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ABSTRACT

ELEMENT-FREE GALERKIN METHOD FOR PLANE STRESS PROBLEMS

Akyazi, Fatma Dilay
M.Sc., Department of Mechanical Engineering
Supervisor: Prof. Dr. Suha Oral

February 2010, 129 pages

In this study, the Element-Free Galerkin (EFG) method has been used for the
analysis of plane stress problems. A computer program has been developed by using
FORTRAN language. The moving least squares (MLS) approximation has been used
in generating shape functions. The results obtained by the EFG method have been
compared with analytical solution and the numerical results obtained by MSC.
Patran/Nastran. The comparisons show that the mesh free method gives more

accurate results than the finite element approximation with less computational effort.

Keywords: Mesh Free Methods, Element-Free Galerkin Method, Plane Stress
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DUZLEMSEL GERILME PROBLEMLERI iICIN ELEMAN BAGIMSIZ
GALERKIN YONTEMI

Akyazi, Fatma Dilay
Yiiksek Lisans, Makina Miihendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Suha Oral

Subat 2010, 129 sayfa

Bu calismada, Eleman Bagimsiz Galerkin (EBG) yontemi diizlemsel gerilme
problemlerinin analizinde kullanilmistir. FORTRAN dilinde bir bilgisayar programi
gelistirilmistir. Hareketli en kiigiik kareler (HEK) yaklagimi ise bigim fonksiyonlarini
olusturmak i¢in kullanilmistir. EBG yontemiyle elde edilen sonuglar, analitik
yontemle ve MSC. Patran/Nastran ile elde edilen sayisal sonuclarla karsilastirilmistir.
Karsilagtirmalar gostermistir ki, agsiz yontem daha az hesaplama g¢abasiyla sonlu

elemanlar yaklagimindan daha iyi sonug¢ vermektedir.

Anahtar Kelimeler: Agsiz Yontemler, Eleman Bagimsiz Galerkin Yontemi,

Diizlemsel Gerilme
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CHAPTER 1

INTRODUCTION

1.1. Mesh Free Methods

Computer-aided design (CAD) tools are necessary in modeling and investigation of
physical phenomena in complex engineering systems. Designing such systems
necessitates either solving complex partial differential equations or discretizing the

domain and using approximate methods.

The most well-known approximation methods are the finite element method (FEM)
and the finite difference method (FDM). FEM requires the discretization of the
domain by a finite mesh. After meshing the problem domain in a decisive manner
and using the proper principle, complex partial differential equations are estimated
by a set of algebraic equations. Then, by assembling the element equations, the

system of algebraic equations for the problem domain can be obtained.

Meanwhile, the mesh free method (or meshless method), forms a system of algebraic
equations for the problem domain without requiring a predefined mesh. Instead,
mesh free methods represent the problem domain and the boundaries with sets of
scattered nodes in the domain and on the boundaries. These sets of scattered nodes
do not form meshes unlike the other numerical methods. That removes the obligation
of having a relationship between the nodes, at least for field variable interpolation.
Mesh free method is a new numerical analysis method. It has excellent accuracy and

rapid convergence [1].



1.2. The Advantages of the Mesh Free Methods

The finite element method is widely used in many fields of science to perform linear
or nonlinear, static or dynamic stress analysis for solids, structures or fluid flows. In
a structural simulation, the FEM enables to visualize stiffness and strength of the
structure parts. Although, currently, several modern and commercial FEM packages
allow detailed visualization of where structures bend or twist, and indicate the
distribution of stresses and displacements, the following limitations of FEM appear

to be obvious [2].

The very beginning step in FEM packages is to mesh the problem domain. This
process is very expensive since the analyst spends most of his/her time with the
generation of the mesh and that gives it the major share within the cost of a
simulation project. In order to decrease the cost, the aim should be to use more
computer power than the manpower, but this is not the way in FEM packages. Thus,

ideally the computer would accomplish the meshing without a man contribution.

The FEM packages produce discontinuous and less accurate stress values. In the
problems having large deformations, the results are less accurate due to element
distortions. Another disadvantage of FEM packages is the dependence on continuum
mechanics. That is, the elements formed cannot be split or broken which disables the
simulation of the fracture of material into a number of pieces. Therefore, the
elements should be in one piece or totally extinguished. Otherwise, it can cause
significant errors since the problem is essentially nonlinear and consequently the

results are path dependent.

To avoid errors from that type of problems, instead of splitting the elements, re-
meshing of the problem domain is introduced. In re-meshing, the problem domain is
re-meshed to prevent the distortion of the elements and make the nodal lines
coincident. Thus, the meshes would be fine and smooth. Re-mesh can be performed

by manpower or a mesh generation processor can be used. However, both solutions



have considerable handicaps. Manpower is expensive and less accurate; meanwhile,
the mesh generation processors should be powerful, advanced and adaptive.

Furthermore, the cost of re-meshing is very high for large 3D problems.

1.3. Scope of the Study

The main objective of this study is to implement a mesh free method, which is called
Element-Free Galerkin method, makes approximation based on nodes, not elements.
In each plane stress problem solved, the capability and accuracy of the method is
compared with analytical and FEM results. For this purpose, the parameters of the
EFG are changed and the optimal parameters for the method are determined for each

problem type.

The thesis covers the following chapters and their ingredients:

Chapter 2 presents the work done on the topic of the thesis. In chapter 3, the
construction of the EFG mesh free program and its steps are explained. In chapter 4,
the methodology of the mesh free program is given and several problems are studied.
Moreover, the comparisons of different solution techniques are performed. Finally, in

chapter 5, conclusion and discussion of the work done are presented.



CHAPTER 2

REVIEW OF LITERATURE

Mesh free methods emerged about thirty years ago. Its emergence can be traced back
to the work by Lucy in 1977 on “Smoothed Particle Hydrodynamics (SPH) Method”
[3]. Originally, SPH Method is a computational method used for the simulation of
fluid flows. After, it has been used in several fields, including astrophysics, ballistics,
volcanology and oceanology. SPH method is a mesh free Lagrangian method where
the coordinates move with fluid. In the smoothed-particle hydrodynamics (SPH)
method, fluid is divided into a number of separate elements called as particles and
the distance between them known as ‘“smoothing length”. The kernel function
“smoothed” the particles over the distance which means the summation of the related
properties of all the particles in the kernel range gives the physical quantity of each
particle.

Lucy used mesh free method for modeling astrophysical phenomena without
boundaries such as exploding stars and dust clouds. After Lucy’s work, in 1982,
Monaghan introduced the “Kernel Estimate” method to carry SPH method to more
rational basis [4]. However, Kernel estimation method suffers from less accuracy and
the method needs to be improved by further research. Nowadays, it can be said, these

methods have improved significantly.

SPH method displays tensile instability. This tension instability is solved by
Reproducing Kernel Particle Method (RKPM) under the scope of Lagrangian Kernel.



In 1995 Swengle, Hicks and Attaway and in 1994 Dyka have had substantial
contribution in the study of SPH method instabilities [5-6].

In 1995, Liu, Jun and Zhang have presented a correction function for Kernels while
in 1996 Johnson and Biessel have presented a method to upgrade strain calculations
[7-8]. Other notable modifications or corrections of the SPH method include the
correction by Belytschko et al. in 1996 [9] and the integration Kernel correction by
Bonet and Kulasegaram in 2000 [10].

In 1992, Moving Least Square approximation is used in a mesh free method
(Galerkin Method) which is pioneered by B. Nayroles, G. Touzot and P. Villon for
solving partial differential equations [11]. And they named that method as the
Diffuse Element Method (DEM). DEM is advantageous over finite element methods
in respect of not relying on a grid and being more precise in the calculation of the

derivations of the reconstructed functions.

After them, in 1994, the method has been modified and refined by T. Belytschko, Y.
Y. Lu and L. Gu and called as Element Free Galerkin (EFG) method [12]. In this
method, they used the moving least-squares interpolants to construct the trial and test
functions for the variational principle (weak form) and weight functions. In
contradistinction to DEM, they introduced certain key differences in the
implementation to improve the accuracy. Also in their paper, they illustrated these
modifications with the examples where no volumetric locking occurs and the rate of

convergence highly exceeded that of finite elements.

It is evident that this type of methods has considerable advantages such as
consistency and stability, yet SPH method is still cheaper. Moreover, these methods
have improvements toward the moving least squares and partition of unity. Since the
standard, SPH method has a problem of getting accurate interpolation for the
particles scattered arbitrarily, many developments were made to improve the
completeness of the SPH method. One of the most important ones is the

normalization approximation introduced by Johnson and Beissel in 1996 [8], the



other is the moving least squares (MLS) approximation first implicitly used by
Nayroles [11] and then classified by Belytschko et al. Two approaches have been
proposed to construct EFG shape functions; one is the moving least squares

approximation and the other is partition of unity approximation.

MLS is a method of reconstructing continuous functions from a set of scattered
nodes. The reconstructed value is calculated for a node around which a region is
defined. A weighted least squares measure tended to that region. Although MLS
approximation has pioneered to the development of many mesh free methods, the

shape functions generated by this method do not have the Kronecker delta function

property.

Instead, in 1999, a new method called the point interpolation method (PIM) was
developed by G. R. Liu and Gu to construct shape functions [13]. In contrast to MLS

method, this new method contains shape function which possesses Kronecker delta

property.

As mentioned before, there is another method for the construction of shape functions;
the partition of unity method. The generalized finite element method (GFEM) was
introduced separately by Babuska et al. and by Duarte and Oden [14]. They called
the method with different names; Babuska et al. called it as finite element partition of
unity method and they published several articles while Duarte and Oden used the
names of hp clouds or cloud-based hp finite element method [15]. The main common
characteristic of these methods is the usage of a partition of unity. They described
PoU as a set of functions values of which sum to the unity at each node in a domain.
Using partition of unity in the construction of the shape functions prevent from
numerical integration problems related to the usage of moving least squares.
Furthermore, it is claimed that the use of a finite element partition of unity helps to
implement the essential boundary conditions. However, presently, the moving least
squares (MLS) approximation is the most popular method for generating the mesh
free shape functions since it is much cheaper than the partition of unity method in

integration of the stiffness matrix.



In 1999, another mesh free method has been introduced to this area, called the
Renormalized Meshless Derivative (RMD) by Vila [16]. It is aimed to obtain
accurate approximation of derivatives under the scope of collocation approaches via

this new mesh free method.

Another success is achieved in 1998 by Bouillard and Suleau. They have succeeded

in introducing a mesh free formulation to acoustic problems [17].

Meanwhile in 1999, J. Bonet and S. L. Lok published a paper which presented a new
variational framework for various existing Smooth Particle Hydrodynamic (SPH)
techniques and a new corrected SPH formulation [18]. They claim that to preserve
angular momentum, the gradient of a linear velocity field must be calculated
correctly with the SPH equations. They presented a corrected algorithm which is a
combination of Kernel correction and gradient correction and they illustrated the

theory with several examples related to fluid dynamics.

In 2000, J. Bonet has published another paper with S. Kulasegaram this time about
‘Correction and stabilization of smooth particle hydrodynamics with application in
metal forming’ [10]. In the paper the SPH with the corrected kernel is referred to as
corrected smooth particle hydrodynamics (CSPH). They claimed that the instability
of the SPH method is based on under integration of the weak form, and they got the
stability by a least-squares stabilization procedure. Further, they illustrated the
improvement in SPH method in stability and accuracy aspects. They also used CSPH
method to metal forming simulations and they proved the effectiveness of the

method by numerical examples.

