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ABSTRACT 
 
 
 

MASSIVE CROWD SIMULATION WITH 
PARALLEL PROCESSING 

 
 
 

Yılmaz, Erdal 
Ph.D., Department of Information Systems 

Supervisor: Assoc.Prof. Dr. Veysi Đşler  
Co-Supervisor: Prof. Dr. Yasemin Yardımcı Çetin 

 
 
 

February 2010, 133 pages 
 
 
 
This thesis analyzes how parallel processing with Graphics Processing Unit (GPU) 
could be used for massive crowd simulation, not only in terms of rendering but also 
the computational power that is required for realistic simulation. The extreme 
population in massive crowd simulation introduces an extra computational load, 
which is quite difficult to meet by using Central Processing Unit (CPU) resources 
only. The thesis shows the specific methods and approaches that maximize the 
throughput of GPU parallel computing, while using GPU as the main processor for 
massive crowd simulation.  
 
The methodology introduced in this thesis makes it possible to simulate and visualize 
hundreds of thousands of virtual characters in real-time. In order to achieve two 
orders of magnitude speedups by using GPU parallel processing, various stream 
compaction and effective memory access approaches were employed.  
 
To simulate crowd behavior, fuzzy logic functionality on the GPU has been 
implemented from scratch. This implementation is capable of computing more than 
half billion fuzzy inferences per second. 

 
Keywords: Massive Crowd Simulation, CUDA, GPU Parallel Computing, Attribute 
Data Compaction 
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ÖZ 
 
 
 

PARALEL ĐŞLEM KULLANARAK  
DEVASA KALABALIK BENZETĐMĐ 

 
 
 

Yılmaz, Erdal 
Doktora, Bilişim Sistemleri Bölümü 
Tez Yöneticisi: Doç. Dr. Veysi Đşler  

Ortak Tez Yöneticisi: Prof. Dr. Yasemin Yardımcı Çetin 
 
 
 

Şubat 2010, 133 sayfa 
 
 
 
Bu tez Grafik Đşlemci Birimi kullanılarak yapılan paralel işlemlerin devasa kalabalık 
simülasyonu alanında kullanımını analiz etmekte olup, bu işlemi sadece grafik 
sunum açısından değil aynı zamanda gerçekçi benzetim için gerekli hesap gücü 
açısından da ele almaktadır. Devasa kalabalık benzetimlerinde kullanılan nüfusun 
sıradışı kalabalıklığı sadece Merkezi Đşlem Birimi tarafından karşılanamayacak bir 
büyüklükte hesap yükü getirmektedir. Tez Grafik Đşlemci Biriminin paralel hesap 
yeteneğinin devasa kalabalık simülasyonlarında ana işlemci olarak kullanılması 
esnasında faydayı arttırabilecek özel metot ve yaklaşımları göstermektedir.  
 
Bu tezde tanıtılan metodoloji, yüzbinlerce sanal karakterin gerçek zamanlı olarak 
benzetiminin yapılmasına ve görselleştirilmesine olanak vermektedir. Grafik işlemci 
ile paralel işlem yaparak yüzlü rakamlar ile ifade edilen hızlanmaları sağlamak için, 
veri akımında indirgeme ve etkin hafıza erişimi yaklaşımları kullanılmıştır. 
 
Kalabalık davranışının benzetimini yapmak amacıyla grafik işlemci üzerinde bulanık 
mantık uygulaması yapılmıştır. Bu uygulama saniyede yarım milyardan daha fazla 
sayıda bulanık mantık çıkarımı yapabilmektedir.  

 
Anahtar Kelimeler: Devasa Kalabalık Benzetimi, CUDA, Grafik Đşlemci ile Paralel 
Hesaplama, Öznitelik Veri Boyutu Küçültme 
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CHAPTER 1 

 

 

I�TRODUCTIO� 

 

 

 

Real-time simulation of massive crowds has always been a challenge, due to the 

limited computational resources. Such applications usually include virtual characters 

that interact with the environment and the other characters. Performing this amount 

of interaction in each simulation cycle is beyond the computing limits of 

commercially on-the-shelf CPUs and traditional serial programming techniques. 

Thus, massive crowds are used extensively on pre-rendered work such as movies, 

rather than real-time applications.  

 

The level of realism and the quantity of the virtual population are among the major 

parameters that define this simulation’s complexity. However, generating a life-like 

virtual environment with millions of inhabitants is rather a challenging task. Popular 

computer graphics techniques such as visibility culling and Levels of Detail (LOD) 

are usually employed to minimize computational complexity. On the other hand, 

these computational load reduction techniques cannot always be employed, as in the 

case of non-graphics simulation. In simulations where visualization is not a concern, 

it is usually required to update every virtual character in each simulation cycle 

without considering visibility or LOD. In such a case, alternative computational 

methods should be employed. Thanks to the state of the art GPUs, there is now 

commodity hardware, providing peak performances more than teraflops per second 

[1], and such a tremendous computational resource certainly helps achieve the goal 

of simulating massive crowds in real-time. 
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General purpose parallel programming can use GPUs not only for graphics but also 

for removing the burden of the non-graphical computational workload, which is 

traditionally handled by a CPU. Significant computational speedups have been 

achieved by various researchers from different disciplines using general purpose 

parallel programming [2-6]. Although GPU-based non-graphics computation is well 

suited to data-parallel tasks such as image processing kernels and matrix operations, 

it is also possible to accelerate many other applications by adapting existing 

algorithms to the general purpose parallel programming. Therefore it seems 

reasonable to exploit tremendous computing power of GPUs for massive crowd 

simulation, since computational power is an important concern. Additionally, data 

level parallelism, which is a must for efficient GPU implementation, can be achieved 

by assigning one thread per virtual character.  

 

1.1 Motivation 

 

This research addresses the possibility of using affordable parallel processing 

hardware to simulate massive crowds in real-time. The term “massive crowds” 

implies populations of up to several millions of virtual characters. Such a large 

number of agents is not common in real-time CPU-based serial programmed 

graphical applications, due to the limited computational resources. A typical crowd 

simulation application with graphics needs to share limited computational power for 

various tasks, such as rendering, behavior modeling and navigation. Computations 

get more complicated as the population and the level of realism increase. 

Considering these facts, real-time simulation and rendering of a large number of 

virtual characters usually require sacrificing some components such as visual quality 

or behavioral realism.  

 

In the recent years, GPUs have demonstrated great progress as a non-graphics 

computing tool. It has already been shown that even two orders of magnitude 

speedups are possible, if the GPU takes computing responsibility [7,8]. Although the 
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graphics processing architecture of the GPU is well suited to data-parallel 

applications, researchers from various disciplines have succeeded to port many 

different problems to this newly emerged programming environment to achieve 

significant computational speedups. 

 

The announcements of immense computational speedups [7,8] and fascinating 

developments in GPU hardware inspired the use of general purpose parallel 

processing in massive crowd simulation. In literature, there exists limited work about 

the simulation and visualization of a large number of virtual characters using GPU 

parallel processing. However, there is significant amount of research regarding 

crowd simulation and parallel processing in different disciplines. This study 

considers adapting existing solutions in crowd simulation to general purpose parallel 

programming. Aspects of this research will introduce several practical approaches 

that can be helpful for future researchers in this field.  

 

1.2 Scope 

 

This thesis covers how general purpose parallel programming and the computational 

power of the GPUs can be used effectively to add more virtual characters in real-time 

applications by blending existing crowd simulation work and general purpose 

parallel programming techniques. 

 

The issues mentioned in this thesis are explained by several case studies. The results 

look promising from the perspective of computational performance. The main scope 

of this thesis is crowd simulation, not crowd visualization; therefore, rendering 

quality and visualization related issues were not covered in detail. All of the visual 

outputs were given, to better explain the results of the case studies. However, it is 

certain that, higher visual quality can be achieved by spending more effort on 

graphics and by using a third party professional game-engine tool.  
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NVidia CUDA (Compute Unified Device Architecture) technology [9-11] was used 

in this thesis as the general purpose parallel programming tool. This technology lets 

software developers use C programming language to program the GPU, thus 

minimizing development platform learning curve. NVidia also plans to use CUDA 

with several other languages and application programming interfaces [9]. This 

technology has been available to the public since 2007. Starting with GeForce 8 

series, all the NVidia GPUs are CUDA-enabled [10]. 

 

The following figures illustrate how general purpose parallel programming can help 

achieve the goal of simulating and rendering massive crowds in real-time. Figure 1 

depicts a medieval combat scene. Figure 2 is related to massive crowds in video 

games. Figure 3 and Figure 4 show two screenshots that illustrate urban life 

respectively. The first figure depicts a special marathon event, while the second one 

shows a regular day.  

 

 

Figure 1: A crowded medieval-era combat scene. 
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Figure 2: A crowded soccer arena scene. 

 

 

Figure 3: A crowded virtual city scene.  
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Figure 4: A crowded virtual marathon scene. 

 

1.3 Significance 

 

Most of the real-time crowd simulation research use limited populations to simulate 

and visualize virtual environments. The studies that try to visualize larger 

populations typically focus on visualization issues and rendering performance. Thus, 

the traditional approach usually deals with the army of clones that perform similar 

actions and movements. To the best of the author’s knowledge, little attention has 

been paid to simulate massive populations in real time without sacrificing visual 

quality, behavioral variety or other computationally complex actions. The 

significance of this thesis is to bridge the gap between massive crowd simulation and 

the real-time constraints.  



  7 

1.4 Contributions 

 

This thesis addresses real-time massive crowd simulation using NVidia CUDA 

technology. Although this technology provides the computational power required by 

power hungry applications, special care must be paid while using this technology. 

The real-time constraints require using computational resources efficiently. In order 

to get the full benefit from general purpose parallel programming technology, the 

problem must be converted into data-parallel structure. It is also required to minimize 

data transfer between the CPU and the GPU. There are also several more issues that 

should also be considered for better performance. To the best of the author’s 

knowledge, this research is one of the first attempts that used CUDA technology to 

try to simulate massive crowds. Therefore, the focus of this thesis is to provide some 

performance-enhancing information to the researchers in this field, through several 

simple but useful contributions. Some of the contributions are related with efficient 

usage of general purpose parallel programming considering the architecture of 

CUDA technology, and other contributions are related with the implementation of 

massive crowd simulation. 

 

NVidia categorizes CUDA performance optimization issues in three strategies [11]. 

The first strategy is to maximize parallel execution. This strategy is quite important 

since massive crowd simulation contains many virtual characters. In order to 

implement this strategy effectively, each virtual character or processed entity is 

handled by a separate GPU thread. However, this action is not sufficient enough by 

itself to ensure best throughput. There are several outstanding issues to increase 

parallel processing performance such as using both the CPU and GPU resources 

considering the required processing power by the virtual characters. As in the 

analogy of LOD, some virtual characters may demand more processing power than 

the rest. In such a case, it is better to employ lightweight GPU resources for the 

majority while using heavy-duty CPU threads for minority that requires much more 

computations. Similarly, classifying and sorting virtual characters considering 
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possible execution paths also helps achieve better speedups, since threads are 

ensured to follow similar execution paths. 

 

The second strategy is to optimize memory usage to achieve maximum memory 

bandwidth. This issue will be examined in depth throughout this thesis. Considering 

this strategy, a solution based on data structures and data compaction has been 

offered. The proposed solution is to separate attributes and pack them into different 

data structures, so that the CPU-related attributes are not copied to the device, thus 

helps avoid extra data transfer overhead. To minimize device memory accesses, the 

transferred data is packed into GPU friendly data structures. The proposed solution 

minimizes data transfer and memory access costs as much as possible. Such an 

optimization helps achieve further speedups.   

 

The final strategy is instruction-level optimization. Such an optimization can be done 

by simply following the details explained in CUDA documentation [9, 11]. Although 

details of this strategy will be covered in the following chapters, there is no 

contribution regarding instruction-level optimization.  

 

Besides CUDA programming issues, there are several more contributions for the 

means of implementing crowd simulation related functionality by CUDA kernels 

(functions that run on the GPU). This thesis covers an in-depth look at implementing 

fuzzy inference using CUDA. The GPU kernels help by computing more than half 

billion fuzzy inferences per second. An infrastructure to handle such a huge amount 

of fuzzy inferences, provides developers the ability to generate scenes including 

massive virtual characters that perform distinct and non-deterministic actions. The 

contribution in this issue is to capture fuzzy knowledge-base and fuzzy rule-base via 

a simple GUI and transfer required parameters to the GPU with minimal coding 

effort. Expert knowledge is converted into an XML script, from which the fuzzy 

inference parameters are extracted. These parameters are consequently transferred to 

the constant memory of the device (GPU). Thus, it provides significant speedup 
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since fuzzy logic kernels frequently access these parameters. The attributes of the 

virtual characters are also tried to be represented with device architecture friendly 

data structures such as 32, 64 and 128-bit words. The combination of such 

approaches not only lets developers include fuzzy logic functionality on the GPU 

with minimal effort, but also allows them to provide further speedups. 

 

Another implementation-oriented contribution is to include many of the physical 

objects in the virtual environment with massive number of characters. The medieval-

era case study covered in Chapter 6 realistically simulates the physics of thousands 

of arrows in real-time. It is certain that the interaction among the physical objects, 

the virtual characters and the realistic trajectory computations introduce an extra 

computational overhead. To overcome this power-hungry task, a solution that blends 

existing spatial hashing techniques and CUDA architecture is offered. Unfortunately, 

even the huge computational power offered by the GPU is still far away from 

creating this kind of simulation. In such a case, several assumptions can be made to 

minimize computational cost and architectural constraints. In fact, the offered 

solution contains some heuristics and assumptions that are specific to this case study. 

However, it seems possible to adapt this solution to similar applications.   

 

1.5 Outline 

 

The outline of this thesis is as follows: 

• Chapter 2 starts with the literature survey about general issues in crowd 

simulation.  This is followed by the detailed summary of crowd simulation 

studies using parallel computing.  

• Chapter 3 explains the CUDA architecture as an introduction and gives 

details considering the aspects of this thesis. 

• Chapter 4 demonstrates the details of using general purpose parallel 

computing for real-time massive crowd simulation in a step-by-step manner. 

In each step, the actions required to achieve further speedups are presented. 
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• Chapter 5 explains the details of fuzzy inference implementation on the GPU 

using CUDA.  

• Chapter 6 covers three case studies. The first one demonstrates how massive 

crowd simulation can be used as a middleware for video sports games. In this 

case study, general purpose parallel programming is used to generate 

behaviors of the soccer game spectators. The second case study, which is 

inspired from the work of science-fiction writer H.G. Wells [12], covers the 

simulation of a medieval-era combat including nearly 250,000 warriors. The 

last case study gives the short summary of a work about virtual marathon. 

• Chapter 7 concludes with results and summarizes the contributions. Potential 

follow-up work is also laid out in this chapter. 
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CHAPTER 2 

 

 

RELATED WORK A�D BACKGROU�D 

 

 

 

Simulating the behaviors, actions and movements of virtual characters in a crowd can 

be defined as crowd simulation. This research area has always attracted quite a 

significant interest from researchers of different disciplines, due to existence of large 

application fields such as military training, emergency planning, computer games, 

and architectural design. This chapter summarizes challenging issues in crowd 

simulation and gives literature background regarding crowd simulation using various 

parallel processing hardware and techniques. 

 

2.1 Crowd Simulation 

 

Real-time crowd simulation applications started in the mid and late nineties when 

commodity hardware started to meet the computational requirements of this 

community [13]. Since then, the studies are all focused on some or all of the 

challenging issues given below, which will be covered in detail throughout this 

section. 

 

• Crowd Representation 

• Crowd Navigation 

• Crowd Variety 

• Crowd Behavior 
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2.1.1 Virtual Crowd Representation 

 

Although great progress has been achieved in graphics hardware in the last decade, 

crowd representation remains an important issue because of insatiable realism 

expectations. Depending on population, realism, perception, and hardware, various 

crowd representation techniques can be employed including: 

• Geometric representation 

• Image-based representation 

• Point-based representation 

• Hybrid representation  

 

Figure 5: A geometric model and various texture maps. 
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Geometric representation uses virtual character models in 3D mesh. These models 

can be artist-made or scanned. The geometric model’s visual quality is strongly 

related to the quantity of the meshes and resolution of the texture map. Figure 5 

shows a typical geometric model.  

 

Figure 6: Auto-generated LOD models.  

