A PROCESS MODELING BASED METHOD FOR IDENTIFICATION AND
IMPLEMENTATION OF SOFTWARE DEVELOPMENT TOOL INTEGRATION-
TUPLES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS
OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

K. ALPAY ERTURKMEN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
IN
THE DEPARTMENT OF INFORMATION SYSTEMS

MARCH 2010

Approval of the Graduate School of Informatics

Prof. Dr. Nazife BAYKAL
Director

| certify that this thesis satisfies all the requirements as a thesis for the degree of Doctor of
Philosophy.

Assist. Prof. Dr. Tugba TASKAYA TEMIZEL
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully adequate, in
scope and quality, as a thesis for the degree of Doctor of Philosophy.

Assoc. Prof. Dr. Onur DEMIRORS

Supervisor

Examining Committee Members

Prof. Dr. Semih BILGEN (METU, EEE)
Assoc. Prof. Dr. Onur DEMIRORS (METU, 1)
Dr. Kivang Dinger (BILKENT, CS)
Assist. Prof. Dr. Kayhan imre (HACETTEPE, BiL)

Assist. Prof. Dr. Altan Kogyigit (METU, 1)

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. | also declare that, as required
by these rules and conduct, | have fully cited and referenced all material and results

that are not original to this wok.

Name, Last name: K. ALPAY ERTURKMEN

Signature

ABSTRACT

A PROCESS MODELING BASED METHOD FOR IDENTIFICATION AND
IMPLEMENTATION OF SOFTWARE DEVELOPMENT TOOL INTEGRATION-
TUPLES

Ertiirkmen, K. Alpay
Ph.D., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Onur Demir6rs

March 2010, 223 pages

Software development is highly dependent on the use of tools. These tools support
and automate activities performed in different sub-domains of software development.
However, they don’t adequately provide or support integration facilities, and act as
“islands of automation”. This restricts their benefits to only specific parts of the
process. To reap the benefits of integration, this thesis provides a process modeling
based method named PLETIN to identify and implement software development tool
integration-tuples. The method aims to present solutions for issues observed in tool
integration for software development organizations by delivering an integrated tool
set. The proposed solution approach is based on the idea that if there were no
integrations between tools at all, users would perform the necessary actions to
cooperate different tools. PLETIN is a method for the identification of the candidate
integration situations (integration-tuples) from the interactions of users with the

tools. These tuples constitute the requirements used to develop integration facilities.

The software development process definitions are used as inputs to create process
models and provide actual implementations. The research is supported with case-
study work to identify the significance of the problems and the applicability of the
method as a solution to issues in tool integration.

Keywords: software development process, software development tools, tool
integration, process modeling

(0Y/

YAZILIM GELISTIRME ARAC ENTEGRASYONLARININ AYIRT EDiLMESI VE
UYGULANMASI ICIN SUREC MODELLEME TABANLI BiR METOD

Ertiirkmen, K. Alpay
Doktora, Bilisim Sistemleri Boliimii

Tez Yoneticisi: Dog¢. Dr. Onur Demirors

Mart 2010, 223 sayfa

Yazilim gelistirme siireci g¢esitli araclarin kullanimina ciddi anlamda bagimlilik
gosterir. Bu araglar yazilim gelistirme siirecinin farkl alt-alanlarinda gergeklestirilen
isleri destekler ve otomatiklestirir. Fakat bu araglar yeterli entegrasyon imkanlarini
saglamayarak ya da desteklemeyerek Dbirer “otomasyon adasi” olarak
davranmaktadir. Bu davranis, araglarin faydalarinin siirecin sadece belirli pargalarina
kisitlanmasina sebep olmaktadir. Entegrasyonun faydalarindan yararlanilabilmesi
icin bu tez, yazihm gelistirme ara¢ entegrasyonlarinin tanimlanmasi ve
gerceklestirilmesi i¢in kullanilan siire¢ modelleme tabanli PLETIN adinda bir metod
sunmaktadir. Bahsi gecen metod, entegre bir ara¢ grubu olusturulmasini yardimci
olarak yazilim gelistiren kurumlarin yasadigi ara¢ entegrasyonu temelli sorunlara
¢oziimler saglamay1 hedeflemektedir. Onerilen ¢oziim yaklasimi, eger ortamda
herhangi bir entegrasyon olmasaydi farkli araglar1 birarada calistirabilmek igin
gereken islemleri kullanicilarin yapmasi gerektigi varsayimina dayanmaktadir.

PLETIN kullanicilarin araglar ile etkilesimlerinden, aday entegrasyon durumlarinin

Vi

tanimlanmasint = miimkiin ~ kilmaktadir. Bu durumlar entegrasyonlarin
gerceklestirilmesinde temel alinan gereksinimleri olusturur. Yazilim gelistirme siire¢
tanimlar1 girdi olarak kullanilip slire¢ modelleri ve gercek uygulamalar gelistirilir.
Yapilan arastirma, sorunlarin ciddiyeti ve metodun ara¢ entegrasyonu problemine

uygulanabilirliginin anlasilabilmesi i¢cin durum-galigsmasi ile desteklenmistir.

Anahtar Kelimeler: yazilim gelistirme siireci, yazilim gelistirme araglari, arag

entegrasyonu, siire¢ modelleme.

vii

To my beloved wife, Gok¢e Banu

viii

ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to my supervisor Assoc. Prof. Dr.

Onur Demirdrs for his guidance throughout my graduate studies.

I wish to express a lot of thanks to Prof. Dr. Semih Bilgen and Assist. Prof. Dr. Altan
Kogyigit for their valuable suggestions and comments throughout the steering

meetings of this study.

I would also like to thank Dr. Kivan¢ Dinger and his team, Ocal Fidanboy, Burcu
Akkan, Cenkler Yakin for their support on the case studies.

| also want to express my gratefulness to my wife Gok¢e Banu for all her patience,
love, support and tolerance. Without her understanding this work would never been

possible.

Finally, 1 would like to thank to my parents and dear sister, for their support and

love.

TABLE OF CONTENTS

A B ST R A CT e e v
[0 Y 2RSSR Vi
ACKNOWLEDGEMENTS ...ttt IX
TABLE OF CONTENTS ..ottt X
LIST OF TABLES ...ttt Xiii
LIST OF FIGURESottt ne e nne e nne e Xiv
CHAPTER
1. INTRODUCTION. ..ottt snnee e 1
1.1 THE CONTEXT ..ot be ettt be e sbe e sbe e sreesaeesaras 7
1.2. SOIUTION APPIOACKH........ccuiiiiiiiiiiie s 8
1.3. CONTFIDULIONS ... e e 10
1.4. Organization of the TheSIS ... 12
2. RELATED RESEARCHooioii ettt 14
2.1. Tool Integration APPrOACNES........ccivviie i 15
2.1.1. Early Message-Passing/Control Integration Approaches............ccccccevveveivennns 18
2.1.2. Application Lifecycle Framework (ALF) ... 20
2.1.3. TOOINEL SYSIEIM.....uiiiiiiii et sre e sre e s esneesnes 22
2.1.4. Data-Sharing APPrOachEsccceiieiiieiieiieerie e e e rre e e sre e e e sneesnees 24
2.1.5. Agent-based APPrOaChESccceiiiiieiie e 25
2.1.6. Process Centered Software Engineering Environments (PCSEES).................. 27
3. THEPLETIN METHODcooiii et 29
3.1. Y/ [oTo [T T Yo AN o] o1 o - Ue] 1S SRS POSN 33
3.2. METNOA STAQES.....eeiiiiiieie e teenaeenre e 36

3.3. Context Definition (Stage 1)ccooveieiecee e 37

3.4. Process Definition (Stage) ... 39
3.4.1. Actor and Action 1dentifiCationccceoeiiriiinine e 42
3.4.2. Process FIow 1dentifiCation.............cooeiiiieii i 44
3.4.3. Tool and Tool Interaction Identificationccoooevoierenieiienr i 45

3.5. Process Mapping (Stage HI) ... 47
3.5.1. Identification of ALOMIC ACLIONScc.eiiiiieie e 47
3.5.2. ldentification of IMPlICIt SEQUENCESccoveieeieiiicree e 49
3.5.3. Development of Custom Integration Implementations.............c.ccoccoveveierienns 54

3.6. Process EXecution (Stage 1V) ... 56

3.7. ROIES ...t e et e re b nae s 59

3.8. NN 0] =11 o] o ISR 60

3.9. Comparison of the PLETIN Method with Previous Efforts........................... 60

3.10. Limitations of PLETINccooiiiiiieeesese e 63
ENABLING TECHNOLOGIES.........cccee e 66

4.1. Business Process Modeling Notation (BPMN)c.cccooiviiviviiiiccieeneciene 66
4.1.1. ChoiCe OFf BPMN......ciiiiiiiiiiece st e 67
4.1.2. BPMN EIBIMENLSooovieiiiiicieiteriesie e s 68

4.2. Intalio]BPM Community EItiONccocoveiiiiiiiiieieeeees e 74

4.3. Eclipse and Apache TOMCALcccoveiiiiiiiice e 78
CASE STUDIES ...ttt 79

5.1. Multiple Case StUAY DESIGN.......coiiivieiriiiiese e 81
5.1.1. Case StUAY I DESION ...c.eoviiiiiriiitiiie ettt 81
5.1.2. Case StUAY T DESIGN.....c.eciiiiiiiiiiieiieieie ettt 84

5.2, CaSE SEIECTION ..o 85

5.3. Execution 0f Case StUAY L........cceeviiiiiii i 85
5.3.1. Tool Use EXPlOration PhaSse..........ccccererriiriiiiisine e 86
5.3.2. 1dentification PhaSe........cccoviiiiiiiiii e 87
5.3.3. IMplementation PhaSecccciveviiiiiie e 90
5.3.4. Discussion on Implicit Sequences for Case Study l........ccccocevviiiicieineiennns 93

5.4. ReSUlts fOr Case STUAY F........coi i 95

5.5. Execution of Case StudY Tccooviiiiiie e 101
5.5.1. Context Definition PNASEcccocoiiiiiiiiiee e 103

Xi

5.5.2. Process Definition PhaSe........cuuiiiioeiiiiioeiee st seee e st e seree s serae e e sennaeees 106

5.5.3. Process Mapping PhaSe........ccccceviiiiieiiieee ettt 107

5.5.4. Discussion on Implicit Sequences for Case Study Ilc.cccooveveviireiennne, 108

5.6. Results for Case StUAY Tccooeiiiiiiiie s 110

57. Validity TRIEaALS ..o s 112

5.8. D o0 3 (o] o ST 113

6. CONCLUSIONS ...ttt 118

REFERENGCES.ttt e e e e e annae e 123
APPENDICES

APPENDIX A: COMPLETE LIST OF OPERATIONS DERIVED FROM
PROCESS MODELS (CASE STUDY 1) .cviiiiiiiiiiiieeeeeee s 131

APPENDIX B: COMPLETE LIST OF OPERATIONS DERIVED FROM

PROCESS MODELS (CASE STUDY 1) ..ooiiiiiiiiiiiieieeese s 133
APPENDIX C: PROCESS LIST (CASE STUDY 1)..cccoviiiiiiiiieiieniceeee 134
APPENDIX D: PROCESS MAPPING (CASE STUDY) ..o 137
APPENDIX E: PROCESS MODELS (CASE STUDY 1)...ccoooiniiiiiiiiiien 141
APPENDIX F: PROCESS MODELS (CASE STUDY 1) ..o 165

APPENDIX G: DEFINITIONS FOR WEB SERVICES (CASE STUDY 1)...191

APPENDIX H: APPLICATION CODE DEVELOPED FOR WEB SERVICES
(7N =1 K537) OO 213

Xii

LIST OF TABLES

Table 1 Types of process with respect to the number of tool Interactionsc.ccccevviiieiincnenns 37
Table 2 Sample process list fOr RE PrOCESS @rEa........ccouruiririereiiirieeieie ettt e 38
Table 3 Types Of IMPIICIE SEAUENCESveveie ettt e e e e sresresreeneas 50
Table 4 BPMN BIBMENTS.......ciiiiieceese e 68
Table 5 Processes areas not directly related to software development............cccccvevvniniinenicnienn, 86
Table 6 Process areas included in the scope of Case Study |ccoeiiiiiiiininins 87
Table 7 Tool interactions with reSpect t0 PrOCESS ArEAS..........covcirverieirieieirieieierreeeie e 95
Table 8 Distribution of candidate integration sequences with respect to process areas..................... 96
Table 9 Distribution of tuples with respect t0 ProCeSS areasoueveiuerererenirenieeerese e 96
Table 10 Execution freqUeNCY OF TUPIEcuo i e 97
Table 11 Distribution of operations t0 tOOIScccciviviiiieii i 100
Table 12 Differences between the two target organizationsccocevevereneseeieeiere e 102
Table 13 List of processes selected for @nalySis.........ocooeviiieiiiiiiiiee e 105

Xiii

LIST OF FIGURES

FIQUIE 1 TYPES OF T00IS. ...eeiieiieeee et bbb bbb e bbb 2
Figure 2 A fictional monolothic tool and itS Process SUPPOIT........ccererirerrieie et 4
Figure 3 A fictional tool suite and itS ProCess SUPPOITevveiereriresieeieeriese e ste e eae e sre e sneas 5
Figure 4 A fictional tool set from several vendors with point-to-point integrations.............cccoceeevvennins 6
Figure 5 Process Model fOr PLETIN........cooiiiiiiiieneese e s 11
Figure 6 Artifact relationships in PLETINcoooiiiiiiiieic e 12
Figure 7 Control integration/Data sharing approach [13] ..o 19
Figure 8 ALF @rchiteCture [B]ccoeoeeierieiieiiee sttt 20
Figure 9 ALF MeChaniSm [B].......coeiiiiiiiieie ettt et se e sb e 21
Figure 10 TOOINEL @rChItECIUIEccuiiiiiieii e bbb 22
Figure 11 Tool integration sophistication vs. sustainability [1]......c..cccccovveriiniiininieiieiercse e 23
Figure 12 Toaster MOAEI [B2]......ccveieiiieiieie ettt sttt re et sre s benre e 24
Figure 13 Data Sharing @PPrOACKcccoiiiiiieeie ettt 25
Figure 14 Architecture for agent-based tool iNtegrationcccoeveieienniieneeee e 26
Figure 15 Process model fOr PLETIN.......cociiiiiiiieeie e e 31
Figure 16 Conceptual map for the PLETIN Methodc.cooiiiiiiiiiiicee e 35
Figure 17 Process model for PLETIN Stage I, Context Definitioncccoceviieiiieniiicicic e 40
Figure 18 Relationships of PLETIN BPMN EIEMENEScccoeiiiiiiiiecieeece s 41
Figure 19 Process model for PLETIN Stage I, Process Definitionccccccccvveivieiievescsic e, 43
Figure 20 Sample User Representations on Process Model ... 44
Figure 21 Sample process flow with BPMN NOtAtioNccooiiiiiiiiieieeeee e 45
Figure 22 Sample tool interaction represented as a process Model ..o, 46
Figure 23 Two actions grouped iNt0 & SEQUENCEcerverieerieieesie ettt 46
Figure 24 Process model for PLETIN Stage 11, Process Mappingcocooererenerenieieenene e 48
Figure 25 SeqUENCE DrEaKAOWNcc.iiiiiiieee e bbb 49
Figure 26 A sample interrupted impliCit SEQUENCEcccveieiiiie e 51
Figure 27 A sample compound impliCit SEBQUENCE.........eiieieiiie it 52
Figure 28 Placeholder tasks fOr t001S........c.cuiiiiiiiiisece e 55
Figure 29 Web-service invocations by the process Manager........cccvovevereererieresesieseeseeseeseseeseeseens 58

Xiv

Figure 30 Supported BPMN elements in Intalio|DeSIGNercccoereiiieniieienee e 74

Figure 31 Web-service definitions imported to the WOrkSPacecceeeeeereneienineriee e 74
Figure 32 Data mapping in INtalio]DESIGNENcoiiiiiiiieieie e 75
Figure 33 Intalio|Designer process deployment dialog...........cooveivierieiiiieneiiieiee e 75
Figure 34 Intalio|BPM Community Edition process operations interface..........c.ccoccoeevrnencienenine 76
Figure 35 Intalio]BPM Community Edition process detail interface..........ccccocvvvvvviviiicieicnic e 77
Figure 36 Intalio|BPM Community Edition process instance detail interfacec..ccccceeeevivvinnnenn, 77
Figure 37 Eclipse "Web-Service WIizard" ..o 78
Figure 38 Process model for Case Study | DESIONccooerieeririiieieiee e 82
Figure 39 Sample BPMN model for Case Study I, Phase I, RE5214...........cccocoovviiiniienenieneee, 89
Figure 40 Sample tool interaction represented as a process Modelccccoevvviieniinennieneneene, 90
Figure 41 Two actions grouped iNt0 & SEQUENCEc.eiirerrierieriesiesieeieeie et sbe st see b 91
Figure 42 Web service definitions imported to the WOrkSpaceccoveereniienineiieeee e 92
Figure 43 Sample completed BPMN model for Case Study |, RES214..........ccocvvvvvereieeiene e 92
Figure 44 Process MOAEl fOF TS5L2.....c.ciiiiiiiieieie ettt 93
Figure 45 Process MOdel fOr TS52L.......cciiiiiieiieiee et 94
Figure 46 Integration map for the Case StUAYccoeiireiriineic e 98
Figure 47 Existing integration map of the 0rganization.............ccccooeveiiennineneseee e 98
Figure 48 Number of tuples constituting the integration Mapccocceoveerenie i 99
Figure 49 Process model 0f Case StUAY Tlccoiiiiiiiiiie e s 101
Figure 50 Process model of Case Study I, Phase [........ccccceviiiiiiiiieeieie e 104
Figure 51 Process model of Case Study I, Phase [l..........ccccoeieiiiiiiecieie e 106
Figure 52 Sample process model for Case Study 11, Phase 1l (UG-070-87).......cccceovvvvnerrieneninennnn. 107
Figure 53 Sample process model for Case Study 11, Phase H1 ... 108
Figure 54 Process model for KY-020-62142 ..o 109
Figure 55 Sequence KY-020-62142 deCOMPOSEA.........eviuiriireiiriiieiiniesieiisie sttt 110
Figure 56 Process model of Case Study 11, Phase T ... 111
Figure 57 Effort distribution for Case StudY Tlcooeiiiiii s 112
Figure 58 Process list (CASE STUDY 1) - Part Lccocovivioieiiie et 135
Figure 59 Process list (CASE STUDY 1) - PArt 2ccvcviieieieie ettt sre s 136
Figure 60 Process Mapping for Case Study 1l — Part L..........cccocoviiineiieneeese e 138
Figure 61 Process Mapping for Case Study 11 - Part 2 ..o 139
Figure 62 Process Mapping for Case Study 11 - Part 2ccocooeoiiniinienieeeseee e 140
Figure 63 Process Model for BRPG2 - Part L........cccoiiiiiiiiiiiiieisiesieesie e 142
Figure 64 Process Model for BRPG2 - PAT 2.........ooiiiiieiiiie ettt 143
Figure 65 Process Model for CMGBSL10........ccceiiiiiiiiiciecieiee st e et st ra e e stesresrenns 144
Figure 66 Process Model for CMBL13cocoiiieie ettt st sresre s 145

XV

Figure 67 Process Model for CIMB33 ..o 146

Figure 68 Process Model for CMG2L-Part 1ccccooiiieiiiie e 147
Figure 69 Process Model for CG2L-Part 2ccocoiiiiiieiiiiie et 148
Figure 70 Process Model for CMG2L-Part 3cccvciviieiiiiie et 149
Figure 71 Process Model fOr CMTG2LLc.ooviiiiiiiiiiieie ettt 150
Figure 72 Process Model fOr CMTG2L2coveiiieiiiecieie ettt sta e et sne s 151
Figure 73 Process Model for CMTG213-216 Part 1.......c.cccooeieveiieienieie e e ste e e 152
Figure 74 Process Model for CMTG21-216 PAI2.........cccocerieirienieinienieisesieese e 153
Figure 75 Process Model for RED213..........coiiiiiiiiiiieene e 154
Figure 76 Process Model fOor REB214..........ccciiiiiiiiiiiees et 155
Figure 77 Process Model for RE52212 Part L........cccoiiuiiiiieiieieisesese e 156
Figure 78 Process Model for RE52212 PArt 2.........cccooiiiiiiiiie e 157
Figure 79 Process Model for RES222..........cooiiiiiiiiice e 158
Figure 80 Process Model fOr RMTG21........coueiiieieiisieieeiesieste et e ettt sre e snenns 159
Figure 81 Process Model for RMTG22........cuiiiiiiiiiiineesie st 160
Figure 82 Process Model for RMTG23........cviiiiiiiiiiiieesie e 161
Figure 83 Process MOdel fOr TS5LA........cuiiiiiriiieiirieieesi et 162
Figure 84 Process Model fOr TS524 ..o e 163
Figure 85 Process Model fOr VV5A2 ..ot e 164
Figure 86 Process Model for KY-020-621-Part L.........cccceiriiiiiiiiiniee e 166
Figure 87 Process Model for KY-020-621-Part 2.........c.ccccveviiieieiisieeieie et 167
Figure 88 Process Model for KY-020-621-Part 3.........c.ccccveiiiieieiiieeieie e 168
Figure 89 Process Model for KY-020-621-Part 4..........ccccoeriiiiniiieniesenese e 169
Figure 90 Process Model for UG-010-84ccccoiiiiiiiieenieniesie e 170
Figure 91 Process Model for UG-040-83.........cccoiiiiiiiiieineesesesie e 171
Figure 92 Process Model for UG-070-81........cccceoiiriiiinieieisienieesie e 172
Figure 93 Process Model for UG-070-82.......c..ooiiiiiiiiieieese e 173
Figure 94 Process Model for UG-070-83 ..o e 174
Figure 95 Process Model for UG-070-86cccccviiiieiieiieieie ettt se s e sre s 175
Figure 96 Process Model for UG-070-87ccivieiiiiiieieicse ettt sne s 176
Figure 97 Proces Model for UG-070-89.........ccviiiiiiiiiiiiesenesie e 177
Figure 98 Process Model for UG-190-82.........cccuiiiiiiiriieiseiesie e 178
Figure 99 Process Model for UG-190-89-Partl...........cccccvireiriniiienieisieniesesese e 179
Figure 100 Process Model for UG-190-89-Part2.............cccooeiiiiiiiiniiiseniese e 180
Figure 101 Process Model for UG-190-89-Part3...........cccooiiiiiiiiiiiiiee e 181
Figure 102 Process Model for UG-190-810-Part L.........cccccovieiieieiinieniieie e e sre e sresve e sre s 182
Figure 103 Process Model for UG-190-810-Part 2...........ccccveieiieiinieniieiesesie e sve e sresse e sreenas 183

XVi

Figure 104 Process Model for UG-190-810-Part 3............coccoiviiiiineiiiieerneee e 184

Figure 105 Process Model for UG-190-810-Part 4...........cocoviiiieiiiiiieie e 185
Figure 106 Process Model for UG-190-811ccociiiiiiieiiieie ettt 186
Figure 107 Process Model for UG-190-812-Part L.........c.cccoieiieieiisieniieie e e se e seesre s 187
Figure 108 Process Model for UG-190-812-Part 2.........c.cooiiiiiiiininieie e 188
Figure 109 Process Model for UG-190-813-Part L.........cccccevieiieiieiinienieie e e ste e seese e sneens 189
Figure 110 Process Model for UG-190-813-Part 2.........cccccevvrierieiisieeieie e e steseseeee e e snenns 190

XVii

CHAPTER 1

INTRODUCTION

The scope of software development in modern organizations is getting broader as the
business needs and software complexity increases. Once formally defined only as
design and coding of software systems, software development now encompasses
planning, requirements definition, requirements management, design, coding,

building, testing, configuration management and maintenance of software systems.

As a direct consequence of the widening in the scope of software development
processes, the number of stakeholders, the complexity of the development processes

and the effort spent increases.

Software development has thus become a complex sequence of information
transformations, with a pre-defined aim and several levels of input and knowledge
[9]. These information transformations create outputs that are used as inputs in
succeeding steps towards the goal. These transformations are specialized into
separate processes like requirements engineering, software design, coding, and
software testing. As in any engineering domain, tools have been developed to

support software engineers by increasing the efficiency of the execution of processes.

Tools are used to handle the complexity surrounding software development
processes [38]. There is much evidence in the literature on how tool use provides

benefits for software development in terms of quality and cost [36], [57], [45].

Tools that support software development can be classified into two groups (See
Figure 1): the first group contains monolithic development benches created and
supported by a single vendor or organization [34]. These development benches target
a single platform, and are designed to support as much of the whole software
development process as possible. Monolithic tools generally only support specific
development technologies and target platforms. They are large, very complex and do
not provide flexibility. They are costly to build and acquire, hard to maintain and

modify for different goals.

The second group is composed of individual tools supporting one or more discrete
software development phases/sub-domains [60]. Software development
organizations targeting different platforms/technologies or those operating in
heterogeneous environments (like complex enterprise applications or open systems)
require a variety of tools. Monolithic tools do not provide support for a mix of target

platforms/technologies and are not suitable for modification.

Monolithic
tools

Coalition
of tools

similar

Single
vendor

Figure 1 Types of tools

Multiple
vendor

Vendors develop distinct tools for different platforms and technologies that can be
used to operate in heterogeneous environments. Another source for these tools are
communities of open source developers. These tools range from simple time tracking

solutions to complex continuous integration systems. They are specialized to support

and automate specific (or several) sub-processes of software development, like
requirements management or version control [45]. Being specialized on supporting
and automating certain parts of the complete process, they constitute “islands of
automation” if they do not provide sufficient integration facilities [63], [54], [36].

[45] and [38] state that, "for improved productivity, quality and reduced risk, IT
infrastructures need to be highly integrated and interoperable”. [63] defines tool

integration as:

“the techniques used to form coalitions of tools to provide an environment
that supports some, or all, of the activities within a software engineering

process”.
Wasserman [60] identifies tool integration as:

“an intention to produce complete environments that support the entire

software development lifecycle”.
Thomas and Nejmeh [57] developed a more specific approach stating:

“Tool integration is about the extent to which tools agree. The subject of
these agreements may include data format, user-interface conventions, use of

common functions, or other aspects of tool construction’’.

Monolithic tools are developed by a single group, and are inherently integrated. They
aim to support the whole software development process, but generally support a

fraction of it in practice. They also have the following limitations:

1. Monolithic tools are expensive to develop and acquire, because they are large

and complex.

2. Monolithic tools don’t support interchangeable components by definition.
They have rigid structures that are not interoperable or interchangeable with
3" party components. Organizations using monolithic tools become “vendor-

dependant” because of this limitation.

3. Monolithic tools aim to support the complete development process, but end
up supporting a fraction of it (See Figure 2).

4. Monolithic tools do not support different technologies and platforms.

_'—-f

!

Figure 2 A fictional monolothic tool and its process support

These constraints render monolithic tools an infeasible solution for most
organizations. The alternative for these organizations is to use separate tools to

support different sub-domains, technologies, and platforms.

Integration of discrete tools that support different sub-domains is not trivial and
presents its own challenges. Integration between the tools is mostly realized by tool-

vendors, or in some rare cases by independent 3" party developers.

Integration implementations developed by vendors are strategic and favor the
vendor’s own set of tools. They are used to establish a suite of integrated tools [14].
An integrated tool suite resembles a monolithic tool, which is developed from the
ground-up by a single vendor to support the whole process (See Figure 3). However
since each organization has different requirements stemming from varying
organizational processes, customers, technologies, and target platforms, tool suites

can be rarely satisfactory. A rigid, one-size-fits-all solution is not acceptable for the

variety of requirements. These solutions in the form of monolithic tools and tool
suites prevent organizations from creating their own tool sets based on their own
organizational requirements and constraints [1]. Organizations can’t use tools they
choose but have to depend on bundles designed and provided by vendors. This is
called vendor-dependency. The choice of a single vendor tool suite can even

constrain the platforms and technologies an organization can support and operate in.

Vendor A Tool Suit

Figure 3 A fictional tool suite and its process support

Occasionally, vendors develop integration implementations to support tools from
other vendors. These mostly originate from strategic relationships between vendors.
Being integrated to a very popular commercial tool or widely used open source
software can positively influence the market for the tool, and this can be the reason
for intra-vendor integration implementations. Depending on this kind of integrations
between the tools, organizations can develop tool sets satisfying their requirements
(See Figure 4).

These implementations are generally specific to a particular version of the tools.
Since there is no standard framework of defined and widely accepted interfaces,
tools do not provide standardized interfaces. Integration implementations built to
support a specific version of a tool can become obsolete as their internals change
with new iterations. Organizations depending on these integration facilities are
locked down to certain older versions and they can’t upgrade their tool infrastructure
if they can’t give up the functionality provided by the integration [54]. This is called
“version-dependency”. These point-to-point (bilateral) integration implementations
are "fragile, partial and inflexible" [38], [1], [13]. This limits the organizations'
freedom of choosing best in class, most suitable and economic technologies and tools
to develop their own tool set. The resulting software development infrastructure is
rigid, inferior, expensive, hard to maintain and vendor-dependant, while the number

of implementations required increase exponentially with the number of tools in use.

— Vendor implementation

— Point-to-point, version
dependant, lragile
]
- -

——

i,
=2 S

Figure 4 A fictional tool set from several vendors with point-to-point integrations

1.1. The Context

The literature survey performed for this thesis unveiled many approaches to tool
integration in literature. [62] provides an excellent bibliography of research with
significance in the domain. Research on tool integration is mostly formulative,
focused mostly on providing solutions, rather than descriptive, focused on
understanding and describing the domain [63]. This makes it harder to categorize
proposed solutions, compare and evaluate them and develop new solutions based on
existing ones. However, there are several proposed categorizations for tool
interaction including [63] and [44], which are detailed in Chapter 2. Broadly, tool
integration efforts range from standardization efforts and architectural models to
modern XML/XMI oriented approaches. These efforts define guidelines or standards
on how should tools be built, how should they their structure be, and how should

they communicate.

Wasserman, in his 1989 paper [60] defines five types of tool integration: platform,
presentation, data, control and process. Most approaches in the literature focus on

data integration, on how data is shared and objects are managed.

Previous research frequently emphasizes the importance of aligning tool integration
with processes. However, an answer to the question “how tool integration can be
developed based on organizational processes?” is often discarded, or solutions
similar to Process Centered Software Engineering Environments (PCSEEs) that

support processes without focus on integrating existing ones are proposed.

The work in this thesis was inspired by an Eclipse project named Application
Lifecycle Framework (ALF) [6]. It is one of the most recent efforts on tool
integration. Unfortunately it has been terminated before being finalized. The details
of ALF are available in Section 2.1.2. The approach ALF takes is "to create a multi-
layered interoperability framework leveraging SOA technologies”. It is based on the
orchestration of tools to provide processes that can be repetitively and efficiently
executed. In short, the aim of the ALF project is to develop a standard-based tool

integration environment. In this environment tools communicate using a common

vocabulary. The tools are expected to provide/expose ALF-compliant services so that

they can be orchestrated to execute the processes.

Unfortunately, the ALF project was terminated while it is in Eclipse incubation
stage, due to insufficient community participation except from tool vendor Serena
[25]. The most important phase of the project, as stated in the “Termination Review”,
was the determination of “a set of domain vocabularies that define the events, objects
and attributes”. The vocabularies constitute a core component of services that are
used to orchestrate the processes. This phase required a high-level of participation
since the aim was to develop a common vocabulary that is widely accepted in the
industry. The technique employed was to bring together experts from the industry,
receive their opinions to start discussions and reach an agreement at later stages.
However, the lack of participation from the community, and possible bias from the
contribution of a single vendor resulted in the project being archived and the

termination of further developments.

1.2. Solution Approach

To prevent vendor and version dependency, a tool integration infrastructure that is
based on open standards and open technologies is required. The integration
infrastructure must empower organizations to develop a tool set satisfying their own
requirements. Organizations must be able to choose best-in-class tools, and
complement them with any other tool to develop tool sets that have sufficient
features for them conforming to their economical constraints. The framework must
support tool interoperability and interchangeability. Organizations must be able to
change any tool they use with another one without much effort, and incorporate any
tool to their tool set [1]. Today’s fast changing businesses mandates software to be
flexible, adaptable and integrated. Tools infrastructures must be built to assist with

the adaptation and integration process [36].

Software development cannot be imagined without the use of tools. Many software
development organizations are already invested on tools to support their processes,

integrated or not. Guidelines or models for better-integrated tool sets would not

provide benefits for organizations that already own tools. Solutions with a focus on

existing tool sets would have a practical value.

Organizational processes affect the quality, cost and effort spent for software
development. Many organizations are aware of the need to integrate the
organization’s process with tool support. Organizations even consider processes and
tools to be inseparable [54]. The proposed solution must consider, be aligned to or
even be based on organizational processes and tools must be integrated with respect

to processes, rather than features of each other. This is stated by [14] as follows:

“tools are not simply integrated with each other, but are integrated with
respect to specific process requirements. Further, entire tools are not
integrated, but rather specific tool services (in the example, data flow
diagram editing with documentation tool data interchange formats and
document templates) are combined with some specific process result
(production of standard documentation) to produce an integration of tool

services.

While this n-ary relationship between tool services and process elements is
conceptually tidy, in practice it is not easy to disentangle the process
elements from the tool services (again, not surprising since CASE services

tend to support end-user activities).”
There are two important questions left without emphasis in the literature:
1. How an already existing, much divergent tool set can be integrated?

2. What do the organizational processes expect from the tool set in terms of

integration?

