraints, thus detailed information for

the existing tool set was not available. This prevented the detailed

understanding of the PR system, or whether it was necessary at all.

Case Study II was also performed by a single researcher. During the two weeks of

case study conduct, a total of 23 man hours of effort was spent. The effort

distribution for case study activities is given in Figure 57:

112

Figure 57 Effort distribution for Case Study II

5.7. Validity Threats

The multiple case study design requires a software development organization with

defined and mature processes employing multiple supporting tools. Such

organizations are not plenty in existence. However, we have designed the case

studies and the resulting method so that, they can be applied to organizations having

an intention to understand their processes and develop process definitions. It would

be greatly beneficial to perform this case study, or apply the PLETIN method

concurrently with process development, process improvement or process modeling

efforts. This way the outputs of the main effort can be consumed for the case study

and/or the PLETIN method.

A single researcher who had professional experience with the tools and processes

employed in the target organization performed the case studies. This would mean

more effort for a researcher with no existing background on tools, processes and

modeling to conduct a similar case study or apply the PLETIN method. Since the

number of processes was small and the method was still under development, a

collaborative work with the employees of the target organizations was not

considered. However in a larger setting with multiple divisions, more complex

process library and many tools, extensive help from the organization may be sought

in process analysis and implementation. PLETIN method does not have inherent

complexity in its execution. It relies on the understanding of the processes and user

Effort Spent (man hours)

Context Definition

Process Definition

Modeling and Mapping

Documentation

113

interactions. Thus an initial briefing to fellow modelers would be recommended and

satisfactory. Also, after the modeling effort is completed, consistency of the

processes must be checked before deployment.

The application of the PLETIN method in two different settings proved its flexibility.

Although the constraints for case selection in both cases were the same, two

organizations proved to present significant differences, negating the possible bias

resulting from case selection.

5.8. Discussion

The most significant output of this multiple case study effort is the PLETIN method

which is developed during the execution of Case Study I, and implemented in both

cases.

The PLETIN method has been developed parallel to the execution of Case Study I

and contains activities from all its phases. The first phase of Case Study I has

evolved into the ―context definition‖ stage of the PLETIN method. The second phase

of Case Study I has evolved into the ―process definition‖ stage while the last phase

has evolved into the ―process mapping‖ and ―process execution‖ stages.

Besides the development of the method, the following observations were done during

Case Study I:

1. Tools are used extensively in software development.

2. Tool integration is insufficient and should be improved.

3. A method is required, to identify and implement the missing integration-

tuples directly from process definitions.

At the beginning of Case Study I we have analyzed the interactions of users from

tools, taking a tool integration perspective. We have found out that tools are used

extensively and frequently to support tool interaction. This proved a strong

dependency of users and processes for the tools.

Assured with the extent of tool use and the existence of a strong dependency on the

tools, we focused on the existence and significance of issues with tool interaction.

114

Observation of these issues would indicate increased benefits from tool integration.

We have devised a method to identify candidate integration situations, what we call

integration-tuples. We have created integration maps of the existing situation and

what the processes require. This gap analysis provided us information on how the

requirements of process definitions and users were not satisfied in terms of tool

integration.

Besides the obvious lack of integration facilities, our correspondence with the users

and the process owners suggested the following problems which are in accordance

with [1], [14], [38], and [54]:

1. Lack of a standard framework for tool integration or an integration

infrastructure forces organization to choose tools based on integration

facilities provided rather than overall features. This results in vendor-

dependency (or vendor lock-in) through tool suites. Organizations are

dictated to use inferior tools to satisfy integration requirements.

2. Implementations of integration-tuples from vendors or 3
rd

-parties are fragile,

version-dependent, and volatile. These implementations are point-to-point

and do not provide an all-encompassing solution, becoming unmanageable in

time.

3. Changes in tools (for example upgrades) result in these integration-tuples to

become obsolete, which in effect reduces functionality and frustrates users.

Discovery of recently added functionalities requires extra effort from the

organization and they largely remain unexploited.

The next step taken to provide a solution to these issues was to devise a method to

close the gap between the integration requirements and tool facilities. The method

aimed to convert integration-tuples presented as process models into

implementations. This corresponds to the last two stages of the PLETIN method we

have developed.

The PLETIN method is easy to implement because it requires only the process

definitions and information on the tools used from the organization. A single

115

individual, proficient in the domain was able to undertake the modeling and mapping

effort in both cases. The implementation effort for Case Study I provided a prototype

application. In practice, this effort can be distributed to developers skilled in related

technologies and executed in parallel in a much shorter time.

The results of Case Study I showed that PLETIN was easy to implement and it

provided practical results that can be realized without much effort. However, since

the method itself was developed based on this case, the results of the implementation

experience may be biased. Case Study II was designed and conducted to provide

independent observations for the implementation of PLETIN in a separate

environment. Case Study II verified the applicability of PLETIN in a different

organization with a different tool set, and a different approach to tool use.

The integration-tuples identified by PLETIN are independent of the existing toolset.

However, in the later stages of the method, tuples are mapped to interfaces provided

by the tools to develop integration implementations. These mappings can be

performed to any tool providing interfaces or services for customizations. This way,

organizations are not enforced to use any tool because of the integration features it

provides. Rather, organizations can have tools that are suitable for their processes

and implement integration-tuples between them using the PLETIN method as

business processes and related web-services. Any tool can be plugged into the

system anytime. The only requirement is the mapping of the tool services and

organizational process requirements. This provides flexibility in tool selection and

tool interchangeability for the organization.

Although the structure of the process definitions, choice of tool sets and their use

were different, Case Study II provided similar results to Case Study I. Tool

interactions were identified from process definitions providing integration

opportunities. These candidate integration situations were represented in process

models, based on which web-service and business process definitions required for

the development of a tool integration framework were derived.

Case Study II provided a less diversified set of integration situations. This was

expected since the process definitions encouraged the use of tools rather than

116

enforcing. Also, process definitions did not include any guidelines on tool use which

made up the largest portion of sequences identified in Case Study I.

Of the 14 operations identified in Case Study II, 11 operations (78%) were already

identified in Case Study I, or defined in a very similar fashion. This overlap is quite

significant and confirms our expectations contrary to differences between two cases.

Such an observed overlap between two organizations with different tool sets and

different approaches to software development tool use encourages the possibility of

the development of standard tool interfaces for tool integration based on

organizational process definitions. PLETIN can be used by organizations with

different attributes to identify tool integration requirements imposed by

organizational processes.

The conduct of the Case Study II took considerably less time (20%) compared to

Case Study I. The difference results from the experience gained in the first

implementation, coupled with less number of interactions, less process detail in

terms of tool interaction and the lack of the need for a prototype implementation.

This would be beneficial for organizations with tight budget and personnel

constraints, or external process consultants with limited schedules. PLETIN provides

a direct guideline for analyzing the tool requirements of an organization.

The implementation of integration-tuples as automatically executed processes that

are normally performed manually by users brings all the benefits of process

automation including: faster execution, less manual effort, less errors, visibility,

better measurements, easier to change.

In our case studies, we have observed that the execution frequencies for the

sequences identified range from several times per day to once per year. For

sequences that are executed several times every day, the effort saved by the

automation of actions normally performed manually more than compensates the

effort spent for PLETIN. Besides the effort saved, automatic execution of processes

prevents operator errors, or steps missed for menial activities. This benefit of

automated processes is observed when tools in an organization is integrated using

PLETIN, and the tool cooperation is no longer maintained manually.

117

The components used for the PLETIN method are freely available. The modeling

notation used is BPMN, which is an open specification and many tools support it.

During the case studies we have used Intalio products [37] for both BPMN modeling

and process execution. Intalio BPMN Suite Community Edition is a free tool that

satisfied all our needs. Other process execution engines and modeling tools can be

used with almost no modifications to the PLETIN method and case study conduct.

This effort can be or even recommended to be undertaken as part of, or parallel with

an existing process definition, improvement or modeling project. Both projects can

benefit the other. For example, process models developed during the case studies can

be used as a basis for process communication and improvement efforts while

providing input for the execution of integration-tuples.

Since software processes are software too as stated by Osterweil [52], they are

subject to change [9]. To manage this change in software processes, PLETIN

provides easy deployment of process models to execution engines. Thus any change

in process models is quickly reflected on the execution of the processes, i.e.

implementation of integration-tuples.

The outputs of the case studies including the integration-tuple definitions and web-

service specifications developed from the organizational processes can be combined

with the results of other similar case studies to digest a knowledge base of integration

requirements across the industry. This information can guide, or even force vendors

to develop tools complying with these requirements. Such tools would prove to be

interoperable and interchangeable because of standard interfaces they support. This

information on the requirements, the operations required and messages interchanged

can be used to develop an understanding of the software engineering domain in the

form of a domain ontology.

118

CHAPTER 6

6. CONCLUSIONS

Tool integration is a high priority topic during tool selection for software

development organizations. An integrated tool set is sought to produce better

products, easier and cheaper through better execution of processes. Organizations

should be able to develop a competent tool set that is economically feasible while

satisfying all the requirements of the organizational processes. They should be able

to choose either best-in-class tools or tools that provide adequate functionality at an

acceptable cost.

Unfortunately, the integration functionality offered by state-of-the-art software

development tools are either biased towards tools of the same vendor to establish a

tool suite, or are bilateral, version-dependant, hard to maintain and fragile.

None of the many efforts available in the literature has been widely accepted in

practice. We believe the problem is based on the fact that these efforts only provide

guidelines, architectural models and constraints for tools to be developed. However,

there is already a market for software development tools and organizations already

own some tools. An approach that can provide integration facilities for the existing

tools is necessary.

Another facet of the problem is the approach taken by previous efforts, focusing on

the technicalities of integration like which data to share, how to store, translate and

119

manipulate data, how to notify other tools or how to publish services. We believe

that rather than asking ―how to integrate?‖, we should ask for ―what to integrate?‖

and ―when to integrate?‖.

