
 i

A SERVICE ORIENTED PEER TO PEER WEB SERVICE DISCOVERY

MECHANISM WITH CATEGORIZATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MUSTAFA ONUR ÖZORHAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

FEBRUARY 2010

 ii

Approval of the thesis:

A SERVICE ORIENTED PEER TO PEER WEB SERVICE DISCOVERY
MECHANISM WITH CATEGORIZATION

submitted by MUSTAFA ONUR ÖZORHAN in partial fulfillment of the
requirements for the degree of Master of Science in Computer Engineering
Department, Middle East Technical University by,

Prof. Dr. Canan Özgen _______________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. M üslim Bozyiğit _______________
Head of Department, Computer Engineering

Assoc. Prof. Dr. Nihan Kesim Çiçekli
Supervisor, Computer Engineering Dept., METU _______________

Examining Committee Members:

Assoc. Prof. Dr. Ali Doğru
Computer Engineering Dept., METU _____________________

Assoc. Prof. Dr. Nihan Kesim Çiçekli
Computer Engineering Dept., METU _____________________

Assoc. Prof. Dr. Ahmet Coşar
Computer Engineering Dept., METU _____________________

Asst. Prof. Dr. Pınar Şenkul
Computer Engineering Dept., METU _____________________

Asst. Prof. Dr. Aysu Betin Can
Informatics Institute, METU _____________________

 Date: 05.02.2010

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

 Name, Last name: Mustafa Onur Özorhan

Signature :

 iv

ABSTRACT

A SERVICE ORIENTED PEER TO PEER WEB SERVICE
DISCOVERY MECHANISM WITH CATEGORIZATION

Özorhan, Mustafa Onur

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Nihan Kesim Çiçekli

February 2010, 133 pages

This thesis, studies automated methods to achieve web service advertisement and

discovery, and presents efficient search and matching techniques based on OWL-S.

In the proposed system, the service discovery and matchmaking is performed via a

centralized peer-to-peer web service repository. The repository has the ability to run

on a software cloud, which improves the availability and scalability of the service

discovery. The service advertisement is done semi-automatically on the client side,

with an automatic WSDL to OWL-S conversion, and manual service description

annotation. An OWL-S based unified ontology -Suggested Upper Merged Ontology-

is used during annotation, to enhance semantic matching abilities of the system. The

service advertisement and availability are continuously monitored on the client side

to improve the accuracy of the query results. User-agents generate query

specification using the system ontology, to provide semantic unification between the

client and the system during service discovery. Query matching is performed via

complex Hilbert Spaces composed of conceptual planes and categorical similarities

for each web service. User preferences following the service queries are monitored

and used to improve the service match scores in the long run.

Keywords: Peer-to-Peer Web Service Discovery, Categorization, Ranking

 v

ÖZ

KATEGORĐZASYON DESTEKLĐ, HĐZMET ODAKLI, EŞLER
ARASI ÖRÜN SERVĐS KEŞĐF MEKANĐZMASI

Özorhan, Mustafa Onur

 Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

 Tez Yöneticisi: Doç. Dr. Nihan Kesim Çiçekli

Şubat 2010, 133 sayfa

Bu tez örün servisi tanıtım ve eşleştirmenin otomatik olarak yapılabilmesi için

OWL-S teknolojisi temelli bir teknik sunar. Sunulan çözümde servislerin keşfi eşler

arası merkezi bir servis kütüphanesi ile sağlanır. Bu kütüphane servis keşfini daha

ölçeklenebilir ve erişilebilir kılmak için bulut mimarisi üzerinde çalışabilmektedir.

Servis tanımı istemci tarafında yarı-otomatik olarak gerçekleştirilir. Servis WSDL

dokümanları otomatik olarak OWL-S formatına çevrilir, ve servis tanımı için ek

bilgiler el ile eklenir. Arama sürecinde anlamsal eşleştirmeyi daha iyi yapabilmek

için OWL-S tabanlı birleştirilmiş bir üst katman ontolojisi kullanılmıştır. Sorgulara

gelen yanıtların doğruluğunu geliştirmek için servis tanıtım ve erişilebilirlikleri

istemci tarafında sürekli izlenmektedir. Kullanıcılar servis arama süresinde sistem

ontolojisini kullanarak istemci ve sistem arasında anlamsal birlikteliği sağlayan

sorgu tanımları üretirler. Her örün servisi için sorgu eşleştirmesi, kavramsal

düzlemler ve kategorilere göre benzerlik değerleri içeren kompleks Hilbert Uzayları

aracılığı ile yapılır. Uzun vadede servis sorgularını takip eden kullanıcı tercihleri

izlenir ve bu veriler ile sonraki seferlerde daha uygun servisler bulunmaya çalışılır.

Anahtar Kelimeler: Eşler Arası Örün Servis Keşfi, Kategorizasyon, Sıralama

 vi

To my wife, mother, father and sister

 vii

ACKNOWLEDGEMENTS

I would like to express my most sincere gratitude and appreciation to my supervisor

Assoc. Prof. Dr. Nihan Kesim Çiçekli for her endless encouragement and support

throughout this study. I am extremely lucky to have such a friendly, wise, patient

and benignant supervisor.

I am deeply grateful to my parents, who devoted their life to their children, my

loving wife Esra who has been there for me at all times and my sister Pınar Fulya

who has been a role model for me, for their love and support. Without them, this

work could not have been completed.

I would also like to thank the Central Bank of the Republic of Turkey (TCMB) and

the Scientific and Technological Research Council of Turkey (TÜBĐTAK) for

providing the financial and temporal means throughout this study.

Finally, my special thanks go to Google App Engine, CMU Atlas and SUMO teams

who created the infrastructure this thesis builds upon.

 viii

TABLE OF CONTENTS

ABSTRACT... iv

ÖZ ...v

ACKNOWLEDGEMENTS ... vii

TABLE OF CONTENTS ... viii

LIST OF FIGURES ... xii

 CHAPTERS

1 INTRODUCTION ..1

2 BACKGROUND INFORMATION AND RELATED WORK7

2.1 Background Information ...7

2.1.1 Web Services ...7

2.1.2 Hilbert Spaces .. 12

2.1.3 Suggested Upper Merged Ontology (SUMO) 14

2.1.4 Distributed Computing Systems ... 15

2.1.5 Technologies Used ... 18

2.2 Related Work on Web Service Discovery 20

2.2.1 Ontological Approaches ... 21

2.2.2 Service Description with Folksonomies.. 24

 ix

2.2.3 Service Description Unification ... 25

2.2.4 Vector Space Model ... 26

3 USE OF HILBERT SPACES ... 30

3.1 Hilbert Space Representation of a Sample Web Service 35

4 SYSTEM ARCHITECTURE ... 42

4.1 Service Discovery Client... 43

4.2 Service Publisher Peer .. 44

4.2.1 Service Publishing Wizard ... 45

4.2.2 Service Annotation Editor .. 45

4.2.3 Service Repository Peer ... 46

4.3 Service Repository Cloud ... 47

4.3.1 Service Repository Publisher ... 47

4.3.2 Service Discovery Manager ... 48

4.3.3 Service and Publisher Presentation Layer 49

4.4 Cloud Computing and Peer to Peer Infrastructure 49

4.4.1 Setting Up a Cloud Computing Infrastructure............................... 50

4.4.2 Data Store Restrictions ... 50

4.4.3 Query Processing In a Peer to Peer Network 52

4.5 Service Discovery and Publishing API .. 55

5 SEMI-AUTOMATED SERVICE PUBLISHING 57

 x

5.1 Publisher Identification and Service Selection 58

5.2 WSDL to OWL-S Conversion... 60

5.3 Service Descriptor Annotation and Main Category Selection 62

5.4 Representing of SUMO Concepts ... 66

5.4.1 Concepts, Classes and WordNet Words.. 67

5.4.2 Concept Plane Categorization .. 72

5.4.3 Concept Node Leveling.. 73

5.5 Service Description Upload... 74

5.6 Service Description Extraction .. 75

5.7 Category Planes and Main Categories ... 77

5.7.1 Service Category Plane Generation .. 78

5.7.2 Dimension Significance ... 87

5.7.3 Category Plane Similarity Measures ... 88

5.7.4 Space Modification with User Feedback 90

6 AUTOMATED SEMANTIC SERVICE DISCOVERY 92

6.1 Query Generation.. 93

6.1.1 Query Generation by a User Agent ... 93

6.1.2 Query Generation by a Software Agent .. 94

6.1.3 OWL-S Ontology Concepts ... 95

6.1.4 AND/OR Filter Operators .. 95

 xi

6.2 Query Parsing and Categorization ... 96

6.3 Categorical Service Matching ... 98

6.4 Query Forwarding and Query Responses 100

7 TESTS AND PERFORMANCE ANALYSIS ... 104

7.1 System Performance ... 104

7.1.1 Concept Request for Annotation .. 107

7.1.2 Web Service Publishing ... 108

7.1.3 Web Service Discovery .. 110

7.2 Discovery Performance ... 111

7.3 Performance Review ... 118

8 CONCLUSION AND FUTURE WORK .. 120

 REFERENCES .. 125

APPENDIX A ALGORITHM CONSTANTS .. 133

 xii

LIST OF FIGURES

FIGURES

Figure 2-1 Web Service Architecture ..8

Figure 2-2 Structure of a SOAP Message ...9

Figure 2-3 Contents of a WSDL Document .. 10

Figure 2-4 Elements of an OWL-S File ... 12

Figure 2-5 Three Dimensional Representation of a Hilbert Cube 13

Figure 3-1 Three Dimensional View of a Concept .. 32

Figure 3-2 Three Dimensional Excerpt from the Skew Coordinate System 33

Figure 3-3 Two Dissimilar Conceptual Categories ... 34

Figure 3-4 Two Similar Conceptual Categories .. 34

Figure 3-5 Annotated Profile of “Server Time Synchronization Service” 36

Figure 3-6 Computing and Weight Dimensions .. 38

Figure 3-7 Engineering and Weight Dimensions .. 39

Figure 3-8 Generic and Weight Dimensions ... 40

Figure 4-1 A General Outline of the Proposed System ... 43

Figure 4-2 Direct Connection to Service Repository Cloud 54

Figure 4-3 Direct Connection to Service Publisher Peer ... 54

Figure 4-4 Central Repository Cloud Forwards to Service Repository Peer 55

 xiii

Figure 5-1 Descriptor URL Mappings for OWL-S Descriptors 61

Figure 5-2 Service Repository Cloud Ontology Reference 62

Figure 5-3 OWL-S Translation of a Simple Type in WSDL 63

Figure 5-4 OWL-S Translation of a Complex Type in WSDL 64

Figure 5-5 Main Categories in the Service Repository Cloud 66

Figure 5-6 A Sample SUMO Concept .. 67

Figure 5-7 SUMO Concept Structure ... 68

Figure 5-8 SUMO Class Structure .. 69

Figure 5-9 WordNet Concept Structure .. 71

Figure 5-10 Concept Plane Categorization Algorithm .. 73

Figure 5-11 Concept Node Leveling Algorithm.. 74

Figure 5-12 IOPE Information Extracted from OWL-S Descriptors....................... 76

Figure 5-13 Service Name and Description Extracted from OWL-S Descriptors 77

Figure 5-14 SUMO and WordNet Ontology Mappings ... 79

Figure 5-15 A Sample Category Plane Generated by Service Repository Cloud 80

Figure 5-16 A Sample Parent Child Relationship ... 81

Figure 5-17 Weights for a Sample Parent Child Relationship 82

Figure 5-18 Service Repository Cloud Plane Generation Algorithm 83

Figure 5-19 Weight Limitation Descriptions .. 84

Figure 5-20 Non-Conceptual Data Point Selection ... 86

 xiv

Figure 5-21 Dimension Significance Computation Algorithm 87

Figure 5-22 Category Plane Similarity Measure Algorithm 89

Figure 6-1 Service Discovery Query Representation .. 93

Figure 6-2 Example Query Generated by a User Agent .. 94

Figure 6-3 Query Criteria Importance Order... 96

Figure 6-4 Query Categorization Algorithm ... 97

Figure 6-5 Service Match Ranking Algorithm .. 99

Figure 6-6 Contents of a Service Match Record ... 102

Figure 6-7 Categorical Graphic for a Sample Web Service 103

Figure 7-1 Google App Engine Resource List .. 105

Figure 7-2 Entity Distribution in Data Store ... 106

Figure 7-3 Storage Space by Property Type ... 107

Figure 7-4 Concept Request Performance .. 108

Figure 7-5 Web Service Publishing Performance ... 109

Figure 7-6 Web Service Publishing Detailed Performance 110

Figure 7-7 Web Service Discovery Performance .. 111

Figure 7-8 Hilbert Space Statistics for Published Web Services............................ 112

Figure 7-9 Sample Web Service Profile.. 113

Figure 7-10 Group 1 Query Sample.. 114

Figure 7-11 Group 2 Query Sample.. 114

 xv

Figure 7-12 Group 3 Query Sample.. 115

Figure 7-13 Summary Results for 300 Group 1 Queries 116

Figure 7-14 Summary Results for 300 Group 2 Queries 116

Figure 7-15 Summary Results for 300 Group 3 Queries 117

Figure 7-16 Aggregated Summary Results for All Types of Queries 118

 1

CHAPTER 1

1 INTRODUCTION

Service oriented technologies like Web Services [1] and Service Oriented

Architecture [2] revolutionized the modern world of computing with the paradigm

shift they brought. The increasingly used technologies provide an answer to one of

the fundamental problems enterprises face: complexity. Since the beginning of

software development, software being developed has gotten far more complex

everyday. This process has both been driven by technology, upon the increase of

processing power and storage space, and user requirements. The software of the

modern world contains far more lines of code than its ancestors. Then again, the

newly developed, complex software depends on a wide range of other modern and

complex software too.

The unstoppable increase in software complexity brings a huge problem to the world

of software development, because the main actor in the equation -the humans- are

still there, and they are prone to make errors in software development lifecycle more

than ever. Therefore in this new world, a new paradigm shift should happen, a shift

which can change the way software is developed, maintained and used.

 2

This change is the Web Services paradigm, because with Web Services, a unit of

work can be done in a contained environment. Multiple operations are carried out

either by multiple processes in a web service or by multiple different web services.

The functionality that a web service provides, the inputs of the process and the

outputs that can be expected from a web service are all defined in a descriptor

document, allowing easier software development and execution.

The Web Service paradigm also accepts change as a natural fact in the process of

software development and manages change through functionality based service

development. This way, the impact of a change is limited to the service that provides

the functionality it affects.

Since they provide a new perspective to the software development world, and are

widely used ever since their introduction in 2003, web services are a very important

aspect of Information Technology. Therefore, a large number of enterprises

nowadays is implementing a SOAP/WSDL/UDDI layer on top of existing

applications or components and is assembling applications by consuming web-

services [3].

However, in time, the common usage of web services brought new problems. For

instance, for a service user to be able to use a Web Service, he must have access to

the descriptor of the service, which contains crucial information on how the service

is to be accessed. Then again, the service user should be able to access the Web

Service descriptions of multiple Web Services from a preferably single, but by all

means pre-defined location.

In general, these pre-defined locations, containing service descriptions are called

service repositories. The standard for service repositories is UDDI [4], short for

Universal Description Discovery and Integration. UDDI is a standard managed by

the OASIS [5] group, and several UDDI implementations have surfaced in the past,

including a relatively popular implementation by Microsoft, named UDDI Business

Registry [6]. Even though the concept of a central registry for services seemed

 3

logical, Microsoft, IBM and SAP all closed down their UDDI registries in year

2006, due to little interest shown by service publisher companies.

There are mainly three types of service repositories, (i) centralized service registries,

(ii) peer-to-peer service registries and (iii) service search engines. UDDI belongs to

the first group. In the first two types of service repositories, the content is willingly

provided to the service repository, whereas in the third alternative, a bot crawls the

web to find services, and adds them to its own database.

The common property among all three types of repositories is that they work with

standardized service descriptions such as WSDL [7] or OWL-S [8].

Web services are traditionally described with the use of the WSDL, which

unfortunately cannot adequately represent their actual semantics, i.e. capabilities,

inputs and outputs [9]. WSDL is shorthand for Web Service Description Language,

and it can be used to describe where a service resides on a network, how it can be

connected to, and what kind of parameters should be passed to that service in order

to get a meaningful response. The response to be received from the service can also

be described in a WSDL file. The primary problem about a WSDL file is that, it

does not have semantic information which can be used by a software-agent to make

automated service selection or invocation decisions. Yet again, WSDL files cannot

specify the preliminary requirements for and outcomes of a service.

These problems can be solved by the semantic web technology which supports

annotation of service descriptions via ontologies. Most prominent ontology-based

approaches in Web services description are OWL-S, WSMO and SAWSDL [9]. Our

system uses OWL-S, since it is a W3C recommendation. OWL-S is based on Web

Ontology Language (OWL) and can be used to represent services semantically for

software agents. Semantic properties are added to OWL-S descriptions via RDF [10]

based ontologies, which can be represented in OWL files. These semantic ontologies

are developed by third parties, to describe a specific part of the world with as much

 4

detail, and as much entities as possible. Certain relationships between entities

describing the world are also setup in the ontologies.

Using ontological concepts for service description in OWL-S files, the meaning of

the functionality of a service can be passed to a software-agent, eliminating human

intervention in many processes such as service discovery and service composition.

OWL-S also brings more advantages to WSDL with its service composition

constructs for service orchestration and precondition and effect constructs for

service input and output description [8].

Therefore, software agents have a better chance of executing services properly given

that the descriptions are based on OWL-S rather than WSDL. However, to be able to

properly execute a web service, first a selection from a set of web services should be

made. This process is called Web Service Discovery, and it can be done using Web

Service Repositories, or by other methods discussed in section 2.2.

In Web Service Discovery, a user-agent or a software-agent tries to find suitable

services to move from a start state to a goal state. In this challenge, the Service

Repository provides a list of services based on agent’s preferences, such as input-

output names, counts and conceptual similarities between agent’s query and the web

service.

Most of the Web Service Discovery systems are manual, containing a human actor

selecting a service from a set of available services. But nowadays there has been an

enormous increase in the number of available web services and the web service

discovery has been a complex task for a human being to accomplish correctly and

efficiently. As a result, automated approaches for discovering web services have

been emerged, and became quite popular.

The main problems faced in Web Service Discovery are the availability of the

Service Repositories, availability of the Web Services and semantically deficient

Web Services. Enabling available Service Repositories is a relatively easy task, with

 5

many centralized and decentralized peer to peer architectures available. Increasing

the number of Web Services in a repository also depends on the availability,

scalability and semantic power of such a Service Repository. A system is described

as scalable if it is able to accommodate an increasing number of elements or objects

and/or to process growing volume of work gracefully [11]. Our system, and many

other systems [9,11,12,13], challenge scalability with cloud computing and peer to

peer architecture. Therefore the main problem in Web Service Discovery is

semanticity.

As stated in [13], semantic discovery is enabled by adding semantic annotations to

Web service specifications either in registries or service descriptions. Web services

are described using WSDL descriptions currently, which provide operational

information only. Even in the case that the service description is in OWL-S format,

there is a problem regarding which ontology was used to annotate the service. Since

there are an indefinite number of ontologies available and every service publisher is

free to select an ontology of his own choice, OWL-S annotations cannot be useful at

all times either.