(Automatic polygon reduction usually produces visually poor results.) 
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In order to improve the rendering performance, a geometric model is mostly 

represented with different LODs, as illustrated in Figure 6. In crowd simulation 

applications, geometric models comprised of thousands of polygons and several 

LOD models are commonly used [14-16]. Although this approach can be easily 

implemented, rendering background characters that are far away from the camera is 

difficult because representing them with few polygons may not produce visually 

convincing results (Figure 6), while using high-polygonal models consumes too 

much of the GPU’s resources. McDonnell et al. worked on perceptual issues and 

reported the facts about mesh simplification for virtual characters [17]. 

 

 

 

Figure 7: Illustration of an impostor and walking animation.  

(Courtesy of Simon Dobbyn) 

 

Image-based representation of crowds, called impostors, is very popular in crowd 

visualization [18-20]. Basically, impostors are many 2D images pre-rendered for all 

possible camera angles, thus trying to give the visual impact of 3D models. Figure 7 

shows an impostor of a single human. The number of images increases in a linear 

fashion when more animation models are employed. Kavan et al. introduced 

polypostors to overcome this issue [21]. Polypostors are 2D polygonal characters that 

support a greater variety of animations without introducing any overhead since the 

rendering cost of a quad (two triangles) or several polygons are almost the same. But 
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the authors reported that polypostors are limited to basic actions such as walking. It 

has already been demonstrated that impostors help generate perceptually realistic 

crowd scenes if they are away from the camera [22]. However, they suffer from low 

visual quality due to pixelization and flat view when models are close to the camera, 

as shown in Figure 8. Hybrid techniques, which will be explained later, are proposed 

to overcome this problem [23]. 

 

Figure 8: Visual quality comparison of 3D model and impostor image. 

(Pixelization problem occurs due to use of raster impostor (right image).  

This problem is similar to the vector vs. raster issue in many other disciplines.) 

 

Grosman and Dally [24] implemented point-based rendering, in which point 

primitives are used to render geometric objects instead of polygons. The points 

should have normal, color and depth information, and thus better representing the 

original model. Several researchers have proposed improvements to the point-based 

rendering technique [25-27]. Rudomin and Millan used point-based rendering to 

visualize virtual crowds [28]. They also compared impostors and point-based 

rendering in crowd simulation, considering various parameters such as animation 

smoothness, rendering performance, and texture memory usage [29]. Neither method 

was superior, since both techniques have similar performance results and comparable 

pros and cons.  
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To overcome the bottlenecks introduced by geometric, image-based and point-based 

representation techniques, a hybrid approach in which high-cost/high-quality 

representation (geometric) and low-cost/low-quality representation (image-based or 

point-based) can be employed to render a virtual crowd. Dobbyn et al. proposed 

using geometric models and impostors (called as geopostors) together to increase 

rendering performance [23]. In this approach, geometric models render virtual 

humans within a certain threshold distance, while impostors are employed for the 

rest. Hamill et al. improved this approach with a perceptual metric [30], researching 

when to switch the geometric model and impostor. The geometric model can be 

switched to an impostor representation when one texture element (texel) corresponds 

to a pixel on the screen. McDonnell et al. validated this result by examining the 

participants’ perception [22]. This hybrid approach has also been employed in latter 

studies. In a recent work, Maim, Yersin, and Thalmann used the hybrid approach in 

three levels [31]. The first level supports facial and hand animation with high-detail 

mesh models. This level is used to render the virtual characters close to the camera 

view-point. The second level represents virtual characters far from the camera with 

pre-computed static meshes. The final level uses impostors for the virtual characters 

that occupy the very limited space in the view-frustum. 

 
2.1.2 Virtual Character �avigation  

 

Navigation is another challenging issue in crowd simulation, since avoiding 

collisions in real time among thousands of virtual people, the entities, and the 

structures in the virtual environment is difficult. Additionally, the virtual characters’ 

movement path should be visually convincing to meet realism expectations. There 

are a lot of parameters that determine a person’s path. For example, people usually 

prefer the shortest path while they are rushing and crowded streets when it is dark. 

The computations get more complicated when the collision avoidance system of 

humans is included. Human path planning is updated frequently, considering many 

factors such as congestion. While moving, humans interact with other people, 

observe the surroundings and the other people’s actions, and modify their paths 
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accordingly, adjusting their orientation to avoid possible collisions. Basically, trying 

to implement path updating mechanism for every single entity requires huge 

processing power and good algorithms. This agent-based approach is 

computationally expensive and produces less realistic crowd behavior such as sharp 

paths. The literature covers many studies regarding the navigation of virtual 

characters in synthetic environments. Some of the outstanding works are summarized 

as follows.  

 

Treuille, Cooper and Popovic implemented a new approach in crowd navigation [32]. 

They examined this problem from a perspective based on continuum dynamics. The 

fluid dynamics community inspired this study by introducing the use of a continuous 

density field to represent pedestrians. Treuille et al. presented a real-time motion 

synthesis model for large crowds without agent-based dynamics. They described a 

new type of crowd simulator driven by dynamic potential fields. These fields 

integrated the global navigation and local collision avoidance. The approach is based 

on two simple terms: a velocity-dependent term inducing lane formation, and a 

distance-based term stabilizing the flow. Furthermore, Treuille et al. showed how 

individuals produced more intelligent behavior with their knowledge of future. Their 

final renderings demonstrated a smooth flow under a variety of conditions and 

exhibited emergent phenomena observed in real crowds [32].  

 

Yersin et al. tried to steer virtual crowds by using a semantically augmented 

navigation graph [33]. They addressed the problems arising from the lack of 

intelligent and realistic behaviors of virtual characters. To overcome this problem 

they provided the knowledge of the environment by exploiting a navigation graph. 

The algorithms employed to prepare navigation graphs were defined in another study 

[34]. After capturing the environment’s topology, the navigable areas determined 

from structures, slopes, and several other parameters are delimited. Passing from one 

area to another is only allowed where an intersection exists. Finally, the graph is 

prepared by employing a deterministic graph building method based on the voronoi 

diagram. The paths in the scene are constructed from this graph. Cylindrical volumes 
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simply define the walkable paths reconstructed in a multi-level manner. For example, 

there are two paths in one staircase: down to up and up to down. To give information 

to the virtual pedestrians, the nodes are labeled with semantic information relative to 

their region (e.g., Park, Hotel, Circus) [34].  

 

Bayazit, Lien and Amato studied regarding flock behavior [35]. For simplicity, flock 

behaviors can also be employed to visualize human groups. There are many methods 

to simulate flocking behaviors [36], [37]. Flocking behavior studies mostly use local 

environment for decision making. Bayazit et al. investigated the contribution of 

global information, as an environmental roadmap that enables more sophisticated 

flocking behaviors, supports global navigation, and planning. They embedded 

several behavioral rules for individuals to modify their actions according to 

environment and changing states. This yielded different patterns that have not been 

observed in previous studies such as forming an unordered group in open areas and 

follow-the-leader fashion in narrow passages. Use of global information provided by 

their rule-based roadmaps improves the behavior of autonomous characters, and 

particularly enables more sophisticated behaviors than traditional flocking algorithms 

that only use local information [35].  

 

Lamarche and Doinikan proposed an approach that enables the real-time simulation 

of hundreds of virtual pedestrians. They produced an accurate environmental model 

from the virtual environment’s underlying geometry. This vector structure was used 

to compute optimized paths. Most importantly, Delaunay triangulation is refreshed 

automatically according to the population density. This method is similar to the load-

balancing approach in parallel processing. Additionally, their model includes reactive 

navigation architecture inspired from physiological studies [38] 

 

Some applications require less realistic navigation, such as collision-free, 

meandering people. In such a case, several assumptions can be made to minimize 

complexity of the navigation problem. In an immersive virtual reality game 

experience, Ulhaas et al. implemented boids algorithm and represented human agents 
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as particles [37]. Collision avoidance between characters was achieved by calculating 

physically based repulsion forces between particles, which are added to the steering 

force determining proximate position. They used a three-zone model to set the 

strength of the repulsion forces. The resulting force function was adjusted by the 

physical parameters stiffness and viscosity.  

 

Lerner, Chrysanthou and Lischinski studied crowd simulation in a data-driven 

approach, constructing a trajectory database from real videos [39]. They captured 

several videos and extracted individual trajectories manually. In the simulation phase 

they tried to find the best trajectory for each agent considering their spatial location, 

surrounding agents and obstacles. The characteristics of this approach are 

summarized as follows: 

 

• Produces more realistic and better looking simulations with many actions as 

seen on videos 

• Chooses AI from the virtual character’s location without determining 

individual behaviors and assigning rules 

• Creates different crowd animations from various data sets (panic, normal) 

• Synthesizes new actions from existing data sets 

 

Maim, Yersin and Thalmann employed a level-based navigation model [31]. Virtual 

character navigation in the foreground was computed from interaction and collision 

avoidance parameters. The background people were navigated using a simpler 

approach. Finally, they distributed virtual characters in available zones using 

statistical methods. 

 
 
2.1.3 Population Variety 

 

Virtual environments need to be populated with different looking virtual characters 

because a scene with lots of clones is far from realistic and the clones that look 
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identical can easily be identified by the users [40]. It has already been shown that the 

users more easily detect the clone models that look alike. A proper data set needs to 

be used to populate scenes. For example, a large collection of adult Native 

Americans cannot be used to simulate the streets of Shanghai.  

 

There are two main approaches for 3D virtual human model generation: 

 

• Creative (Artistic Process): The process of 3D modeling that uses special 

software such as 3D Max, Maya, Poser and Lightwave. The creative 

approach gets harder and consumes time when a higher level of realism is 

desired. Since model generation effort is repeated for each virtual character, 

this approach is not practical to achieve large population variety. 

 

• Parametric Construction (Reconstruction): This method uses base models to 

generate automatically new virtual humans by applying several functions and 

changing body shape parameters. To generate realistic models, the science of 

anthropometry (the measurement of living human individuals for the 

purposes of understanding human physical variation) is required. 

 

Allen, Culles and Popovic [41] demonstrated a system for synthesizing high-

resolution, realistic 3D human body shapes according to user-specified 

anthropometric parameters. They used whole-body 3D laser range scans of 250 

different people. The authors used an artist-made human model with 60,000 vertices 

as a basis to produce other human models from laser scan data. In the first step, they 

deformed the base model with each body scan data to make a model without gaps, 

ready to be used by computer graphics applications. In this step 74 landmark 

positions were used to make exact matches, very similar to 3D registration. Principal 

Component Analysis (PCA) was used to minimize the data set by removing human 

models above a certain threshold. Then, relationships between the body parts such as 

height were defined to synthesize new body shapes. They used six anthropometric 

measures (stature (height), bitragion breadth (head breadth), shoulder breadth, arm 
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length, bi-cristale breadth and leg length) to create a body type of the desired 

proportions [41]. 

 

Seo, Cordien, Philoppen and Thalmann generated animation ready models quickly 

[42]. They introduced several deformers for each body part to automatically adapt 

the model to different sizes and proportions. They employed a generic 3D body 

model and H-Anim skeleton hierarchy. To attach a skin to a body, they simply 

assigned a weight to each vertex using related bones. This structure lets the user 

easily deform a bone, and consequently the attached skin also deforms and fits. But 

there are some parts in the human body that are not suitable for bone deformation, 

such as breasts, bellies and bottoms. The authors assigned free-form curves 

(NURBS, Bezier curves, B-Splines) to deform these parts.  

 

Thalmann and Seo introduced a framework for time-saving generation of realistic, 

animation-ready population body models while keeping as much distinctiveness 

between individuals as possible [43]. Similar to the study of Allen and his 

colleagues, Thalmann and Seo also used 3D scanned body models as prototypes. To 

generate populations they proposed a method which smoothly interpolates among 

these prototypes by using scattered data interpolation techniques.  

 

A practical approach for model variation is to apply different texture maps to the 

same model, as demonstrated by Ciechomski et al. [44]. The important point of this 

technique is the choice of appropriate hair, skin, and eye colors. Similar approach has 

also been employed by McDonnell et al. to generate crowd variety [40]. Dobbyn et 

al. and McDonnell et al. used cloth textures to generate crowds with different clothes 

in real-time [45,46]. Similar approach has been employed in thesis as illustrated in 

Figure 9. Since the focus of this thesis is not to generate on-the-fly textures, artist-

made textures were used. In this figure, blue, brown and gray suits are used to 

generate three different virtual characters. Figure 10 shows crowd variety using 

different textures and scaling. 
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Figure 9: Population variety using different texture maps. 

 

Maim and his colleagues introduced YaQ, an architecture for crowd simulation [31]. 

In YaQ, crowd variation is one of three components, and it was designed to generate 

unique individuals from a small set of templates. This component can change 

people’s shape and assign different textures, colors and accessories. It also provides 

variety through different animations. 

 

 

Figure 10: Population variety in a virtual concert.   
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2.1.4 Virtual Character Behavior Modeling 

 

Behavior modeling is one of the most extensively-studied areas in virtual crowd 

simulation. There have been different approaches and studies dealing with virtual 

character decision making and behavior modeling in virtual worlds, but no method 

has been proven to be the best. The choice mostly depends on the goals and priorities 

of the study. In virtual worlds, characters simply perceive the surrounding world and 

react accordingly. Crowd simulation methods may produce repetitive and predictable 

motions, therefore, are easy to implement, while some methods are very power-

hungry. Several approaches are:  

• Rule-based Systems. 

• Physics-based Systems 

• State Machines 

• Fuzzy Inferences 

• Decision Trees 

• Neural Network/Genetic Algorithms 

• Real-life Data Extraction from Videos (Data-driven) 

Ulincy and Thalmann studied crowd behaviors in emergency situations [47]. The 

behavior model described in their paper is simple enough to allow the real-time 

computation of many characters. However, the model based on rules and finite state 

machines is also capable of generating interesting behaviors. This study also 

provided script based interface to manage actions of the crowd. 

 

Thalmann, Musse and Kalmann proposed the distribution of autonomy among the 

simulation’s entities to achieve realistic behaviors [48]. The method they explained 

employs perception and emotion to shape behaviors and ultimately actions. This 

paper mainly focuses on humanoid autonomy. Thalmann et al. defined three types of 

crowd behavior that reflect three Levels of Autonomy (LoA): 

• Guided crowds: Behaviors explicitly defined by users. 

• Programmed crowds: Behaviors programmed in a scripting language. 
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• Autonomous crowds: Behaviors specified by rules or complex methods. 

Essentially, the LoA concept decreases complexity by assigning autonomy to groups 

rather than individuals. Furthermore, Thalmann et al. also offered similar structure 

for objects in the scene. Similarly, to minimize complexity, objects were also given 

an autonomy they do not possess in real life [48].  

 

Heigas et al. worked on realistic crowd simulation in the ancient Greek agora of 

Argos [49]. They visualized a social theater where two kinds of phenomena took 

place: interpersonal interactions (such as small group discussion and negotiation) and 

global interactions (such as flowing and jamming). This paper focused on the 

collective human phenomena called non-deliberative emergent crowd phenomena, 

typical of collective emergent self-organization such as flowing, avoiding, jamming, 

and collapsing. 

 

Sung, Geicher and Chenney showed how scalable behaviors can be used in crowd 

simulation using a two-level decision model [50]. At the high level, they adapted a 

situation-based distributed control mechanism that gives specific detail to each 

individual about how to react to its local environment. At the low level, a probability 

scheme computes probabilities over state transitions and produces samples to move 

the simulation forward. They tried this approach in several situations, such as theatre 

and street environment. Ultimately, the described framework created complex crowd 

behaviors through the composition of situations and behaviors while minimizing the 

data stored in each character [50]. 

 

Braun et al. researched individual characteristics’ impact in the evacuation from 

emergency situations [51]. In this study, they implemented physically-based model 

for crowd simulation in panic situations. The authors also added individual behaviors 

to get a more realistic simulation. Their approach successfully visualized the 

individual parameters of altruistic people, who tend to rescue dependent people 

before themselves.  
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Sakuma, Mukai and Kuriyama used both psychological issues and pedestrian speed 

and density measurements for crowd simulation [52]. They showed that particle 

system based approaches are inappropriate for crowd simulation, since complicated 

human perception mechanism requires the inclusion of human perception and 

psychology. This study also explains collision avoidance according to psychological 

issues. They indicated that from a psychological viewpoint, the neighboring agents 

impose mental stress on each other, which can be estimated on the basis of a personal 

space model. This model experimentally showed that mental stress increases as other 

people get closer. Within a certain threshold this stress becomes critical.  