To answer these questions, a method named PLETIN has been developed to identify

which tool integration facilities are required by the organizational processes. In the

proposed method, process models are developed to visualize process definitions. The

integration requirements extracted from the process models are used to define and

build custom interfaces for the tool set employed by the organization. Business

processes are developed from process models, which mimic the manual actions

performed by users. These business processes consume the interfaces developed for

the tools when executed automatically. User actions are performed by the integration

infrastructure on behalf of them and tools are integrated based on the requirements

derived from organizational processes.

The PLETIN method is suitable for organizations that employ multiple tools for

software development and have problems with their existing tool set in terms of

integration. PLETIN relies on process definitions of the organization so existence of

mature process definitions is a must.

The method has been based on the knowledge gained from a case study designed to

observe the state of tool use and issues of tool integration. The case study was

performed in a software development branch of a research organization. This branch

develops software for military and civilian systems. To support their development

efforts, they utilize multiple tools and have process definitions in place, evaluated to

be CMMI ML3.

The case study proved us that software development is highly dependent on tool use,

and several issues stemming from tool integration have been observed. Case study

results prove that software development processes in our target organization require

a more integrated tool set and can exploit the integration functionalities if they exist.

The PLETIN method developed in conjunction with the first two phases of the case

study was applied on the same case to develop custom implementation integrations.

We have found out that the PLETIN method was easy to implement, and helped us

120

rapidly identify candidate tool integration situations. Based on the outputs of the

method, an actual prototype implementation was completed in short notice with

relatively low resources.

The prototype implementation enabled automated execution of action sequences,

normally performed manually by the users. The actions were delegated to a business

execution engine. As a result, several actions similar to a documentation sequence

consisting of two baseline operations on two tools, obtaining a file and generating a

document was completely defined as an automatically executable process. This lets

users perceive the sequence to be cooperatively operated by the tools, as if they are

tightly integrated over a process definition. Normally, such sequences are menial,

time-consuming and error prone. Critical steps like putting the document under

configuration management are easily forgotten. With the use of PLETIN, these

sequences are defined as automated processes. They are performed reliably, quickly,

and without errors by the integration framework based on a business process engine

every time they are initiated.

PLETIN was used in a second case study to validate its applicability in a different

setting. With much less effort, similar candidate integration situations were identified

from process definitions of an organization with a different tool set, and different

policies for tool use.

The PLETIN method has significant practical value to organizations since it is

directly applicable to existing tools and processes. Organizations can develop custom

integration solutions satisfying the requirements of their software development

processes.

Since organizational requirements from the tools are identified, different tools

fulfilling these requirements can be identified and employed. Custom wrapper code

can be developed based on the organizational requirements and service definitions to

incorporate tools into the environment. Tools can be interchanged or new tools can

be incorporated to the tool set. Existing functionality can be modified to support the

new tools.

121

PLETIN is developed using open standards and technologies like BPMN,

BPEL4WS, and web-services. These technologies are widely used in practice and

available from different sources. Being ubiquitous, they are widely supported by the

industry. There are many process execution solutions supporting BPMN and

BPEL4WS. Tool vendors provide web-services based interfaces for customization of

their tools. PLETIN, based on these standards and technologies enables the

integration of a wide variety of tools.

PLETIN extracts service and process definitions from organizational processes. This

information is used to define the interfaces between the organizational processes and

the tools used during software development. These interfaces can be implemented by

any tool providing interfaces for customizations. This enables organizations to

choose tools that best suit their requirements and incorporate them into their

environments. Tools can be interchanged with other tools providing (or customized

to provide) services required by the organizational processes.

After the identification of services organizations require from tools, PLETIN

provides a method for the mapping of these services to the interfaces tools provide.

Using PLETIN, custom interfaces supporting the requirements of organizations can

be built. Organizations can build custom interfaces for their existing tools. This way

existing tools can be integrated and support the requirements of the organizational

tools.

Information extracted from process definitions of different organizations can be used

to digest industry-wide process requirements from tools. This information is useful

for understanding user interactions with tools and can be used to provide integration

points for future releases of tools.

PLETIN in its current state has limitations such as: requires the existence of process

definitions, uses a subjective classification scheme for the complexity of tool

interaction, omits ―Black Box‖ tools, not generalized to other tools and notations,

does not incorporate the whole domain but can be generalized with further case

studies, does not take other events generated in the environment into account, omits

complex data mappings, does not consider already existing (legacy) or new

122

integration features (for a detailed description, see Section 3.10). These limitations

provide future research directions in the tool integration domain to develop a full-

featured tool integration solution with practical importance.

There is also much information that can be obtained from the analysis of other

organizations to identify common requirements for integration. This knowledge can

be re-used in process definitions across the industry. Even future tool designs can

benefit from these integration requirements. This knowledge can also be used to

develop an ontology for the software domain that includes messages, objects and

actions used during software development.

The method developed for this thesis enables parts of software development process

to be delegated to a business process execution engine and mapped to services

provided by the tools. This way, they can be executed on a business process

execution engine without manual intervention [48], [53], [61]. The execution engine

performs the actions on behalf of the users with respect to the process model while

providing an integration infrastructure for the tools. Actions normally performed by

users are executed automatically by this infrastructure, thus automated. Process

automation efforts are undertaken to increase quality, efficiency, reliability of the

processes while decreasing costs and errors. By partial automation through tool

integration, processes are executed faster and with fewer errors due to elimination of

human-errors and intervention.

123

REFERENCES

[1] Altheide, F. & Dörfel, S. (2003). An architecture for a sustainable tool

integration. In Dörr H, Kanzleiter J. (Ed.), ESEC/FSE workshop on tool

integration in system development (pp. 29-32).

[2] D'Ambrogio, A. and Iazeolla, G. (2005). Metadata-driven design of

integrated environments for software performance validation. Journal of

Systems and Software, 76(2), 127-146

[3] Anderson, M. J. & Bird, B. D. (1993). An evaluation of PCTE as a portable

tool platform. In Proceedings of the Software Engineering Environments

Conference (pp. 96-100).

[4] Apache ODE BPEL engine. (n.d.). Retrieved January 23, 2010 from:

http://ode.apache.org/

[5] Apache Tomcat. (n.d.). Retrieved January 23, 2010 from:

http://tomcat.apache.org/

[6] Application Lifecycle Framework (ALF). (n.d.). Retrieved January 2009 from

Eclipse Web site: http://www.eclipse.org/alf

[7] Arsanjani A. (2004). Service-oriented modeling and architecture. Retrieved

January 23, 2010 from http://www.ibm.com/developerworks/library/ws-soa-

design1/

[8] Bandinelli, S., Fuggetta, A., Lavazza, L., Pietro Picco, G. (1994). Combining

control and data integration in the SPADE-1 process- centered software

engineering environment. In 9th International Software Process Workshop

(pp. 96–99).

http://tomcat.apache.org/
http://www.eclipse.org/alf
http://www.ibm.com/developerworks/library/ws-soa-design1/
http://www.ibm.com/developerworks/library/ws-soa-design1/

124

[9] Barthelmess, P. (2003). Collaboration and coordination in process-centered

software development environments: a review of the literature. Information

and Software Technology, 45(13), 911-928.

[10] Belkhatir, N. & Estublier, J. (1986). Protection and cooperation in a

software engineering environment. In Conradi et al. (Ed.). Proceedings of an

International Workshop on Advanced Programming Environments (pp. 221–

229). Springer-Verlag London, UK.

[11] Bergstra, J. A. & Klint, P. (1998). The Discrete Time ToolBus – a software

coordination architecture. Science of Computer Programming, 31(2-3), 205-

229.

[12] Borland StarTeam (n.d.). Retrieved January 23, 2010 from:

http://www.borland.com/us/products/starteam/index.html

[13] Brown, A.W. (1993). Control Integration Through Message Passing in a

Software Development Environment. Software Engineering Journal, 8(3),

121-131.

[14] Brown, A. W., Feiler, P. H.,Wallnau, K. C. (1991). Understanding

Integration in a Software Development Environment. (Tech. Rep. No:

CMU/SEI-91-TR-31, ADA248119). Software Engineering Institute, Carnegie

Mellon University.

[15] Brown, A. W., Feiler, P. H.,Wallnau, K. C. (1993). Past and future models

of CASE integration. In Proceedings of Fifth International Workshop on

Computer-Aided Software Engineering, 1992 (pp.36-45).

[16] Business Process Execution Language for Web Services (BPEL4WS)

version 1.1. (2002). Retrieved January 23, 2010 from:

http://www.ibm.com/developerworks/library/ws-bpel/

[17] Business Process Modeling Notation, V1.1 (BPMN), OMG Available

Specification. (2008). Retrieved January 23, 2010 from

http://www.omg.org/spec/BPMN/1.1/PDF

125

[18] Capability Maturity Model Integration (CMMI). (n.d.). Retrieved January

23, 2010 from http://www.sei.cmu.edu/cmmi/

[19] Chen M. & Norman, R.J. (1992). A framework for integrated CASE. IEEE

Software, 9(2):18-22.

[20] Christie, A. (1994). A Practical Guide to the Technology and Adoption of

Software Process Automation. (Tech. Rep. No: CMU/SEI-94-TR-007).

Software Engineering Institute, Carnegie Mellon University.

[21] CMMI for Development, Version 1.2. (2006). Retrieved January 23, 2010

from:

http://www.sei.cmu.edu/publications/documents/06.reports/06tr008.html.

[22] Corradini, F., Mariani, L., Merelli, E. (2003). An agent-based layered

middleware as tool integration. In the Workshop on Tool Integration in

System Development (TIS 2003) in the 9th European Software Engineering

Conference and 11th ACM SIGSOFT Symposium on the Foundations of

Software Engineering (ESEC/FSE 2003).