In 2001, E. O~nate, C. Sacco, and S. Idelsohn introduced a stabilized Finite Point
Method (FPM), where the stabilization is based in Finite Calculus (FIC), for the
mesh free analysis of incompressible fluid flow problems [19]. In the paper, it is
proved to have semi-implicit numerical solution for incompressible fluids using this

method with several examples.



In contrast to SPH or some element-free methods, the Meshless Local Petrov-
Galerkin (MLPG) method is truly meshless method. This approach developed by
Atluri and his colleagues in 1998 [20], is based on writing the local weak form of
partial differential equations over overlapping local sub-domains and within these
local sub-domains the integration of the weak form is also performed. This makes the
method independent from any need of any kind of meshes or background cells. The
MLPG method has been used in several problems in different areas such as, fracture
mechanics by Atluri, Kim and Cho in 1999 [21-22] and fluid mechanics by Lin and
Atluri in 2001 [23] etc.

One of the latest improvements in mesh free methods is the Space-time Meshless
Collocation Method (STMCM) which is introduced by Hennadiy Netuzhylov and
Andreas Zilian in 2009 [24]. The STMCM is developed with the help of
Interpolating Moving Least Squares technique. Thus, it is possible to have simplified
implementation of boundary conditions because the kernel function enables the
fulfillment of the Kronecker delta property. In their paper, Netuzhylov and Zilian
have solved numerous examples to verify this method in different problems such as

interpolation problems or PDEs.

In 2008, Wenjing Zhang, Maohui Xia and Lechun Liu have published an article
about a new mesh free method which is the point interpolation method based on
radial basis function or RPIM [1]. They asserted that this method has not only all the
advantages of mesh free methods but also the Kronecker delta function property. The
main difference of this new method is to have shape function constructed by the
combination of both radial and polynomial basis functions and this makes the
implementation of the boundary conditions functional as the traditional finite
element methods. The article also has solution for a two-dimensional static elastic

problem with success.



Moreover, recently several authors have proposed to use mixed interpolations which
is a combination of finite elements and mesh free methods, in order to gain the

advantages of both methods.



CHAPTER 3

THE ELEMENT-FREE GALERKIN METHOD

The Element-free Galerkin (EFG) method is one of the mesh free methods which has
been developed by Belytschko et al. [12]. In EFG, the moving least squares (MLS)
approximation is used for construction of the shape functions and the Galerkin weak
form is used to develop the discretized system equations. A background mesh is
required. EFG is confirming since MLS shape functions are consistent and
compatible and the constrained Galerkin approach is used to impose the essential

boundary conditions.
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Figure 3.1 The background mesh of a problem domain

In EFG method, it is common to use high order polynomials for shape functions but
even linear polynomial based functions give quite accurate results for the curved
boundaries which are represented by nodes. EFG shape functions can interpolate the
two nodes at any location on the boundary since the shape functions are formed by
nodes in a moving local domain. Actually, there are numerous ways to perform
geometric interpolation to simplify the geometry by varied software in the computer.

Moreover, it is very essential to simplify the model mathematically.

11



3.1. Node Generation

The problem domain is represented by a set of scattered nodes, as schematically

illustrated in Figure 3.1.1.

Figure 3.1.1 Nodes in a problem domain

One of the advantages of using a mesh free method is that it does not require meshes
or elements. There is no need to use meshes or elements for field variable
interpolation. Instead, the nodes are scattered in the problem domain. Moreover, the

node generation can be fully automated without any human intervention. This

12



automated programs based on triangulation (since the most convenient mesh to use is
a mesh of triangular cells) algorithm (e.g. Delaunay triangulation [25]) are very
simple, easy to find and available for both 2D and 3D domains. For an analyst, using

such algorithms really reduces the time of an analysis process.

Worono Regon

Delaunay
Triangulation

Figure 3.1.2 Delaunay triangulation

For some mesh free methods such as the element free Galerkin methods (EFG), a
background mesh is need to be used in integration of the system matrices. However,
the shape of the background mesh is not strict, provided that accuracy in the

integrations is adequate.
In this study, MSC.Patran/Nastran software program is used to have background
meshes for generating the nodes. Figure 3.1 presents a sample background mesh that

can be used for an analysis.

Figure 3.1.3 shows both background mesh and nodes added to it. The nodes are

created at the center and the three vertices of the triangular element.

13
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Figure 3.1.4 Node and integration point distribution on a background mesh

3.2. Shape Functions

The construction of the shape function has been the main and the most important
issue for the mesh free methods while in the finite element analysis methods the
shape functions are based on elements thus can be computed directly and satisfy the

Kronecker delta function property.

First of all, in mesh free methods, a shape function must satisfy a condition called
“partition of unity”. This condition is required in a shape function in order to be able
to make any rigid motion of the problem domain. Secondly, there are other
conditions that a shape function can satisfy preferably such as “linear field
reproduction” or “Kronecker delta function property”. Linear field reproduction
condition is required for a shape function to pass the standard patch test. The patch

test often used in testing finite elements, is a simple indicator of the quality of a finite

15



element, developed by Bruce Irons [26-27]. If the finite element solution is same as
the exact solution, it can be said that the elements pass the patch test. Passing the
patch test is not compulsory for a mesh free shape function because a shape function
which does not pass this test can still be used if it provides a converged solution.
Nevertheless, many finite elements methods cannot pass the patch test yet they are
used in finite element packages. Next, the Kronoker delta function condition is also
preferable for mesh free methods shape functions since this condition simplifies to

put the boundary conditions into effect.

In mesh free methods, the shape functions are based on arbitrarily distributed nodes
in a domain without any relation between them. This makes it harder to construct the
shape function. One of the tough issues in the area of mesh free methods is to
generate more effective methods for creating the shape functions. For this purpose, a

method should satisfy some basic requirements;

e Arbitrary nodal distribution: the nodes are flexible to be distributed
without a relation between them.

e Stability: the algorithm must be stable. The algorithm that can be proven
not to magnify approximation errors is called numerically stable
algorithm. In mesh free methods, this errors or uncertainties can be due to
the arbitrarily distributed nodes. Thus, the stability of the algorithm
should be checked.

o Consistency: a certain order of consistency should be satisfied since it is
fundamental for the convergence of the results when the spaces between
nodes are decreased. Consistency can be described as the capability of the
method to reproduce the lowest order fields of the complete polynomials
at any node in the problem domain. Namely, a method reproduces
polynomial up to n™ order, then the method can be said to have nth order
consistency.

e Efficiency: the efficiency of the algorithm should be in the same order of

complexity with of FEM.

16



e Compact support: the field variable interpolation domain (termed the
support domain or influence domain (ID)) should be small compared to
whole problem domain in order to avoid irredeemable cost of the
procedure causing from expensive construction of the shape function.

e Delta function property: the shape function preferably should satisfy the
Kronecker delta function. This requirement also saves money for the
program since it facilitates to impose the boundary conditions.

e Compatibility: again, it is preferable to be compatible for the field
approximation all around the problem domain. A compatible shape
function requires that the approximation is continuous on the boundaries
between sub-domains. Both consistency and compatibility affect the

accuracy and convergence of the numerical results.

If a shape function of a mesh free method possesses all the characteristics above, the
method would have very accurate results. In order to have a good shape function,
there are different ways of generating the function as introduced in the literature so
far; smoothed particle hydrodynamics (SPH) method, reproducing kernel particle
method (RKPM), general kernel reproduction (GKR) method, moving least squares
(MLS) methods, point interpolation methods (polynomial or radial) (PIM), partition
of unity methods (PoUFE or hp-clouds) etc..

If the mostly used functions, which are MLS, PIM and SPH, are compared; MLS
shape functions are both consistent and compatible while the PIM shape functions
are only consistent but not compatible. On the contrary, the SPH shape functions are

compatible but not consistent.

17



3.3. Formulation

Consider a plane stress problem where,

1 v O

—_E v 1 0
T (1-v?2) 0 0 1-v (3'])

€x

‘- H 42
Vxy
Ox

. H 43
Oy

o = D¢ (3.4)

Figure 3.3.1 Representation of an Influence Domain (ID)

Let there be Myp integration points (IP) and M nodes in the domain. Note that (Mjp >
3 or 4M) must be satisfied. Each IP has an influence domain of radius pp. Consider
an [P at point (X, y). Let there be N nodes in the influence domain of this IP. Let the
distance of the i™ node from IP is d;. The weight function and its derivatives are

defined as follow:
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di = (x; —x)2 + (y; — ¥)?

w; = 1-— 6Si2 + 8Si3 - 351'4

ow; 12
P Che 257 + 5:°)(x; — x)
ow; 12
oy = o (51— 257 +5°) (i — ¥)

Assume displacement as,

Oy

a

uslt x y -|%
u=pay

a1

a

v=[1 x y ]|

[ ] s
V=pay

Define the error function for u as,

Ju = XY wi(pia; — uy)?

g

day

Y wipT (piay, —u) =0
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This gives Aa, = RU where, (3.17)

A=Y wp"p; (3.18)
R=[wipi" wp," - wypy'] (3.19)
U=[u; u; - Un] (3.20)
Then,
a, = A"'RU (3.21)
Define,
C=AR (3.22)
Then,
u=pCU (3.23)
Let,
@ =pC (3.24)
Then,
Uq
U=dU=[p, ¢y - o] l“zl (3.25)
Un

where u; is the nodal displacement parameter vector in u direction at node 1.
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Similarly,

v=pCV (3.26)
And
U1
v=0V=[¢; ¢ - ¢n] "4 (3.27)
Un

Then,
tad it ks | o [ Y

Let,

P = ‘{’)i d?l] (3.29)

And
U

5 = [vi] (3.30)

Then,

§ =XV ;6 (3.31)
Ex a/ax 0 a¢)l/ax 0

£ = [ey] =| 0o a/ayls=3x¥| o a¢p;/9y| 6, (3.32)
Yy a/dy 0/0x 0¢;/dy 0¢;/0x
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Let,

Bi=] 0 d¢;/0y (3.33)
dp;/dy 0¢;/0x

Then,

e =YV B;5; (3.34)
Note that,

2 [Br 222 ] (3.36)
where,

L =Pr+p (3.37)
g_j=g—§c+pg—; (3.38)
g—z =0 1 0 ..] (3.39)
% =0 0 1 .] (3.40)
Z_zz —1(3_5_3_? ) (3.41)
T=ATG -0 (342)
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0A 0 i

==Xt (343)
0A 0 i

P IiV%piTpi (3.44)
OR _[ows_ T 0wz T owN T

ax | ox b1 0x b2 T 9x bn ] (3'45)

OR _ [Owi T Qw2 T OWN T
E=5rn" TEp - Sre| (3.46)

Consider the functional strain energy,
m==[e'DedV (3.47)

Substituting we get,

T
m=2[CVB:5) DX} B;s)dV (3.48)
Then,
m=_¥M 35" (f B DB; V)5 (3.49)

Let define the nodal stiffness matrix Kj; as the basic component of assembling the

global stiffness matrix of the system.

