

A PREFETCHING METHOD FOR INTERACTIVE WEB GIS

APPLICATIONS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES
OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

SERDAR YEŞĐLMURAT

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

FEBRUARY 2010

Approval of the thesis:

A PREFETCHING METHOD FOR INTERACTIVE WEB GIS
APPLICATIONS

submitted by SERDAR YEŞILMURAT in partial fulfillment of the
requirements for the degree of Master of Science in Computer Engineering
Department, Middle East Technical University by,

Prof. Dr. Canan Özgen _______________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Müslim Bozyiğit _______________
Head of Department, Computer Engineering

Assoc. Prof. Dr. Veysi İşler _______________
Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Özgür Ulusoy _______________
Computer Engineering Dept., Bilkent University

Assoc. Prof. Dr. Veysi İşler _______________
Computer Engineering Dept., METU

Assoc. Prof. Dr. Şebnem Düzgün _______________
Mining Enginering Dept., METU

Assoc. Prof. Dr. Pınar Karagöz Şenkul _______________
Computer Engineering Dept., METU

Asst. Prof. Dr. Tolga Can _______________
Computer Engineering Dept., METU

Date: 03/02/2010

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

Name, Last Name : Serdar Yeşilmurat

Signature :

 iv

ABSTRACT

A PREFETCHING METHOD FOR INTERACTIVE WEB GIS APPLICATIONS

Serdar Yeşilmurat

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Veysi İşler

February 2010, 120 pages

A Web GIS system has a major issue of serving the map data to the client

applications. Since most of the GIS services provide their geospatial data as basic

image formats like PNG and JPEG, constructing those images and transferring them

over the internet are costly operations. To enhance this inefficient process, various

approaches are offered. Caching the responses of the requests on the client side is the

most commonly implemented solution. However, this method is not adequate by

itself. Besides caching the responses, predicting the next possible requests of the

client and updating the cache with the responses for those requests provide a

remarkable performance improvement. This procedure is called “prefetching”. Via

prefetching, caching mechanisms can be used more effectively and efficiently. This

study proposes a prefetching algorithm called Retrospective Adaptive Prefetch

(RAP). The algorithm is constructed over a heuristic method that takes the former

actions of the user into consideration. This method reduces the user-perceived

response time and improves users’ navigation efficiency. The caching mechanism

developed takes the memory capacity of the client machine into consideration to

adjust the cache capacity by default. Otherwise, cache size can be configured

manually. RAP is compared with 4 other methods. According to the experiments,

this study shows that RAP provides better performance enhancements than the other

compared methods.

Keywords: WEB GIS, Cache, Prefetching, Performance

 v

ÖZ

ETKİLEŞİMLİ WEB CBS UYGULAMALARI İÇİN ÖN YÜKLEME YÖNTEMİ

Serdar Yeşilmurat

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Veysi İşler

Şubat 2010, 120 sayfa

Web CBS uygulamaları için harita verilerini istemci uygulamalarına sunmak çok

önemli bir sorun teşkil etmektedir. Birçok CBS servisi coğrafi verilerini PNG ve

JPEG gibi temel resim formatlarında sağladıklarından dolayı bu resimleri üretmek ve

internet üzerinden iletmek maliyetli işlemlerdir. Bu randımansız süreci iyileştirmek

için çeşitli çözüm önerileri sunulmuştur. Kullanıcı isteklerine verilen cevapları

istemci tarafında saklamak (önbelleğe almak) en yaygın çözüm olarak karşımıza

çıkmaktadır. Ancak, bu yöntem de tek başına yeterli değildir. Verilen cevapları

saklamanın yanında bu yanıtları kullanarak sonraki olası istekleri tahmin edebilmek

ve önbelleği bu isteklerin cevapları ile güncellemek kayda değer bir performans

iyileştirmesi sağlayacaktır. Bu yönteme “önyükleme” denilmektedir. Önyükleme

sayesinde önbellekte saklama mekanizmaları daha etkili ve verimli bir şekilde

kullanabilmektedir. Bu çalışma kullanıcının önceki işlemlerini dikkate alan

deneyimsel bir yöntem üzerine kurulu bir önyükleme algoritması önermektedir. Bu

yöntem uygulamanın kullanıcı isteklerine verdiği tepki süresini azaltmakta ve

kullanıcının harita üzerinde gezinmesini daha etkin hale getirmektedir. Geliştirilen

mekanizma önbelleğin boyutunu (elle ayarlanabilir olmakla beraber) varsayılan

olarak istemci makinesinin belleğini dikkate alarak ayarlamaktadır. Önerilen

algoritma 4 farklı metod ile karşılaştırıldı. Deneylerin sonucuna göre bu çalışmada

sunulan metodun diğer yöntemlere göre daha iyi performans sağladığı görülmektedir.

Anahtar Kelimeler: WEB CBS, Önbellek, Önyükleme, Performans

 vi

To My Beloved Family,

 vii

ACKNOWLEDGEMENTS

The author of this study presents his gratefulness to:

… his supervisor Assoc.Prof. Dr. Veysi ĐŞLER for his positive criticism and

guidance;

… his colleagues whom he will be always feeling privileged to work with;

… his company; MilSOFT Software Technologies Inc. for assigning him to a

GIS project called PiriMap, and therefore conducing to his selection of thesis

topic;

… especially his parents for their support, tolerance, patience and always

being there for him.

 viii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ ..v

ACKNOWLEDGEMENTS ... vii

TABLE OF CONTENTS.. viii

LIST OF FIGURES ..x

LIST OF TABLES.. xiii

LIST OF ABBREVIATIONS ..xiv

CHAPTERS

1. INTRODUCTION ..1

2. RELATED WORK ...4

2.1 General Solutions..5

2.2 Prefetching Methods in GIS Domain...10

2.3 Prefetching Methods in Other Domains...13

3. METHODOLOGY, CURRENT APPROACHES, AND THE PROPOSED

PREFETCHING ALGORITHM ...17

3.1 Caching the tiles requested from the WMS server19

3.2 Prefetching neighbor tiles of a requested tile ...20

3.3 RAP: Retrospective Adaptive Prefetch ..25

4. TEST BED ...38

4.1 Test Simulation ...42

4.2 Outcome of the Tests...46

5. RESULTS AND DISCUSSION..50

5.1 Execution of the Tests in Geoserver ..52

5.2 Execution of the Test in World Mineral Deposits Service..........................62

5.3 Extreme scenarios ...75

 5.3.1 Scenario - 1 ..76

 5.3.2 Scenario - 2 ..78

6. CONCLUSION AND FUTURE WORK...82

REFERENCES ...84

 ix

APPENDICES

A. Pseudo Code of the Proposed Algorithm ..87

B. Steps of the Test Simulation ...95

C. Statistical Evaluation of Test Simulations ...115

 x

LIST OF FIGURES

FIGURES

Figure 1: The appearance of a dam feature after simplification process7

Figure 2: The first three steps of Hilbert Curve ...10

Figure 3: Direction vectors at dimension 2 ..12

Figure 4: Tile prediction over Hilbert Curve for given patters13

Figure 5: Tiles prefetched by OpenLayers when bufferSize is 216

Figure 6: Tiles visible in view extent...18

Figure 7: Neighbors of a tile ...21

Figure 8: 2-level neighbors of a tile...21

Figure 9: Tiles prefetched for one level zoom in and zoom out................................21

Figure 10: Tiles requested for 1-level zoom in, when requested tile number for each

tile is 1..22

Figure 11: Tiles requested for 1-level zoom in, when requested tile number for each

tile is 9..22

Figure 12: Top-left tile and tiles on the edge of the view extent...............................29

Figure 13: Tiles on the edge of the view extent ...30

Figure 14: Tiles to prefetch in southwest direction ..31

Figure 15: Tiles requested for zooming in center tile...32

Figure 16: Tiles requested for zooming out center tile...32

Figure 17: Sample navigation scenario when history depth is 533

Table 18: Execution of grading formula for the sample scenario when history depth

is 5..33

Figure 19: Tiles prefetched when history depth is 5...34

Table 20: Performance of different ratios for clearing the cache..............................36

Figure 21: States Map in Geoserver WMS Service..39

Figure 22: The age ranges of the rocks in Turkey and its neighbors in World Mineral

Deposits WMS Service ...40

Figure 23: Distribution of map tiles in JXMapViewer component42

Figure 24: Configuration window ...45

 xi

Figure 25: Configuration window: Cache selection ...45

Figure 26: Add WMS window ..46

Figure 27: JVM Memory Usage chart ...47

Figure 28: Map Refresh Time with Tile Numbers chart...48

Figure 29: Cells transitions of navigation steps ...52

Figure 30: Initial view extent in Geoserver’s topp:states (center tile is x = 14, y = 24,

zoom = 11) ...53

Figure 31: Final view extent in Geoserver’s topp:states (center tile is x = 3062, y =

3613, zoom = 4)..53

Figure 32: Memory Usage over Time for TC method (Geoserver’s topp:states)54

Figure 33: Memory Usage over Time for SP method (Geoserver’s topp:states).......54

Figure 34: Memory Usage over Time for RAP method (Geoserver’s topp:states)....55

Figure 35: Refresh Time & Requested Tile Number over Time for TC method

(Geoserver’s topp:states)...56

Figure 36: Refresh Time & Requested Tile Number over Time for SP method

(Geoserver’s topp:states)...57

Figure 37: Refresh Time & Requested Tile Number over Time for RAP method

(Geoserver’s topp:states)...58

Figure 38: Initial view extent in World Mineral Deposits Service (center tile is x =

35, y = 22, zoom = 11)..62

Figure 39: Final view extent in World Mineral Deposits Service (center tile is x =

5447, y = 3393, zoom = 4) ..63

Figure 40: Memory Usage over Time for TC method (World Mineral Deposits

Service) ..64

Figure 41: Memory Usage over Time for SP method (World Mineral Deposits

Service) ..64

Figure 42: Memory Usage over Time for RAP method (World Mineral Deposits

Service) ..65

Figure 43: Memory Usage over Time for HCBP method (World Mineral Deposits

Service) ..65

Figure 44: Memory Usage over Time for PKM method (World Mineral Deposits

Service) ..66

 xii

Figure 45: Refresh Time & Requested Tile Number over Time for TC method

(World Mineral Deposits Service)...67

Figure 46: Refresh Time & Requested Tile Number over Time for SP method (World

Mineral Deposits Service)...68

Figure 47: Refresh Time & Requested Tile Number over Time for RAP method

(World Mineral Deposits Service)...69

Figure 48: Refresh Time & Requested Tile Number over Time for HCBP method

(World Mineral Deposits Service)...70

Figure 49: Refresh Time & Requested Tile Number over Time for PKM method

(World Mineral Deposits Service)...71

Figure 50: Memory Usage over Time of RAP method for the second extreme

scenario ..77

Figure 51: Refresh Time & Requested Tile Number over Time for RAP method for

the second extreme scenario..78

Figure 52: Memory Usage over Time of RAP method for the second extreme

scenario ..81

Figure 53: Refresh Time & Requested Tile Number over Time for RAP method for

the second extreme scenario..81

Figure 54: Normal distribution of refresh times for TC method.............................116

Figure 55: Normal distribution of refresh times for SP method..............................116

Figure 56: Normal distribution of refresh times for RAP method117

Figure 57: Normal distribution of refresh times for HCBP method........................117

Figure 58: Normal distribution of refresh times for PKM method..........................118

Figure 59: Normal distribution of memory usages for TC method.........................118

Figure 60: Normal distribution of memory usages for SP method119

Figure 61: Normal distribution of memory usages for RAP method119

Figure 62: Normal distribution of memory usages for HCBP method....................120

Figure 63: Normal distribution of memory usages for PKM method120

 xiii

LIST OF TABLES

TABLES

Table 1: Calculation of zoomFactor (sample 1)...26

Table 2: Calculation of zoomFactor (sample 2)...27

Table 3: Calculation of zoomFactor (sample 3)...27

Table 4: Neighbor tiles to prefetch according to Easting and Southing28

Table 5: Prefetching order for each direction...30

Table 6: Navigation summary table...47

Table 7: Performance results table ..49

Table 8: Navigation Summary...51

Table 9: Refresh Times in sample scenario (Geoserver’s topp:states)59

Table 10: Used Memory & Total Memory in sample scenario (Geoserver’s

topp:states) ...60

Table 11: Average refresh times & memory usage for 100 executions (Geoserver’s

topp:states) ...61

Table 12: Cache Statistics (Geoserver’s topp:states)..61

Table 13: Refresh Times in sample scenario (World Mineral Deposits Service)72

Table 14: Used Memory & Total Memory in sample scenario (World Mineral

Deposits Service)..73

Table 15: Average refresh times & memory usage for 100 executions (Geoserver’s

topp:states) ...74

Table 16: Cache Statistics (World Mineral Deposits Service)..................................74

Table 17: Total refresh times & memory usages for the first extreme scenario76

Table 18: Cache Statistics of the first extreme scenario ...77

Table 19: Navigation Summary of the second extreme scenario79

Table 20: Total refresh times & memory usages for the second extreme scenario....80

Table 21: Cache Statistics of the second extreme scenario.......................................80

Table 22: Statistical data of refresh times obtained for each method......................115

Table 22: Statistical data of refresh times obtained for each method......................115

 xiv

LIST OF ABBREVIATIONS

AVG Average

BBOX Bounding Box

BXML Binary Extensible Markup Language

CPU Central Processing Unit

DBMS Database Management System

DGN Design format

DBMS Database Management System

GML Geographic Markup Language

HCBP Hilbert Curve Based Prefetch

JPL Jet Propulsion Laboratory

JVM Java Virtual Machine

LRU Least Recently Used

OGC Open Geospatial Consortium

PKM previous-k-movements

RAP Retrospective Adaptive Prefetch

SP Simple Prefetch

SRS Spatial Reference System

STD DEV Standard Deviation

TC Tile Cache

URL Uniform Resource Locator

VAR Variance

WMS Web Map Service

 1

CHAPTER 1

INTRODUCTION

With the growth in internet usage, various beneficial data are presented on internet

and “Geographic data” is certainly one of the most demanded information among all.

Geographical Information Systems (GIS) introduce methods and environments to

visualize, manipulate, and analyze these geospatial data and Web GIS provides a

way for utilizing these web-based geographic data via standard web service

definitions.

The nature of the geographical applications requires seamless integration and sharing

of spatial data from a variety of providers. To solve the interoperability problems, the

Open Geospatial Consortium (OGC®) has introduced standards for the Web GIS

services. OGC® is an international industry consortium which defines specifications

to provide interoperable solutions that “geo-enable” the web. It has variety of

contributors from different areas such as private industry and academia to create

open and extensible software application programming interfaces for GIS.

Several standards and discussion papers are presented about the web services utilized

for transferring geospatial data over Web. Web Feature Service (WFS) defines

interfaces for data access and manipulation operations on geographic features over

Web [1]. Geospatial data processed by this service are in vector format. Web

Coverage Service (WCS) retrieves the geospatial data as “coverages” which are

described as digital geospatial information representing space-varying phenomena

[2]. Besides these two standards, OGC® published another web service standard in

Web GIS domain called Web Map Service (WMS) [3]. WMS is an international

specification introduced by this consortium for serving and consuming dynamic

maps on the Web. Throughout this study, two WMS servers are used as the services

to provide geospatial data. One server is located in same machine with the test

software (local) and the other is located on Web (remote).

 2

Via WMS, a client can request spatial data of a location on earth in different layers,

styles, dimensions and data formats. For example, a WMS client may want to obtain

the 300x300 pixel raster map of the city s(he) is living with the street labels on it and

labels are displayed in red. Raster map and street labels are produced as different

layers by the WMS server. “Red” defines the style and “300x300 pixels” is the

dimension of the map given as a part of the request. Also, the client may select

different image formats supported by the WMS server, such as JPEG, PNG or GIF.

Namely, there are many combinations for the client to generate a WMS request to

fulfill his/her requisitions of spatial information. More combinations mean more

different types of requests that should be responded by the WMS services.

In a Web GIS, the granularity of geographic data can be either a whole map or a

small fragment of it which is called a tile. Loading an entire map at once and

navigating on it is acceptable only if the size of the data is small. Tiling is an

alternative; the map is partitioned into equally sized segments and served by tiles. To

accommodate the client’s navigation efficiently, common-used tiles are cached in

advance and while the client is viewing one of them, the next candidate tiles are

prefetched. So, the question is how these candidate tiles are predicted.

In web, fast responses depend on less process on server side. Less process is

basically achieved by the caching and prefetching policies. The motivation behind

this study is to develop a prefetching method for increasing the performance of Web

GIS and responding the client requests in an acceptable period of time in a

reasonable way.

The map to be displayed is represented as grids where each cell is a tile and passing

from one cell to another is considered as a transition among these tiles. A transition

defines a cost which depends on loading a data which is not already in the cache.

Namely, a transition neglects fetching the preexisting data. Navigation over a map

contains two main operations; moving from one tile to another and changing the

zoom level. So, the grid distribution over the map shall take these two options into

 3

consideration. In other words, which tile will be prefetched is determined by

predicting the behaviors of the client and this behavior can be one of those two

navigation factors. Each grid implies the next move of the client over the map.

Since, there is no standard way of predicting the user's behavior while navigating on

the map, exact solution for prefetching may never exist. This is where heuristics step

in. Finding the best approximate future moves is a general issue in global

optimization problem. In this study, by analyzing and ranking the former moves of

the client, the next possible tiles that will be requested from the server are prefetched

beforehand. In other words, former states entirely capture all the information that

could influence the future progress. Instead of a deterministic process, future states

are reached through a probabilistic process. In this context, by implementing a

heuristic evaluation method, this study aims to find the best probable data set to be

prefetched.

The remainder of the document is organized as follows. Chapter 2 surveys related

works on prefetching and other performance optimization techniques. Chapter 3

explains the proposed method in detail and compares it with the 2 most commonly

used methods by stating the advantages and disadvantages of all. In Chapter 4, the

test bed developed for executing the experiments and obtaining the simulation results

is explained. Chapter 5 summarizes the experimental results. Finally, Chapter 6 gives

the conclusions and future work.

 4

CHAPTER 2

RELATED WORK

In the evolution of Web GIS, despite the remarkable improvements, there are several

issues yet to be resolved. The first issue is “considering the Web GIS only as Internet

mapping”. Basic functions of an interactive map are panning, zooming and querying.