[23] Earl, A. (1990). Principles of a Reference Model for Computer Aided

Software Engineering Environments. In Proceedings of the international

workshop on environments on Software engineering environments (pp. 115-

129). Springer-Verlag, New York, USA.

[24] Eclipse Foundation. (n.d.). Retrieved January 23, 2010 from

http://www.eclipse.org/

[25] Eclipse Application Lifecycle Framework (ALF) project- Project

Termination Review (2008) Retrieved January 23, 2010 from

http://www.eclipse.org/project-

slides/Eclipse%20ALF%20Termination%20Review%20Nov%202008%20v0

2.pdf

[26] Erturkmen, K.A., Demirors, O. (2009). Integration of CASE Tools to

Software Processes: A Case Study. In Industrial Proceedings of 16th

http://www.sei.cmu.edu/cmmi/
http://www.sei.cmu.edu/publications/documents/06.reports/06tr008.html
http://www.eclipse.org/
http://www.eclipse.org/project-slides/Eclipse%20ALF%20Termination%20Review%20Nov%202008%20v02.pdf
http://www.eclipse.org/project-slides/Eclipse%20ALF%20Termination%20Review%20Nov%202008%20v02.pdf
http://www.eclipse.org/project-slides/Eclipse%20ALF%20Termination%20Review%20Nov%202008%20v02.pdf

126

European Systems and Software Process Improvement and Innovation

Conference (EuroSPI'2009) (pp:11.1-11.2).

[27] Erturkmen, K.A., Demirors, O. (2010). Software Development Processes-

Based Tool Integration Using the PLETIN Method: A Case Study. Submitted

for Publication.

[28] European Computer Manufacturers Association. (1993). Reference Model

for Frameworks of Software Engineering Environments. Retrieved January

23, 2010 from: http://www.ecma-

international.org/publications/techreports/E-TR-055.htm

[29] Flatscher, R.G. (2002).Metamodeling in EIA/CDIF—Meta-Metamodel and

Metamodels. ACM Transactions on Modeling and Computer Simulation,

12(4), 322–342.

[30] Freude, R. & Königs, A. (2003). Tool integration with consistency

relations and their visualization. In the Workshop on Tool Integration in

System Development (TIS 2003), in the 9th European Software Engineering

Conference and 11th ACM SIGSOFT Symposium on the Foundations of

Software Engineering (ESEC/FSE 2003)

[31] Gautier, B., Loftus, C., Sherratt, E., and Thomas, L. (1995). Tool

integration: experiences and directions. In Proceedings of the 17th

international Conference on Software Engineering (Seattle, Washington,

United States, April 24 - 28, 1995). ICSE '95 (pp. , 315-324). ACM, New

York, NY.

[32] Gisi, M.A. Kaiser, G.E. (1991). Extending a Tool Integration Language. In

Proceedings. First International Conference on the Software Process(pp.218-

227)

[33] Grundy, J., Apperley, M., Mugridge, R., Hosking, J. (1998). Tool

Integration, Collaboration and User Interaction Issues in Component-Based

Software Architectures. In Proceedings of the Technology of Object-Oriented

http://www.ecma-international.org/publications/techreports/E-TR-055.htm
http://www.ecma-international.org/publications/techreports/E-TR-055.htm

127

Languages and Systems, November 23 - 26, 1998 (pp: 299). IEEE Computer

Society, Washington, DC.

[34] Guo, B., Shen, Y., Xie, J., Wang, Y., Xiong, G.Z. (2004). A kind of new

ToolBus model research and implementation. ACM SIGSOFT Software

Engineering Notes, 29(2), 5

[35] Hansen, K.M. (2003). Activity-centred tool integration. In the Workshop on

Tool Integration in System Development (TIS 2003), in the 9th European

Software Engineering Conference and 11th ACM SIGSOFT Symposium on

the Foundations of Software Engineering (ESEC/FSE 2003).

[36] Harrison, W., Ossher, H., and Tarr, P. (2000). Software engineering tools

and environments: A roadmap. In 22nd International Conference on Software

Engineering, Future of Software Engineering Track (pp. 261-277). Limerick

Ireland. ACM Press.

[37] Intalio BPM Suite. (n.d.). Retrieved January 23, 2010 from:

http://www.intalioworks.com/products/bpm/opensource-edition/

[38] Integration and Interoperability of Application Lifecycle Management tools.

(n.d). Retrieved January 23, 2010, from http://www.docstoc.com/docs/-

976078/Tech_Application_Lifecycle_Management_tools

[39] ISO/IEC 15504 Standard. (2007). Retrieved January 23, 2010 from:

http://www.isospice.com/categories/ISO{47}IEC-15504-Standard/

[40] Java Enterprise Edition (J2EE) (n.d.). Retrieved January 23, 2010 from

http://java.sun.com/javaee/

[41] Java Servlet Technology (n.d.). Retrieved January 23, 2010 from

http://java.sun.com/products/servlet/

[42] JavaServer Pages Technology (n.d.). Retrieved January 23, 2010 from

http://java.sun.com/products/jsp/

[43] Kaiser, G.E., Barghouti, N.S., Sokolsky, M.H. (1990) Preliminary

experience with process modeling in the MARVEL software development

http://www.docstoc.com/docs/-976078/Tech_Application_Lifecycle_Management_tools
http://www.docstoc.com/docs/-976078/Tech_Application_Lifecycle_Management_tools
http://www.isospice.com/categories/ISO%7B47%7DIEC-15504-Standard/
http://java.sun.com/products/servlet/
http://java.sun.com/products/jsp/

128

environment kernel. In Proceedings of the Twenty-Third Annual Hawaii

International Conference on System Sciences: Vol: 2 (pp. 131-140).

[44] Kapsammer, E,. Reiter, T., Schwinger, W. (2006). Model-Based Tool

Integration - State of the Art and Future Perspectives. In Proceedings of the

3rd International Conference on Cybernetics and Information Technologies,

Systems and Applications (CITSA 2006), Orlando, USA. 2006. (pp: 20-23)

[45] Lundell, B. & Lings, B. (2004), Changing perceptions of CASE technology.

Journal of Systems and Software 72 (2), 271-280.

[46] Mi, P. and Scacchi, W. (1992). Process Integration in CASE Environments.

IEEE Software, 9(2), 45-53

[47] OMG MetaObject Facility (MOF). (n.d.). Retrieved January 23, 2010 from:

http://www.omg.org/mof/

[48] Papazoglou, M. P. & Heuvel, W. V. (2006). Service-oriented design and

development methodology. International Journal of Web Engineering and

Technology, 2(4), 412-442.

[49] Oberndorf, P. A. (1998). The Common Ada Programming Support

Environment (APSE) Interface Set (CAIS). IEEE Transactions on Software

Engineering, 14(6), 742-748.

[50] Object Management Group, Common Object Request Broker Architecture

(CORBA). (n.d.). Retrieved January 23, 2010 from:

http://www.omg.org/corba

[51] Object Management Group, Open Tool Integration Framework Request for

Proposal (OTIF). (n.d.). Retrieved March 21, 2009 from:

http://www.omg.org/docs/mic/04-08-01.pdf

[52] Osterweil, L. (1987). Software processes are software too. In Proceedings of

the 9th international Conference on Software Engineering (pp. 2-13). IEEE

Computer Society Press, Los Alamitos, CA.

http://www.omg.org/corba

129

[53] Owen, M., Raj, J. (2004). BPMN and Business Process Management.

Retrieved January 23, 2010 from

http://www.bpmn.org/Documents/6AD5D16960.BPMN_and_BPM.pdf

[54] Rader,J., Morris, E.J., Brown, A.W. (1993) An investigation into the state-

of-the practice of CASE tool integration. In the Proceedings of Software

Engineering Environments Conference (pp. 209-221).

[55] Rony G. F. (2002). Metamodeling in EIA/CDIF---meta-metamodel and

metamodels. ACM Transactions on Modeling and Computer Simulation

(TOMACS), 12(4), 322-342.

[56] Schürr, A., Dörr, H. (2005). Introduction to the special SoSym section on

model-based tool integration. Journal on Software and Systems Modeling

(SoSym), Springer-Verlag, 4(2).

[57] Thomas, I. & Nejmeh, B.A. (1992). Definitions of Tool Integration for

Environments. IEEE Software, 9 (2), 29-35.

[58] Unified Modeling Language (UML). (n.d.). Retrieved January 23, 2010

from: http://www.uml.org/

[59] Valetto, G. and Kaiser, G. E. (1995). Enveloping Sophisticated Tools into

Computer-Aided Software Engineering Environments. In Proceedings of the

Seventh international Workshop on Computer-Aided Software

Engineering (July 10 - 14, 1995) (pp. 40). IEEE Computer Society,

Washington, DC.

[60] Wasserman, A.I. (1989). Tool integration in software engineering

environments. In Long, F. (Ed.), The International Workshop on

Environments (Software Engineering Environments). In Lecture Notes in

Computer Science, vol. 647. (pp. 137–149). Springer-Verlag, Berlin, Chinon,

France.

[61] White, S. (2004). Introduction to BPMN. Retrieved January 23, 2010 from

http://www.bpmn.org/Documents/Introduction_to_BPMN.pdf

http://www.uml.org/

130

[62] Wicks, M.N. (2006). Tool integration in software engineering: an annotated

bibliography. (Tech. Rep. No: HW-MACS-TR-0041). HeriotWatt University.

[63] Wicks, M. and Dewar, R. (2007). A new research agenda for tool

integration. Journal of Systems and Software, 80(9), 1569-1585.

