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ABSTRACT 

CROSSING: A FRAMEWORK TO DEVELOP KNOWLEDGE-BASED 

RECOMMENDERS IN CROSS DOMAINS 

 

Azak, Mustafa 

M.S., Department of Computer Engineering 

Supervisor: Dr. Ayşenur Birtürk 

 

February 2010, 97 pages 

 

Over the last decade, excess amount of information is being provided on the web and 

information filtering systems such as recommender systems have become one of the most 

important technologies to overcome the „Information Overload‟ problem by providing 

personalized services to users. Several researches have been made to improve quality of 

recommendations and provide maximum user satisfaction within a single domain based 

on the domain specific knowledge. However, the current infrastructures of the 

recommender systems cannot provide the complete mechanisms to meet user needs in 

several domains and recommender systems show poor performance in cross-domain item 

recommendations. Within this thesis work, a dynamic framework is proposed which 

differs from the previous works as it focuses on the easy development of knowledge-

based recommenders and it proposes an intensive cross domain capability with the help of 

domain knowledge. The framework has a generic and flexible structure that data models 

and user interfaces are generated based on ontologies. New recommendation domains can 

be integrated to the framework easily in order to improve recommendation diversity. The 

cross-domain recommendation is accomplished via an abstraction in domain features if 

the direct matching of the domain features is not possible when the domains are not very 

close to each other. 

Keywords: Web Personalization, Information filtering, Recommender Systems, Cross  

Domain Recommendation, Recommendation Frameworks, Recommender Engines. 
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ÖZ 

CROSSING: ÇAPRAZ TAVSİYE ALANLARINDA BİLGİ TABANLI 

TAVSİYE SİSTEMİ GELİŞTİRMEK İÇİN BİR ÇATI 

 

Azak, Mustafa 

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

Tez Yöneticisi: Dr. Ayşenur Birtürk 

 

Şubat 2010, 97 sayfa 

 

Son on yıl içinde, çok fazla miktarda bilgi internete sağlanmakta ve bunun sonucunda 

“Aşırı Bilgi Yüklenmesi” sorunu ortaya çıkmaktadır. Tavsiye sistemleri gibi bilgi 

filtreleme sistemleri ise kullanıcılara kişiselleştirilmiş hizmetler sunarak bu sorunu 

aşmada en önemli teknolojileriden biri olmuştur. Belirli bir öneri alanı içinde bu alana ait 

bilgilere dayanılarak yapılan tavsiyelerin kalitelerini artırmak ve maksimum kullanıcı 

memnuniyetini sağlamak için bir çok çalışma gerçekleştirilmiştir. Ancak, mevcut tavsiye 

sistemlerinin altyapıları farklı öneri alanlarındaki kullanıcı ihtiyaçlarını karşılamak için 

tam bir mekanizma sağlayamamakta ve öneri alanları arasında gerçekleştirilen çapraz 

tavsiyelerde kötü bir performans göstermektedir. Bu tez çalışması içinde, önceki 

çalışmalardan farklı olarak bilgi tabanlı tavsiye sistemlerinin kolaylıkla 

geliştirilebilmesine odaklanılmış ve etkin çapraz tavsiye yeteneğine sahip dinamik bir 

tavsiye sistemi çatısı önerilmiştir. Çatı, jenerik ve esnek bir yapıya sahiptir, veri modelleri 

ile kullanıcı arayüzleri ontolojiler baz alınarak oluşturulmaktadır. Tavsiye çeşitliliği 

artırmak amacıyla yeni öneri alanları kolaylıkla sisteme eklenebilir. Eğer birbirlerine 

yakın olmayan öneri alanlarının özelliklerinin doğrudan eşleşmesi mümkün değilse 

çapraz tavsiyeler bu özelliklerin bir üst seviyede soyutlaması yoluyla gerçekleştirilir. 

  

Anahtar Kelimeler: Web Kişiselleştirme, Bilgi Filtreleme, Tavsiye Sistemleri, Alanlar 

Arası Tavsiyeler, Tavsiye Sistemleri Çatıları, Tavsiye Motorları. 
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CHAPTER 1  
 

 

 

INTRODUCTION 

 

 

With the increasing number of Web usage, the amount of information being 

provided on the Internet has become very difficult to handle and this causes the 

“Information Overload” problem [1]. Individuals have to spend so much time in 

searching in order to reach the valuable data. The need for providing filtered, 

relevant and useful data led to the development of information filtering and 

personalization techniques. Recommender Systems have become one of the most 

important technologies to overcome the „Information Overload‟ problem.  

 

Recommender Systems exploit the users‟ past experiences and preferences, build 

the user models and identify users‟ behaviors to predict their future needs and try 

to generate personalized recommendations [2]. Over the last decade, several 

researches have been made to improve the recommendation methods and user 

modeling techniques in order to extend quality of recommendations and provide 

maximum user satisfaction [3]. Therefore, exploiting the user profiles of social 

networking / Web 2.0 style sharing platforms [4] and applying advanced 

recommendation methods, recommender systems have achieved remarkable 

practical and commercial success. Recommender systems might be regarded as 

business tools for generating competitive advantages. Commercial sites use them 
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to suggest products to users and aim to increase their sells by providing the items 

that users might be most probably interested in among available products. 

Amazon [5], Last.fm [6], Netflix [7] and MovieLens [8] are the most successful 

and popular examples of the recommender systems.  

Although web-based social and commercial networks provide variety of interests 

for users in various domains such as books, movies, music and games; most 

recommendation systems currently provide recommendations within a single 

domain based on the specific knowledge about the related domain. They suggest 

products based on the following criteria; popularity on the market, demographic 

information of users, modeling of previous preferences and buying behavior, 

product similarities, community critiques and evaluations. These techniques have 

been matured over the time and proved their success concerning single domains. 

However, the current infrastructures of the recommender systems cannot provide 

the complete mechanisms to meet user needs in different domains and 

recommender systems show poor performance in cross-domain item 

recommendations.  

Cross-Domain recommendations play an important role for the success in the 

cross selling markets. Cross-Selling is the term for the practice of suggesting 

related products or services to a customer who is considering buying something 

[9]. In addition, cross-selling provides the user loyalty and reliance on the seller 

and decrease the customer switching behaviors to a competitor. Cross-Domain 

recommendations suggest the related items from different domains, provides 

strong capabilities to meet variety of interests and increase the user satisfaction 

which is the main goal of recommender systems. Current systems only consider 

the statistical analysis on the market and try to make use of relations between 

popular items without personalized recommendations. 
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Therefore, there is a lack of cross-domain recommenders which can make 

successful personalized recommendations in cross-domains. Moreover, there are 

few frameworks to develop recommender systems and very few of them support 

the cross-domain recommendations. In addition, the current infrastructures are 

very static that the systems are highly dependent on their recommendation 

domains and it is very difficult to improve their abilities to develop new features 

to adapt and cover changeable needs of users. 

In this thesis, we propose a dynamic framework, which enables addition of new 

recommendation domains and provides the development of knowledge based 

cross domain recommenders as well as single domain recommenders.  

The addition of a new recommendation domain is crucial because it enables to 

improve the recommender system‟s capability and evolve the system according to 

new user needs. In order to provide dynamic domain additions to framework, our 

system considers each domain as a pluggable component that provides the 

required domain data via well defined interfaces. The domain data includes user 

data, community data, items and domain knowledge. Domains may have different 

data structures and each domain has a specific ontology. Therefore, to be able to 

provide required interaction with the framework interfaces, each domain needs to 

have an adapter system to transform its data into a common vocabulary and 

structure. Considering the general ontologies and XML schema of the framework; 

an adapter system is employed to deal with ontology mapping and type 

conversions of the features. After creating an adapter system for the domain, it can 

be easily integrated with the framework.  

Providing accurate predictions and useful recommendations among the integrated 

domains are the other important capabilities of the proposed framework. The 

framework provides knowledge based recommender development with a hybrid 

approach for generating recommendations. The recommendation engine has 
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different types of recommendation strategies which are applied depending on the 

available data about the user and the items in domains. Collaborative and content 

based strategies use feature-weighted models in similarity calculations. The initial 

feature weights for users and items are determined with domain knowledge for 

each domain. These initial weights play an important role for accurate 

recommendation especially for the cold start problems. While the user continues 

to receive recommendations, the weights are updated according to the reactions of 

the user for the recommendations which are captured by the feedback mechanism. 

Therefore, personalized feature weights are learned for each user individually and 

they increase the accuracy of the recommendations.  

In addition, we have also high level abstractions and relations between domains. 

The relational information about domains can be dynamically added to the 

framework by defining the rule sets which provide inter-domain knowledge 

between two specific domains.  The inter-domain knowledge is used for feature 

mapping between domains and it affects the weights of features in target domain. 

A knowledge base is constructed using these mappings and recommender engine 

benefits from this knowledge base by finding the relational rules between 

different domains to generate more accurate recommendations in cross-domains.  

The remainder of the thesis is organized as follows.  

Chapter 2 – Background and Related Work gives an overview of 

recommender systems in literature. It introduces the main paradigms of 

recommender system design, and identifies their approaches in detail. It also 

describes current recommendation system frameworks and their structures. Pros 

and cons of these frameworks are discussed. 

Chapter 3 – CrosSing: A Framework to Develop Knowledge-Based Recommenders 

in Cross Domains presents our framework, CrosSing. The overview of the 
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framework is presented, the data representation scheme is explained, and the 

framework components are described in detail. 

Chapter 4 – Evaluation of the system provides a summary of testing methods of 

CrosSing framework and presents experimental results. 

Chapter 5 – Conclusions discuss the concluding remarks and explains the future 

work. 
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CHAPTER 2  
 

 

 

 BACKGROUND AND RELATED WORK 

 

 

This chapter aims to present an overview of recommender systems and their 

recommendation algorithms. It also includes the general concepts of the 

frameworks and discusses some of the important recommendation systems 

framework examples. 

 

2.1 Recommender Systems 

Recommender Systems (RS) are designed to help individuals to deal with 

information overload, incomplete information, and enable them to make 

evaluative decisions [1]. More general definition of the recommender systems is 

that RS represent a class of systems those have the effect of guiding the user in a 

personalized way to interesting or useful objects in a large space of possible 

options [10].  They use various personalization techniques and most common way 

to use of the opinions of a community of users which provides identifying the 

content of interest very effectively from a potentially overwhelming set of 

choices. Recommender systems also examine the model of the user, the user 

profile, and compare it against a description of available items to decide which 

ones should be recommended to the user and which ones must be filtered. 
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In the early 1990s, Tapestry [11], the first filtering system, was developed at the 

Xerox Palo Alto Research Center. This system allowed users to annotate e-mail 

messages so that others could find documents based on previous comments. It was 

the first usage of combining human feedbacks with automated filtering which all 

of the system‟s users benefit from. Similar concepts and principles were 

successfully applied to Internet discussion forums and movie filtering systems. 

The initial success of recommender systems leads the increase of e-commerce 

businesses that implement them. In recent years, many E-commerce sites have 

used Recommender Systems in order to suggest products to their customers and to 

provide consumers with information to help them decide which products to 

purchase [12]. The recommendations are provided based on the top overall sellers 

on a site, on the demographic information of the user, or on an analysis of the 

previous buying behavior of the user. These e-commerce sites try to adapt 

themselves to each customer by providing personalized product information, 

summarizing community opinion, providing community critiques and most 

importantly predicting the future interests of the consumer. As a result, they have 

succeeded to build customer loyalty, increase profits, and boost item-cross selling 

[13]. 

 

The widespread commercial usage of RS has also mirrored in the academic 

society and many researches have been done in recommender systems with the 

various different fields. Recommender systems are researched in the context of 

statistics, machine learning, human-computer; social network analysis, distributed 

and mobile systems, agent-based artificial societies, computational trust and etc. 

More recently, user generated tag or label annotations on contents are being used 

to create recommendations, social networks and mobile networks are being 

explored to adapt changeable user needs in order to filter online news and 

improve search engine performance. 
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To conclude, the goal of a Recommender System is to that maximizes the user‟s 

utility by selecting a subset of items from a universal set, based on user 

preferences. The formal definition for a recommendation s‟c is follows: 

 

 

 

where c indicates a user that belongs to the overall set of users C and s is an item 

of S, the set of all candidate for recommendation items. u(c,s) is the utility 

function that measures usefulness of item s to user c, u :C × S →R , where R is a 

totally ordered set [1]. 

2.1.1 Content-Based Recommender Systems 

Content-based recommender systems recommend an item to a user based on the 

similarity between the content of the item and user‟s preferences [1]. The 

recommendation problem is converted to a search problem and tried to be solved 

by finding the most similar available items to those which user liked in the past. 