 

There exist different studies that involve additional parameters to crowd simulation. 

In one such study, Pelechano et al. employed psycho-socio-physio-logical parameters 

(emotions, stress, personality, nationality, cultural background, psychological 

models, roles, and communication) with existing crowd simulation [53]. This 

approach produces more realistic results compared to the rule-based or force-based 

methods. They proposed a structure, called PMFServ, to take into account 

psychological elements that affect human behavior. PMFserv was conceived as a 

software system that would expose a large library of well-established and data-

grounded Performance Moderator Functions (PMFs) and Human Behavior 

Representations for use by cognitive architectures deployed in a variety of simulation 

environments. As a result they succeeded in getting more behavioral variety by 

including agent psycho-socio-physio-logical parameters into decision making 

system.  

 

Later, Pelechano et al. presented the HiDAC (High-Density Autonomous Crowds) 

system [54]. They combined rules with physical forces, and determined agents’ 

behaviors individually by employing a two-level approach, which models actions 

such as navigation, learning, communication, decision-making, perception of the 

environment and collision avoidance. 
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O’Sullivan et al. [55] used LOD not only for visualization and motion but also to 

simplify behavior of crowds. They reported that LODAI reduces computational costs 

by offering very low-cost behavioral model for the background individuals, and a 

detailed model for the foreground individuals. 

 

Chittaro and Serra demonstrated autonomous virtual characters with behavioral 

differences [56], bringing distinct behaviors from probabilistic influence on behavior 

selection. Badler et al. also used personality in EMOTE (Expressive Motion Engine), 

which influences the character’s perception and actions [57]. Bécheiraz and 

Thalmann introduced the basis of this behavioral modeling [58]. They used 

perception to generate emotion, then both perception and emotion to invoke a 

behavior corresponding to an action. Ayesh et al. tried fuzzy individual modeling 

(FIM) [59]. They also used perceptions to update the emotions that trigger different 

behaviors.  

 

Rudomin and Millan used XML scripting to specify behaviors and employed a Finite 

State Machine as a processing method [59]. Furthermore, they implemented 

probabilistic FSMs, hierarchical FSMs and layered FSMs to produce non-

deterministic results [60,61]. 

 

Similar to the data-driven study of Lerner et al. [39], Peters and Ennis have also used 

pre-recorded video sequences to extract real-life crowd behaviors and generate real 

life-like simulations [62].  

 

2.2 Crowd Simulation Using Parallel Computing  

 

In the literature there exist various research studies regarding crowd simulation, 

using various parallel computing platforms. Depending on the underlying hardware, 

various approaches have been implemented. This section summarizes some of the 

outstanding work related with the focus of this thesis.  
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2.2.1 Crowd Simulation Using Multi-CPU/Multi-Core Parallel Computing  

 

In PSCrowds study, Reynolds implemented a virtual underwater environment with 

thousands of inhabitants, running in real-time by using Playstation3 game console 

that contains eight processors (one Power PC processor (PPU) and seven Synergistic 

Processor Units (SPUs)) [63]. Reynolds modeled fishes as interacting particle 

systems, an approach that requires having information about the surrounding 

individuals. Using this information, the simulation model computes the behavior of a 

fish. Basically, an interacting particle system computes the behavior by using the 

distance information with the other agents. If the distance test is performed for all the 

agents, the computational complexity becomes O(n2). Although this approach is 

simple and works well for small populations, it becomes useless for large 

populations. In order to minimize computational load, spatial hashing techniques can 

be employed. While using spatial hashing, Reynolds designed an algorithm to make 

effective use of the underlying parallel processors, and ultimately to achieve higher 

performance [63]. Reynolds used static and regular sub-cubes as spatial cells, 

represented by a software class called “bucket.” Each bucket is processed by a single 

SPU. Such a granularity allows the workload to be divided into jobs, executed 

independently or in parallel by multiple processors. These buckets are also processed 

in an order-independent way to avoid scheduling overhead [63]. In this study PPU is 

used as a coordinator. Some of the major responsibilities of the PPU are simulation 

cycle update, synchronization, communication, and task assignment to the SPUs. In 

the beginning of each rendering, individuals are assigned to a single bucket. After 

this step each SPU updates the simulation on bucket-base.  A software class named 

“NearestN” is responsible for handling possible collision in the neighbor buckets. 

Reynolds has not used any load-balancing algorithm because of the homogenous 

distribution of individuals in the aquarium. PSCrowds was repeated for various 

scenarios. In the 2D version, 15,000 individuals were rendered at 60 fps. In the 3D 

version the population was 10,000. Finally, 5000 highly-detailed fish models were 

rendered in 3D at 30 fps [63]. 
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In a similar crowd simulation that visualized thousands of chickens, RapidMind Inc. 

described the use of multi-processor architecture, Cell BE (Cell Broadband Engine) 

which contains nine CPUs [64]. In Cell BE, one processor is IBM Power PC 

Processing Element and the rest are specialized processors (SPE) tuned for high-

performance floating point and integer math on short vectors. Since much of the Cell 

BE’s impressive performance resides in the SPEs, the key to obtain high 

performance on the Cell BE processor is to use SPEs efficiently. In this study, crowd 

simulation mainly covers the following tasks [64]:  

• Neighbor finding: Each character needs to perceive the state of its nearest 

neighbors. 

• Environment access: Each character needs to perceive its local environment. 

• State update: Each character needs to update its state over time. 

• Visualization: The current state of the each character needs to be rendered to 

the screen. 

 

Quinn, Metoyer and Zaworski worked on pedestrian simulation in a PC cluster made 

up of eleven computers [65]. In this system, they succeeded to move 10,000 

pedestrians with 1:50 seconds intervals. Their main goal was to make a system that 

could simulate and visualize large crowds in real-time. In this study, individuals were 

represented with 2D dots; hence no realistic rendering approach was employed. That 

is why the rendering cost was not important. The power-hungry part of this study 

was updating pedestrian locations based on social-powers. In this method, the 

distance between pedestrians would cause repulsive or an attractive forces on every 

other pedestrian. In real life this distance is a few meters away. In order to meet real-

time constraints, Quinn et al. used PC cluster and assigned a manager-worker style 

architecture for this task. The manager was responsible for communication with 

other PCs in the cluster (workers). It collected current positions of each individual 

after updating cycle and passed this information to the rendering engine. Each 

worker process was responsible for simulating pedestrian movement within a 

rectangular region of the building. Since the social-powers approach works on a few 



 29 

meters distance, grouping people in given boundaries minimized the required 

processing time as Reynolds described [63]. Similarly, Quinn et al. also used regular, 

fixed grids as spatial cells. In this study, they divided the simulation environment 

into 4m2 square cells. With nine neighboring cells forming a 6m. by 6m. square, the 

greatest possible distance is 5.26 meters in the diagonal. In order to communicate PC 

cluster, they used Message Passing Interface (MPI) library, which is very popular for 

parallel processing. During their study, they observed a linear performance increase 

as they added more PCs to the cluster. This scalability means that it is possible to 

increase the number of interactive actors by adding more PCs to the cluster. Since 

there is no inter-communication between workers, this really helps minimizing 

network traffic overhead. Similar to the Reynolds’ study they did not employ any 

load balancing.  

 

Steed and Haidar focused on dynamic allocation of regions considering crowd 

distribution and spatial partitioning algorithms [66]. They aimed to minimize 

network overhead when a cluster of servers is used to simulate large crowds. Unlike 

the studies summarized above, Steed et al. tried to minimize the load balancing 

problem, which likely occurs due to a larger crowd occupying a specific zone such as 

city center [66]. They used pre-recorded activity data to compare the effectiveness of 

the investigated partitioning methods. Among the four spatial partitioning schemes 

(quad-tree, k-d tree unconstrained, k-d tree constrained and region growing), region 

growing, used mostly in image processing, achieved the best result. This algorithm 

simply starts with a selected seed point and enlarges until a certain threshold is 

reached. In this study, Steed and Haidar picked seed points close to the mass 

populations [66]. The resulting partitioning became an even and irregular shape 

reflected the complex road structure and the population distribution. They defined 

the problem of using a priori regular partitioning as not “reflect[ing] how participants 

will actually use the space. Certain regions might be very crowded and thus they 

become failure points at run-time” [66].  
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Zhou and Zhou tried to use a PC cluster to partition flock [67]. Their aim was to 

minimize O(n2) complexity and to increase the entities in the simulation. Initially, 

they investigated two possible communication methods between PCs in the cluster. 

The first technique was “all-to-all” communication; the second was “near-neighbor-

communication.” In all-to-all communication each PC can communicate with the rest 

and collect information about dynamic entities on other zones. Although this 

approach guarantees global vision, it significantly increases network traffic which 

causes an overhead in the simulation system. Taking the limited vision of boids in 

the flock into consideration, a better approach which is “near-neighbor-

communication” can be used to decrease network traffic. Besides network 

communication, Zhou and Zhou also examined even-distribution and dynamic-load-

balancing issues. They observed due to migration, un-even distribution frequently 

happened in their simulation system. In order to overcome this improper work-load 

distribution, they considered population distributions to redefine zones, and they 

used dynamic partitioning when necessary. Up to 512 boids were rendered in real 

time using different cluster configurations. They used a proper load-balancing 

algorithm to obtain a significant performance. However, it was indicated that 

frequently invoked load-balancing may lead to inefficiency. They offered to use 

suitable threshold value to invoke load-balance as a solution. 

 

The commodity multi-core CPUs offer researchers a way to achieve speedups by 

exploiting multi-thread programming. Berg and colleagues demonstrated a collision 

avoidance approach in crowded scenes that also contain moving obstacles [68]. They 

used a pre-computed road map for global path planning. This approach increases the 

computational performance of the simulation with multi-core CPUs. Their approach 

was built upon the concept of velocity obstacles, a technique found in robotics for 

motion planning to avoid dynamic obstacles. In this velocity-obstacles based 

implementation, each agent senses the environment independently to compute a 

collision free path. Agents acquire information on the positions and velocities of 

other agents and obstacles. This information is used to decide how to move locally. 

However, this approach ensures no oscillatory behaviors. The study employed Intel 
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Xeon X7350 2.93 GHz with 16 cores. Their approach is fully parallelizable since 

each agent requires independent computation. This parallel solution showed that 

simulation performance increases almost linearly with the number of cores. They 

achieved interactive rates on virtual environments containing several thousands to 

tens of thousands of agents. 

 

In a recent study Stephen and his colleagues presented high-performance collision 

avoidance for crowds [69]. Similar to the study by Berg et al., their approach was 

built-upon the concept of velocity obstacles. This newly introduced collision 

avoidance algorithm was called ClearPath. They also extended ClearPath with data-

parallelism and thread-parallelism, and named this extended version as P-ClearPath. 

The results of the study showed that P-ClearPath achieves 8-15× speedup compared 

to the previous VO-based solutions. In the implementation, an Intel Quad-Core CPU 

that supports 16 threads was used. In this setup a 2× speedup was observed when 

dynamic partitioning was used to reduce load imbalance. Static partitioning causes 

the threads handling sparsely populated zones to finish computations earlier than the 

threads dealing with the crowded zones. It was also indicated that P-Clear uses 20% 

of the CPU resources for simulating 5000 virtual characters, meaning that the rest of 

the CPU resources can be used for other computations such as AI.  

 

2.2.2 Crowd Simulation Using GPU  

 

Recently, several studies have been published regarding crowd simulation with a 

GPU. Current studies employ NVidia CUDA instead of the previously used GPGPU.  

 

An early work regarding crowd simulation on the GPU was demonstrated by Courty 

and Musse [70] in a study named FastCrowd. Significant speedup was achieved with 

the GPU implementation instead of the CPU implementation. 

 

Erra et al. demonstrated massive simulation of a distributed behavioral model on the 

GeForce FX 5800 GPU [71]. Well-known boids implementation was chosen. GPU 
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results were compared with CPU results, and better performance was reported. 

Although an early model of compute-capable GPUs was used, the speedups were 

very important because it showed that the GPUs began to take the compute 

responsibility from the CPUs. 

 

Richmond and Romano presented a high performance agent based pedestrian 

simulation using GPGPU [72]. They indicated that, GPGPU was chosen because 

NVidia CUDA is a vendor dependent solution. Their work was designed to support a 

scripting based interface, thus defining more complicated agent behaviors. To 

increase simulation performance, the pedestrian data and simulation were kept in the 

GPU. This approach helped them remove data transfer overhead.  Similarly they 

used real-time feedback to employ an LOD system on the GPU and to improve 

rendering and simulation performances. With the LOD system, the reserved 

resources could add more characters to the simulation. They ran several simulations 

using different populations and rendering elements. When triangles were used to 

represent pedestrians, higher frame rates were achieved. For example, 13 fps was 

reported for the population of 262,144 pedestrians. The frame rates were decreased 

significantly when polygonal human models were used. 40 fps was reported for the 

population of 1000 pedestrians. GeForce 8800 GT GPU was used for these tests. The 

authors later improved this study and implemented the new version using CUDA. 

They reported 250× speedup compared to the single CPU implementation. 

 

D’Souza and his colleagues simulated a mega-crowd on the GPU [73]. They 

successfully implemented SugarScape model with a GPGPU. The simulation, which 

includes more than two million agents, achieved 50 updates per second. The 

SugarScape model shares properties with agent-based models. The authors used GPU 

texture memory to store agent attributes and GLSL to write shader code. The 

simplicity of the model and the minimal cost of the rendering primitives might also 

help achieve the goal of rendering huge populations at high simulation cycle rates. 

However, the actual issue was to compute and store everything on the GPU and thus 

take full advantage of the extreme computational power and the high memory 
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bandwidth. Although no tests were performed, it was indicated that the implemented 

prototype would outperform even High Performance Clusters (HPCs). 

 

In a recent study by Passos et al.,  it was shown that simulation and visualization of 

very large crowds in real-time is possible with NVidia CUDA technology [74]. 

Researchers succeeded in running a simulation of more than one million boids at 

nearly 30 fps, a great number compared to the 15,000 boids Reynolds simulated with 

a multi-CPU architecture. This significant result showed that successful casting of 

the existing algorithms to general purpose parallel computing can create very 

significant enhancements to real-time crowd simulation performance. Although they 

represented boids with very simple geometric primitives, more complicated 

geometries can be used in the rendering process. The high performance of this 

implementation relies on an effective sorting method used as a base to the spatial 

hashing approach. The simulation was repeated, using different populations ranging 

from 64 to 1048576. Passos et al. also implemented the simulation on the CPU and 

the GPU and showed that GPU bypasses the CPU at around 250 boids [74]. As the 

number increases, the frame rates of the CPU decreases quadratically. The algorithm 

was tested on 2.4 Ghz and NVidia GTS 8800 GPU. The study was extended with the 

addition of a 3rd dimension, a new data structure, and several other sorting methods. 

Using the previous hardware, comparable speedups were again obtained [75].  

 

Karthikeyan used CUDA technology to render crowds of virtual humans in his 

master’s thesis [76]. The computations for the animation were compared on the GPU 

and the CPU.  The results showed that the GPU bypasses the CPU at around 1000 

virtual characters.  
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CHAPTER 3 

 

 

�Vidia CUDA TECH�OLOGY A�D  

GE�ERAL PURPOSE PARALLEL PROGRAMMI�G 

 

 

 

This chapter presents detailed information about the CUDA architecture and general 

purpose parallel programming. The issues covered in this chapter will be used 

throughout the rest of this thesis, to show how CUDA technology and parallel 

programming helps achieve significant speedups in massive crowd simulation. 

 

3.1 What is �Vidia CUDA? 

 

Although announcements were made earlier, NVidia introduced CUDA to the public 

in February, 2007 [9, 10]. This technology was designed to meet several important 

requirements for a wide audience’s use. One of the most important requirement is the 

ability to program GPUs easily. Simplicity is necessary to ease GPU parallel 

programming and enable its use in more disciplines. Before CUDA, GPU parallel 

programming was limited to shader models of the graphics APIs. Thus, only the 

problems well-suited to the nature of vertex and fragment shaders were computed by 

using GPU parallel processing. Additionally, expressing general algorithms in terms 

of textures and GPU provided 3D operations by using only float numbers were 

among the issues that limit the popularity of the GPU computing [77]. To achieve the 

goal of making GPU parallel programming easy and practical, NVidia offered to use 

C programming language with minimal extensions [9]. Another important issue is 

the heterogeneous computing model, which makes it possible to use CPU and GPU 
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resources together [9]. CUDA lets programmers divide the code and data into sub-

parts, considering their suitability to the CPU/GPU architecture and respective 

programming techniques. Such a division is possible because the host and device 

have their own memories. In this sense, it also becomes possible to port existing 

implementations gradually, from the CPU to the GPU [9].  