[64] Web Services Business Process Execution Language Version 2.0, OASIS

Standard. (2007). Retrieved January 23, 2010 from: http://docs.oasis-

open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[65] Web Services Description Language (WSDL) 1.1. (2001). Retrieved

January 23, 2010 from: http://www.w3.org/TR/wsdl

[66] XML Metadata Interchange (XMI) 2.1.1 (2007). Retrieved January 23, 2010

from: http://www.omg.org/technology/documents/formal/xmi.htm

[67] Extensible Markup Language (XML). (n.d.). Retrieved January 23, 2010

from: http://www.w3.org/XML/

[68] Zhao, X., Chan, K., Li, M. (2005). Applying agent technology to software

process modeling and process-centered software engineering environment. In

Haddad, Hisham, Liebrock, Lorie M., Omicini, Andrea, Wainwright, Roger

L. (Eds.), SAC. ACM (pp. 1529–1533).

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/TR/wsdl

131

7. APPENDICES

APPENDIX A: COMPLETE LIST OF OPERATIONS

DERIVED FROM PROCESS MODELS (CASE STUDY I)

8. A. COMPLETE LIST OF OPERATIONS DERIVED

FROM PROCESS MODELS (CASE STUDY I)

SCM RM PR

activateWorkflow assignReqTypeToProject lookup

createCRFilter assignSecurityProfileToProject

createFileFilter assignUserGroupToProject E-mail

createFolderAccessRights assignUserToProject send

132

createLabel createBaseline

createLink createGlossary File

createProject createProject appendFile

createProjectAccessRights createTrace createFolder

createReports generateDocument Execute

createServerAccessRights importProject extractPackage

createStatusFilters publishRequirements renameFolder

createTask

createUser UML

createUserGroup generateDocument

freezeLabel generateCode

getItem

getLatestVersion

getLinkedItems

getLinkedItemStatus

setProjectAccessRight

setStatus

updateFile

133

APPENDIX B: COMPLETE LIST OF OPERATIONS

DERIVED FROM PROCESS MODELS (CASE STUDY II)

9. B. COMPLETE LIST OF OPERATIONS DERIVED

FROM PROCESS MODELS (CASE STUDY II)

SCM ChM TM

createFileAccessRights createTask executeTest

createLabel getLinkedItems checkUnitTest

getLatestVersion createLink performCoderReview

updateFile UML/IDE

 generateCode

DocGen E-mail File

generateDocument send appendFile

134

APPENDIX C: PROCESS LIST (CASE STUDY I)

10. C. PROCESS LIST (CASE STUDY I)

135

Figure 58 Process list (CASE STUDY I) - Part 1

136

Figure 59 Process list (CASE STUDY I) - Part 2

137

APPENDIX D: PROCESS MAPPING (CASE STUDY II)

11. D. PROCESS MAPPING (CASE STUDY II)

138

Figure 60 Process Mapping for Case Study II – Part 1

139

Figure 61 Process Mapping for Case Study II - Part 2

140

Figure 62 Process Mapping for Case Study II - Part 2

141

APPENDIX E: PROCESS MODELS (CASE STUDY I)

12. E. PROCESS MODELS (CASE STUDY I)

142

F
ig

u
re

 6
3

 P
ro

ce
ss

 M
o

d
el

 f
o

r
B

R
P

G
2

 -
 P

a
rt

 1

143

F
ig

u
re

 6
4

 P
ro

ce
ss

 M
o

d
el

 f
o

r
B

R
P

G
2
 -

 P
a

rt
 2

144

F
ig

u
re

 6
5

 P
ro

ce
ss

 M
o

d
el

 f
o

r
C

M
G

5
1

0

145

F
ig

u
re

 6
6

 P
ro

ce
ss

 M
o

d
el

 f
o

r
C

M
5

1
3

146

F
ig

u
re

 6
7

 P
ro

ce
ss

 M
o

d
el

 f
o

r
C

M
5

3
3

147

Figure 68 Process Model for CMG21-Part 1

148

Figure 69 Process Model for CG21-Part 2

149

Figure 70 Process Model for CMG21-Part 3

150

F
ig

u
re

 7
1

 P
ro

ce
ss

 M
o

d
el

 f
o

r
C

M
T

G
2

1
1

151

F
ig

u
re

 7
2

 P
ro

ce
ss

 M
o

d
el

 f
o

r
C

M
T

G
2

1
2

152

F
ig

u
re

 7
3

 P
ro

ce
ss

 M
o

d
el

 f
o

r
C

M
T

G
2

1
3

-2
1

6
 P

a
rt

 1

153

F
ig

u
re

 7
4

 P
ro

ce
ss

 M
o

d
el

 f
o

r
C

M
T

G
2

1
-2

1
6

 P
a

rt
2

154

F
ig

u
re

 7
5

 P
ro

ce
ss

 M
o

d
el

 f
o

r
R

E
5

2
1

3

155

F
ig

u
re

 7
6

 P
ro

ce
ss

 M
o

d
el

 f
o

r
R

E
5

2
1

4

156

Figure 77 Process Model for RE52212 Part 1

157

Figure 78 Process Model for RE52212 Part 2

158

F
ig

u
re

 7
9

 P
ro

ce
ss

 M
o

d
el

 f
o

r
R

E
5

2
2

2

159

F
ig

u
re

 8
0

 P
ro

ce
ss

 M
o

d
el

 f
o

r
R

M
T

G
2

1

160

F
ig

u
re

 8
1

 P
ro

ce
ss

 M
o

d
el

 f
o

r
R

M
T

G
2

2

161

F
ig

u
re

 8
2

 P
ro

ce
ss

 M
o

d
el

 f
o

r
R

M
T

G
2

3

162

Figure 83 Process model for TS514

163

F
ig

u
re

 8
4

 P
ro

ce
ss

 M
o

d
el

 f
o

r
T

S
5

2
4

164

F
ig

u
re

 8
5

 P
ro

ce
ss

 M
o

d
el

 f
o

r
V

V
5

4
2

165

APPENDIX F: PROCESS MODELS (CASE STUDY II)

13. F. PROCESS MODELS (CASE STUDY II)

166

Figure 86 Process Model for KY-020-621-Part 1

167

Figure 87 Process Model for KY-020-621-Part 2

168

Figure 88 Process Model for KY-020-621-Part 3

169

Figure 89 Process Model for KY-020-621-Part 4

170

Figure 90 Process Model for UG-010-84

171

Figure 91 Process Model for UG-040-83

172

Figure 92 Process Model for UG-070-81

173

F
ig

u
re

 9
3

 P
ro

ce
ss

 M
o

d
el

 f
o

r
U

G
-0

7
0

-8
2

174

F
ig

u
re

 9
4

 P
ro

ce
ss

 M
o

d
el

 f
o

r
U

G
-0

7
0

-8
3

175

F
ig

u
re

 9
5

 P
ro

ce
ss

 M
o

d
el

 f
o

r
U

G
-0

7
0

-8
6

176

F
ig

u
re

 9
6

 P
ro

ce
ss

 M
o

d
el

 f
o

r
U

G
-0

7
0

-8
7

177

Figure 97 Proces Model for UG-070-89

178

F
ig

u
re

 9
8

 P
ro

ce
ss

 M
o

d
el

 f
o

r
U

G
-1

9
0

-8
2

179

Figure 99 Process Model for UG-190-89-Part1

180

Figure 100 Process Model for UG-190-89-Part2

181

Figure 101 Process Model for UG-190-89-Part3

182

Figure 102 Process Model for UG-190-810-Part 1

183

Figure 103 Process Model for UG-190-810-Part 2

184

Figure 104 Process Model for UG-190-810-Part 3

185

Figure 105 Process Model for UG-190-810-Part 4

186

F
ig

u
re

 1
0

6
 P

ro
ce

ss
 M

o
d

el
 f

o
r

U
G

-1
9
0

-8
1

1

187

Figure 107 Process Model for UG-190-812-Part 1

188

Figure 108 Process Model for UG-190-812-Part 2

189

Figure 109 Process Model for UG-190-813-Part 1

190

Figure 110 Process Model for UG-190-813-Part 2

191

APPENDIX G: DEFINITIONS FOR WEB SERVICES

(CASE STUDY I)

14. G. DEFINITIONS FOR WEB SERVICES (CASE

STUDY I)

CaliberRMWrapper WSDL

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions

targetNamespace="http://caliberrm.ws.tez.alpay.erturkmen.com"

xmlns:apachesoap="http://xml.apache.org/xml-soap"

xmlns:impl="http://caliberrm.ws.tez.alpay.erturkmen.com"

xmlns:intf="http://caliberrm.ws.tez.alpay.erturkmen.com"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!--WSDL created by Apache Axis version: 1.4

Built on Apr 22, 2006 (06:55:48 PDT)-->

 <wsdl:types>

 <schema elementFormDefault="qualified"

targetNamespace="http://caliberrm.ws.tez.alpay.erturkmen.com"

xmlns="http://www.w3.org/2001/XMLSchema">

 <element name="createProject">

 <complexType>

 <sequence>

 <element name="serverAddress" type="xsd:string"/>

 <element name="userName" type="xsd:string"/>

 <element name="password" type="xsd:string"/>

 <element name="projectName" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

192

 <element name="createProjectResponse">

 <complexType>

 <sequence>

 <element name="createProjectReturn" type="xsd:int"/>

 </sequence>

 </complexType>

 </element>

 <element name="selectProjectByName">

 <complexType>

 <sequence>

 <element name="serverAddress" type="xsd:string"/>

 <element name="userName" type="xsd:string"/>

 <element name="password" type="xsd:string"/>

 <element name="projectName" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="selectProjectByNameResponse">

 <complexType>

 <sequence>

 <element name="selectProjectByNameReturn"

type="xsd:int"/>

 </sequence>

 </complexType>

 </element>

 <element name="createBaseline">

 <complexType>

 <sequence>

 <element name="serverAddress" type="xsd:string"/>

 <element name="userName" type="xsd:string"/>

 <element name="password" type="xsd:string"/>

 <element name="projectID" type="xsd:int"/>

 <element name="name" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="createBaselineResponse">