A solution answering these questions will have practical value in terms of being
applicable to existing tool sets, while providing integration facilities that satisfy

organizational requirements rather than fictional technical possibilities.
Briefly, a solution providing the following features is required:

1. Support open standards and technologies

2. Support tool interoperability and tool exchange (letting organizations choose

whatever tools they see fit)
3. Support existing tools
4. Support organizational processes

5. Provide information for future tool developments

1.3. Contributions

In this thesis, a method to derive the tool integration requirements of an organization
from its software development processes is proposed. The proposed solution is based

on the following perspective:

Assuming a situation where there are no integrations between the tools in a
software development environment, cooperation of them must be maintained
manually. As an example, to make it possible for different tools that are not
integrated to work on the same data set, the data must be fed to each tool
manually. Similarly, for a tool to operate on the information created by
another tool, data should be moved between the tools by a user manually. In
other words, users must perform actions necessary to keep the tools working
together (cooperate). In this situation, process definitions (or models derived
from these definitions if they exist) would contain sequences of actions (what
we name integration-tuples or sequences, and use interchangeably in this

thesis) performed to maintain tool integrations.

A process model is an abstract representation of software production activities and
their relationship [9]. The investigation of these models can result in an
understanding of how users interact with tools in software development to maintain

non-existing tool integrations.

In the proposed method, process models are developed to visualize the process
definitions. The integration requirements extracted from the process models are used
to define and build custom interfaces for the tool set employed by the organization.

Business processes are developed from process models, which mimic the manual

10

actions performed by users. These business processes consume the interfaces
(implemented as web-services) developed for the tools when executed automatically.
Thus, user actions are performed by the integration infrastructure on behalf of them
and tools are integrated based on the requirements derived from organizational
processes. See Figure 6 depicting the relationships of various artifacts used by the

method.

Successful execution

L@}

S

Project started Context defiped

Frocess definitions complete Process mapping complete

Figure 5 Process model for PLETIN

Ultimately, the integrations are realized as business processes that are executed
automatically instead of manually by users. They have the following features:

1. They are developed based on organizational software development processes

and process models representing them.
2. They executed automatically on a business process execution server.

3. They consume custom tool interfaces. These interfaces are developed for the

tools so that they can satisfy integration requirements.

The conduct of the PLETIN method is detailed in Chapter 3. The process model for
PLETIN is given in Figure 5. In the end, the users would observe that manual actions
they carried out to maintain tool cooperation are no longer necessary. Rather, they
can execute actions to affect multiple tools automatically. Individual tools would act
as a coalition of integrated tools with the help of the automated business processes.

Users would perceive the tool set as integrated.

Since tool integration in literature is mostly formulative, multiple case studies were
performed to understand tool use in an organization, and the extent of the problems

with tool integration. Based on this knowledge, the proposed method named PLETIN

11

(Process Level Tool Integration) was developed. The method was applied at two
different organizations to identify integration requirements and develop a prototype
implementation. Feedback obtained was used to improve the method and evaluate its

feasibility.

. Process
Process definitions Represented by

Contain Contain

Contain

Tool interactions

Make up

Business
processes

Sequences Converted to

(Integration-tuples)

Define Consume

Web-service

; Implemen Web-services
requirements P

Figure 6 Artifact relationships in PLETIN

1.4. Organization of the Thesis
The remainder of the thesis is organized into five chapters.

In Chapter 2, related research on software development tool integration approaches
are described. Different approaches are compared to our approach to identify their

advantages and limitations.

Chapter 3 describes the PLETIN method proposed by this thesis in detail. Each stage

of the method, activities performed in these stages, inputs and outputs are discussed.

12

Chapter 4 discusses the technologies enabling the implementation of the PLETIN

method.

Chapter 5 presents the multiple case study approach taken to understand the domain,
to develop the method and evaluate it. Design and execution details of the case

studies are given along with results and discussion.

Chapter 6 presents the conclusions reached and summarizes the contribution of this
research. New questions that are raised by our research and the subjects that require

further investigation are also described in this chapter.

13

CHAPTER 2

RELATED RESEARCH

Wicks and Dewar provide a detailed background on tool integration in literature

[62]. They define tool integration in software engineering as [63]:

“the techniques used to form coalitions of tools to provide an environment
that supports some, or all, of the activities within a software engineering

process”

Wasserman identifies “the desire to link tools” in a software engineering
environment as a “key issue” and defines it as supporting the entire software
development lifecycle. Integration efforts aim to bring together tools supporting and
benefitting the complete lifecycle of software development “through automation,

with consequent productivity and quality improvements [63].
Thomas and Nejmeh [57] developed a more specific approach stating:

“Tool integration is about the extent to which tools agree. The subject of
these agreements may include data format, user-interface conventions, use of

common functions, or other aspects of tool construction”.

14

2.1. Tool Integration Approaches

Brown [13] states tool integration can be defined in two levels: conceptual (what is
tool integration?) and mechanical (how do we provide integration?). He also

categorizes tool integration literature into three groups:
1. New mechanisms and formulations for tool integration.

2. Examining semantics of tool integration including works of Wasserman [60],
Thomas and Nejmeh [57], Wallnau and Feiler [14], [15].

3. Analysis of the relationship between integration and process (where little

work is available).

Wasserman suggests a conceptual categorization in his paper [60] with the following

types of tool integration:
1. Platform integration: various tools should be interoperable.
2. Presentation integration: tools should share a common “look and feel”.

3. Data integration: tool integration requires both sharing of data among tools
and managing the relationships among data objects produced by different

tools.
4. Control integration: tools should also be able to notify one another of events.

5. Process integration: major benefits from tools are achieved when they are

used to support a well-defined software engineering process.

Another conceptual categorization for tool integration is given in [13] where Brown

defines five levels:

1. Carrier level: Tools have a common form for data exchange like a byte

stream.

2. Lexical level: Tools have common lexical conventions, a vocabulary with no

relationship between words.

3. Syntactic level: Tools have common schemas, common rules for the creation

of data structures.

15

4. Semantic level: Tools have a common understanding of the shared data.

5. Method level: Tools have information on the environment and process they

support.

According to Brown [13], two most observed mechanical approaches to tool

integration are:

1. Data sharing, mostly “through a common database in which all tools deposit
their data”, or through techniques like a common object models, interface

languages, or message exchange formats.

2. Control integration, based on actions and control signals where software

development is seen as “a collection of services provided by different tools™.

“Data integration” or “data sharing” is the most frequently used approach in the
literature. However Brown suggests that “control integration” strategy based on
message passing would be more effective [13]. In their discussion on the state-of-
the-art of CASE technologies [19] suggests that tool integration must be placed

within a context of an organizational framework.

Rader et al. [54] defines five different levels (situations as it is called in the paper) in

which an organization may have a tool infrastructure:
1. Isolated CASE tools
2. Clusters of CASE tools

3. Migration toward framework-based integration technology (database or

message-passing framework)
4. Loosely integrated collections of CASE tool clusters
5. Complete integrated CASE environment

Although most organizations Rader et al. observed aim for Situation 4, Situation 5 is

the focus of research.

16

The mechanical categorization in the literature is very diverse because of very
different approaches taken to provide tool integration. [63] categorizes formulative

work for the tool integration problem into three separate groups:

1. Process Centered Software Engineering Environments including but not
limited to MARVEL [43], SPADE-1 [8], ADELE [10] and agent-based
approaches [68]. PCSEEs (See Section 2.1.6) take a process-oriented
approach to software development based on Osterweil’s work [52] and aim to
develop an environment supporting software development by defining and
imposing certain rules or guidance on processes. Although PCSEs do not
provide facilities for tool integration [33], they provide an integrated support

environment for the processes using tools.

2. Contemporary XML/XMI (extensible Markup Language/XML Metadata
Interchange) [67], [66] oriented approaches based on different XML or XML
based interchange languages. These languages are used for data sharing, or
meta-model exchange. They originate from CDIF (CASE Data Interchange
Format) [55].

3. Novel approaches including the use of ontologies, web services, Internet-
based services, agent-based architectures (See Section 2.1.5), viewpoints and
the ECMA (European Computer Manufacturers Association) Toaster model
[28].

[6] suggests another categorization of tool integration efforts:

1. Standardization efforts or middleware services (CAIS [49], PCTE [3], CDIF
[55], CORBA [50], RTP OTIF [51], agent based [22], etc.) which provide a
common data and control interface for different tools to operate.

2. Architecture models, infrastructures and tool suites (ECMA Toaster Model
[23], ToolBus architecture [11] etc.) define how tools should be developed so

that they can provide services necessary for tool integration.

17

3. Basic tool integration mechanism schemes (data sharing, data linkage, data
interchange, message passing, publish/subscribe services [35], [56]) to

facilitate tool integration.

Basically, all these categorizations can be reduced to fundamental integration
mechanisms Brown suggested: “data sharing” and “control integration”. Integration
schemes either provide a standardized way for tools to exchange information, or
tools are viewed as services and actions in the environment trigger the use/invocation
of them, respectively. Data sharing approaches result in a consistent and re-usable
representation of information during software development, however they impose
performance overhead on tools and the process of integration because of the
“necessary agreement required between the tools to define a common syntax and
semantics for their data (e.g. a common data schema)” [13]. Since the schema must
be defined beforehand, it is harder to succeed with tools organizations already own.
In control integration based approaches, tools communicate with each other directly

by passing messages rather than using a shared data repository.

Although many integration frameworks have been proposed in the literature, none of
them have been widely adopted in practice [63]. The industry is still relying on
individual tools for specific sub-processes of software development. Their
integration is performed in an inefficient point-to-point manner, resulting in vendor

and version-dependency.

The next sections of this chapter detail approaches similar to or significant for the

method proposed in this thesis while discussing advantages and limitations of each.

2.1.1. Early Message-Passing/Control Integration Approaches
Brown, in his 1993 paper states that tool integration approaches up to the time of his
writing had been focused on “data sharing”, but he suggests focus should be placed
on “control integration” approach based on message passing instead [13]. In his
work, he evaluates and compares three implementations named FIELD, Softbench by
HP and ToolTalk by Sun. In this implementations and the conceptual model
presented in his work, tools communicate using messages, which have a standard

content structure. An interface for tools are developed that can communicate using

18

this standard message structure. Tools broadcast messages when events occur. All
the tools in the system receive the messages and those with interest in these events

use the message content to perform corresponding actions (See Figure 7).

The approach defined by Brown is used in ALF, which is discussed in the next
section. The shortcoming of this approach is a need to develop a messaging protocol
that is supported by all the tools in the system. Brown discusses this in the section

“How Easy Is Encapsulation?”, and agrees on the amount of required effort.

Message passing/control integration approaches are criticized in the literature for
lacking the possibility to specify functional data dependencies between complex,
structured documents [30]. These dependencies are specified by data sharing

approaches.

Private Private

Private

F..

i]

=

F..

f]

meggages

mEZgages

Cata Cata Cata
~Seposony_ feposioy_ ey _
® A A
-)

Figure 7 Control integration/Data sharing approach [13]

The PLETIN method proposed in this thesis does not depend on predefined messages
protocols, but use the information implicitly or explicitly provided by the users
instead. This information is derived from process definitions/models and is converted
to a web-service definition for the specific tool. This method, if applied to a large
number of cases can be used to establish a common understanding of what

information users exchange with the tools. This can be used as a foundation to

19

construct standard domain ontology and message protocols, which most message

passing/control integration approaches try to achieve.

2.1.2. Application Lifecycle Framework (ALF)
One of the most recent efforts on tool integration is an Eclipse project named ALF
(Application Lifecycle Framework) [6]. The approach ALF takes for tool integration
IS "to create a multi-layered interoperability framework leveraging SOA
technologies™. ALF is based on the orchestration of tools to provide processes that
can be repetitively executed. ALF lets the consumer control how the tools are

orchestrated together [38].

Basically ALF aims to bring different tools developed by different vendors together
by providing an integration infrastructure and orchestrates them to execute a process.
The architecture of ALF is given in Figure 8. To be able to orchestrate and execute
processes, ALF requires the tools to expose a defined set of services, i.e. be ALF-
compliant. Besides, ALF requires a common vocabulary for interoperability, used to

define the compliant services.

ALM ALM ALM ALM
Tool A Tool B Tool C Tool D

WS Intf WS Intf WS Intf WS Intf

Application Lifecycle Framework

Service Orchestration

BEvent Manager
s (Pluggable BPEL Engine)

Administration Identity and $S0
(Eclipse Plug-in)

Figure 8 ALF architecture [6]

20

Similar to control integration/message passing approaches, every event in the ALF
environment is captured by the ALF event manager. Based on the nature of these
events, ALF event manager initiates pre-defined processes (called service flows) that
interact with the services provided by tools (See Figure 9). The events can be
generated by the actions of the users, or by other tools in response to service flow
executions. This way the ALF can respond automatically to changes in the
environment and integrate the tool set over these process flows and service

interactions.

In short, the aim of the ALF project is to develop a standard-based tool integration
environment. In this environment tools communicate using a common vocabulary.
The tools are expected to provide/expose ALF-compliant services so that they can be

orchestrated to execute the processes.

Unfortunately, the ALF project was terminated while it is in Eclipse incubation
stage, due to insufficient community participation except from tool vendor Serena
[25]. The most important phase of the project, as stated in the “Termination Review”,
was the determination of “a set of domain vocabularies that define the events, objects
and attributes”. The technique employed was to bring together experts from the
industry, receive their opinions to start discussions and reach an agreement at later
stages. However, the lack of participation from the community, and possible bias
from the contribution of a single vendor resulted in the project being archived and
the termination of further developments.

ALF Event Manager

Figure 9 ALF mechanism [6]

21

Consulting expert opinion is a method commonly employed to understand domains.
However, we believe that using data and information based on actual practices can
provide a better understanding of the software engineering domain. The solution
proposed by this thesis depends on organizational processes to provide a tangible
basis for the integration requirements, rather than expert opinion, which is arguably

abstract.

2.1.3. ToolNet System
Altheide et.al. in their paper [1] state, although IDEs and tool integration
mechanisms have been a “hot research topic” since the beginning of 90s, there are no

widely used practical solutions.

ToolAdapter

Service '

Information backhone

Figure 10 ToolNet architecture

To guide the development of a practical solution, they describe a sustainable tool

integration mechanism that can:

1. Exchange and explore data between tools while maintaining consistency

22

2. Support process integration with a high degree of automation
3. Support interchangeability of tools with similar functionality
4. Easy realization of minor changes for new releases of tools
5. Employ currently used standard tools

6. Focus on integration tasks

They group existing tool integration efforts into two: use of a single repository
mostly found in tool suites, and bi-lateral integration between two tools, which is
widely used in practice. Focusing on the weakness of both approaches, they propose
a solution where a single interface for each tool is defined connected to an
integration backbone. This architecture is called the “ToolNet” architecture (See
Figure 10). ToolNet is designed to be very simple, and sustainable. However to
guarantee sustainability, it is designed to be simple (See Figure 11) so it cannot
provide sophisticated patterns of interaction or tool-specific functionality . Rather it
aims to provide a basic integration infrastructure with as much tools incorporated as
possible. A service-oriented approach is proposed for reaching sustainability,
extensibility to more complex functionality and interchangeability of tools.

4

Tool
Integration
Sophistication
{Functionality)

Sustainability
(Longevity)

Figure 11 Tool integration sophistication vs. sustainability [1]
The implementation of ToolNet has similarities with ALF and PLETIN, in which
service-based adapters are used to wrap tool functionality and communicate with the
environment. However, ToolNet develops adapters for specific functionality like

reporting or consistency checking and ALF uses community-driven vocabularies that
tools should support. On the other hand, PLETIN uses organizational processes as

23

requirements to develop which functionality is required and aligns the integration

infrastructure to organizational aims.

2.1.4. Data-Sharing Approaches
As Brown suggested, early efforts in integration was based on a shared repository

and a common understanding and definition of the domain objects. [36] suggests:

“The broadening of scope to other development concerns forced attention to
be paid to support for data integration: sharing data and integrating tools with
respect to the data they share. One common theme was repository-based
integration, an integration model that posited a common model for the shared
information and provided support for its storage and management of
concurrent and secure access. PCTE [50] is a well known exemplar of this

approach.”

1. User Interface Services

2. Task Management Services
3. Data Integration Services
4. Data RepositoryServices

5. Operating System Services
6. Message Service Network
7. Tool Slots

Figure 12 Toaster model [62]

ECMA [28] defines a reference model for frameworks of (integrated) software
engineering environments. It presents a “Toaster Model” depicted in Figure 12 on
how tool integration must be realized. Implementations like Portable Common Tool
Environment (PCTE) followed ECMA, using the same, shared repository/database
approach (See Figure 13).

24

Toal 1 Tool 2 Tool 3

Commaon

Data
Repaository

Figure 13 Data sharing approach

This approach evolved to the development of meta-models for model exchange and
resulted in standards like EIA/CDIF [29], MOF [47], XMI [66] and their various
variants, due to the lack of expressiveness of the modeling techniques at the time
[36]. These standards for metadata exchange are commonly used for the integration
of UML-based [58] CASE tools [2]. However, integration for non UML-based
CASE tools is still a challenge. All information in these tools needs to be represented

using the common metadata exchange format for integration.

[35] differentiates between activities and concerns. Activities are “concrete actions
and situations that take place in system development projects”. Examples are pair
programming sessions, unit testing, refactoring etc. Concerns are on the other hand
“what the project is really about”. Examples are analysis, design etc. Each action can

contribute to more than concern. Thus:

“providing support for specific concerns is problematic. Tool integration should
focus on integrating tools supporting specific activities. This leads to a

requirement to integrate tools with heterogeneous data and process support.”

2.1.5. Agent-based Approaches
Corradini et. al. propose an agent-based approach to tool integration in [22]. They

propose two levels of abstraction to the complexity of tool integration. The first one

25

is a wrapper agent for each tool for tools interoperation, while the second one is a set

of utilities used to compile workflows into agent pools.
These abstractions create a three-tier infrastructure as given in Figure 14:

1. User layer focuses on workflows
2. System layer contains the agent environment

3. Run-time layer interacts with the tools

User-Level Workfioa
-
o
P
-
L
Agenl-Leve| Werkflow
WiE -4, 'WE 8- ¥E .
e | 0w ! 1
“WPoal of Workfoe 1 | i
w WE |I| Ewecutoms | | . i
F | | I o
e : : —— 3
¥ ___ g
A B — | | ——.1 Z
vy Al Ay - i ; . -
Akivity 42 Activity B2 Actrity ©1] . ! I3
h L B
3 [3 Y [I 1
(LY |-| Wil | 1 W, s | | !
L r r |
y & & i & |
“agl® el i . . I
z
El
Todl & TaalB Tl 5
E
-
L}
Feafre A1 Featurs 81) i
Feaire A7 Faaiura B2 Feature 1

Figure 14 Architecture for agent-based tool integration

The proposed solution extends UML Activity Diagrams [58] to capture workflows,
which are compiled to agent activities running on an agent platform. The agents
generated from the workflows interact with the wrapper agents transforming tool

services to execute the workflows.

This approach presents similarities to PLETIN, where models are used to define
workflows and the execution of workflows result in invocation of services provided
by the tools. However the PLETIN method emphasizes the modeling effort in which

the wrapper services developed as tool interfaces are defined directly from the

26

process models, rather than supporting generic services. This is a more process
oriented approach and would result in extended functionality in terms of satisfying

organizational requirements.

2.1.6. Process Centered Software Engineering Environments (PCSEES)
Osterweil’s paper [52] “posted the need for semi-automated support for the software
process, in addition to tool support for artifact development”. This gave rise to the

development of PSEEs [36].

Barthelmess defines PCSEEs (or Process Centered Software Development
Environments, PCSDES) as “systems that provide automated support for software
development activities” [9]. According to [9] PCSEEs:

“allow for the definition and enactment of procedures performed by groups of
developers working on a common project. A PCSDE stores definitions of
processes in terms of steps that need to be performed, artifacts produced and
transformed by these steps, of users that should perform the steps, sometimes
given in terms of roles, and of constraints on execution, such as precedence

among steps.”

Barthelmess [9] presents a review of PCSEEs in the literature. He describes and
categorizes PCSEEs with respect to how they describe processes (coverage of

descriptions) as:
1. Rule-based (MARVEL, OIKOS, EPQOS, Merlin)
2. Task-based/Step-Directed (SPADE, APPL/A)
3. Artifact-Based (PROSYT, Shamus)
4. Role-Based (Pasteur, SOCCA).

He then evaluates and compares these efforts based on:

1. Latitude of interpretation (how policies are enforced, process descriptions are

evolved, deviations are handled)

2. User-environment interaction

27

3. Inter-user communication
4. Management assessment

PCSEEs are significant for this thesis since their goal is to support and constrain the
software development processes either by supplying rules or pre-defining
transformations and goals (like artifacts). The approach proposed in this thesis
employs process definitions to understand how tools are used in software
development and provide models to dictate tool behavior. Similarly, PCSEEs define
rules/graphs to guide or constrain people on how they work. A completely integrated
tool set along with process guidance thus presents similarities to a PCSEE.

PCSEEs aim to support the collaborative processes, which is extremely hard since
collaborative processes are characterized by “the impossibility of completely pre-
defining their unfolding due to the high degree of change” [9]. The PLETIN method
proposed in this thesis, however, focuses on the menial tasks performed by users to
maintain cooperation of tools, in other words tool integration. The repetitiveness of
these tasks renders them perfect candidates for formal description and automation

contrary to the challenges collaborative tasks provide.

28

CHAPTER 3

THE PLETIN METHOD

The PLETIN (shorthand for Process LEvel Tool INtegration) method is a four-stage
method developed to identify and then implement integration-tuples from process

definitions in a software development environment.

PLETIN is developed based on a case study conducted as a part of this thesis. It has
been developed iteratively during the conduct, and new findings were applied

recursively to steps already completed whenever necessary.

The PLETIN method is based on the scenario where there are no integrations
between the tools in a software development environment, cooperation of the must
be maintained manually. As an example, to make it possible for different tools that
are not integrated to work on the same data set, the data must be fed to each tool
manually. Similarly, for a tool to operate on the information created by another tool,
data should be moved between the tools by a user manually. In other words, users
must perform actions necessary to keep the tools working together (cooperate). In
this situation, process definitions (or models derived from these definitions if they
exist) would contain sequences of actions (what we name integration-tuples or
sequences, and use interchangeably in this thesis) performed to maintain tool
integrations. These sequences are required to keep the tools working cooperatively.
Thus, user actions account for non-existing integration facilities of the tools. For
simplicity, we call these facilities integration-tuples (or sequences). An integration-

29

tuple is a candidate tool integration situation. In our scenario users maintain
integration-tuples manually. A method designed to investigate the process models
can be used to understand how users interact with the tools to maintain these tuples.
Based on this knowledge, requirements for the services to support these actions can

be inferred and implemented to build a tool integration framework.

The first stage of PLETIN is called the context definition stage, where the scope is
defined. In this stage software development processes for which tool interactions are
either non-existent, constrained to a single interaction or inherently complex are
excluded. The scope can be defined by direct examination of process definitions or
models. This information is usually already available to the software engineering
process group (SEPG) that has developed (or is developing) the process definitions.
Organizing a meeting with the process group, or inclusion of an experienced process
group member in the scope meeting can help exclusion of process definitions that
provide insufficient information for further work. This stage uses process definitions
(or process models) as inputs and outputs a list of processes that is going to be

examined further in the later stages of the method.

Process components are identified based on the scope and represented on a formal
process model in the process definition stage. In this stage user interactions with
tools are analyzed to uncover candidate tool integration situations. A process model
is developed for each process definition to visualize the interactions with tools.
Process definition stage uses the scope identified in the first stage as input and
produces process models visualizing tool interactions as outputs. Tool interactions
that satisfy certain criteria are labeled as sequences (integration-tuples). These
sequences are mapped to existing services or APIs provided by the tools to develop

an integration infrastructure.

30

NI1.L371d 40} |[9powW $s3204d ST a4nBi

31

A process model including mappings between actions and services is developed in
the process mapping stage. The aim of this stage is to understand how users interact
with tools and to develop services that can respond to the actions performed by users.
This stage of PLETIN uses process models developed in the previous stage as input
and produces a detailed description of atomic actions performed by users on tools
and services that can respond to these actions as outputs. Actions and services are
combined into a business process that is represented as a process model. This

business process can be executed on a business process execution engine.

These models are deployed on a process execution engine for actual implementation.
Process executions are monitored and necessary feedback for process change is
developed in the process execution stage. The process model for PLETIN is given in
Figure 15.

PLETIN is a tool integration technique based on organizational process definitions,
rather than data interchange formats or ad-hoc standardization frameworks. As stated
by [52] “software processes are software too”. Tools provide automation facilities for
specific sub-processes of software development. Integration of these separate
“islands of automation” would result in a more complete and continuous execution of
software development. Thus, the tool integration effort must be treated like software
too. PLETIN aims to develop an understanding of user interactions with tools to
build requirements necessary to develop an integration framework. The
implementation approach is based on Service Oriented Approach (SOA), where
fragments of systems are connected together using a standard based framework.
Using PLETIN, organizations can integrate existing toolsets based on the
requirements generated by their own processes. In the long run, an industry-wide
understanding of requirements for tool integration can be developed. These
requirements can be employed by, or even forced upon vendors to develop standard-
based, interoperable, interchangeable tools supporting software development

processes.

32

PLETIN requires the existence of and is based on process definitions. So the quality
of its outputs is directly correlated to the quality of process definitions. If process
definitions are not available in an organization, it would be much more beneficial to
combine a process definition/modeling/improvement effort with the execution of the
PLETIN method.

3.1. Modeling Approach

Assuming every activity (except those performed internally by individual tools) in
software development is performed manually and there is no integration between the
tools used, consider the following: a user would like to cooperate some tools. To
achieve this goal, he is required to perform a sequence of successive, simple

operations on different tools, moving data between them.

An example for such a sequence is: “Team Leader creates a baseline in requirements
management tool, named <projectName>-YYYY-MM-DD. He then creates a build
label in software configuration management tool, with the same name as the
baseline”. It is clear from the example that there is a sequence of two actions on two
different tools performed to maintain cooperation of different tools for a common

goal. Some more generic examples are:
e Create Datal on ToolA, create Datal on ToolB.
e Read Data2 on ToolC, create Data2 on ToolD.
e Update Data3 on ToolE, delete Data3 on ToolF.

These sequences of actions that are performed by users on different tools, hint the
existence of candidate integration situations between tools. The user merely cascades
changes or moves information to another tool. Such mundane tasks are very good
candidates for automated execution, and they can be executed through integration

implementations.

Knowledge on candidate integration situations can be used as requirements for
interoperable, interchangeable tools. Tool designs can incorporate interfaces/services

that can satisfy the requirements presented by the processes employed in software

33

development organizations. These requirements are derived from the knowledge on
candidate integration situations. On a more practical level, these can be realized into

actual implementations through the use of business process execution environments.

PLETIN is a method to identify and optionally realize possible integrations between
different software engineering tools. PLETIN can either use existing process
definitions of the organization or can be executed in parallel with a process
definition/modeling effort. PLETIN presents guidance for the process of converting
process definitions into service definitions that can be used as requirements to
develop custom interfaces for the tools. These correspond to integration

implementations.

The approach of PLETIN is based on the identification of sequences of tool
interactions in user processes. Sequences satisfying criteria for the number of tool
interactions and complexity and type of user interaction are chosen. These sequences

are treated as candidate integration situations between different tools.

PLETIN identifies user actions that contain tool interactions. To be able to identify
those interactions, “users”, “manual user actions”, “tools”, “user interactions” with
these tools, and “messages” sent and received between these components are
discovered from process definitions. The relationships between these components are
developed into process models. Sequences of tool interactions are identified from
process models. These interactions are then later implemented in a process execution
environment. A conceptual map for the terms used by the PLETIN method is given
in Figure 16.

PLETIN looks for “simple” user actions that contain tool interactions to identify
candidate tool integration situations. For this, inspection of only certain processes is
required. Not all processes in software development contain such interactions.
PLETIN does not demand the analysis of processes and actions that don’t have tool

interactions or only have a single interaction throughout the complete process.

It should also be noted that sequences of actions that are classified as complex can

have complex data mappings, demand decision-making and even creative

34

capabilities. For the scope of this work, such interactions are left out of scope since

the implementation and even the definition of them may require substantial effort.

Process definitions

Process models

Deoloved o Intalio BPM
Py ' Server

Contain Contain Contain Consume

Business
processes

Tool interactions

Deployed o Apache Tomcat

Make up Converted to Implement

Web-service
requirements

Sequences

Integration-tuples Define

Figure 16 Conceptual map for the PLETIN method

In the context of this thesis, a tool interaction is subjectively classified as simple if it
is a CRUD (Create, Read, Update, Delete and Execute) operation. The definition is
similar to those used in persistent storage or database systems. See Section 3.10 for a

detailed discussion.

To decrease the effort and time spent applying the method, scope should be defined.
In the context of PLETIN, the scope is defined such that only the processes with
multiple, yet simple, user-tool interactions are included. This information can be
directly obtained from the process group in a meeting, or revealed through an
inspection of process definitions. More detail is given on the specific activities on the
Section 3.3.

In this work, Business Process Modeling Notation (BPMN) [17] is used as the

modeling notation and IntalioBPM Community Edition [37] is selected as the

35

process design, deployment and execution environment. Intalio|Designer is the
process modeling component of Intalio BPM Suite used to develop BPMN models.
Further discussion on the selection of the modeling notation is available in Section
4.1.1. Since the PLETIN method can co-exist with concurrent process modeling
work, it can be modified to use another modeling notation if the notation supports the
representation of the following required components: users, tools, manual user
actions, tool interactions and messages. The actual implementation of integrations
also require certain functions from the underlying platform like the ability to execute
processes directly from process models, easy/one-button deployment, data mapping
and process instance monitoring. Intalio) BPM Community Edition used for this work
provides these features out-of-the-box. A detailed description of the BPM Suite is
given in Section 4.2. However, any process modeling environment providing process
execution facilities similar to importing web-service definitions, direct invocation of

web-services, data mapping can be used for the purpose with slight modifications.

3.2. Method Stages

PLETIN is designed so that it is executed in a software development organization
and monitored and improved continuously. With PLETIN, an integration framework
for the tools is laid out according to the requirements set by actual processes of the
organization. Based on this integration framework, tools or the integration

implementations can be changed at later stages. This brings inter-operability to tools.

PLETIN has four stages. During the context definition stage, the scope of the
modeling process is defined. Based on the scope, process components are identified
and represented on a formal process model in the process definition stage. In this
stage user interactions with tools are analyzed to uncover candidate tool integrations
situations. Tool integrations that satisfy certain criteria are labeled and mapped to
existing services or APIs provided by the tools to develop an integration
infrastructure. A process model including mappings between actions and services is
developed in the process mapping stage. These models are deployed on a process

execution engine for actual implementation. Process executions are monitored and

36

necessary feedback for process change is developed in the process execution stage.

The process model for PLETIN is given in Figure 15.
Each stage of the method is explained in the subsequent sections and process models

using BPMN notation defining each stage are presented.

3.3. Context Definition (Stage 1)

The first stage of PLETIN defines the scope of the effort. In this stage those
processes where tool interactions during software development are either non-

existent, constrained to a single interaction or inherently complex are excluded.

Table 1 Types of process with respect to the number of tool interactions

Type of | Process definition contains Information provided
process
Type 0 No tools No tool interactions possible, no integration

opportunities.

Type | Single tool A single tool does not present an integration

Single interaction opportunity. At least two tools are required.

Type 1l Single tool Although a sequence of interactions on a
Multiple simple interactions single tool does not present an integration
situation it is of interest from an automation

perspective.

Type I Multiple tools Multiple tool interactions may present

Multiplesimple interactions integration situations if interactions are

simple.

Type IV | Only complex interactions Complex interactions cannot be represented

adequately on process models, and executed

The promise of PLETIN is the fact that successive user interactions with multiple
tools constitute candidate integration situations between the tools. Thus the basic
requirement of PLETIN is the existence of successive interactions with one or more

37

tools in process definitions. Process definitions having no tool interaction can’t
provide any information on possible integrations. A process definition having a
single tool resembles the case where there are no tools since interactions with a
single tool can’t provide information on possible integration. However, multiple
“simple” interactions with a single tool might provide automation opportunities
instead of integration situations. The scope of the effort can be defined to include
such processes if automation is one of the primary goals of the effort. Table 1

represents the types of processes and the information they provide.

Table 2 Sample process list for RE process area

Process Process Name Tools Process
Code Type
RE51 Preparation RM, SCM Il
RE5211 Elicit needs SCM I
RE5212 Establish customer requirements RM I
RE5213 Review customer requirements RM, SCM Il
RE5214 Validate customer requirements RM, SCM Il
RE5221 Establish software requirements UML, RM, SCM | Il

RE52211 | Define product components and | RM, TT, SCM, | I

interface requirements UML
RE52212 | Establish software requirements RM I
RE52213 | Review software requirements RM, TT, SCM, | Il
UML
RES222 Validate software requirements RM, SCM Il
RE531 Manage changes to requirements and | RM, SCM Il

inconsistencies between requirements

and work products

38

Following the information in Table 1, the scope is defined to include processes of
Type 1l1. Optionally, processes of Type Il can also be included. All other types of
processes are excluded. The definition of scope can be achieved by direct
examination of process definitions or models. This information is usually already
available to the process group that has developed (or is developing) the process
definitions. So organizing a meeting with the process group, or inclusion of an
experienced process group member in the scope meeting can help exclude process
definitions providing no information for further work. A “process list” in the form of
a table including process name, process code, the tools used in the process and the
process type (Type O, I, II, or 1) is sufficient for filtering and future reference. A

sample table is given in Table 2.

As depicted in Figure 17, the stage begins with the project initiation. Process
modelers organize a meeting with the Software Engineering Process Group (SEPG)
to get information on the process definitions. If SEPG does not exist or is not
available, this information can be extracted from process definitions. However,

SEPG can provide the information faster and more accurately.

In this stage, evaluating criteria like process execution frequency, average error rate
during manual process execution and user feedback on the process nature
(repetitiveness) is beneficial. This information can be used to prioritize the analysis
and possibly implementation of process definitions. This provides larger benefits to

be reaped earlier. The data can be appended to the “process list”.

