
 1

MASSIVE CROWD SIMULATION WITH
PARALLEL PROCESSING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS

OF
THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

ERDAL YILMAZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

IN
THE DEPARTMENT OF INFORMATION SYSTEMS

FEBRUARY 2010

 ii

Approval of the Graduate School of Informatics

Prof.Dr.Nazife Baykal

Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of
Doctor of Philosophy.

Asst.Prof.Dr.Tuğba Temizel Taşkaya

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Doctor of Philosophy.

__________________________ _____________________
Prof.Dr.Yasemin Yardımcı Çetin Assoc.Prof.Dr. Veysi Đşler

Co-Supervisor Supervisor

Examining Committee Members

Asst.Prof.Dr. Tolga Can (METU, CENG) ________________

Assoc.Prof.Dr. Veysi Đşler (METU, CENG) ________________

Asst.Prof.Dr. Tolga Çapın (BĐLKENT, CS) ________________

Asst.Prof.Dr. Altan Koçyiğit (METU, II) ________________

Asst.Prof.Dr. Alptekin Temizel (METU, II) ________________

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced
all material and results that are not original to this work.

�ame, Last name : Erdal Yılmaz

Signature : _________________

 iv

ABSTRACT

MASSIVE CROWD SIMULATION WITH
PARALLEL PROCESSING

Yılmaz, Erdal
Ph.D., Department of Information Systems

Supervisor: Assoc.Prof. Dr. Veysi Đşler
Co-Supervisor: Prof. Dr. Yasemin Yardımcı Çetin

February 2010, 133 pages

This thesis analyzes how parallel processing with Graphics Processing Unit (GPU)
could be used for massive crowd simulation, not only in terms of rendering but also
the computational power that is required for realistic simulation. The extreme
population in massive crowd simulation introduces an extra computational load,
which is quite difficult to meet by using Central Processing Unit (CPU) resources
only. The thesis shows the specific methods and approaches that maximize the
throughput of GPU parallel computing, while using GPU as the main processor for
massive crowd simulation.

The methodology introduced in this thesis makes it possible to simulate and visualize
hundreds of thousands of virtual characters in real-time. In order to achieve two
orders of magnitude speedups by using GPU parallel processing, various stream
compaction and effective memory access approaches were employed.

To simulate crowd behavior, fuzzy logic functionality on the GPU has been
implemented from scratch. This implementation is capable of computing more than
half billion fuzzy inferences per second.

Keywords: Massive Crowd Simulation, CUDA, GPU Parallel Computing, Attribute
Data Compaction

 v

ÖZ

PARALEL ĐŞLEM KULLANARAK
DEVASA KALABALIK BENZETĐMĐ

Yılmaz, Erdal
Doktora, Bilişim Sistemleri Bölümü
Tez Yöneticisi: Doç. Dr. Veysi Đşler

Ortak Tez Yöneticisi: Prof. Dr. Yasemin Yardımcı Çetin

Şubat 2010, 133 sayfa

Bu tez Grafik Đşlemci Birimi kullanılarak yapılan paralel işlemlerin devasa kalabalık
simülasyonu alanında kullanımını analiz etmekte olup, bu işlemi sadece grafik
sunum açısından değil aynı zamanda gerçekçi benzetim için gerekli hesap gücü
açısından da ele almaktadır. Devasa kalabalık benzetimlerinde kullanılan nüfusun
sıradışı kalabalıklığı sadece Merkezi Đşlem Birimi tarafından karşılanamayacak bir
büyüklükte hesap yükü getirmektedir. Tez Grafik Đşlemci Biriminin paralel hesap
yeteneğinin devasa kalabalık simülasyonlarında ana işlemci olarak kullanılması
esnasında faydayı arttırabilecek özel metot ve yaklaşımları göstermektedir.

Bu tezde tanıtılan metodoloji, yüzbinlerce sanal karakterin gerçek zamanlı olarak
benzetiminin yapılmasına ve görselleştirilmesine olanak vermektedir. Grafik işlemci
ile paralel işlem yaparak yüzlü rakamlar ile ifade edilen hızlanmaları sağlamak için,
veri akımında indirgeme ve etkin hafıza erişimi yaklaşımları kullanılmıştır.

Kalabalık davranışının benzetimini yapmak amacıyla grafik işlemci üzerinde bulanık
mantık uygulaması yapılmıştır. Bu uygulama saniyede yarım milyardan daha fazla
sayıda bulanık mantık çıkarımı yapabilmektedir.

Anahtar Kelimeler: Devasa Kalabalık Benzetimi, CUDA, Grafik Đşlemci ile Paralel
Hesaplama, Öznitelik Veri Boyutu Küçültme

 vi

To Meltem and the twin boys.

 vii

ACK�OWLEDGME�TS

The author is heartily thankful to the supervisors, Assoc. Prof. Dr. Veysi Đşler and

Prof. Dr. Yasemin Yardımcı Çetin who were abundantly helpful and offered endless

assistance and guidance through the duration of this thesis. Their contribution to the

author’s vision and knowledge is beyond the content of this study. This thesis would

not have been possible without their experience and supervision.

Special thanks to Can Ölçek, Eray Molla and Cansın Yıldız for the realization of

archery physics, design and coding of fuzzy XML script. The author is also indebted

to many friends for their support; Can Ardıç and Danielle Pooler for proof reading,

Fatih Nar and Yasemin Çetin for contributions, Mehmet Erbaş and Hakan Şahin for

building setups.

The author wishes to express his deepest love and sincere gratitude to Meltem for her

endless support and understanding. By taking control of everything, she gave the

time to complete this study. Lastly, the author offers his sincere apologies to his

twins, Deniz and Demir for not spending enough time with them through the

duration of this thesis.

 viii

TABLE OF CO�TE�TS

ABSTRACT ... iv
ÖZ .. v
DEDICATIO�... vi
ACK�OWLEDGME�TS ...vii
TABLE OF CO�TE�TS..viii
LIST OF TABLES .. xi
LIST OF FIGURES ...xii
CHAPTER ... 1

1. I�TRODUCTIO�.. 1
1.1 Motivation ... 2
1.2 Scope.. 3
1.3 Significance ... 6
1.4 Contributions.. 7
1.5 Outline... 9

2. RELATED WORK A�D BACKGROU�D .. 11
2.1 Crowd Simulation .. 11

2.1.1 Virtual Crowd Representation... 12
2.1.2 Virtual Character �avigation .. 16
2.1.3 Population Variety .. 19
2.1.4 Virtual Character Behavior Modeling .. 23

2.2 Crowd Simulation Using Parallel Computing... 26
2.2.1 Crowd Simulation Using Multi-CPU/Multi-Core Parallel
Computing .. 27
2.2.2 Crowd Simulation Using GPU ... 31

3. �Vidia CUDA TECH�OLOGY A�D ...
GE�ERAL PURPOSE PARALLEL PROGRAMMI�G 34

3.1 What is �Vidia CUDA?... 34
3.2 CUDA Architecture ... 35
3.3 GPU Processing .. 37
3.4 Device (GPU) Memories .. 39
3.5 Enhancing Computational Performance ... 41
3.6 FERMI: The Upcoming CUDA Architecture ... 42

4. MASSIVE CROWD SIMULATIO� WITH ...
GE�ERAL-PURPOSE PARALLEL PROGRAMMI�G................................ 44

 ix

4.1 Massive Crowd Simulation Scenario.. 44
4.2 Test Implementation Setup and Results .. 46
4.3 Transferring Computational Load from a CPU to a GPU 47

4.3.1 CPU Computing .. 48
4.3.2 CPU&GPU Computing .. 49
4.3.3 GPU Computing .. 49
4.3.4 Minimizing Data Transfer and Data Access Cost 51
4.3.5 Using Device Memory Efficiently .. 56
4.3.6 Instruction Level Optimization.. 56

5. FUZZY I�FERE�CE WITH GPU PARALLEL PROCESSI�G.............. 58
5.1 Fuzzy Logic ... 58
5.2 Fuzzy Inference .. 61

5.2.1 Fuzzification... 64
5.2.2 Rule Evaluation ... 64
5.2.3 Aggregation.. 65
5.2.4 Defuzzification to a Scalar.. 66

5.3 GPU Implementation ... 68
5.4 Capturing Knowledge Base ... 69

6. CASE STUDIES... 74
6.1 12th Man ... 74

6.1.1 Motivation and Background .. 74
6.1.2 Spectator Behavior Engine... 76
6.1.3 Performance Test .. 78
6.1.4 Visual Results .. 80
6.1.5 Mexican Wave Visualization.. 82

6.2 H.G. Wells’ Little Wars ... 83
6.2.1 Motivation and Background .. 84
6.2.2 Scenario .. 86
6.2.3 Archery Physics ... 86
6.2.4 Accurate Vertical Positioning .. 89
6.2.5 Application Workflow .. 90

6.2.5.1 Simulating Archers .. 91
6.2.5.1.1 Visibility and LOD Computation .. 91
6.2.5.1.2 Launching an Arrow... 92

6.2.5.2 Arrow Processing Kernel .. 92
6.2.5.2.1 Updating Arrows... 93
6.2.5.2.2 Collision Detection .. 94
6.2.5.2.3 Data Compaction... 95

6.2.5.3 Warrior Processing Kernel ... 95
6.2.5.3.1 Combat Model ... 96
6.2.5.3.2 �avigation .. 96

6.2.6 Simulation Performance ... 96
6.3 Virtual Marathon ... 97

7. CO�CLUSIO�S A�D FUTURE WORK ... 102

 x

7.1 Contributions.. 102
7.2 Future Work ... 104

BIBLIOGRAPHY .. 107
CURRICULUM VITAE.. 116
VITA.. 120

 xi

LIST OF TABLES

Table 1: The attributes of a virtual character. .. 45
Table 2: Computational enhancement of the generic massive crowd simulation...... 47
Table 3: Bandwidth of various CUDA-enabled devices.. 51
Table 4: Linguistic hedges. .. 61
Table 5: Fuzzy knowledge-base for soccer spectator example. 63
Table 6: Well-known defuzzification methods. ... 67
Table 7: Fuzzy inference test results.. 70
Table 8: XML elements. .. 72
Table 9: CPU and GPU performances of the SBE... 79
Table 10: Fuzzy knowledge-base for Mexican wave example. 82
Table 11: CPU and GPU processing times for updates. .. 100

 xii

LIST OF FIGURES

Figure 1: A crowded medieval-era combat scene. ... 4
Figure 2: A crowded soccer arena scene.. 5
Figure 3: A crowded virtual city scene. ... 5
Figure 4: A crowded virtual marathon scene. .. 6
Figure 5: A geometric model and various texture maps. ... 12
Figure 6: Auto-generated LOD models.. 13
Figure 7: Illustration of an impostor and walking animation..................................... 14
Figure 8: Visual quality comparison of 3D model and impostor image. 15
Figure 9: Population variety using different texture maps... 22
Figure 10: Population variety in a virtual concert.. 22
Figure 11: CUDA thread hierarchy.. 37
Figure 12 Streaming multiprocessor. ... 38
Figure 13: SIMT workflow. ... 38
Figure 14: Device memory architecture... 39
Figure 15: 3rd generation SM. .. 43
Figure 16: Speedup via parallel processing and further improvements through

computational performance considerations.. 46
Figure 17: The workflow of the simulation running on a single CPU core. 48
Figure 18: Workflow of the CPU and GPU computing... 49
Figure 19: Workflow of the GPU computing. ... 50
Figure 20: GPU occupancy plot. .. 50
Figure 21: Classical set for tall and tall fuzzy set . .. 59
Figure 22: Typical fuzzy continuos functions and respective linear-fit functions..... 60
Figure 23: Modification of the linguistic hedges. .. 60
Figure 24: Mamdani-style fuzzy inference. ... 62
Figure 25: Fuzzy sets for soccer spectator example... 63
Figure 26: Fuzzification process. ... 64
Figure 27: Rule evaluation. .. 65
Figure 28: Aggregation. ... 66
Figure 29: A GUI to capture human expert’s knowledge. ... 71
Figure 30: XML structure in tree view. ... 71
Figure 31: XML structure in text view. ... 73
Figure 32: Comparison of the visuals of spectators and players................................ 75
Figure 33: Comparison of the visuals of spectators and players................................ 76
Figure 34: SBE architecture. .. 77

 xiii

Figure 35: Simulation of 65536 spectators on the GTX 295 GPU. 79
Figure 36: Individually-processed fans celebrate a goal.. 80
Figure 37: Close-up view. Individually-processed fans celebrate a goal................... 81
Figure 38: Clone spectators produce repeated actions. .. 81
Figure 39: Mexican wave simulation... 83
Figure 40: Invaders move toward the city walls. ... 84
Figure 41: Defenders try to stop invaders beyond city walls..................................... 87
Figure 42: Arrow trajectory graph. .. 89
Figure 43: Application workflow... 91
Figure 44: Thousands of parallel processed unique arrow trajectories...................... 93
Figure 45: Illustration of the cell ceiling.. 94
Figure 46: GPU performance graph... 97
Figure 47: Marathon crowds. ... 98
Figure 48: Multimonitor setups for the virtual marathon... 99
Figure 49: GPU speedup for the high-cost model.. 100
Figure 50: Vertical positioning of the virtual people. .. 101
Figure 51: Spectators applauses the front-line runners. ... 101
Figure 52 Back-projection large-screen display comprised of six back-projectors and

seamless plexiglas wall. ... 106

 1

CHAPTER 1

I�TRODUCTIO�

Real-time simulation of massive crowds has always been a challenge, due to the

limited computational resources. Such applications usually include virtual characters

that interact with the environment and the other characters. Performing this amount

of interaction in each simulation cycle is beyond the computing limits of

commercially on-the-shelf CPUs and traditional serial programming techniques.

Thus, massive crowds are used extensively on pre-rendered work such as movies,

rather than real-time applications.

The level of realism and the quantity of the virtual population are among the major

parameters that define this simulation’s complexity. However, generating a life-like

virtual environment with millions of inhabitants is rather a challenging task. Popular

computer graphics techniques such as visibility culling and Levels of Detail (LOD)

are usually employed to minimize computational complexity. On the other hand,

these computational load reduction techniques cannot always be employed, as in the

case of non-graphics simulation. In simulations where visualization is not a concern,

it is usually required to update every virtual character in each simulation cycle

without considering visibility or LOD. In such a case, alternative computational

methods should be employed. Thanks to the state of the art GPUs, there is now

commodity hardware, providing peak performances more than teraflops per second

[1], and such a tremendous computational resource certainly helps achieve the goal

of simulating massive crowds in real-time.

 2

General purpose parallel programming can use GPUs not only for graphics but also

for removing the burden of the non-graphical computational workload, which is

traditionally handled by a CPU. Significant computational speedups have been

achieved by various researchers from different disciplines using general purpose

parallel programming [2-6]. Although GPU-based non-graphics computation is well

suited to data-parallel tasks such as image processing kernels and matrix operations,

it is also possible to accelerate many other applications by adapting existing

algorithms to the general purpose parallel programming. Therefore it seems

reasonable to exploit tremendous computing power of GPUs for massive crowd

simulation, since computational power is an important concern. Additionally, data

level parallelism, which is a must for efficient GPU implementation, can be achieved

by assigning one thread per virtual character.

1.1 Motivation

This research addresses the possibility of using affordable parallel processing

hardware to simulate massive crowds in real-time. The term “massive crowds”

implies populations of up to several millions of virtual characters. Such a large

number of agents is not common in real-time CPU-based serial programmed

graphical applications, due to the limited computational resources. A typical crowd

simulation application with graphics needs to share limited computational power for

various tasks, such as rendering, behavior modeling and navigation. Computations

get more complicated as the population and the level of realism increase.

Considering these facts, real-time simulation and rendering of a large number of

virtual characters usually require sacrificing some components such as visual quality

or behavioral realism.

In the recent years, GPUs have demonstrated great progress as a non-graphics

computing tool. It has already been shown that even two orders of magnitude

speedups are possible, if the GPU takes computing responsibility [7,8]. Although the

 3

graphics processing architecture of the GPU is well suited to data-parallel

applications, researchers from various disciplines have succeeded to port many

different problems to this newly emerged programming environment to achieve

significant computational speedups.

The announcements of immense computational speedups [7,8] and fascinating

developments in GPU hardware inspired the use of general purpose parallel

processing in massive crowd simulation. In literature, there exists limited work about

the simulation and visualization of a large number of virtual characters using GPU

parallel processing. However, there is significant amount of research regarding

crowd simulation and parallel processing in different disciplines. This study

considers adapting existing solutions in crowd simulation to general purpose parallel

programming. Aspects of this research will introduce several practical approaches

that can be helpful for future researchers in this field.

1.2 Scope

This thesis covers how general purpose parallel programming and the computational

power of the GPUs can be used effectively to add more virtual characters in real-time

applications by blending existing crowd simulation work and general purpose

parallel programming techniques.

The issues mentioned in this thesis are explained by several case studies. The results

look promising from the perspective of computational performance. The main scope

of this thesis is crowd simulation, not crowd visualization; therefore, rendering

quality and visualization related issues were not covered in detail. All of the visual

outputs were given, to better explain the results of the case studies. However, it is

certain that, higher visual quality can be achieved by spending more effort on

graphics and by using a third party professional game-engine tool.

 4

NVidia CUDA (Compute Unified Device Architecture) technology [9-11] was used

in this thesis as the general purpose parallel programming tool. This technology lets

software developers use C programming language to program the GPU, thus

minimizing development platform learning curve. NVidia also plans to use CUDA

with several other languages and application programming interfaces [9]. This

technology has been available to the public since 2007. Starting with GeForce 8

series, all the NVidia GPUs are CUDA-enabled [10].

The following figures illustrate how general purpose parallel programming can help

achieve the goal of simulating and rendering massive crowds in real-time. Figure 1

depicts a medieval combat scene. Figure 2 is related to massive crowds in video

games. Figure 3 and Figure 4 show two screenshots that illustrate urban life

respectively. The first figure depicts a special marathon event, while the second one

shows a regular day.

Figure 1: A crowded medieval-era combat scene.

 5

Figure 2: A crowded soccer arena scene.

Figure 3: A crowded virtual city scene.

 6

Figure 4: A crowded virtual marathon scene.

1.3 Significance

Most of the real-time crowd simulation research use limited populations to simulate

and visualize virtual environments. The studies that try to visualize larger

populations typically focus on visualization issues and rendering performance. Thus,

the traditional approach usually deals with the army of clones that perform similar

actions and movements. To the best of the author’s knowledge, little attention has

been paid to simulate massive populations in real time without sacrificing visual

quality, behavioral variety or other computationally complex actions. The

significance of this thesis is to bridge the gap between massive crowd simulation and

the real-time constraints.

 7

1.4 Contributions

This thesis addresses real-time massive crowd simulation using NVidia CUDA

technology. Although this technology provides the computational power required by

power hungry applications, special care must be paid while using this technology.

The real-time constraints require using computational resources efficiently. In order

to get the full benefit from general purpose parallel programming technology, the

problem must be converted into data-parallel structure. It is also required to minimize

data transfer between the CPU and the GPU. There are also several more issues that

should also be considered for better performance. To the best of the author’s

knowledge, this research is one of the first attempts that used CUDA technology to

try to simulate massive crowds. Therefore, the focus of this thesis is to provide some

performance-enhancing information to the researchers in this field, through several

simple but useful contributions. Some of the contributions are related with efficient

usage of general purpose parallel programming considering the architecture of

CUDA technology, and other contributions are related with the implementation of

massive crowd simulation.

NVidia categorizes CUDA performance optimization issues in three strategies [11].

The first strategy is to maximize parallel execution. This strategy is quite important

since massive crowd simulation contains many virtual characters. In order to

implement this strategy effectively, each virtual character or processed entity is

handled by a separate GPU thread. However, this action is not sufficient enough by

itself to ensure best throughput. There are several outstanding issues to increase

parallel processing performance such as using both the CPU and GPU resources

considering the required processing power by the virtual characters. As in the

analogy of LOD, some virtual characters may demand more processing power than

the rest. In such a case, it is better to employ lightweight GPU resources for the

majority while using heavy-duty CPU threads for minority that requires much more

computations. Similarly, classifying and sorting virtual characters considering

 8

possible execution paths also helps achieve better speedups, since threads are

ensured to follow similar execution paths.

