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ABSTRACT

DEVELOPMENT OF MEMS TECHNOLOGY BASED MICROWAVE AND
MILLIMETER-WAVE COMPONENTS

Çetintepe, Çağrı

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. Şimşek Demir

Co-Supervisor : Prof. Dr. Tayfun Akın

February 2010, 211 pages

This thesis presents development of microwave lumped elements for a specific surface

micromachining based technology, a self-contained mechanical characterization of fixed-

fixed type beams and realization of a shunt, capacitive-contact RF MEMS switch for

millimeter-wave applications.

Interdigital capacitor, planar spiral inductor and microstrip patch lumped elements de-

veloped in this thesis are tailored for a surface micromachining technology incorporat-

ing a single metallization layer, which allows an easy and low-cost fabrication process

while permitting mass production. Utilizing these elements, a bandpass filter is fabri-

cated monolithically with success, which exhibits a measured in-band return loss better

than -20 dB and insertion loss of 1.2 dB, a pass-band located in S-band and a stop-band

extending up to 20 GHz.

Analytical derivations for deflection profile and spring constant of fixed-fixed beams are
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derived for constant distributed loads while taking axial effects into account. Having

built experience with the mechanical domain, next, Finite Difference solution schemes

are established for pre-pull-in and post-pull-in electrostatic actuation problems. Using

the developed numerical tools; pull-in, release and zipping phenomena are investigated.

In particular, semi-empirical expressions are developed for the pull-in voltage with as-

sociated errors not exceeding 3.7 % of FEA (Finite Element Analysis) results for typical

configurations.

The shunt, capacitive-contact RF MEMS switch is designed in electromagnetic and me-

chanical domains for Ka-band operation. Switches fabricated in the first process run could

not meet the design specifications. After identifying sources of relevant discrepancies, a

design modification is attempted and re-fabricated devices are operated successfully. In

particular, measured OFF-state return and insertion losses better than -16.4 dB and 0.27

dB are attained in 1-40 GHz. By applying a 20-25V actuation, ON-state resonances are

tuned precisely to 35 GHz with an optimum isolation level of 39 dB.

Keywords: Lumped elements, surface micromachining, millimeter-wave, RF MEMS, switch,

fixed-fixed beam, electrostatic actuation.
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ÖZ

MEMS TEKNOLOJ̇IṠI TABANLI MİKRODALGA VE MİL̇IMETRİK DALGA BİLEŞENLERİN
GEL̇IŞṪIRİLMEṠI

Çetintepe, Çağrı

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Şimşek Demir

Ortak Tez Yöneticisi : Prof. Dr. Tayfun Akın

Şubat 2010, 211 sayfa

Bu tezde, yüzey mikroi̧sleme tabanlı özel bir teknoloji için toplu mikrodalga bileşen-

lerin geli̧stirilmesi, bağlı-bağlı tip kiri̧slerin bağımsız bir mekanik incelemesi ve milimetrik

dalga uygulamaları için paralel, sığal-değeçli bir RF MEMS anahtarın gerçeklenmesi an-

latılmaktadır.

Bu çalı̧smada geli̧stirilen parmaklı sığaç, düzlemsel sarmal irgiteç ve mikroşerit yama

toplu bileşenleri; tek metal katman kullanan ve dolayısı ile kolay, ucuz ve seri bir üretime

imkan veren yüzey mikroi̧sleme tabanlı bir teknoloji için uyarlanmı̧stır. Bu bileşenler kul-

lanılarak, bant-geçiren bir süzgeç yapısı tektaş olarak başarıyla üretilmi̧s ve ölçümlerde

-20 dB’den iyi bant-içi geri dönüş kaybı, 1.2 dB bant-içi araya girme kaybı, S frekans

bandında yer alan bir geçi̧s bandı ve 20 GHz’e varan bir durdurma bandı elde edilmi̧stir.

Bağlı-bağlı tip kiri̧slerin eğilme kesiti ve yay sabiti ifadeleri, eksenel etkiler göz önünde

bulundurularak, düzgün dağıtılmı̧s yükler için çözümsel bir şekilde çıkarılmı̧stır. Mekanik
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alanında yeterli tecrübeye eri̧stikten sonra, hareketlendirme öncesi ve sonrası elektro-

statik uyarım problemleri için Sonlu Farklar yöntemiyle sayısal çözüm biçimleri oluştu-

rulmuştur. Geli̧stirilen sayısal araçlarla; hareketlendirme, bırakma ve değeç-iyileşmesi

davranı̧sları incelenmi̧stir. Hareketlendirme gerilimi için özel olarak yarı-deneysel ifadeler

çıkarılmı̧s ve tipik yapılanmalar için elde edilen hatanın Sonlu Eleman Yöntemi ile kıyas-

landığında %3.7’yi geçmediği gözlemlenmi̧stir.

Paralel, sığal-değeçli RF MEMS anahtar elektromanyetik ve mekanik alanlarında Ka fre-

kans bandı için tasarlanmı̧stır. İlk aşamada üretilen anahtarların tasarım belirtimlerine

uymadığı görülmüştür. İlgili farklılıkların sebeplerinin anlaşılmasını takiben bir tasarım

deği̧sikliğine gidilmi̧s ve yeniden üretilen anahtarların başarıyla çalı̧stıkları gözlemlen-

mi̧stir. Ölçümlerde AÇIK-durumda geri dönüş ve araya girme kayıpları 1-40 GHz bandında

sırasıyla -16.4 dB ve 0.27 dB’den iyi bulunmuş; KAPALI-durum çınlama frekansı 20-25 V

uyarım gerilimiyle hassas olarak 35 GHz’e oturtulmuş ve ilgili yalıtım 39 dB olarak elde

edilmi̧stir.

Anahtar Kelimeler: Toplu bileşenler, yüzey mikroi̧sleme, milimetrik dalga, RF MEMS,

anahtar, bağlı-bağlı kiri̧s, elektrostatik uyarım.
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3Σ0 = 10.0, N = 251). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Figure 3.31 Configuration for the critical contact problem of fixed-fixed beams. . . . 138
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CHAPTER 1

INTRODUCTION

Attention received by mobile and wireless systems nowadays is tremendous world-wide:

Portable GPS systems aid navigation during transport, cell phones featuring new proto-

cols elevate communication to a new level while furnishing the users with a plethora

of other integrated multimedia functions, consumer electronics equipped with built-in

wireless communication options like WiFi R© or Bluetooth R© render life easier etc. Faced

with this ever-growing trend, manufacturers direct their attention to miniaturization of

these systems, integration of more and more functions, enhancing battery lives and low-

ering overall costs to maintain and widen their audience. These goals eventually lend

themselves to optimization of the underlying RF sections: In particular; compact-sized,

low-cost, high performance RF components are required in order to satisfy even tighter

specifications with optimized battery life [1–3]. The latter requirements are pushing the

manufacturers to state-of-the-art RF solutions.

RF MEMS (Radio Frequency Micro-Electro-Mechanical Systems) technology is a viable

solution that bears the potential to successfully address previously mentioned aspects

[4–7]. In fact, RF MEMS is not limited in scope to only wireless communication systems:

It is a rather recent technology capable of producing components whose performance can

be hardly surpassed for a variety of applications including microwave and millimeter-

wave radar, modern civil/military telecommunication, satellite and instrumentation sys-

tems [8]. Its “enabling” nature in addition, provides the ability to construct tunable or

reconfigurable circuits whose realization might not be otherwise feasible, if not possible,

with the existing technologies. Possessing those attributes, it is not improbable for the RF

MEMS technology to revolutionize many application areas, including the thriving wire-
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less communication arena exemplified at the beginning, in the near future [9,10].

This thesis focuses on development of microwave and millimeter-wave components that

aim to exploit aforementioned, yet not explicitly stated, favorable properties of RF MEMS

technology. In what follows, those properties are revealed with an overview section. The

bridge between the studies attempted in this thesis and RF MEMS technology is then

formed in the subsequent section.

1.1 An Overview of RF MEMS

RF MEMS technology employs properly configured micro-mechanical structures fabri-

cated using bulk or surface micromachining techniques to yield high-performance com-

ponents in electrical domain at RF to millimeter-wave frequencies [11–14]. These micro-

mechanical structures are either immovable resulting in fixed components (such as high-Q

inductors [15–17], micro-cavity resonators [18, 19] and bulk micromachined or mem-

brane-based transmission lines [20, 21], filters [22], antennas [23]) or can be actuated

by several means to exhibit mechanical movement during operation. The latter category,

also termed as “active RF MEMS” [24], can be further divided into two: One research area

focuses on film bulk acoustic resonators (FBARs) and micromechanical resonators which

serve as electromechanical filters that can achieve impressive Q-factors (1000-10000) up

to (sub) GHz frequencies [25–28]. Primary research, however, pertains to the most cru-

cial active building blocks that get RF MEMS to shine both in academia and in the market:

RF MEMS switches and varactors.

Switches [29–40] and varactors [41–45] are the key elements of RF MEMS technology

which bring tunability and reconfigurability into play. The basic operation principle of

those devices relies on altering their electrical properties through some actuation means:

Mechanical movement changes the electrical state to toggle between what are essentially

open and short-circuits for the case of switches; whereas a similar movement alters either

the effective gap or overlap area between the electrodes of varactors in order to vary asso-

ciated capacitance. Relevant movement is generally established by electrostatic actuation

2



due to relatively faster transition times, smaller device layouts and essentially zero biasing

power requirements; although other actuator forms such as piezoelectric, magnetostatic

and thermal also exist [8]. In particular, Chapter 4 introduces basic implementations for

RF MEMS switches, which would shed more light into mentioned operation principles.

Following properties of RF MEMS switches and varactors constitute their highlights:

• Low Insertion Loss: RF MEMS devices exhibit very low insertion losses (< 0.1−0.2

dB) up to 100 GHz [46] owing to utilized metal layers with high-conductivities and

low substrate losses.

• High Isolation: Isolation between the ports of an RF MEMS switch is high due to

low OFF-state capacitances for ohmic-contact switches and high ON-state capaci-

tances for capacitive-contact switches1.

• High linearity: As RF MEMS devices do not contain any nonlinear materials such

as semiconductor junctions, they yield highly linear operation. In fact, third order

intercept point (IP3) of RF MEMS devices are 20-50 dB better than their solid-state

rivals [47].

• Nearly Zero Biasing Power: Electrostatic and piezoelectric actuation schemes de-

mand virtually no bias power due to lack of drawn current, except for transients

during which power consumption remains less than 0.1 mW [8].

• Potentially Low Cost: Standard surface micromachining techniques can be effec-

tively utilized to fabricate miniature RF MEMS devices using denser wafers with

a low associated cost. Moreover, recent fabrication trends help reduce additional

packaging costs [48,49].

• Reconfigurability: RF MEMS switches and varactors can be implemented in var-

ious combinations to yield high-performance reconfigurable/tunable circuits such

as phase shifters [50–52], impedance tuners [53–55], tunable filters [56, 57], re-

configurable antennas [58–60] to name a few.

1 See §4.1 for details.
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Along with their strengths, RF MEMS devices also possess some drawbacks, which can be

listed as follows:

• High Actuation Voltage: For proper operation of electrostatically actuated RF

MEMS devices, voltage levels in 25-90 V range are required, which are apparently

higher than digital control signal levels. In order to maintain compatibility of those

voltages, high-voltage drive circuits are needed as interface elements.

• Low Switching Speeds: Switching times of RF MEMS devices are in 2-40 µs range

for electrostatic actuation [46]. Hence, RF MEMS devices cannot be utilized in

applications where transient specifications are stringent. Still, research is carried

on miniature RF MEMS devices which aim to lower transient times down to 200

ns [61].

• Power Handling: Due to their construction, RF MEMS devices cannot attain too

high power levels without sacrificing from their lifetime considerably. The power

limit for reliable operation, nevertheless, shifted from 500 mW up to 10 W with the

emergence of proper design and fabrication techniques.

• Packaging: Being miniature and fragile devices, RF MEMS components need to

be packaged and must be isolated from environmental effects like dielectric con-

tamination, water and gas vapors in order to operate reliably in a desired lifetime.

This in turn requires hermetic packaging of those devices which establishes a con-

trolled environment. Integration of a package with RF MEMS devices, however, is

difficult in general as RF performance must not degrade appreciably, hermeticity of

the package must be sufficient and associated packaging costs should be low. As

mentioned previously, recent attempts are directed to reduce packaging costs with

novel package implementations [48,49].

• Reliability: Reliability and lifetime of RF MEMS devices are major concerns as this

factor primarily determines whether a given device would stay as a lab prototype

or may develop to a mature component. Depending on the intended application, a

given lifetime of those devices should be ensured by a careful study of the failure

mechanisms (like contact degradation or dielectric charging) and solving associated

problems. Although state-of-the-art switches offer lifetimes reaching up to 200 bil-

4



lion cycles [47,62], long-term lifetime is not addressed. Moreover, reported number

of cycles may decrease significantly when hot-switching conditions are considered.

1.2 Accomplished Works in This Thesis

Within the framework of this thesis, microwave and millimeter-wave components are

developed which utilize RF MEMS as the underlying technology. In particular, the first

study pertains to development of microwave lumped elements for a specific surface mi-

cromachining based technology, which is essentially a simple subset of RF MEMS. The

second and third studies are interrelated, with the common goal to realize and charac-

terize a millimeter-wave RF MEMS switch component. Following subsections overview

these studies next.

1.2.1 Development of Microwave Lumped Elements

A microwave component is considered lumped when its largest dimension is a small frac-

tion (< 1/10) of the guided wavelength (λg) in a transmission medium at a particular

frequency. Lumped elements appeared around 1965 during the microwave integrated

circuit (MIC) era in order to address chip-size related problems: Distributed-type ap-

proaches utilized at that time posed significant size issues especially at lower frequen-

cies. Having replaced the distributed microstrip-based topologies with the lumped ele-

ments, relevant goal was attained and this progress was later followed by spread of the

information related to design, measurement and application of those elements up to 12

GHz [63–65]. With its emergence in 1976, monolithic microwave integrated circuits

(MMICs) then made excessive use of lumped elements and utilized them to construct

impedance matching blocks, bias chokes, filters, phase shifters and other circuits [66].

The arrival of wireless and mobile applications further rendered lumped elements indis-

pensable for low-cost and low-footprint solutions.

Lumped elements offer several advantages over the distributed counter-parts, a few of

which can be summarized as follows [67]:
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• Lumped elements have compact sizes compared to distributed solutions, the differ-

ence becoming prominent towards lower frequencies for which λg grows signifi-

cantly.

• Small size property depicted above yields low-cost solutions as area of a chip can

be reduced significantly, leading to denser wafers and lower fabrication costs.

• Lumped elements display wider bandwidth characteristics compared to distributed

approaches. This is due to their lower complementary parasitics. For instance, a

given inductance value can be generally realized with a much lower complementary

reactance using a lumped inductor element than a high-impedance transmission

line.

• Due to confinement of electromagnetic field in a fairly compact area (as a conse-

quence of the lumped property), couplings between two elements are lower for

lumped elements than distributed elements. This attribute further promotes chip

size reduction.

Figure 1.1 presents the microwave lumped elements studied in this thesis. Depicted

microstrip-based interdigital capacitor, planar spiral inductor and microstrip patch (or

parallel-plate capacitor) components have been well-characterized and widely adopted

in the literature [68]. Selection of these particular components is guided primarily by

the fabrication-related goals of this study, which are discussed in Chapter 2. According to

those goals, a surface micromachining based technology that employs only a single met-

allization layer is utilized to implement the lumped elements.

RF MEMS relation of this work is partly historical: Within the scope of METU RF MEMS

Group’s technology development efforts, planar spiral inductors and metal-insulator-metal

(MIM) capacitors were successfully realized in [69] previously. This work forms an ex-

tension of that study with the main concerns focusing on development of different type

lumped elements using a simpler implementation scheme, yet still utilizing the capabili-

ties of RF MEMS technology. In fact, surface micromachining technology employed in this

work is adapted from the existing in-house METU RF MEMS base-metallization process.
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(a) Interdigital capacitor (IDC). (b) Planar spiral inductor (PSI).

(c) Microstrip patch (MP).

Figure 1.1: Developed microwave lumped elements in this thesis. Substrate material and
bottom ground plane is not shown for clarity.

Figure 1.2: Implemented monolithic filter structure using the developed microwave
lumped elements. Components are not drawn to scale.

Throughout this work, development of the microwave lumped elements is oriented to-

wards an example filter application which not only serves as an effective test vehicle but

also fulfills the monolithic integration goals of the fabrication technology. Figure 1.2 il-

lustrates layout of the filter structure incorporating these lumped elements.

1.2.2 Mechanical Characterization of Fixed-Fixed Type Beam Structures

A fixed-fixed (or doubly-clamped) beam, as Figure 1.3 illustrates, is a structural com-

ponent whose ends are built into restraints in order to constrain both the deflection

and slope at those ends to zero. This particular component forms, or practically ap-
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Figure 1.3: An illustration of a fixed-fixed type beam.

proximates, the micro-mechanical element in many MEMS applications including micro-

resonators [70–72], mass-flow sensors [73], accelerometers [74] and for material prop-

erty extraction purposes [75–77]. A sizeable portion of RF MEMS switches also belongs

to this category [32, 36, 37]. Since those MEMS devices rely on mechanically actuated

structures and operate with interdisciplinary principles, it follows that a proper charac-

terization of fixed-fixed beams is crucial to the performance obtained in other domains.

This work attempts to establish a self-contained mechanical characterization of fixed-

fixed type beams while devoting particular attention to electrostatical actuation. More

specifically, this study constitutes the first stage for the characterization of Ka-band shunt,

capacitive-contact RF MEMS shunt switch presented in Chapter 4 with the aim to under-

stand and predict various associated electromechanical phenomena. Obtained results in

this work can be applied to other similar MEMS devices as well.

Within the framework of this work, characterization attempts start with the determina-

tion of deflection profile for a fixed-fixed beam subject to a uniformly distributed load.

This sample problem aims to form the basics of mechanical analyses and to build nec-

essary experience to tackle with the more advanced problem of electrostatic actuation.

In particular, relevant deflection properties are solved for analytically in a rigorous man-

ner while incorporating the effects of axial stress resulting from both residual stress and

bending-induced non-linear stretching. Obtained expressions moreover enable one to in-

vestigate the effects of partial load-span (load is distributed partially and symmetrically).

These features provide the capability to investigate effective spring constant expressions

with respect to parameters commonly involved in electrostatically actuated systems and

distinguish this part of the work from the previously reported ones: In [76, 78] for in-
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stance partial load-span and non-linear stretching effects are not considered. In [79], a

derivation is made for the deflection profile while taking into account stretching effects

rigorously similar to this work, but full load-span is assumed. [80] takes into account

both partial load-span and non-linear stretching, but utilizes a simplifying assumption in

the axial relation in order to have a closed-form spring constant. Noting the importance

of closed-form spring constant expressions, in this work, a further derivation is performed

for small-argument and large-argument closed-form spring constant expressions. Validi-

ties of the these latter expressions together with [78] and [80] are furthermore assessed

with respect to the implicit expression of this work.

After solving for the analytical problem, this work then attempts to characterize electro-

statically actuated fixed-fixed beams via the Finite Difference (FD) method by extending

the formulation given in [81] to fixed-fixed beams incorporating axial effects (due to

both residual stress and non-linear stretching). Having failed to solve for the resulting

system of FD equations initially, an own shooting solution method is developed which is

an improved version of the one provided in [82]. Proposed solution is observed to work

seamlessly, except for voltages near the pull-in voltage [83–85].

Due to problems related with the previous FD equation set, pull-in phenomenon could

not be located properly and to compensate for this, a one-dimensional pull-in analysis is

conducted. Spring constant expression developed in the first part of this work is utilized

to obtain pull-in voltages which are later corrected with coefficients extracted empirically

from a simplified electrostatic problem (wherein axial tension is ignored). Upon a com-

parison with the Finite Element Analysis (FEA) results appearing in [80] and [86], it is

observed that results obtained from developed pull-in expressions are comparable to the

ones calculated with [76,80,87–89] for several test cases.

Final part of this work focuses on the post-pull-in problem, i.e. contact analysis of the

collapsed beam. This latter analysis ignores adhesion and surface roughness effects and

aims to understand the electromechanical behavior in the contact state. Using a similar

approach with the previous problem but with different boundary conditions, FD solu-

9



tions are obtained. Contact improvement (zipping) phenomena [90, 91] with voltage is

observed and investigated with respect to several problem parameters. To complete the

characterization, release phenomenon [91, 92] is analyzed and hold voltages are calcu-

lated.

With the described accomplishments, an ability is gained to investigate the two-dimen-

sional problem of electrostatically actuated fixed-fixed beams. This ability is exploited in

Chapter 4 for analyzing and predicting mechanical aspects of switch designs.

1.2.3 Realization of an RF MEMS Switch

As explained in §1.1, switches are key building blocks of RF MEMS technology offer-

ing potential for high-performance and reconfigurable microwave and millimeter-wave

circuits. Relevant switches can be implemented in various circuit configurations, with dif-

ferent contact-types and actuation means [8]. For a brief review of those concepts reader

is referred to §4.1.

Since their first introduction in 1990 [93], RF MEMS switches have continually received

interest by researches from several universities, government labs and companies [10].

Today, highly reliable commercial state-of-the-art switches are being offered on the mar-

ket; RadantMEMS [94], MIT-LL [95], Raytheon [96] switches are some of the prominent

ones exhibiting low insertion loss (< 0.1 − 0.5 dB), good return loss (< −20 dB) and

high isolation (> 15− 20 dB) in 10-40 GHz band while demonstrating lifetimes of > 200

billion cycles, switching times of 5−20 µs and requiring actuation voltages of 30−90 V .

The last work of this thesis focuses on implementation of a shunt, capacitive-contact

RF MEMS switch for millimeter-wave applications. Relevant switch constitutes the first

RF MEMS switch to be explored by METU in Ka-band frequencies: Previous studies con-

ducted by METU RF MEMS Group include development of RF MEMS components and sys-

tems up to K-band, and this work aims to extend the latter band up to 40 GHz [97–100].
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1.3 Research Objectives and Organization of the Thesis

The primary aim of this dissertation is to develop microwave and millimeter-wave com-

ponents which are based on the in-house RF MEMS technology of Middle East Technical

University. Relevant specific objectives can be summarized as follows:

• Analysis, design and implementation of microwave lumped elements for a specific

surface micromachining based technology. An easy and low-cost fabrication pro-

cess is aimed along with monolithic integration and mass-production capabilities

by utilizing a single metallization layer.

• Performing the design, fabrication and measurements of a filter structure serving as

a test vehicle for the developed microwave lumped elements.

• Conducting a mechanical characterization of fixed-fixed type beams: Starting from

a fairly simple analytical problem to derive useful mechanical properties and ex-

tending the accumulated knowledge by devoting particular attention to electrostatic

actuator systems.

• Extending the capabilities of METU RF MEMS technology by realizing a successful

RF MEMS building block at millimeter-wave frequencies: Carrying out electromag-

netic and mechanical design, fabrication and measurements of a shunt, capacitive-

contact RF MEMS switch tailored for Ka-band.

This thesis consists of five chapters which include the accomplishments attained up to

date.

Following this introductory chapter, Chapter 2 explains development of microwave lumped

elements fulfilling the stated fabrication goals. Analysis and implementation of these el-

ements are oriented towards an example filter application serving as an effective test

vehicle. Proceeding in a proper flow; design, fabrication and measurements of the mono-

lithic filter structure are provided.
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Chapter 3 then continues with a mechanical characterization for fixed-fixed type beams.

This self-contained theoretical study primarily seeks to establish the link between elec-

trical and mechanical domains of one class of MEMS devices including, but not limited

to, the RF MEMS switch described in Chapter 4. Beginning with the rather simple me-

chanical problem for a uniform distributed load, deflection characteristics and effective

spring constant of fixed-fixed beams are derived analytically. That analysis is later fol-

lowed by numerical investigations of electrostatically actuated fixed-fixed type beams.

Semi-empirical pull-in voltage expressions are also derived by employing the results of

previous analyses.

Next, Chapter 4 details realization of a shunt, capacitive-contact RF MEMS switch for

Ka-band frequencies. Design stage of the switch is presented in both electromagnetic and

mechanical domains, the latter using the knowledge developed in Chapter 3. Fabrication

aspects and measurement results of the implemented switch are discussed.

Finally, Chapter 5 lists the accomplishments achieved within the frame of this thesis and

suggests future work demanding further research.
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CHAPTER 2

A MONOLITHIC S-BAND BANDPASS FILTER IMPLEMENTED

WITH SURFACE MICROMACHINED MICROWAVE LUMPED

ELEMENTS

This chapter deals with analysis, design and development of basic lumped microwave

elements tailored for a custom surface micromachining based fabrication technology and

describes implementation of a monolithic S-band bandpass filter structure which is used

as a test vehicle during this study. §2.1 establishes the design goals for the studied filter

application and focuses on the pre-design using ideal circuit elements. §2.2 provides an

overview of the selected fabrication technology and identifies the microwave lumped ele-

ments utilized in this work. §2.3 explains the design procedure of the developed lumped

components and their subsequent tuning for satisfying filter design requirements. Fol-

lowing the design stage, §2.4 provides fabrication details of the relevant filter structures.

Finally, §2.5 presents results of the microwave measurements and explores various factors

affecting obtained filter performance.

2.1 Filter Specifications and Pre-Design using Ideal Components

The filter considered in this work is selected to be of bandpass type having its passband

located in the S-band (2-4 GHz) and centered at 3 GHz. In-band return loss is specified

to be better than -20 dB. Moreover, stop-band is required to extend up to 20 GHz with an

associated suppression better than 20 dB at 6 GHz.

Design of the filter possessing the specifications given above is initiated with a pre-design
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Figure 2.1: Tubular bandpass filter topology adopted in this work (N=3).

Table 2.1: Optimized circuit element values for the ideal tubular bandpass filter with
N=3.

CIRCUIT ELEMENT OPTIMIZED VALUE

C1 0.60 pF
C2 0.54 pF
C3 2.37 pF
L1 3.48 nH
L2 4.65 nH

stage, which is carried out using ideal circuit components. For this purpose, a tubular

bandpass filter topology is adopted which enables a convenient realization means for

microstrip-based configurations [101, 102]. Figure 2.1 depicts utilized topology for the

order of N=3. In particular, shown network is a symmetric one consisting of series in-

ductors separated with capacitive π-networks and terminated with shunt capacitances.

Element values Ci and Li are determined using an optimization routine in Agilent ADS

2008 circuit simulator with the relevant filter specifications. Table 2.1 and Figure 2.2

provide obtained element values and associated magnitude S-parameter responses for

the ideal tubular bandpass filter with N=3.

2.2 Overview of the Fabrication Technology and Introduction to Developed

Microwave Lumped Elements

It is aimed to fabricate the filter structures using a cost-effective and simple fabrication

process that would enable seamless monolithic integration and permit mass production

with standard techniques. A surface micromachining process using a single metalization

layer readily accomplishes these latter goals: Only a single photolithographic mask will

be required for patterning relevant devices which will minimize fabrication costs as well

14



0 5 10 15 20
Frequency, (GHz)

�30

�25

�20

�15

�10

�50
|S

1
1
|, 

(d
B

)

|S11||S21|�40

�35

�30

�25

�20

�15

�10

�50
|S

2
1 |, (dB

)

Figure 2.2: Magnitude response of the optimized ideal tubular bandpass filter with N=3.

as the manual effort for batch processing. Moreover, a microstrip-based topology is opted

for the filters and the latter would call for an additional unprocessed ground layer metal-

ization at the bottom of the substrates, a step posing no apparent fabrication difficulty.

Having established the design and fabrication goals of the filter structures, let us now

turn the attention to specific implementation details. It was mentioned in the previous

section that tubular nature of the chosen filter topology would allow a convenient means

for a microstrip-based realization, which happens to be the intended configuration from

a fabrication point of view. Accordingly, the elements Li and Ci shown in Figure 2.1 will

be implemented with microstrip lumped components. Figure 2.3 gives a more practical

filter circuit configuration and suggests in addition physical implementation methods for

those components.

It is observed from Figure 2.3 that filter structure at hand can be realized physically using

three distinct microstrip-based lumped components, which are identified as follows:
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Figure 2.3: A practical filter circuit showing how individual circuit elements can be real-
ized physically.

• Shunt capacitors at the input/output ports of the network (C1) can be implemented

via microstrip patches, which essentially form a parallel-plate capacitor with the

microstrip ground plane.

• Series inductors L1 and L2 can be implemented with planar spiral inductors [103].

Notice that those practical inductors would also exhibit losses, which can be repre-

sented by series resistors R1 and R2.

• Capacitive π-networks can be realized with interdigital capacitors [104], which pro-

vide series and shunt capacitance elements in a compact layout at the same time.

Properties of the introduced microstrip lumped components together with their design

methods are explored in the next section.

2.3 Design of the Microwave Lumped Components

Microwave lumped components introduced in the previous section are designed using

full-wave electromagnetic analyses in conjunction with appropriate circuit models, in the

light of the ideal circuit and associated element values given in Figure 2.1 and Table

2.1. For this purpose, Ansoft HFSS TM (v9.2) Finite Element Analysis (FEA) software and

AWR Microwave Office TM (v2006) circuit simulator are utilized in collaboration. Design
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of the lumped components are attempted in two main stages with a systematic approach:

In the first stage, ideal element values are tried to be established for the corresponding

components without paying attention to (yet observing the trends for) the associated

parasitics. After establishing the required layouts satisfying those ideal element values,

individually designed components are cascaded in the circuit simulator and are tuned

with an iterative procedure in order to meet filter design requirements. In order to gain

speed during the relevant design stages, layout estimation methods are developed for

each lumped component through simple intuitive relations and educated guesses.

2.3.1 Design Stage I: Realization of Ideal Element Values

2.3.1.1 Interdigital Capacitor (IDC)

Figure 2.4 illustrates physical layout of the interdigital capacitor (IDC) together with its

associated circuit model. It is noted from Figure 2.4(a) that the IDC component is formed

by N interlaced fingers of length/width of Lf / Wf separated with a gap spacing of Gf.

The fingers stem from two main stubs having a length of Ls, which are in turn connected

to microstrip feed extensions of length/width Le / We. Utilized circuit model shown in

Figure 2.4(b) is a slightly modified version of the one reported in [105]. Relevant model

is a physical one and its parameters can be interpreted as follows:

• Cs is the effective inter-finger series capacitance,

• Ls is the parasitic effective inductance associated with finger structures, main stubs

and feed extensions,

• Rs represents the effective loss of the IDC,

• Csh stands for the halved shunt capacitance of the IDC formed with the ground

plane lying underneath,

• Z0 and θ account for electrical length of the IDC and are responsible for its dis-

tributed nature, which becomes prominent at higher operating frequencies. Specif-

ically, Z0 is chosen as the reference impedance of the system and it is conveniently

picked as 50 Ω.
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Figure 2.4: Illustration of the interdigital capacitor (IDC) layout and its associated circuit
model.

In particular, the lossless delay lines appearing at input/output ports of the IDC provide

an improved description of the IDC frequency characteristics obtained from EM simula-

tions and they distinguish the presented model from the ones reported in the literature.

Microwave performance and size considerations dictate certain geometrical and material

constraints for the IDC component. First of these constraints is imposed on Gf: In or-

der to maximize series capacitance per finger, Gf must be minimized. Such an approach

also implies reduced device length as Lf may be taken smaller for a given Cs. Another

constraint is on substrate parameters: For reasonable device dimensions, area of the IDC

must be lowered as much as possible and selection of a substrate with a low thickness

and high permittivity accomplishes such a goal for a given Csh value. A last restriction

is on finger dimensions: In order to prevent harmful effects of the transverse-resonance

and effective loss of the IDC on microwave performance of the filter, effective inductance

and resistance must be reduced. The latter can be achieved by employing shorter and

wider fingers. Furthermore, increasing the finger number N is also an effective solution
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for the latter purpose as doing so not only reduces those effective quantities by paralleling

individual contributions but also permits realization of a higher Cs.

According to the discussion above, it is preferred to pick Gf as the fabrication tolerance

of 5 µm. Moreover, fabrication-related preferences are also influenced and it is opted to

utilize a thin (250 µm) alumina substrate which features a high relative permittivity and

low dielectric loss (εr = 9.6, tanδ = 0.001). In addition, finger properties are adjusted

with the goals of a high series-resonance frequency and low ohmic losses kept in mind.

During the design of the IDC component, number of conducted EM simulation iterations

for attaining given values of Cs and Csh are are reduced significantly through simple esti-

mation means. Specifically, based on the extracted data of previous simulations, required

layout parameters for next iterations are guessed using the following relations:

• Cs is taken proportional to Lf and N according to analytical approximations given

in [67].

• Csh is assumed to be a linear combination of a parallel-plate component propor-

tional to the overall IDC area and a fringing component proportional to total device

perimeter with associated coefficients cpp and cfr.

The estimation procedure can be explained as follows: First, required Lf or N value is

determined for the desired Cs value through the proportionality relation. Then using the

extracted model data from two similar simulations, the coefficients cpp and cfr are solved

from the resulting linear equation set in Csh. Next, this equation is solved for remaining

layout parameters (typically for the main stub length Ls) in order to satisfy a desired Csh.

This method, although a crude one, indeed proved helpful during the EM simulation it-

erations.

Following a number of simulation iterations, it is arrived at the IDC configuration summa-

rized in Table 2.2. Associated S-parameters obtained from EM simulations and the circuit

model are provided in Figure 2.5.
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Table 2.2: Obtained layout and circuit model parameters for the IDC configuration in
design stage I (Hsub = 250 µm, εr = 9.6, tanδ = 0.001, tmetal = 1 µm, σmetal = 3×
107S/m).

LAYOUT DIMENSIONS CIRCUIT MODEL PARAMETERS

N = 21, Lf = 740 µm Cs = 2.38 pF
Wf = 55 µm, Gf = 5 µm Csh = 0.48 pF

Ls = 500 µm, We = 50 µm Ls = 0.21 nH, Rs = 0.36 Ω
Le = 100 µm θ = 1.95o (@ 3 GHz)
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Figure 2.5: Simulated and modeled S-parameters of the IDC configuration arrived at the
end of design stage I.

It is recognized from Figure 2.5 that transverse-resonance occurs at approximately 12.5

GHz. This resonance could not be avoided due to the fairly large value of Cs and con-

straints on device height. Parameter extraction is consequently performed between 1-10

GHz, where S-parameters are not affected appreciably.

2.3.1.2 Planar Spiral Inductor (PSI)

The layout and circuit model for the planar spiral inductor (PSI) is provided in Figure

2.6. It is noted from Figure 2.6(a) that PSI is constructed with 2.75 turns and a wire-

bond is required in order to transfer the signal outside the loop center due to single-layer

nature of the fabrication process. The PSI is wound with a strip of width W and track

separation of G leading to a total device length of Lx and height of Ly. Connections to

other components are established via microstrip feeds of length/width Le/We. The wire-

bond is modeled as a torus with a cross-section diameter of 25 µm, which is specified by

the fabrication requirements. Circuit model of the PSI is illustrated in Figure 2.6 and is
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Figure 2.6: Illustration of the planar spiral inductor (PSI) layout and its associated circuit
model.

observed to contain following model elements:

• Effective inductance Ls,

• Effective loss component Rs,

• Inter-turn parasitic capacitance Cp,

• Shunt capacitance component (halved) Csh,

• Delay line parameters Z0 and θ .

Similarly with the IDC case, delay lines are introduced in the conventional inductor

model [105] and the parameter Z0 is fixed to 50 Ω system reference impedance.
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Figure 2.7: Effective inductance and resistance versus mean PSI length emphasizing
corresponding linear correlations.

During the design of the PSI devices, a few parameters are fixed in order to reduce the

number of variables to play with. In particular, W and G are determined as 50 µm and

25 µm respectively, which yield reasonable device dimensions. Moreover, microstrip feed

width Wf is chosen to be equal to W in order to avoid any step discontinuities. Substrate

parameters, which are set for the IDC configuration, are also retained for PSI devices.

In order to reduce the number of EM simulation iterations during design of PSI devices,

an empirically determined relation is utilized for estimating inductance of a given layout.

Mentioned relation is based on observed linear dependence of the extracted inductance

value on mean path length of the PSI as depicted in Figure 2.7(a). Educated guesses then

employed by determining the slope and offset of the fitted line and solving for the device

dimension of interest that will yield a desired inductance value. Figure 2.7(b) shows a

similar correlation for the effective resistance component, which however is not estimated

between simulation runs.

PSI configurations arrived at the end of design stage I are listed in Table 2.3. Comparisons

between simulated and modeled S-parameters are provided in Figure 2.8 and Figure 2.9

respectively for first and second PSI devices.
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Figure 2.8: Simulated and modeled S-parameters of the first PSI configuration arrived at
the end of design stage I.
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Figure 2.9: Simulated and modeled S-parameters of the second PSI configuration arrived
at the end of design stage I.
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Table 2.3: Obtained layout and circuit model parameters for two PSI configurations in
design stage I (Hsub = 250 µm, εr = 9.6, tanδ = 0.001, tmetal = 1 µm, σmetal = 3×
107S/m).

PSI DEVICE LAYOUT DIMENSIONS CIRCUIT MODEL PARAMETERS

PSI #1

N = 2.75, Lx = 880 µm Ls = 3.52 nH
Ly = 440 µm, W = 50 µm Rs = 1.03; Ω
G = 25 µm, We = 50 µm Cp = 21.37 fF, Csh = 15.35 fF

Le = 100 µm θ = 6.07o (@ 3 GHz)

PSI #2

N = 2.75, Lx = 1030 µm Ls = 4.63 nH
Ly = 515 µm, W = 50 µm Rs = 1.31; Ω
G = 25 µm, We = 50 µm Cp = 33.73 fF, Csh = 4.17 fF

Le = 100 µm θ = 8.87o (@ 3 GHz)

It is noted from Figures 2.8-2.9 that designed PSI devices have visible parallel self-resonances

at about 15.0 GHz and 12.5 GHz respectively. Model optimizations are confined to 1-10

GHz in order to properly capture the device behavior near passband of the filter. It is

moreover observed that resonance frequency decreases with increased inductance, which

is actually an expected trend.