3.4. Process Definition (Stage I1)

In the context definition stage processes that are suitable for the application of the
method are selected for further analysis. In process definition stage, processes
including multiple tool interactions are analyzed to extract information on candidate
tool integration situations. Process components including actors, actions, process
flow, tools and messages are identified. Details on the identification of each

component are given in the next subsections.

39

uoIuYaq 1Xa1u0D ‘| 9BeIS NILITd 404 [9pOL $s3904d /T 24nbiy

LBIAEIE AR 1O SISIXB DJ3S

3U1jep 8000s 108loud 5
vonu9p
voneziuoud 0} 111 84 K] 1ou ez Siioau 0es 10 x
1o $5900,0 Sn:tJ 18y} 59559000 BPNOXT esdA) seecoed Axeops |

L

ON

suoRep ssac0xd [7

UO UONBWLO JUI D1 ADJ

40

The identified components are represented on a process model for visual analysis and
identification of tool interaction sequences. The complete manual process is
represented as a single BPMN pool in a BPMN diagram. This BPMN pool is marked
“not-executable” since the actions are performed manually. All actors are
represented as individual BPMN lanes in this BPMN pool. Actions are represented
as BPMN tasks assigned to actors. Process flow is represented using BPMN
gateways, BPMN events and the flow of tasks. Each software development tool is

represented in a separate BPMN pool.

Pletin

Process models

Contain Contain Contain Contain

o
Represented by

Represented by Represented by Represented by Represented by

BPMN gateways
BPMN lanes [BPMN tasks j [E\PMN messages} [BPMN pools j and events

Figure 18 Relationships of PLETIN BPMN Elements

They are depicted as external to the software development process so that the
required interfaces are visible. The internal processes of the tools are left outside of
the scope of this modeling effort. So the pools for the tools are represented as empty,

as a “black box”.

The actions that have interactions with tools are connected to BPMN pools that
represent tools. The connections are done with BPMN message elements. They are
used to identify information exchanged with the tools. The relationship between
BPMN elements used during the implementation of PLETIN is given in Figure 18.

Actions with simple tool interactions within the model are highlighted because the
method requires the identification of them. Actions with complex interactions are left

as they are.

41

The next step is to identify highlighted interactions that are successive. If there are
more than one action that have simple interactions with tools (so that they are
highlighted in the model) executed in succession, this group of actions are identified
as a sequence. A sequence is represented on the process model as highlighted actions
grouped together using the “BPMN Group” element. Process model for the process

definition stage of PLETIN is given in Figure 19.

Figure 23 is a part of a process model, presenting a sequence of two simple
successive actions constituting a sequence. This sequence is highlighted using
“BPMN Group” element. A sample process model created in this stage is given in
Figure 22.

3.4.1. Actor and Action Identification
Every step taken to achieve a goal in a process definition is an action. Actions are
usually described in single sentences. The subject who performs the action is noted
as the actor [9]. The verb and the object define the action. An example is as follows:
“Team Leader creates a baseline in requirements management tool.” In this example,
Team Leader is the actor because he is the one that performs the action. “Create a

baseline” is the action, performed by the actor.

The PLETIN method represents each actor identified from the process as an
individual BPMN lane in a common BPMN pool. This pool is labeled
“<ProcessCode>-PeopleProcess”, where <ProcessCode> is to be substituted by the

unique identifier of the process under analysis, for example “RE5214”.

This pool contains lanes for all the roles taking part in the process. These roles
perform actions and interact with the software development tools. A sample
representation as BPMN lanes of four different users (DTM, TL, PMA, Customer)
participating in a process is given in Figure 20.

42

uonIuUIAQ S$890.4d ‘11 86®1S NIL31d 404 [9powW $$8904d 6T 84NnBi-

ESDLSNDSE
L] ELOTIEMELI

peEINE N Gnoucy

_l BLOIIDESIUI [001 FIEWIE _l

|20} UL BELONIE
U suonoE WEIRGIH _1 o fespgwos SLEEED

|
)

[@poW EEI00UD B S1EGUD)

w) ses0oud Apnusn)

ELONDE AJNLSD|

BJOIDE ANLSR|

PSUISD S00DE 125001

43

3.4.2. Process Flow lIdentification

Process flow defines in what order the tasks are executed. It includes the following

information:
e Start/End conditions of a process
e Sub-processes
e Task dependencies
e Parallel task execution
e Process branching and merging

¢ Intermediate events and conditions during process execution

Customer

14 <<
8 | =
8 o
o
o
[=%
g
=
g

Figure 20 Sample User Representations on Process Model

This information is extracted from the process definitions and represented as a
BPMN process model through the use of BPMN constructs like BPMN gateways,
BPMN events and BPMN tasks. A sample process flow is presented in Figure 21.
Detailed description of BPMN constructs is available in section labeled BPMN .

44

b

§ .
i} 3 Review Cust Req Doc j
S | J
a
8
E Organize a review

g "&ikgﬁlgas‘: Review Cust Reg Doc

Representative
|
g Lﬁ‘ Review Cust Req Doc J e~
Figure 21 Sample process flow with BPMN notation
3.4.3. Tool and Tool Interaction Identification

Tools are represented as independent, empty BPMN pools in process models. They
are marked as “not-executable” since the tool itself executes the actions. An empty,
not-executable pool provides a black-box perspective in the process model. While
the interface for the tool interaction is clearly visible, the complexity of inner-tool

operation is hidden from the process model.

Every tool in the process model must be connected to a task with BPMN messages.
These messages represent the requests made by the user to the tool and the responses
provided by the tool. The messages are connected to “BPMN data objects” to
represent the content of the messages, which are critical for PLETIN. The message
contents are used to determine the input/output parameters required for the

implementation of integration.

Tool interactions are classified whether they are complex or not. An action is
classified as simple if it is one of the CRUD operations: Create, Read, Update,
Delete or Execute. Simple tool interactions are highlighted with a distinctive color
(e.g. orange) on the process model. If these interactions make up a sequence there
exists a candidate integration situation. A sample for the representation of tool

interaction in a process model is given in Figure 22.

45

et

Achieve customer
g approv al for Customer
Requirements Document

|

|

I

I

e I

; I

userame, passworg, prqectNatIhe. baséuneName ‘% |

| T |

;] | |

I | I |

t t Of |

v—0 —

5 !

2 ' |

—

v—O0
=
@

Figure 22 Sample tool interaction represented as a process model

The highlighted tool interactions are grouped together using BPMN group objects to
represent a sequence. A sample of such grouping is given in Figure 23. These
sequences, consisting of multiple, simple tool interactions present candidate tool
integration situations. Their structure and interfaces are identified in the next stage of
PLETIN, process mapping where necessary information for developing custom
integrations is developed.

Figure 23 Two actions grouped into a sequence

46

3.5. Process Mapping (Stage I11)

Process definition stage outputs a process model similar the one given in Figure 22.
Sequences of user interactions are represented on the model. The information

captured by this process model is used as an input for the process mapping stage.

The process flow for the process mapping stage is given in Figure 24. It is the most
critical stage in PLETIN. The aim of this stage is to understand the details on how
users interact with tools to develop actual implementations that can interact with the

tools on behalf of the users.

3.5.1. Identification of Atomic Actions
Each action in the identified sequences is broken down to atomic actions performed
by the user. An atomic action represents the smallest, indivisible unit of action a user
performs while interacting with a tool. Examples of atomic actions include
authentication, file checkout, command issue etc. Observing a user performing

processes can unveil atomic actions easily.

“BPMN sub-process” objects are placed on the model to substitute the actions
highlighted in the previous stage, representing simple tool interactions. The
highlighted actions are broken down to atomic actions. Atomic actions are also
represented as BPMN tasks. They are placed inside the BPMN sub-process
corresponding to the action they are created from. Thus, every highlighted action
identified in the previous stage is replaced with a sub-process including its atomic
actions. A sample breakdown is given in Figure 25.

For each atomic action in the model, a corresponding “placeholder” BPMN task is
created in the BPMN pools representing tools. These placeholder tasks in tools
represent the services tools should provide. Based on the relationships represented on
the process model, actual services are developed that are going to substitute these
tasks. The atomic actions and placeholder tasks of the tools are connected by BPMN
message elements to represent the interface required for the integrations. A sample is

given in Figure 28.

47

Buidden ssao0ad ‘|11 86e1S NIL31d 40} [9pOW $$820.4d g 94nbi4

]
SjUaWaNNbas <}
voneSaju Ajsnes 2

71l veo 12w siav 1001 Bursn [N
U1 19D 821 AR 821 A35-Qam CoP ARQ
-0 kodep ez o paflodap ase $301ABS-0I
RA3S O UONB30 AUI 1000 NWdS syse) Japoysoed soRdsnION
uo sass300,3 Kodap Lo} 801 AJ95-QaM B 0} X BU B OJUI 30UBNDAS B JOll— UM SUONIUI 3P Gugepow o 0
1BPOW $5820.0 M3IABY JIWOIE YIBS 103UL0D —Sa a8 18U} SXSE] A0 801 AJBS-Q3M 30808Y 801 AJBS-GaM LOJW| ~
;- A
4589 Aas-am oo.kiw;oo
SUBWaNNbaJ

SIPPOW $5300,0 l vonebaun £jsnes uved
PUE 801 AJaS-Qam MaIASY 18y} 100} 8yl AQ papiAoxd
301 as-gam K yusp)

_I| s nes voneogdde ve
wo 301 Aes-gam Kodaq

SjUBU0D
abessaw se suonoe
o1wole syl Aq papiacxd
vonewou Anusp|

48

We should note that, the portion of the process model represented in Figure 28 is the
final version of the atomic actions. It has been modified after the initial atomic action
definitions are analyzed and requirements are compared to the existing facilities
provided by the tools. The details of the comparison activity are given in the next
section on the development of custom integration implementations. It is
recommended that actual implementations be based on a web-services infrastructure;
however, this constrains how the information is handled during execution. Since
complex objects like “session” or “connection” are not transportable in a web-
services environment, information on how and where to login is embedded into

every action (tool interaction) for the final version of the atomic action definitions.

Creale baseline approved "Customer Requirements Document” under Cont. Mng. tool

Laokup Laokup Chechk-in "Cust Req
"CustReqDocMame” "CustReqDocPath” Doc®

¥

Create a label I—

— - —~ —
oy .'-'1'\. T .-"1'\. T .-'-1'\. k, '|-I
Bl | T i T |
| | — |
i | | : |
[! | |

.
|
|

Figure 25 Sequence breakdown

=
kY
|
|
1

The implicit and explicit information provided by the atomic actions are noted in the
process model as BPMN data objects connected to BPMN messages. The responses
generated by the tools are also recorded. Since there are many messages passed in
even simple process definitions, recording message contents on the process model
itself may introduce clutter. A better approach would be to record this information in
a separate location, like a spreadsheet. This information is used as the requirements

for integration implementations.

3.5.2. Identification of Implicit Sequences
The approach PLETIN uses is to analyze process definitions to identify candidate

integration situations in software development. The integration situations are

49

uncovered in the form of "sequences™ of actions users normally perform manually to

maintain tool cooperation.

However there are cases where a candidate or existing tool integration may not
manifest itself as a sequence in process models, but remain hidden. These are called
"implicit sequences”. Users of the method would get aware of implicit sequences if a
very well known integration situation or a tool is not visible in the outputs of the

method.

Table 3 Types of implicit sequences

Type of Implicit Sequence Method of identification

Interrupted a. Observe data flows (process artifacts)

b. Examine Submit/Update/Put actions

Compound a. Examine existing integration maps, tool features

b. Look for mentions of two or more tools in

integration definitions

Unmentioned/Omitted a. Examine existing integration maps, tool features

b. Improve process definitions by observation

Complex Change interaction complexity decision criteria

There are 4 types of implicit sequences. Types of implicit sequences and methods for

their identification are given in Table 3. Details are as follows:
Interrupted Implicit Sequences

Two simple tool interactions separated by a single manual/complex action (by
definition) don't constitute a sequence. Only simple tool interactions in succession
are considered as such. In this case, even if this interrupted sequence were a valid

candidate integration situation, it would not be detected by PLETIN.

Interrupted implicit sequences are observed when a software development artifact

like a document is generated using a tool and submitted to another tool after one or

50

more manual operations. A common example is the submission of a document
generated by a tool to configuration management system, only after it has been
reviewed and accepted. In this case, generate document and submit actions are
simple tool interactions. However, they are separated by a manual review and
approval process, which prevents the construction of a sequence. The link between
these two actions is the document (the process artifact) employed by both actions. A

sample representation for an interrupted implicit sequence is given in Figure 28.

Interrupted implicit sequences can be uncovered by giving special consideration to
data flows in process models. Process models can be modified to include BPMN
Data Objects representing software development process artifacts like documents.
This information can be obtained from process definitions during Process Definition
stage of PLETIN. Another simpler approach would be to pay special attention to
Submit/Update/Put actions where information/data is provided by the action to a
tool. These types of actions require a source for the information they are providing.
The source could be the output of a tool interaction. If that is the case, the
decomposition of the Submit/Update/Put action into its atomic components, a

sequence of interactions can be identified.

G Put document under
FEDEEEE Rewiew design document configuration
document management

T .
|
|
t

* A
| |
| |
| |
| |

A7 L3

esign Docum ts
UML.generateDocument CM.updateFile

Figure 26 A sample interrupted implicit sequence

However, users of the PLETIN method should be aware of the fact that, changing the
order of actions in a process definition can change the output of the process. This

may have unintended consequences in process execution.

51

Compound Implicit Sequences

A compound implicit sequence occurs if a tool interaction by a user triggers a tool-
tool interaction. In other words, when a user performs an action that results in the
tool interacting with another tool, the second interaction would not be visible in the
process model depicting the interaction. Compound implicit sequences are observed
if there are already existing integration implementations between tools and they are
already employed by the organization. In this case, the integration is considered as a
functionality of the tool and is not explicitly described in the process definition or
subsequent process model. A sample compound implicit sequence is represented in
Figure 27.

Check-in class file from
IDE

Figure 27 A sample compound implicit sequence

Compound implicit sequences can be uncovered by analyzing existing integration
maps (See Figure 47 for an example). These maps represent already existing
integration implementations between tools. Existing integration implementations that
are not identified as candidate integration situations by PLETIN must be analyzed
and depicted as process models by decomposing the user interaction into several

52

interactions as if the user is maintaining the integration manually. Although existing
integration maps may contain information on this type of implicit sequences, actual
process execution must be sought for, to produce correct process models. Another
alternative is to look for tool interactions in process definitions mentioning more than

two tools.

It should be noted that, existing integration implementations already employed by the
organization might be omitted from process definitions. This type of implicit
sequences is discussed below. Thus, identification of compound implicit sequences
may result in improved processes for the organization.

Unmentioned/Omitted Implicit Sequences

PLETIN uses process definitions developed in organizations as input. The quality of
PLETIN's outputs depends on the quality of its inputs. Any omissions in these
process definitions will result in missed/undetected integration opportunities. If the
process definition effort by the organization prior to the implementation of PLETIN
had omitted/unmentioned some of the tool interactions, sequences of these

interactions would not be detected by PLETIN.

This type of implicit sequences is the hardest to remedy because they are inherently
missing from method inputs rather than being implicit. Existing integration maps can
be used to uncover unmentioned implicit sequences, similar to compound implicit
sequences. Observation of actual process execution is another approach. However,
actual observation may not give better results than existing process definitions

because it is prone to the same problems.
Complex Implicit Sequences

During the Context Definition stage of PLETIN, each tool interaction performed by
users is classified to be simple or complex. For a more detailed discussion on the
context definition phase of PLETIN and classification of actions with respect to
complexity, see Section 3.3. Only simple interactions are highlighted on process

models. Sequences are constructed only from simple interactions. Thus, a sequence

53

consisting of complex interactions would not be included in the scope of the method

and would not be visible in the outputs of the method.

Complex implicit sequences are artificially introduced by the subjective
identification of simple tool interactions during the context definition stage of
PLETIN. Changing the decision criteria to implement more complex interactions
would result in the detection of this type of implicit sequences, since complex

interactions would instead be labeled as simple.

3.5.3. Development of Custom Integration Implementations
The placeholder tasks represent the services tools should provide. They define draft
web-service definitions that will respond to the user actions. A descriptive name is
given to each placeholder task. These names are later used as the name of the web-
service. The name should also specify the tool type. If tools already provide web-
services conforming to the interface specifications defined in this process model then
they can directly be used. However, if no web-services are provided, custom

implementation that satisfies the integration requirements is necessary.

During custom development, web-services are designed so that they replace the
placeholder tasks. Inputs and outputs required for the web-service design are already
available on the process model. They are shown as input and output messages for the

placeholder tasks.

Existing web-services or APIs provided by the tools are investigated to develop web-
service implementations that can fulfill the requirements. Web-services are
implemented using these facilities provided by the tools, or from scratch. Top-down,
and bottom-up service identification techniques similar to those employed in SOA

service definition methodologies are used [7].

Preliminary web-service definitions and process models are reviewed for reuse
opportunities and improvement. For example “login” operation can be and should be
embedded into each service definition because complex objects like “session” and
“connection” cannot be transported using SOA messaging protocols. This review can

result in changes on both the web-service definitions and process models.

54

Baseine approv ed regs in Req. Wng. 1001

Select Project Create a label (pasetne) || |

e e

H

|
._._._._l —_—
X |
\ B D
|

|
I
t
I
v & < A va A
SCM.lookup \ | SCM.lookup \ [SCM.updateFile \ | SCM.createLabel \

[AY
I |
\ |
| |
|
| |
I |
| |
t t
| |

|
t
|
|
|
|
|
|
|
,

I
|
|
|
T T
| 1
| |
| |
| |
| |
| |
| |
| |
v V.4

¥ A
RM.selectProject 1

Figure 28 Placeholder tasks for tools

1
|
|
I
I
|
t
|
|
|
|
|
|
|

RM.createLabel

After the web-service definitions and process models are reviewed and any
inconsistencies are resolved, web-service implementations are created and deployed
to an application server of choice. Process modelers can perform web-service
implementation if the group has familiarity with the concepts. However, it would be
more beneficial if external support can be obtained in the form of experienced

software developers from the organization, or from vendors.

Web-service definitions in the form of WSDL files are imported into Intalio|Designer
workspace. Intalio|Designer enables its users to import WSDL files directly from a
network location and then add these web-service definitions to process models by
drag-and-drop. Regular BPMN tasks are used to invoke these web-services. Web-
service definitions are inserted in the model as tasks, substituting the placeholder

tasks created in the identification of atomic actions stage.

A new BPMN pool is created for each sequence in the process model and labeled as
“<ProcessCode>Seq<SequenceNumber>”. An example is: “RE5214Seq7”. This
helps easy identification of the sequences both in process models, and during actual
process execution. Tasks that are grouped as a sequence, converted to a sub-process
and broken down into atomic actions are moved into this new BPMN pool. This pool

i1s marked as “executable” since its contents will be executed on a business process

55

execution engine to perform actions on behalf of the users. Tasks not labeled as part
of a sequence are left in the people process pool. A BPMN “start message event” iS
added to the beginning of the new pool. Also, a BPMN “end message event” is
added to the end of the process in the pool. A new task is created that invokes the
start message event, named “Invoke sequence <SequenceNumber>". This task is a
replacement for the sequence removed from the people process pool. A BPMN
message connection is created between this new task “Invoke sequence
<SequenceNumber>" and the “start message event” in the pool representing the
sequence. The end message event is also connected to the task “Invoke sequence
<SequenceNumber>" using a BPMN message connection to send a response after

the process is being executed. An example for this task is visible in Figure 29.

BPMN pools representing different tools can be combined into a single BPMN pool
called “<ProcessName>-Tools” or can be left independent. All pools representing

tools should be marked as “not-executable”.

Each atomic step in a sequence invokes a corresponding web-service. These web-
service representations created from WSDL files are imported into Intalio|Designer
workspace. BPMN message connections are used for invocations. Data mappings are
created so that information input by the user and information returned by tools as
web-service responses are routed to correct places. For a sample data mapping, see
Figure 32. An example process model with web-service invocations is available in
Figure 29.

When the process is complete and error-free it is deployed to the Intalio|Server.

3.6. Process Execution (Stage 1V)

Processes deployed to the Intalio|Server are reviewed for consistency and
completeness. Test runs are performed and execution is monitored. Suitable changes

are implemented if necessary.

After all requested changes are applied to process models, process models are
accepted to be consistent, and it is validated that they conform to manual execution

of processes in practice; users can start executing processes that employ custom

56

implementations for integration. The “people process” portion of process models
developed by the PLETIN method visually represents how users can execute manual

processes. It is used for process communication in the organization.

Sequences extracted from the process definitions were converted to separate, more
detailed description of how users perform the actions in the process mapping stage.
These sequences of actions are replaced by a single task that expects the user to
invoke a sequence. Users can logon to Intalio|BPM Community Edition web
interface to execute the sequence by selecting it from the list of processes. They are
required to provide information necessary for the execution of the process. This way,
by selecting the suitable sequence and providing information, users initiate the
sequence that performs actions on behalf of them. The execution of the sequence is
completely invisible to the user. Users are not concerned with which tools are used,
which actions to perform or even which documents to handle. While providing an
integration framework for different tools, PLETIN also provides partial automation

for software development processes.

However it should be noted that as organizations, processes are subject to change.
Thus, the integration infrastructure must be able to sustain this change and the
PLETIN method must be applied iteratively to new or changed (improved) process
definitions to create new or modify existing integration situations. The PLETIN

method, once implemented must be executed in an iterated matter indefinitely.

57

Jabeuew ssa20.4d ay) AQ SUCITRIOAUI 331IALBS-aAN 62 4NnBiH

_ HUNB SEGHBRID .L

I
&
i
el
L
E
{
b
§
:
o
:

58

3.7. Roles

The following is a brief description of each role that takes part in the execution of the
PLETIN method:

1. Process Modelers: This role is responsible for the application of the PLETIN
method. A process modeler uses process definitions or process models to
identify process components including actors, actions, tools, process flow and
messages. These components are used to identify simple tool interactions,
which are grouped and labeled as sequences/integration-tuples. Sequences
constitute the requirements for the development of web-services that will be
consumed by processes executed by an execution engine to perform tasks on
behalf of users. The process models this role develops result in the
development of the tool integration framework. Process modelers are
required to be familiar with process modeling, have an understanding of the
organization and software development in general. It will be beneficial if
modelers are familiar with the BPMN notation, BPM techniques and SOA
technology in general. Process modelers are not required to develop web-
services and integration implementations if there are people with
development expertise in the project staff. However, during the process
mapping stage, process modelers are required to develop web-service
definitions and validate the implementations. A project manager should
manage the efforts of the process modelers. They should work together with
the SEPG to obtain detailed information on process definitions, resolve
ambiguities and identify inconsistencies. Support from SEPG on the “context
definition” stage would provide helpful to quickly identify processes with no

tool interactions.

During our research, a single person conducted the case studies and method
implementation. The number of process definitions, their complexity and the
ease of access to information can be used to determine the number of process

modelers suitable for the project size.

59

2.

3.8.

SEPG: SEPG is a group of people responsible for the definition and
management of processes in an organization. Since the PLETIN method
requires extensive information on processes, SEPG support for the process
modelers are crucial for the success of the project.

Developers: Developers are external to the execution of the method. However
during the “development of custom integration implementations” step in
process mapping stage, modelers can benefit from the experience of this role

to develop integration implementations faster and better.

Users: End users are not involved in the application of the PLETIN method
until test runs of the processes. After the processes are verified and deployed,
end users logon to Intalio) BPM Community Edition web interface to initiate

the execution of the processes.

Notation

During the development of PLETIN and the case studies, BPMN was used for

process modeling. Detailed information on BPMN is available in Section 4.1. BPMN

provided facilities to represent all the information required for the visual

representation and further execution of the processes. Thus there was no need to

modify standard BPMN notation. However, the following two conventions were
developed for PLETIN:

1.

3.9.

Tasks in process definitions with simple tool interactions were highlighted
(with a color of modelers ‘choice) for easy identification. An example is

available in Figure 22 and Figure 23.

Highlighted tasks executed in a sequence are grouped together using BPMN
group objects to represent sequences in process models. An example is
available in Figure 23.

Comparison of the PLETIN Method with Previous Efforts

The development of PLETIN was inspired by the approach taken by ALF (See

Section 2.1.2). ALF is a control integration effort, where events are captured from

60

the environment and corresponding service flows are executed. PLETIN, on the
other hand, depends on users initiating processes in a specific step of the manual

process.

PLETIN presents similarities to past control integration efforts discussed in Section
2.1.1 where a message passing method is used. In PLETIN, messages exchanged
between users and tools, and between tools are identified and re-created by web-

services and encapsulated in web-service technologies.

PLETIN also have similarities to ToolNet System discussed in Section 2.1.3.
ToolNet System develops an interface for all the tools in the environment, called the
ToolNet Adapter. ToolNet Adapter supports the least common denominator
functionalities so that tools can communicate with each other. ToolNet’s approach is
to provide sustainability by providing a small subset of functionality over a large
number of tools. Although this may work in simple scenarios, support for

organizational processes would definitely suffer.

Our research showed that, although much research has been done for data sharing
approaches discussed in Section 2.1.4, none has been widely accepted. We believe
that the reasons behind this are as follows:

Data-sharing approaches require a complete perspective on the software
development processes. However, information on every aspect of software
development, including common data representations and common message
formats are not available.

Data-sharing approaches are not sustainable. A new tool, a new functionality of a
tool or a new conceptual representation requires the definition of new common
representations compatible with the existing ones. This is not feasible.
Data-sharing approaches are not suitable for existing tool sets, where an arbitrary
selection of tools are available. In such an environment developing a common

data representation presents significant challenges.

In their paper [57] Thomas and Nejmeh details the types of integration developed by
Wasserman. Discarding the platform integration type, they discuss the details of

presentation, process, control and data integration types. Regarding the aspects of

61

tool integration put forward by Thomas and Nejmeh, we can say that PLETIN

supports the following:

1. Control Integration
a. Provision (to what extent are a tool’s services used by other tools in
the environment?)
b. Use (to what extent does a tool use the services provided bu other
tools in the environment?)
2. Process Integration
a. Process step (how well do relevant tools combine to support the
performance of a process step?)
3. Data Integration
a. Interoperability (how much work must be done for a tool to

manipulate data produced by another?)

PLETIN also partially supports the following aspects, if these concerns are included

in the process definitions used:

1. Process Integration
a. Event (how well do relevant tools agree on the events required to
support a process?)
b. Constraint (how well do relevant tools cooperate to enforce a
constraint)
2. Data Integration
a. Non-redundancy (how much data managed by a tool is duplicated in
or can be derived from the data managed by the other?)
b. Data consistency (how well do two tools cooperate to maintain the
semantic constraints on the data they manipulate?)
c. Data exchange (how much work must be done to make the non-
persistent data generated by one tool usable by the other?)
d. Synchronization (how well does a tool communicate changes it makes

to the values of non-persistent common data?)

62

PLETIN uses process models to identify and describe user integrations with tools.
This approach is also taken by PCSEEs (See Section 2.1.6) in the literature, where
generally software development processes are represented as process models.
However, PCSEEs convert these process models to rules and constraints, represented
in specialized languages. These rules and constraints are used to guide and constrain
the process flow. PLETIN does not transform the models, but include more detail on
the interactions to develop automatically executable versions of the user tool

interactions to develop tool integration implementations.

In their paper, Mi and Scacchi [46] suggest process models should be used to realize
integration. They state that interfaces between the tools can be derived from process
models, as proposed in this work. They also focus on an existing integrated toolset,
and provide process flexibility. However, contrary to these approaches, PLETIN
focuses on the identification of candidate integration situations. PLETIN aims to
understand “when to integrate?”” and “what tools to integrate?” to support “which
processes?”. PLETIN takes a process-oriented approach to find out which integration
functionality will be the most beneficial for the execution of the processes. We

haven’t been able to find out such an approach in the literature.

Briefly, PLETIN presents a process-focused approach to tool integration, which
provides practical benefit to organizations with already existing tool sets. We believe
that these are the missing aspects of tool interaction hindering popular adoption of

frameworks in practice.

3.10. Limitations of PLETIN

The following is a list of areas that have been identified as the limitations of the
approach proposed in this thesis. These can be improved by further research and the

use of newer technologies.

1. The PLETIN method uses existing process definitions and process models as
inputs. It does not aim to define, or improve organizational processes. To
apply PLETIN in an organization without process definitions or in an

organization planning for process improvement, it is recommended that a

63

process definition/modeling effort is completed, or PLETIN is implemented
parallel to such an effort. An extension to PLETIN, that analyzes process
evidence (e.g. tool logs) to develop process definitions can be developed and
employed in organizations without process definitions.

The PLETIN method discards all user interactions with tools that are
classified other than Create, Read, Update, Delete and Execute. This is a
subjective and arbitrary constraint and can be improved by further
formalisms, more complex mappings and more complex representations of

the nature of the actions.

During the development of PLETIN an assumption was made suggesting all
tools are “grey boxes” to the modelers [59]. A “grey box” tool means
although the source code is not available for the tool, an API or an extension
language is provided [31], [32]. PLETIN in its current form is still useful for
“white box” tools where the tool is custom developed or open sourced.
However, in case of a “black box” tool where the modelers have access to
only binary executables, then an enveloping approach where a wrapper
converting internal tool objects to necessary format is required [59].

It is not possible to resolve “implicit sequences” (see Section 3.5.2) with re-
organization using PLETIN. Such re-organization is considered as part of a

process improvement and left out of scope of this thesis

The PLETIN method is developed and applied using BPMN as the process
modeling notation and Intalio|BPM Community Edition for implementation.
Use of other notations and execution infrastructures were not considered,
however they could provide valuable insights on data and process

representation.

The application of PLETIN method in many organizations across software
development industry would create a knowledge base of integration
requirements and a basic understanding of the components of an ontology

including objects, actions, roles and messages. Development of an ontology

64

was left outside the scope of this thesis, but it would definitely help a better

understanding of the software domain.

PLETIN in its current form executes processes specifically initiated by the
users from the web interface. In a software development environment, events
generated by other tools, or external sources are not taken into account.
However, this is easy considering that PLETIN uses a BPEL engine, which

can capture external events and initiate corresponding processes.

Complex mappings of data between tools were not accounted for in the scope
of this thesis. It can be implemented as a new tool (similar to the project
repository developed for the first case study), or the facilities provided by the

business process execution engine can be employed.

In the case of already existing (legacy) but inferior integration solutions or
new integration functionality delivered with a new release of the tool,
PLETIN can be modified to employ or discard the existing functionality.
However, the comparison of a solution custom developed based on the

PLETIN method and an existing solution is not in the scope of this thesis.

65

CHAPTER 4

ENABLING TECHNOLOGIES

4.1. Business Process Modeling Notation (BPMN)

BPMN is a standard modeling notation initially developed by Business Process
Management Initiative (BPMI). Object Management Group (OMG) [50] currently

maintains the standard since the two organizations merged.
BPMN aims to provide a notation [17]:

“that is readily understandable by all business users, from the business
analysts that create the initial drafts of the processes, to the technical
developers responsible for implementing the technology that will perform
those process, and finally, to the business people who will manage and

monitor those processes”.

BPMN, having multiple target user groups is simple, yet sufficiently expressive.
Both high-level manual processes and low-level automated processes can be

modeled using the notation.

Another goal stated in the BPMN Specification Version 1.1 [17] is to ensure BPMN

can be used to visualize languages designed for the execution of business processes,

66

such as BPEL4WS (Business Process Execution Language for Web Services) [16],
later renamed to WSBPEL [64].

The design of BPMN was preceded by the review of other notations like UML
Activity Diagram, UML EDOC Business Processes, IDEF, ebXML BPSS, Activity-
Decision Flow (ADF) Diagram, RosettaNet, LOVeM, and Event-Process Chains
(EPCs) to consolidate best ideas from these [17].

4.1.1. Choice of BPMN

BPMN has been chosen as the notation used in this thesis for the following reasons:

1. BPMN is designed from the ground-up to model both manual and automated
processes. The BPMN specification does not provide a direct mapping
between BPMN and execution languages like BPEL4AWS or WSBPEL.
However, there exists a significant overlap between BPMN and BPEL4WS
constructs and many tools supporting BPMN modeling provide facilities for
converting BPMN to execution languages. Modeling and execution of
business processes in this thesis was implemented on Intalio|BPM
Community Edition (See Section 4.2). IntalioBPM Community Edition
provides direct-deployment of BPMN models as executable business
processes on Intalio|BPM Community Edition. The modeling workspace
provided by Intalio, Intalio|Designer enables modelers to include information

like data-mapping and web-service invocation.

2. Ease of visually representing executable business processes using BPMN
enables the implementation infrastructure in this work to employ web-
services. Web-services are a standards-based method of communication for
applications of different platforms. They are widely accepted and provide a
direct solution for cooperating different tools of different vendors and

platforms.

3. BPMN’s aim to support all business users lets users develop models on both
ends of the detail spectrum. Modelers can create high-level models involving
entities external to the organization, use black-box perspectives to identify
interactions and create people-oriented visual representations of manual

67

process definitions. Using the same notation, detailed models of processes to
be executed automatically can be developed. This dual modality is critical for
the aim of this thesis, because the PLETIN method aims to understand user
interactions with tools from models representing manual processes, to
develop an integration framework that can execute these interactions on
behalf of the users automatically. Such an undertaking requires a flexible
notation that can support both high-level people processes and low-level

automatic execution of processes.

4. BPMN is maintained by OMG, who also develops the UML specification. It
is an open, widely accepted and actively developed standard. This assures the
relevancy and continuity of the BPMN specification as a business process
modeling standard. Using open and standard components for integration

efforts is critical for its acceptance.
5. The last but not the least is our familiarity with the notation.
4.1.2. BPMN Elements
BPMN is used for business process modeling. It has common elements with other

process modeling notations. Table 4 gives a list of elements supported by BPMN.
This information is from the BPMN 1.1 Specification [17].