Therefore, content-based recommender systems (CS) have to represent and 

manage the descriptive contents of the items. Many recommender systems use 

“feature vectors” to represent the values for the descriptors of items [14]. Item 

features can be the title of a film, the genre of a song, or the writer of a book 

depending upon the type of recommendation domain that the item being 

recommended is belong to. Moreover, recommender systems should also 

represent the user‟s preferences and construct user profile in order to determine 

the user interests particularly. Eventually, the similarities between item features 

and user‟s preferences are determined and the most similar items would be 

recommended. 
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Machine learning and information retrieval techniques are applied to learn user 

models and construct user profiles. There are two ways to build a user profile 

[15]. The first one is the implicit technique that user‟s past actions and behaviors 

are examined and data about user profile is collected without placing any burden 

on the user. For instance, the user clicks on results of the recommendations or the 

time a user spends reading a document can be observed and the implicit feedback 

can be provided. Another technique is asking the feedbacks from the user 

explicitly. User may rate an item in a range to indicate how much he likes or make 

some comments on the item. In addition to those techniques, supervised learning 

algorithms can be applied to learn the user model implicitly. 

 

As content based recommender systems recommend items similar to those that a 

user liked in the past, similarity measurements of items with user‟s preferences 

play an important role.  Traditional systems use a utility function to predict an 

item‟s score by determining the similarity between item‟s features and generated 

user profile. Some systems define a vector of weights corresponding to feature 

vectors to denote the importance of each feature to users. These weights can be 

personalized and learned for each user to improve the recommendation quality. 

Along with these traditional information retrieval techniques, Bayesian classifiers 

[12], [13] and various machine learning techniques, including clustering, decision 

trees, and artificial neural networks can be applied for content based 

recommendation. 

 

Although content based recommendation has valuable benefits, it has some 

certain drawbacks; the most important of them is user preferences have limited 

coverage. The coverage of a preference depends on the coverage of applicable 

feature(s) to recommendation domain. Another problem with the content-based 

recommendation systems is their tendency to overspecialize the item 

recommendations. As item selection methods are based on previously rated items, 
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recommendations become very similar to previous items seen by the user. 

Moreover, content based recommender systems require a sufficient number of 

items to be rated in order to construct a user profile and provide accurate 

recommendation. Therefore, their performances on accuracy are low for the new 

users. 

 

2.1.2 Collaborative Filtering Systems 

Collaborative filtering (CF) is the most widely used method in recommender 

systems [3]. The technique makes recommendations based on a set of user ratings 

on items. There exist two main approaches to collaborative filtering: memory 

based and model based CF. Memory based systems may also divided into two 

groups such as user-based and item-based CF. 

2.1.2.1 User-based collaborative filtering 

 

User-based Collaborative Filtering Systems recommend the items that have been 

rated highly by people sharing the similar preferences with the user [3]. In other 

words, collaborative filtering systems match the people with similar interests and 

make recommendations on this basis. They assume that user likes the items that 

are preferred by similar users. Therefore, the group of most similar users to active 

user is identified first. Generally, a similarity metric and a cluster algorithm like 

k-nearest neighbor classifier are used to find the most similar users. Then, the 

items rated by the group but have not been seen by user are selected. The rating 

prediction is performed for each selected items by aggregating the group's ratings. 

As a last step, the items with the highest predicted rating are recommended to 

active user. 
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A user based collaborative filtering system has to include methods to achieve the 

following requirements in order to provide accurate and useful recommendations. 

[3]. First, it should have a metric to determine the similarity between users the 

construct clusters (neighborhood) for similar users. Secondly, the system should 

provide a method for selecting the most similar users with the active user for 

rating prediction. Lastly, a method for predicting a rating for the items have not 

been rated by the active user is essential.   

 

Various approaches including Pearson and Spearman Correlation [18], the cosine 

angle distance [19], Entropy, Mean-squared difference and constrained Pearson 

correlation have been used to compute the similarity between users in 

collaborative recommender systems. Pearson correlation and cosine-based 

similarity are the most commonly adapted methodologies. After measuring the 

similarities between users, the most similar users with the active user are selected 

based on the neighborhood of the active user. Therefore, a method is required to 

define the neighborhood of the active user. Threshold values for the user 

similarity and the number of the neighbors are the most commonly adapted 

approaches in the literature. These values directly affect the performance of the 

recommendations. If the neighborhood size is large, many of the selected 

neighbors become dissimilar with the active user and the accuracy of the 

recommendation decreases. On the other hand, selecting a small neighborhood 

can lead limited and similar recommendations. Finally, a method is required to 

determine the ratings of the each item that has not been rated by the active user. 

The most commonly used approach is to use the weighted sum of rank. 
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2.1.2.2 Item-based collaborative filtering 

 

Item-based collaborative filtering systems apply the same idea with user-based 

collaborative filtering ones. The recommendation steps explained above also 

applicable to item-based collaborative filtering systems considering that the 

similarities are measured between pairs of items instead of users [3]. The rating of 

an item can be predicted using the ratings given to other similar items. Pearson 

correlation and cosine-based similarity can be also used to determine the 

similarity between items based on the ratings from all users. The neighborhood is 

also defined similar to user-based approach. The neighbor items are determined 

which are the most similar to items for which the prediction is calculated. Then, 

an item‟s rating is predicted by aggregating the ratings of similar items.   

 

Considering the relation between the number of the users and the number of the 

items in recommendation systems, item-based algorithms can both provide high 

quality recommendations and be more efficient than traditional user-based 

collaborative methods based on computational performance. 

 

2.1.3 Demographic Filtering 

Although demographic filtering uses user-based similarities like collaborative 

filtering, its approach differs from CF techniques as similarity measurement 

components are independent of the ratings that are given to items. Demographic 

Filtering techniques assumes that demographic attributes of an individual such as 

age, nationality, occupation etc. may carry discriminative information and this 

information can be used to identify the types of users in order to construct the user 

clusters [20]. The recommendations are produced based on the user classification 

among the clustered user types.   
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The first system with the demographic filtering was discussed by [21] which 

recommends web pages or sites using the user profiles and generalization of user-

specified data along the patterns common across the population of 40 000 people 

from the USA. They try to identify one of 62 pre-existing clusters to which a user 

belongs and to produce recommendations to users based upon information about 

others in this cluster. With an internet-based experiment testing, they reached 

more than 20.000 users worldwide and conclude that 89 percent of users think that 

their application is successful. 

 

Demographic filtering has an advantage over Content based and Collaborative 

based systems that it is not dependent to history of ratings. However, concerning 

the privacy issues, collecting high quality demographic information is a very 

difficult task. In addition, the accuracy and performance of the systems that 

produce recommendation purely based on demographic filtering have shown to be 

lower than those based on the item content and user behavior because of over-

generalization of the user interest. Therefore, demographic filtering is typically 

used in hybrid recommenders to support the other recommendation techniques. 

2.1.4 Knowledge Based 

Knowledge based recommender systems try to exploit knowledge about users and 

products and reason about user‟s requirements and the products that meet those 

requirements to produce recommendations based on a knowledge-based approach 

[22]. 

 

In order to reason about what products meet the user‟s need, knowledge based 

recommender systems ask the user about the requirement of wanted products and 

use the user answers to exploit knowledge base of product domain. Therefore, 

knowledge base recommender systems need to have the product domain 
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knowledge which should be stored and organized in a way that enables inferring 

and reasoning. However, user‟s knowledge acquisition is very difficult process 

and a knowledge engineer is required to construct the knowledge-base which 

causes a bottle-neck for the knowledge based recommender systems. Therefore, 

researchers have given relatively little attention to knowledge-based recommender 

systems than other recommendation systems. 

 

Knowledge-based systems have three different kinds of knowledge to infer 

recommendation [23]. 

 

 Catalog knowledge: The knowledge about the recommendation products and 

their features. 

 

 Functional knowledge: The knowledge about the relationships between the 

user‟s needs and how the items might meet those requirements. 

 User’s knowledge: The knowledge about the user‟s preferences and 

necessities which are needed to find corresponding products. 

2.1.5 Hybrid Systems 

Hybrid recommender systems combine two or more recommendation techniques 

to improve performance with fewer of the drawbacks of any individual one. Most 

commonly, collaborative filtering is combined with some other technique in an 

attempt to avoid the new user and new item problems. The following are the 

common hybridization methodologies [10]: 

 

 Weighted: The score for a recommended item is computed by weighted sum 

of the results from available recommendation techniques. 
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 Switching: The system decides to use a recommendation techniques based on 

the current available information. 

 

 Mixed: Different recommendation techniques are used simultaneously and 

their recommendations are presented at the same time. 

 

 Feature combination: Feature data from different recommendation 

techniques such as content and collaborative information are combined into a 

single recommendation algorithm. 

 

 Cascade: Recommendation techniques are used with a defined order. 

Recommendations which are given on the previous step are refined by the 

current recommender. 

 

 Feature augmentation: One technique produces discriminative features and 

they are used as inputs to another technique. 

 Meta-level: The model generated by one recommender is used as input for 

another. 

2.1.6 Cross-Domain Recommendations 

Generating recommendations across different domains is a very new area of 

research and it requires more complicated processes than single domain 

recommendations. Therefore, it is rarely studied in the research community. In 

addition, majority of current cross-domain recommendation systems consider the 

statistical analysis on the market and try to make use of relations between popular 

items without personalized recommendations [24].  
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One of the approaches that have introduced so far is creating generic user profiles 

for cross-domain recommendations. In [25], authors try to build a single user 

model instead of having several versions of the same user spread throughout 

various services. Regarding objective, subjective and emotional features of users, 

they define Smart User Model (SUM) which is domain-independent and consists 

of a collection of attribute-value pairs which represents objective (O), subjective 

(S) and emotional (E) features of the user. In addition, they create a User Model 

(UM) for each domain to model domain specific characteristics, user interests and 

socio-demographic features. Then, they use a weighted graph to connect the 

features and establish a connection between two models. Therefore, instead of 

making the user fill out the UM of each domain, they extract information from 

SUM according to the graphs that are defined by each application. 

 

The other approach [26] is to form a unified user profile framework built upon the 

multiple information obtained about a user in different resources. They assumed 

that different services would benefit from enriching their user models (UMs) 

through importing and integrating partial UMs created by other services. 

Therefore, richness of the user model in increase and more accurate 

personalization can be possible. They define this technique as Cross-Domain User 

Modeling (CDUM). However, the interoperability of different services may not be 

possible in many cases. Due to the competition between commercial services, 

heterogeneity in data structures, privacy issues and lack of standard 

representations prevent this model to be applied on real applications. 

2.2 Recommendation System Frameworks 

After presenting background information about recommender systems and their 

recommendation algorithms, we introduce the general concepts of the software 

frameworks and investigate the important recommendation systems framework 



 

 

 

 

17 

examples in order to gain knowledge about their approaches, strengths and 

weaknesses. 

 

Development of a framework requires understanding a specific domain and 

solving the common practical problems related to this domain. Therefore, the 

related framework examples help us to define the road map of our framework 

design by describing the potentials, limitations and necessary requirements about 

recommendation systems. 

2.2.1 Frameworks Overview 

With the simple definition, “A framework is a basic conceptual structure used to 

solve or address complex issues” [27]. In the context of software, a framework 

consists of libraries, conventions, a set of tools and best practices that promote the 

reuse of design and source code in order to facilitate software development. 

Frameworks try to abstract routine tasks into re-usable generic modules in order to 

allow designers or developers to focus on the specific problems related to their 

applications without reinventing the wheel each time around. In addition, 

frameworks reduce the overall development time. 

The ability of addressing all of the tedious and low-level details of application 

development in reusable packages, the frameworks gains acceptance rapidly in 

specific domains. For example, a researcher can quickly and easily create an 

online recommender system using our framework in order to test an algorithm‟s 

performance, rather than having to write all of the code required to accomplish 

this task. Therefore, the researcher can spend his/her time worrying about specific 

problems related to his/her algorithm, and not the actual building of the code 

behind it. 
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There are major artifacts and activities relating with artifacts in the development 

of a framework. In Figure 1, the artifacts are shown in large fonts and the related 

activities are shown in small font [28, 29]. 

 

 
 

Figure 1 – Artifacts and Activities of a framework development 

 

Framework development begins with the analysis of application domain. During 

the domain analysis, the domain's requirements and possible future requirements 

are tried to be discovered. In order to determine these requirements, previous 

works, existing similar software systems, personal experiences, and standards are 

considered. 