2.3.1.3 Microstrip Patches (MPs)

The final lumped component pending for design is the microstrip patch (MP) as illus-

trated in Figure 2.10(a). Here, the designer has the liberty to adjust the length Lp and

width Wp of the patch in order to obtain desired shunt capacitance value. As with the

other lumped components, microstrip feed lines of length Le and width We connect the

patch to the other device terminals. Proposed circuit model for the patch is provided in

Figure 2.10(b), which is essentially the familiar lumped transmission line model extended

with delay lines. Here, Csh represents the effective shunt capacitance, Ls and Rs stand for

halved parasitic inductance and resistance, and θ denotes halved electrical length of the

MP. Following the convention with the other lumped elements, Z0 is set to 50 Ω system

reference impedance.

For the MP component, the only design constraint is to obtain a reasonable device area,

which is actually already facilitated by the previously established substrate specifications.
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(a) Layout
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Z0, θ Z0, θ

Ls Rs LsRs

(b) Circuit model

Figure 2.10: Illustration of the microstrip patch (MP) layout and its associated circuit
model.

The MP lumped component is designed rather quickly compared to the other ones due to

its predictable characteristics. In order to estimate a given shunt capacitance in a single

trial, Csh is treated to be a linear combination of parallel-plate and fringing components,

which are in turn assumed proportional to total patch area and perimeter respectively.

Proceeding along the estimation method developed for the IDC component, desired Csh

value is then estimated accurately using previous extracted capacitance data.

Table 2.4 summarizes the arrived configuration for the MP component as well as the ex-

tracted circuit model parameters. Electromagnetically simulated and modeled S-parameters

are provided in Figure 2.11.

An inspection of Table 2.4 would reveal that Csh is not close to its intended value of

0.61 pF unlike the other lumped components. Moreover, one would realize from Figure
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Table 2.4: Obtained layout and circuit model parameters for the MP configuration in
design stage I (Hsub = 250 µm, εr = 9.6, tanδ = 0.001, tmetal = 1 µm, σmetal = 3×
107S/m).

LAYOUT DIMENSIONS CIRCUIT MODEL PARAMETERS

Wp = 1200 µm Csh = 0.56 pF
Lp = 1370 µm Ls = 0.32 pH
We = 50 µm Rs = 17.36 mΩ

Le = 100 µm θ = 5.03o (@ 3 GHz)
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Figure 2.11: Simulated and modeled S-parameters of the MP configuration arrived at the
end of design stage I.

2.11 that simulated and modeled S-parameters do not agree well in general. Actually, in

the previous studies, relevant MP configuration was modeled with an additional parasitic

series inductor attached to Csh and it was found that a negative value for that inductor

had improved modeling results dramatically while elevating the Csh value to precisely

0.61 pF. However, it is not opted to utilize that model due to the non-physical quantities

involved and accordingly it is adhered to the current one.

2.3.2 Design Stage II: Cascading of the Developed Elements and Tuning

Having realized and characterized each of the microstrip-based lumped components at

the end of the design stage I, next, these components are cascaded in circuit simulation

environment as shown in Figure 2.3. Figure 2.12 presents a comparison of S-parameters

between cascaded lumped components and the ideal filter topology established in §2.1.

It is noticed from the provided plots that cascaded model responses agree well with that

of the cascaded EM simulation blocks, an observation validating the modeling approach
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established in the previous section. When cascaded results are compared to the ideal

filter response, however, it is noticed that filter design specifications are not met with the

current components at hand: In particular; passband seems to narrow down and shift

somewhat to lower frequencies, and in-band return loss is observed to exceed -20 dB.

Previous observations are actually not surprising: The effect of component parasitics on

the filter response was not considered in design stage I, but it was only proved that it

is possible to realize the component values with the proposed configurations. Naturally,

next design stage encompasses the tuning of those components in order to meet filter de-

sign specifications. Following an iterative tuning stage that involves repeated component

value estimation and physical realization steps for each lumped component, it is arrived

at a final filter configuration that successfully meets the design specifications. Table 2.5

lists the determined layouts and extracted model parameters for each lumped component.

Figures 2.13 to 2.16 present electromagnetically simulated and modeled S-parameters for

those redesigned lumped components. S-parameters of the resulting cascaded filter struc-

ture is plotted in Figure 2.17.

An examination of Figure 2.17 shows that tuned filter successfully satisfies the design re-

quirements: In-band return loss is better than -20 dB and passband is found in 1.94-4.00

GHz frequency band according to -20 dB reflection criterion. Moreover, suppression at 6

GHz is 25 dB, which is larger than the specified 20 dB value. Furthermore, insertion loss

within the passband is determined as 0.5 dB, however this is regarded as an underesti-

mation due to skin-effect related surface approximations in EM simulations.
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Figure 2.12: Filter S-parameters obtained from cascade connection of EM simulation
results and circuit models together with the ideal pre-design characteristics.
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Figure 2.13: Simulated and modeled S-parameters of the IDC configuration arrived at
the end of design stage II.
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Figure 2.14: Simulated and modeled S-parameters of the first PSI configuration arrived
at the end of design stage II.
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Figure 2.15: Simulated and modeled S-parameters of the second PSI configuration ar-
rived at the end of design stage II.
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Figure 2.16: Simulated and modeled S-parameters of the MP configuration arrived at the
end of design stage II.
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Figure 2.17: Filter S-parameters obtained from cascade connection of EM simulation
results and circuit models at the end of design stage II.
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Table 2.5: Obtained layout and circuit model parameters for each of the lumped compo-
nents at the end of design stage II (Hsub = 250 µm, εr = 9.6, tanδ = 0.001, tmetal = 1 µm,
σmetal = 3× 107S/m).

DEVICE LAYOUT DIMENSIONS CIRCUIT MODEL PARAMETERS

IDC

N = 21, Lf = 630 µm Cs = 2.06 pF
Wf = 50 µm, Gf = 5 µm Csh = 0.30 pF

Ls = 315 µm, We = 50 µm Ls = 0.13 nH, Rs = 0.81 Ω
Le = 100 µm θ = 3.51o (@ 3 GHz)

PSI #1

N = 2.75, Lx = 560 µm Ls = 2.60 nH
Ly = 560 µm, W = 50 µm Rs = 1.40; Ω
G = 25 µm, We = 50 µm Cp = 15.92 fF, Csh = 7.4x10−4 fF

Le = 100 µm θ = 6.03o (@ 3 GHz)

PSI #2

N = 2.75, Lx = 675 µm Ls = 3.81 nH
Ly = 675 µm, W = 50 µm Rs = 1.61; Ω
G = 25 µm, We = 50 µm Cp = 26.64 fF, Csh = 3.18x10−3 fF

Le = 100 µm θ = 8.20o (@ 3 GHz)

MP

Wp = 900 µm Csh = 0.26 pF
Lp = 820 µm Ls = 0.41 pH
We = 50 µm Rs = 1.45x10−2 mΩ

Le = 100 µm θ = 4.09o (@ 3 GHz)

2.4 Fabrication of the Filter Structures

Having successfully completed the design of the filters using developed lumped elements,

next, these structures were fabricated at METU MEMS Center Facilities using the high-

conductivity base-metal recipe developed by the RF MEMS Group. Relevant process steps

were applied on a 250 µm thick alumina substrate (εr = 9.6, tanδ = 0.001) in the

following order1:

• 1.2 µm thick gold layer was sputtered on the top wafer surface (σ0 = 3x107 S/m).

• Devices were patterned on the gold layer through a photolithography step.

• Bottom of the wafer was covered with a 1.2 µm thick sputtered gold layer to form

the microstrip ground plane (σ0 = 3x107 S/m).

• Following the process steps, individual samples were diced.

Figure 2.4 shows a photograph of a successfully fabricated filter structure and indicates

the final filter dimensions. It is realized from the same figure that filter terminals are

1 Explained steps were performed by Dr. Kağan Topallı, Dr. Mehmet Ünlü and Orhan Akar.
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connected to Coplanar Waveguide (CPW) ports. Relevant CPW launches are required

for measurement purposes and are adjusted to the reference impedance of 50 Ω with

G/W/G=50/120/50 µm transverse dimensions.

Figure 2.18: Photograph of a successfully fabricated filter structure. Device dimensions
are indicated.

2.5 Microwave Measurements of Fabricated Filter Structures

Measurements of the fabricated filter structures were conducted utilizing Cascade Summit

9000 CPW Probe Station in conjunction with Agilent E8361A Vector Network Analyzer.

Prior to the measurements; wire-bonds of the PSI devices were completed using 25 µm-

diameter aluminum wires 2, filters were mounted on a clean copper surface and electrical

contact between CPW side grounds and microstrip ground plane was established through

conductive silver epoxy. After setting the reference planes at the Cascade ACP40-GSG-150

CPW Probe tips via an SOLT calibration performed in 1-20 GHz band using Cascade ISS

101-190 Calibration Kit, S-parameters of the filters were measured. Figure 2.19 provides

measured S-parameters of a sample filter die.

It is observed from Figure 2.19 that fabricated filter sample exhibits an acceptable perfor-

mance in the low frequency region: In particular, return loss in the passband is noted to be

2 Relevant wire-bonds were performed by Dr. Mehmet Ünlü
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Figure 2.19: Measured S-parameters of a sample filter structure utilizing epoxy as ground
interconnection means. Circuit model S-parameters are also provided for comparison
purposes.
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better than -20 dB and passband is defined as 2.62-3.75 GHz (@ RL=-20 dB), 2.39-3.90

GHz (@ RL= -15 dB) and 2.14-4.09 GHz (@ RL=-10 dB), which are somewhat narrower

than the intended 2-4 GHz band. Insertion loss in the passband is noted to be 1.5 dB at

2.67 GHz, which confirms the loss-underestimation issue claimed for the EM simulations.

Moreover, suppression at 6 GHz is observed to be better than 25 dB, satisfying the last

design criterion. These acceptable results, however, degrade significantly when frequency

is increased above 11 GHz: For the relevant frequency range |S21| increases dramatically,

allowing formation of a virtual passband. Furthermore, spurious responses are noticed,

the reasons for which are not currently evident but appears to indicate a systematic er-

ror with the DUT. Due to these latter observations, microwave performance of the filter

is rendered unacceptable in its stop-band. Nevertheless, proposed design methodology

seems to be verified in that utilized circuit model is in fair agreement with measurement

results, at least below 8 GHz.

The resonance problem mentioned above triggered a separate study subsequently. In

order to investigate the source of this interesting phenomenon, measurements were per-

formed on a test structure fabricated along with the filter samples. Relevant structure

is identical to the filter samples with the filter section replaced by a pure microstrip line

(thru) of width equal to We = 50 µm. After mounting the latter structure on a copper

base and establishing its CPW-to-microstrip ground connections via the same conductive

epoxy3, S-parameters shown in Figure 2.20 were obtained. In order to facilitate interpre-

tation of the results, previous magnitude filter response is overlaid on the relevant curves.

It is observed from Figure 2.20 that same resonance phenomenon also persists for the mi-

crostrip thru structure at the exact frequencies with the filter structure. This observation

therefore suggests grounding problems that can be traced to utilized conductive epoxy.

In order further to justify whether the resonance problem actually stems from insufficient

grounding due to improper epoxy microwave characteristics, simulation of the microstrip

thru structure is attempted in Ansoft HFSS TM (v10.0). Replacing thick metal lines with

two dimensional PECs, utilizing lumped excitation ports and employing a lumped bound-

ary at the CPW-to-microstrip ground interconnections; S-parameters of the relevant struc-

3 These manual steps were performed by İlker Comart.
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Figure 2.20: Measured S-parameters of the microstrip thru structure employing the same
epoxy based ground interconnection scheme. Measured filter response is also provided
for comparison purposes.
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Figure 2.21: Measured and simulated S-parameters of the microstrip thru structure. Sim-
ulated response is obtained by assigning a RLC boundary to ground interconnections
(L = 50 pH, R= 0.25 Ω)

ture is simulated. Figure 2.21 compares measured and simulated S-parameters of this

test structure. It is noted that for an imperfect boundary featuring a series connection of

L = 50 pH and R= 0.25 Ω results in nearly identical resonance behavior. In order to shed

more light into the matter, surface current density plots on the microstrip ground plane

are plotted in Figure 2.22 for three distinct resonant frequencies.

An investigation of Figure 2.22 shows that at the resonance frequencies, field gets trapped

under the CPW ground planes. This behavior is in fact well studied in the literature and it

is known to arise from Parallel-Plate Mode (PPMs) guided by the Finite Width Conductor
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(a) 9.4 GHz (b) 12.0 GHz

(c) 15.6 GHz

Figure 2.22: Surface current density plots of the simulated microstrip thru structure at
its bottom ground plate and at three resonance frequencies.

Backed Coplanar Waveguides (FW-CBCPWs) [106, 107]. Due to strong coupling of the

energy to those modes at the resonance frequencies, energy cannot reach the terminat-

ing CPW port which is accompanied with a significant decrease in |S21|. Moreover, for

reflective terminations, sent energy cannot return back due to this reason and a similar

decrease in |S11| is experienced, as in the measured filter in its stop-band.

Having identified the reason for the malfunction of the fabricated filters after 11 GHz, it

was decided to conduct another measurement using bonding strips instead of the con-

ductive epoxy. Figure 2.23 shows the obtained improved filter response, validating the

conclusion drawn earlier. It is observed that the latter filter sample exhibits an in-band

return loss better than -20 dB. Passband is found as 2.03-4.22 GHz (@ RL=-10 dB), 2.27-

4.07 GHz (@ RL=-15 dB) and 2.50-3.97 GHz (@ RL=-20 dB), which are once again a bit

narrower than the intended band. Insertion loss is determined to be 1.2 dB and suppres-

sion at 6 GHz is noted as 25 dB. In the light of these results, performance of this particular

filter sample is regarded as satisfactory.
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Figure 2.23: Measured S-parameters of a sample filter structure utilizing bonding strips
as ground interconnection means. Circuit model S-parameters are also provided for com-
parison purposes.
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2.6 Conclusion

In this chapter, microwave lumped components are analyzed, designed and developed for

a specific surface-micromachining based fabrication technology. Developed components

are successfully employed to realize a bandpass filter in a cost-effective and monolithic

manner. Designed filter structure is fabricated and characterized with microwave mea-

surements. Peculiar phenomena observed in the measurement results are investigated

further and filter samples are verified to work properly after solving grounding issues.
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CHAPTER 3

MECHANICAL CHARACTERIZATION OF FIXED-FIXED TYPE

BEAM STRUCTURES

3.1 Introduction

Fixed-fixed type beam structures are commonly encountered in MEMS applications such

as switches [32, 36, 37], micro-resonators [70–72], mass-flow sensors [73], accelerome-

ters [74] and material property extraction kits [75–77]. A proper mechanical character-

ization of such structures hence holds an essential role for a successful design of a wide

class of devices. The inherent link between performance parameters in one domain to the

mechanical ones further pronounces the latter argument.

This chapter focuses on mechanical aspects of fixed-fixed type beam structures and aims

to establish a proper understanding from a statics perspective. Section 3.2 presents a

rigorous treatment of fixed-fixed type beams subject to a uniform distributed transverse

load and provides derivations for the effective spring constant expressions while taking

axial effects into account. §3.3 then deals with the electrostatic actuation problem in a

distributed sense and §3.4 outlines development of a numerical procedure for analyzing

it. Next, §3.5 investigates the pull-in phenomenon for the electrostatic actuation problem

and concerns with the construction of a pull-in voltage expression. Finally, §3.6 covers

the problem of capacitive-contact electromechanics.
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3.2 Mechanical Analysis of Fixed-Fixed Beams Subject to a Uniform Dis-

tributed Transverse Load

Investigation of fixed-fixed type beams for a given transverse load is essentially equivalent

to determination of the deflection profile through governing beam differential equations

under certain boundary conditions. For the particular case of a uniform distributed trans-

verse load, it is possible to obtain analytical solutions for the deflection profile. This

attribute not only facilitates development of physical insight into the mechanical prob-

lem, but also provides a good starting point for subsequent mechanical analyses.

In the following subsections, deflection profile expressions will be constructed first for a

fixed-fixed type beam subject to a uniform distributed transverse load. During the deriva-

tions, axial effects will be taken into account and this latter property will render the anal-

yses somewhat involved. In particular, axial tension will be considered first and results

will be applied to a beam in compression through simple transformations. Having calcu-

lated the sought deflection characteristics, next, it will be concentrated on development

of an effective spring constant expression which will prove useful hereafter.

3.2.1 Derivation for Tensile Axial Loading

In order to obtain the deflection profile of the fixed-fixed type beam for a uniform dis-

tributed transverse load under axial tension, one might begin with the determination of

the relevant profile for a concentrated transverse load and then apply superposition. A

rigorous treatment of the described method is provided in the following articles.

3.2.1.1 Deflection Characteristics for a Concentrated Transverse Load

Configuration for the concentrated-load problem at hand is illustrated in Figure 3.1. Gov-

erning differential equation for the system can be expressed as [108]:

d4y(x)

dx4 − k2 d2y(x)

dx2
=

q(x)

E′ I
(3.1)

with

k2 ¬
P

E′I
(3.2)
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Figure 3.1: Illustration of the mechanical problem for an arbitrary concentrated trans-
verse load.

In Equation (3.1); E′ and I represent elastic modulus and moment of inertia of the beam,

whereas y(x) and q(x) stand for the deflection at a given position and applied force

density respectively. Owing to the concentrated nature of the force, q(x) can be written

as;

q(x) = Q δ(x − x0) (3.3)

where δ(x) is the Dirac delta function. Substitution of Equation (3.3) into Equation (3.1)

yields;
d4y(x)

dx4
− k2 d2y(x)

dx2
=

Q

E′ I
δ(x − x0) (3.4)

Solution of Equation (3.4) is detailed in Appendix A. Resulting expression for the deflec-

tion profile is given by;

y(x) = g(x − x0) u(x − x0) + A[cosh(kx)− 1] + B [sinh(kx)− kx] (3.5)

where

A=
Q

E′ I k3

sinh[k(L−x0)]−kL cosh[k(L−x0)]+k(L−x0) cosh(kL)+sinh(kx0)+kx0−sinh(kL)

kL sinh(kL)−2cosh(kL)+2

B =
Q

E′ I k3

cosh[k(L−x0)]−k(L−x0) sinh(kL)−cosh(kx0)+cosh(kL)−1

kL sinh(kL)−2cosh(kL)+2

(3.6)

and

g(x) =
Q

E′ Ik3
[sinh(kx)− kx] (3.7)

3.2.1.2 Deflection Characteristics for a General Distributed Transverse Load

Using previously derived concentrated-load formulation in conjunction with the principle

of superposition, deflection characteristics for the beam at hand due to an arbitrary dis-

tributed load can be readily analyzed [109]. Let us consider the general case in which the
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Figure 3.2: Illustration of the mechanical problem for an arbitrary distributed transverse
load.

span of loading is held variable and the loading is a given function of position as depicted

in Figure 3.2. If the distributed load is investigated at a position, say, x = x0 within an

infinitesimal span of length dx0, it is elementary to show that;

dQ = q(x0)dx0

Referring back to Equation (3.5), this concentrated force element results in an infinitesi-

mal displacement at the position x as:

dy(x) = [cosh(kx)− 1]A(dQ, x0) + [sinh(kx)− kx]B(dQ, x0)

+ g(dQ, x − x0) u(x − x0)

= [cosh(kx)− 1]A(q(x0), x0)dx0 + [sinh(kx)− kx]B(q(x0), x0)dx0

+ g(q(x0), x − x0) u(x − x0)dx0

Superposing deflection contributions of such infinitesimal force components calls for an

integration:

y(x) =

∫
dy = [cosh(kx)− 1]

L1+W∫

L1

A(q(x0), x0)dx0

+ [sinh(kx)− kx]

L1+W∫

L1

B(q(x0), x0)dx0

+

L1+W∫

L1

g(q(x0), x − x0) u(x − x0)dx0

(3.8)
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It will be helpful to analyze the last integral term of Equation (3.8) in more detail. Utiliz-

ing the substitution x ′0 = x − x0, relevant integration becomes,

I0 ¬

L1+W∫

L1

g(q(x0), x − x0) u(x − x0)dx0

=

x−L1∫

x−L1−W

g(q(x − x ′0), x ′0) u(x ′0)dx ′0

or more explicitly,

I0 =





0 if x ≤ L1,
x−L1∫

0

g(q(x − x ′0), x ′0)dx ′0 if L1 ≤ x ≤ L1 +W ,

x−L1∫

x−L1−W

g(q(x − x ′0), x ′0)dx ′0 if x ≥ L1 +W .

(3.9)

Hence, for an arbitrary distributed transverse load, deflection profile of the beam is ex-

pressed with,

y(x) =





yI(x) if x ≤ L1,

yI(x)+

x−L1∫

0

g(q(x − x ′0), x ′0)dx ′0 if L1 ≤ x ≤ L1 +W ,

yI(x)+

x−L1∫

x−L1−W

g(q(x − x ′0), x ′0)dx ′0 if x ≥ L1 +W .

(3.10)

where yI(x) is the deflection profile corresponding to x ≤ L1 region and is given by,

yI(x) = [cosh(kx)− 1]

L1+W∫

L1

A(q(x0), x0)dx0

+ [sinh(kx)− kx]

L1+W∫

L1

B(q(x0), x0)dx0

(3.11)

3.2.1.3 Deflection Characteristics for a Symmetrically and Uniformly Distributed

Transverse Load

As a particular and common case of interest, let us now analyze the deflection problem

when the applied load is distributed uniformly and symmetrically over a given span of
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Figure 3.3: Illustration of the problem configuration for a uniformly and symmetrically
distributed load.

the beam, as sketched in Figure 3.3. In terms of the mathematical notation adopted in

the previous section, these properties are translated as

L1 =
L−W

2

q(x0) = q0

(3.12)

Moreover, it is expected by means of symmetry that,

y
�

L

2
− x
�
= y
�

L

2
+ x
�

so that it would suffice to carry out the analysis in two regions only, namely for 0≤ x ≤ L−W

2

and L−W

2
≤ x ≤ L

2
. Let us first evaluate yI(x) corresponding to the former. Utilizing Equa-

tion Set (3.12) in Equation (3.11) yields,

yI(x) = [cosh(kx)− 1]

L+W

2∫

L−W

2

A(q0, x0)dx0 + [sinh(kx)− kx]

L+W

2∫

L−W

2

B(q0, x0)dx0 (3.13)

Substituting the expressions for A(q0, x0) and B(q0, x0) from Equation Set (A.13) into

Equation (3.13), integrating and performing subsequent simplification gives the following

result:

yI(x) =−
q0W x3

12E′I

�
sinh(kx)− kx

(kx)3/6

�

− q0 L2 x2

48E′I

�
α3 − 3α
��cosh(kx)− 1

(kx)2/2

�
χ (u,α)

(3.14)

with the auxiliary variables u, α and function χ (u,α) defined as;

u¬ k L

2
(3.15a)

α ¬ W

L
(3.15b)

χ (u,α) ¬ −6

¨
αu cosh(u)− sinh (αu)

u2 sinh(u)
�
α3 − 3α
�
«

(3.15c)
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respectively.

Upon an inspection of Equation (3.14), one might notice curious arrangement of the

rational factors being employed. Such organization of terms is favored as doing so enables

one to quickly obtain relevant solution for the special case of zero axial force: Rational

factors appearing in curly braces approach unity as k vanishes. In order to verify that

claim, hyperbolic functions might be replaced with their corresponding Maclaurin series

expansions to yield,

lim
k→0

sinh(kx)− kx

(kx)3

6

lim
k→0

cosh(kx)− 1
(kx)2

2

= lim
k→0

kx +
(kx)3

6
+O(k5)− kx

(kx)3

6

= lim
k→0

1+ (kx)2

2
+O(k4)− 1

(kx)2

2

= lim
k→0

1+O(k2) = lim
k→0

1+O(k2)

= 1 = 1

In a similar manner, it can be shown that

lim
u→0
χ (u,α) = 1

Hence for zero axial loading, relevant deflection profile expression reduces to

yI(x)

���
P=0
= −q0W x3

12E′I
− q0 L2 x2

48E′I

�
α3 − 3α
�

(3.16)

Having obtained deflection characteristics of the beam in the first region, let us now

proceed to the next one for which the solution will be denoted as yII(x). A glance at

Equations (3.10) and (3.12) reveals that,

yII(x) = yI(x)+

x− L−W

2∫

0

g(q0, x ′0)dx ′0 (3.17)

Substituting the expression for g(q0, x) defined in Equation (A.10) into Equation (3.17),

integrating and performing subsequent manipulation yields,

yII(x) = yI(x)+
q0

24E′I

�
x − L −W

2

�4

×





8
�

cosh
�

k
�

x − L−W

2

��
− 1
�
− 4k2
�

x − L−W

2

�2

k4

3

�
x − L−W

2

�4





(3.18)
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Maintaining the convention adopted in the previous region, Equation (3.18) is arranged

so that the rational factor in curly braces becomes unity in the limit k→ 0. Consequently,

relevant profile for zero axial loading can be easily determined as,

yII(x)

���
P=0
= yI(x)

���
P=0
+

q0

24E′I

�
x − L −W

2

�4

=
q0

48E′I

h
2
�

x − L−W

2

�4 − 4W x3− L2
�
α3 − 3α
�

x2
i (3.19)

In most MEMS applications, a common quantity of interest is the center deflection of the

beam, from which effective spring constants may be determined. Center deflection of the

beam for the analyzed loading configuration can be found simply by substituting x = L

2

in Equation (3.18). Desired result is obtained as,

ymax = yII

�
L

2

�

=
q0W L3

384E′I

�
α3 − 2α2 + 2
�
ζ (u,α)

(3.20)

with

ζ(u,α) =
2 cosh
�
(2α− 1) u

2

�
− 2αu sinh
�

u

2

�
+
�
α (2−α)u2 − 2

�
cosh
�

u

2

�

1
12

�
α4 − 2α3+ 2α
�

u4 cosh
�

u

2

� (3.21)

Again, particular arrangement of the terms gives rise to

lim
u→0
ζ (u,α) = 1 (3.22)

which is consistent with the adopted notation.

3.2.2 Derivation for Compressive Axial Loading

Deflection characteristics of a beam terminated with built-in ends and under the influence

of compressive axial loading may be found through a similar analysis conducted in the

previous section. Instead of that rigorous approach, however, one can readily obtain de-

sired characteristics through a basic transformation applied to corresponding deflection

expressions for tensile axial state as discussed in this section.

For a compressed beam, one immediately notices from Figures 3.1, 3.2 or 3.3 that P must

act into the built-in ends and that its sign must be negative according to the adopted
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convention. This observation actually implies that results determined for tensile axial

loading are applicable to the compressed axial loading case with a reversed sign for P.

Referring to Equation (3.2), this sign reversal implies,

k2
c =
(−P)

E′I

= −k2

or

kc = ±j k (3.23a)

uc = ±ju (3.23b)

where Equation (3.23b) follows from Equation (3.15a). Equation (3.23) indicates that

deflection profile of the compressed beam due to a given transverse load may be obtained

by merely replacing k and u with ±j k and ±ju respectively in the expressions associated

with the beam in tension.

In the subsequent article, deflection profile of a compressed beam will be treated partic-

ularly for a uniformly and symmetrically distributed transverse load.

3.2.2.1 Deflection Characteristics for a Symmetrically and Uniformly Distributed

Transverse Load

Substituting u and k with ±ju and ±j k respectively in Equations (3.14), (3.15c) and

(3.18), deflection profile expressions of the compressed beam for a symmetrically and

uniformly distributed transverse load can be determined as;

yI,c(x) =−
q0W x3

12E′I

�
kx − sin(kx)

(kx)3/6

�

− q0 L2 x2

48E′I

�
α3 − 3α
��1− cos(kx)

(kx)2/2

�
χc (u,α)

(3.24a)

χc (u,α) = 6

¨
αu cos(u)− sin (αu)

u2 sin(u)
�
α3 − 3α
�
«

(3.24b)

yII,c(x) = yI,c(x)+
q0

24E′I

�
x − L −W

2

�4

×





8
�

cos
�

k
�

x − L−W

2

��
− 1
�
+ 4k2
�

x − L−W

2

�2

k4

3

�
x − L−W

2

�4





(3.24c)
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Rational weighting factors appearing in Equation (3.24) are simplified through the use of

identities

sinh(±j x) = ±j sin(x)

cosh(±j x) = cos(x)

and by exploiting the even character of the original expressions.

Center deflection of the beam can be likewise found as,

ymax,c = yII,c

�
L

2

�

=
q0W L3

384E′I

�
α3 − 2α2 + 2
�
ζc (u,α)

(3.25)

where

ζc (u,α) = ζ
�
ju,α
�

=
2 cos
�
(2α− 1) u

2

�
+ 2αu sin
�

u

2

�
+
�
α (2−α)u2 − 2

�
cos
�

u

2

�

1
12

�
α4 − 2α3+ 2α
�

u4 cos
�

u

2

�
(3.26)

It is observed from Equation (3.26) that, unlike the beam in tension, there exists a critical

axial load for the compressed beam at which the center deflection grows indefinitely for

an arbitrary transverse force density q0. Indeed, it is elementary to show that mentioned

critical buckling occurs when

sin(ucr) = 0

or at

ucr = nπ (3.27)

Taking n= 1 for the first mode, Equation (3.27) becomes equivalent to

r
|Pcr|
E′ I

L

2
= π

∴ |Pcr| =
4π2E′I

L2

which is precisely the Euler-load or buckling-load expression for slender column members

having built-in ends.
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3.2.3 Calculation of the Parameter u

It is noted from the deflection profile expressions derived in the previous section that the

effect of axial tension or compression in the beam is incorporated into rather complicated

functions of the parameter u. Thus far, the value of this parameter has been assumed

to be known for a given axial force P. In reality, however, P must itself be related to

physical constraints of the problem. Specifically, P can be decomposed into two compo-

nents [110]:

• Tension introduced in the beam due to non-linear stretching during bending,

• Residual tension/compression associated with the beam material.

Mathematically, these statements can be expressed as,

P = E′
∆L

L
A+σA (3.28)

where ∆L, A and σ represent bending related elongation, cross-sectional area and uni-

axial residual stress of the beam respectively. With the aid of Equation (3.15a), Equation

(3.28) can be transformed into,

4E′I
AL2

u2 = E′
∆L

L
+σ (3.29)

Beam elongation due to bending (∆L) can be determined from the basic relation [111],

∆L =

x=L∫

x=0

(ds− dx)

where

ds = dx

È

1+

�
dy

dx

�2

Under small deflection assumption, the approximation
È

1+

�
dy

dx

�2
≈ 1+

1

2

�
dy

dx

�2

remains valid and hence ∆L can be expressed as

∆L ≈ 1

2

L∫

0

�
dy

dx

�2
dx (3.30)
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Substituting the deflection profile expression for a uniformly and symmetrically distributed

transverse load described by Equations (3.14) and (3.18) into Equation (3.30), one ob-

tains

∆L =

L−W

2∫

0

�
dyI(x)

dx

�2
dx +

1

2

L+W

2∫

L−W

2

�
dyII(x)

dx

�2
dx

=

�
q2

0 L7

E′2 I2

�
h (u,α)

(3.31)

where

h (u,α) =
1

384

3α2− 2α3

u4 − 1

256

α2

u4 sinh2(u)

− 1

256

3α2 cosh(u) sinh(u)− 2α cosh(u) sinh (αu) + 2α2 cosh (αu) sinh(u)

u5 sinh2(u)

− 1

256

3α sinh2(u) + sinh2 (αu)− 8α sinh (αu) sinh(u)

u6 sinh2(u)

+
1

256
sinh ((1−α)u) 5 sinh (αu)− 2αu cosh (αu)

u7 sinh(u)

(3.32)

In typical MEMS applications, thin-film materials are utilized as the beam material and

patterned beams can be regarded as plates or slender elements depending on the ratio of

beam thickness to width; the distinction being incorporated into the definition of effective

elastic modulus. For a beam element having a rectangular cross-section, effective elastic

modulus (E′) and moment of inertia (I) expressions are given as [76,110]:

E′ =





E if w < 5t

E

1−ν2 if w ≥ 5t

(3.33a)

I =
1

12
wt3 (3.33b)

where ν , E denote the Poisson’s ratio and Young’s modulus of the relevant material while

t, w indicate beam thickness and width respectively. Moreover, it would be proper to

relate uniaxial residual stress of the beam (σ) to biaxial residual stress of the thin-film

material as [76]:

σ = σ0(1− ν) (3.34)
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with σ0 standing for the biaxial residual stress. Inserting Equations (3.31), (3.33) and

(3.34) into Equation (3.29) then yields,

u2 =
432

E′2

�
L

t

�8�q0

w

�2
h (u,α) + 3

�
L

t

�2 σ0(1− ν)
E′

(3.35)

which is a characteristic equation for u in terms of geometrical/material parameters and

the distributed transverse load q0.

In order to shed more light into physical interpretation of the axial relation given in Equa-

tion (3.35), let us express distributed transverse load q0 in terms of maximum deflection

of the beam ymax. For that purpose, Equation (3.20) can be re-arranged to yield,

q0

w
=

32E′ t3

L4 ζ (u,α)
ymax (3.36a)

where,

ζ (u,α) ¬
�
α4 − 2α3+ 2α
�
ζ (u,α) (3.36b)

Employing Equation (3.36a) in Equation (3.35) and performing subsequent simplification

establishes the desired result;

u2 =

�
ymax

t

�2
Ψ(u,α) + 3

�
L

t

�2 σ0(1− ν)
E′

(3.37a)

with

Ψ(u,α) ¬ 442368× h (u,α)

ζ
2
(u,α)

(3.37b)

This second form of the axial relation presented in Equation (3.37a) happens to be a more

compact representation and it will prove more useful for spring constant determination

purposes due to its explicit dependence on ymax. Figure 3.4 provides a plot of the newly

introduced function Ψ(u,α) as a function of u for a range of α values.

Having formulated an alternative expression for the axial relation in terms of maximum

deflection of the beam, a physical interpretation may now follow. It is observed from

Figure 3.4 that Ψ(u,α) is a slowly-varying function of u and it can be regarded as an

α-dependent constant with 6.4≤ Ψ(u,α)≤ 8.0 as a first-order approximation. Using this

fact, it is immediately noticed from Equation (3.37a) that non-linear stretching effects

can be ignored as long as ymax remains sufficiently small compared to beam thickness.

51



10-3 10-2 10-1 100 101 102 103
u

6.4

6.6

6.8

7.0

7.2

7.4

7.6

7.8

8.0

H(u,I) J=0.2J=0.4J=0.6J=0.8J=1.0

Figure 3.4: Plot of Ψ(u,α) versus u with α as a parameter.

In other words, axial state of the beam becomes (tensile) residual stress-dominated pro-

vided that ymax/t is small, a condition valid for low q0 values. Conversely, the effect of

non-linear stretching becomes more pronounced as ymax becomes comparable to or larger

than t, for which the beam is said to be in large-deflection region1.

In general, Equation (3.35) or (3.37a), being transcendental in nature, must be solved

by numerical or graphical means in order to determine the exact value of u for a partic-

ular problem configuration. Closed-form expressions for u, however, can be derived for

certain asymptotic cases; but relevant analyses are postponed until next section wherein

closed-form spring constant expressions are sought for the beam configuration at hand.

Another useful property that might be deduced from Equation (3.37a) concerns with

the residual stress level below (above) which compressive (tensile) deflection profile ex-

pressions apply. Mentioned tensile/compressive state transition occurs when u begins to

1 This term should not be confused with the small-deflection assumption adopted throughout the deriva-
tions so far. The latter term pertains to the relation of ymax to t , whereas the former concerns with the
magnitude of dy/dx compared to unity. In fact, it can be shown that a beam in large-deflection region can
still satisfy small-deflection assumption.

52



take on purely imaginary values below a certain σ0 = σ0,t. It is apparent from tensile

contribution of the non-linear beam stretching that σ0,t is negative and its value can be

readily determined by setting u= 0 in Equation (3.37a):

0=
�

ymax

t

�2
Ψ(0,α) + 3

�
L

t

�2 σ0,t(1− ν)
E′

which can be manipulated to obtain

σ0,t = −
E′

3(1− ν)
�

ymax

L

�2
Ψ(0,α)

= − 16

105

E′

(1− ν)
�

ymax

L

�2 21α6− 96α5+ 133α4− 105α2+ 63

(α3 − 2α2+ 2)2

(3.38)

For σ0 < σ0,t, beam under consideration admits a compressive state and accordingly u

must be replaced with ju in the relevant expressions. Applying this transformation to

Equation (3.37a) results in

−u2 =

�
ymax

t

�2
Ψc (u,α) + 3

�
L

t

�2 σ0(1− ν)
E′

(3.39a)

with

Ψc (u,α) = Ψ
�
ju,α
�

(3.39b)

The transformed function Ψc (u,α) is plotted in Figure 3.5.

Caution must be exercised when using Equation (3.39) to calculate u in compressive axial

state: It was demonstrated earlier that deflection problem for compressive axial state is

singular and this singularity manifests itself in the unbounded growth of ymax and asso-

ciated break-down of the small deflection assumption. Recalling the fact that mentioned

singularity occurs at u = ucr = π, it follows that one must consider only those values of u

in [0,π) range for compressive axial state. Described singularity, however, is not evident

from Figure 3.5 due to cancellation of the relevant pole during the division of h
�
ju,α
�

by

ζ
2 �

ju,α
�
.