This thesis solves these problems by a centralized, peer-to-peer service repository,

which runs on a cloud computing architecture on the service repository side. The

proposed system targets the solution of the availability and scalability problems

commonly experienced with service repositories. The thesis proposes an Automated

Service Discovery approach which allows a software agent to provide a query and

get responses to the query, which are ranked based on a certain similarity metric.

The provided architecture provides solutions to the service semanticity related

problems with semi-automatic methods for WSDL to OWL-S (formerly DAML-S

[14]) conversion, and annotation via a unified ontology which merges a wide range

of ontologies together in a single ontology, namely SUMO [15]. WSDL is selected

as the source for service descriptor conversion, since it is the current standard for

web service description, and is widely used in the industry.

 6

Service discovery related problems are also targeted with the discovery system

which uses the unified ontology of the system for query criteria.

The contributions of this thesis can be summarized as follows:

• A scalable and service oriented service discovery and publishing

architecture, which makes use of cloud computing and peer-to-peer

computing paradigms

• Web service similarity computation based on categories and concepts in

Hilbert Spaces

• Semi-automated, semantic web service publishing, using a single, unified

ontology

• Automated semantic web service discovery, with web service ranking

• Web service semanticization via web service discovery queries

The rest of the thesis is organized as follows. Chapter 2 provides background

information on Web Services, Peer to Peer and Cloud Computing architectures. The

supporting technologies are also outlined in this section. There is also a discussion

about the related work on automated web service discovery. Chapter 3 shows how

we use Hilbert Spaces in our work. Chapter 4 outlines the system architecture, and

describes the modules participating in our solution. Chapter 5 describes the

methodology used in Semi Automated Service Publishing technique suggested by

this thesis, and discusses the issues faced in mapping SUMO ontology to a relational

data store. In Chapter 6, the algorithms used in query processing and service ranking

are described. In Chapter 7, tests and performance analysis conducted on a stable

installation of the software are provided. Chapter 8 concludes the study performed

throughout this thesis, and provides a pathway for the future work that can be done.

 7

CHAPTER 2

2 BACKGROUND INFORMATION AND RELATED WORK

This chapter consists of two main parts. In the first part, the background information

about the technical concepts and terminology in this thesis are presented. In the

second part, the ideas behind the previous work in the literature about web service

discovery are described. The strengths and weaknesses of the previous work are

discussed with respect to the system described in this thesis.

2.1 Background Information

In this part, first web services and standardized technologies related web services are

presented. Later, the technologies used for the infrastructure in this thesis are

investigated.

2.1.1 Web Services

Web Services are defined by W3C as a software system designed to support

interoperable machine-to-machine interaction over a network [1]. Web service

architecture is composed of three major entities: the service provider, service

registry, and service requester [16].

 8

Figure 2-1 Web Service Architecture [1]

In this scheme, a service consumer can use a previously unknown service by

discovering it from a service registry; while service publishers can make their

services available to a greater set of service consumers by publishing their services.

Web Services provide an interface of the functionality provided by the software, and

allow the web service clients to use the functionality provided that they adhere to the

specifications in the service description. The main advantages of the Web Service

paradigm can be listed as follows:

• Web Services abstract the internal implementation details of the functionality

they provide, preventing implementation level dependencies from the service

consumer.

• Web Services bring interoperability with technology independence and well

defined functional interfaces.

• Web Service can be consumed by software-agents automatically, allowing

complex applications to be built faster and with less effort.

 9

The Web Service specification specifies SOAP as the Web Service messaging

format and WSDL as service description standard [1].

2.1.1.1 SOAP

SOAP stands for Simple Object Access Protocol, and is an XML based

communication protocol intended for distributed applications, including web

services. SOAP is an application level protocol, which describes how data should be

packaged and unpackaged [17].

A SOAP message consists of three parts: (i) SOAP Envelope, (ii) SOAP Header and

(iii) SOAP Body. The SOAP Envelope is a wrapper for the SOAP message being

transmitted, and describes what is in the message and how the information contained

can be processed. The SOAP Header contains auxiliary information such as

transactional or permission attributes. The SOAP Body contains the core

information being exchanged between the connecting parties.

An example SOAP message is shown in Figure 2-2.

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
<env:Header>
<n:alertcontrol xmlns:n="http://example.org/alertcontrol">
<n:priority>1</n:priority>
<n:expires>2010-01-22T14:00:00-15:00</n:expires>
</n:alertcontrol>
</env:Header>
<env:Body>
<m:alert xmlns:m="http://example.org/alert">
<m:msg>Print your thesis Friday.</m:msg>
</m:alert>
</env:Body>
</env:Envelope>

Figure 2-2 Structure of a SOAP Message

 10

2.1.1.2 WSDL

WSDL [7] stands for Web Service Description Language, and is an XML based

industry standard for describing functionality of a web service. The language allows

the service publishers to describe the functionality, inputs, outputs and network

location (i.e. service host, port) of a web service.

A typical WSDL document contains the items outlined in Figure 2-3 when

describing a service.

WSDL Item Definition

Types A container for data type definitions using a type system.

Message An abstract, typed definition of the data being communicated.

Operation An abstract description of an action supported by the service.

Port Type
An abstract set of operations supported by one or more
endpoints.

Binding
A concrete protocol and data format specification for a
particular port type.

Port
A single endpoint defined as a combination of a binding and a

network address.

Figure 2-3 Contents of a WSDL Document

 11

2.1.1.3 OWL-S

OWL [18], formerly DAML+OIL [14], stands for Web Ontology Language, and is a

semantic markup language standard created by W3C for web ontologies. OWL-S is

built upon OWL technology, and is the most widely used standard for describing

semantic web services. OWL-S uses the RDF technology for markup.

OWL-S has certain advantages over the current web service description language

WSDL. OWL-S provides ontological annotations for concepts used in a service

description, allowing machines to understand and process service descriptions and

reach semantic decisions. Also OWL-S provides service composition capabilities,

and thus allows composite web services to be defined in a single service description

file [8].

An OWL-S specification of a web service consists of three main parts, which are:

• Service Profile: used for service advertisement and discovery

• Service Process Model: used for describing service's operation structure in

detail

• Service Grounding: used to provide technical details on how to communicate

with the service.

 12

Figure 2-4 Elements of an OWL-S File [8]

2.1.2 Hilbert Spaces

Hilbert Space is a mathematical concept, found by David Hilbert, which extends the

methods used in two and three dimensional spaces to a finite or infinite number of

dimensions [19]. In engineering, mathematics and physics, Hilbert Spaces are used

as infinite dimensional function spaces. The Hilbert Space is used for a similar

purpose in this thesis, with the difference that functions in each dimension are

dynamically changed and they are discrete.

A data point in a Hilbert Space can be specified by its coordinates with respect to a

set of dimensions, similar to Cartesian coordinates commonly used in planes.

However, the dimensions of the Hilbert Space can be infinite, thus a data point can

be an infinite sequence of coordinates, and hence a function by itself.

Due to their infinite dimensional nature, visually representing a Hilbert Space in the

normal world is very hard. However this changes when the Hilbert Space is not

 13

complete (i.e. a function’s value cannot be determined based on the previous finite

values), and values in a single dimension makes sense on their own. In this case

each dimension can be visualized as a 2 dimensional plane in the real world, which

is the case in this thesis. A 3 dimensional representation of a Hilbert Space can be

seen in Figure 2-5.

Figure 2-5 Three Dimensional Representation of a Hilbert Cube [20]

The Hilbert Space also contains the concepts of orthogonality and angles. Inter-

space angles can be defined and inter-dimensional distances can be measured by

traditional Euclidian distance method.

In our system, web services are represented as Hilbert Spaces. The dimensions in the

Hilbert Space are the categories present in the system ontology. The data points in

the dimensions are concepts used to annotate the web services. The similarity

 14

relations between categories are denoted with pre-computed inter-dimensional

intersection angles for category axes.

Similarly, each query presented to the system is also translated to a Hilbert Space.

The concepts in the query are extracted, their categories are determined, and a

Hilbert Space is created with the given categories and conceptual data points. The

query matching algorithm finds the most similar web service Hilbert Space for the

created query Hilbert Space.

2.1.3 Suggested Upper Merged Ontology (SUMO)

An ontology is similar to a dictionary or glossary, but with greater detail and

structure that enables computers to process its content. An ontology consists of a set

of concepts, axioms, and relationships that describe a domain of interest. An upper

ontology is limited to concepts that are meta, generic, abstract and philosophical,

and therefore are general enough to address a broad range of domain areas. Concepts

specific to given domains are included; however, SUMO provides a structure and a

set of general concepts upon which domain ontologies (e.g. medical, financial,

engineering, etc.) could be constructed [21].

SUMO (Suggested Upper Merged Ontology) [15] was developed within the IEEE

Standard Upper Ontology Working Group and it is free. The goal of this Working

Group is to develop a standard ontology that will promote data interoperability,

information search and retrieval, automated inferencing, and natural language

processing.

The SUMO began as a synthesis of a wide range of publicly available formal

content, and this synthesis was guided by feedback from the SUO Working Group.

SUMO and its domain ontologies form the largest formal public ontology in

existence today. The SUMO consists of approximately 4,000 assertions (including

over 800 rules) and 1,000 concepts. The SUMO is designed to be relatively small so

that these assertions and concepts will be easy to understand and apply.

 15

Some of the general topics covered in the SUMO include [22]:

• Structural concepts such as instance and subclass

• General types of objects and processes

• Abstractions including set theory, attributes, and relations

• Numbers and measures

• Temporal concepts, such as duration

• Parts and wholes

• Basic semiotic relations

• Agency and intentionality

They are being used for research and applications in search, linguistics and

reasoning. SUMO is the only formal ontology that has been mapped to the entire

WordNet lexicon. SUMO is written in the SUO-KIF language. The ontologies that

extend SUMO are available under GNU General Public License [21].

SUMO is used in this thesis because there are a lot of ontologies and the peers in the

system need to have an agreement on the ontology they are using.

2.1.4 Distributed Computing Systems

Distributed computing systems consist of multiple autonomous computers which

communicate through a network and interact with each other to accomplish a

common goal. There are several architectures for distributed computing [23],

including:

• Client-Server: A smart client connects to the server, retrieves data to be

processed, and commits the results to the server.

• Clustered: A cluster of machines work in parallel to complete a fraction of a

subdivided task.

 16

• Peer to Peer: All responsibilities are divided among the machines equally;

management of work and resources can be managed by peers themselves.

• Cloud Computing: Resources in a network are virtualized to create a single

environment where the work is completed. Decoupling in processing time

and data storage is achieved.

Our system uses Peer to Peer and Cloud Computing architectures, which are

discussed in detail in sections 2.1.4.1 and 2.1.4.2 respectively.

2.1.4.1 Peer to Peer Systems

There are many computers in homes and offices whose resources are not fully

utilized most of the time. The motivation behind peer-to-peer (P2P) systems is that

these empty resources might be used for doing something useful like sharing content

or computation, instead of being idle.

According to [24] a peer-to-peer (P2P) system is defined as any distributed network

architecture composed of participants that make a portion of their resources (such as

processing power, disk storage or network bandwidth) directly available to other

network participants, without the need for central coordination instances (such as

servers or stable hosts). Unlike traditional client-server architecture, peers are both

suppliers and consumers at the same time.

P2P systems first became popular by file sharing systems and began to be used

widely, and then they also gained a lot of attention in the social, academic, and

commercial communities.

Currently, there are several different architectures for P2P networks [24]:

• Centralized: Napster [25] and eMule [26] are examples of such systems. In

this approach an upto date directory of nodes in the network are kept in a

central location (i.e. the web site of the software). The participating nodes

issue queries to the central location to find which nodes possess a given

resource.

 17

• Decentralized but Structured: Freenet P2P [27] network is an example of

such a system. Unlike centralized systems, there are no central directory

servers indexing the files and nodes. However, the files are placed at the

nodes in a structured, algorithmic manner. This way queries can be answered

faster, since the file placement algorithm is pre-known.

• Decentralized and Unstructured: Gnutella [28] is an example of such a

system. These systems both lack a centralized directory and an algorithm for

file placement. The system has no control of the network topology of the

nodes.

2.1.4.2 Cloud Computing

Cloud computing is a new computing paradigm, in which the end user of the system

(i.e. the developer) is unaware of the details of the internals of the system, such as

where the data is stored, computation is made or certain services are running [29].

In cloud computing, the services provided to the developer are dynamically scalable,

and extendable. This is mostly accomplished by virtualization of resources as

services. With cloud computing, applications can scale to the limits of the hardware

provided, and the transitions in the hardware are transparent to the users of the

system, developers and the application itself.

Even though the term “Cloud” in Cloud Computing refers to the internet, Cloud

Computing architectures can be setup in a local network, to make use of the

scalability and abstraction features of the cloud. There are commercially available or

free to use Cloud Computing platforms on the internet, including Azure [30],

Google App Engine [31] and Rackspace Cloud [32].

There are also Cloud Computing infrastructures that can be setup in an intranet

environment, which enables the developers to setup their own cloud and run

applications on. Amazon EC2 [33], Xen and Eucalyptus [29] are such

infrastructures.

 18

2.1.5 Technologies Used

Our system uses a wide range of web services and distributed computing

technologies to provide a scalable and versatile infrastructure. These technologies

are discussed in this section.

2.1.5.1 Restlet

REST [34] stands for Representational State Transfer, and is the software

architecture used in HTTP. REST is a stateless programming model, in which clients

are separated from servers by a uniform interface [35]. In the REST model, servers

are not concerned with the user interface and user state, so the server software is

simpler and more scalable.

Restlet is a RESTful web framework for Java, and unifies Web Services and Web

Sites to Web Applications that are ready for the mobile and semantic web [36].

REST clients use simple HTTP commands (i.e. GET, PUT, POST, DELETE etc.)

for commanding the REST server. REST servers receive commands from entities

using basic and intuitive URL references (e.g. a GET request to a URL

“http://host/grades/{studentid}” returns the grades of the student with the given id).

RESTful architecture and Restlets are used in our system to provide simple web

services for every kind of service consumer, including mobile device users.

2.1.5.2 Google App Engine

Google App Engine [31] is a platform for developing and hosting web applications

in Google-managed data centers. It lets developers run their own applications on

Google’s infrastructure. It was first released as a beta version in April 2008.

Google App Engine is cloud computing technology. It virtualizes applications across

multiple servers and data centers, making it easy to write scalable applications. This

 19

increases availability which is very important in peer-to-peer systems, and this is the

reason behind using this platform in this thesis.

Currently it supports applications written in Java and Python programming

languages. In this thesis its Java runtime environment is used.

App Engine includes the following features:

• Dynamic web serving, with full support for common web technologies

• Persistent storage with queries, sorting and transactions

• Automatic scaling and load balancing

• APIs for authenticating users and sending email using Google Accounts

• Scheduled tasks for triggering events at specified times and regular intervals

Restrictions of the infrastructure are as follows [31]:

• Developers have read-only access to the file system on App Engine.

• App Engine limits the maximum rows returned from an entity set to 1000

rows per Data Store call.

• Java applications may only use a subset (The JRE Class White List) of the

classes from the JRE standard edition.

• Data Store cannot use inequality filters on more than one entity property per

query.

2.1.5.3 App Scale

AppScale [37] is an open source extension to the Google App Engine (GAE)

Platform-as-a-Service (PaaS) [38] cloud technology providing a multi-language,

multi-component framework for running GAE applications on virtualized cluster

systems. It is built upon the GAE SDK to facilitate distributed execution of GAE

applications over Xen [39] based clusters, including Infrastructure-as-a-Service

(IaaS) [40] cloud systems. AppScale provides a framework with which researchers

 20

can investigate the interaction between PaaS and IaaS systems as well as the inner

workings of, and new technologies for, PaaS cloud technologies using real GAE

applications [37].

The AppScale image implements multiple system components: an AppController,

Database Master/Slaves, and AppServers. The AppController automatically spawns

all other components, provides the initial contact point for GAE application users

(for load-balancing purposes), implements resource monitoring and cloud

expansion/contraction. GAE applications execute via the AppServers which are the

instances with which GAE users interact once a session is initiated with the

AppController. AppScale decouples the database backend of GAE to support

different database technologies [37].

AppScale is used in this thesis because it enables users to execute GAE applications

using their own clusters with greater scalability and reliability than the GAE SDK

provides. Moreover, AppScale executes automatically and transparently over cloud

infrastructures such as the Amazon Web Services (AWS) Elastic Compute Cloud

(EC2) and Eucalyptus, the open-source implementation of the AWS interfaces.

2.2 Related Work on Web Service Discovery

Web Service Discovery has been a popular research topic recently, and there exists a

large number of important previous works. While some approaches use a centralized

service repository, some perform discovery in a fully decentralized peer to peer

environment. Despite the huge attention paid to collaborative usage of peer-to-peer

and Web Services, most of the proposed solutions are primarily focused on

enhancing web service discovery by replacing centralized service registries with

distributed peer-to-peer architectures [3]. Some approaches focusing on the semantic

properties of the procedure make use of computational linguistics and word

processing techniques to mine for semantic information in the web services, and

some use ontological service descriptions. In this section some of the most important

and influencing works in the field of Web Service Discovery are outlined.

 21

2.2.1 Ontological Approaches

There are multiple approaches for web service discovery, which rely on ontologies

to semantically annotate the functionalities of web services, including [12], [13], and

[41].

The last version of UDDI protocol supports multiple registries and standardizes the

communication infrastructure among them, however discovering from and

publishing to hundreds of registries at the same time is hard for the service

providers. METEOR-S Web Service Discovery Infrastructure (MWSDI) [13] tries to

resolve this registry location problem, and has a built-in “Registries” ontology,

which keeps track of all the registries registered to it.

In METEOR-S approach, registries are categorized ontologically, and a service is

published to the registry which is responsible for its category. The registration is

made via a semantic service descriptor. Service registry operators can create their

own domain specific ontologies and thus extend the system. The registries are

interconnected with a P2P messaging layer, based on JXTA [42].

There are levels of peers: Operator Peer, Gateway Peer, Auxiliary Peer and the

Client Peer. Operator Peer controls a registry and provides certain services on that

registry. Gateway Peers allows operator peers to join the MWSDI network. When a

new registry is added to the system, the registries ontology is updated by the

gateway peer. The Auxiliary Peers serve the registries ontology, for safeguarding

delivery of the ontology. Client Peers are the consumers of the system.

In a pure P2P network, all peers have equal roles and there is no centralization. In

hybrid P2P networks, some resources or services are centralized [13]. Although the

infrastructure of the METEOR-S approach seems similar, our system is more of a

hybrid P2P network, since it is centralized, and client peers do not need to discover

any neighboring peers, since they are forwarded automatically by the central system

when necessary. Our system tries to achieve scalability through cloud computing

 22

architecture and large scale service publishers, rather than relying on individual

service publishers.

Semantically, METEOR-S contains multiple ontologies, and requires a level of

ontological mapping for discovery queries. This requires service publisher generated

ontologies to be carried around Operator Peers, and complicates the discovery

procedure as number of publisher generated ontologies increase. Our approach

however uses a unified, merged ontology which is valid for all the peers in the

system.