 <complexType>

 <sequence>

 <element name="createBaselineReturn" type="xsd:int"/>

 </sequence>

 </complexType>

 </element>

 </schema>

 </wsdl:types>

 <wsdl:message name="createProjectRequest">

 <wsdl:part element="impl:createProject"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="selectProjectByNameResponse">

 <wsdl:part element="impl:selectProjectByNameResponse"

name="parameters"/>

193

 </wsdl:message>

 <wsdl:message name="selectProjectByNameRequest">

 <wsdl:part element="impl:selectProjectByName"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="createProjectResponse">

 <wsdl:part element="impl:createProjectResponse"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="createBaselineResponse">

 <wsdl:part element="impl:createBaselineResponse"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="createBaselineRequest">

 <wsdl:part element="impl:createBaseline"

name="parameters"/>

 </wsdl:message>

 <wsdl:portType name="CaliberRMWrapper">

 <wsdl:operation name="createProject">

 <wsdl:input message="impl:createProjectRequest"

name="createProjectRequest"/>

 <wsdl:output message="impl:createProjectResponse"

name="createProjectResponse"/>

 </wsdl:operation>

 <wsdl:operation name="selectProjectByName">

 <wsdl:input message="impl:selectProjectByNameRequest"

name="selectProjectByNameRequest"/>

 <wsdl:output

message="impl:selectProjectByNameResponse"

name="selectProjectByNameResponse"/>

 </wsdl:operation>

 <wsdl:operation name="createBaseline">

 <wsdl:input message="impl:createBaselineRequest"

name="createBaselineRequest"/>

 <wsdl:output message="impl:createBaselineResponse"

name="createBaselineResponse"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="CaliberRMWrapperSoapBinding"

type="impl:CaliberRMWrapper">

 <wsdlsoap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="createProject">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="createProjectRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="createProjectResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

194

 <wsdl:operation name="selectProjectByName">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="selectProjectByNameRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="selectProjectByNameResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="createBaseline">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="createBaselineRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="createBaselineResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="CaliberRMWrapperService">

 <wsdl:port binding="impl:CaliberRMWrapperSoapBinding"

name="CaliberRMWrapper">

 <wsdlsoap:address

location="http://localhost:8081/BorlandCaliberWS/services/Cali

berRMWrapper"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

StarTeamWrapper WSDL

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions

targetNamespace="http://starteam.ws.tez.alpay.erturkmen.com"

xmlns:apachesoap="http://xml.apache.org/xml-soap"

xmlns:impl="http://starteam.ws.tez.alpay.erturkmen.com"

xmlns:intf="http://starteam.ws.tez.alpay.erturkmen.com"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!--WSDL created by Apache Axis version: 1.4

Built on Apr 22, 2006 (06:55:48 PDT)-->

 <wsdl:types>

 <schema elementFormDefault="qualified"

targetNamespace="http://starteam.ws.tez.alpay.erturkmen.com"

xmlns="http://www.w3.org/2001/XMLSchema">

 <element name="login">

 <complexType>

 <sequence>

 <element name="url" type="xsd:string"/>

 </sequence>

195

 </complexType>

 </element>

 <element name="loginResponse">

 <complexType>

 <sequence>

 <element name="loginReturn" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="getProjects">

 <complexType>

 <sequence>

 <element name="url" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="getProjectsResponse">

 <complexType>

 <sequence>

 <element maxOccurs="unbounded" name="getProjectsReturn"

type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="createLink">

 <complexType>

 <sequence>

 <element name="url1" type="xsd:string"/>

 <element name="item1ID" type="xsd:int"/>

 <element name="item1Type" type="xsd:string"/>

 <element name="url2" type="xsd:string"/>

 <element name="item2ID" type="xsd:int"/>

 <element name="item2Type" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="createLinkResponse">

 <complexType>

 <sequence>

 <element name="createLinkReturn" type="xsd:int"/>

 </sequence>

 </complexType>

 </element>

 <element name="getLatestVersion">

 <complexType>

 <sequence>

 <element name="url" type="xsd:string"/>

 <element name="filename" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="getLatestVersionResponse">

196

 <complexType>

 <sequence>

 <element name="getLatestVersionReturn"

type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="createTask">

 <complexType>

 <sequence>

 <element name="url" type="xsd:string"/>

 <element name="name" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="createTaskResponse">

 <complexType>

 <sequence>

 <element name="createTaskReturn" type="xsd:int"/>

 </sequence>

 </complexType>

 </element>

 <element name="createLabel">

 <complexType>

 <sequence>

 <element name="url" type="xsd:string"/>

 <element name="labelBaseName" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="createLabelResponse">

 <complexType>

 <sequence>

 <element name="createLabelReturn" type="xsd:int"/>

 </sequence>

 </complexType>

 </element>

 <element name="createProject">

 <complexType>

 <sequence>

 <element name="serverAddress" type="xsd:string"/>

 <element name="username" type="xsd:string"/>

 <element name="password" type="xsd:string"/>

 <element name="projectName" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="createProjectResponse">

 <complexType>

 <sequence>

 <element name="createProjectReturn" type="xsd:string"/>

 </sequence>

197

 </complexType>

 </element>

 <element name="selectProjectByName">

 <complexType>

 <sequence>

 <element name="url" type="xsd:string"/>

 <element name="projectName" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="selectProjectByNameResponse">

 <complexType>

 <sequence>

 <element name="selectProjectByNameReturn"

type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="updateFile">

 <complexType>

 <sequence>

 <element name="url" type="xsd:string"/>

 <element name="filename" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="updateFileResponse">

 <complexType>

 <sequence>

 <element name="updateFileReturn" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="createLabelForFile">

 <complexType>

 <sequence>

 <element name="url" type="xsd:string"/>

 <element name="filename" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="createLabelForFileResponse">

 <complexType>

 <sequence>

 <element name="createLabelForFileReturn"

type="xsd:int"/>

 </sequence>

 </complexType>

 </element>

 <element name="freezeLabel">

 <complexType>

 <sequence>

198

 <element name="url" type="xsd:string"/>

 <element name="labelID" type="xsd:int"/>

 </sequence>

 </complexType>

 </element>

 <element name="freezeLabelResponse">

 <complexType>

 <sequence>

 <element name="freezeLabelReturn" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="getLinkedItems">

 <complexType>

 <sequence>

 <element name="url" type="xsd:string"/>

 <element name="itemID" type="xsd:int"/>

 <element name="itemType" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="getLinkedItemsResponse">

 <complexType>

 <sequence>

 <element maxOccurs="unbounded"

name="getLinkedItemsReturn" type="xsd:int"/>

 </sequence>

 </complexType>

 </element>

 <element name="setCRStatus">

 <complexType>

 <sequence>

 <element name="url" type="xsd:string"/>

 <element maxOccurs="unbounded" name="itemIDs"

type="xsd:int"/>

 <element name="status" type="xsd:int"/>

 </sequence>

 </complexType>

 </element>

 <element name="setCRStatusResponse">

 <complexType/>

 </element>

 </schema>

 </wsdl:types>

 <wsdl:message name="setCRStatusResponse">

 <wsdl:part element="impl:setCRStatusResponse"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="createLinkRequest">

 <wsdl:part element="impl:createLink" name="parameters"/>

 </wsdl:message>

 <wsdl:message name="getProjectsRequest">

199

 <wsdl:part element="impl:getProjects"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="freezeLabelResponse">

 <wsdl:part element="impl:freezeLabelResponse"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="loginRequest">

 <wsdl:part element="impl:login" name="parameters"/>

 </wsdl:message>

 <wsdl:message name="getLinkedItemsRequest">

 <wsdl:part element="impl:getLinkedItems"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="updateFileRequest">

 <wsdl:part element="impl:updateFile" name="parameters"/>

 </wsdl:message>

 <wsdl:message name="updateFileResponse">

 <wsdl:part element="impl:updateFileResponse"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="getLinkedItemsResponse">

 <wsdl:part element="impl:getLinkedItemsResponse"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="createTaskResponse">

 <wsdl:part element="impl:createTaskResponse"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="createLabelRequest">

 <wsdl:part element="impl:createLabel"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="getProjectsResponse">

 <wsdl:part element="impl:getProjectsResponse"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="createTaskRequest">

 <wsdl:part element="impl:createTask" name="parameters"/>

 </wsdl:message>

 <wsdl:message name="getLatestVersionRequest">

 <wsdl:part element="impl:getLatestVersion"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="selectProjectByNameResponse">

 <wsdl:part element="impl:selectProjectByNameResponse"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="freezeLabelRequest">

 <wsdl:part element="impl:freezeLabel"

name="parameters"/>

200

 </wsdl:message>

 <wsdl:message name="getLatestVersionResponse">

 <wsdl:part element="impl:getLatestVersionResponse"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="createLabelForFileResponse">

 <wsdl:part element="impl:createLabelForFileResponse"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="createLabelResponse">

 <wsdl:part element="impl:createLabelResponse"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="createLinkResponse">

 <wsdl:part element="impl:createLinkResponse"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="createLabelForFileRequest">

 <wsdl:part element="impl:createLabelForFile"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="createProjectRequest">

 <wsdl:part element="impl:createProject"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="setCRStatusRequest">

 <wsdl:part element="impl:setCRStatus"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="loginResponse">

 <wsdl:part element="impl:loginResponse"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="createProjectResponse">

 <wsdl:part element="impl:createProjectResponse"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="selectProjectByNameRequest">

 <wsdl:part element="impl:selectProjectByName"

name="parameters"/>

 </wsdl:message>

 <wsdl:portType name="StarTeamWrapper">

 <wsdl:operation name="login">

 <wsdl:input message="impl:loginRequest"

name="loginRequest"/>

 <wsdl:output message="impl:loginResponse"

name="loginResponse"/>

 </wsdl:operation>

 <wsdl:operation name="getProjects">

 <wsdl:input message="impl:getProjectsRequest"

name="getProjectsRequest"/>

 <wsdl:output message="impl:getProjectsResponse"

