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ABSTRACT 

AVAILABILITY MANAGEMENT IN CONFIGURE-TO-ORDER 

MANUFACTURING SYSTEMS 

 

Yöntem, Hüseyin Erdem 

M.Sc., Operational Research 

Supervisor: Asst. Prof. Dr. Sedef Meral 

December 2009, 98 pages 

 

In resource constrained supply chains, where demand is higher than the supply, the 

decision whether to accept or reject the customer order is a very critical task from 

resource planning and customer service level perspectives. Since the customers, in 

today‘s e-business environment, expect quick responses to their orders, some in-

advance work has to be done before the arrival of actual customer orders, especially 

in configure-to-order (CTO) and make-to-order (MTO) production systems.  

Available-to-Promise (ATP) is a business function that is becoming the central 

management system for today‘s dynamic supply chains whose responsibility is to 

respond customer orders by considering the trade-off between front-end customer 

satisfaction and back-end capacity allocation. In this study, we propose an 

availability management approach that introduces push-based allocation planning 

by using order segmentation before the arrival of actual customer orders in CTO 

production environments. Moreover, a two-step order promising framework is 

introduced in order to increase customer service levels through giving certain or 
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tentative delivery dates immediately to customer orders before the batch, rule-based 

actual resource consumption processes.  

The proposed approach is applied to the real-life processes of an enterprise in order 

to analyze its applicability and evaluate the benefits that accrue. The results of the 

experiments prove that, the four-phased availability management approach 

contribute to both overall profit and customer service levels. 

Keywords: Availability Management, Configure-to-Order, Available-to-Promise, 

Order Segmentation, Clustering, Allocation Planning 
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ÖZ 

SİPARİŞE GÖRE YAPILANDIRILAN ÜRETİM SİSTEMLERİNDE 

UYGUNLUK YÖNETİMİ  

 

Yöntem, Hüseyin Erdem 

Yüksek Lisans, Yöneylem Araştırması 

Tez Yöneticisi: Y.Doç. Dr. Sedef Meral 

Aralık 2009, 98 sayfa 

 

Talebin arzdan daha fazla olduğu kaynak kısıtlı tedarik zincirlerinde, gelen bir 

müşteri siparişini kabul etmek veya red etmek kaynak planlaması ve müşteri servis 

seviyeleri perspektifine göre çok kritik bir iştir. Günümüzdeki e-iş ortamında, 

müşteriler siparişlerine çok kısa bir süre içerisinde cevap almak istemektedirler. Bu 

nedenle özellikle siparişe göre yapılandırılan ve siparişe istinaden üretim yapılan 

üretim sistemlerinde, müşteri siparişleri gelmeden once bazı ön çalışmaların 

yapılması gerekmektedir.   

Söz Vermeye Uygun (SVU), ön yüzdeki müşteri memnuniyeti ve arka yüzdeki 

kapasite tahsisi arasındaki dengeyi kurma sorumluluğu ile; günümüzün dinamik 

tedarik zincirlerinin merkezi yönetim sistemi olmaya başlamaktadır. Bu çalışmada, 

siparişe göre yapılandırılan üretim sistemlerinde, müşteri siparişleri henüz 

gelmeden, sipariş bölümlemesi ile itiş-tabanlı tahsis planlaması uygulayan; bir 

uygunluk yönetimi yaklaşımı sunulmuştur. Buna ek olarak, kural tabanlı parti 

kaynak tüketimi sürecinden önce müşterilere kesin veya yaklaşık sonuçların anında 
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verilebilmesine olanak sağlayan iki aşamalı bir sipariş sözverme çatısı 

geliştirilmiştir.  

Gelistirilen çözüm, bir kurumun gerçek hayattaki süreçleri üzerinde uygulanmış ve 

uygulanabilirliği ve oluşabilecek faydalar incelenmiştir. Deney sonuçlarına göre, 

sunulan dört aşamalı uygunluk yönetimi çözümü, hem toplam kara hem de müşteri 

hizmet seviyelerine katkı sağlamaktadır.  

Anahtar Kelimeler: Uygunluk Yönetimi, Siparişe İstinaden Yapılandırma, Söz-

Vermeye-Uygun, Sipariş Bölümlemesi, Kümeleme, Tahsis Planlama 
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CHAPTER 1 

1. INTRODUCTION 

Advanced information technologies and incredible progress in e-business and data 

processing systems are reshaping today‘s global business environment. Customers 

are demanding more and more customized products and they are able to investigate 

different suppliers easily in terms of price and service levels. In order to survive in 

such a competitive environment companies are trying to structure their supply chains 

in order to minimize costs, maximize profits and service levels. This is the reason 

why effective supply chain management has gained so much importance in today‘s 

companies. 

In resource constrained supply chains, determining which orders to accept and more 

importantly which orders to reject is one of the most important decisions that 

companies face today. Available-to-Promise (ATP) is a business function having the 

capability to respond to customer requests by matching them with enterprise 

resources while evaluating the trade-off between front-end customer satisfaction and 

back-end logistics performance.  