However; there are many other features GIS can offer; such as, GIS analysis like

buffering, network analysis etc. Evolution of Web GIS on this concept is a

forthcoming challenge. Another issue is security. Java applets, ActiveX Controls and

plug-ins are downloaded from the Internet and executed in the local machine of the

client. The security of these applications shall be assured. The third issue is charging

of these services. The information published on the Internet can be charged or served

as free of charge. The choice between these two options shall be made. If the user

will be charged, the price amount and how to charge this fee shall be decided.

Besides all the problems above, the most important issue of the Web GIS is

performance. Since the GIS data are large in volume, it takes long time to transfer

them over internet. This introduces a big problem especially for the machines with

slow internet connections. The issue of slow performance can be solved in two ways:

• increasing the speed of Internet connection

• developing more efficient Web GIS programs

The speed of Internet connection is improving with faster modem and faster

communication connections. This fast Internet connection will make the current GIS

data transfer on the Internet faster. However, relying on the improvement in Internet

connection speed should not be adequate. Because, designing efficient Web GIS

applications will make it feasible to execute these programs even on slower

connections. Today, there are remarkable number of studies and researches about

how to improve the performance and accessibility of Web GIS.

 5

2.1 General Solutions

OGC®, the leading standardization institute over GIS, introduced some standard

services to provide interoperability on distributing GIS data. WMS [3] is one of these

standards and as expressed in the introduction section, its main goal is providing

flexibility of requesting arbitrary number of map layers in an arbitrary bounding box

with different styles. However, every good thing comes with its price. WMS is

expected to generate geographic map image on the fly as it is demanded. Because of

this reason, it does not scale well. Even for a “single request at a time” condition, it

takes a few seconds to serve the cartographic layers. In order to solve this issue,

OGC® defined a WMS extension called “Tiled WMS” [4] which utilizes tiling. Tiles

are pre-rendered images with specific bounding boxes and scales. By using this

technique, a WMS service can serve the requested map image as tiles without

making any extra process on the server side. This mechanism is considered as highly

scalable and illustrated by Google Maps. The operation defined by Tiled WMS is

called GetTile and it is used as an alternative to the original WMS request, GetMap.

The main disadvantage of GetTile request is loosing the flexibility of requesting any

location on earth by giving a bounding box. Also, the client should know the

corresponding row and column number of the tile s(he) requests. However this is not

a big issue, because Tiled WMS has another operation called DescribeTile that

provides a description of each tile served by the WMS service. Nevertheless,

GetMap request still exists for the clients who require flexibility over scalability.

There is another OGC® originated study on improving the performance of Web GIS.

But this time, it is not a standard but a “best practice”. Best practice documents are

considered as non-mature suggestions over an earlier published specification. This

best practice document is an extension over another existing OGC® standard. This

interoperability standard defines a feature-encoding format called GML (Geography

Markup Language) [5]. GML is the suggested format by OGC® for transferring

geographic features over Internet. There are major problems of this format. First one

arises from the structure of the GML format. Since GML is an XML-based format, it

contains redundant bulky data that slows down the data transfer. Another problem is

 6

the cost of traversing the XML structure and the conversion of text-based numerical

coordinate values. Compressing the GML data with general methods like GZIP can

increase the transfer speed. However, it does not eliminate the traversing and

conversion costs. To address these issues, OGC® defined a new data transfer format

called BXML (Binary XML) encoding [6]. BXML encoding mirrors the in-memory

XML node representation as a sequence of node-equivalent “tokens”. The elements

of an XML document are defined by these tokens and bulky XML tag representation

is avoided by the integer indexing method. Also, assigning the structure size of the

structures in advance at the head of their byte sequence helps the applications to

parse the data efficiently. Since the coordinate values kept in BXML structure, they

can be read directly into an array in memory. By this way, costly parsing and

conversion operations are not needed anymore. Namely, all the disadvantages of

GML are eliminated by the BXML encoding.

Jay Ratcliff and Kevin Shaw proposed some design strategies to improve

performance of GIS Web Services [7]. They discussed the importance of four design-

decision issues in their study. Firstly, they compared the synchronous services with

asynchronous ones. A GIS web service client is often another application or a

cascading map server. Since the cascading web servers prefer to fetch the data in

parallel, asynchronous service approach is needed. By providing asynchronous

services, the client is not interrupted by the computation time on the server side and

s(he) can deal with other operations. Another design strategy is making a decision

between fine-grained services and coarse-grained services. Although the object-

oriented design expects you to choose fine-grained services for flexibility, for Web

GIS services, coarse-grained services should be preferred. The reason for that choice

is obvious. The communication overhead caused by the requests for assembling a

map that compose of thousand of features is not acceptable. However, if one (or few)

coarse-grained service handles the request, the map can be served in a shorter period

of time. Data transmission is another issue in Web GIS design. Format of the data

transferred over web is crucial for the performance. Ratcliff and Shaw are in favor of

binary formats and give DGN as an example for the file format. They mention that

for the same spatial information, the sizes of GML documents are often ten times

 7

larger than DGN files. The main disadvantage of binary formats is the

interoperability issue. Because, GML is recognized as a data transfer format for

geographic data and most of the Web GIS applications obey this format. On the other

hand, binary formats are generally used for data transmission between the services in

intranet networks. But, as I mentioned earlier, if BXML becomes a standard

specification besides GML, this interoperability issue can be resolved.

In another study [8], some optimization techniques are given to improve the overall

performance of Web GIS applications. These techniques are “data simplification,

relative coordinates, static maps, multiresolution, compression and on-demand

loading”. Data simplification process identifies the map information that can be

omitted and removed before the transmission. Since map coordinates are set with

high precisions, the number of points a geographic feature contain to represent itself

is too large. For smaller scales, most of these points can be removed without

disrupting the general shape of the feature. This can be achieved by arranging the

precision of the simplification. However, it should be considered that more

performance means less accuracy and quality. In figure below, it can be seen that the

accuracy of the geographic feature is reduced as the precision is chosen low.

Figure 1: The appearance of a lake feature after simplification process

Relative coordinates express the coordinates of each point in a polygon or polyline

according to the previous point. Absolute coordinates specify each point

independently according to a fixed coordinate system. Via relative coordinates, the

volume of the data transmitted for a geographic feature reduces. The disadvantage of

this approach is changing the rendering strategy of a geographic feature. Instead of

 8

drawing the geometry of the feature directly, in this approach, translating each point

of the geometry according the previous point to obtain the absolute coordinates is

needed. According to this study, the trade-off between the absolute and relative

coordinates is in favor of relative coordinates. In static map approach, loading the

map data statically as soon as they are needed is recommended, because Web GIS

applications generally store their data in a spatial database system. Establishing a

connection and loading the data is a time consuming process. By multiresolution,

each map data are represented in different levels of detail. By this way, for instance,

the streets will not appear when the zoom level focuses on a country, hence the

performance is improved. As mentioned earlier, compression is an important factor

to reduce the size of the data transmitted and it consequently improves the overall

performance. On-demand loading is defined as the creation of the map according to

the type of user request. If some layers are not inside the user’s area of interest, those

layers are filtered and not displayed. Also, the scale of the map may not be

appropriate for some map layers. To avoid the map pollution, some map layers are

discarded, because displaying those layers is not meaningful. A complex vector map

that represents the planning of a city should not be displayed in the country zoom

levels.

Walker, Pham and Maeder constructed a framework over Bayesian Network utilized

for keeping the probabilistic relationships between the task analysis and datasets [9].

Task analysis is basically the operations performed by the GIS user. Datasets include

the spatial, non-spatial and relational information used during these tasks. A

Bayesian Network is generated with all these data and relationships between them

and only the certain datasets are loaded according to the query made by the user.

Namely, instead of loading the entire map data, the layers that fulfill the user

requirements are fetched from the GIS server. Also, the learning process for a

Bayesian Network is dynamic update of probabilities. The user may intervene to the

process by rejecting some of the selected layers or adding layers manually. Thus, the

casual probability of a layer as a result of the user query is updated according to

these interventions for the future analysis.

 9

Haixia Zhao and Ben Schneiderman developed a light-weight Java Applet called

YMap to introduce the improvements they proposed for Web GIS applications [10].

They focused on the problem of slowness in rendering the map image on client-side

and proposed an image-based technique to overcome this problem. Their solution is

specific to Web choropleth maps and instead of vector data, the map data transferred

over network is in compressed GIF format. A geographic data in a choropleth map is

represented with a single color. So, from the color of the pixel that the user’s mouse

is over, the geo-referencing data can be extracted from the database on server side.

By this way, the map displayed on browser can be used interactively. Also, in this

technique, the map is broken down into equally sized smaller segments and when the

user performs a pan or zooming operation, only the segments inside the current view

are requested instead of the whole map data. According to their comparisons with a

Web GIS package that uses vector geographic data, the loading and rendering

performance of YMap came out better. As a further improvement, they

recommended two other methods too:

• caching different levels of the map data as they are requested

• prefetching the next possible segment to be loaded by using a separate thread

The amount of geospatial data is increasing constantly. Earth observation satellites

send large amounts of data everyday. This introduces the problem of development of

computer systems utilized for storing, managing and distribution of these huge data.

Coddington, Havick and James implemented a prototype system for providing access

to this data and services to process the data [11]. The active digital library developed

enables retrieval of remote data and processing the remote data to construct the map

data the user is interested in. In many research and decision support applications, this

Web-based distributed GIS system infrastructure seems to have great promise.

Neville Churcher proposed a method for displaying always the whole extent of a

geographic area on screen [12]. By implementing a fisheye view technique, even

though the focus point and/or the zoom level on the area of interest changes, all the

geospatial objects in the map area fits inside the view extent. This method is based

on distortion oriented presentation. Namely, the objects around the focus point are

 10

displayed larger than their original sizes. On the other hand, to fit the whole map

extent inside the view extent; the objects away from the focus point are displayed

smaller then their original sizes. By this way, the objects around the mouse location

can be observed in great details. This method provides a feasible workaround for

isolating the geographic information in interest from the geospatial object clutter.

2.2 Prefetching Methods in GIS Domain

Dong-Joo Park and Hyoung-Joo Kim present a new prefetching policy for retrieving

large objects in Web GIS applications [13]. They make an assumption on how the

user accesses the geographic objects on the map. For instance, instead of accessing

the objects in the Web browser randomly, it is very likely that the user chooses the

neighbor objects around a certain central object which is called “callback object”.

Namely, the access pattern of the user is determined according to the “spatial

locality”. Under this assumption, they propose a Hilbert Curve based prefetch

algorithm. For the efficiency of the prefetch policies, they saw the necessity of

employing a clustering method to reflect the spatial locality. Since the Hilbert Curve

is one of the most efficient clustering methods in literature, it seems wise to use this

method for prefetching. Hilbert Curve is used for selecting a set of candidates based

on the current callback object. Such candidates will have more probability to hit the

client cache when the next callback object is requested. In this approach, map is

divided by the Hilbert Curve and each cell is assigned with the values of that Hilbert

Curve as shown in the figure below:

Figure 2: The first three steps of Hilbert Curve

 11

They defined an array of Hilbert Curve values. Each object in the Hilbert Curve is

placed in this array with their Hilbert Curve values. The candidates are selected from

the left and right side of the callback object in the array. The number of the

candidates is determined statically or dynamically. Let’s assume that the location of

the callback object is “i” and callback object is represented as “O”. In static way, a

value called “window size” is chosen and if we say window size is “7”, the objects

Oi-3 ... Oi+3 are selected as candidate objects. In dynamic approach, the window size

is adjusted by the “spatial locality by distance” (SLD). The candidate objects are still

selected from the left and right side of the callback object, but this time, instead of

taking static number of objects, all the objects whose distance from the callback

object is smaller than the SLD are chosen as the candidate objects. Since the number

of candidates can vary as the SLD value changes, the window size is dynamic. Also,

they defined a formula to determine an appropriate SLD value. Through the

experimental results, they show that the performance of the dynamic scheme is close

to the static scheme; on the other hand, the network traffic of the former is lower than

the latter.

Dong Ho Lee et al. propose two prefetching techniques [14]. One of these methods is

probability-based and it assumes that the location of the tile is significant while

predicting the next navigation. According to this assumption, if the tile is located

near to the upper border of the view extent, then the user is likely to navigate to an

upper tile than the lower one. This technique takes the zooming levels of the current

view extent into consideration too. The probabilities of all navigations are calculated

and top “t” (number of tiles to prefetch) tiles with the highest transition probabilities

are selected. However, the reasoning behind the probability ranking logic is not

given. Especially, the next zooming move cannot be predicted according to the

location of the current tile just like the neighborhood tiles.

The second technique proposed can be considered as more heuristic than the

previous method. It is called previous-k-movement approach. In this method, rather

than the current position, former actions of the user determines the next movement.

 12

A Neighbor Selection Markov chain (NSMC) is built for obtaining the neighbor

selection probabilities that can be applied to a general tile. A state on NSMC presents

a sequence of direction vectors that gives the tile selection history. A direction vector

denotes a move from one tile to another. The direction vector on a 2-dimensional

space is shown below:

Figure 3: Direction vectors at dimension 2

According to this representation, moving to east and then north is expressed as (d2,

d4). An edge on NSMC is the probability to reach the next tile from the current tile.

By using this NSMC, predicting the next tile is deciding the next direction vector

from the current state. To determine the probabilities, that study utilizes Hilbert

Curve in their experiments. Transitions from one tile to another are presented on

Hilbert Curve. Each pattern on Hilbert Curve keeps the history of a tile and the next

tile to predict from the current tile is determined by locating the pattern on Hilbert

Curve and choosing the tile that comes next on Hilbert Curve. The number of

direction vectors that forms the pattern is configurable and taken as 3 in experiments.

The figure below shows the prediction of the next move from the current state on

Hilbert Curve. The first state denotes that the user’s past 3 moves contains direction

vectors d4, d2 and d3 respectively. The pattern formed by these direction vectors

stays on the left-bottom corner of the Hilbert Curve. Then, the next move is predicted

as d2, the last direction vector in state 2. The states 3 and 4 give the next two

predictions after that move if the prefetching of d2 is actually the tile the user will

request.

 13

Figure 4: Tile prediction over Hilbert Curve for given patters

As it is seen, the usage of NSMC is limited to representing the states and transitions

as a graph. After all, Markov Chain does not rely on previous states to predict the

next state according to its definition. According to Markov Chain, the current state

itself gives adequate information about the next state will be passed.

In this method, the probabilities of previous navigations are put on a Hilbert Curve

and next tiles are predicted according to patterns on this curve. The main difference

between this method and Hilbert Curve based prefetch algorithm [13] is; this method

makes predictions by using the past n moves before a specific tile instead of just

using that specific tile. Also, this method does not predict the zooming levels from

the current tiles. Since, prefetching tiles on a zooming level is much more expensive

than just prefetching the neighborhood tiles, not considering zooming levels in

prefetching process is a deficiency of this method.

2.3 Prefetching Methods in Other Domains

Han et al proposed a prefetching method for improving the performance of

navigational applications such as XML applications, GIS and CAD/CAM systems

[15]. It is based on two notions; type-level access locality and type-level access

 14

pattern. Type-level access locality means the types of object accessed by the

applications repeatedly. Type-level access pattern is the pattern of objects that appear

repeatedly. Their method reduces the number of fetches and therefore increases the

performance of the application. Han, Loh and Whang examined the method proposed

by Han et al [16] and offered an enhanced version that decreases the number of disk

accesses as well. There are two important factors deciding the prefetching

performance; the number of object fetches and the number of disk accesses in server.

They claim that reducing the number of fetches does not provide a satisfactory

performance improvement unless the number of disk accesses does not change. So,

they proposed a method for minimizing the number of disk accesses. The method

creates materialized views that reflect the type-level access patterns. These views are

used by the algorithm for minimizing the number of disk accesses when prefetching

the objects from the database. According to their experiments, the number of disk

accesses is reduced by up to 33.0 times and performance is improved by up to 21.4

times.

The algorithm finds the best iterative pattern view among all the views for the type-

level access patterns by computing the cost of each candidate view and finding out

the one with the minimum cost. They define the cost of a view as the number of disk

pages occupied by the view. Namely, the smaller page size means less cost. This

prefetching method can be seen as an optimization for fetching data from database,

but not exactly a prefetching method. Because, creating views is a known technique

for dealing with a structure consists of data distributed to separate tables. This

method provides a technique for constructing views for the navigational patterns and

hence reducing the number of disk accesses via these views instead of database

tables. However, this method may not be a proper prefetching solution for Web GIS

applications. Most of the GIS data served on web are raw raster maps. The non-

spatial attributes of these map data (such as city names, population etc…) are usually

kept in database tables. However, prefetching mentioned in that study does not rely

on non-spatial data. Han et al only considered navigational applications on Object-

Relational DBMSs (ORDBMS). Non-spatial data can be stored on an ORDBMS, but

the same thing is not valid for spatial data. The DBMS utilized for spatial data is

 15

called Spatial DBMS and creating views on Spatial DBMSs is not mentioned in that

study. Besides, Spatial DBMSs are not good candidates for creating views to use in

that method, because of the method proposed does not handle spatial map data, but

only non-spatial data. Nevertheless, reducing the disk accesses is a crucial

optimization. Although it is not suitable for prefetching map data for web GIS

applications, this method can be considered as a wise choice to optimize the

performance of other navigational applications.

Handling the load coming to Web server is one of the most important issues in the

current server architecture over web. To overcome this issue, dynamic load balancing

is a fundamental need on the server side. Within the concept of a study [17], an agent

is designed on the dispatcher of a Web Server cluster for optimizing connection to

the Map Server. The purpose of this agent is predicting the load and selecting the

most proper Web Server in a Web Server cluster. To achieve that, the load of each

server must be computed. The formula for computing the load to select the best

suited server is given as:

Total_Load = (Wcpu x cpu_load) + (Wmem x mem_load) +

(Wdisk x disk_usage) + (Wconn x map_server_connection)

Wcpu + Wmem + Wdisk + Wconn = 1

In this formula, map_server_connection is defined to divide total connection between

a Web Server cluster and Map Server by number of connections between each Web

Server and Map Server. In that study, the weights are chosen as ¼, ¼, 0 and ½

respectively. According to the results, in a cluster with five servers, the agent

provides better performance for Web GIS services than the previous normal Web

GIS architecture. The traffic on each server is decreased significantly. However, we

can say that this agent strategy will be more useful and efficient for the large

networks with several Web Server clusters with a shared Map Server.