METEOR-S uses WSDL files for service discovery and relies entirely on WordNet

to find similarities between a query and a WSDL file, which is not semantically

annotated. The similarities are found by parsing WSDL files and generating

additional words via WordNet relations (i.e. synonym, hypernym, acronym etc.).

The matching is done via the NGram algorithm and results of the mappings are

displayed to the user for user feedback so that he can accept or reject these

mappings. This makes METEOR-S a semi-automated web service discovery stack,

while our system is fully automated and does not require user feedback since

mappings are not necessary.

The work presented in [12], has a similar ontological approach. According to the

authors, majority of currently existing approaches focuses on centralized

architectures and deals with efficiency typically by pre-computing and storing the

results of the semantic matcher for all possible query concepts. The web service

discovery technique described in [12], matches a request and an advertisement in

constant time.

The service representations are indexed to prune the search space to minimize the

number of required comparisons. The degree of match between two concepts is

assessed by the extent to which the subtrees of their concepts overlap. The concept

overlapping is defined as ranges, and they are calculated for once via the ontology's

acyclic graph once the service is added. Later, each interval for the parameters is

 23

represented as a point in a 2-dimensional space. This way containment between

intervals is a range query on this 2-dimensional space.

When a service is to be searched, parallel searches are conducted for each request

parameter as range queries, and the results are finally intersected to compute the

final matches. When searching, if an exact match is required, a point is searched in

the 2-dimensional space; for plug-in and subsumes matches, an interval is being

searched in the 2-dimensional space.

The infrastructure relies on a spatial P2P network, which operates on spatial data.

The peers are organized with respect to relatedness, and the search is propagated as

a range query to the nodes that have matching characteristics. When a new service

description is published, the description is encoded using the given interval

computation, and each encoded service is hashed to and eventually stored by a peer

whose ID is closer to its value in the 2-dimensional space. Therefore similar services

are stored by the same or neighbor peers.

The work is similar to our approach in the sense that ontological concepts are

mapped to a plane and similarities between concepts are enriched with ancestry

relationships. However, our approach uses a complex space, in which there exists an

indefinite number of conceptual dimensions, whereas the described approach uses a

single 2-dimensional space. In our system inter-dimensional distances are

calculated, and intra-dimensional calculations are made via conceptual weighing

schemes. Also in our system there are plane significance measures to control the

importance of concepts stored in a plane, which naturally lacks in the system

described, due to the existence of a single 2-dimensional plane.

However, the work described in the paper performs much better in means of

performance with a constant time algorithm for service and advertisement matching,

due to precomputation of both data points and ranges at publishing time; whereas

our system makes comparisons at O (nm) where there are n dimensions and m data

points at each service discovery request.

 24

The work described uses an entirely decentralized, peer to peer architecture, while

our system uses a centralized system and relies much less on the peers for service

discovery.

2.2.2 Service Description with Folksonomies

Folksonomies are collaboratively generated and managed tag clouds, intended to

annotate and categorize content. In contrast with ontologies, the metadata used to

categorize content is not generated by experts in the field, but by creators or end

users of the content. In this sense folksonomies are uncontrolled, user generated and

dynamic ontologies [9].

Works presented in [9] and [43] use folksonomies for semantic resolution of web

services. In [9], the tags created by the users of the system are supported by words

found via WordNet relations. During matchmaking, Term Frequency - Inverse

Document Frequency [44] technique is used to find the similarity between the

service descriptor and the query.

Using the top-k terms in all documents in a corpus, domain folksonomies are

constructed and services annotated by the end users are categorized into domains, to

restrict the service search space during matchmaking.

The infrastructure used for peer to peer communication is JXTA, and is a semi-

decentralized architecture. The peers are organized into domain specific groups with

respect to the created domain folksonomies, and services in the same domain are

stored locally in these peer groups. With each web service publishing operation,

WSDL files are multicasted in the domain specific peer subnet.

The system described is similar to our architecture in the sense that peer groups are

organized into categorical subnets, and system is semi-decentralized. However in

our system, a service is published to a single location (i.e. a peer, or the central

server), and data is not disseminated among peers in a categorical subnet. Therefore

 25

the data stores of peers in the same category do not carry the same amount of

information, as in the described work. This makes our system more centralized.

Semantically, the system relies on consumer’s tagging behavior and WordNet

relations to enhance the semantic properties of the services described with a WSDL

descriptor after publishing. In our system OWL-S files generated from WSDL files

are annotated with a unified ontology, prior to publishing, and annotations are

enriched with the queries of the users, without the explicit consent of the user.

In [43], in addition to the tagging system described in [9] a rating system is

incorporated to the service matchmaking process. The rating system allows the users

to rate the web services they use in terms of functionality. The matchmaker

aggregates the user feedback data and rewards the services with better ratings in the

service matchmaking process.

2.2.3 Service Description Unification

The work described in [45] underlines the fact that there are, and there will be, many

different languages for describing web services, and they argue that, enforcing a

single descriptor or trying to convert service descriptors back and forth is an

ineffective way of dealing with web service discovery.

They propose a new technique named “Metric Space Approach”, in which

heterogeneous service descriptors are semantically evaluated and modeled as metric

objects to the same metric space, regardless of the concrete service description

languages. Thus the web service discovery problem is transformed to a similarity

search problem, and the transformation is described as a meta-model on the existing

web services description language, in which, all heterogeneous web services are

modeled as similar metric objects regardless of the concrete description languages,

and thereby the discovery problem can be treated as similarity search in the metric

space with a uniform criterion [45]. For similarity search, two techniques are used:

p-KNN query [46] is used for the functional semantics of the service descriptor and

Range Query is used for the non-functional semantics of the service descriptor.

 26

Input, Output, Precondition and Effect variables of a web service are accepted as

functional semantics of the web service, whereas Quality of Service and context

policy are accepted as non-functional semantics.

The work is similar to the technique described in this thesis, in the sense that service

descriptors are modeled as entities in a space. Our work categorizes the conceptual

descriptions and represents the web service as a complex Hilbert Space, whereas the

system described simplifies the web service to a metric space, and places each

service on the same space.

Our similarity measure depends on both intra-plane and inter-plane conceptual

intersections and concept significance values; however the work described uses a

single metric representation for each service and tries to find nearest neighbors in a

metric space for semantic search. Non-functional semantics of the web service are

taken into account in the described work, and similarities regarding QoS parameters

and context policies are searched via range queries, however in our system only Last

Online Date is taken into account.

2.2.4 Vector Space Model

Traditional semantic web service discovery frameworks rely on accurate description

of web services. Most of the services in the service repositories of these frameworks

are simple web services. The discovered services are composed by the user or

software agents to create complex applications. The works described in [47] and

[48], try to replace this process with a search engine using the Vector Space Model

[49] which can index both simple and already composed complex web services.

The approach described in [47] does not use a semantic service description

framework as OWL-S, rather relies on text mining techniques to extract semantic

information from data (i.e. method names, URLs etc.) that is already present in the

WSDL documents.

 27

The services are collected by a search engine that crawls the Internet, and other data

sources for service descriptions. The crawler can process both WSDL service

descriptors and UDDI registry entries. An option for direct upload to the search

engine is also provided to service publishers.

Once a service is collected, it is processed for valuable semantic information, and a

Term Space is created for it. TF-IDF [44] technique is used to determine which

keywords to add to the Term Space. Term weights are assigned to the words based

on their frequency in the document.

The terms created in the Term Space are added to the Vector Space of the service.

Lengths of the vectors are defined by the weights of the terms. Vector Space Model

is a search mechanism that is widely used in modern information retrieval systems.

The model describes a web service as a set of vectors that represent keywords

extracted from the service description document. Each vector resides in its own

dimension, and distances between these vectors are measured via several

mathematical methods. The mathematical method used to calculate the distances

between vectors in this paper is Cosine Similarity [50].

The Vector Space Model resembles our system in the sense that it has a multi-

dimensional model for representing web services. The Vector Space Model contains

a single vector in each dimension, and these dimensions represent keywords. In our

system, dimensions represent conceptual categories, and each dimension has a

descriptor function consisting of multiple data points, which represent conceptual

data points and their weights.

Vector Space Model uses Cosine Similarity to find distances between vectors in

different dimensions, whereas our approach uses plane distance and concept level

measures. Our approach contains significance values for each conceptual plane and

weight values for each data point, whereas Vector Space Model only contains

weights for each keyword.

 28

The underlying architecture in the described paper is a semantic web service search

engine; whereas our approach uses centralized peer to peer service repositories that

run on cloud computing architecture.

The work described in [48] relies on Vector Space Model too; however it uses a

Query by Example Approach to discover Web Services, that is called WSQBE.

WSQBE works incrementally, by first reducing the search space to a subspace, and

then comparing the query to services in the relatively small subspace.

The novelty of the approach comes from the set of queries accepted by the system,

WSQBE supports queries expressed as partial web service descriptions, source code

method declarations or natural language descriptions of the expected service or its

operations [48].

Service clients generate a query by creating a service description skeleton, which

contains a partial functional description, related keywords and expected interface.

The queries can be expressed in natural language, or they can be composed with a

Java interface. Each query is converted to a WSDL file before the system processes

it. The service descriptors created for queries are treated as actual services, and

categorized by machine learning algorithms, which are trained on actual UDDI

registries. The services published to the repository of the system are also

categorized, by TF-IDF technique.

When a query is received by the system, only the services in the same category with

the query are processed. During service discovery, services are described as n

dimensional vectors, and vector comparison is made. To measure the similarity

between the query vector and the services, cosine similarity technique is used.

The approach represents the services in multiple dimensions, and in this way has a

similar perspective to us. However in our approach, dimensions are categorical and

contain data point generating functions, rather than concept vectors. Also, in our

system similarity is measured via significance, level and weight variants of

concepts, while in the described work similarity is based on vector angles.

 29

The described work includes a very flexible query generation system, which

provides the users a variety of easy to use options; whereas in our system there's

only a single query generation mechanism, which uses the system ontology for

target values.

 30

CHAPTER 3

3 USE OF HILBERT SPACES

Hilbert Spaces are complex multi-dimensional spaces with applications in various

disciplines including mathematics, physics and engineering. In Mathematics, Hilbert

Spaces are used for Functional Analysis [51], which mostly deals with infinitely

dimensional, topological vector spaces. In our system, Hilbert Spaces are used in a

similar manner; in order to represent web services and queries in infinite

dimensional spaces with ontologies.

Hilbert Spaces are selected in our system for three main reasons:

• Hilbert Spaces are infinitely dimensional. Even though our system currently

uses finite number of dimensions, the number of dimensions can increase as the

unified ontology of the system grows, and new categories are introduced.

• New dimensions can be added to a Hilbert Space within time, since data points

in Hilbert Spaces are represented with infinite coordinates. The descriptions of a

web service may change in time, and new concepts from previously missing

category dimensions can be introduced to Hilbert Spaces.

 31

• Hilbert Spaces support the Skew Coordinate system, with which we can

mathematically model the relationships between categories. This allows us to

compute inter-dimensional concept similarities easily.

Traditionally, ontologies are directed acyclic graphs, where entities might have more

than one parent. Our system uses the unified ontology SUMO, which is created by

merging ontologies of multiple categories, and is a directed acyclic graph itself.

Therefore each of the concepts in the unified ontology belongs to one or more

categories, and might have parents originating from different categories. Our idea is

to represent these concepts and categories in a space.

First of all, the concepts in the ontology are clustered by their categories. Since the

ontology allows concepts with parents from multiple categories, certain concepts

can be present in multiple categories. The clusters are basically formed with respect

to mid-level ontologies that contribute to SUMO’s unified ontology.

Each unique category is represented with a dimension in the Hilbert Space. Each

dimension carries concepts from their own category. Even though the number of

categories in our space is limited with our current ontology, our model can carry an

infinite number of categories. Since an infinite number of dimensions are available

in the Hilbert Space, additional dimensions can be added to the space, if the

ontology is modified, and new conceptual categories are provided.

Additionally, our Hilbert Space contains a weight dimension and a level dimension,

as shown in Figure 3-1. Both of these dimensions are orthogonal to the remaining

dimensions in the complex space. Weight dimension is used to store the weight

information about the concepts added to the space and level dimension is used to

store the hierarchical levels of the concepts. The algorithms to obtain the level and

weight of ontology concepts are discussed later in sections 5.4.3 and 5.7.1.1

respectively.

 32

Figure 3-1 Three Dimensional View of a Concept

Due to their infinite nature, the data points in the Hilbert Space are also represented

with infinite number of coordinates. In our system, a data point in a given

conceptual dimension carries positive values for only two other dimensions, other

than its own dimension. These dimensions are the weight and the level dimensions.

For all the remaining dimensions, origin coordinates are provided.

Another property of Hilbert Spaces is that, they do not need to be square summable.

This means that only countably finite axes that are orthogonal are enough to form an

orthonormal basis for the entire space [19]. Unlike a Cartesian Space, in which all

the dimensions are orthogonal to each other; Hilbert Spaces can use coordinates that

intersect with different angles. A sample space with non-orthogonal intersecting

angles is shown in Figure 3-2.

 33

Figure 3-2 Three Dimensional Excerpt from the Skew Coordinate System

This property allows us to use the Skew coordinate system instead of Cartesian

coordinate system, which includes axes intersecting with different angles. The Skew

coordinate system is especially useful when working with problems that fit well to a

skewed system.

Categorical representation of web services concepts is such a problem, since our

system depends on not only the similarity of concepts in the same dimension, but

also the similarity of concepts in different dimensions, and different dimension pairs

have different similarities.

Therefore in our space, similar categories have less than 90° intersection angles, and

dissimilar categories have more than 90° intersection angles. As the similarity

increases, the intersection angle decreases. Hence concepts in similar dimensions are

mathematically closer to each other, and concepts in dissimilar dimensions are

farther from each other. Figure 3-3 and Figure 3-4 displays the alignment of two

similar and dissimilar categories.

 34

Figure 3-3 Two Dissimilar Conceptual Categories

Figure 3-4 Two Similar Conceptual Categories

The computations are carried out by the algorithm described in section 5.7.3. Since

each dimension interacts with any other dimension in the space, the similarities

between each dimension are computed. Even though the conceptual dimensions are

oblique to each other, all the conceptual dimensions are orthogonal to weight and

 35

level dimensions of the space and the weight and level dimensions are orthogonal to

each other.

3.1 Hilbert Space Representation of a Sample Web Service

In this section, we present an example web service, and the Hilbert Space generated

for it by our system. Although the presented service is simple, the generated

category planes and data points reflect the powers and weaknesses of our approach

thorougly.

The example web service is named “Server Time Synchronization Service”, and its

main function is remotely synchronizing the time of a server in a specified network

with respect to a given time zone. The date and time used in the synchronization

process, and a status message showing whether the operation has succeeded is

returned to the web service caller. The profile definition contains the information

shown in Figure 3-5. The service name provided by the publisher to the system is

“ServerTimeSynchronization” and the main category selected for the web service is

“computing”.

 36

OWL-S Profile Description

<process:Input rdf:ID="ServerTimeSoap_GetNetwork_parameters_IN">

<process:parameterType rdf:datatype="&xsd;#anyURI">

 &wsones;#network

</process:parameterType>

</process:Input>

<process:Input rdf:ID="ServerTimeSoap_GetServer_parameters_IN">

<process:parameterType rdf:datatype="&xsd;#anyURI">

 &wsones;#server

</process:parameterType>

</process:Input>

<process:Input rdf:ID="ServerTimeSoap_GetDateTime_parameters_IN">

<process:parameterType rdf:datatype="&xsd;#anyURI">

 &wsones;#calendar

</process:parameterType>

</process:Input>

<process:Output rdf:ID="ServerTimeSoap_GetDate_Date_OUT">

<process:parameterType rdf:datatype="&xsd;#anyURI">

 &wsones;#date

</process:parameterType>

</process:Output>

<process:Output rdf:ID="ServerTimeHttpGet_GetDateTime_Time_OUT">

<process:parameterType rdf:datatype="&xsd;#anyURI">

 &wsones;#time

</process:parameterType>

</process:Output>

<process:Output rdf:ID="ServerTimeSoap_GetDateTime_Status_OUT">

<process:parameterType rdf:datatype="&xsd;#anyURI">

 &wsones;#status

</process:parameterType>

</process:Output>

Figure 3-5 Annotated Profile of “Server Time Synchronization Service”

 37

With the given information, our algorithm starts creating conceptual dimensions in

the Hilbert Space of the web service. The first created dimension is the “computing”

dimension, since it is the main category of the web service. The ontological types

and RDF identifiers of inputs and outputs are examined, and relevant data points are

plotted in the “computing” dimension.

Hilbert Spaces can be decomposed into mutually orthogonal subspaces [19]. A

generalization of an orthogonal decomposition of H can be made as:

H = W1 W2 … Wn

into mutually orthogonal subspaces W1, W2, … , Wn such that each coordinate c ∈ H

has a unique representation as c = c1 + c2 + … + cn, with ci ∈ Wi; 1 ≤ i ≤ n.

Using the orthogonal decomposition approach, a 2-dimensional subspace containing

“computing” and weight dimensions extracted from the web service’s Hilbert Space

can be generated, as shown in Figure 3-6.

 38

Figure 3-6 Computing and Weight Dimensions

As seen in Figure 3-6, there are only two data points in the “computing” dimension.

This is an unexpected situation, since the main category of the service is

“computing”. The problem is, the SUMO ontology does not contain any parent or

child concepts in the “computing” category for the concepts “network” and “server”.

For instance, the direct parent of the concept “server” is the concept “computer”,

and it belongs to the “engineering” category, hence it is placed under that

dimension, as shown in Figure 3-7.

 39

Figure 3-7 Engineering and Weight Dimensions

Apart from the inputs with conceptual “server” and “network”, there is other useful

information in the description which our system can use to generate dimensions. For

instance the input “calendar”, or outputs “status”, “date” and “time”. These concepts

belong to the “generic” category of the SUMO ontology. The generic dimension is

generated as shown in Figure 3-8.

 40

Figure 3-8 Generic and Weight Dimensions

In the “generic” dimension, the situation is a bit different from the aforementioned

two dimensions. There are more data points, and the weight values for the data

points are varying greatly. Since SUMO has a wide range of ontological concepts

available in the “generic” category, our system can find more parent/child concepts,

and place them in the dimension. This richness in ontological categories allows web

service discovery clients to match the web services easily.

It can be seen that the algorithm placed the “date” concept in the generic ontology,

and derived the “day” concept via a parent-child relationship. Some other concepts

are derived via the processing of RDF identifiers, for instance the processing of RDF

identifier “ServerTimeHttpGet_GetDateTime_Time_OUT” for concept “time”

 41

resulted with a keyword “http” whose definition led to addition of concepts such as

“hypertext” and “markup” to the “generic” dimension of the service.

Since the SUMO ontology is not computing oriented, there are very few concepts in

the computing category. For this web service, this situation resulted in an

unbalanced categorical Hilbert Space. While there are only 2 concepts in the

“computing” dimension, there are around 40 concepts in the “generic” dimension.

Even though the significance of the “computing” dimension is more than the

“generic” dimension, queries targeting the “generic” dimension has a higher chance

of matching the service than the queries targeting the “computing” dimension, since

they are represented with more concepts; making more intersections possible.