The difficulty of responding to customer orders changes according to the position of 

the decoupling point and supply chain strategy. In make-to-stock (MTS) supply 

chains, promising customer orders needs a simple database lookup for the inventory 

position. On the other hand in configure-to-order (CTO) and make-to-order (MTO) 

supply chains, raw material and resource availability, assembly and production 

capacities and other supply chain attributes should be considered in order to promise 

customer orders. 

Capable to promise (CTP), similar to ATP, is an output of master production 

schedule (MPS) that is the available production or assembly capacity and resources 
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that can be used to promise customer orders. MPS systems calculate the optimum (or 

near optimum) amounts of ATP and CTP quantities by considering the resources of 

the company and forecasted customer demands. On the other hand, ATP and CTP 

execution results can be used as an input to the MPS in order to feed MPS with the 

actual business runtime environment. Modern APS (advanced planning and 

scheduling) systems are paying more and more attention to ATP systems and 

position ATP with the MPS as the central management systems of the supply chains. 

Revenue management ideas, which are originated from the airline and service 

industries, can be applied to manufacturing environments as well by differentiating 

demand classes and responding them differently. Especially in resource constrained 

supply chains, some allocation mechanisms should be developed in order to avoid 

low profitable demand groups to over-consume some scarce resources that will result 

in order rejections from high profitable demand groups.  

In this study, we propose an availability management approach that optimizes profits 

and service levels by considering the heterogeneity of orders, products and customers 

in a CTO production environment. As a long term planning stage; order 

segmentation is executed based on order profit, customer value and product 

characteristics. A medium term planning stage; detailed allocation of resources to 

order segments in terms of product families and components is proposed.  Having the 

order segments and allocated ATPs and CTPs to them, a two-stage order promising 

model is executed to quickly respond to customer orders at the first stage while 

optimizing the consumption of resources at the second stage.   

The proposed approach is applied to the IBM‘s Enterprise Server Hardware Division 

processes in order to analyze its applicability and evaluate the benefits that accrue. 

The experiments and sensitivity analyses on IBM‘s CTO server production 

environment prove the insights of the approach from profit, customer satisfaction and 

service levels perspectives.  

One of the main strengths of the four-staged availability management approach we 

propose is its applicability to different production environments and companies by its 
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modular structure and loosely coupled design.  Each stage can be replaced by a 

custom approach while respecting to its inputs and outputs which are clearly defined. 

In the following chapters, the details of our study are presented regarding the below 

outline. 

In Chapter 2, a comprehensive literature review is given. Firstly, a general 

introduction to availability management and ATP is given. Then ATP systems are 

classified according to their availability level, operation mode, functional role in 

order promising systems and some other dimensions. After that, the decoupling point 

concept, push-based, pull-based and push-pull integrated ATP systems are 

introduced. Then optimization based ATP systems and their properties are 

investigated and some of them are compared. After that, customer-segmentation and 

revenue management concepts are studied and their applicability to manufacturing 

environments is defined. Then properties of IT systems that should be constructed in 

order to satisfy ATP needs are defined and some technologies are introduced. Lastly, 

APS approach to ATP Systems is examined and their modules are introduced. 

In Chapter 3, the problem definition is given. After giving some general definitions 

for CTO environments, the motivation of the study; IBM Enterprise Server Hardware 

division and its processes are introduced. Then the ways to apply order segmentation 

and resource allocation are discussed and the applicability is examined. The 

advantages and disadvantages of real-time and batch ATP execution are discussed 

and a two-stage order promising approach is introduced to merge the advantages of 

both approaches. Lastly, the general structure and assumptions of the four-staged 

solution approach are proposed. 

In Chapter 4, the four-staged solution approach is proposed with a general 

introduction to the methodology and a detailed explanation for each stage. Besides 

the individual stage explanations, the relations between the stages are defined. For 

Stage 0, orders are segmented according to customer priority, product complexity 

and order profit. After this segmentation a clustering method is applied in order to 

generate order classes that are passed to Stage 1. At Stage 1, ATP allocation for order 



 

4 

 

segments is done according to demands of order segments, global ATP and CTP 

quantities and order segment‘s respective values (priorities) coming from stage 0. At 

Stage 2, online (very short term) ATP execution is done in order to quickly respond 

to customer with a positive or a negative reply according to resource availability. The 

customer orders are either rejected or responded with hard promises (with exact 

delivery date) or soft promises (with delivery time window). Soft promised orders 

are passed to Stage 3, where a batch mode ATP execution is done to optimize the 

resource consumption during the batching horizon. 

In Chapter 5, the solution approach is illustrated via IBM Enterprise Server case and 

CTO processes. Several experiments and scenarios are constructed in order to define 

the strengths and weaknesses of the proposed solution approach. 

In Chapter 6, we conclude our study briefly by highlighting the important outcomes 

of our approach. Moreover, we propose some directions for future research.   

  



 

5 

 

 

CHAPTER 2 

2. LITERATURE REVIEW 

In this chapter, we discuss several characteristics of availability management, 

available-to-promise, order promising, order fulfillment and present a comprehensive 

literature review about them. 