Another study provides a prefetching method specialized on interactive walkthrough

applications [18]. A transition from one cell to other causes loading the data

necessary to construct the potential view set. To avoid the stall during this process, a

 16

prefetching method is developed. Within the scope of the prefetching, a graph

representation of the view cells and transitions among them is generated. A general

probabilistic heuristic algorithm called Simulated Annealing [19] is utilized to

optimize prefetching the scene data over the generated graph.

OpenLayers (http://openlayers.org) is a JavaScript based library for displaying

dynamic map data on map browser. By integrating any standard OGC WMS server,

the map data in that server is retrieved as the user navigates on the browser window.

The data are requested from the map server as tiles. Tiles obtained from the server

combined together and form the view extent of the map the user currently navigating

on. Via the tile mechanism, OpenLayers caches the tiles on client side. Also, it

provides a simple prefetching mechanism. According to this prefetching method,

tiles around the view extent are requested from the map server when the user

requests the tiles inside the view extent. A parameter called bufferSize is used for

determining the number of levels to prefetch. For instance, if bufferSize is 2, 2 tiles

for each tile on the edge of the view extent are prefetched as shown in the figure

below:

Figure 5: Tiles prefetched by OpenLayers when bufferSize is 2

 17

CHAPTER 3

METHODOLOGY, CURRENT APPROACHES, AND THE
PROPOSED PREFETCHING ALGORITHM

As mentioned in the previous sections, the basic issue of the Web GIS applications is

the size of the data transferred over network. WMS can be considered as the standard

interface definition of today’s most popular Web GIS applications. In a WMS server,

the data format presented as a response of a valid map request is a bitmap image.

PNG is the most preferred image format, because it supports alpha-transparency

which is not provided by JPEG image format. Also, the compression algorithm of

PNG is more efficient than the other image formats that also support transparency

(such as GIF). The size of the PNG images transferred over the network can be

considered as acceptable with the help of compression. However, the client

application that receives these bytes converts them into a format that the client

application understands. For instance, a transparent PNG image with 300 x 300

pixels dimension can be compressed to 1% of the original size. But, the client

application written in Java language has to convert these bytes into a

BufferedImage instance to process. The raster representation of this PNG image

in BufferedImage instance consumes 360000 (= 300 x 300 x 4) bytes in memory

which is considered as a large scale memory consumption for an object instance in

Java language.

In this study, “300 x 300 pixels” is chosen as the dimension of a tile requested from a

WMS server. Most of the Web GIS client applications (such as Google Earth)

combine and print the consecutive tiles to portray a map location on the screen.

Namely, more than one tile is needed to represent a location on client screen.

The figure below displays the sample screenshot of the test application used in this

study to simulate the user’s behavior. In total 12 WMS requests have to be made to

obtain the tiles needed for generating the view extent. In the client machine’s

 18

memory, these tiles consume nearly 4 MB of space. Also, for each tile request, a

significant time delay occurs because of the construction of the tile image on server

side and transferring the bytes of the resultant image over the network. From this

point, memory consumption and time delays will be taken as the basic factors that

affect the performance of a Web GIS application.

Figure 6: Tiles visible in view extent

This study compares the results of the proposed algorithm with two commonly used

methods and also Hilbert Curve Based Prefetching (HCBP) Algorithm [13] and

previous-k-movements (PKM) method [14] given in Related Work section. Besides

HCBP and PKM, 3 methods are implemented as part of this study:

1. Caching the tiles requested from the WMS server: Tile Cache (TC)

2. Prefetching neighbor tiles of a requested tile: Simple Prefetching (SP)

3. Proposed algorithm: estimating the next possible moves of the client in heuristic

fashion and prefetching the tiles that represent those moves: Retrospective

Adaptive Prefetching (RAP)

 19

3.1 Caching the tiles requested from the WMS server

The library that is used for developing the test application is “SwingX-WS”

(https://swingx-ws.dev.java.net). The methodology used for handling the client

requests by this library is the most commonly used strategy in Web GIS world. In

this approach, each tile obtained from the WMS server is put in a cache. The cache

does not contain any logic except cleaning itself when the memory reaches its limit.

With the help of this cache, no request is made to the WMS server for the formerly

visited tiles on the map. As a result of this optimization, the overhead of a multiple

server request for the same tile is prevented.

For a client navigation that requests 12 tiles to construct the whole map image on

screen (which is called view extent), 12 requests are made to the WMS server. The

client application creates a separate thread for each tile request and executes those

threads. As a design decision of the application, only 4 threads can run at the same

time and when a thread ends its execution one of the other 8 threads is taken from the

queue and executed as well. When the user navigates to another location on map

before the execution of the entire 12 threads completes from the previous navigation,

on the contrary of the expected behavior, the left threads are not removed from the

thread queue and continue to be executed with the new threads created for the new

tile requests.

The advantages of this method are:

• If the client wants to revisit the locations s(he) passed earlier, no requests are

made to the WMS server and the desired tiles are retrieved from the cache.

• The tile requests are distributed to multiple threads. Namely, the client

application is not blocked until all the responses are obtained from the WMS

server. Also, first and foremost, for the client machines with multi-core

processors, the performance of the application increases in direct proportion

to the processor core number. For a quad-core machine, 12-tile request takes

almost 3 to 4 times less than a regular single core machine.

 20

• Beside prefetching methods, in this method, the memory is not used

aggressively. It is a known fact that prefetching methods are not perfect.

Because of that, some of the prefetched tiles may never be requested by the

user but consumes significant space in memory.

The disadvantages of this method are:

• There is no replacement policy for the cache. When the client application is

out of memory, the cache is entirely cleaned and the application returns to its

opening state.

• The size of the cache is not configurable. It is limited to the size of the heap

space of the application. Because of that, as the cache size increases, the

overhead on Garbage Collector of Java increases and the overall performance

of the application decreases.

• There is no logic in the cache. The cache is only filled with all the tiles

requested by the client. Namely, the cache is designed only for keeping the

previous moves of the client but not the possible next moves. Since, most

users do not frequently revisit the former locations; the efficiency of the

cache reduces as the cache grows.

3.2 Prefetching neighbor tiles of a requested tile

Besides caching the tiles, many of the Web GIS applications apply another

optimization. In this optimization, client application prefetches the neighbor tiles of

each requested tile. By this way, since the tiles that represent the next navigation of

the client are already in the cache, seamless navigation is provided to the client. As

seen in the figure below, a tile has 8 neighbor tiles. So, by applying this method,

instead of 1 tile, 9 tiles are requested from the WMS server.

 21

Figure 7: Neighbors of a tile

Most of the Web GIS applications start prefetching the neighbor tiles after receiving

all the tiles in the view extent. For instance, a JavaScript based WMS client library

called OpenLayers (see Related Work section) has a run parameter called “buffer

size”. Buffer size determines the level of the neighbors that will be retrieved.

Namely, if the buffer size is 2, instead of 8 tiles, 24 tiles are requested from the

WMS server (as seen in the figure below).

Figure 8: 2-level neighbors of a tile

This method can be improved by prefetching the tiles that will be requested if the

user zooms in/out. For 1 zoom level, the number of tiles will be prefetched is 9. So,

as seen in the figure below, for both zooming in and zooming out, the number of tiles

that will be requested for the center tile is 9 and in total, 18 tiles are prefetched.

Figure 9: Tiles prefetched for one level zoom in and zoom out

 22

The reason for requesting 9 tiles instead of 1 for each tile is very obvious. Either you

zoom in or zoom out, the next level tile moves to another cell in the view. For the

tiles that are close to the edges of the view extent, most of the time, the next level tile

stays out of the view extent. To visualize what is meant by this explanation, see the

figure below. If the client application requests 1 next level tile for each tile (since

neighbor cells of the next level tile would not have been requested), there will be

gaps between each next level tile. Also, since the view extent will contain only the

next level tiles of the center tile, navigating to any direction after zoom operation will

result to see the empty tiles.

Figure 10: Tiles requested for 1-level zoom in, when requested tile number for each

tile is 1

On the other hand, as it can be seen in the figure below, if the requested tile number

is 9, there will not be any empty tile and prefetching 1-level zoom in/out will result

to seamless navigation.

Figure 11: Tiles requested for 1-level zoom in, when requested tile number for each

tile is 9

 23

“more tiles requested in the present” means “less tiles to request in the future”.

However, it is also valid that “more tiles requested in the present” means “more

traffic in network” and more traffic decreases the overall performance of the

application. Because of this reason, determining the number of tiles to be prefetched

is very crucial. Requesting next level tiles of the current tile multiplies the number of

requests to the web server by 2. Because of this reason, most of the Web GIS

applications do not prefer to prefetch next zoom levels, but only prefetches the

neighbor tiles of the current tile in the same zoom level.

For the experiments in this study, zoom out levels are discarded during the

prefetching process, because requesting 9 tiles for 1-level zooming brings extreme

burden to the system. Prefetching for both zoom levels will result in 18 tile requests

to WMS server at once and this will lock the system unnecessarily. So, there is no

need to prefetch both zoom levels when comparing this method with other two

algorithms. This choice can be validated with the performance and hence the

widespread usage of this method.

All the results and the comparisons of each method are given in Chapter 5.

The advantages of this method are:

• Since the adjacent cells of a tile are retrieved during the request of that tile,

the tiles needed to load for the next navigation are already present in the

cache.

• The process of prefetching for a tile is handled in a separate thread, not the

main thread. By this way, especially for multi-core machines, the

performance overhead is reduced to minimum.

• The size of the cache is configurable. By default, cache size is limited to the

memory reserved for the client application. But, the user can change this

value in unit of tile number. Namely, if the user enters 1000 in the

configuration file of the client application, it means maximum 1000 tiles can

be saved in the cache. When the maximum tile number is reached, cache

 24

replaces the new tiles with old one according to LRU replacement policy.

According to this policy, firstly, the tile that accessed earliest is removed

from the cache.

The disadvantages of this method are:

• The memory consumed is more than the other two methods.

• Because of the first disadvantage, memory reaches to its maximum capacity

sooner than the other methods. So, Java Garbage Collector is obligated to run

more frequently and this causes to reduce the overall performance of the

client application.

• If the prefetching process contains the zoom levels too;

o Memory consumption increases dramatically. If 9 tiles fit in the view

extent, 9 tiles for each tile are requested for 1-level zoom prefetching.

In total, 81 tile requests are made. In comparison to prefetching only

neighbor tiles (8 tiles retrieved), the burden over the WMS server is

multiplied by 10 times.

o Number of threads increases with the number of tiles to prefetch.

Although a thread pool is utilized for limiting the number of threads

that can be executed at the same time, the number of threads that

should run to complete the prefetching process is always same (81).

So, when the navigation changes before the prefetching is over, the

remaining tiles to be prefetched are discarded. Namely, the number of

tiles prefetched is less than the number of tiles that forms a whole

zoom level. Since some tiles are not retrieved, the effect of this

prefetching method decreases.

 25

3.3 RAP: Retrospective Adaptive Prefetch

This study proposes a prefetching algorithm that optimizes the previously explained

prefetching method by injecting a heuristic behavior. The pseudo-code of the

algorithm is given in APPENDIX–A.

The prefetching algorithm presented in this study uses a heuristic approach for

retrieving the next possible tiles of a given tile according to the user’s former

navigations. Number of former navigations (history or depth) is a configurable

parameter. As depth increases, the accuracy of the result increases as well. The

number of tiles to prefetch is not affected with the depth number. The only factor that

changes the number of tiles to be prefetched is the pattern of the former navigations

in history. Namely, if the user stays in a stable path during navigation, the algorithm

assumes that s(he) will probably keep on moving on the same path in the next moves.

Otherwise, for instance, if the user makes random moves on map, the estimation of

the algorithm will not be effective and hit ratio of the prefetching cache will reduce.

The proposed algorithm has a grading formula for determining the number of

neighbor tiles with their relative locations according to source tile. The formula can

be given as below:

In the next step of the algorithm, all these values are combined and divided into total

differences. Namely, for instance, each Easting has a “difference value” which is

normalized according to the hit ratio obtained by the prefetched tiles and those tiles

are calculated with the help of that Easting value. In the formula above, difference

value of Easting is given as “(he[i + 1] - he[i])”. At first, hit ratio of each

Easting has a value of 1. The reason for that is giving that move a chance to affect

the prefetching process more, because it is the most current move available in the

history. The final step of determining whether to prefetch tiles in a direction is

calculating the ratio of total Eastings to total differences. By this way, the effect of

each Easting is evaluated for the prefetching. If absolute value of the result is equal

 26

to or over 1, it means the application will prefetch some tiles left or right of the

source tile. The same process is valid for Southing too.

On the other hand, evaluation of Zooming is a little bit different than the others.

zoomFactor value for each move in history is a decimal number. This value is the

proportion of the move's order in the history to the total size of the history. The

number obtained is the effect of that zooming move to the prefetching process.

Namely, the effect of a zooming moves decreases in direct proportion to its order in

the history list. By this way, redundant prefetching requests to the WMS server for

the zooming moves are prevented. For instance let’s assume that history size is 5. If

the moves in the history are “east, east, east, east and zoom-in”, the zoomFactor

value of each move will be as given in the table below:

Table 1: Calculation of zoomFactor (sample 1)

History Order

(older-to-new)
Navigation

zoomFactor

calculation
zoomFactor

1 east 0 * (1 / 5) 0

2 east 0 * (2 / 5) 0

3 east 0 * (3 / 5) 0

4 east 0 * (4 / 5) 0

5 zoom-in -1 * (5 / 5) -1

Zooming -1

After 3 moves to west the table will be as given below. In that case, the effect of

zoom-in in history is decreased from 1 to 0.4 and zoomFactor became -0.4. The

round value of zoomFactor is 0, and then we can say that there is no need for

prefetching another zooming level.

 27

Table 2: Calculation of zoomFactor (sample 2)

History Order

(older-to-new)
Navigation

zoomFactor

calculation
zoomFactor

1 east 0 * (1 / 5) 0

2 zoom-in -1 * (2 / 5) -0.4

3 west 0 * (3 / 5) 0

4 west 0 * (4 / 5) 0

5 west 0 * (5 / 5) 0

Zooming -0.4 � 0

For the history view below; although, zoom-in actions of the user are left behind in

the history, their effect still continuous. Zooming value of -0.6 is rounded to -1,

which means there is still a chance that the user will zoom-in in the next move.

Table 3: Calculation of zoomFactor (sample 3)

History Order

(older-to-new)
Navigation

zoomFactor

calculation
zoomFactor

1 zoom-in -1 * (1 / 5) -0.2

2 zoom-in -1 * (2 / 5) -0.4

3 west 0 * (3 / 5) 0

4 west 0 * (4 / 5) 0

5 west 0 * (5 / 5) 0

Zooming -0.6 � -1

 28

The sign of Easting determines the direction of prefetching. “1” means retrieving

tiles on the right (east) side of the source tile and “-1” means retrieving tiles (west)

side of the source tile. The same logic is valid for Southing too. “1” means tiles

below the source tile and “-1” means tiles above the source tile on map. As seen in

the table below, for all 8 combinations of Easting and Southing, tile number to

prefetch is either 1 or 3.

Table 4: Neighbor tiles to prefetch according to Easting and Southing

TILES TO PREFETCH EASTING SOUTHING

 1 0

 -1 0

0 1

0 -1

1 1

1 -1

-1 -1

-1 1

Determining zooming in or out is made according to the sign of Zooming value. If

Zooming is “-1”, 1-level-zoom-in of center tile; if Zooming is “1”, 1-level-zoom-out

of center is prefetched.

 29

The prefetching mechanism is notified when the center of the view extent changes. If

the action of the user on the map does not change the center tile, there is no need to

prefetch any tiles. By the help of the notification mechanism, redundant requests to

WMS server are prevented. In each center change notification, the top-left tile of the

view extent is saved. Top-left tile is the reference tile for finding the tiles to prefetch.

Also, the numbers of horizontal and vertical tiles in the view extent are used during

calculations. The top-left tile of the view extent in figure below is the one that has a

circle inside. The number of horizontal tiles (numWidth) is 4 and the number of

vertical tiles (numHeight) is 3.

Figure 12: Top-left tile and tiles on the edge of the view extent

In this method, instead of initiating threads for each tile in the view extent, only one

thread is created for all tiles on the edge of the view extent. Since, their neighbor tiles

are still inside the view extent, the tiles that are in the center of the view extent are

not significant for prefetching process. The tiles on the edge of the view extent in the

figure above are represented with darker filling. No prefetching is done for the 2 tiles

in the center. Starting from the top-left tile, a distinct number (starting from 1) is

assigned to each tile on the edge clockwise. In the figure below, the numbers

assigned for each tile on the edge of the view extent can be seen. The view extents

are drawn with thicker borders around them. For the view extent on the left, there are

8 tiles are on the edge. For the view extent on the right, this number is 10.

 30

Figure 13: Tiles on the edge of the view extent

These numbers are used for indicating the order of tiles to prefetch. As show in the

table below, for 8 directions, the order of prefetching is given.

Table 5: Prefetching order for each direction

DIRECTIONS TILE ORDER

EAST 3 , 2 , 4

WEST 7 , 6 , 0

NORTH 1 , 0 , 2

SOUTH 5 , 4 , 6

NORTHWEST 0 , 1 , 7 , 2 , 6

NORTHEAST 2 , 3 , 1 , 4 , 0

SOUTHWEST 6 , 7 , 5 , 0 , 4

SOUTHEAST 4 , 5 , 3 , 6 , 2

The tiles to prefetch for each tile on the edge and for each direction are already

known by the algorithm. This is the only section of the algorithm where pre-

processing is applied. In the beginning of the application, prefetching order tables for

all possible numWidth and numHeight values are calculated.

 31

According to the prefetching order table above, if the Easting is 1 and Southing is 0,

1 tile on the right of the source tile is prefetched. So, for the view extent below, the

source tiles are 2, 3 and 4. As a result, the tiles on the right side of these 3 tiles are

prefetched (tiles X, Y and Z in the figure below). If the Easting is -1 and Southing is

1, it means the direction is southwest and the source tiles are 5, 6 and 7. 6 darker tiles

on the left and down side of the source tiles in the figure below are the candidates for

prefetching (tiles with letters from A to G).