The second strategy is to optimize memory usage to achieve maximum memory

bandwidth. This issue will be examined in depth throughout this thesis. Considering

this strategy, a solution based on data structures and data compaction has been

offered. The proposed solution is to separate attributes and pack them into different

data structures, so that the CPU-related attributes are not copied to the device, thus

helps avoid extra data transfer overhead. To minimize device memory accesses, the

transferred data is packed into GPU friendly data structures. The proposed solution

minimizes data transfer and memory access costs as much as possible. Such an

optimization helps achieve further speedups.

The final strategy is instruction-level optimization. Such an optimization can be done

by simply following the details explained in CUDA documentation [9, 11]. Although

details of this strategy will be covered in the following chapters, there is no

contribution regarding instruction-level optimization.

Besides CUDA programming issues, there are several more contributions for the

means of implementing crowd simulation related functionality by CUDA kernels

(functions that run on the GPU). This thesis covers an in-depth look at implementing

fuzzy inference using CUDA. The GPU kernels help by computing more than half

billion fuzzy inferences per second. An infrastructure to handle such a huge amount

of fuzzy inferences, provides developers the ability to generate scenes including

massive virtual characters that perform distinct and non-deterministic actions. The

contribution in this issue is to capture fuzzy knowledge-base and fuzzy rule-base via

a simple GUI and transfer required parameters to the GPU with minimal coding

effort. Expert knowledge is converted into an XML script, from which the fuzzy

inference parameters are extracted. These parameters are consequently transferred to

the constant memory of the device (GPU). Thus, it provides significant speedup

 9

since fuzzy logic kernels frequently access these parameters. The attributes of the

virtual characters are also tried to be represented with device architecture friendly

data structures such as 32, 64 and 128-bit words. The combination of such

approaches not only lets developers include fuzzy logic functionality on the GPU

with minimal effort, but also allows them to provide further speedups.

Another implementation-oriented contribution is to include many of the physical

objects in the virtual environment with massive number of characters. The medieval-

era case study covered in Chapter 6 realistically simulates the physics of thousands

of arrows in real-time. It is certain that the interaction among the physical objects,

the virtual characters and the realistic trajectory computations introduce an extra

computational overhead. To overcome this power-hungry task, a solution that blends

existing spatial hashing techniques and CUDA architecture is offered. Unfortunately,

even the huge computational power offered by the GPU is still far away from

creating this kind of simulation. In such a case, several assumptions can be made to

minimize computational cost and architectural constraints. In fact, the offered

solution contains some heuristics and assumptions that are specific to this case study.

However, it seems possible to adapt this solution to similar applications.

1.5 Outline

The outline of this thesis is as follows:

• Chapter 2 starts with the literature survey about general issues in crowd

simulation. This is followed by the detailed summary of crowd simulation

studies using parallel computing.

• Chapter 3 explains the CUDA architecture as an introduction and gives

details considering the aspects of this thesis.

• Chapter 4 demonstrates the details of using general purpose parallel

computing for real-time massive crowd simulation in a step-by-step manner.

In each step, the actions required to achieve further speedups are presented.

 10

• Chapter 5 explains the details of fuzzy inference implementation on the GPU

using CUDA.

• Chapter 6 covers three case studies. The first one demonstrates how massive

crowd simulation can be used as a middleware for video sports games. In this

case study, general purpose parallel programming is used to generate

behaviors of the soccer game spectators. The second case study, which is

inspired from the work of science-fiction writer H.G. Wells [12], covers the

simulation of a medieval-era combat including nearly 250,000 warriors. The

last case study gives the short summary of a work about virtual marathon.

• Chapter 7 concludes with results and summarizes the contributions. Potential

follow-up work is also laid out in this chapter.

 11

CHAPTER 2

RELATED WORK A�D BACKGROU�D

Simulating the behaviors, actions and movements of virtual characters in a crowd can

be defined as crowd simulation. This research area has always attracted quite a

significant interest from researchers of different disciplines, due to existence of large

application fields such as military training, emergency planning, computer games,

and architectural design. This chapter summarizes challenging issues in crowd

simulation and gives literature background regarding crowd simulation using various

parallel processing hardware and techniques.

2.1 Crowd Simulation

Real-time crowd simulation applications started in the mid and late nineties when

commodity hardware started to meet the computational requirements of this

community [13]. Since then, the studies are all focused on some or all of the

challenging issues given below, which will be covered in detail throughout this

section.

• Crowd Representation

• Crowd Navigation

• Crowd Variety

• Crowd Behavior

 12

2.1.1 Virtual Crowd Representation

Although great progress has been achieved in graphics hardware in the last decade,

crowd representation remains an important issue because of insatiable realism

expectations. Depending on population, realism, perception, and hardware, various

crowd representation techniques can be employed including:

• Geometric representation

• Image-based representation

• Point-based representation

• Hybrid representation

Figure 5: A geometric model and various texture maps.

 13

Geometric representation uses virtual character models in 3D mesh. These models

can be artist-made or scanned. The geometric model’s visual quality is strongly

related to the quantity of the meshes and resolution of the texture map. Figure 5

shows a typical geometric model.

Figure 6: Auto-generated LOD models.

(Automatic polygon reduction usually produces visually poor results.)

 14

In order to improve the rendering performance, a geometric model is mostly

represented with different LODs, as illustrated in Figure 6. In crowd simulation

applications, geometric models comprised of thousands of polygons and several

LOD models are commonly used [14-16]. Although this approach can be easily

implemented, rendering background characters that are far away from the camera is

difficult because representing them with few polygons may not produce visually

convincing results (Figure 6), while using high-polygonal models consumes too

much of the GPU’s resources. McDonnell et al. worked on perceptual issues and

reported the facts about mesh simplification for virtual characters [17].

Figure 7: Illustration of an impostor and walking animation.

(Courtesy of Simon Dobbyn)

Image-based representation of crowds, called impostors, is very popular in crowd

visualization [18-20]. Basically, impostors are many 2D images pre-rendered for all

possible camera angles, thus trying to give the visual impact of 3D models. Figure 7

shows an impostor of a single human. The number of images increases in a linear

fashion when more animation models are employed. Kavan et al. introduced

polypostors to overcome this issue [21]. Polypostors are 2D polygonal characters that

support a greater variety of animations without introducing any overhead since the

rendering cost of a quad (two triangles) or several polygons are almost the same. But

 15

the authors reported that polypostors are limited to basic actions such as walking. It

has already been demonstrated that impostors help generate perceptually realistic

crowd scenes if they are away from the camera [22]. However, they suffer from low

visual quality due to pixelization and flat view when models are close to the camera,

as shown in Figure 8. Hybrid techniques, which will be explained later, are proposed

to overcome this problem [23].

Figure 8: Visual quality comparison of 3D model and impostor image.

(Pixelization problem occurs due to use of raster impostor (right image).

This problem is similar to the vector vs. raster issue in many other disciplines.)

Grosman and Dally [24] implemented point-based rendering, in which point

primitives are used to render geometric objects instead of polygons. The points

should have normal, color and depth information, and thus better representing the

original model. Several researchers have proposed improvements to the point-based

rendering technique [25-27]. Rudomin and Millan used point-based rendering to

visualize virtual crowds [28]. They also compared impostors and point-based

rendering in crowd simulation, considering various parameters such as animation

smoothness, rendering performance, and texture memory usage [29]. Neither method

was superior, since both techniques have similar performance results and comparable

pros and cons.

 16

To overcome the bottlenecks introduced by geometric, image-based and point-based

representation techniques, a hybrid approach in which high-cost/high-quality

representation (geometric) and low-cost/low-quality representation (image-based or

point-based) can be employed to render a virtual crowd. Dobbyn et al. proposed

using geometric models and impostors (called as geopostors) together to increase

rendering performance [23]. In this approach, geometric models render virtual

humans within a certain threshold distance, while impostors are employed for the

rest. Hamill et al. improved this approach with a perceptual metric [30], researching

when to switch the geometric model and impostor. The geometric model can be

switched to an impostor representation when one texture element (texel) corresponds

to a pixel on the screen. McDonnell et al. validated this result by examining the

participants’ perception [22]. This hybrid approach has also been employed in latter

studies. In a recent work, Maim, Yersin, and Thalmann used the hybrid approach in

three levels [31]. The first level supports facial and hand animation with high-detail

mesh models. This level is used to render the virtual characters close to the camera

view-point. The second level represents virtual characters far from the camera with

pre-computed static meshes. The final level uses impostors for the virtual characters

that occupy the very limited space in the view-frustum.

2.1.2 Virtual Character �avigation

Navigation is another challenging issue in crowd simulation, since avoiding

collisions in real time among thousands of virtual people, the entities, and the

structures in the virtual environment is difficult. Additionally, the virtual characters’

movement path should be visually convincing to meet realism expectations. There

are a lot of parameters that determine a person’s path. For example, people usually

prefer the shortest path while they are rushing and crowded streets when it is dark.

The computations get more complicated when the collision avoidance system of

humans is included. Human path planning is updated frequently, considering many

factors such as congestion. While moving, humans interact with other people,

observe the surroundings and the other people’s actions, and modify their paths

 17

accordingly, adjusting their orientation to avoid possible collisions. Basically, trying

to implement path updating mechanism for every single entity requires huge

processing power and good algorithms. This agent-based approach is

computationally expensive and produces less realistic crowd behavior such as sharp

paths. The literature covers many studies regarding the navigation of virtual

characters in synthetic environments. Some of the outstanding works are summarized

as follows.

Treuille, Cooper and Popovic implemented a new approach in crowd navigation [32].

They examined this problem from a perspective based on continuum dynamics. The

fluid dynamics community inspired this study by introducing the use of a continuous

density field to represent pedestrians. Treuille et al. presented a real-time motion

synthesis model for large crowds without agent-based dynamics. They described a

new type of crowd simulator driven by dynamic potential fields. These fields

integrated the global navigation and local collision avoidance. The approach is based

on two simple terms: a velocity-dependent term inducing lane formation, and a

distance-based term stabilizing the flow. Furthermore, Treuille et al. showed how

individuals produced more intelligent behavior with their knowledge of future. Their

final renderings demonstrated a smooth flow under a variety of conditions and

exhibited emergent phenomena observed in real crowds [32].

Yersin et al. tried to steer virtual crowds by using a semantically augmented

navigation graph [33]. They addressed the problems arising from the lack of

intelligent and realistic behaviors of virtual characters. To overcome this problem

they provided the knowledge of the environment by exploiting a navigation graph.

The algorithms employed to prepare navigation graphs were defined in another study

[34]. After capturing the environment’s topology, the navigable areas determined

from structures, slopes, and several other parameters are delimited. Passing from one

area to another is only allowed where an intersection exists. Finally, the graph is

prepared by employing a deterministic graph building method based on the voronoi

diagram. The paths in the scene are constructed from this graph. Cylindrical volumes

 18

simply define the walkable paths reconstructed in a multi-level manner. For example,

there are two paths in one staircase: down to up and up to down. To give information

to the virtual pedestrians, the nodes are labeled with semantic information relative to

their region (e.g., Park, Hotel, Circus) [34].

Bayazit, Lien and Amato studied regarding flock behavior [35]. For simplicity, flock

behaviors can also be employed to visualize human groups. There are many methods

to simulate flocking behaviors [36], [37]. Flocking behavior studies mostly use local

environment for decision making. Bayazit et al. investigated the contribution of

global information, as an environmental roadmap that enables more sophisticated

flocking behaviors, supports global navigation, and planning. They embedded

several behavioral rules for individuals to modify their actions according to

environment and changing states. This yielded different patterns that have not been

observed in previous studies such as forming an unordered group in open areas and

follow-the-leader fashion in narrow passages. Use of global information provided by

their rule-based roadmaps improves the behavior of autonomous characters, and

particularly enables more sophisticated behaviors than traditional flocking algorithms

that only use local information [35].

Lamarche and Doinikan proposed an approach that enables the real-time simulation

of hundreds of virtual pedestrians. They produced an accurate environmental model

from the virtual environment’s underlying geometry. This vector structure was used

to compute optimized paths. Most importantly, Delaunay triangulation is refreshed

automatically according to the population density. This method is similar to the load-

balancing approach in parallel processing. Additionally, their model includes reactive

navigation architecture inspired from physiological studies [38]

Some applications require less realistic navigation, such as collision-free,

meandering people. In such a case, several assumptions can be made to minimize

complexity of the navigation problem. In an immersive virtual reality game

experience, Ulhaas et al. implemented boids algorithm and represented human agents

 19

as particles [37]. Collision avoidance between characters was achieved by calculating

physically based repulsion forces between particles, which are added to the steering

force determining proximate position. They used a three-zone model to set the

strength of the repulsion forces. The resulting force function was adjusted by the

physical parameters stiffness and viscosity.

Lerner, Chrysanthou and Lischinski studied crowd simulation in a data-driven

approach, constructing a trajectory database from real videos [39]. They captured

several videos and extracted individual trajectories manually. In the simulation phase

they tried to find the best trajectory for each agent considering their spatial location,

surrounding agents and obstacles. The characteristics of this approach are

summarized as follows:

• Produces more realistic and better looking simulations with many actions as

seen on videos

• Chooses AI from the virtual character’s location without determining

individual behaviors and assigning rules

• Creates different crowd animations from various data sets (panic, normal)

• Synthesizes new actions from existing data sets

Maim, Yersin and Thalmann employed a level-based navigation model [31]. Virtual

character navigation in the foreground was computed from interaction and collision

avoidance parameters. The background people were navigated using a simpler

approach. Finally, they distributed virtual characters in available zones using

statistical methods.

2.1.3 Population Variety

Virtual environments need to be populated with different looking virtual characters

because a scene with lots of clones is far from realistic and the clones that look

 20

identical can easily be identified by the users [40]. It has already been shown that the

users more easily detect the clone models that look alike. A proper data set needs to

be used to populate scenes. For example, a large collection of adult Native

Americans cannot be used to simulate the streets of Shanghai.

There are two main approaches for 3D virtual human model generation:

• Creative (Artistic Process): The process of 3D modeling that uses special

software such as 3D Max, Maya, Poser and Lightwave. The creative

approach gets harder and consumes time when a higher level of realism is

desired. Since model generation effort is repeated for each virtual character,

this approach is not practical to achieve large population variety.

• Parametric Construction (Reconstruction): This method uses base models to

generate automatically new virtual humans by applying several functions and

changing body shape parameters. To generate realistic models, the science of

anthropometry (the measurement of living human individuals for the

purposes of understanding human physical variation) is required.

Allen, Culles and Popovic [41] demonstrated a system for synthesizing high-

resolution, realistic 3D human body shapes according to user-specified

anthropometric parameters. They used whole-body 3D laser range scans of 250

different people. The authors used an artist-made human model with 60,000 vertices

as a basis to produce other human models from laser scan data. In the first step, they

deformed the base model with each body scan data to make a model without gaps,

ready to be used by computer graphics applications. In this step 74 landmark

positions were used to make exact matches, very similar to 3D registration. Principal

Component Analysis (PCA) was used to minimize the data set by removing human

models above a certain threshold. Then, relationships between the body parts such as

height were defined to synthesize new body shapes. They used six anthropometric

measures (stature (height), bitragion breadth (head breadth), shoulder breadth, arm

 21

length, bi-cristale breadth and leg length) to create a body type of the desired

proportions [41].

Seo, Cordien, Philoppen and Thalmann generated animation ready models quickly

[42]. They introduced several deformers for each body part to automatically adapt

the model to different sizes and proportions. They employed a generic 3D body

model and H-Anim skeleton hierarchy. To attach a skin to a body, they simply

assigned a weight to each vertex using related bones. This structure lets the user

easily deform a bone, and consequently the attached skin also deforms and fits. But

there are some parts in the human body that are not suitable for bone deformation,

such as breasts, bellies and bottoms. The authors assigned free-form curves

(NURBS, Bezier curves, B-Splines) to deform these parts.

Thalmann and Seo introduced a framework for time-saving generation of realistic,

animation-ready population body models while keeping as much distinctiveness

between individuals as possible [43]. Similar to the study of Allen and his

colleagues, Thalmann and Seo also used 3D scanned body models as prototypes. To

generate populations they proposed a method which smoothly interpolates among

these prototypes by using scattered data interpolation techniques.

A practical approach for model variation is to apply different texture maps to the

same model, as demonstrated by Ciechomski et al. [44]. The important point of this

technique is the choice of appropriate hair, skin, and eye colors. Similar approach has

also been employed by McDonnell et al. to generate crowd variety [40]. Dobbyn et

al. and McDonnell et al. used cloth textures to generate crowds with different clothes

in real-time [45,46]. Similar approach has been employed in thesis as illustrated in

Figure 9. Since the focus of this thesis is not to generate on-the-fly textures, artist-

made textures were used. In this figure, blue, brown and gray suits are used to

generate three different virtual characters. Figure 10 shows crowd variety using

different textures and scaling.

 22

Figure 9: Population variety using different texture maps.

Maim and his colleagues introduced YaQ, an architecture for crowd simulation [31].

In YaQ, crowd variation is one of three components, and it was designed to generate

unique individuals from a small set of templates. This component can change

people’s shape and assign different textures, colors and accessories. It also provides

variety through different animations.

Figure 10: Population variety in a virtual concert.

 23

2.1.4 Virtual Character Behavior Modeling

Behavior modeling is one of the most extensively-studied areas in virtual crowd

simulation. There have been different approaches and studies dealing with virtual

character decision making and behavior modeling in virtual worlds, but no method

has been proven to be the best. The choice mostly depends on the goals and priorities

of the study. In virtual worlds, characters simply perceive the surrounding world and

react accordingly. Crowd simulation methods may produce repetitive and predictable

motions, therefore, are easy to implement, while some methods are very power-

hungry. Several approaches are:

• Rule-based Systems.

• Physics-based Systems

• State Machines

• Fuzzy Inferences

• Decision Trees

• Neural Network/Genetic Algorithms

• Real-life Data Extraction from Videos (Data-driven)

Ulincy and Thalmann studied crowd behaviors in emergency situations [47]. The

behavior model described in their paper is simple enough to allow the real-time

computation of many characters. However, the model based on rules and finite state

machines is also capable of generating interesting behaviors. This study also

provided script based interface to manage actions of the crowd.

Thalmann, Musse and Kalmann proposed the distribution of autonomy among the

simulation’s entities to achieve realistic behaviors [48]. The method they explained

employs perception and emotion to shape behaviors and ultimately actions. This

paper mainly focuses on humanoid autonomy. Thalmann et al. defined three types of

crowd behavior that reflect three Levels of Autonomy (LoA):

• Guided crowds: Behaviors explicitly defined by users.

• Programmed crowds: Behaviors programmed in a scripting language.

 24

• Autonomous crowds: Behaviors specified by rules or complex methods.

Essentially, the LoA concept decreases complexity by assigning autonomy to groups

rather than individuals. Furthermore, Thalmann et al. also offered similar structure

for objects in the scene. Similarly, to minimize complexity, objects were also given

an autonomy they do not possess in real life [48].

Heigas et al. worked on realistic crowd simulation in the ancient Greek agora of

Argos [49]. They visualized a social theater where two kinds of phenomena took

place: interpersonal interactions (such as small group discussion and negotiation) and

global interactions (such as flowing and jamming). This paper focused on the

collective human phenomena called non-deliberative emergent crowd phenomena,

typical of collective emergent self-organization such as flowing, avoiding, jamming,

and collapsing.

Sung, Geicher and Chenney showed how scalable behaviors can be used in crowd

simulation using a two-level decision model [50]. At the high level, they adapted a

situation-based distributed control mechanism that gives specific detail to each

individual about how to react to its local environment. At the low level, a probability

scheme computes probabilities over state transitions and produces samples to move

the simulation forward. They tried this approach in several situations, such as theatre

and street environment. Ultimately, the described framework created complex crowd

behaviors through the composition of situations and behaviors while minimizing the

data stored in each character [50].

Braun et al. researched individual characteristics’ impact in the evacuation from

emergency situations [51]. In this study, they implemented physically-based model

for crowd simulation in panic situations. The authors also added individual behaviors

to get a more realistic simulation. Their approach successfully visualized the

individual parameters of altruistic people, who tend to rescue dependent people

before themselves.

 25

Sakuma, Mukai and Kuriyama used both psychological issues and pedestrian speed

and density measurements for crowd simulation [52]. They showed that particle

system based approaches are inappropriate for crowd simulation, since complicated

human perception mechanism requires the inclusion of human perception and

psychology. This study also explains collision avoidance according to psychological

issues. They indicated that from a psychological viewpoint, the neighboring agents

impose mental stress on each other, which can be estimated on the basis of a personal

space model. This model experimentally showed that mental stress increases as other

people get closer. Within a certain threshold this stress becomes critical.