2.1. Introduction to Available-to-Promise (ATP) 

Incredible developments in information technology (IT), data processing and 

logistics infrastructures are reshaping the global business environments. Buyers and 

sellers are sharing information and decisions in real time, while products can move 

from one place to another in days or even in hours. Now, buyers have the ability to 

investigate different products and sellers online, and compare them easily. In order to 

survive in such a competitive environment, companies have to redefine their business 

processes not only to enhance back-end logistics infrastructure but also to improve 

front-end customer service and satisfaction. Available-to-Promise (ATP) is one of 

the most important business processes of supply chain management (SCM) that plays 

an important role of directly linking customer orders with enterprise resources and 

evaluate the tradeoff between front-end customer service and back-end logistics 

performance (Ball et al., 2004). 

According to Ervolina and Dietrich (2001), the first introduction to ATP comes in 

the late 1980‘s with MRPII (Manufacturing Resource Planning). The early definition 

was simple that takes the total availability from the Master Production Schedule 

(MPS), reduce it by the actual customer orders and leaves the planner with the 

amount ATP. Enterprise Resource Planning (ERP) systems integrate the order 
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system with the MPS so that the ATP is decremented by every accepted customer 

order or reset when a new MPS is generated. 

According to Chen (2003) and Chen et al. (2009), ATP is an advanced execution and 

planning mechanism that connects customer orders and enterprise resources by 

performing two order management functions: order promising and order fulfillment 

(also known as demand fulfillment) (Figure 2-1). When a customer order is received, 

the firm has to promise the order with specific delivery time, quantity, product 

configuration or even price. On the other hand, fulfilling this promised order may 

require complicated production and distribution operations (Figure 2-2).  

According to Ervolina and Dietrich (2001), ATP will continue to grow and will 

become the central management system of a supply chain. They also divide their 

ATP system called Availability Management System (AMS) into two core engine 

components; the promising engine (front-end) and the availability planning engine 

(back-end). 

 

Figure 2-1: Supply chain framework (Quante et al., 2007) 

According to Chen et al. (2001), the customer order can have two flexible 

dimensions: quantity and due date. Hence, they classify ATP execution algorithms 

into three groups: quantity promising, due date promising, quantity and due date 

promising. At quantity promising, the customer specifies a range of acceptable 

quantities with a certain due date. At due date promising, the customer specifies a 

range of acceptable due dates with a certain quantity. At quantity and due date 
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promising the customer specifies both the ranges of acceptable quantities and due 

dates. In these situations, the ATP mechanism outputs whether to accept or reject the 

order and in case of accepting, the quantity, due date and quantity and due date to be 

promised, respectively. Chen et al. (2000) develop a mixed integer programming 

model for quantity promising with a pre-defined due date. Chen et al. (2001) they 

add the due date flexibility dimension to their model and formulate a quantity and 

due date promising ATP model. Ervolina and Dietrich (2001) also mention that price 

can also be another dimension and that the order may include an offering price which 

further complicates the ATP systems decision responsibility. 

 

Figure 2-2: Supply chain related to ATP system (Jeong et al., 2002) 

Fleischmann and Meyr (2003) define ATP by using its close relationship with 

advanced planning and scheduling (APS) modules of enterprise software 

applications.  They argue that most ATP publications and research are motivated by 

APS. APS has the ability to match the available inventory and projected 

supply/production (that can be also called ATP quantities) which have been triggered 

by potential forecasted future sales and arriving customer orders.  

Zhao et al. (2005) distinguish ATP from traditional planning, scheduling and 

inventory management processes by its time constraint. ATP system should operate 

in a short-term operational environment where resource availability is considered as 



 

8 

 

fixed because of relatively longer raw material procurement lead times especially in 

e-business environment.  

2.2. Classification of ATP Strategies 

There are potentially many ways to classify and struct ATP systems. The most 

common classification dimensions are: availability level, operating mode, functional 

role in order promising systems and interaction with manufacturing resource 

planning (Pibernik, 2005). In this part, we investigate each of them deeply. 

2.2.1. Conventional ATP and Advanced ATP 

The first and fundamental classification can be defined according to product and 

production methodology perspective. Conventional ATP (CATP) and Advanced 

ATP (AATP) (Pibernik, 2005). 

CATP keeps track of uncommitted portion of current and future available finished 

products.  According to Ball et al. (2004), APICS dictionary defines CATP as ―The 

uncommitted portion of a company‘s inventory and planned production, maintained 

in the master schedule to support customer order promising.‖ A simple database 

lookup is enough for promising customer orders in this type of ATP mechanism.  

In order to investigate AATP, we will give a short description of production 

strategies below.  

In SCM literature, there are four main production strategies: Make-to-stock (MTS), 

configure-to-order (CTO), assemble-to-order (ATO) and make-to-order (MTO).  In 

MTS environments, production decisions are made based on historical data and sales 

forecasts. In CTO environments, customers configure their products by selecting the 

type and quantity of components to include in their order. In ATO environments, the 

producer prepares the final product by using the pre-allocated raw materials after the 
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arrival of the customer order. In MTO environments, the full production process is 

started by the arrival of the customer order.  