Figure 14: Tiles to prefetch in southwest direction

The order is important, because, for each direction, the location of tiles to be

prefetched is in the same direction of the navigation. For instance, for southwest

direction, the first source tile is 6, because the tiles to be prefetched for this tile is C,

D and E and those tile are placed in the direction of the next navigation; southwest.

Tiles A, B, F and G are prefetched after C, D and E. By this way, if the prefetching

process is canceled because of the navigation change of the user, the tiles that will be

requested first will be present in the prefetching cache.

Different than the previous algorithm (prefetching neighbor tiles of a requested tile),

the proposed algorithm does not retrieve the zoom level tiles of “every” tile in the

view extent, but only the center tile. For instance, for 9 tiles in view extent, instead of

81 tiles, only 25 or 9 tiles are prefetched for the center tile. The number 25 is chosen

if at least one of numWidth or numHeight is greater than 3. Otherwise, prefetching 9

tiles will be adequate to fill the next view extent. By this way, the number of tiles

prefetched is reduced for performance optimization. In the following two figures, the

tiles prefetched for the center tile in 1-level zoom in and out conditions are given.

 32

Figure 15: Tiles requested for zooming in center tile

Figure 16: Tiles requested for zooming out center tile

Execution of the algorithm over a sample scenario

In this section, the processes executed in the proposed algorithm are explained over a

sample scenario. The scenario contains 7 navigation actions of the client and the

method of finding out the neighbor tiles to prefetch is clarified. Depth of the list

where the former navigations are kept is selected as 5.

The figure below demonstrates the navigations. The cell in “2, 2” is the center of the

initial view extent which consists of 9 tiles. The square around the last tile represents

the view extent of the final state. 2 bright arrows shows the first two navigations of

the user which are removed from the history because they are expired. By expired, it

is meant that 5 (history depth) navigations are passed after these two tiles and

because of that they are no longer needed for calculations.

 33

Figure 17: Sample navigation scenario when history depth is 5

In the table below, each step of grading formula execution is given. There is no

column for Zooming, because the navigation steps do not contain any zoom in/out

action.

Table 18: Execution of grading formula for the sample scenario when history depth

is 5

Step
Previous

Tile
Current

Tile
Hit

Ratio
Easting Southing

1 2 , 4 3 , 5 0.692
(5 – 4) * 0.652

= 0.652
(3 – 2) * 0.652

= 0.652

2 3 , 5 4 , 6 0.652
(6 – 5) * 0.652

= 0.652
(4 – 3) * 0.652

= 0.652

3 4 , 6 5 , 6 1 (6 – 6) * 1 = 0 (5 – 4) * 1 = 1

4 5 , 6 5 , 7 1 (7 – 6) * 1 = 1 (5 – 5) * 4 = 0

5 5 , 7 5 , 8 1 (8 – 7) * 1 = 1 (5 – 5) * 1 = 0

Total 3.304 2.304

Avg
3.304 / 4 =

0,826 -> 1
2.304 / 3 =

0,768 -> 1

 34

The data near “Avg” row are the final Easting and Southing values used for

calculating the tiles to prefetch. Avg for Easting is calculated as dividing total

Eastings into total Easting differences between each data in history. The divider in

this table is not 5, but 4, because in step 4, the difference is 0 (6-6) and it has no

effect on total total Easting differences. The divider for Southing is 3, because, in

both steps 4 and 5, the differences are 0 (5-5).

As a result of the grading formula, 7 tiles are prefetched. Since Easting and Southing

are both positive, tiles on the right-down side of the source tile are retrieved. The

tiles retrieved for final view extent (darker cells) are displayed in the figure below:

Figure 19: Tiles prefetched when history depth is 5

9 darker tiles are added to prefetching cache and 9 tiles inside the view extent are

added to default tile cache. From now on, when there is a tile request on a view

extent change, firstly, prefetch cache is checked. If the requested tile is in this cache,

no request is sent to the WMS server and tile in the prefetch cache is retrieved.

Otherwise, the default protocol is executed. Tile is searched in the default tile cache.

If there is no entry for that tile, it is requested from the WMS server.

 35

Formula for cache size calculation according to memory

Cache size is the maximum number of tiles that can be saved in the cache. In the

proposed algorithm this value is configurable. If the user does not specify the cache

size, it is calculated by a simple calculation. The formula is:

CACHE_SIZE = (Maximum_Memory – Current_Memory) /

Tile_Size

Maximum_Memory is the maximum memory that can be used during the execution

of the client application. Current_Memory is the total memory used in the client

application at that moment. So, subtracting Current_Memory from

Maximum_Memory gives the maximum amount of memory can be utilized for the

cache. Although this memory is used for the application’s other processes, it can be

discarded. Because it is relatively small and also when the application is out of

memory and cache does not reach to its limit. At that point, 75% of main and

prefetch caches are removed. The percentage is chosen 75% as a result of the

following simple assumption:

• Clearing both caches will rewind the application to its initial state and all the

tiles cached will be lost. So, the performance improvement of the caches will

cease.

• Removing less than 3/4 of the tiles (for instance 50% of the tiles) in the

caches can be adequate for that moment to prevent out of memory errors, but

after a short period of time memory usage will hit the limit and the caches

will be cleared again. If this process is executed too frequently, it means most

of the application’s execution time is spent with intense memory usage. In

these conditions, Garbage Collector of Java runs excessively and this will

affect the performance of the application negatively.

Because of these reasons, 75% is a feasible ratio. Reaching the memory limits next

time is postponed more afterwards and enough amounts of tiles are kept in the caches

to keep the applications performance in a decent level. Also, according to the

 36

benchmark results in table below, 75% comes out as the most feasible value to

choose.

Table 20: Performance of different ratios for clearing the cache

Ratio Cache Hit Cache Miss Number of GC Executions Total Time (ms)

%25 94 45 38 10788

%50 92 47 25 7558

%75 88 51 15 5993

%100 55 84 8 8054

Most of the executions for 25% and some of the executions for 50% could not be

lasted until the end of the test. Application was frozen because of the excessive

number of GCs (Garbage Collections). In those ratios, the time spent for the memory

allocation and deallocation processes choked the application and the application

could not respond the user actions. So, the values under total time and cache hit/miss

columns are obtained from the successful execution. As a result, 25% and 50% ratios

are eliminated directly, because in those ratios, memory utilization and application

stability cannot be obtained.

On the other hand for the ratios 75% and 100%, the execution of the application

lasted until the end of the tests. However, the performance of 100% was worse than

75%, because each time a GC is executed caches are cleared and next requests are

redirected to WMS server instead of the prefetching cache. For 75%, GC executions

are more than 100%, but the performance is better. Despite the fact that ¾ of the

prefetching cache is cleared (since most recently prefetched tiles are still in the

cache), user’s future requests are met from the cache.

 37

This study does not specifically claim that 75% gives better results than any other

closer ratios like 70% or 80%. 75% is a reasonable average value to choose and in

some circumstances, slightly lower or higher ratios can give better results as well.

The advantages of this method are:

• Since the possible future cells that will be visited in the next navigation are

retrieved during the request of a tile, the tiles needed to load for the next

navigation are already present in the cache.

• As in the previous method, each process of prefetching for a tile is handled in

a separate thread other than the main thread.

• As in the previous method, the size of the cache is configurable.

• The prefetching method is optimized for not making excessive requests to

WMS server by determining the number of tiles to be prefetched by

implementing a heuristic approach. By this way, the future tiles are predicted

and unnecessary neighbor and zoom level tiles are not requested.

The disadvantages of this method are:

• The memory consumed is more than the first method, because of the separate

cache for keeping the prefetched tiles.

• Because of the first disadvantage, just like in the previous method, memory

reaches to its maximum capacity sooner than the first method. Since, the

memory consumption is less than the second method; this method reaches to

its maximum capacity later. Nevertheless, the memory consumption can be

considered as reasonable near its contribution to performance enhancement.

 38

CHAPTER 4

TEST BED

This study represents a prefetching algorithm that aims to find the best probable map

tiles that forms the next possible moves of the user. In this section, the basic structure

of the library used for demonstrating the proposed prefetching algorithm and the

alternative caching algorithms are explained.

SwingX-WS is a Java library that introduces several Java beans for interacting with

web services within Swing applications. The reason to select this library in the study

is very obvious. Because, it is an open source project and its components are very

easy to use.

The most popular map server of the today’s Web GIS technology is provided by

Google. The map server of Google divides the world into equally sized tiles which

are referenced as Cartesian coordinates, x and y. Although, this design decision gains

a remarkable performance improvements, WMS map service standard defined by

OGC® accepts the a map request as a bounding box given in latitude and longitude

coordinates. In this context, we can say that Google does not obey the standard

implementation proposed by WMS. But, as mentioned earlier, a WMS extension

called “Tiled WMS” is also proposed by OGC®. So, we can also say that dividing the

maps into tiles is encouraged by OGC too. Herein, JXMapViewer component of

SwingX-WS steps in. JXMapViewer provides a build-in map viewer that retrieves

map data from any WMS server that is implemented by obeying the rules defined in

OGC® WMS implementation specification. But, the major feature of this component

is dividing the map into the tiles just like Google does and “Tiled WMS”

recommends. This is very important because caching the map requests depends on

tiling the map into “equally sized images” (tiles).

 39

In this study, the WMS service provided by Geoserver 1.7.2 (http://geoserver.org) is

used as map data provider. This server provides a map layer called “topp:states”

which displays the states of USA. In the demo application, States map provided by

this WMS service is displayed as below:

Figure 21: States Map in Geoserver WMS Service

There are many public OGC® WMS servers over the internet [20]. To increase in

variety and use a WMS server that operates on internet, another WMS server is used.

This WMS server (called World Mineral Deposits) is provided by Mineral Resources

Division, Geological Survey of Canada and the chosen layer is a patchwork map

depicting generalized bedrock domains for era-level age ranges and predominant

rock types [21]. The map below shows the age ranges of the rocks in Turkey and its

neighbors. Each color represents a different age range, but within this study, their

meanings are not essential information. The colors and their meaning can be obtained

with a WMS request called GetLegendGraphic, which gives the legend information

of the layer given in the request [22].

 40

Figure 22: The age ranges of the rocks in Turkey and its neighbors in World Mineral

Deposits WMS Service

To demonstrate the effects of the caching and prefetching mechanisms used in this

study, a relatively small tile size (300 pixels) is preferred for both WMS services

mentioned.

In JXMapViewer, using these two WMS services as map providers is very easy. The

WMS web service is represented by the WMSService class. BaseURL for the web

service and the layer with properties are set on the WMSService instance. The

BaseURL is the URL where the service resides (without any parameters). The layer

represents a particular portion of the data available from this map service. In general,

these two pieces of information are all needed to connect to a WMS server.

Most WMS servers have several layers; usually a single base layer and several data

layers. The base layer usually covers the entire world and the data layers are

transparent data sets which can overlaid on top of the base layer. In this study, only

the base layer is used, because any other additions to the base layer will not affect the

result of the study.

Once the WMSService instance is created, there is only one thing left; wrapping it in

a new WMSTileFactory and set it on the map. The WMSTileFactory is the class that

will convert WMS requests into the tile based coordinate system that JXMapViewer

 41

understands. EPSG:4326 is used as Spatial Reference System (the method of

representing the surface of a sphere or other shape on a plane).

WMSTileFactory uses the build-in caching mechanism defined in TileCache class.

The caching mechanism of TileCache is very simple. When a WMS request comes to

WMSTileFactory, a new thread for loading the requested tiles is initialized. This

thread checks the cache and if there is a hit for the requested tile, it passes to the next

tile. Otherwise, the tile is requested from the WMS server and put into the cache. The

cache is cleared when an OutOfMemoryError is thrown. This error occurs when the

Java Virtual Machine cannot allocate an object because it is out of memory, and no

more memory could be made available by the garbage collector. As it can be seen,

there is not a complicated logic in the caching mechanism. The size of the cache is

limited with the maximum memory allocated for the application. This can be

considered as the lowest level of caching without any complicated strategy.

To convert a tile request to a valid WMS request, WMSService class has a method

called toWMSURL. This method has four parameters which defines a tile; x, y, zoom

and tile size. “x” and “y” indicates the position of the tile cell in the whole map, in

other words order of the tile. “zoom” gives the zoom level of the tile. In

JXMapViewer, valid zoom range is between 0 and 15. “tile size” is the size of the

tile in pixels. For a WMS request, “tile size” corresponds to width/height of the

image returned by the WMS service. JXMapViewer has a flag to turn on/off

displaying the x, y and zoom properties and the borders of the tiles drawn. When,

this flag is opened, the map is displayed as below:

 42

Figure 23: Distribution of map tiles in JXMapViewer component

4.1 Test Simulation

For performance tests, a simple demo application is developed. The main purpose of

this application is automating the performance tests and exporting the results in PDF

format to keep them permanently. The application is build on JXMapViewer

component of SwingX-WS library.

The simulation of the user actions are handled by the “Robot API” of Java. Robot

API provides the methods for executing the mouse actions programmatically. So,

each map action like navigating different directions and changing zoom levels are

automated via calling these methods.

When the application is initialized, the user enters the configurations for the

simulation or just selects the predefined data which are obtained from a configuration

file. The configuration file contains the following properties:

 43

wms_name_list: name of the WMS service. WMS services that are used in this

study are Geoserver’s topp:states and World Mineral Deposits service of Mineral

Resources Division, Geological Survey of Canada.

wms_URL_list: URL of the each WMS service in wms_name_list. All the WMS

parameters that construct a valid request are appended after this given URL. For

instance, the URL in this list for the WMS request

http://localhost:8080/geoserver/wms?bbox=-130,24,-

66,50&styles=population&Format=image/png&request=GetMap&layers=topp:states

&width=550&height=250&srs=EPSG:4326

is:

http://localhost:8080/geoserver/wms?

wms_layer_list: Layer name of each WMS service in wms_name_list.

wms_SRS_list: SRS name of each WMS service in wms_name_list.

wms_center_lat_list: Latitude of the center location where the map is opened for

each WMS service. Range is [-90, 90].

wms_center_lon_list: Longitude of the center location where the map is opened for

each WMS service. Range is [-180, 180].

wms_zoom_level: The zoom level which the map opens with. Its range is

determined by JXMapViewer as 0 to 15.

navigations: Navigation steps to be applied during the simulations for each WMS

service in wms_name_list. There are 9 basic directions and two zoom options that

form the navigation steps. The user can add as many navigations as s(he) desires.

wms_selected: The index of the selected WMS service which will be used for the

simulation. The index begins from “0”.

 44

cache_selected: Index of the selected cache among the cache list in configuration

window (see the next figure below). There are 3 cache strategies:

• TC: Default caching strategy. Only the visited tiles are kept in the cache.

• SP: Simple prefetching implemented over TC method. Only the 8 neighbor

tiles of a tile is prefetched and saved in the cache.

• RAP: Proposed algorithm. This is the cache that the proposed algorithm is

implemented. When this cache is selected, value in the cache_depth

configuration parameter is used as explained below.

• HCBP: Tile cache that uses Hilbert Curve Based Prefetching algorithm [13]

mentioned in RELATED WORK section.

• PKM: Tile cache that uses previous-k-movements prefetching algorithm

mentioned in RELATED WORK section [14].

cache_depth: Number of tiles will be kept in the history for RAP and PKM method.

If the cache_depth is “5”, it means 5 tiles passed to reach to current tile are kept in

history list.

number_of_items_in_cache: Maximum number of tiles will be kept in the cache

(cache size). If this value is over 0, it is used as cache size. Otherwise, cache size is

determined according to the memory reserved for the client application. The formula

to determine the cache size according to memory is given in Section 3.4.

A WMS service may limit the bounding box of a layer smaller than the whole earth.

In that situation, center latitude, center longitude, zoom level and navigation steps

shall be given as staying inside the bounding box of the layer. Otherwise, WMS

service may throw a WMS exception and will not return a valid map image.

The configuration window below is opened with the values in the configuration file.

However, the user may enter a WMS service with its parameters by pressing “Add

WMS” button. User can enter all the parameters except navigations via this screen.

Navigation steps are entered in configuration window.

 45

Figure 24: Configuration window

Figure 25: Configuration window: Cache selection

 46

Figure 26: Add WMS window

4.2 Outcome of the Tests

After the configuration is entered, all the performance tests are done automatically

without any user interaction. For instance, let’s assume that the user selects the

Geoserver as the WMS service, enters the initial zoom level as 12 and navigation

steps as follows: zoom out, east, southeast, south, east, zoom in, zoom in, northwest,

west and north. After the simulation is over, the results are saved in a PDF file.

Exporting the results in PDF format is done with the help of another open source

library called iText (http://www.lowagie.com/iText). The test results contain the

following information:

Navigation Summary Table: This is a table that contains the navigation steps that

are applied by the application automatically. Zoom levels, latitudes and longitudes

for each navigation step are also presented in this table.

 47

Table 6: Navigation summary table

Charts: Two different charts are generated at the end of a test. The charts are created

with the JFreeChart library (an open-source framework for Java, which allows the

creation of complex charts in a simple way (http://www.jfree.org/jfreechart)).

The first chart is “JVM Memory Usage” chart which displays the memory used in

Java Heap Space and Maximum Heap Space over time.

Figure 27: JVM Memory Usage chart

 48

The other chart is called “Map Refresh Time with Tile Numbers” and it is a

combination of two charts. The first chart displays the refresh time of the map over

time. Each tick on the graph represents a navigation step given in the Navigation

Summary table. The graph below this graph gives the number of tiles loaded for each

navigation step. When these two tables are evaluated together, the time spent for

loading the tiles requested for each navigation steps can be obtained.

Figure 28: Map Refresh Time with Tile Numbers chart

Performance Results Table: This is the table where the results of the simulation are

summarized. The numerical values of the graphs are given in this table. For instance,

by looking at this table, it can be concluded that no tiles are loaded in last step

(north), because they were retrieved from the cache. Also, in 4th step (southwest), all

3 tiles requested are obtained from the prefetching cache and no requests are sent to

WMS server.