 

It should be noted that CUDA is NVidia specific. In order to make a GPU parallel 

processing application run on ATI GPUs as well, there exists another programming 

tool called OpenCL (Open Computing Language). Currently, this initiation is lead by 

Apple Inc.  

 

3.2 CUDA Architecture 

 

The competition in the video-game industry to present more life-like and highly-

detailed 3D graphics has also started a competition between the GPU producers to 

offer better hardware to the gamers. Thanks to the nature of the graphics processing, 

the newly released products offer highly parallel processing units with high-memory 

bandwidth and computational power of more than teraflops per second [8,9,77]. 

Modern GPUs are designed to support data-parallel computations, which means 

many threads execute the same code for each data-element. Data-parallel processing 

can be shortly described as mapping data elements to parallel processing threads 

[11]. The performance increases if there is little to no branching, since exactly the 

same code is executed for all parallel running threads. Image processing kernels and 

matrix operations are among the typical applications that get the most benefit from 

this architecture. However, significant speedups can be achieved in many additional 

disciplines, by porting existing algorithms to this data-parallel architecture [1-6]. In 

the near future, the hardware developers will offer better GPUs with more parallel 

processing threads. It is the responsibility of software developers to use this 

incredible GPU processing power that is comparable to the processing power of the 

high-performance computing clusters.  
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The data-parallel and thread-parallel architecture introduces scalability. Since no 

extra effort is necessary to run the existing solution, the new GPUs are capable of 

running more processing threads. It means that the code designed for the NVidia 8 

series runs faster in NVidia GTX series without any additional coding. Considering 

the nature of massive crowd simulations, data-parallelism should be provided by 

setting one thread per virtual character.  

 

The three abstractions offered by NVidia ensure the granularity required for good 

data parallelism and thread parallelism [11]. These abstractions listed below are 

designed to make CUDA programmers’ life easy.  

 

• Thread Group hierarchy: Threads are packed into blocks which are also 

packed into a single grid. 

• Shared memories: CUDA lets threads use six different memories that are 

designed to meet different requirements.  

• Barrier synchronization: This abstraction synchronizes threads within a single 

block and makes a thread wait the others to finish related computing, before 

going further. 

 

C for CUDA makes it possible to write functions that run on the GPU by using C 

language. These functions are called “kernels,” which are executed for each thread in 

a parallel manner, unlike the conventional serial programming functions that run 

only once. 

 

CUDA’s architecture offers thread hierarchy in top-down order as follows: 

1. Grid: A grid contains one or two dimensional blocks. 

2. Blocks: A block contains one, two or three dimensional threads. Current 

GPUs allow a block to contain 512 threads at most. The blocks are executed 
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independently, and they are directed to available processors to provide 

scalability. 

3. Thread: A thread is the basic execution element. 

 

This hierarchy and the structure are depicted by Figure 11. For example if it is 

assumed that 1048576 virtual characters to be processed independently in parallel 

manner and the block size is determined as 512, then there are 2048 blocks.  

 

 

Figure 11: CUDA thread hierarchy. 

 

3.3 GPU Processing 

 

CUDA-enabled GPUs contain several multi-threaded streaming multi-processors 

(SM). For example, a GTX295 GPU contains 60 SMs. Each SM is comprised of 

eight Scalar Processors (SP). As depicted in Figure 12, SMs also have two special 

function units: a multithreaded instruction unit, and an on-chip shared memory. Each 

SP can run a single-warp (containing 32 threads) concurrently.  
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SIMT (Single Instruction Multiple Thread) architecture manages many concurrent 

threads. A SIMT unit, which handles every issue in warp-basis, exists for each SM. 

The execution of SIMT is illustrated by Figure 13. In each time step a common 

instruction is applied to the active threads. Thus, the performance improves when 

each thread follows the same execution path. Branching causes delay because the 

threads within a warp wait until a common instruction is reached. For the best 

performance, similar parallel-threads should be organized sequentially. This issue 

should be taken into consideration during the design phase.  

 

 

Figure 12 Streaming multiprocessor. 

 

Figure 13: SIMT workflow. 
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3.4 Device (GPU) Memories 

 

Efficient GPU parallel programming is based on proper usage of the device memory. 

Thus, the details of the device memory, comprised of six different memories with 

various characteristics, need to be known. The memory spaces illustrated in Figure 

14 are all well-suited to different requirements. This section gives detailed 

information regarding these memory spaces and how to use them efficiently 

depending on implementation. 

 

Figure 14: Device memory architecture. 

• Register: The register is located on the chip and thus offers a fast access. 

However this memory is only accessible by a single thread and has limited 

space. For example, the GTX 200 GPU offers 16,384 32-bit registers per SM.   

• Local: Local memory is used as extra space when registers do not meet the 

requirements. Since this memory space is not located on the chip and not 

cached, it suffers from bandwidth optimization. 

• Shared: Shared memory is designed for performance. This on-chip memory 

is located close to the stream processor and offers very low-latency [9]. 

Shared memory is accessible by the threads within a block and much faster 

than the global memory. Currently the shared memory space is limited to 
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16KB per block. This memory space is accessible to all threads in a block. 

Although designed for fast access, shared memory only offers limited 

capacity. Thus, when memory size matters, fewer threads should be chosen 

over the maximum limit of 512 threads per block. In addition to fast access, 

shared memory also allows synchronization, required to keep threads aside 

for certain cases. Replacing global memory accesses with shared memory 

saves significant global memory bandwidth. Therefore, it is certainly worth 

the extra effort to re-implement algorithms to take the most advantage of 

shared memories. 

• Global Memory: This off-chip memory space can be considered as the most 

flexible memory space. It offers both read and write operations as well as 

provides access to all threads and the host. Unfortunately Global memory is 

very ineffective for access latency. Since this memory space is not cached, 

coalesced memory access is required for better performance. It also does not 

require too much memory space.  

• Constant Memory: This memory space is read-only and, similar to the 

global memory, off-chip. However, constant memory is cached and offers 

better performance. Currently, the available constant memory space is limited 

to 64KB. 

• Texture Memory:  Texture memory is actually a read-only global memory. 

Compared to global memory, this memory space offers better performance 

from a cached-structure. Texture memory allows data representations in one 

of these combinations:  

o Dimensionality: 1, 2 or 3.  

o Data Component: 1, 2 or 4.  

o Data Elements: Signed/Unsigned Integers (8,16 and 32-bit), Floats 

(16 and 32-bit) 

Read-only memory accesses should be employed via texture memory 

whenever possible to offer better performance.  
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The concurrent execution between the host and the device can be utilized by using 

asynchronous functions. When these functions are employed the control is returned 

to the host before the device complete whole process. Thus the performance of 

heterogeneous computation can be improved. Asynchronous tasks are listed as 

follows [9]: 

• Kernel launches, 

• Memory copy functions with Async suffix, 

• Host to Device and Device to Host memory copy functions, 

• Memory setting functions 

 

It is also possible to employ page-locked host and device memory copies 

concurrently with kernel executions [9]. However, not all CUDA enabled devices 

support this functionality. 

 

3.5 Enhancing Computational Performance 

 

To improve CUDA implementation performance, many actions can be employed. 

However, the overall effect of each technique is unique. Some points should always 

be taken into consideration while the rest depend on the nature of the problem and 

the computational content. Non-optimized CUDA codes always suffer from 

performance bottleneck. Thus, special care must be given to certain issues. NVidia 

has defined three strategies regarding performance optimization [11]: 

 

1. The first strategy achieves better throughput from maximizing parallel 

execution. The problem must be converted into data-parallel structure as 

often as possible. For massive crowd simulation, an actor-based solution 

(where each virtual character is handled as a single and autonomous agent) 

fits best. Thus, a thread per character can be assigned for these computations.  

2. The second strategy uses the bandwidth efficiently. This strategy minimizes 

data transfer between the host and the device/s and uses device memories 



 42 

appropriately. If possible, high-performance shared memory or cached 

texture memory should be chosen instead of global memory. However, due to 

the nature of crowd simulation, global memory is almost indispensable. 

Therefore, the structure of device data must be well suited to the CUDA 

architecture. 

3. The third strategy is the optimization via instruction usage. This strategy 

covers choosing alternative approaches to offer high performance. For 

example, single precision arithmetic could be enough for character 

navigation. Consequently, there is no reason to use double precision which 

offers lower computational throughput. The instruction level optimization 

also minimizes branching within a warp. This ensures that all of the threads 

follow a similar execution path and the computational resources are used 

efficiently. CUDA also provides several math functions for better 

performance, which should be used whenever possible. The overall 

performance becomes significant when instruction level optimization is 

employed due to the huge number of characters. 

 

3.6 FERMI: The Upcoming CUDA Architecture 

 

NVidia will further improve GPU parallel computing with the upcoming FERMI 

architecture, which is built upon on previous G80 and G200 architectures. The new 

FERMI-enabled G300 GPU will introduce several advances. While designing 

FERMI, the developers focused on improvements such as double precision 

performance, error-checking, memory operations, and memory space [78, 79]. 

FERMI will also introduce some significant innovations to its hardware. The main 

innovation, the 3rd generation SM, is illustrated in Figure 15. Firstly, the number of 

cores in SMs will be raised from 8 to 32. The G300 GPU will contain 512 CUDA 

cores. The new double precision performance speedup will be 8× [78]. Similarly 

shared memory capacity increment will be 4 times larger, at 64 kb. The new 64 bit 

memory-space will also offer more GPU memory. Two other improvements worth 
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mentioning are the 10x context switching performance and the NEXUS development 

environment. The details of these new improvements can be found on the NVidia 

FERMI white paper [78].  

 

Figure 15: 3rd generation SM. 
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CHAPTER 4 

 

 

MASSIVE CROWD SIMULATIO� WITH 

 GE�ERAL-PURPOSE PARALLEL PROGRAMMI�G 

 

 

 

This chapter explains how general purpose parallel programming can be used for 

massive crowd simulation studies in a step-by-step approach, using NVidia’s CUDA 

technology. Firstly, a generic massive crowd simulation application, which is 

assumed to run on a single CPU core, will be ported to the GPU. In order to improve 

computational performance, various approaches will be introduced in the following 

sections. These approaches will utilize parallel computing basics and CUDA 

architecture. 

 

4.1 Massive Crowd Simulation Scenario 

 

It is assumed that over one million virtual pedestrian (actual population is 1,048,576) 

live in a virtual city. The aim is to simulate the navigation and behavioral modeling 

of these virtual people and try to improve computational performance using GPU 

parallel processing. This case scenario only focuses on navigation and reasoning 

simulation, and thus excludes rendering process. Consequently, there is no 3D 

graphics and no filtering operations like visibility or culling tests and LOD. In each 

simulation loop, the application computes the virtual character’s navigation and 

reasoning processes. The average computational cost per character is 1200 arithmetic 

operations (+:560; -:80; /:240; *:240; sqrt: 80) as given by Listing 1. The aim of this 

generic function is to perform same amount of arithmetic operation to compare CPU 
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and GPU performances, not to simulate realistic behavior and navigation model. 

Such functions were given in Chapter 5 and Chapter 6. The application performs 

these processes via the “processAvatar” function, which is called for all characters 

during each simulation loop. Table 1 lists the attributes of a virtual character. 

  
 Listing 1: Pseudocode of the “processAvatar” Function 

 
for (idx =0; idx <populationCount;++ idx) 

for (i=0;i<80;++i) 

  position[idx].x/=i; 

  position[idx].y/=i; 

  position[idx].z/=i; 

  heading[idx].x-=sqrt(heading[idx])+i; 

  mood[idx]+=personality[idx]+gender[idx]+age[idx]+weight[idx]+i; 

agility[idx]+=gender[idx]*age[idx]*height[idx]*i; 

  

Table 1: The attributes of a virtual character. 

Attribute �ame Data Type Data Range Constant 

position float3 float range no 

heading float 0-360 no 

age integer 0-120 yes 

height integer 0-255 yes 

weight integer 0-255 yes 

personality integer 0-7 yes 

mood integer 0-9 no 

agility integer 0-100 no 

gender integer 0-1 yes 

model_index integer 0-100 yes 

cloth_index integer 0-100 yes 
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4.2 Test Implementation Setup and Results 

 

In this test implementation, host-side computations were done using a single CPU 

core (Intel I7 920 @2.67 GHz) and device-side computations were done using an 

NVidia GTX 295 GPU. Actually, NVidia GTX 295 GPU is made up of two GPUs. 

In this thesis multi-GPU has not been utilized. Thus only a single GTX 200 series 

GPU has been used to compare single GPU performance with single CPU core 

performance throughout the thesis. The speedup is almost 100% scalable when 

multi-GPUs are employed [9, 10]. Table 2 gives performance results of the crowd 

simulation implementation and the improvements. Figure 16 shows computational 

enhancement using logarithmic representation, since the overall speedup is nearly 

475×. It can be seen that it is possible to achieve two orders of magnitude speedups 

using CUDA parallel computing architecture. Please note that the achieved 475× 

speedup is totally dependent on this simulation. However, it is even possible to 

achieve better speedups depending on the computational model and implementation 

by using functionalities such as asynchronous concurrent execution as discussed in 

Chapter 3.  

 

Figure 16: Speedup via parallel processing and further improvements through 
computational performance considerations (logarithmic representation). 

 

The following chapters will also introduce comparable results. But, it must be noted 

that this test compares many-core parallel computing with single core sequential 
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computing. Therefore, this test does not compare CPU computing with GPU 

computing. Such a test should compare optimized multi-thread CPU implementation 

with optimized GPU implementation, which is not within the scope of this thesis. 

Table 2: Computational enhancement of the generic massive crowd simulation. 

(CPU: Intel I7 920 @2.67 GHz, GPU: . GTX 295) 
Description Time  

(ms) 

Step  

Speedup 

Cumulative 

Speedup 

Step1 :The simulation was computed on the CPU 49,393.7 - - 

Step 2: The simulation was computed on the CPU and 

the GPU. The computational load was shared equally. 

The simulation time also included host-to-device and 

device-to-host data transfer. Due to bad design, all 

attributes were transferred in each simulation loop. 

Memory pattern includes several non-coalescent 

accesses. 

22,737.4 

 

2.17 2.17 

Step 3: The simulation was computed on the GPU. The 

simulation time also included host-to-device and device-

to-host data transfer. Due to bad design, all attributes 

were transferred in each simulation loop. Memory 

pattern includes several non-coalescent accesses. 

183.6 123.84 269.02 

Step 4: Unnecessary attribute transfer was prevented. 

The design was improved by dividing data structure. 

Details can be found in section 4.3.4 

128.1 1.43 385.59 

Step 5: Data compaction was used for the transferred 

data. In this example decode/encode cost was found 4 

ms.  

113.1 1.13 436.73 

Step 6: Memory-level optimization implemented. 104.4 1.08 473.12 

Step 7: Instruction-level optimization implemented.  104.2 1.002 474.03 

 

4.3 Transferring Computational Load from a CPU to a GPU 

 

Transferring computational load from a CPU to a GPU helps achieve good speedups. 

This transfer actually ensures the parallelism, since the serial execution on the CPU 
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is replaced with a highly parallel solution on the GPU. CUDA technology names the 

CPU as “Host” and the GPU as “Device”. Hereinafter, this naming convention will 

be used.  

 

As previously explained, three strategies must be employed to achieve maximum 

speedup. Section 4.3.1, 4.3.2 and 4.3.3 give details of the first strategy, which is to 

maximize parallel execution. Section 4.3.4 covers memory and bandwidth issues, 

while section 4.3.5 mentions the last strategy, instruction level optimization.  

 

4.3.1 CPU Computing 

 

In CPU computing, the application was assumed to run on a single CPU core. The 

result of this step was used as base value to compute the cumulative and step 

speedups. As previously mentioned, visualization issues were excluded in this 

example scenario and the total computational cost for a virtual character in a single 

simulation loop was 1200 flops. Using single CPU core (Intel i7920 @2.67 GHz), 

the average simulation cycle was found 49393 milliseconds. The simulation 

workflow is illustrated in Figure 17. The name of the simulation function is 

“processAvatar_CPU”. 