K;; = [ B,"DB;dv (3.50)
Then,

1
m =YY 6" K;6; (3.51)
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om
55 =0 (3.52)

YUY K6 =X (3.53)
KA=F (3.54)
This gives,

A=K"'F (3.55)

This is the displacement parameter vector for the entire body. Then for each IP, the

displacement parameter vectors U and V can be extracted from A.

Using the expressions u =pCU (Equation 3.23) and v = pCV (Equation 3.26), the
displacements of any point can be calculated by considering the nearest IP to that
point.

The stresses can be calculated as,

o = De (3.57)
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CHAPTER 4

NUMERICAL EXAMPLES

In this chapter, EFG method is used for some standard plane stress problems. The
results are compared with analytical and FEM results. The parameters in the EFG
method are the background mesh density, the number of nodes and the number of
Gauss integration points. Generally, the finer background mesh provides the more
accurate results. However, the density should be optimized considering CPU time,
modeling cost and accuracy. On the other hand, increasing number of Gauss
integration points give higher accuracy, but it is important not to have a too coarse
background mesh when the number of integration points is very large. In this work,
by using different densities of background mesh and different numbers of integration
points, the displacement and stress distribution of the problem are found using EFG

method and the results are compared with analytical and FEM results.
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4.1. Cantilever Beam under Parabolic End Load

A cantilever beam subjected to a parabolic end load is shown in Figure 4.1.1.

M

Figure 4.1.1 A cantilever beam subjected to parabolic end loading

The exact solution is given by Timoshenko and Goodier [29]. According to that the

displacement in the x direction is,

uw=—21(6L-30x + @ +) [y? -] (4.2)
6EI y 4 y )

where,

1= (4.3)

The displacement in the y direction is,

P

vV=—
6EI

[(44—5v)22£4—(3L——x)x2] (4.4)

The normal stress on the cross section of the beam is,

P(L—x)
0y ===V (4.5)
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The normal stress in the y direction is,
g, =0 (4.6)

The shear stress on the cross section of the beam is,

P [hn?
R yz] (4.7)

The loading P is distributed in a form of parabola at the right end of the beam:

. 2_ .
Loading: P(i) = 1000 [% N (4.8)

In this example, the properties for this cantilever beam are taken as follows:

Young’s modulus:  E = 200000 N/mm”
Poisson’s ratio: v=03

Height of the beam: h = 120mm

Length of the beam: L = 480 mm

For the first run of the example, there are 128 elements in the background mesh. The

nodes are defined at the center and vertices of each element and seven Gauss

integration points are used for each element. The background mesh, nodes and

integration points used in this run are shown in Figure 4.1.2, Figure 4.1.3 and Figure

4.1.4 respectively;
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Figure 4.1.2 The background mesh
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Figure 4.1.4 Node and integration point distribution on the background mesh

Table 4.1.1 and Figure 4.1.5 show the displacement results in x direction calculated

by EFG program, finite element method and analytical method;
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Table 4.1.1 Comparison of the displacements in x direction

u u
X y Analytic EFG Error %
0 -60 0.000 0.000 0.000
0 -30 0.000 0.000 0.000
0 0 0.000 0.000 0.000
0 30 0.000 0.000 0.000
0 60 0.000 0.000 0.000
240 -60 -0.180  -0.179 0.469
240  -30 -0.089  -0.088  0.873
240 0 0.000 0.000 0.000
240 30 0.089 0.089 0.006
240 60 0.180 0.180 0.074
480 -60 -0.240  -0.239  0.215
480 -30 -0.119  -0.118 0.384
480 0 0.000  0.000  0.000
480 30 0.119 0.119 0.227
480 60 0.240 0.240 0.081

Displacement in x Direction (x=480 mm)
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Figure 4.1.5 Graphical comparison of displacements in x direction
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Table 4.1.2 and Figure 4.1.6 show the displacement results in y direction calculated

by EFG program, finite element method and analytical method,

Table 4.1.2 Comparison of the displacements in y direction

\4

v
X y Analytic EFG Error %
0 -60 0.000 0.000 0.000
0 -30 0.000 0.000 0.000
0 0 0.000 0.000 0.000
0 30 0.000 0.000 0.000
0 60 0.000 0.000 0.000

240 -60  -0.428 -0.424  0.776
240 -30  -0.428  -0.421 1.631
240 0 -0428 -0.419 1.891
240 30 -0.428 -0.420 1.639
240 60  -0.428 -0.424  0.776

480 -60 -1.335 -1326  0.679
480 -30  -1.335 -1.326  0.670
480 0 -1.335 -1326 0678
480 30 -1.335 -1.326  0.669
480 60 -1.335 -1.326  0.679
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Displacement in y Direction (x=480 mm)
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Figure 4.1.6 Graphical comparison of displacements in y direction

Table 4.1.3, Figure 4.1.7 and Figure 4.1.8 show the Oy results calculated by EFG

program, finite element method and analytical method;
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Table 4.1.3 Comparison of the Oy results

(0 D.¢ (00¢
X Y Analytie EFG PTOr”
0 -60 -200.000 -191.932  4.034
0 -30 -100.000 -95.868  4.132
0 0 0000  3.078 100.000
0 30 100.000 103.965 3.814
0 60 200000 203506 1.723

240 -60 -100.000 -98.581 1.419
240 -30  -50.000 -59.000 15.255
240 0 0.000 -0.487 100.000
240 30  50.000 56.827 12.014
240 60 100.000  98.582 1.418

480 -60 0.000 -0.955 100.000
480 -30 0.000 0.912 100.000
480 0 0.000 0.095 100.000
480 30 0.000 -0.756 100.000
480 60 0.000 0.955 100.000
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Figure 4.1.7 0 distribution obtained by Patran/Nastran
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Figure 4.1.8 Graphical comparison of Oy results
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Table 4.1.4, Figure 4.1.9 and Figure 4.1.10 show the Oy, results calculated by EFG

program, finite element method and analytical method;

Table 4.1.4 Comparison of the Oy, results

oxy oxy
X Y Analytie EFG PTOr”
0 -60 0000 -13.420 100.000
0 30 9375 -6768 27.811
0 0 -12500 -8342 33.261
0 30 9375 -9556 1.898
0 60 0000 -17.095 100.000

240 -60 0.000 0.000  0.000
240 -30 -9.375  -10.203 8.116
240 0 -12.500 -11.677  6.587
240 30 -9.375  -10.352  9.438
240 60 0.000 0.000  0.000

480 -60 0.000 -0.717 100.000
480 -30 -9.375 -10.487 10.604
480 0 -12.500 -12.434  0.530
480 30 -9.375  -10.691 12.313
480 60 0.000 -0.716 100.000
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Figure 4.1.10 Graphical comparison of 0y, results

For the second run, the same problem is modeled by a more refined background
mesh which has 200 elements. The nodes are defined at the center and vertices of

each element and seven Gauss integration points are used for each element. The
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background mesh, nodes and integration points used in this run are shown in Figure

4.1.11, Figure 4.1.12 and Figure 4.1.13;

Figure 4.1.11 The background mesh

: X R N R i< b o Wb i
K S 3 - 3
o

-w : e e “w. i A R ri=oei=min
Qasw = S B »% Qgs

&l< N " hﬁ) &&Q

3 2 A

4
< B e R e M = . i P
b

o
&\.

k"'ﬁ,\" '@‘Ws- o 3 V;\' . "’\VQ" “\Q i
g ‘zﬂ‘k\sheg’s 'hehaabehoh X VR VN Vel
QFW}' }‘V}‘WK&;‘WWW@V ‘»“Qi‘ i 23 B3 i3 B
G DD e DD S i A B 2 DS e SAD we SAPC or SADC e SADC e WD e SN Y L o TS EARTL: LA i 4
< S A A

SR B0 e AR e S oS M A S S L S o
B T IR B TR IX PR R I ¥ g g i 8

N A

Figure 4.1.13 Node and integration point distribution on the background mesh

Table 4.1.5 and Figure 4.1.14 show the displacement results in x direction calculated

by EFG program, finite element method and analytical method;
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Table 4.1.5 Comparison of the displacements in x direction

u u
X Y Analytie EFG FrOr”e
0 -60 0000 0000 0.000
0 -36 0000 0000 0.000
0 -12 0000 0000 0.000
0 12 0000 0000 0.000
0 36 0000 0000 0.000
0 60 0000 0000 0.000
240 60 -0.180 -0.179  0.415
240 36 -0.107 -0.106  0.442
240 -12 -0.035 -0.035 0.226
240 12 0035 0035 0725
240 36 0107 0106  0.683
240 60 0180 0.179 0573
430 -60 -0240 -0239  0.290
430 36 -0.143  -0.143  0.244
430 -12 -0.047 -0.047 0.183
40 12 0047 0047 0592
430 36 0143 0142  0.446
430 60 0240 0239  0.405
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Figure 4.1.14 Graphical comparison of displacements in x direction
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Table 4.1.6 and Figure 4.1.15 show the displacement results in y direction calculated

by EFG program, finite element method and analytical method;

Table 4.1.6 Comparison of the displacements in y direction

\4 \4

X Y Analytie EFG FrOr”e
0 -60 0000 0000 0.000
0 -36 0000 0000 0.000
0 -12 0000 0000 0.000
0 12 0000 0000 0.000
0 36 0000 0000 0.000
0 60 0000 0000 0.000

240 -60 -0.428 -0.425  0.661
240 -36 -0.428 -0.422  1.337
240 -12  -0.428 -0.420  1.667
240 12 -0.428 -0.420 1.670
240 36 -0.428 -0.422  1.348
240 60 -0.428 -0.425  0.666

480 -60 -1.335 -1.324  0.796
480 -36 -1.335 -1.324  0.787
480 -12 -1.335 -1.324  0.789
480 12 -1.335 -1.325  0.787
480 36 -1.335 -1.324  0.789
480 60 -1.335 -1.324  0.790
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Figure 4.1.15 Graphical comparison of displacements in y direction

Table 4.1.7, Figure 4.1.16 and Figure 4.1.17 show the Oy results calculated by EFG

program, finite element method and analytical method;
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Table 4.1.7 Comparison of the Oy results

OXx (00.¢

0,
Y Analytic EFG TTOr

-60 -200.000 -200.255 0.127
-36 -120.000 -127.873  6.157
-12 -40.000 -47.187  15.231
12 40.000 42.820  6.586
36 120.000 127.443 5.840
60 200.000 205.936  2.882

S O O O O O

240 -60 -100.000 -100.122  0.122
240 -36 -60.000 -60.797 1.310
240 -12 -20.000 -17.515 12.424
240 12 20.000  20.508 ~ 2.478
240 36 60.000 59.477  0.872
240 60 100.000 99.616  0.384

480 -60 0.000 -0.836 100.000
480 -36 0.000 -1.104 100.000
480 -12 0.000 0.352 100.000
480 12 0.000 -0.684 100.000
480 36 0.000 -1.307 100.000
480 60 0.000 -0.039 100.000
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Figure 4.1.16 Oy distribution obtained by Patran/Nastran
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Figure 4.1.17 Graphical comparison of Oy results
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Table 4.1.8, Figure 4.1.18 and Figure 4.1.19 show the Oy, results calculated by EFG

program, finite element method and analytical method;

Table 4.1.8 Comparison of the Oy, results

oxy oxy
X Y Analytic EFG DTOr”
0 60 0000 -16.464 100.000
0 -36 -8000 -9.750 17.948
0 -12 -12000 -3.157 73.694
0 12 -12000 -0.86] 92.828
0 36 -8000 -3.083 61463
0 60 0000 -6.495 100.000

240 -60  0.000 -2.406 100.000
240 -36  -8.000 -8299  3.607
240 -12 -12.000 -11.340  5.501
240 12 -12.000 -11.276  6.037
240 36 -8.000 -7.195 10.060
240 60  0.000  1.820 100.000

480 -60 0.000 -1.042 100.000
480 -36 -8.000 -9.178  12.839
480 -12 -12.000 -11.466  4.447
480 12 -12.000 -12.235 1.919
480 36 -8.000 -8.240 2918
480 60 0.000 -0.985 100.000
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For the third run, the same problem is solved by using the previous background mesh
but increasing the number of integration points. There are 200 elements in the
background mesh. The nodes are defined at the center and vertices of each element

and thirteen Gauss integration points are used for each element.