 49

T
ab

le
 7

:
P

er
fo

rm
an

ce
 r

es
ul

ts
 t

ab
le

 50

CHAPTER 5

RESULTS AND DISCUSSION

In this chapter the performance and memory consumption of RAP method is

compared with other methods. Tests are executed in 2 separate WMS servers to

increase variety:

• Geoserver (runs on local machine)

• World Mineral Deposits Service (runs on internet)

In tests executed in Georserver, RAP method is compared with Tile Caching and

Simple Prefetching methods. In second test executed on World Mineral Deposits

Service, besides the other two methods, proposed algorithm is compared with Hilbert

Curve based prefetching algorithm and previous-k-movement method as well.

Tests are completely automated by simulating the user actions and results are

generated when the simulation is over. During the tests no user interaction is

required. Also, 1 second delay is put between navigations to reflect the average user

behavior.

On each test, “randomly” generated 21 navigations are simulated and all these

navigations are performed for all the methods included in the tests. In total, 100 tests

are executed and in each test, a unique list of 21 navigations is performed. All the

navigation sets executed in each test are completely different than each other. They

all contain 21 navigations to reflect the consistency in comparisons.

The statistics of the results acquired at the end of the tests are given in APPENDIX -

C. Refresh times and memory usages for each method are evaluated and some

statistical values are obtained.

 51

A sample of 100 navigation sets generated randomly for the simulations is given in

the table. So, if we count the initial state as well, there are 22 states and 21 transitions

in total.

Table 8: Navigation Summary

Navigation
Zoom

Level

Center

Latitude

Center

Longitude

Initial 11 40.00000 -100.00000

EAST 11 40.00000 -94.00000

EAST 11 40.00000 -88.00000

SOUTH EAST 11 37.06732 -82.00000

SOUTH EAST 11 34.01671 -76.00000

EAST 11 34.01671 -70.00000

SOUTH EAST 11 30.85242 -64.00000

SOUTH 11 27.58021 -64.00000

SOUTH 11 24.20741 -64.00000

SOUTH EAST 11 20.74294 -58.00000

EAST 11 20.74294 -52.00000

EAST 11 20.74294 -46.00000

ZOOM IN 10 20.74294 -46.00000

ZOOM IN 9 20.74294 -46.00000

ZOOM IN 8 20.74294 -46.00000

ZOOM IN 7 20.74294 -46.00000

ZOOM IN 6 20.74294 -46.00000

EAST 6 20.74294 -45.81250

EAST 6 20.74294 -45.62500

EAST 6 20.74294 -45.43750

ZOOM IN 5 20.74294 -45.43750

ZOOM IN 4 20.74294 -45.43750

The figure below illustrates these 21 navigations (transitions). For simplifying the

illustration, zoom actions are marked as “5x” and “2x” over the figure.

 52

Figure 29: Cells transitions of navigation steps

Each step of the test simulation for this sample scenario is given in APPENDIX –B.

In that section, for each navigation, direction of the navigation, top-left tile of the

current view extent, Easting, Southing and Zooming values are presented. Also, east,

south and zoom differences, hit-ratios and zoomFactors for each data in history are

shown in a table row-by-row. Also, at the end of each navigation, tiles to be

prefetched are written in a table. Now on, throughout the document, the phrase

“sample scenario” refers to this navigation set selected among the 100 navigation

sets.

Besides the 100 random navigations, 2 navigation sets that give the best and worst

results for RAP method are given too. Those navigation sets and their meaning for

RAP method are explained at the end of this section (5.3Extreme scenarios).

5.1 Execution of the Tests in Geoserver

The first tests are executed with Geoserver. The initial and final view extents during

the tests are shown in the figures below. These view extends are obtained during the

execution of the sample scenario.

 53

Figure 30: Initial view extent in Geoserver’s topp:states (center tile is x = 14, y = 24,

zoom = 11)

Figure 31: Final view extent in Geoserver’s topp:states (center tile is x = 3062, y =

3613, zoom = 4)

 54

The average memory usage during the execution of tests is given in 3 diagrams

below. In all 3 tests, the memory usage increases in direct proportion to the time

passes as expected.

Figure 32: Memory Usage over Time for TC method (Geoserver’s topp:states)

The figure above shows the average memory usage when TC method is used during

the simulation. The memory consumption in this test is the lowest according to other

two tests. The reason is very clear; the TC method does not utilize a prefetching

mechanism, so no memory is allocated for a prefetching cache.

Figure 33: Memory Usage over Time for SP method (Geoserver’s topp:states)

 55

The figure above shows the memory usage when the SP method is used during the

simulation. The memory consumption in this test is the highest according to other

two tests. Since this algorithm has a separate cache for prefetching and the cache is

filled with the prefetched tiles, the memory usage of this method is more than the TC

method. Also, it is more than the RAP method as well. Because, when this method

prefetches the entire neighbor tiles around a tile, in RAP method, only the tiles that

are predicted as candidates of next moves. Since, the number of tiles prefetched in

this method is more than the RAP method, more memory is allocated.

Figure 34: Memory Usage over Time for RAP method (Geoserver’s topp:states)

The memory usage in RAP method is given in the figure above. In this situation,

memory consumption is between the other two methods. The cache utilized for

prefetching causes allocating more memory than the TC.

Two graphics in the figure below shows the number of tiles loaded for each

navigation and the refresh time of the map when the sample scenario is executed. As

expected, the map refresh time increases when more tiles are requested from map

server. It can be clearly observed that the first time 12 tiles are loaded takes more

time than the later 5 times 12 tiles are loaded. The reason for that difference is;

although 12 tiles are requested to construct the view extent image, not all the requests

 56

are directed to WMS server. Since, some tiles are already in the prefetching cache,

they are loaded from the cache and that reduces the refresh time.

Figure 35: Refresh Time & Requested Tile Number over Time for TC method

(Geoserver’s topp:states)

 57

The refresh times when SP method is used are given in the figure below. In this

graphic, refresh times for the navigations to neighbor tiles (other than zooms) are less

than the first method. Because, in SP method, during navigation, the entire neighbor

tiles of the current tiles are prefetched. But this advantage is lost when a zooming

operation is performed by the user. In that case, the neighbor tiles prefetched are

useless. The time and memory spent for this process does not help the user at all.

Because of those lost time and memory, total refresh time is more than the first

method.

Figure 36: Refresh Time & Requested Tile Number over Time for SP method

(Geoserver’s topp:states)

On the other hand, the performance of RAP method can be considered better than the

other two methods. By examining both the graphic and the Refresh Times table

 58

below, it can be observed that tiles needed to construct the view extent for the

subsequent navigations are already in the prefetching cache and no requests are made

to the WMS server.

Figure 37: Refresh Time & Requested Tile Number over Time for RAP method

(Geoserver’s topp:states)

In the table below, the refresh times of each navigation in sample scenario is given

for each method.

 59

Table 9: Refresh Times in sample scenario (Geoserver’s topp:states)

REFRESH TIMES (ms)

NAVIGATIONS
TC SP RAP

Initial State 1107.970706 2962.687157 1152.543689

EAST 329.712855 62.060960 382.424582

EAST 620.125742 69.773951 68.800644

SOUTH EAST 611.535823 300.716432 332.493376

SOUTH EAST 189.358424 69.000110 61.958434

EAST 266.433583 30.583216 113.176954

SOUTH EAST 319.458758 82.644023 104.271912

SOUTH 176.638651 31.701516 23.616130

SOUTH 6.534909 16.715532 16.030529

SOUTH EAST 286.408189 87.125040 319.418250

EAST 177.163857 42.674977 18.035812

EAST 330.791204 408.796369 392.735669

ZOOM IN 471.701291 1287.298665 503.781347

ZOOM IN 980.571833 1128.092677 522.979876

ZOOM IN 561.601824 1001.044825 224.464841

ZOOM IN 615.048281 987.587110 274.608924

ZOOM IN 554.017620 909.840496 176.477178

EAST 250.426801 17.701691 27.956905

EAST 196.520228 96.799174 43.251866

EAST 138.332386 40.002291 34.254074

ZOOM IN 521.456777 987.298665 801.292063

ZOOM IN 771.359768 909.840496 243.039549

Total Refresh
Time

8375.198804 8657.298216 4685.068915

In the table below, the memory usage during the execution of each navigation in

sample scenario is given for each method.

 60

Table 10: Used Memory & Total Memory in sample scenario (Geoserver’s

topp:states)

USED MEMORY (bytes)
NAVIGATIONS

TC SP RAP

initial 9,851,672 23,349,040 9,902,496

EAST 9,823,392 21,010,344 10,812,688

EAST 12,487,168 26,281,168 11,902,160

SOUTH EAST 14,440,784 22,013,160 14,754,752

SOUTH EAST 16,710,408 29,267,560 16,997,456

EAST 16,335,512 32,643,624 18,293,696

SOUTH EAST 19,566,432 25,664,248 20,586,552

SOUTH 21,500,152 33,376,456 23,447,936

SOUTH 21,555,816 35,311,664 23,506,592

SOUTH EAST 24,385,656 35,589,296 23,461,360

EAST 26,250,760 42,329,968 26,227,792

EAST 25,430,928 44,040,872 29,080,992

ZOOM IN 31,013,896 60,967,352 36,452,912

ZOOM IN 33,242,808 77,748,184 44,732,560

ZOOM IN 40,265,768 88,549,216 52,785,712

ZOOM IN 48,300,080 86,611,592 62,959,976

ZOOM IN 52,569,240 110,391,416 65,320,248

EAST 43,826,312 117,499,808 70,205,992

EAST 46,384,872 117,508,688 74,263,880

EAST 47,209,160 117,265,408 75,349,232

ZOOM IN 52,787,720 139,229,328 83,414,512

ZOOM IN 58,020,280 143,293,456 92,673,032

Total Memory Allocated
in the End

77,115,392 199,340,032 102,731,776

Values in “Total Memory Allocated in the End” row are given only for informative

purposes. Those values do not give the memory usage of the algorithms, but only the

total memory allocated at that moment by the JVM to prevent out of memory errors.

The memory values that matter are the ones written in bold font before that row.

 61

As mentioned earlier, these tests are performed 100 times with randomly generated

unique navigation sets. The table below gives the averages of the total refresh times

and memory usages for each method at the end of these 100 executions.

Table 11: Average refresh times & memory usage for 100 executions (Geoserver’s

topp:states)

Averages TC SP RAP

Refresh Time (ms) 8034.383335 8244.343422 4566.377590

Memory Usage (bytes) 60,120,550 149,156,746 90,774,362

The cache statistics of each method obtained at the end of the test simulations is

given in the table below:

Table 12: Cache Statistics (Geoserver’s topp:states)

METHOD Cache Hit Cache Miss

TC 0 139

SP 58 81

RAP 88 51

As a result of the test, using SP method is not a wise choice for optimizing the

performance of a Web GIS application, since it does not provide a better refresh time

and memory usage. However, in RAP method, the average execution time of the

simulations is reduced to 56.8% (4566.377590 / 8034.383335) of TC method. The

only disadvantage of this method is using more memory than TC method (almost

1.51 times). But, it is a known fact that, in today’s computers, increasing the size of

the memory is not hard as upgrading the CPU.

 62

5.2 Execution of the Test in World Mineral Deposits

Service

Besides Geoserver, to diversify the tests, a free WMS server that runs on internet is

used. The WMS server used in this test is “World Mineral Deposits Service”

provided by Mineral Resources Division, Geological Survey of Canada. The initial

and final view extents obtained from this service during the tests are shown in the

figures below. As in the previous section, these view extends are obtained during the

execution of the sample scenario.

Figure 38: Initial view extent in World Mineral Deposits Service (center tile is x =

35, y = 22, zoom = 11)

 63

Figure 39: Final view extent in World Mineral Deposits Service (center tile is x =

5447, y = 3393, zoom = 4)

This time, besides the other two methods, RAP method is compared to HCBP and

PKM methods as well. The following 5 diagrams show the memory usages of all

methods. All observations from the previous tests in Geoserver are valid for these

tests too. Whilst, TC method consumes the least memory, SP method uses the most

memory among the others. On the other hand, the memory consumed by RAP

method is lower than SP method, but higher than TC, HCBP and PKM methods.

 64

Figure 40: Memory Usage over Time for TC method (World Mineral Deposits

Service)

Figure 41: Memory Usage over Time for SP method (World Mineral Deposits

Service)

 65

Figure 42: Memory Usage over Time for RAP method (World Mineral Deposits

Service)

Figure 43: Memory Usage over Time for HCBP method (World Mineral Deposits

Service)

 66

Figure 44: Memory Usage over Time for PKM method (World Mineral Deposits

Service)

The diagrams below are basically the same diagrams of the tests executed in

Geoserver for 4 methods. The data in these diagrams show that the performance

results of the algorithms are consistent with the previous tests.

 67

Figure 45: Refresh Time & Requested Tile Number over Time for TC method

(World Mineral Deposits Service)

 68

Figure 46: Refresh Time & Requested Tile Number over Time for SP method (World

Mineral Deposits Service)

 69

Figure 47: Refresh Time & Requested Tile Number over Time for RAP method

(World Mineral Deposits Service)

 70

Figure 48: Refresh Time & Requested Tile Number over Time for HCBP method

(World Mineral Deposits Service)

 71

Figure 49: Refresh Time & Requested Tile Number over Time for PKM method

(World Mineral Deposits Service)

As in the simulations executed in Geoserver, 2 tables below are generated for the

sample scenario. The first columns of the Refresh Time and Used Memory tables are

removed from the tables below to fit the content on the page.

 72

Table 13: Refresh Times in sample scenario (World Mineral Deposits Service)

TC SP RAP HCBP PKM

2269.352390 4299.678032 2319.042784 2564.248250 2694.162380

597.391848 1016.520535 757.803017 710.946782 766.293388

646.276552 60.462433 65.507487 487.242373 377.003286

1311.768954 934.605935 881.952595 1234.081147 711.902234

1100.597143 1091.152647 477.113432 1204.818769 643.119233

717.109856 56.850242 604.619302 664.556809 528.334833

723.894797 669.009050 72.311145 678.188149 515.858889

636.629236 27.301235 44.224616 611.543925 364.656548

617.571787 785.227731 674.392696 644.181872 537.122318

572.072708 18.111520 20.342250 647.019942 444.342755

629.978671 30.004093 688.166513 562.514509 499.188220

1174.988721 1772.051755 636.451280 1080.908048 728.496283

1785.750424 3946.307980 2186.442690 1879.763210 1997.523384

2420.872206 4756.840325 604.293004 2401.830680 2291.191420

1668.906802 2924.871457 1454.268629 2065.917316 1933.434216

2368.727589 5300.655251 1195.464786 2199.846350 2101.213129

1502.065207 2900.997194 1509.176725 1678.667261 1788.779855

531.142924 1719.400650 28.222022 525.229883 402.228487

553.846927 23.225578 34.004881 626.989743 332.112412

1023.809730 1229.700422 631.911877 941.669402 587.899543

1678.946067 5245.573948 1228.211406 1686.387516 1633.488844

1762.899754 4781.074131 1604.818490 1634.622557 1667.112194

24025.247900 39289.944110 15399.698840 24166.926240 20851.301471

 73

Table 14: Used Memory & Total Memory in sample scenario (World Mineral

Deposits Service)

TC SP RAP HCBP PKM

8,052,264 11,690,552 7,775,432 8,063,672 8,288,345

9,433,992 14,851,640 9,563,424 9,873,752 9,984,433

9,949,704 17,234,680 10,435,352 11,242,416 11,523,232

12,379,128 19,348,672 13,141,648 12,806,624 13,112,579

15,029,744 25,279,528 15,533,688 15,696,592 15,634,452

16,830,200 27,923,368 18,279,776 16,856,760 17,332,456

16,613,472 28,815,864 19,240,128 18,539,248 18,865,386

17,888,088 32,021,232 19,949,024 19,786,736 20,045,666

19,032,224 33,692,128 19,460,248 20,750,600 20,750,600

20,122,088 35,528,248 20,551,504 21,832,432 21,312,552

21,221,936 35,756,992 22,335,216 23,411,216 26,443,216

23,457,336 41,965,832 24,226,264 24,710,728 27,738,839

28,405,400 51,962,016 30,750,304 29,305,456 32,633,285

35,046,200 65,776,784 36,722,504 37,562,240 38,555,438

38,587,768 76,734,704 44,077,072 41,901,064 46,664,438

44,637,800 96,853,968 55,100,688 48,046,592 57,568,832

47,572,104 103,817,752 62,954,672 50,476,696 62,363,317

49,308,112 108,766,048 65,318,616 52,809,184 66,773,522

51,053,504 110,637,040 67,174,824 53,234,688 67,457,433

52,665,992 102,788,160 74,885,160 54,715,024 75,434,567

55,824,240 115,844,760 82,589,664 60,160,144 83,443,216

60,918,576 126,109,360 90,820,512 64,576,608 94,545,433

84,029,440 182,366,208 97,320,960 91,283,456 98,866,422

The table below gives the averages of the total refresh times and memory usages for

each method at the end of these 100 executions.

 74

Table 15: Average refresh times & memory usage for 100 executions (Geoserver’s

topp:states)

Averages TC SP RAP HCBP PKM

Refresh
Time (ms)

23955.125 36449.226 15221.266 22213.554 19975.775

Memory
Usage
(bytes)

61,443,637 179,655,440 88,543,288 65,403,223 93,716,629

The cache statistics of each method obtained at the end of the test simulations is

given in the table below:

Table 16: Cache Statistics (World Mineral Deposits Service)

METHOD Cache Hit Cache Miss

TC 0 153

SP 59 94

RAP 77 76

HCBP 14 139

PKM 45 94

The results of the tests give the same conclusions as the tests executed in Geoserver.

The memory used in SP method doubles the TC method, because the number of tiles

prefetched is exorbitant. In these tests, execution time of SP method is more than the

TC method, because of the redundant neighbor tile prefetches during the zoom-in

actions of the user. Since both memory usage and refresh times are worse than the

first method, this method cannot be chosen as an upgrade to the TC method.

On the other hand RAP method gives better results in performance. Total execution

time of the tests is lower than the other methods (63% of TC method). As in the

Geoserver test, the memory usage of RAP method is only 1.55 (88,543,288 /

61,443,637) times of TC. This difference is absolutely acceptable according to the

 75

overall performance improvement. So, this method can be chosen as an optimization

technique to improve the Web GIS application performance.