 

 

Figure 17: The workflow of the simulation running on a single CPU core. 
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4.3.2 CPU&GPU Computing 

 

In this step, the computations were performed both on the CPU and GPU. It was 

assumed that programmers successfully divided “processAvatar_CPU” function into 

two parts (“processAvatar_CPU,” and “processAvatar_GPU”), suitable to run on the 

CPU and GPU. The computational cost for these functions was nearly 600 flops for 

both. The simulation workflow illustrated in Figure 18 shows that including the GPU 

as a co-processor, introduced a new data-transfer overhead between the host and the 

device. Despite the newly introduced data transfer cost, porting even half the 

computational load to the GPU achieved nearly 2× speedup. In this step, the average 

simulation cycle was found 22737.4 milliseconds.  

 

 

Figure 18: Workflow of the CPU and GPU computing. 

 

4.3.3 GPU Computing 

 

This step assumed that the whole simulation was computed on the GPU. Thus CPU 

resources were freed for other purposes. The new simulation workflow, illustrated in 

Figure 19, achieved 269.02× speedup, which is tremendous. Please note that this 

initial design was very poor due to unnecessary memory copy operations. Figure 20-
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a shows that 47% of the GPU processing is occupied by memory copy operations. 

This issue will be fixed in the following sub-sections.  

 

Figure 19: Workflow of the GPU computing. 

 

 

Figure 20: GPU occupancy plot. 

(Top, 20-a: Shows bad CUDA implementation. Each attribute was transferred 
between the device and the host. Middle, 20-b: Shows improvement by eliminating 
the transfer of unused attributes. Bottom, 20-c: Data compaction minimizes the size 
of the transferred data, thus provides further enhancement).  
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4.3.4 Minimizing Data Transfer and Data Access Cost  

 

One major bottleneck in general purpose parallel programming is the data transfer 

time between the host and the device. Therefore, GPU vendors try to improve bus-

width. Table 3 shows the bandwidths of various CUDA capable GPUs. The previous 

sections showed that I/O time limits better speedups. Therefore, the size of 

transferred data needs to be reduced. Figure 20-a depicts the GPU occupancy of the 

test simulation. In each simulation loop, almost half of the GPU resources were 

occupied by memory copy operations. It should be noted that stream reduction makes 

sense when data transfer frequency is high. In other words, it is not worth trying to 

reduce data size in a very compute intensive application when data is transferred to 

the GPU only a few times because data transfer time becomes negligible compared to 

processing time. However crowd simulation requires data transfer with every 

simulation cycle or at similarly high frequencies, since it is required to update virtual 

characters’ action and position in each frame. Thus, stream reduction is a significant 

issue in massive crowd simulation applications on general purpose parallel 

programming.  

Table 3: Bandwidth of various CUDA-enabled devices. 

Model Bandwidth max 

(GB/s) 

Bus width (bit) 

GeForce 8300 GS 6.4 128/256 

GeForce 8800 GTX 86.4 384 

GeForce 9500 GT 25.6 128 

GeForce 9800 GTX 70.4 256 

GeForce GTX 260 111.9 448 

GeForce GTX 295 2*111.9 2*448 
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Stream reduction, also known as stream compaction, can occur with several steps. 

Firstly, only the required data sets should be transferred. The data structure may 

contain all of a virtual character’s attributes but some may not be processed on the 

GPU. Thus, unnecessary traffic will occupy a limited bandwidth. To accomplish this, 

the data structure should be divided into categories of CPU related, GPU related and 

CPU/GPU related, limiting the transferred data to the CPU/GPU related category.  

 

• CPU related attributes: These attributes are usually related with visualization 

or pre/post processing and have no effect on GPU processed functions such as 

navigation or behavior modeling. Texture IDs, hair color, eye color are some 

of these attributes. Since transferring these attributes into the device 

consumes memory space and bandwidth, keeping them on the host memory 

helps achieving more speedup.  

• GPU related attributes: These attributes are used by GPU to produce results 

to be used by the CPU. The mentioned attributes are transferred to the GPU at 

the initialization phase and stored in the device memory as long as used by 

GPU kernels. The transfer time in the initialization phase is negligible since it 

is a one-time task. However significant amount of device memory accesses 

are required in each simulation cycle. Thus using appropriate device memory 

and memory access strategy lies at the center of this optimization.  

• CPU/GPU related attributes: These attributes are both used by the CPU and 

GPU throughout the simulation. Since there might be extensive number of 

transfers it becomes important to minimize the transfer time. 

 

Figure 20-b shows the improvement achieved by preventing unnecessary memory 

copy operations. In this step, the constant attributes and CPU related attributes 

(model and texture ids) were removed from the main data structure and thus there 

was no need to transfer these attributes in each simulation loop. 
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Secondly, the stream size can be reduced with a decrease in data transfer frequency. 

Occasionally, some of the attributes may not be required in each simulation loop. In 

massive crowd simulation, an avatar’s act can be modeled using combination of 

several attributes. The weight and refreshment rate of these attributes might be 

different, allowing further speedup. However, this solution is implementation 

dependent and requires extra coding effort. 

 

Finally, data compression, an approach that deals with the transfer of large amounts 

of data using low bandwidth can provide further stream reduction. The two methods 

of data compression techniques are lossless and lossy compression. Lossy 

compression is usually employed for perceptual content such as audio and video 

[80]. In massive crowd simulation, lossy compression can be used for the positional 

data (translation and rotation values) required to be transferred frequently, since the 

loss of few centimeters of accuracy probably is not a problem. Lossless compression 

is employed when data content, such as behavioral attributes, is very important and 

should not be changed. 

 

Numerous research studies dealt with minimizing the size of transferred data; some 

even focused on increasing the efficiency of GPU parallel processing. These GPU 

parallel processing studies recognize stream reduction as a well-known approach in 

which unnecessary data is removed from the output stream before it is transferred. 

Roger, Assarsson and Holzschucz implemented stream reduction in GPGPU using 

the parallel structure of the underlying hardware [81]. They simply divided output 

data and processed them in parallel, providing significant speedup compared to the 

sequential data reduction. Horn also studied data reduction on GPGPU to run faster 

collision detection on the GPU [82]. Unlike the previous studies on GPGPU, Balevic 

et al. employed CUDA and introduced a novel approach to reduce the size of 

simulation data on massively parallel GPGPUs through arithmetic coding [80]. They 

evaluated Huffman coding and arithmetic coding and preferred the arithmetic 

encoding since it does not often require non-aligned memory accesses. As previously 
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explained, the cost of non-aligned memory accesses on the GPU side significantly 

reduces the computational throughput. Balevic et al. used light scattering data and 

improved data transfer time nearly 30× compared to the uncompressed data transfer. 

Although this speedup seems significant, the overall performance enhancement 

needs to be evaluated including the newly introduced overheads such as 

encoding/decoding and extra memory accesses in the GPU. They ultimately showed 

that arithmetic encoding significantly reduces data transfer and storage costs while 

ensuring no data loss. Harris, Sengupta and Owens implemented another stream 

reduction study, using GeForce 8800 GTX which offers native scatter on the 

hardware. They obtained more efficient results compared to the study of Horn that 

used GeForce 6800 without native scatter capability [83]. Recently, another stream 

reduction study reported a 3× speedup compared to the previous published 

algorithms using SIMD architecture and global barrier synchronization [84]. 

Although the authors used CUDA, they indicated that the algorithm also suits AMD 

GPUs and the expected Intel Larrabee, since they only used implicit atomicity in 

SIMD architecture and barrier synchronization [84]. 

 

Although these researchers have demonstrated various approaches for stream 

reduction, other data reduction techniques can be employed for massive crowd 

simulations on the GPU. The case study can better explain this approach. As seen in 

Table 1, the GPU-updated attributes are mostly integer scalars between 0-100 to 

represent output of the behavioral model. Instead of using 32-bit integers to transfer 

these attributes, shorter bit representations can be used. Similar bit reduction can also 

be applied for position or angular information. For example for avatar direction, 9 

bits are enough to cover 360 degrees since rotations less than a degree does not 

matter in visualization. Similarly, when elevation difference is not large, two less bits 

can be employed instead of 32-bit float. The approach can be named as bit 

compaction. The data size reduction becomes significant in highly populated crowd 

simulations. The first advantage of this approach is the minimal cost of the newly 

introduced decode and encode operations performed on the CPU and the GPU 
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respectively. Unlike the previously mentioned compression techniques, bit level 

extraction and insertion introduce almost no overhead compared to the other 

algorithms. Another advantage is the minimization of data access operations on the 

GPU, which is costly especially when using global device memory. The global 

device memory access cost increases when non-coalesced data structures are used. 

For example using a data structure comprised of 7 integer values significantly 

reduces GPU computing performance since this structure does not ensure coalesced 

memory access as previously described. Since any four-byte or eight-byte data 

structures are processed in single instruction, converting reduced data structure into a 

four-byte or eight-byte data structure is better if the reduced data size is shorter. In 

this case, a 29-bit can be inserted into a 32-bit envelope by just padding 0s to the end. 

Since this would be part of existing decode/encode functions, almost no instruction 

cost is introduced.  

Figure 20-c shows the additional speedup achieved by just employing this simple bit 

compaction technique. The achieved step speedup and cumulative speedup (1.13 and 

436.73 respectively) show that this approach is certainly worth implementing in 

cases where fewer bits represent the same integer values. Equation 1 shows the case 

when data reduction should be employed.  

 

ssmemoryAcceencodedecodeerdataTransfssmemoryAcceerdataTransf TTTTTT
~~

+++>+  (Equation 1) 

 

where, 

erdataTransfT  denotes the uncompressed data transfer time (device�host), 

ssmemoryAcceT  denotes the memory access time for uncompressed data at the GPU, 

erdataTransfT
~

 denotes the compressed data transfer time (device�host), 

decodeT  denotes decode time of the compressed data on the CPU,  

encodeT denotes decode time of the compressed data on the GPU, 

ssmemoryAcceT
~

denotes the memory access time for compressed data at the GPU. 
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To the best of the author’s knowledge, the above mentioned bit compaction 

technique, which can be evaluated in means of data transfer and providing aligned 

memory access, has not been offered for massive crowd simulation studies using 

parallel processing. The simplicity of the proposed approach is the main advantage 

while the main disadvantage is the dependency on the implementation since this 

approach only works when many small integer numbers are required to transfer 

between the device and the host frequently. Fortunately, this is not an unusual case in 

massive crowd simulation studies, and this approach is one of the novelties within 

this thesis. 

 

4.3.5 Using Device Memory Efficiently  

 

In the previous chapter, the specifications of the six device memories were discussed 

in detail. Using shared memories becomes critical when excessive use of global 

memory can be replaced. When global memory is employed, providing coalesced 

memory accesses ensures extra speedup. In CUDA architecture the global memory 

access costs one or two memory transactions for all threads of a half-warp (16 

threads) depending on the bit-length,. However, for non-coalesced access patterns the 

bandwidth is around an order of magnitude lower than coalesced patterns [9]. This 

issue becomes significant in massive crowd simulation, where excessive memory 

access requirement is very common. In this simulation, using coalesced pattern 

further improvement was achieved (step speedup: 1.08, cumulative speedup: 473.12).  

 

4.3.6 Instruction Level Optimization   

 

Although instruction level optimization does not provide as noticeable speedups, it is 

easier to implement and, depending on the content and accuracy expectations, it is 

definitely worth trying. The main rule of thumb for this type of optimization is to 

prefer single-precision. Therefore, double-precision arithmetic must be avoided 
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whenever possible; however single-precision is definitely enough for all crowd 

simulation applications.  

 

To improve computational performance, CUDA architecture offers several 

computationally low-cost functions that easily replace existing operators or 

functions. One of these utilities is __fdividef(x, y), which performs division twice as 

fast as the standard single-precision floating point division [9]. Similarly, 

__sincosf(x,sptr,cptr) performs better than the respective trigonometric functions. 

The details of such utilities can be found in the CUDA reference guide [9].  

 

Instruction level optimization is not only limited to the type of precision or utility 

functions. The computational performance enhancement tricks can be employed in 

GPU parallel programming as well. A typical example is the use of the squared 

distance metric to avoid expensive square root operations. Similarly, bit-wise 

operations should be used whenever possible instead of division operation [9].  
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CHAPTER 5 

 

 

FUZZY I�FERE�CE WITH GPU PARALLEL PROCESSI�G 

 

 

 

As previously mentioned, one of the contributions of this study is high-performance 

fuzzy inference with CUDA, which utilizes GPU parallel processing architecture. 

Design considerations provided significant computational performance. For example, 

it is possible to make nearly half billion fuzzy inferences per second, using single 

GTX 295 GPU, 300× faster than an average CPU core.  

 

The reasons for choosing fuzzy logic for behavioral modeling or simulating some 

actions for massive crowd simulation are as follows: 

• Ability to produce realistic and less predictable reactions. 

• Ability to capture a real human knowledge-base and use it extensively with 

minimal coding. 

• Use of an AI technique that is more suitable to model complex virtual 

character behavior. 

 

This chapter summarizes the background of fuzzy logic and explains the 

implementation details. 

 

5.1 Fuzzy Logic 

 

Fuzzy sets were first introduced by Lotfi Zadeh in 1965 [85], and over the last 40 

years, fuzzy logic has been used extensively in many application areas, including 
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crowd simulation [86-88] and agent behavior modeling [59,89]. As stated by Zadeh, 

imprecise inputs are important for human thinking, or other perceptual actions such 

as pattern recognition, communication and abstraction. For example, humans can 

easily process the imprecise information such as tall, very tall, hot, and too hot. 

However, computers require precise inputs and programmers are very familiar with 

this yes/no (Boolean) logic. In classical set theory (crisp) there is a distinct borderline 

between two categories. As shown in Figure 21-a, a human is either tall (>1.80 cm) 

or short (<1.80 cm). Thus, there is no difference between two men who are 1.79 cm. 

and 1.47 cm. tall respectively, since they are both considered as short. A fuzzy set 

has been generated when the borderline is modified to reflect fuzziness, as shown in 

Figure 21-b. In fuzzy set theory, there is no Boolean logic. Instead, multi-valued 

logic is used (a membership degree between 0 and 1). In Figure 21-b, for a given 

height of 1.79 cm, the membership for “Fuzzy Set Tall” is found 0.4. This 

computation is done by using Equation 2. 

 

 

Figure 21: Classical set for tall (left: a) and tall fuzzy set (right: b). 
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where, 

δ  denotes the degree of membership, (.)µ  denotes the fuzzy function 

x  denotes the input value and A  denotes the fuzzy set. 
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As shown in Figure 21-b, the given function (µ) is continuous. However, as stated by 

De Byl, such continuous functions are not efficient in means of computational cost 

[90]. Therefore, it is better to represent these functions with corresponding linear fit 

functions, as depicted by Figure 22. 

 

 

Figure 22: Typical fuzzy continuos functions (black) and respective linear-fit 
functions (red). 

 

 

Figure 23: Modification of the linguistic hedges.  

 

It is also possible to modify the shape of the fuzzy sets by using linguistic variables 

like adjectives and adverbs that are used in daily life. Typical examples are “very”, 

“somewhat”, “fairly”, “slightly”, and “moderately”. These adverbs are called as 

Linguistic Hedges which dilate, concentrate or intensify the original fuzzy set [91]. 
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These modifications are depicted by Figure 23. Dilation stretches a fuzzy set by 

increasing the membership, while concentration does the opposite. Intensification 

behaves like the combination of the dilation and concentration. Such hedges dilate 

the membership if the original membership is less than 0.5 or concentrate the 

membership if the original membership is greater than 0.5. For example, the hedge 

“very” modifies the fuzzy set [µ(x)]2, while the hedge “very, very” modifies [µ(x)]4. 

Similarly, “somewhat” can be equated to [µ(x)]1/2. Table 4 lists some of the popular 

linguistic hedges. 

Table 4: Linguistic hedges. 