 

After determining the requirements, designing activity is performed. All the ideas 

and the concepts involved in the domain analysis are mapped onto modular 

components. These components define framework's abstractions and constitute 

the framework design. The overall architecture of a software system is modeled 

and the extensibility and the flexibility features are outlined. Briefly, framework 

design is the detailed description of how the system is to be built. 
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According to [30], software frameworks consist of frozen spots and hot spots 

which are also modeled in the design phase.  Frozen spots constitute the kernel of 

a framework. They define the basic components and the relationships between 

them. These remain unchanged and always present part of each instance of the 

framework. Hot spots constitute those parts where the developers using the 

framework add their own code to extend the functionalities in order to develop 

capabilities specific to their own project. 

 

In order to describe the aspects of the framework design, documentation is 

needed. The documentation tries to explain the ideas behind the design as detailed 

as possible, but it is never able to fully cover them. Rather, the documentation 

helps the developers who want use the framework to understand the most 

important features and enables the application development. 

 

As a final step, necessary hot spots are implemented in order to develop an 

application using the framework. 

 

The overall process can be summarized as follows:  

 Designing a system in an application domain results in a design. 

 Documenting the design leads to documentation.  

 Reading documentation and working with a framework enables understanding 

the framework design.  

 Applying the framework produces an application. 
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2.2.2 Recommendation Systems Frameworks Examples 

2.2.2.1 The Duine Framework 

 

The Duine Framework is a set of software libraries written in JAVA which 

enables developers to create prediction engines for their own applications. It has 

been developed by Telematica Instituut/Novay [31]. Duine allows developers to 

customize and extend the prediction engine by choosing among a set of prediction 

strategies or creating their own. In order to improve the quality of prediction, 

developers can combine two or more prediction techniques which built-in 

algorithms and define prediction strategies. The prediction strategies can be 

defined with a set of rules to select prediction techniques and their weights in the 

prediction. Therefore, prediction algorithms performances can be optimized for 

different kinds of data. The output of a prediction strategy is normalized with a 

value between -1 (absolutely not interesting) and +1 (definitely interesting).  

 

The Duine framework recommender is a hybrid recommender which includes 

both collaborative-based algorithms (User Average, TopN, Social Filtering and 

Already Known) and content-based ones (GenreLMS, Case-based Reasoning and 

Information Filtering). Social Filtering is similar to classical collaborative filtering 

algorithm and it uses the similar users to generate prediction. TopN algorithm 

looks for the items popularity. GenreLMS reasons on the items genres and Case-

based Reasoning make use of similar items rated previously. Information filtering 

extracts information from an item and behaves in the same manner as the classical 

content-based recommendation algorithm. Developers can add new algorithms to 

these existing ones by creating a Java class which extends the base 

recommendation algorithm class. 

 

The prediction techniques use user profiles and information items as input for 

their calculation. Therefore, the duine recommender stores data provided by users 

http://www.telin.nl/
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in user profiles. The data are extracted from the ratings that are given to items and 

interests of user are tried to be discovered. The duine recommender also slightly 

adapts itself to these interests after each given rating by its learning capabilities. 

 

Being a hybrid recommender, the duine recommender provides more accurate 

predictions and reduces the cold-start problems. The interesting feature of the 

recommender is that it checks which conditions hold based on the current 

available data about the users and dynamically selects the most suitable prediction 

techniques in order to provide best results.  

 

In addition to its extensibility, the duine framework has also two important 

features. First, it provides tools for the validation of the frameworks which can 

measure the accuracy of predictions. It has also an explanation API which enables 

to explain how the prediction results were determined. 

 

However, the duine framework supplies only a prediction engine, the database 

containing the data about items and users should be managed by the application 

that uses this recommendation system. The framework also needs to an 

information wrapper to be developed for converting the stored data in Java objects 

in order to process this information and apply the predictions strategies. 

 

2.2.2.2 CoFE (the COllaborative Filtering Engine) 

 

CoFE stands for "COllaborative Filtering Engine" which is an engine for 

collaborative filtering recommendation systems. It is developed by the Intelligent 

Information Systems research group of Oregon State University [32].  

 

CoFE is developed in Java and it is implemented to run as a server to generate 

recommendations. The clients can invoke the functionalities to receive 

recommendations for individual items, top-N recommendations over all items, or 

http://eecs.oregonstate.edu/iis/CoFE/
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top-N recommendations limited to one item type. CoFE uses the nearest-neighbor 

algorithm which is user-to-user based Pearson Correlation algorithm in order to 

compute recommendations. Developers can write and use new collaborative 

filtering algorithms by implementing an available JAVA interface provided by 

CoFE.  

 

Similar to Duine Framework, CoFE is only a prediction engine and the processes 

about data storing and management are not provided. The official web site of the 

CoFE is out-of-date and the details of the framework can not be reached and this 

project does not seem to be maintained anymore. 

 

2.2.2.3 Apache Mahout  - Taste 

Taste [33] is an open source, Apache Software Foundation project to create 

recommendations engines for mainly JAVA applications. It provides flexible and 

fast collaborative engine and supports user-based, item-based and slope-one 

recommenders. It has also includes some other experimental algorithm 

implementations. Currently, model-based recommenders are not supported. The 

recommendation engine processes users' preferences for items which are also 

called as “tastes” and predict the preferences for other items.  

Taste also allows creating customized recommender systems by combining a set 

of recommendation algorithms. The followings are the key abstractions that 

define the frameworks design. 

 DataModel  

 UserSimilarity and ItemSimilarity  

 UserNeighborhood  

 Recommender 
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Recommender is the main component of Taste; it processes the data which is 

provided by DataModel which provides an interface to get the data from the 

storage system.  It applies an algorithm to find “User Similarities” and “Item 

Similarities”. Finally, recommender searches for finding a “neighborhood” of 

similar users near a given user in order to produce recommendations. 

The advantage of Taste is that it is designed to be scalable and flexible. It has also 

a good performance for working with high amount of data. Taste can deployed as 

an external server which exposes recommendation logic by communicating 

directly over HTTP or as a SOAP Web Service. Therefore, it can also be 

integrated with applications which are not developed with JAVA.  

 

2.2.2.4 RACOFI: A Rule-Applying Collaborative Filtering System 

RACOFI is a rule-applying collaborative filtering system which can also provide 

multi-dimensional rating system [34].  

The aim of the RACOFI is to make use of the meta-data about objects in the 

prediction process. It assumes that meta-data describes everything relevant and 

interesting about the objects. Meta-data is divided into two groups: objective and 

subjective.  Objective meta-data represents the general features of the objects like 

title, genre or the name of objects. Subjective meta-data depends on user 

preferences; how the users rated the object in different features. In order to handle 

these different kinds of meta-data, RACOFI is developed with a modular 

architecture based on two software agents. The objective meta-data is processed 

by a rule engine called RACOLA which adjusts the predictions with a set of rules 

defined based on RuleML. RuleML is a markup language which allows 

expressing both bottom-up and top-down rules in XML for reasoning tasks. The 

subjective meta-data is handled by a collaborative filtering library called COFI. 

http://en.wikipedia.org/wiki/Markup_language
http://en.wikipedia.org/wiki/XML
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RACOFI can be considered as a hybrid system because COFI generates 

predictions with collaborative filtering algorithms but RACOLA combines these 

predictions with its own content-based processing. As a result, recommendation 

quality is improved with help of the rules which allow considering the 

relationships that exist among objects and between objects and users. 

RACOFI is used in a Canadian Music recommender site called RACOFI Music in 

order to test and validate its model.  It is found that a rule-based approach made it 

easy to adapt the system to user expectations.  

One of the advantages of the RACOFI is that it enables developers to change the 

algorithms used in predictions easily. The framework has also a flexible structure 

because the collaborative filtering algorithm does not depend on the contents of 

the objects and content-based filtering is performed based on domain specific 

rules which are allowed to be loaded to rule engine. 

2.2.3 Conclusion 

We have described a set of recommendation system frameworks above. Table 1 

summarizes the features of those frameworks. 

 

The Duine framework and Apache Mahout – Taste seem better than the other 

framework as they offer different features. The Duine is a hybrid systems and it 

allows combining different recommendation techniques dynamically whereas 

Apache Mahout – Taste generally focuses on collaborative filtering. On the other 

hand Apache Mahout – Taste has an express component to manage data, whereas 

in The Duine does not support data management and the application which uses 

the framework should provide components to make data ready to be processed. 
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In CoFE, although it is possible to extend and implement new recommendation 

algorithms, it just allows collaborative filtering. Similar The Duine Framework, 

CoFE does not have an express component to manage data. In additions, it is 

probably out-of-date and is not developed any more. 

 

RACOFI is a hybrid system that it processes collaborative filtering predictions 

with mechanisms provided by content-based approaches. The main drawback of 

RECOFI is that it is not completely available, only collaborative filtering 

component (COFI) is publicly available. 

 
Table 1 – Existing Recommendation System Frameworks 

 

Framework Advantages Disadvantages 

Duine 

Framework 

 Hybrid Recommender   

      (Content / Collaborative) 

 Dynamic combination of 

algorithms 

 Algorithms can be 

expanded 

 Only recommendation 

engine, no data 

management support 

 Wrapper components 

needed to process data 

 Learning Curve is high 

CoFE   Algorithms can be 

expanded 

 RMI/Corba interface 

 Only collaborative 

algorithms supported 

 Only recommendation 

engine, no data 

management support 

 Out-of-date 

 

http://eecs.oregonstate.edu/iis/CoFE/
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Table 1 – Existing Recommendation System Frameworks (Continued) 

 

Apache 

Mahout - Taste 

 Could be integrated in 

different ways (service, 

EJB, application ) 

 Scalable (high 

performance) and Flexible  

 High memory and 

resource consumption 

RACOFI  Hybrid Recommender   

      (Content / Collaborative / 

      Rule based) 

 Only the sources 

      of Collaborative Filtering 

      algorithms is available 
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CHAPTER 3  
 

 

 

CROSSING: A FRAMEWORK TO DEVELOP SINGLE 

AND CROSS DOMAIN RECOMMENDERS 

 

 

In this chapter, our framework, named CrosSing, which provides a dynamic 

infrastructure for developing knowledge based recommender systems that can 

also support recommendations in cross-domains is presented.  First, we present an 

overview of the system. Then the architecture of the system is explained, and the 

data representation scheme is described. After that, each component of the system 

is discussed and detail. Finally, the implementation details and the system 

interaction interface with both the developers and end-users are explained. 

 

3.1  Overview of the Framework 

The objective of CrosSing is to provide an architecture for recommender systems 

that is capable of integrating new domains dynamically, creating semantic 

relationships between existing domains and extending traditional recommendation 

approaches to provide more accurate and useful recommendations in cross 

domains.  

 

We propose a framework for developing knowledge-based recommender systems, 

which consists of a set of pre-implemented recommendation algorithms and is 
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designed to support cross-domain recommendations by means of a centralized 

profile management component and the possibility to define ontological mappings 

for item features of different domains. 

 

Our recommendation engine chooses the recommendation method to be used 

depending on the currently available data at run time. In order to avoid 

recommendation systems problems such as cold-start problem; recommendation 

engine selects the right hybridization strategy and reuse the user‟ 

profile/preference information across different domains to exploit the available 

information about a user as far as possible.  

 

In addition, the capability of adapting new domains and creating useful cross 

domain recommendations result in offering a bundle of related items from 

different domains and thus improve the possibility of user satisfaction. The 

adaptive and flexible infrastructure also provides the capability to integrate variety 

of new and existing systems to framework easily. The dynamically provided inter-

domain knowledge helps us to determine the domains‟ relationships and features 

mapping in different domains.  Moreover, new domain integration problems can 

be minimized by providing domain knowledge and assigning features‟ weights as 

accurate as possible in user models. 

 

Finally, our framework provides a user-friendly interface to simplify the system 

interaction with user. Framework adapts itself to the integrated domains and all 

dynamic graphical user interfaces are generated automatically by code generation 

module based on the data models defined in the ontology and configuration files 

of recommendation domains. In addition, the framework interface provides a 

feedback mechanism for user to evaluate the generated recommendations. The 

user feedbacks are used to adjust the feature weights on profile and item similarity 

measurements. The framework has the ability to learn the user profiles 



 

 

 

 

29 

individually and personalize the feature weights in order to improve the 

recommendation quality. Therefore, the system evolves with the user experience 

and increases its performance. The feedback mechanism is also used to monitor 

the performance of the inter-domain relationships. 

 

In order to achieve the above goals, we designed our framework in a modular way 

which is described in the following section. The details of the framework and its 

components are explained in the rest of the chapter. 

3.2 The Framework Architecture 

The framework consists of the following components. The logical relations 

between components are shown in the Figure 2. 

 

1. Profile Management: Constructs and maintenances the user profile and 

preferences, receives feedbacks from users about recommendations and 

updates the feature weights. 

 

2. Recommender Engine: Generates recommendations using the integrated 

recommendation algorithms. It selects the hybridization strategy based on 

the currently available data at run time. 