Table 4 BPMN elements

Element Description Notation
Event An event is something that “happens”
during the course of a business Start

process. These events affect the flow
of the process and usually have a
cause (trigger) or an impact (result). Intermadiata
Events are circles with open centers
to allow internal markers to
differentiate different triggers or
results. There are three types of O
Events, based on when they affect the End

flow: Start, Intermediate, and End.

68

As the name implies, the Start Event
indicates where a particular process

will start.

Intermediate Events occur between a
Start Event and an End Event. They
will affect the flow of the process,
but will not start or (directly)

terminate the process.

As the name implies, the End Event

indicates where a process will.

Start and most Intermediate Events
have “Triggers” that define the cause
for the event There are multiple ways
that these events can be triggered.
End Events may define a “Result”
that is a consequence of a Sequence
Flow ending. Start Events can only
react to (“catch”) a Trigger. End
Events can only create (“throw”) a
Result. Intermediate Events can catch
or throw Triggers. For the Events,
Triggers that catch, the markers are
unfilled, and for Triggers and Results

that throw, the markers are filled.

“Catehing”
Mesaage -'FTE'- iiiu
Timer © @
Ervor A
Cancel @__@
Compansation iﬁl

Conditional {Q:

Link

Signal ()
Terminate

Musltiple (o),

=
=l

“Theowing™
o

@ @
L —

1ede

CJOIC

P

®

Activity

An activity is a generic term for work
that company performs. An activity
can be atomic or non-atomic
(compound). The types of activities
that are a part of a Process Model are:
and Task.

Processes are

Process, Sub-Process,
Tasks and Sub-
rounded rectangles. Processes are

contained within a Pool.

A Sub-Process is a compound
activity that is included within a

Process. It is compound in that it can

69

be broken down into a finer level of
detail (a Process) through a set of

sub-activities.

The details of the Sub-Process are not
visible in the Diagram. A “plus” sign
in the lower- center of the shape
indicates that the activity is a Sub-
Process and has a lower- level of
detail.

The boundary of the Sub-Process is
expanded and the details (a Process)
are visible within its boundary. Note
that Sequence Flow cannot cross the

boundary of a Sub-Process.

MeaEmie

Gateway

A Gateway is used to control the
divergence and convergence of
Sequence Flow. Thus, it will
determine branching, forking,
merging, and joining of paths.
Internal Markers will indicate the

type of behavior control.

Icons within the diamond shape will
indicate the type of flow control
behavior. The types of control

include:

* Exclusive decision and merging.
Both Data-Based and Event-Based.
Data-Based can be shown with or

without the “X” marker.
* Inclusive decision and merging.

» Complex -- complex conditions and

situations.
* Parallel forking and joining.

Each type of control affects both the

Exclusi o
inuﬂi::!ﬂa:ld \f ._.:H:I'I' &t}

e
Evani-Based 4::} ™y
@)
Inclusive ;"'-

A~

H.

O

Complex

Parallal

e
™,

70

incoming and outgoing Flow.

Sequence

Flow

A Sequence Flow is used to show the
order that activities will be performed

in a Process.

Normal Sequence Flow refers to the
flow that originates from a Start
Event and continues through
activities via alternative and parallel

paths until it ends at an End Event.

Uncontrolled flow refers to flow that
is not affected by any conditions or
does not pass through a Gateway.
The simplest example of this is a
single Sequence Flow connecting two
activities. This can also apply to
multiple Sequence Flows that
converge on or diverge from an
activity. For each uncontrolled
Sequence Flow a “Token” will flow
from the source object to the target

object.

Sequence Flow can have condition
expressions that are evaluated at
runtime to determine whether or not
the flow will be. If the conditional
flow is outgoing from an activity,
then the Sequence Flow will have a
mini-diamond at the beginning of the
line (see figure to the right). If the
conditional flow is outgoing from a
Gateway, then the line will not have a
mini-diamond (see figure in the row

above).

For Data-Based Exclusive Decisions
or Inclusive Decisions, one type of

flow is the Default condition flow.

71

This flow will be used only if all the
other outgoing conditional flow is not
true at runtime. These Sequence Flow
will have a diagonal slash will be

added to the beginning of the line.

Exception Flow occurs outside the
Normal Flow of the Process and is
based upon an Intermediate Event
that occurs during the performance of

the Process.

dg_.f.egtmn)

Flow

Message

Flow

A Message Flow is used to show the
flow of messages between two
participants that are prepared to send
and receive them. In BPMN, two
separate Pools in a Diagram will
represent the two participants (e.g.,

business entities or business roles).

Compensation Association occurs
outside the Normal Flow of the
Process and is based upon an event (a
Compensation Intermediate Event)
that is triggered through the failure of
a Transaction or a Compensate
Event. The target of the Association
must be marked as a Compensation
Activity.

Da
@
Conrtpansalio

Associaton -

Association

An Association is used to associate
information with Flow Objects. Text
and graphical non-Flow Objects can
be associated with Flow Objects. An
arrowhead on the Association
indicates a direction of flow (e.g.,

data), when appropriate.

72

Pool

A Pool represents a Participant in a
Process also acts as a “swimlane” and
a graphical container for partitioning
a set of activities from other Pools,
usually in the context of B2B

situations.

Lane

A Lane is a sub-partition within a
Pool and will extend the entire length
of the Pool, either vertically or
horizontally. Lanes are used to

organize and categorize activities.

Hars [Ar=

Data
Object

Data Objects are considered Artifacts
because they do not have any direct
effect on the Sequence Flow or
Message Flow of the Process, but
they do provide information about
activities

what require to be

performed and/or what they produce.

Mams

Group

A grouping of activities that are
within the same category. This type
of grouping does not affect the
Sequence Flow of the activities
within the group. The category name
appears on the diagram as the group
label. Categories can be used for
documentation or analysis purposes.
Groups are one way in which
categories of objects can be visually

displayed on the diagram.

Text
Annotation

Text Annotations are a mechanism
for a modeler to provide additional
information for the reader of a
BPMN Diagram (“Text Annotation”

on page 94).

| Descriptive Taxt
UL Here

73

4.2. Intalio|BPM Community Edition

The main tool used in the implementation of the PLETIN method is the open source
version of Intalio|BPM Community Edition. Intalio) BPM Community Edition is a
complete BPM solution providing two components: Intalio]BPM Community Edition
and Intalio|Designer. Intalio|Designer is the process modeling component. It supports
BPMN modeling in an Eclipse-based environment.

(= Basic BPMN Shapes

I
=] £

(= Start Events

@ @ 0 OO O

(== Intermediary Events

(= Artifacts

Figure 30 Supported BPMN elements in Intalio|Designer

Intalio|Designer provides the following facilities that is used during the application
of the PLETIN method:

1. Development of process models using the BPMN notation. (See Figure 30)

- = =
&2 process Explorer 23 2 CallberRMWrapperwsdiwsd] 5% @ StarTeamWrapperwsdlwsdl | B
CoRES T
I Pletin -
+ [& build
(= Schemas 25 Caliber Service ,.{ () 3 CaliberRMWrapper
& senvices M > CaliberRMWrapper d % createProject
p://192.168.74.131:... input ‘ [F parameters ‘ createProject
€ CaliberAMWrapperwsdlwsdl B1ing pa Gl e -
+ [l CaliberRMWrapperService 4l output ‘ [parameters ‘ [€] createProjectResponse —
&9 CaliberRMWrapper % selectProjectByName
© @ CaliberRMWrapperSoapBinding input \ 7 parameters \ [&] selectProjectByName —_
- 98] http:/ fcaliberrm.ws tez.alpay.er @ = ‘ -
> Q‘Emﬂsymmw(apmmd‘md‘ output ‘ parameters ‘ (€] selectProjectByNameResponse —
By FileSystemWrapperwsdl.wsdl #k createBaseline
+ €4 ProjRepoWrapperwsdlwsdl 1 Input ‘ [parameters ‘ [€] createBaseline —
+ G starTeamrapperwsdlwsdl <l output ‘ [7 parameters ‘ [¢] createBaselineResponse —
&€ BRPG2.bpm

Figure 31 Web-service definitions imported to the workspace

74

2. Validation of BPMN models, highlighting missing elements, consistency

check and ability to execute check.

& Tasks [[2 Problems [tz Mapper 53 N\ & ngresq = Prupercias] o= cuninﬂ 53 Pulmﬂ =&
Isﬂ—»‘(‘,’) |1c-c-%- B &~ 3

assign |

#2 sstarTeamWrapperwsdiCreateLabelRequestMsg.parameters $2 intflLookupNameRequestMsg.parameters$--

#2 sintfLookupPathRequestMsg.parameters

] o —

¥L $starTeamWrapperwsdlUpdateFileRequestMsg.parameters

#L sthisReceive_RequestRequestMsg body ’////’7-

abe text: string
E:_‘}(hisRecewe_RequestResponseMsg.bodv

Figure 32 Data mapping in Intalio|Designer

3. Ability to import web-service definitions in the form of WSDL files directly
into the designer workspace to embed them into the process models.
Processes can invoke and consume these web-services during execution. (See
Figure 31

4. Data mapping to ensure data that is supplied by the user and generated during

the execution of the process is correctly routed. (See Figure 32)

5. One-click deployment of processes to Intalio|BPM Community Edition for

execution. (See Figure 33)

Overview % Development ~ [§
* Settings + Deploy build files
Bundle name [22 BRPG2.bpm —
Pletin 89 €M510.bpm
Target namespace @4 CM513.bpm
5 y |35 CM533.bpm
liyel X
p-/fexample.com % cMc21.bpm

[cMTG211.bpm

|88 CMTG212.bpm

[B€] CMTG213-216.bpm
& DeleteMe.bpm

[2¢] RE5213.bpm

[RES5214.bpm

& RE52212.bpm

|85 RES222.bpm

[B€] RMTG21.bpm

[86] RMTG22.bpm

Bl RAETC 3 b

Runtime Server URL
http:/slocalhost:8080/ode

Ceployment URL
http://localhost-8080/ ode Test

Timeout (in seconds)
120

10000EEOO0O0OO00O0OO

Export directory
Pletin

47 Cancel L|:|.| Sawe "= Deploy and archive

Figure 33 Intalio|Designer process deployment dialog

75

Process models developed in Intalio|Designer are deployed on the Intalio|Server,

where they are converted to BPEL and executed. Intalio|Server is a J2EE [40] based
BPM suite which embeds the Apache ODE BPEL engine [4]. It provides the

following facilities that, can be employed during the application of the PLETIN

method:

1. Web interface where users are only presented with information (including

available processes, process diagrams, execution summary for instances) and

actions they are permitted to access based on their role (See Figure 34 and
Figure 35).

Lo INTALIO PROCESSES

PROCESSES

INSTANCES

TooLs intalio\admin REFRESH

LOGOUT

=

(m

In Progress Fallure

(Stan) (Activate) (Retire) (Deplw) (Undeplw)
Process Lifecycle
AbsenceRequest [v1]

AbsenceReguest ACTIVE

(m

(]

(]

o |

H

H

=

=

=

=

H

H
o= |
o= |

Denemeler [v1]
TimeExample TimeProcess =~ ACTIVE

HelloWorld [v1]
HelloWaorld:HelloWorld ACTIVE
Pletin [v8]
RES213:RE5213 Seqb ACTIVE
RES214:RE5214 Seq? ACTIVE
TaskManager [v1]
ACTIVE

TMP:TaskManagementProcess

TezDeneme [v12]
CreateFolderi:Process ACTIVE
SimpleLookup1:Process ACTIVE
TwoSteplookup:Process ACTIVE

9 processes 9 Active

0 Retired

0 0

Suspended Failed Terminated Completed Total

35

| =t

[3&]

=Y

|t

|t

A N N

(Startl. |_Activate | | Retire | \Deple (Undeplcwj.

Figure 34 Intalio|BPM Community Edition process operations interface

2. Ability to initiate processes through the web interface.

3. Ability to monitor process execution and access detailed information during

and after execution (See Figure 36).

76

4. Ability to work on different versions of the same process through automatic

versioning.

5. Ability to undeploy/retire processes.

‘ INTALIO PROCESSES INSTANCES TOOLS & intalio\admin REFRESH LOGOUT
PROCESS DETAILS
Mame: RE5214_SeqT
Lifecycle: ACTIVE
hitp com/RE5214/RE5214_SeqT
Info | Diagram | Resources
Diagram ¥

st

P

Figure 35 Intalio|BPM Community Edition process detail interface

Using Intalio|BPM Community Edition it is possible to develop custom forms where
users enter required information for process execution and access forms available to

their roles.

‘ INTALIO PROCESSES INSTANCES ToOLS & intalioadmin REFRESH LOGOUT
INSTANCE DETAILS
invoke) (Resume) (Suspend) (Termina re

Instance Details: {httouexample com/RE5213/RE5213 SeqbIRE5213 Seq6-24
State: Completed Started: 2010-01-07 10:55:45
Identifier: 3637250 Last active: 2010-01-07 10:55:48

Diagram | Data | Events

[} __PROCESS_SCOPE:RE5213_Seqf Variables | Gorrelation Sets Partner Links
[} Generate__Customer_Requirements_Document__using__Customer_Requirements_Document_Template__from_requirements_management_tool
Locate__Customer_Requirements_Document_Template__file_s_-1 intfL ookupRequesiM:
Generate__Customer_Requirements_Document_-1 Jesthsa
intfl ookupResponseM:

Figure 36 Intalio|BPM Community Edition process instance detail interface

77

4.3. Eclipse and Apache Tomcat

Web-services used for integration implementations were developed using Java
language on Eclipse [24], an open source development platform. Web-services were
generated directly from standard Java classes using the “web-service wizard” (See
Figure 37) provided by Eclipse and deployed to Apache Tomcat [5], an open source
software implementation of the Java Servlet [41] and JavaServer Pages [42]
technologies. APl documentation is used to understand the APIs provided by

software development tools.

Web Service

Web Services o
Select a service implementation or definition and move the sliders to set the level of service and client generation. _‘:

Web service type: Bottom up Java bean Web Service +
Service implementation: com.erturkmen.alpay.tez.ws.email.EmailSystemWrapper +| (Browse..)
Install service
Configuration:
(wb. ':.é'. Server: Tomcat vb.0 Server
'ﬁ? Web service runtime: Apache Axis
:j Q Service project: EmailSystemws
=
Client type: | Java Proxy 2
) Modient
Configuration: No client generation.
{
[Publish the Web service
] Monitor the Web service
E Overwrite files without warning
] Do not show me this dialog box again.
|/'§"| < Back (MNext > Y Cancel Y (Finish

Figure 37 Eclipse "web-service wizard"

78

CHAPTER 5

CASE STUDIES

To develop a method that provides a solution for tool integration, we have performed
two case studies involving two target organizations. In the first case study (Case
Study I) we have focused on user interactions with tools to understand the extent of
tool use and then studied the issues with tool integration to verify their existence and
significance. Based on these findings we have developed the PLETIN method. On
the final phase of Case Study | we studied the applicability and efficiency of the
PLETIN method through a prototype implementation.

Case Study | provided insights into the issues with tool integration in software
development. A second case study (Case Study Il) was designed and performed
focusing only on the conduct of PLETIN. The aim of Case Study Il was to
understand the applicability of the PLETIN method on some other environment then
Organization I. A case study in a separate environment was required since the
method was developed based on the results of Case Study | and was dependant on

them.

The PLETIN method is based on the scenario where there are no integrations
between the tools in a software development environment; cooperation of them must

be maintained manually. As an example, to make it possible for different tools that

79

are not integrated to work on the same data set, the data must be fed to each tool
manually. Similarly, for a tool to operate on the information created by another tool,
data should be moved between the tools by a user manually. In other words, users
must perform actions necessary to keep the tools working together (cooperate). In
this situation, process definitions (or models derived from these definitions if they
exist) would contain sequences of actions (what we name integration-tuples or
sequences, and use interchangeably in this thesis) performed to maintain tool
integrations. These sequences are required to keep the tools working cooperatively.
Thus, user actions account for non-existing integration facilities of the tools. For
simplicity, we call these facilities integration-tuples (or sequences). An integration-
tuple is a candidate tool integration situation. In our scenario users maintain
integration-tuples manually. A method designed to investigate the process models
can be used to understand how users interact with the tools to maintain these tuples.
Based on this knowledge, requirements for the services to support these actions can

be inferred and implemented to build a tool integration framework.

We have selected a multiple case study design as our research method since our
research presents ‘how’ and ‘why’ questions to understand the extent of tool use and
observe problems with tool integration. The behavioral nature of the problems we are
dealing with, and the difficulties of observing results in an experimental setting
prevents us from trying other methods where we are required to modify the behavior

we are investigating.

Case Study | was performed at Organization I, which is a software development
organization that has process maturity certified as CMMI Level 3. The organization
had clearly-defined process definitions using a multitude of tools for software
development.

Case Study Il was performed at Organization Il, which is a software/systems
development organization that has process maturity certified as CMMI Level 3.
Organization Il encouraged use of tools in their software development processes,

however the use of tools is not mandatory.

80

Both organizations significantly contributed to this research by providing access to
their process definitions for analysis while answering our questions about tool use

and integration during the case studies.

This chapter is organized as follows: Section 5.1 describes how the multiple case
study approach was designed, including questions for individual case studies. Section
5.2 defines constraints on the case selection. Section 5.3 and Section 5.5 detail the
execution of the two case studies along with samples of artifacts produced. Section
5.4 and 5.6 present the results of the case studies. Section 5.7 is on the validity
threats for the case studies. Section 5.8 summarizes the results of the case studies and

provides a discussion on the results.

5.1. Multiple Case Study Design

A multiple case study design was used in this thesis. Two case studies were planned
to develop and then validate the applicability and efficiency of the PLETIN method.
The first case study was designed as an exploratory case study to observe and
validate the existence of tool integration issues in software development. Based on
these issues a method for tool integration was developed. The PLETIN method was
applied in two different organizations to observe its applicability and efficiency.

5.1.1. Case Study I Design
PLETIN is a process modeling method developed to provide a solution to tool
integration problem. PLETIN is used to identify tool integration-tuples required by
an organization and implement them. The main research question for the case study

was defined as:

"What is the applicability and effectiveness of the PLETIN method in
identifying and implementing tool integration-tuples in software

development?"

An integration-tuple is defined as an ordered list of independent tools or different
parts of the same tool providing separate features and an action. It can be represented
as “(ToolA, ToolB...ToolN, ActionX)” where ToolA, ToolB, and ToolN stand for
tools and ActionX denotes the sub-process requiring these tools. The tuple

81

corresponds to an integration situation between the tools used to perform “ActionX”.
A tuple can be defined both for an existing implementation or only denote a
possibility of such an integration. Integration-tuples represent a series of simple (one
of Create, Read, Update, Delete and Execute operations) user interactions with tools,

thus they are interchangeably called sequences in this thesis.

The case study was designed to have three phases (See Figure 38). The first phase
was the tool use exploration phase. Its aim was to provide a basis for the other two

phases that focus on the development, implementation and evaluation of the method.

p?
B

1

Phase Il
Implementation

Case study started Case study completed

Figure 38 Process model for Case Study I Design

The identification phase aimed to unravel the extent of user interactions with tools
[26]. In this phase the goal was to understand if the tools and the tool integration

problem have an effect in practice. The research question for the first phase was:
"How extensively are tools used in software development?"

To answer this research question, software development process definitions were
analyzed to identify user interactions with tools. Process definitions not containing
any tool interaction were excluded at the beginning of the case study to reduce the
scope, since by definition they can't contain any tool interactions. Interactions in all
processes were identified to understand the extent of tool use, coupled with the ratio

of processes having interactions and the distribution of interactions in process areas.

The extent of tool interactions observed in the first phase indicated a strong
dependency on tools from users and software development processes. Because of this
dependence, existing features, strengths and limitations of the tools directly impact

the user and process performance. While an enhancement in tool features would

82

increase the process performance, a reduction would result in poor-performing

processes [44].

[45] suggests that an integrated toolset would give better results, benefitting the
execution of software development processes. The second phase of the case study
(the identification phase) focused on the existence and significance of the tool
integration problem to understand the status of tool integration in the organization, to
observe problems related to it in practice and interpret to what extent the PLETIN

method would be helpful [27]. The research question for this part was:

"What is the significance of tool integration problem in software

development?"

[45] states that for a tool to be used effectively in an information systems lifecycle
process it must fulfill “the specific needs and expectations of the organisation, and its
associated stakeholders”. To understand the state of tool integration, the
identification phase focused on what kind of integration features the users need in
order to execute their processes. These integration features required by the users (and

processes) were denoted by integration-tuples.

Process models based on process definitions conforming to certain criteria were
defined to identify these tuples. These models were used to identify sequences of
simple user interactions with tools, i.e. integration-tuples. This set of integration-
tuples established the requirements for tool integration based on organizational
processes. A gap analysis comparing these requirements to the existing state of tool
integration in the organization was executed. The frequency and the process area
distribution of these tuples were also noted. The results described the nature and
significance of the tool integration problem and guided our efforts on developing the
PLETIN method to provide a solution.

We have developed the PLETIN method to identify and implement integration-
tuples. Integration-tuples were identified at the end of the second phase. The third
phase of the case study was conducted to observe the applicability and efficiency of
the method in implementing integration-tuples [27]. The sequences identified in the

process models were broken down into atomic actions. Corresponding services (or

83

interfaces), which the organizational processes require from the tools, were defined.
The definitions of the services were built from input and output messages exchanged
and the action normally carried out manually by a user. Service definitions in the
form of WSDL files were combined into process models. This enabled the
implementation of integration-tuples as business processes executed by a business
process management suite. Business services were built such that they can consume
the implemented services on behalf of users. Data for the effort spent on the
implementation was recorded. Also, information on manual execution of the

processes was obtained and compared to the automated execution case.

The results of this case study show that software development processes are
dependent on the use of tools. The integration between tools are however not
satisfactory for the processes because many opportunities were missed. These missed
opportunities were significant and extended to all stages of software development.
The frequency of use ranged widely from once per requirement revision to once per
project. The results suggests that it is feasible to identify these opportunities and
provide custom implementations for them using the PLETIN method implemented in
the second and third phases of the case study.

5.1.2. Case Study Il Design
To understand the applicability of PLETIN method on a separate but similar
environment the following questions were developed and answers were sought by
the application of the PLETIN method:

1. “Is it possible to identify candidate tool integration situations from process
definitions using PLETIN?”
2. “Are there any similarities between the service definitions and business
processes developed from the two cases?”
The first question is directly concerned with the feasibility and the ease of
application of the PLETIN method. It is crucial that the method developed for this
thesis is easy to use and provides useful results in an effective manner. An easy to

use and efficient method is a must for the adoption of the method. Although the ease

84

of use and practical results provided by the PLETIN method was observed in Case

Study I, an independent case study was required for unbiased results.

The second question aims for a comparison between the results of Case Study I, and
the newly planned case study. Users generally interact with tools in similar ways
even for performing different processes of different organizations. Radical departures
from the common interaction methods can also be observed, however rarely, because
the goals of software development are similar. Since the method is used to identify
user interactions with tools, it is expected that organizations produce similar results
with occasional differences between them. The second question aims to understand

and discuss the level of similarities and differences between two case studies.

5.2. Case Selection

The problem under analysis puts the following constraints on the target organization
for proper conduct of the case study:

1. The existence and active use of multiple tools for software development

2. A defined set of software development processes (preferably certified in
CMMI Maturity Level 3 [18], or comparative 1SO 15504 [39] level)

Since this case study is part of a research on the tool integration problem in software
development organizations, the setting for conduct of the case study must have a

multitude of tools supporting the processes in use.

The case study requires the analysis of process definitions to extract user interactions
with tools. Analysis of process definitions was favored over the observation of actual
user interactions with tools so the method can be used in parallel with process
modeling and/or improvement efforts, while the method of observation do not affect

the results.

5.3. Execution of Case Study |

The case study was performed in a software development branch of a research
organization. This branch develops software for military and civilian systems. To
support their development efforts, they utilize multiple tools. These tools include

85

requirements management, configuration management, change management, test
management, automated functional testing, project planning, risk management and
time tracking. The processes for software development were already defined and the
organization had recently been evaluated to be CMMI Level 3. We have been able to
work on the process definitions and members of the Software Engineering Process

Group (SEPG) provided answers to our questions whenever we requested.

5.3.1. Tool Use Exploration Phase

In the beginning of the case study, a meeting was held with the department head and
the SEPG leader to develop the schedule for the case study work and the SEPG Q&A
sessions. After setting up the schedule and sessions, we started the scoping of the
case study. Process definitions had been grouped by the organization using a
categorization similar to the process area definitions in the CMMI model [21].
Working with the SEPG, we identified the process areas that are not directly related
to software development thus are irrelevant to our cast study. These process areas
focused on process and project management. A later analysis revealed that these
process areas have none or single tool interactions (per process definition) thus were
not suitable for our research. The process areas considered not relevant to our case
study are given in Table 5:

Table 5 Processes areas not directly related to software development

Process Name Process Abbr.
Process Management PcM
Measurement and Analysis MA

Software Quality Assurance SQA

Risk Management RkM
Organizational Training oT

Project Management PM

Decision Analysis and Resolution DAR

86

The remaining process areas that were related to software development defined the
scope of the case study. The process areas included in the scope of the case study are

given in Table 6.

85 process definitions constituting the 4 process areas (CM, RE, TS, VV) were
analyzed. User interactions with tools in all processes were identified to understand
the extent of tool use, coupled with the ratio of processes having interactions and the

distribution of interactions in process areas.

Table 6 Process areas included in the scope of Case Study |

Process Name Process Abbr.
Configuration Management CM
Requirements Engineering RE
Technical Solution TS
Verification and Validation \AY

5.3.2. Identification Phase

The extent of tool interactions observed in the first phase indicated that users and
software development processes for the organization had a strong dependency on

tools. 90% of all analyzed process definitions contained tool interactions.

The aim of the identification phase was to understand if issues with tool integration
were significant for the organization. If it is, then the benefits of the toolset to
software development can be increased through better integration. For this we started
gathering information on the state of tool integration in the organization, problems
related to it in practice and their extent. Thus, the identification phase focused on the
existence and significance of the issues with tool integration while unraveling what
kind of integration features users need in order to execute their processes. These
integration features required by the users (and processes) were denoted by

integration-tuples.

To identify these tuples process definitions that included multiple interactions with
tools were selected. Processes including complex flows for decision-making, review,

87

design, creative development and collaboration were excluded because they didn’t
provide any data on tool integration but rather focused on manual tasks only people
could perform. The outcomes of such processes can vary, i.e. they are not
deterministic [9]. The remaining process definitions were converted to process
models using the BPMN notation. A sample BPMN model developed in this phase is
given in Figure 39.

The models were used to visually identify sequences of simple user interactions with
tools, i.e. integration-tuples. To identify integration-tuples, process models
developed from process definitions were used. These process models represent tool
interactions by a BPMN message connection between a task performed by a user and
a BPMN pool representing a tool. Tasks containing tool interactions were classified
depending on whether they were complex or not. An action was classified as simple
if it was one of the CRUD operations: Create, Read, Update, Delete or Execute.
Simple tool interactions were highlighted with a distinctive color (e.g. orange) on the
process model. A sample for the representation of tool integrations in a process

model is given in Figure 40.

The highlighted tool interactions were grouped together using BPMN group objects
to represent a sequence. A sample of such grouping is given in Figure 41. These
sequences, consisting of multiple, simple tool integrations present tool integration
opportunities. See a detailed discussion in 3.4.3. These sequences of actions are

labeled as integration-tuples.

Integration-tuples were then organized into an “integration map” providing a
graphical representation of the organizational process requirements for integration.
This integration map was compared to the “current integration map” representing all
available integration implementations for the tool set, whether they were used by the

organization or not.

88

¥1253Y ‘1 9seud ‘I Apnis aseD 40y [apow NINJG 3ldwes 6¢ aanbi-

o]

100} “Bupy “bay w
sbau pa acudde suaseqg

“uog .85
w.:.wgw_ 555
Aoudde BUISEE]D BB

a
JBIWOIENG 10} B MuddE
JBWOIEND BASNDY

sanuoud SSNEE] & AOBRI PUE _ W
poubisse PUE E35U EUSLWEANDS) EUBLISANDS JBWO0IENT a b =
)) Jnoge 10 SESUBEHWoD
Ag spuswsnnbal E109] JUDD B MOESY DU ADENDSDE e MY M
JBL0IEND SOUEEG] BUILLEIE] m
[
E]
sjuswaanba o
Pt — E

89

A gap analysis was performed comparing the two maps. This analysis comparing the
requirements to the existing state of tool integration clearly laid out the missing
integration implementations for the organization and the significance of the tool
integration problem experienced by the users. We also noted the frequency and the
process area distribution of these tuples. The results described the nature and
significance of the tool integration problem and guided our efforts on developing the

PLETIN method to provide a solution.

@
reate baselne approv
Achieve customer ustomer Requirement Dasalios mvn“
§ approval for Customer Document® under |——» Sz ws .
Requirements Document configuration m'm"m' ¢ tool
management tool L

Rl FAY Rl
| ! ! T
I..semame. passworg, projectName, fuePath, fieName, labeiName lﬁ | |

- t - |
e !
| o = | |
- e | |
username, passworg, orqectNaﬁ;ne. baséuneName ‘% | |

| |
: ’ s) |
| | | |
t t Of |
v—o0 : i
3 | !
%) | |
@ |
Ly
7—O0

lS
@

5.3.3. Implementation Phase

Figure 40 Sample tool interaction represented as a process model

The next step after the identification of unsatisfied integration-tuples was the
implementation step. Since the process models were already developed in the
previous phase, the implementation phase was concerned with the identification of

the implementation details.

The integration-tuples defined in the previous phase were used as the requirements or

high-level definitions for the services to be developed. The implementation effort

90

used top-down and bottom-up approaches for Service Oriented Application method
[7]. In this approach, both existing services and the requirements are reviewed,
modified and used to reach an acceptable solution. The integration-tuples
(sequences) and the actions constituting them were broken down into atomic actions.
The atomic actions were compared with existing services provided by the tools. If

there was a match, the service was used as the implementation of the action.

| Sequence? |
| reate baseine approv ed |
ustomer Requirements| Baseline approved |
Document® under requrements: = !
configuration requirements |

| — e management tool .
| o yay O ~ |
e ——- e — e — e — o ——- — b — e —)

Figure 41 Two actions grouped into a sequence

In this thesis, web-services technology was used since they are standard-based. If the
tool did not provide a web-service implementation, a wrapper was developed. If the
specification of the action corresponded to several web-services, the web-services
could be combined into a new service, or the action definition could be further
broken down. The action definition could be modified to use already existing
services rather than implementing a new one, if the action was very similar to the
web-service. However, if there was no corresponding or similar existing web-service

for an action, then custom implementation was necessary.

In this case study, we have implemented the required web-services ourselves. In
other cases software developers in the organization can assist the process group, or
even vendor assistance can be sought for. Custom implementations were developed
complying with the requirements based on the atomic action, and input/output
messages depicted on the process model.

When all atomic actions were mapped to an existing service and required web-
service implementations were completed, they were imported into the BPMN
modeling workspace (See Figure 42). The web-services were deployed into a

separate BPMN pool labeled as “Tools”. Message connections were created between

91

the atomic actions and web-services. Atomic actions connected to web-services were
moved to a separate BPMN pool labeled as “Process Manager” to accommodate the
processes to be executed by the integration framework on behalf of users. This way,
all actions normally performed manually by users were delegated to the integration
framework. Users could experience an integrated toolset since the framework

performs actions otherwise manually executed by them.

& Process Explorer 52 ‘:' 79 CaliberRMWrapperwsdiwsdl 52 7 StarTeamWrapparwsdlwsdl W =g
=
=R
I Pletin
(& build
(= Schemas 5 CaliberRMWrapperService (m] 9 CaliberRMWrapper
& services = CaliberRMWrapper & createProject
192.168.74.131 ; .
= & htp://192.168.74.131.... Einput ‘ [F parameters | [€] createProject
% CaliberRMWrapperwsdlwsdi
[CaliberRMWrapperService Il ourput ‘ [parameters [€] createProjectResponse
9 CaliberRMwWrapper & selectProjectByName
& CaliberRMWrapperSoapBinding [linput ‘ [7 parameters = [e] selectProjectByName
http:{ fcaliberrm.ws tez.alpay.er P s py—
tput 1 € tProjectl
) Emalsywerrappermedived outpul ‘ [parameters | [€] selectProjectByNameResponse
S5 FileSystemWrapperwsdl.wsd %k createBaseline
€y ProjRepowrapperwsdiwsd (1 input ‘ [F parameters [€] createBaseline
Lo
2 StarTeamWrapperwsd|.wsd| 1l output ‘ [parame ters [€] createBaselineResponse
B BRPG2.bpm

Figure 42 Web service definitions imported to the workspace

After the process models were completed and reviewed, they were deployed to the
Intalio|BPM Community Edition for review, testing and execution. A sample for the
process models completed and deployed for execution is given in Figure 43. For all
process models developed in the case study, see APPENDIX D: PROCESS

MAPPING (CASE STUDY II).

Figure 43 Sample completed BPMN model for Case Study |, RE5214

92

5.3.4. Discussion on Implicit Sequences for Case Study |
UML modeling tool is mentioned as utilized by the development team in TS process
area. Details on how the tool should be used are available in process definitions.
However, sequences of tool interactions with other tools are not observed and tool
appears to be used as standalone. This required further analysis for implicit

sequences in Case Study I and revealed two sequences.

The first one is classified as an omitted/unmentioned implicit sequence where
document generation action from the tool is not explicitly stated but exists as a tool
feature. Process model for TS512 is given in Figure 44, where a tool interaction
(generate document) is omitted and defined as a manual action. Tool features are

used to identify this interaction and sequence it makes up.