There exist different studies that involve additional parameters to crowd simulation.

In one such study, Pelechano et al. employed psycho-socio-physio-logical parameters

(emotions, stress, personality, nationality, cultural background, psychological

models, roles, and communication) with existing crowd simulation [53]. This

approach produces more realistic results compared to the rule-based or force-based

methods. They proposed a structure, called PMFServ, to take into account

psychological elements that affect human behavior. PMFserv was conceived as a

software system that would expose a large library of well-established and data-

grounded Performance Moderator Functions (PMFs) and Human Behavior

Representations for use by cognitive architectures deployed in a variety of simulation

environments. As a result they succeeded in getting more behavioral variety by

including agent psycho-socio-physio-logical parameters into decision making

system.

Later, Pelechano et al. presented the HiDAC (High-Density Autonomous Crowds)

system [54]. They combined rules with physical forces, and determined agents’

behaviors individually by employing a two-level approach, which models actions

such as navigation, learning, communication, decision-making, perception of the

environment and collision avoidance.

 26

O’Sullivan et al. [55] used LOD not only for visualization and motion but also to

simplify behavior of crowds. They reported that LODAI reduces computational costs

by offering very low-cost behavioral model for the background individuals, and a

detailed model for the foreground individuals.

Chittaro and Serra demonstrated autonomous virtual characters with behavioral

differences [56], bringing distinct behaviors from probabilistic influence on behavior

selection. Badler et al. also used personality in EMOTE (Expressive Motion Engine),

which influences the character’s perception and actions [57]. Bécheiraz and

Thalmann introduced the basis of this behavioral modeling [58]. They used

perception to generate emotion, then both perception and emotion to invoke a

behavior corresponding to an action. Ayesh et al. tried fuzzy individual modeling

(FIM) [59]. They also used perceptions to update the emotions that trigger different

behaviors.

Rudomin and Millan used XML scripting to specify behaviors and employed a Finite

State Machine as a processing method [59]. Furthermore, they implemented

probabilistic FSMs, hierarchical FSMs and layered FSMs to produce non-

deterministic results [60,61].

Similar to the data-driven study of Lerner et al. [39], Peters and Ennis have also used

pre-recorded video sequences to extract real-life crowd behaviors and generate real

life-like simulations [62].

2.2 Crowd Simulation Using Parallel Computing

In the literature there exist various research studies regarding crowd simulation,

using various parallel computing platforms. Depending on the underlying hardware,

various approaches have been implemented. This section summarizes some of the

outstanding work related with the focus of this thesis.

 27

2.2.1 Crowd Simulation Using Multi-CPU/Multi-Core Parallel Computing

In PSCrowds study, Reynolds implemented a virtual underwater environment with

thousands of inhabitants, running in real-time by using Playstation3 game console

that contains eight processors (one Power PC processor (PPU) and seven Synergistic

Processor Units (SPUs)) [63]. Reynolds modeled fishes as interacting particle

systems, an approach that requires having information about the surrounding

individuals. Using this information, the simulation model computes the behavior of a

fish. Basically, an interacting particle system computes the behavior by using the

distance information with the other agents. If the distance test is performed for all the

agents, the computational complexity becomes O(n2). Although this approach is

simple and works well for small populations, it becomes useless for large

populations. In order to minimize computational load, spatial hashing techniques can

be employed. While using spatial hashing, Reynolds designed an algorithm to make

effective use of the underlying parallel processors, and ultimately to achieve higher

performance [63]. Reynolds used static and regular sub-cubes as spatial cells,

represented by a software class called “bucket.” Each bucket is processed by a single

SPU. Such a granularity allows the workload to be divided into jobs, executed

independently or in parallel by multiple processors. These buckets are also processed

in an order-independent way to avoid scheduling overhead [63]. In this study PPU is

used as a coordinator. Some of the major responsibilities of the PPU are simulation

cycle update, synchronization, communication, and task assignment to the SPUs. In

the beginning of each rendering, individuals are assigned to a single bucket. After

this step each SPU updates the simulation on bucket-base. A software class named

“NearestN” is responsible for handling possible collision in the neighbor buckets.

Reynolds has not used any load-balancing algorithm because of the homogenous

distribution of individuals in the aquarium. PSCrowds was repeated for various

scenarios. In the 2D version, 15,000 individuals were rendered at 60 fps. In the 3D

version the population was 10,000. Finally, 5000 highly-detailed fish models were

rendered in 3D at 30 fps [63].

 28

In a similar crowd simulation that visualized thousands of chickens, RapidMind Inc.

described the use of multi-processor architecture, Cell BE (Cell Broadband Engine)

which contains nine CPUs [64]. In Cell BE, one processor is IBM Power PC

Processing Element and the rest are specialized processors (SPE) tuned for high-

performance floating point and integer math on short vectors. Since much of the Cell

BE’s impressive performance resides in the SPEs, the key to obtain high

performance on the Cell BE processor is to use SPEs efficiently. In this study, crowd

simulation mainly covers the following tasks [64]:

• Neighbor finding: Each character needs to perceive the state of its nearest

neighbors.

• Environment access: Each character needs to perceive its local environment.

• State update: Each character needs to update its state over time.

• Visualization: The current state of the each character needs to be rendered to

the screen.

Quinn, Metoyer and Zaworski worked on pedestrian simulation in a PC cluster made

up of eleven computers [65]. In this system, they succeeded to move 10,000

pedestrians with 1:50 seconds intervals. Their main goal was to make a system that

could simulate and visualize large crowds in real-time. In this study, individuals were

represented with 2D dots; hence no realistic rendering approach was employed. That

is why the rendering cost was not important. The power-hungry part of this study

was updating pedestrian locations based on social-powers. In this method, the

distance between pedestrians would cause repulsive or an attractive forces on every

other pedestrian. In real life this distance is a few meters away. In order to meet real-

time constraints, Quinn et al. used PC cluster and assigned a manager-worker style

architecture for this task. The manager was responsible for communication with

other PCs in the cluster (workers). It collected current positions of each individual

after updating cycle and passed this information to the rendering engine. Each

worker process was responsible for simulating pedestrian movement within a

rectangular region of the building. Since the social-powers approach works on a few

 29

meters distance, grouping people in given boundaries minimized the required

processing time as Reynolds described [63]. Similarly, Quinn et al. also used regular,

fixed grids as spatial cells. In this study, they divided the simulation environment

into 4m2 square cells. With nine neighboring cells forming a 6m. by 6m. square, the

greatest possible distance is 5.26 meters in the diagonal. In order to communicate PC

cluster, they used Message Passing Interface (MPI) library, which is very popular for

parallel processing. During their study, they observed a linear performance increase

as they added more PCs to the cluster. This scalability means that it is possible to

increase the number of interactive actors by adding more PCs to the cluster. Since

there is no inter-communication between workers, this really helps minimizing

network traffic overhead. Similar to the Reynolds’ study they did not employ any

load balancing.

Steed and Haidar focused on dynamic allocation of regions considering crowd

distribution and spatial partitioning algorithms [66]. They aimed to minimize

network overhead when a cluster of servers is used to simulate large crowds. Unlike

the studies summarized above, Steed et al. tried to minimize the load balancing

problem, which likely occurs due to a larger crowd occupying a specific zone such as

city center [66]. They used pre-recorded activity data to compare the effectiveness of

the investigated partitioning methods. Among the four spatial partitioning schemes

(quad-tree, k-d tree unconstrained, k-d tree constrained and region growing), region

growing, used mostly in image processing, achieved the best result. This algorithm

simply starts with a selected seed point and enlarges until a certain threshold is

reached. In this study, Steed and Haidar picked seed points close to the mass

populations [66]. The resulting partitioning became an even and irregular shape

reflected the complex road structure and the population distribution. They defined

the problem of using a priori regular partitioning as not “reflect[ing] how participants

will actually use the space. Certain regions might be very crowded and thus they

become failure points at run-time” [66].

 30

Zhou and Zhou tried to use a PC cluster to partition flock [67]. Their aim was to

minimize O(n2) complexity and to increase the entities in the simulation. Initially,

they investigated two possible communication methods between PCs in the cluster.

The first technique was “all-to-all” communication; the second was “near-neighbor-

communication.” In all-to-all communication each PC can communicate with the rest

and collect information about dynamic entities on other zones. Although this

approach guarantees global vision, it significantly increases network traffic which

causes an overhead in the simulation system. Taking the limited vision of boids in

the flock into consideration, a better approach which is “near-neighbor-

communication” can be used to decrease network traffic. Besides network

communication, Zhou and Zhou also examined even-distribution and dynamic-load-

balancing issues. They observed due to migration, un-even distribution frequently

happened in their simulation system. In order to overcome this improper work-load

distribution, they considered population distributions to redefine zones, and they

used dynamic partitioning when necessary. Up to 512 boids were rendered in real

time using different cluster configurations. They used a proper load-balancing

algorithm to obtain a significant performance. However, it was indicated that

frequently invoked load-balancing may lead to inefficiency. They offered to use

suitable threshold value to invoke load-balance as a solution.

The commodity multi-core CPUs offer researchers a way to achieve speedups by

exploiting multi-thread programming. Berg and colleagues demonstrated a collision

avoidance approach in crowded scenes that also contain moving obstacles [68]. They

used a pre-computed road map for global path planning. This approach increases the

computational performance of the simulation with multi-core CPUs. Their approach

was built upon the concept of velocity obstacles, a technique found in robotics for

motion planning to avoid dynamic obstacles. In this velocity-obstacles based

implementation, each agent senses the environment independently to compute a

collision free path. Agents acquire information on the positions and velocities of

other agents and obstacles. This information is used to decide how to move locally.

However, this approach ensures no oscillatory behaviors. The study employed Intel

 31

Xeon X7350 2.93 GHz with 16 cores. Their approach is fully parallelizable since

each agent requires independent computation. This parallel solution showed that

simulation performance increases almost linearly with the number of cores. They

achieved interactive rates on virtual environments containing several thousands to

tens of thousands of agents.

In a recent study Stephen and his colleagues presented high-performance collision

avoidance for crowds [69]. Similar to the study by Berg et al., their approach was

built-upon the concept of velocity obstacles. This newly introduced collision

avoidance algorithm was called ClearPath. They also extended ClearPath with data-

parallelism and thread-parallelism, and named this extended version as P-ClearPath.

The results of the study showed that P-ClearPath achieves 8-15× speedup compared

to the previous VO-based solutions. In the implementation, an Intel Quad-Core CPU

that supports 16 threads was used. In this setup a 2× speedup was observed when

dynamic partitioning was used to reduce load imbalance. Static partitioning causes

the threads handling sparsely populated zones to finish computations earlier than the

threads dealing with the crowded zones. It was also indicated that P-Clear uses 20%

of the CPU resources for simulating 5000 virtual characters, meaning that the rest of

the CPU resources can be used for other computations such as AI.

2.2.2 Crowd Simulation Using GPU

Recently, several studies have been published regarding crowd simulation with a

GPU. Current studies employ NVidia CUDA instead of the previously used GPGPU.

An early work regarding crowd simulation on the GPU was demonstrated by Courty

and Musse [70] in a study named FastCrowd. Significant speedup was achieved with

the GPU implementation instead of the CPU implementation.

Erra et al. demonstrated massive simulation of a distributed behavioral model on the

GeForce FX 5800 GPU [71]. Well-known boids implementation was chosen. GPU

 32

results were compared with CPU results, and better performance was reported.

Although an early model of compute-capable GPUs was used, the speedups were

very important because it showed that the GPUs began to take the compute

responsibility from the CPUs.

Richmond and Romano presented a high performance agent based pedestrian

simulation using GPGPU [72]. They indicated that, GPGPU was chosen because

NVidia CUDA is a vendor dependent solution. Their work was designed to support a

scripting based interface, thus defining more complicated agent behaviors. To

increase simulation performance, the pedestrian data and simulation were kept in the

GPU. This approach helped them remove data transfer overhead. Similarly they

used real-time feedback to employ an LOD system on the GPU and to improve

rendering and simulation performances. With the LOD system, the reserved

resources could add more characters to the simulation. They ran several simulations

using different populations and rendering elements. When triangles were used to

represent pedestrians, higher frame rates were achieved. For example, 13 fps was

reported for the population of 262,144 pedestrians. The frame rates were decreased

significantly when polygonal human models were used. 40 fps was reported for the

population of 1000 pedestrians. GeForce 8800 GT GPU was used for these tests. The

authors later improved this study and implemented the new version using CUDA.

They reported 250× speedup compared to the single CPU implementation.

D’Souza and his colleagues simulated a mega-crowd on the GPU [73]. They

successfully implemented SugarScape model with a GPGPU. The simulation, which

includes more than two million agents, achieved 50 updates per second. The

SugarScape model shares properties with agent-based models. The authors used GPU

texture memory to store agent attributes and GLSL to write shader code. The

simplicity of the model and the minimal cost of the rendering primitives might also

help achieve the goal of rendering huge populations at high simulation cycle rates.

However, the actual issue was to compute and store everything on the GPU and thus

take full advantage of the extreme computational power and the high memory

 33

bandwidth. Although no tests were performed, it was indicated that the implemented

prototype would outperform even High Performance Clusters (HPCs).

In a recent study by Passos et al., it was shown that simulation and visualization of

very large crowds in real-time is possible with NVidia CUDA technology [74].

Researchers succeeded in running a simulation of more than one million boids at

nearly 30 fps, a great number compared to the 15,000 boids Reynolds simulated with

a multi-CPU architecture. This significant result showed that successful casting of

the existing algorithms to general purpose parallel computing can create very

significant enhancements to real-time crowd simulation performance. Although they

represented boids with very simple geometric primitives, more complicated

geometries can be used in the rendering process. The high performance of this

implementation relies on an effective sorting method used as a base to the spatial

hashing approach. The simulation was repeated, using different populations ranging

from 64 to 1048576. Passos et al. also implemented the simulation on the CPU and

the GPU and showed that GPU bypasses the CPU at around 250 boids [74]. As the

number increases, the frame rates of the CPU decreases quadratically. The algorithm

was tested on 2.4 Ghz and NVidia GTS 8800 GPU. The study was extended with the

addition of a 3rd dimension, a new data structure, and several other sorting methods.

Using the previous hardware, comparable speedups were again obtained [75].

Karthikeyan used CUDA technology to render crowds of virtual humans in his

master’s thesis [76]. The computations for the animation were compared on the GPU

and the CPU. The results showed that the GPU bypasses the CPU at around 1000

virtual characters.

 34

CHAPTER 3

�Vidia CUDA TECH�OLOGY A�D

GE�ERAL PURPOSE PARALLEL PROGRAMMI�G

This chapter presents detailed information about the CUDA architecture and general

purpose parallel programming. The issues covered in this chapter will be used

throughout the rest of this thesis, to show how CUDA technology and parallel

programming helps achieve significant speedups in massive crowd simulation.

3.1 What is �Vidia CUDA?

Although announcements were made earlier, NVidia introduced CUDA to the public

in February, 2007 [9, 10]. This technology was designed to meet several important

requirements for a wide audience’s use. One of the most important requirement is the

ability to program GPUs easily. Simplicity is necessary to ease GPU parallel

programming and enable its use in more disciplines. Before CUDA, GPU parallel

programming was limited to shader models of the graphics APIs. Thus, only the

problems well-suited to the nature of vertex and fragment shaders were computed by

using GPU parallel processing. Additionally, expressing general algorithms in terms

of textures and GPU provided 3D operations by using only float numbers were

among the issues that limit the popularity of the GPU computing [77]. To achieve the

goal of making GPU parallel programming easy and practical, NVidia offered to use

C programming language with minimal extensions [9]. Another important issue is

the heterogeneous computing model, which makes it possible to use CPU and GPU

 35

resources together [9]. CUDA lets programmers divide the code and data into sub-

parts, considering their suitability to the CPU/GPU architecture and respective

programming techniques. Such a division is possible because the host and device

have their own memories. In this sense, it also becomes possible to port existing

implementations gradually, from the CPU to the GPU [9].

It should be noted that CUDA is NVidia specific. In order to make a GPU parallel

processing application run on ATI GPUs as well, there exists another programming

tool called OpenCL (Open Computing Language). Currently, this initiation is lead by

Apple Inc.

3.2 CUDA Architecture

The competition in the video-game industry to present more life-like and highly-

detailed 3D graphics has also started a competition between the GPU producers to

offer better hardware to the gamers. Thanks to the nature of the graphics processing,

the newly released products offer highly parallel processing units with high-memory

bandwidth and computational power of more than teraflops per second [8,9,77].

Modern GPUs are designed to support data-parallel computations, which means

many threads execute the same code for each data-element. Data-parallel processing

can be shortly described as mapping data elements to parallel processing threads

[11]. The performance increases if there is little to no branching, since exactly the

same code is executed for all parallel running threads. Image processing kernels and

matrix operations are among the typical applications that get the most benefit from

this architecture. However, significant speedups can be achieved in many additional

disciplines, by porting existing algorithms to this data-parallel architecture [1-6]. In

the near future, the hardware developers will offer better GPUs with more parallel

processing threads. It is the responsibility of software developers to use this

incredible GPU processing power that is comparable to the processing power of the

high-performance computing clusters.

 36

The data-parallel and thread-parallel architecture introduces scalability. Since no

extra effort is necessary to run the existing solution, the new GPUs are capable of

running more processing threads. It means that the code designed for the NVidia 8

series runs faster in NVidia GTX series without any additional coding. Considering

the nature of massive crowd simulations, data-parallelism should be provided by

setting one thread per virtual character.

The three abstractions offered by NVidia ensure the granularity required for good

data parallelism and thread parallelism [11]. These abstractions listed below are

designed to make CUDA programmers’ life easy.

• Thread Group hierarchy: Threads are packed into blocks which are also

packed into a single grid.

• Shared memories: CUDA lets threads use six different memories that are

designed to meet different requirements.

• Barrier synchronization: This abstraction synchronizes threads within a single

block and makes a thread wait the others to finish related computing, before

going further.

C for CUDA makes it possible to write functions that run on the GPU by using C

language. These functions are called “kernels,” which are executed for each thread in

a parallel manner, unlike the conventional serial programming functions that run

only once.

CUDA’s architecture offers thread hierarchy in top-down order as follows:

1. Grid: A grid contains one or two dimensional blocks.

2. Blocks: A block contains one, two or three dimensional threads. Current

GPUs allow a block to contain 512 threads at most. The blocks are executed

 37

independently, and they are directed to available processors to provide

scalability.

3. Thread: A thread is the basic execution element.

This hierarchy and the structure are depicted by Figure 11. For example if it is

assumed that 1048576 virtual characters to be processed independently in parallel

manner and the block size is determined as 512, then there are 2048 blocks.

Figure 11: CUDA thread hierarchy.

3.3 GPU Processing

CUDA-enabled GPUs contain several multi-threaded streaming multi-processors

(SM). For example, a GTX295 GPU contains 60 SMs. Each SM is comprised of

eight Scalar Processors (SP). As depicted in Figure 12, SMs also have two special

function units: a multithreaded instruction unit, and an on-chip shared memory. Each

SP can run a single-warp (containing 32 threads) concurrently.

 38

SIMT (Single Instruction Multiple Thread) architecture manages many concurrent

threads. A SIMT unit, which handles every issue in warp-basis, exists for each SM.

The execution of SIMT is illustrated by Figure 13. In each time step a common

instruction is applied to the active threads. Thus, the performance improves when

each thread follows the same execution path. Branching causes delay because the

threads within a warp wait until a common instruction is reached. For the best

performance, similar parallel-threads should be organized sequentially. This issue

should be taken into consideration during the design phase.

Figure 12 Streaming multiprocessor.

Figure 13: SIMT workflow.

 39

3.4 Device (GPU) Memories

Efficient GPU parallel programming is based on proper usage of the device memory.

Thus, the details of the device memory, comprised of six different memories with

various characteristics, need to be known. The memory spaces illustrated in Figure

14 are all well-suited to different requirements. This section gives detailed

information regarding these memory spaces and how to use them efficiently

depending on implementation.

Figure 14: Device memory architecture.

• Register: The register is located on the chip and thus offers a fast access.

However this memory is only accessible by a single thread and has limited

space. For example, the GTX 200 GPU offers 16,384 32-bit registers per SM.