 

3. Domain Management: Manages the integrated domains and their 

relationships. It also construct the knowledge based using the domain 

knowledge and defined rules between domains. 

 

4. Items Module: Deals with retrieving and maintaining items from 

integrated domain‟s item information. 
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5. Code Generation Module: Generates the code for graphical user 

interfaces based on the data models. 

 

6. Common Vocabulary Adapters: Transforms the target domains 

information to common data structures in order to integrate the domains to 

framework. It also deals with ontology mapping and type conversions of 

the features. 

7. Target Domains: Consist of the specific fields of interests and constitute 

of knowledge about users, items, concepts and relationships in a field such 

as books, movies, music and games. 

8. Test Suite: Provides an environment to test, evaluate and verify the 

algorithms of recommender engine. 
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Figure 2 – Overview of the Framework 
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3.2.1 Profile Management 

Creating a comprehensive and detailed user model is very important to analyze 

user interests and needs correctly. Our profile management component is 

responsible for creating and maintaining the user profiles. It has two main parts to 

support the recommenders in the system. “Data Store” part provides required 

knowledge about user preferences while “Actions” part enables users to edit their 

profiles. 

3.2.1.1 Data Store 

 

This subcomponent is responsible for storing the user preference structures. The 

structure of user data includes user profile information, transaction history with 

item ratings and for each domain feature weights for both item similarity and user 

similarity measurements. User profile information features are determined within 

the framework ontology files and currently the following features are defined: 

name, surname, username, age, gender, occupation, zip code, address, city, and 

country. When the demographic information exists, it helps to find the similar 

user. When a new user profile is generated, features weight vectors are created for 

each domain. If a feature in the framework ontology is not applicable for a 

specific domain, it can simply be ignored by assigning zero weight to it.  

3.2.1.2 Actions 

 

The actions component enables users to create, modify and delete their individual 

profiles. User profiles are updated when a new domain is added, a profile related 

ontology is updated or a recommendation feedback is received. 
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3.2.2 Recommender Engine 

Our framework provides knowledge-based recommender development and 

provides a hybrid approach for generating recommendations. The 

recommendation engine has different types of recommendation strategies which 

are applied depending on the available data about the user and the items in 

domains. The system starts with the simple recommendation techniques and move 

to more complex algorithms with user‟s experience. Before describing the 

recommendation process, we introduce the recommendation techniques which are 

used. 

 

3.2.2.1 Recommendation Strategies 

 

3.2.2.1.1 Most Popular Items 

 

This strategy is the simplest technique in the system but it helps us to generate 

useful prediction when no data available about users. The algorithm finds the 

most popular items in integrated domains by sorting the item scores which is 

calculated using the following formula: 

,

k

( )

Score(I )
i k i

i C

r r

C
     (2) 

where I  is the set of items, C is set of user that rated item kI , C is the number of 

users in set C , ,i kr  is the rating by user i on item k , and ir  is the mean rating by 

user i  to all items. Top 5 items in each domain are recommended to user. This 

strategy also used with other strategies to find the popular items for a specific set 

of users. 
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3.2.2.1.2 Knowledge Based 

 

A knowledge base is a centralized repository for dynamic collection of 

information which is used by our system to retrieve rules about the users, features, 

domain relations and feature mappings. For each domain, features rules are 

provided by domain knowledge. 

 

Group Rules help us to create user groups in domains and define the relations 

between user groups and item features. The rules for these relations are defined as 

6-tuples , , , , ,GroupRule d uf ufv if ifv status  where d  represents the domain, 

uf defines the user feature name and ufv is the value of the given feature in uf ,  

if indicates the item feature name, ifv is the value of that item feature and status 

determines whether this rule affects rating prediction positively or negatively.  

 

For instance, we can define a group rule such as “Observer people like Animation 

movies”. It is based on “personality” feature of user and it uses “genre” feature of 

items in “movie” domain. It also states that if this rule holds for a user, it affects 

the rating positively. 

 

GroupRules < Movie, Personality, Observer, Genre, Animation, Like > 

 

The group rules directly affect the predicted ratings of a user on items by using 

the formula below: 

  

(3) 

 

,i kr  is the final rating calculated where ,i kr  is the rating by user i on item k 

determined by Collaborative Filtering or Content-Based filtering algorithm.  The 

, ,

knowlege effect ( if conditions holds)

0 (otherwise)
i k i kr r
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value of knowledge effect is between 0 and 1. It is calculated experimentally and 

can be configured.  

The feature rules can allow features to have multiple values.  These are defined as 

4-tuples , , ,FeatureRule r d f list  where r  defines the rule name, d  represents 

the domain, f is the feature name and list refers the possible values for feature.    

For instance, while calculating the user similarity based on demographic 

information in movie domain, the “age” features of two users need to be 

compared. In most systems, they should be equal in order to decide that the 

feature of the users matches. In our framework, demographic filtering strategy 

checks the knowledge base to find similarity rules about this feature in the movie 

domain. Assume we have the following rules in the knowledge base. 

      FeatureRule < AgeGroup1, Movie, Age, (18,19,20,21) > 

FeatureRule < AgeGroup2, Movie, Age, (22,23,24) > 

 

The system assumes the “age” features of users‟ have the same value if they 

belong to the same group. Ranges are defined for each group for the value 

abstraction. 

Domain relations and feature mappings are provided by “inter-domain 

knowledge” which represents the relationships between two specific domains and 

provides the abstraction between domain features. Especially in cross domains, 

they play an important role for creating the accurate recommendations. Inter-

domain rules are also defined as 4-tuples  ,  ,  ,  InterDomainRule s t sf tf  where 

s denotes the source domain, t denotes the target domain, sf defines the related 

feature rule in source domain and tf represents the feature rule in target domain.  

For instance, we can define a relationship such as “People who like movies in 

romance drama group also like books in dramatic poetry with the following rules 

between Movie and Book domains. 

    InterDomainRule < Movie, Book, Romance Drama, Dramatic Poetry > 
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FeatureRule < Romance Drama, Movie, Genre, (Romance, Drama) > 

 FeatureRule < Dramatic Poetry, Book, Genre, (Drama, Poetry, Epic)> 

 

The performance of the rules and relations can be monitored by a feedback 

mechanism. Existing rules can be updated; deleted or new rules can be added 

dynamically to the knowledge base. 

 

3.2.2.1.3 Demographic Filtering 

 

Demographic information of user can also carry important discriminative 

information while finding the similar user profiles in collaborative filtering. 

User‟s demographic information is represented as feature vector and each feature 

has weights for each domain. As we mention before, when a user profile is 

generated, weights are initialized for each domain separately. Therefore, users‟ 

demographic similarity can vary from domain to domain. The formal description 

of the total similarity calculation is below: 

 

Assume that we have a target user u , other users in the system 1 2, ,...C c c  such 

that u  is a member of C . Then, similarity between u  and ic  is given by: 

sim(u,c ) compare( , )i k k k

k F

W X fu fc     (4) 

where F  is the feature set, W  is set of feature weights for user u  for target 

domain, kfu  and kfc  are the feature values of users for feature k . 

The „compare‟ function checks the knowledge base if there is any related rule 

about feature k , return 1 if feature values can be assumed to be same, or return 0 

otherwise. If the similarity value is greater than the threshold valueT , users are 

assumed to similar and user ic  is added to the neighboring users list of useru . 
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With the rules defined in knowledge base, the user clusters can be created 

according to the demographic information. 

 

The demographic filtering strategy is used in two ways in the framework. First, if 

a user is a newcomer and s/he does not have enough rating history to apply 

“content” and “collaborative” based strategies, the demographic filtering is used 

to find similar users and system applies “most popular item” strategy for these 

users and the recommendations are generated. Second, the demographic filtering 

is used to filter similar users if the system finds many users at the end of 

collaborative filtering.   

 

3.2.2.1.4 Content Based  

 

It recommends similar items to the ones that user preferred in the past. The 

candidate items compared with the previously rated items and best matching items 

are recommended as described in [1]. 

 

In order to find these similar items, first, the system retrieves the items that user 

has highly rated before. Then, using the Inverse Document Frequency [16] theory, 

common features values among highly rated items are found. Then, the items 

which have similarity above the threshold are found with a similar calculation 

defined in “Demographic Filtering”. However, “compare” function in content 

based filtering is different. Although there is only one possible value for the target 

user feature in “Demographic Filtering”, there may be more than one feature 

values which are ordered according to TF-IDF (term frequency–inverse document 

frequency). Comparisons for each possible feature value are performed between 

target item and similar items beginning with the highest TF-IDF score. When a 

feature value is matched, “compare” function returns its TF-IDF score. If no 
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features match with similar items feature values, “compare” function returns zero. 

This compare function is also checks the knowledge base in order to find rules 

about features in comparison.  

 

Content based recommendation strategy is very important for cross-domain 

recommendations when common rated item count is not enough between target 

user and other users. 

 

3.2.2.1.5 Collaborative Based 

 

It recommends the items that people sharing the similar preferences with the user 

prefer. It assumes that user likes the items that are highly rated by similar users. 

The similarity between users is calculated based on commonly rated items. Our 

system uses Pearson correlation coefficient to measure the user similarity [1]:  
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                             (5) 

where S is the set of items co-rated by users x and y,  ,i kr  is the rating by user i on 

item k , and ir  is the mean rating by user i  to all items. 

 

After the user similarities found, the users, which have greater similarity value 

than the threshold, assume to be similar users with the target user. If many users 

are found similar, “demographic filtering” strategy is applied. Then, 

recommendations are generated by applying the most popular items for similar 

users. 
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3.2.2.1.6 Surprise Strategy 

 

There are two well known problems in recommender systems: 

“Overspecialization Problem” which refers to always recommending items that 

are very similar to the ones that user already rated and “Sparsity Problem in 

Rating” which happens when few users have rated the same items resulting in 

never recommending this item. To overcome these problems, our framework 

generates one surprising recommendation randomly among the newly added 

items, popular items or few rated items. 

 

3.2.2.2 Recommendation Generation 

 

Recommendation generation evolves with the user experience in the system. 

Strategies are applied according to the if-then-else rules. “Knowledge based” 

recommendation strategy is not used standalone but it helps other 

recommendation strategies. “Surprise” Strategy is always used but it only 

generates one random recommendation at a time. Other recommendation 

procedures are as follows: 

 

 When a new user logs in to system and there is no information available 

about user, recommendations are generated using the “most popular item” 

strategy.  

 

 If the user has no or very few transaction history in all domains but the 

demographic information is available, “demographic filtering” strategy is 

applied. Then, similar users are found and their favorite items are 

determined using “most popular items” for these users. Therefore, 

recommendations can be generated. 
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 If the user has enough rating history for a domain but does not have 

required number of co-rated items with other users in target domain, 

“content based” recommendation strategy is used. For instance, the user 

may rate many movies in movie domain but s/he may not rate any books. 

The system can not find commonly rated books using user history but it 

can generate recommendation by finding similar books to movies that the 

user rated. 

 

 If the user has enough number of co-rated items with other users in target 

domains, “collaborative based” recommendation strategy is used to 

generate recommendations. Depending on the similar user count, 

“demographic filtering” can be used before predicting recommendations. 

 

3.2.3 Domain Management 

The domain management component mainly deals with the integrated domains 

and their relationships. It includes the “Domain Knowledge” of all domains which 

is required by knowledge-based recommender strategy. In addition, domain 

relations which are determined by “Inter-Domain Knowledge” are also kept in 

this component. “Inter-Domain Knowledge” consists of the relationship 

descriptions between two domains in a rule-based fashion. These rules can be 

added, updated or deleted dynamically. Domain management component also 

contains the general ontology interface with XML schema of the framework.  

General ontologies of framework have the specifications of features and 

relationships between features of different domains. They provide the uniformity 

and knowledge exchange between different domains. For instance, “release date” 

for movie domain means the date when a movie is made available to the public 
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while “the year of publication” has the same meaning in book domain. The 

framework ontology about items has “item year” to define that feature which is 

meaningful for all integrated domains. The feature names and their types for 

common meanings can vary across the domains. Therefore, domain data is needed 

to be transformed to the common vocabulary and structure of the framework. 

 

3.2.4 Items Module 

Items are the elements of domains such as books, movies, or songs that are 

recommended to user according to the user preferences. Our items module is 

responsible for retrieving and maintaining items from integrated domains. Items‟ 

data structures are similar to the user data structure as they represented as feature 

vectors. New items can also be added to the specific integrated domain by using 

the administrator user perspective. 

3.2.5 Code Generation Module 

Code generation module generates the code for all dynamic graphical user 

interfaces based on the data models defined in ontology files. When new domains 

are integrated to framework or data models are updated, the changes can easily be 

applied to system by this module. 