201

name="getProjectsResponse"/>

 </wsdl:operation>

 <wsdl:operation name="createLink">

 <wsdl:input message="impl:createLinkRequest"

name="createLinkRequest"/>

 <wsdl:output message="impl:createLinkResponse"

name="createLinkResponse"/>

 </wsdl:operation>

 <wsdl:operation name="getLatestVersion">

 <wsdl:input message="impl:getLatestVersionRequest"

name="getLatestVersionRequest"/>

 <wsdl:output message="impl:getLatestVersionResponse"

name="getLatestVersionResponse"/>

 </wsdl:operation>

 <wsdl:operation name="createTask">

 <wsdl:input message="impl:createTaskRequest"

name="createTaskRequest"/>

 <wsdl:output message="impl:createTaskResponse"

name="createTaskResponse"/>

 </wsdl:operation>

 <wsdl:operation name="createLabel">

 <wsdl:input message="impl:createLabelRequest"

name="createLabelRequest"/>

 <wsdl:output message="impl:createLabelResponse"

name="createLabelResponse"/>

 </wsdl:operation>

 <wsdl:operation name="createProject">

 <wsdl:input message="impl:createProjectRequest"

name="createProjectRequest"/>

 <wsdl:output message="impl:createProjectResponse"

name="createProjectResponse"/>

 </wsdl:operation>

 <wsdl:operation name="selectProjectByName">

 <wsdl:input message="impl:selectProjectByNameRequest"

name="selectProjectByNameRequest"/>

 <wsdl:output

message="impl:selectProjectByNameResponse"

name="selectProjectByNameResponse"/>

 </wsdl:operation>

 <wsdl:operation name="updateFile">

 <wsdl:input message="impl:updateFileRequest"

name="updateFileRequest"/>

 <wsdl:output message="impl:updateFileResponse"

name="updateFileResponse"/>

 </wsdl:operation>

 <wsdl:operation name="createLabelForFile">

 <wsdl:input message="impl:createLabelForFileRequest"

202

name="createLabelForFileRequest"/>

 <wsdl:output

message="impl:createLabelForFileResponse"

name="createLabelForFileResponse"/>

 </wsdl:operation>

 <wsdl:operation name="freezeLabel">

 <wsdl:input message="impl:freezeLabelRequest"

name="freezeLabelRequest"/>

 <wsdl:output message="impl:freezeLabelResponse"

name="freezeLabelResponse"/>

 </wsdl:operation>

 <wsdl:operation name="getLinkedItems">

 <wsdl:input message="impl:getLinkedItemsRequest"

name="getLinkedItemsRequest"/>

 <wsdl:output message="impl:getLinkedItemsResponse"

name="getLinkedItemsResponse"/>

 </wsdl:operation>

 <wsdl:operation name="setCRStatus">

 <wsdl:input message="impl:setCRStatusRequest"

name="setCRStatusRequest"/>

 <wsdl:output message="impl:setCRStatusResponse"

name="setCRStatusResponse"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="StarTeamWrapperSoapBinding"

type="impl:StarTeamWrapper">

 <wsdlsoap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="login">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="loginRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="loginResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="getProjects">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="getProjectsRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="getProjectsResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="createLink">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="createLinkRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="createLinkResponse">

203

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="getLatestVersion">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="getLatestVersionRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="getLatestVersionResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="createTask">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="createTaskRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="createTaskResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="createLabel">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="createLabelRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="createLabelResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="createProject">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="createProjectRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="createProjectResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="selectProjectByName">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="selectProjectByNameRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="selectProjectByNameResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="updateFile">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="updateFileRequest">

 <wsdlsoap:body use="literal"/>

204

 </wsdl:input>

 <wsdl:output name="updateFileResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="createLabelForFile">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="createLabelForFileRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="createLabelForFileResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="freezeLabel">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="freezeLabelRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="freezeLabelResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="getLinkedItems">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="getLinkedItemsRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="getLinkedItemsResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="setCRStatus">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="setCRStatusRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="setCRStatusResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="StarTeamWrapperService">

 <wsdl:port binding="impl:StarTeamWrapperSoapBinding"

name="StarTeamWrapper">

 <wsdlsoap:address

location="http://localhost:8080/BorlandStarTeamWS/services/Sta

rTeamWrapper"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

205

eMailSystemWrapper WSDL

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions

targetNamespace="http://email.ws.tez.alpay.erturkmen.com"

xmlns:apachesoap="http://xml.apache.org/xml-soap"

xmlns:impl="http://email.ws.tez.alpay.erturkmen.com"

xmlns:intf="http://email.ws.tez.alpay.erturkmen.com"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!--WSDL created by Apache Axis version: 1.4

Built on Apr 22, 2006 (06:55:48 PDT)-->

 <wsdl:types>

 <schema elementFormDefault="qualified"

targetNamespace="http://email.ws.tez.alpay.erturkmen.com"

xmlns="http://www.w3.org/2001/XMLSchema">

 <element name="send">

 <complexType>

 <sequence>

 <element name="toAddress" type="xsd:string"/>

 <element name="mailSubject" type="xsd:string"/>

 <element name="mailBody" type="xsd:string"/>

 <element name="attachment" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="sendResponse">

 <complexType>

 <sequence>

 <element name="sendReturn" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 </schema>

 </wsdl:types>

 <wsdl:message name="sendResponse">

 <wsdl:part element="impl:sendResponse"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="sendRequest">

 <wsdl:part element="impl:send" name="parameters"/>

 </wsdl:message>

 <wsdl:portType name="EmailSystemWrapper">

 <wsdl:operation name="send">

 <wsdl:input message="impl:sendRequest"

name="sendRequest"/>

 <wsdl:output message="impl:sendResponse"

name="sendResponse"/>

206

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="EmailSystemWrapperSoapBinding"

type="impl:EmailSystemWrapper">

 <wsdlsoap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="send">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="sendRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="sendResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="EmailSystemWrapperService">

 <wsdl:port binding="impl:EmailSystemWrapperSoapBinding"

name="EmailSystemWrapper">

 <wsdlsoap:address

location="http://localhost:8081/EmailSystemWS/services/EmailSy

stemWrapper"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

FileSystemWrapper WSDL

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions

targetNamespace="http://file.ws.tez.alpay.erturkmen.com"

xmlns:apachesoap="http://xml.apache.org/xml-soap"

xmlns:impl="http://file.ws.tez.alpay.erturkmen.com"

xmlns:intf="http://file.ws.tez.alpay.erturkmen.com"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!--WSDL created by Apache Axis version: 1.4

Built on Apr 22, 2006 (06:55:48 PDT)-->

 <wsdl:types>

 <schema elementFormDefault="qualified"

targetNamespace="http://file.ws.tez.alpay.erturkmen.com"

xmlns="http://www.w3.org/2001/XMLSchema">

 <element name="install">

 <complexType/>

 </element>

 <element name="installResponse">

 <complexType/>

 </element>

207

 <element name="createFolder">

 <complexType>

 <sequence>

 <element name="parentFolderPath" type="xsd:string"/>

 <element name="folderName" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="createFolderResponse">

 <complexType>

 <sequence>

 <element name="createFolderReturn" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="generateDocument">

 <complexType>

 <sequence>

 <element name="iniFile" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="generateDocumentResponse">

 <complexType>

 <sequence>

 <element name="generateDocumentReturn"

type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="appendFile">

 <complexType>

 <sequence>

 <element name="siiFile" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="appendFileResponse">

 <complexType>

 <sequence>

 <element name="appendFileReturn" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="renameFolder">

 <complexType>

 <sequence>

 <element name="parentFolderPath" type="xsd:string"/>

 <element name="oldName" type="xsd:string"/>

 <element name="newName" type="xsd:string"/>

 </sequence>

 </complexType>

208

 </element>

 <element name="renameFolderResponse">

 <complexType>

 <sequence>

 <element name="renameFolderReturn" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="extractPackage">

 <complexType>

 <sequence>

 <element name="parentFolderPath" type="xsd:string"/>

 <element name="packageName" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="extractPackageResponse">

 <complexType>

 <sequence>

 <element name="extractPackageReturn" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 </schema>

 </wsdl:types>

 <wsdl:message name="renameFolderResponse">

 <wsdl:part element="impl:renameFolderResponse"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="generateDocumentResponse">

 <wsdl:part element="impl:generateDocumentResponse"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="createFolderResponse">

 <wsdl:part element="impl:createFolderResponse"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="installResponse">

 <wsdl:part element="impl:installResponse"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="extractPackageResponse">

 <wsdl:part element="impl:extractPackageResponse"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="renameFolderRequest">

 <wsdl:part element="impl:renameFolder"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="generateDocumentRequest">

 <wsdl:part element="impl:generateDocument"

name="parameters"/>

209

 </wsdl:message>

 <wsdl:message name="createFolderRequest">

 <wsdl:part element="impl:createFolder"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="appendFileRequest">