�ame Equation Effect 

very [µ(x)]2 Dilation 

very, very  [µ(x)]4 Dilation 

plus  [µ(x)]1.25 Dilation 

extremely [µ(x)]3 Dilation 

slightly or somewhat [µ(x)]0.5 Concentration 

minus [µ(x)]0.75 Concentration 

indeed if 0≤µ≤0.5 

2[µ(x)]2 

if 0.5<µ≤1 

1-2[1-µ(x)]2 

Intensification 

 

5.2 Fuzzy Inference  

 

Fuzzy inference simply performs a processing by using scalar input values and fuzzy 

control elements (fuzzy variables, fuzzy sets and fuzzy rules), and produces an 

output represented by a scalar value. There are three popular fuzzy inference 

methods: Mamdani [92], Sugeno [93], and Tsukamoto [94]. Among these three 

methods, Mamdani-style is commonly applied. Thus, in this study, a fuzzy controller 

approach proposed by Mamdani has been implemented for fuzzy inference process. A 
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Mamdani-style fuzzy inference is a four-step process (see Figure 24) given as follows 

[90]: 

• Fuzzification 

• Rule Evaluation 

• Rule Aggregation 

• Defuzzification 

 

 

Figure 24: Mamdani-style fuzzy inference. 

 

To better explain the Mamdani style fuzzy inference, an example is provided. It is 

assumed that the fuzzy inference is used to determine enthusiasm level of the soccer 

spectators when a goal is scored. Although there exists numerous parameters to 

define enthusiasm-level, the inference is built upon the significance of the game and 

the quality of the goal. Clearly a goal makes the fans happy. However, not every goal 

makes the same effect. For example, a goal scored in the last minute of the 

championships final is not the same with a goal scored in season preparation match 

played against a very weak opponent. Additionally, a very low quality goal by 

chance is not equal to a reverse shot goal. This list can be extended with more 

examples. The following rules (Table 5) and fuzzy sets (Figure 25) will be used to 

explain the four steps of Mamdani style inference.  
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Figure 25: Fuzzy sets for soccer spectator example. 

 

Table 5: Fuzzy knowledge-base for soccer spectator example. 

Rule 

�umber 

Rule Input#1 Fuzzy 

Operator 

Input #2 Output 

1 If Game is 

Significant 

A�D Goal 

quality is 

Perfect 

then 

Enthusiasm 

is Extreme 

2 If Game is 

Average 

OR Goal 

quality is 

Medium 

then 

Enthusiasm 

is Average 

3 If Game is 

Insignificant 

A�D Goal 

quality is 

Low 

then 

Enthusiasm 

is Low 

4 If Game is 

Significant 

OR Goal 

quality is 

Good 

then 

Enthusiasm 

is Strong 
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5.2.1 Fuzzification 

 

Fuzzification is defined as the process of making a scalar quantity fuzzy [91]. This 

step takes input value(s) and obtains corresponding degree(s) of membership to the 

related fuzzy set(s). The employed approach is illustrated in Figure 26. The input 

value is limited to the range of x-axis of the related fuzzy sets, while the degree of 

membership is always between 0 and 1. For example if the goal quality is 63 (input 

value), the corresponding degrees of membership are: 0 for low, 0.35 for medium, 

0.65 for good, and 0 for perfect fuzzy sets. 

 

 

Figure 26: Fuzzification process. 

 

5.2.2 Rule Evaluation 

 

Rule evaluation is a two-step operation. The first step is taking the fuzzified values 

obtained from the previous step and choosing one of them according to given fuzzy 

operator. The two most commonly used fuzzy operators are: “AND” and “OR” 

operators. The fuzzy “AND” operator selects the minimum, while the fuzzy “OR” 

does the opposite and picks the maximum. Thus, this step generates a single output 

value from the given membership values. The second step is to generate a subset 
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from the corresponding fuzzy set which is written in the else part of the rule. The 

output value obtained in the first step is used to cut-off the original fuzzy set to make 

a new subset. This new sub-set is also known as alpha-cut [91]. Rule evaluation of 

the fourth rule is depicted by Figure 27. In this example the input value for goal 

quality is 63% and the input value for game significance is 85%. 

 

5.2.3 Aggregation 

 

In this step, the fuzzy subsets (alpha-cuts) generated in the previous section are 

aggregated as illustrated in Figure 28. Therefore, a new fuzzy set which will be used 

for fuzzy decision making is obtained. This new set is the union of the cut-off fuzzy 

sets (the sets included in fuzzy rules) according to given fuzzy rules. Since the 

aggregation step is built upon union operation, the order of rule evaluation has no 

effect on the output fuzzy set.  

 

Figure 27: Rule evaluation. 



 66 

 

Figure 28: Aggregation. 

 

The fourth rule given in Table 6 is evaluated using the given input values; 63% for 

goal quality and 85% for game significance. The first and the third rules have no 

impact on the aggregation, since the result of fuzzification is 0 for these rules. The 

fuzzification results for the second and the fourth rules are 0.35 and 0.83, 

respectively. Considering these results the above given new fuzzy set is aggregated. 

 

5.2.4 Defuzzification to a Scalar 

 

The final step is to produce a scalar value using the aggregated fuzzy set generated in 

the previous step. This scalar quantity is the final output of the fuzzy inference 

process and may easily be used by the application or a tool that needs the output in 

this format. Therefore, defuzzification can be defined as conversion of a fuzzy set to 

a precise quantity [91]. To produce a scalar quantity from a fuzzy set, there exist 

various approaches. Probably the most common defuzzification method is getting the 

center of the given shape, called centroid, given by Equation 3. Using this equation, 

the result for the example fuzzy inference regarding enthusiasm level is computed as 

61%. 

 

∑
∑=

I

I x
I

µ

µ
      (Equation 3) 
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Table 6: Well-known defuzzification methods. 

�ame Description Illustration 

Centroid Gives the center of the fuzzy 

set. This method is also 

referred as Center of Gravity 

(CoG) or Center of Area 

(CoA). 
 

Maximum 

Membership 

As the name indicates this 

method gives the maximum 

membership value for 

defuzzification.  

 

First Maxima, 

Last Maxima, 

and Mean 

Maximum 

Membership 

First Maxima (blue) and Last 

Maxima (green) gives the first 

and the last maximum values, 

respectively. Mean Maximum 

Membership (black) gives the 

average of the maximum 

values.  

 

Weighted 

Average 

This method takes the 

weighted average of 

independent subsets, not the 

union. In the illustration the 

result is shown with blue line. 
 

 

Popular defuzzification approaches and their functionalities are given in Table 6. The 

current implementation only supports centroid, the others are considered as future 

work. Although the centroid method gives an approximate result due to discrete 
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computation, it ensures computationally efficient solution which is crucial for real-

time massive crowd simulation. 

 

5.3 GPU Implementation 

 

To employ fuzzy inference on a CPU using traditional sequential programming, there 

exist several software libraries, third party components or similar tools. However, 

these tools could not be used directly in CUDA implementation. Thus a fuzzy 

inference on the GPU was written from scratch. To achieve better computational 

performance, several design considerations were taken into account. For example, a 

fuzzy rule was supposed to consist of two input sets, a fuzzy operator and a resultant 

set. Additionally, rule-base, knowledge-base, fuzzy sets and fuzzy rules are stored 

within an array of data structures that were comprised of sequential scalar values.  

 

GPU implementation starts with the transfer of rule-base and knowledge-base to the 

device. This operation simply passes the related values to the device’s constant 

memory. Employing device constant memory significantly improves computational 

time, considering the other alternative, passing fuzzy knowledge-base to the main 

kernel. Such an approach may cause non-coalesced data load, and thus result poor 

performance. Fuzzy inference on the GPU is carried out via several kernels given by 

Listing 2. These kernels are designed for computational efficiency. The name of the 

main kernel is “fuzzyInference” which takes an index (indicates the fuzzy inference), 

a set of input values, fuzzy set group index (a combined array) and input count. The 

index is used to get the required information such as fuzzy rules, fuzzy sets and 

operators from constant memory. The count parameter indicates the number of input 

values and the index parameter(s) to map the given value with the corresponding 

fuzzy set group.  Fuzzy inference process is started by calling “fuzzyInference” 

kernel, and the returned value is the output of the fuzzy inference. This kernel calls 

“evaluateRule” kernel for each fuzzy rule. The “evaluateRule” kernel takes the 

corresponding input values and calls “getMembership” kernel to compute 
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membership values. Consequently aggregation is performed and in the end 

“getCentroid” kernel is used to obtain final output. 

 

Listing 2: Pseudo code of Fuzzy Inference Kernels 

fuzzyInference //main GPU kernel for fuzzy inference 

   for each rule 

      evaluateRule //an independent GPU kernel that performs rule evaluation.  

         for each FuzzySet 

getMembership // an independent GPU kernel that computes the degree of 

membership 

aggregate // an independent GPU kernel that performs aggregation 

getCentroid //an independent GPU kernel that performs defuzzification 

 

Although the fuzzy inference on GPU looks cryptic, the computational performance 

seems impressive. Table 7 gives results of fuzzy inference test, run on different 

CPUs and GPUs. Each fuzzy inference operation performs a Mamdani-style 

inference by evaluating three fuzzy rules. The results show that GTX 295 GPU is 

capable of making more than half-billion fuzzy inferences per second, almost 300× 

of an average CPU core. The CPU and the GPU test functions are almost identical 

and optimized for high-performance. Please note that this performance test does not 

include CPU-GPU data transfer.  

 

5.4 Capturing Knowledge Base 
 
The success and the reality of the fuzzy inference is strongly related with the reality 

and content of the underlying knowledge-base, provided by human domain expert. 

Therefore, it is necessary to capture this knowledge and convert it into a format that 

can be used by fuzzy inference tool. It is possible for programmers to include fuzzy 

knowledge-base by hard coding. However, this approach is not practical, because 

even a minor revision requires recompilation of the source code. Furthermore, this 
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approach requires good programming skills, especially when complicated fuzzy 

knowledge is employed. 

Table 7: Fuzzy inference test results. 

Processing Unit Time required to make 

1,048,576 inferences 

(millisecond) 

�umber of inferences per 

second 

GeForce GT 120M  14.85 70,611,179 (~ 70 million) 

GeForce 9500GT ( 13.36 78,486,227 (~ 80 million) 

GeForce GTX 295  1.863 562,842,727 (~ 560 million) 

Intel 920 @ 2.67 GHz 

(Single CPU Core) 

671 1,562,706 (~ 1.5 million) 

Intel T 9550 @ 2.67 

GHz. (Single CPU Core) 

601 1,744,719 (~ 1.8 million) 

Intel E 9550  

@ 2.34 GHz. (Single 

CPU Core) 

704 1,489,455 (~ 1.5 million) 

 

Another approach is to capture domain expert’s knowledge via predefined syntax and 

rules by using simple text file or better organized XML script. International 

Electrotechnical Commission (IEC) defined a text-based Fuzzy Control Language 

(FCL), which became popular for fuzzy inference applications [95]. FCL helps 

creating knowledge-base and defines fuzzy rules as well as choosing fuzzy operators 

and defuzzification method among several options. Acampora and Loia proposed 

Fuzzy Markup Language (FML) which offers functionality similar to the FCL, but in 

a more organized way due to the employment of XML structure [96]. In this thesis 

an XML script is proposed, which is partly inspired by the legacy FCL and by the 

FML. These studies were used as templates to maintain a similar terminology to the 

existing systems. The proposed XML script is designed to be captured via a user 

friendly GUI as shown in Figure 29. The captured content is converted into values 
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that can be transferred to the GPU and can be used by GPU fuzzy inference kernels. 

Figure 30 and Figure 31 show XML structure of a sample fuzzy knowledge-base. 

 

Figure 29: A GUI to capture human expert’s knowledge. 

 

Figure 30: XML structure in tree view. 

 

The “KnowledgeBase” contains a single, or a set of, “FuzzyVariable(s)” which 

corresponds to a term used in fuzzy inference operation. This fuzzy element, which 
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may be composed of a single or several “FuzzySet(s)” has “Name” and 

“Description” attributes. The shapes of the fuzzy sets are given within the 

“Coordinates” tag. The “RuleBase” section covers “RuleBlock(s)”, with each 

“RuleBlock” containing only two input terms and one output term. This is preferred 

for the sake of easy implementation. The rules within the “RuleBlock” are evaluated 

using only fuzzy “AND” and fuzzy “OR” operators. The details and hierarchy of 

XML elements are given Table 8. 

Table 8: XML elements. 

�ame Description Attributes 

FuzzyControl The container for Knowledgebase and Rulebase   

KnowledgeBase A container for fuzzy varible(s) - 

FuzzyVariable Defines a single fuzzy variable, comprised of fuzzy 

set(s). FuzzyVariable is a container of fuzzy set(s) 

Name: 

Description: 

FuzzySet Defines a single fuzzy set.  Name: 

Description: 

Coordinates: 

Coordinates: Defines the shape of the fuzzy set. The vertices are 

given in order (x-y pairs). 

 

Rulebase A container for fuzzy Ruleblock(s) Name: 

Description: 

Ruleblock A container for fuzzy rule(s) Name: 

Description: 

Rule Defines a fuzzy rule and contains input(s), operator 

and output. 

 

Operator Indicates which operator is supposed to be used. Two 

options available: AND/OR. 

 

Input Refers to input FuzzySet and container 

FuzzyVariable elements. 

Function: 

Set: 

Output Refers to output FuzzySet and container 

FuzzyVariable elements. 

Function: 

Set: 
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Figure 31: XML structure in text view. 
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CHAPTER 6 

 

 

CASE STUDIES 

 

 

 

This chapter covers three case studies that illustrate the use of GPU parallel 

processing for real-time massive crowd simulation. The first case study simulates 

and visualizes sports game spectators, and the second simulates a medieval era 

combat field. The last case study illustrates a virtual marathon event. These case 

studies deal with thousands or even hundreds of thousands of virtual characters. 

 

6.1 12th Man 

 

This case study computes behaviors of the soccer spectators on the GPU then 

transfers the results back to the CPU to be used by an existing game engine. It is 

assumed that a game engine that is capable of visualizing spectator actions using 

scalar values provided by the application or another third party tool handles all the 

renderings. The game engine processes the scalar values representing the virtual 

character’s current emotion or behavior and converts the values into an action. This 

case study puts the spectator’s computational load on the GPU providing more CPU 

resources to the game engine.  

 

6.1.1 Motivation and Background 

 

Soccer, due to its very nature, has always attracted millions of fans, not only in the 

real world, but also in the virtual world. Spectators play a highly significant role 
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during real soccer matches, and it has been shown that the support of an excited 

crowd can offer significant advantages to a home team [97]. The term “12th man” is 

often used to highlight the importance of fan support. Sports-based game developers 

have always taken spectators into account, visualizing them either as static bitmap 

images or dynamic geometric models since the early 1980s. In Figure 32 and Figure 

33, two screenshots from the online soccer game “I Can Football” show the 

representation of virtual spectators in a typical soccer game; the spectators visualized 

in this game are similar to those found at most popular soccer games.  

 

 

Figure 32: Comparison of the visuals of spectators and players (courtesy of Sobee). 

 

Recently, significant progress has been achieved in spectator realism; however, the 

visual and behavioral realism of the spectators still lags far behind that of the players 

as shown in Figure 32 and Figure 33. Two priorities have taken from the realism of 

the spectators: the prioritization of limited computational resources for the field of 

play, and the prioritization of development efforts in the game field, which takes 

precedence over action in the background. Because of these priorities, spectators 

should demand very small CPU resource and also very little development effort. 

 



 76 

 

Figure 33: Comparison of the visuals of spectators and players.  

 

6.1.2 Spectator Behavior Engine  

 

In this case study, a software module was designed to compute spectator using an 

agent-based approach. Each spectator was considered as an independent individual. 

This module is called as Spectator Behavior Engine (SBE) and designed to run on 

the GPU using NVidia CUDA technology. Figure 34 shows the interaction of SBE 

with an existing game engine. 

 

Firstly, the game engine initializes SBE and transfers spectator attributes to the 

device via “cudaMemcpy” function. The fuzzy knowledge-base is also transferred to 

the device’s constant memory to improve computational performance, as discussed 

in Chapter 5. To be processed by the SBE, a spectator must have several distinct 

attributes. These attributes are related with behavioral modeling and transferred to 

the GPU during the initialization of the application. Thus the spectator related non-

graphical attributes are stored on the device memory during run-time. This action 

saves significant time, since it is not required to occupy bandwidth to transfer these 
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attributes. The fuzzy inference engine uses these attributes as spectator dependent 

local fuzzy inputs (see Figure 34).  