3.2.6 Common Vocabulary Adapters 

Each domain data has its own data structures and ontology but in order to 

integrate a domain to framework, we have to transform its domain information to 

a common vocabulary and structure. Therefore, for each domain, a common 

vocabulary adapter is needed to be developed. It is not very complicated to 
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develop an adapter as we define our interfaces and data structures as a framework 

API. Considering the general ontologies and XML schema of the framework; a 

common vocabulary adapter deals with ontology mapping and type conversions of 

the features. 

3.2.7 Target Domains 

Recommendation domains are the specific fields of interests and constitute of 

knowledge about users, items, concepts and relationships in a field. 

Initially movie and book domains are addressed in our experimental framework 

implementation, because required knowledge and information of these domains 

are currently available. In addition, these domains have similar features, common 

users and close relationship to each other. 

We divided domain information into the following categories. 

3.2.7.1 User Data 

 

In many data sets, user data includes the generated user profiles by recommender 

systems and generally they have a feature vector that represents the user 

preferences. User data has also transaction history and item ratings which 

constitute the knowledge about user actions history that help us predict user 

attitude to new items and new domains. 

 

3.2.7.2 Items 

 

Items are the elements of the domains which have certain features based on the 

domain structures and specifications. Features can be shared by different domains 

as well as they can be applicable to only one domain. 
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3.2.7.3 Domain Knowledge 

 

Domain knowledge stores the structured knowledge about the domains which is 

retrieved and used to determine weights of factors which have effects on items 

during the recommendation process. Domain knowledge may not be available for 

all domains. It increases the accuracy and quality of recommendations in available 

domains. If domain knowledge does not exist, recommenders consider the weights 

of all features to be equal at the beginning. The weights are adjusted according to 

the user feedback on the generated recommendations. Domain knowledge also 

contains the feature rules which provide to create user groups or items groups in 

domains by allowing features to have multiple values. 

 

3.2.7.4 Domain Ontology 

 

Domain ontology represents the meanings of the terms in user data, community 

data and item features. The concepts and relationships are defined by ontological 

categories. “Artists”, “composition”, “musical work”, “sound”, “genre”, and 

“release date” are the example categories of music domain. Domain ontology is 

required for developing common vocabulary adapters for domains. 

 

3.2.8 Test Suite 

It is one of the most important components of the framework. Test Suite provides 

an environment to test, evaluate and verify the algorithms of recommender 

engine. It also allows us to observe the effects of the knowledge base on the 

integrated domains. We also used Test Suite module to obtain our first 

experimental results given in the “Evaluation” section. 
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3.3 IMPLEMENTATION DETAILS 

A prototype of the framework has been developed to evaluate the proposed 

structure in the Figure 3. It is an online cross domain recommender system which 

is available at www.crossingframework.org. 

 

 

Figure 3 – The Prototype Implementation of the Framework 

 

The main purposes of the prototype are to test applicability of the framework, 

provide interaction with real world users, observe the performance of inter-

domain knowledge rules and prepare an environment to evaluate the 

recommendation strategies.  

The core of framework was developed with Java programming language [35]. 

Dynamic and flexible data interaction is provided over the ontology files with 

XML [36] interfaces. Framework‟s web infrastructure was created with Java 

Servlets [37] and JSP [38] technologies using Sun Java Studio Enterprise IDE 



 

 

 

 

45 

[39]. MySQL database [40] is used to store required information about users, 

items, ratings etc.  

The system deployed on Apache-Tomcat Application Server [41] over Linux 

operating system [42]. Common vocabulary adapters are developed for target 

domains such as movie and book domains. 

 

3.3.1 Ontology 

Ontology files are required for the generation of the data structures in the system 

and creation of tables in the database.  

 
 

Figure 4 – Ontology Structure 
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These files are also used for developing adapter systems to transform different 

domain data into common structure so that the framework can load the required 

information to the database.  

As it can be seen in Figure 4, ontology files consist of features with the 

description and other required attributes for system. All dynamic graphical user 

interfaces of the framework are generated automatically based on these features. 

When a new domain is needed to integrate with the framework, the corresponding 

data files should be created according to the following ontology files: Domain 

Ontology, Item Ontology, User Ontology, Rating Ontology, User Profile 

Similarity Ontology and Item Similarity Ontology. 

 

Important ontology files are explained in details as follows: 

3.3.1.1 Domain Ontology 

Domain ontology represents the identification of domains. It has only two 

features: “Domain Id” is the unique identification number in the system and 

“Domain Name” specifies the domains name. 

3.3.1.2 Item Ontology 

 

Item ontology represents the features of the items. It provides the uniformity and 

knowledge exchange between different domains. Currently, item ontology has 

following features. 

 ItemId: Unique item identification in the system. 

 DomainId: Domain id which item belongs to. 

 Title: Specifies the title of item. 

 ItemYear: Date when an item is made available to the public 

 Performer: People who perform the action in the item. 
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 (Ex. Author, Artist, Singer) 

 Producer: People or companies who creates the item. 

 Genre: Item’s type. 

 Price: Price of the item. 

 Size: Item’s size or duration. 

 Tags: Item’s keywords, tags. 

 Country: Country name where item produced. 

 Language: Language used in item. 

 Locations: Places where mentioned in item content. 

 

3.3.1.3 User Ontology 

 

User ontology represents the demographic features of the user. User profile 

features are below: 

 UserId: Unique user identification in the system. 

 Name: The name of the user. 

 Surname: The surname of the user. 

 Username: Unique user name for the user. 

 Age: Age of the user. 

 Gender: The gender of the user. 

 Occupation: User’s profession. 

 ZipCode: The zip code of the user. 

 Address: The address of the user. 

 City: The city where user lives. 
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 Country: The country of the user. 

3.3.2 User Interfaces and Perspectives 

The framework has different interfaces and perspectives for end users and 

administrators. 

3.3.2.1 End User Perspective 

 

This perspective is the simple view that the end user can only see his/her basic 

profile, transaction history, navigate between integrated domains‟ items, receives 

recommendations and give feedback about quality of recommendations. User‟s 

interaction with the framework begins with the sign up procedure. The user is 

asked to enter his/her profile information. Then, the user logs in and selects a 

recommendation domain. The system immediately begins to generate a 

recommendation. If user‟s profile information is adequate, the demographic 

filtering and the most popular item strategies are applied. Otherwise, only most 

popular items are recommended from the selected domain.  As the user rates the 

items, strategies change to content based and collaborative based ones.  

The cross-domain recommendations are performed in two ways. First, if the user 

wants to receive recommendations from a target domain where s/he does not have 

enough rating history, the system checks user transaction history in other domains 

and generates cross-domain recommendations in target domain, based on user 

preferences in other domains. Second, when the user views an item details page, 

Figure 5; cross-domain recommendations are generated for the selected item.  
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Figure 5 – Item Details Page 

 

The user can rate or update the rating by simply clicking the “Rate It” button of 

the item. The user can also rate the recommendations positively or negatively; 

then the system updates the weights of the used features and logs the performance 

of the rules according to reaction of the user. With this feedback mechanism, 

personalization in feature weights is provided and performances of the rules are 

monitored. 

A recommendation from “Surprise Strategy” is always generated at the end of 

other recommendations. 

3.3.2.2 Administrator User Perspective 

 

Administrator users have full control of the framework. They can add new 

domains by providing domain data and common vocabulary adapters. They can 

also track the performance of the inter-domain rule and define new inter-domain 

relations by just defining rule-sets. In addition, they determine, observe and 

update the feature weights in user and item similarity measures in order to 

improve the recommendation qualities. 
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CHAPTER 4  
 

 

 

EVALUATION 

 

 

This chapter presents the methodologies used to test, validate and evaluate our 

proposed approach. In order to examine the various aspects of the framework, we 

divided our experimental work into the following categories. First of all, we 

performed “functionality tests” to show the applicability, flexibility and usability 

of the framework. After that, “algorithms performance tests” are carried out to test 

the performance of the built-in recommendation algorithms and our 

recommendation engine. Automated testing is not applicable for cross-domain 

recommendations because there is no dataset available for our target domains. 

Therefore, we focus on the single domain testing. For each single target domain, 

recommender engine is tested with framework‟s test suite which is also explained 

deeply. These two tests led us to develop an application and we performed alpha 

testing with real end users and obtained “end-user evaluation” about the overall 

system and cross-domain recommendations.  

4.1 Functionality Tests 

As we discussed in the previous chapter, a prototype has been developed to prove 

the applicability of proposed structures and approach. The components of the 

framework and the implementation details are explained so far. We will introduce 
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the required steps and the sequence of process to develop a real application using 

our framework so that we can show the flexibility and usability of the framework 

and demonstrate how our framework enables easy development. We will also 

present the critics of an external developer who helps us to evaluate our 

framework with the third person point of view. 

4.1.1 Application Development Testing 

In this section, we will demonstrate developing a movie recommender system 

using MovieLens dataset by the GroupLens Research group at University of 

Minnesota [8]. As discussed in the Frameworks Overview section, in order to 

develop an application using a framework requires reading the documentation and 

understanding the framework design. Therefore, after presenting the conceptual 

design of the framework given in the previous chapter, we have to examine the 

deployed package view of the framework which is seen in Figure 6 so that we can 

explain what exactly needs to be done to develop an application. 

 

 
 

Figure 6 – Package structure 

 



 

 

 

 

52 

Configuration, source and GUI packages constitute the main parts of the 

framework file structure. Source and GUI components do not need to be modified 

for developing a recommender system. Those components can be changed by 

advanced users so we are omitting them for now.  

 

Figure 7 – Ontology Files 

 

 

The important point is to understand the ontology files because generation of the 

data structures in the system and creation of tables in the database are based on 

these files. The details of the ontology file structures are also given in the previous 

section. These files, in Figure 7, can be modified in order to meet different user 

needs. The data structures of system in the database can be easily created from the 

Administrative panel by selecting the menu item seen in Figure 8. This capability 

covers the flexibility requirement of the framework. 
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Figure 8 – Creating Data Structures 

 

After deciding the data formats in the system, we have to provide the data 

corresponding to these ontology files in desired format. Domains, UserProfile, 

RatedItem and Items files are basic needs to create the application. Others are 

auxiliary files that provide optimization and improvement in the accuracy of 

recommendations. 

First, we create an xml file for movie domain with the content seen in Figure 9. 

We gave an identification number to domain and state its name. 

 

Figure 9 – Movie.xml 
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For user profiles, movies and ratings, we will use the Movie Lens dataset however 

the dataset provides these information in the raw data type as shown in example 

below.  

 User Profile: It contains simple demographic info for the users. User 

id, age, gender, occupation and zipcode are provided. 

98|24|M|technician|85711 

 Movie Info: It contains the information about movies. Movie id, 

movie title, release date, video release date, IMDb url and genre 

information is provided. The last 19 fields are the genres; a 1 indicates 

the movie is of that genre, a 0 indicates it is not. 

109|Toy Story (1995)|01-Jan-1995|http://us.imdb.com/M/titleexact?Toy%20 

Story%20(1995)|0|0|0|1|1|1|0|0|0|0|0|0|0|0|0|0|0|0|0 

 

 Rating Info: It presents ratings given by users on movies. User id, 

movie id rating and timestamp are provided. Ratings are scaled 

between 1 and 5. The time stamps are seconds since 1/1/1970. 

98|109|4|881250949 

 

In order to integrate these dataset with the framework, we have to transform raw 

data to our common vocabulary and structure based on the ontology files. We 

need to develop a common vocabulary adapter to perform ontology mapping and 

type conversions of the features. Therefore, we implement a java program that 

read raw data files, parse them, find appropriate feature correspondences and store 

output files in the xml format as shown in Figure 10. 
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Figure 10 – User, Item and Rating XML Files Example 

 

After creating the XML files (movies, users and ratings) and placing them under 

the data folder, selecting the “Load Data From XMLs” menu item in the 

administrative panel, Figure 11, finishes the application development process. 

Additional data about users, movies or ratings can be also loaded to the system 

later by using the same menu. 

 

Figure 11 – Data Loading from XML files 
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We can evaluate the functionality testing as follow: 

 Following the steps defined above, we easily create a ready to use 

online movie recommender system.  

 We did not have to implement any recommendation algorithm, did not 

deal with data management or database related problems, and did not 

worry about any WEB technologies or GUIs development activities.  

 If we do not consider the common vocabulary adapter implementation, 

we succeed to develop this online movie recommender system in a 

short time with a minimum effort without writing any code. 

 The ability to modify ontology files and create data structures provides 

the flexibility. In addition, while converting raw data to XML files by 

adapter systems, additional information can be added about items 

automatically in order to extend available features. The example of the 

adding new features can be seen in the data processing section of 

Algorithm Performance testing. 

 

In addition those, if we add another recommendation domain to the system such 

as books or music domains, the framework provides cross-domain 

recommendations automatically. 