Table 4.1.9 and Figure 4.1.20 show the displacement results in x direction calculated

by EFG program, finite element method and analytical method;

Table 4.1.9 Comparison of the displacements in x direction

u u
X Y Analytie EFG FrOr”e
0 -60 0000 0000 0.000
0 -36 0000 0000 0.000
0 -12 0000 0000 0.000
0 12 0000 0000 0.000
0 36 0000 0000 0.000
0 60 0000 0000 0.000

240 -60 -0.180 -0.177 1.780
240 -36 -0.107 -0.105 1.696
240 -12 -0.035 -0.035 2164
240 12 0.035 0.035 1.323
240 36 0.107  0.105 1.750
240 60 0.180  0.177 1.678

480 -60 -0.240 -0.237 1.273
480 -36 -0.143 -0.141 1.282
480 -12 -0.047 -0.047 1.477
480 12 0.047  0.047 1.077
480 36 0.143 0.141 1.173
480 60 0.240  0.237 1.203

44



Displacement in x Direction (x=480 mm)
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Figure 4.1.20 Graphical comparison of displacements in x direction

Table 4.1.10 and Figure 4.1.21 show the displacement results in y direction

calculated by EFG program, finite element method and analytical method;
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Table 4.1.10 Comparison of the displacements in y direction

A\ A\

X Y Analytie EFG FrOr”e
0 -60 0000 0000 0.000
0 -36 0000 0000 0.000
0 -12 0000 0000 0.000
0 12 0000 0000 0.000
0 36 0000 0000 0.000
0 60 0000 0000 0.000

240 60 -0428 -0417 2540

240 36 -0428 -0414 3217

240 -12 0428 -0412  3.549

240 12 -0428 -0412  3.553

240 36 -0428 -0414  3.221

240 60 -0428 -0.417 2545

430 -60 -1335 -1308 2054

430 36 -1335 -1308 2052

430 -12 -1335 -1308 2049

480 12 -1335 -1308 2048

430 36 -1335 -1308 2048

430 60 -1335 -1308  2.051
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Figure 4.1.21 Graphical comparison of displacements in y direction
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Table 4.1.11, Figure 4.1.22 and Figure 4.1.23 show the Oy results calculated by EFG

program, finite element method and analytical method;

Table 4.1.11 Comparison of the Oy results

(0 .¢ (0 )¢ E Y

X Y Analytic EFG TN
0 -60 -200.000 -189.250  5.375
0 -36 -120.000 -112.662  6.115
0 -12 -40.000 -36.074 9.814
0 12 40000 40514  1.268
0 36 120000 117.102 2.415
0 60 200000 193.690 3.155

240 -60 -100.000 -99.909  0.091
240 -36 -60.000 -60.250  0.415
240 -12 -20.000 -19.516  2.418
240 12 20.000 19.241  3.797
240 36  60.000 62954  4.692
240 60 100.000 99.359  0.641

480 -60 0.000 -0.908 100.000
480 -36 0.000 -1.311 100.000
480 -12 0.000 1.208 100.000
480 12 0.000 -1.360 100.000
480 36 0.000 -0.283 100.000
480 60 0.000 0.426 100.000
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Figure 4.1.23 Graphical comparison of Oy results

48



Table 4.1.12, Figure 4.1.24 and Figure 4.1.25 show the 0y, results calculated by EFG

program, finite element method and analytical method;

Table 4.1.12 Comparison of the O,y results

oxy oxy
X y Analytic EFG Error %
0 -60 0.000 -3.152 100.000
0 -36 -8.000 -3.232  59.595
0 -12 -12.000 -3.312 72397
0 12 -12.000 -3.392  71.731
0 36 -8.000 -3.472 56.598
0 60 0.000 -3.552 100.000

240 -60 0.000 -1.275 100.000
240 -36 -8.000 -8.411 4.883
240 -12 -12.000 -12.663 5.233
240 12 -12.000 -11.557  3.688
240 36 -8.000 -7.088  11.398
240 60 0.000 0.386 100.000

480 -60 0.000 -1.020 100.000
480 -36 -8.000 -8.690  7.943
480 -12 -12.000 -12.897  6.955
480 12 -12.000 -13.154  8.776
480 36 -8.000 -8.096 1.180
480 60 0.000 -0.877 100.000
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Figure 4.1.24 0y, distribution obtained by Patran/Nastran
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The results obtained from the different EFG solutions are compared. Table 4.1.13
and Figure 4.1.26 show the displacement results in x direction calculated by

analytical method and EFG program runs 1, 2 and 3;

Table 4.1.13 Comparison of the displacements in x direction

u u u u
X y . EFG EFG EFG
Analytic run 1 run 2 run 3

480 -60 -0.240 -0.239 -0.239 -0.237
480 -36 -0.143 -0.142 -0.143 -0.141
480 -30 -0.120 -0.118 -0.119 -0.117
480 -12 -0.047 -0.047 -0.047 -0.047
480 0 0.000 0.000 0.000 0.000
480 12 0.047 0.048 0.047 0.047
480 30 0.120 0.119 0.118 0.118

480 36 0.143 0.143 0.142 0.141

480 60 0.240 0.240 0.239 0.237

Displacement in x Direction (x=480 mm)
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Figure 4.1.26 Graphical comparison of displacements in x direction
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Table 4.1.14 and Figure 4.1.27 show the displacement results in y direction

calculated by analytical method and EFG program runs 1, 2 and 3;

Table 4.1.14 Comparison of the displacements in y direction

\% A% Vv

X y V' EFG EFG EFG
Analytic run 1 run 2 run 3

480 -60 -1.335 -1.326 -1.324 -1.308
480 -36 -1.335 -1.326 -1.324 -1.308
480 30 -133  -1.326  -1324  -1.308
480 -12 -1.335 -1.326 -1.324 -1.308
480 0 1335 -1.326  -1324  -1.308
480 12 -1.335 -1.326 -1.324 -1.308
480 30 -1335  -1.326  -1.324  -1.308
480 36 -1.335 -1.326 -1.324 -1.308
480 60  -1335 -1326 -1324  -1.308

Displacement in y Direction (x=480 mm)
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Figure 4.1.27 Graphical comparison of displacements in y direction
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Table 4.1.15 and Figure 4.1.28 show the Oy results calculated by analytic method and

EFG program runs 1, 2 and 3;

Table 4.1.15 Comparison of the Oy results

(0D.¢ (0 )¢ ox
X y An‘:l’;ﬁc EFG EFG  EFG
run 1 run 2 run 3
0 -60 -200.000 -191.932 -200.255 -189.250
0 36 -120.000 -115.232 -127.873 -112.662
0 -30 -100.000 -95.868 -109.729 -93.515
0 12 -40.000 -37.903 -47.187 -36.074
0 0 0.000 3.078 -2.683 2.220
0 12 40000 44.907 42.820 40514
0 30 100.000 103.965 107.819 97.955
0 36 120000 123.749 127.443 117.102
0 60 200.000 203.506 205.936 193.690

Normal Stress in x Direction (x=0 mm)

L
5 00O N OO O H

DO O O © O © O

~

)

E 9— Analytic
‘; == EFG-runl
7]

gGO 30 30 60 EFG-run2
7 e=3é=EFG-run3

A O O N
O © © ©O O

N N B

<
8
g

Figure 4.1.28 Graphical comparison of Oy results
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Table 4.1.16 and Figure 4.1.29 show the Oy, results calculated by analytical method

and EFG program runs 1, 2 and 3;

Table 4.1.16 Comparison of the O,y results

oXy oxy oxy
X v oY  EFG  EFG  FEFG
Analytic

runl run2 run3

480 -60 0.000 -0.717 -1.042 -1.020
480 36 -8000 -8.886 -9.178  -8.690
480 -30 -9.375 -10.487 -10.897 -10.336
480 42 -12000 -13.311 -11.466 -12.897
480 0 -12.500 -12.434 -12.716 -14.193
480 12 -12000 -13.324 -12.235 -13.154
480 30 -9.375 -10.691 -9.619 -9.795
480 36 -8000 -8849 -8240  -8.096
480 60 0.000 -0.716 -0.985 -0.877

Shear Stress (x=480 mm)
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Figure 4.1.29 Graphical comparison of Oy, results
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4.2. Cantilever Beam under Uniform Transverse Load

A cantilever beam subjected to uniform transverse load is shown in Figure 4.2.1.

T

Figure 4.2.1 A cantilever beam subjected to uniform transverse loading

The exact solutions are,

v = (xf — 4Lx% + 6L°x7) (4.10)

gy = =2 (L — x)? (4.11)
_w 3r?  y?

ny_T(L_x)(yh_T_?) (4.12)

In this example, the properties for this cantilever beam are taken as follows:

The uniform distributed transverse loading: w = —1 N/mm
Young’s modulus:  E = 200000 N/mm”

Poisson’s ratio: v=03

Height of the beam: h = 120 mm

Length of the beam: L = 480 mm

For the first run of the example, there are 128 elements in the background mesh. The

nodes are defined at the center and vertices of each element and seven Gauss
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integration points are used for each element. The background mesh, nodes and
integration points used in this run are same with the first run of previous example and

shown in Figure 4.1.2, Figure 4.1.3 and Figure 4.1.4 respectively.