 <wsdl:part element="impl:appendFile" name="parameters"/>

 </wsdl:message>

 <wsdl:message name="extractPackageRequest">

 <wsdl:part element="impl:extractPackage"

name="parameters"/>

 </wsdl:message>

 <wsdl:message name="appendFileResponse">

 <wsdl:part element="impl:appendFileResponse"

name="parameters"/>

 </wsdl:message>

<wsdl:message name="installRequest">

 <wsdl:part element="impl:install" name="parameters"/>

 </wsdl:message>

 <wsdl:portType name="FileSystemWrapper">

 <wsdl:operation name="install">

 <wsdl:input message="impl:installRequest"

name="installRequest"/>

 <wsdl:output message="impl:installResponse"

name="installResponse"/>

 </wsdl:operation>

 <wsdl:operation name="createFolder">

 <wsdl:input message="impl:createFolderRequest"

name="createFolderRequest"/>

 <wsdl:output message="impl:createFolderResponse"

name="createFolderResponse"/>

 </wsdl:operation>

 <wsdl:operation name="generateDocument">

 <wsdl:input message="impl:generateDocumentRequest"

name="generateDocumentRequest"/>

 <wsdl:output message="impl:generateDocumentResponse"

name="generateDocumentResponse"/>

 </wsdl:operation>

 <wsdl:operation name="appendFile">

 <wsdl:input message="impl:appendFileRequest"

name="appendFileRequest"/>

 <wsdl:output message="impl:appendFileResponse"

name="appendFileResponse"/>

 </wsdl:operation>

 <wsdl:operation name="renameFolder">

 <wsdl:input message="impl:renameFolderRequest"

name="renameFolderRequest"/>

 <wsdl:output message="impl:renameFolderResponse"

name="renameFolderResponse"/>

 </wsdl:operation>

 <wsdl:operation name="extractPackage">

210

 <wsdl:input message="impl:extractPackageRequest"

name="extractPackageRequest"/>

 <wsdl:output message="impl:extractPackageResponse"

name="extractPackageResponse"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="FileSystemWrapperSoapBinding"

type="impl:FileSystemWrapper">

 <wsdlsoap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="install">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="installRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="installResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="createFolder">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="createFolderRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="createFolderResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="generateDocument">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="generateDocumentRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="generateDocumentResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="appendFile">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="appendFileRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="appendFileResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="renameFolder">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="renameFolderRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

211

 <wsdl:output name="renameFolderResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="extractPackage">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="extractPackageRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="extractPackageResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="FileSystemWrapperService">

 <wsdl:port binding="impl:FileSystemWrapperSoapBinding"

name="FileSystemWrapper">

 <wsdlsoap:address

location="http://localhost:8081/FileSystemWS/services/FileSyst

emWrapper"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

ProjectRepositoryWrapper WSDL

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions

targetNamespace="http://projectrepo.tez.alpay.erturkmen.com"

xmlns:apachesoap="http://xml.apache.org/xml-soap"

xmlns:impl="http://projectrepo.tez.alpay.erturkmen.com"

xmlns:intf="http://projectrepo.tez.alpay.erturkmen.com"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!--WSDL created by Apache Axis version: 1.4

Built on Apr 22, 2006 (06:55:48 PDT)-->

 <wsdl:types>

 <schema elementFormDefault="qualified"

targetNamespace="http://projectrepo.tez.alpay.erturkmen.com"

xmlns="http://www.w3.org/2001/XMLSchema">

 <element name="lookup">

 <complexType>

 <sequence>

 <element name="key" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 <element name="lookupResponse">

 <complexType>

212

 <sequence>

 <element name="lookupReturn" type="xsd:string"/>

 </sequence>

 </complexType>

 </element>

 </schema>

 </wsdl:types>

 <wsdl:message name="lookupRequest">

 <wsdl:part element="impl:lookup" name="parameters"/>

 </wsdl:message>

 <wsdl:message name="lookupResponse">

 <wsdl:part element="impl:lookupResponse"

name="parameters"/>

 </wsdl:message>

 <wsdl:portType name="ProjRepoWrapper">

 <wsdl:operation name="lookup">

 <wsdl:input message="impl:lookupRequest"

name="lookupRequest"/>

 <wsdl:output message="impl:lookupResponse"

name="lookupResponse"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="ProjRepoWrapperSoapBinding"

type="impl:ProjRepoWrapper">

 <wsdlsoap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="lookup">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="lookupRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="lookupResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="ProjRepoWrapperService">

 <wsdl:port binding="impl:ProjRepoWrapperSoapBinding"

name="ProjRepoWrapper">

 <wsdlsoap:address

location="http://localhost:8080/ProjRepoWS/services/ProjRepoWr

apper"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

213

APPENDIX H: APPLICATION CODE DEVELOPED

FOR WEB SERVICES (CASE STUDY I)

15. H. APPLICATION CODE DEVELOPED FOR WEB

SERVICES (CASE STUDY I)

CaliberRMWrapper

package com.erturkmen.alpay.tez.ws.caliberrm;

import com.starbase.caliber.*;

import com.starbase.caliber.Baseline;

import com.starbase.caliber.BaselineTree;

import com.starbase.caliber.server.CaliberServer;

import com.starbase.caliber.server.RemoteServerException;

public class CaliberRMWrapper {

 private static Session getSession(String serverAddress,

String userName, String password) {

 try {

 return(new

CaliberServer(serverAddress)).login(userName, password);

 } catch(Exception e) {

 e.printStackTrace();

 }

 return null;

 }

 private static void logoff(Session session) {

 session.logout();

 }

 public static int selectProjectByName(String

serverAddress, String userName, String password, String

projectName) { //Sequence7

214

 Session session = getSession(serverAddress,

userName, password);

 Project[] projects;

 try {

 projects = session.getProjects();

 Project selectedProject = null;

 selectedProject = null;

 for(int projectID=0; projectID<

projects.length; projectID++) {

 selectedProject = projects[projectID];

 if(selectedProject.getName().equals(projectName))

break;

 }

 logoff(session);

 return

selectedProject.getProjectID().getIDNumber();

 } catch (RemoteServerException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 logoff(session);

 return -1;

 }

 }

 private static Project selectProjectByID(String

serverAddress, String userName, String password, int

projectID) {

 Session session = getSession(serverAddress,

userName, password);

 try {

 return (Project) session.get(new

ProjectID(projectID));

 } catch (RemoteServerException e1) {

 // TODO Auto-generated catch block

 e1.printStackTrace();

 return null;

 }

 }

 public static int createBaseline(String serverAddress,

String userName, String password, int projectID, String name)

{ //Sequence7

 try {

 Session session = getSession(serverAddress,

userName, password);

 Baseline baseline = new Baseline(name, new

ProjectID(projectID), session);

 baseline.save();

 System.out.println(selectProjectByID(serverAddress,

userName, password,

projectID).getCurrentBaseline().getRequirementTree().getRoot()

.getChildCount());

 BaselineTree tree = new

BaselineTree(baseline, selectProjectByID(serverAddress,

215

userName, password,

projectID).getCurrentBaseline().getRequirementTree(),

session);

 tree.save();

 System.out.println(baseline.getRequirementTree().toStrin

g());

 baseline.save();

 return

baseline.getBaselineID().getIDNumber();

 } catch (Exception e) {

 e.printStackTrace();

 return -1;

 }

 }

 public static int createProject(String serverAddress,

String userName, String password, String projectName) {

 Session session = getSession(serverAddress,

userName, password);

 try {

 Project project = new Project(projectName,

session);

 project.save();

 return project.getID().getIDNumber();

 } catch (RemoteServerException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 return -1;

 }

 }

}

StarTeamWrapper

package com.erturkmen.alpay.tez.ws.starteam;

import java.text.DateFormat;

import java.text.SimpleDateFormat;

import java.util.Date;

import com.borland.starteam.impl.Folder;

import com.borland.starteam.impl.Item;

import com.borland.starteam.impl.Link;

import com.borland.starteam.impl.StarTeamFinder;

import com.borland.starteam.impl.Task;

import com.borland.starteam.impl.util.DateTime;

import com.borland.starteam.impl.View;

import com.borland.starteam.impl.ChangeRequest;

import com.borland.starteam.impl.Label;

216

import com.borland.starteam.impl.LinkCache;

import com.starbase.starteam.Project;

import com.starbase.starteam.Server;

import com.starbase.starteam.StarTeamURL;

public class StarTeamWrapper {

 private static Server login(String serverAddress, String

userName, String password) {

 Server server = new Server(serverAddress, 49201);

 try {

 server.logOn(userName, password);

 } catch (Exception e) {

 e.printStackTrace();

 System.out.println("Can not connect to

server");

 return null;

 }

 return server;

 }

 public static String login(String url) { //Sequence7

 StarTeamURL stUrl = getStarTeamURL(url);

 Server server = login(stUrl.getHostName(),

stUrl.getUserName(), stUrl.getPassword());

 String returnString = "connected to: " +

server.toString();

 server.disconnect();

 return returnString;

 }

 private static Server login(StarTeamURL stUrl) {

 return login(stUrl.getHostName(),

stUrl.getUserName(), stUrl.getPassword());

 }

 public static String selectProjectByName(String url,

String projectName) {

 StarTeamURL stUrl = getStarTeamURL(url);

 Server server = login(stUrl.getHostName(),

stUrl.getUserName(), stUrl.getPassword());

 StarTeamFinder.openProject(url);

 Project[] projects = server.getProjects();

 Project selectedProject = null;

 for(int projectID=0; projectID< projects.length;

projectID++) {

 selectedProject = projects[projectID];

 if(selectedProject.getName().equals(projectName)) break;

 }

 server.disconnect();

 return url+selectedProject.getName()+"/";

 }

 public static String updateFile(String url, String

filename) { //Sequence7

217

 Folder folder = StarTeamFinder.openFolder(url);

 com.borland.starteam.impl.File file =

StarTeamFinder.findFile(folder, filename, false);

 try {

 file.checkin();

 return "File checked-in

from:"+file.getLocalPath()+file.getLocalName();

 } catch (Exception e) {

 e.printStackTrace();

 return "Check-in failed!!!";

 }

 }

 public static String getLatestVersion(String url) {

 Folder folder = StarTeamFinder.openFolder(url);

 // StarTeamFinder.

 com.borland.starteam.impl.File file =

StarTeamFinder.findFile(folder, filename, false);

 try {

 file.checkout();

 return "File checked-out

to:"+file.getLocalPath()+file.getLocalName();

 } catch (Exception e) {

 e.printStackTrace();

 return "Check-out failed!!!";