The benefits of other ontology files are as follows. Advance users can define 

feature rules and inter-domain rules to improve single and cross domain 

recommendation quality and accuracy.  The rules should also be provided in the 

XML format based on their ontology files. Users can also develop knowledge 

based recommendation systems by providing the Personality rules and 

constituting the knowledge base. In addition, UserSimilarity and ItemsSimilary 

files are used to define which features are used for the similarity measurements in 

Content based Filtering and Demographic Filtering. Users can give weights to 

selected features in order to optimize the distance calculations. This functionality 

also provides framework to adapt each recommendation domain separately.  The 
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effects of these additional rules can be tested, monitored and validated with build-

in testing component called Test Suite. The details of Test Suite are given in the 

next section. 

 

To mention GUI and Source package components, the user of the framework can 

modify the general structure of the Graphical User Interface. CSS files and images 

can be changed to create a custom look according to the user needs. 

 

Source package is very important part of the system. We are expected that 

academic researchers can also benefit from our framework as it allows extending 

recommendation algorithms and enables changing the recommendation strategy. 

Users can extend the existing algorithms or create new recommendation 

algorithms by implementing the base recommendation interface. The 

recommendation strategy can be adjusted by modifying the strategy manager 

class. The effects of these changes can be also tested with Test Suite component. 

4.1.2 Developer Testing 

In order to improve our framework‟s usability and capabilities, we performed test 

with a developer. Fatih Aksel is a graduate student at Computer Engineering 

department of Middle East Technical University. He is also studying 

recommender systems and he has hand-on experience with Duine Framework 

previously. 

 

We provided him the development environment, an example adapter system and 

Book Crossing dataset [43]. Fatih followed the fundamental steps explained in the 

application development testing to develop a recommendation system for Books 

domain. He also tries to modify a recommendation algorithm as he has experience 
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in recommendation systems. His development time was not too much. The 

followings are his comments on our framework CrosSing: 

 

“Cross-Domain capability and feature mappings are good. The procedure to 

develop an application is not complicated and Graphical User Interface seems 

successful. The accuracy of recommendation algorithms is fair. About modifying 

the recommendation strategy, it can be managed using a configuration file or a 

menu item on the administrative panel without need for changing a java class and 

end-users may have the ability to select which recommendation algorithm they 

prefer. In addition, knowledge effect can be determined dynamically in run-time 

using a learning algorithm.  The framework may have some performance and 

memory problems while generating recommendations. Based on my knowledge 

about another framework (Duine Framework), I can conclude that my overall 

opinion about the CrosSing Framework is good, it may need some improvements 

but it is useful. I may also use the framework in my thesis work.” 

 

4.2 Algorithm Performance Test 

In this section, “Test Suite” component is explained and the performance of the 

build-in recommendation algorithms of the framework is tested. 

4.2.1 Test Suite 

It is one of the most important components of the framework. Test Suite provides 

an environment to test, evaluate and verify the algorithms of recommender 

engine.  The recommendation algorithms are generally tested with the same 

manner based on some parameters such as neighborhood size, ratings count for a 

user, training and test users. In addition, Mean Absolute Error (MAE) (see 4.2.2.) 
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is the most commonly used metrics to evaluate the accuracy of a recommendation 

algorithm. Therefore, we make use of these commonalities to create a generic test 

tool which can be applicable to many recommendation algorithms. The test suite 

also allows us to observe the effects of the knowledge base on the integrated 

domains and monitor the performance of the personality and feature rules. 

 

There are static and dynamic parts at the interface of Test Suite seen in Figure 12. 

Recommendation Techniques and the definition of parameters are the static part 

and in order to change them, the Test Suite code needs to be modified. The other 

parts are dynamic and they are automatically generated according to the data 

available on database. 

 

Figure 12 – Test Suite 

 

Test Suite fields are the following: 

 Domains: User selects the domain in which the test will run. 

 Personality Rules: User selects personality rules to create a knowledge 

base on the selected domain. 
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 Feature Rules:  User selects feature rules to create a group of values 

which assumed to be equal. It is only applicable to Content based 

filtering. 

 Recommendation Algorithm: User selects which recommendation 

algorithm is tested. “Knowledge based” selection is not applicable for 

its own. It is used with other algorithms and enables the personality 

rules to be applied on the recommendation generation. 

 Parameters: User can adjust the parameters and create different test 

configurations. 

 

After the required selections are made, the test configuration is run, MAE is 

calculated and the feedback like in the Figure 13 is provided to user.  

 

 

Figure 13  – Feedback message 

 

The test suite allows running only a test configuration. Enabling to run a test 

scenario with different configurations and to generate graphical test results are the 

planned future work for this component. 

 

The experimental results given in 4.2.6 are also obtained by using the Test Suite. 
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4.2.2   Knowledge Acquisition 

In order to form a knowledge base about the target domains „movies‟, „music‟ and 

„books‟, we prepared an online survey and 100 people from 10 different countries 

were asked to complete a short questionnaire. The complete survey can be found 

in Appendix A. 

 

The purpose of the questionnaire was to learn users‟ preferences and needs in 

target domains and their personality features. We also collected the demographic 

information of users such as age, gender and occupation. As it can be seen on the 

Figure 14, participants had a nearly equal gender distribution. There were 56 (56 

%) women and 44 (44 %) men in the sample. The distribution for participants‟ 

age was as follows: 66% Age 25-30, 18% Age 31 – 42 and %16 Age 19-24. Most 

of them aged between 20 and 30 which can be the target marketing segment for 

most of the commercial recommendation systems. The distribution for 

participants‟ occupation was as follows: 34% Grad Student, 25% Software 

Engineer, 18% Academic Personnel and %23 other professions. 
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Figure 14 – Gender (a), Age (b) and Occupation Distribution (c) 

 

First, we try to learn participants‟ prior ranks for the features of items in each 

target recommendation domain. The participants are asked to sort the features 

according to the importance for them. The ranks are estimated as follows;  

 The first 10 features are taken from the ordered list.  

 The points from 10 to 1 are assigned based on their ordering. (First 

listed feature gained 10)  

Therefore, regarding 100 participants, the maximum score for a feature is 1000 if 

it is listed at top by each participant. The details are given in the Figure 15. The 

precedence of features carries very important information for the assignments of 

the initial feature weights which are used in similarity measurements in the 
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content based filtering. The most important features for the movies are ordered as 

follows: genre, actor, actress and director. People are given relative less attention 

to languages, producers or years of the movies. Writer is the most important 

factor that affects participants‟ opinions about a book. Genre, title and language 

are also listed as the critique features for books. Similar to writers in the book 

domain, singers are selected as the most important feature that determines 

participant‟s taste on music. Genre, composer and live performance of the songs 

are also selected as important features. 

 

 

Figure 15 – The precedence of features in movie, book and music domains. 

 

If we make an overall evaluation of the importance of the features on determining 

participants‟ tastes, “genre” is the most vital feature for recommender systems in 

“movie”, “book” and “music” domains. Therefore, we created our knowledge 

base rules based on “genre” information of the items. 

 



 

 

 

 

64 

We also asked the participants which types of movies, books and music that they 

like. This information gained more importance as we had found that “genre” was 

the most discriminative feature for all domains. Participants could select more 

than one type. The types of items are ordered in the results according to how 

many users selected them. The results are given in the Figure 16.  

 

 

Figure 16 – The popular items types in each domain 

 

Comedy, action, adventure and animation movies are selected by more than half 

of the participants. Mystery, historical, science-fiction and romance books became 

the most popular book genres. Pop and Rock music types are top listed in music 

domain. 

The last question required the participants to describe their personality. For 

personality types we chose the nine types of the Enneagram of personality [44, 

45] given above which are useful in classifying characters. The personalities are 

given with brief information in order to make it easy to understand for 
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participants. The distribution given in Figure 17 for personality types was as 

follows: 18% Helper, 17% Observer, 14% Performer, 13% Perfectionist, 12% 

Adventurer, 10% Peacemaker, 6% Romantic and 4% Boss. The personalities of 

the participants are used to define the relation with item genres such as like or 

dislike. 

 

 

Figure 17 – The distribution of Personality Types 

 

The results of the survey are analyzed statistically with the SPSS (Statistical 

Package for the Social Sciences) software by the help of two professional 

statisticians. The statistical results for questions are also calculated separately for 

each kind of personality type in order to obtain preferences of each personality 

type independent of others. The variances and differences in the attitudes of 
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people in a certain personality type regarded as discriminative information and the 

relations between personality features and movie/music/book types are extracted. 

After that, “Chi-square” tests are applied to these relations in order to make sure 

that our sample size is large enough to infer that our rules can be generalized.  

Finally, the feature relations and rules about users‟ preferences and tendencies are 

obtained for target domains. The extracted rules for each domain are below. 

 

 

Table 2 – Movie Domain Rules 

 “Observers like Animation 

movies” 

 “Observers dislike Romance 

movies” 

 “Helpers like History movies” 

 “Helpers like Romance movies” 

 “Performers like History movies” 

 “Adventurers like Adventure 

movies” 

 “Perfectionists like Animation 

movies” 

 “Perfectionists like Fantasy 

movies” 

 “Perfectionists dislike Adventure 

movies” 

 “Peacemaker like Adventure 

movies” 

 “Peacemaker like Animation 

movies” 

 “Romantics like Animation 

movies” 

 “Questioner like Adventure 

movies” 

 “Questioner like History movies” 

 “Bosses dislike Adventure 

movies” 
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Table 3 – Book Domain Rules 

 “Observers like Science-Fiction 

books” 

 “Observers like Fantasy books” 

 “Helpers like Romance books” 

 “Performers like Historical 

books” 

 “Performers like Romance books” 

 “Adventurers like Comics books” 

 “Adventurers dislike Historical 

books” 

 “Perfectionists like Fantasy 

books” 

 “Perfectionists dislike Romance 

books” 

 “Peacemaker like Historical 

books” 

 “Peacemaker like Science-Fiction 

books” 

 “Peacemaker dislike Mystery 

books” 

 “Romantics like Romance books” 

 “Romantics like Historical books” 

 “Questioner like Historical 

books” 

 “Questioner like Romance books” 

 “Bosses like Historical books” 

 “Bosses like Biography books” 

 

 

Table 4 – Music Domain Rules   

 “Observers like Rock music” 

  “Adventurers like Alternative 

music” 

  “Romantics like Latin music” 

 “Questioner like Classical music” 

 “Questioner like Latin music” 

 “Questioner dislike Alternative 

music” 

 “Bosses like Classical music” 

 

 

We tested these rule‟s effects on the collaborative and content-based 

recommendation algorithms with different configurations in order to find out 

which of them could be help us to improve the recommendation quality. 
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4.2.3   Metrics 

In order to determine the prediction quality of our knowledge-based approach 

which extends collaborative and content-based algorithms, Mean Absolute Error 

(MAE) metrics [46] was used.  

 

      (6) 

 

The MAE is computed by first summing the absolute errors of the N 

corresponding ratings-prediction pairs and then averaging the sum. A smaller 

value of MAE indicates a better accuracy. 

4.2.4   Data Sets, Common Vocabulary Adapters and Data Preprocessing 

In order to test our approach we developed common vocabulary adapters for the 

movie, music and book domains using the datasets available datasets.  

 

For movie domain, we used a popular database, the MovieLens Dataset [8] by the 

GroupLens Research group at University of Minnesota. The MovieLens data set 

contains 1682 movies, 943 users and 100,000 ratings (1–5 scales), where each 

user has rated at least 20. However, MovieLens provides only title, release date 

and genre information about the movies. Therefore, we matched the movie‟s 

information with the IMDb dataset to extract other features required by the item 

ontology. In addition, we implemented a web crawler using Google Ajax Search 

API [47] and captured movie posters for our interface. 
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For book domain, we used Book-Crossing Dataset [43] by Cai-Nicolas Ziegler. 

The dataset was containing 278,858 users (anonymized but with demographic 

information) providing 1,149,780 ratings (explicit / implicit) about 271,379 

books. Because of the uncontrollable large data size, we have picked out a smaller 

dataset, which is constructed with randomly selected users who rated more than 

20 books and items which are rated by at least five users and reduced the number 

of books to 2000. Then, we found ratings of these books and the users who rated 

them and obtain 7363 users and 19664 ratings. Book-Crossing Dataset also does 

not contain all the features for books. It contains ISBN, Title, Author, Year-of-

Publication, Publisher and the cover image URL. We used Amazon Web Services 

[48] and LibraryThing Services API [49] to complete the necessary features for 

the 2000 books. 