Table 4.2.1 and Figure 4.2.2 show the displacement results in y direction calculated

by EFG program, finite element method and analytical method;

Table 4.2.1 Comparison of the displacements in y direction

v \4
E Y%
X y Analytic EFG rrore

-60 0.000  0.000  0.000
-30 0.000  0.000  0.000
0.000  0.000  0.000
30 0.000  0.000  0.000
60 0.000  0.000  0.000

S O O O O
(=)

240 -60 -0.082 -0.091 9.893
240 -30  -0.082 -0.090  9.464
240 0 -0.082 -0.090 9377
240 30 -0.082 -0.090 9.615
240 60 -0.082 -0.091 10.192

480 -60 -0.230 -0.242  4.802
480 -30 -0.230 -0.242  4.804
480 0 -0230 -0242 4.818
480 30 -0.230 -0.242  4.863
480 60 -0.230 -0.242  4.923
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Displacement in y Direction (x=480 mm)
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Figure 4.2.2 Graphical comparison of displacements in y direction

Table 4.2.2, Figure 4.2.3 and Figure 4.2.4 show the Oy results calculated by EFG

program, finite element method and analytical method;
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Table 4.2.2 Comparison of the Oy results

(0.6

(0.¢

(1)

XY Anaytic EFG PTOT7
0 60 -48.000 -44.663 6.952

0 -30 24000 -22534  6.107

0 0 0000 0727 100.000

0 30 24000 24459 1878

0 60 48000 47720  0.584

240 <60 -12.000 -11.649  2.929
240 30  -6000 -7.121 15738
240 0 0000 -0.074 100.000
240 30 6000 6878 12761
240 60 12000 11499 4175
480 -60 0000 0122 100.000
480 30 0000  0.025 100.000
480 0 0000 0027 100.000
480 30 0000 -0.013 100.000
480 60 0000 -0.063 100.000
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Figure 4.2.4 Graphical comparison of Oy results
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Table 4.2.3, Figure 4.2.5 and Figure 4.2.6 show the Oy, results calculated by EFG

program, finite element method and analytical method;

Table 4.2.3 Comparison of the Oy, results

oxy oxy o
X Y Anaytic EFG PTOr7
0 -60 0000 -4755 100.000
0 -30 -4500 -3457 23.176
0 0 -6000 -4100 31.665
0 30 4500 -4572 1576
0 60 0000 -6.481 100.000

240 -60 0.000 -0.025 100.000
240  -30 -2.250 -2.422 7.096
240 0 -3.000 -2.881 3.957
240 30 -2.250 -2.458 8.477
240 60 0.000 -0.080 100.000

480 -60 0.000 0.107 100.000
480 -30 0.000 -0.024 100.000
480 0 0.000 -0.018 100.000
480 30 0.000 -0.027 100.000
480 60 0.000 0.061 100.000
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For the second run, the same problem is modeled by a more refined background
mesh which has 200 elements. The nodes are defined at the center and vertices of
each element and seven Gauss integration points are used for each element. The
background mesh, nodes and integration points used in this run are same with the
second run of the previous example and shown in Figure 4.1.11, Figure 4.1.12 and

Figure 4.1.13 respectively.

Table 4.2.4 and Figure 4.2.7 show the displacement results in y direction calculated

by EFG program, finite element method and analytical method;

Table 4.2.4 Comparison of the displacements in y direction

\% v
X y Analytic EFG Error %
0 -60 0.000  0.000  0.000
0 -36 0.000 0.000 0.000
0 -12 0.000  0.000  0.000
0 12 0.000 0.000 0.000
0 36 0.000  0.000  0.000
0 60 0.000 0.000 0.000

240 -60 -0.082 -0.091 10.103
240 -36  -0.082 -0.090 9.766
240 -12 -0.082 -0.090  9.623
240 12 -0.082 -0.090  9.680
240 36 -0.082 -0.091 9.940
240 60 -0.082 -0.091 10.398

480 -60 -0.230 -0.242  4.817
480 -36  -0.230 -0.242  4.817
480 -12 -0.230 -0.242  4.822
480 12 -0.230 -0.242  4.845
480 36 -0.230 -0.242  4.887
480 60 -0.230 -0.242  4.939
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Displacement in y Direction (x=480 mm)
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Figure 4.2.7 Graphical comparison of displacements in y direction

Table 4.2.5, Figure 4.2.8 and Figure 4.2.9 show the Oy results calculated by EFG

program, finite element method and analytical method;

63



Table 4.2.5 Comparison of the Oy results

oXx ox
¥ Y Analytic EFG Error %
0 -60 -48.000 -47.493  1.055
0 -36 -28800 -30.577  5.811
0 -12  -9.600 -11.388 15.703
0 12 9.600 10.325  7.018
0 36 28800 30371 5172
0 60 48000 48374  0.774
240 -60 -12.000 -11.859  1.176
240 -36  -7.200  -7.208  0.117
240 -12 -2.400  -2.049 14.642
240 12 2.400 2,596  7.560
240 36 7.200 7.209  0.120
240 60  12.000 11.678  2.684
480 -60 0.000 0.081 100.000
480 -36 0.000  -0.007 100.000
480 -12 0.000  -0.006 100.000
480 12 0.000  -0.003 100.000
480 36 0.000  -0.041 100.000
480 60 0.000  -0.020 100.000
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Figure 4.2.9 Graphical comparison of Oy results
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Table 4.2.6, Figure 4.2.10 and Figure 4.2.11 show the Oy, results calculated by EFG

program, finite element method and analytical method;

Table 4.2.6 Comparison of the Oy, results

oxy oxy
X Y Analytic EFG DTOr”
0 -60 0000 -5429 100.000
0 -36 -3.840 -4.006 4.149
0 -12  -5760 -2.543 55849
0 12 5760 -2131 63.004
0 36 -3840 2772 27.800
0 60 0000 -3.637 100.000

240 -60 0.000 -0.354 100.000
240 -36 -1.920 -1.961 2.066
240 -12 -2.880 -2.731 5.157
240 12 -2.880 -2.721 5.522
240 36 -1.920 -1.751 8.818
240 60 0.000 0.311 100.000

480 -60 0.000 0.048 100.000
480 -36 0.000 -0.023 100.000
480 -12 0.000 0.014 100.000
480 12 0.000 0.033 100.000
480 36 0.000 -0.049 100.000
480 60 0.000 -0.030 100.000
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-1.35-002
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Fringe: Default, A1 Static Subcase, Stress Tensor, , XY Component, 2 of Z layers [Averade) sg.non)

MSC Patran 2006 12
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Figure 4.2.10 0, distribution obtained by Patran/Nastran

Shear Stress (x=240 mm)

! == Analytic
=—EFG

=== Patran

Stress (MPa)

Figure 4.2.11 Graphical comparison of 0y, results
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For the third run, the same problem is solved by using the previous background mesh
but increasing the number of integration points. There are 200 elements in the
background mesh. The nodes are defined at the center and vertices of each element

and thirteen Gauss integration points are used for each element.

Table 4.2.7 and Figure 4.2.12 show the displacement results in y direction calculated
by EFG program, finite element method and analytical method;

Table 4.2.7 Comparison of the displacements in y direction

A\ A\

X Y Analytie EFG FrOr”e
0 -60 0000 0000 0.000
0 -36 0000 0000 0.000
0 -12 0000 0000 0.000
0 12 0000 0000 0.000
0 36 0000 0000 0.000
0 60 0000 0000 0.000

240 -60 -0.082 -0.089  8.182
240 36 -0.082 -0.089  7.828
240 -12 -0.082 -0.088  7.674
240 12 -0.082 -0.088  7.733
240 36 -0.082 -0.089  8.011
240 60 -0.082 -0.089  8.485

480 -60 -0.230 -0.238  3.230
480 -36 -0.230 -0.238  3.230
480 -12 -0.230 -0.238  3.236
480 12 -0.230 -0.238  3.260
480 36 -0.230 -0.238  3.303
480 60 -0.230 -0.238  3.3%5
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Displacement in y Direction (x=480 mm)
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E O,Z220
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Figure 4.2.12 Graphical comparison of displacements in y direction

Table 4.2.8, Figure 4.2.13 and Figure 4.2.14 show the 0Oy results calculated by EFG

program, finite element method and analytical method;
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Table 4.2.8 Comparison the Oy results

ox X Brror %
XY Analytic EFG 0T
0 -60 -48.000 -43.539 9.294
0 -36 -28.800 -25938  9.936
0 -12  -9600 -8338 13.146
0 12 9600 9262 3517
0 36 28800 26863 6.726
0 60 48.000 44463  7.368
240 60 -12.000 -11.851  1.245
240 36 7200 -7.324 1692
240 -12 -2.400 2399  0.050
240 12 2400 2353  1.956
240 36 7200 7562 4791
240 60 12.000 11.654  2.883
430 60 0000 0087 100.000
430 36 0000  -0.007 100.000
430 -12 0000 0057 100.000
480 12 0000  -0.060 100.000
43 36 0000 0025 100.000
430 60 0000  -0.041 100.000
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4 40+001
MSC Patran 2008 r2 384400
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Figure 4.2.13 Oy distribution obtained by Patran/Nastran

Normal Stress in x Direction (x=0 mm)

(€]
[en]

B
(v}

[08]
(en]

N
(o]

~ /

ﬁc: 106

= == Analytic
~ 0

A =l=EFG
Q60 -36 10 12 36 60

a === Patran

N
[e]

w
(e}

[e»]

%

(O
< [en]

(mm)

Figure 4.2.14 Graphical comparison of Oy results
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Table 4.2.9, Figure 4.2.15 and Figure 4.2.16 show the Oy, results calculated by EFG

program, finite element method and analytical method;

Table 4.2.9 Comparison of the Oy, results

oxy oxy
X Y Analytic EFG DTOr”
0 -60 0000 -2493 100.000
0 36 -3.840 -2.605 32149
0 -12  -5760 2718 52813
0 12 -5760 -2831 50.859
0 36 -3840 -2.943 23.359
0 60 0000 -3.056 100.000

240 -60 0.000 -0.203 100.000
240 -36 -1.920 -1.972 2.619
240 -12 -2.880 -2.982 3.415
240 12 -2.880 -2.839 1.408
240 36 -1.920 -1.804  6.016
240 60 0.000 0.020 100.000

480 -60 0.000 0.059 100.000
480 -36 0.000 -0.009 100.000
480 -12 0.000 -0.005 100.000
480 12 0.000 -0.037 100.000
480 36 0.000 -0.044 100.000
480 60 0.000 0.023 100.000
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MSC Patran 2005 r2
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Figure 4.2.15 0,y distribution obtained by Patran/Nastran
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Figure 4.2.16 Graphical comparison of Oy, results
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The results obtained from the different EFG solutions are compared. Table 4.2.10
and Figure 4.2.17 show the displacement results in y direction calculated by

analytical method and EFG program runs 1, 2 and 3;

Table 4.2.10 Comparison of the displacements in y direction

v A4 v v

X y . EFG EFG EFG
Analytic run 1 run 2 run 3

480 -60 -0.230 -0.242 -0.242 -0.238
480 -36 -0.230 -0.242 -0.242 -0.238
480 -30 -0.230 -0.242 -0.242 -0.238
480 -12 -0.230 -0.242 -0.242 -0.238
480 0 -0.230 -0.242 -0.242 -0.238
480 12 -0.230 -0.242 -0.242 -0.238
480 30 -0.230 -0.242 -0.242 -0.238
480 36 -0.230 -0.242 -0.242 -0.238
480 60 -0.230 -0.242 -0.242 -0.238

Displacement in y Direction (x=480 mm)
—o =0 ¢ —o
-60 -30 ( 30 60
T
Fa¥io ko1l =4
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Q x
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=
0,245
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Figure 4.2.17 Graphical comparison of displacements in y direction
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Table 4.2.11 and Figure 4.2.18 show the Oy results calculated by analytic method and

EFG program runs 1, 2 and 3;

Table 4.2.11 Comparison of the Oy results

ox ox ox
X y 9%  EFG  EFG  EFG
Analytic

nl run 2 run 3
0 -60 -48.000 -44.663 -47.493 -43.539
0 -36 -28.800 -27.050 -30.577 -25.938
0 -30 -24.000 -22.534 -26.200 -21.538
0 -12 -9.600 -8.876  -11.388  -8.338
0 0 0.000 0.727 -0.621 0.462
0 12 9.600 10.555 10.325 9.262
0 30 24.000 24.459 25.807  22.463
0 36 28.800 29.139 30.371 26.863
0 60 48.000 47.720 48.374  44.463