Diocument megn-lew &l design altemativ es] [

Jp——— - -, - - - - ~
I - A
|
|
¥ Generate documents for Place document under
@ alternative designs CM

= G
= :

=
|
]
|
|
|
v

'-\.I.-'
' |
; !
! [
I i
: i
' |

w7 %

UKL generateDocument SCM updateFile

Figure 44 Process model for TS512

93

Another implicit sequence was revealed in process TS521. It was classified as an
interrupted sequence because the code generation from the UML/IDE tool does not
directly precede submission to configuration management tool in process definitions.
The submit action was further analyzed to uncover this implicit sequence. Process

model for this sequence is given in Figure 45.

Establish necessary
latabase struciure based

on the phy sical dala
model

DBA

A

oT

e elop and perf orm uni imize performance of
Invoke sequence H Utilize UML diagrams H teats '—.‘m ihe seurce code h

,————--H

R ———— S g S S e

1
|
|
I
|

%7
Generate code from Place source files under
design CM

iy Fiy
I I
| |
I I
1 1

i [

I UKL .generateCode CMupdateFile

Figure 45 Process model for TS521

Process definitions analyzed in CS1 does not include any mentions of IDEs except
TS521. However analysis of the tool features reveals existing integrations with other
tools like the configuration and change management tools. Unfortunately, the
integration of IDEs with other tools like SCM is specified in process definition
documents. This hints several possible unmentioned/omitted and compound implicit
sequences in process definitions. Improvement of these process definitions through

observation and process discovery is left as future work.

94

5.4. Results for Case Study I

The tool use exploration phase of the case study analyzed the process definitions of
the target organization. There were a total of 85 process definitions from the four
process areas we have investigated. 77 of these process definitions contained
interactions with tools. The distribution of these interactions with respect to process

areas is given in Table 7.

43 of 85 process definitions (51%) we have analyzed are labeled to be completely
creative (unstructured) processes, including review, approval, analysis, design and
development activities. These processes were considered not suitable for tool

integration.

30 of the 85 process definitions we have analyzed for the case study contained
candidate integration situations. The distribution of these candidates with respect to

the process areas is given in Table 8.

Table 7 Tool interactions with respect to process areas

Process Area # of proc.def. With tool interaction
CM 17 11

RE 11 11

TS 13 13

vV 18 17

Docs/Guidelines 26 25

Total 85 77 (90%)

It is notable that, the majority of the candidates were derived from supporting
documents and guidelines for tool use. This was expected since these documents
describe how the tools should be used and consider the features available from the

tools to a greater extent than the other definitions.

95

Table 8 Distribution of candidate integration sequences with respect to process areas

Process Area

of proc. def.

of candidates

CM 17 5)

RE 11 4

TS 13 2

\AY 18 1
Docs/Guidelines 26 18 (60%)
Total 85 30 (35.3 %)

Further analysis of these candidates revealed references and overlaps between
process definitions. For duplicate process definitions, those with the highest detail
were chosen. Process definitions in guidelines consistently had more detail.
Discarding these duplicates, a total of 26 integration-tuples were identified. Almost
half (42%) of all tuples were from guideline documents. Remaining tuples were
uniformly distributed to other process areas. The distribution of these tuples to
process areas is given in Table 9. The distribution of the execution frequency for the
tuples is given in Table 10.

Table 9 Distribution of tuples with respect to process areas

Process Area # of proc. def. # of tuples
CM 17 5

RE 11 6

TS 13 2

\AY 18 2
Guidelines 26 11 (42%)
Total 85 26

96

The majority of integration-tuples are executed once per project. This is due to the
clear description of how a project is set up and closed in the process definitions.
Following per project executions; per SRS release, per change request (CR) or
requirement and per build or release executions are observed. The execution
frequency of tuples ranges from several times a day to once per project duration
(usually around 12-24 months). However, the highest number of executions for a

tuple is per CR or requirement since they are executed several times a day.

An integration map was assembled from these integration-tuples. It is given in Figure
46. The integration map visually represents the tuples for each tool to provide an
understanding of the requirements of process definitions. The thickness of the
connections between tools represents the number of tuples between. The actual

number of tuples constituting the integration map is given in Figure 48.

Table 10 Execution frequency of tuple

Frequency # of tuples Percentage (%0)
Per project 9 36

Per SRS release 8 28

Per build or release 4 16

Per CR or requirement 5 20

Total 26 100

As it can be seen from the map, 26 tuples use the following 10 systems: software
configuration management tool (SCM) Borland StarTeam, requirements
management tool (RM) Borland CaliberRM, project repository (PR), UML Modeling
Tool (UML) Enterprise Architect, test management tool (TM) HP Mercury Quality
Center, project planning tool (PP), time tracking tool (TT), build management tool
(BuM), file system (File) and e-mail (e-mail) system. The most significant

integration requirements include File, PR, RM and SCM systems.

97

Figure 46 Integration map for the case study

Figure 47 depicts a similar map, built from the existing integration-tuples already in
use by the organization. Comparing the two maps, it is clear that the organization is
employing a small number of integration-tuples. All of these tuples are point-to-
point, and are supplied by vendors for specific versions of the tools in use. There are

no custom or 3" party integration-tuples in use.

Figure 47 Existing integration map of the organization

It should be noted that, project repository is a simple database storing project
information like the path to document templates, or login information. It is developed
for the purpose of integration during this case study. It consists of single key-value

pairs in a database table and a web-service responding to request including “keys”.

98

The organization we have performed our case study uses Borland StarTeam [12], a
software configuration management tool providing both configuration management
and change management features in a single package. For this case study we have
not separated its functionalities into two logical tools but rather adhered to the
existing features and labeled the tool as software configuration management (SCM)

tool.

The modeling effort produced 18 process diagrams. These diagrams are available in
APPENDIX D: PROCESS MAPPING (CASE STUDY II). It took 20 hours for a

single researcher to complete the modeling effort.

26 integration-tuples identified in the identification phase of the case study were
further examined in the third phase. From these 26 integration-tuples, a total of 232
operation calls were identified. Further examination of these calls revealed a need to
merge several calls (mostly login and context setting calls), and add new calls

(lookup calls from the project repository for context identification).

BuM e-mail File PP PR RM SCM ™ T

BuM - 1 1
e-mail - 1 1 1
File = 6 3 6
PP - 1 1
PR 1 6 = 9 16 1
RM 1 1 3 9 - 10 1
SCM 1 1 6 1 16 10 = 1 3
™ 1 1 1
T 1 3

Figure 48 Number of tuples constituting the integration map

The final 145 individual calls constitute a set of 49 unique operations. The
distribution of these operations with respect to individual tools is given in Table 11.
99

The complete list of operations is listed in the APPENDIX A: COMPLETE LIST OF
OPERATIONS DERIVED FROM PROCESS MODELS (CASE STUDY).
Services for SCM, RM, PR, file system and e-mail system were implemented.
Remaining implementations are planned and left as future work. Definitions for the
web-services developed are available in APPENDIX G: DEFINITIONS FOR WEB
SERVICES (CASE STUDY 1), along with the actual implementations in
APPENDIX H: APPLICATION CODE DEVELOPED FOR WEB SERVICES
(CASE STUDY 1I). This corresponds to the implementation of 18 out of 26 (69%)
tuples with 40 out of 49 (81%) operations. This effort took a total time of 80 hours

for a single researcher who is familiar with the tools but is not an experienced

developer.
Table 11 Distribution of operations to tools
Individual tools # of operations
SCM 22
RM 11
File 5
PR 1
UML 1
BuM 1
™ 3
TT 2
PP 2
E-mail 1
Total 49

100

5.5. Execution of Case Study 11

The selection for the second case was based on the constraints on the first case study.
A software and systems development organization employing multiple software
development tools having already existing process definitions was sought.
Organization Il was chosen, which is specialized in military systems and have
processes that are assessed as CMMI ML 3. They use multiple software development
tools. However, the tools used in specific projects depend on the customer
requirements. The organization has around 320 personnel, developing and providing

consultancy for military systems and software projects.

The second case study (Case Study Il) was executed following the completion of the
first. It was designed to have three phases, corresponding to the first three stages of
the PLETIN method: Context definition, process definition and process mapping.

The process model for Case Study Il is given in Figure 49.

Case study started Context defined Process definitions complete

Case study 2

Figure 49 Process model of Case Study Il

Case Study Il was executed in two weeks by a single researcher. The effort spent for
each phase for the case study was recorded.

The constraints for the case selection were the same as the first case study. However,
there are fundamental differences between the two case studies. Table 12

summarizes these differences.

Because of the above stated differences between the two organizations, different
perspectives not available in Case Study | was observed. Organization Il proved to
be a good match for the aim of Case Study Il, and the thesis as a whole. While
conforming to the constraints developed for Case Study I, Case Study Il provides the

following differences:

101

e There is no fixed tool set employed, enabling the observation of tool interactions

from a wider perspective of generic process definitions.

e Although there is no fixed tool set, the tools usually employed by Organization Il

is almost completely different from the ones used in Organization I. This

provides a different understanding from Case Study I.

e Process definitions have a less detail compared to Organization I, testing the

ability of PLETIN to identify candidate integration situations from a different

detail level.
Table 12 Differences between the two target organizations
Organization | Organization 11
Tool set Employs a fixed set of tools | Does not have a specific tool set.
for all software | Tools used can be different for
development projects. each project.
Tool use Tools are rigorously used in | Tool use is not mandatory. The

every software development
project and constitute part
of the organizational

culture.

choice is on the discretion of the

people responsible from the
project and requests from the

customers.

Process definitions

Process descriptions contain
explicit description of tool
interactions or include
references to tool guideline

documents.

Process definitions describe how
the work should be done, either
manually or through the use of
for tool

tools. Details

interactions are omitted,
however tool use is encouraged

explicitly.

Tool guidelines

Has an extensive set of

guidelines for tool use.

There are no tool guidelines
(except an old guideline for

configuration management tool)

102

To observe the PLETIN’s ability of producing consistent results, the candidate
integration situations identified in Case Study Il was compared with the results of the

Case Study I. Similarities and differences were identified.

It should be noted that a prototype implementation was not considered as a part of
this case study. Implementation effort is the direct transformation of web-service and
business-process definitions and could in practice be performed by expert software
developers. For the analysis of the applicability of PLETIN, existence of actual web-
services and business processes is not necessary. Instead, web-service and business

process definitions in the form of executable process models are sufficient.

55.1. Context Definition Phase
The aim of this phase was to define the scope of the case study. To define the scope,
process definitions of Organization Il were analyzed. Process definitions with no or
single tool integrations were filtered out. Process model for this phase is given in
Figure 50.

A meeting was held at the beginning of the case study attended by the researcher and
the Head of Process Group for Organization Il. The aim of the meeting was to
establish mutual understanding for the conduct of the case study and acquire
information on the process definitions. A secondary goal was to identify process
definitions that can be excluded in bulk based on the experiences and knowledge of

the process group. The following were the agenda items:

e An overview of the research performed in this thesis, along with the goals and
constraints.

e Anoverview of the PLETIN method.

e Determination of the schedule, location and scope for the case study.

e Collection of information on the structure of organizational process

definitions.

o Identification of process definitions suitable for the application of the PLETIN

method.

103

7

Provide information on
process definitions

SEPC

r'o:ess List for P.n r'oﬂz@: process it for I'Em
welude processes that uste process criten
a» nat Type 111 {0 orertization

Project scope defined

Process Modeler

Organize & mesting with
the process group

':ﬂba n process
definition

SEPG exists or avallable?

Figure 50 Process model of Case Study Il, Phase |

As in Organization |, process definitions were grouped into process areas similar to
the CMMI process model. The following 4 process areas were selected as suitable:

e Configuration Management (CM)

e Product Development — Requirements Analysis (RA)

e Product Development — Coding, Software Unit Test and Integration

(CODE)

e Product Development — Verification and Validation (VV)
Analysis of these 4 process areas defined the scope of the implementation. All
process definitions in these process areas were analyzed, resulting in a list of 15
processes containing multiple tool interactions. These processes were selected for
further analysis and component identification in the next phase. The list of processes

is given in Table 13.

It should be noted that the structure and format of these process areas present differ
slightly from the ones analyzed in Case Study 1. Process definitions for Case Study Il
are longer, and do not present clear sub-processes that have been identified as
process definitions in Case Study I. However there are sub-headings in process
definitions that we have used to identify these sub-processes. Besides differences in
format, significant similarities exist between the processes identified in both case
studies. This was expected since software development processes interacting with
tools are configuration management, requirements engineering, testing and coding.
Very little interaction exists for supporting processes like project or process

management.

104

Table 13 List of processes selected for analysis

Process Code Process Area
KY-020-621 CM
UG-010-84 RA
UG-040-83 RA
UG-070-81 CODE
UG-070-82 CODE
UG-070-83 CODE
UG-070-86 CODE
UG-070-87 CODE
UG-070-89 CODE
UG-190-810 \AY
UG-190-811 \AY
UG-190-812 VvV
UG-190-813 \AY
UG-190-82 \AY
UG-190-89 \AY

Compared to Case Study I, the process definitions include less detail. They focus on
what should be done for each process definition, contents, inputs and outputs without
details. This is because of the fact that Organization Il does not mandate use of tools
for software development and leaves the decision to the people responsible from
individual projects. Thus, actions can be executed manually in some projects, or
using tools in other projects. This attribute of process definitions in Organization Il is
favorable being a second case study where PLETIN would be used to identify

candidate tool integration situations from process definitions with less detail.
105

5.5.2. Process Definition Phase
The second phase of Case Study Il focused on the development of process models
based on the process definitions. 15 process definitions identified as suitable for the
purposes of PLETIN in the first phase were further analyzed to identify process
components. Actors, actions, tools, process flow, interactions with tools, and
message contents were identified from process definitions to develop process

models. The process flow for this phase is given in Figure 51.

Igentify process flow

Figure 51 Process model of Case Study 11, Phase 11

After the process components were identified and represented as process models,
tool interactions were analyzed. They were classified as simple or complex, and
simple interactions were highlighted in the process model. For a detailed discussion

of this classification, see Section 3.4.3.

A total of 18 process models were developed for Case Study Il corresponding to the
processes identified in the first phase. The process models represent the selected
processes using BPMN notation. A sample process model developed in this phase is
given in Figure 52. Process models developed in this phase are omitted since they
were transformed to their final form in the next phase of the case study, which are
given in APPENDIX F. PROCESS MODELS (CASE STUDY II).

The process models developed in this phase represent process definitions containing

tool interactions and highlight the interactions that are simple, thus suitable for

candidate tool integration situations. The next phase of the Case Study II,

corresponding to the Process Mapping stage of PLETIN would use these process

models as inputs to identify sequences of suitable tool interactions. From these
106

interactions web service and business process definitions would be extracted to

provide the necessary infrastructure for tool integration.

M

Res,

L Assign resp for code
reve
g 5}
i ‘ Emgiay “Gode Review | | Fil ‘Review Pregaration
Contral List" Fom® ‘
|.. Close “Review .
-{ e e H Fil "Review Form }_.O

Figure 52 Sample process model for Case Study 11, Phase 11 (UG-070-87)

55.3. Process Mapping Phase
Third phase of Case Study Il used process models developed in the previous phase to
identify candidate tool integration situations. These situations were extracted from
sequences of simple tool interactions. Simple tool interactions were highlighted in
the previous phase to ease their identification. In this phase of the case study, these
interactions were inspected to see if they were forming up a sequence. A sequence of
simple interactions are said to exist if two or more simple interactions are executed in
sequence without any complex interaction or regular action in between. Interactions

forming up a sequence were labeled and identified with a unique sequence number.

Actions forming up the sequences were decomposed into atomic actions. The
decomposition information is given in APPENDIX D. PROCESS MAPPING (CASE
STUDY II). The sequences decomposed into atomic actions were then moved onto a
separate BPMN pool, representing the business process that is going to be executed
by the integration infrastructure (Business Process Execution Engine). Non-atomic
actions were represented as BPMN Sub-process element containing their atomic
decomposition. Web-service definitions were developed based on these atomic
actions. A list of web-service operations required by the user interactions are given in
APPENDIX B. COMPLETE LIST OF OPERATIONS DERIVED FROM
PROCESS MODELS (CASE STUDY 11).

107

om

Cl Resp

Resp

QAE
1‘Jn
3
4]
H
]
]
%
2
2
g
b

T Review Preparaton Form

Get template }—twe document
. . . =
| | — | |
L L
| | | |
1
L

| |
| |
| |

I TM.performCodeRev iew

Figure 53 Sample process model for Case Study 11, Phase 111

Tasks representing web-services required from the tools were added to a separate
BPMN pool in the model named “Tools”. These tasks are connected to atomic
actions in the sequence using BPMN message elements to represent the information
exchange between the business process executed by the integration infrastructure and
services provided by the tools. A sample process model finalized in this phase is

given in Figure 56.

A discussion on the comparison of the web-service definitions developed from the
two case studies is given in a later section. The process model of this phase is given
in Figure 53.

55.4. Discussion on Implicit Sequences for Case Study 11
Our analysis on implicit sequences for Case Study Il revealed three compound
implicit sequences for Case Study Il. These sequences were labeled as KY-020-
62135, KY-020-62142 and KY-020-62110. KY-020-62135 and KY-020-62110 were
already captured by the sequence labeled KY-020-621 because they were succeeding
or preceding another simple tool interaction, thus were making up a sequence.
However, KY-020-62142 was not labeled as a sequence, but identified as a

standalone action. The process model for this process is given in Figure 54.

108

Send e-mail to

-] i
nange CR state fo "CCH atakeholders

Iz solutions satisfactory ?

S

Rt

Organize a CCB mestingf—"

Figure 54 Process model for KY-020-62142

The implicit sequence consists of the software configuration management tool
(SCM) sending an e-mail to relevant stakeholders. Thus the existing integration
implementation between SCM and the e-mail system is employed. However, since
the initial tool interaction by the user was with the SCM, and the e-mail integration is
a feature of this system, it was not identified initially. However, since the process
definition contains two mentions of tools a compound implicit sequence was
observed (See Table 3). The sequence is easily visible when the action is

decomposed (See Figure 55).

An interrupted implicit sequence was observed and labeled as UG-070-81. This
sequence was discovered when the “Store code in CM” action was classified as
Submit/Update/Put and the source of the information/data was found to be “Generate
code” action for the UML/IDE tool.

Process definitions analyzed in Case Study Il does not include any mentions other
than UG-070-81 of UML modeling tools. However, analysis of the tool features
reveals existing integrations with other tools like the configuration and change
management tools. Unfortunately, neither the use of the UML tool, nor its
integrations (in terms of storing the documents) with the configuration management

tool is specified in process definitions documents. This hints several possible

109

unmentioned/omitted implicit sequences in process definitions. Improvement of

these process definitions through observation and discovery is left as future work.

Change CR state to
O_.[o H Invoke ssquence }—’o
g iy
I I
|

Send e-mall 10 siakenolders y |

I
|
| |
T Send e-mail to
Get CR info stakenolders

T F]

i i
| |
T T
| |
| |
t t

=7 hvd

| |
I I
| |
' '

SCM.getLatestVersion e-mail.5end

Figure 55 Sequence KY-020-62142 decomposed

5.6. Results for Case Study |1

Case Study Il was conducted in two weeks following the completion of Case Study I.
Following the initial meeting with the process group, process definitions from 4
process areas were analyzed. A total of 15 process definitions were classified as
suitable for the purposes of the PLETIN method. These 15 process definitions were

represented as 18 separate process models.

Analysis of tool interactions in these process models revealed 25 sequences,
consisting of 58 invocations of 14 different operations provided by 7 different
systems. These systems are: Change Management Tool (ChM) IBM Rational
ClearQuest, Software Configuration Management Tool (SCM) IBM Rational
ClearCase, Test Management Tool (TM) HP Mercury Quality Center, UML
Modeling Tool (UML) Rational Rose, File System, E-mail System, and Document
Generator (DocGen). Requirements Management Tool (RM) IBM Doors is also used

110

in the organization, however sequences derived from process definitions did not
contain any interactions with it. The list of all operations is available in APPENDIX
B. COMPLETE LIST OF OPERATIONS DERIVED FROM PROCESS MODELS
(CASE STUDY I1).

p €

Group highlighted Breakdown actions in Represent atomic action: Mov e tasks forming up D,\I,jf:‘:,y "{19:;‘;,‘" "
mieractions into sequences to atomic {25 tasks in 2 BPMN sup-| sequence into a new actions :: message
SEQUENCES actions process object BPMN pool T coments o= ‘

Process models completed

“Process mpdal
ervice and Represent web-services Connect each atomic
| e :;_"::’s,;;;; and a5 asks on a separate a5k 10 8 we-service fo
- - BPMN pool named Tools nv ocation

Process mapping complete

s
sers
Process Modeler

Figure 56 Process model of Case Study |1, Phase 111

We should note that:

1. In the scope of Case Study II, DocGen represents an abstract set of
functionality containing all document generation capabilities of software
development tools.

2. Unlike Case Study I, system classification in Case Study Il does not contain a
Project Repository (PR) where information regarding the projects is stored.
During Case Study I, a need for a system like PR was revealed in the second
iteration of web-service definition when existing functionality of the tool set
was compared to initial definitions. In Case Study I, details regarding the
tool set was omitted due to several constraints, thus detailed information for
the existing tool set was not available. This prevented the detailed

understanding of the PR system, or whether it was necessary at all.

Case Study Il was also performed by a single researcher. During the two weeks of
case study conduct, a total of 23 man hours of effort was spent. The effort

distribution for case study activities is given in Figure 57:

111

Effort Spent (man hours)

B Context Definition
H Process Definition
Modeling and Mapping

B Documentation

Figure 57 Effort distribution for Case Study 11

5.7. Validity Threats

The multiple case study design requires a software development organization with
defined and mature processes employing multiple supporting tools. Such
organizations are not plenty in existence. However, we have designed the case
studies and the resulting method so that, they can be applied to organizations having
an intention to understand their processes and develop process definitions. It would
be greatly beneficial to perform this case study, or apply the PLETIN method
concurrently with process development, process improvement or process modeling
efforts. This way the outputs of the main effort can be consumed for the case study
and/or the PLETIN method.

A single researcher who had professional experience with the tools and processes
employed in the target organization performed the case studies. This would mean
more effort for a researcher with no existing background on tools, processes and
modeling to conduct a similar case study or apply the PLETIN method. Since the
number of processes was small and the method was still under development, a
collaborative work with the employees of the target organizations was not
considered. However in a larger setting with multiple divisions, more complex
process library and many tools, extensive help from the organization may be sought
in process analysis and implementation. PLETIN method does not have inherent

complexity in its execution. It relies on the understanding of the processes and user

112

interactions. Thus an initial briefing to fellow modelers would be recommended and
satisfactory. Also, after the modeling effort is completed, consistency of the

processes must be checked before deployment.

The application of the PLETIN method in two different settings proved its flexibility.
Although the constraints for case selection in both cases were the same, two
organizations proved to present significant differences, negating the possible bias

resulting from case selection.

5.8. Discussion

The most significant output of this multiple case study effort is the PLETIN method
which is developed during the execution of Case Study I, and implemented in both

Cases.

The PLETIN method has been developed parallel to the execution of Case Study |
and contains activities from all its phases. The first phase of Case Study | has
evolved into the “context definition” stage of the PLETIN method. The second phase
of Case Study | has evolved into the “process definition” stage while the last phase

has evolved into the “process mapping” and “process execution’ stages.

Besides the development of the method, the following observations were done during
Case Study I:

1. Tools are used extensively in software development.
2. Tool integration is insufficient and should be improved.

3. A method is required, to identify and implement the missing integration-

tuples directly from process definitions.

At the beginning of Case Study | we have analyzed the interactions of users from
tools, taking a tool integration perspective. We have found out that tools are used
extensively and frequently to support tool interaction. This proved a strong

dependency of users and processes for the tools.

Assured with the extent of tool use and the existence of a strong dependency on the
tools, we focused on the existence and significance of issues with tool interaction.

113

Observation of these issues would indicate increased benefits from tool integration.
We have devised a method to identify candidate integration situations, what we call
integration-tuples. We have created integration maps of the existing situation and
what the processes require. This gap analysis provided us information on how the
requirements of process definitions and users were not satisfied in terms of tool

integration.

Besides the obvious lack of integration facilities, our correspondence with the users
and the process owners suggested the following problems which are in accordance
with [1], [14], [38], and [54]:

1. Lack of a standard framework for tool integration or an integration
infrastructure forces organization to choose tools based on integration
facilities provided rather than overall features. This results in vendor-
dependency (or vendor lock-in) through tool suites. Organizations are

dictated to use inferior tools to satisfy integration requirements.

2. Implementations of integration-tuples from vendors or 3"-parties are fragile,
version-dependent, and volatile. These implementations are point-to-point
and do not provide an all-encompassing solution, becoming unmanageable in

time.

3. Changes in tools (for example upgrades) result in these integration-tuples to
become obsolete, which in effect reduces functionality and frustrates users.
Discovery of recently added functionalities requires extra effort from the

organization and they largely remain unexploited.

The next step taken to provide a solution to these issues was to devise a method to
close the gap between the integration requirements and tool facilities. The method
aimed to convert integration-tuples presented as process models into
implementations. This corresponds to the last two stages of the PLETIN method we

have developed.

The PLETIN method is easy to implement because it requires only the process

definitions and information on the tools used from the organization. A single

114

individual, proficient in the domain was able to undertake the modeling and mapping
effort in both cases. The implementation effort for Case Study | provided a prototype
application. In practice, this effort can be distributed to developers skilled in related
technologies and executed in parallel in a much shorter time.

The results of Case Study | showed that PLETIN was easy to implement and it
provided practical results that can be realized without much effort. However, since
the method itself was developed based on this case, the results of the implementation
experience may be biased. Case Study Il was designed and conducted to provide
independent observations for the implementation of PLETIN in a separate
environment. Case Study Il verified the applicability of PLETIN in a different

organization with a different tool set, and a different approach to tool use.

The integration-tuples identified by PLETIN are independent of the existing toolset.
However, in the later stages of the method, tuples are mapped to interfaces provided
by the tools to develop integration implementations. These mappings can be
performed to any tool providing interfaces or services for customizations. This way,
organizations are not enforced to use any tool because of the integration features it
provides. Rather, organizations can have tools that are suitable for their processes
and implement integration-tuples between them using the PLETIN method as
business processes and related web-services. Any tool can be plugged into the
system anytime. The only requirement is the mapping of the tool services and
organizational process requirements. This provides flexibility in tool selection and

tool interchangeability for the organization.

Although the structure of the process definitions, choice of tool sets and their use
were different, Case Study Il provided similar results to Case Study I. Tool
interactions were identified from process definitions providing integration
opportunities. These candidate integration situations were represented in process
models, based on which web-service and business process definitions required for

the development of a tool integration framework were derived.

Case Study Il provided a less diversified set of integration situations. This was

expected since the process definitions encouraged the use of tools rather than

115

enforcing. Also, process definitions did not include any guidelines on tool use which

made up the largest portion of sequences identified in Case Study I.

Of the 14 operations identified in Case Study Il, 11 operations (78%) were already
identified in Case Study I, or defined in a very similar fashion. This overlap is quite
significant and confirms our expectations contrary to differences between two cases.
Such an observed overlap between two organizations with different tool sets and
different approaches to software development tool use encourages the possibility of
the development of standard tool interfaces for tool integration based on
organizational process definitions. PLETIN can be used by organizations with
different attributes to identify tool integration requirements imposed by

organizational processes.

The conduct of the Case Study Il took considerably less time (20%) compared to
Case Study . The difference results from the experience gained in the first
implementation, coupled with less number of interactions, less process detail in
terms of tool interaction and the lack of the need for a prototype implementation.
This would be beneficial for organizations with tight budget and personnel
constraints, or external process consultants with limited schedules. PLETIN provides

a direct guideline for analyzing the tool requirements of an organization.

The implementation of integration-tuples as automatically executed processes that
are normally performed manually by users brings all the benefits of process
automation including: faster execution, less manual effort, less errors, visibility,

better measurements, easier to change.

In our case studies, we have observed that the execution frequencies for the
sequences identified range from several times per day to once per year. For
sequences that are executed several times every day, the effort saved by the
automation of actions normally performed manually more than compensates the
effort spent for PLETIN. Besides the effort saved, automatic execution of processes
prevents operator errors, or steps missed for menial activities. This benefit of
automated processes is observed when tools in an organization is integrated using

PLETIN, and the tool cooperation is no longer maintained manually.

116

The components used for the PLETIN method are freely available. The modeling
notation used is BPMN, which is an open specification and many tools support it.
During the case studies we have used Intalio products [37] for both BPMN modeling
and process execution. Intalio BPMN Suite Community Edition is a free tool that
satisfied all our needs. Other process execution engines and modeling tools can be

used with almost no modifications to the PLETIN method and case study conduct.

This effort can be or even recommended to be undertaken as part of, or parallel with
an existing process definition, improvement or modeling project. Both projects can
benefit the other. For example, process models developed during the case studies can
be used as a basis for process communication and improvement efforts while

providing input for the execution of integration-tuples.

Since software processes are software too as stated by Osterweil [52], they are
subject to change [9]. To manage this change in software processes, PLETIN
provides easy deployment of process models to execution engines. Thus any change
in process models is quickly reflected on the execution of the processes, i.e.

implementation of integration-tuples.

The outputs of the case studies including the integration-tuple definitions and web-
service specifications developed from the organizational processes can be combined
with the results of other similar case studies to digest a knowledge base of integration
requirements across the industry. This information can guide, or even force vendors
to develop tools complying with these requirements. Such tools would prove to be
interoperable and interchangeable because of standard interfaces they support. This
information on the requirements, the operations required and messages interchanged
can be used to develop an understanding of the software engineering domain in the
form of a domain ontology.

117

CHAPTER 6

CONCLUSIONS

Tool integration is a high priority topic during tool selection for software
development organizations. An integrated tool set is sought to produce better
products, easier and cheaper through better execution of processes. Organizations
should be able to develop a competent tool set that is economically feasible while
satisfying all the requirements of the organizational processes. They should be able
to choose either best-in-class tools or tools that provide adequate functionality at an

acceptable cost.

Unfortunately, the integration functionality offered by state-of-the-art software
development tools are either biased towards tools of the same vendor to establish a

tool suite, or are bilateral, version-dependant, hard to maintain and fragile.

None of the many efforts available in the literature has been widely accepted in
practice. We believe the problem is based on the fact that these efforts only provide
guidelines, architectural models and constraints for tools to be developed. However,
there is already a market for software development tools and organizations already
own some tools. An approach that can provide integration facilities for the existing

tools is necessary.

Another facet of the problem is the approach taken by previous efforts, focusing on

the technicalities of integration like which data to share, how to store, translate and

118

manipulate data, how to notify other tools or how to publish services. We believe
that rather than asking “how to integrate?”, we should ask for “what to integrate?”

and “when to integrate?”.

To answer these questions, a method named PLETIN has been developed to identify
which tool integration facilities are required by the organizational processes. In the
proposed method, process models are developed to visualize process definitions. The
integration requirements extracted from the process models are used to define and
build custom interfaces for the tool set employed by the organization. Business
processes are developed from process models, which mimic the manual actions
performed by users. These business processes consume the interfaces developed for
the tools when executed automatically. User actions are performed by the integration
infrastructure on behalf of them and tools are integrated based on the requirements

derived from organizational processes.

The PLETIN method is suitable for organizations that employ multiple tools for
software development and have problems with their existing tool set in terms of
integration. PLETIN relies on process definitions of the organization so existence of

mature process definitions is a must.

The method has been based on the knowledge gained from a case study designed to
observe the state of tool use and issues of tool integration. The case study was
performed in a software development branch of a research organization. This branch
develops software for military and civilian systems. To support their development
efforts, they utilize multiple tools and have process definitions in place, evaluated to
be CMMI ML3.

The case study proved us that software development is highly dependent on tool use,
and several issues stemming from tool integration have been observed. Case study
results prove that software development processes in our target organization require

a more integrated tool set and can exploit the integration functionalities if they exist.

The PLETIN method developed in conjunction with the first two phases of the case
study was applied on the same case to develop custom implementation integrations.

We have found out that the PLETIN method was easy to implement, and helped us

119

rapidly identify candidate tool integration situations. Based on the outputs of the
method, an actual prototype implementation was completed in short notice with

relatively low resources.

The prototype implementation enabled automated execution of action sequences,
normally performed manually by the users. The actions were delegated to a business
execution engine. As a result, several actions similar to a documentation sequence
consisting of two baseline operations on two tools, obtaining a file and generating a
document was completely defined as an automatically executable process. This lets
users perceive the sequence to be cooperatively operated by the tools, as if they are
tightly integrated over a process definition. Normally, such sequences are menial,
time-consuming and error prone. Critical steps like putting the document under
configuration management are easily forgotten. With the use of PLETIN, these
sequences are defined as automated processes. They are performed reliably, quickly,
and without errors by the integration framework based on a business process engine

every time they are initiated.

PLETIN was used in a second case study to validate its applicability in a different
setting. With much less effort, similar candidate integration situations were identified
from process definitions of an organization with a different tool set, and different

policies for tool use.

The PLETIN method has significant practical value to organizations since it is
directly applicable to existing tools and processes. Organizations can develop custom
integration solutions satisfying the requirements of their software development

processes.

Since organizational requirements from the tools are identified, different tools
fulfilling these requirements can be identified and employed. Custom wrapper code
can be developed based on the organizational requirements and service definitions to
incorporate tools into the environment. Tools can be interchanged or new tools can
be incorporated to the tool set. Existing functionality can be modified to support the

new tools.

120

PLETIN is developed using open standards and technologies like BPMN,
BPEL4WS, and web-services. These technologies are widely used in practice and
available from different sources. Being ubiquitous, they are widely supported by the
industry. There are many process execution solutions supporting BPMN and
BPEL4WS. Tool vendors provide web-services based interfaces for customization of
their tools. PLETIN, based on these standards and technologies enables the

integration of a wide variety of tools.