 

To compare our approach with the state of art collaborative and content-based 

algorithms, we chose the cross validation technique with holdout method and 

performed the experiments under the following configurations. A subset of 500 

users is selected from each data set. 300, 200 and 100 of them were selected as the 

training users respectively [50]. And the rest 200, 300, 400 were selected as the 

active users. These sets were named Movie/Book300, Movie/Book200 and 

Movie/Book100. As for the ratings from the active users, we varied the number of 

ratings provided by the active users from 5, 10, and 20, naming them Given5, 

Given10 and Given20, respectively. As a result, we obtained 9 different 

configurations in each domain. 

 

As our knowledge base rules make use of user‟s personality features, some 

preprocessing is required in order to determine the active user‟s personalities in 

these configurations. We used Weka (Waikato Environment for Knowledge 

Analysis) which is a popular suite of machine learning software in order to 

classify users via Decision Trees. Using j48 decision tree algorithm with our 

http://en.wikipedia.org/wiki/Machine_learning
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survey results about preferred movies, music, books and demographic 

information, we obtained the decision trees for each personality feature and 

succeed to classify active users. Figure 18 shows the decision tree to classify 

user‟s personality as a “Peacemaker”. 

 

 

Figure 18 – Decision Tree for Personality of “Peacemaker” 
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4.2.5   Evaluation Details 

In this section, we present our built-in recommendation algorithms with and 

without knowledge base against a state-of art [1] collaborative filtering technique 

(CF) and content based filtering technique (CB) on each data set with 

configurations defined previous section. Our aim is not to find best algorithm but 

provide a reasonable performance with the framework and demonstrate the effect 

of knowledge base. Therefore, we did not include the other collaborative filtering 

and content based filtering algorithms in evaluation details. We performed several 

tests with different rule combinations and present the most successful ones. 

4.2.5.1 Movie Domain 

 

A. Collaborative Filtering: 

We prepare 4 different knowledge bases with the following below. The last 

knowledge base is the combination of others. 

Knowledge Base 1 (KB1) 

 “Helpers like History movies” 

 “Helpers like Romance movies” 

Knowledge Base 2 (KB2) 

 “Perfectionists like Animation movies” 

 “Perfectionists like Fantasy movies” 

Knowledge Base 3 (KB3) 

 “Peacemakers like Adventure movies” 

Knowledge Base 4 (KB4) 

 “Helpers like History movies” 

 “Helpers like Romance movies” 

 “Perfectionists like Animation movies” 
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 “Perfectionists like Fantasy movies” 

 “Peacemakers like Adventure movies” 

 

Comparative Results: 

The number of nearest neighbors in collaborative filtering is set as 35 and the 

knowledge effect variable is set to 0.4 in all configurations since they are best 

values shown in Figure 19 and 20. 

 

Table 5 – MAE comparison of methods for Movies (CF) 

Training Users Methods Given5 Given10 Given20 

Movie100 CF (State-of-Art) 0.8377 0.8044 0.7934 

CF (CrosSing) 0.8227 0.7984 0.7907 

KB1 0.8217 0.7975 0.7898 

KB2 0.8225 0.7981 0.7905 

KB3 0.8224 0.7996 0.7913 

KB4 0.8212 0.7984 0.7904 

Movie200 CF (State-of-Art) 0.8185 0.8067 0.7960 

CF (CrosSing) 0.8001 0.7875 0.7818 

KB1 0.7995 0.7869 0.7808 

KB2 0.7998 0.7872 0.7817 

KB3 0.7986 0.7878 0.7824 

KB4 0.7979 0.7870 0.7813 

Movie300 CF (State-of-Art) 0.8055 0.7910 0.7805 

CF (CrosSing) 0.7901 0.7852 0.7769 

KB1 0.7906 0.7847 0.7765 

KB2 0.7897 0.7848 0.7769 

KB3 0.7892 0.7867 0.7770 

KB4 0.7892 0.7857 0.7767 
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In Table 5, we can observe that our prediction approach slightly improve the 

quality of the state-of-art collaborative filtering algorithm in all configurations.  

The improvement is not so significant but this performance is necessary enough to 

use this algorithm in the framework. Collaborative filtering algorithm also 

performed better with the knowledge base. Comparing the knowledge bases; KB1 

is more useful than the KB2 and KB3 in many configurations. We can sort the 

effectiveness of knowledge bases as follows: K1 > KB3 > KB2. 

The combination of other knowledge bases (KB4) can also be considered as 

successful. It shows that the results can be better with different rule combinations. 

The different configurations results also show that our algorithm is working as we 

expect. The MAE is decrease with increase number of training users and ratings 

that each user gives. 

 

We can prove that our framework infrastructure and testing suite is working and 

personality rules have effects on the predictions. Additionally, we had some 

disadvantages about determining the users‟ personality in the survey and the 

dataset. The participants might make mistakes about deciding their real 

personalities in the survey and there is an error rate at the decision trees used in 

WEKA. 

 

Impact of Parameters (Knowledge Effect, Neighborhood Size) 

In order to examine the sensitivity of the knowledge effect variable, we performed 

an experiment where we varied the value of knowledge effect variable that were 

used and computed the MAE for each variation. The Figure 20 shows the impact 

of Knowledge Effect variable on MAE for Movie300Given20 with configuration 

with KB4. It is observed that 0.4 is the optimum value for the knowledge effect 

variable. 
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Next, in order to examine the sensitivity of the neighborhood size variable, we 

varied the number of nearest neighbors that were used and computed the MAE for 

each variation. Figure 19 show Movie300Given20 with configuration with KB4, 

however, the other configurations yield similar results. The size of neighborhood 

does affect the performance but the effect decrease after 30. Therefore, 35 is 

suitable for the size of neighborhood regarding both performance and 

computational issues. 
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Figure 19 – Impact of Knowledge Effect on MAE (Movie300 Given20 KB4) 
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Figure 20 – Impact of Neighborhood Size on MAE (Movie300Given20 KB4) 

 

B. Content Based Filtering: 

 

To compare the content based filtering with the knowledge base support, we 

chose the first two knowledge bases from the previous part. 

Knowledge Base 1 (KB1) 

 “Helpers like History movies” 

 “Helpers like Romance movies” 

 

Knowledge Base 2 (KB2) 

 “Perfectionists like Animation movies” 

 “Perfectionists like Fantasy movies” 

 

Comparative Results: 

 

The configurations for content based filtering differ from the collaborative 

filtering test. As the results can be seen in Table 7, it is expected that different 

number of test and training users does not affect the MAE results significantly on 

content based filtering. However, the number of elements in the user‟s taste list 
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according to TF-IDF scores for each item feature has an important effect on the 

results. Therefore, we performed our test on set Movie100 which contains 100 

training and 400 active users. We also varied the number of elements to be 

considered in the user‟s taste list and constitute the test sets Movie100Sim5, 

Movie100Sim10 and Movie100Sim20. The performance results of the state of art 

content based algorithm could not be found but the overall MAE of MovieLens 

dataset is 0.73 given in [51]. 

Table 6 – MAE comparison of methods for Movies (CB) 

Training Users Methods Given5 Given10 Given20 

Movie100 

(Sim5) 

CB (CrosSing) 1.0820 0.9630 0.8946 

KB1 1.0811 0.9623 0.8944 

KB2 1.0814 0.9629 0.8946 

Movie100 

(Sim10) 

CB (CrosSing) 1.0510 0.9457 0.8880 

KB1 1.0500 0.9451 0.8878 

KB2 1.0502 0.9457 0.8880 

Movie100 

(Sim20) 

CB (CrosSing) 1.0328 0.9368 0.8836 

KB1 1.0315 0.9361 0.8834 

KB2 1.0314 0.9367 0.8836 

 

The MAE results of the evaluations for 27 runs are given in Table 6. It is shown 

that our algorithms performance worse than the state-of-art algorithm. However, 

we observe the positive effects of the knowledge base support again. When we 

examine Table 6 further, it can be observed that, as the number of ratings 

provided from training users to the recommender increase, the accuracy increases; 

which may be due to the fact that, the content based recommenders accuracy 

increase with increased clue from the user about his preferences. From the results, 

we can observe that, the main benefit of the knowledge bases is its power to 
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produce recommendations even if there is not much clue about the user 

preferences. 

In addition to this, the heterogeneity of the training dataset in terms of genres of 

movies has a very important effect on the accuracy of the content-based with 

knowledge bases because the rules are applied only if the movie‟s genre matches 

with the rule. 

 
Table 7 – Effect of different number of users 

Training Users Methods Given5 Given10 Given20 

Movie100 

(Sim20) 

CB (CrosSing) 1.0328 0.9368 0.8836 

Movie200 

(Sim20) 

CB (CrosSing) 1.0348 0.9409 0.8855 

 

4.2.5.2 Book Domain 

 

A. Collaborative Filtering: 

We prepare 3 different knowledge bases with the following below. The last 

knowledge base is the combination of others. 

Knowledge Base 1 (KB1) 

 “Helpers like Romance books” 

 

Knowledge Base 2 (KB2) 

 “Romantics like Romance books” 

 “Romantics like Historical books” 

 

Knowledge Base 3 (KB3) 

 “Helpers like Romance books” 
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 “Romantics like Romance books” 

 “Romantics like Historical books” 

 

Comparative Results: 

The number of nearest neighbors in collaborative filtering is set as 35 and the 

knowledge effect variable is set to 0.2 in all configurations since they are best 

value shown in Figure 20 and 21. The performance results of the state of art 

collaborative filtering algorithm could not be found but the overall MAE of this 

algorithm on BookCrossing dataset is 1.53 given in [51]. 

 

Table 8 – MAE comparison of methods for Books (CF) 

Training Users Methods Given5 Given10 Given20 

Book100 CF (CrosSing) 1.8180 1.7168 1.6134 

KB1 1.8149 1.7141 1.6116 

KB2 1.8140 1.7140 1.6105 

KB3 1.8109 1.7114 1.6087 

Book200 CF (CrosSing) 1.5797 1.3932 1.2710 

KB1 1.5769 1.3913 1.2692 

KB2 1.5764 1.3908 1.2683 

KB3 1.5736 1.3888 1.2665 

Book300 CF (CrosSing) 1.3828 1.1616 1.0932 

KB1 1.3800 1.1595 1.0916 

KB2 1.3802 1.1602 1.0910 

KB3 1.3774 1.1580 1.0894 

 

We applied the steps that are applied in movie domain. The results in Table 8 are 

parallel with the results found in previous section. The base performance for our 

collaborative filtering in book domain seems worse than movie domain however 

these results are expected because BookCrossing is very sparse data set. In 
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addition, our algorithms performance is considerable better compared to overall 

MAE result given in [51]. The MAE is also decrease with increase number of 

training users and ratings that each user gives. 

Comparing the knowledge bases; KB2 is better than KB1 in general. KB3 

(Combination of KB1 and KB2) performs best in all configurations. 

We can conclude that collaborative filtering algorithms show consistent 

performance on two different domains. 

 

Impact of Parameters (Training Size, Rating, Knowledge Effect, Neighborhood Size) 

We also examine the sensitivity of the knowledge effect variable and the 

sensitivity of the neighborhood size variable. The Figure 21 shows the impact of 

Knowledge Effect variable on MAE for Book300Given20 configuration with 

KB3. It differs from movie domain and found that 0.2 is the optimum value for 

the knowledge effect variable. 

The behavior of the neighborhood size in Figure 22 is same as the behavior in 

movie domains. Therefore, 35 is selected as optimum value for the neighborhood 

size variable. 
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Figure 21 – Impact of Knowledge Effect on MAE (Book300 KB4) 
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Figure 22 – Impact of Neighborhood Size on MAE (Book300 KB4) 

 

B. Content Based Filtering: 

We chose the first two knowledge bases from the previous part. 

Knowledge Base 1 (KB1) 

 “Helpers like Romance books” 

 

Knowledge Base 2 (KB2) 

 “Romantics like Romance books” 

 “Romantics like Historical books” 

 

Comparative Results: 

 

The configurations are the same as the content based filtering test on Movie 

dataset. We also checked the effect of different number of test and training users 

on MAE results which can be seen in Table 10. We performed our test on set 

Book100 which contains 100 training and 400 active users. We varied the number 

of elements to be considered in the user‟s taste list and constitute the test sets 

Book100Sim5, Book100Sim10 and Book100Sim20. The performance results of 
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the state of art content based algorithm could not be found but the overall MAE of 

MovieLens data is 1.34 given in [51]. 

Table 9 – MAE comparison of methods for Books (CB) 

Training Users Methods Given5 Given10 Given20 

Book 100 

(Sim5) 

CB (CrosSing) 1.6007 1.5690 1.5555 

KB1 1.6020 1.5712 1.5566 

KB2 1.6015 1.5692 1.5556 

Book 100 

(Sim10) 

CB (CrosSing) 1.5416 1.5394 1.5390 

KB1 1.5429 1.5417 1.5401 

KB2 1.5424 1.5397 1.5393 

Book 100 

(Sim20) 

CB (CrosSing) 1.5283 1.5347 1.5355 

KB1 1.5296 1.5371 1.5366 

KB2 1.5291 1.5350 1.5358 

 

 

The results in Table 9 are also consistent with the results found for movie dataset. 