The algorithms for conceptual plane generation, dimension significance computation

and dimension similarity computation are discussed in detail in section 5.7

 42

CHAPTER 4

4 SYSTEM ARCHITECTURE

This chapter outlines the architecture of the proposed web service discovery system

along with the infrastructure used by the system. The system is composed of three

main components: Service Discovery Client, Service Publisher Peer and Service

Repository Cloud.

The implementation of our system mostly contains code developed with Java

programming language. The main component of our system, the Service Repository

Cloud is a J2EE application that runs on Google’s cloud computing infrastructure

App Engine. The created Service Repository Cloud can be deployed on the open

source cloud computing stack AppScale, which can in turn be setup on popular open

source cloud computing infrastructures such as Xen, Eucalyptus and KVM.

The modules of the system are explained in detail in this chapter. An outline of the

described system is presented in Figure 4-1.

 43

Figure 4-1 A General Outline of the Proposed System

4.1 Service Discovery Client

The Service Discovery Client is the part of the system which is built for the use of

the human user agents. The component is implemented as a standalone application

and provides an easy to use user-interface.

With the Service Discovery Client, the user can specify certain queries to find a

certain web service, or a web service providing certain functionality. The queries are

composed of one or more criteria combined with a filter operator.

The criteria can be about the structure of the web service, or they can be about the

semantic properties of the web service. While the user agent can specify Input,

Output, Precondition and Effect criteria in the query from a structural point of view,

 44

Service Name, Service Category and Service Description criteria are provided to

enhance the semantic nature of the query.

The filter operator can be either OR or AND. In the first case, any of the matching

criteria will promote in a positive manner to the Service Match Score of a service,

while the non-matching criteria will not affect the score in any way. In the latter

case, the matching criteria will still promote the Service Match Score; however the

non-matching criteria will affect the score negatively. The details of the Service

Matchmaking are described in detail in chapter 6.

When the user agent completes query generation, the query is submitted to the

Service Repository Cloud. The repository is searched for matching services, and a

set of Service Match Records are returned to the user. Service Match Records

contain Service Name, Publisher Name and a URL where more details about the

service can be obtained. The Service Match Records also provide both ranking

information (i.e. Service Match Score) and availability information (i.e. Last Online

Date).

4.2 Service Publisher Peer

The Service Publisher Peer is the part of the system built for the use of the web

service publishers. The component is implemented as a standalone application,

which is composed of three main parts: the Service Publishing Wizard, Service

Annotation Editor and Service Repository Peer.

With the Service Publisher Peer, a web service publisher can publish services of his

preference to the Service Repository Cloud, and update the online/offline status of

the published services periodically. With the embedded Service Repository Peer

component, a service publisher can opt to function as a relay station for the Service

Repository Cloud.

 45

4.2.1 Service Publishing Wizard

In the real world, web service publishers tend to use WSDL files to describe the web

services they provide. These WSDL files are generally accessible from the web, and

most of the time they reside either on the same server with the provided web service

or in the same network with the host server of the provided web service.

The Service Publishing Wizard has three steps of execution. In the first step the

service publisher is asked to provide a directory which contains WSDL files and a

Publisher Key for the Service Repository Cloud. The Publisher Key can be obtained

from the Service Repository Cloud web application, by a simple sign-up operation.

The provided directory is scanned recursively for WSDL files, and a list of available

service descriptors are presented to the user to select from. The user can select the

list of services to be incorporated to the Service Repository Cloud.

Once the services are selected, they are converted and annotated using the Service

Annotation Editor and finally they are uploaded to the Service Repository Cloud.

However, the Service Publishing Wizard continues to operate, monitoring for

changes in the service descriptors. If any of the service descriptors are changed, the

new descriptors are converted and uploaded to the Service Repository Cloud as a

new revision. The publisher is also notified of the upload to further annotate the new

changes to the service, if any.

While checking for changes to the service descriptors, the Service Publishing

Wizard also notifies the Service Repository Cloud of the online/offline status of the

publisher; assuming the service is either on the same server or at least in the same

network with itself.

4.2.2 Service Annotation Editor

The Service Annotation Editor is a simple RDF editor, which automatically converts

WSDL files to OWL-S files and allows the service publisher to annotate the OWL-S

 46

Service Profile of the service to be published with the concepts from the Service

Repository Cloud’s unified ontology SUMO.

During the annotation process the editor scans the Service Profile file generated for

the service to find possible annotation end-points, and provides pointers to the

service publisher to edit the necessary OWL-S description members.

When the publisher decides to annotate an OWL-S description member, this can

only be done using a Concept Auto Complete Widget which connects to the Service

Repository Cloud to find concepts similar to what is being typed by the publisher to

the widget. The publisher can then select a concept from the provided list of

concepts, and the annotation will be inserted to the service description.

When the annotation process is finished, the publisher is presented with a Main

Category selection for the service. The selected Main Category will be further used

for service categorization and query matching (for more details see section 6.3).

4.2.3 Service Repository Peer

The proposed architecture provides a peer-to-peer query architecture, in which the

peers can also act like servers, by storing and serving service information. This

approach is embraced to: (i) allow the publishers to provide web service discovery

services to their own set of clients in a private network and (ii) form categorically

focused sub-service repositories which can be used to better divide the search space.

The Service Repository Peer feature can be activated by the service publisher once

the web service selection and publishing stages are completed. The Service

Repository Peer will start and notify the Service Repository Cloud of its existence.

At that point, the Service Repository Peer will be used in two ways: (i) explicit

referrals to the Service Repository Peer as a private Service Repository Cloud by the

web service publisher, (ii) referrals from the Service Repository Cloud based on the

categorical alignment of the publisher and the queries received from other clients.

 47

In the first case, the Service Repository Peer acts like the Service Repository Cloud

to the contacting web service publisher, by storing web service information and

maintaining the state information. In the second case, Service Repository Peer

performs a search for the received query on its own Data Store and returns the

results to the connecting web service publisher, which has been forwarded to by the

Service Repository Cloud in the first place.

The implementation of the Service Repository Cloud takes strong precautions for

availability and single point of failure issues, which are two of the main problems

peer-to-peer systems try to overcome. These precautions are discussed later in

section 4.4.3.

4.3 Service Repository Cloud

The Service Repository Cloud is the main component of the proposed system, and

consists of a set of modules responsible for service publishing, discovery and

presentation. The component allows the service publishers to sign up for the system

and upload service descriptions, and update their status.

The Service Repository Cloud runs on a cloud computing architecture, and is hosted

at Google App Engine. However, the Service Repository Cloud can be run on any

cloud computing platform that is capable of running App Scale, which allows the

Service Repository Managers to serve their own Service Repository Clouds in a

cloud computing environment of their preference, instead of using the already

provided architecture.

4.3.1 Service Repository Publisher

When a web service publisher publishes a web service, the OWL-S service

descriptor files (i.e. Service Profile, Service Grounding, Service Process Model and

Service Concept) and additional semantic information (i.e. the name of the service,

the main category of the service) are transferred to the Service Repository Cloud.

 48

In the Service Repository Cloud the given information is processed and stored in the

Data Store. The stored information includes the raw description files uploaded by

the publisher and the semantic information extracted by the Service Repository

Publisher, which will later be used by the Service Discovery Manager when Service

Discovery Clients submit queries. The details of the semantic information extracted

by the Service Repository Publisher are discussed in section 5.6.

Another function of the Service Repository Publisher is to update the service

descriptions when they are uploaded by the Service Publisher Peers, and keep track

of separate revisions of the same web service.

4.3.2 Service Discovery Manager

The Service Discovery Manager is one of the most important modules in the

proposed web service discovery architecture. It is responsible for receiving a query

submitted by a Service Discovery Client, and respond with the most suitable set of

services.

The Service Discovery Manager processes the received query, and searches the web

service space in the Data Store for matching services, ranks them for similarity, and

sends the responses to the Service Discovery Client. While searching for suitable

services, the discovery manager first creates suitable category planes for the

incoming query, and then matches the category planes with the category planes of

the published web services.

The query can also be forwarded to a Service Repository Peer, if any available,

when the Main Category for the query matches the Main Category of the Service

Repository Peer. The forwarding must be followed by the Service Discovery Client

and the query should be submitted to the given Service Repository Peer to obtain

results from the given peer. This is the preferred way of Peer-to-Peer

communication in the system, since the Service Discovery Client can be an agent

with pre-defined time bounds for the query or Service Match Score criteria. The

details of the implementation are discussed in section 6.3.

 49

4.3.3 Service and Publisher Presentation Layer

The Service and Publisher Presentation Layer is the module that presents the

publishers signed up to the system, and services they have published to the user

agents over the web.

The other functionalities of the presentation layer include: (i) allowing the

publishers to sign up to the system, and receive publisher keys, which are necessary

to publish services using the Service Publishing Wizard, (ii) allowing the service

publishers, clients and developers to download necessary software to use the project,

(iii) display web services ratings and download counts, (iv) display categorical

planes of the web services graphically.

The presentation layer also allows the Service Discovery Peers, Service Discovery

and Publishing API users and user agents to download the OWL-S and WSDL

service descriptors from the Data Store, to enable communication with the

advertised services.

Each Service Repository Cloud and Service Repository Peer comes with a Service

and Publisher Presentation Layer of its own. The layer provides the same services to

each repository owner. In addition to a traditional peer to peer system which enables

query routing and data storing decentralization, this system enables account

information and interface decentralization.

4.4 Cloud Computing and Peer to Peer Infrastructure

In the near future most of the service discovery requests received by a service

repository will be automated requests originating from software agents, to perform

real-time, automated service compositions and invocations [29], [52]. Therefore the

most important characteristics a service repository should carry are scalability and

availability.

 50

To achieve this goal, our system is built on a cloud computing architecture.

Although the architecture is already available on Google’s App Engine

infrastructure, it can be setup on a system of provider’s preference too. However,

there are certain limitations of the described infrastructure that must be met in the

application, and this section discusses these issues.

4.4.1 Setting Up a Cloud Computing Infrastructure

Our system uses Google App Engine as the cloud computing infrastructure, and

deployments are made to a project hosted at Google App Spot [53]. However, our

system can also be deployed to an App Scale installation, which can run on the

hardware of the system provider’s infrastructure.

To enable this, the system provider should first setup a Cloud Computing Stack to

his hardware. App Scale supports Eucalyptus, Xen and KVM [54] stacks, of which

all three are open source platforms. For our tests apart from Google App Engine, we

chose the Xen Hypervisor Cloud Platform, which is an easy to use alternative with

its Live CD and relatively large user base.

Upon a Xen Hypervisor platform the App Scale software should be setup. App Scale

group provides images for the Xen and Eucalyptus infrastructure, so it is relatively

easy to setup App Scale on Xen.

Once an App Scale installation is present, the system provider can select an App

Scale supported database (i.e. MySQL Cluster [55]), and App Scale will

transparently forward Data Store requests to the database setup.

4.4.2 Data Store Restrictions

Google App Engine is very restrictive when it comes to using the data store. There

are a number of restrictions regarding the query response times, the maximum

number of indexes a data store entity can have, the query strings to be executed on

the data store and so on.

 51

In our case, all SUMO concepts had to be represented in the Data Store, to enable

fast response times to service publishers and service discovery agents at the same

time. The SUMO team provides OWL-S formatted ontologies for both its unified

ontology and the WordNet reference ontology. The unified ontology is as large as 15

MB, and WordNet reference ontology is as large as 150 MB in file size. These files

can neither be uploaded to Google App Engine which has a 1 MB file size limit nor

deployed to the App Store which has a 5 MB file limit [31].

Even if the files could have been uploaded, Google App Engine does not allow

requests exceeding a 30 second query response time limit, a time quite less than

required to parse, process and persist the concepts.

Therefore in our local system we have parsed and processed the concepts in the

SUMO ontologies and uploaded the results to our local data store. Later, using

Google’s experimental Remote API we have exported the relational data in our data

store to CSV files for bulk upload to the Google Data Store. As a last step, using the

Google App Engine Bulk Uploader [56] tool, we have uploaded our data back to

Google App Engine, entity by entity.

Google App Engine infrastructure enforces a 30 second per request response time

cap. The restriction is there to provide a convenient level of service to all App

Engine users; however it is easily met when an appropriate indexing scheme is not

enforced on the data store.

There is also a 5.000 property index restriction on the number of indexes that an

Entity instance can have, which is quickly met when a full-text index is built on

description fields of concepts and OWL-S descriptor files of uploaded web services.

We have encountered lengthy response times in two phases: (i) service publication,

and (ii) service discovery. In the first phase, most of the time is spent during the

population of ancestry relationships of concepts found in the published services. To

overcome this problem, we have setup the popular open source caching product

Ehcache [57], to cache the widely used SUMO concepts in memory. Also we have

 52

setup indexes on OWL-S Class and OWL-S Thing entities for parent and child

queries.

In the second phase, most of the processing time was spent during service category

plane traversal. We are using a technique to reduce the service space categorically,

in order to start the discovery process with a far more restricted set of service

category planes. The details of this technique are described in section 6.3. In

addition, we have used indexable concept keys in our category planes as data points,

rather than conceptual word references, to perform faster matching during Ranking

Service Matches.

However, the problems with service discovery did not quite end with the processing

time optimizations. The Full Text (Service Descriptor) search feature in the Service

Discovery Client relies on indexing of OWL-S and WSDL service descriptors, and

creates a very loaded index on the web service entities stored in the data store. As of

June 2008, Google App Engine put a 5.000 indexable words restriction on each

entity instance [58]. This normally does not pose a problem for a majority of the

applications, but in our application all five OWL-S descriptor files and the WSDL

descriptor files are stored in the same entity, allowing the 5.000 indexable properties

barrier to be easily broken by both standalone and cross property indexes.

To overcome this issue, we have used the Simple Full Text Search for App Engine

project [59] which allows multiple search indexes to be built on different entities for

the source entity, and joining these indexes at full text search time a technique

named “Relation Index”.

4.4.3 Query Processing In a Peer to Peer Network

Peer to peer networks are widely used for sharing information. Peer to peer networks

usually carry binary files including audio, video and software [24] as content. The

main issue with these networks is, the peers in the network are not the original

creators, or owners of the content, and the content is usually standardized. Also, a

client in a peer to peer file sharing network knows what he is searching for (i.e. a

 53

video clip from a football match, a song from an artist or a software developed by a

certain company) when he sends a query to the network.

However in our system, there are certain differences from the traditional peer to peer

networks. First of all, a majority of the peers in the network do not actually provide

content; rather they consume content; because they are clients, not publishers.

Secondly, the publisher peers in the system are either the creators, or the providers

of the content they provide. And lastly, the client peers in the system probably do

not know what they are searching for in the sense that peers in a file sharing peer to

peer network do.

Therefore, the architecture of our peer to peer system should be different from a

traditional peer to peer system. First of all, our system accepts that the service

discovery clients need not act as Service Repository Peers. This is an accepted

practice for two reasons: (i) service discovery clients tend to use the system for

small amounts of time, to retrieve a service, and then exit the network; therefore

assigning them a Service Repository Peer role would result in lots of offline Service

Repository Peers in the network and (ii) answering service discovery requests is a

costly process, and it is a task that should be undertaken by the publishers of the

services.

In our system, only Service Publisher Peers can take the Service Repository Peer

role, which supports query processing in a peer to peer network. However, we do

not expect an excessive number of Service Repository Peers to exist in our system,

and thus allow the Service Repository Peers to conform to the same standards as our

root system does. In this way, a Service Discovery Client can knowingly or

unknowingly connect to a Service Repository Peer and make use of the same

functionality without noticing any difference. The same case is true for API

developers, who can use the web services provided by the root system through the

Service Repository Peers. The three possible operation scenarios are outlined in

Figure 4-2, Figure 4-3 and Figure 4-4.

 54

Figure 4-2 Direct Connection to Service Repository Cloud

Figure 4-3 Direct Connection to Service Publisher Peer

 55

Figure 4-4 Central Repository Cloud Forwards to Service Repository Peer

The reason for such a strong super peer settlement is that, most of the service

publishers publish a handful of web services and would not be willing to participate

in the computation of a service discovery process taking into account both CPU and

storage requirements. However, large sized service providers, or enterprises with

numerous web services for their intranet would be willing to configure Service

Repository Peers in their own network to make use of our system’s services

internally or externally. Therefore we expect participating peers to be servers with

properly allocated resources of large sized organizations.

4.5 Service Discovery and Publishing API

Service oriented computing defines an architectural style whose goal is to achieve

loose coupling among interacting software entities [60]. In this respect all of the

 56

services described in sections 4.1, 4.2 and 4.3, are built as web services themselves.

The service oriented approach of the architecture allows the system to be used by

not only user agents with access to software developed throughout this thesis, but

also solution developers who intend to use the system in their own software stack as

a web service discovery solution.

The API provides services to lookup concepts over the unified ontology and to

annotate the service descriptions prior to upload. Once the services are annotated,

the API users can upload their services to the Service Repository Cloud, or update

their services at any time.

API users can also search for services using the interfaces of the Service Discovery

Manager. The Service Discovery Manager replies with proper XML formatted

messages, which provide machine readable information (i.e. Service Match Score,

Last Online Date, Service Rating) for the API user to programmatically decide

which service to be selected. The information in the response also contains pointers

to the service descriptor files in both WSDL and OWL-S formats. The API user can

follow these pointers and obtain the service descriptors to either create a composite

service or invoke the individual service automatically.

 57

CHAPTER 5

5 SEMI-AUTOMATED SERVICE PUBLISHING

There are three types of semantic service publishing (i) manual service publishing,

(ii) semi-automated service publishing and (iii) fully automated service publishing

[13]. The service publishing procedure of the proposed system is a semi-automated

system.

Manual service publishing methodologies allow the publisher to visit a web site, or

use a software agent to manually upload previously generated semantic service

descriptions [13,61]. This process is rather cumbersome for the present service

publishers, because the descriptions of the services they provide are mostly in the

WSDL format, which is currently the most prevalent service description language.

The WSDL file at hand should be manually or with the assistance of an editor

program converted to an OWL-S file, and should be annotated with ontological

concepts from an available ontology. Later on the created semantic service

descriptions are uploaded to a registry, with the explicit user effort. The process will

recur, with the user going through the described steps for each change to the original

service description.

 58

Semi-automated service publishing techniques allow a smoother transition for the

current service publishers [45]. In this technique certain tasks like WSDL to OWL-S

conversion, service modification monitoring and service revision publishing are

done by the software agent. However, the user agent still has to annotate the service

descriptions created by the software agent, at required times. The advantage of this

technique over a fully manual solution is that it takes much less time since the

publisher does not have to handle the technical issues like service description

conversion or service definition and upload.

Fully automated service publishing techniques try to both convert and annotate the

service descriptions to achieve semantic service descriptors (i.e. annotated OWL-S

files) from non-semantic service descriptors (i.e. WSDL files) [12]. These

techniques mostly rely on text mining and natural language processing algorithms to

understand and describe the provided services from service descriptors.

The main advantage of this approach is that it takes the service description migration

cost from the shoulders of the publisher completely. The main disadvantage is,

however, that the automatically generated concepts do not perform very well at

discovery time. Thus the weight lifted from the service publisher’s shoulders does

not actually disappear; rather it lands on the client’s shoulders.