• Local: Local memory is used as extra space when registers do not meet the

requirements. Since this memory space is not located on the chip and not

cached, it suffers from bandwidth optimization.

• Shared: Shared memory is designed for performance. This on-chip memory

is located close to the stream processor and offers very low-latency [9].

Shared memory is accessible by the threads within a block and much faster

than the global memory. Currently the shared memory space is limited to

 40

16KB per block. This memory space is accessible to all threads in a block.

Although designed for fast access, shared memory only offers limited

capacity. Thus, when memory size matters, fewer threads should be chosen

over the maximum limit of 512 threads per block. In addition to fast access,

shared memory also allows synchronization, required to keep threads aside

for certain cases. Replacing global memory accesses with shared memory

saves significant global memory bandwidth. Therefore, it is certainly worth

the extra effort to re-implement algorithms to take the most advantage of

shared memories.

• Global Memory: This off-chip memory space can be considered as the most

flexible memory space. It offers both read and write operations as well as

provides access to all threads and the host. Unfortunately Global memory is

very ineffective for access latency. Since this memory space is not cached,

coalesced memory access is required for better performance. It also does not

require too much memory space.

• Constant Memory: This memory space is read-only and, similar to the

global memory, off-chip. However, constant memory is cached and offers

better performance. Currently, the available constant memory space is limited

to 64KB.

• Texture Memory: Texture memory is actually a read-only global memory.

Compared to global memory, this memory space offers better performance

from a cached-structure. Texture memory allows data representations in one

of these combinations:

o Dimensionality: 1, 2 or 3.

o Data Component: 1, 2 or 4.

o Data Elements: Signed/Unsigned Integers (8,16 and 32-bit), Floats

(16 and 32-bit)

Read-only memory accesses should be employed via texture memory

whenever possible to offer better performance.

 41

The concurrent execution between the host and the device can be utilized by using

asynchronous functions. When these functions are employed the control is returned

to the host before the device complete whole process. Thus the performance of

heterogeneous computation can be improved. Asynchronous tasks are listed as

follows [9]:

• Kernel launches,

• Memory copy functions with Async suffix,

• Host to Device and Device to Host memory copy functions,

• Memory setting functions

It is also possible to employ page-locked host and device memory copies

concurrently with kernel executions [9]. However, not all CUDA enabled devices

support this functionality.

3.5 Enhancing Computational Performance

To improve CUDA implementation performance, many actions can be employed.

However, the overall effect of each technique is unique. Some points should always

be taken into consideration while the rest depend on the nature of the problem and

the computational content. Non-optimized CUDA codes always suffer from

performance bottleneck. Thus, special care must be given to certain issues. NVidia

has defined three strategies regarding performance optimization [11]:

1. The first strategy achieves better throughput from maximizing parallel

execution. The problem must be converted into data-parallel structure as

often as possible. For massive crowd simulation, an actor-based solution

(where each virtual character is handled as a single and autonomous agent)

fits best. Thus, a thread per character can be assigned for these computations.

2. The second strategy uses the bandwidth efficiently. This strategy minimizes

data transfer between the host and the device/s and uses device memories

 42

appropriately. If possible, high-performance shared memory or cached

texture memory should be chosen instead of global memory. However, due to

the nature of crowd simulation, global memory is almost indispensable.

Therefore, the structure of device data must be well suited to the CUDA

architecture.

3. The third strategy is the optimization via instruction usage. This strategy

covers choosing alternative approaches to offer high performance. For

example, single precision arithmetic could be enough for character

navigation. Consequently, there is no reason to use double precision which

offers lower computational throughput. The instruction level optimization

also minimizes branching within a warp. This ensures that all of the threads

follow a similar execution path and the computational resources are used

efficiently. CUDA also provides several math functions for better

performance, which should be used whenever possible. The overall

performance becomes significant when instruction level optimization is

employed due to the huge number of characters.

3.6 FERMI: The Upcoming CUDA Architecture

NVidia will further improve GPU parallel computing with the upcoming FERMI

architecture, which is built upon on previous G80 and G200 architectures. The new

FERMI-enabled G300 GPU will introduce several advances. While designing

FERMI, the developers focused on improvements such as double precision

performance, error-checking, memory operations, and memory space [78, 79].

FERMI will also introduce some significant innovations to its hardware. The main

innovation, the 3rd generation SM, is illustrated in Figure 15. Firstly, the number of

cores in SMs will be raised from 8 to 32. The G300 GPU will contain 512 CUDA

cores. The new double precision performance speedup will be 8× [78]. Similarly

shared memory capacity increment will be 4 times larger, at 64 kb. The new 64 bit

memory-space will also offer more GPU memory. Two other improvements worth

 43

mentioning are the 10x context switching performance and the NEXUS development

environment. The details of these new improvements can be found on the NVidia

FERMI white paper [78].

Figure 15: 3rd generation SM.

 44

CHAPTER 4

MASSIVE CROWD SIMULATIO� WITH

 GE�ERAL-PURPOSE PARALLEL PROGRAMMI�G

This chapter explains how general purpose parallel programming can be used for

massive crowd simulation studies in a step-by-step approach, using NVidia’s CUDA

technology. Firstly, a generic massive crowd simulation application, which is

assumed to run on a single CPU core, will be ported to the GPU. In order to improve

computational performance, various approaches will be introduced in the following

sections. These approaches will utilize parallel computing basics and CUDA

architecture.

4.1 Massive Crowd Simulation Scenario

It is assumed that over one million virtual pedestrian (actual population is 1,048,576)

live in a virtual city. The aim is to simulate the navigation and behavioral modeling

of these virtual people and try to improve computational performance using GPU

parallel processing. This case scenario only focuses on navigation and reasoning

simulation, and thus excludes rendering process. Consequently, there is no 3D

graphics and no filtering operations like visibility or culling tests and LOD. In each

simulation loop, the application computes the virtual character’s navigation and

reasoning processes. The average computational cost per character is 1200 arithmetic

operations (+:560; -:80; /:240; *:240; sqrt: 80) as given by Listing 1. The aim of this

generic function is to perform same amount of arithmetic operation to compare CPU

 45

and GPU performances, not to simulate realistic behavior and navigation model.

Such functions were given in Chapter 5 and Chapter 6. The application performs

these processes via the “processAvatar” function, which is called for all characters

during each simulation loop. Table 1 lists the attributes of a virtual character.

 Listing 1: Pseudocode of the “processAvatar” Function

for (idx =0; idx <populationCount;++ idx)

for (i=0;i<80;++i)

 position[idx].x/=i;

 position[idx].y/=i;

 position[idx].z/=i;

 heading[idx].x-=sqrt(heading[idx])+i;

 mood[idx]+=personality[idx]+gender[idx]+age[idx]+weight[idx]+i;

agility[idx]+=gender[idx]*age[idx]*height[idx]*i;

Table 1: The attributes of a virtual character.

Attribute �ame Data Type Data Range Constant

position float3 float range no

heading float 0-360 no

age integer 0-120 yes

height integer 0-255 yes

weight integer 0-255 yes

personality integer 0-7 yes

mood integer 0-9 no

agility integer 0-100 no

gender integer 0-1 yes

model_index integer 0-100 yes

cloth_index integer 0-100 yes

 46

4.2 Test Implementation Setup and Results

In this test implementation, host-side computations were done using a single CPU

core (Intel I7 920 @2.67 GHz) and device-side computations were done using an

NVidia GTX 295 GPU. Actually, NVidia GTX 295 GPU is made up of two GPUs.

In this thesis multi-GPU has not been utilized. Thus only a single GTX 200 series

GPU has been used to compare single GPU performance with single CPU core

performance throughout the thesis. The speedup is almost 100% scalable when

multi-GPUs are employed [9, 10]. Table 2 gives performance results of the crowd

simulation implementation and the improvements. Figure 16 shows computational

enhancement using logarithmic representation, since the overall speedup is nearly

475×. It can be seen that it is possible to achieve two orders of magnitude speedups

using CUDA parallel computing architecture. Please note that the achieved 475×

speedup is totally dependent on this simulation. However, it is even possible to

achieve better speedups depending on the computational model and implementation

by using functionalities such as asynchronous concurrent execution as discussed in

Chapter 3.

Figure 16: Speedup via parallel processing and further improvements through
computational performance considerations (logarithmic representation).

The following chapters will also introduce comparable results. But, it must be noted

that this test compares many-core parallel computing with single core sequential

 47

computing. Therefore, this test does not compare CPU computing with GPU

computing. Such a test should compare optimized multi-thread CPU implementation

with optimized GPU implementation, which is not within the scope of this thesis.

Table 2: Computational enhancement of the generic massive crowd simulation.

(CPU: Intel I7 920 @2.67 GHz, GPU: . GTX 295)
Description Time

(ms)

Step

Speedup

Cumulative

Speedup

Step1 :The simulation was computed on the CPU 49,393.7 - -

Step 2: The simulation was computed on the CPU and

the GPU. The computational load was shared equally.

The simulation time also included host-to-device and

device-to-host data transfer. Due to bad design, all

attributes were transferred in each simulation loop.

Memory pattern includes several non-coalescent

accesses.

22,737.4

2.17 2.17

Step 3: The simulation was computed on the GPU. The

simulation time also included host-to-device and device-

to-host data transfer. Due to bad design, all attributes

were transferred in each simulation loop. Memory

pattern includes several non-coalescent accesses.

183.6 123.84 269.02

Step 4: Unnecessary attribute transfer was prevented.

The design was improved by dividing data structure.

Details can be found in section 4.3.4

128.1 1.43 385.59

Step 5: Data compaction was used for the transferred

data. In this example decode/encode cost was found 4

ms.

113.1 1.13 436.73

Step 6: Memory-level optimization implemented. 104.4 1.08 473.12

Step 7: Instruction-level optimization implemented. 104.2 1.002 474.03

4.3 Transferring Computational Load from a CPU to a GPU

Transferring computational load from a CPU to a GPU helps achieve good speedups.

This transfer actually ensures the parallelism, since the serial execution on the CPU

 48

is replaced with a highly parallel solution on the GPU. CUDA technology names the

CPU as “Host” and the GPU as “Device”. Hereinafter, this naming convention will

be used.

As previously explained, three strategies must be employed to achieve maximum

speedup. Section 4.3.1, 4.3.2 and 4.3.3 give details of the first strategy, which is to

maximize parallel execution. Section 4.3.4 covers memory and bandwidth issues,

while section 4.3.5 mentions the last strategy, instruction level optimization.

4.3.1 CPU Computing

In CPU computing, the application was assumed to run on a single CPU core. The

result of this step was used as base value to compute the cumulative and step

speedups. As previously mentioned, visualization issues were excluded in this

example scenario and the total computational cost for a virtual character in a single

simulation loop was 1200 flops. Using single CPU core (Intel i7920 @2.67 GHz),

the average simulation cycle was found 49393 milliseconds. The simulation

workflow is illustrated in Figure 17. The name of the simulation function is

“processAvatar_CPU”.

Figure 17: The workflow of the simulation running on a single CPU core.

 49

4.3.2 CPU&GPU Computing

In this step, the computations were performed both on the CPU and GPU. It was

assumed that programmers successfully divided “processAvatar_CPU” function into

two parts (“processAvatar_CPU,” and “processAvatar_GPU”), suitable to run on the

CPU and GPU. The computational cost for these functions was nearly 600 flops for

both. The simulation workflow illustrated in Figure 18 shows that including the GPU

as a co-processor, introduced a new data-transfer overhead between the host and the

device. Despite the newly introduced data transfer cost, porting even half the

computational load to the GPU achieved nearly 2× speedup. In this step, the average

simulation cycle was found 22737.4 milliseconds.

Figure 18: Workflow of the CPU and GPU computing.

4.3.3 GPU Computing

This step assumed that the whole simulation was computed on the GPU. Thus CPU

resources were freed for other purposes. The new simulation workflow, illustrated in

Figure 19, achieved 269.02× speedup, which is tremendous. Please note that this

initial design was very poor due to unnecessary memory copy operations. Figure 20-

 50

a shows that 47% of the GPU processing is occupied by memory copy operations.

This issue will be fixed in the following sub-sections.

Figure 19: Workflow of the GPU computing.

Figure 20: GPU occupancy plot.

(Top, 20-a: Shows bad CUDA implementation. Each attribute was transferred
between the device and the host. Middle, 20-b: Shows improvement by eliminating
the transfer of unused attributes. Bottom, 20-c: Data compaction minimizes the size
of the transferred data, thus provides further enhancement).

 51

4.3.4 Minimizing Data Transfer and Data Access Cost

One major bottleneck in general purpose parallel programming is the data transfer

time between the host and the device. Therefore, GPU vendors try to improve bus-

width. Table 3 shows the bandwidths of various CUDA capable GPUs. The previous

sections showed that I/O time limits better speedups. Therefore, the size of

transferred data needs to be reduced. Figure 20-a depicts the GPU occupancy of the

test simulation. In each simulation loop, almost half of the GPU resources were

occupied by memory copy operations. It should be noted that stream reduction makes

sense when data transfer frequency is high. In other words, it is not worth trying to

reduce data size in a very compute intensive application when data is transferred to

the GPU only a few times because data transfer time becomes negligible compared to

processing time. However crowd simulation requires data transfer with every

simulation cycle or at similarly high frequencies, since it is required to update virtual

characters’ action and position in each frame. Thus, stream reduction is a significant

issue in massive crowd simulation applications on general purpose parallel

programming.

Table 3: Bandwidth of various CUDA-enabled devices.

Model Bandwidth max

(GB/s)

Bus width (bit)

GeForce 8300 GS 6.4 128/256

GeForce 8800 GTX 86.4 384

GeForce 9500 GT 25.6 128

GeForce 9800 GTX 70.4 256

GeForce GTX 260 111.9 448

GeForce GTX 295 2*111.9 2*448

 52

Stream reduction, also known as stream compaction, can occur with several steps.

Firstly, only the required data sets should be transferred. The data structure may

contain all of a virtual character’s attributes but some may not be processed on the

GPU. Thus, unnecessary traffic will occupy a limited bandwidth. To accomplish this,

the data structure should be divided into categories of CPU related, GPU related and

CPU/GPU related, limiting the transferred data to the CPU/GPU related category.

• CPU related attributes: These attributes are usually related with visualization

or pre/post processing and have no effect on GPU processed functions such as

navigation or behavior modeling. Texture IDs, hair color, eye color are some

of these attributes. Since transferring these attributes into the device

consumes memory space and bandwidth, keeping them on the host memory

helps achieving more speedup.

• GPU related attributes: These attributes are used by GPU to produce results

to be used by the CPU. The mentioned attributes are transferred to the GPU at

the initialization phase and stored in the device memory as long as used by

GPU kernels. The transfer time in the initialization phase is negligible since it

is a one-time task. However significant amount of device memory accesses

are required in each simulation cycle. Thus using appropriate device memory

and memory access strategy lies at the center of this optimization.

• CPU/GPU related attributes: These attributes are both used by the CPU and

GPU throughout the simulation. Since there might be extensive number of

transfers it becomes important to minimize the transfer time.

Figure 20-b shows the improvement achieved by preventing unnecessary memory

copy operations. In this step, the constant attributes and CPU related attributes

(model and texture ids) were removed from the main data structure and thus there

was no need to transfer these attributes in each simulation loop.

 53

Secondly, the stream size can be reduced with a decrease in data transfer frequency.

Occasionally, some of the attributes may not be required in each simulation loop. In

massive crowd simulation, an avatar’s act can be modeled using combination of

several attributes. The weight and refreshment rate of these attributes might be

different, allowing further speedup. However, this solution is implementation

dependent and requires extra coding effort.

Finally, data compression, an approach that deals with the transfer of large amounts

of data using low bandwidth can provide further stream reduction. The two methods

of data compression techniques are lossless and lossy compression. Lossy

compression is usually employed for perceptual content such as audio and video

[80]. In massive crowd simulation, lossy compression can be used for the positional

data (translation and rotation values) required to be transferred frequently, since the

loss of few centimeters of accuracy probably is not a problem. Lossless compression

is employed when data content, such as behavioral attributes, is very important and

should not be changed.

Numerous research studies dealt with minimizing the size of transferred data; some

even focused on increasing the efficiency of GPU parallel processing. These GPU

parallel processing studies recognize stream reduction as a well-known approach in

which unnecessary data is removed from the output stream before it is transferred.

Roger, Assarsson and Holzschucz implemented stream reduction in GPGPU using

the parallel structure of the underlying hardware [81]. They simply divided output

data and processed them in parallel, providing significant speedup compared to the

sequential data reduction. Horn also studied data reduction on GPGPU to run faster

collision detection on the GPU [82]. Unlike the previous studies on GPGPU, Balevic

et al. employed CUDA and introduced a novel approach to reduce the size of

simulation data on massively parallel GPGPUs through arithmetic coding [80]. They

evaluated Huffman coding and arithmetic coding and preferred the arithmetic

encoding since it does not often require non-aligned memory accesses. As previously

 54

explained, the cost of non-aligned memory accesses on the GPU side significantly

reduces the computational throughput. Balevic et al. used light scattering data and

improved data transfer time nearly 30× compared to the uncompressed data transfer.

Although this speedup seems significant, the overall performance enhancement

needs to be evaluated including the newly introduced overheads such as

encoding/decoding and extra memory accesses in the GPU. They ultimately showed

that arithmetic encoding significantly reduces data transfer and storage costs while

ensuring no data loss. Harris, Sengupta and Owens implemented another stream

reduction study, using GeForce 8800 GTX which offers native scatter on the

hardware. They obtained more efficient results compared to the study of Horn that

used GeForce 6800 without native scatter capability [83]. Recently, another stream

reduction study reported a 3× speedup compared to the previous published

algorithms using SIMD architecture and global barrier synchronization [84].

Although the authors used CUDA, they indicated that the algorithm also suits AMD

GPUs and the expected Intel Larrabee, since they only used implicit atomicity in

SIMD architecture and barrier synchronization [84].

Although these researchers have demonstrated various approaches for stream

reduction, other data reduction techniques can be employed for massive crowd

simulations on the GPU. The case study can better explain this approach. As seen in

Table 1, the GPU-updated attributes are mostly integer scalars between 0-100 to

represent output of the behavioral model. Instead of using 32-bit integers to transfer

these attributes, shorter bit representations can be used. Similar bit reduction can also

be applied for position or angular information. For example for avatar direction, 9

bits are enough to cover 360 degrees since rotations less than a degree does not

matter in visualization. Similarly, when elevation difference is not large, two less bits

can be employed instead of 32-bit float. The approach can be named as bit

compaction. The data size reduction becomes significant in highly populated crowd

simulations. The first advantage of this approach is the minimal cost of the newly

introduced decode and encode operations performed on the CPU and the GPU

 55

respectively. Unlike the previously mentioned compression techniques, bit level

extraction and insertion introduce almost no overhead compared to the other

algorithms. Another advantage is the minimization of data access operations on the

GPU, which is costly especially when using global device memory. The global

device memory access cost increases when non-coalesced data structures are used.

For example using a data structure comprised of 7 integer values significantly

reduces GPU computing performance since this structure does not ensure coalesced

memory access as previously described. Since any four-byte or eight-byte data

structures are processed in single instruction, converting reduced data structure into a

four-byte or eight-byte data structure is better if the reduced data size is shorter. In

this case, a 29-bit can be inserted into a 32-bit envelope by just padding 0s to the end.

Since this would be part of existing decode/encode functions, almost no instruction

cost is introduced.

Figure 20-c shows the additional speedup achieved by just employing this simple bit

compaction technique. The achieved step speedup and cumulative speedup (1.13 and

436.73 respectively) show that this approach is certainly worth implementing in

cases where fewer bits represent the same integer values. Equation 1 shows the case

when data reduction should be employed.

ssmemoryAcceencodedecodeerdataTransfssmemoryAcceerdataTransf TTTTTT
~~

+++>+ (Equation 1)

where,

erdataTransfT denotes the uncompressed data transfer time (device�host),

ssmemoryAcceT denotes the memory access time for uncompressed data at the GPU,

erdataTransfT
~

 denotes the compressed data transfer time (device�host),

decodeT denotes decode time of the compressed data on the CPU,

encodeT denotes decode time of the compressed data on the GPU,

ssmemoryAcceT
~

denotes the memory access time for compressed data at the GPU.