Today, customers are demanding more customizable products. In such an 

environment, it is almost impossible to foresee the short term demand and setup each 

customizable product by a pure MTS strategy. This is the reason why, more and 

more firms are shifting their business strategies from mass production (MTS) to mass 

customization (CTO and MTO) in order to quickly respond to market dynamics 

(Chen et al., 2009). 

CATP is associated with the traditional MTS environment that has relatively 

standard products and stable demand. On the other hand, Chen et al. (2001) define 

AATP as an execution mechanism that allocates and reallocates available resources, 

including raw materials, work in process, production and distribution capacities and 

even resource constraints across the supply chain. This is the reason why AATP is 

commonly associated with CTO, ATO and MTO production environments.      

According to Pibernik (2005), AATP mechanisms can also be applicable to MTS 

environments. AATP provides a decision making mechanism for allocating available 

finished goods inventory to customer orders and concluding order quantities and due 

dates. AATP based on supply chain resources implements a systematic resource 

allocation process. It needs detailed information about supply chain capacity 

requirements for each product included in the product range. In order to get this 

detailed information, the bill of materials (BOM), the routing plan and information 

on manufacturing and distribution capacity requirements must be available to 

perform the resource allocation. This is the reason why, AATP based on supply chain 

resources is especially appropriate for MTO environments. 

2.2.2. Push-Pull Framework and the Decoupling Point 

ATP models can be classified according to their functional role in the order 

promising business process. Ball et al. (2004) classify ATP as push based ATP 

models and pull based ATP models in this perspective. Chen (2003) adds a third 
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class as push-pull integrated ATP model which is more applicable and common to 

real life cases.  

Fleischman and Meyr (2003) divide supply chain processes as push based (forecast 

driven) and pull passed (order driven). Pull based processes are triggered by 

customer orders and they are only started upon a customer order arrival. Push based 

processes are derived by demand forecasts that are executed before customer orders 

arrive. The virtual interface between forecast driven (push based) and order driven 

(pull based) processes is called the decoupling point, or the order penetration point or 

the push-pull boundary. 

With a push dominated ATP strategy, the company pre-allocates lower level 

properties (production and supply chain resources) into higher level availabilities 

(usually finished products) before the arrival of actual customer orders (Chen, 2003). 

This pre-allocation can be made based on past sales information, customer specific, 

product specific and market specific properties. Later, these allocated availabilities 

are used to support future order promising upon actual order arrivals.  

According to Ball et al. (2004), the main advantage of push based ATP models is up-

to-date pre-calculated ATP quantities over multiple periods available to support 

order promising even in real time. Another advantage is the ability to incorporate 

long term profitability into short term order promising decisions by emphasizing 

more profitable demand categories in the pre-allocation step. On the other hand, Ball 

et al. (2004) also mention that, as we depend more on pre-allocation step (which 

means more dependence on forecasts and other pre-works) and dependence on less 

pull based (on-demand) processes, limitations of inaccurate forecast become 

significant. The resulting inefficiencies become more significant when the 

complexity of the supply chain grows as in the bullwhip effect. 

Pull based ATP models are executed after the actual arrival of customer orders. 

According to Ball et al. (2004), models of this type can range from a simple database 

lookup to advanced optimization. The purpose of pull based ATP execution is to 

promise customer orders by best using the available finished goods and resources 
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across the supply chain. The decisions that are made by this type of models include 

whether to accept or reject the order, the quantity to produced and the due date to 

produced (Chen et al., 2001) 

The main advantage of pull based ATP systems is their ability to respond quickly to 

customer order preferences. They also minimize the inconsistency between forecast-

driven resource planning and order-driven resource consumption (Ball et al., 2004). 

On the other hand, Pibernik (2006) and Chen et al. (2009) emphasize the myopic 

short-term optimization scope of pull based systems that are unable to satisfy the 

long term objectives of the company. According to their study, promising the current 

customer order in the most profitable way does not guarantee the long term profit 

maximization.  

When we consider the advantages and disadvantages of both push based and pull 

based ATP models mentioned above, it is clearly seen that the power of the final 

model can be improved by an hybrid approach. Chen (2003) and Robinson (2007) 

introduce the push-pull integrated ATP mechanism that combines the strengths of 

both models and minimizes their weaknesses. This means that the order promising 

model uses push based models before the order arrives and returns to pull based 

models after the arrival of the order. By this strategy, the aim is not only improving 

customer response time by pull-based models, but also enhancing long-term 

profitability with a push-pull integrated planning approach. In order to clarify this 

approach we define the decoupling point concept in more detail. 

Figure 2-3 shows a portion of the supply chain processes (procurement, production, 

distribution) related to ATP and corresponding push-pull models. Fleischmann and 

Meyr (2003) divide these processes into order-driven (pull, to order) and forecast-

driven (push, to stock) ones. As mentioned before, for the forecast-driven processes, 

customer orders are not known, and demand forecasts are used to anticipate them. 

Order-driven processes are triggered by customer orders. The interface between 

forecast driven and order driven ATP processes is called the decoupling point (DP). 
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Figure 2-3: MTO, ATO and MTS decoupling points (Fleischmann and Meyr, 2003) 

Fleischmann and Meyr (2003) define customer order lead time (service time) as the 

time between the order entry and the actual delivery of the products to the customer. 