Putting the performance of the query matching algorithms in the center spot, the

system described in this thesis opts for the semi-automated service publishing

approach. The steps and details of the approach are described in detail in this

chapter.

5.1 Publisher Identification and Service Selection

The first step in automated service publishing is how to correctly identify the

publishers. This is an important issue, since publishers tend to develop and serve

similar web services, and similar services share similar ontological categories and

concepts. The semantic information extracted from a service published by a given

 59

publisher can be used in the semantic annotation of (or query matching for) another

service from the same publisher.

UDDI, for instance, supports a variety of authentication mechanisms [4] including

username/password pairs and trust relationships via operating system credentials.

However in most of the peer to peer networks, there is a rather simple identification

mechanism which relies on the reuse of a randomly or orderly generated series of

alphanumeric characters forming a hash key.

The disadvantage of the usage of hash keys is, when the users of the system setup

the application on different clients, they get a new hash key and lose the link to their

previous publications. Also, several hash key generation algorithms which rely on

computer characteristics or temporal data (i.e. current time, available disk space etc.)

naturally generate different hash keys when they are setup on the same client again

and again.

In the proposed system, a hybrid approach which enables the users to obtain a one

time generated hash key via a username and password pair is used. In this way, the

publisher client can be setup on numerous machines with the same hash key, while

the hash key is being managed via the Service Repository Cloud with the username

and password of the user.

In order to increase the credibility of the username and password validation, the

system does not introduce a new user account system; rather it relies on the popular

identity stack Google Accounts [62]. In this way, users can sign up to the system as

service publishers using their existing Google Accounts, and receive their publisher

keys which will allow them to publish services from multiple Service Publisher

Peers.

Once the publisher is identified by the Service Repository Cloud, the service

publisher is allowed to select services to publish. In this step, the service publisher is

asked to provide a file system or network directory containing the service

descriptors describing the services to be published. The given directory is

 60

recursively searched for supported service descriptors. At this time only WSDL files

are supported for service publishing.

The set of complying service descriptors are listed in a selection window, for the

publisher to choose from. The publisher can select the services to be published, or

unselect the services not to be published.

5.2 WSDL to OWL-S Conversion

In the present web service environment, services are prevalently described by

WSDL files. For this reason the system described in this thesis targets WSDL files

as service descriptor sources. The main problem regarding WSDL files as service

descriptors is their lack of semantic information, which is of utmost importance for

automated service discovery.

This problem can be overcome by using OWL-S files as service descriptors, which

enable the expression of semantic properties for the service. To use OWL-S files as

service descriptors, the WSDL files should first be converted to OWL-S syntax.

The WSDL2OWL-S [63] library created by the Atlas team at Carnegie Mellon

University is used for a preliminary WSDL to OWL-S conversion. The tool was

selected since it is the most stable of the libraries performing WSDL to OWL-S

conversion and it supports OWL-S 1.1 specification.

The main shortcoming of the WSDL2OWL-S library is that it cannot accurately

represent multiple functionalities wrapped in a single WSDL file. This is mainly

because WSDL does not provide process composition information for the provided

functionality. However, the tool creates the basic structure of the service described

with the WSDL file; therefore it is usable in our system.

The files created by the WSDL2OWL-S library include the OWL-S Concept,

Grounding, Process Model and Service Profile files. The service is described in a

 61

single OWL-S Service file with imports pointing to the aforementioned four

descriptors.

The generated four files go through a further processing step to help the state of the

art OWL-S parsers to parse the generated service descriptors. In this step the

descriptor URLs and ontological references are updated. The descriptor URLs are

mapped to the links of the form illustrated in Figure 5-1.

File Name File URL

Main Service

Descriptor File

http://servicerepositoryhost:port/services/fi

les/{publisherkey}-{servicename}Service.owl

OWL-S Service
Profile File

http://srhost:port/services/files/{publisherk

ey}-{servicename}ServiceProfile.owl

OWL-S Service
Grounding File

http://srhost:port/services/files/{publisherk

ey}-{servicename}Grounding.owl

OWL-S Service

Process Model File

http://srhost:port/services/files/{publisherk

ey}-{servicename}ProcessModel.owl

OWL-S Service

Concept File

http://srhost:port/services/files/{publisherk

ey}-{servicename}Concept.owl

Figure 5-1 Descriptor URL Mappings for OWL-S Descriptors

In Figure 5-1 the variable {servicename} denotes the name of the service specified

by the service publisher during service annotation. The variable {publisherkey} is

the hash key the publisher obtains from the Service Repository Cloud during signup,

which is used by the Service Publisher Peer at each service upload.

 62

Only a single ontological entity is added to the Service Profile and Process Model

files, since the system proposed in this thesis uses a unified ontology thus all

ontological concepts point to the same ontology.

<!ENTITY wsones "http://srhost:port/services/ontology/wsones.owl">

Figure 5-2 Service Repository Cloud Ontology Reference

5.3 Service Descriptor Annotation and Main Category Selection

Once the WSDL to OWL-S conversion is completed, the Service Profile file

generated by the system is presented to the user for annotation in an easy to use

editor that allows further OWL-S annotation. The user can select the nodes to

annotate and use the unified ontology to annotate the given nodes.

The OWL-S annotation editor parses the Service Profile file, and identifies the

annotatable nodes in the OWL-S document. The annotatable nodes currently include

the Input, Output, Precondition and Effect types. The number of annotatable nodes

can be increased in the future.

The default types of most of the annotatable nodes come from the XML Schema

[64] type “String”, and is usually denoted with “&xsd;#String” in the OWL-S

grammar. A sample translation of a simple type is shown in Figure 5-3.

 63

WSDL
Definition

<portType name=”XMethodsQuerySoapPortType”>

<operation name=”getServiceSummariesByPublisher”

parameterOrder=”publisherID”>

</operation>

</portType>

<message name=”getServiceSummariesByPublisher0SoapIn”>

<part name=”publisherID” type=”xsd:string”/>

</message>

OWL-S
Translation

<profile:hasInput>

<process:Input

rdf:ID=”XmethodsQuerySoapPortType_getServiceSummariesByPublishe
r_publisherID_IN”>

<process:parameterType rdf:datatype=”&xsd;#anyURI”>

&xsd;#string

</process:parameterType>

</process:Input>

</profile:hasInput>

Figure 5-3 OWL-S Translation of a Simple Type in WSDL

However there are certain exceptions to this, since the WSDL2OWL-S tool can also

parse the complex types defined locally in WSDL files; however these types mostly

do not carry any semantic information, and even in the cases that they do, an

ontological/semantic mapping is necessary to make use of these definitions. A

sample translation of a complex type can be found in Figure 5-4.

 64

WSDL
Definition

<complexType name="ServiceSummary">

<sequence>

<element name="name" nillable="true" type="xsd:string"/>

<element name="shortDescription" nillable="true" type="xsd:string"/>

<element name="wsdlURL" nillable="true" type="xsd:string"/>

<element name="publisherID" nillable="true" type="xsd:string"/>

</sequence>

</complexType>

<complexType name="ArrayOfServiceSummary">

<complexContent>

<restriction base="soapenc:Array">

<attribute ref="soapenc:arrayType"

wsdl:arrayType="tns:ServiceSummary[]"/>

</restriction>

</complexContent>

</complexType>

OWL-S
Translation

<profile:hasOutput>

<process:Output

rdf:ID="XMethodsQuerySoapPortType_getServiceSummariesByPublisher
_Result_OUT">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&concept;#ArrayOfServiceSummary

</process:parameterType>

</process:Output>

</profile:hasOutput>

Figure 5-4 OWL-S Translation of a Complex Type in WSDL

 65

Our system uses a unified ontology provided by the Suggested Upper Merged

Ontology (SUMO) team. The ontology contains several mid-level ontologies and

has relational links to widely used lexical database WordNet. The methodology used

for importing the ontology to our Data Store is discussed in section 5.4.

The Concept Auto Complete Widget allows the service publishers to find the

concepts they are searching to annotate the nodes. As they type, the widget sends

queries to the Service Repository Cloud containing the characters typed. The Service

Repository Cloud answers the query with a set of concepts containing the typed

words, or relating to the words containing the typed words.

The publisher can then select from the list of returned words, or continue typing to

refine the received results. Once the publisher is satisfied with the available concept,

he can simply select the concept and assign it to the active node as an annotation.

After annotating the appropriate nodes in the Service Profile, the publisher can

specify a main category for the service to be published. There is a predefined set of

main categories from which the publisher can select. The main categories are

derived from the mid-level ontologies contained in the SUMO and are shown in

Figure 5-5.

 66

Main Category Mid-level SUMO Ontology

Biology Viruses

Communications Communications

Computing Computing, Distributed Computing

Economy Economy

Engineering Engineering, Engineering Components

Finance Finance

Geography
Countries and Regions, Geography, World

Airports A-Z

Generic
Physical Elements, North American

Industrial Classification System

Government Government, Transnational Issues

Military Military, WMD

People People

Transportation Transportation

Figure 5-5 Main Categories in the Service Repository Cloud

The selection of a main category for the service is crucial for the automated

semantic service discovery since it helps divide the search space significantly. The

details of using the main category are discussed in section 5.7.

5.4 Representing of SUMO Concepts

The ontology provided by SUMO team contains links to a separate WordNet

ontology in OWL-S format, again created by the SUMO team. Our system uses both

of these ontologies for service publishing and annotation purposes. However,

directly using ontologies for user requests requires a tremendous amount of

processing power, due to the large sizes of RDF data present in these two ontologies.

 67

Therefore, our system imports the OWL-S formatted data to a relational model.

Also, the concepts and classes in the ontologies are enriched with semantic data

computed by our system to help optimize our service matching algorithms. This

section explains the details of the data model present in our system.

5.4.1 Concepts, Classes and WordNet Words

There are three main types of data in the two ontologies SUMO provides. First type

is a SUMO Concept, and it is an instance of a SUMO Class in the real world. A

SUMO Concept is represented as shown in Figure 5-6 in the SUMO ontology.

<owl:Thing rdf:ID=”MomaAirport”>

 <rdf:type rdf:resource=”#Airport”/>

<abbreviation rdf:datatype=”xsd:string”>MMW</abbreviation>

<located rdf:resource=”#Mozambique” />

</owl:Thing>

Figure 5-6 A Sample SUMO Concept

In the example, Moma Airport is an instance of SUMO Class “Airport”, and is

located at SUMO Class “Mozambique”. SUMO Concepts contain numerous

relations, “located” being one of them. These relations are carried to our data store

and stored with concepts, for future use in ancestry relationships, full text search,

and data point enhancement of service discovery queries. The list of relations that is

saved to our data store are shown in Figure 5-7.

 68

Relationship Example

type
<owl:Thing rdf:ID=”NetherlandsAntilles”>

<rdf:type rdf:resource=”#LandArea”/>

subsumingRelation
<owl:Thing rdf:ID=”Above”>

<subsumingRelation rdf:resource=”wn#WN30-301208044”/>

equivalenceRelation
<owl:Thing rdf:ID=”Mongolia”>

<equivalenceRelation rdf:resource=”wn#WN30-108968879”/>

instanceRelation
<owl:Thing rdf:ID=”NorthSea”>

<instanceRelation rdf:resource=”wn#WN30-109374036”/>

located
<owl:Thing rdf:ID=”MoodyAirForceBaseGAAirport”>

<located rdf:resource=”#UnitedStates” />

abbreviation
<owl:Thing rdf:ID=”MoolawatanaSouthAustraliaAirport”>

<abbreviation rdf:datatype=”xsd:string”>MSA</abbreviation>

Figure 5-7 SUMO Concept Structure

The SUMO Concept hierarchy also contains some domain specific relationships (i.e.

atomicNumber, boilingPoint, economyType etc.); however these relationships are

discarded during the imports in our system, to reach a more generic conceptual

approach.

Additionally, as it can be easily noticed from the above relationship examples, while

some of the relationships in the examples are pointing to SUMO Classes and SUMO

Concepts within the same ontology as textual ids, some relationships point to

SUMO’s WordNet ontology, with WordNet 3.0 identifiers (i.e. wn#WN30-

108968879).

The second type of data used by the SUMO ontology is SUMO Classes, which are

united at the top most SUMO Class “Entity”. The SUMO Classes are generated

from the aforementioned mid-level ontologies, and they mostly represent concepts,

 69

rather than instances of concepts. The parent child relations contained in the SUMO

Classes are extremely important for our system, since most of the conceptual data

point derivation is done using these relationships. The details of the SUMO Class

structure can be found in Figure 5-8.

Relationship Example

subClassOf

<owl:Class rdf:ID="NetworkAdapter">

<rdfs:subClassOf
rdf:resource="#ComputerComponent"/>

equivalanceRelation

<owl:Class rdf:ID="Neutron">

<equivalenceRelation
rdf:resource="wn#WN30-109369520"/>

subsumingRelation

<owl:Class rdf:ID="Monday">

<subsumingRelation
rdf:resource="wn#WN30-115182402"/>

instanceRelation

<owl:Class rdf:ID="AgeGroup">

<instanceRelation
rdf:resource="wn#WN30-108369615"/>

disjointWith

<owl:Class
rdf:ID="AnaerobicExerciseDevice">

<owl:disjointWith
rdf:resource="#AerobicExerciseDevice" />

Figure 5-8 SUMO Class Structure

Like the SUMO Concepts, SUMO Classes also contain a variety of application and

domain specific properties (i.e. externalImage, axiom, lethalDose etc.), which our

system discards during OWL-S to Data Store mapping. The remaining properties are

 70

mapped as one to many relationships, in which a class can have multiple outgoing or

incoming relationship links of each type.

The third type of data the SUMO ontology uses is WordNet Words, extracted from

version 3.0 of WordNet lexical database. The relations imported to our data store for

WordNet words can be found in Figure 5-9.

 71

Relationship Example

hypernym
<hypernym rdf:resource="#WN30-
107775905"/>

partHolonym
<part-holonym rdf:resource="#WN30-
102644665"/>

attribute
<attribute rdf:resource="#WN30-
102644665"/>

memberHolonym
<member-holonym rdf:resource="#WN30-
102593863"/>

pertainym
<pertainym rdf:resource="#WN30-
115139849"/>

hyponym
<hyponym rdf:resource="#WN30-
108273406"/>

memberMeronym
<member-meronym rdf:resource="#WN30-
109964202"/>

partMeronym
<part-meronym rdf:resource="#WN30-
102644665"/>

similarTo
<similar-to rdf:resource="#WN30-
301499999"/>

antonym
<antonym rdf:resource="#WN30-
301500766"/>

derivationallyRelated
<derivationally-related
rdf:resource="#WN30-100098385"/>

domainRegion
<domain-region rdf:resource="#WN30-
108740875"/>

domainUsage
<domain-usage rdf:resource="#WN30-
107075172"/>

domainTopic
<domain-topic rdf:resource="#WN30-
108199025"/>

synset
<synset rdf:resource="#WN30-
108199025"/>

Figure 5-9 WordNet Concept Structure

 72

Although the entire set of WordNet word relations are imported to our system, most

of the relations are not used in the service discovery procedure. As outlined in

5.7.1.1, only relationships resembling ancestry links are used in our system.

5.4.2 Concept Plane Categorization

All SUMO concepts, SUMO classes and WordNet words in our data store have a

concept plane. This concept plane is used to determine which conceptual plane will

be used when a data point is to be included in the conceptual space of a web service.

The use of concept planes are discussed in section 5.7.

The categorization of the semantic entities is made based on the root nodes in mid-

level ontologies provided, just after ontology import procedure is completed. A

recursive algorithm traverses all the nodes in the data store to label each node with a

category plane. The details of the algorithm are listed in Figure 5-10.

 73

1. For each mid-level ontology

a. For each root category node

1. Add the node to a category - expansion bag

i. While the category expansion bag is not empty

1. Pop a node from the expansion bag

a. If the node is uncategorized, update its category to parent category

b. If the node is categorized, duplicate the node, break the original node’s

link to the current parent, break the duplicate node’s link to any other

parent and categorize the duplicate node

2. Find all the nodes having the current node as the parent node

a. For SUMO Concepts and Classes use the subClassOf relation

b. For WordNet Words use the hypernym relation

3. Add the retrieved nodes to the category - expansion bag

Figure 5-10 Concept Plane Categorization Algorithm

With this categorization algorithm, each semantic node in the Service Repository

Cloud is assigned a root category, to be used in Service Category Plane Generation

and Query Parsing and Categorization phases.

5.4.3 Concept Node Leveling

In this phase, each semantic node in the Service Repository Cloud is assigned a

numeric level information, to be used in Service Match ranking. This process

particularly takes place after Concept Plane Categorization, because the Concept

Plane Categorization algorithm duplicates nodes that can be reached from multiple

 74

categories, and removes the relationship links connecting the nodes to different mid

level ontologies.

During this phase a recursive algorithm starts with an initial set of mid-level

ontology root nodes, and traverses downwards through the Service Repository

Ontology via parent-child relations to assign levels to each of the semantic nodes.

The algorithm is described in Figure 5-11.

1. For each mid-level ontology

a. For each root category node

1. Add the node to a category - expansion bag, set current level to 1

i. While the category expansion bag is not empty

1. For each node in the expansion bag

a. Pop a node from the expansion bag, level the node with the current level

b. Find the children of the node, add them to a reserve expansion bag

2. Contents of the reserve expansion bag are moved to the expansion bag,
current level is increased by 1

Figure 5-11 Concept Node Leveling Algorithm

5.5 Service Description Upload

There are a number of entities to be uploaded regarding a service when the publisher

is finished with selecting, converting and annotating a web services, including the

WSDL descriptor file, OWL-S descriptor files, service name, service main category

and the publisher hash key.

 75

In this scheme, the publisher hash key identifies the owner of the web service, the

OWL-S descriptor files and the service main category enable semantic discovery

capabilities, and the WSDL descriptor files are required for service clients explicitly

requesting WSDL technology rather than OWL-S for connection initiation.

The upload is made to the Service Repository Cloud previously registered to, and it

is repeated automatically when the service’s WSDL descriptor file is modified. Re-

annotation is optional to the service publisher when revisions of the service are

created. This is solely because a majority of the modifications to web service

descriptions are regarding grounding information, rather than conceptual description

of the service.

5.6 Service Description Extraction

When the service description is uploaded to the Service Repository Cloud, the

system processes the service description for useful information extraction. The

process information, grounding information or concept information local to the

service are not extracted and stored separately. Rather, these are stored in the Data

Store as OWL-S files, and they are provided to service clients upon request.

The profile information including Input, Output, Precondition and Effect (IOPE)

variables are extracted and stored separately. Additionally, the service name and

service description are extracted and stored in the Data Store.

OWL-S Service Profile documents contain Input, Output, Precondition and Effect

information for the processes described in the service documents. The nodes

describing IOPE information are defined as triples [10], including the type of the

node (i.e. Input, Output, Precondition or Effect), name of the node (i.e. name of the

input) and the type of the input (i.e. a publisher selected SUMO concept). The

extracted information from an OWL-S file is illustrated in Figure 5-12.