Table 3.1 summarizes the axial relations to utilize in order to quantify u and their as-

sociated validity ranges at tensile and compressive axial states of the beam.
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Figure 3.5: Plot of Ψc(u,α) versus u with α as a parameter.

Table 3.1: A summary of the axial relations characterizing u and their corresponding
validity ranges at different axial states of the beam.

AXIAL STATE RANGE OF σ0 EXPRESSION FOR u VALIDITY RANGE OF u

TENSILE σ0,t ≤ σ0 Equation (3.37) 0≤ u

COMPRESSIVE σ0 < σ0,t < 0 Equation (3.39) 0≤ u < π

3.2.4 Spring Constant Evaluation

In previous sections, a rigorous treatment has been carried out in order to characterize

the mechanical system of a fixed-fixed type beam subject to a constant distributed trans-

verse load in the presence of axial forces. Conducted analysis has been of distributed

nature and consequently sought quantities have been obtained as a function of position

along the beam length. From a modeling perspective, however, it is often convenient to

represent such a distributed mechanical system with a lumped spring as doing so greatly

simplifies any further investigation wherein the beam is involved. It is the aim of this sec-

tion to establish an adequate description of the equivalent lumped spring corresponding

to the distributed mechanical system at hand.
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According to Hooke’s law, elongation ∆x of an idealized spring is proportional to the

externally exerted force F according to the relation [112];

F = k∆x (3.40)

with the constant of proportionality equal to the spring constant (or stiffness) k, which is

actually a characteristic property for a given spring. In other words, the spring constant

effectively models a given spring provided that its force-displacement curve remains in

the linear-elastic region2. It is thus deduced from this discussion that in order to repre-

sent the distributed fixed-fixed beam system as a lumped spring, it would be sufficient to

formulate an effective spring constant expression.

Prior to any derivation attempt, a simple reasoning reveals that effective spring constant

of the fixed-fixed beam system is actually position-dependent since beam deflection varies

along the beam length. A convenient way to circumvent mentioned position-dependence

is to define the effective spring constant at the beam center, i.e. effective displacement is

set to ymax. Using this convention and the elementary relation

F =

L+W

2∫

L−W

2

q(x0)dx0 =

L+W

2∫

L−W

2

q0dx0 = q0W

an expression for the effective spring constant kq can be developed through manipulation

of Equation (3.20):

kq =
(q0W )

ymax

=
32E′αw
�

L

t

�3
ζ (u,α)

(3.41)

As a notational preference, it is opted to eliminate beam width dependence by considering

spring constant per unit width in the remainder of the text and consequently Equation

(3.41) is re-written as,
kq

w
=

32E′α
�

L

t

�3
ζ (u,α)

(3.42)

2 This concept is analogous to modulus of elasticity (E′) characterizing a specific material within the
linear portion of the associated stress-strain curve [111].
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It is realized from Equation (3.42) that per unit width stiffness of the fixed-fixed beam

system is a function of u, which in turn depends on ymax according to Equation (3.37a).

Thus, force-displacement relation of the equivalent lumped spring turns out to be non-

linear contrary to the assumed linear trend. Although at this point it would make sense

to extend the definition of stiffness to an incremental one by considering ∂ F

∂ ymax
, such a

procedure will not be attempted as it is desired to retain a simple expression for force

calculation purposes. Accordingly, it will be adhered to the current spring constant defi-

nition and the implicit non-linearity will be incorporated into the word “effective”.

Another attribute of the effective spring constant kq can be deduced from the above dis-

cussion: In order to determine kq for a given maximum deflection ymax, it is required to

calculate the corresponding u from Equation (3.37a) for which an explicit solution cannot

be formulated in general. Hence, it follows that a general closed-form expression cannot

be developed for kq in terms of ymax. It is possible, however, to accomplish the latter for

extreme values of the parameter u, which will lead to small-argument and large-argument

forms of the effective spring constant kq as next subsections demonstrate.

3.2.4.1 Small-argument Form of kq

For small values of the parameter u, a closed-form expression for the effective spring

constant kq can be derived by utilizing truncated Maclaurin series expansions of the rel-

evant functions containing u. Following the usual convention, tensile axial state will be

considered first and results will be extended for the compressive axial state via the trans-

formation u→ j u.

Tensile Axial State Case

Let us consider the axial relation Equation (3.37a) first. For small values of u, it can be

shown that the function Ψ(u,α) appearing in the relevant expression can be represented

as,

Ψ(u,α) = p0 (α) +O
�

u2
�

(3.43a)
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where

p0(α) =
16

35

21α6− 96α5+ 133α4− 105α2+ 63

(α3 − 2α2+ 2)2
(3.43b)

Truncation of Equation (3.43a) after its first term is permissible for 0 ≤ u ≤ 4 and

0.25≤ α ≤ 1.0 with an accuracy better than 2%. Substituting this approximate form

of Ψ(u,α) in Equation (3.37a) results in

u2 ≈
�

ymax

t

�2
p0(α) + 3

�
L

t

�2 σ0(1− ν)
E′

(3.44)

A small-argument approximation can be also applied to the function α/ζ(u,α) appearing

in Equation (3.42) by using the associated Maclaurin series expansion,

α

ζ(u,α)
= q0(α) + q2(α)u

2 +O(u4) (3.45a)

where the coefficients qi(α) are given by

q0(α) =
1

α3 − 2α2 + 2

q2(α) = −
1

30

α5 − 3α4 + 5α2− 6

(α3 − 2α2+ 2)2

(3.45b)

Equation (3.45a) can be accurately represented as a second order polynomial of u with

an error less than 1.2% for 0≤ u≤ 4 and 0≤ α≤ 1. Employing this latter approximation

in Equation (3.42) yields,

kq

w
≈ 32E′
�

L

t

�3
�

q0(α)+ q2(α)u
2
�

(3.46)

After plugging Equation (3.44) into Equation (3.46) and performing subsequent simplifi-

cation, one then obtains,

kq

w
≈ 32E′ βb(α)�

L

t

�3 +
4096

175

E′ βnl(α)�
L

t

�3
�

ymax

t

�2
+

48

5

βσ(α)�
L

t

� σ0(1− ν)

=
kq,b

w
+

kq,nl

w
+

kq,σ

w

(3.47a)

where

βb(α) = q0(α)

βnl(α) =
175

128
p0(α)q2(α)

βσ(α) = 10 q2(α)

(3.47b)
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It is noted from Equation (3.47a) that obtained small-argument spring constant expres-

sion can be decomposed into three components: Stiffness associated with bending (kq,b =

kq|u=0), non-linear membrane stretching (kq,nl) and the residual stress of the beam (kq,σ).

Moreover, it is realized that each stiffness term is scaled with seemingly distinct span-

dependent functions βi(α) whose definitions are provided in Equation (3.47b). A simple

analysis reveals that these latter functions are nearly indistinguishable in 0 ≤ α ≤ 1

interval as Figure 3.6 illustrates. Thus, one can utilize the fairly simpler βb(α) expres-

sion to accurately represent βnl(α) and βσ(α) with associated errors less than 1% for

0.13≤ α ≤ 1 and 0.7% for 0 ≤ α ≤ 1 respectively. Using this information, kq can be

re-arranged as,

0.0 0.2 0.4 0.6 0.8 1.0O0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pi(Q)

R
b (O)R
nl(O)RS(O)

Figure 3.6: Plot of βi(α) for 0≤ α ≤ 1.

kq

w
≈



32E′
�

L

t

�3 +
4096

175

E′
�

L

t

�3
�

ymax

t

�2
+

48

5

σ0(1− ν)�
L

t

�


βb(α) (3.48)

Equation (3.48) is identical to the corresponding expression provided in [80] for α = 1

with the exception of the scalar constant included in kq,nl (12π2/5 versus 4096/175, with
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1.2% error). In particular, noted difference is due to the deflection profile estimation of

y(x)≈ ymax sin
�π

L
x

�

adopted by the authors during the evaluation of beam elongation and this assumption is

equivalent to

Ψ(u,α)≈ 3π2

4
(3.49)

which actually happens to be a good approximation for small values of u3.

Compressive Axial State Case

Small-argument form of the spring constant for the beam in compression may be found

simply by replacing the parameter u with ju in the Maclaurin series expansions formu-

lated previously for the beam in tension. An application of this transformation to Equa-

tions (3.44) and (3.46) yields the following equation set:

−u2 ≈
�

ymax

t

�2
p0(α) + 3

�
L

t

�2 σ0(1− ν)
E′

(3.50a)

kq,c

w
≈ 32E′
�

L

t

�3
�

q0(α)− q2(α)u
2
�

(3.50b)

Upon an inspection of Equation Set (3.50), one recognizes that

kq,c = kq (3.51)

that is, spring constant expression for the compressed beam is identical to that of a taut

one for small u argument. Notice that the distinction between tensile and compressive

axial states is inherent in the relation of σ0 with σt : In particular, the condition σ0 < σ0,t

is implied for the latter axial state.

It must be stressed once again that deflection results obtained earlier for the compres-

sive axial state are valid only for 0 ≤ u < π. Although this information might initially

suggest that effective spring constant for the beam in compression entirely falls in the

small-argument region, this is not the actual case: Accuracy of the Maclaurin series ex-

pansion provided in Equation (3.50b) rapidly degrades as u → π. In order to maintain

3 It can be shown that Ψ(u,α) ≈ p0(α) ≈ 7.30 with an error better than 2.5% for 0 ≤ u ≤ 4 and
0.25≤ α≤ 1. For the same parameter range, the error involved in Equation (3.49) is 4%.
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a reasonable accuracy, u can be restricted to [0,2.5] interval and doing so yields a maxi-

mum error of 1.4% for Equation (3.50b) in 0 ≤ α ≤ 1 range. It is moreover informative

to point out that accuracy of the expansion in Equation (3.50a) is better than 1.8% for

0 ≤ u ≤ π and 0.25 ≤ α ≤ 1, a result consistent with the fact that Ψc(u,α) has no poles

at u= π.

3.2.4.2 Large-argument Form of kq

A closed-form expression for the effective spring constant kq can be also developed for

large values of the parameter u. The procedure is to utilize asymptotic expansions of the

relevant functions containing u. As opposed to the small-argument case, it will not be

attempted to derive a large-argument spring constant for the compressive axial state due

to the following reasons:

• Range of u is limited to [0,π) and accordingly a considerable number of terms

would be required in the associated asymptotic series to attain a desired accuracy,

rendering the chances of obtaining a closed-form expression very low.

• Although it is possible to circumvent the previous issue by employing Taylor series

expansions around u= π, validity of the obtained expressions would be in question

since beam slope would become comparable to unity in the large-argument region,

violating the small-deflection assumption.

An application of the mentioned asymptotic expansion approach to the beam in tension

is detailed in the following subsection.

Tensile Axial State Case

Asymptotic expansions of the functions Ψ(u,α) and α

ζ(u,α)
appearing in Equations (3.37a)

and (3.42) can be shown to be:

Ψ(u,α) = pa,0(α) +
pa,1(α)

u
+O
�

u−2
�

(3.52a)

α

ζ(u,α)
= qa,0(α) u2 + qa,1(α) u+ qa,2(α) +O

�
u−1
�

(3.52b)
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where

pa,0(α) =
8(3− 2α)

(2−α)2 (3.53a)

pa,1(α) =
4(6− 7α)

(2−α)3 (3.53b)

qa,0(α) =
1

12(2−α) (3.53c)

qa,1(α) =
1

6(2−α)2 (3.53d)

qa,2(α) =
(2+α)

6(2−α)3α (3.53e)

Upon truncation of the higher order terms, Equations (3.52a) and (3.52b) remain accu-

rate within 2% and 1.2% for u ≥ 15 and 0.15 ≤ α ≤ 1 respectively. Substitution of these

asymptotic forms into Equations (3.37a) and (3.42) yields,

u2 ≈
�

ymax

t

�2
pa,0(α)

�
1+

pa,1(α)

pa,0(α)

1

u

�
+ 3

�
L

t

�2 σ0(1− ν)
E′

(3.54a)

kq

w
≈ 32E′
�

L

t

�3
�

qa,0(α) u2 + qa,1(α) u+ qa,2(α)
�

(3.54b)

leading to the following spring constant expression:

kq

w
≈ 32E′
�

L

t

�3
(2+α)

6(2−α)3α
�

1+
(2−α)α

2+α
u

�

+
64

3

E′
�

L

t

�3
�

ymax

t

�2 (3− 2α)

(2−α)3
�

1+
pa,1(α)

pa,0(α)

1

u

�

+
8�
L

t

� σ0(1− ν)
1

(2−α)

=
kq,b

w
+

kq,nl

w
+

kq,σ

w

(3.55)

Equation (3.55) shows that obtained large-argument spring constant expression com-

prises three components, similar to the small-argument case. Unlike the previous for-

mulation, however, kq,b and kq,nl are noted to depend on u; a fact which emphasizes

non-linear dependence of the spring constant on membrane stiffness mechanisms. In

addition, a simple closed-form solution of u for a given ymax/t and σ0 is not available ac-

cording to Equation (3.54a), so one has to resort to numerical techniques for calculation

of kq.
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An approximate closed-form solution for the large-argument spring constant may yet be

found at the expense of somewhat reduced accuracy at the lower u bound. In order to

determine this solution, one first considers the particular term,

pa,1(α)

pa,0(α)

1

u
=

(6− 7α)

2(2−α)(3− 2α)

1

u

appearing in Equations (3.54) and (3.55). It is easy to prove that

����
pa,1(α)

pa,0(α)

1

u

���� ≤
1

2u

Moreover, validity range of the current derivation requires

����
pa,1(α)

pa,0(α)

1

u

���� ≤
1

2u
≤ 1

30

Hence, one might utilize the additional approximation 4

1+
pa,1(α)

pa,0(α)

1

u
≈ 1

to promote further simplification of the derived formulation as:

u2 ≈ 8
�

ymax

t

�2 (3− 2α)

(2− a)2
+ 3

�
L

t

�2 σ0(1− ν)
E′

(3.56a)

kq

w
≈ 32E′
�

L

t

�3
(2+α)

6(2−α)3α
�

1+
(2−α)α

2+α
u

�

+
64

3

E′
�

L

t

�3
�

ymax

t

�2 (3− 2α)

(2−α)3

+
8�
L

t

� σ0(1− ν)
1

(2−α)

(3.56b)

It can be stated from Equation (3.56) that resulting large-argument spring constant ex-

pression is indeed of closed-form. It is also noted that kq,nl ceases to depend on u whereas

kq,b still possesses a u-dependence. The latter observation reminds once again the non-

linear spring constant contributions of membrane stiffness components.

4 Notice that indicated approximation is actually equivalent to truncating Equation (3.52a) to its first
term. Provided that ymax/t is not too high, accuracy of the resulting spring constant expression will not
degrade significantly compared to its initial form.
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In the literature, effective spring constant of a fixed-fixed type beam with full load-span

is commonly reported as [36,78,113,114]:

bkq

w
=

32E′
�

L

t

�3 +
8
�

L

t

� σ0(1− ν) (3.57)

which resembles Equation (3.56b) for α = 1, but apparently lacks a non-linear stretching

term. The absence of a non-linear stretching term in the effective spring constant bkq is

compensated in [80] by incorporating the latter axial force component calculated from

an assumed sinusoidal deflection profile (see §3.2.4.1) and it is arrived at

bkq

w
≈ 32E′
�

L

t

�3 +
2π2E′
�

L

t

�3
�

ymax

t

�2
+

8�
L

t

� σ0(1− ν) (3.58)

which is remarked to be a large-argument spring constant expression. For comparison

purposes, Equation (3.56b) is re-written for α = 1 below:

kq

w
≈ 16E′
�

L

t

�3
�

1+
u

3

�
+

64

3

E′
�

L

t

�3
�

ymax

t

�2
+

8�
L

t

� σ0(1− ν) (3.59)

Upon an examination of Equations (3.58) and (3.59), it is noted that two large-argument

spring constant expressions are similar in form. In particular, kq,σ components are iden-

tical and kq,nl terms differ only in the corresponding scalar multiplier (2π2 versus 64/3,

with -7.5% error). The difference between kq,b terms, however, can be readily spotted:

Bending-related stiffness component of Equation (3.59) appears to be raised by a factor

of 1+u/3
2
≥ 3 compared to the corresponding term in Equation (3.58) via the contribution

of membrane stiffness mechanisms. In the light of these observations, it can be stated

that Equation (3.58) underestimates the large-argument effective spring constant due to

failure of the assumed deflection profile to accurately represent the actual one.

3.2.4.3 Accuracy Assessment of Small and Large-Argument Forms of kq

During the derivations for small and large-argument forms of kq, accuracies for the uti-

lized series expansions were indicated individually; but combined accuracies of the ob-

tained forms were not investigated. To ensure that provided extreme-argument approxi-

mations indeed satisfy intended accuracy levels, numerical error analyses are carried out

over corresponding valid parameter ranges. A brief description of the adopted error anal-

ysis method and obtained numerical results are provided in this section.
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Accuracy of the extreme-argument kq forms are assessed by considering the fractional

error between exact and approximated kq values, which is defined as:

Error =
kq,app − kq,exact

kq,exact
(3.60)

In order to facilitate the on-going analysis, dimension of parameter domain is reduced to

a minimum by introduction of the following normalized quantities:

Kq ¬
kq

�
L

t

�3

wE′
(3.61a)

Yt ¬
ymax

t
(3.61b)

Σ0 ¬

�
L

t

�2 σ0(1− ν)
E′

(3.61c)

Using the dimensionless quantities provided in Equation (3.61), axial relation (Equation

(3.37a)) and exact kq expression (Equation (3.42)) are transformed to

Kq =
32α

ζ(u,α)
(3.62a)

u2 = Yt
2Ψ(u,α) + 3Σ0 (3.62b)

A similar normalization is also applied to extreme argument spring constant forms and

relevant expressions are re-written as,

Kq,small =

�
32+

4096

175
Yt

2 +
48

5
Σ0

�
q0(α) (3.63a)

u2 ≈ Yt
2p0(α) + 3Σ0 (3.63b)

Kq,large =
16

3

(2+α)

(2−α)3α
�

1+
(2−α)α

2+α
u

�
+

64

3

(3− 2α)

(2−α)3 Yt
2+

8

(2−α) Σ0 (3.64a)

u2 ≈ 8
(3− 2α)

(2− a)2
Yt

2 + 3Σ0 (3.64b)

It is noted from Equations (3.62)-(3.64) that only three parameters needs to be specified

for numerical evaluation of the normalized spring constants: α and two parameters out

of u, Yt and Σ0 (as the latter three are not independent). Keeping these information in

mind, error analysis may then be outlined as follows:
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i. A u value is picked.

ii. An α value is selected.

iii. Using the specified (u,α) pair, Kq,exact is calculated.

iv. Yt is swept in a predetermined range and corresponding Σ0 is determined using

Equation (3.62b) for the specified (u,α) pair.

v. Employing (Yt ,Σ0) pairs, Kq,small and Kq,large are computed.

vi. Fractional error is evaluated between Kq,app and Kq,exact.

vii. Maximum absolute fractional error is found and stored for the particular α.

viii. (ii-vii) is repeated for a range of α values.

ix. (i-viii) is repeated for a range of u values.

Obtained numerical results from a basic implementation of the described error analysis

are presented in Figure 3.7 and Figure 3.8 for small and large-argument forms of kq re-

spectively.

It is observed from Figure 3.7 that derived small-argument forms of spring constant in-

deed satisfy the desired accuracy level within previously prescribed parameter ranges: At

tensile axial state, accuracy of the proposed formulation is better than 2% for 0 ≤ u ≤ 4,

0.25 ≤ α ≤ 1 and Yt ≤ 1.5; whereas at compressive axial state, identical expression pro-

vides an error less than 1.8% for 0 ≤ u ≤ 2.5, 0.25 ≤ α ≤ 1 and Yt ≤ 1.5. It is moreover

noted for both axial states that, error rapidly increases as α tends to values lower than

0.25, a result which is related to associated degradation of Ψ(u,α) approximation. More-

over, although not shown in these plots, accuracy of the small-argument forms grows

worse when Yt is increased beyond 1.5: Since the function Ψ(u,α) is scaled by Yt
2 in

the axial relation, an increase in Yt
2 will render the error in the relevant approximation

more prominent, especially for low residual stress levels. The latter behavior explains the

additional range specification on Yt.

An inspection of Figure 3.8 shows that accuracy of the derived large-argument form of
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Figure 3.7: Numerical error analysis results for small-argument form of kq (0.25≤ α≤ 1,
0≤ Yt ≤ 1.5).
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Figure 3.8: Numerical error analysis results for large-argument form of kq (0.15≤ α≤ 1,
0≤ Yt ≤ 5).

spring constant deviates slightly from the intended one within previously set parame-

ter limits: For u ≥ 15, 0.15 ≤ α ≤ 1 and Yt ≤ 5, maximum absolute error is found as

3.2%, which is somewhat higher compared to the aimed 2% value. Nevertheless, targeted

2% accuracy can still be achieved by shifting the lower u bound from 15 to 18. Recall

that mentioned accuracy deterioration at the lower u limit was previously anticipated in

§3.2.4.2 when an additional approximation was made in order to arrive at a closed-form

expression. Similar with the small-argument case, increasing Yt above 5 causes a signifi-

cant rise of the fractional error and due to this trend, the additional constraint of Yt ≤ 5

is imposed for the proposed large-argument form.

Before leaving the subject, it would be informative to investigate the accuracy of the

effective spring constant expressions reported in the literature. Two of such expressions

were noted earlier in §3.2.4.1 and §3.2.4.2, which were recognized to be small and large-

argument forms respectively. Results obtained from an application of the numerical error

analysis procedure to those forms are depicted in Figure 3.9. It is observed from Figure

3.9(a) that reported small-argument form displays a maximum error of 2.0% and 5.0%

67



at tensile and compressive axial states respectively within previously established param-

eter ranges for α = 1. Referring back to Figure 3.7, corresponding maximum errors for

the derived small-argument forms are read as 1.0% and 1.4% at tensile and compressive

axial states respectively, apparently showing an accuracy improvement over the reported

ones. A more dramatic improvement is noticed upon a comparison of Figure 3.9(b) with

Figure 3.8: Over the parameter space of u ≥ 18, Yt ≤ 5, α = 1; reported large-argument

form yields an error of about 10% whereas derived one exhibits a maximum error of 2%.

It is moreover found out that for the reported large-argument form to attain an accuracy

of 3% (2%), lower limit of u must be shifted to 60 (90); an attribute demonstrating once

again superior accuracy of the derived large-argument spring constant form.

In addition to analyzed small and large-argument spring constant forms reported in the

literature, it would be helpful to examine one more. It was pointed out earlier that both

reported extreme-argument forms utilize the approximation Ψ(u,α) ≈ 3π2

4
in order to

reduce analytical complexity of the problem. This approximation might be employed in

a general context to explicitly calculate u from Equation (3.62b) and hence to arrive at

a general closed-form solution for the effective spring constant, as proposed in [80]. It

is known, however, from §3.2.3 that the function Ψ(u,α) exhibits weak dependencies on

u and α so that some error is anticipated beforehand for such an approach. In order to

quantify this error, a similar numerical error analysis is applied to the latter approximated

form. Obtained results are presented in Figure 3.10.

Figure 3.10 shows that the assumption Ψ(u,α) ≈ 3π2

4
indeed causes the approximate

closed-form effective spring constant to deviate from the exact one; but associated error

remains below reasonable bounds over a wide parameter range. In particular, the error

grows appreciably for high Yt values, especially where Σ0 is relatively low. Such a trend

can be explained by the scaling effect of Yt on Ψ(u,α) and reduced masking of the rele-

vant error with lower Σ0. Upon a comparison of Figures 3.10(a)-3.10(b), one moreover

finds that error increases with decreasing α; a behavior which can be attributed to in-

creased sensitivity of Ψ(u,α) for lower α values. In the light of these observations, it is

realized that accuracy of the approximate closed-form solution is worst for the parameter

zone in which α, Σ0 are low and Yt is high: In such a zone, relevant error might reach up

to 10% as evidenced from Figure 3.10(b).
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Figure 3.11: Electrostatic actuation problem illustrated.

A collective summary of the derived effective spring constant expressions, their valid pa-

rameter ranges and associated error analysis results is provided in Table 3.2 for reference

purposes.

3.3 Distributed Mechanical Problem for Electrostatic Actuation

Previous section demonstrated an example of how mechanical analyses can be carried

out for a relatively simple type of transverse load, and established useful analytical re-

sults such as deflection profile and spring constant expressions. Another wide class of

transverse loading occurs for electrostatic actuation systems, which is treated next within

the scope of this work.

3.3.1 Derivation of the Governing Integro-Differential Equation

Figure 3.11 illustrates the configuration for the electrostatic actuation problem of fixed-

fixed type beams. The system is actuated by applying a DC potential across the beam

and an electrode located underneath, which are separated with an air-gap spacing of g0.

The bottom electrode spans α fraction of the beam length and it is positioned symmetri-

cally with respect to the beam. Moreover, a dielectric layer of thickness tdi and relative

permittivity of εdi covers the top of the bottom electrode for reasons which will become

apparent in subsequent sections.

To analyze the presented system, one begins with the beam equation stated in §3.2.1.1
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Table 3.2: A summary of the derived effective spring constant expressions, valid
parameter ranges and associated error analysis results.

FORM OF kq DESCRIPTION EXPRESSIONS

EXACT

(TENSILE)

EXPRESSION FOR Kq Kq =
32α

ζ (u,α)
EXPRESSION FOR u u2 = Yt

2 Ψ(u,α) + 3Σ0

VALIDITY RANGE u ≥ 0, 0< α ≤ 1, Σ0 ≥Σ0,t

EXACT

(COMPRESSIVE)

EXPRESSION FOR Kq Kq =
32α

ζc (u,α)
EXPRESSION FOR u −u2 = Yt

2 Ψc (u,α) + 3Σ0

VALIDITY RANGE 0≤ u < π, 0< α ≤ 1, Σ0 <Σ0,t

SMALL

ARGUMENT

(TENSILE)

EXPRESSION FOR Kq Kq ≈
h

32+ 4096
175

Yt
2 + 48

5
Σ0

i
q0(α)

EXPRESSION FOR u u2 ≈ Yt
2 p0(α) + 3Σ0

VALIDITY RANGE 0≤ u≤ 4, 0.25 ≤ α ≤ 1, Yt ≤ 1.5, Σ0 ≥ Σ0,t

ACCURACY ≤ 2.0%

SMALL

ARGUMENT

(COMPRESSIVE)

EXPRESSION FOR Kq Kq ≈
h

32+ 4096
175

Yt
2 + 48

5
Σ0

i
q0(α)

EXPRESSION FOR u −u2 ≈ Yt
2 p0(α) + 3Σ0

VALIDITY RANGE 0≤ u≤ 2.5, 0.25≤ α ≤ 1, Yt ≤ 1.5, Σ0 <Σ0,t

ACCURACY ≤ 1.8%

LARGE

ARGUMENT

(TENSILE)

EXPRESSION FOR Kq
Kq ≈ 16

3
(2+α)
(2−α)3α

h
1+ (2−α)α

2+α
u
i

+ 64
3
(3−2α)
(2−α)3 Yt

2 + 8
(2−α)Σ0

EXPRESSION FOR u u2 ≈ 8 (3−2α)
(2−a)2

Yt
2 + 3Σ0

VALIDITY RANGE u≥ 18, 0.15≤ α≤ 1, Yt ≤ 5, Σ0 ≥ Σ0,t

ACCURACY ≤ 2.0%

Kq =
kq

�
L

t

�3

wE′ , Yt =
ymax

t
, Σ0 =
�

L

t

�2 σ0(1−ν)
E′ , Σ0,t =− p0(α)

3
Yt

2, α = W

L

p0(α) =
16
35

21α6−96α5+133α4−105α2+63
(α3−2α2+2)2

, q0(α) =
1

α3−2α2+2
, ζ (u,α) = α/q0(α)ζ (u,α)

Ψ(u,α) = 442368 h (u,α) /ζ
2
(u,α)

See Equations (3.21)-(3.32) for definitions of ζ (u,α) and h (u,α).
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for a general distributed transverse load q(x):

d4 y

dx4 −
P

E′I
d2 y

dx2
=

q(x)

E′I
(3.65)

Recall moreover from §3.2.3 that P is related to the problem variables via the axial rela-

tion:

P

A
=

E′

2L

L∫

0

�
dy

dx ′

�2
dx ′+σ0(1− ν) (3.66)

For the electrostatic actuation problem at hand, q(x) is given by,

q(x) =





qe(x) if (1−α)L
2
≤ x ≤ 1

2

0 if 0≤ x ≤ (1−α)L
2

(3.67)

The transverse distributed load qe(x) can be evaluated from the principle of virtual work,

which expresses the electrostatic force in +y direction in terms of the potential energy

under constant potential as [115]:

Fe =
∂U

∂ y

=
∂

∂ y

�
1

2
CV 2

�

=
1

2
V 2 ∂ C

∂ y

(3.68)

where C , Fe and U = 1
2
CV 2 stand for inter-electrode capacitance, electrostatic force and

potential energy respectively. Moreover, qe(x) and Fe are linked with

qe(x) =
∂Fe

∂x

=
1

2
V 2 ∂

2C

∂x∂ y

(3.69)

Neglecting fringing electric-field components, incremental inter-electrode capacitance may

be written as,

δC =

�
1

δCair
+

1

δCdi

�−1

=

��
ε0wδx

g0− y(x)

�−1

+

�
ε0εdiwδx

tdi

�−1
�−1

=
ε0wδx

g0 + tdi/εdi− y(x)

(3.70)
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In the limit as δx → 0, thus

∂C

∂x
=

ε0w

g0 + tdi/εdi− y(x)
(3.71)

Using Equation (3.71), Equation (3.69) becomes:

qe(x) =
1

2
V 2 ∂

∂ y

∂C

∂x

=
ε0w V 2

2
�

g0+ tdi/εdi− y(x)
�2

(3.72)

Substitution of Equation (3.72) into Equation (3.65) then yields,

d4 y

dx4
− P

E′I
d2 y

dx2
=





ε0w V2

2E′ I[g0+tdi/εdi−y(x)]
2 if (1−α)L

2
≤ x ≤ L

2

0 if 0≤ x ≤ (1−α)L
2

(3.73)

which is recognized to be a non-linear 4th order ODE for the loading span of the beam.

Taking into account the dependence of P on the integral of squared beam slope from

Equation (3.66), Equation (3.73) can actually be regarded as a non-linear integro-differential

equation, which unfortunately cannot be solved through analytical means.

3.3.2 Normalization of the Governing Integro-Differential Equation

In order to reduce the number of parameters involved and hence to provide ease in the

subsequent analysis steps, it is preferred to apply a normalization to Equations (3.66) and

(3.73) along the guidelines of [82]. For this purpose, two dimensionless quantities are

introduced:

x̃ =
x

L
(3.74a)

ỹ =
y

g0
(3.74b)

Derivatives with respect to position x can be easily re-expressed in terms of the normal-

ized position x̃ using the chain rule:

∂

∂x
=
∂

∂ x̃

∂ x̃

∂x
=

1

L

∂

∂ x̃

which can be generalized to yield

∂n

∂xn
=

1

Ln

∂n

∂ x̃n
(3.75)
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Employing Equations (3.74) and (3.75), Equation (3.73) can be transformed to,

g0

L4

d4 ỹ

d x̃4 −
P g0

E′I L2

d2 ỹ

d x̃2
=





ε0w V2

2E′ I g2
0

�
1+

tdi
g0 εdi
− ỹ

�2 if 1−α
2
≤ x̃ ≤ 1

2

0 if 0≤ x̃ ≤ 1−α
2

(3.76)

which can be manipulated to obtain

d4 ỹ

d x̃4 − 4u2 d2 ỹ

d x̃2
=





Ṽ 2

[1+γ− ỹ]
2 if 1−α

2
≤ x̃ ≤ 1

2

0 if 0≤ x̃ ≤ 1−α
2

(3.77)

where

u =
L

2

Ç
P

E′ I
=

r
3P L2

E′wt3
(3.78a)

Ṽ =

È
ε0wL4

2g3
0 E′I

V =

È
6ε0 L4

g3
0 t3E′

V (3.78b)

γ =
tdi

g0 εdi
(3.78c)

A similar normalization can be applied to Equation (3.66) as follows. Employing Equation

(3.78a), P can be expressed in terms of u to yield,

E′ t2

3L2
u2 =

E′

2L

L∫

0

�
dy

dx ′

�2
dx ′+σ0(1− ν) (3.79)

The integrand can be re-expressed in terms of normalized quantities through change of

the integration variable by letting x̃ ′ = x ′
L

and by using Equation (3.74b);

L∫

0

�
dy

dx ′

�2
dx ′ =

1∫

0

�
d(g0 ỹ)

d x̃ ′
d x̃ ′

dx ′

�2
(L d x̃ ′)

=
2g2

0

L

1
2∫

0

�
d ỹ

d x̃ ′

�2
d x̃ ′

(3.80)

where symmetry of the configuration is utilized in the last step. Substituting Equation

(3.80) into Equation (3.79) and performing subsequent manipulation yields,

u2 = 3
�

g0

t

�2
1
2∫

0

�
d ỹ

d x̃ ′

�2
d x̃ ′+ 3Σ0 (3.81a)

with

Σ0 =

�
L

t

�2 σ0(1− ν)
E′

(3.81b)

Notice that Equation (3.81) is similar in form to Equation (3.37a) formulated in §3.2.3. In

particular, letting ỹ =
ymax

g0
sin(π x̃) results in the identical expression with Ψ(u,α)≈ 3π2

4
.
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3.3.3 Boundary Conditions and Continuity Relations

It is realized from Figure (3.11) that unless the electrostatic load qe(x) is not applied

along the entire beam span; overall distributed load q(x) will be a piecewise discontinu-

ous function, taking on the value of zero outside the loading region. As it can be recalled

from §sobek1, deflection solution can be expressed in an analytical form for this latter

region with:

ỹI( x̃) = A cosh(2ux̃) + B sinh(2ux̃)+ C x̃ + D (3.82)

where A, B, C and D are four arbitrary constants yet to be found. In order to determine

those constants unambiguously, a total of four equations are required two of which are

obtained from the boundary conditions at x̃ = 0. Setting deflection and beam slope at

the clamped end to zero yields,

ỹI(0) = 0 ⇒ D = −A (3.83a)

ỹ ′I (0) = 0 ⇒ C = −2uB (3.83b)

which helps to re-express Equation (3.82) as

ỹI( x̃) = A [cosh(2ux̃)− 1]+ B [sinh(2ux̃)− 2ux̃] (3.84)

In order to calculate remaining coefficients A and B, two additional equations are re-

quired. For this purpose, continuity relations across the boundary x̃ = 1−α
2

can be utilized:

Notice from Equation (3.77) that the piecewise transverse loading function q(x) does not

incorporate any impulsive term, implying that derivatives of ỹ up to third order must be

continuous across x̃ = 1−α
2

. In mathematical terms, these statements can be translated

as,

ỹII(β) = A
�

cosh(2uβ)− 1
�
+ B
�

sinh(2uβ)− 2uβ
�

(3.85a)

ỹ ′II(β) = 2uA sinh(2uβ) + 2uB
�

cosh(2uβ)− 1
�

(3.85b)

ỹ ′′II (β) = 4u2A cosh(2uβ)+ 4u2B sinh(2uβ) (3.85c)

ỹ ′′′II (β) = 8u3A sinh(2uβ) + 8u3B cosh(2uβ) (3.85d)

where the auxiliary variable β = 1−α
2

is introduced to simplify notation.
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It is noted from Equation (3.85) that continuity relations yield four equations, two of

which might be regarded redundant at a quick glance. However, as it can be readily no-

ticed, LHS of those equations are actually unknown. In fact, all four of these equations

will be needed through the development of the numerical solution scheme as it will be

shown in the next sections.

In addition to the boundary conditions and continuity relations concerning the first prob-

lem region, additional conditions are required at x̃ = 1
2

in order to set a proper symmetry

boundary. Let us attempt to derive these conditions through the use of problem symme-

try. Firstly, it is elementary to state by physical reasoning that maximum beam deflection

must occur at the beam center, a condition which is equivalent to,

y ′II (1/2) = 0 (3.86)

For other non-trivial properties, it might be helpful to resort to basic beam relations [108]:

dS

dx
= −q(x) (3.87a)

E′I
d3 y

dx3
= −S(x)+ P

dy

dx
(3.87b)

with S(x) denoting the shear along the beam. Using Equation (3.87a), it is easy to write

S(x) = −
x∫

0

q(x ′)dx ′+ S(0) (3.88)

Moreover, by inspection, beam shear at x = 0 is equal to the vertical reaction RA (see

Figure 3.11) so that

S (L/2) = −

L

2∫

0

q(x ′)dx ′+ RA

= 0

(3.89)

In other words, shear at the beam center is found to be zero due to balance of symmetric

forces. Using this latter fact together with Equation (3.86), Equation (3.87b) at x = L/2

can be evaluated as,

y ′′′II (L/2) = 0 (3.90)
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Table 3.3: Boundary conditions and continuity relations for the electrostatic actuation
problem.

TYPE OF CONDITION POSITION EXPRESSION

CONTINUITY RELATION x̃ = β = 1−α
2

Equation (3.85)

SYMMETRY x̃ = 1
2

Equation (3.86)
Equation (3.90)

establishing another symmetry condition.

Table 3.3 provides a summary of the boundary conditions and continuity relations for the

electrostatic actuation problem.