Customer order lead time is an order driven concept and equals the duration of total 

processes downstream from the decoupling point which happens after the arrival of 

the customer order. According to Figure 2-3, it is clearly seen that customer order 

lead time mainly depends on the position of the decoupling point which depends on 

the type of supply chain (business strategy). 

In MTO production strategy, procurement and material availability are driven by 

forecasts and all the production processes are executed after the arrival of the 

customer order. The decoupling point is located just before the production process 

starts (point 2 in Figure 2-3) and customer order lead time is longer with respect to 

other supply chains (points 25 in Figure 2-3).  According to Kilger and Meyr 

(2008), besides material availability, the required capacity is also an important 

constraint for promising customer orders. In order to handle this constraint, most 

APS treated capacity as a component and ATP of this component is calculated in the 

same manner. 
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In CTO/ATO production strategy, final products are assembled and configured after 

the arrival of customer orders. In other words, low level resources (components) are 

made into finished products after the arrival of the customer orders. In these types of 

supply chains, the decoupling point is placed just before the final assembly (point 3 

in Figure 2-3). At the decoupling point, the firm should have produced or procured 

its components based on demand forecasts (Fleischmann and Meyr, 2003). Actually 

these demand forecasts are done on the finished product level and then transformed 

by the master planning to the supply plan or component type level by using bill of 

materials (BOM) structure (Kilger and Meyr, 2008). In ATO and CTO environments, 

customer order lead time is the time consumed downwards the decoupling point for 

product assembly, configuration and distribution (points 35 in Figure 2-3).   

In MTS supply chains, all the supply and production processes are driven by 

forecasts, not customer orders. Decoupling point is located after the production 

process (point 4 in Figure 2-3). Since all of the products are ready when the customer 

order comes, the only customer order lead time is due to distribution (points 45 in 

Figure 2-3).  Kilger and Meyr (2008) mention an interesting point about multiple 

facilities at several echelons (e.g. regional warehouses). In other words, the demand 

close to regional warehouses can be forecasted and products can be shipped before 

the arrival of the customer orders. This can reduce the distribution lead time but 

increases the transportation costs. 

As a summary for the decoupling point concept, from MTO to MTS, as the 

decoupling point moves downwards along the supply chain, the customer order lead 

time decreases. Kilger and Meyr (2008) also touch another interesting point about 

hybrid supply chains, i.e., at some periods of the time, the supply chain acts as MTS 

and at some periods as an ATO, CTO or MTO. Moreover, a contribution to this 

perspective can be defined as follows: the supply chain can also act different to 

different customer classes/types. Some critical customers can be served from stock 

(short lead time) and production process can take place for some others (long lead 

time).  
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2.2.3. Real Time vs. Batch ATP Execution 

ATP execution systems are divided into two main groups according to their 

execution (operating) mode: real-time mode ATP and batch mode ATP (Ball et al., 

2004). For real-time mode ATP (real-time ATP) a quantity and/or due-date are 

determined with the corresponding resource allocation at the time of customer order 

receipt. For batch mode ATP (batch ATP) customer orders are collected in discrete 

time periods (pre-defined batch interval) and processed together to determine ATP 

commitments and resource allocation for each customer order (Chen et al., 2000). 

The choice of the operation mode and the length of the batching interval depend on 

the characteristics of the business environment, customer expectations, service level 

agreements and technical considerations. Today, especially at the e-business 

environment, customers expect ATP responses at web speed (real time). On the other 

hand, companies prefer to respond to customer orders in batch mode in order to gain 

advantage of scheduling and optimizing resources over a longer horizon and increase 

their profit.  

According to Chen et al. (2000) and Ball et al. (2004), some companies use a hybrid 

approach (both real-time and batch) to respond to customer orders. They give an 

initial (soft) promise to customers in real time and then generate a certain (hard) 

promise later, after the batching time horizon is over. For example, Dell Corporation 

uses a two-stage order promising approach as many other e-commerce companies. 

When a customer places his/her order, Dell sends an e-mail that declares the 

approximate shipment date (about 14 days) of the customer order. Then, a few days 

later, the exact delivery time of the order is sent to the customer after the batch 

execution of all customer orders is completed.  

The ability to respond to customer orders in real time or not mainly depends on the 

production strategy of the company and corresponding ATP strategy (conventional 

ATP, advanced ATP). If the company is a MTS company, order promising only 

needs a database lookup for finished goods inventory and planned production 

schedule. On the other hand, order promising in ATO, CTO and MTO environments 
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needs complicated resource and supply chain controls in addition to the inventory 

lookup. Thus, real-time ATP is more applicable in MTS environments and it is 

difficult to implement pure real time approaches in ATO, CTO and MTO 

environments. 

2.2.4. Other ATP Classifications 

According to our literature survey, the most comprehensive ATP classification is 

given by Pibernik (2005). He classifies ATP systems according to different 

dimensions including availability level, operating mode and interaction with material 

requirements planning (MRP). These dimensions and corresponding ATP types are 

illustrated at Figure 2-4. We have already investigated availability level 

(conventional (finished goods) vs. advanced (supply chain resources)) and operating 

mode (real time vs. batch) dimensions.  