 

Figure 34: SBE architecture. 

 

The game engine can request spectator processing anytime to reflect any change in 

the behavior of the spectators. The game engine corresponds to master and SBE to 

worker. The fuzzy inference engine uses the inputs provided by the game engine as 

global fuzzy inputs. The fuzzy inference engine generates scalar outputs to reflect 

any spectator change of behavior, by using global fuzzy inputs (from game engine) 

and spectator-dependent inputs (using related attributes of the spectator). The 

generated output(s) updates the respective spectator attribute(s). The fuzzy inference 

engine is also capable of running hierarchical inferences, which means the output of 

a fuzzy inference can be used as an input for the next fuzzy inference. Finally 

whenever required, the game engine gets the updated spectator outputs to the host-

side to animate and render the spectators. Therefore, the game engine has all the 
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control in this architecture and SBE has no direct connection to the game field, it 

only produces outputs. This approach provides flexibility, since any application that 

processes spectators can use SBE with little effort. Additionally, there is no need to 

update spectators in each frame and return the results immediately. 

 

6.1.3 Performance Test  

 

As previously mentioned, computational and rendering resources are very valuable 

for achieving life-like visualization of the game field. Minimal resources must be 

used to process spectators at the background. In this case study, it was assumed that 

several fuzzy inferences were enough to update spectator behaviors. Therefore a two 

minutes test (120,000 ms) was run using different spectator populations. In this test 

the game engine was requested to update spectator behaviors in different intervals. 

Depending on the call parameters, the related spectator attributes were updated by 

SBE using fuzzy inference engine (1-10 inferences per request). Finally, the related 

attributes were copied to the host, whenever needed. The size of the related 

attribute(s) was assumed 32 bits. Figure 35 shows the results of this performance test 

for 65,536 spectators using NVidia GTX 295 GPU. Figure 35-a indicates that 

memory copy operations occupied only %7 of the total GPU processing time. This 

performance was achieved by getting updated results whenever required, not in every 

frame. Figure 35-b shows that during two-minute simulation period, SBE was called 

120 times (at different periods) and the attributes were copied to the host 47 times (at 

irregular intervals). Additionally, the quantity of the fuzzy inferences changed in 

each SBE call (Figure 35-b; “fuzzyInferenceTest” bar size is different in each run). 

This figure indicates that SBE processing completed in 103.77 ms (96.11 ms for 

fuzzy inferences, 7.66 ms for memory copy from device to host). Since the total 

simulation time was 120,000 ms, this processing time corresponded to only 0.09% of 

the GPU time, which is negligible in whole process chain. The same test was also run 

on a single CPU core to show the benefit of running SBE on the GPU. Table 9 gives 

the CPU and GPU performances. For the population of 65,536 spectators, it took 
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16% of the single core resource to run the same simulation on the CPU, an 

unacceptable value for sports-based video games.  

 

 

Figure 35: Simulation of 65,536 spectators on the GTX 295 GPU.  

 

Table 9: CPU and GPU performances of the SBE. 

CPU (Single CPU 

Core ,Intel T 9550  

@ 2.67 GHz. ) 

GPU (GT 120M) GPU (GTX 295) Population 

Process 

Time 

ms 

Processor 

Occupancy 

Process 

Time 

ms 

Processor 

Occupancy 

Process 

Time 

ms 

Processor 

Occupancy 

16,384 4,762 3.97% 188.97 0.16% 39.20 0.03% 

32,768 9,470 7.89% 335.74 0.28% 61.81 0.05% 

65,536 18,992 15.82% 651.32 0.54% 103.77 0.09% 
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6.1.4 Visual Results  

 

This section gives the visual result of a specific case in which the spectators cheer a 

goal by using the fuzzy knowledge-base mentioned in Chapter 5 (see Table 5 and 

Figure 25-28). The visual outputs of this example are provided in Figure 36 and 

Figure 37. As can be seen in these figures, there are none of the repeated motion 

patterns or robotic actions that can usually be observed in soccer video-games. A 

comparison of Figure 38 and Figure 37 clearly highlights this, given the much 

greater variety of actions and reactions in Figure 37 than in Figure 38. Soccer games 

generally treat spectators as a whole rather than as individuals, which results in 

repeated and user-predictable spectator gestures that may annoy or disappoint the 

player as depicted by Figure 38. Although fans within a stadium usually make 

similar moves, it is not impressive to see exact clones. Consequently, this case study 

produces natural behavioral differences in the crowd. When each spectator is 

modeled as an intelligent individual, their reactions can be produced based on 

various factors, such as the characteristics of the game being played, the reputation of 

the players, the current score and cultural issues. 

 

Figure 36: Individually-processed fans celebrate a goal.  
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Figure 37: Close-up view. Individually-processed fans celebrate a goal. 

 

 

Figure 38: Clone spectators produce repeated actions. 
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6.1.5 Mexican Wave Visualization  

 

In this specific case, SBE was used to simulate a Mexican wave, also known as a 

stadium or audience wave. The Mexican wave is a collective human behavior where 

the spectators in the neighbor columns stand up while raising their arms up and then 

sit down again. This action triggers the neighbors to do the same. If the wave is 

strong enough, it continues around the stadium several times. The employed fuzzy 

rules were given in Table 10. There are two inputs for fuzzification. The first one is 

the strength of the wave, which is derived from the neighbors and the second one is 

the mood of the spectator. Therefore this example also simulates the interaction with 

the neighbors. The Mexican wave phenomena was interpreted and quantified by 

Farkas, Helbing and Vicsek, with a variant of models originally developed to 

describe cardiac tissue [98]. They examined several Mexican wave videos and 

reported several results [98]: 

• The wave usually rolls in a clockwise direction. 

• The typical wave speed is 12 m/s. (Nearly 20 seats). 

• The average width is 6-12 m. (Nearly 15 seats). 

• The wave is generated by no more than a few dozen people. 

Table 10: Fuzzy knowledge-base for Mexican wave example. 

Rule 

1 If Wave is Strong OR Mood is -ormal then Involvement is Average 

2 If Wave is Strong OR Mood is Excited then Involvement is High 

3 If Wave is Weak A�D Mood is Bored then Involvement is Low 
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Figure 39: Mexican wave simulation. 

 

The metrics provided by Farkas et al. were taken into account while designing fuzzy 

knowledge-base and animation speed. The results illustrated in Figure 39 reflect 

similarities to the above given metrics. As seen in this figure, some spectators do not 

join the wave, depending on their current mood. The status of the neighbors was used 

to determine the first fuzzy input which is the strength of the wave. Considering a 

clockwise rolling direction [98], the spectators on the right have more weight.  

 

6.2 H.G. Wells’ Little Wars 

 

This case study covers a medieval era combat simulation and visualization, where 

more than 250,000 warriors fight under heavy arrow storm as shown in Figure 40. 

The implementation introduces various GPU kernels that handle combat simulation 

issues such as crowd navigation, combat physics, collision detection, and virtual 

character behavior modeling. To achieve real-time frame rates, most of the general-
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purpose parallel programming issues mentioned in the previous chapters are 

employed. The scene is rendered using OpenGL. Visualization is provided for 

evaluating the results of the implementation.  

 

 

Figure 40: Invaders move toward the city walls. 

The arrow sizes were exaggerated in order to be identified easily. 
 

6.2.1 Motivation and Background 

 

Tabletop war games and their computer game versions, such as the world wide 

known RISK, mostly simulate combats through a probabilistic approach. Typically, 

dice are rolled to decide the loser/winner, or to determine the quantity of casualties. 

In the computer versions of war games, the probabilistic model can be enriched with 

the predefined rules and the parameters such as power, hit ratio, training and morale. 

There are many computational combat models, ranging from simple linear equations 
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to complicated systems. In addition to the probabilistic method, a physics- based 

approach is also available. 

 

In 1913, English novelist H.G.Wells, famous for the books “Time Machine”, 

“Invisible Man” and “The War of the Worlds”, revealed a completely different 

tabletop war game [12]. He named this game as Little Wars and defined the rules and 

details in the book “Little Wars: a game for boys from twelve years of age to one 

hundred and fifty and for that more intelligent sort of girls who like boy’s games and 

books”. What he suggested was a new model, depending on training, practice and 

talent rather than computational approaches. He replaced the role of dice or similar 

tools with spring-breech loader toy cannons to shoot soldiers. The following quote 

describes the combat model idea of Little Wars: “Whenever possible, death should 

be by the actual gun and the rifle fire and not by computation. Things should happen, 

and not be decided [12].” The case study is inspired from this statement. 

 

In the battle history, there exist some events, whose results cannot be predicted by 

probabilistic combat models. A typical example of such events is the battle of 

Agincourt in 1415, where outnumbered English army, mainly consisting of longbow 

men, won a spectacular victory against a French army of heavily armored soldiers 

and knights [99,100]. If we run a simple computational model using these inputs, it is 

certain that a great majority of the runs will be concluded with French victory. That 

is why researchers and battlefield detectives have been investigating this battle 

considering many other parameters (terrain, crowd dynamics, etc.) to determine what 

led to English victory [99,100]. The results of a physics-based combat simulation 

could better fit to the historical facts provided that the model includes the replicas of 

the actual arrow shots and correctly positioned units. Although this battle shows the 

significance of massive quantity of archers, in the other battles the results are not 

similar. In the battle of Thermopylae, a Spartan army of a relatively small size 

retarded the huge Persian army for a few days under an extremely heavy arrow storm 

[101]. Herodotus described this event as “the sun was blocked out by the Persian 
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arrow storm” [101]. Wells’ physics based combat simulation model could help to 

solve mystery behind such battles. 

 

This case study tries to make things happen by simulating the physics of arrows. To 

determine the casualties, the arrow shots were employed rather than the hit ratio or 

similar computations.  

 

6.2.2 Scenario 

 

The scenario assumes that there is a war between two fantastic fractions showing 

similar characteristics of the medieval ages. The armies of these fantastic fractions 

consist of the skeleton archers, skeleton sword fighters and several other medieval 

siege weapons. An army of 40,000 archers and 10,000 infantry tries to intercept 

200,000 invader warriors beyond city walls. The city is well fortified and surrounded 

by walls and towers. There is also an inner wall as the final defense line. The 

defender archers are positioned on the walls and towers. There are also archers and 

sword fighters in front of the city walls. The city lies over a flat plain. Inside the city 

walls, there are several medieval style buildings and facilities. The invaders launch a 

direct assault to the front walls. Attacker assault lines decelerate as arrow storm 

welcomes them. Figure 41 shows outer walls and defenders. 

 

6.2.3 Archery Physics 

 

Archery is involved in this case study to blend massive physics and massive crowd 

simulation. The employed archery model is not an original study and has no 

allegation such as contribution to medieval archery modeling. However, it is realistic 

enough to implement the movements of arrows. Compared to the modern bow and 

arrow, the medieval versions have their own characteristics. Unfortunately, there is 

not any proper arrow sample survived from that era to make wind tunnel experiments 
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[102]. However, the stories told about the medieval battles give us realistic data 

samples such as range [102,103].  

 

Figure 41: Defenders try to stop invaders beyond city walls. 

This screenshot shows the beginning of an arrow storm. 
 

As a starting point, the bow and arrow system is considered as a simple spring 

system. Since the structure of the medieval bow is well known, this spring system 

can be completely observed. The potential energy stored during the bow drawing can 

be precisely calculated. This potential energy is converted into the kinetic energy 

when the arrow is released. However, due to the oscillations and the moving parts in 

the bow structure, some of the potential energy is transferred to the bow instead of 

arrow. In fact, the ratio of the energy transferred to the arrow gives the efficiency of 

the system. While the modern bows are made up of composite materials giving 

efficiencies greater than 1, the best medieval longbows are made up of yew and have 

an efficiency of 0.9 [102]. Even though there is not a proper arrow sample, the 

existing ones tell us certain information like mass, length etc. Throughout the 

simulation, the mass of an average arrow is taken as 0.060 kg according to this 

information. Using these crucial parameters, the initial maximum speed of an arrow 
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can be calculated as ~55 m/s [102]. This is important because during the combat 

calculations, the complex energy equations can be neglected. 
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Since the energy calculations are unnecessary, only the equations of motion are 

sufficient to calculate the trajectory of an arrow (Equations 4). To be more realistic, 

the drag force (wind resistance) is also included into these equations [104]. The 

characteristic of drag force for an arrow is found through the wind tunnel 

experiments as 2
cVFd =  [102]. The c value is also measured as 22410 −− ⋅ mS� [102]. 

The introduction of drag force makes the equation more complex to solve efficiently. 

However, by using posteriori physics technique, the next position of each arrow can 

be computed through the instantaneous speed (Equations 5). The effect of the gravity 

and external forces like wind are taken into account when calculating speed. In fact, 

the discrete values are calculated with linear approximation fashion. The difference 

between the estimates is related to the frame render time which is essentially around 

30 ms. Thus, the posteriori calculations are repeated every 1.8 m of the arrow travel. 
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After executing several trials, the range of the arrow with maximum initial speed and 

45° release angle is measured as ~230 m. This value is consistent with Sir Roger 

Williams’ writings [102]. The result is shown in Figure 42. 

 

Figure 42: Arrow trajectory graph. 

 

For the initial speed of 55 m/s and release angle 45º, the calculations are done at 0.03 

second interval. The graph shows that the posteriori method is capable of simulating 

real arrow physics. The range is around 230 m, as expected.  

 

6.2.4 Accurate Vertical Positioning 

 

Accurate positioning of large number of virtual characters that are moving on an 

uneven terrain surface or collision detection of thousands of arrows with terrain in 

real-time is a power-hungry task. It is required to calculate actual elevation value of 

the underlying terrain for each dynamic entity in the simulation that interacts with the 

terrain. The accurate terrain elevation is calculated using plane geometry. The 

following method is employed, when horizontal coordinate pair is provided.  
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• Find the triangle on which the point lies. 

• Get vertex coordinates of the triangle. 

• Calculate the normal vector of the triangle by using the Equation 6. 

• Calculate the plane-shift constant value of the triangle by using the Equation 

7. 

• Calculate the height value by using the Equation 8. 
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 denotes normal vector of the plane; 1V
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, 3V
r

 are the vertices of the 

triangle in vector form, D  is plane-shift constant and xP , yP , zP are 3D coordinates 

of the point. 

 

To decrease computational cost, texture memory is assigned. Pre-computed normal 

vectors and plane-shift constants of the triangles of the terrain model are stored in a 

texture memory and used whenever required. This functionality is called by the 

kernel “getTerrainHeight”. 

 
6.2.5 Application Workflow 

 

The workflow is illustrated by Figure 43. This application is a heterogeneous 

solution, in which both the CPU and GPU takes active roles regarding computations 

and rendering issues. The simulation starts just after the initialization. In each 

simulation cycle the same processing steps are repeated. The cycle begins with a pre-

process on the CPU by organizing data in a way to be handled faster on the GPU, 

such as grouping considering spatial partitioning or computational cost. The GPU 

takes computing responsibility and starts processing with the archers, followed by 
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the processing of the arrows and the infantry warriors. Some of the updated 

information regarding the warriors, archers and arrows are returned back to the CPU 

for rendering and grouping for the next loop. The details of these simulation steps are 

covered in the next parts. 

 

 

Figure 43: Application workflow. 

 
6.2.5.1 Simulating Archers 

 

The archers are simulated by kernel “processArchers”. Neither a retreat nor an attack 

is assumed.  Therefore the navigation of virtual characters is not included in this 

kernel. The following tasks are performed by this kernel: 

• Compute the visibility and LOD of the archer. 

• Launch an arrow. 

 

6.2.5.1.1 Visibility and LOD Computation 

 

Computing the LOD and visibility on the GPU saves significant amount of 

computation time compared to the CPU, as mentioned in Chapter 4. The visibility 

and distance to the camera are determined by using view frustum and squared 

distance metric. The view frustum which is under control of the CPU is transferred to 
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the constant memory, when the camera changes its position. If the camera is steady 

for a period, this approach provides computational performance. To implement 

effective bit compaction, three bits are assigned to store visibility and LOD (0 for 

outside view frustum, 1-7 for LOD). 

 

6.2.5.1.2 Launching an Arrow 

 

The releasing parameters of an arrow are determined by a bow drawing model that 

utilizes a single fuzzy inference which is built on the strength and the experience of 

the archer. The output of this fuzzy inference determines the deviation from the 

corresponding releasing parameters computed by using a preprocessed look-up table 

that is stored in the constant memory. This model ensures that the stronger and more 

experienced archers make more accurate throw.  