 56

To the best of the author’s knowledge, the above mentioned bit compaction

technique, which can be evaluated in means of data transfer and providing aligned

memory access, has not been offered for massive crowd simulation studies using

parallel processing. The simplicity of the proposed approach is the main advantage

while the main disadvantage is the dependency on the implementation since this

approach only works when many small integer numbers are required to transfer

between the device and the host frequently. Fortunately, this is not an unusual case in

massive crowd simulation studies, and this approach is one of the novelties within

this thesis.

4.3.5 Using Device Memory Efficiently

In the previous chapter, the specifications of the six device memories were discussed

in detail. Using shared memories becomes critical when excessive use of global

memory can be replaced. When global memory is employed, providing coalesced

memory accesses ensures extra speedup. In CUDA architecture the global memory

access costs one or two memory transactions for all threads of a half-warp (16

threads) depending on the bit-length,. However, for non-coalesced access patterns the

bandwidth is around an order of magnitude lower than coalesced patterns [9]. This

issue becomes significant in massive crowd simulation, where excessive memory

access requirement is very common. In this simulation, using coalesced pattern

further improvement was achieved (step speedup: 1.08, cumulative speedup: 473.12).

4.3.6 Instruction Level Optimization

Although instruction level optimization does not provide as noticeable speedups, it is

easier to implement and, depending on the content and accuracy expectations, it is

definitely worth trying. The main rule of thumb for this type of optimization is to

prefer single-precision. Therefore, double-precision arithmetic must be avoided

 57

whenever possible; however single-precision is definitely enough for all crowd

simulation applications.

To improve computational performance, CUDA architecture offers several

computationally low-cost functions that easily replace existing operators or

functions. One of these utilities is __fdividef(x, y), which performs division twice as

fast as the standard single-precision floating point division [9]. Similarly,

__sincosf(x,sptr,cptr) performs better than the respective trigonometric functions.

The details of such utilities can be found in the CUDA reference guide [9].

Instruction level optimization is not only limited to the type of precision or utility

functions. The computational performance enhancement tricks can be employed in

GPU parallel programming as well. A typical example is the use of the squared

distance metric to avoid expensive square root operations. Similarly, bit-wise

operations should be used whenever possible instead of division operation [9].

 58

CHAPTER 5

FUZZY I�FERE�CE WITH GPU PARALLEL PROCESSI�G

As previously mentioned, one of the contributions of this study is high-performance

fuzzy inference with CUDA, which utilizes GPU parallel processing architecture.

Design considerations provided significant computational performance. For example,

it is possible to make nearly half billion fuzzy inferences per second, using single

GTX 295 GPU, 300× faster than an average CPU core.

The reasons for choosing fuzzy logic for behavioral modeling or simulating some

actions for massive crowd simulation are as follows:

• Ability to produce realistic and less predictable reactions.

• Ability to capture a real human knowledge-base and use it extensively with

minimal coding.

• Use of an AI technique that is more suitable to model complex virtual

character behavior.

This chapter summarizes the background of fuzzy logic and explains the

implementation details.

5.1 Fuzzy Logic

Fuzzy sets were first introduced by Lotfi Zadeh in 1965 [85], and over the last 40

years, fuzzy logic has been used extensively in many application areas, including

 59

crowd simulation [86-88] and agent behavior modeling [59,89]. As stated by Zadeh,

imprecise inputs are important for human thinking, or other perceptual actions such

as pattern recognition, communication and abstraction. For example, humans can

easily process the imprecise information such as tall, very tall, hot, and too hot.

However, computers require precise inputs and programmers are very familiar with

this yes/no (Boolean) logic. In classical set theory (crisp) there is a distinct borderline

between two categories. As shown in Figure 21-a, a human is either tall (>1.80 cm)

or short (<1.80 cm). Thus, there is no difference between two men who are 1.79 cm.

and 1.47 cm. tall respectively, since they are both considered as short. A fuzzy set

has been generated when the borderline is modified to reflect fuzziness, as shown in

Figure 21-b. In fuzzy set theory, there is no Boolean logic. Instead, multi-valued

logic is used (a membership degree between 0 and 1). In Figure 21-b, for a given

height of 1.79 cm, the membership for “Fuzzy Set Tall” is found 0.4. This

computation is done by using Equation 2.

Figure 21: Classical set for tall (left: a) and tall fuzzy set (right: b).









==

Aintotallyisxif

Ainpartiallyisxif

Ainnotisxif

x

1

)1,0(

0

)(µδ (Equation 2)

where,

δ denotes the degree of membership, (.)µ denotes the fuzzy function

x denotes the input value and A denotes the fuzzy set.

 60

As shown in Figure 21-b, the given function (µ) is continuous. However, as stated by

De Byl, such continuous functions are not efficient in means of computational cost

[90]. Therefore, it is better to represent these functions with corresponding linear fit

functions, as depicted by Figure 22.

Figure 22: Typical fuzzy continuos functions (black) and respective linear-fit
functions (red).

Figure 23: Modification of the linguistic hedges.

It is also possible to modify the shape of the fuzzy sets by using linguistic variables

like adjectives and adverbs that are used in daily life. Typical examples are “very”,

“somewhat”, “fairly”, “slightly”, and “moderately”. These adverbs are called as

Linguistic Hedges which dilate, concentrate or intensify the original fuzzy set [91].

 61

These modifications are depicted by Figure 23. Dilation stretches a fuzzy set by

increasing the membership, while concentration does the opposite. Intensification

behaves like the combination of the dilation and concentration. Such hedges dilate

the membership if the original membership is less than 0.5 or concentrate the

membership if the original membership is greater than 0.5. For example, the hedge

“very” modifies the fuzzy set [µ(x)]2, while the hedge “very, very” modifies [µ(x)]4.

Similarly, “somewhat” can be equated to [µ(x)]1/2. Table 4 lists some of the popular

linguistic hedges.

Table 4: Linguistic hedges.

�ame Equation Effect

very [µ(x)]2 Dilation

very, very [µ(x)]4 Dilation

plus [µ(x)]1.25 Dilation

extremely [µ(x)]3 Dilation

slightly or somewhat [µ(x)]0.5 Concentration

minus [µ(x)]0.75 Concentration

indeed if 0≤µ≤0.5

2[µ(x)]2

if 0.5<µ≤1

1-2[1-µ(x)]2

Intensification

5.2 Fuzzy Inference

Fuzzy inference simply performs a processing by using scalar input values and fuzzy

control elements (fuzzy variables, fuzzy sets and fuzzy rules), and produces an

output represented by a scalar value. There are three popular fuzzy inference

methods: Mamdani [92], Sugeno [93], and Tsukamoto [94]. Among these three

methods, Mamdani-style is commonly applied. Thus, in this study, a fuzzy controller

approach proposed by Mamdani has been implemented for fuzzy inference process. A

 62

Mamdani-style fuzzy inference is a four-step process (see Figure 24) given as follows

[90]:

• Fuzzification

• Rule Evaluation

• Rule Aggregation

• Defuzzification

Figure 24: Mamdani-style fuzzy inference.

To better explain the Mamdani style fuzzy inference, an example is provided. It is

assumed that the fuzzy inference is used to determine enthusiasm level of the soccer

spectators when a goal is scored. Although there exists numerous parameters to

define enthusiasm-level, the inference is built upon the significance of the game and

the quality of the goal. Clearly a goal makes the fans happy. However, not every goal

makes the same effect. For example, a goal scored in the last minute of the

championships final is not the same with a goal scored in season preparation match

played against a very weak opponent. Additionally, a very low quality goal by

chance is not equal to a reverse shot goal. This list can be extended with more

examples. The following rules (Table 5) and fuzzy sets (Figure 25) will be used to

explain the four steps of Mamdani style inference.

 63

Figure 25: Fuzzy sets for soccer spectator example.

Table 5: Fuzzy knowledge-base for soccer spectator example.

Rule

�umber

Rule Input#1 Fuzzy

Operator

Input #2 Output

1 If Game is

Significant

A�D Goal

quality is

Perfect

then

Enthusiasm

is Extreme

2 If Game is

Average

OR Goal

quality is

Medium

then

Enthusiasm

is Average

3 If Game is

Insignificant

A�D Goal

quality is

Low

then

Enthusiasm

is Low

4 If Game is

Significant

OR Goal

quality is

Good

then

Enthusiasm

is Strong

 64

5.2.1 Fuzzification

Fuzzification is defined as the process of making a scalar quantity fuzzy [91]. This

step takes input value(s) and obtains corresponding degree(s) of membership to the

related fuzzy set(s). The employed approach is illustrated in Figure 26. The input

value is limited to the range of x-axis of the related fuzzy sets, while the degree of

membership is always between 0 and 1. For example if the goal quality is 63 (input

value), the corresponding degrees of membership are: 0 for low, 0.35 for medium,

0.65 for good, and 0 for perfect fuzzy sets.

Figure 26: Fuzzification process.

5.2.2 Rule Evaluation

Rule evaluation is a two-step operation. The first step is taking the fuzzified values

obtained from the previous step and choosing one of them according to given fuzzy

operator. The two most commonly used fuzzy operators are: “AND” and “OR”

operators. The fuzzy “AND” operator selects the minimum, while the fuzzy “OR”

does the opposite and picks the maximum. Thus, this step generates a single output

value from the given membership values. The second step is to generate a subset

 65

from the corresponding fuzzy set which is written in the else part of the rule. The

output value obtained in the first step is used to cut-off the original fuzzy set to make

a new subset. This new sub-set is also known as alpha-cut [91]. Rule evaluation of

the fourth rule is depicted by Figure 27. In this example the input value for goal

quality is 63% and the input value for game significance is 85%.

5.2.3 Aggregation

In this step, the fuzzy subsets (alpha-cuts) generated in the previous section are

aggregated as illustrated in Figure 28. Therefore, a new fuzzy set which will be used

for fuzzy decision making is obtained. This new set is the union of the cut-off fuzzy

sets (the sets included in fuzzy rules) according to given fuzzy rules. Since the

aggregation step is built upon union operation, the order of rule evaluation has no

effect on the output fuzzy set.

Figure 27: Rule evaluation.

 66

Figure 28: Aggregation.

The fourth rule given in Table 6 is evaluated using the given input values; 63% for

goal quality and 85% for game significance. The first and the third rules have no

impact on the aggregation, since the result of fuzzification is 0 for these rules. The

fuzzification results for the second and the fourth rules are 0.35 and 0.83,

respectively. Considering these results the above given new fuzzy set is aggregated.

5.2.4 Defuzzification to a Scalar

The final step is to produce a scalar value using the aggregated fuzzy set generated in

the previous step. This scalar quantity is the final output of the fuzzy inference

process and may easily be used by the application or a tool that needs the output in

this format. Therefore, defuzzification can be defined as conversion of a fuzzy set to

a precise quantity [91]. To produce a scalar quantity from a fuzzy set, there exist

various approaches. Probably the most common defuzzification method is getting the

center of the given shape, called centroid, given by Equation 3. Using this equation,

the result for the example fuzzy inference regarding enthusiasm level is computed as

61%.

∑
∑=

I

I x
I

µ

µ
 (Equation 3)

 67

Table 6: Well-known defuzzification methods.

�ame Description Illustration

Centroid Gives the center of the fuzzy

set. This method is also

referred as Center of Gravity

(CoG) or Center of Area

(CoA).

Maximum

Membership

As the name indicates this

method gives the maximum

membership value for

defuzzification.

First Maxima,

Last Maxima,

and Mean

Maximum

Membership

First Maxima (blue) and Last

Maxima (green) gives the first

and the last maximum values,

respectively. Mean Maximum

Membership (black) gives the

average of the maximum

values.

Weighted

Average

This method takes the

weighted average of

independent subsets, not the

union. In the illustration the

result is shown with blue line.

Popular defuzzification approaches and their functionalities are given in Table 6. The

current implementation only supports centroid, the others are considered as future

work. Although the centroid method gives an approximate result due to discrete

 68

computation, it ensures computationally efficient solution which is crucial for real-

time massive crowd simulation.

5.3 GPU Implementation

To employ fuzzy inference on a CPU using traditional sequential programming, there

exist several software libraries, third party components or similar tools. However,

these tools could not be used directly in CUDA implementation. Thus a fuzzy

inference on the GPU was written from scratch. To achieve better computational

performance, several design considerations were taken into account. For example, a

fuzzy rule was supposed to consist of two input sets, a fuzzy operator and a resultant

set. Additionally, rule-base, knowledge-base, fuzzy sets and fuzzy rules are stored

within an array of data structures that were comprised of sequential scalar values.

GPU implementation starts with the transfer of rule-base and knowledge-base to the

device. This operation simply passes the related values to the device’s constant

memory. Employing device constant memory significantly improves computational

time, considering the other alternative, passing fuzzy knowledge-base to the main

kernel. Such an approach may cause non-coalesced data load, and thus result poor

performance. Fuzzy inference on the GPU is carried out via several kernels given by

Listing 2. These kernels are designed for computational efficiency. The name of the

main kernel is “fuzzyInference” which takes an index (indicates the fuzzy inference),

a set of input values, fuzzy set group index (a combined array) and input count. The

index is used to get the required information such as fuzzy rules, fuzzy sets and

operators from constant memory. The count parameter indicates the number of input

values and the index parameter(s) to map the given value with the corresponding

fuzzy set group. Fuzzy inference process is started by calling “fuzzyInference”

kernel, and the returned value is the output of the fuzzy inference. This kernel calls

“evaluateRule” kernel for each fuzzy rule. The “evaluateRule” kernel takes the

corresponding input values and calls “getMembership” kernel to compute

 69

membership values. Consequently aggregation is performed and in the end

“getCentroid” kernel is used to obtain final output.

Listing 2: Pseudo code of Fuzzy Inference Kernels

fuzzyInference //main GPU kernel for fuzzy inference

 for each rule

 evaluateRule //an independent GPU kernel that performs rule evaluation.

 for each FuzzySet

getMembership // an independent GPU kernel that computes the degree of

membership

aggregate // an independent GPU kernel that performs aggregation

getCentroid //an independent GPU kernel that performs defuzzification

Although the fuzzy inference on GPU looks cryptic, the computational performance

seems impressive. Table 7 gives results of fuzzy inference test, run on different

CPUs and GPUs. Each fuzzy inference operation performs a Mamdani-style

inference by evaluating three fuzzy rules. The results show that GTX 295 GPU is

capable of making more than half-billion fuzzy inferences per second, almost 300×

of an average CPU core. The CPU and the GPU test functions are almost identical

and optimized for high-performance. Please note that this performance test does not

include CPU-GPU data transfer.

5.4 Capturing Knowledge Base

The success and the reality of the fuzzy inference is strongly related with the reality

and content of the underlying knowledge-base, provided by human domain expert.

Therefore, it is necessary to capture this knowledge and convert it into a format that

can be used by fuzzy inference tool. It is possible for programmers to include fuzzy

knowledge-base by hard coding. However, this approach is not practical, because

even a minor revision requires recompilation of the source code. Furthermore, this

 70

approach requires good programming skills, especially when complicated fuzzy

knowledge is employed.

Table 7: Fuzzy inference test results.

Processing Unit Time required to make

1,048,576 inferences

(millisecond)

�umber of inferences per

second

GeForce GT 120M 14.85 70,611,179 (~ 70 million)

GeForce 9500GT (13.36 78,486,227 (~ 80 million)

GeForce GTX 295 1.863 562,842,727 (~ 560 million)

Intel 920 @ 2.67 GHz

(Single CPU Core)

671 1,562,706 (~ 1.5 million)

Intel T 9550 @ 2.67

GHz. (Single CPU Core)

601 1,744,719 (~ 1.8 million)

Intel E 9550

@ 2.34 GHz. (Single

CPU Core)

704 1,489,455 (~ 1.5 million)

Another approach is to capture domain expert’s knowledge via predefined syntax and

rules by using simple text file or better organized XML script. International

Electrotechnical Commission (IEC) defined a text-based Fuzzy Control Language

(FCL), which became popular for fuzzy inference applications [95]. FCL helps

creating knowledge-base and defines fuzzy rules as well as choosing fuzzy operators

and defuzzification method among several options. Acampora and Loia proposed

Fuzzy Markup Language (FML) which offers functionality similar to the FCL, but in

a more organized way due to the employment of XML structure [96]. In this thesis

an XML script is proposed, which is partly inspired by the legacy FCL and by the

FML. These studies were used as templates to maintain a similar terminology to the

existing systems. The proposed XML script is designed to be captured via a user

friendly GUI as shown in Figure 29. The captured content is converted into values

 71

that can be transferred to the GPU and can be used by GPU fuzzy inference kernels.

Figure 30 and Figure 31 show XML structure of a sample fuzzy knowledge-base.

Figure 29: A GUI to capture human expert’s knowledge.

Figure 30: XML structure in tree view.

The “KnowledgeBase” contains a single, or a set of, “FuzzyVariable(s)” which

corresponds to a term used in fuzzy inference operation. This fuzzy element, which

 72

may be composed of a single or several “FuzzySet(s)” has “Name” and

“Description” attributes. The shapes of the fuzzy sets are given within the

“Coordinates” tag. The “RuleBase” section covers “RuleBlock(s)”, with each

“RuleBlock” containing only two input terms and one output term. This is preferred

for the sake of easy implementation. The rules within the “RuleBlock” are evaluated

using only fuzzy “AND” and fuzzy “OR” operators. The details and hierarchy of

XML elements are given Table 8.

Table 8: XML elements.

�ame Description Attributes

FuzzyControl The container for Knowledgebase and Rulebase

KnowledgeBase A container for fuzzy varible(s) -

FuzzyVariable Defines a single fuzzy variable, comprised of fuzzy

set(s). FuzzyVariable is a container of fuzzy set(s)

Name:

Description:

FuzzySet Defines a single fuzzy set. Name:

Description:

Coordinates:

Coordinates: Defines the shape of the fuzzy set. The vertices are

given in order (x-y pairs).

Rulebase A container for fuzzy Ruleblock(s) Name:

Description:

Ruleblock A container for fuzzy rule(s) Name:

Description:

Rule Defines a fuzzy rule and contains input(s), operator

and output.

Operator Indicates which operator is supposed to be used. Two

options available: AND/OR.

Input Refers to input FuzzySet and container

FuzzyVariable elements.

Function:

Set:

Output Refers to output FuzzySet and container

FuzzyVariable elements.

Function:

Set:

 73

Figure 31: XML structure in text view.

 74

CHAPTER 6

CASE STUDIES

This chapter covers three case studies that illustrate the use of GPU parallel

processing for real-time massive crowd simulation. The first case study simulates

and visualizes sports game spectators, and the second simulates a medieval era

combat field. The last case study illustrates a virtual marathon event. These case

studies deal with thousands or even hundreds of thousands of virtual characters.

6.1 12th Man

This case study computes behaviors of the soccer spectators on the GPU then

transfers the results back to the CPU to be used by an existing game engine. It is

assumed that a game engine that is capable of visualizing spectator actions using

scalar values provided by the application or another third party tool handles all the

renderings. The game engine processes the scalar values representing the virtual

character’s current emotion or behavior and converts the values into an action. This

case study puts the spectator’s computational load on the GPU providing more CPU

resources to the game engine.

6.1.1 Motivation and Background

Soccer, due to its very nature, has always attracted millions of fans, not only in the

real world, but also in the virtual world. Spectators play a highly significant role

 75

during real soccer matches, and it has been shown that the support of an excited

crowd can offer significant advantages to a home team [97]. The term “12th man” is

often used to highlight the importance of fan support. Sports-based game developers

have always taken spectators into account, visualizing them either as static bitmap

images or dynamic geometric models since the early 1980s. In Figure 32 and Figure

33, two screenshots from the online soccer game “I Can Football” show the

representation of virtual spectators in a typical soccer game; the spectators visualized

in this game are similar to those found at most popular soccer games.

Figure 32: Comparison of the visuals of spectators and players (courtesy of Sobee).

Recently, significant progress has been achieved in spectator realism; however, the

visual and behavioral realism of the spectators still lags far behind that of the players

as shown in Figure 32 and Figure 33. Two priorities have taken from the realism of

the spectators: the prioritization of limited computational resources for the field of

play, and the prioritization of development efforts in the game field, which takes

precedence over action in the background. Because of these priorities, spectators

should demand very small CPU resource and also very little development effort.

 76

Figure 33: Comparison of the visuals of spectators and players.

6.1.2 Spectator Behavior Engine

In this case study, a software module was designed to compute spectator using an

agent-based approach. Each spectator was considered as an independent individual.