According to interaction with MRP, Pibernik (2005) classifies ATP systems into 

two: Active ATP and Passive ATP. Passive ATP systems perform conventional order 

promising and do not have impact on the master schedule. Active ATP systems are 

integrated with the company‘s MRP and while performing order promising active 

ATP generates and modifies the master schedule especially in MTO environments.   

 Availability Level 

Finished goods(FG) Supply Chain Resources(SCR) 

Operating 

Mode 

RealTime(RT) RT/FG/A RT/FG/P RT/SCR/A RT/SCR/P 

Batch (B) B/FG/A B/FG/P B/SCR/A B/SCR/P 

 Active (A) Passive (P) Active (A) Passive (P) 

Interaction with MRP 

Figure 2-4: ATP types (Pibernik, 2005) 

Pibernik (2005) also mention additional ATP functionalities such as ATP with 

substitute products, multi-site ATP and ATP with partial delivery.  
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In some business environments, substitute products or components can be delivered 

instead of the products or components that the customer actually orders. This action 

depends on the availability of the original product, the substitutes and the acceptance 

of the customer. Substitute products increase the complexity of the ATP models 

because of the extra constraints related to the material compatibility. Ball et al. 

(2003) investigate the material compatibility constraints in MTO environments in 

more detail.  

If the customer order cannot be fulfilled completely with the available resources at a 

certain location, the missing resources can be provided from another location. Multi 

location ATP systems take transportation lead times and costs into consideration. 

Tsai and Wang (2008) investigate multi-site ATP in detail and present models that 

include distribution and transportation network characteristics. 

If the desired quantity is not available within the given delivery time window, the 

customer order can be fulfilled with more than one deliveries such that the first 

delivery before the due date and others are after the due date. Such a relaxation can 

only be possible if the customer accepts partial deliveries. These partial deliveries 

can be processed from different locations and with substitute products or components 

(Pibernik, 2005). 

Pibernik (2006) categorizes allocation (order promising) mechanisms into 4 groups: 

First Come First Served (FCFS) allocation, rank-based allocation, optimization-

based allocation and pre-allocation. In FCFS allocation, orders are promised 

according to their arrival sequence. In rank-based allocation orders are promised in a 

sequence which is determined according to the relative priority of the customer 

placing the order. This priority is usually calculated from the historical sales data. In 

comparison to rank-based allocation, optimization-based allocation allows more 

detailed modeling of the short and long term effects of the order promising. By 

allocating orders to the ATP inventory, it considers the interdependencies between 

order promising decisions for individual orders and can therefore minimize the 

internal problems of an FCFS and a rank-based approach. Pre-allocation is the 
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allocation of ATP quantities to different customer classes before the order promising 

phase.  

2.3. Optimization-Based ATP Models 

ATP models, in the supply chain and ATP literature can be divided into two 

fundamental groups: Deterministic ATP models and stochastic ATP models. 

Detailed information about stochastic ATP models can be found in Littlewood 

(1972), Meixell and Chen (2004), Pan and Shi (2004), Quante et al. (2009), Talluri 

and Van Ryzin (2004) and Chen et al. (2009). 

The mixed integer programming models, introduced by Chen et al. (2000), Chen et 

al. (2001), Chen (2003), Ball et al. (2004) and Zhao et al. (2005) have been respected 

by many researchers and constructed the basis for today‘s optimization based 

deterministic ATP research. 

Chen et al. (2000) develop a mixed integer programming (MIP) ATP model that 

quotes quantities to customer orders in a MTO environment. Their model collects 

customer orders in a pre-defined batching interval B and quotes quantities to them at 

the end of it. They discretize the entire planning horizon into equal length time 

periods and run their model in a rolling horizon. At every run, the orders are 

promised for the forthcoming T time periods. They define two dimensions of 

customer flexibility: quantity and configuration. For the quantity flexibility, they let 

the customer define the minimum (acceptable) and maximum (desired) quantity 

levels while ordering. They use these variables in order to force the promised 

quantity to be in the desired range. For the configuration flexibility, they let the 

customer to select multiple preferred suppliers for each raw material and use this 

opportunity to replace the originally desired raw material with the customer-defined 

substitute according to the real time availability while promising the orders. While 

doing these substitutions, they consider material incompatibilities that may occur 

among raw materials.  
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Their objective function maximizes the profit in a T-period batch ATP execution 

which is the revenue from accepted orders minus various costs including inventory 

holding cost for raw materials, finished products and WIP, the lost-sales costs for the 

denied orders and penalties for under-utilization. They define various constraints 

representing inventory balance for raw materials, customer preference restrictions, 

BOM relationships, capacity utilization, acceptable range of order quantities, due 

date restrictions and material compatibility. 

Chen et al. (2001) add a third customer flexibility to their batch MIP ATP model: 

order due date. Their new model handles customer orders with pre-specified 

acceptable range of due dates. Their model maximizes the profit for each batch 

period by defining the most appropriate quantities, configuration and due dates for 

the customer orders but without considering future forecasts and opportunities. 