 76

OWL-S Representation Extracted Information

<process:Input rdf:ID="carPlateNumber">

<process:parameterType
rdf:datatype="&xsd;#anyURI">

&wsones;#platenumber

</process:parameterType>

</process:Input>

IOPE Type: Input

IOPE ID: carPlateNumber

Input Type: platenumber

<process:Output rdf:ID="fineAmount">

<process:parameterType
rdf:datatype="&xsd;#anyURI">

&concept;#price

</process:parameterType>

</process:Output>

IOPE Type: Output

IOPE ID: fineAmount

Output Type: #price

<process:hasPrecondition
rdf:resource="#carPlateNumber ">

<expr:SWRL-Condition
rdf:ID="carPlateNumber">

<swrl:propertyPredicate
rdf:resource="&concept;#
ISOPlateNumberStandard"/>

..

</process:hasPrecondition>

IOPE Type: Precondition

IOPE ID: carPlateNumber

Precondition Type:
#ISOPlateNumberStandard

<process:hasEffect>

<expression:SWRL-Condition
rdf:ID="carFinePayment">

<expression:expressionBody
rdf:parseType="Literal">

<swrl:classPredicate
rdf:resource="&wsones;#payment" />

…

</expression:expressionBody>

</expression:SWRL-Condition>

</process:hasEffect>

IOPE Type: Effect

IOPE ID: carFinePayment

Effect Type: #payment

Figure 5-12 IOPE Information Extracted from OWL-S Descriptors

 77

The uploaded service description includes a service main category selected by the

publisher from a list of predefined categories described in section 5.3. Along with

this information, the service name and description are stored with the service. The

service name and description are also extracted from the OWL-S file, and they are

illustrated in Figure 5-13.

OWL-S Representation Extracted Information

<profile:serviceName>

Car Fine Payment Service

</profile:serviceName>

Service Name: Car Fine Payment Service

<profile:textDescription>

Using this web service, you can view the

unpaid fines registered to the plate number

of your car, and make payments for the

relevant fines.

</profile:textDescription>

Service Description: Using this web service,

you can view the unpaid fines registered to

the plate number of your car, and make

payments for the relevant fines.

Figure 5-13 Service Name and Description Extracted from OWL-S Descriptors

5.7 Category Planes and Main Categories

Our system heavily depends on category planes generated in a Hilbert Space, which

contain conceptual data points extracted from the service descriptions. When a

service is uploaded, a Hilbert Space is generated for the service, and the space is

used for service and query match score computation during web service discovery.

 78

There are an undefined number of dimensions in the created complex space for each

uploaded service, limited by the categories defining the service. In the current

system there are a limited number of categories, however future work might change

the situation. Even though the number of categories is limited, the number of

dimensions defining a service is still unknown because planes are computed based

on the information extracted from the service descriptions.

The complex space defining the web service is also a dynamic space, which is open

to the addition of new dimensions and conceptual data points with the user feedback.

The computation of the Hilbert Space for the uploaded web services are discussed in

section 5.7.1. Section 5.7.2 discusses the importance of each dimension in the

Hilbert Space to the uploaded web service. Section 5.7.3 discusses how the distances

between the category planes in the space are measured and used. Section 5.7.4

discusses how the Hilbert Space of the web service evolves within time by the help

of user feedback.

5.7.1 Service Category Plane Generation

After the extraction of IOPE information and Service Name, Service Description

and Service Main Category data, the Service Repository Cloud starts data cleaning

and processing phase. There are two types of data that needs to be processed: (i)

conceptual data (i.e. type information of IOPE and Service Main Category) and (ii)

semantic, non-conceptual data (i.e. id information of IOPE, Service Name and

Service Description).

5.7.1.1 Data Points Regarding Conceptual Data

Since the IOPE type information is selected from the unified ontology of the Service

Repository Cloud during the service publishing phase, there is no need to search for

the meanings of the type values, rather they can be located in the unified ontology

directly as data points. Each ontology concept has a pre-assigned category plane;

therefore each addition of a data point from a different category brings a new

 79

category plane to the complex space being created. Intuitively, concepts within the

same category plane are added to the same concept plane.

However, usually the data points accumulated by the IOPE types are not enough to

accurately annotate a service, due to their low number. Most of the time a user

searches for a service using a child or parent of a concept, which would result in a

miss in this case. Therefore, the categorical spaces are enriched with concepts by

other concepts that in one way relate to the already present concepts.

There are a number of relations between the concepts, classes and words in the

SUMO library, and these relations and their mappings in our system are explained in

detail in section 5.4. The primary relations used in categorical space enrichment are

parent-child relationships. In the OWL-S grammar and WordNet hierarchy, these

relationships are denoted with several different keywords, outlined in Figure 5-14.

Relation Grammar Example Mapping

Type OWL-S <rdf:type rdf:resource=”#Airport”/> Instance

Sub Class Of OWL-S
<rdfs:subClassOf

rdf:resource=”#AirLaunchMissile”/>
Parent

Equivalance

Relation
OWL-S

<equivalenceRelation

rdf:resource=”wn#WN30-

102693413”/>

Instance

Hypernym WordNet
<hypernym rdf:resource=”#WN30-

105269901”/>
Parent

Hyponym WordNet
<hyponym rdf:resource=”#WN30-

101054545”/>
Child

Figure 5-14 SUMO and WordNet Ontology Mappings

 80

The relations shown in Figure 5-14 are followed to add more data points to the

categorical concept planes, to enable a wider matching capability. However, this

introduces a new problem, since in a scheme where every data point has the same

value, services in the lower and upper categories will have very similar match scores

for a certain query. This happens because our system not only follows upward links

(i.e. parent relationship) in the hierarchy, but also it follows the downward links (i.e.

child relationship) and parallel links (i.e. instance relationships).

Therefore the data points in the categorical planes need an importance value to

further distinguish the difference between services. Taking this issue into account,

the generated categorical planes are designed to have concept IDs in the X axis, and

weight values in the Y axis. A sample category plane is shown in Figure 5-15.

Figure 5-15 A Sample Category Plane Generated by Service Repository Cloud

 81

The computation of the weight values for data points is extremely important for the

accuracy of query responses. For our system, the most heavy data point is the

original data point received from the type identifier of an IOPE variable. The weight

decreases gradually as both the parent and child relationships are followed. This

means that, the direct parent of a concept has a higher weight than the parent of a

direct parent, and the same goes for the child relations too. Figure 5-16 outlines a

sample parent child relationship, for the concept “Canal System” In the given

example, the concept “Canal System” carries the maximum weight, and the concept

“Entity” carries the minimum weight as shown in Figure 5-17.

Figure 5-16 A Sample Parent Child Relationship

 82

weight(Canal System) > weight(Water Transportation System) > weight(Transit

System) > weight(Physical System) > weight(Physical) > weight(Entity)

Figure 5-17 Weights for a Sample Parent Child Relationship

The described weighing scheme performs well in conditions where the original

concepts do not have overlapping ancestors or successors. When ancestors or

successors overlap, a misrepresentation may occur for two reasons: (i) even though a

concept has a high weight since it is an original data point, the weight of it might be

lowered by a child when links are being followed and (ii) a concept lying on the

ancestry pathway of more than one original data point might have the same weight

as a concept lying on the ancestry pathway of a single data point.

For instance, a web service descriptor can include both “Water Transportation

System” and “Canal System” concepts as original data points. For the given service

the weight of “Water Transportation System” will be high since it is an original data

point. However, since “Water Transportation System” concept is also the parent of

an original data point (i.e. “Canal System), its weight might be decreased.

To prevent these problems, the plane generation algorithm is implemented in an

incremental fashion as shown in Figure 5-18.

 83

1. All the original data points from IOPE types are added to the categorical plane they

belong to

2. For each category plane

a. For every original data point (N) on the category plane

i. Parent concepts are followed until the root concept is reached

ii. Child concepts are followed until the child relationship has an empty value

iii. For every parent and child concept (M) obtained

1. If the data point at hand (M) is not present on the current category plane, it

is added to the category plane, and assigned a weight value based on its
distance (i.e. number of links followed upwards or downwards) to the

original data point

2. If the data point at hand (M) is already present on the current category plane

as a data point (K)

a. If the data point present on the plane (K) is an original data point, its
weight value is incremented based on the distance (i.e. number of links

followed upwards or downwards) between the data point at hand (M)
and the original data point (N), given its weight is not more than

Maximum Original Data Point Weight

b. If the data point present on the plane (K) is placed via an ancestry
relationship, its weight value is incremented based on the distance (i.e.

number of links followed upwards or downwards) between the data
point at hand (M) and the original data point (N), given its weight is not

more than Maximum Ancestry Data Point Weight

Figure 5-18 Service Repository Cloud Plane Generation Algorithm

As seen in Figure 5-18, data points are categorized, and certain weight limitations

are applied to the data points to create a balanced and feasible plane generation

algorithm. The definitions of the weight limitations are given in Figure 5-19. The

examplary values for the weight limitations are provided Appendix A.

 84

Original Data Point
A data point which represents a concept

in the service description.

Ancestry Data Point

A data point which is obtained via

following parent-child relationships of

an original data point.

Maximum Original Data Point Weight

The maximum weight that can be

assigned to a data point which originates

from the service’s description.

Maximum Ancestry Data Point Weight

The maximum weight that can be

assigned to a data point, which has been

obtained via following the parents or

children of an original data point.

Figure 5-19 Weight Limitation Descriptions

5.7.1.2 Data Points Regarding Non-Conceptual Data

Categorical planes are filled with numerous data points of varying weights when the

data points regarding the conceptual data are processed. However, there are still a

number of semantic information items waiting to be processed, which might be of

use in the service discovery process. These items include IOPE ID, Service Name

and Service Description.

Most of the automated service publishing tools make use of these information bits

and pieces to label and categorize the web services. Even though the information

contained in these non-conceptual items are not entirely capable of performing

 85

accurate service discovery, completed with conceptual data they can increase the

number of query hits for relevant services.

There are two important issues when adding non-conceptual data derived data points

to a category plane: (i) the weight values of the data points and (ii) the categories of

the data points. When there are a lot of words in the description, this might scatter

the categorical alignment of the complex space of the service. Similarly, treating

non-conceptual data derived data points as valuable as conceptual data points might

decrease our chances of distinguishing similar web services from each other. For

instance, most of the service descriptions include words with little semantic value

such as “this”, “a”, “the”, “with” etc.

Therefore data point selection and weight distribution should be done even more

carefully in the non-conceptual data set. For this purpose our system takes certain

precautions in its non-conceptual data point selection algorithm as described in

Figure 5-20.

 86

1. The three non-conceptual data sources (i.e. IOPE ID, Service Name and Service

Description) are cleaned and tokenized to words, and added to a word bag

2. The word bag and the Data Store, including WordNet links are cross checked to see if

there are any records for the given words

a. If there are records for the word, word is added to a whitelist

b. If there are no records for the word in the system, word is added to a blacklist

3. For each word in the white list

a. Parent concepts are followed until the root concept is reached

b. Child concepts are followed until the child relationship has an empty value

c. The followed concepts are added to a concept whitelist, and assigned weight

values based on their distance from the original non-conceptual data points

4. Concepts in the concept whitelist are sorted based on their weights in decreasing order

5. For each concept in the concept whitelist

a. If there is a categorical plane present for the concept

i. If the current concept does not exist on the plane, the concept is added to the

plane, given that the number of non-conceptual data points do not surpass the
number of conceptual data points on the plane 1

ii. If the current concept exists on the plane, the concepts weight value is

increased, given that its weight value does not surpass the weight cap it is
subject to 2

b. If there is no categorical plane present for the concept, the category plane is
generated and the concept is added to the plane, but the plane is marked as Non-

Conceptual Data Only. This data will later be used in the Dimension Significance

Computation.

Figure 5-20 Non-Conceptual Data Point Selection

1 If there are n conceptual data points on a given conceptual plane, there can be as many as n non-
conceptual data points on that plane.
2 The weight cap for an original conceptual data point is Maximum Original Data Point Weight,
where as the weight cap for a data point added via an ancestry relationship is Maximum Ancestry
Data Point Weight.

 87

5.7.2 Dimension Significance

There are multiple dimensions in the complex space computed for a web service,

and all of these dimensions contribute to the service discovery procedure when

queries are received by the Service Repository Cloud. However, not all dimensions

are as important as each other, since there are certain categories that are fundamental

to the service, and some categories that are simply there because of the non-

conceptual data extraction system.

Therefore, our system computes a dimension significance score for each dimension,

and includes this score in the discovery process to make sure that the data points

generated in the categories that are important to the web service has more impact in

a service discovery. More details are discussed in section 6.3. The dimension

significance score is computed with the algorithm outlined in Figure 5-21.

1. For each category plane

a. For each data point in the category plane,

i. Increase the dimension significance of the category plane with IOPE

Significance Amount3 if the data point equals to the type of an Input, Output,
Precondition or Effect

ii. Increase the dimension significance of the category plane with Service Name

Significance Amount if the data point concept is one of the words in the

Service Name

b. If the category plane’s category is equal to Service Main Category, increase the

dimension significance of the category plane with Service Main Category

Significance Amount

Figure 5-21 Dimension Significance Computation Algorithm

3 Examplary IOPE Significance Amount, Service Name Significance Amount and Service Main
Category Significance Amount values are provided in Appendix A

 88

5.7.3 Category Plane Similarity Measures

There are multiple dimensions and category planes in the complex category space

generated for the web services. However, an explicit relationship is not present

between these categories. The distances between planes cannot be intuitively

computed since the data points are composed of words and weights; and their

alignment on the X axis is solely used to represent them better visually.

This introduces a problem since inter-category plane relationships play an important

role on web service discovery at most times. When a complex space generated for

the query does not have any corresponding dimension in the service space, still a

selection has to be made among the services to decide which service is more similar

to the query. This requires a notion of inter-category relationships.

In most of the service discovery approaches, the distance between any two concepts

is measured via the tree distance in the ontology disregarding the categorical

location of the concept. The same can be done in our system, by either creating a

tree structure in the Data Store, or giving each concept node a level information

starting from the categorical plane’s root node.

However, this approach does not actually take similarity between categories into

account. In this case, a node X with level 2 in the Economy domain will have the

same similarity to a node Y with level 2 in the Finance domain and a node Z with

level 2 in the Health domain whereas X should clearly be closer to Y and farther to

Z.

In order to overcome these problems, during the initialization of the system

ontology, our system computes a categorical plane distance matrix where a

similarity score is computed between each category plane and stores it permanently.

The computed similarity score is a symmetric score, i.e. for planes X and Y, the

similarity function S is defined as: S(X, Y) = S(Y, X).

 89

The algorithm for the computation of the category plane similarity score is similar to

Google’s Page Rank [65] algorithm, in which links between two entities bond the

entities together. There are two types of links for a certain concept: (i) incoming

links and (ii) outgoing links. A link is an incoming link for a node if the source node

is different, and a link is an outgoing for a node if the source node is itself. If a

concept A contains a certain relationship to a concept B, the relationship is an

outgoing link for concept A and an incoming link for concept B. The details of the

Category Plane Similarity Measure algorithm are shown in Figure 5-22.

1. For each main category

a. All the concepts are retrieved, and all the non-empty relations (see Figure 5-14)

of the concepts are counted

b. For each outgoing relation in the main category, the outgoing similarity score

between the source main category and the target main category is incremented by

the fraction of 1/(total outgoing relations)

2. For each main category

a. All the concepts are retrieved, and all the concepts from and to the concepts in the
main category are counted

b. The incoming similarity score of the source main category (i.e. the outgoing

similarity score of the target main category) is divided by the total number of

incoming relations

3. For each category similarity

a. The incoming and outgoing similarity scores are added

Figure 5-22 Category Plane Similarity Measure Algorithm

With the described algorithm, a similarity score between category planes can be

computed, which allow us to calculate distances between inter-category plane data

 90

points. However, to accurately measure the data point difference, plane distance is

not adequate, and we still need to evaluate the distances between the individual

concepts in a tree-distance kind measure.

In our system, we do not form a tree to represent the unified ontology, but we

provide level information for all the concepts in our categories. In a traditional

service discovery environment this might not be suitable, because services are

annotated with words, and there are multiple categories a word can belong to, since

a word can have multiple senses. But in our architecture, the annotation is made

directly via concepts, and separate concepts are provided for each sense of the

concept, therefore the parent of a concept necessarily resides on the same categorical

plane with the concept itself. So as long as the concepts are not in the same plane,

their distance can be measured by adding their distance to their conceptual parents

(i.e. categorical root concept).

Therefore, with the ontology initialization process, our system recursively labels

each concept in our ontology with level information for future use in service

discovery. More details on how the level information and plane similarity is used in

service ranking can be found in section 6.3.

5.7.4 Space Modification with User Feedback

In the real world, content publishers rarely provide enough informative data to

locate a provided service or product semantically. Actually, the lack of semantic

data persuaded most of the search engine developers to look for alternative ways to

semanticize a given content.

There are several techniques commonly used to enrich the semanticity of a given

entity with user feedback, including but not limited to: (i) user comments, (ii)

content tagging and labeling, (iii) referrals and trackbacks and (iv) content viewing

and leaving counts and durations [66].

 91

In our system, the most important metric that can contribute to a service’s

semanticity is user feedback. However, we believe that service discovery clients will

not be willing to provide ratings, tagging and labeling services or commenting about

publishers since they will be trying to finish their discovery process as soon as

possible. The situation gets even worse when the service discovery client is not a

user, but a software agent using the Service Discovery and Publishing API.

Therefore, our system makes use of query and service download data following the

query to modify the service category space. When a query is followed with a

download this contributes to the category space as increased data point weights,

new data points or even new category planes.

The contribution is achieved by adding the data points in the categorical planes of

the complex space generated for the query by the Service Repository Cloud to the

original category space of the service that has been chosen by the service discovery

client based following the query.

In environments where the end users of a search system can contribute to the search

results, certain users try to manipulate the search results to obtain better rankings.

Commong manipulation techniques include duplicate voting for a result, multiple

selection of a given resource and linking to one’s own service. In our system, a

precaution is taken to lower the harm that can be done by these type of users.To

prevent misuse by the service discovery clients, the weights of the data points

received from the query are decreased by a User Feedback Weight factor. The total

weight that can be contributed by the user feedback is also limited to a User

Feedback Cap amount, to prevent services from moving away from the original

conceptual location the service publisher intended to place the service to. Examplary

values used in our system for the User Feedback Weight and User Feedback Cap are

provided in Appendix A.

 92

CHAPTER 6

6 AUTOMATED SEMANTIC SERVICE DISCOVERY

In our system both user agents and software agents can perform service discovery,

and service discovery can be made in a fully automated manner. The agent’s

responsibility is to generate a query in the format that Service Repository Cloud

understands, and post the generated query string using the query web service. An

agent can create the query using the Service Discovery Client or the Service

Discovery and Publishing API.

The Service Repository Cloud receives, parses and categorizes the query. Similar to

categorical space generation for the uploaded web services, a conceptual space is

generated for the received query too. Web services are searched in the web service

repository based on the query category and they are ranked based on the query’s and

services’ concept space. A Service Match Record is created for each of the evaluated

services, and a sorted list of Service Match Records is returned to the agent as a

machine interpretable web service response.

The agent can decide based on the Match Score, service details or service OWL-S

files referred in the Service Match Record of the returned services to download

service descriptor files in OWL-S or WSDL files, and follow the links in the Service

 93

Match Record accordingly. This chapter elaborates on the details of the steps of the

automated semantic service discovery of our system.