PLETIN extracts service and process definitions from organizational processes. This
information is used to define the interfaces between the organizational processes and
the tools used during software development. These interfaces can be implemented by
any tool providing interfaces for customizations. This enables organizations to
choose tools that best suit their requirements and incorporate them into their
environments. Tools can be interchanged with other tools providing (or customized

to provide) services required by the organizational processes.

After the identification of services organizations require from tools, PLETIN
provides a method for the mapping of these services to the interfaces tools provide.
Using PLETIN, custom interfaces supporting the requirements of organizations can
be built. Organizations can build custom interfaces for their existing tools. This way
existing tools can be integrated and support the requirements of the organizational

tools.

Information extracted from process definitions of different organizations can be used
to digest industry-wide process requirements from tools. This information is useful
for understanding user interactions with tools and can be used to provide integration

points for future releases of tools.

PLETIN in its current state has limitations such as: requires the existence of process
definitions, uses a subjective classification scheme for the complexity of tool
interaction, omits “Black Box” tools, not generalized to other tools and notations,
does not incorporate the whole domain but can be generalized with further case
studies, does not take other events generated in the environment into account, omits

complex data mappings, does not consider already existing (legacy) or new

121

integration features (for a detailed description, see Section 3.10). These limitations
provide future research directions in the tool integration domain to develop a full-

featured tool integration solution with practical importance.

There is also much information that can be obtained from the analysis of other
organizations to identify common requirements for integration. This knowledge can
be re-used in process definitions across the industry. Even future tool designs can
benefit from these integration requirements. This knowledge can also be used to
develop an ontology for the software domain that includes messages, objects and

actions used during software development.

The method developed for this thesis enables parts of software development process
to be delegated to a business process execution engine and mapped to services
provided by the tools. This way, they can be executed on a business process
execution engine without manual intervention [48], [53], [61]. The execution engine
performs the actions on behalf of the users with respect to the process model while
providing an integration infrastructure for the tools. Actions normally performed by
users are executed automatically by this infrastructure, thus automated. Process
automation efforts are undertaken to increase quality, efficiency, reliability of the
processes while decreasing costs and errors. By partial automation through tool
integration, processes are executed faster and with fewer errors due to elimination of

human-errors and intervention.

122

REFERENCES

[1] Altheide, F. & Dorfel, S. (2003). An architecture for a sustainable tool
integration. In Dorr H, Kanzleiter J. (Ed.), ESEC/FSE workshop on tool
integration in system development (pp. 29-32).

[2] D'Ambrogio, A. and lazeolla, G. (2005). Metadata-driven design of
integrated environments for software performance validation. Journal of
Systems and Software, 76(2), 127-146

[3] Anderson, M. J. & Bird, B. D. (1993). An evaluation of PCTE as a portable
tool platform. In Proceedings of the Software Engineering Environments
Conference (pp. 96-100).

[4] Apache ODE BPEL engine. (n.d.). Retrieved January 23, 2010 from:
http://ode.apache.org/

[5] Apache Tomcat. (n.d.). Retrieved January 23, 2010 from:
http://tomcat.apache.org/

[6] Application Lifecycle Framework (ALF). (n.d.). Retrieved January 2009 from
Eclipse Web site: http://www.eclipse.org/alf

[7] Arsanjani A. (2004). Service-oriented modeling and architecture. Retrieved
January 23, 2010 from http://www.ibm.com/developerworks/library/ws-soa-
designl/

[8] Bandinelli, S., Fuggetta, A., Lavazza, L., Pietro Picco, G. (1994). Combining
control and data integration in the SPADE-1 process- centered software
engineering environment. In 9th International Software Process Workshop
(pp. 96-99).

123

http://tomcat.apache.org/
http://www.eclipse.org/alf
http://www.ibm.com/developerworks/library/ws-soa-design1/
http://www.ibm.com/developerworks/library/ws-soa-design1/

[9] Barthelmess, P. (2003). Collaboration and coordination in process-centered
software development environments: a review of the literature. Information
and Software Technology, 45(13), 911-928.

[10] Belkhatir, N. & Estublier, J. (1986). Protection and cooperation in a
software engineering environment. In Conradi et al. (Ed.). Proceedings of an
International Workshop on Advanced Programming Environments (pp. 221-
229). Springer-Verlag London, UK.

[11] Bergstra, J. A. & Klint, P. (1998). The Discrete Time ToolBus — a software
coordination architecture. Science of Computer Programming, 31(2-3), 205-
229.

[12] Borland StarTeam (n.d.). Retrieved January 23, 2010 from:
http://www.borland.com/us/products/starteam/index.html

[13] Brown, A.W. (1993). Control Integration Through Message Passing in a
Software Development Environment. Software Engineering Journal, 8(3),
121-131.

[14] Brown, A. W., Feiler, P. H.,Wallnau, K. C. (1991). Understanding
Integration in a Software Development Environment. (Tech. Rep. No:
CMU/SEI-91-TR-31, ADA248119). Software Engineering Institute, Carnegie

Mellon University.

[15] Brown, A. W., Feiler, P. H.,Wallnau, K. C. (1993). Past and future models
of CASE integration. In Proceedings of Fifth International Workshop on
Computer-Aided Software Engineering, 1992 (pp.36-45).

[16] Business Process Execution Language for Web Services (BPEL4WS)
version 1.1. (2002). Retrieved January 23, 2010 from:
http://www.ibm.com/developerworks/library/ws-bpel/

[17] Business Process Modeling Notation, V1.1 (BPMN), OMG Auvailable
Specification. (2008). Retrieved January 23, 2010 from
http://www.omg.org/spec/BPMN/1.1/PDF

124

[18] Capability Maturity Model Integration (CMMI). (n.d.). Retrieved January

23, 2010 from http://www.sei.cmu.edu/cmmi/

[19] Chen M. & Norman, R.J. (1992). A framework for integrated CASE. IEEE
Software, 9(2):18-22.

[20] Christie, A. (1994). A Practical Guide to the Technology and Adoption of
Software Process Automation. (Tech. Rep. No: CMU/SEI-94-TR-007).

Software Engineering Institute, Carnegie Mellon University.

[21] CMMI for Development, Version 1.2. (2006). Retrieved January 23, 2010
from:

http://www.sei.cmu.edu/publications/documents/06.reports/06tr008.html.

[22] Corradini, F., Mariani, L., Merelli, E. (2003). An agent-based layered
middleware as tool integration. In the Workshop on Tool Integration in
System Development (TIS 2003) in the 9th European Software Engineering
Conference and 11th ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE 2003).

[23] Earl, A. (1990). Principles of a Reference Model for Computer Aided
Software Engineering Environments. In Proceedings of the international
workshop on environments on Software engineering environments (pp. 115-
129). Springer-Verlag, New York, USA.

[24] Eclipse Foundation. (n.d.). Retrieved January 23, 2010 from
http://www.eclipse.org/

[25] Eclipse Application Lifecycle Framework (ALF) project- Project
Termination Review (2008) Retrieved January 23, 2010 from
http://www.eclipse.org/project-
slides/Eclipse%20ALF%20Termination%20Review%20Nov%202008%20v0
2.pdf

[26] Erturkmen, K.A., Demirors, O. (2009). Integration of CASE Tools to
Software Processes: A Case Study. In Industrial Proceedings of 16th

125

http://www.sei.cmu.edu/cmmi/
http://www.sei.cmu.edu/publications/documents/06.reports/06tr008.html
http://www.eclipse.org/
http://www.eclipse.org/project-slides/Eclipse%20ALF%20Termination%20Review%20Nov%202008%20v02.pdf
http://www.eclipse.org/project-slides/Eclipse%20ALF%20Termination%20Review%20Nov%202008%20v02.pdf
http://www.eclipse.org/project-slides/Eclipse%20ALF%20Termination%20Review%20Nov%202008%20v02.pdf

European Systems and Software Process Improvement and Innovation
Conference (EuroSP1'2009) (pp:11.1-11.2).

[27] Erturkmen, K.A., Demirors, O. (2010). Software Development Processes-
Based Tool Integration Using the PLETIN Method: A Case Study. Submitted

for Publication.

[28] European Computer Manufacturers Association. (1993). Reference Model
for Frameworks of Software Engineering Environments. Retrieved January
23, 2010 from: http://www.ecma-
international.org/publications/techreports/E-TR-055.htm

[29] Flatscher, R.G. (2002).Metamodeling in EIA/CDIF—Meta-Metamodel and
Metamodels. ACM Transactions on Modeling and Computer Simulation,
12(4), 322-342.

[30] Freude, R. & Konigs, A. (2003). Tool integration with consistency
relations and their visualization. In the Workshop on Tool Integration in
System Development (TIS 2003), in the 9th European Software Engineering
Conference and 11th ACM SIGSOFT Symposium on the Foundations of
Software Engineering (ESEC/FSE 2003)

[31] Gautier, B., Loftus, C., Sherratt, E., and Thomas, L. (1995). Tool
integration: experiences and directions. In Proceedings of the 17th
international Conference on Software Engineering (Seattle, Washington,
United States, April 24 - 28, 1995). ICSE '95 (pp. , 315-324). ACM, New
York, NY.

[32] Gisi, M.A. Kaiser, G.E. (1991). Extending a Tool Integration Language. In
Proceedings. First International Conference on the Software Process(pp.218-
227)

[33] Grundy, J., Apperley, M., Mugridge, R., Hosking, J. (1998). Tool
Integration, Collaboration and User Interaction Issues in Component-Based

Software Architectures. In Proceedings of the Technology of Object-Oriented

126

http://www.ecma-international.org/publications/techreports/E-TR-055.htm
http://www.ecma-international.org/publications/techreports/E-TR-055.htm

Languages and Systems, November 23 - 26, 1998 (pp: 299). IEEE Computer
Society, Washington, DC.

[34] Guo, B., Shen, Y., Xie, J., Wang, Y., Xiong, G.Z. (2004). A kind of new
ToolBus model research and implementation. ACM SIGSOFT Software
Engineering Notes, 29(2), 5

[35] Hansen, K.M. (2003). Activity-centred tool integration. In the Workshop on
Tool Integration in System Development (TIS 2003), in the 9th European
Software Engineering Conference and 11th ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE 2003).

[36] Harrison, W., Ossher, H., and Tarr, P. (2000). Software engineering tools
and environments: A roadmap. In 22nd International Conference on Software
Engineering, Future of Software Engineering Track (pp. 261-277). Limerick
Ireland. ACM Press.

[37] Intalio BPM Suite. (n.d.). Retrieved January 23, 2010 from:

http://www.intalioworks.com/products/bpm/opensource-edition/

[38] Integration and Interoperability of Application Lifecycle Management tools.
(n.d). Retrieved January 23, 2010, from http://www.docstoc.com/docs/-

976078/Tech_Application_Lifecycle_Management_tools

[39] ISO/IEC 15504 Standard. (2007). Retrieved January 23, 2010 from:
http://www.isospice.com/categories/ISO{47}EC-15504-Standard/

[40] Java Enterprise Edition (J2EE) (n.d.). Retrieved January 23, 2010 from

http://java.sun.com/javaee/

[41] Java Servlet Technology (n.d.). Retrieved January 23, 2010 from
http://java.sun.com/products/servlet/

[42] JavaServer Pages Technology (n.d.). Retrieved January 23, 2010 from
http://java.sun.com/products/jsp/

[43] Kaiser, G.E., Barghouti, N.S., Sokolsky, M.H. (1990) Preliminary
experience with process modeling in the MARVEL software development

127

http://www.docstoc.com/docs/-976078/Tech_Application_Lifecycle_Management_tools
http://www.docstoc.com/docs/-976078/Tech_Application_Lifecycle_Management_tools
http://www.isospice.com/categories/ISO%7B47%7DIEC-15504-Standard/
http://java.sun.com/products/servlet/
http://java.sun.com/products/jsp/

environment kernel. In Proceedings of the Twenty-Third Annual Hawaii

International Conference on System Sciences: Vol: 2 (pp. 131-140).

[44] Kapsammer, E,. Reiter, T., Schwinger, W. (2006). Model-Based Tool
Integration - State of the Art and Future Perspectives. In Proceedings of the
3rd International Conference on Cybernetics and Information Technologies,
Systems and Applications (CITSA 2006), Orlando, USA. 2006. (pp: 20-23)

[45] Lundell, B. & Lings, B. (2004), Changing perceptions of CASE technology.
Journal of Systems and Software 72 (2), 271-280.

[46] Mi, P. and Scacchi, W. (1992). Process Integration in CASE Environments.
IEEE Software, 9(2), 45-53

[47] OMG MetaObiject Facility (MOF). (n.d.). Retrieved January 23, 2010 from:
http://www.omg.org/mof/

[48] Papazoglou, M. P. & Heuvel, W. V. (2006). Service-oriented design and
development methodology. International Journal of Web Engineering and
Technology, 2(4), 412-442.

[49] Oberndorf, P. A. (1998). The Common Ada Programming Support
Environment (APSE) Interface Set (CAIS). IEEE Transactions on Software
Engineering, 14(6), 742-748.

[50] Object Management Group, Common Object Request Broker Architecture
(CORBA). (n.d.). Retrieved January 23, 2010 from:
http://www.omg.org/corba

[51] Object Management Group, Open Tool Integration Framework Request for
Proposal (OTIF). (n.d.). Retrieved March 21, 2009 from:
http://www.omg.org/docs/mic/04-08-01.pdf

[52] Osterweil, L. (1987). Software processes are software too. In Proceedings of
the 9th international Conference on Software Engineering (pp. 2-13). IEEE
Computer Society Press, Los Alamitos, CA.

128

http://www.omg.org/corba

[53] Owen, M., Raj, J. (2004). BPMN and Business Process Management.
Retrieved January 23, 2010 from
http://www.bpmn.org/Documents/6AD5D16960.BPMN_and_BPM.pdf

[54] Rader,J., Morris, E.J., Brown, A.W. (1993) An investigation into the state-
of-the practice of CASE tool integration. In the Proceedings of Software

Engineering Environments Conference (pp. 209-221).

[55] Rony G. F. (2002). Metamodeling in EIA/CDIF---meta-metamodel and
metamodels. ACM Transactions on Modeling and Computer Simulation
(TOMACS), 12(4), 322-342.

[56] Schiirr, A., Dorr, H. (2005). Introduction to the special SoSym section on
model-based tool integration. Journal on Software and Systems Modeling

(SoSym), Springer-Verlag, 4(2).

[57] Thomas, I. & Nejmeh, B.A. (1992). Definitions of Tool Integration for
Environments. IEEE Software, 9 (2), 29-35.

[58] Unified Modeling Language (UML). (n.d.). Retrieved January 23, 2010

from: http://www.uml.org/

[59] Valetto, G. and Kaiser, G. E. (1995). Enveloping Sophisticated Tools into
Computer-Aided Software Engineering Environments. In Proceedings of the
Seventh international Workshop on Computer-Aided Software
Engineering (July 10 - 14, 1995) (pp. 40). IEEE Computer Society,
Washington, DC.

[60] Wasserman, A.l. (1989). Tool integration in software engineering
environments. In Long, F. (Ed.), The International Workshop on
Environments (Software Engineering Environments). In Lecture Notes in
Computer Science, vol. 647. (pp. 137-149). Springer-Verlag, Berlin, Chinon,

France.

[61] White, S. (2004). Introduction to BPMN. Retrieved January 23, 2010 from
http://www.bpmn.org/Documents/Introduction_to_ BPMN.pdf

129

http://www.uml.org/

[62] Wicks, M.N. (2006). Tool integration in software engineering: an annotated
bibliography. (Tech. Rep. No: HW-MACS-TR-0041). HeriotWatt University.

[63] Wicks, M. and Dewar, R. (2007). A new research agenda for tool
integration. Journal of Systems and Software, 80(9), 1569-1585.

[64] Web Services Business Process Execution Language Version 2.0, OASIS
Standard. (2007). Retrieved January 23, 2010 from: http://docs.oasis-
open.org/wshpel/2.0/0S/wsbpel-v2.0-OS.html

[65] Web Services Description Language (WSDL) 1.1. (2001). Retrieved
January 23, 2010 from: http://www.w3.org/TR/wsdl

[66] XML Metadata Interchange (XMI) 2.1.1 (2007). Retrieved January 23, 2010

from: http://www.omg.org/technology/documents/formal/xmi.htm

[67] Extensible Markup Language (XML). (n.d.). Retrieved January 23, 2010
from: http://www.w3.0org/ XML/

[68] Zhao, X., Chan, K., Li, M. (2005). Applying agent technology to software
process modeling and process-centered software engineering environment. In
Haddad, Hisham, Liebrock, Lorie M., Omicini, Andrea, Wainwright, Roger
L. (Eds.), SAC. ACM (pp. 1529-1533).

130

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/TR/wsdl

APPENDICES

APPENDIX A: COMPLETE LIST OF OPERATIONS
DERIVED FROM PROCESS MODELS (CASE STUDY 1)

SCM RM PR
activateWorkflow assignReqTypeToProject lookup
createCRFilter assignSecurityProfileToProject
createFileFilter assignUserGroupToProject E-mail
createFolderAccessRights assignUserToProject send

131

createlLabel

createBaseline

createLink createGlossary File
createProject createProject appendFile
createProjectAccessRights createTrace createFolder
createReports generateDocument Execute
createServerAccessRights importProject extractPackage

createStatusFilters

publishRequirements

renameFolder

createTask

createUser UML
createUserGroup generateDocument
freezeL abel generateCode
getltem

getLatestVersion

getLinkedltems

getLinkedltemStatus

setProjectAccessRight

setStatus

updateFile

132

APPENDIX B: COMPLETE LIST OF OPERATIONS
DERIVED FROM PROCESS MODELS (CASE STUDY II)

SCM

ChM

™

createFileAccessRights

createTask

executeTest

createlLabel

getLinkedltems

checkUnitTest

getLatestVersion createLink performCoderReview
updateFile UML/IDE
generateCode
DocGen E-mail File
generateDocument send appendFile

133

APPENDIX C: PROCESS LIST (CASE STUDY 1)

134

PP Project Planning

Project planrirg Amsign key project keadership positions Type O

Designate praject planning aroup Type &

Analyze project requirements Type O

Derwalbap SPMP Estabish the project’s defined process Type IV

Develop WBS Type I

Dizvelop estimates Type IV

Plan for needed knowledae and skils Tyoe &

Plari for project rescurces. Type O

Estabish budget and scheduls Type O

Plan for configuration management Type O

Plari for qualty assurance Type O

Pilan for isk management Type O

Plar for V&V Type O

Plari for dafa managemaent Type O

Plan stakehakder involvement Type O

Inéegrabe plans Type O

Plan for massiemaent sctivities Tvoe IV

Olain il o praject garrwnt plan Type I¥

‘Condwct praject progress reviews Type I

Condwct milesions progress reviews Type IV

Initiate and manape comedise action Type TV

Rewise SPUMP Type IV

Clase out project Type IV
M Configuration Management

Develop and maintain configuration management

wan Type IV
Manage the saltware configuration managemant
acirdilies Type O
Esfablish corfiquralion management sysiem Establish Gk mechanisms Type IV
Establish hardware emviranment Type O
Establish scftaare enviranment Type IV
Establish initial product direclory siruciure Type 111
Prowide CM training Type O
Perdam confiquration idendfication Select configuration Hems Type O
Keriify baselines Type O
Pararm corfiquration cantrol Type II
Pararm corfiquration stabus accaurding Type IV
Pararm corfiquration awd® Type IV
Peardamm dala maragement Type IV
Pararm buld management Type 111
Pardarm releass managamenl Type IV
Package and deliver the produc Type O
Project dosura Type 111
RE R i ts Engi ing
Preparation Type 111
Reguiremenis develanmeant Dewalop custamer requirements Eligt needs Type IV
Estabish cusiomer requirements Type IV
Raview cusiomer requiremenls Type 111
Walidate ousiomer requirsmenls Type III
Dervalan sofwane requiramanls Establish softwara reguirements Tvpe IV
= Dafine product componants and interface
raquiramants Typa IV
- Establish software raquiremants
specification documant Type II
- Revlew softwara reguirements Tvpae IV
walidate software raguiramsants Tvoe 11
Manage changes b requirements and
moansisiencies between requiremsnts and work
Requiremenis management produwcts Type IV
TS Technical Solution
Desesdap screaning ard seclaction criteria for
Develop e decion dagign allamatives Typa IV
Desedap high-eval design altematives. Type I¥
Salect preduct companant seluliors Type IV
Prepars Migh-leval design document Type I¥
Resinw high-esel design Type I¥
Derwalap detailed design Dizvelop design modsl Type IV
Cizsign Database Type IV
Prepare saftware design description dooument Type TII
Review detaled design Type IV
implement the design Implemerd product components Type IV
5.2 2 Perform unit tests Type IV
5.2.3 Pear rewiew scurce codes Type IV
6.2 4 Develop prodwct support documentation Type II
L) Verification and Validation
5.1.Planning venfication ard validation activities 5.1.1.Plarmning peer reviews Type IV

Figure 58 Process list (CASE STUDY 1) - Part 1

135

5.1.2.Plarming best actvities £.1.2.1.Planming inbsgration 1ests
£.1.2.2 Planning qualification tests
£.1.2.3 Planning acceplance tesis
5.1.3.Planning profatyping

S.2E The v and
anvinanmsant
5.3, Fartamm verification 5.3.1, Perform integration heets 5.3.1.1.Exacite integration tesls
531 2 Analyze imegration et resuls
5,22 Perform qualfication lests 5.3.2.1.Execute gualification tesis
5.3.2.2.Analze qualhicalion teal resuts
8,33 Parlonm pesd reviaws 53,31, Congug] pear ietdiews
5.3.3.2.AnalyZe peer raview data
5.4 Partarm validation 541 Protetyping

5.4.2.Design and preparation of acceptance bests
5.4.3.Perform acceptance jesis f.4.3.1.Expcute acceplanos lests
f.4.2 2 Analyze acceptance test resulls

Figure 59 Process list (CASE STUDY 1) - Part 2

136

Type IV
Tyoe IV
Type IV
Type IV

Typa IV
Tvpa 1T
Tvpe IV
Typa 1T
Type IV
Typa IV
Type IV
Tvpe IV

Type IV
Type &
Type IV

APPENDIX D: PROCESS MAPPING (CASE STUDY II)

137

Case Study |l - Sequence Break-Up Form

Step Action Tool Pseudo Inputs Pseudo Outputs Pseudo Service
Keo2o621
Seql
35 Send e-mail to stakeholders email recipientAddress, messageContent StatusCode email.send
4 Create a carrective action task, add related docs and CRs - - - -
4.2 Create a related task Chm criD, crPath taskiD ChM.createTask
4b Get related items ChM criD, crPath itemID ChM . getLinkedltems
4.c Add related items Chm tasklD, itemID linkiD ChM.createlink
Seq2
10 Send e-mail to PM, Cl Responsible, CM and responsible email recipientAddress, messageContent statusCode email.send
11 Provide access to CR responsible for related files SCM userlD, filePath statusCode SCM.createFileAccessRights
Seq3
Assign new version number if CCB asked for document
15 distribution. Distribute document - - - -
15.a Create |label with new version number SCM labelName, labelPath labellD SCM.createLabel
15.b Send e-mail to stakeholders email recipientAddress, messageContent statusCode email.send

Seq4

2 Create SRD wrt template - - - -

2a Get template SCM filePath, fileName statusCode SCM.getLatestVersion

2b Generate document DocGen iniFile statusCode DocGen.generateDocument

Seqs.
Reqt D wrt late in "EK-
1 1" - - - -
la Get template SCM filePath, fileName statusCode SCM.getLatestVersion
1b Generate document DocGen iniFile statusCode DocGen.generateDocument
rface Requi Dacument wrt late in "EK-
3 1" - - - -

Seqb
Store all documents and information related to unit test in CM

6 tool SCM filePath, fileName statusCode SCM.updateFile
Assign a label to all units where coding is complete before unit

7 tests ScMm labelName, labelPath labeliD SCM.createLabel

Seq7
Execute tests and fill a test report form for the Cl wrt "KG-100 Test

2 Records” - - - -

2a Execute tests ™ testiD executionID TM.executeTest

2b Get template SCM filePath, fileName statusCode SCM.getLatestVersion

2c Generate document DocGen iniFile statusCode DocGen.generateDocument
Append test results or their location in CM tool to Test Report

22 Form file filePath statusCOde file.appendFile

3 Store test outputs, results and other information in CM tool SCM filePath, fileName statusCode SCM.updateFile

Seq8
Continue unit testing until all units are integrated without
3 problems - - - -
3a Check if all unit-tests are successful ™ projectID statusCode TM.checkUnitTests
3b Execute tests ™ testID executionID TM.executeTest
4 Store test outputs, results and other information in CM tool SCM filePath, fileName statusCode SCM.updateFile

Seq9

5 Employ "Code Review Control List - EK-7" ™ projectID statusCode TM.performCodeReview
6 Fill "Review Preparation Form" - - - -

6.a Get template SCM filePath, fileName statusCode SCM.getLatestVersion

6.b Generate document DocGen iniFile statusCode DocGen.generateDocument

Seql0
Inform PM and CM when unit integration and tests are complete
1 and Cl is ready for the next level of tests email recipientAddress, messageContent statusCode email.send
2 Assign version number 1.00 to Cl and its units SCM labelName, labelPath labellD SCM.createlabel

Figure 60 Process Mapping for Case Study Il — Part 1

138

UG-190-82

Seqll
3 Label respective version of the document for the technical review SCM labelName, labelPath |labellD SCM.createlLabel
Inform attendees on the date and location of technical review
4 meeting email recipientAddress, messageContent statusCode email.send
Provide access for attendees to the respective version of the
5 document SCM userlD, filePath statusCode SCM.createFileAccessRights
UG-190-89
Seql2
4 Prepare "SCI Test Definitions Doc" wrt to the template in "EK-5".
4.a Get template SCM filePath, fileName statusCode SCM.getLatestVersion
4.b Generate document DocGen iniFile statusCode DocGen.generateDocument
Seql3
Generate "SCl Product Attributes” including executable software,
source code, design and support documents for preparation to
7 delivery wrt to the template in "EK-7"
7.a Get template SCM filePath, fileName statusCode SCM.getlLatestVersion
7.b Generate document DocGen iniFile statusCode DocGen.generateDocument
Seqléd
Generate "Software Version Definition Doc" wrt "KY-051 Software
11 Version Definition Doc Preparation Guideline".
11.a Get template 5CM filePath, filaName statusCode SCM.getlLatestVersion
11.b Generate document DocGen iniFile statusCode DocGen.generateDocument
Seqls
20 Generate "SCl Test Report" wrt the template in "EK-9"
20.a Get template SCM filePath, fileName statusCode SCM.getLatestVersion
20.b Generate document DocGen iniFile statusCode DocGen.generateDocument
UG-190-810
Seql6
Create HCI Test Definitions Document wrt the template in "EK-
9 13"
9.a Get template S5CM filePath, fileName statusCode SCM.getlLatestVersion
9.b Generate document DocGen iniFile statusCode DocGen.generateDocument
Seql7
Generate Initial Qualification Test Report wrt the template in "EK-
19 15",
19.a Get template SCM filePath, fileName statusCode SCM.getLatestVersion
19.b Generate document DocGen iniFile statusCode DocGen.generateDocument
Seql8
28 Generate HCI Test Report wrt the template in "EK-15"
28.a Get template 5CM filePath, fileName statusCode SCM.getlLatestVersion
28.b Generate document DocGen iniFile statusCode DocGen.generateDocument
UG-190-811
Seql9
Generate System Integration and Test Plan as part of VV Plan in
4 "EK-1"
d4.a Get template SCM filePath, fileName statusCode SCM . getlLatestVersion
4.b Generate document DocGen iniFile statusCode DocGen.generateDocument
Seq20
Generate System Integration and Test Definitions Document wrt
8 the template in "EK-19"
8.a Get template HeY) filePath, fileName statusCode SCM.getLatestVersion
8.b Generate document DocGen iniFile statusCode DocGen.generateDocument
UG-190-812
Seq2l
4 Generate System Test Plan as part of VV Plan in "EK-1"
4.a Get template SCM filePath, fileName statusCode SCM.getLatestVersion
4.b Generate document DocGen iniFile statusCode DocGen.generateDocument
Seq22
Generate System Test Definitions Document wrt the template in
7 "EK-23".
7.a Get template SCM filePath, fileName statusCode SCM.getLatestVersion
7.b Generate document DocGen iniFile statusCode DocGen.generateDocument
Seq23
15 Generate Internal System Test Report wrt the template in "EK-25".
15.a Get template SCM filePath, fileName statusCode SCM.getLatestVersion

Figure 61 Process Mapping for Case Study Il - Part 2

139

15.b Generate document DocGen iniFile statusCode DocGen.generateDocument

UG-190-813
Seq24
Generate System Acceptance Test Report wrt the template in "EK-
10 25",
10.a Get template SCM filePath, fileName statusCode SCM.getLatestVersion
10.b Generate document DocGen iniFile statusCode DocGen.generateDocument

Figure 62 Process Mapping for Case Study Il - Part 2

140

APPENDIX E: PROCESS MODELS (CASE STUDY 1)

141

T Med - 2Dd¥d 40} |8POIA $5890.d €9 8anbiy

m 3
Ok
OCr--[=

=

=

sefEwEEEa10l

_ _l h— _ e vonesiayn @
0} ApEsi pue pajssl
S1E5] uny DTV LD Ju 183 dnoo'] 15981 B 1B o padoR hap o 1o 2
SSD00 IO} UOTEDD| SUILLSTS(] |
|
“EIES) WO S (Eun o1 vonesSows s0) ApES) DUE DIIED] N DedorR NGD GIE VB 1001 W WwelBweL uonBnbiucT W ES00D O) [9aE] uiissy) |
|
|
|
f
II -
- -~
EU k) . .
=L | _a 2E o]
LS LN DD O ES .
UDISME N (ENUEL -] _l "EIE AUD DUE _l _ | #ﬂwﬂn;rﬂ.zum_.zh_w&hh_ﬂw,
JOEN ‘BB UONBYE]S spodxs g "sdew) sap) “Ea)} diguy SuN-Uo S1EBI) B0 'BT1Q Aesssosu | pqna Buipuod i x
Eumpingown LOTPE LS LLINDOD E|ED pSAnDs) ssedsig B2} E10UDE SIESID | | Buien PP —— St WD _w!aw_.m.m_.
pasnba aredaid | |
| I
hd o —

-glEsnbas sbusyn s1Esin ‘ 4
DUE SYNED3S U] M3 ASY SESI0A MDA

WIS A DU
SIED MOUS O] SUBW]JOE 1907 B LESEUEL
B4y Jo sbed uew pue uoiendi juos
OO NOTE, A Do Wl 130T B 31881

142

Z Med - 29dug 40} [8POIA $5890.d 79 8anbiy

ﬂ.“u ElOEE |55] SRS __l _—..o_hr:oT 155] dnkoo

=

"EUNES JSLLINTDO]

©-

I E151%S (0806 UOTENEIET|

ISLWDEND Bl Ag
pubis 50 o) JUSWNIoD
A5 \ED SUEdS

UDIE LT JU SIER DUE
sa5 n UE AEgEs Bupngou
ESEED (]0 SEdEL

Q] D S BWEN

00 290 wmiEE A SuD Auo Elduos

Bunprngown (0 U wing

sounos SjERdn X0 SENDU|

JUSLLINDOD LONOdUIESD
WOIESS A, TETUEL

DUE EJUSLUNIOD ‘SS000 M.m“.. e ..wn_....—.m.\—n_m__mr.....w_.umo..:
LI u p
pamnbay sredaid

vosdoud

UCTENELE MWalU B &8sl D)

—

143

0TSOIND 10} [9POIA SS3901d G9 84N

srEamsoy

i i T

pesEsE it @
o1 smiEls DEng 185 VORE LD U PENG oo 7 o1 smElS pena 185 UOTELLD i DEnG dnXoe] o

f_/ /

s5300ud SR A

=

o sniElE png 155

[uoneuwo u__.na.:ﬁa._i

!

=

BunssEn 31880 f—fsoiELw U sunsseq a:EA

=

=

UOTIE LU jun 1I90E] Q:wﬁun_i

184E] STesid I VOB WO U IBE] q:xuu._i
Lo £ e =

7 19GE] SIERID la—]

18 18] 1881

oEs 40y BunpeTos WD O

BOUEDICO0E Wl SWenasd
e IS SPUEH

“PpE ABWDE 51 BEUSIUD
sbse.n0a 155) sunsug

a

INJEESIDNE SUE
SUNS34 158] PN SiNsuT

& fuo ~cop| 1oslosd 5|

PEE00 S4E
540 pauwEd jEU) Binsug

081800 WO BIE SWEE]

pauGEd 1B 2inSU

Wos

G

zeousnbegsbeuEsEa001g

sbeuepEsacoly

144

ETGIND 40} |9POIA $$320.1d 99 84nbi-

H

BiS

_ M
0} EESI0E SR WWU_U
- s
s :

ILBOIPE LD o

yoaboud dnsoo

— e

\——r

seleueyEEa0L

s

T EuE

g

AW s Sunssw
nsogD Losdosd sul pusy

W25

|

SSUEMNG FELOTEZIUESMD _nl tﬁ.”gm“.“_”.
t.ﬂ:ﬂn@ﬂﬁ.ﬂ.—ﬂ.ﬁ.—m _‘ —h._.‘..u_.—uwsm n.