Ervolina and Dietrich (2001) develop a push-based model that allocates ATP to 

different demand classes by using feature sets in a CTO environment. Features are 

customer selectable parts and that are attached to the product families. Their 

implosion models use forecasted demands and ATP availabilities that come from the 

MPS to optimize the allocation of resources to demand classes through maximizing 

the potential value of satisfied customer orders.   

Ball et al. (2004) define both push-based and pull-based deterministic ATP models. 

Their push-based model pre-allocates the available resources to customer-order 

classes by considering the potential values of satisfying the corresponding customer 

class, BOM structures, holding and production costs. They define a fill rate for each 

customer class that defines the minimum amount that should be allocated to the 

corresponding class in order to catch pre-defined minimum service levels. They also 

model dynamic BOMs and material substitution. In their pull-based models, they 

analyze material compatibility constraints deeply by using bipartite graphs.  

Zhao et al. (2005) define MIP models based on previous work of Chen et al. (2000) 

and Chen et al. (2001). Their objective function is minimizing the due date violation 

cost, inventory holding cost and variation in day-to-day production smoothness 
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measure. The model also reschedules the previously promised orders by respecting 

the previously determined due dates as new orders arrive. They also divide their 

model into master model and sub-models in order to manage several millions of 

variables in the experimental studies. 

Fleischman and Meyr (2004) define three push based ATP allocation models for 

MTS, ATO and MTO production environments. Their models serve the order 

promising, demand-supply matching and shortage planning tasks of supply chains. 

They develop objective functions that penalize backlogging, earliness and tardiness 

in delivery of the products to the customer. They also introduce capable to promise 

(CTP) resources that can be added to ATP quantities if it is profitable. They also add 

several extensions to their models including, no reduction, no backlogging, 

introduction of lost sales and lost customers, order splitting, alternative locations and 

product substitution. 

Tsai and Wang (2009) define multi-site ATP models for CTO production 

environments. They introduce a three-stage ATP model that is suitable for multi-

national corporations. The first stage is to assign orders to the most appropriate plant, 

the second stage allocates ATP to the assigned orders in each plant and the third 

stage reallocates unassigned orders from the first two stages to plants. Their objective 

functions maximize the production based profits that are obtained from ATP 

allocation and consumption minus the cost attributes including earliness, tardiness 

and even opportunity costs. 

Robinson and Carlson (2007) introduce a dynamic real-time ATP model that 

considers BOM balancing, demand, due-date and maximum availability constraints. 

Their model executes in a mixed MTS/MTO environment, and remote sourcing 

decisions are made according to in-house production and outside (remote) sourcing 

decision judgments. 
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2.4. Customer Segmentation and Revenue Management in ATP 

According to Wikipedia (2009), revenue management can be defined as the process 

of understanding, anticipating and influencing the customer behavior in order to 

maximize revenue or profits from a fixed and perishable resource. Although revenue 

management process is more common in airline and hotel industry, it is also 

practiced in manufacturing and retail industries.  

According to Meyr (2009), one of the biggest challenges in airline industry is to 

prevent that a high margin (more profitable) customer cannot get a seat, because a 

lower margin (less profitable) customer has booked the last one a few minutes ago. 

Revenue management has developed methods to overcome these challenges by 

defining customer classes by profit contribution and other measures, and defining 

booking limits to them. After this allocation of booking limits to customer classes, 

actual booking requests are executed by using the limits of the corresponding class 

by FCFS policy. 

Actually, customer segmentation can be matched with the demand aggregation 

concept of the supply chain literature. Instead of treating each customer individually 

in planning phases, to decrease complexity, customers that show similar 

characteristics (buying behavior, location, sensitivity to price etc.) can be grouped 

and treated as one customer. This approach, as the product aggregation approach, has 

found much interest in the literature. 

According to Chen et al., (2009), Littlewood (1972) suggested to continue accepting 

lower profit customers in a two class booking problem as long as 

𝑣2 > 𝑣1. 𝑃𝑟 𝐷1 > 𝑥                                                 (2.1) 

where v1 and v2, respectively, are mean revenues from higher profit and lower profit 

passengers (v1 > v2), and Pr {D1 > x} represents the probability that the higher profit 

random demand D1 is greater than the remaining seat inventory x. This acceptance 

rule maximizes the expected total revenue. 
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As we discussed previously, in push-based ATP models, product and supply chain 

resources are pre-allocated into higher level availabilities (finished products). On the 

other hand in pull-based ATP models, all the planning and execution processes are 

triggered by the arrival of customer orders.  

In ATP literature, reserving certain amount to customer/order classes at the planning 

stage is called allocated ATP (aATP). In aATP, certain quotas are allocated to 

customer/order classes according to profit and other measures during the push based 

planning phase. Thus, during the order promising phase, actual customer orders are 

promised from these allocations by a pull based approach. Most of this promising 

action is executed online by a FCFS policy, but it can also be executed offline 

(batch). 

Chen et al. (2009) discuss that, because of the nature of order promising and 

fulfillment problems, many existing optimization based ATP models are pull based. 