3.4 Numerical Solution of the Electrostatic Actuation Problem

It was pointed out earlier that Equations (3.77) and (3.81a), forming a non-linear integro-

differential equation system, cannot be solved analytically. Mentioned system, however,

can still be investigated using numerical techniques. In particular, it is preferred to uti-

lize Finite Difference (FD) method in this study due to its advantages such as relatively

easy formulation construction, rapid simulation and good accuracy [77, 86]. Moreover,

it is preferred to increase problem complexity gradually: Firstly, electrostatic actuation

problem will be analyzed without any axial effects and next, building on the gained ex-

perience, axial effects will be incorporated into the solution.

3.4.1 Finite Difference Solution of the Zero-Tension Electrostatic Actuation Prob-

lem

Complexity of the electrostatic actuation problem can be reduced significantly by ignor-

ing the axial effects of non-linear beam stretching and residual stress. Although such a

simplification calls for a dramatic degradation in accuracy; it will be helpful to investigate

this basic problem in that experience gained in Finite Difference formulation, simulation

techniques and results will be utilized later for the non-zero axial effect case.
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3.4.1.1 Transformation to Zero-Tension Electrostatic Problem

The non-linear integro-differential equation (3.77) can be transformed to the simpler

zero-tension problem by setting u= 0, which amounts to letting σ0 = 0 and ignoring the

non-linear beam stretching. Under this assignment, Equation (3.77) becomes:

d4 ỹ

d x̃4
=





Ṽ 2

[1+γ− ỹ]
2 if β ≤ x̃ ≤ 1

2

0 if 0≤ x̃ ≤ β
(3.91)

It is clear from Equation (3.91) that continuity relations at x̃ = β boundary must be

altered as the form of the analytical solution for the load-free region is modified as;

yI( x̃) = c3 x̃3+ c2 x̃2 (3.92)

where two of the four unknown coefficients has been eliminated by utilizing the boundary

condition at x̃ = 0. Consequently, continuity relations at x̃ = β become

yII(β) = c3β
3 + c2β

2 (3.93a)

y ′II(β) = 3c3β
2 + 2c2β (3.93b)

y ′′II (β) = 6c3β + 2c2 (3.93c)

y ′′′II (β) = 6c3 (3.93d)

3.4.1.2 Approximate Analytical Solution

A solution obtained from a numerical technique is not necessarily the correct one in some

cases. In general, one has to validate the reliability of such numerical solutions to be able

to trust in them. An analytical solution which is valid under specific conditions constitutes

a typical validation means for this purpose. As it will be shown shortly, an approximate an-

alytical solution is actually available for the zero-tension electrostatic actuation problem

and this solution will aid in later steps to justify the correctness of associated numerical

ones.

Remarked approximate analytical solution for the zero-tension electrostatic actuation

problem can be obtained by expressing the source term of Equation (3.91) as a Maclaurin

series:
Ṽ 2

�
1+ γ− ỹ
�2 =

Ṽ 2

(1+ γ)2
+

2Ṽ 2

(1+ γ)3
ỹ +O( ỹ2) (3.94)
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Equation (3.94) can be truncated after its second term for ỹ ≤ 1+γ
10

with a corresponding

worst case error of −2.8%. Substituting this approximation into Equation (3.91) yields,

d4 ỹII

d x̃4
=

Ṽ 2

(1+ γ)2
+

2Ṽ 2

(1+ γ)3
ỹII, β ≤ x̃ ≤ 1

2

which has an analytical solution of

ỹII( x̃) = D0 cos(κ x̃) + D1 sin(κ x̃) + D2 cosh(κ x̃) + D3 sinh(κ x̃)− 1+ γ

2
(3.95a)

with

κ =

�
2Ṽ 2

(1+ γ)3

� 1
4

(3.95b)

The coefficients Di (i =1, 2, 3, 4 for ỹII) and cj ( j =2, 3 for ỹI) can be solved simulta-

neously from the continuity relations (3.93) and the boundary conditions (3.86)-(3.90).

Once these unknown coefficients are determined, it is straightforward to obtain an ex-

pression for the complete beam profile. Such a procedure, however, is omitted here due

to significant complexity of the resulting formulation and it is preferred to consider max-

imum beam deflection ỹmax only. Upon evaluating ỹII(1/2), desired result is found as,

ỹmax

1+ γ
= −1

2
+
(6− 3µ2) sin(υ) + (6+ 3µ2) sinh(υ) + 6µ [cos(υ) + cosh(υ)]

Den(µ,υ)
(3.96a)

where

Den(µ,υ) = sin(υ)
�
(12−µ4− 12µ2) cosh(υ)− 8µ3 sinh(υ)

�

+ cos(υ)
�
(12−µ4 + 12µ2) sinh(υ) + 24µ cosh(υ)

� (3.96b)

µ ¬ βκ (3.96c)

υ ¬
α

2
κ (3.96d)

Equation (3.96) is expected to be valid for deflections up to a tenth of the initial air-

gap, a requirement dictated by Maclaurin series expansion of the non-linear load term.

Consequently, comparisons with the numerical solutions must be made in ỹmax ≤ 1+γ
10

range.
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3.4.1.3 Finite Difference Formulation

In order to apply the Finite Difference technique to the zero-tension electrostatic actua-

tion problem, firstly a discretization along the beam is required. A uniform discretization

scheme consisting of N equi-spaced points is illustrated in Figure 3.12. It can be shown

through method of undetermined coefficients that derivatives of ỹ( x̃) can be approxi-

mated in terms of the discretized (nodal) deflections ỹi as [81,116]:

ỹ ′i =
ỹi−2 − 8 ỹi−1 + 8 ỹi+1− ỹi+2

12h
+O(h4) (3.97a)

ỹ ′′i =
− ỹi−2 + 16 ỹi−1− 30 ỹi+ 16 ỹi+1 − ỹi+2

12h2
+O(h4) (3.97b)

ỹ ′′′i =
− ỹi−2 + 2 ỹi−1− 2 ỹi+1 + ỹi+2

2h3
+O(h2) (3.97c)

ỹ
(iv)

i =
ỹi−2 − 4 ỹi−1 + 6 ỹi− 4 ỹi+1 + ỹi+2

h4 +O(h2) (3.97d)

where h is the grid spacing given by

h=
1/2− β
N − 1

=
α

2(N − 1)
(3.98)

It is realized from Equation (3.97) that a five-point stencil is needed in order to approx-

imate the derivatives of ỹ( x̃) with a worst case accuracy of O(h2). Employing Equation

(3.97) in Equation (3.91) gives:

ỹi−2 − 4 ỹi−1+ 6 ỹi− 4 ỹi+1 + ỹi+2 −
h4Ṽ 2

�
1+ γ− ỹi
�2 = 0, if β ≤ x̃ ≤ 1

2
(3.99)

Let us now restrict the problem domain to the second region, i.e. β ≤ x̃ ≤ 1
2
. In order

to proceed so, influence of first region must be incorporated into the solution via the

continuity relations (3.93). For this purpose, nodal equation (3.99) can be written at

nodes i = 0 and i = 1 to yield,

ỹ−2 − 4 ỹ−1 + 6 ỹ0 − 4 ỹ1 + ỹ2 −
h4Ṽ 2

�
1+ γ− ỹ0
�2 = 0 (3.100a)

ỹ−1 − 4 ỹ0 + 6 ỹ1 − 4 ỹ2 + ỹ3 −
h4Ṽ 2

�
1+ γ− ỹ1

�2 = 0 (3.100b)

Notice from Equation(3.100) that two additional nodes, namely ỹ−2 and ỹ−1, appear in

the list of unknowns. Such nodes are actually fictitious nodes whose values are to be

determined from continuity relations at x̃ = β . To see this, continuity relations (3.93)
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Figure 3.12: An illustration of the zero-tension electrostatic actuation problem dis-
cretized for the application of Finite Difference method. Nodes are indicated with their
indices.

can be discretized with the aid of Equation (3.97) to obtain,

ỹ0 = c3β
3+ c2β

2 (3.101a)

ỹ−2 − 8 ỹ−1 + 8 ỹ1 − ỹ2

12h
= 3c3β

2 + 2c2β (3.101b)

− ỹi−2 + 16 ỹi−1− 30 ỹi+ 16 ỹi+1 − ỹi+2

12h2
= 6c3β + 2c2 (3.101c)

− ỹi−2+ 2 ỹi−1 − 2 ỹi+1 + ỹi+2

2h3
= 6c3 (3.101d)

Equation (3.101) is a linear equation set in c3, c2, ỹ−2, ỹ−1 and it can be simultaneously

solved for these parameters as;

c3 =
−β2 ỹ2 + 16β2 ỹ1 −

�
12 h2+ 28β h+ 15β2

�
ỹ0

2β2 h
�
4 h2 + 12β h+ 7β2

� (3.102a)

c2 =
β3 ỹ2 − 16β3 ỹ1 +

�
8 h3+ 36β h2+ 42β2 h+ 15β3

�
ỹ0

2β2 h
�
4 h2 + 12β h+ 7β2

� (3.102b)

ỹ−2 =
3
�

4 h2 + 4β h+ 3β2
�

4 h2 + 12β h+ 7β2
ỹ2 −

32
�

4 h2+ β2
�

4 h2 + 12β h+ 7β2
ỹ1

+
6
�

16 h4+ 32β h3 + 8β2 h2 + 5β4
�

β2
�
4 h2+ 12β h+ 7β2

� ỹ0

(3.102c)

ỹ−1 =
h2 + β2

4 h2 + 12β h+ 7β2
ỹ2 −

3
�

4 h2− 4β h+ 3β2
�

4 h2 + 12β h+ 7β2
ỹ1

+
3
�

4 h4+ 4β h3 − 7β2 h2 + 5β4
�

β2
�
4 h2 + 12β h+ 7β2

� ỹ0

(3.102d)
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Substituting Equations (3.102c) and (3.102d) back into Equation (3.100) results in the

following nodal expressions for i = 0 and i = 1;

P0(β ,h) ỹ0 + P1(β ,h) ỹ1 + P2(β ,h) ỹ2 −
h4Ṽ 2

�
1+ γ− ỹ0

�2 = 0, i=0 (3.103a)

Q0(β ,h) ỹ0 +Q1(β ,h) ỹ1 +Q2(β ,h) ỹ2 + ỹ3 −
h4Ṽ 2

�
1+ γ− ỹ1
�2 = 0, i=1 (3.103b)

where the functions Pn(β ,h) and Qn(β ,h) (n = 0, 1, 2) are defined as:

P0(β ,h) =
12
�
h+ β
�2 �2 h+ β
�2

β2
�
4 h2+ 12β h+ 7β2

� (3.104a)

P1(β ,h) = − 2β2

�
h+ β
�2 P0(β ,h) (3.104b)

P2(β ,h) =
β2

�
2 h+ β
�2 P0(β ,h) (3.104c)

Q0(β ,h) =
12 h4+ 12β h3 − 37β2 h2 − 48β3 h− 13β4

β2
�
4 h2 + 12β h+ 7β2

� (3.104d)

Q1(β ,h) =
3
�

4 h2+ 28β h+ 11β2
�

4 h2 + 12β h+ 7β2
(3.104e)

Q2(β ,h) = −
3
�

5 h2 + 16β h+ 9β2
�

4 h2+ 12β h+ 7β2
(3.104f)

Having derived the nodal equations for nodes at x̃ = β border, let us focus on the sym-

metry boundary next. In particular, problem symmetry implies

ỹN = ỹN−2 (3.105a)

ỹN+1 = ỹN−3 (3.105b)

which can be obtained either by setting ỹ ′N−1 = ỹ ′′′N−1 = 0 or using the symmetry directly.

Hence, it is noticed that values of the fictitious nodes ỹN and ỹN+1 can be obtained with-

out any tedious formulation. Using this information and Equation (3.99), nodal equations

at i = N − 2 and i = N − 1 can be determined as,

ỹN−4 − 4 ỹN−3 + 7 ỹN−2 − 4 ỹN−1 −
h4Ṽ 2

�
1+ γ− ỹN−2
�2 = 0, i=N-2 (3.106a)

2 ỹN−3 − 8 ỹN−2 + 6 ỹN−1 −
h4Ṽ 2

�
1+ γ− ỹN−1
�2 = 0, i=N-1 (3.106b)
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Table 3.4: Nodal Finite Difference equations for the zero-tension electrostatic actuation
problem.

INDEX FD EQUATION

i = 0 F0(~y) = P0(β ,h) ỹ0 + P1(β ,h) ỹ1 + P2(β ,h) ỹ2− h4 Ṽ2

[1+γ− ỹ0]
2 = 0

i = 1 F1(~y) = Q0(β ,h) ỹ0 +Q1(β ,h) ỹ1 +Q2(β ,h) ỹ2 + ỹ3 − h4 Ṽ 2

[1+γ− ỹ1]
2 = 0

2≤ i ≤ N − 3 Fi(~y) = ỹi−2 − 4 ỹi−1 + 6 ỹi− 4 ỹi+1+ ỹi+2 − h4 Ṽ 2

[1+γ− ỹi]
2 = 0

i = N − 2 FN−2(~y) = ỹN−4 − 4 ỹN−3 + 7 ỹN−2 − 4 ỹN−1 − h4 Ṽ 2

[1+γ− ỹN−2]
2 = 0

i = N − 1 FN−1(~y) = 2 ỹN−3 − 8 ỹN−2 + 6 ỹN−1 − h4 Ṽ2

[1+γ− ỹN−1]
2 = 0

For the sake of clarity, nodal Finite Difference equations for i = 0, 1, . . . , N − 1 are

summarized in Table 3.4 for the zero-tension electrostatic actuation problem.

Correction for the Case α= 1

When the electrostatic load qe( x̃) is applied along the entire beam span (i.e. for α = 1),

continuity interface x̃ = β coincides with the clamped beam end ( x̃ = 0) and hence pre-

viously derived Finite Difference equations become invalid for the relevant neighboring

nodes. Moreover, ỹ0 is set to zero as dictated by the clamped boundary condition so that

number of unknowns actually decreases by one. It is clear from these observations that

Finite Difference equations for α = 1 must be modified for nodes in the neighborhood of

x̃ = 0.

Initial intuition is that Finite Difference equations depicted in Table 3.4 must tend to the

ones corresponding to α = 1 by considering the limit as β → 0. There is, however, a prob-

lem with such an approach as the functions P0(β ,h) and Q0(β ,h) are noted to have poles

at β = 0 which in turn render Equations (3.103) singular. In fact, mentioned singularity

can be eliminated by constructing a linear combination of Equations (3.103) in such a

way to cancel the offending terms. If moreover, resulting regular equation is treated as

the Finite Difference equation for node i = 1, one redundant equation will be eliminated

and the equation system will cease to be overdetermined.
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Table 3.5: Nodal Finite Difference equations for the zero-tension electrostatic actuation
problem for α= 1.

INDEX FD EQUATION

i = 1 F1(~y) = 9 ỹ1 − 9
2

ỹ2 + ỹ3 +
h4 Ṽ 2

4(1+γ)2
− h4 Ṽ 2

[1+γ− ỹ1]
2 = 0

i = 2 F2(~y) = −4 ỹ1 + 6 ỹ2 − 4 ỹ3 + ỹ4 − h4 Ṽ 2

[1+γ− ỹ2]
2 = 0

3≤ i ≤ N − 3 Fi(~y) = ỹi−2 − 4 ỹi−1 + 6 ỹi− 4 ỹi+1+ ỹi+2 − h4 Ṽ 2

[1+γ− ỹi]
2 = 0

i = N − 2 FN−2(~y) = ỹN−4 − 4 ỹN−3 + 7 ỹN−2 − 4 ỹN−1 − h4 Ṽ 2

[1+γ− ỹN−2]
2 = 0

i = N − 1 FN−1(~y) = 2 ỹN−3 − 8 ỹN−2 + 6 ỹN−1 − h4 Ṽ2

[1+γ− ỹN−1]
2 = 0

An application of the discussed approach may proceed as follows. If β is assumed to be

very small compared to h, Equations (3.103) can be re-written as,

12h2

β2
ỹ0 − 24 ỹ1+ 3 ỹ2 −

h4Ṽ 2

�
1+ γ− ỹ0
�2 = 0

3h2

β2
ỹ0 + 3 ỹ1 −

15

4
ỹ2 + ỹ3 −

h4Ṽ 2

�
1+ γ− ỹ1
�2 = 0

Eliminating the first terms and evaluating the limit as β → 0 (hence ỹ0→ 0) yields,

9 ỹ1 −
9

2
ỹ2 + ỹ3 +

h4Ṽ 2

4(1+ γ)2
− h4Ṽ 2

�
1+ γ− ỹ1
�2 = 0 (3.108)

which can be regarded as the Finite Difference equation for node i = 1.

In addition to the previous modification, it will be also required to alter the nodal equation

for i = 2 since corresponding stencil makes use of the nodal deflection ỹ0 which is left

out of the list of unknowns. Substituting ỹ0 = 0 in Equation (3.99) for i = 2 establishes

the desired expression,

−4 ỹ1+ 6 ỹ2 − 4 ỹ3+ ỹ4 −
h4Ṽ 2

�
1+ γ− ỹ2
�2 = 0 (3.109)

In order to maintain clarity, Table 3.5 lists Finite Difference equations for the zero-tension,

entire-span electrostatic actuation problem.
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3.4.1.4 Solution of the Finite Difference Equations

Nodal equations presented in Table 3.4 constitute a non-linear equation system of N equa-

tions for the unknown vector ~y =
�

ỹ0, ỹ1, . . . ỹN−1
�

of length N5. Unlike linear equation

systems, existence of a unique solution for such a non-linear equation system cannot be

ascertained in general. Nevertheless, a solution (if it exists) can be obtained by mul-

tidimensional root-finding algorithms and its validity may be justified through physical

reasoning [117]. In what follows, solution procedure of the Finite Difference equations

will be described for the zero-tension electrostatic actuation problem and obtained results

will be discussed.

In order to solve Finite Difference equations given in Table 3.4 (or 3.5 for α = 1), Jaco-

bian matrix J of the system is evaluated first. The entries Jij of the Jacobian matrix are

calculated analytically from,

Jij =
∂Fi

∂ ỹj

which can be shown to yield a 5-band diagonally-dominant matrix. Next, the equation

system together with its Jacobian matrix are implemented as separate subroutines in

Numpy-extended Python environment [118]. Then, those subroutines are fed to fsolve

function of SciPy module [119] which is actually a wrapper around MINPACK’s multi-

dimensional root solver algorithm hybrj [120]. Finally, nodal deflection vector ~y is

obtained as an output from fsolve for a given α, γ and Ṽ .

Selection of the number of grid points N is a general concern for any Finite Difference im-

plementation, as picking a low N might cause an inaccurate representation of derivatives

involved. In order to select a suitable N for the proposed Finite Difference algorithm, a

convergence study is performed which can be described as follows:

• For given values of the parameters α and γ, unknown vector ~y is solved in a certain

Ṽ range.

• Previous step is repeated for various N values and ỹmax − Ṽ curves are stored at

each N .
5 A similar argument holds for equation system depicted in Table 3.5 with N replaced by N-1.
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sỹm m
a
x
, (

R
m

s)

t=0.2t=0.4t=0.6t=0.8t=1.0

Figure 3.13: Rms convergence error in ỹmax versus N for the zero-tension electrostatic
actuation problem with α as a parameter (γ = 0.03).

• Root-mean-square (rms) error between ỹmax− Ṽ curves of consecutive N ’s are eval-

uated from

∆ ỹmax,m =

√√√√1

P

P∑

p=1

�
ỹm

max,p − ỹm−1
max,p

�2

where the subscript p indexes the points on ỹmax − Ṽ curves and the superscript m

represents the particular curve for the mth N value.

Figure 3.13 depicts the results of explained convergence study for γ = 0.03 with α as a

parameter. It is observed from Figure 3.13 that proposed Finite Difference implementa-

tion indeed converges with increasing N , as evident from decreasing rms error trend. For

lower α values error seems to increase slightly after a certain N value, however, such a

trend can be regarded insignificant as the error levels stay below 10−5 within the focused

N range. Moreover, although not presented here, it is verified through a separate para-

metric analysis that γ-dependence of the rms error is too weak to be discerned compared

to that of α. According to these results, it is preferred to pick N = 251 for the on-going
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Figure 3.14: A comparison between (approximate) analytical and Finite Difference solu-
tions for the zero-tension electrostatic actuation problem (α = 0.5, γ = 0.03, N = 251).

analyses, whose rms error is noted to be lower than 10−6 for the considered α range, thus

establishing sufficient accuracy.

Having determined a proper number of grid points, next, consistency of the solution must

be investigated since convergence to a solution does not necessarily imply that relevant

solution is a correct one. In order to verify that the solutions are consistent with the

problem at hand, they are compared with the approximate analytical solution (3.96)

determined in §3.4.1.2. Figure 3.14 presents the results of that comparison for a sample

configuration with α = 0.5, γ = 0.03 and N = 251. It is noticed from Figure 3.14 that

the agreement between two solutions is excellent for ỹmax ≤ 1+γ
10

, with the associated

error (referenced to the analytical results) less than 2.5%6. From these observations,

consistency of the Finite Difference solutions can be clearly justified.

6 It must be remarked that noted error is attributed to inaccurate representation of the non-linear loading
term in Equation (3.96) with increasing ỹmax and hence it does not indicate the accuracy of the Finite
Difference solution.
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Figure 3.15: Typical ỹmax versus Ṽ characteristics for the zero-tension electrostatic actu-
ation problem (γ= 0.03, N = 251).

3.4.1.5 Pull-In Phenomenon and Extraction of Pull-in Voltage

Numerical analyses conducted in the previous section for the zero-tension electrostatic

actuation problem were limited to a maximum deflection of a certain fraction of the air-

gap. The reason for such a preference can be realized when ỹmax − Ṽ characteristic is

considered in a wider sweep range: As depicted in Figure 3.15, relevant characteristic

exhibits a sharp cusp at a particular Ṽ after which the maximum deflection seems to de-

crease with increasing voltage. This apparent non-physical trend is moreover found to be

linked with inability of the Finite Difference equation system to possess a solution. These

observations suggest that the actuator system at hand undergoes a sharp behavior change

at the very location where the mentioned cusp occur.

The peculiar feature described above is actually a well-known characteristic of voltage-

controlled electrostatic actuator systems termed as “pull-in instability” [83–85]: Due to

inherent positive feedback in the actuator system, mechanical restoring force of the move-

able electrode fails to counterbalance the electrostatic attraction force beyond a specific
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voltage (denoted as the “pull-in voltage” (VPI)), causing the moveable electrode to snap

down to the stationary one. Pull-in mechanism thus limits the stable operation range

of electrostatic actuator systems and an accurate determination of the pull-in voltage is

hence crucial for a proper actuator design.

It is one of the goals of the on-going study to establish an accurate, simulation-based

pull-in voltage expression for the electrostatically actuated fixed-fixed beam system at

hand. In order to accomplish so, it is necessary to extract pull-in voltages reliably from

numerical simulation data, a topic which is covered here in some detail. It is noted earlier

that Finite Difference equation set ceases to have a solution once Ṽ grows past a certain

border. Physical reasoning suggests that Ṽ = ṼPI must hold at this border since absence of

a stable solution beyond the relevant border complies with the snapping-down behavior

of the beam. Assuming such a reasoning is correct, pull-in voltage determination then

boils down to finding the lowest Ṽ causing the residue of the Finite Difference equation

set to jump from machine precision to a considerably higher value. The latter task can

be easily automated through a binary search algorithm and ṼPI can be extracted easily

within a prescribed precision.

Dynamic Stability Analysis to Verify Pull-in

In order to justify the proposed pull-in voltage extraction method from a physical stand

point, a dynamic stability analysis is conducted following the guidelines of [81]. Relevant

analysis starts from the normalized 1-D Euler-Bernoulli beam equation without any axial

effects [82]:

∂4 ỹ

∂ x̃4
+
∂2 ỹ

∂ t̃2
=

Ṽ 2

�
1+ γ− ỹ( x̃ , t̃)
�2 Π( x̃) (3.110a)

where

Π( x̃) =





1, if β ≤ x̃ ≤ 1− β

0, otherwise
(3.110b)

A perturbation is then introduced to the static deflection solution by letting,

ỹ( x̃) = ỹs( x̃) + η̃( x̃ , t̃) (3.111)
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After substituting Equation (3.111) into (3.110a), linearizing RHS and canceling the

static terms, one is left with;

∂4η̃

∂ x̃4 +
∂2η̃

∂ t̃2
=

2Ṽ 2

�
1+ γ− ỹs( x̃)
�3 Π( x̃) η̃( x̃ , t̃) (3.112)

Next, following a separation of variables approach η̃( x̃ , t̃) is expressed as a series:

η̃( x̃ , t̃) =

P∑

p=1

ωp( t̃)φp( x̃) (3.113)

In Equation (3.113), P is the number of terms in the series expansion, ωp( t̃) is pth time-

dependent function and φp( x̃) is the pth natural mode of the doubly clamped beam with-

out axial effects. The latter is given by [121];

φp( x̃) = cosh(λp x̃)− cos(λp x̃)− cosh(λp)− cos(λp)

sinh(λp)− sin(λp)

�
sinh(λp x̃)− sin(λp x̃)

�

where the eigenmode λp is a solution of

cosh(λp) cos(λp)− 1= 0, λp , 0

Employing Equation (3.113) in (3.112), taking the inner product of both sides with φq( x̃)

and using the following properties of natural modes;

d4φp

d x̃4 = λ
4
pφp( x̃)

1∫

0

φp( x̃)φq( x̃) d x̃ = δpq

it is arrived at

λ4
qωq( t̃) +

d2ωq

d t̃2
=

P∑

p=1

ωp( t̃)

1∫

0

2Ṽ 2

�
1+ γ− ỹs( x̃)
�3 Π( x̃)φp( x̃)φq( x̃) d x̃ (3.115)

Equation (3.115) can be cast into a matrix equation as,

d2
Ω

d t̃2
+Λ4

Ω=MΩ (3.116)

with

Ω=
�
ω1( t̃) ω2( t̃) · · · ωP( t̃)

�T
1×P

Λ= Diag(λ1, λ2, · · · ,λP)
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M=
�

Mpq

�
P×P

The entries of the matrix M are given by,

Mpq =Mqp =

1−β∫

β

2Ṽ 2

�
1+ γ− ỹs( x̃)
�3 φp( x̃)φq( x̃) d x̃

=

1
2∫

β

2Ṽ 2

�
1+ γ− ỹs( x̃)
�3
�
φp( x̃)φq( x̃) +φp(1− x̃)φq(1− x̃)

�
d x̃

=
�

1+ (−1)p+q
�

1
2∫

β

2Ṽ 2

�
1+ γ− ỹs( x̃)
�3 φp( x̃)φq( x̃) d x̃

(3.118)

where symmetry of the static configuration together with the property

φp(1− x̃) = (−1)p φq( x̃)

are utilized during the intermediate integration steps. Using the final integral form, Mpq

can be computed on the Finite Difference grid by Simpson’s integral approximation, the

details of which are omitted here.

Letting Ω= veat̃ transforms Equation (3.116) into an eigen-problem,

�
M−Λ4
�

v= a2v (3.119)

whose eigenvalues a2 are noticed to be real due to symmetric nature of M−Λ4. Stability

of the zero-tension electrostatic actuation problem can now be assessed by monitoring the

values of a2 for a particular Ṽ : If the maximum eigenvalue a2
max happens to be positive,

η̃( x̃ , t̃) would grow indefinitely over time, implying a dynamic instability. Conversely,

η̃( x̃ , t̃) remains as a linear combination of purely oscillatory terms, hence satisfies a dy-

namically stable state, provided that a2
max is non-positive.

Figure 3.16 presents plots of ỹmax and a2
max versus Ṽ for a sample problem configuration.

An inspection of the provided curves validates the physical reasoning stated at the begin-

ning of this section: For voltages smaller than the one corresponding to the sharp cusp

on ỹmax − Ṽ curve, a2
max is observed to be negative and an increasing function of Ṽ . At
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Figure 3.16: Stability analysis results for the zero-tension electrostatic actuation problem
(γ = 0.03, α = 0.5, N = 251, P= 3,5,7).

the very point where the relevant cusp occurs, a2
max assumes the value of zero implying

that the system is on the verge of pull-in at that voltage. Notice moreover that obtained

stability results are virtually independent of the number of terms (P) employed in the

modal expansion of η̃( x̃ , t̃), an attribute ensuring that relevant results are not clouded

by convergence related errors. These observations therefore justify the utilization of the

proposed error monitoring approach for the extraction of VPI.

Development of a pull-in voltage expression based on analytical and numerical results

will be covered later in a dedicated section.

3.4.2 Finite Difference Solution of Non-zero Tension Electrostatic Actuation Prob-

lem

Having successfully characterized the simplified problem of zero-tension electrostatic ac-

tuation, next, a more complete analysis is attempted that will include previously neglected
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axial effects of residual stress and non-linear stretching. Proceeding similarly with the

previous section; Finite Difference formulation will be established first, solution of the

resulting equations will be described next and obtained results will be discussed in the

end.

3.4.2.1 Finite Difference Formulation

Figure 3.17 delineates the non-zero tension electrostatic actuation configuration which is

discretized uniformly for the application of Finite Difference method. It was established

in §3.3.2 and §3.3.3 that non-zero tension electrostatic actuation problem is governed by

the following relations:

d4 ỹ

d x̃4
− 4u2 d2 ỹ

d x̃2
=





Ṽ 2

[1+γ− ỹ]
2 if β ≤ x̃ ≤ 1

2

0 if 0≤ x̃ ≤ β
(3.120a)

u2 = 3
�

g0

t

�2
1
2∫

0

�
d ỹ

d x̃ ′

�2
d x̃ ′+ 3Σ0 (3.120b)

together with the edge conditions (3.85), (3.86) and (3.90). Let us begin with the dis-

cretization of Equation (3.120a) within the loading span. Unlike the zero-tension prob-

lem, it is preferred to utilize the following set of derivative approximations for the latter

configuration:

ỹ ′i =
− ỹi−1 + ỹi+1

2h
+O(h2) (3.121a)

ỹ ′′i =
ỹi−1 − 2 ỹi + ỹi+1

h2
+O(h2) (3.121b)

ỹ ′′′i =
− ỹi−2 + 2 ỹi−1− 2 ỹi+1 + ỹi+2

2h3
+O(h2) (3.121c)

ỹ ′′′′i =
ỹi−2 − 4 ỹi−1 + 6 ỹi− 4 ỹi+1+ ỹi+2

h4 +O(h2) (3.121d)

A comparison of Equation (3.121) with (3.97) reveals that first and second order deriva-

tive approximations are replaced with three-point counterparts. Such a preference can

be readily justified from an accuracy point of view: Since five-point third and fourth

order derivative approximations have an associated error of O(h2), overall accuracy of
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Figure 3.17: An illustration of the non-zero tension electrostatic actuation problem dis-
cretized for the application of Finite Difference method. Nodes are indicated with their
indices.

the Finite Difference formulation will be limited by those terms even if O(h4) accurate

approximations are utilized for the first and second order derivatives. Hence, it is un-

necessary to utilize more accurate expressions for first and second order derivatives and

doing so would only serve to complicate the analysis. As it will be shown shortly, this is

especially true for the axial relation (3.120b) where an integration over square of the first

order derivatives comes into play.

Employing the modified derivative approximations (3.121) in Equation (3.120a) yields

the interior-node Finite Difference equation for the non-zero tension electrostatic actua-

tion problem:

Fi = ỹi−2+ ỹi+2− 4(1+ u2h2)( ỹi−1+ ỹi+1)+ (6+ 8u2h2) ỹi−
h4Ṽ 2

�
1+ γ− ỹi
�2 = 0 (3.122)

which is valid for 2 ≤ i ≤ N − 3. For the nodes in the neighborhood of continuity and

symmetry borders, Equation (3.122) needs to be modified in order to incorporate corre-

sponding edge conditions.

Nodes Near the Continuity Border

Writing Equation (3.122) for the nodes i = 0 and i = 1 leads to

ỹ−2 + ỹ2 − 4(1+ u2h2)( ỹ−1 + ỹ1) + (6+ 8u2h2) ỹ0 −
h4Ṽ 2

�
1+ γ− ỹ0
�2 = 0 (3.123a)
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ỹ−1 + ỹ3 − 4(1+ u2h2)( ỹ0 + ỹ2) + (6+ 8u2h2) ỹ1 −
h4Ṽ 2

�
1+ γ− ỹ1
�2 = 0 (3.123b)

Equation (3.123) is noted to include the fictitious nodal deflections ỹ−2 and ỹ−1 as addi-

tional unknowns. These extra unknowns can be eliminated by replacing the derivatives in

Equation (3.85) with the corresponding approximations (3.121) and solving the resulting

system of four linear equations for ỹ−2, ỹ−1, A and B in terms of ỹ0, ỹ1, ỹ2 and u. These

fictitious nodal deflections can then be substituted back in Equation (3.123) to establish

the desired Finite Difference equations for nodes i = 0 and i = 1. Carrying out relevant

calculations, one arrives at the result:

F0 = c00(u,β ,h) ỹ0 + c01(u,β ,h) ỹ1 + 2 ỹ2−
h4Ṽ 2

�
1+ γ− ỹ0
�2 = 0 (3.124a)

F1 = c10(u,β ,h) ỹ0+ c11(u,β ,h) ỹ1−4
�

1+ u2h2
�

ỹ2+ ỹ3−
h4Ṽ 2

�
1+ γ− ỹ1
�2 = 0 (3.124b)

where the functions cij(u,β ,h) are defined as

c00(u,β ,h) = −
¨��

8h3 + 16βh2
�

u3 +
�
4β − 6h
�

u
�

sinh
�
2βu
�

+
��

16h4+ 16βh3
�

u4 + 12βhu2− 4
�

cosh
�
2βu
�
+ 4

«
/Q(u,β ,h)

(3.125a)

c01(u,β ,h) = 8

¨��
2βh2− h3
�

u3 +
�
β − h
�

u
�

sinh
�
2βu
�

+
�

2βh3u4 +
�

2βh− h2
�

u2 − 1
�

cosh
�
2βu
�
+ h2u2 + 1

«
/Q(u,β ,h)

(3.125b)

c10(u,β ,h) =
1

2
c01(u,β ,h) (3.125c)

c11(u,β ,h) =

¨��
8h3− 16βh2
�

u3 +
�
7h− 10β
�

u
�

sinh
�
2βu
�

+
�
−16βh3u4 +
�

16h2− 14βh
�

u2 + 10
�

cosh
�
2βu
�

− 16h2u2 − 10

«
/Q(u,β ,h)

(3.125d)
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Q(u,β ,h) =
�
h− 2β
�

u sinh
�
2βu
�
+
�

2− 2βhu2
�

cosh
�
2βu
�− 2 (3.125e)

For the sake of completeness, expressions for the coefficients A and B are also provided:

A=
[sinh(2βu)−2βu] ỹ1−[(1+2h2u2) sinh(2βu)+2hu cosh(2βu)−(2h+2β)u] ỹ0

2uh Q(u,β ,h)

B =
[1−cosh(2βu)] ỹ1+[2hu sinh(2βu)+(1+2h2u2) cosh(2βu)−1] ỹ0

2uh Q(u,β ,h)

(3.126)

Nodes Near the Symmetry Boundary

From Equation (3.122), nodal expressions for the nodes i= N − 2 and i= N − 1 are

ỹN−4 + ỹN − 4(1+ u2h2)( ỹN−3 + ỹN−1) + (6+ 8u2h2) ỹN−2 − h4 Ṽ 2

[1+γ− ỹN−2]
2 = 0

ỹN−3 + ỹN+1 − 4(1+ u2h2)( ỹN−2 + ỹN) + (6+ 8u2h2) ỹN−1 − h4 Ṽ 2

[1+γ− ỹN−1]
2 = 0

(3.127)

After translating the boundary conditions (3.86) and (3.90) to the discretized domain via

Equation (3.121), one obtains

ỹN = ỹN−2

ỹN+1 = ỹN−3

(3.128)

Substitution of Equation (3.128) back into (3.127) then gives the desired expressions:

FN−2 = ỹN−4 − 4(1+ u2h2)( ỹN−3 + ỹN−1) + (7+ 8u2h2) ỹN−2 − h4 Ṽ 2

[1+γ− ỹN−2]
2 = 0

FN−1 = 2 ỹN−3 − 8(1+ u2h2) ỹN−2 + (6+ 8u2h2) ỹN−1 − h4 Ṽ 2

[1+γ− ỹN−1]
2 = 0

(3.129)

Equations (3.122), (3.124) and (3.129) form N Finite Difference equations for the un-

known nodal deflection vector ~y =
�

ỹ0 ỹ1 · · · ỹN−1
�

of length N . Notice, however, that

there exists one more unknown for the non-zero electrostatic actuation problem unlike

the zero-tension one: The variable u, which is assumed to be known so far, is actually yet

to be determined from the axial relation (3.120b). Next part explores this topic.
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Discretization of the Axial Relation

Let us now elaborate on the axial relation (3.120b) to furnish one more Finite Difference

equation for the unknowns ~y and u. Relevant relation can be discretized by approxi-

mating the integral term with a summation and employing the derivative approximation

(3.121a) for the integrand. In order to successfully apply the former, range of the inte-

gration must be first split into two regions since the Finite Difference grid is only valid for

the region with β ≤ x̃ ≤ 1
2
:

1
2∫

0

�
d ỹ

d x̃ ′

�2
d x̃ ′ =

β∫

0

�
d ỹI

d x̃ ′

�2
d x̃ ′+

1
2∫

β

�
d ỹII

d x̃ ′

�2
d x̃ ′ (3.130)

The first integration in Equation (3.130) can be carried out analytically: Employing the

expression of ỹI( x̃) from Equation (3.84), substituting A and B from Equation (3.126)

and evaluating the integral gives,

β∫

0

�
d ỹI

d x̃ ′

�2
d x̃ ′ = w00(u,β ,h) ỹ2

0 +w01(u,β ,h) ỹ0 ỹ1 +w11(u,β ,h) ỹ2
1 (3.131)

For the sake of brevity, definitions of the functions wij(u,β ,h) are omitted due to their

highly complicated nature.