As it can be seen from the tables above, HCBP and PKM methods do not provide a

better performance improvement than the proposed RAP method. The reason can be

concluded from the cache statistics table above. Cache hit ratios of those methods are

worse than the proposed method. Namely, for those methods, application made more

requests to the WMS server than the proposed method and that caused spending

more time to retrieve the tiles of the view extent. On the other hand, memory usage

of HCBP method is better than the proposed method. Because, the tiles prefetched

and the memory utilized for the execution of the algorithm is less than the proposed

method. The average memory consumption of PLM method is more than RAP, but

this relatively small difference can be ignored.

Keep in mind that all of these tests explained above are executed on a computer with

single core CPU. As mentioned in the previous sections, on a computer with multi-

core CPU, the performance of the prefetching methods will increase in direct

proportion to the core number. Because, the threads constructed for each prefetch

request are distributed to separate cores. 1 thread for neighbor tiles, 1 thread for

zoom level and 1 thread for neighbor tiles of the zoom level are created for a

prefetching request. For instance, on a quad-core computer, the data obtained from

the tests will be 2 to 3 times better for prefetching methods.

5.3 Extreme scenarios

In this section two different scenarios are simulated. In the first scenario, the special

navigation set is prepared, so it will give the best performance results for RAP

method. On the other hand, the navigation set prepared in the second scenario gives

the worst performance results for RAP method. Besides RAP method, both

simulations are executed for TC, SP, HCBP and PKM methods as well.

 76

5.3.1 Scenario - 1

In the first scenario, the navigation set prepared as giving the best performance

results for RAP method. According to the definition of RAP method, to obtain the

best performance the predicted movements shall be correct. Namely, if the user

navigates constantly in the same direction, RAP method will prefetch the tiles in that

direction too. During this simulation 21 movements to the “east” are executed. The

refresh times and memory usages of each method are given in the table below:

Table 17: Total refresh times & memory usages for the first extreme scenario

Total TC SP RAP HCBP PKM

Refresh
Time
(ms)

4925.888 2429.571 1750.873 4853.723 4655.852

Memory
Usage
(bytes)

36,055,152 53,405,056 35,517,224 36,760,576 36,022,128

As expected, RAP method gives the best performance. The reason can be deduced

from the cache statistics. As shown in the table below, cache hit ratio of the RAP

method is better than all the methods except SP. Despite the better cache hit

numbers, the execution of SP method took longer than RAP method. In SP method,

number of tiles prefetched is more than the RAP method and for each tile

prefetching, a separate thread is executed. As the number of threads increases the

performance of the algorithm begins to decrease. Also, the memory consumption of

SP method is more than RAP and that deficiency also reduces the performance.

 77

Table 18: Cache Statistics of the first extreme scenario

METHOD Cache Hit Cache Miss

TC 0 78

SP 65 13

RAP 60 18

HCBP 15 63

PKM 25 53

The memory usage and refresh time with tile number graphics over time are given in

the figures below:

Figure 50: Memory Usage over Time of RAP method for the second extreme

scenario

 78

Figure 51: Refresh Time & Requested Tile Number over Time for RAP method for

the second extreme scenario

5.3.2 Scenario - 2

In the second scenario, the navigation set prepared as giving the worst performance

results for RAP method. To obtain the worst performance, the navigations are

selected as not forming a pattern to make the predictions accurate. Namely, if the

movements in the history list are all unique during the simulation, the tiles prefetched

by RAP method will not reflect the user’s next movement entirely. The navigation

steps selected for this simulation is given in the table below:

 79

Table 19: Navigation Summary of the second extreme scenario

Navigation
Zoom

Level

Center

Latitude

Center

Longitude

Initial 11 40.00000 -100.00000

EAST 11 40.00000 -94.00000

NORTH 11 42.81194 -94.00000

WEST 11 42.81194 -100.00000

SOUTH 11 40.00000 -100.00000

ZOOM IN 10 40.00000 -100.00000

WEST 10 40.00000 -103.00000

SOUTH 10 38.54861 -103.00000

EAST 10 38.54861 -100.00000

NORTH 10 40.00000 -100.00000

ZOOM OUT 11 40.00000 -100.00000

EAST 11 40.00000 -94.00000

NORTH 11 42.81194 -94.00000

WEST 11 42.81194 -100.00000

SOUTH 11 40.00000 -100.00000

ZOOM IN 10 40.00000 -100.00000

WEST 10 40.00000 -103.00000

SOUTH 10 38.54861 -103.00000

EAST 10 38.54861 -100.00000

NORTH 10 40.00000 -100.00000

ZOOM OUT 11 40.00000 -100.00000

 80

Table 20: Total refresh times & memory usages for the second extreme scenario

Total TC SP RAP HCBP PKM

Refresh
Time
(ms)

1867.835 2490.779 2683.314 2622.497 2646.642

Memory
Usage
(bytes)

23,212,032 51,601,408 36,753,408 30,896,128 39,154,903

As expected, RAP method gave worse performance than TC, because no cache hit

occurred in the prefetching cache. Hence, the tile prefetching processes and the

memory consumption caused reduction in the performance. However, for the same

scenario and for the same reason, HCBP and PKM did not give a much better results

either.

Table 21: Cache Statistics of the second extreme scenario

METHOD Cache Hit Cache Miss

TC 0 36

SP 20 16

RAP 0 36

HCBP 1 35

PKM 1 35

The memory usage and refresh time with tile number graphics over time are given in

the figures below:

 81

Figure 52: Memory Usage over Time of RAP method for the second extreme

scenario

Figure 53: Refresh Time & Requested Tile Number over Time for RAP method for

the second extreme scenario

 82

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this study, a heuristic prefetching algorithm is proposed. 3 alternative optimization

methods are analyzed and compared with this proposed algorithm by stating the

advantages and disadvantages of each method. The proposed algorithm utilizes a

heuristic method which tries to predict the next moves of the user and finds out the

locations of the candidate tiles to be prefetched. Then these tiles are requested from

the WMS server and kept ready for the future navigations.

The accuracy of the prediction formula of the proposed algorithm is determined with

the number of the moves (depth) that will be kept in history. When depth is 5, it

means that 5 moves before the current navigation action are taken into consideration

while predicting the tiles to be prefetched. Since more previous data provides more

information about the navigational behavior of the user, to obtain an accurate

prefetching result, keeping the depth of the history a higher value will be a wise

choice. However, more depth also means more calculations and more memory for

keeping the historical data. So, it is always advised to constrain the depth value to an

optimum value like 5 to 10.

The next possible moves of the client are computed by giving weights to each

previous move in the history and calculating the average optimized value for the tiles

predicted. The weights of the previous moves are generated by using the cache

statistics. The contribution of each former move to the accurate prefetches is

reflected to the weight of that move. By this way, the effect of a move in the history

changes dynamically through the execution of the application.

The memory allocated for the prefetching cache is a configurable parameter. User

can either give the capacity of the cache as number of tiles or leave the decision to

the application. The memory capacity decision algorithm simply subtracts the

 83

currently used memory from the maximum memory reserved for the application and

determines the number of tiles can be kept in the remaining amount of memory. The

result is the capacity of the cache. When the application is out of memory, %75 of

the cache is cleared. %75 of the data to be removed from the cache contains the

oldest tiles in the cache.

To execute the implementation of the methods, a test application is developed. This

test application automates the tests that generate the performance results of each

method. During the tests, no user interaction is required, because the entire process

of the simulation is fully automated. The parameters like selected WMS server,

navigation steps, selected cache and the parameters of the selected WMS servers

(such as layer, initial coordinate and zoom level) are all configurable and can be

entered via a separate application.

After the simulations, the performance and memory usage of each method are

generated for 2 different WMS servers; one local (same computer client application

operates on) and one remote (a free WMS service on internet). Each method is

compared with each other and according to the results; the proposed heuristic

prefetching method is appeared to give the best overall performance among the other

three compared methods.

As the next step of this method, the time interval between each navigation may be

considered as a factor for evaluating the value of navigation in the history list. From

assumption of “frequent consecutive movements are likely to happen again”, it may

be conclude that as the frequency of a movement increases, the weight of that

movement in the history may be updated as an improvement.

Also more heuristic approaches can be adapted to the prefetching algorithm proposed

in this study to gain more accurate solutions. There are many heuristic optimization

algorithms such as Simulated Annealing, Markov Chain, and Genetic Algorithms

which can be adapted to this problem to predict the next candidate moves of the user

while navigating on a map.

 84

REFERENCES

[1] OGC® Web Feature Service Implementation Specification 1.1.0 (OGC 04-094),
Ed. Panagiotis A. Vretanos, (May 3, 2005). Retrieved from
http://portal.opengeospatial.org/files/?artifact_id=8339.

[2] OGC® Web Coverage Service Implementation Standard 1.1.2 (OGC 07-067r5),
Ed. Arliss Whiteside, John D. Evans, (March 19, 2008). Retrieved from
http://portal.opengeospatial.org/files/?artifact_id=27297.

[3] OGC® Web Map Service Interface 1.3.0 (OGC 03-109r1), Ed. Jeff de la
Beaujardiere, (January 20, 2004). Retrieved from
http://portal.opengeospatial.org/files/?artifact_id=4756.

[4] OpenGIS® Tiled WMS Discussion Paper 0.3.0 (OGC 07-057r2), Ed. Keith
Pomakis, (August 14, 2007). Retrieved from
http://portal.opengeospatial.org/files/?artifact_id=23206.

[5] OpenGIS® Geography Markup Language (GML) Encoding Standard 3.2.1 (OGC
07-036), Ed. Clemens Portele, (August 27, 2007). Retrieved from
http://portal.opengeospatial.org/files/?artifact_id=20509.

[6] OGC® Binary Extensible Markup Language (BXML) Encoding Specification
0.0.8 (OGC 03.002r9), Ed. Craig Bruce, (January 13, 2006). Retrieved from
http://portal.opengeospatial.org/files/?artifact_id=13636.

[7] Jay Ratcliff, Kevin Shaw, Shengru Tu, Maik Flanagin, Ying Wu, Mahdi
Abdelguerfi, Eric Normand, Venkata Mahadevan: “Design Strategies to Improve

Performance of GIS Web Services”, Proceedings of the International Conference on
Information Technology, Coding and Computing (ITCC'04) vol. 2, pp. 444-448,
ISBN: 0-7695-2108-8, 5-7 April 2004

[8] C.S. Baptista, C.P. Nunes, A.G. de Sousa, E.R. da Silva, F.L. Leite Jr., and A.C.
de Paiva: “On Performance Evaluation of Web GIS Applications”, Proceedings of
the IEEE Sixteenth International Workshop on Database and Expert Systems
Applications, pp. 497-501, ISBN: 0-7695-2424-9, 2005

[9] Arron Walker, Binh Pham, Anthony Maeder, “A Bayesian framework for

automated dataset retrieval in Geographic Information Systems”, Proceedings of the

 85

10th International Multimedia Modeling Conference, pp. 138-144, ISBN: 0-7695-
2084-7, 5-7 January 2004.

[10] Haixia Zhao, Ben Schneiderman, “Image-based highly interactive Web mapping

for geo-referenced data publishing”, (Report No. HCIL-2002-26, CS-TR-4431,
UMIACS-TR-2003-02), December 8, 2002

[11] P.D. Coddington, K.A. Hawick, and H.A. James, “Web-Based Access to

Distributed High Performance Geographic Information Systems for Decision

Support”, Proceedings of the 32nd Hawaii International Conference on System
Sciences, vol. 6, pp. 6015. ISBN: 0-7695-0001-3, 1999

[12] Neville Churcer, “Applications of Distortion-Oriented Presentation Techniques

in GIS”,Presented at AURISA/SIRC '95-The 7th Colloquim of the Spatial
Information Research Centre, University of Otago, in association with AURISA New
Zealand and Massey University, 26-28 April, 1995

[13] Dong-Joo Park, Hyoung-Joo Kim, “Prefetch Policies for Large Objects in a

Web-enabled GIS Application”, Data & Knowledge Engineering, vol. 37, pp. 65-84,
ISSN: 0169-023X, April 2001

[14] Dong Ho Lee, Jung Sup Kim, Soo Duk Kim, Ki Chang Kim, Yoo-Sung Kim,
and Jaehyun Park, “Adaptation of a Neighbor Selection Markov Chain for

Prefetching Tiled Web GIS Data”, Proceedings of the Second International
Conference on Advances in Information Systems, vol. 2457, pp. 213-222. ISBN: 3-
540-00009-7, 2002

[15] Wook-Shin Han, Woong-Kee Loh, and Kyu-YoungWhang, “Type-Level Access

Pattern View: A Technique for Enhancing Prefetching Performance”, Proceedings of
Database Systems for Advanced Applications, 11th International Conference,
DASFAA 2006, Singapore, vol. 3882, pp. 389-403, April 12-15, 2006

[16] Han, W.-S., Whang, K.-Y., and Moon, Y.-S., “PrefetchGuide: Capturing
Navigational Access Patterns for Prefetching in Client/Server Object-
Oriented/Object-Relational DBMSs”, Information Sciences, vol. 152, pp. 47-61,
June 2003

[17] Myung-Hee Jo, Yun-Won Jo, Jeong-Soo Oh, Si-Young Lee, “The Design and

Implementation of Dynamic Load Balancing for Web-Based GIS Services”,
Proceedings of the 22th Asian Conference on Remote Sensing, 5-9 November 2001

 86

[18] Şafak B. Çevikbaş, “Visibility Based Prefetching with Simulated Annealing”,
Ms. Thesis, Middle East Technical University, Turkey, January 2008

[19] Eric Poupaert and Yves Deville, “Simulated Annealing with estimated

temperature”, Special issue on AI research in the Benelux, vol. 13, pp. 19-26, ISSN:
0921-7126, October 2000

[20] Public OGC® WMS server list. Last accessed January 2010, from
http://www.skylab-mobilesystems.com/en/wms_serverlist.html

[21] WMS Capabilities document of the WMS Server maintained by Mineral
Resources Division, Geological Survey of Canada. Last accessed January 2010, from
http://apps1.gdr.nrcan.gc.ca/cgi-bin/worldmin_en-ca_ows?request=GetCapabilities

[22] Legend information of the map provided by Mineral Resources Division,
Geological Survey of Canada. Last accessed January 2008, from
http://apps1.gdr.nrcan.gc.ca/cgi-bin/worldmin_en-
ca_ows?version=1.1.1&service=WMS&request=GetLegendGraphic&layer=GSC:W
ORLD_AgeRockDomain&format=image/png

 87

APPENDIX - A

Pseudo Code of the Proposed Algorithm

This study proposes a prefetching algorithm that optimizes the performance of a web

GIS application. The proposed algorithm predicts the navigation behavior of the user

and tries to predict the locations of the tiles that form the next probable view of the

application via heuristic calculations. In this section pseudo-code of this heuristic

prefetching algorithm is presented.

CACHE PREFETCHING_CACHE, MAIN_CACHE

MAP<STRING, MAP<NAVIGATION, ARRAY<Integer>>> PRIORITIES_MAP

LIST<TileLocation> TILES_TO_PREFETCH, TILES_TO_PREFETCH_FOR_ZOOM

LIST<TileLocation> HISTORY

INTEGER DEPTH, VIEW_WIDTH, VIEW_HEIGHT

BOOLEAN PREFETCHER_READY

TileLocation TOP_LEFT_TILE

centerTileChanged method is called when the center tile of the map changes as a

result of a user action. This method resets the top-left tile of the view extent, and the

number of horizontal and vertical tiles visible to user. Then the locations of the tiles

that will be prefetched are calculated. If there is at least one candidate tile to prefetch,

prefetcher’s status is set to ready.

FUNCTION centerTileChanged(TileLocation topLeftTile, INTEGER

viewWidth, INTEGER viewHeight) {

TOP_LEFT_TILE := topLeftTile

VIEW_WIDTH := viewWidth

VIEW_HEIGHT := viewHeight

findTilesToPrefetch()

PREFETCHER_READY := TILES_TO_PREFETCH.isNotEmpty() ||

TILES_TO_PREFETCH_FOR_ZOOM.isNotEmpty()

}

 88

findTilesToPrefetch is the method where the locations of the tiles to be prefetched are

calculated. The former moves in the history are compared to each other in order. The

easting and southing differences are graded according to the cache hit ratio of each

move in history. Zooming value is calculated according to the zooming differences

of each former move by ranking each of them by their zooming factor. Hit ratios and

zooming factor of each former move in history are calculated in navigationChanged

method. Once easting, southing and zooming values are calculated, they are

normalized to obtain the number of tiles to prefetch. Normalized values are used for

determining the direction of the prefetching and the locations of each candidate tiles.