6.1 Query Generation

The query for a service discovery can be generated by: (i) a user-agent or (ii) a

software-agent. The data to be provided in a query by each agent is the same: a

number of query criterion and a filter operator. The generated query is transmitted to

the Service Repository Cloud using the query web service by both of the agents, and

is a text of the form shown in Figure 6-1.

Filter-Operator(criteria1=value1|criteria2=value2|…|criterian=valuen)

Figure 6-1 Service Discovery Query Representation

The steps for query generation are outlined below for each actor.

6.1.1 Query Generation by a User Agent

The Service Discovery Client provides a user interface to generate queries

consisting of multiple criteria. The client provides only equality operator for each

criterion, since our system works on a positively incremental match score

computation algorithm.

A criterion can be about the Input, Output, Precondition, Effect, Service Name or

Service Descriptor Text (Full Text) of the service. For the first four service

properties, the user interface mandates values generated using the Concept Auto

 94

Complete Widget, which allows the user to specify a concept in the unified ontology

of the Service Repository Cloud. For the latter two properties, the widget is still

provided, however the user can use words not present in the repository as well.

The criteria generated by the user should be joined with a filter operator (i.e. AND

or OR), and the user can select this filter operator from a combobox. The details of

the functionalities of these filter operators are discussed in detail in section 6.1.4.

After the specification of the query criteria, and selection of the filter operator, the

user-agent can submit the query to the Service Repository Cloud by clicking a

button on the user interface of Service Discovery Client application. An example

query generated by a user agent is shown in Figure 6-2.

AND(Input=Price|Input=Movie Name|Output=Ticket)

Figure 6-2 Example Query Generated by a User Agent

6.1.2 Query Generation by a Software Agent

Similar to a user agent, a software agent specifies a query with a set of criteria and a

single filter operator. The difference is that, the software agent is supposed to use the

Ontological Concept Service to find the concepts in the system ontology, during

query criterion generation. This is necessary because for IOPE related criterion, the

target values should be present in the Service Repository Cloud’s unified ontology.

Since the Service Discovery Client also uses the Ontological Concept Service to

retrieve a set of concepts based on the user input, the Service Discovery and

 95

Publishing API provides methods to get a set of concepts given a word. However,

the selection of the proper concept from the list of the received concepts -which

might or might not contain the input word-, is left to the software agent.

6.1.3 OWL-S Ontology Concepts

Ontological concepts are used in criteria as target values, since the services are

defined with conceptual spaces filled with ontological concepts and service

matching is made via ontological concepts. The agents can make a selection from a

set of ontological concepts returned by the Service Repository Cloud in response to

a partially or entirely typed word.

There are several algorithms for returning lexically similar words based on an input

word; however these algorithms [67], [68] rely heavily on SQL Like operator to find

substring matches, which Google App Engine’s Data Store does not support. The

reason for such a restriction is the high processing cost of such queries.

Therefore for the sake of practicality and speed, a Unicode character based index is

built on the words, and a set of closest words to the input word in terms of an index

value is returned to the agent. For query “Abc”, results “Aaa, Aab, Abd, Abf, Acd”

might be returned. The returned concepts are not necessarily semantically similar to

the query.

6.1.4 AND/OR Filter Operators

The criteria entered by the user, or generated by the software agent are joined with a

filter operator, which can be AND or OR. Default filter operator is OR, but the

selection is left to the agent. The filter operators AND and OR are used widely in

many search applications, and their functionality is trivial. In our case the common

functionality of the filter operator AND is quite eliminatory, and ends with very few,

if not zero, results for service discovery. The main reason behind this is that, service

clients and publishers rarely describe a concept with the same words, even when

they actually mean the same concept.

 96

To overcome this problem, we have introduced new meanings to these filter

operators, which help the AND condition match more specific services than the OR

condition and still have a large result set with services similar to the query, even if

the resulting services are not entirely matching with the query criteria.

For the OR condition, any of the matching criterion promotes in a positive manner

to the Service Match Score of a service, while the non-matching criteria will not

affect the score in any way. For the AND condition, the matching criteria will still

promote the Service Match Score; however the non-matching data points in the

criteria will affect the score negatively with respect to their weights.

6.2 Query Parsing and Categorization

The queries generated by the agents include multiple criteria and a filter operator.

The criteria in a query can be of different importance levels. Therefore query parsing

is an important step in service discovery. A main category is assigned to the query

by processing IOPE information in the query criteria. Query categorization is also an

important step, because it allows the conceptual space generated for the query to be

a more balanced space with respect to the service conceptual spaces.

The Service Repository Cloud first processes the given query to find the individual

criteria, and then sort the criteria in the order of importance. The importance of the

query criteria is ordered as shown in Figure 6-3.

Input = Output > Precondition = Effect > Service Name > Full Text (Service

Descriptor)

Figure 6-3 Query Criteria Importance Order

 97

The query filter operator is also extracted and stored by the Query Parsing and

Categorization Engine, before the service ranking takes place.

In order to create a main category for the query, the criteria containing the Input,

Output, Precondition and Effect variables as the query target are examined, and the

category of the conceptual data points rooting from these are counted. For every

original data point rooting from an IOPE criterion, the corresponding category gains

points. At the end, the category with the most criterion points is selected to be the

main category of the query, and the significance value of the category plane

corresponding to the main category is increased to Query Main Category

Significance Amount. Appendix A contains the exemplary value used for Query

Main Category Significance Amount in our algorithm.

For the significance calculation of the remaining category planes in the conceptual

space of the query, Dimension Significance Computation algorithm described in

section 5.7.2 is reused.

The details of the query categorization algorithm are as given in Figure 6-4.

1. For all the category planes

a. For all the data points in the category plane

i. If the point is an original data point, Main Category Candidate’s

significance value is increased by point’s weight

ii. If the point is a data point added to the plane via an ancestry

relationship, Main Category Candidate’s significance value is

increased by half of the point’s weight

2. Main Category Candidates are sorted and the highest ranking category is selected

Figure 6-4 Query Categorization Algorithm

 98

6.3 Categorical Service Matching

Categorical service matching depends on the previously created data, by the Service

Repository Cloud and it is a rather simple process. The first data necessary for the

matching algorithm is created when a web service is published to the Service

Repository Cloud: a permanent conceptual space is created for the given service,

and stored for future use in service discovery. The second data necessary for the

matching algorithm is created when the query is sent to the system: a temporary

conceptual space is created for the given query.

These conceptual spaces, dimension significance values and category plane

similarities are used by the service match ranking algorithm to obtain the most

similar services, and return a limited set of Service Match Records to the requesting

agent.

The service match ranking algorithm of our system has two modes of operation

based on the filter operator specified by the query (i.e. OR or AND). In the first

mode, data point misses between the query and service spaces are neutral to the

service match score; whereas in the second mode, data point misses are penalized.

The details of the service match ranking algorithm are outlined in Figure 6-5.

 99

1. Service Search Space is reduced to services whose conceptual spaces contain
categorical planes present in query’s conceptual space

a. If the number of retrieved services is higher than the Maximum Number of

Services to be Ranked (see Appendix A), further refine the services by sorting

them based on the maximum number of intersecting planes

2. For each service in the Service Search Space

a. For each category plane in the conceptual space of the service

i. For each category plane in the conceptual space of the query

1. If the category of the plane originating from the service is equal to the
category of the plane originating from the query

a. All intersecting data points between the planes are found

b. The weights of the intersecting data points in both of the planes are

multiplied

c. All the multiplied weights are summed

d. The obtained weight value is multiplied by the significance values of

the query and service category planes

2. If the category of the plane originating from the service is different from the

category of the plane originating from the query

a. For each data point in the query category plane

i. Distance between the query data point and the points in the service

category plane are calculated by adding predefined concept levels

ii. Weights of the data points are multiplied for each data point pair

Figure 6-5 Service Match Ranking Algorithm (Continued on Next Page)

 100

iii. The obtained results are divided by the conceptual distances between
data point pairs

iv. The resulting numbers are summed up for the source query data

point

v. The resulting sum is multiplied by the Category Plane Significance

Score of the source and target category planes

b. The importance values obtained for each source value are multiplied by

significance values of each category plane, and summed up

3. The obtained final score value in case 1 or case 2 is added to the Service
Match Score

3. The services are sorted based on their Service Match Scores, and a page of Service

Match Records are returned to the agent.

Figure 6-5 Service Match Ranking Algorithm

6.4 Query Forwarding and Query Responses

When certain conditions are satisfied, the Service Repository Cloud might forward

the service discovery request of an agent to a Service Repository Peer. A query

forward might mean one of the following three: (i) there is not a reasonable number

of available services in the cloud to make an accurate service ranking, (ii) there is an

adequate number of services in the cloud, however none of the services are suitable

enough for the received query or (iii) there is a Service Repository Peer specialized

to the main category of the query, which might contribute better results to the

service discovery.

In these cases, the Service Repository Cloud returns a forward message, bundled

with the Service Match Record list to the query owner agent. The agent is free to

follow or discard the forward. In our implementation, Service Discovery Client

 101

follows the forwards by default, and enhances the Service Match Record list with

responses from the Service Repository Peers.

The Service Repository Cloud forwards an agent to a Service Repository Peer if and

only if it has received an online status update from this peer at least in one of the

previous five status update rounds. This is done to ensure that when a query is

forwarded to a Service Repository Peer, the given peer is online and available.

However, a Service Publisher Peer can still go offline or discontinue its Service

Repository Peer during the query forward. Therefore, a synchronous request can

result in the Service Discovery Client, or the software using Service Publishing and

Discovery API to be locked until a connection timeout occurs. To prevent these

locks, the requests to the Service Repository Peers are made in an asynchronous

manner.

The service discovery seems to be finished in the Service Repository side when a

query is answered with a list of Service Match Records or a query forward message,

but the agent still has to pick a service and execute it. To enable an easy to use

service selection and execution experience, the Service Discovery Client formats the

list of Service Match Records displaying valuable information like match score,

online/offline information and service detail links in the user interface.

However, the Service Match Records contain more information, to enable easier

interaction with software-agents. The format of a Service Match Record is described

in Figure 6-6.

 102

Field Name Field Description

Service Name
A string, provided by the service publisher

titling the service

Service Main Category
One of the main categories supported by

Service Repository Cloud

Service Match Score The match score computed for the agent query

Last Online Date

A date time value displaying the last time when

the service publisher has provided a status

update

Service Key

The unique identifier of the service, especially

useful for API users who can programmatically

call service related functionality from Service
Repository Cloud

Publisher Name

Name of the publisher, helpful for both user

and software agents to distinguish a specific
service (i.e. an “official” service)

Service OWL-S Descriptor

Downloadable link to the OWL-S descriptor of

the service, which unites all four OWL-S
descriptors of the service

Service OWL-S Concept Descriptor
Downloadable link to the OWL-S Concept
descriptor of the service

Service OWL-S Grounding Descriptor
Downloadable link to the OWL-S Grounding

descriptor of the service

Service OWL-S Process Model

Descriptor

Downloadable link to the OWL-S Process

Model descriptor of the service

Service OWL-S Service Descriptor
Downloadable link to the OWL-S Service

descriptor of the service

Service WSDL Descriptor
Downloadable link to the WSDL descriptor of

the service

Figure 6-6 Contents of a Service Match Record

 103

Once a discovery agent decides to select a service, it can visit a Service Detail page,

which contains both machine processable information like links to the OWL-S and

WSDL descriptors of the service and human readable information like categorical

graphic, user comments and ratings. A sample categorical graphic for a sample web

service in our system in the “Communication” category is shown in Figure 6-7.

Figure 6-7 Categorical Graphic for a Sample Web Service

These descriptor links are not the actual links to the files; rather they are pointers to

the Service Repository Cloud to serve the desired file with a HTTP GET request to

the Service Descriptor Restlet Service.

 104

CHAPTER 7

7 TESTS AND PERFORMANCE ANALYSIS

In this chapter the performance of the system is discussed. Section 7.1 outlines the

details of the system’s performance, while section 7.2 outlines the details of the

service discovery algorithm’s performance. In section 7.3, the performance of the

system is reviewed.

7.1 System Performance

Our performance tests are made on the Google App Engine cloud. The resources

provided by the cloud to our application are as shown in Figure 7-1.

 105

Resource Capacity

Application Processing Power 6.50 CPU Hours per Day

Data Store Processing Power 60 CPU Hours per Day

Data Storage Capacity 1 GB Total

Outgoing Bandwidth 1 GB per Day

Incoming Bandwidth 1 GB per Day

Figure 7-1 Google App Engine Resource List

In our system, we used SUMO’s v1.75 ontology. A total of 12724 SUMO Concepts,

4600 SUMO Classes and 116652 WordNet Concepts have been migrated to our

Data Store from the SUMO ontology, by spending 6 CPU hours in total. Figure 7-2

shows the entity distribution in our Data Store, after the ontology migration.

 106

Figure 7-2 Entity Distribution in Data Store

Most of the data in our Data Store is textual information, and the metadata about the

entities in the store (i.e. query indexes, search indexes). Figure 7-3 shows the usage

of storage space by data type.

 107

Figure 7-3 Storage Space by Property Type

7.1.1 Concept Request for Annotation

Our annotation process requests for concepts starting with a word provided by the

user or the software agent. Since the request is time critical, proper indexes on

SUMO Concept, SUMO Class and Word Net Concept labels are built. The results

for conducted tests are shown in Figure 7-4.

 108

Parameter Value Result

Request Count 1000

Minimum Processing

Time
180ms

Maximum Processing

Time
2734ms

Average Processing

Time
800ms

Average Response

Time
4000ms

Figure 7-4 Concept Request Performance

7.1.2 Web Service Publishing

Web service publishing is one of the most important services that our system

provides. The service has multiple steps, including network delays for service

descriptor transfer, OWL-S parsing and semantic information extraction and Hilbert

Space generation. The results for conducted tests are shown in Figure 7-5.

 109

Parameter Value Result

Publishing Count 188

Minimum Processing

Time
15000ms

Maximum Processing

Time
30000ms

Average Processing

Time
26500ms

Average Response

Time
31000ms

Figure 7-5 Web Service Publishing Performance

The processing time for individual web service publishing operations can also be

broken down as shown in Figure 7-6.

 110

Parameter Value

Publishing Count 188

Average Service Description Upload Time 4500ms

Average OWL-S Parsing Time 5900ms

Average Semantic Information Extraction

Time
250ms

Average Hilbert Space Generation Time 19850ms

Average Data Store Save Time 500ms

Figure 7-6 Web Service Publishing Detailed Performance

7.1.3 Web Service Discovery

Web service discovery is the most important service provided by our system. The

service primarily focuses on comparing Hilbert Spaces. The comparisons are

mathematical computations, and relatively very fast operations. The results for

conducted tests are shown in Figure 7-7.

 111

Parameter Value Result

Query Count 1200

Minimum Processing

Time
1200ms

Maximum Processing

Time
8500ms

Average Processing

Time
2200ms

Average Response Time 3100ms

Figure 7-7 Web Service Discovery Performance

7.2 Discovery Performance

We have uploaded 188 distinct web services to our system, obtained from the QWS

data set [69]. The services were manually annotated, using concepts from the

Service Repository Cloud ontology. Our system created the Hilbert Spaces for the

published service as shown in Figure 7-8.

 112

Total Web Service Count 188

Total Number of Dimensions in Hilbert Spaces 1132

Average Number of Conceptual Dimensions in a Hilbert Space 6.02

Total Number of Data Points in Hilbert Spaces 4702

Average Number of Data Points in a Hilbert Space 25.01

Figure 7-8 Hilbert Space Statistics for Published Web Services

Three types of queries were created for system tests.

• The first group includes queries targeting specific web services with known

information about the service. The criteria for these queries were prepared

manually, making use of the ontology concepts used to annotate the web

service.

• The second group includes queries aimed at web services in specific

category planes. The criteria for these queries were prepared manually,

making use of the ontology concepts in the same category as the web service.

Concepts specified in semantic web service descriptions were not used in the

criteria. However, parent and child concepts of these concepts were used.

• The third group includes queries aimed at finding web services based on

functionality, completely disregarding system ontology and annotations used

for publishing web services.

The queries are created for the web service profile shown in Figure 7-9.

 113

Service Profile

<process:Input>

<process:parameterType
rdf:datatype="&xsd;#anyURI">

&wsones;#anagram

</process:parameterType>

</process:Input>

<process:Output>

<process:parameterType
rdf:datatype="&xsd;#anyURI">

&wsones;#randomization

</process:parameterType>

</process:Output>

Figure 7-9 Sample Web Service Profile

A sample Group 1 query for the sample web service is shown in Figure 7-10.

 114

Query AND(Input=anagram|Output=randomization)

Actual Result

Figure 7-10 Group 1 Query Sample

A sample Group 2 query for the sample web service is shown in Figure 7-11.

Query AND(Input=linguisticexpression|Output=randomize)

Actual Result

Figure 7-11 Group 2 Query Sample

 115

A sample Group 3 query for the sample web service is shown in Figure 7-12.

Query AND(Input=literature|Output=words)

Actual Result

Figure 7-12 Group 3 Query Sample

300 of each type of queries were created, summing up to a total number of 1200

queries during the tests. The algorithm is awarded with points for each successful

query response. Each 1st place obtained by a target web service is awarded with 2

points and each 1st page (2nd-5th place) obtained by a target web service is awarded

with 1 points. If the target web service is not on the 1st page, this is considered as a

miss and the algorithm is awarded 0 points.

The summary results for Group 1 queries can be seen in Figure 7-13.

 116

Criteria Result Points

Number of 1st Places 221 442

Number of 1st Pages 63 63

Number of Misses 16 0

 Total Points 505/600

 Success Ratio 84.16%

Figure 7-13 Summary Results for 300 Group 1 Queries

The summary results for Group 2 queries can be seen in Figure 7-14.

Criteria Result Points

Number of 1st Places 103 206

Number of 1st Pages 152 152

Number of Misses 45 0

 Total Points 358/600

 Success Ratio 59.66%

Figure 7-14 Summary Results for 300 Group 2 Queries

 117

The summary results for Group 3 queries can be seen in Figure 7-15.

Criteria Result Points

Number of 1st Places 87 174

Number of 1st Pages 119 119

Number of Misses 94 0

 Total Points 293/600

 Success Ratio 48.83%

Figure 7-15 Summary Results for 300 Group 3 Queries

The aggregated summary results for all three types of queries can be seen in Figure

7-16.

 118

Criteria Result Points

Number of 1st Places 411 822

Number of 1st Pages 334 334

Number of Misses 155 0

 Total Points 1156/1800

 Success Ratio 64.22%

Figure 7-16 Aggregated Summary Results for All Types of Queries

7.3 Performance Review

Our algorithm performs relatively well when conceptual or categorical relatedness is

provided in the query (i.e. Group 1 and Group 2 queries). Even though our success

ratios seem low, this is mostly due to our point awarding system. For instance, in

Group 1 and Group 2 queries, only 61 of 600 queries are missed, leading to an

89.83% 1st page viewing ratio.

Most of the misses recorded by our system (e.g. 60% of all the misses) are due to

Group 3 queries. Group 3 queries, by definition disregard conceptual and categorical

similarities, and are not quite suitable for our system, since our similarity algorithms

are completely based on conceptual similarity.