ULty WE A5

145

EEGINID 10} [8POIA $58204d /9 aNnBi

=

nug
uonefaw jonposd wo
Komod by sesooe &

NS DUE 59001 1881 U0
Komod Wby sesooe &)

nus pue 5100 Buipoo uo
Komod Wby ssaooe A

53001 wbisap 518 AfEUE U0
Komod by seacoe &)

NS pUE

(slany

Komod swbu sea00® 189

(shaqy fomod
subu 583008 S1E00]

59001 U0 51uEU 555008 aulB(Q

UOTJENEL S LS LN US| LOTVEETSU LSS LI AL UOTJENETSL TS LILON AL

uoneSsi [onposd umy

DB E100] (53] Uny

pue sp0) Bwpos uny

WEDE WMEYELEW
JUSLLILO AL DUE 500}
ubissp pue si8 AEUE Uy

E)an} 10UTE LONEYE] S
(E}ap} Ino-%38u DUE WD NS SIE @
s

SBUNTEL 1531 BUR JUS WO0IS ASD 53 AJSE 1081000 GIU0 LN SO/DUE NS U DSUIJST 51001 SUBM]J0E AUEES30SU IS

suoneEgElsw onpoad |

s O
L]

zeousnbegsbeueyEsannny

ssbeurpyEEa10L

146

cce

Developar

wcm,cwm‘

“z"' ki sl 4+meae change request.

|

rete “conecve atoo] ﬂ
|
|

Assigned Vertfier

ProcesshanagerS1

= Lockup PPISCM Expont "Project Plan’ to Lookup PP(TT project Expant "Project Plan” to
@ project info SCM info i

|:‘

ProcessManagers2

rocessManagersd

Figure 68 Process Model for CMG21-Part 1

147

Enter effon data into
time tracking tool

Update status of task to)
“finished™ when work Invoke Sequence 2
com plete

&
| |
| |
] I
t |
| |
| |
' |
|
7 W 4 |
T |
I |
I Create a task in Link 1ask to change |
Lookup task info conf iguration Lookup CR info request in configuration |
|| management tool management tool |
i |
| |
[|
I |
| |
] I
} |
| |
| |
h Check if all tasks Update status of
Lookup CR info {reated to CR) are main 1ask 1o Upd%;ﬂ‘:ﬁ:}’”m
finished “finighed”

Figure 69 Process Model for CG21-Part 2

148

MW |If change request ks not

Locate related tasks Close tasks

Locata time tracking
tasks

Inactiv ate tim
iracking task

Figure 70 Process Model for CMG21-Part 3

149

TTZDLIND 10} [3POIA $58904d T/ aanbiy

=

ianj0} Burgiom * ﬁ
10} afEyaed ampans alwey pshid
1090} PRIDEINE 35N seyond ey 14 | 62 a0 By) BLe P B AR 29} peioxd sjeaa
‘|oakoud Ial B B1ERID

o0} Juswsbeuew wonend oo wodj sBexoed sinjons oy josiud 189

afiewoed aunons
(sl 18 s3ppo) 1oskaud ajeso @
o'
|
|
i

EES00I] FRDAL|

LR LS E A

ssbeuENEEa D00

150

ZTZOLIND 10} [3POIAl $S3001d 2/ 34Nl

DY JHIO BB ATLD I h.M”“.”_E Euw__mﬁﬁ_m_ IEEEEIEEE ll@
g 5

[
1001 Wwewsbeuew wonend JUcD JSUN SIS0] SIELGOIGTE O] LI MO JXIOW LIS EL| _
i g

—_—— = = — — — — = — — — — — —

Jeumapand ufissp
W Paon,, o) Bupsoooe
AT RO S1ESID

ESS00U SN0 AL

151

T Med 9TZ-€TZO LIND 10§ [3POIN $$390.1d €/ anbi-

spodas pue siel)

—9-:!38 sniels 91es).

.

SUCHIRA P Lodas

i

PUE J518) SNIELS 19D

~ ==

(015 'SID) JO} B85BSR JO SIIED "SWaY UoNeINSIu0D §E O Sniels) suodss pue s} Bununooce sniels siessn)

=

T

5295N 0} sasusY ubl _

195 2181 I SUOIAUN 3P J3SN 13D

LBUL 01 Se5US0g UBISSE DUB SISSN B1B8ID

21e15 wooj vonsabbns wewsa roxdus —l

(40 YoBa X0} BIBIN) B1EBID

1001 ¥

(pasesias ‘pa nosdde ‘womas wa

SIEIS WBLWNIOP Y2Bs JO} 51918) Slesl

SUOHAR P 191} 19D |

wWos

152

2Hed 9TZ-TZOLIND 10} [3POIA $S9901d 17/ 84nbi4

000 L BP0) g BM_

=

ﬁ

spgbu ssasoe _l | swfu ssan0E
12 A FE0ID) B bR 12 03] FS0ED) 1ED
“ ~ S =
slubu EESDDE 8 NS IS0) B ST |
snfu EE8I0E i spgfu Esa108
x\u _.ESE?!EEwEEQ_‘ IEEM |30 I3 0UBE 15D

sppfu EES00E ISEN JB AS] JB ASE BUNEQ

=

Wiy EE800E FBEN

18 na] 1osiond sl pEg

Wiy EE800E FBEN

N e poakosd oo

s EEa00E SEN §B ad 1oeloed sl Eg

iEwEnEER00

153

£T253Y 40} [9POIA $$820.d G/ 24nBig

abeg 1753y

Wi+ ULHALD

i

154

1253 40} [9POIA $$920.1d 9/ 34nBI

——<

=

ssundsa)y puss

OEiw.mmo.ﬁﬂ.,o Bwen Aglosloud|osEE _ |EOETEIERID 7 _ Sp4slEndn 7 _ (RN LT 7 _ S ENR0D] 7
e h_v Ea N_v e) e [y $
I I I | |
|
. I I I | 1 |
_ | i 1
i

S LY. _

| \zx

"__H_"

o0l By “bey w shas peaosdde sunsseg

o0 Bupy " JuoD JSDUN L JUSWNoo] SIUSWSANESY SSI0SN D, DE AUGDE SUNSEED S1ESID

_
L
} _|_I Evd ks & ol 1eanbay 5 MSSY
SO0 B, 0] DSy L B LUy D0 (] Dy L 5
i } 1egE B SEUI 12aloug 198G 7 30| B SlE8D bay 1800, m_.xu!. i n_.m.sw__ e zn:moo._m 1

Zbeg zsIy

ssfeumy se3004y B8O AU| IBWOIEND K0} [ACsddE

ERU TR S
REN USWOLENT
Baq e Bunasw

B Wnoo] sluswaanbay

JBULDIEND B AT

wmEInEs B SDUEBag

sanuoud peubisse EBMEE] m._
PUE SNEU DS JIUSH SU) ELE LSS SAOES) PUB SIUSLUSHNDS) USLINDOQ SIUSLLSANDS 5
Buwainzs Ao suswsanbss SSUOIEND S45) JNOGE BN ETD JO BESLSISEILIOD IBWOIEND MBINEY
SBWOEND STIUEER SIJUCD B MDESY pue AoEnbape G4l SUILLSIS] W
]
Apevonoun) wedxs
DUE |1 SIEISLOWS] A

S usuwsanbas sewoen apepd

WL

155

wia

Generate traceablity

matnx document and

/. into SRS d

Document interface
requrements i SRS

document

Invoke Sequence 2

Invoke Sequence 1

Interface

ST o

erate "SRS Document’

oibeg

m w
||
2]
2 ;
ei) lef
I
e X
5
_@.m
IAA 1
llv E
&
m
-1
QS

Figure 77 Process Model for RE52212 Part 1

156

Update software andlor
interface requirements
specification document

Seqto

| Append “Req
Lookup “docGen ini file® ‘erification Methods
Doc” to "SRS Doc”

ratelntReqDocumend

Figure 78 Process Model for RE52212 Part 2

157

22253y 10} |9pOIN $$3901d 6/ 94NnBi-

]

SUSWENNEEY U SIUSIUSANDES SUEM] J05 [S ANNIdE J0 | SUNSSE] S]BS)

— =
. {lepy Juswnaog
18GE| € 81281 ey uFSuD SHE pEaoutdy,
(sunaseq) 1998 B 61880 104 Uoeso; suwLEieg @
|
L ‘1001 WiswsEEwEW wonenb LoD W WSWNTOD SYS Pe Mudde K0} & L1 _
|
)
-

ebeuEEEEI0L

UsLaANDaI B MIRIUBEasdE] S350
OB 1NOGR BN Mmmﬂwo_uuﬁ aon.._num J5BLU0TEND e Bunasi
sl wE1hE B souEbig

abeuew pue 12800

W USWNCOD SHS 08
20 SUNSEED SlEH

e
wONSEWDD PUE sSnuoud
esLwaanbal puE EXEU
P s say) Buwar nai

g suswamnbal
JSWIOIEND SOUE

SUSWEANDE) JSWTIEND SJUSLINIOR SIUSWISANDS)
OO E10NJUCD & NOESY JBWTIEND MBIASY

158

TZOLINY 104 [9POIN 582044 08 3nbi4

=

1oskoud ST S yosdousd soy s3ppoud SO S0 . .
) 53361 uswaants ubiesy [F 1| 204 wewsantas e [¥ funoss sugen [T 1] s Aunose jaq [F] 195000 0 ssen WBissy J

-

/|A EUOTIUL JBP JS5M 185 vu‘. V. boud oy sdnoub seen ub L 7B_nﬁuqd&hm:iﬁ_ﬁhb+?mwwo.@ngnA

1o 2 ey &

1oslond mau B S1ERID

e

wais ke
1) 1abuey uo (s)epy
s)Edws) joskoed s)e00

7 (E}an) 180 — slap sjedws] poskud m_mH.A

III

A O

. S50 FH0AU|

159

seferEEEs 10

229 1INY 10} |9POIN SS8904d T8 84nbiH

e |, i .
o4 wwn_“”.h_ﬁﬁﬂ._n. _I TN SOEN] dnNoo] 7 TO.— LS LsEanDEy ...w_..nJ‘ o jun s) dnixoo 7 SUNSEED B S1ESID ‘I o [+ ey .
|
EJUSLWSANDS) S0 ESIE SIESID 1001 uswsEEuEw 155] 0] S|USLWSANDSS YENIN EJUSIUSANGE SUNSEED |

g)

SIUS LS MNDE W1 NSy

frEsEsI8u

L Y

sws) fEssni mau poy

UOTELLLIC Jul (OUELSIE

Kpuowd pue ENELS
wswannbes syepdn 1551} LONEDVE A JFIUT J

sadoga e

ml\ y = el _H-
@

seleueyEsaI0

160

£29LINY 10} [9POIN $S8204d 28 94nbi4

= =

BjEpds) Buisn JusWwnoop _l _

shewEyEEa0014

ElusLLIaaNDa) B)ERID) oy yoelosd dnopoo el 199 el SjEa @
|
00 PeuSBEUE L ElUSWaNnka) B4 Wouy S1EydWws] S Buen S WAnO0E s wsannad 5183l A Tieied Wetuy S1EdeE] Smnbay _
I
I
I
K
II F
= #
I i
I I
I I
I I
I I
I I
Ly L
L
SRS SR AU|

WiLa

161

oM

CM

g
|
!
|
|
|
|
@ high-lev el design template

T =
|
|
I
I
|

SCM.getlatestversion \

Figure 83 Process model for TS514

162

2GS 40} [9POIN $S9004d 8 8anbi

=

LI E LS LT 0D ,4... ﬁ

L -

UDIEJLS LLINIOD S)ER #.._. — O U PN o]
PRI O 7L WO | O ELS g ! @
|
)
-

LADAVELIS LNy ARG B0 O 7| LLLAD: i)

1001 WS WeEEUE L EUSWISANDES WWA0J) WOTEIS UATON S1BISWST)

e =

= 7
I [

Ey3 o

L

BB 790 ALl| _‘

ﬁ)00 e wsbEvEw ,_ ﬁ sufissp ,4 ?_ .,%:n,_.._:w w._n“_m_.__.w_ww
SuaLsEINbe) - 1N ‘swebEp &) anoe _:ﬂuwh__wmmrM_EEE:Hu o
— VLN LOTVE LD Ju Pl _‘ k EIEED-FEN SDNfiu| _J k i dopreq =

163

ZVSAA 10) [9POIN $53904d G8 d4nbi

= =
fe noudde o) 7.._.6_1 158 SouE)day,

E:U_wzuo__.qm_n__ww._. o_c__ﬂE;wasxoo._ :&w_;umo_n_._ l B_S__mu.o_.wc__._tw—mn @
SOUBdSIlY, BEESIEY w

[E AOUddE J0) SSLIOIEND 0 Wi 153] SIUEINSIIE SEEHIDY WS WwSEEUEL UoNENE JoD JSEUN WEK 1551 SOUEIGSI0E TN

I
|
t
]
|
L
! = =
| —_
Jsmme T [T T T | T smemEmmwe T | - T T T T T T~
! w._szani_ 153 sousidano saanpaooud (58] usam .u:wE:SD : _“www__— BIEDLS] SN0
N IS LLINDOD WOTVELLLIO Ul VLS LMD LI LLAD JL FUNDEI0U] 151 [}y Ino-%oauD BANDEI0I 155] SIUBIISDTY|
| Apaescen, pusddy AypaESIR SlREUST) SOUEIE00Y, SlREUEY JUSTEIPENG, SEIa]
I 1
luswnach s w Swsy 1851 pue ssINPso0sd 1551 UsSWISG VONEWND I KINGESOEN SDNDY| BIEGIUS] JSWNT0[SINDSI04] 155] SIUEIISI0Y UONENPEND, S Buisn JuswWwnoog Simpsos) 155] SOUEI0SI0Y, SIBISUSD
1 T

|

|

|

| | |
I 1 i
|

|

|

]

|

|

t

|

|

|

_ . L L

Q| z w0 wepd 1591 S0UEIdS00E ISWEnD o) verd wEpd 155 SOUEIEEI0E

LY

uEpd 18]
SOUEIDGI0E BU} M1 NGy

“ELES] IBAUOD
o paseq seunpasosd |53]
soueldanoe s ubisag

1 aouanbeg a%om|

164

WOS+HIL+HNL

L+i=pEST 168

APPENDIX F: PROCESS MODELS (CASE STUDY I1)

165

Rt Fircormpdeds,

crangemE
clupioam, or e CR:

WCR sowpe?

2Tl Tl s L, (A0S M) 0 i - L

Figure 86 Process Model for KY-020-621-Part 1

166

ki

Faigec, Coadler o Rt
R

Changs ms o
- i

[r—
:"""I [-

¥
Jp}mpmun'\ccr

f
Erane CC 0 cubmon
it P et

-

[+]

Figure 87 Process Model for KY-020-621-Part 2

167

R

il 2 B AR T

o
il ‘ }-C d reased iorpmi g ‘

Figure 88 Process Model for KY-020-621-Part 3

168

Figure 89 Process Model for KY-020-621-Part 4

169

at

Define system in
System Requirements

Document

Review Resp

Verify SRD wet W Plan

SE Resp

] L

o o,
= Creale RO Wil lempiaie b

o=

@
|
&

|
!
|
I
I
I
¥

()
SCM.getLatest\ersion

Kl———=—--0
RPN N S| S

%mﬁm.mDmm

Figure 90 Process Model for UG-010-84

170

SCM.getlatestVersion DocGen generateDoc

Figure 91 Process Model for UG-040-83

171

Figure 92 Process Model for UG-070-81

172

28-0L0-DN 40} |9POIN Ss3204d €6 4nbi-

173

s e

(]

51531 PUN 20} S5} EIED _ "
N r JUSSLIUON AL 58] B M0)| 7l pue 1
Q|ll|— n:uno._ﬂwﬂ._ow a&% o ED 1 & Aﬁ\ ES5ED 153) aredaiy ‘l bt , a

dsay |05

£8-0L0-DN 40} |9POIN Ss3204d 76 1nbi-

_ JEBBINTSEF L 7

apgHERdn Iy OS5 anqpusdde sy 7 TE:SD%.%H* _ uoissanEHETIRE WS
Y
|
1
|
|
U
|

—— -t

-1 <

s Fay
| |
| I
|
I
| |
|] U
| |

R i b
R i e

=

L
s WNIop 85 ‘J — slEdwel 189 ‘.F — 5158] 8Inoexg

1 UL 50} U0y Lodas 1531 B W) PUE BIES) SWN0Sk]

100} W) Ul UDNEUWIO wso g podsy 1831 0}

e

appsucdsay

174

98-0.0-9N 10} [9POIN $$8904d G6 4nB14

| n
t t
L L
INIEESIINE
W—E:::atiﬂ—l _ E1E3) 3pnasng

o 1581 0OL-5)

oy Kupasuodsal ubissy

dsey |12

oy poday 1591 0 _l

1001 |4 D 1 DD ey
!n!ﬂ.ﬁs_..!_.r._l

Lo podsy 1531 04

dale yses W 5)Ea)
pun fydde pue sgme
fiEsEaI8UUN & MOWSY

deay

175

/8-0,0-9N 10} [SPOIAl $S3204d 96 84nHi4

O+ {—1

desy

B AR
8000 o) deay ubisey

dsey 1D

spun
I 10} [BOE] MEU B B1E

Wl

176

CM

Cl Resp

O

Unit integration and tests are complete, Cl ks ready for the next level of tests

o~ o — —— — — i ———————————— -~ P
¥ |
| " . |
Lo
Assign version number
@ Inform PM and G jesign varsen nume 40
N -
| | |
| | : |
- -
' | ! |
LY v s
email.send SCM.createlabsl

Figure 97 Proces Model for UG-070-89

177

28-06T-9N 10} |9PON $5820.d 86 94nbi4

NSNS [EDIEDS)

WOIEIS A B AIDSEE S0E

2
1
[w]
=
_l M Bl
W RB) B [EDIULDE] B} B30 DU &
Ka B30p TIAS Kpuan _1 B30 40} UEL] LOEDIES, .m

178

5 ﬂ

Pt S0 bk et =
Pl EX-T

O

S

| -

;

Prizsra S0 |k Carbon Do wil o D lrrseta

==

ST il il "l

Figure 99 Process Model for UG-190-89-Partl

179

EX.

Pt @ 3 Tk rirvrw e Bt prigsaratn massng I 500 it & oy b B aoacubid win tha cuatarmr

i Firvairws %% P, S0
Tt Py, 201 T
I S 3 Irmvo S 14 Diadirationrs Do, |l [E rirvichis Sl
S0 Tk Fhigaort it
il 501 Tl Fhiselts

iy “50 Pridud E"“""“"“’fm

[Ty

I
|
|
|
!
I

I
Tt "0 Proc.ct AUl huiny wono i oW, Mol GO, ST G St ook 1o praperabon b sarary Wt U T et

: = :

Carwaria “Saftwaris ‘o Dafrabar D™ weil D Dirrpsda

Gt bl Chirnirila dooumirt

|
|
t
t
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
,

SOPN gl sl SO gl el sy

Figure 100 Process Model for UG-190-89-Part2

180

Praura for st
- ot wt W Pan’
S Tt Pt 53

Tisid Cuafirabiiorns D

e
=i
:
—
f
f
;
I
[

E
i
i
i
4

ety st et
et Tt Prigsetart ||
it of 503 Tk

[T

st 503 Tt Pt wet T Tarveiets

b‘:_t:_

| |
| |
l l
v 4 v 4

‘ S0 gutl atet’shrrsicn F\mﬂm

Figure 101 Process Model for UG-190-89-Part3

181

Verify HCI Test

g erify HCI Test Flan Definitions Doc

Perform Initial Product for tests wrt HC||
Calioration Tests on Test Plan and HCI Test
prototy pes. Definitions Doc

< erify test environment
N wert "Test Preparation™
PR section of "HC Test

Definitions Document”.

SCM.getLatest\ersion iocGen.generateDocument

Figure 102 Process Model for UG-190-810-Part 1

182

fy Initial Cualification Review Initial
Tesi Report Qualification Test results

Control Procedurs {

m it TOCESS ChEange requesis ldentify the depth and
“RY-020 Configurati scope of the method 1o Inwoie Seql?
E‘:}H"' “‘g HEI -:';11 Control® procedure be used in CCB WY

1 et

Record test regults F—-ommome o] Recoeds Froc

Generale Initial Qualification Test Reporl wil the lemplate

X
@ Gel template Generate document

S

Fiy

|

|

|

|

|

|
o

i

I

i

I

I

T

I

I
57

k-1--—--<

SCM.getlatest\ersion ocGen.generateDocumen

Figure 103 Process Model for UG-190-810-Part 2

183

Approve product for

manuf acturing ldentify potential issues Proposs solutions

“erify test environment
wirt “Test Preparation®
section of "HC| Test

Definitions Document”.

repare for HCI testa wr

W Plan/HC| Test Plan
and HCI Test Definitions

HC| Test Responsible
aasisted by CM

Figure 104 Process Model for UG-190-810-Part 3

184

customer

Attended by CM,
representing the

rocess change requests|
“KY-020 Configuratio
Control® procedure

Record test results — oo

“erify HCI Test Report

ldentify the depth and
scope of the method 1o Invoke Seqid |—t-]
e used in CCB W

Figure 105 Process Model for UG-190-810-Part 4

185

A iy
| |
| |
| |
| |
| |
| |
. A
e e == e e e e
|
!
|
|
| Generate HCT Test Report wrl the template
|
x
Get template Generate document
n s e Fiks
I | |_ I I
; i ; f
I | I I
I | I I
I i I I
! | ! |
I | I I
57 M 57 M
SCM.getLatest\iersion ocGen. generateDocumen

TT8-06T-ON 40} [3POIAl $S9901d 90T 84nbi-

—SEzsnﬁntEm.%* _ ucissEnIsETISE W 05

|||||||||||||||||||||||
A &
uEl 183] pue voneba) |
wais kg s, |
|
|
t t

|
|
|
|
U

L Vs

UL Eo.mm_. _w:w uonebai|

waE kg Lpuan sunsss

5]53) uoneBain vonEfE S LU0 NS UoNEBEI
ESNEE| 53004 EUNESS 155) DU00EY W31 RS Wi piEd was .M_wu:w__!rotwn_ b wasis Dknw_wh_ww._ 0Zhag axoau| wﬂﬁﬂobzh.——____._w“”woﬂwo FLbE5 SROA|
5w yap o) Bunesw & poH

BENPEI0N JBUOIEND B4}
uswsbeuey EPU0ISY Bunussasdas spusiE :w Wo fa _vo._w_.wwm—
£5) 53] 0L

186

(=]

. werif tem Test
g [|1.nmf;r System Test Plan Dé’iﬁ’;ﬂ o
£
i
[i 4
I 1
| |
| |
I |
= T3
(s
| |
I [I I
I [I I
r 5 L) LY
-_—— e e — — o e e g

A

Generate System lest Fan as part of WV Flan

?

Figure 107 Process Model for UG-190-812-Part 1
187

Werfy Intemnal System
Test Report

Pregare intemal sy stem

Perform internal sy stem
test environment tests

Assisted by CM

Record test results Process issues

Menfy test environment

wrt “Test Preparations®

HG-050 Tssue
Management
section of “System Test Procedure
Definitions Doc™

B

Generale Sysiem lest Delimitions Doc wil (e lempiate

Generale Intemal Sysiem Test Repord wri the template

Generate document

Generate document

SCM.getLatestVersion

ocGen.generateDocumen

SCM.getLatest\version ocGen. generateDocumen

Figure 108 Process Model for UG-190-812-Part 2

188

'

o

]

S CM afiends losis
cusiamer e

z

2

Figure 109 Process Model for UG-190-813-Part 1

189

Genoraie Imomal Systen Tesi Rigport wri e lomplaie

Figure 110 Process Model for UG-190-813-Part 2

190

APPENDIX G: DEFINITIONS FOR WEB SERVICES

(CASE STUDY 1)

CaliberRMWrapper WSDL

<?xml

<wsdl:
targetNamespace="http://caliberrm.ws.tez.alpay.erturkmen.
xmlns:
xmlns:
xmlns:
:wsdl="http://schemas.xmlsoap.org/wsdl/"

:wsdlsoap="http://schemas.xmlsoap.orqg/wsdl/soap/"
xmlns:

xmlns
xmlns

version="1.0" encoding="UTF-8"?>
definitions

apachesoap="http://xml.apache.org/xml-soap"

impl="http://caliberrm.ws.tez.alpay.erturkmen.com"
intf="http://caliberrm.ws.tez.alpay.erturkmen.com"

xsd="http://www.w3.0rg/2001/XMLSchema'>

<!--WSDL created by Apache Axis version: 1.4
Built on Apr 22, 2006 (06:55:48 PDT)-->
<wsdl:types>

<schema elementFormDefault=""qualified"

targetNamespace="http://caliberrm.ws.tez.alpay.erturkmen.

xmlns="http://www.w3.0rg/2001/XMLSchema ">
<element name="createProject'">
<complexType>

<sequence>

<element name="serverAddress" type="xsd:string'"/>
<element name="userName" type="xsd:string"/>
<element name="password" type="xsd:string"/>
<element name='"projectName" type="xsd:string"/>

</sequence>

</complexType>
</element>

191

com"

com"

<element name="createProjectResponse'™
<complexType>
<sequence>
<element name='"createProjectReturn" type="xsd:int'"/>
</sequence>
</complexType>
</element>
<element name="selectProjectByName'">
<complexType>
<sequence>
<element name="serverAddress" type="xsd:string"/>
<element name="userName" type="xsd:string"/>
<element name="password" type="xsd:string"/>
<element name="projectName" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="selectProjectByNameResponse'>
<complexType>
<sequence>
<element name="selectProjectByNameReturn"
type="xsd:int"/>
</sequence>
</complexType>
</element>
<element name='"'createBaseline'">
<complexType>
<sequence>
<element name="serverAddress" type="xsd:string"/>
<element name="userName" type="xsd:string"/>
<element name="password" type="xsd:string"/>
<element name="projectID" type="xsd:int"/>
<element name='"name" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="createBaselineResponse'™>
<complexType>
<sequence>
<element name='"createBaselineReturn" type="xsd:int"/>
</sequence>
</complexType>
</element>
</schema>
</wsdl:types>
<wsdl:message name='"'createProjectRequest'">
<wsdl:part element="impl:createProject”
name="parameters'/>
</wsdl :message>
<wsdl:message name="selectProjectByNameResponse'™>
<wsdl:part element="impl:selectProjectByNameResponse"
name="parameters'"/>

192

</wsdl :message>
<wsdl:message name="selectProjectByNameRequest'™
<wsdl:part element="impl:selectProjectByName"
name="parameters'/>
</wsdl :message>
<wsdl:message name='"'createProjectResponse'>
<wsdl:part element="impl:createProjectResponse"
name="parameters'/>
</wsdl :message>
<wsdl:message name='"createBaselineResponse'>
<wsdl:part element="impl:createBaselineResponse"
name="parameters"/>
</wsdl :message>
<wsdl:message name='"'createBaselineRequest'™>
<wsdl:part element="impl:createBaseline"
name="parameters'/>
</wsdl :message>
<wsdl:portType name="CaliberRMWrapper'">

<wsdl:operation name="createProject'™
<wsdl:input message="impl:createProjectRequest"”
name="createProjectRequest"/>
<wsdl:output message="impl:createProjectResponse"”
name="createProjectResponse"/>
</wsdl:operation>
<wsdl:operation name="selectProjectByName'™>
<wsdl:input message="impl:selectProjectByNameRequest"
name="selectProjectByNameRequest"/>
<wsdl:output
message="impl:selectProjectByNameResponse"
name="selectProjectByNameResponse'"/>
</wsdl:operation>
<wsdl:operation name="createBaseline'™>
<wsdl:input message="impl:createBaselineRequest"
name="createBaselineRequest"/>
<wsdl:output message="impl:createBaselineResponse"
name="createBaselineResponse"/>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="CaliberRMWrapperSoapBinding"
type="impl:CaliberRMWrapper'">
<wsdlsoap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="createProject'™
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="createProjectRequest'">
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name='"createProjectResponse'>
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>

193

<wsdl:operation name='"'selectProjectByName'>
<wsdlsoap:operation soapAction=""/>
<wsdl:input name='"selectProjectByNameRequest'">
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name='"'selectProjectByNameResponse'™
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="createBaseline'>
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="createBaselineRequest'">
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name='"'createBaselineResponse'>
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="CaliberRMWrapperService'">
<wsdl:port binding="impl:CaliberRMWrapperSoapBinding"
name="CaliberRMWrapper">
<wsdlsoap:address
location="http://localhost:8081/BorlandCaliberWS/services/Cali
berRMWrapper"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

StarTeamWrapper WSDL

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
targetNamespace="http://starteam.ws.tez.alpay.erturkmen.com"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://starteam.ws.tez.alpay.erturkmen.com"
xmlns:intf="http://starteam.ws.tez.alpay.erturkmen.com"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.0rqg/2001/XMLSchema ">
<!--WSDL created by Apache Axis version: 1.4
Built on Apr 22, 2006 (06:55:48 PDT)-->
<wsdl:types>
<schema elementFormDefault="qualified"”
targetNamespace="http://starteam.ws.tez.alpay.erturkmen.com"
xmlns="http://www.w3.0rqg/2001/XMLSchema ">
<element name="Ilogin'">
<complexType>
<sequence>
<element name="url" type="xsd:string"/>
</sequence>

194

</complexType>

</element>

<element name="loginResponse'>

<complexType>
<sequence>
<element name="loginReturn" type="xsd:string"/>
</sequence>

</complexType>

</element>

<element name='"'getProjects'>

<complexType>
<sequence>
<element name="url" type="xsd:string"/>
</sequence>

</complexType>

</element>

<element name="getProjectsResponse'>

<complexType>
<sequence>
<element maxOccurs="unbounded" name="getProjectsReturn"

type="xsd:string"/>

</sequence>

</complexType>

</element>

<element name="createLink'">

<complexType>
<sequence>
<element name="urll" type="xsd:string"/>
<element name="itemlID" type="xsd:int"/>
<element name="itemlType" type="xsd:string"/>
<element name="url2" type="xsd:string"/>
<element name="item2ID" type="xsd:int"/>
<element name="item2Type" type='"xsd:string"/>
</sequence>

</complexType>

</element>

<element name="createLinkResponse'">

<complexType>
<sequence>
<element name="createLinkReturn" type="xsd:int'"/>
</sequence>

</complexType>

</element>

<element name="getLatestVersion'>

<complexType>
<sequence>
<element name="url" type="xsd:string"/>
<element name='"filename" type="xsd:string"/>
</sequence>

</complexType>

</element>

<element name="getLatestVersionResponse'>

195

<complexType>
<sequence>
<element name="getLatestVersionReturn"

type="xsd:string"/>

</sequence>

</complexType>

</element>

<element name="createTask'">

<complexType>
<sequence>
<element name="url" type="xsd:string"/>
<element name="name" type="xsd:string"/>
</sequence>

</complexType>

</element>

<element name="createTaskResponse'™

<complexType>
<sequence>
<element name='"createTaskReturn" type="xsd:int"/>
</sequence>

</complexType>

</element>

<element name='"createlLabel'>

<complexType>
<sequence>
<element name="url" type="xsd:string"/>
<element name="labelBaseName" type="xsd:string"/>
</sequence>

</complexType>

</element>

<element name='"createLabelResponse'>

<complexType>
<sequence>
<element name='"createLabelReturn" type="xsd:int"/>
</sequence>

</complexType>

</element>

<element name="createProject">

<complexType>
<sequence>
<element name="serverAddress" type="xsd:string"/>
<element name="username'" type='"xsd:string"/>
<element name="password" type="xsd:string"/>
<element name='"projectName" type="xsd:string"/>
</sequence>

</complexType>

</element>

<element name="createProjectResponse'™

<complexType>
<sequence>
<element name='createProjectReturn" type="xsd:string"/>
</sequence>

196

</complexType>
</element>
<element name="selectProjectByName'">
<complexType>
<sequence>
<element name="url" type="xsd:string"/>
<element name='"projectName" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="selectProjectByNameResponse'>
<complexType>
<sequence>
<element name="selectProjectByNameReturn"
type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="updateFile'>
<complexType>
<sequence>
<element name="url" type="xsd:string"/>
<element name="filename" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="updateFileResponse'">
<complexType>
<sequence>
<element name="updateFileReturn" type="xsd:string'"/>
</sequence>
</complexType>
</element>
<element name="createLabelForFile">
<complexType>
<sequence>
<element name="url" type="xsd:string"/>
<element name="filename" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="createlLabelForFileResponse'">
<complexType>
<sequence>
<element name='"createLabelForFileReturn"
type="xsd:int"/>
</sequence>
</complexType>
</element>
<element name="freezelLabel'>
<complexType>
<sequence>

197

<element name="url" type="xsd:string"/>
<element name="labelID" type="xsd:int"/>
</sequence>
</complexType>
</element>
<element name="freezeLabelResponse'>
<complexType>
<sequence>
<element name="freezelLabelReturn" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="getLinkedItems">
<complexType>
<sequence>
<element name="url" type="xsd:string"/>
<element name="itemID" type="xsd:int"/>
<element name="itemType'" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="getLinkedItemsResponse'™>
<complexType>
<sequence>
<element maxOccurs="unbounded"
name="getLinkedItemsReturn" type="xsd:int"/>
</sequence>
</complexType>
</element>
<element name="setCRStatus'">
<complexType>
<sequence>
<element name="url" type="xsd:string"/>
<element maxOccurs="unbounded" name="itemIDs"
type="xsd:int"/>
<element name="status" type="xsd:int"/>
</sequence>
</complexType>
</element>
<element name="setCRStatusResponse'>
<complexType/>
</element>
</schema>
</wsdl:types>
<wsdl:message name="setCRStatusResponse'">
<wsdl:part element="impl:setCRStatusResponse”
name="parameters'/>
</wsdl :message>
<wsdl:message name='"'createLinkRequest'>
<wsdl:part element="impl:createlLink" name="parameters"/>
</wsdl :message>
<wsdl :message name="getProjectsRequest'>