Remaining integral in Equation (3.130) can be approximated as a summation through

Simpson’s integral rule [122]:

1
2∫

β

�
d ỹII

d x̃ ′

�2
d x̃ ′ ≈ h

3

¨
ỹ ′20 + ỹ ′2N−1 + 4 ỹ ′21 + 2

N−3
2∑

n=1

�
ỹ ′22n + 2 ỹ ′22n+1

�«
(3.132)

where it is assumed that N is odd. After utilizing the derivative approximation (3.121a)

and re-arranging, one obtains

1
2∫

β

�
d ỹII

d x̃ ′

�2
d x̃ ′ ≈ 1

3h

¨�
φ2

0(u,β ,h) + 1
�

ỹ2
0 +

�
φ2

1(u,β ,h)− 1

2

�
ỹ2

1

+ 2φ0(u,β ,h)φ1(u,β ,h) ỹ0 ỹ1 − 2 ỹ0 ỹ2 +
1

2
ỹ2

N−2 + ỹ2
N−1

+

N−3
2∑

n=1

ỹ2n−1( ỹ2n−1 − ỹ2n+1) + 2 ỹ2n( ỹ2n − ỹ2n+2)

«

(3.133)
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In Equation (3.133), the functions φi(u,β ,h) stem from the representation

ỹ ′0 = ỹ ′I (β) =
φ0(u,β ,h) ỹ0 +φ1(u,β ,h) ỹ1

h
(3.134)

Expressions for these latter functions, which are omitted here for the sake of clarity, can

be obtained by substituting Equation (3.126) into (3.85b). Combining Equations (3.131)

and (3.133), the final Finite Difference equation can be formulated as

Fu = 3Σ0− u2 +

�
g0/t
�2

h

¨
R00(u,β ,h) ỹ2

0 + R11(u,β ,h) ỹ2
1 + R01(u,β ,h) ỹ0 ỹ1

− 2 ỹ0 ỹ2 +
1

2
ỹ2

N−2 + ỹ2
N−1 +

N−3
2∑

n=1

ỹ2n−1( ỹ2n−1 − ỹ2n+1) + 2 ỹ2n( ỹ2n − ỹ2n+2)

«
= 0

(3.135)

with

R00(u,β ,h) = φ2
0(u,β ,h) + 3hw00(u,β ,h) + 1

R01(u,β ,h) = 2φ0(u,β ,h)φ1(u,β ,h) + 3hw01(u,β ,h)

R11(u,β ,h) = φ2
1(u,β ,h) + 3hw11(u,β ,h)− 1

2

For reference purposes, Table 3.6 summarizes the Finite Difference equations derived so

far for the non-zero tension electrostatic actuation problem.

Correction for the Case α= 1

As with the zero-tension electrostatic actuation problem, when the electrostatic load is

applied along the entire beam span, Finite Difference equations must be modified due to

the vanishing continuity border. Once again, letting simply β → 0 does not yield regular

expressions for the nodes in the relevant neighborhood so that a separate analysis must

be conducted in order to remove corresponding singularities. For this purpose, Equation

(3.125) is considered for β � h:

6h3

β3
ỹ0 −

6h

β
ỹ1 + 2 ỹ2 −

h4Ṽ 2

(1+ γ)2
= 0

−3h

β
ỹ0 + (7+ 8u2h2) ỹ1 − 4(1+ u2h2) ỹ2 + ỹ3 −

h4Ṽ 2

�
1+ γ− ỹ1
�2 = 0

99



Table 3.6: Finite Difference equations for the nonzero-tension electrostatic actuation
problem.

NODES NEAR THE CONTINUITY BORDER (i=0, 1)

F0 = c00(u,β ,h) ỹ0 + c01(u,β ,h) ỹ1 + 2 ỹ2 − h4 Ṽ 2

[1+γ− ỹ0]
2 = 0

F1 = c10(u,β ,h) ỹ0 + c11(u,β ,h) ỹ1 − 4
�

1+ u2h2
�

ỹ2 + ỹ3 − h4 Ṽ 2

[1+γ− ỹ1]
2 = 0

INTERIOR NODES (2 ≤ i ≤ N-3)

Fi = ỹi−2 + ỹi+2 − 4(1+ u2h2)( ỹi−1 + ỹi+1) + (6+ 8u2h2) ỹi − h4 Ṽ 2

[1+γ− ỹi]
2 = 0

NODES NEAR THE SYMMETRY BORDER (i=N-2, N-1)

FN−2 = ỹN−4 − 4(1+ u2h2)( ỹN−3 + ỹN−1) + (7+ 8u2h2) ỹN−2 − h4 Ṽ 2

[1+γ− ỹN−2]
2 = 0

FN−1 = 2 ỹN−3 − 8(1+ u2h2) ỹN−2 + (6+ 8u2h2) ỹN−1 − h4 Ṽ 2

[1+γ− ỹN−1]
2 = 0

AXIAL RELATION

Fu = 3Σ0− u2 +
(g0/t)

2

h

¨
R00(u,β ,h) ỹ2

0 + R11(u,β ,h) ỹ2
1 + R01(u,β ,h) ỹ0 ỹ1

−2 ỹ0 ỹ2 +
1

2
ỹ2

N−2 + ỹ2
N−1 +

N−3
2∑

n=1

ỹ2n−1( ỹ2n−1 − ỹ2n+1) + 2 ỹ2n( ỹ2n − ỹ2n+2)

«
= 0

Multiplying the first equation by β2

2h2 and adding it to the second one gives,

�
7+ 8u2h2 − 3β

h

�
ỹ1−
�

4+ 4u2h2− β
2

h2

�
ỹ2+ ỹ3−

β2h2Ṽ 2

2
�

1+ γ− ỹ0

�2−
h4Ṽ 2

�
1+ γ− ỹ1

�2 = 0

Taking the limit as β → 0 (hence ỹ0 → 0) then yields a regular equation for the node

i = 1:

F1 =
�

7+ 8u2h2
�

ỹ1 − 4
�

1+ u2h2
�

ỹ2 + ỹ3 −
h4Ṽ 2

�
1+ γ− ỹ1
�2 = 0 (3.136)

Nodal equation for the i= 2 node must be also modified as its stencil includes i = 0 node.

This issue is solved merely by letting ỹ0 = 0 in the corresponding expression:

F2 = −4(1+ u2h2)( ỹ1 + ỹ3) + (6+ 8u2h2) ỹ2 + ỹ4 −
h4Ṽ 2

�
1+ γ− ỹ2

�2 = 0 (3.137)

A final modification must be made for the axial relation (3.135) as the latter expression
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Table 3.7: Finite Difference equations for the nonzero-tension electrostatic actuation
problem with α = 1.

NODES NEAR THE CLAMPED END (i=1, 2)

F1 =
�

7+ 8u2h2
�

ỹ1 − 4
�

1+ u2h2
�

ỹ2 + ỹ3 − h4 Ṽ 2

[1+γ− ỹ1]
2 = 0

F2 =−4(1+ u2h2)( ỹ1 + ỹ3) + (6+ 8u2h2) ỹ2 + ỹ4 − h4 Ṽ 2

[1+γ− ỹ2]
2 = 0

INTERIOR NODES (3 ≤ i ≤ N-3)

Fi = ỹi−2 + ỹi+2 − 4(1+ u2h2)( ỹi−1 + ỹi+1) + (6+ 8u2h2) ỹi − h4 Ṽ 2

[1+γ− ỹi]
2 = 0

NODES NEAR THE SYMMETRY BORDER (i=N-2, N-1)

FN−2 = ỹN−4 − 4(1+ u2h2)( ỹN−3 + ỹN−1) + (7+ 8u2h2) ỹN−2 − h4 Ṽ 2

[1+γ− ỹN−2]
2 = 0

FN−1 = 2 ỹN−3 − 8(1+ u2h2) ỹN−2 + (6+ 8u2h2) ỹN−1 − h4 Ṽ 2

[1+γ− ỹN−1]
2 = 0

AXIAL RELATION

Fu = 3Σ0 − u2 +
(g0/t)

2

h

¨
− 1

2
ỹ2

1 +
1
2

ỹ2
N−2 + ỹ2

N−1

+

N−3
2∑

n=1

ỹ2n−1( ỹ2n−1 − ỹ2n+1) + 2 ỹ2n( ỹ2n − ỹ2n+2)

«
= 0

also becomes singular when α tends to unity. Referring to Equation (3.130), it is noticed

that first integral vanishes for α = 1, so that only the second integral needs consideration.

Since ỹ ′0 = 0 for α = 1, it follows from Equation (3.134) that the functions φi(u,β ,h)

must be excluded from Equation (3.133). If furthermore ỹ0 is set to zero, Equation

(3.135) is then transformed to,

Fu = 3Σ0 − u2 +

�
g0/t
�2

h

¨
− 1

2
ỹ2

1 +
1

2
ỹ2

N−2 + ỹ2
N−1

+

N−3
2∑

n=1

ỹ2n−1( ỹ2n−1 − ỹ2n+1) + 2 ỹ2n( ỹ2n − ỹ2n+2)

«
= 0

(3.138)

Table 3.7 lists corrected Finite Difference equations for the nonzero-tension electrostatic

actuation problem with α = 1.
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3.4.2.2 Solution of the Finite Difference Equations

Finite Difference equations shown in Table (3.6) compose N+1 equations in the unknown

nodal deflection vector ~y =
�

ỹ0, ỹ1, · · · ỹN−1
�

and the axial variable u. In order to solve

these equations for the depicted unknowns, different strategies are tried in succession

which are discussed next.

Direct Solution Approach:

In the direct solution approach, the method outlined in §3.4.1.4 is extended by concate-

nating the unknowns ~y and u into a new array ~v. Jacobian matrix is then evaluated

from

Jij =
∂Fi

∂vj

It can verified trivially that J ceases to be a 5-band diagonally-dominant one due to

global dependence of u on ~y . After implementing subroutines for the equations Fi and

the Jacobian matrix J , it is attempted to solve the relevant system of equations by calling

fsolve. Unfortunately, a uniform convergence could not be attained and solutions are

noted to be very sensitive to the supplied initial guess. Providing smart initial guesses

(like analytical solutions of approximate equivalent problems) also proved fruitless.

Shooting Approach with Direct Substitution:

Having become unsuccessful with the previous method, a shooting approach described

in [82] is adapted for the current problem next. In this approach, nodal equations Fi

and the discretized axial relation Fu are handled separately: The problem is treated to

be consisting of two distinct systems, ~F and Fu, whose corresponding unknowns ~y and u

are assumed known from the viewpoint of the other one. In other words, u is assumed

known when solving ~F and vice versa7. A solution is then attempted with the following

procedure:

i. An initial guess is calculated for the unknowns ~y and u from the approximate uni-

7 Note that Jacobian matrix of the system ~F becomes a 5-band diagonally-dominant matrix in this case.
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form distributed load problem: Employing qe( x̃) in the undeflected position, which

is in fact a uniform distributed load, deflection profile ~yconst and uconst are calculated

using the analytical derivation established in §3.2.1.3.

ii. ~y1 is evaluated for u = uconst by calling fsolve with an associated initial guess

~yconst.

iii. u1 is calculated from Fu using ~y1 determined in the previous step.

iv. ~y2 is computed for u = u1 by calling fsolve with the initial guess ~y1.

v. Steps (iii)-(iv) are repeated until ỹmax = ỹN−1 and u converge within a prescribed

tolerance.

Presented algorithm is demonstrated to work well for medium to large tensile residual

stress levels. For low tensile stresses and higher g0

t
ratios, however, convergence is noted

to slow down considerably (and even break down for the stress-free case). The cause for

such a phenomenon is later identified as an inherent positive feedback, which may be

exemplified qualitatively for the stress-free case as follows: Suppose a small value of u is

generated in an iteration step. For a small u, ỹmax tends to be large (since smaller tension

would enable larger deflections physically) and when the relevant profile is substituted

back to Fu, u is updated to a considerably large value. In the next iteration, ỹmax be-

comes too small (as excessive tension reduces deflections appreciably), causing the next

u value to be even smaller. Hence for the case of Σ0 = 0, u and ỹmax stagnate between

two extreme values. A positive Σ0 serves to introduce a means of damping into the it-

erations by weakening the feedback cycle in Fu, thus allowing convergence to be attained.

Perceived deficiency of the current method soon led to development of an improved one,

as explained subsequently.

Shooting Approach with Interpolation:

Poor convergence attributes of the previous method can be improved dramatically when

direct substitution approach is replaced with an interpolation-based one. This argument
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Figure 3.18: An illustration of the proposed linear and quadratic interpolation ap-
proaches employed in the shooting method.

has its roots in the following idea: It is wiser to monitor the outcomes in previous itera-

tions and shoot a value based on those results rather than blindly using the outcome itself.

Proposed approach makes use of the variable u for this purpose. Notice that convergence

in u implies, uk fed into the kth iteration step must generate an outcome uk+1 (from

uk → ~yk+1 → uk+1 cycle in the previous method) that is close to uk. From a graphical

point of view, if fed and generated values of u are plotted in uk-uk+1 coordinates, these

points must lie close to uk = uk+1 line. Exploiting the offset data of those points from this

line, one can then estimate a proper u value that should be located on that line, i.e. the

converged u value.

Figure 3.18 illustrates two methods for calculating a proper u estimate. The simpler

linear interpolation method requires two uk − uk+1 pairs and returns the particular u

value at the intersection of uk = uk+1 line and the line connecting the points. Note that

such an approach inherently solves the stagnation problem occurring with the previous

method by forcing u values away from the extreme bounds. The quadratic interpola-

tion method employs three uk − uk+1 pairs and determines relevant u estimate from the

intersection of uk = uk+1 line with the second order polynomial passing through these

points. This latter interpolation method can be applied just after the linear interpolation

and uk→ ~yk+1→ uk+1 iteration cycle in order to yield an improved u estimate.

Having established useful estimation means, skeleton of the improved shooting algorithm

is then constructed as follows:
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i. Initial guesses ~y0 = ~yconst and u0 = uconst are calculated from the approximate

uniform distributed load problem by utilizing qe( x̃) in the undeflected position. In

the case of a voltage sweep, however, those guesses are replaced with ~y and u of

the nearest converged solution.

ii. u0 → ~y1 → u1 cycle is executed: ~y1 is evaluated for u = u0 by calling fsolve with

an associated initial guess ~y0. Subsequently, u1 is calculated from Fu using ~y1.

iii. u1→ ~y2→ u2 cycle is executed.

iv. Having collected two uk − uk+1 pairs, a linear interpolation is conducted to obtain

the next estimate u = ulin,1. Subsequently, ulin,1→ ~y3→ u3 cycle is executed.

v. With three uk − uk+1 pairs at hand, a quadratic interpolation is performed to de-

termine the next estimate u = uquad,1. Subsequently, uquad,1 → ~y4 → u4 cycle is

executed.

vi. Steps (iv)-(v) are repeated until ỹmax = ỹN−1 and u converge within a prescribed

tolerance.

Proposed interpolation-based shooting algorithm is found to work successfully. In partic-

ular, not only previously mentioned stagnation problem is removed, but also convergence

rate is increased substantially: It is observed that a fractional error of 10−6 is attainable

in both ỹmax and u with only 2-3 iterations for the residual stress-free case.

Having realized an improved numerical solution algorithm, it is next continued to an

investigation of convergence and consistency properties of obtained Finite Difference so-

lutions.

Convergence and Consistency Analyses

Convergence of the Finite Difference formulation for the nonzero electrostatic actuation

problem is analyzed using the method outlined in §3.4.1.4. For this purpose, problem

parameters γ, g0/t and α are fixed, a voltage sweep is performed up to the pull-in border

with 10 points, and rms errors in ỹmax and u are monitored as a function of N for several

Σ0 values. Obtained results are presented in Figure 3.19.
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Figure 3.19: Rms convergence error in ỹmax and u as a function of N for the non-zero
tension electrostatic actuation problem with Σ0 as a parameter (γ = 0.03, α = 0.5,
g0/t = 2.0).

It is observed from Figure 3.19(a) that worst rms error in ỹmax is about 2× 10−4 which

occurs for Σ0 = 0. With increased Σ0, the effect of N on convergence becomes prominent

and relevant error decreases further. Rms error in u follows essentially the same trend

with that of ỹmax, except for a level shift: Figure 3.19(b) depicts that worst rms error in

u is about 1.2× 10−3. Based on the obtained results and following the convention with

the zero-tension problem, it becomes reasonable to pick N = 251 for the number of grid

points, which yields an accuracy sufficient for simulation purposes.

In order to study consistency of the Finite Difference solutions for the non-zero tension

electrostatic actuation problem, relevant solutions are compared with the zero-tension

ones. Justification for such an approach can be described as follows: It was established

in §3.4.1.4 that Finite Difference solutions of the zero-tension problem were consistent

with the original system, which was demonstrated from the good agreement with the

approximate analytical solution. It is moreover expected that nonzero-tension solutions

must approach to the zero-tension ones for Σ0 = 0 and small g0/t ratios. Hence, one can

assess consistency of the former by observing overlapping ỹmax− Ṽ traces of zero-tension

and non-zero tension solutions (with Σ0 = 0), at least for small deflections. Figure 3.20

provides such traces for a sample problem configuration. An inspection of Figure 3.20

shows that curves with Σ0 = 0 indeed agree well with the corresponding zero-tension

solution. Furthermore, the agreement range is noted to improve with smaller g0/t ratios,
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as expected. In the light of these observations, consistency of the Finite Difference solu-

tions can be ascertained for the nonzero-tension electrostatic actuation problem.

It might be worthwhile to examine Figure 3.20 further. The effect of axial tension on

deflection characteristics is readily noticed upon a comparison of zero-tension solution

with nonzero-tension ones. In particular, as evidenced by 3Σ0 = 10 trace, introduction of

a tensile residual stress into the system reduces the deflections considerably. Increasing

g0/t ratio, moreover, serves to amplify nonlinear stretching effects and thus to impede

deflections as the voltage is increased. Therefore, ignoring the axial effects in a fixed-

fixed beam system calls for a significant degradation in accuracy unless the operation is

confined within a very small fraction of the air-gap (∼ 10% for Σ0 = 0, even smaller for

Σ0 > 0).
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Figure 3.20: A comparison between ỹmax−Ṽ characteristics of zero-tension and non-zero
tension electrostatic actuation problems (γ = 0.03, α = 0.5, N =251).
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3.4.2.3 Pull-in Phenomenon

According to the experience gained in zero-tension electrostatic actuation problem, one

would expect to observe pull-in phenomenon if the voltage range in Figure 3.20 is ex-

tended. Such a behavior is indeed present for the non-zero tension problem as Figure

3.21 demonstrates. A difference is noted, however, between zero-tension and nonzero-

tension solutions around corresponding pull-in regions: For the zero-tension problem,

the slope of the curve ∂ ỹmax

∂ Ṽ
tends to +∞ at pull-in; while the nonzero-tension solutions

exhibit a finite slope at their cusp. It is moreover recognized that pointed difference be-

comes more pronounced for increased g0/t ratios. Furthermore, maximum deflection

at the pull-in does not seem to exceed 0.4g0 even for high g0/t ratios, which in reality

should according to [113]. These observations actually indicate a weakness of the pro-

posed Finite Difference algorithm for the nonzero-tension problem: Relevant solutions

become unstable prior to actual pull-in. This discovered deficiency of implemented Finite

Difference algorithm thus, unfortunately, precludes accurate pull-in voltage extraction for

beams in axial tension.

In order to compensate for the lack of an accurate pull-in voltage extraction tool and to

be able to predict pull-in voltages hereafter for beams in axial tension, analytical pull-in

voltage expressions are investigated in the next section.

3.5 Pull-in Analyses and Development of Pull-in Voltage Expressions

In this section, mechanical knowledge accumulated throughout the previous sections is

utilized in order to derive expressions for the pull-in voltage. On-going study starts with

a one-dimensional pull-in analysis wherein analytical expressions are established for rel-

evant parameters. Subsequently, corrections are applied to the proposed formulation

using the results of Finite Difference simulations. Finally, obtained formulation is tested

for sample configurations reported in the literature.

3.5.1 One-Dimensional Pull-in Analysis

Following derivation is based on the widely-known one-dimensional pull-in analysis, a

good example of which can be found in [85]. Figure 3.22 illustrates the problem con-
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Figure 3.21: Typical ỹmax − Ṽ characteristics for the non-zero tension electrostatic actu-
ation problem depicting the pull-in instability (γ = 0.03, α = 0.5, N =251).

figuration: A massless plate is attached to a lumped spring and is suspended above an

electrode with an initial air-gap spacing of g0. The electrode has a length/width of W/w

respectively and is covered with a dielectric layer of thickness tdi and relative permittivity

εdi. The lumped spring has an effective stiffness of keff and its other end is affixed to

an immobile support. As depicted in Figure 3.22(b), application of a non-zero voltage V

between the plate and the electrode causes the plate to deflect by an amount y. In order

to quantify the deflection-voltage characteristics of the presented system, one begins by

writing the force-balance equation:

Fe = Fr

where Fe and Fr are the electrostatic attraction force and the restoring force of the spring

acting on the plate respectively. Employing the expression for qe(x) derived in §3.3, it is

easy to show that

Fe =
ε0wW V 2

2
�

g0+ tdi/εdi− y
�2 (3.139)

Moreover, Fr is given by

Fr = ykeff(y) (3.140)

109



y
g
0

keff

tdi
(ε )
di

VW

(w)

(a) V = 0

keff

Fe
g
0
y-

Fr

V

(b) V , 0

Figure 3.22: An illustration of one-dimensional lumped model for pull-in analysis.

In general, keff might depend on the deflection y and Equation (3.140) reflects this de-

pendency explicitly. Combining Equations (3.139) and (3.140), one arrives at

ykeff(y) =
ε0wW V 2

2
�

g0+ tdi/εdi− y
�2 (3.141)

It is convenient to normalize Equation (3.141) using previously defined dimensionless

parameters ỹ , γ, α and Ṽ as:

ỹkeff( ỹ) =
E′αw Ṽ 2

12 (L/t)3
�

1+ γ− ỹ
�2 (3.142)

The parameters E′, α, L and t in Equation (3.142) actually pertain to beam properties;

but they can be treated as parameters of keff owing to lumped representation of the actual

structure.

Expressions for pull-in parameters can be found by setting the derivative of Ṽ with respect

to ỹ to zero. Taking derivatives of both sides of Equation (3.142) with respect to ỹ and

re-arranging yields,

∂Ṽ

∂ ỹ
=

6 (L/t)3

E′αwṼ

∂

∂ ỹ

¨
ỹ(1+ γ− ỹ)2 keff( ỹ)

«
(3.143)

Setting Equation (3.143) to zero gives the following characteristic equation for pull-in

deflection ỹPI:

(1+ γ− ỹPI)

�
(1+ γ− 3 ỹPI) keff( ỹPI) + ỹPI(1+ γ− ỹPI)

∂keff

∂ ỹ

���
ỹ= ỹPI

�
= 0 (3.144)
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Since ỹ ≤ 1, first factor appearing in Equation (3.144) cannot be zero. Accordingly, ỹPI

must satisfy:

(1+ γ− 3 ỹPI) keff( ỹPI) + ỹPI(1+ γ− ỹPI)
∂keff

∂ ỹ

���
ỹ= ỹPI

= 0 (3.145)

Once a solution is found for ỹPI from Equation (3.145), pull-in voltage ṼPI can be deter-

mined from Equation (3.142) with ỹ = ỹPI.

It is informative to investigate characteristic equation (3.145) and associated ṼPI for

zero-tension and nonzero-tension cases using the effective spring constant formulated

in §3.2.4. These cases are discussed in the subsequent articles.

3.5.1.1 Pull-in Parameters for Zero-Tension Case

Letting u→ 0 in Equation (3.42) and using the property

lim
u→0
ζ(u,α) = α4 − 2α3 + 2α

effective spring constant for zero-tension case can be obtained as,

keff =
32E′w

(L/t)3 (α3− 2α2 + 2)
(3.146)

It is noticed from Equation (3.146) that keff is independent of ỹ . Using this information

in Equation (3.145) gives

(1+ γ− 3 ỹPI) keff = 0

or

ỹPI =
1+ γ

3
(3.147)

Equation (3.147) states that normalized pull-in deflection solely depends on γ in a linear

manner when axial effects are ignored. Substitution of Equations (3.146)-(3.147) in

(3.142) then establishes the pull-in voltage expression for zero-tension case:

ṼPI =

r
512

9

(1+ γ)3

α4 − 2α3 + 2α
(3.148)
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3.5.1.2 Pull-in Parameters for Nonzero-Tension Case

For the nonzero-tension case, axial parameter u enters into the list of problem variables.

Following Equation (3.42), effective stiffness of the spring can then be expressed as,

keff =
32E′αw

(L/t)3 ζ(u,α)
(3.149)

keff given in Equation (3.149) is noted to depend on ỹ implicitly through the axial rela-

tion:

u2 = ỹ2
�

g0

t

�2
Ψ(u,α) + 3Σ0 (3.150)

In order to calculate ∂ keff/∂ ỹ , one may apply chain rule

∂keff

∂ ỹ
=
∂keff

∂u

∂u

∂ ỹ
(3.151)

Partial derivative of keff with respect to u can be evaluated from Equation (3.149):

∂keff

∂u
= −32E′αw

(L/t)3

∂ζ(u,α)
∂u

ζ
2
(u,α)

(3.152)

In order to calculate ∂ u/∂ ỹ , one may differentiate both sides of Equation (3.150) with

respect to u and re-arrange the terms to obtain,

∂ ỹ

∂u
=

2u− ỹ2
�

g0

t

�2 ∂Ψ
∂u

2 ỹ
�

g0

t

�2
Ψ(u,α)

or

∂u

∂ ỹ
=

1
∂ ỹ

∂u

=
2 ỹ
�

g0

t

�2
Ψ(u,α)

2u− ỹ2
�

g0

t

�2 ∂Ψ
∂u

(3.153)

Equations (3.152) and (3.153) can be combined to yield,

∂keff

∂ ỹ
= −64E′αw

(L/t)3

∂ζ(u,α)
∂u

ζ
2
(u,α)

ỹ
�

g0

t

�2
Ψ(u,α)

2u− ỹ2
�

g0

t

�2 ∂Ψ
∂u

(3.154)

Substituting Equation (3.154) into the characteristic equation (3.145) and performing

subsequent manipulation then gives:

32E′αw

(L/t)3 ζ
2
(uPI,α)

¨
(1+ γ− 3 ỹPI) ζ(uPI,α)

− 2(1+ γ− ỹPI)
u2

PI− 3Σ0

2uPI− ỹ2
PI

�
g0/t
�2 ∂Ψ
∂u

���
u=uPI

∂ζ

∂u

���
u=uPI

«
= 0
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which in turn implies

(1+ γ− 3 ỹPI)

�
2uPI− ỹ2

PI

�
g0/t
�2 ∂Ψ
∂u

���
u=uPI

�
ζ(uPI,α)

= 2(1+ γ− ỹPI)
�

u2
PI− 3Σ0

� ∂ζ
∂u

���
u=uPI

(3.155)

Notice that the quantities ỹPI and uPI are further related by the axial relation (3.150):

u2
PI = ỹ2

PI

�
g0

t

�2
Ψ(uPI,α) + 3Σ0 (3.156)

The pull-in parameters ỹPI and uPI can be solved from Equations (3.155)-(3.156) via

numerical means. Having determined those unknowns, pull-in voltage can be calculated

from Equation (3.142) as,

ṼPI =

È
384

ỹPI (1+ γ− ỹPI)
2

ζ(uPI,α)
(3.157)

Equations (3.155)-(3.157) are valid for tensile axial state. If one is interested in compres-

sive axial state instead, corresponding relations can be obtained via the transformation

u→ ju. Relevant results are

(1+ γ− 3 ỹPI)

�
2uPI+ ỹ2

PI

�
g0/t
�2 ∂Ψc

∂u

���
u=uPI

�
ζc(uPI,α)

= 2(1+ γ− ỹPI)
�

u2
PI+ 3Σ0

� ∂ζc

∂u

���
u=uPI

(3.158a)

−u2
PI = ỹ2

PI

�
g0

t

�2
Ψc(uPI,α) + 3Σ0 (3.158b)

ṼPI =

È
384

ỹPI (1+ γ− ỹPI)
2

ζc(uPI,α)
(3.158c)

Figure 3.23 provides plots of the pull-in parameters ỹPI and ṼPI with respect to g0/t

for several Σ0 values. It is observed from Figure 3.23(a) that stable travel range of the

lumped system can be extended up to 0.6g0 for increased g0/t ratios, a result which

supports the argument in [113]. It is moreover noted that residual stress has an apparent

impact on ỹPI: For g0/t = 2.0 as an example, ỹPI ranges between 0.36-0.55 as 3Σ0 is

varied in [−5,100] interval. A comparison of these ỹPI results with that of the zero-

tension one clearly highlights the lack of accuracy of the latter formulation. Axial factors

also have an appreciable effect on ṼPI as depicted in Figure 3.23(b): Pull-in voltage is
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Figure 3.23: A plot of pull-in parameters ỹPI and ṼPI as a function of g0/t for several Σ0

values (γ = 0.03, α= 0.5).
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recognized to increase with higher g0/t ratios and increasing Σ0 values, a trend which

confirms physical intuition. Notice furthermore from the same figure that zero-tension

ṼPI formulation appears to be applicable only to the particular case with Σ0 = 0 and

g0/t ≤ 1.

3.5.2 Corrections to Pull-in Formulation using Finite Difference Simulation Results

Pull-in parameter expressions derived in §3.5.1 do not account for some of the higher-

dimensional properties of the actual fixed-fixed beam system and relevant formulation

needs to be corrected in order to maintain a desired level of accuracy. Two main attributes

one-dimensional model fails to capture are:

• Charge-redistribution resulting from position-dependent beam deflection profile,

• Fringing capacitances caused by out-of-plane and in-plane fringing electric fields.

First of these attributes yields a position-dependent electrostatic force and its effects can

be characterized using results of the Finite Difference simulations detailed earlier in this

chapter. The latter one, on the other hand, is not considered in this work as attention is

particularly restricted to wide beams for which the effect of out-of-plane8 fringing fields

is negligible9 [86].

In order to quantify the effect of charge-redistribution on pull-in parameters, relevant

quantities must be extracted first from Finite Difference simulations. It was noted in

§3.4.2.3 that such a task could not be accomplished with the nonzero-tension implemen-

tation at hand due to instability of the algorithm before the actual pull-in. Consequently,

it is decided to rely on simulation results of the zero-tension implementation. One might

argue at this point about the accuracy of such a partial characterization; however, relevant

procedure turns out to yield acceptable results as it will be shown shortly.

8 The effect of in-plane fringing fields for the case of partial electrodes (α , 1) can be shown to be
negligible for small g0 [123].

9 Relevant effect can be incorporated into Finite Difference simulations of narrow beams with an addi-
tional correction term; however, such a procedure is not attempted in this work for the sake of simplicity.
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Figure 3.24: Coefficients fṼ(α) and fỹ(α) describing the effect of charge re-distribution
on ṼPI and ỹPI. Fourth-order polynomials are fitted for each coefficient.

3.5.2.1 Characterization of the Charge Re-distribution Effect

Charge re-distribution effect is characterized by exploring dependencies of simulated pull-

in quantities ṼPI and ỹPI on zero-tension problem parameters γ and α in the light of the

functional forms established in §3.5.1. For this purpose, ṼPI and ỹPI are first extracted for

a wide range of γ and α parameters via a binary search algorithm mentioned in §3.4.1.5.

Next, it is attempted to model the relevant effect as a simple multiplicative coefficient by

letting

ỹPI,FD = fỹ ỹPI,1D

ṼPI,FD = fṼ ṼPI,1D

(3.159)

where subscripts FD and 1D denote quantities obtained from Finite Difference simu-

lations and one-dimensional analysis respectively. Upon a survey of the coefficients fṼ

and fỹ, a univariate α dependence is discovered which can be described accurately as a

fourth-order polynomial. Figure 3.24 presents obtained results. Figure 3.24(a) shows that

pull-in voltage increases slightly due to charge re-distribution, with the effect growing as

α tends to unity. A similar trend is noted for pull-in deflection as Figure 3.24(b) demon-

strates. Physical reasoning supports these observations: As α gets smaller, electrostatic

force gets confined to a smaller span in which position dependence would eventually

cease for small enough α, thus making the coefficients fṼ and fỹ approach unity. Con-

versely, as α increases, beam center becomes subject to a higher electrostatic force and

it becomes harder for the beam to reach pull-in since off-center sections experience less
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Table 3.8: Fourth-order polynomial fits for fṼ(α) and fỹ(α).

FUNCTION FITTED POLYNOMIAL POLYNOMIAL COEFFICIENTS

fṼ(α)
4∑

n=0

anα
n

a4 = 0.338, a3 = −0.960
a2 = 0.801, a1 = −0.074

a0 = 1.006

fỹ(α)
4∑

n=0

anα
n

a4 = 0.489, a3 = −1.283
a2 = 0.893, a1 = 0.109

a0 = 0.983

overall attraction; a response which is equivalent to elevated fṼ and fỹ values.

Table 3.8 provides the coefficients of the fourth-order polynomials fitted for fṼ(α) and

fỹ(α).

3.5.2.2 Modified Formulation for Pull-in Parameters

Having characterized charge re-distribution effect and established expressions for its cor-

rection, final forms of the pull-in quantities may now be formulated. At this point, it is

preferred to develop two types of formulation: One which is prominently based on one-

dimensional zero-tension model and hence simpler to employ, and another which includes

intricate effects of axial tension/compression on ỹPI and consequently more complex to

utilize. These types are discussed below.

1D Zero-Tension Model Based (0AX) Formulation

This model does not account for the dependence of pull-in deflection on axial effects and

assumes the following form for ỹPI:

ỹPI = fỹ(α)
1+ γ

3
(3.160)

For the pull-in voltage, on the other hand, the model incorporates axial effects by re-

placing zero-tension effective stiffness with the nonzero-tension one in Equation (3.142).

After correcting for the charge re-distribution effect, assumed ṼPI form becomes:

ṼPI = fṼ,2(α)

È
512

9

(1+ γ)3

ζ(uPI,α)
(3.161a)
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where

fṼ,2(α) = fṼ(α)

�
3− fỹ(α)

2

� p
fỹ(α) (3.161b)

In Equation (3.161a), uPI is determined from the axial relation (3.156) with the assumed

form of ỹPI.

1D Nonzero-Tension Model Based (NAX) Formulation

This latter model is essentially a repetition of the corresponding one-dimensional one

except for a correction term for charge re-distribution effects. Relevant formulation for

tensile axial state is repeated below for convenience:

(1+ γ− 3 ỹPI)

�
2uPI− ỹ2

PI

�
g0/t
�2 ∂Ψ
∂u

���
u=uPI

�
ζ(uPI,α)

= 2(1+ γ− ỹPI)
�

u2
PI− 3Σ0

� ∂ζ
∂u

���
u=uPI

(3.162a)

u2
PI = ỹ2

PI

�
g0

t

�2
Ψ(uPI,α) + 3Σ0 (3.162b)

ṼPI = fṼ(α)

È
384

ỹPI (1+ γ− ỹPI)
2

ζ(uPI,α)
(3.162c)

Results can be extended to compressive axial state via the transformation u→ j u. It can

be realized from Equation (3.162) that a correction is not applied to ỹPI. This choice

is motivated partly by self-determined nature of the relevant parameter and mainly by

observed overestimation of pull-in voltages.

3.5.3 Validation of the Proposed Pull-in Formulations

Having completed development of proposed pull-in formulations, their validity is investi-

gated next. For this purpose, sample fixed-fixed beam configurations are surveyed in the

literature whose pull-in characteristics are characterized accurately using Finite Element

Analysis (FEA) software. In particular, thirteen such configurations are found and these

are listed in Table 3.9 along with their geometrical/material parameters. Accuracy of the

proposed formulations is then assessed by comparing calculated pull-in voltages of those
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Table 3.9: Fixed-fixed beam configurations employed for testing the proposed pull-in
formulation. Configurations 1-7 and 8-13 are adopted from [86] and [80] respectively.

CONFIGURATION

NUMBER

PROBLEM PARAMETERS

E
ν

σ0 L w t g0 α γ
(GPa) (MPa) (µm) (µm) (µm) (µm)

1 169 0.06 0 250 50 3.0 1.0 1 0
2 169 0.32 0 250 50 3.0 1.0 1 0
3 169 0.06 100 250 50 3.0 1.0 1 0
4 169 0.06 -25 250 50 3.0 1.0 1 0
5 169 0.06 0 350 50 3.0 1.0 1 0
6 169 0.06 100 350 50 3.0 1.0 1 0
7 169 0.06 -25 350 50 3.0 1.0 1 0
8 77 0.33 0 300 0.5 1.0 1.0 1 0
9 77 0.33 0 300 50 0.5 6.0 1 0
10 77 0.33 100 300 50 3.0 1.0 1 0
11 70 0.33 60 300 10 1.0 2.0 1 0
12 70 0.33 60 300 10 1.0 2.0 0.33 0
13 77 0.33 0 300 50 3.0 1.0 0.10 0

Table 3.10: Pull-in voltage data for test configurations #1-7 calculated using various
methods.