FUNCTION findTilesToPrefetch () {

TILES_TO_PREFETCH.clear()

TILES_TO_PREFETCH_FOR_ZOOM.clear()

IF HISTORY.size <= 1 THEN

 RETURN

ENDIF

DOUBLE east := south := zoom := 0

INTEGER totalEast := totalSouth := 0

HistoryData lastHistory := HISTORY.getLastElement()

TileLocation lastNavigation := lastHistory.tileLocation

FOR i FROM historySize – 2 TO 0 DECREASE BY 1 DO

 HistoryData exHistory := HISTORY.get(i)

 TileLocation exTileLocation = exHistory.tileLocation

 DOUBLE hitRatio := exHistory.hitRatio

 INTEGER diffEast := lastNavigation.x - exTileLocation.x

 INTEGER diffSouth := lastNavigation.y - exTileLocation.y

 east += diffEast * hitRatio

 south += diffSouth * hitRatio

 totalEast += diffEast

 totalSouth += diffSouth

 zoom += (lastNavigation.zoom - exTileLocation.zoom) *

exHistory.zoomFactor

 lastNavigation = exTileLocation

 lastHistory = exHistory

ENDFOR

 89

INTEGER easting :=

IF totalEast == 0 THEN 0 ELSE ROUND(east / totalEast) ENDIF

INTEGER southing :=

IF totalSouth == 0 THEN 0 ELSE ROUND(south / totalSouth) ENDIF

INTEGER zooming :=

IF ROUND(zoom) == 0 THEN 0 ELSE (IF ROUND(zoom) < 0 THEN -1

ELSE 1 ENDIF) ENDIF

LIST<TileLocation> tilesOnEdges := getTilesOnEdges()

NAVIGATION prefetchDirection := getDirectionType(easting, southing)

IF prefetchDirection != NAVIGATION.NONE THEN

ARRAY<NAVIGATION> navigations :=

getPrefetchNavigations(easting, southing)

ARRAY<INTEGER> tileIndicies :=

PRIORITIES_MAP.get(VIEW_WIDTH+"X"+VIEW_WIDTH).get(prefetchDirection)

FOREACH tileIndex IN tileIndicies DO

 TileLocation pivotTile := tilesOnEdges.get(tileIndex)

 FOREACH navigation IN prefetchNavigations DO

 IF navigation == NAVIGATION.NONE THEN

 EXIT_FOREACH_LOOP

 ENDIF

TileLocation tileToAdd := NEW TileLocation WITH

x:= pivotTile.x + navigation.x , y:= pivotTile.y +

navigation.y , zoom:= pivotTile.zoom

 IF tileToAdd NOT_IN (TILES_TO_PREFETCH AND

tilesOnEdges) THEN

TILES_TO_PREFETCH.add(tileToAdd)

 ENDIF

 ENDFOREACH

ENDFOREACH

ENDIF

IF zooming != 0 THEN

 INTEGER absZoom := absolute(zooming)

 INTEGER stepZoom := absZoom / zooming

 DOUBLE sign := IF zooming > 0 THEN 0.5 ELSE 2 ENDIF

 TileLocation centerTile := NEW TileLocation

WITH x:= TOP_LEFT_TILE.x + VIEW_WIDTH / 2, y:=

TOP_LEFT_TILE.y + VIEW_HEIGHT / 2, zoom:= TOP_LEFT_TILE.zoom

 90

 FOR i FROM 0 TO absZoom BY 1 DO

 centerTile := zoomTile(centerTile, sign, stepZoom)

 TILES_TO_PREFETCH_FOR_ZOOM.add(centerTile)

ENDFOR

ENDIF

}

centerTileChanged method finds the location of the tile which is “zoom” number of

levels in/out of the centerTile. sign determines whether zoom in or out.

FUNCTION zoomTile (TileLocation centerTile, DOUBLE sign, INTEGER

zoom) RETURNS TileLocation{

TileLocation tile := NEW TileLocation WITH x:= centerTile.x * sign,

y:= centerTile.y * sign, zoom:= centerTile.zoom + stepZoom

RETURN tile

}

The method for finding out the tiles on the edge of the view extent is

getTilesOnEdges. Via this method, tiles in the center of the view extent are ignored

during prefetching process, because the neighbor tiles of those tiles are the tiles on

the edges of the view extent. Namely, the prefetching candidates for the tiles on

center are already present on view extent. (For prefetching zoom levels, center tile of

the view extent is calculated separately.)

FUNCTION getTilesOnEdges() RETURNS LIST<TileLocation> {

INTEGER tpx := TOP_LEFT_TILE.x

INTEGER tpy := TOP_LEFT_TILE.y

INTEGER zoom := TOP_LEFT_TILE.zoom

LIST<TileLocation> tiles

INTEGER x := tpx

INTEGER y := tpy

WHILE x < tpx + VIEW_WIDTH DO

 tiles.add(NEW TileLocation WITH x:=x++, y:=y, zoom:= zoom)

ENDWHILE

x--

y++

 91

WHILE y < tpy + VIEW_HEIGHT DO

 tiles.add(NEW TileLocation WITH x:=x, y:=y++, zoom:= zoom)

ENDWHILE

y--

x--

WHILE x >= tpx DO

 tiles.add(NEW TileLocation WITH x:=x--, y:=y, zoom:= zoom)

ENDWHILE

x++

y--

WHILE y > tpy DO

 tiles.add(NEW TileLocation WITH x:=x, y:=y--, zoom:= zoom)

ENDWHILE

RETURN tiles

}

When navigationChanged method is called, it means user stop that navigation action.

At this point, prefetching threads are terminated, because a new navigation is on the

way for restarting another prefetching process. Also, in this method, hits and misses

in prefetching cache for the latest navigation are saved in the history with the

navigation direction.

FUNCTION navigationChanged (NavigationEvent event) {

IF event.type == NavigationEvent.NAVIGATION_CHANGED THEN

STOP_PREFETCHING_THREADS

 INTEGER hits = cacheStats.hits

 INTEGER misses = cacheStats.misses

 addNavigationToHistory(event.navigation, hits , misses)

ENDIF

}

addNavigationToHistory method saves the latest navigation in the history. The hit

ratios and zooming factor of the remaining data in history are updated with the

updated cache statistics and navigation information.

FUNCTION addNavigationToHistory(NAVIGATION navigation, INTEGER hits,

INTEGER misses) {

IF HISTORY.size == 0 THEN

 92

 HISTORY.addAtEnd(NEW HistoryData WITH (tileLocation:=NEW

TileLocation WITH x:=0, y:=0, zoom:=0))

ELSE IF historySize >= DEPTH THEN

 HISTORY.removeFirst()

ENDIF

INTEGER zoomFactor := 0

FOREACH historyData IN HISTORY DO

 historyData.hits += hits

 historyData.misses += misses

 IF HISTORY.size >= DEPTH THEN

INTEGER total := historyData.hits + historyData.misses

 historyData.hitRatio := IF total == 0 THEN 1 ELSE hits

/ total ENDIF

 ENDIF

 historyData.zoomFactor := zoomFactor++ / HISTORY.size

ENDFOREACH

HistoryData last = HISTORY.getLastElement()

HistoryData historyData = NEW HistoryData WITH (tileLocation:=NEW

TileLocation x:= navigation.x + last.x, y:=navigation.y + last.y,

zoom:=navigation. zoom + last.zoom)

HISTORY.addAtEnd(historyData)

}

getTileImage is the method for retrieving the image data of the tile requested to

construct the view extent. According to this pivot tile, prefetching threads are started

for predicting the next move of the user. On the other hand, the image of the pivot

tile is looked up in the prefetching and main cache respectively. If it is found in any

of the caches, it is returned to the calling method.

FUNCTION getTileImage(TileLocation pivotTile) RETURNS BufferedImage

{

IF isPrefetcherReady() THEN

 START_THREAD_FUNCTION : prefetch(pivotTile)

START_THREAD_FUNCTION : prefetchForZoom(pivotTile)

START_THREAD_FUNCTION : prefetchForZoom2(pivotTile)

ENDIF

BufferedImage prefetch = PREFETCHING_CACHE.get(pivotTile);

IF prefetch != null THEN

 93

 RETURN prefetch;

ENDIF

RETURN MAIN_CACHE.get(pivotTile);

}

To start a prefetching thread, locations of the tiles to prefetch shall be calculated.

isReady method check whether the prefetcher is ready or not.

FUNCTION isReady() RETURNS BOOLEAN {

 BOOLEAN ready := PREFETCHER_READY

 PREFETCHER_READY := FALSE

 RETURN ready

}

prefetch, prefetchForZoom and prefetchForZoom2 methods add each predicted tile

calculated in findTilesToPrefetch method to the prefetching cache.

FUNCTION prefetch() {

FOREACH tileToPrefetch IN TILES_TO_PREFETCH) DO

 addTileToCache(tileToPrefetch.x, tileToPrefetch.y, zoom);

ENDFOREACH

}

FUNCTION prefetchForZoom() {

FOREACH tileToPrefetch IN TILES_TO_PREFETCH_FOR_ZOOM DO

 addZoomLevels(tileToPrefetch.x, tileToPrefetch.y, zoom);

ENDFOREACH

}

prefetchForZoom2 method adds the neighbor tiles of the zooming tiles to be

prefetched. If those tiles will not be visible in the view extent, there is no need to

make tile requests to WMS server. By this way, bandwidth is used more efficiently

by eliminating redundant requests. If the horizontal tile number or vertical tile

number is greater than 3, it means neighbor tiles of the zooming tiles stay in the view

extent. The first “if” statement in the method is added to check this condition.

FUNCTION prefetchForZoom2() {

 94

IF ((VIEW_WIDTH > 3 || VIEW_HEIGHT > 3)) THEN

 FOREACH tileToPrefetch IN TILES_TO_PREFETCH_FOR_ZOOM DO

 addZoomLevels2(tileToPrefetch.x, tileToPrefetch.y,

zoom);

 ENDFOREACH

ENDIF

}

 95

APPENDIX - B

Steps of the Test Simulation

NAVIGATION – 1

Direction -> EAST

Top-Left Tile -> x=14, y=23, zoom=11

HISTORY

FROM TO

EAST SOUTH ZOOM
HIT

RATIO

ZOOM

FACTOR

x=0, y=0,

zoom=0

x=1, y=0,

zoom=0
1.0 0.0 0.0 1.0 1.0

x=0, y=0,

zoom=0

x=0, y=0,

zoom=0
0.0 0.0 0.0 1.0 1.0

Easting = 1 , Southing = 0 , Zooming = 0

TILES TO PREFETCH

TYPE TILE LOCATION

NEIGHBOR x=17, y=24, zoom=11

NEIGHBOR x=17, y=23, zoom=11

NEIGHBOR x=17, y=25, zoom=11

 96

NAVIGATION – 2

Direction -> EAST

Top-Left Tile -> x=15, y=23, zoom=11

HISTORY

FROM TO

EAST SOUTH ZOOM
HIT

RATIO

ZOOM

FACTOR

x=1, y=0,

zoom=0

x=2, y=0,

zoom=0
1.0 0.0 0.0 1.0 1.0

x=1, y=0,

zoom=0

x=0, y=0,

zoom=0
1.0 0.0 0.0 1.0 1.0

x=0, y=0,

zoom=0

x=0, y=0,

zoom=0
0.0 0.0 0.0 1.0 0.666

Easting = 1 , Southing = 0 , Zooming = 0

TILES TO PREFETCH

TYPE TILE LOCATION

NEIGHBOR x=18, y=24, zoom=11

NEIGHBOR x=18, y=23, zoom=11

NEIGHBOR x=18, y=25, zoom=11

 97

NAVIGATION – 3

Direction -> SOUTH EAST

Top-Left Tile -> x=16, y=23, zoom=11

HISTORY

FROM TO

EAST SOUTH ZOOM
HIT

RATIO

ZOOM

FACTOR

x=2, y=0,

zoom=0

x=3, y=1,

zoom=0
1.0 1.0 0.0 1.0 1.0

x=1, y=0,

zoom=0

x=2, y=0,

zoom=0
1.0 0.0 0.0 1.0 1.0

x=1, y=0,

zoom=0

x=0, y=0,

zoom=0
1.0 0.0 0.0 1.0 0.75

x=0, y=0,

zoom=0

x=0, y=0,

zoom=0
0.0 0.0 0.0 1.0 0.5

Easting = 1 , Southing = 1 , Zooming = 0

TILES TO PREFETCH

TYPE TILE LOCATION

NEIGHBOR x=19, y=27, zoom=11

NEIGHBOR x=19, y=26, zoom=11

NEIGHBOR x=18, y=27, zoom=11

NEIGHBOR x=17, y=27, zoom=11

NEIGHBOR x=19, y=25, zoom=11

NEIGHBOR x=16, y=27, zoom=11

NEIGHBOR x=19, y=24, zoom=11

NEIGHBOR x=19, y=23, zoom=11

 98

NAVIGATION – 4

Direction -> SOUTH EAST

Top-Left Tile -> x=17, y=24, zoom=11

HISTORY

FROM TO

EAST SOUTH ZOOM
HIT

RATIO

ZOOM

FACTOR

x=3, y=1,

zoom=0

x=4, y=2,

zoom=0
1.0 1.0 0.0 1.0 1.0

x=2, y=0,

zoom=0

x=3, y=1,

zoom=0
1.0 1.0 0.0 1.0 1.0

x=1, y=0,

zoom=0

x=2, y=0,

zoom=0
1.0 0.0 0.0 1.0 0.8

x=1, y=0,

zoom=0

x=0, y=0,

zoom=0
1.0 0.0 0.0 1.0 0.6

x=0, y=0,

zoom=0

x=0, y=0,

zoom=0
0.0 0.0 0.0 1.0 0.4

Easting = 1 , Southing = 1 , Zooming = 0

TILES TO PREFETCH

TYPE TILE LOCATION

NEIGHBOR x=20, y=27, zoom=11

NEIGHBOR x=20, y=26, zoom=11

NEIGHBOR x=19, y=27, zoom=11

NEIGHBOR x=20, y=25, zoom=11

NEIGHBOR x=18, y=27, zoom=11

NEIGHBOR x=20, y=24, zoom=11

NEIGHBOR x=17, y=27, zoom=11

 99

NAVIGATION – 5

Direction -> EAST

Top-Left Tile -> x=18, y=24, zoom=11

HISTORY

FROM TO

EAST SOUTH ZOOM
HIT

RATIO

ZOOM

FACTOR

x=4, y=2,

zoom=0

x=5, y=2,

zoom=0
1.0 0.0 0.0 1.0 1.0

x=3, y=1,

zoom=0

x=4, y=2,

zoom=0
0.6 0.6 0.0 0.6 0.833

x=2, y=0,

zoom=0

x=3, y=1,

zoom=0
0.777 0.777 0.0 0.777 0.666

x=1, y=0,

zoom=0

x=2, y=0,

zoom=0
0.412 0.0 0.0 0.412 0.5

x=1, y=0,

zoom=0

x=0, y=0,

zoom=0
0.412 0.0 0.0 0.412 0.333

Easting = 1 , Southing = 1 , Zooming = 0

TILES TO PREFETCH

TYPE TILE LOCATION

NEIGHBOR x=21, y=27, zoom=11

NEIGHBOR x=21, y=26, zoom=11

NEIGHBOR x=20, y=27, zoom=11

NEIGHBOR x=21, y=25, zoom=11

NEIGHBOR x=19, y=27, zoom=11

NEIGHBOR x=21, y=24, zoom=11

NEIGHBOR x=18, y=27, zoom=11

 100

NAVIGATION – 6

Direction -> SOUTH EAST

Top-Left Tile -> x=19, y=25, zoom=11

HISTORY

FROM TO

EAST SOUTH ZOOM
HIT

RATIO

ZOOM

FACTOR

x=5, y=2,

zoom=0

x=6, y=3,

zoom=0
1.0 1.0 0.0 1.0 1.0

x=4, y=2,

zoom=0

x=5, y=2,

zoom=0
1.0 0.0 0.0 1.0 0.833

x=3, y=1,

zoom=0

x=4, y=2,

zoom=0
0.636 0.636 0.0 0.636 0.666

x=2, y=0,

zoom=0

x=3, y=1,

zoom=0
0.789 0.789 0.0 0.789 0.5

x=1, y=0,

zoom=0

x=2, y=0,

zoom=0
0.428 0.0 0.0 0.428 0.333

Easting = 1 , Southing = 1 , Zooming = 0

TILES TO PREFETCH

TYPE TILE LOCATION

NEIGHBOR x=22, y=28, zoom=11

NEIGHBOR x=22, y=27, zoom=11

NEIGHBOR x=21, y=28, zoom=11

NEIGHBOR x=22, y=26, zoom=11

NEIGHBOR x=20, y=28, zoom=11

NEIGHBOR x=22, y=25, zoom=11

NEIGHBOR x=19, y=28, zoom=11

 101

NAVIGATION – 7 & 8

Direction -> SOUTH & SOUTH

No prefetching is done in these steps, because center tile, in another words view

extent, did not change according to this action. The tiles needed to set the view extent

are obtained from the prefetch cache filled in previous steps.