Normal Stress in x Direction (x=0 mm)
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Figure 4.2.18 Graphical comparison of Oy results
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Table 4.2.12 and Figure 4.2.19 show the Oy, results calculated by analytical method
and EFG program runs 1, 2 and 3;

Table 4.2.12 Comparison of the O,y results

oXy oxy oxy
X v OXY  EFG  EFG  FEFG
Analytic

nl run 2 run 3

240 -60 0.000 -0.025 -0.354 -0.203
240 36 -1920 -2086 -1961 -1.972
240 -30 -2.250 -2.422 -2.488 -2.093
240 12 2880 -28%0 -2731  -2.982
240 0 -3.000 -2.881 -2.957 -3.047
240 12 -2880 -2.887 2721 -2.839
240 30 -2.250 -2.458 -2.187 -2.311
240 36 -1920 -2092 -1751  -1.804
240 60 0.000 -0.080 0.311 0.020

Shear Stress (x=240 mm)
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Figure 4.2.19 Graphical comparison of Oy, results
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4.3. A Square Plate with Hole under Uniform Distributed Load at both sides
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Figure 4.3.1 A square plate with hole subjected to uniform distributed side loading
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Figure 4.3.2 Geometry reduction and boundary condition application
In this example, the properties for this cantilever beam are taken as follows:
Loading: w = 100 N/mm

Young’s modulus:  E = 200000 N/mm”

Poisson’s ratio: v =20.3
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Height of the plate: a = 100 mm
Length of the plate: b = 600 mm

For the first run of the example, there are 750 elements in the background mesh. The
nodes are defined at the center and vertices of each element and seven Gauss

integration points are used for each element.

Table 4.3.1 and Figure 4.3.3 show the displacement results in x direction calculated

by EFG program and finite element method;

Table 4.3.1 Comparison of the displacements in x direction

u
0,
X y EFG Patran RS R

100 0.000 0.000  0.000
200  0.000 0.000  0.000
300  0.000 0.000  0.000
419  0.000 0.000  0.000
600  0.000 0.000  0.000
38 92 0.061 0.060  2.325
71 71 0.114 0.111 2.024
92 38 0.150 0.147 1.812

S O O O O

100 0 0.161 0.160  0.389
200 0 0.176 0.174 1.261
300 0 0.209 0.207 0.739
419 0 0.260 0.258 0.638
600 0 0.347 0.344  0.904

200 600 0.093 0.092  0.224
400 600 0.191 0.191 0.114
600 200 0.334 0.332  0.538
600 400 0.312 0.311 0.457
600 600 0.292 0.291 0.279
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Displacement in x Direction (x=600 mm)
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Figure 4.3.3 Graphical comparison of displacements in x direction

Table 4.3.2 and Figure 4.3.4 show the displacement results in y direction calculated

by EFG program and finite element method;
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Table 4.3.2 Comparison of the displacements in y direction

\4

\%
(1)
X Y EFG Patran Error %

100 -0.059 -0.059  0.097
200 -0.070 -0.069  2.160
300 -0.078 -0.077 0.885
419 -0.092 -0.092 0.630
600 -0.117 -0.117  0.558
38 92 -0.055 -0.053 4.660
71 71 -0.042 -0.040 4.522
92 38 -0.022 -0.021 3.555

S O O O O

100 0 0.000 0.000 0.000
200 0 0.000 0000 0.000
300 0 0000 0000 0.000
419 0 0.000 0000 0.000
600 0 0.000 0000 0.000

200 600 -0.108 -0.107 0.736
400 600 -0.090 -0.090 0.379
600 200 -0.015 -0.015 2.242
600 400 -0.040 -0.041 0.923
600 600 -0.071 -0.071 0.138

Displacement (mm)

Displacement in y Direction (y=600 mm)
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Figure 4.3.4 Graphical comparison of displacements in y direction
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Table 4.3.3, Figure 4.3.5 and Figure 4.3.6 show the Oy results calculated by EFG

program and finite element method;

Table 4.3.3 Comparison of the Oy results

(0 .¢ (0).¢
[1)
X y EFG Patran Error %

100 308.088 273.014 11.384
200 137.120 129.397  5.632
300 108.702  110.265 1.417
419 107.067 102.708  4.071
600 107.937  90.674 15.993
3892 232,062 212.423 8.463
71 71 61277  93.460 34.436
92 38 -6.490 14.339 145.263

S O O O O

100 0 0.051 -1.611 103.185
200 0 54016 49.824  7.761
300 0 80.108  80.662  0.687
419 0 93836 93.19¢  0.682
600 0 115063 99.471 13.551

200 600  92.170  96.440  4.428
400 600  99.740 100.052  0.312
600 200 115387 100.012 13.325
600 400  95.312 100.091 4.774
600 600 100.863  99.974  0.882
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MSC.Patran 2005 12
Fringe: Default, A1:Static Subcase, Stress Tensor, . X Component, 2 of 2 layers (Average) 2 3E+007)

2.73+002
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Figure 4.3.5 0y distribution obtained by Patran/Nastran
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Figure 4.3.6 Graphical comparison of the Oy results
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Table 4.3.4, Figure 4.3.7 and Figure 4.3.8 show the Oy results calculated by EFG

program and finite element method;

Table 4.3.4 Comparison of the Oy results

oy oy

0
X Y EFG  Patran 0T

100 36.649  30.309 17.299
200  30.086 26958 10.396
300  12.619 11.354 10.025
419 5.725 4.092 28520
600 1.093 0.463  57.677
38 92 46798  30.273 35.312
71 71 44705  22.018 50.747
92 38 -55.246 -44.533 19.392

S O O O O

100 0 -78.871 -80.263 1.735
200 0 1.057 -0.800 175.757
300 0 4.848 2.804 42.155
419 0 5.694 5.551 2.517
600 0  23.295 17.551 24.655

200 600 0.050 -0.044 186.667
400 600 -0.046 -0.047  2.507
600 200 13.212 8.805 33.357
600 400 0.011 0.871 98.760
600 600 0.060 -0.026 143.730
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MSC. Patran 2005 r2
Fringe: Default, Al:Static Subcase, Stress Tensor, . Y Component, 2 of 2 layers (Averagel 4 go.ga1
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Figure 4.3.7 0y distribution obtained by Patran/Nastran
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Figure 4.3.8 Graphical comparison of Oy results
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Table 4.3.5, Figure 4.3.9 and Figure 4.3.10 show the Oy, results calculated by EFG

program and finite element method;

Table 4.3.5 Comparison of the Oy, results

oxy oxy o
X Y EFG  Patran 0T

100 -6220 -13.622 54.339
200  0.136 2207 93.837
300 0207  1.427 114.524
419 -0.340  0.820 141.509
600  0.840  0.470 44.054
38 92 93010 -53.167 42.837
71 71  -48.804 -44.783  8.240
92 38 21435  -2.987 113.933

S O O O O

100 0 1.405 -1.245 188.575
200 0 -2.199 -4.377  49.767
300 0 2.157 -2.366 191.140
419 0 -4.737 -1.129 76.178
600 0 -5.134 -0.537 89.536

200 600 0.056 0.674 91.756
400 600 -0.915 0.043 104.651
600 200 0.011 -1.079 101.063
600 400 -0.439 -0.318 27.519
600 600 0.775 0.026 96.620

85



MSC Patran 2006 12
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Figure 4.3.9 0,, distribution obtained by Patran/Nastran
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Figure 4.3.10 Graphical comparison of the 0y, results
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For the second run, the same problem is modeled by a more refined background
mesh which has 1154 elements. The nodes are defined at the center and vertices of
each element and seven Gauss integration points are used for each element. The
background mesh, nodes and integration points used in this run are shown in Figure

4.3.11, Figure 4.3.12, Figure 4.3.13 and Figure 4.3.14;

Figure 4.3.11 The background mesh distribution
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Figure 4.3.12 Node distribution in the problem domain
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Figure 4.3.13 Node distribution on the background mesh
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Figure 4.3.14 Node and integration point distribution on the background mesh

Table 4.3.6 and Figure 4.3.15 show the displacement results in x direction calculated

by EFG program and finite element method;

90



Table 4.3.6 Comparison of the displacements in x direction

u u
(1)
X y EFG  Patran Error %

100 0.000 0.000  0.000
136  0.000 0.000  0.000
150  0.000 0.000  0.000
600  0.000 0.000  0.000
100 0.012 0.012 1.864
108  0.009 0.009  2.464
127 0.007 0.008  10.273
15 99 0.024 0.024  0.824
22 98 0.036 0.036  0.306
36 93 0.059 0.058  0.246
69 73 0.111 0.110  0.713
93 36 0.151 0.150  0.994
100 0 0.163 0.161 0.978
107 9 0.163 0.161 1.178
400 0 0.252 0.251 0.490
600 0 0.347 0.345 0.489
600 600 0.291 0.291 0.034

O N 9 O © O O
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Figure 4.3.15 Graphical comparison of displacements in x direction
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Table 4.3.7 and Figure 4.3.16 show the displacement results in y direction calculated
by EFG program and finite element method;

Table 4.3.7 Comparison of the displacements in y direction

\4 \%
(1)
X Y EFG Patran Error %

100 -0.061 -0.059  2.625
136 -0.068 -0.067 1.253
150 -0.068 -0.068  0.849
600 -0.118 -0.118  0.281
100 -0.060 -0.059  2.889
108 -0.064 -0.062 2717
127 -0.067 -0.066  1.490

15 99 -0.060 -0.058 2.371

22 98 -0.059 -0.058 1.846

36 93 -0.056 -0.055 1.894

69 73 -0.044 -0.043 2.475

93 36 -0.022 -0.021 2.227
100 0 0.000 0.000 0.000
107 9 -0.004 -0.004 1.207
400 0 0.000 0.000 0.000
600 0 0.000 0.000 0.000
600 600 -0.070 -0.070  0.247

NeBENERN e e = =]
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Displacement in y Direction (y=600 mm)
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Figure 4.3.16 Graphical comparison of displacements in y direction

Table 4.3.8, Figure 4.3.17 and Figure 4.3.18 show the Oy results calculated by EFG

program and finite element method;
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Table 4.3.8 Comparison of the Oy results

(00 (00.¢

0
X Y EFG  Patran TOr7

100 288.623 296.044  2.506
136 170.358 184.966  7.898
150 149.669 163.198  8.290
600  87.434  90.801 3.709
100 317.162 303.290  4.374
108 240912 270.965 11.091
127 161.576 198.814 18.730

15 99 312711 292.198  6.560

22 98 284.121 274.073 3.537

36 93 231.082 226.493 1.986

69 73 46500  76.158 38.942

93 36 -11.684 -0.888  92.402
100 0 -2.666 -6.361  58.091
107 9 -4.474 -3.278 26.728
400 0 91.782 91.537  0.267
600 0 101.341 99.833 1.488
600 600 104392  99.993  4.214

O N 9 O O O O
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Figure 4.3.18 Graphical comparison of Oy results
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Table 4.3.9, Figure 4.3.19 and Figure 4.3.20 show the oy results calculated by EFG

program and finite element method;