198

<wsdl:part element="impl:getProjects"”
name="parameters'/>
</wsdl:message>
<wsdl:message name="freezeLabelResponse'™
<wsdl:part element="impl:freezeLabelResponse"
name="parameters'/>
</wsdl:message>
<wsdl:message name="IloginRequest'>
<wsdl:part element="impl:login" name="parameters'"/>
</wsdl :message>
<wsdl:message name="getLinkedItemsRequest'>
<wsdl:part element="impl:getLinkedItems"
name="parameters"/>
</wsdl :message>
<wsdl:message name="updateFileRequest'">
<wsdl:part element="impl:updateFile" name="parameters'"/>
</wsdl :message>
<wsdl:message name="updateFileResponse'>
<wsdl:part element="impl:updateFileResponse”
name="parameters'/>
</wsdl :message>
<wsdl:message name="getLinkedItemsResponse'>
<wsdl:part element="impl:getLinkedItemsResponse"
name="parameters"/>
</wsdl :message>
<wsdl:message name="createTaskResponse'>
<wsdl:part element="impl:createTaskResponse"
name="parameters'/>
</wsdl :message>
<wsdl:message name="createLabelRequest'>
<wsdl:part element="impl:createLabel"
name="parameters'/>
</wsdl :message>
<wsdl:message name='"getProjectsResponse'">
<wsdl:part element="impl:getProjectsResponse”
name="parameters'/>
</wsdl:message>

<wsdl:message name="createTaskRequest'">
<wsdl:part element="impl:createTask" name="parameters'"/>
</wsdl :message>
<wsdl :message name="getLatestVersionRequest'>
<wsdl:part element="impl:getLatestVersion"
name="parameters'/>
</wsdl:message>
<wsdl:message name="selectProjectByNameResponse'>
<wsdl:part element="impl:selectProjectByNameResponse"
name="parameters'/>
</wsdl :message>
<wsdl:message name="freezeLabelRequest'>
<wsdl:part element="impl:freezeLabel"
name="parameters'"/>

199

</wsdl :message>
<wsdl:message name="getLatestVersionResponse'>
<wsdl:part element="impl:getLatestVersionResponse"
name="parameters'/>
</wsdl :message>
<wsdl:message name='"createLabelForFileResponse'>
<wsdl:part element="impl:createLabelForFileResponse"
name="parameters'/>
</wsdl :message>
<wsdl:message name="createLabelResponse'™>
<wsdl:part element="impl:createLabelResponse"
name="parameters"/>
</wsdl :message>
<wsdl:message name='"'createLinkResponse'>
<wsdl:part element="impl:createlLinkResponse"
name="parameters'/>
</wsdl :message>
<wsdl:message name='"createLabelForFileRequest'">
<wsdl:part element="impl:createLabelForFile"
name="parameters'/>
</wsdl :message>
<wsdl:message name='"'createProjectRequest'">
<wsdl:part element="impl:createProject"”
name="parameters"/>
</wsdl :message>
<wsdl:message name="setCRStatusRequest'™>
<wsdl:part element="impl:setCRStatus"
name="parameters'/>
</wsdl :message>
<wsdl:message name="loginResponse'">
<wsdl:part element="impl:loginResponse”
name="parameters'/>
</wsdl :message>
<wsdl:message name='"'createProjectResponse'™>
<wsdl:part element="impl:createProjectResponse"
name="parameters'/>
</wsdl:message>
<wsdl:message name="selectProjectByNameRequest'™
<wsdl:part element="impl:selectProjectByName"
name="parameters'/>
</wsdl :message>
<wsdl:portType name="StarTeamWrapper'>
<wsdl:operation name="login">
<wsdl:input message="impl:loginRequest"
name="loginRequest'"/>
<wsdl:output message="impl:loginResponse”
name="loginResponse"/>
</wsdl:operation>
<wsdl:operation name="getProjects'">
<wsdl:input message="impl:getProjectsRequest"”
name="getProjectsRequest'/>
<wsdl:output message="impl:getProjectsResponse”

200

name="getProjectsResponse"/>
</wsdl:operation>
<wsdl:operation name="createLink">
<wsdl:input message="impl:createLinkRequest"
name="createlLinkRequest'/>
<wsdl:output message="impl:createLinkResponse"
name="createlLinkResponse'/>
</wsdl:operation>
<wsdl:operation name="getLatestVersion">
<wsdl:input message="impl:getLatestVersionRequest"
name="getLatestVersionRequest"/>
<wsdl:output message="impl:getLatestVersionResponse"
name="getLatestVersionResponse"/>
</wsdl:operation>
<wsdl:operation name="createTask'">
<wsdl:input message="impl:createTaskRequest"
name="createTaskRequest"/>
<wsdl:output message="impl:createTaskResponse"
name="createTaskResponse"/>
</wsdl:operation>
<wsdl:operation name="createLabel'">
<wsdl:input message="impl:createLabelRequest"
name="createlLabelRequest'"/>
<wsdl:output message="impl:createLabelResponse"
name="createlLabelResponse"/>
</wsdl:operation>
<wsdl:operation name="createProject'™
<wsdl:input message="impl:createProjectRequest"”
name="createProjectRequest"/>
<wsdl:output message="impl:createProjectResponse"
name="createProjectResponse"/>
</wsdl:operation>
<wsdl:operation name="selectProjectByName'™>

<wsdl:input message="impl:selectProjectByNameRequest"
name="selectProjectByNameRequest"/>

<wsdl:output
message="impl:selectProjectByNameResponse"
name="selectProjectByNameResponse'"/>

</wsdl:operation>
<wsdl:operation name="updateFile">

<wsdl:input message="impl:updateFileRequest"”
name="updateFileRequest'/>
<wsdl:output message="impl:updateFileResponse”
name="updateFileResponse'/>
</wsdl:operation>
<wsdl:operation name="createLabelForFile">
<wsdl:input message="impl:createLabelForFileRequest"

201

name="createLabelForFileRequest"/>
<wsdl:output
message="impl:createlLabelForFileResponse"”
name="createlLabelForFileResponse"/>
</wsdl:operation>
<wsdl:operation name="freezeLabel">
<wsdl:input message="impl:freezeLabelRequest"
name="freezelLabelRequest'"/>
<wsdl:output message="impl:freezeLabelResponse"
name="freezelLabelResponse"/>
</wsdl:operation>
<wsdl:operation name="getLinkedItems'">
<wsdl:input message="impl:getLinkedItemsRequest"
name="getLinkedItemsRequest"/>
<wsdl:output message="impl:getLinkedItemsResponse"
name="getLinkedItemsResponse"/>
</wsdl:operation>
<wsdl:operation name="setCRStatus'">
<wsdl:input message="impl:setCRStatusRequest"”
name="setCRStatusRequest"/>
<wsdl:output message="impl:setCRStatusResponse”
name="setCRStatusResponse"/>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="StarTeamWrapperSoapBinding"
type="impl:StarTeamWrapper'>
<wsdlsoap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="login'">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="IoginRequest'">
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="IoginResponse'">
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getProjects'">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getProjectsRequest'™
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="getProjectsResponse'>
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="createLink">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="createlLinkRequest'>
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name='"createLinkResponse'>

202

<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getLatestVersion">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getLatestVersionRequest'>
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="getLatestVersionResponse'™>
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name=''createTask'">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name='"createTaskRequest'™
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name='createTaskResponse'>
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="createLabel">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="createlLabelRequest'™
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name='"createLabelResponse'>
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="createProject'™
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="createProjectRequest'">
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="createProjectResponse">
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name='"selectProjectByName'>
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="selectProjectByNameRequest'>
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="selectProjectByNameResponse'>
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="updateFile'>
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="updateFileRequest'>
<wsdlsoap:body use="literal"/>

203

</wsdl:input>
<wsdl:output name="updateFileResponse'>
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="createlLabelForFile'>
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="createlLabelForFileRequest'>
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name='"createlLabelForFileResponse">
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="freezeLabel'>
<wsdlsoap:operation soapAction=""/>
<wsdl :input name="freezeLabelRequest'>
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name='"freezeLabelResponse'>
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="getLinkedItems'">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getLinkedItemsRequest'">
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="getLinkedItemsResponse'™
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="setCRStatus'">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="setCRStatusRequest'™
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="setCRStatusResponse'™>
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="StarTeamWrapperService'">
<wsdl:port binding="impl:StarTeamWrapperSoapBinding"
name="StarTeamWrapper'™>
<wsdlsoap:address
location="http://localhost:8080/BorlandStarTeamWS/services/Sta
rTeamWrapper"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

204

eMailSystemWrapper WSDL

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
targetNamespace="http://email.ws.tez.alpay.erturkmen.com"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://email.ws.tez.alpay.erturkmen.com"
xmlns:intf="http://email.ws.tez.alpay.erturkmen.com"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.orqg/wsdl/soap/"
xmlns:xsd="http://www.w3.0rqg/2001/XMLSchema ">
<!--WSDL created by Apache Axis version: 1.4
Built on Apr 22, 2006 (06:55:48 PDT)-->
<wsdl:types>
<schema elementFormDefault="qualified"
targetNamespace="http://email.ws.tez.alpay.erturkmen.com"
xmlns="http://www.w3.0rqg/2001/XMLSchema ">
<element name="send'">
<complexType>
<sequence>
<element name="toAddress" type="xsd:string"/>
<element name="mailSubject" type="xsd:string"/>
<element name="mailBody" type="xsd:string"/>
<element name="attachment" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="sendResponse'™
<complexType>
<sequence>
<element name='"sendReturn" type='"xsd:string"/>
</sequence>
</complexType>
</element>
</schema>
</wsdl:types>
<wsdl :message name="sendResponse'>
<wsdl:part element="impl:sendResponse"”
name="parameters'/>
</wsdl:message>
<wsdl:message name="sendRequest'">
<wsdl:part element="impl:send" name="parameters'/>
</wsdl :message>
<wsdl:portType name="EmailSystemWrapper'>
<wsdl:operation name="send'">
<wsdl:input message="impl:sendRequest"
name="sendRequest"/>
<wsdl:output message="impl:sendResponse”
name="sendResponse"/>

205

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="EmailSystemWrapperSoapBinding"
type="impl:EmailSystemWrapper">
<wsdlsoap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="send">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="sendRequest'">
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name='"sendResponse'>
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="EmailSystemWrapperService'™>
<wsdl:port binding="impl:EmailSystemWrapperSoapBinding"
name="EmailSystemWrapper">
<wsdlsoap:address
location="http://localhost:8081/EmailSystemWS/services/EmailSy
stemWrapper"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

FileSystemWrapper WSDL

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
targetNamespace="http://file.ws.tez.alpay.erturkmen.com"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://file.ws.tez.alpay.erturkmen.com"
xmlns:intf="http://file.ws.tez.alpay.erturkmen.com"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.0rqg/2001/XMLSchema ">
<!--WSDL created by Apache Axis version: 1.4
Built on Apr 22, 2006 (06:55:48 PDT)-->
<wsdl:types>

<schema elementFormDefault="qualified"
targetNamespace="http://file.ws.tez.alpay.erturkmen.com"
xmlns="http://www.w3.0rqg/2001/XMLSchema ">

<element name="install">

<complexType/>
</element>
<element name="installResponse'™
<complexType/>
</element>

206

<element name="createFolder">
<complexType>
<sequence>
<element name="parentFolderPath" type='"xsd:string"/>
<element name='"folderName" type='"xsd:string"/>
</sequence>
</complexType>
</element>
<element name="createFolderResponse'>
<complexType>
<sequence>

<element name='"createFolderReturn" type="xsd:string"/>

</sequence>
</complexType>
</element>
<element name="generateDocument'">
<complexType>
<sequence>
<element name="iniFile" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="generateDocumentResponse'™
<complexType>
<sequence>
<element name="generateDocumentReturn"
type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="appendFile'>
<complexType>
<sequence>
<element name="siiFile" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="appendFileResponse">
<complexType>
<sequence>
<element name="appendFileReturn" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="renameFolder">
<complexType>
<sequence>
<element name="parentFolderPath" type='"xsd:string"/>
<element name="oldName" type='"xsd:string"/>
<element name="newName" type='"xsd:string"/>
</sequence>
</complexType>

207

</element>
<element name="renameFolderResponse'>
<complexType>
<sequence>
<element name='"renameFolderReturn" type='"xsd:string"/>
</sequence>
</complexType>
</element>
<element name="extractPackage'™
<complexType>
<sequence>
<element name="parentFolderPath" type="xsd:string"/>
<element name="packageName" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="extractPackageResponse'>
<complexType>
<sequence>
<element name="extractPackageReturn" type="xsd:string'"/>
</sequence>
</complexType>
</element>
</schema>
</wsdl:types>
<wsdl:message name="renameFolderResponse'>
<wsdl:part element="impl:renameFolderResponse"
name="parameters'/>
</wsdl :message>
<wsdl:message name="generateDocumentResponse'>
<wsdl:part element="impl:generateDocumentResponse"”
name="parameters'/>
</wsdl :message>
<wsdl:message name="createFolderResponse'>
<wsdl:part element="impl:createFolderResponse"
name="parameters'/>
</wsdl:message>
<wsdl:message name="installResponse'>
<wsdl:part element="impl:installResponse"
name="parameters'/>
</wsdl :message>
<wsdl :message name="extractPackageResponse'>
<wsdl:part element="impl:extractPackageResponse"
name="parameters'/>
</wsdl:message>
<wsdl:message name="renameFolderRequest'™
<wsdl:part element="impl:renameFolder"
name="parameters'/>
</wsdl :message>
<wsdl:message name="generateDocumentRequest'">
<wsdl:part element="impl:generateDocument"
name="parameters'"/>

208

</wsdl :message>
<wsdl:message name="createFolderRequest'™
<wsdl:part element="impl:createFolder"
name="parameters'/>
</wsdl :message>
<wsdl :message name="appendFileRequest'™>
<wsdl:part element="impl:appendFile" name="parameters'/>
</wsdl :message>
<wsdl:message name="extractPackageRequest'>
<wsdl:part element="impl:extractPackage"
name="parameters"/>
</wsdl :message>
<wsdl:message name="appendFileResponse'>
<wsdl:part element="impl:appendFileResponse"”
name="parameters'/>

</wsdl :message>
<wsdl:message name="installRequest'>
<wsdl:part element="impl:install" name="parameters"/>
</wsdl:message>
<wsdl:portType name="FileSystemWrapper">
<wsdl:operation name="install'>
<wsdl:input message="impl:installRequest"
name="installRequest"/>
<wsdl:output message="impl:installResponse"
name="installResponse"/>
</wsdl:operation>
<wsdl:operation name=''createFolder'">
<wsdl:input message="impl:createFolderRequest"
name="createFolderRequest"/>
<wsdl:output message="impl:createFolderResponse"
name="createFolderResponse"/>
</wsdl:operation>
<wsdl:operation name="generateDocument">
<wsdl:input message="impl:generateDocumentRequest"
name="generateDocumentRequest'/>
<wsdl:output message="impl:generateDocumentResponse"
name="generateDocumentResponse" />
</wsdl:operation>
<wsdl:operation name="appendFile">
<wsdl:input message="impl:appendFileRequest"”
name="appendFileRequest"/>
<wsdl:output message="impl:appendFileResponse”
name="appendFileResponse'/>
</wsdl:operation>
<wsdl:operation name="renameFolder'>
<wsdl:input message="impl:renameFolderRequest"
name="renameFolderRequest"/>
<wsdl:output message="impl:renameFolderResponse"
name="renameFolderResponse"/>
</wsdl:operation>
<wsdl:operation name="extractPackage'>

209

<wsdl:input message="impl:extractPackageRequest"
name="extractPackageRequest"/>
<wsdl:output message="impl:extractPackageResponse"
name="extractPackageResponse"/>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="FileSystemWrapperSoapBinding"
type="impl:FileSystemWrapper'>
<wsdlsoap:binding style="document”
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="install'™
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="installRequest'">
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="installResponse'>
<wsdlsoap:body use="literal"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="createFolder">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="createFolderRequest'>
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name=''createFolderResponse'™
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name='"'generateDocument'>
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="generateDocumentRequest'>
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name='"generateDocumentResponse'>
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="appendFile">
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="appendFileRequest'™>
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="appendFileResponse'™>
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="renameFolder'>
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="renameFolderRequest'™>
<wsdlsoap:body use="literal"/>
</wsdl:input>

210

<wsdl:output name='"renameFolderResponse'™>
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
<wsdl:operation name="extractPackage'™>
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="extractPackageRequest'">
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="extractPackageResponse'>
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="FileSystemWrapperService'>
<wsdl:port binding="impl:FileSystemWrapperSoapBinding"
name="FileSystemWrapper'>
<wsdlsoap:address
location="http://localhost:8081/FileSystemWS/services/FileSyst
emWrapper"/>

</wsdl:port>
</wsdl:service>
</wsdl:definitions>

ProjectRepositoryWrapper WSDL

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
targetNamespace="http://projectrepo.tez.alpay.erturkmen.com"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://projectrepo.tez.alpay.erturkmen.com"
xmlns:intf="http://projectrepo.tez.alpay.erturkmen.com"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.orqg/wsdl/soap/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema ">
<!--WSDL created by Apache Axis version: 1.4
Built on Apr 22, 2006 (06:55:48 PDT)-->
<wsdl:types>
<schema elementFormDefault=""qualified"
targetNamespace="http://projectrepo.tez.alpay.erturkmen.com"
xmlns="http://www.w3.0rqg/2001/XMLSchema ">
<element name="Ilookup">
<complexType>
<sequence>
<element name="key" type="xsd:string"/>
</sequence>
</complexType>
</element>
<element name="lookupResponse'>
<complexType>

211

<sequence>
<element name="lookupReturn" type="xsd:string"/>
</sequence>
</complexType>
</element>
</schema>
</wsdl:types>
<wsdl:message name="IookupRequest'">
<wsdl:part element="impl:Ilookup"” name="parameters"/>
</wsdl :message>
<wsdl:message name="lookupResponse'>
<wsdl:part element="impl:1lookupResponse"
name="parameters"/>
</wsdl :message>
<wsdl :portType name="ProjRepoWrapper'™>
<wsdl:operation name="lookup'>
<wsdl:input message="impl:lookupRequest"
name="]lookupRequest"/>
<wsdl:output message="impl:lookupResponse"
name="]lookupResponse"/>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="ProjRepoWrapperSoapBinding"
type="impl:ProjRepoWrapper'>

<wsdlsoap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="lookup'>
<wsdlsoap:operation soapAction=""/>
<wsdl:input name="lookupRequest'>
<wsdlsoap:body use="literal"/>
</wsdl:input>
<wsdl:output name="IlookupResponse'">
<wsdlsoap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="ProjRepoWrapperService">
<wsdl:port binding="impl:ProjRepoWrapperSoapBinding"
name="ProjRepoWrapper'™>
<wsdlsoap:address
location="http://localhost:8080/ProjRepoWS/services/ProjRepoWr
apper"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

212

APPENDIX H: APPLICATION CODE DEVELOPED
FOR WEB SERVICES (CASE STUDY 1)

CaliberRMWTrapper

package com.erturkmen.alpay.

import
import
import
import
import
public

String userName,

com.
com.
com.
com.
com.

starbase.caliber.
starbase.caliber.
starbase.caliber.
starbase.caliber.
starbase.caliber.

tez.ws.caliberrm;

* .
’

Baseline;

BaselineTree;
server.CaliberServer;
server.RemoteServerException;

class CaliberRMWrapper {
private static Session getSession(String serverAddress,

try {
return (new

String password) {

CaliberServer (serverAddress)) .login(userName, password);
} catch (Exception e) {
e.printStackTrace () ;

}

}

return null;

private static void logoff (Session session) {

}

session.logout () ;

public static
serverAddress, String userName, String password, String
projectName) { //Sequence’

int selectProjectByName (String

213

Session session = getSession (serverAddress,
userName, password);
Project[] projects;
try |
projects = session.getProjects|();
Project selectedProject = null;
selectedProject = null;
for (int projectID=0; projectID<
projects.length; projectID++) {
selectedProject = projects[projectID];
if (selectedProject.getName () .equals (projectName))
break;
}
logoff (session);
return
selectedProject.getProjectID() .getIDNumber () ;
} catch (RemoteServerException e) {
// TODO Auto-generated catch block
e.printStackTrace () ;
logoff (session);
return -1;

}

private static Project selectProjectByID(String
serverAddress, String userName, String password, int
projectID) {
Session session = getSession (serverAddress,
userName, password);
try {
return (Project) session.get (new

ProjectID(projectID));
} catch (RemoteServerException el) {
// TODO Auto-generated catch block
el.printStackTrace();
return null;

}

public static 1int createBaseline(String serverAddress,
String userName, String password, int projectID, String name)
{ //Sequence’7

try {
Session session = getSession(serverAddress,
userName, password);
Baseline Dbaseline = new Baseline (name, new

ProjectID(projectID), session);
baseline.save () ;
System.out.println (selectProjectByID (serverAddress,

userName, password,
projectID) .getCurrentBaseline () .getRequirementTree () .getRoot ()
.getChildCount ()) ;

BaselineTree tree = new
BaselineTree (baseline, selectProjectByID (serverAddress,

214

userName, password,
projectID) .getCurrentBaseline () .getRequirementTree (),
session) ;

tree.save () ;

System.out.println (baseline.getRequirementTree () .toStrin

g());

baseline.save () ;

return
baseline.getBaselineID () .getIDNumber () ;

} catch (Exception e) {
e.printStackTrace() ;
return -1;

}
public static 1int createProject (String serverAddress,
String userName, String password, String projectName) {

Session session = getSession (serverAddress,
userName, password);
try {
Project project = new Project(projectName,
session) ;
project.save () ;
return project.getID() .getIDNumber () ;
} catch (RemoteServerException e) {
// TODO Auto-generated catch block
e.printStackTrace() ;
return -1;
}
}
}
StarTeamWrapper

package com.erturkmen.alpay.tez.ws.starteam;

import java.text.DateFormat;
import java.text.SimpleDateFormat;

import java.util.Date;

import com.borland.starteam.impl.Folder;

import com.borland.starteam.impl.Item;

import com.borland.starteam.impl.Link;

import com.borland.starteam.impl.StarTeamFinder;
import com.borland.starteam.impl.Task;

import com.borland.starteam.impl.util.DateTime;
import com.borland.starteam.impl.View;

import com.borland.starteam.impl.ChangeRequest;

import com.borland.starteam.impl.Label;

215

import com.borland.starteam.impl.LinkCache;
import com.starbase.starteam.Project;
import com.starbase.starteam.Server;

import com.starbase.starteam.StarTeamURL;

public class StarTeamWrapper {
private static Server login(String serverAddress, String
userName, String password) {
Server server = new Server (serverAddress, 49201);
try {
server.logOn (userName, password);
} catch (Exception e) {
e.printStackTrace () ;
System.out.println ("Can not connect to
server") ;
return null;
}
return server;
}
public static String login(String url) { //Sequence’
StarTeamURL stUrl = getStarTeamURL(url) ;
Server server = login(stUrl.getHostName (),
stUrl.getUserName (), stUrl.getPassword());
String returnString = "connected to: " +
server.toString() ;
server.disconnect () ;
return returnString;
}
private static Server login(StarTeamURL stUrl) {
return Iogin(stUrl.getHostName (),
stUrl.getUserName (), stUrl.getPassword());

}
public static String selectProjectByName (String url,
String projectName) {
StarTeamURL stUrl = getStarTeamURL(url) ;
Server server = login(stUrl.getHostName (),
stUrl.getUserName (), stUrl.getPassword());
StarTeamFinder.openProject (url) ;
Project[] projects = server.getProjects();
Project selectedProject = null;
for (int projectID=0; projectID< projects.length;
projectID++) {
selectedProject = projects[projectID];

if (selectedProject.getName () .equals (projectName)) break;
}
server.disconnect () ;
return url+selectedProject.getName ()+"/";
}
public static String updateFile (String url, String
filename) { //Sequence’

216

Folder folder = StarTeamFinder.openFolder (url);
com.borland.starteam.impl.File file =
StarTeamFinder.findFile(folder, filename, false);
try {
file.checkin();
return "File checked-in
from:"+file.getLocalPath()+file.getLocalName () ;
} catch (Exception e) {
e.printStackTrace () ;
return "Check-in failed!!!";
}
}
public static String getlatestVersion (String url) {
Folder folder = StarTeamFinder.openFolder(url) ;
// StarTeamFinder.
com.borland.starteam.impl.File file =
StarTeamFinder.findFile(folder, filename, false);
try {
file.checkout () ;
return "File checked-out
to:"+file.getLocalPath()+file.getLocalName () ;
} catch (Exception e) {
e.printStackTrace () ;
return "Check-out failed!!!";

}

public static int createlabelForFile (String url, String
filename) { //Sequence?
com.borland.starteam.impl.View view =
StarTeamFinder.openView(url) ;
com.borland.starteam.impl.Label label =
view.createViewLabel (filename+" "+getDateTime (), "Created
after checking-in: "+filename, DateTime.now(), false, true);
return label.getID();
}
public static int createlabel (String url, String
labelBaseName) { //Sequence3
com.borland.starteam.impl.View view =
StarTeamFinder.openView(url) ;
com.borland.starteam.impl.Label label =
view.createViewLabel (labelBaseName+" "+getDateTime (), "Created
on: "+DateTime.now(), DateTime.now(), false, true);
return label.getID();
}
public static String freezelabel (String url, int
labelID) { //Sequence3
com.borland.starteam.impl.View view =
StarTeamFinder.openView(url) ;
Label label = findLabelByID(view, labellID);
label.setlLocked (true) ;
return "Successful!";

217

}
private static Label findLabelByID(View view, int

labelID) {
// Auto-generated method stub
com.borland.starteam.impl.Label[] labels =
view.getLabels () ;
com.borland.starteam.impl.Label selectedLabel =
null;
for (int i=0; i<labels.length; i++) {
selectedLabel=labels[i];
if (labelID==selectedLabel.getID()) break;
}

return selectedLabel;
}
private static String getDateTime () {
DateFormat dateFormat = new
SimpleDateFormat ("yyyy/MM/dd-HH:mm:ss") ;
Date date = new Date ()
return dateFormat.format (date);
}
private static StarTeamURL getStarTeamURL (String url) {
return new StarTeamURL (url);
}
public static String[] getProjects(String url) {

//Sequence7 Form
StarTeamURL stUrl = getStarTeamURL(url) ;

Server server = login(stUrl.getHostName (),
stUrl.getUserName (), stUrl.getPassword());
Project[] projects = server.getProjects();

String[] projectInfo = new String[projects.length];

for (int i=0; i<projects.length; i++) {
projectInfo[i] = projects[i].getName () ;

}

return projectInfo;

}

public static String createProject (String serverAddress,
String username, String password, String projectName, String
workingFolderPath) {
Server server = login(serverAddress, username,

password) ;
Project project = new Project (server, projectName,

workingFolderPath) ;

return
("starteam://"+username+":"+password+"@"+serverAddress+":49201
/"+projectNamne) ;

}

public static int createTask (String url, String name) {
Folder folder = StarTeamFinder.openFolder (url) ;
Task task = new Task (folder);
task.setName (name) ;
return task.getID();

218

}

public static int createlLink (String urll, int itemlID,
String itemlType, String url2, int item2ID, String item2Type)
{
Link link = new Link(getItem(urll, itemlID,
itemlType), getItem(url2, item2ID, item2Type));
return link.getID();
}
public static int[] getlinkedItems (String url, int
itemID, String itemType) {
Item item = getItem(url, itemID, itemType);
View view = StarTeamFinder.openView(url) ;
LinkCache linkCache = new LinkCache () ;
Link[] links = linkCache.getLinks (item);
Item[] linkedItems = new Item[links.length];
int[] linkedItemIDs = new int[links.length];
for (int i=0; i<links.length; i++) {
linkedItems[1i] = (Item)
links[i].resolveChild() ;
if (linkedItems[i].getType() ==
view.getServer () .typeForName ("TASK")) linkedItemIDs[i] =
linkedItems[i].getID();
}
return linkedItemIDs;
}
private static Item getItem(String url, int itemID,
String itemType) {
View view = StarTeamFinder.openView(url) ;
return
view.findItem(view.getServer () .typeForName (itemType), itemlD);
}
public static void setCRStatus (String url, int[]
itemIDs, int status) {
ChangeRequest cr = null;
for (int i=0; i<itemIDs.length; i++) {
cr =((ChangeRequest) (getItem(url,
itemIDs[1], "CHANGEREQUEST")));
cr.setStatus (status) ;

}
eMailWrapper
package com.erturkmen.alpay.tez.ws.email;

import javax.mail.*;
import javax.mail.internet.*;

import java.util.Properties;

219

import javax.activation.FileDataSource;
import javax.activation.DataHandler;

public class EmailSystemWrapper {

public static String send(String toAddress, String
mailSubject, String mailBody, String attachment) throws
Exception {

Properties props = new Properties();

props.put ("mail.smtps.auth”™, "true");

Session session = Session.getDefaultInstance (props,
null);

MimeMessage msg = new MimeMessage (session);

msg.setSubject (mailSubject);

msg.setContent (mailBody, "text/html");

/* Attachments not supported

* MimeBodyPart attachFilePart = new

MimeBodyPart () ;

FileDataSource fds =
new FileDataSource (attachment) ;
attachFilePart.setDataHandler (new
DataHandler (fds)) ;
attachFilePart.setFileName (fds.getName ()) ;
Multipart mp = new MimeMultipart();
mp.addBodyPart (textPart) ;
mp .addBodyPart (attachFilePart) ;
message.setContent (mp) ; */
msg.setFrom(new
InternetAddress ("alpaye@gmail.com")) ;

msg.addRecipient (Message.RecipientType.TO, new
InternetAddress (toAddress)) ;

Transport t = session.getTransport ("smtps");

t.connect ("smtp.gmail.com", "alpaye@gmail.com",

llll);
t.sendMessage (msg, msg.getAllRecipients());

return "success";

FileWrapper
package com.erturkmen.alpay.tez.ws.file;
import java.io.File;

import java.io.IOException;

public class FileSystemWrapper ({

private static String execute (String path, String
statement) {
try {

File dir = new File(path);

220

Process P =
Runtime.getRuntime () .exec ("c:\\windows\\system32\\cmd.exe /c
"+statement, null, dir):

int exitVal = p.waitFor():;

return (new Integer (exitVal)) .toString():;

} catch (IOException e) {

// TODO Auto-generated catch block

e.printStackTrace () ;

return "failure";

} catch (Exception e) {
e.printStackTrace () ;
return "unknown error";

}

}

public static String generateDocument (String iniFile) {

//expects e.qg.
iniFile=CustomerRegDocConf RE5213.ini
String statement = "docfactory -autofile

\"C:\\dev\\pletin\\conf\\docFac\\"+iniFile+"\"";
System.out.println ("statement:"+statement) ;
return execute ("C:\\Program
Files\\Borland\\CaliberRM\\", statement);
}
public static String appendFile(String siiFile) {
//expects e.g. siiFile=SRSDocConf RE52212.SII
//converts all docx files in C:\dev\docMerge)\,
converts them to doc, and appends them into out.doc

String statement ="ConvertDoc.exe
/I\"C:\\dev\\pletin\\conf\\docMerge\\"+siiFile+"\"";

//String statement ="docMerge.bat";

System.out.println (statement) ;

System.out.println (execute ("C:\\Program
Files\\Softinterface, Inc\\Convert Doc\\", statement)):;

execute ("C:\\dev\\docMerge\\", "ren out.DOC
SRS.DOC") ;

return execute ("C:\\dev\\docMerge\\", "xcopy
SRS.DOC \"C:\\dev\\pletin\\Project Documents\\\" /Y");

}

public static String createFolder (String
parentFolderPath, String folderName) {
String statement = "mkdir "+folderName;

return execute (parentFolderPath, statement);

}

public static String renameFolder (String
parentFolderPath, String oldName, String newName) {
String statement = "ren "+oldName+" "+newName;

return execute (parentFolderPath, statement);

}
public static String extractPackage (String
parentFolderPath, String packageName) {

221

}

String statement = "unzip "+packageName;

return execute (parentFolderPath,

ProjectRepository Wrapper

package com.erturkmen.alpay.tez.projectrepo;

import
import
import
import
import
public

DriverManager.getConnection ("jdbc:mysgl://192.168.74

n?" +

java.sqgl.Connection;

java.sql.ResultSet;

java.sql.DriverManager;

java.sql.SQLException;

java.sqgl.Statement;

class ProjRepoWrapper {
public static String lookup(String key)
// TODO Auto-generated method stub
null;

Connection conn =

Statement stmt =

null;

ResultSet rs = null;
String value = null;

try |
conn

"user=rooté&password=") ;

{

stmt = conn.createStatement ()

rs = stmt.executeQuery ("SELECT
‘ProjectInfo’ WHERE ("Key ' = \""+key+"\")");

rs.first () ;

value = rs.getString("Value");

} catch (SQLException ex)
ex.printStackTrace() ;

} finally {

// it is a good idea to release
// resources in a finally{} block
// 1n reverse-order of their creation

{

// if they are no-longer needed

if (rs !'= null)

try {

{

rs.close ()

} catch

(SQLException sqglEx)

rs = null;

}

if (stmt != null)

try |

stmt.close () ;

} catch

(SQLException sglEx)

stmt = null;

}
}

return value;

b}

222

{

{

}

statement) ;

.131/pleti

*

FROM

VITA

PERSONAL INFORMATION

Surname, Name: Ertiirkmen, Kulubey Alpay
Nationality: Turkish (TR)

Date and Place of Birth: March 24, 1981, Ankara

Marital Status: Married

Phone: +90 533 6324473

e-Mail: alpaye@gmail.com

EDUCATION

Degree Institution Year of Graduation
MS METU, Informatics Institute 2003
BS METU, Industrial Engineering 2001
High School ~ Ozel Aykan Koleji, Ankara 1997

WORK EXPERIENCE

Year Place Enrollment
2004-2009 Bilgi ve Teknoloji Grubu Sr. Technical Consultant
2001-2003 METU, Informatics Institute Research Assistant

FOREIGN LANGUAGES
English (Advanced)

PUBLICATIONS

1. Erturkmen, K.A., Demirors, O. (2009). Integration of CASE Tools to Software
Processes: A Case Study. In Industrial Proceedings of 16th European Systems
and Software Process Improvement and Innovation Conference (EuroSP1'2009)
(pp:11.1-11.2).

223

mailto:alpaye@gmail.com