However, the performance recorded throughout our tests is still below our

expectations. We have detected three main reasons for this situation:

 119

• Ontological controversy between web services in QWS data set and SUMO

• High volume of uncategorized semantic data in SUMO

• Missing categories in SUMO

There’s an ontological controversy between web services in QWS data set and

SUMO. While SUMO focuses in category planes described in Figure 5-5, QWS data

set mainly focuses on Biology, Internet Technologies and Media. Due to the

ontological controversy, for each service uploaded a very small number of

conceptual dimensions and data points could be created, as described in Figure 7-8.

Since our system primarily depends on data points in the generated Hilbert Spaces,

this controversy degrades our performance.

There is a high volume of uncategorized semantic data in SUMO. As shown in

Figure 7-2, WordNet Concepts account to 68% of the semantic data in the ontology.

Even though some of the WordNet Concepts have categories due to their parent-

child relationships with SUMO Classes and SUMO Concepts, some are not

explicitly categorized by the SUMO team. These uncategorized WordNet Concepts

are placed in a “Generic” dimension and cannot efficiently contribute to our web

service discovery routine.

SUMO is missing many categories and it does not have category granularity. Many

of the web services in the QWS data set belong to categories not present in the

SUMO ontology, and they are represented with “Generic” dimensions. Additionally,

categories like “Computing” and “People” are very large categories and they can be

further categorized to sub-categories. Missing of these categories and sub-categories

undermine our inter-dimensional similarity computation metrics.

 120

CHAPTER 8

8 CONCLUSION AND FUTURE WORK

Web services play an important role in the world of information technology, due to

the popularity of architectural approaches requiring a higher degree of automation.

Web services also provide many useful features to their users, including increased

interoperability, platform independence, programming language neutrality and

composability. Since there are a wide range of web services available on the web,

and many more are under development, it is very hard for human beings to locate

the web services matching their functional and semantic requirements. Once these

services are located, they can be executed, or further be composed with other web

services. The described web service discovery and composition processes can be

automated by using standard ontologies, semantic descriptor formats and service

discovery and publishing systems using these standards.

This thesis proposes a software system which allows web service publishers to

convert their WSDL web service descriptions to OWL-S web service descriptions,

annotate their web service descriptions, and publish the descriptions to a semi-

decentralized peer-to-peer network using a client application or a software API. The

software system also allows the web service clients to query the network using a

client application or a software API to find services matching a given criteria. All of

 121

the web service publishing and web service discovery operations are performed via a

single, unified ontology.

Most remarkable features of the proposed “Service Oriented Peer to Peer Web

Service Discovery Mechanism with Categorization” system can be summarized as

follows:

• It is highly scalable and robust.

The architecture uses a semi-decentralized peer to peer network. The central

software is setup on a cloud computing architecture, and peers can also be setup on

local clouds. Only explicitly requesting peers can be marked as super peers, which

respond to service discovery requests. The super peers are continuously monitored

by the central system for their reliability and uptime. Highly available, distributed

Data Stores are used for storing data. Services are grouped categorically and

conceptually during service publishing to reduce response times for service

discovery queries.

• Web service similarities are computed with a novel approach, the Hilbert

Space approach, based on categories and concepts.

A novel similarity computation mechanism is introduced with this system. The

semantic web services are represented as a multi-dimensional Hilbert Space. The

Hilbert Space for the web service is created during web service publishing and it is

updated with the user feedback via service discovery queries. The pre-computed

Hilbert Space descriptions are used in the service discovery process. Hilbert Spaces

model both conceptual and categorical relations successfully. The approach also

provides functionality to align concepts in different categories. All of the

computation is performed via a single ontology, so concept coherence is attained.

• Web service publishing is done semi-automatically, using a single, unified

ontology.

 122

The system allows the service publishers to convert, annotate and publish their

existing web services. Existing WSDL documents are accepted by the system, and

conversion to OWL-S is done automatically. Publishers can use the provided editor

to annotate their OWL-S documents. The annotation is done using a single, unified

ontology, which allows system-wide concept coherence. Services are monitored

continuously for changes, and automatically republished to the system when

necessary. The availability of web service publishers are also tracked by the system.

• Automated, semantic web service discovery with web service ranking

feature.

The system allows service users to discover web services automatically. When the

unified ontology is used to generate queries, result set for the query is returned via

the relevant web service. The result set contains machine processable information

like match score, service name, service online/offline status and hyperlinks to

service descriptors. The queries can be sent to the system by using the built-in client

application or provided service discovery API. Making use of the provided API,

developers can use the system transparently to create service composition

algorithms.

• Web service semanticity is enhanced via web service discovery queries.

The system supports transparent user feedback, and uses the feedback to enhance the

semanticity of the web services in its repository. With prolonged usage of the

system, the Hilbert Spaces of the services will change as clients select a given

service. With this feature, even though a service may not be annotated very well, or

it may be annotated in a misleading way, the service will be positioned to its

intended place via the user feedback.

• Top-down service oriented architecture.

The system is completely service oriented. All the functionality provided by the

system, including user signup operations, web service publishing, web service

 123

updating, web service discovery queries and relational concept queries are

implemented as restful web services. Even though the system provides an API for

programmatic access, with this feature it becomes completely language and platform

neutral.

This thesis has the mentioned significant contributions to the automated web service

discovery and publishing problems. However, some future work is still present.

Most important future work is working with a rich, fully categorized ontology. Even

though SUMO is a large ontology, it can represent only a minor fraction of the

world we live in. This results in scattered concepts and missing categories in the

Hilbert Spaces of the web services. When a wider ontology is available, the

approach will reach to its full potential.

Another future work is to compute multiple categories for concepts. Our approach

divides concepts with multiple categories to independent category planes. This way

inter-dimensional concept similarity can only be computed with plane similarity

measures. Instead, each concept can be represented as a single data point in the

Hilbert Space, with non-zero coordinates in multiple category dimensions. This will

allow us to see the web services as multi-dimensional complex solids in a Hilbert

Space. With this advancement, service discovery requests can simply be seen as the

intersection computation for complex multi-dimensional objects.

Another future work can be semi-automated web service annotation, during service

publishing. Our system allows the publishers to browse our ontology using a widget

in the annotation editor; however it does not provide suggestions to the publisher by

scanning the web service descriptor at hand. Such a system can automatically

suggest semantic annotations for the OWL-S service descriptor, and reduce the

workload of the web service publisher.

A final future work can be allowing transparent structural and semantic composition

for provided queries. With this advancement, our system can transparently compose

web services in the repository to create a web service that matches the complex solid

 124

described by the query Hilbert Space. The composition can simply be modeled as

the unification of solids to create a bigger multi-dimensional object.

 125

9 REFERENCES

[1] W3C Working Group. (Last visited on 01.01.2010) Web Services

Architecture. http://www.w3.org/TR/ws-arch/

[2] OASIS SOA Reference Model Technical Committee. (Last visited on

02.01.2010) OASIS SOA Reference Model. http://www.oasis-

open.org/committees/soa-rm/

[3] T. Koskela, J. Julkunen, J. Korhonen, M. Liu, and M. Ylianttila, "Leveraging

Collaboration of Peer-to-Peer and Web Services," in Mobile Ubiquitous

Computing, Systems, Services and Technologies, 2008, pp. 496-501.

[4] OASIS UDDI Specification Technical Commitee. (Last visited on 01.01.2010)

OASIS UDDI Specification. http://www.oasis-open.org/committees/uddi-

spec/

[5] OASIS Group. (Last visited on 01.01.2010) OASIS Group. http://www.oasis-

open.org/

[6] Microsoft. (Last visited on 01.01.2010) Windows Server 2003 UDDI Services.

http://www.microsoft.com/windowsserver2003/technologies/idm/uddi/default.

mspx

[7] Erik Christiensen, Francisco Curbera, Greg Meredith, and Sanjiva

Weerawarana. (Last visited on 01.01.2010) Web Services Description

Language 1.1 Reference. http://www.w3.org/TR/wsdl

[8] W3C. (Last visited on 01.01.2010) OWL-S: Semantic Markup for Web

Services. http://www.w3.org/Submission/OWL-S

 126

[9] Michael Pantazoglou and Aphrodite Tsalgatidou, "A P2P Platform for Socially

Intelligent Web Service Publication and Discovery," in The Third

International Multi-Conference on Computing in the Global Information

Technology, 2008, pp. 271-276.

[10] W3C. (Last visited on 01.01.2010) Resource Description Framework.

http://www.w3.org/RDF/

[11] S.N. Srirama, M. Jarke, Hongyan Zhu, and W. Prinz, "Scalable Mobile Web

Service Discovery in Peer to Peer Networks," in Third International

Conference on Internet and Web Applications and Services, 2008, pp. 668-

674.

[12] Dimitrios Skoutas, Dimitris Sacharidis, Verena Kantere, and Timos Sellis,

"Efficient Semantic Web Service Discovery in Centralized and P2P

Environments," in Lecture Notes in Computer Science.: Springer Berlin /

Heidelberg, 2008, pp. 583-598.

[13] Kunal Verma et al., "METEOR-S WSDI: A Scalable P2P Infrastructure of

Registries for Semantic Publication and Discovery of Web Services,"

Information Technology and Management, vol. 6, no. 1, pp. 17-39, January

2005.

[14] DAML. (Last visited on 01.01.2010) DAML Semantic Web Services.

http://www.daml.org/services

[15] Adam Pease. (Last visited on 01.01.2010) Suggested Upper Merged Ontology.

http://www.ontologyportal.org/

[16] Changtao Qu and W. Nejdl, "Interacting the Edutella/JXTA peer-to-peer

network with Web services," in Proceedings of 2004 International Symposium

on Applications and the Internet, 2004, pp. 67-73.

 127

[17] W3C XML Protocol Working Group. (Last visited on 02.01.2010) SOAP

Version 1.2. http://www.w3.org/TR/soap/

[18] Deborah L. McGuinness and Frank van Harmelen. (Last visited on

01.01.2010) OWL Web Ontology Language. http://www.w3.org/TR/owl-

features/

[19] David Hilbert, John von Neumann, and Lothar Nordheim, "Über die

Grundlagen der Quantenmechanik," Mathematische Annalen, vol. 98, no. 1,

pp. 1-30, March 1928.

[20] Mathematica. (Last visited on 01.01.2010) Wolfram MathWorld.

http://mathworld.wolfram.com/HilbertCube.html

[21] Ian Niles and Adam Pease, "Towards a standard upper ontology," in

Proceedings of the international conference on Formal Ontology in

Information Systems, 2001, pp. 2-9.

[22] Standard Upper Ontology Working Group. (Last visited on 01.01.2010)

Standard Upper Ontology. http://suo.ieee.org/

[23] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and

Ivona Brandic, "Cloud computing and emerging IT platforms: Vision, hype,

and reality for delivering computing as the 5th utility," Future Generation

Computer Systems, vol. 25, no. 6, pp. 599-616, June 2009.

[24] Rüdiger Schollmeier, "A Definition of Peer-to-Peer Networking for the

Classification of Peer-to-Peer Architectures and Applications," in Proceedings

of the First International Conference on Peer-to-Peer Computing, 2002.

[25] Napster. (Last visited on 01.01.2010) Napster. http://www.napster.com

 128

[26] eMule. (Last visited on 02.01.2010) Official eMule Homepage.

http://www.emule-project.net

[27] Freenet. (Last visited on 02.01.2010) Freenet P2P Foundation.

http://www.p2pfoundation.net/Freenet

[28] Matei Ripeanu, "Peer to Peer Architecture Case Study: Gnutella Network," in

Proceedings of the First International Conference on Peer-to-Peer

Computing, 2002.

[29] Daniel Nurmi et al., "The Eucalyptus Open-Source Cloud-Computing

System," in Proceedings of the 2009 9th IEEE/ACM International Symposium

on Cluster Computing and the Grid, 2009, pp. 124-131.

[30] Microsoft. (Last visited on 01.01.2010) Windows Azure.

http://www.microsoft.com/windowsazure/

[31] Google. (Last visited on 21.01.2010) Google App Engine.

http://code.google.com/appengine/

[32] Rackspace. (Last visited on 20.01.2010) Rackspace Cloud.

http://www.rackspacecloud.com/

[33] Amazon. (Last visited on 20.01.2010) Amazon Elastic Computing Cloud.

http://aws.amazon.com/ec2/

[34] Roy Fielding and Richard N. Taylor, "Principled Design of the Modern Web

Architecture," ACM Transactions on Internet Technology, vol. 2, no. 2, pp.

115-150, May 2002.

[35] Leonard Richardson and Sam Ruby, RESTful web services, 1st ed.: O'Reilly,

2007.

 129

[36] Restlet. (Last visited on 20.01.2010) Restlet: A RESTful Web Framework for

Java. http://www.restlet.org/

[37] AppScale. (Last visited on 21.01.2010) AppScale.

http://code.google.com/p/appscale/

[38] Salesforce. (Last visited on 21.01.2010) Salesforce PaaS.

http://www.salesforce.com/paas/

[39] Xen. (Last visited on 20.01.2010) Xen HyperVisor. http://www.xen.org/

[40] Katarzyna Keahey, Mauricio Tsugawa, Andrea Matsunaga, and Jose Fortes,

"Sky Computing," IEEE Internet Computing, vol. 13, no. 5, pp. 43-51,

September 2009.

[41] Jing Zhong and Hong Ying, "A Semantic Web Based Peer-to-Peer Service

Registry Network," in First International Conference on Semantics,

Knowledge and Grid, 2005, pp. 122-122.

[42] Sun Microsystems. (Last visited on 22.01.2010) Juxtapose.

https://jxta.dev.java.net/

[43] Anna Averbakh, Daniel Krause, and Dimitrios Skoutas, "Exploiting User

Feedback to Improve Semantic Web Service Discovery," in Lecture Notes in

Computer Science.: Springer Berlin / Heidelberg, 2009, pp. 33-48.

[44] Sparck Jones Karen, "A statistical interpretation of term specificity and its

application in retrieval," Journal of Documentation, vol. 60, no. 5, pp. 493 -

502, 2004.

[45] Minghui Wu, Fanwei Zhu, Jia Lv, Tao Jiang, and Jing Ying, "Improve

Semantic Web Services Discovery through Similarity Search in Metric

 130

Space," in 2009 Third IEEE International Symposium on Theoretical Aspects

of Software Engineering, 2009.

[46] Thomas Cover and Peter E. Hart, "Nearest neighbor pattern classification,"

IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21-27, January

1967.

[47] Christian Platzer and Schahram Dustdar, "A vector space search engine for

Web services," in Third IEEE European Conference on Web Services,

November, 2005, pp. 14-16.

[48] Marco Crasso, Alejandro Zunino, and Marcelo Campo, "Easy web service

discovery: A query-by-example approach," Science of Computer

Programming, vol. 71, no. 2, pp. 144-164, April 2008.

[49] Huei Chuang, D. L. Lee, and K. Seamons, "Document ranking and the vector-

space model," in IEEE Software, 1997, pp. 67-75.

[50] E. Garcia. (Last visited on 21.01.2010) Cosine Similarity and Term Weight

Tutorial. http://www.miislita.com/information-retrieval-tutorial/cosine-

similarity-tutorial.html

[51] Angus E. Taylor, Introduction to functional analysis.: Wiley, 1958.

[52] Jinghai Rao and Xiaomeng Su, "A Survey of Automated Web Service

Composition Methods," in Lecture Notes in Computer Science.: Springer

Berlin / Heidelberg, 2005, pp. 43-54.

[53] Google. (Last visited on 30.12.2009) Google AppSpot.

http://www.appspot.com/

[54] KVM Group. (Last visited on 30.12.2009) Kernel Based Virtual Machine.

http://www.linux-kvm.org/

 131

[55] MySQL. (Last visited on 01.01.2010) MySQL Cluster.

http://www.mysql.com/products/database/cluster/

[56] Google. (Last visited on 02.01.2010) Google App Engine Tools.

http://code.google.com/appengine/docs/python/tools/uploadingdata.html

[57] TerraCotta. (Last visited on 20.01.2010) Ehcache Distributed Cache.

http://www.ehcache.org/

[58] Google. (Last visited on 21.01.2010) Limitation on Indexed Properties at

Google App Engine. http://groups.google.com/group/google-

appengine/browse_thread/thread/d5f4dcb7d00ed4c6

[59] Bill Katz. (Last visited on 01.01.2010) Simple Full Text Search for App

Engine. http://www.billkatz.com/2009/6/Simple-Full-Text-Search-for-App-

Engine

[60] M. Amoretti, F. Zanichelli, and G. Conte, "Enabling Peer-To-Peer Web

Service Architectures with JXTA-SOAP," in In Proceedings of IADIS

International Conference e-Society 2008, 2008.

[61] K. Gottschalk, S. Graham, H. Kreger, and J. Snell, "Introduction to web

services architecture," IBM Systems Journal, vol. 41, no. 2, pp. 170-177, April

2002.

[62] Google. (Last visited on 20.01.2010) Google Accounts API.

http://code.google.com/apis/accounts/

[63] CMU Atlas Project Group. (Last visited on 01.01.2010) WSDL2OWL-S.

http://www.daml.ri.cmu.edu/wsdl2owls/

[64] W3C XML Schema Working Group. (Last visited on 01.01.2010) XML

 132

Schema 1.1 Specification. http://www.w3.org/XML/Schema

[65] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd, "The

PageRank Citation Ranking: Bringing Order to the Web," Stanford InfoLab,

1999.

[66] Eugene Agichtein, Carlos Castillo, Debora Donato, Aristides Gionis, and

Gilad Mishne, "Finding high-quality content in social media," in Proceedings

of the international conference on Web search and web data mining, 2008, pp.

183-194.

[67] Martin F. Porter, "An algorithm for suffix stripping," Program: electronic

library and information systems, vol. 40, no. 3, pp. 211-218, 2006.

[68] John Ulmschneider and Jamas Doszkocs, "A practical stemming algorithm for

online search assistance," Online Information Review, vol. 7, no. 4, pp. 301-

318, 1983.

[69] E. Al-Masri and Q. H. Mahmoud, "QoS-based Discovery and Ranking of Web

Services," in IEEE 16th International Conference on Computer

Communications and Networks (ICCCN), 2007, pp. 529-534.

[70] George A. Miller, Christiane Fellbaum, Randee Tengi, and Helen Langone.

(Last visited on 01.01.2010) WordNet. http://wordnet.princeton.edu/

[71] Nullsoft. (Last visited on 01.01.2010) Nullsoft Scriptable Install System.

http://nsis.sourceforge.net/

[72] Dem Pilafian. (Last visited on 20.01.2010) Bare Bones Browser Launch for

Java. http://www.centerkey.com/java/browser/

[73] FusionCharts. (Last visited on 01.01.2010) FusionCharts v3.

http://www.fusioncharts.com/

 133

10 APPENDIX A ALGORITHM CONSTANTS

Maximum Original Data Point Weight 1.2

Maximum Ancestry Data Point Weight 0.9

Service Name Significance Amount 0.6

IOPE Significance Amount 0.8

Query Main Category Significance

Amount
0.9

User Feedback Cap 0.2

User Feedback Weight 0.001

Maximum Number of Services to be

Ranked
200