 102

NAVIGATION – 9

Direction -> SOUTH EAST

Top-Left Tile -> x=20, y=27, zoom=11

HISTORY

FROM TO

EAST SOUTH ZOOM
HIT

RATIO

ZOOM

FACTOR

x=6, y=5,

zoom=0

x=7, y=6,

zoom=0
1.0 1.0 0.0 1.0 0.0

x=6, y=4,

zoom=0

x=6, y=5,

zoom=0
0.0 1.0 0.0 1.0 0.833

x=6, y=3,

zoom=0

x=6, y=4,

zoom=0
0.0 1.0 0.0 1.0 0.666

x=5, y=2,

zoom=0

x=6, y=3,

zoom=0
1.0 1.0 0.0 1.0 0.5

x=4, y=2,

zoom=0

x=5, y=2,

zoom=0
1.0 0.0 0.0 1.0 0.333

Easting = 1 , Southing = 1 , Zooming = 0

TILES TO PREFETCH

TYPE TILE LOCATION

NEIGHBOR x=23, y=30, zoom=11

NEIGHBOR x=23, y=30, zoom=11

NEIGHBOR x=22, y=30, zoom=11

NEIGHBOR x=23, y=28, zoom=11

NEIGHBOR x=21, y=30, zoom=11

NEIGHBOR x=23, y=27, zoom=11

NEIGHBOR x=20, y=30, zoom=11

 103

NAVIGATION – 10

Direction -> EAST

Top-Left Tile -> x=21, y=27, zoom=11

HISTORY

FROM TO

EAST SOUTH ZOOM
HIT

RATIO

ZOOM

FACTOR

x=7, y=6,

zoom=0

x=8, y=6,

zoom=0
0.4 0.0 0.0 0.4 1.0

x=6, y=5,

zoom=0

x=7, y=6,

zoom=0
0.4 0.4 0.0 0.4 0.833

x=6, y=4,

zoom=0

x=6, y=5,

zoom=0
0.0 0.823 0.0 0.823 0.666

x=6, y=3,

zoom=0

x=6, y=4,

zoom=0
0.0 0.947 0.0 0.947 0.5

x=5, y=2,

zoom=0

x=6, y=3,

zoom=0
0.971 0.971 0.0 0.971 0.333

Easting = 1 , Southing = 1 , Zooming = 0

TILES TO PREFETCH

TYPE TILE LOCATION

NEIGHBOR x=24, y=30, zoom=11

NEIGHBOR x=24, y=29, zoom=11

NEIGHBOR x=23, y=30, zoom=11

NEIGHBOR x=24, y=28, zoom=11

NEIGHBOR x=22, y=30, zoom=11

NEIGHBOR x=24, y=27, zoom=11

NEIGHBOR x=21, y=30, zoom=11

 104

NAVIGATION – 11

Direction -> EAST

Top-Left Tile -> x=22, y=27, zoom=11

HISTORY

FROM TO

EAST SOUTH ZOOM
HIT

RATIO

ZOOM

FACTOR

x=8, y=6,

zoom=0

x=9, y=6,

zoom=0
1.0 0.0 0.0 1.0 1.0

x=7, y=6,

zoom=0

x=8, y=6,

zoom=0
0.538 0.0 0.0 0.538 0.833

x=6, y=5,

zoom=0

x=7, y=6,

zoom=0
0.538 0.538 0.0 0.538 0.666

x=6, y=4,

zoom=0

x=6, y=5,

zoom=0
0.0 0.837 0.0 0.837 0.5

x=6, y=3,

zoom=0

x=6, y=4,

zoom=0
0.0 0.949 0.0 0.949 0.333

Easting = 1 , Southing = 1 , Zooming = 0

TILES TO PREFETCH

TYPE TILE LOCATION

NEIGHBOR x=22, y=27, zoom=11

NEIGHBOR x=26, y=30, zoom=11

NEIGHBOR x=26, y=29, zoom=11

NEIGHBOR x=25, y=30, zoom=11

NEIGHBOR x=24, y=30, zoom=11

NEIGHBOR x=26, y=28, zoom=11

NEIGHBOR x=23, y=30, zoom=11

NEIGHBOR x=26, y=27, zoom=11

NEIGHBOR x=24, y=28, zoom=11

 105

NAVIGATION – 12

Direction -> ZOOM IN

Top-Left Tile -> x=46, y=55, zoom=10

HISTORY

FROM TO

EAST SOUTH ZOOM
HIT

RATIO

ZOOM

FACTOR

x=9, y=6,

zoom=0

x=9, y=6,

zoom=-1
0.0 0.0 -1.0 0.5 1.0

x=8, y=6,

zoom=0

x=9, y=6,

zoom=0
0.75 0.0 0.0 0.75 0.833

x=7, y=6,

zoom=0

x=8, y=6,

zoom=0
0.531 0.0 0.0 0.531 0.666

x=6, y=5,

zoom=0

x=7, y=6,

zoom=0
0.531 0.531 0.0 0.531 0.5

x=6, y=4,

zoom=0

x=6, y=5,

zoom=0
0.0 0.812 0.0 0.812 0.333

Easting = 1 , Southing = 1 , Zooming = -1

TILES TO PREFETCH

TYPE TILE LOCATION

NEIGHBOR x=49, y=58, zoom=10

NEIGHBOR x=49, y=57, zoom=10

NEIGHBOR x=48, y=58, zoom=10

NEIGHBOR x=49, y=56, zoom=10

NEIGHBOR x=47, y=58, zoom=10

NEIGHBOR x=49, y=55, zoom=10

NEIGHBOR x=46, y=58, zoom=10

ZOOM TILE (& 8 TILES AROUND) x=94, y=112, zoom=9

 106

NAVIGATION – 13

Direction -> ZOOM IN

Top-Left Tile -> x=94, y=111, zoom=9

HISTORY

FROM TO

EAST SOUTH ZOOM
HIT

RATIO

ZOOM

FACTOR

x=9, y=6,

zoom=-1

x=9, y=6,

zoom=-2
0.0 0.0 -1.0 0.0 1.0

x=9, y=6,

zoom=0

x=9, y=6,

zoom=-1
0.0 0.0 -0.833 0.286 0.833

x=8, y=6,

zoom=0

x=9, y=6,

zoom=0
0.545 0.0 0.0 0.545 0.666

x=7, y=6,

zoom=0

x=8, y=6,

zoom=0
0.466 0.0 0.0 0.466 0.5

x=6, y=5,

zoom=0

x=7, y=6,

zoom=0
0.466 0.466 0.0 0.466 0.333

Easting = 0 , Southing = 0 , Zooming = -1

TILES TO PREFETCH

TYPE TILE LOCATION

ZOOM TILE (& 24 TILES AROUND) x=190, y=226, zoom=8

 107

NAVIGATION – 14

Direction -> ZOOM IN

Top-Left Tile -> x=189, y=224, zoom=8

HISTORY

FROM TO

EAST SOUTH ZOOM
HIT

RATIO

ZOOM

FACTOR

x=9, y=6,

zoom=-2

x=9, y=6,

zoom=-3
0.0 0.0 -1.0 0.5 1.0

x=9, y=6,

zoom=-1

x=9, y=6,

zoom=-2
0.0 0.0 -0.833 0.2 0.833

x=9, y=6,

zoom=0

x=9, y=6,

zoom=-1
0.0 0.0 -0.666 0.333 0.666

x=8, y=6,

zoom=0

x=9, y=6,

zoom=0
0.538 0.0 0.0 0.538 0.5

x=7, y=6,

zoom=0

x=8, y=6,

zoom=0
0.468 0.0 0.0 0.468 0.333

Easting = 1 , Southing = 0 , Zooming = -1

TILES TO PREFETCH

TYPE TILE LOCATION

ZOOM TILE (& 24 TILES AROUND) x=380, y=452, zoom=7

NEIGHBOR x=192, y=225, zoom=8

NEIGHBOR x=192, y=226, zoom=8

NEIGHBOR x=192, y=224, zoom=8

NEIGHBOR x=192, y=227, zoom=8

 108

NAVIGATION – 15

Direction -> ZOOM IN

Top-Left Tile -> x=379, y=450, zoom=7

HISTORY

FROM TO

EAST SOUTH ZOOM
HIT

RATIO

ZOOM

FACTOR

x=9, y=6,

zoom=-3

x=9, y=6,

zoom=-4
0.0 0.0 -1.0 0.0 1.0

x=9, y=6,

zoom=-2

x=9, y=6,

zoom=-3
0.0 0.0 -0.833 0.666 0.833

x=9, y=6,

zoom=-1

x=9, y=6,

zoom=-2
0.0 0.0 -0.666 0.333 0.666

x=9, y=6,

zoom=0

x=9, y=6,

zoom=-1
0.0 0.0 -0.5 0.4 0.5

x=8, y=6,

zoom=0

x=9, y=6,

zoom=0
0.571 0.0 0.0 0.571 0.333

Easting = 1 , Southing = 0 , Zooming = -1

TILES TO PREFETCH

TYPE TILE LOCATION

ZOOM TILE (& 24 TILES AROUND) x=762, y=902, zoom=6

NEIGHBOR x=383, y=450, zoom=7

NEIGHBOR x=383, y=451, zoom=7

NEIGHBOR x=383, y=452, zoom=7

 109

NAVIGATION – 16

Direction -> ZOOM IN

Top-Left Tile -> x=761, y=902, zoom=6

HISTORY

FROM TO

EAST SOUTH ZOOM
HIT

RATIO

ZOOM

FACTOR

x=9, y=6,

zoom=-4

x=9, y=6,

zoom=-5
0.0 0.0 -1.0 1.0 1.0

x=9, y=6,

zoom=-3

x=9, y=6,

zoom=-4
0.0 0.0 -0.833 1.0 0.833

x=9, y=6,

zoom=-2

x=9, y=6,

zoom=-3
0.0 0.0 -0.666 0.714 0.666

x=9, y=6,

zoom=-1

x=9, y=6,

zoom=-2
0.0 0.0 -0.5 0.385 0.5

x=9, y=6,

zoom=0

x=9, y=6,

zoom=-1
0.0 0.0 -0.333 0.429 0.333

Easting = 0 , Southing = 0 , Zooming = -1

TILES TO PREFETCH

TYPE TILE LOCATION

ZOOM TILE (& 8 TILES AROUND) x=1524, y=1806, zoom=5

 110

NAVIGATION – 17

Direction -> EAST

Top-Left Tile -> x=762, y=902, zoom=6

HISTORY

FROM TO

EAST SOUTH ZOOM
HIT

RATIO

ZOOM

FACTOR

x=9, y=6,

zoom=-5

x=10, y=6,

zoom=-5
0.555 0.0 0.0 0.555 1.0

x=9, y=6,

zoom=-4

x=9, y=6,

zoom=-5
0.0 0.0 -0.833 0.878 0.833

x=9, y=6,

zoom=-3

x=9, y=6,

zoom=-4
0.0 0.0 -0.666 0.951 0.666

x=9, y=6,

zoom=-2

x=9, y=6,

zoom=-3
0.0 0.0 -0.5 0.706 0.5

x=9, y=6,

zoom=-1

x=9, y=6,

zoom=-2
0.0 0.0 -0.333 0.389 0.333

Easting = 1 , Southing = 0 , Zooming = -1

TILES TO PREFETCH

TYPE TILE LOCATION

ZOOM TILE (& 8 TILES AROUND) x=1526, y=1806, zoom=5

NEIGHBOR x=765, y=903, zoom=6

NEIGHBOR x=765, y=902, zoom=6

NEIGHBOR x=765, y=904, zoom=6

 111

NAVIGATION – 18

Direction -> EAST

Top-Left Tile -> x=763, y=902, zoom=6

HISTORY

FROM TO

EAST SOUTH ZOOM
HIT

RATIO

ZOOM

FACTOR

x=10, y=6,

zoom=-5

x=11, y=6,

zoom=-5
1.0 0.0 0.0 1.0 1.0

x=9, y=6,

zoom=-5

x=10, y=6,

zoom=-5
0.619 0.0 0.0 0.619 0.833

x=9, y=6,

zoom=-4

x=9, y=6,

zoom=-5
0.0 0.0 -0.666 0.884 0.666

x=9, y=6,

zoom=-3

x=9, y=6,

zoom=-4
0.0 0.0 -0.5 0.951 0.5

x=9, y=6,

zoom=-2

x=9, y=6,

zoom=-3
0.0 0.0 -0.333 0.709 0.333

Easting = 1 , Southing = 0 , Zooming = -1

TILES TO PREFETCH

TYPE TILE LOCATION

ZOOM TILE (& 8 TILES AROUND) x=1528, y=1806, zoom=5

NEIGHBOR x=766, y=903, zoom=6

NEIGHBOR x=766, y=902, zoom=6

NEIGHBOR x=766, y=904, zoom=6

 112

NAVIGATION – 19

Direction -> EAST

Top-Left Tile -> x=764, y=902, zoom=6

HISTORY

FROM TO

EAST SOUTH ZOOM
HIT

RATIO

ZOOM

FACTOR

x=11, y=6,

zoom=-5

x=12, y=6,

zoom=-5
1.0 0.0 0.0 1.0 1.0

x=10, y=6,

zoom=-5

x=11, y=6,

zoom=-5
1.0 0.0 0.0 1.0 0.833

x=9, y=6,

zoom=-5

x=10, y=6,

zoom=-5
0.644 0.0 0.0 0.644 0.666

x=9, y=6,

zoom=-4

x=9, y=6,

zoom=-5
0.0 0.0 -0.5 0.886 0.5

x=9, y=6,

zoom=-3

x=9, y=6,

zoom=-4
0.0 0.0 -0.333 0.952 0.333

Easting = 1 , Southing = 0 , Zooming = -1

TILES TO PREFETCH

TYPE TILE LOCATION

ZOOM TILE (& 8 TILES AROUND) x=1530, y=1806, zoom=5

NEIGHBOR x=767, y=903, zoom=6

NEIGHBOR x=767, y=902, zoom=6

NEIGHBOR x=767, y=904, zoom=6

 113

NAVIGATION – 20

Direction -> ZOOM IN

Top-Left Tile -> x=1529, y=1805, zoom=5

HISTORY

FROM TO

EAST SOUTH ZOOM
HIT

RATIO

ZOOM

FACTOR

x=12, y=6,

zoom=-5

x=12, y=6,

zoom=-6
0.0 0.0 -1.0 1.0 1.0

x=11, y=6,

zoom=-5

x=12, y=6,

zoom=-5
1.0 0.0 0.0 1.0 0.833

x=10, y=6,

zoom=-5

x=11, y=6,

zoom=-5
1.0 0.0 0.0 1.0 0.666

x=9, y=6,

zoom=-5

x=10, y=6,

zoom=-5
0.656 0.0 0.0 0.656 0.5

x=9, y=6,

zoom=-4

x=9, y=6,

zoom=-5
0.0 0.0 -0.333 0.888 0.333

Easting = 1 , Southing = 0 , Zooming = -1

TILES TO PREFETCH

TYPE TILE LOCATION

ZOOM TILE (& 24 TILES AROUND) x=3062, y=3612, zoom=4

NEIGHBOR x=1533, y=1805, zoom=5

NEIGHBOR x=1533, y=1806, zoom=5

NEIGHBOR x=1533, y=1807, zoom=5

 114

NAVIGATION – 21

Direction -> ZOOM IN

Top-Left Tile -> x=1529, y=1805, zoom=5

HISTORY

FROM TO

EAST SOUTH ZOOM
HIT

RATIO

ZOOM

FACTOR

x=12, y=6,

zoom=-6

x=12, y=6,

zoom=-7
0.0 0.0 -1.0 0.75 1.0

x=12, y=6,

zoom=-5

x=12, y=6,

zoom=-6
0.0 0.0 -0.833 0.833 0.833

x=11, y=6,

zoom=-5

x=12, y=6,

zoom=-5
0.9 0.0 0.0 0.9 0.666

x=10, y=6,

zoom=-5

x=11, y=6,

zoom=-5
0.944 0.0 0.0 0.944 0.5

x=9, y=6,

zoom=-5

x=10, y=6,

zoom=-5
0.662 0.0 -0.333 0.662 0.333

Easting = 1 , Southing = 0 , Zooming = -1

TILES TO PREFETCH

TYPE TILE LOCATION

ZOOM TILE (& 24 TILES AROUND) x=6124, y=7226, zoom=3

NEIGHBOR x=3064, y=3612, zoom=4

NEIGHBOR x=3064, y=3613, zoom=4

NEIGHBOR x=3064, y=3614, zoom=4

 115

APPENDIX - C

Statistical Evaluation of Test Simulations

In this section, the statistical data obtained after test simulations executed for each 5

methods using Geoserver are given. A simulation is executed 100 times and the

navigation set used for each simulation are generated to be unique.

The statistical data obtained for refresh times of each method is given in the table

below. For each method, “arithmetic average, arithmetic mean, standard deviation,

variance, maximum and minimum” values are obtained after 100 simulations.

Table 22: Statistical data of refresh times obtained for each method

 TC SP RAP HCBP PKM

AVG 25218.348 35770.577 15897.494 22580.091 20137.396

MEAN 25042.808 35506.903 15790.082 22387.008 19959.855

STD DEV 3017.040 4316.686 1862.905 3000.542 2681.424

VAR 9102532.336 18633786.365 3470416.799 9003255.176 7190034.825

MAX 30939.678 44277.744 20404.340 28569.686 25470.076

MIN 20675.868 25765.962 12262.615 17949.206 14733.480

Table 23: Statistical data of refresh times obtained for each method

 TC SP RAP HCBP PKM

AVG 59.507915 172.387895 84.741267 63.228430 89.2094023

MEAN 59.436274 172.341856 84.692585 63.108015 89.0863594

STD DEV 2.982983 4.038517 2.916693 3.980492 4.7899252

VAR 8.898188 16.309624 8.507098 15.844321 22.9433835

MAX 66.103461 184.582627 92.935675 71.823728 101.3645039

MIN 54.531893 164.200887 79.419992 57.300433 82.9995689

 116

The figures below give the normal distribution of the refresh times and memory

usage.

0.000000

0.000020

0.000040

0.000060

0.000080

0.000100

0.000120

0.000140

0.000160

20000 22000 24000 26000 28000 30000 32000

Refresh Tim e (m s)

N
o

rm
a

l
D

is
tr

ib
u

ti
o

n

Figure 54: Normal distribution of refresh times for TC method

0.000000

0.000010

0.000020

0.000030

0.000040

0.000050

0.000060

0.000070

0.000080

0.000090

0.000100

26000 31000 36000 41000 46000

Refresh Tim e (ms)

N
o

rm
a

l
D

is
tr

ib
u

ti
o

n

Figure 55: Normal distribution of refresh times for SP method

 117

0.000000

0.000020

0.000040

0.000060

0.000080

0.000100

0.000120

0.000140

0.000160

0.000180

0.000200

11500 13500 15500 17500 19500 21500

Refresh Time (ms)

N
o

rm
a

l
D

is
tr

ib
u

ti
o

n

Figure 56: Normal distribution of refresh times for RAP method

0.000000

0.000020

0.000040

0.000060

0.000080

0.000100

0.000120

0.000140

0.000160

0.000180

17500 19500 21500 23500 25500 27500

Refresh Time (ms)

N
o

rm
a

l
D

is
tr

ib
u

ti
o

n

Figure 57: Normal distribution of refresh times for HCBP method

 118

0.000000

0.000020

0.000040

0.000060

0.000080

0.000100

0.000120

0.000140

0.000160

14500 16500 18500 20500 22500 24500 26500

Refresh Time (ms)

N
o

rm
a

l
D

is
tr

ib
u

ti
o

n

Figure 58: Normal distribution of refresh times for PKM method

0.000000

0.020000

0.040000

0.060000

0.080000

0.100000

0.120000

0.140000

0.160000

0.180000

53 54 55 56 57 58 59 60 61 62 63 64 65

Used Memory (mb)

N
o

rm
a

l
D

is
tr

ib
u

ti
o

n

Figure 59: Normal distribution of memory usages for TC method

 119

0.000000

0.010000

0.020000

0.030000

0.040000

0.050000

0.060000

0.070000

0.080000

0.090000

0.100000

162 164 166 168 170 172 174 176 178 180 182 184

Used Memory (mb)

N
o

rm
a

l
D

is
tr

ib
u

ti
o

n

Figure 60: Normal distribution of memory usages for SP method

0.000000

0.020000

0.040000

0.060000

0.080000

0.100000

0.120000

0.140000

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

Used Memory (mb)

N
o

rm
a

l
D

is
tr

ib
u

ti
o

n

Figure 61: Normal distribution of memory usages for RAP method

 120

0.000000

0.020000

0.040000

0.060000

0.080000

0.100000

0.120000

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

Used Memory (mb)

N
o

rm
a

l
D

is
tr

ib
u

ti
o

n

Figure 62: Normal distribution of memory usages for HCBP method

0.000000

0.010000

0.020000

0.030000

0.040000

0.050000

0.060000

0.070000

0.080000

0.090000

0.100000

82 84 85 87 88 90 91 93 94 96 97 99 100 102

Used Memory (mb)

N
o

rm
a

l
D

is
tr

ib
u

ti
o

n

Figure 63: Normal distribution of memory usages for PKM method