Table 4.3.9 Comparison of the Oy results

oy oy

0
X Y EFG  Patran DOr7%

100 -4.921 17.157 128.685
136 39.138  37.929  3.089
150  34.772  37.648  7.639
600 -0.314 0.121 138.473
100 6.912 14.645 52.803
108  22.016  20.073 8.824
127 32786  36.190  9.407

15 99 13.177 17.706  25.577

22 98 10.843  23.480 53.819

36 93  35.076  36.343 3.487

69 73 59.125  38.058 35.632

93 36 -54.831 -52.861 3.592
100 0 -118.946 -98.600 17.105
107 9 -69.626 -82.446  15.550
400 0 6.908 4,948 28.369
600 0 18.198 17.617  3.193
600 600 -2.545 -0.006 99.776

O N 9 O O O O
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Figure 4.3.20 Graphical comparison of 0y results
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Table 4.3.10, Figure 4.3.21 and Figure 4.3.22 show the 0, results calculated by EFG

program and finite element method;

Table 4.3.10 Comparison of the O,y results

oxy oxy

0
X Y  EFG  Patran TOr7%

100 -2.560 -6.967 63.233
136 -0.528 0.151 128.678
150 -3.013 1.484 149.240
600 -0.025 0.180 113.722
100 -31.573 -21.144 33.031
108 -31.333 -11.451 63.433
127  -11.086 -3.306  70.179

15 99 -49.999 -38.630 22.738

22 98 -61.570 -52.888 14.102

36 93 -88.430 -72.432 18.092

69 73 -61.406 -51.039 16.883

93 36  20.002 9.223  53.890
100 0 2.310 1.264 45.305
107 9 2.772 1.103 60.224
400 0 0.850 -1.144 174.345
600 0 -9.175 -0.238  97.411
600 600 2.330 0.023  99.007

O N 9 O O O O

98



MSC. Patran 2006 r2
Fringe: Default, A1 Static Subcase, Stress Tensor, . XY Component, 2 of 2 layers (Averadel 444000

1.34+001
T.44+000

-4 BE+000
% -1 BB+007T
% 2 254007
-2 85+007
-3.45+001
-4.05+007
-4 55+001
-5.25+001
-5 85+001
-6.45+001
-7.05+007
-7 .B5+001
W
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Figure 4.3.22 Graphical comparison of 0y, results
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For the third run, the same problem is solved by using the previous background mesh
but increasing the number of integration points. There are 1154 elements in the
background mesh. The nodes are defined at the center and vertices of each element

and thirteen Gauss integration points are used for each element.

Table 4.3.11 and Figure 4.3.23 show the displacement results in x direction
calculated by EFG program and finite element method;

Table 4.3.11 Comparison of the displacements in x direction

u
(1)
X y EFG  Patran Error %

100 0.000 0.000  0.000
136 0.000 0.000  0.000
150  0.000 0.000  0.000
600  0.000 0.000  0.000
100  0.006 0.012 47.834
108  0.005 0.009  47.725
127 0.006 0.008  28.623
15 99 0.019 0.024 21.283
22 98 0.031 0.036  13.106
36 93  0.055 0.058  6.042
69 73 0.109 0.110 1.594
93 36 0.149 0.150  0.860
100 0 0.158 0.161 2.152
107 9 0.158 0.161 2.118
400 0 0.250 0.251 0.177
600 0 0.345 0.345 0.072
600 600 0.291 0.291 0.246

O N 9 O O O O
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Figure 4.3.23 Graphical comparison of displacements in x direction

Table 4.3.12 and Figure 4.3.24 show the displacement results in y direction
calculated by EFG program and finite element method;
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Table 4.3.12 Comparison of the displacements in y direction

A A%
X y EFG Patran Error %
0 100 -0.059 -0.059 0.498
0 136 -0.063 -0.067 5.359
0 150 -0.064 -0.068 5.193
0 600 -0.118 -0.118 0.144
7 100 -0.058 -0.059 0.548
7 108 -0.061 -0.062  2.378
9 127 -0.063 -0.066 4.274
15 99 -0.057 -0.058 2.022
22 98 -0.056 -0.058 2.771
36 93 -0.054 -0.055 2.557
69 73 -0.041 -0.043 2.737
93 36 -0.018 -0.021 13.605
100 0 0.000 0.000 0.000
107 9 -0.001 -0.004 66.732
400 0 0.000 0.000 0.000
600 0 0.000 0.000 0.000
600 600 -0.071 -0.070  0.333

Displacement (mm)

-0,07

Displacement in y Direction (y=600 mm)

-0,08

200

400

ﬁo

-0,09

-0,10

a

%

-0,11

\

0,12 C

X (mm)

=@—EFG

Patran

Figure 4.3.24 Graphical comparison of displacements in y direction
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Table 4.3.13, Figure 4.3.25 and Figure 4.3.26 show the Oy results calculated by EFG

program and finite element method;

Table 4.3.13 Comparison of the Oy results

(0 .¢ (0 )¢
[1)
X y EFG Patran Error %

100 292.026  296.044 1.357
136 164.563  184.966  11.031
150 145.837 163.198 10.638
600  91.651 90.801 0.927
100  250.061 303.290 17.551
108 215236 270.965 20.567
127 138.747 198.814 30.213

15 99 333990 292.198 12.513

22 98 279.785 274.073 2.041

36 93 241.354 226.493 6.157

69 73  65.153  76.158 14.450

93 36 -7.563 -0.888  88.262
100 0 0.847 -6.361 113.324
107 9 5.913 -3.278 155.430
400 0 90.817 91.537 0.787
600 0 106.590  99.833 6.339
600 600 106.921 99.993 6.480

O N 9 O O O O

103



MSC. Patran 2006 r2
Fringe: Default, A1 Static Subcase, Stress Tensor, | X Component, 2 of 2 layers (Average) 5 go, 0o

3.03+002
2.83+002

2. 41+002
2.21+002
2.00+002
1.79+002
153+002
1.38+002
1.17+002
9.69+001
7.B2+001
5 5E+001
3.49+001
1.43+001
-5.36+000)
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Figure 4.3.26 Graphical comparison of Oy results
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Table 4.3.14, Figure 4.3.27 and Figure 4.3.28 show the 0y results calculated by EFG

program and finite element method;

Table 4.3.14 Comparison of the Oy results

oy oy

0
X Y EFG  Patran DOr7%

100 3.178 17.157 81.476
136 35903  37.929  5.342
150  36.794  37.648  2.268
600 0.025 0.121 78.932
100 5.948 14.645 59.385
108 10.329  20.073 48.545
127 29.146  36.190 19.465

15 99 0.408 17.706  97.695

22 98 9.434  23.480 59.822

36 93 33434  36.343 8.005

69 73 54358  38.058 29.987

93 36 -66.372 -52.861 20.356
100 0 -27.238 -98.600 72.376
107 9 -21.809 -82.446 73.548
400 0 6.278 4,948 21.182
600 0  15.403 17.617 12.567
600 600 -2.195 -0.006  99.740

O N 9 O O O O
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Figure 4.3.27 o, distribution obtained by Patran/Nastran
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Figure 4.3.28 Graphical comparison of 0y results
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Table 4.3.15, Figure 4.3.29 and Figure 4.3.30 show the 0, results calculated by EFG

program and finite element method;

Table 4.3.15 Comparison of the Oy, results

oxy oxy

0
X Y  EFG  Patran TOr7%

100 3.115 -6.967 144.707
136 -2.071 0.151 107.311
150 0.087 1.484 94.122
600 0.177 0.180  2.004
100 -24.058 -21.144 12113
108 -1.367 -11.451 88.067
127 -2.183 -3.306 33.972

15 99 -75.085 -38.630 48.551

22 98 -67.528 -52.888 21.680

36 93 -90.798 -72.432 20.228

69 73 -57.521 -51.039 11.270

93 36 25953 9.223 64.463
100 0 0.121 1.264 90.393
107 9 -4.017 1.103 127.453
400 0 0.117 -1.144 110.191
600 0 -3.627 -0.238  93.430
600 600 3.439 0.023 99.327

O N 9 O O O O
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Figure 4.3.29 0,y distribution obtained by Patran/Nastran
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Figure 4.3.30 Graphical comparison of 0y, results
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The results obtained from the different EFG solutions are compared. Table 4.3.16
and Figure 4.3.31 show the displacement results in x direction calculated by finite

element method and EFG program of runs 1, 2 and 3;

Table 4.3.16 Comparison of the displacements in x direction

u u u
u
X y EFG EFG EFG
Patran
run 1 run 1 run 1
600 0 0.345 0.347 0.347 0.345
600 200 0.333 0.334 0.334 0.333
600 211 0.332 0.333 0.333 0.332
600 391 0.312 0.313 0.313 0.312
600 400 0.311 0.312 0.312 0.311
600 600 0.291 0.292 0.291 0.291
Displacement in x Direction (x=600 mm)
0,35
0,34
‘E 033
g
E 0,32 ==@==Patran
g —@—EFG-runl
g 0,31 EFG-run2
% 0,30 e=é=EFG-run3
a
0,29
0 100 200 300 400 500 600
y (mm)

Figure 4.3.31 Graphical comparison of displacements in x direction

Table 4.3.17 and Figure 4.3.32 show the displacement results in y direction
calculated by finite element method and EFG program of runs 1, 2 and 3;
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Table 4.3.17 Comparison of the displacements in y direction

v v v
X y v EFG EFG  EFG
Patran

run 1 run 1 run 1

0 600 -0.118 -0.117 -0.118 -0.118
200 600 -0.107 -0.108 -0.109 -0.108
209 600 -0.107 -0.107 -0.108 -0.107
389 600 -0.091 -0.091 -0.091 -0.090
400 600 -0.090 -0.090 -0.090 -0.089
600 600 -0.070 -0.071 -0.070 -0.071

Displacement in y Direction (y=600 mm)

-0,06
0 100 200 300 400 500 600

-0,07 o
- /
E -0,08
= ==¢-=Patran
g -0,09 == EFG-runl
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Figure 4.3.32 Graphical comparison of displacements in y direction

Table 4.3.18 and Figure 4.3.33 show the Oy results calculated by finite element
method and EFG program of runs 1, 2 and 3;
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Table 4.3.18 Comparison of the Oy results

o gx gx (0D.¢
X y ¥ EFG EFG  EFG
Patran runl run2 run3

100 296.044 308.088 288.623 292.026
111 251.485 264.772 247.449 243.231
136 184.966 200.194 170.358 207.219
150 163.198 164.942 149.669 164.563
217 122.100 122.857 130.055 136.795
300 110.265 108.702 114.596 125.624
452 100.690 102.129 102.047 107.844
600 90.674 107.937 87.434  91.651

O O O O o o o o

Stress (MPa)

Normal Stress in x Direction (x=0 mm)

300

275
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200
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Figure 4.3.33 Graphical comparison of Oy results
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CHAPTER S

CONCLUSION

The development of EFG method is a significant achievement in the improvement of
mesh free methods. In this thesis, a FORTRAN program has been developed to
analyze plane stress problems by EFG method. The results obtained are compared

with analytical and FEM results.