This module is called as Spectator Behavior Engine (SBE) and designed to run on

the GPU using NVidia CUDA technology. Figure 34 shows the interaction of SBE

with an existing game engine.

Firstly, the game engine initializes SBE and transfers spectator attributes to the

device via “cudaMemcpy” function. The fuzzy knowledge-base is also transferred to

the device’s constant memory to improve computational performance, as discussed

in Chapter 5. To be processed by the SBE, a spectator must have several distinct

attributes. These attributes are related with behavioral modeling and transferred to

the GPU during the initialization of the application. Thus the spectator related non-

graphical attributes are stored on the device memory during run-time. This action

saves significant time, since it is not required to occupy bandwidth to transfer these

 77

attributes. The fuzzy inference engine uses these attributes as spectator dependent

local fuzzy inputs (see Figure 34).

Figure 34: SBE architecture.

The game engine can request spectator processing anytime to reflect any change in

the behavior of the spectators. The game engine corresponds to master and SBE to

worker. The fuzzy inference engine uses the inputs provided by the game engine as

global fuzzy inputs. The fuzzy inference engine generates scalar outputs to reflect

any spectator change of behavior, by using global fuzzy inputs (from game engine)

and spectator-dependent inputs (using related attributes of the spectator). The

generated output(s) updates the respective spectator attribute(s). The fuzzy inference

engine is also capable of running hierarchical inferences, which means the output of

a fuzzy inference can be used as an input for the next fuzzy inference. Finally

whenever required, the game engine gets the updated spectator outputs to the host-

side to animate and render the spectators. Therefore, the game engine has all the

 78

control in this architecture and SBE has no direct connection to the game field, it

only produces outputs. This approach provides flexibility, since any application that

processes spectators can use SBE with little effort. Additionally, there is no need to

update spectators in each frame and return the results immediately.

6.1.3 Performance Test

As previously mentioned, computational and rendering resources are very valuable

for achieving life-like visualization of the game field. Minimal resources must be

used to process spectators at the background. In this case study, it was assumed that

several fuzzy inferences were enough to update spectator behaviors. Therefore a two

minutes test (120,000 ms) was run using different spectator populations. In this test

the game engine was requested to update spectator behaviors in different intervals.

Depending on the call parameters, the related spectator attributes were updated by

SBE using fuzzy inference engine (1-10 inferences per request). Finally, the related

attributes were copied to the host, whenever needed. The size of the related

attribute(s) was assumed 32 bits. Figure 35 shows the results of this performance test

for 65,536 spectators using NVidia GTX 295 GPU. Figure 35-a indicates that

memory copy operations occupied only %7 of the total GPU processing time. This

performance was achieved by getting updated results whenever required, not in every

frame. Figure 35-b shows that during two-minute simulation period, SBE was called

120 times (at different periods) and the attributes were copied to the host 47 times (at

irregular intervals). Additionally, the quantity of the fuzzy inferences changed in

each SBE call (Figure 35-b; “fuzzyInferenceTest” bar size is different in each run).

This figure indicates that SBE processing completed in 103.77 ms (96.11 ms for

fuzzy inferences, 7.66 ms for memory copy from device to host). Since the total

simulation time was 120,000 ms, this processing time corresponded to only 0.09% of

the GPU time, which is negligible in whole process chain. The same test was also run

on a single CPU core to show the benefit of running SBE on the GPU. Table 9 gives

the CPU and GPU performances. For the population of 65,536 spectators, it took

 79

16% of the single core resource to run the same simulation on the CPU, an

unacceptable value for sports-based video games.

Figure 35: Simulation of 65,536 spectators on the GTX 295 GPU.

Table 9: CPU and GPU performances of the SBE.

CPU (Single CPU

Core ,Intel T 9550

@ 2.67 GHz.)

GPU (GT 120M) GPU (GTX 295) Population

Process

Time

ms

Processor

Occupancy

Process

Time

ms

Processor

Occupancy

Process

Time

ms

Processor

Occupancy

16,384 4,762 3.97% 188.97 0.16% 39.20 0.03%

32,768 9,470 7.89% 335.74 0.28% 61.81 0.05%

65,536 18,992 15.82% 651.32 0.54% 103.77 0.09%

 80

6.1.4 Visual Results

This section gives the visual result of a specific case in which the spectators cheer a

goal by using the fuzzy knowledge-base mentioned in Chapter 5 (see Table 5 and

Figure 25-28). The visual outputs of this example are provided in Figure 36 and

Figure 37. As can be seen in these figures, there are none of the repeated motion

patterns or robotic actions that can usually be observed in soccer video-games. A

comparison of Figure 38 and Figure 37 clearly highlights this, given the much

greater variety of actions and reactions in Figure 37 than in Figure 38. Soccer games

generally treat spectators as a whole rather than as individuals, which results in

repeated and user-predictable spectator gestures that may annoy or disappoint the

player as depicted by Figure 38. Although fans within a stadium usually make

similar moves, it is not impressive to see exact clones. Consequently, this case study

produces natural behavioral differences in the crowd. When each spectator is

modeled as an intelligent individual, their reactions can be produced based on

various factors, such as the characteristics of the game being played, the reputation of

the players, the current score and cultural issues.

Figure 36: Individually-processed fans celebrate a goal.

 81

Figure 37: Close-up view. Individually-processed fans celebrate a goal.

Figure 38: Clone spectators produce repeated actions.

 82

6.1.5 Mexican Wave Visualization

In this specific case, SBE was used to simulate a Mexican wave, also known as a

stadium or audience wave. The Mexican wave is a collective human behavior where

the spectators in the neighbor columns stand up while raising their arms up and then

sit down again. This action triggers the neighbors to do the same. If the wave is

strong enough, it continues around the stadium several times. The employed fuzzy

rules were given in Table 10. There are two inputs for fuzzification. The first one is

the strength of the wave, which is derived from the neighbors and the second one is

the mood of the spectator. Therefore this example also simulates the interaction with

the neighbors. The Mexican wave phenomena was interpreted and quantified by

Farkas, Helbing and Vicsek, with a variant of models originally developed to

describe cardiac tissue [98]. They examined several Mexican wave videos and

reported several results [98]:

• The wave usually rolls in a clockwise direction.

• The typical wave speed is 12 m/s. (Nearly 20 seats).

• The average width is 6-12 m. (Nearly 15 seats).

• The wave is generated by no more than a few dozen people.

Table 10: Fuzzy knowledge-base for Mexican wave example.

Rule

1 If Wave is Strong OR Mood is -ormal then Involvement is Average

2 If Wave is Strong OR Mood is Excited then Involvement is High

3 If Wave is Weak A�D Mood is Bored then Involvement is Low

 83

Figure 39: Mexican wave simulation.

The metrics provided by Farkas et al. were taken into account while designing fuzzy

knowledge-base and animation speed. The results illustrated in Figure 39 reflect

similarities to the above given metrics. As seen in this figure, some spectators do not

join the wave, depending on their current mood. The status of the neighbors was used

to determine the first fuzzy input which is the strength of the wave. Considering a

clockwise rolling direction [98], the spectators on the right have more weight.

6.2 H.G. Wells’ Little Wars

This case study covers a medieval era combat simulation and visualization, where

more than 250,000 warriors fight under heavy arrow storm as shown in Figure 40.

The implementation introduces various GPU kernels that handle combat simulation

issues such as crowd navigation, combat physics, collision detection, and virtual

character behavior modeling. To achieve real-time frame rates, most of the general-

 84

purpose parallel programming issues mentioned in the previous chapters are

employed. The scene is rendered using OpenGL. Visualization is provided for

evaluating the results of the implementation.

Figure 40: Invaders move toward the city walls.

The arrow sizes were exaggerated in order to be identified easily.

6.2.1 Motivation and Background

Tabletop war games and their computer game versions, such as the world wide

known RISK, mostly simulate combats through a probabilistic approach. Typically,

dice are rolled to decide the loser/winner, or to determine the quantity of casualties.

In the computer versions of war games, the probabilistic model can be enriched with

the predefined rules and the parameters such as power, hit ratio, training and morale.

There are many computational combat models, ranging from simple linear equations

 85

to complicated systems. In addition to the probabilistic method, a physics- based

approach is also available.

In 1913, English novelist H.G.Wells, famous for the books “Time Machine”,

“Invisible Man” and “The War of the Worlds”, revealed a completely different

tabletop war game [12]. He named this game as Little Wars and defined the rules and

details in the book “Little Wars: a game for boys from twelve years of age to one

hundred and fifty and for that more intelligent sort of girls who like boy’s games and

books”. What he suggested was a new model, depending on training, practice and

talent rather than computational approaches. He replaced the role of dice or similar

tools with spring-breech loader toy cannons to shoot soldiers. The following quote

describes the combat model idea of Little Wars: “Whenever possible, death should

be by the actual gun and the rifle fire and not by computation. Things should happen,

and not be decided [12].” The case study is inspired from this statement.

In the battle history, there exist some events, whose results cannot be predicted by

probabilistic combat models. A typical example of such events is the battle of

Agincourt in 1415, where outnumbered English army, mainly consisting of longbow

men, won a spectacular victory against a French army of heavily armored soldiers

and knights [99,100]. If we run a simple computational model using these inputs, it is

certain that a great majority of the runs will be concluded with French victory. That

is why researchers and battlefield detectives have been investigating this battle

considering many other parameters (terrain, crowd dynamics, etc.) to determine what

led to English victory [99,100]. The results of a physics-based combat simulation

could better fit to the historical facts provided that the model includes the replicas of

the actual arrow shots and correctly positioned units. Although this battle shows the

significance of massive quantity of archers, in the other battles the results are not

similar. In the battle of Thermopylae, a Spartan army of a relatively small size

retarded the huge Persian army for a few days under an extremely heavy arrow storm

[101]. Herodotus described this event as “the sun was blocked out by the Persian

 86

arrow storm” [101]. Wells’ physics based combat simulation model could help to

solve mystery behind such battles.

This case study tries to make things happen by simulating the physics of arrows. To

determine the casualties, the arrow shots were employed rather than the hit ratio or

similar computations.

6.2.2 Scenario

The scenario assumes that there is a war between two fantastic fractions showing

similar characteristics of the medieval ages. The armies of these fantastic fractions

consist of the skeleton archers, skeleton sword fighters and several other medieval

siege weapons. An army of 40,000 archers and 10,000 infantry tries to intercept

200,000 invader warriors beyond city walls. The city is well fortified and surrounded

by walls and towers. There is also an inner wall as the final defense line. The

defender archers are positioned on the walls and towers. There are also archers and

sword fighters in front of the city walls. The city lies over a flat plain. Inside the city

walls, there are several medieval style buildings and facilities. The invaders launch a

direct assault to the front walls. Attacker assault lines decelerate as arrow storm

welcomes them. Figure 41 shows outer walls and defenders.

6.2.3 Archery Physics

Archery is involved in this case study to blend massive physics and massive crowd

simulation. The employed archery model is not an original study and has no

allegation such as contribution to medieval archery modeling. However, it is realistic

enough to implement the movements of arrows. Compared to the modern bow and

arrow, the medieval versions have their own characteristics. Unfortunately, there is

not any proper arrow sample survived from that era to make wind tunnel experiments

 87

[102]. However, the stories told about the medieval battles give us realistic data

samples such as range [102,103].

Figure 41: Defenders try to stop invaders beyond city walls.

This screenshot shows the beginning of an arrow storm.

As a starting point, the bow and arrow system is considered as a simple spring

system. Since the structure of the medieval bow is well known, this spring system

can be completely observed. The potential energy stored during the bow drawing can

be precisely calculated. This potential energy is converted into the kinetic energy

when the arrow is released. However, due to the oscillations and the moving parts in

the bow structure, some of the potential energy is transferred to the bow instead of

arrow. In fact, the ratio of the energy transferred to the arrow gives the efficiency of

the system. While the modern bows are made up of composite materials giving

efficiencies greater than 1, the best medieval longbows are made up of yew and have

an efficiency of 0.9 [102]. Even though there is not a proper arrow sample, the

existing ones tell us certain information like mass, length etc. Throughout the

simulation, the mass of an average arrow is taken as 0.060 kg according to this

information. Using these crucial parameters, the initial maximum speed of an arrow

 88

can be calculated as ~55 m/s [102]. This is important because during the combat

calculations, the complex energy equations can be neglected.

∫ ⋅+=
t

duut
0

)()(Vxx 0
 (Equation 4.a)

∫ ⋅







⋅−−+=

t

a

dug
m

u
t

0
ˆ

))((
)(y

d
0 e

VF
VV

 (Equation 4.b)

Since the energy calculations are unnecessary, only the equations of motion are

sufficient to calculate the trajectory of an arrow (Equations 4). To be more realistic,

the drag force (wind resistance) is also included into these equations [104]. The

characteristic of drag force for an arrow is found through the wind tunnel

experiments as 2
cVFd = [102]. The c value is also measured as 22410 −− ⋅ mS� [102].

The introduction of drag force makes the equation more complex to solve efficiently.

However, by using posteriori physics technique, the next position of each arrow can

be computed through the instantaneous speed (Equations 5). The effect of the gravity

and external forces like wind are taken into account when calculating speed. In fact,

the discrete values are calculated with linear approximation fashion. The difference

between the estimates is related to the frame render time which is essentially around

30 ms. Thus, the posteriori calculations are repeated every 1.8 m of the arrow travel.

y

z

y

x

1t e

e

e

e

a ˆ

ˆ

ˆ)sgn(

ˆ

2

2

2

⋅−
















⋅⋅−=− g

V

VV

V

m

c

z

yy

x

a

ar

 (Equation 5.a)

t∆⋅+= −− 1t1tt Vxx
rrr

 (Equation 5.b)

t∆⋅+= −− 1t1tt aVV
rrr

 (Equation 5.c)

xV ,
yV , and

zV are components of
1tV −

r

 89

After executing several trials, the range of the arrow with maximum initial speed and

45° release angle is measured as ~230 m. This value is consistent with Sir Roger

Williams’ writings [102]. The result is shown in Figure 42.

Figure 42: Arrow trajectory graph.

For the initial speed of 55 m/s and release angle 45º, the calculations are done at 0.03

second interval. The graph shows that the posteriori method is capable of simulating

real arrow physics. The range is around 230 m, as expected.

6.2.4 Accurate Vertical Positioning

Accurate positioning of large number of virtual characters that are moving on an

uneven terrain surface or collision detection of thousands of arrows with terrain in

real-time is a power-hungry task. It is required to calculate actual elevation value of

the underlying terrain for each dynamic entity in the simulation that interacts with the

terrain. The accurate terrain elevation is calculated using plane geometry. The

following method is employed, when horizontal coordinate pair is provided.

 90

• Find the triangle on which the point lies.

• Get vertex coordinates of the triangle.

• Calculate the normal vector of the triangle by using the Equation 6.

• Calculate the plane-shift constant value of the triangle by using the Equation

7.

• Calculate the height value by using the Equation 8.

)()(1312 VVVV�
rrrrr

−×−= (Equation 6)

1V�D
rr

•= (Equation 7)

�DP�P�P zzxxy)(−+= (Equation 8)

where, �
r

 denotes normal vector of the plane; 1V
r

, 2V
r

, 3V
r

 are the vertices of the

triangle in vector form, D is plane-shift constant and xP , yP , zP are 3D coordinates

of the point.

To decrease computational cost, texture memory is assigned. Pre-computed normal

vectors and plane-shift constants of the triangles of the terrain model are stored in a

texture memory and used whenever required. This functionality is called by the

kernel “getTerrainHeight”.

6.2.5 Application Workflow

The workflow is illustrated by Figure 43. This application is a heterogeneous

solution, in which both the CPU and GPU takes active roles regarding computations

and rendering issues. The simulation starts just after the initialization. In each

simulation cycle the same processing steps are repeated. The cycle begins with a pre-

process on the CPU by organizing data in a way to be handled faster on the GPU,

such as grouping considering spatial partitioning or computational cost. The GPU

takes computing responsibility and starts processing with the archers, followed by

 91

the processing of the arrows and the infantry warriors. Some of the updated

information regarding the warriors, archers and arrows are returned back to the CPU

for rendering and grouping for the next loop. The details of these simulation steps are

covered in the next parts.

Figure 43: Application workflow.

6.2.5.1 Simulating Archers

The archers are simulated by kernel “processArchers”. Neither a retreat nor an attack

is assumed. Therefore the navigation of virtual characters is not included in this

kernel. The following tasks are performed by this kernel:

• Compute the visibility and LOD of the archer.

• Launch an arrow.

6.2.5.1.1 Visibility and LOD Computation

Computing the LOD and visibility on the GPU saves significant amount of

computation time compared to the CPU, as mentioned in Chapter 4. The visibility

and distance to the camera are determined by using view frustum and squared

distance metric. The view frustum which is under control of the CPU is transferred to

 92

the constant memory, when the camera changes its position. If the camera is steady

for a period, this approach provides computational performance. To implement

effective bit compaction, three bits are assigned to store visibility and LOD (0 for

outside view frustum, 1-7 for LOD).

6.2.5.1.2 Launching an Arrow

The releasing parameters of an arrow are determined by a bow drawing model that

utilizes a single fuzzy inference which is built on the strength and the experience of

the archer. The output of this fuzzy inference determines the deviation from the

corresponding releasing parameters computed by using a preprocessed look-up table

that is stored in the constant memory. This model ensures that the stronger and more

experienced archers make more accurate throw.

6.2.5.2 Arrow Processing Kernel

The computations regarding archery are handled by using “processArrows” kernel.

This kernel tries to optimize previously mentioned CUDA performance enhancement

issues as much as possible. This kernel performs the following tasks:

• Compute the visibility and LOD of the arrow.

• Update the position of the arrow.

• Perform collision detection (terrain, object and warrior).

• Perform data compaction.

To parallelize the problem, arrows are considered as the most basic computation

element, and thus each arrow is processed via a single GPU thread. The trajectory of

the arrow is related with the archer that launches it. Therefore, the output of the

“processArcher” kernel is used by “processArrows” kernel. An average arrow is

assumed to move 1 meters per 15 ms. This information is required for collision tests.

 93

6.2.5.2.1 Updating Arrows

The second task is to compute the new position, pitch and yaw angles of the arrow.

This action is performed if the arrow is launched and not yet hit to the ground, a

warrior or an obstacle. A one bit flag is set to true for launched arrows and set to

false when it hits one of the above listed entities. Although this approach prevents

further computations, it may also cause a path divergence, which should be avoided

as much as possible. However, in practice it is not possible to employ all the

practices offered for efficient GPU computation, at the same time.

To compute the new position and angles, equations 3,4 and 5 are used. The unique

properties of the arrow together with the launching parameters provide unique

trajectories. To the best of the author’s knowledge, this amount of arrow simulation

in real-time has not been demonstrated yet. Figure 44 shows unique arrow

trajectories. Besides the unique properties of the arrow, there are also several

external factors such as wind. To use memory efficiently and minimize memory

accesses, such external factors are stored in constant memory. The new and the

previous positions are stored as local variables for collision tests, since the arrow

might have already been traveled several meters.

Figure 44: Thousands of parallel processed unique arrow trajectories.

 94

6.2.5.2.2 Collision Detection

The hardest computation in this kernel is to perform various collision tests to check

whether the arrow keeps travelling or not. To minimize computational load, the tests

are done considering the order of complexity. Therefore the simplest one is

performed first. Additionally, spatial partitioning is employed to minimize O(n2)

complexity, as discussed in Chapter 2 [63, 65, 66].

The simplest test is to check the elevation of the arrow to determine whether it is

above the cell ceiling or not. The cell ceiling is a scalar value stored in a constant

memory which is 10 meters above the highest vertical structure in that cell. If there is

no object, this value becomes 10 meters above the highest terrain elevation. Figure

45 illustrates cell ceiling. Further collision tests are performed when the arrow is

below the cell ceiling.

Figure 45: Illustration of the cell ceiling.

The ceiling is 10 m above the highest point in that spatial cell.

The next test is to check whether the arrow hits the dynamic or static entities in the

scene. These obstacles are catapults, ballistas, city walls or buildings. To increase

computational speedup, the bounding geometries are stored in the constant memory.

When a potential collision is predicted, the detailed geometry is used if necessary.

The full geometry is stored in the global memory and accessed only when necessary.

 95

In this sense, LOD is used for collision detection. For a detailed collision test, the

previous position is also used to compute impact point accurately. The squared

distance is used to check whether the arrow is within the hit threshold or not.