 }

 }

 public static int createLabelForFile(String url, String

filename) { //Sequence7

 com.borland.starteam.impl.View view =

StarTeamFinder.openView(url);

 com.borland.starteam.impl.Label label =

view.createViewLabel(filename+" "+getDateTime(), "Created

after checking-in: "+filename, DateTime.now(), false, true);

 return label.getID();

 }

 public static int createLabel(String url, String

labelBaseName) { //Sequence3

 com.borland.starteam.impl.View view =

StarTeamFinder.openView(url);

 com.borland.starteam.impl.Label label =

view.createViewLabel(labelBaseName+" "+getDateTime(), "Created

on: "+DateTime.now(), DateTime.now(), false, true);

 return label.getID();

 }

 public static String freezeLabel(String url, int

labelID) { //Sequence3

 com.borland.starteam.impl.View view =

StarTeamFinder.openView(url);

 Label label = findLabelByID(view, labelID);

 label.setLocked(true);

 return "Successful!";

218

 }

 private static Label findLabelByID(View view, int

labelID) {

 // TODO Auto-generated method stub

 com.borland.starteam.impl.Label[] labels =

view.getLabels();

 com.borland.starteam.impl.Label selectedLabel =

null;

 for (int i=0; i<labels.length; i++) {

 selectedLabel=labels[i];

 if (labelID==selectedLabel.getID()) break;

 }

 return selectedLabel;

 }

 private static String getDateTime() {

 DateFormat dateFormat = new

SimpleDateFormat("yyyy/MM/dd-HH:mm:ss");

 Date date = new Date();

 return dateFormat.format(date);

 }

 private static StarTeamURL getStarTeamURL(String url) {

 return new StarTeamURL(url);

 }

 public static String[] getProjects(String url) {

//Sequence7_Form

 StarTeamURL stUrl = getStarTeamURL(url);

 Server server = login(stUrl.getHostName(),

stUrl.getUserName(), stUrl.getPassword());

 Project[] projects = server.getProjects();

 String[] projectInfo = new String[projects.length];

 for(int i=0; i<projects.length; i++) {

 projectInfo[i] = projects[i].getName();

 }

 return projectInfo;

 }

 public static String createProject(String serverAddress,

String username, String password, String projectName, String

workingFolderPath) {

 Server server = login(serverAddress, username,

password);

 Project project = new Project(server, projectName,

workingFolderPath);

 return

("starteam://"+username+":"+password+"@"+serverAddress+":49201

/"+projectName);

 }

 public static int createTask(String url, String name) {

 Folder folder = StarTeamFinder.openFolder(url);

 Task task = new Task(folder);

 task.setName(name);

 return task.getID();

219

 }

 public static int createLink(String url1, int item1ID,

String item1Type, String url2, int item2ID, String item2Type)

{

 Link link = new Link(getItem(url1, item1ID,

item1Type), getItem(url2, item2ID, item2Type));

 return link.getID();

 }

 public static int[] getLinkedItems(String url, int

itemID, String itemType) {

 Item item = getItem(url, itemID, itemType);

 View view = StarTeamFinder.openView(url);

 LinkCache linkCache = new LinkCache();

 Link[] links = linkCache.getLinks(item);

 Item[] linkedItems = new Item[links.length];

 int[] linkedItemIDs = new int[links.length];

 for (int i=0; i<links.length; i++) {

 linkedItems[i] = (Item)

links[i].resolveChild();

 if (linkedItems[i].getType() ==

view.getServer().typeForName("TASK")) linkedItemIDs[i] =

linkedItems[i].getID();

 }

 return linkedItemIDs;

 }

 private static Item getItem(String url, int itemID,

String itemType) {

 View view = StarTeamFinder.openView(url);

 return

view.findItem(view.getServer().typeForName(itemType), itemID);

 }

 public static void setCRStatus(String url, int[]

itemIDs, int status) {

 ChangeRequest cr = null;

 for (int i=0; i<itemIDs.length; i++) {

 cr =((ChangeRequest) (getItem(url,

itemIDs[i], "CHANGEREQUEST")));

 cr.setStatus(status);

 }

 }

}

eMailWrapper

package com.erturkmen.alpay.tez.ws.email;

import javax.mail.*;

import javax.mail.internet.*;

import java.util.Properties;

220

import javax.activation.FileDataSource;

import javax.activation.DataHandler;

public class EmailSystemWrapper {

 public static String send(String toAddress, String

mailSubject, String mailBody, String attachment) throws

Exception {

 Properties props = new Properties();

 props.put("mail.smtps.auth", "true");

 Session session = Session.getDefaultInstance(props,

null);

 MimeMessage msg = new MimeMessage(session);

 msg.setSubject(mailSubject);

 msg.setContent(mailBody, "text/html");

 /* Attachments not supported

 * MimeBodyPart attachFilePart = new

MimeBodyPart();

 FileDataSource fds =

 new FileDataSource(attachment);

 attachFilePart.setDataHandler(new

DataHandler(fds));

 attachFilePart.setFileName(fds.getName());

 Multipart mp = new MimeMultipart();

 mp.addBodyPart(textPart);

 mp.addBodyPart(attachFilePart);

 message.setContent(mp);*/

 msg.setFrom(new

InternetAddress("alpaye@gmail.com"));

 msg.addRecipient(Message.RecipientType.TO, new

InternetAddress(toAddress));

 Transport t = session.getTransport("smtps");

 t.connect("smtp.gmail.com", "alpaye@gmail.com",

"");

 t.sendMessage(msg, msg.getAllRecipients());

 return "success";

 }

}

FileWrapper

package com.erturkmen.alpay.tez.ws.file;

import java.io.File;

import java.io.IOException;

public class FileSystemWrapper {

 private static String execute(String path, String

statement) {

 try {

 File dir = new File(path);

221

 Process p =

Runtime.getRuntime().exec("c:\\windows\\system32\\cmd.exe /c

"+statement, null, dir);

 int exitVal = p.waitFor();

 return (new Integer(exitVal)).toString();

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 return "failure";

 } catch (Exception e) {

 e.printStackTrace();

 return "unknown error";

 }

 }

 public static String generateDocument(String iniFile) {

 //expects e.g.

iniFile=CustomerReqDocConf_RE5213.ini

 String statement = "docfactory -autofile

\"C:\\dev\\pletin\\conf\\docFac\\"+iniFile+"\"";

 System.out.println("statement:"+statement);

 return execute("C:\\Program

Files\\Borland\\CaliberRM\\", statement);

 }

 public static String appendFile(String siiFile) {

 //expects e.g. siiFile=SRSDocConf_RE52212.SII

 //converts all docx files in C:\dev\docMerge\,

converts them to doc, and appends them into out.doc

 String statement ="ConvertDoc.exe

/J\"C:\\dev\\pletin\\conf\\docMerge\\"+siiFile+"\"";

 //String statement ="docMerge.bat";

 System.out.println(statement);

 System.out.println(execute("C:\\Program

Files\\Softinterface, Inc\\Convert Doc\\", statement));

 execute("C:\\dev\\docMerge\\", "ren out.DOC

SRS.DOC");

 return execute("C:\\dev\\docMerge\\", "xcopy

SRS.DOC \"C:\\dev\\pletin\\Project Documents\\\" /Y");

 }

 public static String createFolder(String

parentFolderPath, String folderName) {

 String statement = "mkdir "+folderName;

 return execute(parentFolderPath, statement);

 }

 public static String renameFolder(String

parentFolderPath, String oldName, String newName) {

 String statement = "ren "+oldName+" "+newName;

 return execute(parentFolderPath, statement);

 }

 public static String extractPackage(String

parentFolderPath, String packageName) {

222

 String statement = "unzip "+packageName;

 return execute(parentFolderPath, statement);

 }

}

ProjectRepository Wrapper

package com.erturkmen.alpay.tez.projectrepo;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

public class ProjRepoWrapper {

 public static String lookup(String key) {

 // TODO Auto-generated method stub

 Connection conn = null;

 Statement stmt = null;

 ResultSet rs = null;

 String value = null;

 try {

 conn =

DriverManager.getConnection("jdbc:mysql://192.168.74.131/pleti

n?" +

 "user=root&password=");

 stmt = conn.createStatement();

 rs = stmt.executeQuery("SELECT * FROM

`ProjectInfo` WHERE (`Key` = \""+key+"\")");

 rs.first();

 value = rs.getString("Value");

 } catch (SQLException ex) {

 ex.printStackTrace();

 } finally {

 // it is a good idea to release

 // resources in a finally{} block

 // in reverse-order of their creation

 // if they are no-longer needed

 if (rs != null) {

 try {

 rs.close();

 } catch (SQLException sqlEx) { }

 rs = null;

 }

 if (stmt != null) {

 try {

 stmt.close();

 } catch (SQLException sqlEx) { }

 stmt = null;

 }

 }

 return value; }}

223

VITA

PERSONAL INFORMATION

Surname, Name: Ertürkmen, Kulubey Alpay

Nationality: Turkish (TR)

Date and Place of Birth: March 24, 1981, Ankara

Marital Status: Married

Phone: +90 533 6324473

 e-Mail: alpaye@gmail.com

EDUCATION

Degree Institution Year of Graduation

MS METU, Informatics Institute 2003

BS METU, Industrial Engineering 2001

High School Özel Aykan Koleji, Ankara 1997

WORK EXPERIENCE

Year Place Enrollment

2004-2009 Bilgi ve Teknoloji Grubu Sr. Technical Consultant

2001-2003 METU, Informatics Institute Research Assistant

FOREIGN LANGUAGES

English (Advanced)

PUBLICATIONS

1. Erturkmen, K.A., Demirors, O. (2009). Integration of CASE Tools to Software

Processes: A Case Study. In Industrial Proceedings of 16th European Systems

and Software Process Improvement and Innovation Conference (EuroSPI'2009)

(pp:11.1-11.2).

mailto:alpaye@gmail.com