In this study, three typical plane stress problems have been examined. First one is a
cantilever beam subjected to parabolic end load, second is a cantilever beam
subjected to uniform distributed transverse load and third one is a square plate having

a hole at center and subjected to uniform distributed tension load.

In each sample analysis, the problem has been solved three times by changing the
parameters. In the first run, the problem domain has been defined and a proper
background mesh has been applied. A certain number of nodes and integration points
have been selected. In the second run, the background mesh has been refined. This
run serves to see the effect of mesh density. In the third run, the mesh density has

been kept constant and the number of integration points has been changed.
It has been observed that the EFG method performed satisfactorily in each case and it

compares favorably with the FEM results. The stress recovery is the best when four

nodes per element and quintic Gauss integration are selected.
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It has been observed that EFG gives more accurate results with respect to FEM at the

same time computational cost.
The extension of EFG to bending problems such as beams and plates, different

material models such as laminated composites, and nonlinear problems is straight

forward by using the methodology presented in this thesis.
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APPENDIX A

GAUSSTIAN QUADRATURE

The definite integral of a function can be approximated by a quadrature rule in a
numerical analysis. This rule is usually based on weights of specified points (IP,

node etc.) in the integration domain.

Gaussian quadrature rule is introduced by Carl Friedrich Gauss and n-point Gaussian
quadrature is constructed to yield an exact result for polynomials of degree 2n — 1 or
less. The points and corresponding weights of them are represented by a suitable x;

and w; (for i = 1... n) respectively.

The integration domain is usually taken as taken as [—1, 1], so the rule is stated as

[30],

L1 F0) dx =~ Xy wif (x) (A1)

The i™ Gauss node, xi, is the i™ root of P, (x) (Legendre polynomial having the n"

polynomial normalized to give P, (1) = 1) and its weight is given by [31],

2
TP, ()2

(A.2)

w;

Some low-order rules for solving the integration problem are listed in Table A.1 [30].
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Table A.1 Abscissae and Weight Coefficients of the Gaussian Quadrature Formula

Abscissae and Weight Coefficients of the Gaussian Quadrature
Formula used for Boundary Integration Points

Number of points, n  Gauss nodes, + x; Weights, w;
1 0 2
2 +,/1/3 1
3 0 8/9
i,\,"ﬁ 5/9
— 18 ++/30
lr2 _ 2. -
) (-2 6/5)/7 "
— 18 — /30
| 2
/(3 +2y 6/5)/7 35
0 128/225
10— 322 + 13470
Zlg_ay
5 352 10/7 300
L B 322 — 13470
i§ﬂ5+_«,‘:lﬂ.-"r? 300

For the boundary weights between the two nodes on the boundary line of the whole

problem domain, the following Gaussian quadrature formula is used [28];

[1 o0 dx =~ T wif (x) (4.1)
5= —1 —E = +].
L ]
1 (z1,71) 2 (2 72)

Figure A.1 Boundary line between two nodes

Table A.2 represents the gauss nodes and weight coefficients calculated for the 10

points;
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Table A.2 Abscissae and Weight Coefficients of the Gaussian Quadrature Formula

used for Boundary Integration Points [28]

Abscissae and Weight Coefficients of the Gaussian Quadrature
Formula used for Boundary Integration Points

Number of points, n

1

2

10

Gauss nodes, * x;

0
0.577350269189626

0.774596669241483
0.000000000000000

0.861136311594053
0.339981043584856

0.906179845938664
0.538469310105683
0.000000000000000

0.932469514203152
0.661209386466265
0.238619186083197

0.949107912342759
0.741531185599394
0.405845151377397
0.000000000000000

0.960289856497536
0.796666477413627
0.525532409916329
0.183434642495650

0.968160239507626
0.836031107326636
0.613371432700590
0.324253423403809
0.000000000000000

0.973906528517172
0.865063366688985
0.679409568299024
0.433395394129247
0.148874338981631
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Weights, w;
2.000000000000000
1.000000000000000

0.555555555555556
0.888888888888889

0.347854845137454
0.652145154862546

0.236926885056189
0.478628670499366
0.568888888888889

0.171324492379170
0.360761573048139
0.467913934572691

0.129484966168870
0.279705391489277
0.381830050505119
0.417959183673469

0.101228536290376
0.222381034453374
0.313706645877887
0.362683783378362

0.081274388361574
0.180648160694857
0.260610696402935
0.312347077040003
0.330239355001260

0.066671344308688
0.149451349150581
0.219086362515982
0.369266719309996
0.295524224714753



APPENDIX B

VISUALIZATION

B.1 Creating Elements from an External File

The results generated by the EFG method via solving the system equations are
usually in the form of a vast volume of digital data. The results have to be visualized
in such a way that they can be easily interpolated, analyzed, and presented. The
visualization is performed by the postprocessor that comes with the software
package. Most of these processors allow users to display 3D objects in many
convenient and colorful ways on the screen. The object can be displayed in the form
of wire frames, collections of elements and collections of nodes. The user can rotate,
translate, and zoom in/out on the objects. Field variables can be plotted on the object
in the form of contours, fringes, wire frames and deformations. There are usually
tools available for users to produce iso-surfaces and vector fields of variables. Tools
to enhance the visual effects are also available, such as shading, lighting, and
shrinking. Animation and movies can also be produced to simulate dynamic aspects

[32].

The EFG method gives the displacement of each node and integration points. Since
the coordinates of the those points are already known before the application of the
loading, the only need for visualization of the deformation is to calculate the final
coordinates of the nodes and integration points by adding the displacement to initial
coordinate of each point and then enter initial and final coordinates data to the

program.
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The visualization of the parts’ deformations are performed by CATIA (Computer
Aided Three-dimensional Interactive Application) which is a multi-platform
CAD/CAM/CAE commercial software suite developed by the French company
Dassault Systémes and marketed worldwide by IBM. The Version5 R17 is suitable

and this version is used in this thesis.

CATIA creates points, curves, and multi-sections surfaces from a Microsoft Excel

spreadsheet which contains macros. In those macros, one can define:

e the points space coordinates
e the points through which the curves pass

e the curves used as profiles for the multi-sections surface

The following is the procedure for extracting the points from an external Excel file

into CATIA [32];

1 One opens any .CATPart document containing a Geometrical Set or an
Ordered Geometrical Set into CATIA.

2 Opens the ElementsFromExcel.xls file from any directory saved in into
Excel, and enables the macros. The excel document looks like the Figure

B.1.1:
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A | B | C |
1 | Starthulti-SectionsSudface

_ 2 |StartCurve
3| 0 -0 10
4 0 -30 B0
A 0 50 B0
B 0 110 20
_7 |EndCurve
3 |StartCurve
9 50 -60 0
10 50 -10 40
1] 50 50 40
12 ] 50 70 0
13 |EndCurve
14 | StartCurve
15| 100 -100 -10
1B | 100 -40 35
7 100 0 50
18 100 7a 40
19 100 140 0
20 |[EndCurve
21 |EndMulti-SectionsSurface
22 |End
2

Figure B.1.1 Sample Input Excel Sheet for the Macro [32]

The Excel sheet contains:

e Instructions, such as “StartMulti-SectionsSurface” and “EndMulti-
SectionsSurface”, “StartCurve” and “EndCurve” are given between other
instructions or numerical data.

e Numerical data are the point space coordinates: X, Y, Z respectively from the
left to the right

e A final End instruction
In the above example, a multi-sections surface can be created based on three curves.

The first and second curve pass through four points, and the third curve passes

through five points.
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The elements will be created from top to bottom, i.e. the four points of the first curve

will be created, then the curve itself, then the points making up the second curve and

the latter itself, and so forth.

One can add rows to create more elements or delete rows to edit elements and then

save the spreadsheet.

1

2

3

From Excel, select the Tools -> Macro -> Macros menu item. The Macro

dialog box is displayed.

Select the Feuill.Main macro.

Macro EHE
Macro nare:
[Fevils ain | rn |

Feuill . CreationLoft
Feuill . CreationPoint

Feuill .CreationSEIine

L !

PRk

Marcros in: all Open Workbooks j

Description

Zancel
Step Inka
Edit
Create

Delete

Options. ..

Figure B.1.2 Macro type list view

Click Run. The User Info dialog box is displayed.

Type in the kind of entities to create (1 For points, 2 For
points and splines, 3 for points, splines and
multi-sections surface):

1]

i,

Cancel

Figure B.1.3 Entity type selection view
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4 Key in the type of element to be generated:

“1” for generation of only the point(s)
“2” for generation of the points and the curve(s)

“3” for generation of the points, curves and multi-sections surface(s)

5 Click OK. The elements (points, curves, and multi-sections surface) are

created in the geometry. The specification tree is updated accordingly.

Figure B.1.4 A multi-sections surface created by extracting the points from an excel

sheet [32]

The Generative Shape Design or Wireframe and Surface workbench needs not to be

loaded, provided a CATIA session is running and a .CATPart document is loaded.

The curve definition is limited to 500 points, and the multi-sections surface definition

to 50 splines.

However, the thesis problems have numerous numbers of points and they have to be
arranged in the format of the excel macro. The macro performs lines according to the
points entered between the commands of “StartCurve” and “EndCurve”. In order to
line up and prepare the excel sheet for the mesh free problems, other macros have

been written and the following procedure should be applied:
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B.2 Data Preparation Procedure for CATIA

10
11

Open the text file called “l connectivity.txt” into TextPad version
5.0.3.0 (which is a text editor for the Microsoft Windows family of
operating systems).

Run the macro written in TextPad called “connect line” which lines the
connected nodes one under the other.

Copy the output file of the TextPad (2 columns) into the excel file (called
CATIAElementsFromExcel line.xls) B and C columns.

Copy the “2 node coordinates.txt” file to the columns between H and K
of the same excel sheet.

32 32

In the A column, write sign to the cells starting from the 3rd row and
increasing by 4 rows (e.g. 3rd, 7th, 11th ... and so on).

Copy columns between A and D of the excel sheet into a new blank
TextPad file.

Replace “*... N/A...” with “...EndCurve” and “... N/A...” with
“...StartCurve”.

Then copy back the changed file into the excel sheet columns between A
and D.

Run the macro called “Feuill.Main” of the excel sheet.

Click Run. “The User Info” dialog box is displayed.

Key in the type of element to be generated;

“1” for generation of only the point(s)

“2” for generation of the points and the curve(s)

Typing 3 does not work for the problems having more than 50 lines. The problems

solved in this thesis has exceeding number of lines. However, at the same time the

problems are plane stress problems which mean their three dimensions are reduced to

two dimensions and one can create a surface using only the outer lines of the

problem domain in CATIA Wireframe and Surface Design modules.
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Figure B.2.1 Integration Points view in a CATPart
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Figure B.2.2 Connected Lines (background meshes) view in a CATPart
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Figure B.2.3 Connected Lines and Integration Points together view in a CATPart
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Figure B.2.4 Surface created by the connected lines view in a CATPart
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APPENDIX C

CODE ALGORITHM

Geometry Generation

l

Background Mesh Application

l

Node and Integration Point Creation for all Cells

|

Forming Integration Domain for all IPs

Shape Function Creation

l

Calculation of Nodal Matrices

Assembling Nodal Matrices to Create Global Matrices

l

Solution of the System Equations for Nodal Parameters of Displacements

|

Calculation of the Displacements

l

Calculation of the Stress
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