This test is followed by collision detection with the warriors. Further bounding box

and full-geometry tests are performed in a similar way as described above. In this

implementation, no realistic collision response is employed. Spatial partitioning

helps achieve faster collision-detection to meet real time requirements. If a collision

occurs the warrior’s status is changed accordingly (such as dead).

This test is followed by collision detection with the terrain. The hit point is computed

using previously mentioned “getTerrainHeight” kernel.

6.2.5.2.3 Data Compaction

The last step in arrow processing is to perform data compaction. In this step the

empty spaces in the arrow position data (type: float4) are used to store heading and

tilt angles (9 bits for each angle), visibility and LOD (3 bits), the arrow status (1 bit).

Thus the size of the data that will be transferred to the host is reduced.

6.2.5.3 Warrior Processing Kernel

The computations regarding warriors are done by using “processWarriors” kernel

which performs the following tasks: The first and the last tasks are very similar to the

previous kernel, and have already been explained. The second and the third tasks are

discussed in this section.

• Compute the visibility and LOD of the warrior.

• Fight.

• Update the position of the warrior (navigation).

• Perform data compaction.

 96

6.2.5.3.1 Combat Model

A fuzzy inference which uses the strength and the training-level of the warrior was

employed to simulate combat model between the warriors. The output of this fuzzy

inference updates the health of the warrior. The combat model ensures that in each

combat the health decreases. Therefore there are no unbeatable super heroes in the

simulation. Additionally, the combat model works within a certain distance

threshold, thus ensures many-to-many warrior combats as well.

6.2.5.3.2 �avigation

In this simulation, the invaders move toward the city walls while defenders try to

keep their posts. Each warrior has speed and direction attributes that are required to

compute the new position. Although the city is surrounded by a fairly flat terrain,

accurate vertical positioning is also done to prevent sink or raise problem with the

terrain surface. The path is updated, if it is blocked by an obstacle. Following

position update, spatial hashing is applied to minimize the computational load of the

arrow collision detection and combat model.

6.2.6 Simulation Performance

Figure 46 shows run-time results of the above mentioned kernels and respective

memory copy operations. As this figure shows the GPU handles almost everything in

13 ms (5.1 ms for “processArrows”, 4.2 ms for memory copy, 3.3 ms for

“processWarriors” and 0.5 ms for “processArchers”). The simulation achieved nearly

40 fps (25 ms per frame) on a PC with GTX 295 GPU. Therefore 12 ms is used by

the rendering process. This high frame rate is also dependent on low polygon count

of the models (nearly 1500 polygon) and the employed LOD and visibility culling.

The achieved 40 fps speed indicates that real-time visualization of a massive combat

simulation is possible by using GPU parallel processing. The results in this figure

 97

also show that possible optimizations should better focus on arrow processing kernel

and memory copy operations.

Figure 46: GPU performance graph.

6.3 Virtual Marathon

This case study summarizes a published work that covers several topics discussed in

this thesis [88]. The work is about one of the most crowded events in city life; a

marathon. The overall population in well-known marathon runs sometimes exceeds

one million people. For example in the annual New York City Marathon nearly one

million people supports 40,000 runners. Figure 47 compares the real and virtual

 98

marathon events on the Đstanbul’s Bosporus Bridge that connects Asia and Europe. In

this virtual marathon event 32,768 runners and 1,015,808 spectators were simulated.

Figure 47: Marathon crowds.

Real photo (left, courtesy of Đstanbul Municipality) and a screenshot of the
application (right).

In this study multimonitor setups were used to simulate this event on large screens.

Figure 48 depicts the employed systems. By using GTX 285 GPU 11-12 frames per

second was achieved while simulating over one million virtual characters.

The fuzzy logic routines that were introduced in Chapter 5 were used to model the

behaviors of the runners and the spectators. This simulation did not include collision

detection process on the GPU. However limited collision detection that includes few

runners that are close to the camera was employed on the CPU, only for visualization

purposes.

 99

Figure 48: Multimonitor setups for the virtual marathon.

(Top) The basic setup consisted of three connected 19-inch LCD monitors, which
produced 3,840 × 1,024 pixel resolution. (Bottom) An enhanced multimonitor setup

provides increased resolution.

Table 11 gives the comparison of CPU and GPU performances of this simulation by

using two different behavioral models; low-cost model and high-cost model. The

first model includes one fuzzy inference, and the second model includes four fuzzy

 100

inferences and a more precise frustum-culling algorithm. Thus, it contains nearly five

times more computations.

Table 11: CPU and GPU processing times for updates.

Processing time (ms)

Low-cost model High-cost model

�umber of

people

CPU

(Quad Core

@2.67 GHz)

GPU

(GTX 285)

CPU

(Quad Core

@2.67 GHz)

GPU

(GTX 285)

32,768 46.25 3.10 198.11 3.16

65,536 90.64 4.32 349.39 4.36

131,072 179.36 8.59 786.24 8.76

262,144 356.48 15.52 1,573.16 15.60

524,288 711.28 30.89 3,119.36 31.29

1,048,576 1,420.64 59.86 6,282.52 61.20

Figure 49: GPU speedup for the high-cost model

Figure 49 shows the results of the simulation repeated with various populations. The

reported 100× speedup is far away from previously demonstrated speedups. Please

note that, stream reduction techniques discussed in Chapter 3 and Chapter 4 were not

 101

employed in this case study. Therefore, memory bandwidth appeared as the major

bottleneck. Figure 50 and 51 show details from this simulation.

Figure 50: Vertical positioning of the virtual people.

The GPU precisely calculates the touch point of the virtual people to the ground.

Figure 51: Spectators applauses the front-line runners.

 102

CHAPTER 7

CO�CLUSIO�S A�D FUTURE WORK

In this thesis various approaches were introduced that are useful for massive crowd

simulation implementations on the GPU. This study is one of the first that handles

massive crowd simulation using parallel processing with CUDA. The reported

performance results show that the difficulty when creating massive crowd

simulations in real-time can be solved with commodity PCs. The content and the

contributions are mainly related to handling more virtual characters in less time, and

thus using the freed resources to add more population to the virtual environment or to

increase the realism level of the simulation. Due to the fact that this thesis is one of

the first studies in this field, there are still many issues to improve and resolve. This

chapter summarizes this thesis’ contributions and provides information regarding the

further directions.

7.1 Contributions

This thesis has demonstrated that it is possible to simulate massive crowds even

comprised of hundreds of thousands virtual characters in real-time. The methodology

covered in this study has demonstrated that by using GTX 295 GPU over 400×

speedup is possible compared to the same massive crowd simulation that runs on a

single CPU core. Therefore, the main contribution of this thesis is a methodology

which can be employed to simulate massive crowds in real-time using parallel

processing with CUDA technology. The methodology starts with re-arrangement of

 103

the data structures. The virtual characters’ attribute data structure is divided into sub-

parts with respect to the processor(s) that will use these attributes. This action

prevents unnecessary data transfer which is the main bottleneck of the CUDA

technology. Furthermore, the bandwidth problem is minimized by employing a data

compaction that represents attributes with fewer bits whenever possible. The

described data compaction also provides less memory access and may help ensure

coalesced memory access. The encoding and decoding processes are almost

negligible, since the bit extraction from the data envelope and bit insertion into the

data envelope, are not computationally complex. Dividing data into sub-parts also

makes it easy to handle and transfer the corresponding data portions whenever

required. Basically, not all the data needs to be processed and transferred at the same

frequency. Thus, handling the data sets as a whole sometimes means wasting limited

bandwidth, because unchanged or unnecessary data is transferred within the larger

data structure.

Another contribution is Fuzzy Inference implementation on the GPU using CUDA

kernels to model behaviors of the virtual characters. These kernels make it possible

to compute millions of inferences per second. To provide computational efficiency,

the fuzzy knowledge-base and the rule-base are transferred to the constant memory

of the device. The mentioned fuzzy parameters are converted into scalars and

transferred to the constant memory. While designing these kernels, performance and

flexibility were taken into consideration. Thus, the approach regarding the use of

fuzzy inferences is not limited to massive crowd simulation; it can be used by the

other disciplines as well. This thesis demonstrated that it is possible to compute over

500,000,000 fuzzy inferences per second, which is enough to model behaviors of

many virtual characters in a shorter time, by using commodity hardware. To improve

computational speedup, different device memories were assigned. Texture memory

was used for fuzzification inputs that remain the same, such as personality,

throughout the simulation while the global memory was used for inputs that change,

such as fatigue. To capture the experience of the domain expert, a user-friendly GUI

 104

tool was developed. The captured knowledge-base and rule-base were used to

generate an XML script which was converted into the variables and parameters

required by the corresponding CPU and GPU functions.

Additionally, this thesis contributed to the blending of real-time massive crowd

simulation and massive physics in the same application. To the best of the author’s

knowledge, no other study that simulates extensive number of physical objects

together with massive crowds has been found. In the case study “Little Wars,” tens

of thousands arrows were physically modeled and simulated in the virtual combat

field where more than 250,000 warriors involved. This case study deals not only with

the collision detection of the arrows but also with the warrior collision avoidance, the

combat models, and the bow drawing models.

7.2 Future Work

The topics covered so far about massive crowd simulation using GPU are only the

visible part of the iceberg. Since crowd simulation is a wide research area, one must

go deep beneath the surface to discover what else can be done to improve massive

crowd simulation with performance and realism. Besides the crowd simulation

research issues, another improvement could be to adapt the offered solutions to

newer versions or variants of CUDA technology.

NVidia CUDA is a new vendor dependent technology. Although only two years have

passed since the official release, it has already been updated several times. In the first

quarter of 2010, there will be significant improvements and changes in the hardware

and the development platform. FERMI (the new version of CUDA) will introduce

more parallel cores, and thus offer more processing power [78]. Additionally, the

software development environment will be easier than the existing environment.

Moreover, NVidia is not the only player in this field; other CPU/GPU vendors will

also release SIMD based hardware. In this sense, the future work should make

 105

offered solutions flexible enough to work on different vendor platforms and various

massively parallel computing tools. These probable platforms must be considered

while trying to implement future issues regarding massive crowd simulation.

The described fuzzy inference solution has the potential for many other disciplines.

The current system was built upon several assumptions and limitations. Amendments

and improvements are necessary to the described solution before its use in alternative

research areas. In the future, linguistic hedge functionality, or the ability to add

adverb like options such as “somehow” and “nearly,” needs to be added by revising

the knowledge-base/rule-base GUI, XML definition and fuzzy inference kernels.

Also, since the fuzzy operators are currently limited to “AND” and “OR,” more

operators can be added. The last issue in this context is to enrich the employed

defuzzification methods.

Furthermore, stream compaction should be better improved by employing the

arithmetic coding algorithm that already works well with CUDA technology [80].

The proposed data compaction technique helps minimize the transferred data load

when only floats can represent data and precision is not important. Stream

compaction is a huge research topic and even the reduction of a single bit in massive

crowd simulation will be a significant improvement. Therefore, more attention will

be paid to the stream reduction.

The “Little Wars” case study will be improved by employing a better and more

realistic physics model, collision detection, and collision avoidance algorithms. The

employed algorithms must compute collisions and model the reactions more

accurately. The combat simulation also needs to be more realistic, requiring a more

complicated combat model and a set of combat Mo-Cap data. To enrich actions, a

newly acquired Mo-Cap system in METU MODSIMMER Center will be used.

Regarding the visualization of these applications, a 3rd party game engine will offer

better quality rendering.

 106

The “12th Man” case study needs to be validated as useful by comparing the GPU

generated results with real spectator behaviors observed from real soccer game

videos. Additionally, the generated results should be compared with existing soccer

video games, thus proven to be better. As previously mentioned, more virtual

spectators’ actions generated by the GPU parallel processing to reflect behavioral

variety should be added.

Finally, six high-end PCs equipped with 3-4 upcoming GeForce 300 series GPUs

will be connected, making the processing power over 10 teraflops per second. The

system will be connected to a newly built back-projection wall comprised of 6

projectors and the corresponding large screen to simulate massive crowds containing

millions of virtual characters. This system will be used for the large-screen

visualization of massive crowd simulation and other scientific visualization studies

as well. The large-screen display solution is depicted in Figure 47.

Figure 52 Back-projection large-screen display comprised of six back-projectors and
seamless plexiglas wall.

 107

BIBLIOGRAPHY

[1] Mehrara, M., Jablin, T., Upton, D., August, D., Hazelwood, K., Mahlke, S.
(2009). Multicore compilation strategies and challenges. IEEE Signal Processing
Magazine, 26(6), 55-63.

[2] Weber, O., Devir, Y., Bronstein, A.M., Bronstein, M.M., Kimmel, R. (2008).
Parallel Algorithms for Approximation of Distance Maps on Parametric Surfaces.
ACM Transactions on Graphics, 27(4), 1-141.

[3]. Silberstein, M., Schuster, A., Geiger, D., Patney, A., Owens, J.D. (2008).
Efficient Sum-Product Computations on GPUs Using Software-Managed Cache. In
proceedings of the 22nd ICS, 309-318.

[4] Nyland, L., Harris, M., Prins, J. (2008). Fast N-Body Simulation with CUDA.
Nguyen, H. (Eds.), GPU Gems 3 (pp.677-695). Addison-Wesley.

[5] Le Grand, S. (2008). Broad-Phase Collision Detection with CUDA. Nguyen, H.
(Eds.), GPU Gems 3 (pp. 697-721). Addison-Wesley.

[6] Howes, L., Thomas, D. (2008). Efficient Random Number Generation and
Application Using CUDA. Nguyen, H. (Eds.), GPU Gems 3 (pp. 805-830). Addison-
Wesley.

[7] Lastra, M., Mantas, J.M., Urena, C., Castro, M.J., Garcia, J.A. (2009). Simulation
of shallow-water systems using graphics processing units. Mathematics and
Computers in Simulation, 80(3), 598-618.

[8] Thibault, J.C., & Senocak, I. (2009). CUDA Implementation of a Navier-Stokes
Solver on Multi-GPU Desktop Platforms for Incompressible Flows. In 47th AIAA
Aerospace Sciences Meeting, Retrieved January 11, 2010, from
http://pdf.aiaa.org/preview/CDReadyMASM09_1811/PV2009_758.pdf

[9] NVIDIA CUDA Compute Unified Device Architecture - Programming Guide.
Retrieved January 11, 2010, from http://developer.download.nvidia.com/compute/
cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf

 108

[10] NVIDIA CUDA Compute Unified Device Architecture – Quick Start Guide.
Retrieved January 11, 2010, from http://developer.download.nvidia.com/compute/
cuda/2_3/docs/CUDA_Getting_Started_2.3_Windows.pdf

[11] NVIDIA CUDA Compute Unified Device Architecture – Best Practices Guide.
Retrieved January 11, 2010, from http://developer.download.nvidia.com/compute/
cuda/2_3/toolkit/docs/NVIDIA_CUDA_BestPracticesGuide_2.3.pdf

[12] Wells, H.G. (1913). Little Wars: A Game for Boys From Twelve Years of Age
to One Hundred And Fifty And for That More Intelligent Sort of Girl Who Likes
Boys' Games and Books. London: Frank Palmer.

[13] Daniel, T., & Soraia, R.M. (2007). Crowd Simulation. Berlin: Springer.

[14] Ciechomski, P.H., Schertenleib, S., Maïm, J., Thalmann, D. (2005). Reviving
the Roman Odeon of Aphrodisias: Dynamic animation and variety control of crowds
in virtual heritage. VSMM, 601–610.

[15] Yılmaz, E., Yardımcı, Y., Erdem, Ç., Erdem, T., Özkan, M. (2006). Music
Driven Real-Time 3D Concert Simulation. Günsel, B., Jain, A.K., Tekalp, A.M.,
Sankur, B. (Eds.), MRCS (pp. 379-386). Berlin: Springer.

[16] Dudash, B. (2008). Animated Crowd Rendering. Nguyen, H. (Eds.), GPU Gems
3 (pp. 39-52). Addison-Wesley.

[17] McDonnell, R., Dobbyn, S., O’Sullivan, C. (2005). LOD human representations:
A comparative study. Proceedings of the First International Workshop on Crowd
Simulation, 101–115.

[18] Tecchia, F., Chrysanthou, Y. (2000). Real-time rendering of densely populated
urban environments. Proceedings of the Eurographics Workshop on Rendering
Techniques, 83–88.

[19] Tecchia, F., Loscos, C., Chrysanthou, Y. (2002). Visualizing crowds in real-
time. Computer Graphics Forum, 21(4), 753–765.

[20] Aubel, A., Boulic, R., Thalmann, D. (2000). Real-time display of virtual
humans: levels of details and impostors. IEEE Transactions on Circuits and Systems
for Video Technology, 10(2), 207–217.

[21] Kavan. L., Dobbyn, S., Collins, S., Zara, J., O’Sullivan, C. (2008). Polypostors:
2d polygonal impostors for 3d crowds. In proceedings of the 2008 symposium on
Interactive 3D graphics and games, 149–155.

 109

[22] McDonnell, R., Dobbyn, S., Collins, S., O’Sullivan, C. (2006). Perceptual
evaluation of LOD clothing for virtual humans. In Proceedings of the 2006 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, 117–126.

[23] S. Dobbyn, J. Hamill, K. O’Conor, C. O’Sullivan. (2005). Geopostors: a real
time geometry/impostor crowd rendering system. International Conference on
Computer Graphics and Interactive Techniques, 95–102.

[24] Grossman, J.P., & Dally, W.J. (1998). Point sample rendering. In Proceedings of
the 9th Eurographics Workshop on Rendering, 181–192.

[25] Rusinkiewicz, S., & Levoy, M. (2000). Qsplat: a multiresolution point rendering
system for large meshes. In proceedings of the 27th annual conference on Computer
graphics and interactive techniques, 343–352.

[26] Pfister, H., Zwicker, M., Baar, J., Gross, M. (2000). Surfels: surface elements as
rendering primitives. In Proceedings of the 27th annual conference on Computer
graphics and interactive techniques, pages 335–342.

[27] Marroquim, R., Kraus, M., Cavalcanti, P.R. (2008). Efficient image
reconstruction for point-based and line-based rendering, Computers & Graphics,
32(2), 189-203.

[28] Rudomin, I., & Millan, E. (2004). Point based rendering and displaced
subdivision for interactive animation of crowds of clothed characters. Virtual Reality
Interaction and Physical Simulation Workshop, 139–148.

[29] Millan, E., & Rudomin, I. (2006). A comparison between impostors and point-
based models for interactive rendering of animated models. In proceedings of the
International Conference on Computer Animation and Social Agents.

[30] Hamill, J., McDonnell, R., Dobbyn, S., and O’Sullivan, C. (2005). Perceptual
evaluation of impostor representations for virtual humans and buildings. Computer
Graphics Forum, 24(3), 623–633.

[31] Maïm, J., Yersin, B., Pettré, J., Thalmann, D. (2009). YaQ: An Architecture for
Real-Time Navigation and Rendering of Varied Crowds. IEEE Computer Graphics
and Applications, 29(4), 44-53.

[32] Treuille, A., Cooper, S., Popovi´c, Z. (2006). Continuum crowds. Proceedings
of ACM SIGGRAPH, 25(3) ,1160–1168.

 110

[33] Yersin, B., Maim, J., Ciechomski, P.H., Schertenleib, S. Thalmann, D. (2005).
Steering a Virtual Crowd Based on a Semantically Augmented Navigation Graph. In
Proceedings of the First International Workshop on Crowd Simulation.

[34] Pettre, J., Laumond, J., and Thalmann, D. (2005). A navigation graph for real-
time crowd animation on multilayered and uneven terrain.

[35] Bayazit, O.B., Lien, J.M., Amato, N.M. (2002). Better Group Behaviors in
Complex Environments using Global Roadmaps. Artificial Life, 362-370.

[36] Reynolds, C.W. (1987). Flocks, herds and schools: A distributed behavioral
model. In SIGGRAPH ’87: Proceedings of the 14th annual conference on Computer
graphics and interactive techniques, 25–34.

[37] Ulhaas, K.D., Erdmann, D., Gerl, O., Schulz, N., Wiendl, V., Andre, E. (2006).
An Immersive Game - Augsburg Cityrun. André, E.; Dybkjær, L.; Minker, W.;
Neumann, H.; Weber, M. (Eds.), Perception and Interactive Technologies (pp. 201-
204). Berlin: Springer.

[38] Lamarche, F., & Donikian, S. (2004). Crowd of virtual humans: a new approach
for real time navigation in complex and structured environments. Computer Graphics
Forum, 23(3), 509–518.