 

6.2.5.2 Arrow Processing Kernel 

 

The computations regarding archery are handled by using “processArrows” kernel. 

This kernel tries to optimize previously mentioned CUDA performance enhancement 

issues as much as possible. This kernel performs the following tasks: 

• Compute the visibility and LOD of the arrow. 

• Update the position of the arrow. 

• Perform collision detection (terrain, object and warrior). 

• Perform data compaction. 

 

To parallelize the problem, arrows are considered as the most basic computation 

element, and thus each arrow is processed via a single GPU thread. The trajectory of 

the arrow is related with the archer that launches it. Therefore, the output of the 

“processArcher” kernel is used by “processArrows” kernel. An average arrow is 

assumed to move 1 meters per 15 ms. This information is required for collision tests. 
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6.2.5.2.1 Updating Arrows 

 

The second task is to compute the new position, pitch and yaw angles of the arrow. 

This action is performed if the arrow is launched and not yet hit to the ground, a 

warrior or an obstacle. A one bit flag is set to true for launched arrows and set to 

false when it hits one of the above listed entities. Although this approach prevents 

further computations, it may also cause a path divergence, which should be avoided 

as much as possible. However, in practice it is not possible to employ all the 

practices offered for efficient GPU computation, at the same time.  

 

To compute the new position and angles, equations 3,4 and 5 are used. The unique 

properties of the arrow together with the launching parameters provide unique 

trajectories. To the best of the author’s knowledge, this amount of arrow simulation 

in real-time has not been demonstrated yet. Figure 44 shows unique arrow 

trajectories. Besides the unique properties of the arrow, there are also several 

external factors such as wind. To use memory efficiently and minimize memory 

accesses, such external factors are stored in constant memory. The new and the 

previous positions are stored as local variables for collision tests, since the arrow 

might have already been traveled several meters. 

 

Figure 44: Thousands of parallel processed unique arrow trajectories. 
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6.2.5.2.2 Collision Detection 

 

The hardest computation in this kernel is to perform various collision tests to check 

whether the arrow keeps travelling or not. To minimize computational load, the tests 

are done considering the order of complexity. Therefore the simplest one is 

performed first. Additionally, spatial partitioning is employed to minimize O(n2) 

complexity, as discussed in Chapter 2 [63, 65, 66].  

 

The simplest test is to check the elevation of the arrow to determine whether it is 

above the cell ceiling or not. The cell ceiling is a scalar value stored in a constant 

memory which is 10 meters above the highest vertical structure in that cell. If there is 

no object, this value becomes 10 meters above the highest terrain elevation. Figure 

45 illustrates cell ceiling. Further collision tests are performed when the arrow is 

below the cell ceiling.  

 

Figure 45: Illustration of the cell ceiling.  

The ceiling is 10 m above the highest point in that spatial cell. 

 

The next test is to check whether the arrow hits the dynamic or static entities in the 

scene. These obstacles are catapults, ballistas, city walls or buildings. To increase 

computational speedup, the bounding geometries are stored in the constant memory. 

When a potential collision is predicted, the detailed geometry is used if necessary. 

The full geometry is stored in the global memory and accessed only when necessary. 
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In this sense, LOD is used for collision detection. For a detailed collision test, the 

previous position is also used to compute impact point accurately. The squared 

distance is used to check whether the arrow is within the hit threshold or not.  

 

This test is followed by collision detection with the warriors. Further bounding box 

and full-geometry tests are performed in a similar way as described above. In this 

implementation, no realistic collision response is employed. Spatial partitioning 

helps achieve faster collision-detection to meet real time requirements. If a collision 

occurs the warrior’s status is changed accordingly (such as dead). 

 

This test is followed by collision detection with the terrain. The hit point is computed 

using previously mentioned “getTerrainHeight” kernel.  

 

6.2.5.2.3 Data Compaction 

 

The last step in arrow processing is to perform data compaction. In this step the 

empty spaces in the arrow position data (type: float4) are used to store heading and 

tilt angles (9 bits for each angle), visibility and LOD (3 bits), the arrow status (1 bit). 

Thus the size of the data that will be transferred to the host is reduced. 

 
6.2.5.3 Warrior Processing Kernel 

 

The computations regarding warriors are done by using “processWarriors” kernel 

which performs the following tasks: The first and the last tasks are very similar to the 

previous kernel, and have already been explained. The second and the third tasks are 

discussed in this section. 

• Compute the visibility and LOD of the warrior. 

• Fight. 

• Update the position of the warrior (navigation). 

• Perform data compaction. 
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6.2.5.3.1 Combat Model 

 

A fuzzy inference which uses the strength and the training-level of the warrior was 

employed to simulate combat model between the warriors. The output of this fuzzy 

inference updates the health of the warrior. The combat model ensures that in each 

combat the health decreases. Therefore there are no unbeatable super heroes in the 

simulation. Additionally, the combat model works within a certain distance 

threshold, thus ensures many-to-many warrior combats as well.  

 

6.2.5.3.2 �avigation 

 

In this simulation, the invaders move toward the city walls while defenders try to 

keep their posts. Each warrior has speed and direction attributes that are required to 

compute the new position. Although the city is surrounded by a fairly flat terrain, 

accurate vertical positioning is also done to prevent sink or raise problem with the 

terrain surface. The path is updated, if it is blocked by an obstacle. Following 

position update, spatial hashing is applied to minimize the computational load of the 

arrow collision detection and combat model.  

 

6.2.6 Simulation Performance 

 

Figure 46 shows run-time results of the above mentioned kernels and respective 

memory copy operations. As this figure shows the GPU handles almost everything in 

13 ms (5.1 ms for “processArrows”, 4.2 ms for memory copy, 3.3 ms for 

“processWarriors” and 0.5 ms for “processArchers”). The simulation achieved nearly 

40 fps (25 ms per frame) on a PC with GTX 295 GPU. Therefore 12 ms is used by 

the rendering process. This high frame rate is also dependent on low polygon count 

of the models (nearly 1500 polygon) and the employed LOD and visibility culling. 

The achieved 40 fps speed indicates that real-time visualization of a massive combat 

simulation is possible by using GPU parallel processing. The results in this figure 
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also show that possible optimizations should better focus on arrow processing kernel 

and memory copy operations.  

 

 

Figure 46: GPU performance graph. 

 

6.3 Virtual Marathon  

 

This case study summarizes a published work that covers several topics discussed in 

this thesis [88]. The work is about one of the most crowded events in city life; a 

marathon. The overall population in well-known marathon runs sometimes exceeds 

one million people. For example in the annual New York City Marathon nearly one 

million people supports 40,000 runners. Figure 47 compares the real and virtual 
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marathon events on the Đstanbul’s Bosporus Bridge that connects Asia and Europe. In 

this virtual marathon event 32,768 runners and 1,015,808 spectators were simulated.  

 

  

Figure 47: Marathon crowds.  

Real photo (left, courtesy of Đstanbul Municipality) and a screenshot of the 
application (right). 

 

In this study multimonitor setups were used to simulate this event on large screens. 

Figure 48 depicts the employed systems. By using GTX 285 GPU 11-12 frames per 

second was achieved while simulating over one million virtual characters.  

 

The fuzzy logic routines that were introduced in Chapter 5 were used to model the 

behaviors of the runners and the spectators. This simulation did not include collision 

detection process on the GPU. However limited collision detection that includes few 

runners that are close to the camera was employed on the CPU, only for visualization 

purposes.  
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Figure 48: Multimonitor setups for the virtual marathon.  

(Top) The basic setup consisted of three connected 19-inch LCD monitors, which 
produced 3,840 × 1,024 pixel resolution. (Bottom) An enhanced multimonitor setup 

provides increased resolution. 
 

Table 11 gives the comparison of CPU and GPU performances of this simulation by 

using two different behavioral models; low-cost model and high-cost model. The 

first model includes one fuzzy inference, and the second model includes four fuzzy 
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inferences and a more precise frustum-culling algorithm. Thus, it contains nearly five 

times more computations.  

Table 11: CPU and GPU processing times for updates. 

Processing time (ms) 

Low-cost model High-cost model 

�umber of 

people 

CPU 

(Quad Core 

@2.67 GHz) 

GPU 

(GTX 285) 

CPU 

(Quad Core 

@2.67 GHz) 

GPU 

(GTX 285) 

32,768 46.25 3.10 198.11 3.16 

65,536 90.64 4.32 349.39 4.36 

131,072 179.36 8.59 786.24 8.76 

262,144 356.48 15.52 1,573.16 15.60 

524,288 711.28 30.89 3,119.36 31.29 

1,048,576 1,420.64 59.86 6,282.52 61.20 

 

 

Figure 49: GPU speedup for the high-cost model 

 

Figure 49 shows the results of the simulation repeated with various populations. The 

reported 100× speedup is far away from previously demonstrated speedups. Please 

note that, stream reduction techniques discussed in Chapter 3 and Chapter 4 were not 



 101 

employed in this case study. Therefore, memory bandwidth appeared as the major 

bottleneck. Figure 50 and 51 show details from this simulation.  

 

Figure 50: Vertical positioning of the virtual people. 

The GPU precisely calculates the touch point of the virtual people to the ground. 
 

 

Figure 51: Spectators applauses the front-line runners.  
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CHAPTER 7 

 

 

CO�CLUSIO�S A�D FUTURE WORK 

 

 

 

In this thesis various approaches were introduced that are useful for massive crowd 

simulation implementations on the GPU. This study is one of the first that handles 

massive crowd simulation using parallel processing with CUDA. The reported 

performance results show that the difficulty when creating massive crowd 

simulations in real-time can be solved with commodity PCs. The content and the 

contributions are mainly related to handling more virtual characters in less time, and 

thus using the freed resources to add more population to the virtual environment or to 

increase the realism level of the simulation. Due to the fact that this thesis is one of 

the first studies in this field, there are still many issues to improve and resolve. This 

chapter summarizes this thesis’ contributions and provides information regarding the 

further directions.  

 

7.1 Contributions 

 

This thesis has demonstrated that it is possible to simulate massive crowds even 

comprised of hundreds of thousands virtual characters in real-time. The methodology 

covered in this study has demonstrated that by using GTX 295 GPU over 400× 

speedup is possible compared to the same massive crowd simulation that runs on a 

single CPU core. Therefore, the main contribution of this thesis is a methodology 

which can be employed to simulate massive crowds in real-time using parallel 

processing with CUDA technology. The methodology starts with re-arrangement of 
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the data structures. The virtual characters’ attribute data structure is divided into sub-

parts with respect to the processor(s) that will use these attributes. This action 

prevents unnecessary data transfer which is the main bottleneck of the CUDA 

technology. Furthermore, the bandwidth problem is minimized by employing a data 

compaction that represents attributes with fewer bits whenever possible. The 

described data compaction also provides less memory access and may help ensure 

coalesced memory access. The encoding and decoding processes are almost 

negligible, since the bit extraction from the data envelope and bit insertion into the 

data envelope, are not computationally complex. Dividing data into sub-parts also 

makes it easy to handle and transfer the corresponding data portions whenever 

required. Basically, not all the data needs to be processed and transferred at the same 

frequency. Thus, handling the data sets as a whole sometimes means wasting limited 

bandwidth, because unchanged or unnecessary data is transferred within the larger 

data structure.  

 

Another contribution is Fuzzy Inference implementation on the GPU using CUDA 

kernels to model behaviors of the virtual characters. These kernels make it possible 

to compute millions of inferences per second. To provide computational efficiency, 

the fuzzy knowledge-base and the rule-base are transferred to the constant memory 

of the device. The mentioned fuzzy parameters are converted into scalars and 

transferred to the constant memory. While designing these kernels, performance and 

flexibility were taken into consideration. Thus, the approach regarding the use of 

fuzzy inferences is not limited to massive crowd simulation; it can be used by the 

other disciplines as well. This thesis demonstrated that it is possible to compute over 

500,000,000 fuzzy inferences per second, which is enough to model behaviors of 

many virtual characters in a shorter time, by using commodity hardware. To improve 

computational speedup, different device memories were assigned. Texture memory 

was used for fuzzification inputs that remain the same, such as personality, 

throughout the simulation while the global memory was used for inputs that change, 

such as fatigue. To capture the experience of the domain expert, a user-friendly GUI 
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tool was developed. The captured knowledge-base and rule-base were used to 

generate an XML script which was converted into the variables and parameters 

required by the corresponding CPU and GPU functions. 

 

Additionally, this thesis contributed to the blending of real-time massive crowd 

simulation and massive physics in the same application. To the best of the author’s 

knowledge, no other study that simulates extensive number of physical objects 

together with massive crowds has been found. In the case study “Little Wars,” tens 

of thousands arrows were physically modeled and simulated in the virtual combat 

field where more than 250,000 warriors involved. This case study deals not only with 

the collision detection of the arrows but also with the warrior collision avoidance, the 

combat models, and the bow drawing models.  

 

7.2 Future Work 

 

The topics covered so far about massive crowd simulation using GPU are only the 

visible part of the iceberg. Since crowd simulation is a wide research area, one must 

go deep beneath the surface to discover what else can be done to improve massive 

crowd simulation with performance and realism. Besides the crowd simulation 

research issues, another improvement could be to adapt the offered solutions to 

newer versions or variants of CUDA technology.  

 

NVidia CUDA is a new vendor dependent technology. Although only two years have 

passed since the official release, it has already been updated several times. In the first 

quarter of 2010, there will be significant improvements and changes in the hardware 

and the development platform. FERMI (the new version of CUDA) will introduce 

more parallel cores, and thus offer more processing power [78]. Additionally, the 

software development environment will be easier than the existing environment. 

Moreover, NVidia is not the only player in this field; other CPU/GPU vendors will 

also release SIMD based hardware. In this sense, the future work should make 
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offered solutions flexible enough to work on different vendor platforms and various 

massively parallel computing tools. These probable platforms must be considered 

while trying to implement future issues regarding massive crowd simulation.  

 

The described fuzzy inference solution has the potential for many other disciplines. 

The current system was built upon several assumptions and limitations. Amendments 

and improvements are necessary to the described solution before its use in alternative 

research areas. In the future, linguistic hedge functionality, or the ability to add 

adverb like options such as “somehow” and “nearly,” needs to be added by revising 

the knowledge-base/rule-base GUI, XML definition and fuzzy inference kernels. 

Also, since the fuzzy operators are currently limited to “AND” and “OR,” more 

operators can be added. The last issue in this context is to enrich the employed 

defuzzification methods. 

 

Furthermore, stream compaction should be better improved by employing the 

arithmetic coding algorithm that already works well with CUDA technology [80]. 

The proposed data compaction technique helps minimize the transferred data load 

when only floats can represent data and precision is not important. Stream 

compaction is a huge research topic and even the reduction of a single bit in massive 

crowd simulation will be a significant improvement. Therefore, more attention will 

be paid to the stream reduction. 

 

The “Little Wars” case study will be improved by employing a better and more 

realistic physics model, collision detection, and collision avoidance algorithms. The 

employed algorithms must compute collisions and model the reactions more 

accurately. The combat simulation also needs to be more realistic, requiring a more 

complicated combat model and a set of combat Mo-Cap data. To enrich actions, a 

newly acquired Mo-Cap system in METU MODSIMMER Center will be used. 

Regarding the visualization of these applications, a 3rd party game engine will offer 

better quality rendering.  
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The “12th Man” case study needs to be validated as useful by comparing the GPU 

generated results with real spectator behaviors observed from real soccer game 

videos. Additionally, the generated results should be compared with existing soccer 

video games, thus proven to be better. As previously mentioned, more virtual 

spectators’ actions generated by the GPU parallel processing to reflect behavioral 

variety should be added. 

  

Finally, six high-end PCs equipped with 3-4 upcoming GeForce 300 series GPUs 

will be connected, making the processing power over 10 teraflops per second. The 

system will be connected to a newly built back-projection wall comprised of 6 

projectors and the corresponding large screen to simulate massive crowds containing 

millions of virtual characters. This system will be used for the large-screen 

visualization of massive crowd simulation and other scientific visualization studies 

as well. The large-screen display solution is depicted in Figure 47.  

 

Figure 52 Back-projection large-screen display comprised of six back-projectors and 
seamless plexiglas wall. 
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