It is shown that our algorithms performance also worse than the state-of-art 

algorithm in BookCrossing dataset. In addition, for the first time, we observed the 

knowledge base rules negatively affect the performance of the recommendation 

algorithm. Although heterogeneity of the training dataset might be the reason for 

the decrease in accuracy, the rules need to be revised. 

Table 10 – Effect of different number of users 

Training Users Methods Given5 Given10 Given20 

Book 100 

(Sim20) 

CB (CrosSing) 1.5283 1.5347 1.5355 

Book 200 

(Sim20) 

CB (CrosSing) 1.5211 1.5300 1.5319 
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4.3 End-User Evaluation 

In order to test the application developed in the previous section and gather the 

people‟s opinions about overall systems and cross-domain recommendations, we 

performed alpha testing with real end users. Alpha testing means that testing the 

software in the developer site by the customer after 80% - 90% completion of 

developing the application. Therefore, tests are performed on the development 

machine and the numbers of participants had to be lower than the online survey 

previously presented. 12 users (6 male and 6 female) are involved in the alpha 

testing. The average age of users was 28.3. The average duration of a test was 45-

60 minutes. 

  

The tests are performed in four steps: 

 First two questions of survey were answered by the user before testing 

began. 

 The application is presented and recommendation systems concepts are 

introduced. 

 The user used the system and received both single and cross-domain 

recommendations. 

 The remaining parts of the survey were completed. 

 

The survey was composed of 16 closed-ended questions. The complete survey can 

be found in Appendix B. The questions in the survey were grouped as follows: 

 

Background: These questions are aimed to learn about the participants‟ profile in 

terms of familiarity with the recommender systems and their first thoughts before 

they use the application. 

The distribution for participants‟ familiarity with the recommender systems was 

as follows: 50% not  familiar, 20% not at all familiar and 15% somewhat familiar, 
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% 15 very familiar. As it can be seen, recommender systems were very new 

concept to most of the participants and most of them used a recommender system 

for the first time. Half of the participants thought that the system can accurately 

predict the items they like while the remaining was neutral about possibility of 

accurate prediction. 

 

Human–computer interaction (HCI): The main concern was the evaluation of 

the graphical user interface and feedbacks about usability of the application. 

 

Nearly 85% of the users are satisfied with the system interface and interactions 

with them. The registration process and the feedback mechanism are found easy 

by more than half of the participants. The adaptation of the systems was positive 

and the durations to receive useful recommendation were reasonable. However, 

receiving similar recommendations was the drawback of the system. 

 

Algorithms: The performance of algorithms and cross-domain recommendations 

are tried to be evaluated.  

 

The recommendations are evaluated according to the criteria such as “Accuracy”, 

“Novelty”, ”Enjoyability”, “Diversity” and “Serendipity”. Accuracy and novelty 

of the recommendations are regarded as very good or excellent. However, 

diversity and serendipity of the recommendations get relatively poor feedbacks. 

The enjoyability of the recommendations was also evaluated as good. 

 

All of the users agreed on receiving more personalized recommendations as they 

provide more feedback to systems. 80% of them found the system 

recommendation good compared to recommendations which may receive from 

their friends.  
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The users were able to observe by which recommendation algorithm the 

recommendations are generated. They are asked to choose which type of 

algorithm the like most. The distribution of popularity of algorithms was as 

follows: 26% Collaborative, 23% Content-Based, 21% Demographic Filtering, 

16% Most Popular and 14% Surprise. We can conclude that Collaborative and 

Content-Based filtering methods are the most liked algorithms as we expected. 

The interesting one was the popularity of Surprise algorithm was nearly same as 

Most Popular algorithm. It shows that random generated items can also be liked as 

much as the items found popular by all users. 

 

The most important question of the survey was how the user found the cross-

domain recommendations. The results were not so excellent but they can be 

determined promising as half of the participant found the cross-domain 

recommendations good or very good. %25 of the participants found fair and the 

remaining %25 found poor. 

 

Future:  The opinions about the possible further development of the system are 

asked. 85% of the participant evaluated the systems as promising and all of them 

would like to use the application as a real system in the future. 

 

To conclude to alpha testing process, the number of the participants is very 

limited as the test took so long time and the system was only available on the 

development machine. However, the system can be regarded as successful 

because all of the participants‟ evaluations were positive and the results are very 

promising for the initial release of the system. 
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CHAPTER 5  
 

 

 

CONCLUSION AND FUTURE WORK 

 

 

In this work, we proposed a dynamic framework for developing knowledge-based 

cross-domain recommender systems. The framework has a generic and flexible 

structure that data models and user interfaces are generated based on ontologies. 

New recommendation domains can be integrated with the framework easily in 

order to improve recommendation diversity. In addition, knowledge base helps to 

generate useful recommendations in cross-domains and maximize user 

satisfaction. 

 

Several methods are used to evaluate the various components of framework. 

Initially, “Functionality Tests” are performed to prove the applicability, flexibility 

and usability. The accuracy and the performance of the algorithms are appraised 

through analytical approaches. Finally, the whole system is evaluated through user 

experiments and questionnaire analysis.  

 

Regarding the design of the framework, the evaluation process and the prototype 

developed; we can conclude the advantages and disadvantages of our framework 

among other recommendation frameworks as follows: 

 

The advantages of the CrosSing framework: 
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- Enables cross-domain functionality and mapping between different 

domains. 

- Has a hybrid recommendation engine. 

- Enables development of knowledge based recommender systems. 

- Generic and Flexible. Data structures can be managed via XML files. 

- Algorithms can be expanded. 

- Test suite is included to monitor integrated algorithms performances and 

rules. 

- Provided user friendly interface and can be deployed to web easily. 

 

The disadvantages of the CrosSing framework: 

- It‟s developed as a research study. It should be improved and become 

mature in order to be used commercially. 

- Knowledge acquisition process can be a bottleneck while developing 

applications. 

- Frameworks need community support. It may be open-source or be 

developed by a group. 

 

As the future work, the framework will be an open-source project and the 

prototype application will be deployed on the web. The built-in algorithms will be 

improved to provide better recommendation and beta testing with more users will 

be conducted to provide further evaluation on cross-domain recommendations. 

We can conclude that cross-domain recommendation approach will gain more 

attention in near future and our framework can be used to develop successful 

products or experiments by researchers. 
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APPENDIX A  

 

 

 
KNOWLEDGE ACQUISITION SURVEY 

 

 

1. What are your gender (female/male) and age? 

 Ex) Male, 25 

 

2. What is your occupation? 

Ex) Software Engineer, Grad Student 

 

3. Would you sort the following MOVIE features considering the importance for 

you? 

 

"Title, Actor, Actress, Producer, Director, Year, Genre, Tags, Language, 

Country, Length, Locations" 

Ex) 1.Genre, 2. Actor, 3. Actress, 4. Title, 5. Producer, 6. Director, 7. Tags, 8. 

Locations, 9. Country, 10. Language, 11. Year 

 

 

4. Would you sort the following MUSIC features considering the importance for 

you?  

 

"Singer, Genre, Song Name, Song Duration, Composer, Year, Performance 

(Live/Studio), Producer, Art Work, Video-Clip, Album Name" 
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Ex) 1. Singer, 2. Genre, 3. Composer, 4.Performance(Live/Studio), 5.  

Producer, 6.Video-Clip, 7. Art Work, 8. Song Duration, 9. Song Name, 10. 

Album Name, 11. Year 

 

5. Would you sort the following BOOK features considering the importance for 

you?  

   

"Title, Writer, Publisher, Year, Genre, Tags, Language, Price, Size" 

Ex) 1. Genre,  2. Writer, 3. Title, 4. Tags, 5. Language, 6. Size, 7. Year, 

8.Price 9. Publisher. 

 

6. Which types of MOVIES do you like? 

 Action  History 

 Adventure  Musical 

 Animation  Mystery 

 Biography  Romance 

 Comedy  Sport 

 Crime  Thriller 

 Documentary  War 

 Drama  Western 

 Family  Other 

 Fantasy/Fiction  

 

Ex) Action, Adventure, Fantasy/Fiction, Crime 

 

7. Which types of MUSIC do you like? 

 Metal  Country 

 Punk  Disco 

 Rap  Classical 

 Jazz  Blues 

 Hip Hop  Progress 

 Pop  Techno 

 Hard Rock  Reggea 

 Alternative  Death 

 Latin  Other 

 Rock  

Ex) Rock, Alternative, Techno, Pop 
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8. Which types of BOOKS you like? 

 Romance  Thriller 

 Westerns  Horror 

 Mystery  Historical 

 Science-Fiction  Poetry 

 Comics  Biography 

 Fantasy  Other 

 

Ex) Mystery, Science-Fiction, Thriller 

9. How do you define yourself? 

 Perfectionist - Perfectionists are idealistic. Hold themselves to 

high standards, and tend to be reliable and organized. Very 

productive, achieve a lot, and tend to get involved in public service. 

 Helper - Helpers want to be loved or liked. They tend to react to 

others, and put great emphasis on relationships. Helpers can be 

attentive, protective, charitable, and warm. 

 Performer - The Performer wants to make a good impression, 

and to always meet or exceed expectations. Performers are 

organized, busy, no-nonsense people and are hard workers who get 

results. 

 Romantic - Romantics are very good at expressing their feelings, 

and value being in touch with their feelings and the feelings of 

others. They are free thinkers and don't follow the herd. 

 Observer - The Observer lives a world of the mind, is analytical 

and likes to figure things out. Observers value being independent, 

and are comfortable being alone. 

 Questioner - Questioners are motivated by a need for security. 

They can be anxious and full of doubts, take things too seriously, 

and can sometimes be suspicious, withdrawn, and sarcastic. 

 Adventurer - Adventurers believe that life's full of interesting 

things to do. Pleasurable and optimistic. They enjoy planning, but 

are flexible. If a plan doesn't work, they'll try something else. 

 Boss - Bosses are assertive and self-reliant. They are concerned 

with the dynamics of power: of getting it, having it and keeping it. 

Bosses approach situations by attempting to dominate them. 

 Peacemaker - Peacemakers want to avoid conflict and love 

harmony. Peacemakers are usually generous and open-minded, and 

see both sides of every issue. 

 

Ex) Romantic, Peacemaker 
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APPENDIX B  

 

 

 
END-USER EVALUATION SURVEY 

 

 

1. Are you familiar with the Recommender Systems? 

 Not at all familiar  Not too familiar  Somewhat Familiar  Very Familiar  

 

2. Do you think that the system can accurately predict the items you like? 

 Strongly Disagree  Disagree  Neutral  Agree  Strongly Agree 

 

3. How do you define the registration process of the system? 

 Very Complicated  Difficult  Fair  Easy  Very Easy 

 

4. How do you define your adaptation to the system in terms of usability? 

 Poor  Fair  Good  Very Good  Excellent 

 

5. How long does it take to get useful recommendations from the systems? 

 Never  Very Long  Reasonable  In Short Time  Immediately 

 

6. Are you satisfied with system interface and interaction with you? 

 Extremely Dissatisfied  Dissatisfied  Neutral 

 Satisfied  Extremely Satisfied 

 

7. What had worsened your satisfaction most? 

 Interface  Poor Recommendation  Receiving Similar Rec.  
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 Feedback Mechanism  Registration Process 

 

8. How do you define the feedback mechanism for recommendations? 

 Very Complicated  Difficult  Fair  Easy  Very Easy 

 

9. How do you find recommendations in terms of the following criteria? 

a. Accuracy         Poor  Fair  Good  Very Good  Excellent 

b. Novelty             Poor  Fair  Good  Very Good  Excellent 

c. Enjoyability   Poor  Fair  Good  Very Good  Excellent 

d. Diversity         Poor  Fair  Good  Very Good  Excellent 

e. Serendipity     Poor  Fair  Good  Very Good  Excellent 

 

10. Did the system give more personalized recommendations based on your 

feedback? 

 No  Yes 

 

11. Was the system good compared to recommendation you may receive from a 

friend? 

 No  Yes 

 

12. Which recommendation type do you like most? (Give points from 5 to 1) 

 Collaborative  Content Based  Demographic Filtering 

 Most Popular  Surprise 

 

13. How do you find cross domain recommendations? 

 Poor  Fair  Good  Very Good  Excellent 

 

14. Do you find the system promising? 

 No  Yes 

 

15. Would you like to use it as a real system? 

 No  Yes 
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