[39] Lerner, A., Chrysanthou, Y., Lischinski, D. (2007). Crowds by Example.
Computer Graphics Forum, 26(3), 655-664.

[40] McDonnell, R., Larkin, M., Dobbyn, S., Collins, S., O’Sullivan, C. (2008).
Clone attack! Perception of crowd variety. ACM SIGGRAPH, 27(3), 1–8.

[41] Allen, B., Curless, B., Popovic, Z. (2004) Exploring the space of human body
shapes: data-driven synthesis under anthropometric control. (Tech. Rep. 2004-01-
2188), USA, University of Washington, SAE Technical Papers.

[42] Seo, H., Cordier, F., Philippon, L., Thalmann, N.M. (2000). Interactive
Modelling of MPEG-4 Deformable Human Body Models. IFIP Conference
Proceedings, 196, 120-131.

[43] Thalmann, N.M., Seo, H., Cordier, F. (2004). Automatic modeling of virtual
humans and body clothing. Journal of Computer Science and Technology, 19(5),
575-584.

[44] Ciechomski, P.H., Schertenleib, S., Maïm, J., Maupu, D., Thalmann, D. (2005).
Real-time Shader Rendering for Crowds in Virtual Heritage. In VAST ’05.

 111

[45] Dobbyn, S., McDonnell, R., Kavan, L., Collins, S., and O’Sullivan, C. (2006).
Clothing the masses: Real-time clothed crowds with variation. In Eurographics Short
Papers, 103–106.

[46] McDonnell, R., Dobbyn, S., O’Sullivan, C. (2007). Pipeline for Populating
Games with Realistic Crowds. International Journal of Intelligent Games and
Simulation, 4(2), 1 - 15.

[47] Ulicny, B., Thalmann, D. (2001). Crowd simulation for interactive virtual
environments and VR training systems. Proceedings of Eurographic workshop on
Computer animation and simulation, 163-170.

[48] Thalmann, D., Musse, S.R., Kalmann, M. (2000). From Individual Human
Agents to Crowds. Informatik Magazine, 1, 6-11.

[49] Heigeas, L., Luciani, A., Thollot, J., Castagné, N. (2003). A physically-based
particle model of emergent crowd behaviors. In proceedings of Graphicon ‘03.

[50] Sung, M., Glechier, M., Chenney, S. (2004). Scalable Behaviors for Crowd
Simulation. Computer Graphics Forum, 23(3), 519-528 .

[51] Braun, A., Bodmann, E.J.B., Musse, S.R. (2005). Simulating virtual crowds in
emergency situations. Virtual Reality Software and Technology, 244-252.

[52] Sakuma, T., Mukai, T., Kuriyama, S. (2005). Psychological model for animating
crowded pedestrians: Virtual Humans and Social Agents. Computer Animation and
Virtual Worlds, 16(3-4), 343-351.

[53] Pelechano, N., O'Brien, K., Silverman, B., Badler, N. (2005). Crowd Simulation
Incorporating Agent Psychological Models, Roles and Communication. First
International Workshop on Crowd Simulation: V-CROWDS.

[54] Pelechano, N., Allbeck, J.M., Badler, N.I. (2007). Controlling individual agents
in high-density crowd simulation. In SCA’07, 99-108.

[55] O’Sullivan, C., Cassell, J., Vilhjámsson, H., Dingliana, J., Dobbyn, S.,
McNamee, B., Peters, C., Giang, T. (2003). Levels of detail for crowds and groups.
Computer Graphics Forum, 21(4): 733–741.

[56] Chittaro, L., Serra, M. (2004). Behavioral programming of autonomous
characters based on probabilistic automata and personality. Computer Animation and
Virtual Worlds,15(3-4), 319-326.

 112

[57] Badler, N., Allback, J., Zhao, L., Byun, M. (2002). Representing and
Parameterizing Agent Behaviors. In Proceedings of Computer Animation, 133-143.

[58] Bécheiraz, P., Thalmann, D. (1998). A behavioral animation system for
autonomous actors personified by emotions. In Proceedings of First Workshop on
Embodied Conversational Characters ’98, 57-65.

[59] Ayesh, A., Stokes, J., Edwards, R. (2007). Fuzzy individual model (FIM) for
realistic crowd simulation: preliminary results. In Proceedings of FUZZ-IEEE
Conference ’07, 1–5.

[60] Rudomín, I., Millán, E. (2004). XML scripting and images for specifying
behavior of virtual characters and crowds. In Proceedings of CASA ’04, 121-128.

[61] Rudomín, I., Millán, E. (2005). Probabilistic, layered and hierarchical animated
agents using XML. In Proceedings of the 3rd international conference on Computer
graphics and interactive techniques in Australasia and South East Asia
GRAPHITE’05, 113-116.

[62] Peters, C., Ennis, C. (2009). Modeling Groups of Plausible Virtual Pedestrians.
IEEE Computer Graphics & Applications, 29(4), 54-63.

[63] Reynolds, C. (2006). Big Fast Crowds on PS3. Proceedings of the 2006 ACM
SIGGRAPH symposium on Videogames, 113-121.

[64] Cell BE Development Made Simple. RapidMind Inc. (2006). Technology Paper.

[65] Quinn, M.J., Metoyer, R.A., and H. Zaworski. (2003). Parallel Implementation
of the Social Forces Model. Proceedings of the Second International Conference in
Pedestrian and Evacuation Dynamics, 63-74

[66] Steed, A., & Abou-Haidar, R. (2003). Partitioning crowded virtual
environments. Virtual Reality Software and Technology, 7-14.

[67] Zhou, B., & Zhou, S. (2004). Parallel Simulation of Group Behaviors.
Proceedings of the 2004 Winter Simulation Conference. 1, 364–370.

[68] Berg, J., Patil, S., Seawall, J., Manocha, D., Lin, M. (2008). Interactive
navigation of individual agents in crowded environments. Proc. of ACM Symposium
on Interactive 3D Graphics and Games, 139–147.

[69] Stephen, Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., and Dubey, P.
(2009). Clearpath: highly parallel collision avoidance for multi-agent simulation. In

 113

SCA '09: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, 177-187.

[70] Courty, N., Musse, S.R., (2004). FASTCROWD: Real-Time Simulation and
Interaction with Large Crowds based on Graphics Hardware". Short Paper in ACM
SCA 2004 - Symposium on Computer Animation, 2004. Tech. rep., INRIA, March.

[71] Erra, U., De Chiara, R., Scarano, V., and Tatafiore, M. (2004). Massive
simulation using gpu of a distributed behavioral model of a flock with obstacle
avoidance. In Proceedings of Vision, Modeling and Visualization 2004 (VMV).

[72] Paul, R. and Daniela, R. (2008). A high performance framework for agent based
pedestrian dynamics on gpu hardware. In Proceedings of EUROSIS ESM 2008
(European Simulation and Modelling).

[73] D'Souza, R. M., Lysenko, M., and Rahmani, K. (2007). SugarScape on steroids:
simulating over a million agents at interactive rates. Proceedings of Agent2007
conference.

[74] Passos, E., Joselli, M., Zamith, M., Rocha, J., Montenegro, A., Clua, E., Conci,
A., and Feijó, B. (2008). Supermassive crowd simulation on GPU based on emergent
behavior. In Proceedings of the Seventh Brazilian Symposium on Computer Games
and Digital Entertainment, 81-86.

[75] Joselli, M., Zamith, M.P.M., Passos, E., Clua, E.W.G., Montenegro, A.A.,
Feijo, B. (2009). A Neighborhood Grid Data Structure for Massive 3D Crowd
Simulation on GPU. SBGames, Rio de Janeiro.

[76] Karthikeyan, M. (2008). Real time crowd visualization using the GPU. USA,
Virginia Polytechnic Institute and State University.

[77] Strippgen, D., Nageli K. (2009). Using common graphics hardware for multi-
agent traffic simulation with CUDA. In proceedings of the 2nd International
Conference on Simulation Tools and Techniques, Article No. 62.

[78] NVIDIA. Whitepaper:NVidia’s Next Generation CUDA Compute Architecture,
Fermi. Retrieved January 11, 2010, from http://www.nvidia.com/content/PDF/
fermiwhitepapers/Whitepaper.pdf

[79] Glaskowsky, P.N. (2009). NVIDIA’s Fermi: The First Complete GPU
Computing Architecture, http://www.nvidia.com/content/PDF/fermi_white_papers -
/P.Glaskowsky_NVIDIA%27s_Fermi-The_First_Complete_GPU_Architecture.pdf.

 114

[80] Balevic, A., Rockstroh, L., Wroblewski, M., Simon, S. (2008). Using Arithmetic
Coding for Reduction of Resulting Simulation Data Size on Massively Parallel
GPGPUs. Recent Advances in Parallel Virtual Machine and Message Passing
Interface, 295-302.

[81] Roger, D., Assarsson, U., Holzschuch, N. (2007). Efficient stream reduction on
the GPU. In: Kaeli, D., Leeser, M. (eds.) Workshop on General Purpose Processing
on Graphics Processing Units.

[82] Horn, D. (2005). Stream reduction operations for GPGPU applications. Pharr,
M. (Eds.), GPU Gems 2 (pp. 573-589). Addison-Wesley.

[83] Harris, M., Sengupta, S., Owens, J.D. (2007). Parallel prefix sum (scan) with
CUDA. Nguyen, H. (Eds.), GPU Gems 3 (ch. 39). Addison-Wesley.

[84] Billeter, M., Olsson, O., Assarsson, U., Efficient stream compaction on wide
SIMD many-core architectures. Proceedings of the Conference on High Performance
Graphics, 159-166.

[85] Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.

[86] Chang, J, Li, T. (2008). Simulating virtual crowd with fuzzy logics and motion
planning for shape template. In Proceedings of IEEE Conference on Cybernetics and
Intelligent Systems, 131-136.

[87] Ahn, E.Y., Kim, J.W., Kwak, N.Y., Han, S.H. (2005). Emotion-based crowd
simulation using fuzzy algorithm. AI 2005: Advances in Artificial Intelligence, 330-
338.

[88] Yılmaz, E., Đşler, V., Yardımcı, Y.Ç., (2009). The Virtual Marathon: Parallel
Computing Supports Crowd Simulations. IEEE Computer Graphics & Applications,
29(4), 26-33.

[89] Zambetta, F. (2007). Simulating sensory perception in 3D game characters. In
Proceedings of the 4th Australasian conference on Interactive entertainment, article
no:7.

[90] Byl, P.B. (2004). Programming Believable Characters for Computer Games.
Boston: Charles River Media.

[91] Ross, T. (2005). Fuzzy Logic with Engineering Applications. USA:
WileyBlackwell.

 115

[92] Mamdani, E. H. (1974). Application of fuzzy algorithms for control of simple
dynamic plant. Procedings of IEEE, 121(12):1585-1588.

[93] Sugeno, M., & Kang, G. (1988). Structure Identification of Fuzzy Model. Fuzzy
Sets and Systems, 28, 15-33.

[94] Tsukamoto, Y. (1979). An Approach to Fuzzy Reasoning Method. M.Gupta,
R.Ragade, and R.Yager (eds.), Advances in Fuzzy Set Theory and Applications
(pp.137-149), Amsterdam: Elsevier.

[95] Fuzzy Control Programming. International Electrotechnical Commission (IEC)
(1997), http://www.fuzzytech.com/binaries/ieccd1.pdf

[96] Acampora, G., & Loia V. (2005). Using FML and Fuzzy Technology in
Adaptive Ambient Intelligence Environments. International Journal of
Computational Intelligence Research, 1(2), 171-182.

[97] Boyko, R.H., Boyko, A.R., Boyko, M.G. (2007). Referee bias contributes to
home advantage in English Premiership football. Journal of Sports Sciences, 25(11),
1185-1194.

[98] Farkas, I., Helbing, D., Vicsek, T. (2002). Social behaviour:Mexican waves in
an excitable medium. Nature 419, 131-132.

[99] Clements, R.R., Hughes, R.L. (2004). Mathematical Modelling of a Medieval
Battle: The Battle of Agincourt, 1415. Mathematics and Computers in Simulation.
64(2), 259-269.

[100] Wikipedia, Battle of Agincourt,
http://en.wikipedia.org/wiki/Battle_of_Agincourt

[101].Wikipedia, Battle of Thermopylae,
http://en.wikipedia.org/wiki/Battle_of_Thermopylae

[102] Gareth, R. (1995). The Physics of Medieval Archery, Stortford Archery Club
Newsletter, Issues 5 & 6.

[103] Longbow-Archers, http://www.longbow-archers.com/heavybowarchers.htm

[104] Bourg, D.M. (2002). Physics for Game Developers. Sebastopol: O’Reilly.

 116

CURRICULUM VITAE

PERSO�AL I�FORMATIO�

Surname, Name: Yılmaz, Erdal
Nationality: Turkish (TC)
Date and Place of Birth: 2 February 1971 , Ankara
Marital Status: Married
Phone: +90 312 479 28 55
Fax: +90 312 210 22 91
email: erdal@ii.metu.edu.tr

EDUCATIO�

Degree Institution Year of Graduation

MS METU Informatics
Institute

2003

Certificate Program for
Army Officers

METU Computer
Engineering

1999

BS General Command of
Mapping, Survey
Engineering School

1995

BS Army College, Civil
Engineering Dept.

1993

High School Maltepe Military High
School, Ankara

1989

WORK EXPERIE�CE

Year Place Enrollment
1993- Present General Command of

Mapping
Project Officer

FOREIG� LA�GUAGES
Fluent English

 117

PUBLICATIO�S

Journal Papers:
[1] Yılmaz, E., Đşler, V., Yardımcı, Y.Ç. (2009). The Virtual Marathon: Parallel
Computing Supports Crowd Simulations. IEEE Computer Graphics & Applications,
29(4), 26-33.

Conference Papers:

[1] Yılmaz, E., Maras, H.H., Yardimci, Y.Ç. (2004). PC based generation of Real-
Time Realistic Synthetic Scenes for Low Altitude Flights. Proceedings of the SPIE,
5424, 31-39.

[2] Yılmaz, E., Maras, H.H., Yardimci, Y.Ç. (2004). Photorealistic Scene Realistic
Scene Generation for PC Based Real-Time Outdoor Virtual Reality Applications.
Proceedings of the XXth ISPRS Congress, 615-620.

[3] Yılmaz, E., Yardımcı, Y. (2005). Photorealistic Outdoor Scene Visualizations
with PCs. Proceedings of the 50th Photogrammetry Week, 273-282.

[4] Yılmaz, E., Cagiltay, K. (2005). History of Digital Games in Turkey. Proceedings
of the DIGRA Conf. 2005 (Changing Views: World in Play), p. Online.

[5] Karaahmetoğlu, C., Yılmaz, E., Yardımcı, Y.Ç., Köksal, G. (2006). Out-the-
window scene properties in pc-based helicopter simulators. Enhanced and Synthetic
Vision 2006.

[6] Yılmaz, E., Yardımcı, Y., Erdem, Ç., Erdem, T., Özkan, M. (2006). Music
Driven Real-Time 3D Concert Simulation. Günsel, B., Jain, A.K., Tekalp, A.M.,
Sankur, B. (Eds.), MRCS (pp. 379-386). Berlin: Springer.

[7] Yılmaz, E., Ocak, M., Taştan, H. (2006). A Practical Approach for Serving Large
Amounts of Geospatial Data via Computer Networks. Proceedings of the
International Society for Photogrammetry and Remote Sensing (ISPRS) Second
International Symposium on Geo-information for Disaster Management, Goa, India,
p. Online , 2006.

[8] Kose, K., Grammalidis, N., Yilmaz, E., Cetin, E. (2008). 3D Forest Fire
Propagation Simulation. 3DTV-CON 2008, Istanbul, Turkey, 369-372.

[9] Zabulis, X., Grammalidis, N., Bastanlar, Y., Yilmaz, E., Yardimci, Y.Ç. (2008).
3D Scene Reconstruction Based on Robust Camera Motion Estimation. 3DTV-
CON2008, Istanbul, Turkey, May 2008, p. 53-56.

 118

[10] K. Kose, N. Grammalidis, E.Yilmaz,E. Cetin: "3D Wildfire Simulation
System", Proceedings of the ISPRS2008, Beijing, China, 1431-1436.

[11] Bastanlar, Y., Grammalidis, N., Zabulis, X., Yilmaz, E., Yardimci, Y.Ç.,
Triantafyllidis, G. (2008). 3D Reconstruction for a Cultural Heritage Virtual Tour
System. Proceedings of the ISPRS2008, Beijing, China, 1023-1028.

[12] Köse, K., Yılmaz, E., Çetin, E. (2009). Progressive Compresion Of Digital
Elevation Data Using Meshes. Proceedings of the IEEE International Symposium on
Geoscience and Remote Sensing IGARSS 2009, Johannesburg, South Africa, p.
Online.

(�ational)

Journal Papers:

[1] Taştan, H., Maraş, H., Şahin, K., Kurt, M., Ünlü, T., Çağlar, Y., Yılmaz, E.
(2000). Sayısal Harita Destekli Askeri Uygulamalar Yazılımı. Harita Dergisi.

Conference Papers:

[1] Taştan, H., Maraş, H., Şahin, K., Kurt, M., Ünlü, T., Çağlar, Y., Yılmaz, E.
(2001). Sayısal Harita Destekli Askeri Uygulamalar Yazılımı. 1nci Uluslararası Uzay
Sempozyumu Bildiriler Kitabı, 301-310.

[2] Şahin, D., Yılmaz, E., Yardımcı, Y., Leblebicioglu, K. (2003). Hava
Muharebesinin Modellenmesi ve Gorsellestirilmesi. MODSIM Calistayi, ODTÜ,
Ankara.

[3] Yılmaz, E., Maraş, H., Yardımcı, Y.Ç. (2003). Sanal Kum Sandığı. MODSIM
Calistayi, ODTÜ.

[4] Yılmaz, E., Çağıltay, K. (2004). Türkiye’de Elektronik Oyunların Tarihçesi. TBD
21. Ulusal Bilişim Kurultayı Bildiriler Kitabı, ODTÜ, 159-166.

[5] Karaahmetoğlu, C., Yılmaz, E., Leblebicioglu, K., Yardımcı, Y.Ç. (2005). PC
Tabanlı Helikopter Uçuş Simülatörlerinde Alçak Đrtifa Taktik Uçuş Eğitimi Đçin
Gereken Pencere Dışı Görsel Bileşenlerin Özellikleri. USMOS 2005, ODTÜ,
Ankara, 237-246.

[6] Karaahmetoğlu, C., Yardımcı, Y.Ç., Köksal, G., Yılmaz, E. (2006). Helikopter
Simülatörleri Đçin Görsel Bileşen Özellikleri. UHUK (Ulusal Havacılık ve Uzay
Konferansı) Bildiriler Kitabı , Ankara.

 119

[7] Kose, K., Yılmaz, E., Grammalidis, N., Aktug, B., Cetin, A.E., Ilhami, A. (2008).
3D Forest-Fire Spread Simulation System (3-Boyutlu Orman Yangını Yayılımı
Sistemi). SIU 2008 Bildiriler Kitabı, Didim, Aydın.

[8] Yılmaz, E., & Erbaş, M. (2008). Konumsal Bilgi Görsel Sunumu ve Örnek Bir
Uygulama. SAVTEK 2008, ODTÜ, Ankara, 381-389.

[9] Yılmaz, E. Kantar, F., Erbaş, M. (2009). Harita Genel Komutanlığının Konumsal
Veri Sunum Uygulamaları. 1. BHĐKP Sempozyumu, Ankara.

[10] Çetin, Y., Yılmaz, E., Yardımcı, Y.Ç. (2009). Üç Boyutlu Sanal Çevre Görsel
Đpuçlarının Helikopter Simülatörleri Açısından Đncelenmesi. USMOS 2009, Haziran
2009, Ankara.

HOBBIES
Computer Technologies, Collectible Figures

 120

VITA

Erdal Yılmaz was born in Ankara on February 2, 1971. He received his B.S. degrees in

Civil Engineering Department of Army College in 1993 and Survey Engineering School

of General Command of Mapping in 1995. He attended a four-semester training program

in Computer Engineering Department of METU in 1999. He received a MSc. Degree in

Information Systems Department of Informatics Institute, METU in 2003. Since 1995 he

has been worked in various departments of General Command of Mapping as project

officer. His main areas of interest are computer graphics, computer games and GIS.