CALCULATION

METHOD

PULL-IN VOLTAGE (V)
# 1 #2 #3 #4 #5 #6 #7

CoSolve EM FEA [86] 40.10 41.20 57.60 33.60 20.30 35.80 13.70
[76] 39.46 41.58 56.83 33.66 20.13 35.37 13.72
[80] 40.37 42.53 58.85 34.11 20.59 36.75 13.63
[87] 35.54 37.45 51.94 30.08 18.13 32.57 12.08
[88] 39.31 41.42 57.44 33.27 20.06 36.02 13.36
[89] 39.11 41.20 57.80 32.81 19.95 36.36 12.93

This work (0AX) 39.09 41.19 57.00 33.03 19.95 35.60 13.19
This work (NAX) 39.53 41.64 57.68 33.38 20.17 36.04 13.31

configurations with the ones obtained from FEA tools. Moreover, for the sake of a richer

comparison, pull-in voltage results determined with other formulations existing in the lit-

erature are also analyzed. Tables 3.10-3.11 and 3.12-3.13 provide relevant comparisons

of pull-in voltages and associated fractional errors with respect to FEA results for config-

urations #1-7 and #8-13 respectively.

Upon an inspection of Table 3.11, it is realized that accuracy of the proposed pull-in for-

mulations are indeed acceptable for configurations #1-7. In particular, worst case frac-

tional errors for zero-tension (0AX) and nonzero-tension (NAX) formulations are found
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Table 3.11: Fractional error of the pull-in voltage data calculated using various formula-
tions with respect to CoSolve EM Finite Element Analysis (FEA) results [86] for configu-
rations #1-7.

PULL-IN

FORMULATION

PULL-IN VOLTAGE ERROR (%)
# 1 #2 #3 #4 #5 #6 #7 Rms

[76] -1.59 0.92 -1.33 0.18 -0.81 -1.21 0.12 1.02
[80] 0.66 3.23 2.17 1.53 1.45 2.66 -0.54 1.98
[87] -11.36 -9.11 -9.83 -10.48 -10.67 -9.03 -11.83 10.38
[88] -1.97 0.52 -0.28 -0.99 -1.21 0.6 -2.48 1.37
[89] -2.48 0.01 0.34 -2.35 -1.71 1.57 -5.65 2.65

This work (0AX) -2.51 -0.03 -1.04 -1.68 -1.75 -0.56 -3.69 1.97
This work (NAX) -1.43 1.08 0.15 -0.67 -0.66 0.67 -2.84 1.34

Table 3.12: Pull-in voltage data for test configurations #8-13 calculated using various
methods.

CALCULATION

METHOD

PULL-IN VOLTAGE (V)
# 8 #9 #10 #11 #12 #13

Coventorware FEA [80] 2.50 89.60 36.00 39.70 49.70 38.10
[76] 2.63 19.17 34.68 35.49 N/A N/A
[80] 2.87 79.90 36.04 37.72 44.64 39.67
[87] 3.20 17.62 31.94 34.92 N/A N/A
[88] 3.54 19.48 35.32 38.62 46.71 40.21
[89] 2.34 18.79 35.67 37.10 N/A N/A

This work (0AX) 3.69 79.71 34.91 37.80 46.58 39.85
This work (NAX) 3.70 96.08 35.34 38.13 46.62 39.85

Table 3.13: Fractional error of the pull-in voltage data calculated using various formula-
tions with respect to Coventorware Finite Element Analysis (FEA) results [80] for config-
urations #8-13.

PULL-IN

FORMULATION

PULL-IN VOLTAGE (V)
# 8 #9 #10 #11 #12 #13

[76] 5.23 -78.61 -3.68 -10.60 N/A N/A
[80] 14.94 -10.83 0.11 -4.98 -10.18 4.12
[87] 28.02 -80.34 -11.27 -12.04 N/A N/A
[88] 41.59 -78.25 -1.88 -2.73 -6.02 5.54
[89] -6.52 -79.03 -0.92 -6.55 N/A N/A

This work (0AX) 47.74 -11.03 -3.03 -4.78 -6.27 4.58
This work (NAX) 47.99 7.23 -1.83 -3.95 -6.19 4.59
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to be 3.70% and 2.84% respectively compared to CoSolve EM FEA results [86]. Further-

more, overall accuracy performance of these formulations are noted to be close to, if not

superior than, other pull-in formulations as evidenced by the rms error tab in the same

table: Rms errors for seven test cases are read as 1.97% and 1.34% for 0AX and NAX

formulations, which are indeed comparable to the least error of 1.02% yielded by [76].

According to those results, it can be stated that 0AX and NAX pull-in formulations pre-

sented in this work perform well in terms of accuracy for the case of wide beams having

a small g0/t ratio.

Accuracy trends of all formulations change dramatically for configurations #8-13 as evi-

denced by Table 3.13. In particular, worst case fractional errors of 0AX and NAX formula-

tions reach up to 50% compared to Coventorware FEA results [80], a behavior implying

break-down of one of the fundamental assumptions: Relevant error occurs only for con-

figuration #8, which actually describes an extreme case of a narrow beam (w < t and

w < g0) permitting a significant fringing field contribution. Since a fringing field cor-

rection for narrow beams is not intended within the scope of this study and it is mainly

focused on wide beams, relevant configuration therefore should not be regarded as a valid

one for 0AX and NAX formulations. Accordingly, #8 is excluded from valid configurations

in Table 3.13 in the remainder of this discussion, while noting that there exists formula-

tions that successfully account for such fringing-effects ( [76] and [80] specifically).

For configurations #9-13 in Table 3.13, proposed pull-in formulations yield comparable,

if not improved, errors to those of other applicable ones. In particular, #9 appears as

another extreme configuration for which 0AX and NAX formulations exhibit their next

severe accuracy degradation with worst case errors of 11.03% and 7.23% respectively.

This latter extreme case features a wide beam with a very high g0/t ratio which in turn

promotes nonlinear stretching effects considerably. Except for [80], other formulations

do not account for this axial effect and this is the reason why they yield errors in the order

of 80%. Notice that NAX formulation provides a better estimate for the pull-in voltage of

this configuration (7.23% versus 10.83% of [80]), which is due to proper accounting of

ỹPI extension. Configuration #10 is similar to the ones provided in Table 3.11 and all for-

mulations give corresponding similar results. Configuration #11 depicts a less prominent
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case of a medium g0/t ratio, which is handled well by formulations accounting for the

associated nonlinear stretching effect. The final configurations #12-13 are distinguished

by their partial electrode span (i.e. α , 1) for which formulations of [76,87,89] are not

applicable and errors of the remaining ones resemble each other.

Previous observations serve to validate the proposed 0AX and NAX pull-in formulations

for the case of wide beams featuring negligible fringing fields. Both formulations are

found to yield accuracy levels comparable to existing pull-in expressions in the literature.

For configurations having small to medium g0/t ratios, it might be preferable to utilize

0AX formulation due to its reduced computational complexity, without sacrificing the

accuracy too much. For increased g0/t ratios however, NAX formulation seems to yield

improved results.

3.6 Contact Electromechanics of Electrostatically Actuated Fixed-Fixed

Beams

Previous sections covered the electrostatic actuation problem of fixed-fixed beams for

stable deflections and investigated the pull-in phenomenon limiting this stable operation.

In order to complete the discussion on electromechanics of relevant actuator systems, pre-

pull-in characteristics established earlier are now complemented with the ones beyond

pull-in in this section. Outline of this section resembles to that of the pre-pull-in case:

Governing normalized equations are provided first, boundary conditions are examined

second, a Finite Difference scheme for the contact problem is developed next and relevant

numerical solutions are discussed at the end.

3.6.1 Normalized Governing Equations for the Electromechanical Contact Problem

Figure 3.25 illustrates the configuration for the electromechanical contact problem of

fixed-fixed beams in terms of the normalized quantities developed in §3.3.2. It is assumed

currently that the applied voltage Ṽ is larger than the pull-in voltage ṼPI so that the beam

snaps down to the bottom electrode and subsequently forms a contact with the isolation

dielectric in a contact length of 1− 2 x̃0. Contrary to the pre-pull-in configuration, there

now exists three distinct problem regions with different transverse load distribution:
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Figure 3.25: Configuration for the electromechanical contact problem of fixed-fixed
beams.

• In the first region (0≤ x̃ ≤ β), beam is not subject to any transverse load.

• In the second region (β ≤ x̃ ≤ x̃0), beam experiences a position-dependent electro-

static attraction force q̃e( x̃).

• In the third region ( x̃0 ≤ x̃ ≤ 1/2), the beam is in contact with the underly-

ing dielectric and a distributed normal force counterbalances the electrostatic one,

thereby setting the net force to zero.

Notice that first two regions are common to pre-pull-in and post-pull-in configurations

while the contact region is specific to the latter one. Since the beam is flat in the contact

region, one can state:

ỹIII( x̃) = 1

ỹ ′III( x̃) = ỹ ′′III( x̃) = ỹ ′′′III ( x̃) = 0
(3.163)

Combining the symmetry of the configuration with Equation (3.163), it becomes permis-

sible to restrict the on-going analysis to regions I and II with appropriate edge conditions

at x̃ = x̃0. Moreover, since ỹI( x̃) and ỹII( x̃) are actually related with each other through

continuity relations at x̃ = β , it suffices to focus only on region II. It follows from these

observations that solution of the electromechanical contact problem is governed by a

similar integro-differential equation set as with the pre-pull-in problem:

d4 ỹ

d x̃4 − 4u2 d2 ỹ

d x̃2
=

Ṽ 2

�
1+ γ− ỹ
�2 , β ≤ x̃ ≤ x̃0 (3.164a)
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u2 = 3
�

g0

t

�2
x̃0∫

0

�
d ỹ

d x̃ ′

�2
d x̃ ′+ 3Σ0 (3.164b)

Equation (3.164) is an adapted version of Equation (3.120) for the current configuration

with the right-hand boundary shifted from 1/2 to x̃0
10. Before seeking solutions to this

governing equation set, conditions at the problem boundaries must be specified, a task

which is detailed in the next subsection.

3.6.2 Boundary Conditions and Continuity Relations

Edge conditions for the electromechanical contact problem closely follow that of the pre-

pull-in problem at the boundary x̃ = β owing to identical configurations in regions I and

II. Consequently, one can utilize the continuity relations (3.85) derived in §3.3.3 for the

relevant boundary without any additional effort. A similar argument, however, does not

hold for the boundary x̃ = x̃0 and one needs to perform a separate analysis in order

to determine associated edge conditions. For this purpose, let us refer back to Figure

3.25 and consider the contact problem in the neighborhood of x̃ = x̃0. Although the net

distributed transverse load in region III is zero, a concentrated force might arise at the

initial contact point [109] and this force is denoted with η̃ in Figure 3.25. Taking into

account this latter force component, Equation (3.164a) can be re-written around x̃ = x̃0

as,

d4 ỹ

d x̃4
− 4u2 d2 ỹ

d x̃2
= −η̃ δ( x̃ − x̃0) + q̃1( x̃) (3.165)

where

q̃1( x̃) =





Ṽ 2

[1+γ− ỹ]
2 , x̃ < x̃0

0, x̃ > x̃0

Recognizing that q̃1( x̃) does not possess any impulsive component or its derivatives, it

10 Notice that the integration limit in Equation (3.164b) can be shifted likewise since ỹ ′III( x̃) = 0 in region
III.
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follows from Equation (3.165) that

ỹ( x̃−0 ) = ỹ( x̃+0 )

d ỹ

d x̃

���
x̃= x̃−0

=
d ỹ

d x̃

���
x̃= x̃+0

d2 ỹ

d x̃2

���
x̃= x̃−0

=
d2 ỹ

d x̃2

���
x̃= x̃+0

d3 ỹ

d x̃3

���
x̃= x̃−0

= η̃+
d3 ỹ

d x̃3

���
x̃= x̃+0

(3.166)

Utilizing Equation (3.163) in (3.166), one thus obtains:

ỹII( x̃0) = 1

ỹ ′II( x̃0) = 0

ỹ ′′II ( x̃0) = 0

ỹ ′′′II ( x̃0) = η̃

(3.167)

Equation (3.167) establishes edge conditions for the boundary x̃ = x̃0. Since it is not pos-

sible to determine η̃ beforehand, first three of these equations actually serve as boundary

conditions. The final equation, nevertheless, will prove to be useful as subsequent studies

will demonstrate.

Table 3.14 provides a summary of the boundary conditions and continuity relations for

the electromechanical contact problem.

Table 3.14: Boundary conditions and continuity relations for the electromechanical con-
tact problem.

TYPE OF CONDITION POSITION EXPRESSION

CONTINUITY RELATION x̃ = β Equation (3.85)
BOUNDARY CONDITION x̃ = x̃0 Equation (3.167)

3.6.3 Finite Difference Solution of the Electromechanical Contact Problem

The boundary-value problem (3.164) subject to the edge conditions (3.85)-(3.167), un-

fortunately, cannot be solved through analytical means due to non-linear integro-differential
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Figure 3.26: An illustration for the electromechanical contact problem discretized for the
application of Finite Difference method. Nodes are indicated with their indices.

nature of the system. Consequently, one has to employ numerical techniques in order to

approximate the relevant solution. As with the nonzero-tension electrostatic actuation

problem, it is preferred to utilize Finite Difference method for this purpose. Such a choice

bears the additional advantage of sparing most of the required derivations for Finite Dif-

ference equations and associated algorithm implementations: Similarity of the governing

relations between two problems permits utilization of already established results as it will

be shown shortly.

Subsequent articles elaborate on construction of the Finite Difference equations for the

electromechanical contact problem, solution of the resulting equation system and inter-

pretation of the obtained results.

3.6.3.1 Finite Difference Formulation

Figure 3.26 depicts the uniform discretization scheme employed for Finite Difference

solution of the electromechanical contact problem. Utilizing the similarity of the current

configuration with the nonzero-tension electrostatic actuation problem (see §3.4.2.1),

one can directly adopt bulk of the Finite Difference equations except for the nodes in the

neighborhood of the contact region. Consequently, relevant equations for interior nodes

and nodes around the continuity border become:
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F0 = c00(u,β ,h) ỹ0 + c01(u,β ,h) ỹ1 + 2 ỹ2−
h4Ṽ 2

�
1+ γ− ỹ0
�2 = 0 (3.168a)

F1 = c10(u,β ,h) ỹ0+ c11(u,β ,h) ỹ1−4
�

1+ u2h2
�

ỹ2+ ỹ3−
h4Ṽ 2

�
1+ γ− ỹ1
�2 = 0 (3.168b)

Fi = ỹi−2+ ỹi+2−4(1+u2h2)( ỹi−1+ ỹi+1)+(6+8u2h2) ỹi−
h4Ṽ 2

�
1+ γ− ỹi
�2 = 0 (3.168c)

For the nodes around the contact region, a separate analysis is conducted as follows.

Substituting the derivative approximations (3.121) into Equation (3.167) gives

ỹN−1 = 1

ỹN = ỹN−2

ỹN−2 + ỹN = 2 ỹN−1

− ỹN−3 + 2 ỹN−2 − 2 ỹN + ỹN+1 = 2h3η̃

leading to

ỹN−2 = ỹN−1 = ỹN = 1 (3.170a)

η̃=
ỹN+1 − ỹN−3

2h3
(3.170b)

It is noticed from Equation (3.170a) that normalized deflections of the nodes N−2, N−1

and N are fixed to unity once the relevant boundary conditions are imposed. Writing

the interior node equation (3.168c) for the former two nodes and subsequently using

(3.170a) gives two additional nodal relations:

FN−2 = ỹN−4 − 4(1+ u2h2) ỹN−3 + 3+ 4u2h2 − h4Ṽ 2

γ2
= 0 (3.171a)

FN−1 = ỹN−3 + ỹN+1 − 2− h4Ṽ 2

γ2
= 0 (3.171b)

Equation (3.171b) serves to determine ỹN+1, which is only required for the evaluation of

η̃. Accordingly, employing Equation (3.171b) in (3.170b) gives:

η̃ =
1− ỹN−3

h3
+

hṼ 2

2γ2
(3.172)

Since Finite Difference stencils of the nodes N−4 and N−3 make use of the known quan-

tities ỹN−2 and ỹN−1, interior nodal equations for the relevant nodes must be modified.
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Letting i = N− 4, N− 3 in Equation (3.168c) and using (3.170a) establishes the desired

relations:

FN−4 = ỹN−6 − 4(1+ u2h2)( ỹN−5 + ỹN−3) + (6+ 8u2h2) ỹN−4 + 1

− h4 Ṽ 2

[1+γ− ỹN−4]
2 = 0

FN−3 = ỹN−5 − 4(1+ u2h2) ỹN−4 + (6+ 8u2h2) ỹN−3 − (3+ 4u2h2)

− h4 Ṽ 2

[1+γ− ỹN−3]
2 = 0

(3.173)

Formulation of Finite Difference equations ends with a derivation for the discretized axial

relation Fu. Notice, however, that identical continuity relations at x̃ = β and the property

ỹ ′N−1 = 0 necessitates Fu derived in §3.4.2.1 to also hold for the current configuration.

Hence, without any further effort, Fu can be stated as:

Fu = 3Σ0− u2 +

�
g0/t
�2

h

¨
R00(u,β ,h) ỹ2

0 + R11(u,β ,h) ỹ2
1 + R01(u,β ,h) ỹ0 ỹ1

− 2 ỹ0 ỹ2 +
1

2
ỹ2

N−2 + ỹ2
N−1 +

N−3
2∑

n=1

ỹ2n−1( ỹ2n−1 − ỹ2n+1) + 2 ỹ2n( ỹ2n − ỹ2n+2)

«
= 0

(3.174)

along with the constraint ỹN−2 = ỹN−1 = 1.

Table 3.15 provides a summary of the Finite Difference equations for the electromechan-

ical contact problem derived in this subsection.

Correction for the Case α= 1

Finite Difference equations provided in Table 3.15 become invalid if fractional span α

assumes the value of unity. Required correction for this particular case, however, can be

instantly applied by using the results established in §3.4.2.1: Owing to identical config-

urations of nonzero-tension electrostatic actuation and electromechanical contact prob-

lems around x̃ = β boundary, corrected nodal equations are also expected to be the same

for both problems. Corrected nodal equations for the electromechanical contact problem

are listed in Table 3.16.
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Table 3.15: Finite Difference equations for the electromechanical contact problem.

NODES NEAR THE CONTINUITY BORDER (i=0, 1)

F0 = c00(u,β ,h) ỹ0 + c01(u,β ,h) ỹ1 + 2 ỹ2 − h4 Ṽ 2

[1+γ− ỹ0]
2 = 0

F1 = c10(u,β ,h) ỹ0 + c11(u,β ,h) ỹ1 − 4
�

1+ u2h2
�

ỹ2 + ỹ3 − h4 Ṽ 2

[1+γ− ỹ1]
2 = 0

INTERIOR NODES (2 ≤ i ≤ N-5)

Fi = ỹi−2 + ỹi+2 − 4(1+ u2h2)( ỹi−1 + ỹi+1) + (6+ 8u2h2) ỹi − h4 Ṽ 2

[1+γ− ỹi]
2 = 0

NODES NEAR THE CONTACT REGION (N-4 ≤ i ≤ N-2)

FN−4 = ỹN−6 − 4(1+ u2h2)( ỹN−5 + ỹN−3) + (6+ 8u2h2) ỹN−4 + 1− h4 Ṽ 2

[1+γ− ỹN−4]
2 = 0

FN−3 = ỹN−5 − 4(1+ u2h2) ỹN−4 + (6+ 8u2h2) ỹN−3 − (3+ 4u2h2)− h4 Ṽ 2

[1+γ− ỹN−3]
2 = 0

FN−2 = ỹN−4 − 4(1+ u2h2) ỹN−3 + 3+ 4u2h2− h4 Ṽ 2

γ2 = 0

AXIAL RELATION

Fu = 3Σ0− u2 +
(g0/t)

2

h

¨
R00(u,β ,h) ỹ2

0 + R11(u,β ,h) ỹ2
1 + R01(u,β ,h) ỹ0 ỹ1

−2 ỹ0 ỹ2 +
1

2
ỹ2

N−2 + ỹ2
N−1 +

N−3
2∑

n=1

ỹ2n−1( ỹ2n−1 − ỹ2n+1) + 2 ỹ2n( ỹ2n − ỹ2n+2)

«
= 0

( ỹN−2 = ỹN−1 = 1)
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Table 3.16: Finite Difference equations for the electromechanical contact problem with
α = 1.

NODES NEAR THE CLAMPED END (i=1, 2)

F1 =
�

7+ 8u2h2
�

ỹ1 − 4
�

1+ u2h2
�

ỹ2 + ỹ3 − h4 Ṽ 2

[1+γ− ỹ1]
2 = 0

F2 =−4(1+ u2h2)( ỹ1 + ỹ3) + (6+ 8u2h2) ỹ2 + ỹ4 − h4 Ṽ 2

[1+γ− ỹ2]
2 = 0

INTERIOR NODES (3 ≤ i ≤ N-5)

Fi = ỹi−2 + ỹi+2 − 4(1+ u2h2)( ỹi−1 + ỹi+1) + (6+ 8u2h2) ỹi − h4 Ṽ 2

[1+γ− ỹi]
2 = 0

NODES NEAR THE CONTACT REGION (N-4 ≤ i ≤ N-2)

FN−4 = ỹN−6 − 4(1+ u2h2)( ỹN−5 + ỹN−3) + (6+ 8u2h2) ỹN−4 + 1− h4 Ṽ 2

[1+γ− ỹN−4]
2 = 0

FN−3 = ỹN−5 − 4(1+ u2h2) ỹN−4 + (6+ 8u2h2) ỹN−3 − (3+ 4u2h2)− h4 Ṽ 2

[1+γ− ỹN−3]
2 = 0

FN−2 = ỹN−4 − 4(1+ u2h2) ỹN−3 + 3+ 4u2h2− h4 Ṽ 2

γ2 = 0

AXIAL RELATION

Fu = 3Σ0 − u2 +
(g0/t)

2

h

¨
− 1

2
ỹ2

1 +
1
2

ỹ2
N−2 + ỹ2

N−1

+

N−3
2∑

n=1

ỹ2n−1( ỹ2n−1 − ỹ2n+1) + 2 ỹ2n( ỹ2n − ỹ2n+2)

«
= 0

( ỹN−2 = ỹN−1 = 1)
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3.6.3.2 Solution of the Finite Difference Equations

A quick glance at Table 3.15 might suggest that there exists a total of N Finite Difference

equations for the seeming N− 1 unknowns ~y =
�

ỹ0 ỹ1 · · · ỹN−3
�

and u. Before identifying

the missing unknown, let us formulate the grid spacing h first. From Figure 3.26, it is

trivial to write,

h=
x̃0− β
N − 1

(3.175)

It is evident from Equation (3.175) that initial contact point x̃0 enters into the Finite

Difference equations as embedded in the grid spacing h. This observation implies that it

might not feasible to treat x̃0 as an unknown: In general, it is not desired to vary h in an

uncontrolled manner. Having thus eliminated x̃0 from the list of unknowns, one is left

with the remaining variable Ṽ . In fact, this latter variable can be conveniently allowed as

an unknown for a given x̃0: Specifying Ṽ instead of x̃0 has the possible pitfall of obtaining

non-physical solutions, whereas determining x̃0 beforehand eliminates such a possibility

by ensuring the presence of a contact. In the light of this mini discussion, N th unknown

for the Finite Difference equations is selected as Ṽ .

Having specified the N unknowns for N Finite Difference equations, it is then advanced to

solution of the relevant equation system. For this purpose, the interpolation-based shoot-

ing algorithm developed in §3.4.2.2 is utilized. Unlike the nonzero-tension electrostatic

actuation problem, stability issues are not encountered and the algorithm is thus enabled

to work with its full potential. After demonstrating successful operation in trial runs for a

given number of grid points, an investigation of convergence is attempted next. Proceed-

ing along the lines of §3.4.1.4, rms errors in ỹ0, Ṽ and u are evaluated as a function of N

by sweeping x̃0 for a sample configuration. Obtained convergence results are presented

in Figure 3.27.

Figure 3.27 shows that convergence for the electromechanical contact problem is almost

uniform for all outcomes of interest unlike the nonzero-tension electrostatic actuation

one. For N = 251 in particular, rms errors in ỹ0, Ṽ and u are found to be better than

3× 10−7, 2× 10−4 and 2× 10−6 respectively within the considered Σ0 range. Hence,

adopted convenience of 251 points for the Finite Difference grid is verified to be suffi-
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0 50 100 150 200 250 300 350
N

10-5

10-4

10-3

10-2

10-1

100

101
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Figure 3.27: Rms convergence errors in ỹ0, Ṽ and u as a function of N for the electrome-
chanical contact problem with Σ0 as a parameter (γ = 0.03, α = 0.5, g0/t = 2.0).

ciently accurate for further analyses.

3.6.3.3 Interpretation of Numerical Results

In the previous subsection, solution of Finite Difference equations for the electromechan-

ical contact problem was addressed and confidence was built up in the relevant solutions

by means of a convergence analysis. Having thus established a successful implementa-

tion for analyzing the electromechanical contact problem, a physical interpretation of

obtained numerical results may now follow. For this purpose, multiple simulations are

run for various combinations of problem variables γ, g0/t, Σ0 and α in order to investi-

gate dependencies of the outcomes on those parameters. In particular, two outcomes are

considered as a function of the applied voltage Ṽ :

• Fractional contact area, which is simply the contact area at a given Ṽ normalized
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with respect to the available electrode area. Note that it is trivial to write;

Fractional contact area =
1− 2 x̃0

α

• Fractional capacitance C/Cmax between the electrodes, which is an electrical man-

ifestation of the previous item. Once a numerical solution is found for a given x̃0,

relevant capacitances can be calculated easily as (neglecting fringing fields);

C = 2× (CII+ CIII) =
2ε0wL

g0




0.5− x̃0

γ
+

x̃0∫

β

d x̃ ′

1+ γ− ỹ( x̃ ′)




Cmax = C

���
x̃0=β

=
2ε0wL

g0

0.5− β
γ

which in turn gives

C/Cmax =
0.5− x̃0

0.5− β +
γ

0.5− β

x̃0∫

β

d x̃ ′

1+ γ− ỹ( x̃ ′)

Figures 3.28-3.29 present plots of the fractional contact area and fractional capacitance as

a function of the applied voltage with each of the problem variables held as a parameter.

In order to facilitate interpretation of the results, applied voltage is further normalized

with respect to the corresponding pull-in voltage ṼPI calculated with the NAX pull-in

formulation (see §3.5.2.2). Upon an examination of the provided results, one can draw

the following conclusions:

• Increasing the applied voltage causes to fractional contact area to increase, a phe-

nomenon which is termed as zipping [90,91]. Fractional capacitance closely follows

the zipping trend of fractional contact area since the latter effectively defines the

overlap area between the electrodes.

• The variable γ acts to decrease the fractional contact area at a given voltage level.

Such a behavior can be explained readily by the fact that electrostatic load q̃e( x̃) de-

creases with higher γ, which in turn necessitates a reduced stiffness (hence higher

x̃0) of the beam to counterbalance the effect.

• Changing nonlinear stretching multiplier g0/t does not seem to affect fractional

contact area appreciably at a certain fractional voltage Ṽ/ṼPI. This observation
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Figure 3.28: Fractional contact area (1−2 x̃0)/α as a function of fractional voltage Ṽ/ṼPI

(γ = 0.03, g0/t = 2.0, 3Σ0 = 10.0, α= 0.6, N = 251 unless indicated).

suggests that pull-in voltage ṼPI and the voltage Ṽ ( x̃0) required to establish a given

contact area increase with similar rates as a function of g0/t for a moderate Σ0.

Although not shown in these plots, the effects of g0/t are noticed, albeit slightly,

for smaller and higher Σ0 values: For a smaller Σ0, ṼPI is noted to grow faster than

Ṽ ( x̃0)most probably due to pronounced effect of pull-in travel range extension (see

Figure 3.23 in §3.5.1.2); whereas for larger Σ0 the trend is recognized to reverse.

• Increasing the normalized residual stress Σ0 improves the fractional contact area

at a given fractional voltage. Such a trend can be explained from a converse stand-

point as follows: Ṽ ( x̃0) satisfying a given contact area is less sensitive to resid-

ual stress compared to ṼPI since nonlinear stretching effects are prominent for the

former. Consequently, fractional voltage Ṽ ( x̃0)/ṼPI needs to decrease in order to

maintain the same contact area for an elevated Σ0.

• Fractional contact area appears to degrade with increased fractional span α at a
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Figure 3.29: Fractional capacitance C/Cmax as a function of fractional voltage Ṽ/ṼPI

(γ = 0.03, g0/t = 2.0, 3Σ0 = 10.0, α= 0.6, N = 251 unless indicated).

certain Ṽ/ṼPI. A qualitative reasoning might explain such a trend as follows: For a

given fractional contact area, increasing α calls for an amplification of the nonlinear

stretching effects due to increased beam slope in non-contact regions. Hence, the

voltage required to maintain such contact area must increase with α.

Qualitative relations established above can be analyzed quantitatively by introducing ap-

propriate fitting functions describing the effect of each problem variable on the x̃0 − Ṽ

characteristics. Such a study, however, is left as a future work.

Before leaving the subject, it would be informative to analyze two more output quantities.

The first one is the maximum normalized beam slope g0/t × ỹ ′max, which is plotted in

Figure 3.30(a) as a function of Ṽ/ṼPI for a sample configuration. The importance of

this particular quantity can be understood more clearly if one relates it to absolute beam
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0 1 2 3 4 5
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Figure 3.30: Normalized maximum beam slope g0/t × ỹ ′max and concentrated contact
force η̃ as a function of fractional voltage Ṽ/ṼPI (γ = 0.03, g0/t = 2.0, 3Σ0 = 10.0,
N = 251).

slope:

y ′max =
g0

L
ỹ ′max =

(g0/t)

(L/t)
ỹ ′max (3.176)

In order not to violate the small-deflection assumption inherently employed during the

derivations, y ′ 2
max must be sufficiently small compared to unity. An inspection of Equation

(3.176) reveals that such a condition can be ensured if (g0/t)/(L/t) ratio is kept below

a certain limit. For the particular case depicted in Figure 3.30(a), obtained results will

rigorously hold if L/t ¦ 185, which corresponds to the condition

y ′ 2
max = 0.02

with α= 1 and Ṽ/ṼPI = 5. It can be deduced from these observations that care should be

exercised when analyzing configurations featuring high g0/t, low L/t and high αṼ/ṼPI

ratios in order not to distort physical consistency of the numerical solutions.

Remaining output quantity of interest is the normalized concentrated contact force η̃,

whose plot with respect to Ṽ/ṼPI is given in Figure 3.30(b) for a sample configuration.

It is noted from the provided curves that η̃ is always positive, a condition valid for a

physical contact. In addition, η̃ tends to decrease sharply around a voltage that is a

proper fraction of ṼPI and satisfying the condition x̃0→ 0.5. These comments suggest that

contact of the beam with the underlying dielectric would diminish at a critical voltage that

would simultaneously set x̃0 = 0.5 and η̃ = 0. This critical contact phenomenon actually
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pertains to another well-known characteristic of electrostatic actuator systems, which is

explored in more detail in the next article.

3.6.3.4 Analysis of the Critical Contact Problem and Determination of Hold Voltage

Previously described critical contact phenomenon is in fact a two-dimensional interpreta-

tion of the well-recognized release problem of electrostatic actuator systems: For a given

nonzero contact area, electrostatic attraction exceeds the mechanical restoring force of

the beam and a positive reaction η̃ balances the excess force. As the applied voltage Ṽ

is lowered gradually, contact area as well as η̃ starts to decrease due to reduced electro-

static attraction. When Ṽ reaches a threshold known as the hold or release voltage ṼH

(with ṼH < ṼPI), electrostatic force can barely counteract the mechanical restoring force

of the beam (η̃ = 0) and a further reduction in voltage causes the beam to subsequently

snap up to a stable non-contact state. This latter phenomenon therefore causes electro-

static actuator systems to exhibit a hysteresis behavior with abrupt state transitions at ṼPI

and ṼH [91,92].

In order to complete the characterization of hysteresis exhibited by the electrostatic actu-

ator system at hand, a final mechanical analysis is attempted for the determination of ṼH.

It was suggested by the end of previous subsection that critical contact of the beam would

occur when x̃0 = 0.5 and η̃ = 0 conditions are simultaneously met. Upon an inspection

of the relevant configuration delineated in Figure 3.31, one might immediately notice

that critical contact problem is actually equivalent to the non-zero tension electrostatic

actuation problem with ỹ(1/2) = 1. Thus without exerting any further effort, Finite Dif-

ference formulation for this latter problem can be established by merely setting ỹN−1 = 1

in the expressions provided in Table 3.6. Performing so and solving the resulting equation

system along the lines of §3.6.3.2 then yields the hold voltage ṼH.

The procedure described above is implemented in NumPy and hold voltages are obtained

for various combinations of the problem variables. Figure 3.32 provides plots of the hold

voltage as a function of the variable γ with each other variable held as a parameter. In

order to facilitate understanding of these results ṼH is normalized with respect to ṼPI (cal-
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Figure 3.31: Configuration for the critical contact problem of fixed-fixed beams.

culated with the NAX pull-in formulation given in §3.5.2.2), a process which permits an

interpretation in terms of the fractional hysteresis width 1− ṼH/ṼPI. It is observed from

the provided curves that increasing the variable γ serves to reduce the hysteresis width:

Decreasing the electrostatic force via a higher γ causes ṼH to increase faster than ṼPI,

which in turn narrows the hysteresis region. Dependencies of ṼH/ṼPI on g0/t, Σ0 and

α are moreover found consistent with the comments stated in §3.6.3.3: In particular;

lowering g0/t, reducing α or increasing Σ0 is noted to enhance the fractional hysteresis

width and those relations can be explained by relative effects of nonlinear stretching and

residual stress.

As with the electromechanical contact problem, development of a semi-empirical hold

voltage expression for the fixed-fixed beam actuator system is left as a future work.

3.7 Summary and Closing Comments

In this chapter, a mechanical characterization of fixed-fixed type beams is presented from

a statics standpoint. Proceeding in a systematic manner, mechanical response of the rele-

vant system to a uniform distributed transverse load is investigated first through a rigor-

ous analytical treatment. Having established useful results such as the deflection profile

and effective spring constant, and having set the background for more complicated anal-

yses; attention is then focused on the problem of electrostatic actuation. Progressing
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Ṽ
H
/
Ṽ
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Figure 3.32: Simulated ṼH/ṼPI characteristics as a function of γ with each problem vari-
able held as a parameter (g0/t = 2.0, 3Σ0 = 10.0, α = 0.5, N = 251 unless indicated).

with increased difficulty, numerical analysis methods are developed and subsequently

utilized in order to study the latter mechanical system. Using the obtained numerical

results in conjunction with the accumulated mechanics knowledge, well-known pull-in

phenomenon is investigated next and expressions are developed for the pull-in voltage.

After evaluating various test configurations, accuracy of the developed pull-in formula-

tion is demonstrated to be comparable to, if not better than, that of existing formulations

in the literature. Advancing further, electromechanical characteristics of this actuator sys-

tem is studied beyond pull-in as the next step. Adapting previously established numerical

analysis methods to the electromechanical contact problem at hand, zipping phenomenon

is successfully quantified and the effect of problem variables on the zipping behavior is

studied in a qualitative sense. Finally, release phenomenon is examined in two dimen-

sions and determination of the hold voltage is accomplished, which in turn completed the

characterization of hysteresis exhibited by the relevant actuator system.
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Before finishing this chapter, it is preferred to investigate a case study of a fixed-fixed type

electrostatic actuator system lastly for a clear demonstration of the analysis and simula-

tion capabilities established so far. For this purpose, the fixed-fixed beam configuration

presented in [91] is selected and analyzed thoroughly. Figure 3.33 presents obtained

results, which can be considered as a visual representation of the accomplishments de-

scribed above.
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Figure 3.33: Results of a case study for fixed-fixed type electrostatic actuator systems
demonstrating an overview of analysis and simulation capabilities established in this
chapter (E = 169 GPa, ν = 0.25, σ0 = 0 MPa, L = 80 µm, w = 10 µm, g0 = 0.6 µm,
t = 0.5 µm, γ= 1/6, α= 1, N = 251).
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CHAPTER 4

REALIZATION OF A Ka-BAND SHUNT, CAPACITIVE-CONTACT RF

MEMS SWITCH

This chapter investigates development of a primitive RF MEMS component, namely an

RF MEMS switch, for millimeter-wave applications utilizing an in-house RF MEMS fab-

rication process. The chapter begins with an introduction section which explains op-

eration principles of RF MEMS switches and their various configurations. Section §4.2

then explores electromagnetic design of the switch at Ka-band frequencies and provides

two CPW-based shunt, capacitive-contact switch configurations satisfying the millimeter-

wave design criteria. §4.3 next evaluates those switch configurations from a mechanical

perspective using the knowledge established in Chapter 3 and elects one of the designs

featuring better mechanical characteristics for implementation. Subsequently, §4.4 gives

fabrication details of the selected switch configuration and presents associated measure-

ment results. Having not met the design specifications in the first fabrication run, §4.5

examines the reasons for the observed discrepancy through post-fabrication related stud-

ies. After identifying problems with the fabricated switches, §4.6 continues with a design

modification on the relevant device for improved millimeter-wave performance and im-

munity to fabrication-related issues. Finally, §4.7 details the second fabrication iteration

and corresponding successful measurement results.

4.1 Introduction

RF MEMS (Radio Frequency Micro-Electro-Mechanical Systems) is an enabling technol-

ogy that makes use of static or adjustable micro-mechanical structures to yield high-
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(a) Series configuration. (b) Shunt configuration.

Figure 4.1: Circuit configurations for the ideal RF MEMS switch.

performance fixed or reconfigurable/tunable components and systems in high-frequency

electrical domain [11–14]. Primitive building blocks of this technology bringing the abil-

ity of mentioned reconfigurability and tunability are RF MEMS switches and varactors,

which can respond mechanically to a given form of actuation [8]. In particular, the for-

mer switch component gets the primary focus in this work and an overview of its types

and associated properties would hence serve as a good starting point for the on-going

discussions in the remainder of this chapter.

4.1.1 Overview of the RF MEMS Switch Component

4.1.1.1 Circuit Configuration Types

The RF MEMS switch may be regarded as a practical high-frequency version of the ideal

switch element defined in the circuit theory. Maintaining the high-frequency analogy, ide-

ally, the switch behaves either as an open-circuit or a short-circuit across a transmission

line section in one of the two possible configurations as Figure 4.1 illustrates. For the

series configuration; RF power can be fully transmitted from one port to the other when

the switch is in ON (closed)-state, and ports are rendered isolated (i.e. no power can

be transmitted to the output) when the switch assumes its OFF (open)-state. Converse

statements hold for the shunt configuration: When the switch is ON, the path enabled to

ground prevents RF power to reach to the output port, thereby causing infinite isolation;

whereas RF power travels to the output port without any insertion loss for the OFF-state

of the switch.

In practice, no switch can attain infinite isolation or zero insertion loss between its ports
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(a) OFF-state. (b) ON-state.

Figure 4.2: Simplified equivalent circuits of a practical RF MEMS shunt switch imple-
mentation.

and consequently previous discussion raised for the ideal switch can hardly apply to

practical components. These non-idealities stem from inability of the practical switch

to present a perfect open or short-circuit in its OFF and ON-states respectively: Due to

physical structure of the practical component, an OFF-state capacitance and an ON-state

impedance (resistance or capacitance depending on actual implementation) are always

associated with the switch at hand. Figure 4.2 attempts to clarify the adverse effect of

these imperfections for the case of a specific shunt switch implementation: For the OFF-

state, parasitic capacitance COFF causes a part of the incident power to couple to the

ground and results in a non-zero insertion loss; while parasitic resistance RON for the ON-

state gives rise to limited coupling to ground, making the switch exhibit a finite isolation.

Fortunately, mentioned parasitics for RF MEMS switches are in general too low compared

to that of solid-state counterparts, a property which enables RF MEMS switches to achieve

very low insertion losses and high isolation levels [124].

4.1.1.2 Utilized Contact Types

Aside from the utilized circuit configuration, RF MEMS switches can be also classified in

terms of the contact type they employ. In order to shed some light for this latter classi-

fication, Figure 4.3 shows two possible implementations of practical RF MEMS switches.

The first device depicted in Figure 4.3(a)-4.3(b) is a series implementation and utilizes

an ohmic-contact, meaning that the switch establishes a direct physical connection of its

input/output ports in its ON-state. Due to the direct connection involved, ohmic contact

switches can successfully operate down to DC frequencies and the parasitic associated

with the contact is essentially a series resistance. On the other hand, Figure 4.3(c)-

4.3(d) shows a shunt implementation featuring a capacitive-contact. For the latter case,

the switch makes an intimate contact with an overlaid dielectric material rather than
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(a) Ohmic-contact OFF-state. (b) Ohmic-contact ON-state.

(c) Capacitive-contact OFF-state. (d) Capacitive-contact ON-state.

Figure 4.3: Practical RF MEMS switch implementations featuring two different contact
types.

the transmission line itself in its ON-state and accordingly relevant contact is of capaci-

tive nature. Because of this AC coupling, capacitive-contact switches cannot work prop-

erly at low frequencies at which ON-state parasitic capacitance presents a considerable

impedance, and accordingly they are more suited to high frequencies.

4.1.1.3 Actuation Types

After having focused on categorization of RF MEMS switches in terms of their electrical

properties, it might now be wondered how practical RF MEMS switches are controlled to

attain their ON and OFF states. In fact, such a discussion leads to another classification of

relevant devices, from a mechanical standpoint this time. Mechanical movement, hence

state control, of RF MEMS switches can be achieved through various actuation means:

RF MEMS switches utilizing electrostatic [29–37], magnetostatic [38], piezoelectric [39]

and thermal actuation [40] can be found in the literature. In particular, electrostatic ac-

tuation is commonly preferred, as in this work, due to its advantages such as yielding a

small device footprint, enabling faster switching and requiring nearly zero bias power [8].
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In order to get a clear understanding of how electrostatic actuation works for RF MEMS

switches, let us specifically consider the CPW-based shunt, capacitive-contact switch pre-

sented in Figure 4.4. For this particular configuration, CPW signal trace forms one of

the electrodes and the MEMS bridge, which is electrically connected to the CPW ground

planes, constitutes the other one. Having identified the actuation terminals, the operation

principle can then be explained as follows:

• When there exists no potential difference between the electrodes (Figure 4.4(a)),

lack of a downward directed electrostatic force causes the switch to assume its OFF-

state.

• Conversely, if the potential difference between the electrodes exceeds the pull-in

voltage1 VPI of the mechanical structure (Figure 4.4(b)), MEMS bridge collapses on

the dielectric layer, setting the switch to its ON-state.

It is thus realized from the described actuation mechanism that, an RF signal superposed

with a control voltage V can reach to the output port with a low insertion loss if V = 0

(OFF-state), and it is routed to ground to establish isolation of the ports if V ≥ VPI (ON-

state).

For the electrostatic actuation scheme discussed above, RF signal itself also has an effect

on the actuation mechanism along with the control voltage V , owing to the fact that

electrostatic force is proportional to the square of the total applied voltage between the

electrodes. The latter property is actually the source of a non-linearity between input

and output power characteristics of the RF MEMS switch, analogous to the well-known

trend occurring for solid-state components. It has been shown, however, that mentioned

non-linearity of RF MEMS switches remains far negligible compared to that of solid-state

counterparts [8].

1 Pull-in phenomenon was treated in Chapter 3 for fixed-fixed type beams, which happens to be the same
structure for the illustrated configuration.
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(a) OFF-state. (b) ON-state.

Figure 4.4: Electrostatic actuation illustrated for a CPW-based shunt, capacitive-contact
RF MEMS switch.

4.1.2 RF MEMS Switch Considered in This Study

According to the classifications established in the previous subsection, the RF MEMS

switch considered in this work belongs to the following categories:

• Circuit configuration : Shunt

• Contact-type: Capacitive-contact

• Actuation-type: Electrostatically actuated

It is moreover selected to implement the RF MEMS switch in a CPW transmission line

topology. In the light of these properties, it can be recognized that Figure 4.4 provides a

simplified illustration of the studied switch configuration.

The aim of the present work is to realize a CPW-based shunt, capacitive contact RF MEMS

switch whose electrical characteristics are suited for Ka frequency band (25 - 40 GHz).

Electromagnetic and mechanical design, fabrication through an in-house developed pro-

cess and characterization of the implemented component through measurements are con-

sidered within the scope of this study.

4.2 Electromagnetic Design of the RF MEMS Switch

Design of the Ka-band shunt, capacitive-contact RF MEMS switch is pursued in two do-

mains: First, electromagnetic design is completed with a given set of millimeter-wave
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design specifications and two design candidates are obtained. Next, one of these candi-

dates are eliminated from a survey of their mechanical characteristics. This section, in

particular, focuses on electromagnetic part of the design stage. Proceeding in a regular

flow; millimeter-wave design specifications are given initially, utilized physical layout and

circuit models are provided next, employed design methodology is discussed subsequently

and arrived configurations are listed at the end.

4.2.1 Millimeter-wave Design Specifications

During the electromagnetic design of the Ka-band shunt, capacitive-contact RF MEMS

switch, a few millimeter-wave design specifications are adopted for both OFF and ON-

states. Relevant specifications are as follows:

• For the OFF-state;

– Return loss must be better than -20 dB over the Ka-band,

– Insertion loss must be less than 0.5 dB over the Ka-band.

• For the ON-state;

– Isolation between the input/output ports should be optimum at 35 GHz with

an associated level better than 20 dB.

For reference purposes, Table 4.1 summarizes these millimeter-wave specifications collec-

tively.

Table 4.1: Millimeter-wave design specifications of the Ka-band shunt, capacitive-contact
RF MEMS switch.

SWITCH STATE DESIGN SPECIFICATION

OFF
RETURN LOSS ≤ −20 dB in Ka-band

INSERTION LOSS ≤ 0.5 dB in Ka-band

ON
OPTIMUM ISOLATION at 35 GHz
ISOLATION at 35 GHz ≥ 20 dB
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Figure 4.5: Physical layout of the Ka-band shunt, capacitive-contact RF MEMS switch.
Design variables are indicated.

4.2.2 Physical Layout of the Switch

Figure 4.5 presents the physical layout for the Ka-band shunt, capacitive-contact RF

MEMS switch adopted during the electromagnetic design stage and indicates relevant

design variables. A quick glance at Figure 4.5 reveals that utilized layout is essentially

a replica of the basic shunt layout given in Figure 4.4 with the exception of rectangu-

lar recesses located at CPW ground planes near the MEMS bridge. Originally proposed

in [125], these recesses enable one to optimize the ON-state isolation performance of the

switch for a given frequency band through inductive tuning, a method which is discussed

in more detail in subsequent sections.

During the electromagnetic design stage of the Ka-band shunt, capacitive-contact RF

MEMS switch; material properties and some of the design variables pertaining to phys-

ical layout are held fixed in order to reduce the dimension of problem space. Relevant

assignments are done in accordance with fabrication plans and by considering typical

values. The material properties and fixated design variables along with their descriptions

and selected values are listed in Table 4.2. Remaining design variables, which are ad-
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Table 4.2: Fixated design variables and material properties for the Ka-band shunt,
capacitive-contact RF MEMS switch.

CATEGORY PARAMETER EXPLANATION FIXED VALUE

SWITCH LAYOUT

DIMENSIONS

L SWITCH DEVICE LENGTH 400 µm

Wgnd CPW GROUND PLANE WIDTH 500 µm

Wbrd BRIDGE WIDTH 50 µm

Hbrd BRIDGE HEIGHTa 1.5, 2 µm

SUBSTRATE MATERIAL

(QUARTZ)

Hsubs SUBSTRATE THICKNESS 500 µm

εsubs RELATIVE SUBSTRATE PERMITTIVITY 3.8
tanδ SUBSTRATE TANGENT LOSS 0.002

METALLIZATION

(GOLD)

tCPW CPW METAL THICKNESS 1.0 µm

tbrd BRIDGE METAL THICKNESS 1.0 µm

σCPW METALLIZATION CONDUCTIVITY 30 MS/m

DIELECTRIC MATERIAL

(SILICON NITRIDE)

tdi DIELECTRIC LAYER THICKNESS 0.3 µm

εdi RELATIVE DIELECTRIC PERMITTIVITY 7.0
fcont CONTACT DEGRADATION FACTORb 0.37

a Bridge height is the spacing between the bottom of the bridge and top of the CPW signal trace.
b This factor takes into account the ON-state capacitance degradation due to surface roughness of the electrodes and

etch holes in the bridge. Its value is inferred from previous measurement results [97]. In particular, contact degrada-
tion is incorporated in ON-state simulations by scaling εdi by fcont.

Table 4.3: Adjusted design variables for the Ka-band shunt, capacitive-contact RF MEMS
switch.

CATEGORY PARAMETER EXPLANATION

SWITCH LAYOUT

DIMENSIONS

G CPW SLOT WIDTH

W CPW SIGNAL TRACE WIDTH

Wrec CPW GROUND PLANE RECESS WIDTH

Drec CPW GROUND PLANE RECESS DEPTH

151



justed throughout the design procedure, are provided in Table 4.3 together with their

explanations.

4.2.3 Circuit Model of the Switch

In order to set the design procedure on a systematic and predictable basis, a circuit model

is utilized in conjunction with the EM simulations for the Ka-band shunt, capacitive-

contact RF MEMS switch. Figure 4.6 presents the employed circuit model, which is actu-

ally a slightly modified version of the one proposed in [126]. Physical interpretation of

each model element and their associated parameters are discussed briefly below:

1. Transmission line sections appearing at the input and output ports of the model

represent CPW line sections up to the ground plane recesses in the physical layout.

Consequently, one has

LCPW =
L −Wbrd

2
−Wrec

Characteristic impedance of these lines are denoted with Z0 and associated propa-

gation constant γ can be expressed as

γ= αCPW + j
2π f
p
εeff

c

where αCPW is attenuation per unit length, f is the operating frequency, εeff is the

effective relative permittivity and c = 3x108 m/s is the speed of light in vacuum. In

particular, Z0 and εeff can be accurately related to physical CPW dimensions through

the quasi-TEM formulation found in [127,128] for a non-shielded topology without

Figure 4.6: Utilized circuit model for the Ka-band shunt, capacitive-contact RF MEMS
switch.
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conductor-backing as:

Z0 =
30π

p
εeff K(k)/K(
p

1− k2)
(4.1a)

εeff = 1+ q(εsubs− 1) (4.1b)

In Equation (4.1); q, k3 and k are given by

q =
K(k3)/K(
p

1− k2
3)

2 K(k)/K(
p

1− k2)
(4.2a)

k3 =
sinh(πW/4Hsubs)

sinh(π(W + 2G)/4Hsubs)
(4.2b)

k =
W

W + 2G
(4.2c)

where K(.) denotes the complete elliptic integral of the first kind. Although an

analytical expression also exists for attenuation coefficient αCPW, this quantity is

best to be extracted from EM simulations since corresponding formulation is found

to underestimate the conductor loss significantly.

2. Reactive elements Cd and Lr account for the step discontinuity in the CPW trans-

mission line at the ground plane recess interfaces [129]. Notice also that, Lr has

an additional component representing the high-impedance CPW line section of the

recess zones featuring an increased slot width of G + Drec. Values for the relevant

elements are extracted from EM simulation data during the course of modeling.

3. Shunt branch consisting of series connected Cb, Lb and Rb elements is an electrical

manifestation of the MEMS bridge. Specifically,

• Cb represents the capacitance between the MEMS bridge and the CPW signal

trace, and it has two values corresponding to OFF and ON-states of the switch.

• Lb is the bridge inductance and consists of two components: First component

is responsible for the inductance due to the bridge itself2, whereas the sec-

ond one describes the short-circuited transverse CPW transmission line having

cross-section dimensions of Wrec/Wbrd/Wrec and a length of Drec [125, 126].

It is in fact the latter component which enables one to accomplish aforemen-

tioned inductive tuning.

2 This component can be thought of the total inductance of the inverted microstrip line section formed
by the bridge and the CPW signal trace. Note that such an approximation is permissible due to the property
Hbrd� G. Cb and Rb can be similarly envisioned.
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• Rb stands for the loss associated with the bridge.

Values of these bridge-related elements are extracted from EM simulation data as

well.

4.2.4 Design Procedure

Design procedure for the Ka-band shunt, capacitive-contact RF MEMS switch is an itera-

tive based one and is composed of two main steps. First step encompasses determination

of the CPW characteristic impedance Z0 for the optimization of OFF-state return loss.

Inductive tuning forms the second step, in which ON-state isolation is optimized for 35

GHz. Following subsections briefly describe mentioned design phases.

4.2.4.1 Optimization of OFF-State Return Loss

In order to optimize return loss for the OFF-state of the switch, an analytical approach

is utilized to determine Z0 of the CPW sections. Employed method is actually similar

to the one developed in [130], the latter which attempts to obtain required unloaded

line impedance Z0 for optimum degree/dB performance of a loaded-line phase shifter.

Adopted method proceeds as follows:

• For a given value of the CPW signal trace width W , CPW slot width G is swept.

• Using Equation 4.1, Z0 and εeff are next determined for that sweep.

• Then, using the equivalent circuit model in Figure 4.6 together with empirical es-

timations for the associated circuit element values (based on EM simulation data),

|S11| is monitored for each G at a number of frequency points (25 GHz, 35 GHz and

45 GHz to be specific).

Figure 4.7 presents sample plots for the OFF-state return loss as a function of Z0 for two

designs having different bridge heights (Hbrd). It is noted for both designs that |S11| be-

comes sufficiently small for Z0 values in 80-100 Ω range, an observation justifying the

loaded-line concept: The MEMS bridge, which effectively acts as a shunt capacitor in the
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Figure 4.7: Sample |S11| versus Z0 plots for two different designs featuring different Hbrd

values.

OFF-state, loads the underlying CPW transmission line and resulting loaded characteristic

impedance can be brought close to the 50 Ω reference impedance if Z0 assumes an ap-

propriate high value. Frequency dependence of the return loss is moreover noticed from

the provided curves. In particular, the design having Hbrd = 1.5 µm seems to be more

sensitive to frequency and this is a consequence of its higher OFF-state capacitance (as

YC = jωC). From bandwidth considerations, it is tried to pick Z0 as the intersection of

f = 25 GHz and f = 45 GHz curves for both designs during the design procedure.

4.2.4.2 Inductive Tuning and Optimization of ON-State Isolation

Referring back to the circuit model depicted in Figure 4.6, one notices that the shunt

branch representing the MEMS bridge is actually a series RLC circuit. From elementary

circuit theory, it is known that relevant circuit resonates at the particular frequency f0,

where

f0 =
1

2π
p

LbCb

(4.3)

Since the bridge capacitance Cb takes on different values for OFF and ON-states of the

switch, it follows from Equation (4.3) that resonance frequency of the shunt arm changes

up on state change. This property in turn can be exploited to optimize the isolation re-

sponse around a particular frequency with proper tuning of Lb. For the sake of clarity,

Figure 4.8 illustrates the concept. If one desires to optimize the ON-state isolation for a

given angular frequency ω, it suffices to shift the ON-state resonance frequency ω0,ON to
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Figure 4.8: Impedance characteristics of the MEMS bridge as a function of angular fre-
quency for different switch states.

ω as the impedance presented by the MEMS bridge becomes a minimum there. Since Cb

usually cannot be altered due to previously determined device dimensions (from return

loss optimization step in particular) and design/fabrication constraints, it follows that

performance of the switch in ON-state can be significantly improved for a desired isola-

tion center frequency by tuning Lb. Notice moreover that, performing so does not hinder

the OFF-state performance as long as Zb, whose magnitude switches to a much higher

value in OFF-state, is properly compensated for.

In order to optimize the ON-state isolation for 35 GHz through inductive tuning, a semi-

empirical approach is utilized. For that purpose, initially, Lb is expressed as the sum of

two components as pointed in §4.2.3:

Lb = Lb,0 + Lb,rec (4.4)

where Lb,0 is the inductance component due to the MEMS bridge itself and Lb,rec is as-

sociated with the short-circuited transverse CPW transmission line (Wrec/Wbrd/Wrec) of

length Drec. For given values of bridge dimensions and CPW slot width G, Lb,0 is a con-

stant [126]. Lb,rec, on the other hand, can be expressed with:

Lb,rec = arec

Z0,rec

ω
tan
�
βrecDrec
�

(4.5)

where βrec and Z0,rec are the propagation constant and characteristic impedance of the

short-circuited transverse CPW line respectively, and arec is a coefficient yet to be deter-
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mined. For typical Drec values, it is observed that βrecDrec � 1, an inequality permitting

the following small-argument approximation:

Lb,rec = arec

Z0,rec

p
εeff,rec

c
Drec (4.6)

Employing Equation (4.6) into (4.4) thus gives;

Lb = Lb,0 + arec

Z0,rec
p
εeff,rec

c
Drec (4.7)

The quantities Z0,rec and εeff,rec appearing in Equation (4.7) can be calculated from Equa-

tions (4.1) and (4.2) by letting G =Wrec and W =Wbrd. Unknowns Lb,0 and arec can then

be solved from the two equations obtained after simulating two switch configurations

differing only in their Drec values. Having determined those unknowns, required recess

depth for a desired bridge inductance, hence ON-state resonance frequency, can be easily

obtained from Equation (4.7).

Utilized semi-empirical inductive tuning approach can be outlined as follows:

i. Electromagnetically simulate two switch configurations having different Drec di-

mensions and extract corresponding bridge inductance values Lb,1 and Lb,2.

ii. Construct Equation (4.7) for the two configurations as:

Lb,1 = Lb,0 + arec

Z0,rec
p
εeff,rec

c
Drec,1 (4.8)

Lb,2 = Lb,0 + arec

Z0,rec

p
εeff,rec

c
Drec,2 (4.9)

iii. Solve Equation (4.8) for Lb,0 and arec.

iv. Determine the required bridge inductance to shift the ON-state resonance to 35

GHz from

Lb,35 = Lb,i

�
f0,i

35 GHz

�2
, i = 1 or 2

v. Solve Equation (4.7) for Drec,35 with Lb = Lb,35.

Proposed inductive tuning approach described above is found to achieve an excellent

tuning of the ON-state resonance frequency to 35 GHz in only two iterations.
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Table 4.4: Switch configurations and corresponding circuit model parameters attained at
the end of electromagnetic design cycle.

DESIGN LAYOUT PARAMETERSa CIRCUIT MODEL PARAMETERS

DESIGN #1

Hbrd = 2.0 µm Z0 = 89.8 Ω, εeff = 2.37, LCPW = 135 µm

W = 150 µm αCPW = 440.3 dB/m (@ 35 GHz)
G = 120 µm Cd = 6.66 fF, Lr = 42.25 pH

Wrec = 40 µm Cb,OFF = 41.44 fF, Cb,ON = 561.6 fF
Drec = 100 µm Lb = 37.01 pH, Rb = 0.37 Ω

DESIGN #2

Hbrd = 1.5 µm Z0 = 85.9 Ω, εeff = 2.38, LCPW = 95 µm

W = 130 µm αCPW = 713.4 dB/m (@ 35 GHz)
G = 90 µm Cd = 7.19 fF, Lr = 73.24 pH

Wrec = 80 µm Cb,OFF = 52.90 fF, Cb,ON = 472.5 fF
Drec = 145 µm Lb = 43.26 pH, Rb = 0.78 Ω

a For material properties and other common layout parameters, refer to Table 4.2.

4.2.4.3 Attained Switch Configurations

The design steps detailed in the previous subsections are applied in an iterative cycle to

arrive at two switch configurations. During the process, Ansoft HFSSTMv9.2 Finite Ele-

ment Analysis (FEA) software is utilized to perform EM simulations of the switch device

and AWR Microwave OfficeTMv2006 circuit simulator is employed to extract circuit model

parameters through built-in optimization routines. Table 4.4 lists the attained switch con-

figurations for Design #1 (with Hbrd = 2.0 µm) and Design #2 (with Hbrd = 1.5 µm)

along with their extracted circuit model parameters. Electromagnetically simulated and

modeled magnitude S-parameters are provided in Figures 4.9 and 4.10 for Design #1 and

Design #2 respectively.

A quick inspection of Figures 4.9 and 4.10 shows that attained switch configurations

successfully satisfy the millimeter-wave design specifications listed in Table 4.1. In par-

ticular, Design #1 is observed to perform slightly better than Design #2 in both OFF and

ON states. It is moreover noted that the agreement between EM simulation and circuit

model results is reasonable. For the sake of completeness, Table 4.5 summarizes the per-

formance of both designs based on corresponding EM simulation data.
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Figure 4.9: Electromagnetically simulated and modeled magnitude S-parameters for De-
sign #1 (Hbrd = 2.0 µm).
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Figure 4.10: Electromagnetically simulated and modeled magnitude S-parameters for
Design #2 (Hbrd = 1.5 µm).
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Table 4.5: Millimeter-wave performance summary of Design #1 and Design #2 obtained
from corresponding EM simulation data.

DESIGN
PERFORMANCE DATA

OFF-STATE ON-STATE

DESIGN #1

INSERTION LOSS ISOLATION

≤ 0.25 dB, f ≤ 40.0 GHz OPTIMUM LEVEL: 37.8 dB
≤ 0.30 dB, f ≤ 45.0 GHz ( f0 = 34.9 GHz)

RETURN LOSS

≤ −26.6 dB, 25.0–40.0 GHz ≥ 20 dB, 29.5–42.4 GHz
≤ −25.0 dB, 25.0–45.0 GHz ≥ 30 dB, 33.2–36.8 GHz

DESIGN #2

INSERTION LOSS ISOLATION

≤ 0.39 dB, f ≤ 40.0 GHz OPTIMUM LEVEL: 31.6 dB
≤ 0.50 dB, f ≤ 44.6 GHz ( f0 = 35.2 GHz)

RETURN LOSS

≤ −22.8 dB, 25.0–40.0 GHz ≥ 20 dB, 30.5–41.7 GHz
≤ −20.0 dB, 25.0–42.3 GHz ≥ 30 dB, 34.3–36.3 GHz

4.2.4.4 Integration of CPW Transitions to Switch Configurations

Finalized switch configurations provided in §4.2.4.3 utilize high-impedance CPW lines in

order to optimize their return loss performance, which in turn necessitates a high CPW

slot width G according to Equations (4.1)-(4.2). This requirement in turn lends itself to

high CPW pitch dimensions (i.e. 2G+W), which might not be desired in practice due to

measurement related restrictions. In particular, CPW probes found in the inventory of

METU Dept. of EE Millimeter-wave Laboratory posed such a restriction: Pitch spacing

of the available CPW probes were about 220 µm so that it was not possible to measure

designed switch devices (having CPW pitch spacings of 390 µm and 310 µm) unless the

layouts were modified in a compatible fashion.

In order to circumvent described CPW pitch problem, it is opted to employ CPW tran-

sitions at the input and output ports of the switch designs, which would establish the

interconnection between measurement-dictated low-pitch and design-dictated high-pitch

CPW lines. For that purpose, linear type transitions are employed as illustrated in Figure

4.11. Introduction of these CPW transitions calls for four additional design parameters,

which are indicated in Table 4.6 along with their explanations. In particular, three of these

parameters are determined readily: Since switch devices are designed for a 50 Ω system,

it is desirable to set the characteristic impedance of outer CPW lines to 50 Ω by adjusting
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Figure 4.11: Physical layout of the Ka-band shunt, capacitive-contact RF MEMS switch
with integrated CPW transitions. Design variables are indicated.

G0 and W0. Imposing this latter condition together with the pitch spacing constraint (i.e.

2G0 +W0 ≤ 220 µm) in Equation (4.1) yields a possible solution of G0 = 17 µm and

W0 = 180 µm. Lext dimension is moreover set to 50 µm as this value is a good com-

promise between minimum probe landing area and maximum device length trade-offs.

These three assignments leave Ltran as the only unknown.

Determination of the dimension Ltran is accomplished by monitoring the effect of that

parameter on overall OFF-state return loss of two switch designs. For that purpose, rea-

sonable values of 50 µm and 100 µm are assigned to Ltran and simulated return losses are

compared. Figure 4.12 provides the relevant comparison for Design #1 and Design #2.

Table 4.6: Design variables for the CPW transitions of Ka-band shunt, capacitive-contact
RF MEMS switch.

CATEGORY PARAMETER EXPLANATION

CPW TRANSITION

DIMENSIONS

G0 OUTER CPW SLOT WIDTH (= 17 µm)
W0 OUTER CPW SIGNAL TRACE WIDTH (= 180 µm)
Lext OUTER CPW LINE LENGTH (= 50 µm)
Ltran CPW TRANSITION LENGTH
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Figure 4.12: Return loss performance of the switch configurations compared for two
different Ltran values.

It is observed from Figures 4.12(a) and 4.12(b) that reducing Ltran improves the return

loss performance for both switch configurations and that Ltran = 50 µm is an acceptable

selection considering the -20 dB reflection specification.

Having set the design parameters related to the CPW transitions, Table 4.7 presents the fi-

nal forms of the switch configurations. From the same table, four additional circuit model

parameters are noticed: As delineated in Figure 4.13, relevant parameters pertain to a

transmission line section of length Lt = Ltran + Lext which represents the CPW transition

in the physical layout. Figures 4.14 and 4.15 plot simulated and modeled magnitude S-

parameters for the final forms of Design #1 and Design #2 respectively. Millimeter-wave

performance aspects of both designs is summarized in Table 4.8.

Figure 4.13: Circuit model for the Ka-band shunt, capacitive-contact RF MEMS switch
integrated with CPW transitions.
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Figure 4.14: Electromagnetically simulated and modeled magnitude S-parameters for
Design #1 after integration of CPW transitions (Hbrd = 2.0 µm).
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Figure 4.15: Electromagnetically simulated and modeled magnitude S-parameters for
Design #2 after integration of CPW transitions (Hbrd = 1.5 µm).
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Table 4.7: Switch configurations and corresponding circuit model parameters attained at
the end of electromagnetic design cycle following the integration of CPW transitions.

DESIGN LAYOUT PARAMETERSa CIRCUIT MODEL PARAMETERS

DESIGN #1

Hbrd = 2.0 µm Z0 = 89.8 Ω, εeff = 2.37, LCPW = 135 µm

W = 150 µm αCPW = 440.3 dB/m (@ 35 GHz)
G = 120 µm Cd = 6.66 fF, Lr = 42.25 pH

Wrec = 40 µm Cb,OFF = 41.44 fF, Cb,ON = 561.6 fF
Drec = 100 µm Lb = 37.01 pH, Rb = 0.37 Ω

G0 = 17 µm, W0 = 180 µm Z0,t = 76.7 Ω, εeff = 2.37, Lt = 100 µm

Ltran = Lext = 50 µm αCPW = 0 dB/m (@ 35 GHz)

DESIGN #2

Hbrd = 1.5 µm Z0 = 85.9 Ω, εeff = 2.38, LCPW = 95 µm

W = 130 µm αCPW = 713.4 dB/m (@ 35 GHz)
G = 90 µm Cd = 7.19 fF, Lr = 73.24 pH

Wrec = 80 µm Cb,OFF = 52.90 fF, Cb,ON = 472.5 fF
Drec = 145 µm Lb = 43.26 pH, Rb = 0.78 Ω

G0 = 17 µm, W0 = 180 µm Z0,t = 68.0 Ω, εeff = 2.38, Lt = 100 µm

Ltran = Lext = 50 µm αCPW = 0 dB/m (@ 35 GHz)
a For material properties and other common layout parameters, refer to Table 4.2.

An examination of Figures 4.14-4.15 and Table 4.8 reveals that switch configurations

continue to meet previously stated millimeter-wave design specifications after integra-

tion with CPW transitions. In fact, OFF and ON-state responses are observed to im-

prove compared to transition-free case, the only exception being OFF-state return loss of

Design #1 which marginally satisfies the -20 dB criterion. It is moreover noticed that

Table 4.8: Millimeter-wave performance summary of Design #1 and Design #2 following
the integration of CPW transitions. Relevant data are obtained from corresponding EM
simulations.

DESIGN
PERFORMANCE DATA

OFF-STATE ON-STATE

DESIGN #1

INSERTION LOSS ISOLATION

≤ 0.27 dB, f ≤ 40.0 GHz OPTIMUM LEVEL: 42.1 dB
≤ 0.30 dB, f ≤ 45.0 GHz ( f0 = 35.0 GHz)

RETURN LOSS

≤ −19.3 dB, 25.0–40.0 GHz ≥ 20 dB, 29.4–43.5 GHz
≤ −20.0 dB, 31.7–45.0 GHz ≥ 30 dB, 33.0–37.2 GHz

DESIGN #2

INSERTION LOSS ISOLATION

≤ 0.30 dB, f ≤ 40.0 GHz OPTIMUM LEVEL: 40.6 dB
≤ 0.40 dB, f ≤ 45.0 GHz ( f0 = 35.3 GHz)

RETURN LOSS

≤ −21.3 dB, 25.0–40.0 GHz ≥ 20 dB, 30.2–43.1 GHz
≤ −20.0 dB, 25.0–44.7 GHz ≥ 30 dB, 33.6–37.3 GHz
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the agreement between EM simulation and circuit model results is degraded compared to

the transition-free case and loss is somewhat overestimated (compare ON-state resonance

dips for instance). Pointed problems associated with circuit modeling will be addressed

later on.

4.3 Mechanical Characteristics of the Switch Configurations

In the previous section, two switch configurations satisfying a given set of millimeter-wave

specifications are set forth as a result of the electromagnetic design procedure. Having

thus finished the first part of the design stage, this section now investigates mechanical

characteristics of these configurations. Following analyses, which are applications of the

formulations established in Chapter 3, compare mechanical aspects of the two design

candidates and ultimately help to elect one of them for implementation.

4.3.1 A Mechanical Constraint for the Switch Devices

A favorable mechanical property for the electrostatically actuated Ka-band shunt, capaci-

tive contact switch would be a low actuation voltage since a too high value for the relevant

voltage not only endangers the lifetime of the device (due to dielectric charging mecha-

nism [131]), but also elevates the specifications for the control electronics biasing it. In

particular, during the course of this study, a 30 V limit is imposed on the actuation voltage

to achieve a proper ON-state isolation around 35 GHz.

4.3.2 Pull-in Voltage Analysis

A first implication of the mechanical constraint stated in §4.3.1 is that pull-in of the

switches should occur prior to 30 V . Feasibility of this first requirement can be readily in-

vestigated using the pull-in formulation derived in §3.5.2.2 owing to the fact that switch

configurations at hand are of fixed-fixed beam type3. For this purpose, physical properties

of switch configurations found in Tables 4.2 and 4.7 are substituted into Equation (3.162)

3 Although Figures 4.5 and 4.11 might imply the presence of step-ups near the mechanical anchors which
violate the fixed-fixed beam assumption, those anchors are reinforced in the fabrication process; a step which
improves applicability of this assumption.
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to calculate the corresponding pull-in voltages. Since a complete mechanical character-

ization of the bridge metallization is not available, Young’s modulus and Poisson’s ratio

are assumed typical values of E = 78 GPa and ν = 0.44 [132], while the biaxial resid-

ual stress is swept in 0− 100 MPa range. Figure 4.16 compares obtained pull-in voltage

curves of Design #1 and Design #2 as a function of the biaxial residual stress σ0.

It is observed from Figure 4.16 that Design #2 exhibits lower pull-in voltages compared to

Design #1 in the considered σ0 range and this is primarily due to the lower bridge height

value employed for Design #2. Design #1, featuring a higher bridge length/thickness

ratio, is moreover more susceptible to residual stress (see for instance Equation (3.81b)

describing the normalized stress variable) as evidenced from increased separation be-

tween pull-in voltages with increasing σ0. Furthermore, pull-in voltage curve for Design

#2 stays below the intended 30 V limit unlike Design #1. These observations render

Design #2 more favorable than Design #1 in terms of its actuation characteristics.
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Figure 4.16: Simulated pull-in voltages of Design #1 and Design #2 as a function of the
biaxial residual stress σ0 (E = 78 GPa, ν = 0.44).

4.3.3 ON-State Contact Analysis

Recall from §3.6 that capacitance between the electrodes of fixed-fixed beams varies as

a function of the applied voltage in the contact state. An interpretation of this fact for
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the switch devices is that ON-state capacitance, hence resonance frequency, would change

with the applied actuation voltage level. In order to ensure that designed switches exhibit

ON-state resonances around 35 GHz for voltages not larger than 30 V , a Finite Difference

contact simulation is run for each switch configuration using 251 points along the guide-

lines of §3.6.3. The physical parameters are the same as the ones employed in the pull-in

analysis except for the biaxial residual stress parameter which is discretized to five points

in 0− 100 MPa range. Figure 4.17 presents obtained fractional capacitance results as a

function of applied voltage for both Design #1 and Design #2.

It is observed from Figure 4.17 that the ON-state capacitance at 30 V lies in 97.5-98.3%

and 97.1-97.9% of the maximum capacitances for Design #1 and Design #2 respectively

for σ0 in 0−100 MPa range. Obtained fractional capacitances are actually similar to each

other and slightly better contact characteristics of Design #1 stem from lower normalized

dielectric thickness values which in turn increases the normalized electrostatic force (due

to higher Hbrd, see Equations (3.78c) and (3.77)). One can moreover translate these frac-

tional capacitance values to ON-state resonance frequencies using Equation (4.3): Using

f0 values tabulated in Table 4.8, one can deduce that ON-state resonance frequencies lie

in 35.3− 35.5 GHz and 35.7− 35.8 GHz at 30 V actuation for Design #1 and Design

#2 respectively. Although the latter observation might seem as a disadvantage for Design

#2, notice that 3.7 GHz 30 dB isolation bandwidth for the relevant design assures a high

isolation level at 35 GHz. Therefore, it can be deduced that Design #1 does not pose a
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Figure 4.17: Simulated fractional capacitance versus applied voltage characteristics for
switch configurations (E = 78 GPa, ν = 0.44, N = 251).
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significant advantage over Design #2 in terms of ON-state contact characteristics.

4.3.4 The Verdict for Design Selection

It is decided to elect Design #2 for implementation rather than Design #1 due to the

following reasons:

• Millimeter-wave characteristics obtained after the integration of CPW transitions

are slightly better for Design #2, especially in terms of OFF-state return loss, as

evidenced by Table 4.8.

• Pull-in properties of Design #2 are superior compared to Design #1 as demon-

strated in Figure 4.16.

• ON-state contact properties of Design #2 are similar to that of Design #1 as shown

in Figure 4.17.

In the remainder of this chapter, it is solely concentrated on Design #2 according to the

design election performed in this section.

4.4 Fabrication and Measurements of the Switch Device

This section concentrates on fabrication details and millimeter-wave measurement results

of Ka-band shunt, capacitive-contact RF MEMS switch devices.

4.4.1 Fabrication Details

Ka-band shunt, capacitive-contact RF MEMS switch devices were fabricated in METU

MEMS Center Facilities using the in-house process developed by METU RF MEMS Group.

The process sequence consists of several surface-micromachining steps which are illus-

trated in Figure 4.18 and detailed below4:

4 Relevant steps are formed by Dr. Mehmet Ünlü.
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1. Top surfaces of quartz wafers are coated with sputtered gold metallization. Relevant

layer is subsequently patterned to form CPW lines and CPW ground plane recesses

(with measured tCPW = 0.9 µm, σ = 30 MS/m).

2. Silicon nitride is deposited over the wafer surface using PECVD and it is then pat-

terned to form the dielectric layer on top of CPW signal trace (with tdi = 0.3 µm,

εdi = 7.0).

3. Wafer is next spin-coated with the polyimide sacrificial layer of thickness 1.2 µm.

Following a photolithographic step, mechanical anchor zones, at which the MEMS

bridge would be supported, are defined.

4. In order to form the MEMS bridge (or structural) layer, gold metallization is sput-

tered on the underlying topology with a measured thickness of tbrd = 1.1 µm.

5. A selective gold electroplating step is applied at the mechanical anchor zones in

order to reinforce relevant supports (with a thickness ranging between 5−10 µm).

6. Structural layer is then patterned to form the MEMS bridges.

7. Finally, sacrificial layer is etched away to release the MEMS bridges for operational

switch devices.

Figure 4.19 shows a micrograph of a successfully fabricated switch device.

Figure 4.19: Micrograph of a successfully fabricated Ka-band shunt, capacitive-contact
RF MEMS switch. Device features are indicated.
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(a) Step#1: Gold metallization deposition and patterning for CPW lines.

(b) Step#2: Silicon nitride deposition and patterning for isolation dielectric.

(c) Step#3: Sacrificial layer coating and patterning for mechanical anchor
zones.

(d) Step#4: Structural layer (gold bridge metallization) deposition.
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(e) Step#5: Selective gold electroplating for mechanical anchor reinforce-
ments.

(f) Step#6: Patterning of structural layer for bridge formation.

(g) Step#7: Removal of the sacrificial layer for suspended bridges.

Figure 4.18: Fabrication process sequence of Ka-band shunt, capacitive-contact RF MEMS
switches (drawings are not to scale).
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4.4.2 Millimeter-wave Measurements of the Switch Device

Millimeter-wave measurements of the Ka-band shunt, capacitive-contact RF MEMS switch

devices were conducted in METU Department of Electrical and Electronics Engineering

Millimeter-wave Laboratory using Cascade Microtech Summit 9000 Analytical Probe Sta-

tion in conjunction with Agilent E8361A Vector Network Analyzer (VNA). For ON-state

measurements, switches were actuated by applying a 200 Hz, unilevel, bipolar square

waveform5 to one of the bias-tees connected to the measurement setup. Prior to the

measurements; VNA was calibrated through an SOLT (Short-Open-Load-Thru) calibra-

tion scheme performed in 10-40 GHz frequency band using Cascade 101-190 Impedance

Standard Substrate (ISS) and reference planes were brought to Cascade ACP40-GSG-150

probe tips having a pitch spacing (2G+W) of approximately 220 µm. Measured OFF-state

performance of a number of switch samples are plotted in Figure 4.20. A typical ON-state

measurement result is shown in Figure 4.21.

It is observed from Figure 4.20(a) that measured OFF-state return losses of the switch

samples correlate well, but are not in accordance with the one anticipated from the EM

simulation. In particular, return loss increases gradually and may reach up to -10 dB at

40 GHz, a behavior which clearly violates the relevant design specification. Similar com-

ments apply to the OFF-state insertion loss performance depicted in Figure 4.20(b): Due

to increased reflection towards the end of the frequency band, insertion losses increase

significantly, exceeding the design specification of 0.5 dB. Another noteworthy observa-

tion made from the latter figure is that, loss of the switch samples are estimated correctly

by the EM simulation: Simulated and measured insertion losses agree up to 30 GHz,

where the additional loss due to reflection remains negligible.

Like the OFF-state responses, measured ON-state performance of the switch samples is

also inferior than the intended specifications as shown in Figure 4.21. In particular, ON-

state resonance frequency is noted to decrease with increased voltage, an observation

consistent with the zipping phenomenon described in §3.6.3.3. At the maximum volt-

5 Relevant waveform was obtained from the Bias Generator Card which had been developed by Halil
İbrahim Atasoy [98].
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age specification of 30 V , relevant resonance appears at 38.3 GHz, a frequency which is

considerably higher than maximum expected value of 35.8 GHz. It is moreover noticed

that ON-state resonance frequency saturates at around 37 GHz as the applied voltage

increases up to 60V , a behavior which apparently does not agree with previous anticipa-

tions. In particular, measured switch sample cannot attain an isolation of 30 dB even at

that extreme voltage and isolation at 30 V stays around 25 dB.

Having evidently not met the design specifications with the fabricated switch samples,

the reasons for relevant discrepancies are investigated next.

4.5 Post-Fabrication Studies for Switch Devices

As indicated in §4.4.2, measured millimeter-wave performance of the fabricated switch

samples is not sufficient to satisfy the design requirements. This section analyzes the

reasons for the observed discrepancies in ON and OFF-states of the switches. The findings

established in this section will later prove useful for the subsequent fabrication attempt.

4.5.1 Identification of Discrepancies for ON-State

It was pointed in §4.4.2 that measured ON-state resonance frequencies of the fabricated

switch samples cannot be brought below 37 GHz even at voltages as high as 60 V. This

observation suggests the presence of a systematic error involved in EM simulations of

ON-state switch configurations, a topic which is discussed in this subsection.

During the electromagnetic design of the switch configurations, a single mode, namely

the CPW mode, was utilized to excite and characterize the relevant structure. A conse-

quence of such procedure is that evanescent modes, which are converted from the CPW

mode at the discontinuities of the structure (such as ground plane recesses and CPW

transitions), are not properly accounted for when S-parameters are calculated at the in-

put and output ports. This in turn results in incorrectly simulated S-parameters for the

switch configurations. In order to properly simulate relevant configurations, hence, effect
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Figure 4.20: Measured OFF-state return loss and insertion loss of a number of switch
samples. For comparison purposes, corresponding EM simulation results are overlaid on
the same plots.
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of mentioned evanescent modes must be incorporated into the calculations. One way of

achieving the latter is to employ lumped ports referenced to 50 Ω impedance [133].

In order to justify the claim described above, EM simulation of switch configuration #2

is repeated in ON-state using lumped ports and obtained isolation response is compared

with those of the fabricated samples measured at 50− 60 V actuation voltages. Figure

4.22 provides the relevant comparison. It is observed from Figure 4.22 that simulated

ON-state resonance is found at 36.7 GHz with lumped ports, which is noted to agree well

with measured frequencies. Apparent discrepancy of the previously simulated isolation

response can be also spotted from the provided curves.

In the light of the observations made above, it can be concluded that failure of the fabri-

cated switch devices to meet the design specifications in their ON-state is entirely due to

improperly configured EM simulations conducted during the design stage. This informa-

tion will be exploited later to establish a predictable design in the subsequent section.
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Figure 4.21: Measured ON-state isolation of a typical switch sample. For comparison
purposes, relevant EM simulation result is overlaid on the same plot.
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4.5.2 Identification of Discrepancies for OFF-State

The source of the discrepancies between designed and measured OFF-state millimeter-

wave responses of the fabricated switches are tracked down to fabrication issues, unlike

the ON-state. Figure 4.23 shows the cause of the problem by providing optical profilome-

ter measurement results of a sample MEMS bridge which belongs to a similar RF MEMS

structure fabricated in the same process run. It is realized from the supplied Y-profile plot

that bridge height of the measured sample is 1.1 µm (= 2.2 µm− tbrd) as opposed to the

intended 1.5 µm value. In other words, MEMS bridges collapsed from 1.5 µm to 1.1 µm

after the release process as evident from the X-profile.

An interpretation of the experimentally confirmed bridge height reduction issue from the

perspective of electrical performance can be facilitated as follows: A MEMS bridge located

at a lower height than the intended one implies an increased capacitive loading. This in

turn causes a degraded OFF-state return loss (hence insertion loss) performance since

loaded-line impedance decreases below the aimed 50 Ω as a consequence of that load-

ing. EM simulations are found to validate this reasoning: Figure 4.24 shows a comparison

between measured and simulated OFF-state S-parameters. It is clear from the good agree-

10 15 20 25 30 35 40
Frequency, (GHz)

¾50

¾40

¾30

¾20

¾10

0

|S
2
1
|, 

(d
B

)

Measurement (50-60V)
EM (Lumped Ports)
EM (Waveports)

Figure 4.22: A comparison for ON-state isolation responses of the switch device between
measurements and EM simulations. Measured responses are obtained at 50− 60 V actu-
ation voltages.
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Figure 4.23: Optical profilometer measurement results of a sample MEMS bridge fabri-
cated in the same process run along with the Ka-band shunt, capacitive-contact RF MEMS
switches.

ment of provided curves that degradation associated with OFF-state performance of the

fabricated switches can be mainly attributed to reduced bridge height. The bridge height

is determined as 1.0 µm from EM simulations following a trial-error procedure and this

value is found to agree well with the optical profilometer results. The latter observation

further enhances the confidence in the EM simulations utilizing lumped-ports.

4.6 Design Modification for the Switch Device

Previous section identified the reasons for the discrepancies between measured and de-

signed millimeter-wave responses of the fabricated switch devices. That established

knowledge is now put into use in this section to improve the performance of the Ka-band

shunt, capacitive-contact RF MEMS switch through slight modifications on the existing

configuration.

4.6.1 Partial Contact Approach

The first modification on the Ka-band shunt, capacitive-contact RF MEMS switch is the

utilization of a partial contact rather than a full one. Such an adjustment bears two
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Figure 4.24: A comparison between measured and simulated OFF-state S-parameters of
the switch devices. EM simulations utilize lumped-ports for excitation. Bridge height
value is determined to be Hbrd = 1.0 µm.

advantages:

• Actuation voltages can be lowered for a desired ON-state resonance frequency.

• ON-state resonance can be precisely tuned to a specific frequency by altering the

actuation voltage.

For the switch to possess these favorable properties, a measurement-based contact char-

acterization study is conducted. Within the scope of this study, initially, a design goal is

set which states to achieve an optimum isolation at 35 GHz with an actuation voltage

of 20 V . Next, the connection between EM simulations and measurements is tried to be

established through a geometric model of the partial ON-state contact. For that purpose,

the simple linear geometric model depicted in Figure 4.25 is adopted for EM simulations.

In particular, partial contact is described by the variable η and the characterization pro-

cedure aims to find the value of η for a given actuation voltage (in this case 20 V ) based

on the measurement results.

In order to determine the value of η from the measurement results at 20 V , first, fabri-

cated switch configuration is simulated in its ON-state for several η values (with lumped-
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Figure 4.25: Illustration of the linear partial contact geometric model adopted for EM
simulations.

10 15 20 25 30 35 40
Frequency, (GHz)

À50

À45

À40

À35

À30

À25

À20

À15

|S
2
1
,M
E
A
S

ÁS 21,EM|, (dB
)

Â=9 ÃmÂ=12 ÃmÂ=15 ÃmÂ=20 ÃmÂ=25 ÃmÂ=30 Ãm
Figure 4.26: Results of the error analysis for determination of the partial contact variable
η at 20 V actuation voltage.

ports and Hb = 1.0 µm) and a simulated isolation response database is generated. Then,

complex S21 responses obtained from measurement results at 20 V and simulations are

compared. The latter is accomplished by evaluating the complex error between averaged

measurement results and simulated isolation responses at each frequency point and for

every η. Figure 4.26 provides the results of that error analysis.

It is observed from Figure 4.26 that η = 25 µm accomplishes the smallest error between

simulated and measured isolation responses for 20 V over the Ka frequency band. Ac-

cording to this result, η is fixed to 25 µm in the remainder of the design modification

stage.
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Table 4.9: Layout and circuit model parameters for the modified design.

DESIGN LAYOUT PARAMETERSa CIRCUIT MODEL PARAMETERS

MODIFIED

DESIGN

Hbrd = 1.5 µm, η = 25 µm Z0 = 85.9 Ω, εeff = 2.38, LCPW = 95 µm

W = 130 µm αCPW = 163.6 dB/m (@ 35 GHz)
G = 90 µm Cd = 1.43 fF, Lr = 104.57 pH

Wrec = 80 µm Cb,OFF = 63.06 fF, Cb,ON = 433.42 fF
Drec = 210 µm Lb = 48.13 pH, Rb = 0.17 Ω

G0 = 17 µm, W0 = 180 µm Z0,t = 40.4 Ω, εeff = 2.38, Lt = 100 µm

Ltran = Lext = 50 µm αCPW = 299.8 dB/m (@ 35 GHz)
a For material properties and other common layout parameters, refer to Table 4.2. In particular, tCPW and tbrd are

adopted as 0.9 µm and 1.1 µm respectively according optical profilometer results.

4.6.2 Inductive Tuning for Partial Contact

Having determined the value of the partial contact variable η, hence the ON-state capaci-

tance, ON-state isolation can now be tuned precisely to 35 GHz through inductive tuning.

Utilizing the approach outlined in §4.2.4.2 for Hbrd = 1.5 µm (intended bridge height)

and η= 25 µm, it is found that increasing the recess depth Drec from 145 µm to 210 µm

merely accomplishes the desired tuning. Furthermore, OFF-state performance is noted to

be virtually unaffected as a result of this modification, a behavior sparing the designer

from a rather involved design cycle. Table 4.9 summarizes the obtained configuration for

the modified switch design along with the corresponding circuit model parameters. Fig-

ure 4.27 presents simulated and modeled S-parameters of the modified design. Finally,

Table 4.10 provides a millimeter-wave performance summary obtained from relevant EM

simulation data.

It is noted from Figure 4.27 and Table 4.10 that modified design exhibits a superior per-

formance compared to the previous Design #2. This is in part caused by utilization of

lumped-ports instead of a single-mode excitation6. Notice moreover from the provided S-

parameter plots that the agreement between EM simulations and circuit model is excellent

unlike previous case wherein a true modeling could not be achieved. This latter obser-

vation once again emphasizes the importance of utilizing correct stimulus settings in EM

simulations.

6 It is furthermore expected that loss of the structure is underestimated due to change of absorbing
boundary conditions surrounding the switch volume.
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Figure 4.27: Electromagnetically simulated and modeled magnitude S-parameters for
the modified design (CPW transitions included, Hbrd = 1.5 µm).
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Table 4.10: Millimeter-wave performance summary of the modified design. Relevant
data are obtained from corresponding EM simulations. CPW transitions are included.

DESIGN
PERFORMANCE DATA

OFF-STATE ON-STATE

MODIFIED

DESIGN

INSERTION LOSS ISOLATION

≤ 0.15 dB, f ≤ 40.0 GHz OPTIMUM LEVEL: 45.6 dB
≤ 0.30 dB, f ≤ 45.0 GHz ( f0 = 35.0 GHz)

RETURN LOSS

≤ −25.0 dB, 25.0–40.0 GHz ≥ 20 dB, 30.4–42.0 GHz
≤ −20.0 dB, 25.0–42.4 GHz ≥ 30 dB, 33.4–36.8 GHz

4.6.3 Anchor Extensions for Bridge Height Stability

It was demonstrated in §4.5.2 that failure to attain a given bridge height value could

drastically alter the OFF-state performance of fabricated switches. Consequently, some

stabilization means is necessary for the fabricated MEMS bridges in order to ensure a

properly working switch design. A possible stabilization method, which does not require

any modification to the current process sequence, is to utilize base-metal anchor exten-

sions. The idea7 is illustrated in Figure 4.28 and explained below:

• In the regular process sequence, MEMS bridges feature step-ups due to conformal

coating properties of the sacrificial layer and the structural layer deposited over it.

In particular, the step-ups near the CPW signal trace edges form weak mechanical

joints (shown in small dots in Figure 4.28(a)), which might not prevent buckling of

the bridge after the removal of the sacrificial layer. In other words, relevant step-ups

promote bridge height variation issue due to their stress-relieving properties.

• If conformal coating property of the sacrificial layer could be prevented especially

around the CPW signal trace edges, step-ups in the MEMS bridges could be elimi-

nated. Base-metal anchor extensions accomplish that prevention task: It is observed

in a few coating experiments that sacrificial layer fails to cover too narrow features

in a conformal fashion. By extending base-metal extensions from CPW grounds to

the CPW signal trace with a small clearance, such a narrow feature can be gener-

ated and consequently step-ups in the MEMS bridge can be mitigated as shown in

Figure 4.28(b).

7 This concept is developed together with Dr. Kağan Topallı and Dr. Mehmet Ünlü.
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(a) Without anchor extensions. (b) With anchor extensions.

Figure 4.28: Process flow diagrams describing the operation of the anchor extension
concept.

The anchor extension concept, although seems plausible from a mechanical viewpoint,

must be tested for its millimeter-wave aspects in order to become a completely viable

solution. In particular, bringing these CPW ground plane extensions toward the CPW

signal trace in a close proximity might affect the millimeter-wave performance of the

switch devices by forming additional shunt capacitances and/or altering the bridge in-

ductance values. In order to see whether such a disturbance would occur or not, a few

EM simulations are conducted for several values of the ground-to-signal proximity. Figure

4.29 compares obtained S-parameter results. It is observed from Figure 4.29 that anchor

extensions have no appreciable effect on the millimeter-wave performance of the switch

device even at a proximity of 10 µm. This result can be interpreted as follows: Since

bridge height is much smaller than the minimum employed proximity of 10 µm, trans-

mission properties of the effective inverted microstrip line (formed by the MEMS bridge

and the CPW signal trace) are not affected due to the presence anchor extensions.

In the light of the discussions provided in this subsection, anchor extension concept is

justified to be a viable bridge height stabilization means.

185



10 15 20 25 30 35 40 45
Frequency, (GHz)

Æ80

Æ70

Æ60

Æ50

Æ40

Æ30

Æ20

Æ10

|S
1
1
|, 

(d
B

)
OFF

Original
30Çm Gap
20Çm Gap
10Çm Gap Æ7Æ6Æ5

Æ4Æ3Æ2
Æ10

|S
1
1 |, (dB

)

ON

(a) |S11| for both states.

10 15 20 25 30 35 40 45
Frequency, (GHz)

È0.45

È0.40

È0.35

È0.30

È0.25

È0.20

È0.15

È0.10

È0.05

|S
2
1
|, 

(d
B

)

OFF

Original
30Ém Gap
20Ém Gap
10Ém Gap È50

È40

È30

È20

È10

0

|S
2
1 |, (dB

)

ON

(b) |S21| for both states.

Figure 4.29: A comparison between electromagnetically simulated S-parameters of the
switch device for different ground-to-signal proximity values of base-metal anchor exten-
sions (CPW transitions are omitted, Hbrd = 1.5 µm).
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4.6.4 Modification of the Bridge Height

Due to change of fabrication plans for the next process run, bridge height value of the

switch devices required a modification. In particular, relevant plans dictated a new bridge

height of 1.8 µm instead of the previously adopted 1.5 µm value. In order to eliminate

the need for a complete re-design, it is decided first to observe the millimeter-wave per-

formance of the switch configuration depicted in Table 4.9 with the updated bridge height

specification. Figure 4.30 show simulated S-parameters of this new configuration, while

Table 4.11 summarizes obtained millimeter-wave performance.

It is noted from Figure 4.30 and Table 4.11 that OFF-state return loss performance of the

switch device degrades noticeably when bridge height is elevated from 1.5 µm to 1.8 µm.

OFF-state insertion loss and ON-state isolation, on the other hand, are observed to change

negligibly. Due to time limitations for a complete re-design and acceptable nature of the

worst case OFF-state return loss, it is decided to terminate the design modification at this

point and to implement the resulting switch device in a second fabrication run. Table

4.12 lists the layout and circuit model parameters for the finalized switch configuration.

Table 4.11: Millimeter-wave performance summary of the modified design with
Hbrd = 1.8 µm. Relevant data are obtained from corresponding EM simulations. CPW
transitions are included.

DESIGN
PERFORMANCE DATA

OFF-STATE ON-STATE

MODIFIED

DESIGN

INSERTION LOSS ISOLATION

≤ 0.15 dB, f ≤ 40.0 GHz OPTIMUM LEVEL: 45.6 dB
≤ 0.16 dB, f ≤ 45.0 GHz ( f0 = 35.4 GHz)

RETURN LOSS

≤ −17.8 dB, 25.0–45.0 GHz ≥ 20 dB, 30.8–42.5 GHz
≥ 30 dB, 33.8–37.2 GHz

4.7 Second Fabrication Iteration and Measurement Results

This final section encompasses fabrication of the switch structures modified for increased

robustness and provides their successful measurement results.
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Figure 4.30: Electromagnetically simulated and modeled magnitude S-parameters for
the modified design (CPW transitions included, Hbrd = 1.8 µm).
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Table 4.12: Layout and circuit model parameters for the modified design with updated
bridge height specification.

DESIGN LAYOUT PARAMETERSa CIRCUIT MODEL PARAMETERS

MODIFIED

DESIGN

Hbrd = 1.8 µm, η = 25 µm Z0 = 85.9 Ω, εeff = 2.38, LCPW = 95 µm

W = 130 µm αCPW = 163.6 dB/m (@ 35 GHz)
G = 90 µm Cd = 1.43 fF, Lr = 104.57 pH

Wrec = 80 µm Cb,OFF = 51.06 fF, Cb,ON = 433.42 fF
Drec = 210 µm Lb = 45.70 pH, Rb = 0.17 Ω

G0 = 17 µm, W0 = 180 µm Z0,t = 40.4 Ω, εeff = 2.38, Lt = 100 µm

Ltran = Lext = 50 µm αCPW = 299.8 dB/m (@ 35 GHz)
a For material properties and other common layout parameters, refer to Table 4.2. In particular, tCPW and tbrd are

adopted as 0.9 µm and 1.1 µm respectively according optical profilometer results.

4.7.1 Fabrication Details

Fabrication of the modified switch devices was performed once again in METU MEMS

Center Facilities using the fabrication steps detailed in §4.4.18. The only exception was

that sacrificial layer thickness was increased to 1.5 µm in order to establish a bridge

height of 1.8 µm. Figure 4.31 shows a micrograph of a successfully fabricated switch

device.

Figure 4.31: Micrograph of a successfully fabricated Ka-band shunt, capacitive-contact
RF MEMS switch (second iteration). Device features are indicated.

8 Process steps were completed by Dr. Kağan Topallı , Evrim Özçakır and Ozan Doğan Gürbüz.
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Figure 4.32: Optical profilometer measurement results of a sample switch device. Mea-
sured bridge height is precisely 1.8 µm.

4.7.2 Optical Profilometer Measurement Results

Before advancing to millimeter-wave measurements, bridge height value of the fabricated

switch devices was measured with an optical profilometer in order to check whether

the anchor extension concept indeed worked. Figure 4.32 shows relevant measurement

result for a typical switch sample. As it can be readily noticed from the X-profile plot, a

precise bridge height of 1.8 µm (= 2.9 µm− tbrd) is attained successfully, an observation

validating the anchor extension solution for bridge height stabilization problem.

4.7.3 Millimeter-wave Measurement Results

Millimeter-wave measurements of fabricated switch samples were conducted using the

measurement setup and calibration method described in §4.4.2. Figures 4.33 and 4.34

provide measured S-parameters for two switch samples. Table 4.13 summarizes millime-

ter wave performance attained by those switch samples.
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Figure 4.33: Measured S-parameters of a Ka-band shunt, capacitive-contact RF MEMS
switch sample (Sample #1).
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Figure 4.34: Measured S-parameters of another Ka-band shunt, capacitive-contact RF
MEMS switch sample (Sample #2).
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Table 4.13: Millimeter-wave performance summary of fabricated two switch samples.

SAMPLE
PERFORMANCE DATA

OFF-STATE ON-STATE

SAMPLE #1

INSERTION LOSS ISOLATION

≤ 0.27 dB, 1–40 GHz OPTIMUM LEVEL: 38.9 dB
( f0 = 34.5 GHz @ 25 V )

RETURN LOSS ≥ 20 dB, 29.7–40.0 GHz
≤ −18.6 dB, 1–40 GHz ≥ 30 dB, 33.0–36.2 GHz

SAMPLE #2

INSERTION LOSS ISOLATION

≤ 0.27 dB, 1–40 GHz OPTIMUM LEVEL: 39.2 dB
( f0 = 35.0 GHz @ 20 V )

RETURN LOSS ≥ 20 dB, 30.7–40.0 GHz
≤ −16.4 dB, 1–40 GHz ≥ 30 dB, 33.7–36.8 GHz

An examination of Figures 4.33-4.34 and Table 4.13 shows that fabricated switch sam-

ples exhibit expected OFF and ON-state millimeter-wave responses: Thanks to anchor

extensions, MEMS bridges are formed precisely at a bridge height of Hb = 1.8 µm and

consequently OFF-state return loss and insertion loss are obtained as intended. More-

over, ON-state resonance frequency can be successfully tuned to 35 GHz with 25 V and

20 V actuation voltages for Sample #1 and Sample #2 respectively. Furthermore, mea-

sured performance parameters satisfy the design requirements stated at the beginning

of this chapter, except for the return losses which are nevertheless acceptable for a non-

optimized design.

In the light of these results, it can be stated that a Ka-band shunt, capacitive-contact RF

MEMS switch is successfully realized.

4.8 Conclusion

This chapter presented electromagnetic and mechanical design, fabrication and millime-

ter wave measurements of a Ka-band shunt, capacitive-contact RF MEMS switch. Relevant

switch devices with desired specifications could not be fabricated in a single run and the

sources for relevant discrepancies were investigated, identified and remedies were pro-

posed. Building upon the developed knowledge, successfully operating switches were

realized at the end of the second fabrication iteration.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

This thesis presents distinct works aimed for the development of microwave and millime-

ter-wave components suited to RF MEMS technology-based applications. Conducted re-

search is three-fold in its scope. First of the established studies encompasses analysis,

design and implementation of single-layer microwave lumped elements that feature ad-

vantages of easy and low-cost fabrication enabling potential mass production. Within

the framework of this first work, a monolithically integrated filter device is successfully

realized using those components. A self-contained, accurate mechanical characterization

of a frequently encountered beam structure forms the second research subject. The lat-

ter theoretical work, constituting the first part of RF MEMS component oriented studies

but whose scope also includes other MEMS-based devices as well, concentrates mainly on

electrostatically actuated fixed-fixed type beams and establishes numerical analysis meth-

ods enabling investigation of a variety of phenomena such as pull-in, release and zipping.

Development of a RF MEMS switch component tailored for millimeter-wave applications

composes the last research topic of this thesis. In particular, the Ka-band shunt, capacitive

RF MEMS switch designed, fabricated and measured within the scope of this final work

helps extend capabilities of the METU RF MEMS Group to millimeter-wave applications.

In the light of the research conducted in this thesis, following specific conclusions can be

drawn:

1. Microstrip lumped elements for a particular surface micromachining-based tech-

nology are developed for microwave applications. Relevant technology bears the

advantage of utilizing a single metallization layer. Associated fabrication is there-
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fore easy, low-cost and has the potential for mass production.

2. As an example application of the developed lumped elements, an S-band bandpass

filter is successfully designed, fabricated monolithically and characterized with mi-

crowave measurements. Fabricated filter structures are found to attain an in-band

return loss better than -20 dB, an in-band insertion loss of 1.2 dB, a pass-band

slightly narrower than 2-4 GHz band and a stop-band extending up to 20 GHz.

3. Grounding related issues encountered during the microwave measurements of the

filter structures are successfully identified and the importance of good grounding

practices are highlighted for systems incorporating both CPW and microstrip topolo-

gies.

4. Analytical deflection profile expressions are derived for fixed-fixed type beams sub-

ject to uniform distributed transverse loads. During the derivations, axial effects

of built-in residual stress and bending induced non-linear stretching are rigorously

taken into account. Using those results, effective spring constant of the beam is

evaluated. Moreover, small and large-argument forms of the effective spring con-

stant are established by using series approximations. Those latter expressions are

rendered closed-form and their validity range is justified to be broader than that of

widely used formulations existing in the literature.

5. An analysis of the electrostatic actuation problem is carried out for fixed-fixed type

beams. Attention is directed particularly to wide beams for which fringing effects

can be neglected. Progressing with increased difficulty, Finite Difference numerical

solution schemes are formulated and subsequently implemented for zero-tension

and nonzero-tension problems. Pull-in phenomenon is observed and tried to be

quantified using the simulation results.

6. Semi-empirical pull-in formulations are developed for electrostatically actuated

fixed-fixed type beams by using the previously derived spring constant expression

and numerical simulation results for the zero-tension electrostatic actuation prob-

lem. This study is initially intended to compensate for the lack of accurate de-

termination of pull-in voltages with the nonzero-tension numerical scheme. Upon

evaluating the proposed formulations for sample case studies, resulting accuracies
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are found comparable to, if not better than, those exhibited by other expressions in

the literature.

7. In order to complete the characterization of fixed-fixed type beams under electro-

static actuation, Finite Difference solution schemes are proposed and implemented

for the electromechanical contact problem. Zipping phenomenon is observed and

its trend is qualitatively investigated with respect to the problem parameters. More-

over, release phenomenon is identified and numerical schemes are developed to

evaluate associated hold voltages. With those accomplishments, hysteresis prop-

erties of electrostatically actuated fixed-fixed type beams are characterized com-

pletely.

8. A Ka-band shunt, capacitive-contact RF MEMS switch is designed in electromag-

netic and mechanical domains, fabricated and measured. Having not met the de-

sign specifications at the end of the fabrication run, post-fabrication studies are

conducted on the switch samples. Reasons for the observed discrepancies are suc-

cessfully identified.

9. Having determined the sources of discrepancies between measured and designed

characteristics of the switch samples, a design modification is attempted. A partial

contact design approach is proposed and utilized for a flexible and more robust

switch configuration. Moreover, the anchor extension concept is introduced and

employed for bridge height stabilization purposes.

10. Modified switch devices fabricated in a second iteration are observed to work suc-

cessfully. In particular, anchor extension solution is justified as a viable means for

stabilizing MEMS bridge heights. Partial contact approach is also noted to work

with success: ON-state resonance frequencies of the switches are precisely tuned to

35 GHz at actuation voltages in 20-25 V range with an associated optimum isola-

tion level of 39 dB and isolation bandwidths of 3.2 GHz/10.0 GHz (according to 30

dB/20 dB criteria). Measured OFF-state return loss and insertion losses are found

better than -16.4 dB and 0.27 dB respectively over 1-40 GHz.

Presented accomplishments can be improved or extended further with the following fu-

ture works:
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• Developed microwave lumped elements can be designed and utilized at different

frequency bands, possibly for other lumped element based applications such as

phase shifters and impedance matching networks. Moreover, tunable or reconfig-

urable monolithic designs can be realized by integrating RF MEMS switches to the

fabrication process.

• Fringing field correction can be incorporated into the established Finite Difference

formulations of pre-pull-in and post-pull-in electrostatic actuation problems for ac-

curate electromechanical simulation of narrow beams. Moreover, solution of non-

linear Finite Difference equation set may be improved with better algorithms in

order to circumvent the stability issue pertaining to pull-in simulations.

• Zipping phenomenon can be characterized quantitatively for electrostatically actu-

ated fixed-fixed type beams through semi-empirical expressions. A similar quantifi-

cation can be also applied to hold voltages.

• Millimeter-wave performance of the Ka-band shunt, capacitive-contact switches can

be improved further with a fully optimized design for a specific bridge height. In

addition, thickness of the base metallization may be selectively increased in order

to reduce conductor losses since currently utilized 0.9 µm value does not permit

proper application of skin-effect formulations especially at lower frequencies.

• Fabricated Ka-band shunt, capacitive-contact RF MEMS switches may be utilized to

realize switchable or reconfigurable circuits. In fact such a study has already been

undertaken: A 5-bit DMTL phase shifter, a tunable capacitor and a phased-array

have been designed recently by METU RF MEMS Group members (including the

author) at millimeter-wave frequencies.

• RF MEMS switches having a different contact-type (namely, ohmic), circuit config-

uration (i.e. series) and microwave topology (like microstrip) can be implemented

in various frequency bands. Mechanical bridge structures requiring lower actuation

voltages or switching times may be analyzed and fabricated for specific applications.

Switches with improved lifetimes may be realized by using different dielectric ma-

terials and by enclosing the switches within hermetic packages.
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APPENDIX A

DERIVATION OF THE BEAM DEFLECTION PROFILE FOR A

CONCENTRATED TRANSVERSE LOAD

In this appendix, solution of the beam differential equation for a concentrated transverse

load is outlined for the case of tensile axial state. Relevant beam equation was derived in

§3.2.1.1 as:
d4y(x)

dx4
− k2 d2y(x)

dx2
=

Q

E′ I
δ(x − x0) (A.1)

Equation (A.1) can be integrated twice to obtain,

d2y(x)

dx2
− k2y(x) =

Q

E′I
(x − x0) u(x − x0) + c1 x + c0 (A.2)

where ci are arbitrary constants and u(x) is the unit-step function respectively. For con-

venience in the following discussion, let us represent the first term of the right-hand-side

of Equation (A.2) with,

Q

E′ I
(x − x0) u(x − x0) = f(x − x0) u(x − x0) (A.3)

A general solution to Equation (A.2) can be stated as [134],

y(x) =
1

k

x∫

x1

f(t − x0) u(t − x0) sinh [k(x − t)]dt

+ d1 x + d0+ Acosh(kx)+ B sinh(kx)

(A.4)

where x1 is an arbitrary number. From the discontinuous nature of the forcing function,

it is expected for y(x) (or more explicitly for its third derivative) to possess a similar dis-

continuity at x = x0. It must be noted also that x1 must be selected carefully in order to
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preserve non-impulsive behavior of d2y(x)
dx2 and to facilitate the relevant integration. Let

us now confine our attention to the integration term and try to find a proper x1 to satisfy

the mentioned requirement.

Let yp,1(x) denote the particular solution due to only the first term of RHS of Equation

(A.2). From the mini-discussion in the previous paragraph, it is expected that;

yp,1(x) = g(x − x0) u(x − x0) (A.5)

where g(x) is a smooth function. Moreover, yp,1(x) must satisfy,

d2 yp,1(x)

dx2
− k2 yp,1(x) = f(x − x0) u(x − x0)

Carrying out the differentiations, one obtains;

f(x − x0) u(x − x0) =
�

g′′(x − x0)− k2g(x − x0)
�

u(x − x0)

+ g′(0) δ(x − x0)

+ g(0) δ′(x − x0)

(A.6)

It is observed clearly from Equation (A.6) that

g(0) = 0

g′(0) = 0
(A.7)

since relevant forcing function does not contain any impulses nor its derivatives. Using

these conditions, Equation (A.6) translates to,

g′′(x)− k2g(x) = f(x)

which has the identified solution as,

g(x) =
1

k

x∫

x ′1

f(t) sinh [k(x − t)]dt

Now notice that,

g(0) = −1

k

0∫

x ′1

f(t) sinh(kt)dt = 0 (A.8)
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Also, through the use of Leibniz Integral Rule, one can show that,

g′(0) =

0∫

x ′1

f(t) cosh(kt)dt = 0 (A.9)

In the light of Equations (A.8) and (A.9), it can be stated that x ′1 = 0 is a proper selection

that simultaneously satisfies Equation Set (A.7). With the pointed choice of x ′1, g(x) can

now be evaluated as follows:

g(x) =
1

k

x∫

0

Q

E′I
t sinh [k(x − t)]dt

=
Q

E′Ik2

kx∫

0

�
x − t′

k

�
sinh(t′)dt′

=
Q

E′Ik2

�
x cosh(t′)− t′ cosh(t′)− sinh(t′)

k

�kx

0

=
Q

E′Ik3
[sinh(kx)− kx]

(A.10)

Having determined a closed-form expression for g(x), yp,1(x) can be readily obtained

through Equation (A.5).

Now let us return our attention back to the general solution described by Equation (A.4).

Replacing the integration term with its evaluated form, relevant equation becomes,

y(x) = g(x − x0) u(x − x0) + d1 x + d0 + Acosh(kx)+ B sinh(kx)

In order to determine the constants A, B, d1 and d0, boundary conditions at x = 0 and

x = L will be enforced next. Since the beam under consideration has built-in ends, it is

required that

y(0) = 0 (A.11a)

y ′(0) = 0 (A.11b)

y(L) = 0 (A.11c)

y ′(L) = 0 (A.11d)
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First of these conditions results in,

y(0) = d0+ A= 0

∴ d0 = −A

In order to investigate the second condition, let us first evaluate the derivative of y(x):

y ′(x) = g′(x − x0) u(x − x0) + d1 + Ak sinh(kx)+ Bk cosh(kx)

where g(0) = 0 is utilized to cancel the impulsive term. Equation (A.11b) then yields,

y ′(0) = d1 + Bk = 0

∴ d1 = −Bk

Remaining boundary conditions at x = L leads to

A[cosh(kL)− 1] + B [sinh(kL)− kL] = − Q

E′ I k3

�
sinh
�

k(L − x0)
�− k(L − x0)
	

Asinh(kL) + B [cosh(kL)− 1] = − Q

E′ I k3

�
cosh
�

k(L − x0)
�− 1
	 (A.12)

After solving Equation Set (A.12) for A and B, one obtains,

A=
Q

E′ I k3

sinh[k(L−x0)]−kL cosh[k(L−x0)]+k(L−x0) cosh(kL)+sinh(kx0)+kx0−sinh(kL)

kL sinh(kL)−2cosh(kL)+2

B =
Q

E′ I k3

cosh[k(L−x0)]−k(L−x0) sinh(kL)−cosh(kx0)+cosh(kL)−1

kL sinh(kL)−2cosh(kL)+2

(A.13)

Deflection profile for the beam can be therefore determined as,

y(x) = g(x − x0) u(x − x0) + A[cosh(kx)− 1] + B [sinh(kx)− kx] (A.14)

with g(x) and the coefficients A, B expressed by Equations (A.10) and (A.13) respectively.
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