Moreover, because of the myopic short-term optimization scopes of these pull-based 

problems, they may not be able to satisfy the long-term goals of the company. Thus, 

they argue that it is possible to improve the long-term performance of pull-based 

ATP models by taking potential future customer orders into consideration. To do 

this, they segment actual demands into four groups by using two dimensions: profit 

contribution (less-profitable customers, more-profitable customers) and demand 

stage (current, future) (Figure 2-5) and apply a stochastic programming model. By 

doing this segmentation, they try to reserve a certain amount of critical resources for 

future more profitable customer orders. This mechanism prevents current less 

profitable customer orders from over consuming the scarce resource.  

Demand stage 
Profit Contribution 

More Profitable Less Profitable 

Current Class1 Class3 

Future Class2 Class4 

 

Figure 2-5: A classification of customer (order) classes (Chen et al., 2009) 
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Chen et al. (2009) assume that a critical non-perishable (durable) component is 

required to assemble a line of certain products for fulfilling different groups of 

customer orders in short supply. If all components are committed to the current 

customer orders, the manufacturer can no longer promise more customer orders even 

the orders with higher profit margins. Thus, they defined a variable R, which 

represents the amount that should be passed to stage 2 (future) even though there 

may exist more customer orders belonging to low profit customers in stage 1.  They 

also define variables denoting the demand, marginal profit, lost sales of each 

customer group in each demand stage. They also generate different scenarios for 

their stochastic model that implements different situations that the system may face 

when the actual customer order comes. Their two-stage stochastic optimization 

model calculates the optimum reservation level (R) that should be passed to future 

demand stage. They also prove that their reservation level is optimum by means of 

different mathematical approaches and simulations. 

Chen et al. (2009) also mention the differences between their approach and classical 

revenue management (RM) approaches which are also mostly applicable to other 

allocated ATP (aATP) approaches. Firstly, aATP problems specifically consider non-

perishable resources which can be stored as inventory over a significant period of 

time.  On the other hand, RM problems deal with perishable resources (plane seats, 

hotel rooms) that cannot be stored as inventory. Secondly, in aATP problems, every 

demand segment exists at every demand stage. Due to current RM approaches, only 

specific (mostly one) demand group responds to the current price offer at the 

corresponding demand stage. However, in aATP models, there is no such a one-to-

one matching between demand stages and customer segments. Thirdly, in RM 

problems the profit (price) is monotonically increasing or decreasing over time. For 

example, the willingness to pay generally increases for airline seats towards 

departure time, but decreases for fashion goods towards the end of fashion season. 

On the other hand, in aATP models both more profitable and less profitable 

transactions exist at every stage. Lastly, special to their model, they apply a batch 

execution approach that is executed at the end of every demand stage while in RM 

models the customer requests are fulfilled by using online execution approaches.  
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Meyr (2009) define the process of customer segmentation, ATP allocation and ATP 

consumption as ―allocation planning and ATP consumption AP&C‖ in his 

comprehensive research paper. He defines the shortage situation as the stage where 

demand is greater than the capacity. He develops a model to avoid shortage 

situations by using aATP. The main idea of his research is to improve demand 

fulfillment in MTS supply chains by making use of heterogeneity of different 

customers through allocation planning and ATP consumption (AP&C) order 

promising. His model has three fundamental steps: 

 to segment customers with respect to their importance and profitability into 

several priority classes, 

 to allocate ATP to these classes on the basis of a deterministic profit 

maximization process taking advantage of short–term demand information, 

 to promise customer orders, i.e. to consume ATP, in real time with respect to 

these customer hierarchies. 

The main purpose of the AP&C model is to prove whether the same or even better 

profits as in the batch ATP promising can be achieved, even though a customer gets 

his answer immediately when he enters his order. 

Meyr (2009) defines four order promising models seen in Figure 2-6. At global 

optimization (GO) all of the orders are collected and promised at the end of the 

period T. At batch order processing (BOP), as we mentioned previously as batch 

promising, the orders are collected for batching interval B<<T and promised at the 

end of each batching period. At single order processing (SOP), as we mentioned as 

real time promising previously, customer orders are promised in real time. Lastly, at 

SOP after allocation planning (SOPA), customer orders are promised in real time 

according to the allocation of the corresponding customer class.  

The model a-c does not use customer segmentation. Model d uses customer 

segmentation and puts revenue management idea into practice by differentiating k 

customer classes, allocating ATP to these classes and satisfying the demand only if 
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enough allocated ATP of the customer‘s corresponding class is available (Meyr, 

2009). 

 

Figure 2-6: Order promising models (Meyr, 2009) 

Meyr (2009) also compares the models that do not use customer segmentation 

according to objective function values: 

𝐺𝑂∗ >   𝐵𝑂𝑃𝑠
∗ ≥  𝑆𝑂𝑃𝑠

∗                               (2.2)
𝑇

𝑠=1

𝑇/𝐵

𝑠=1
 

Naturally, the profit of GO
*
 will be more than BOP

*
 and BOP

*
 will be more than 

SOP
*
. Thus, he defines the profit of GO

*
 as the benchmark, that is possible if the full 

demand information is known before promising the orders, for evaluating other 

models‘ performance.     
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Meyr (2009) and Meyr (2008) suggest clustering methods to segment customers into 

different k demand groups.  He suggests the distance metrics and some clustering 

algorithms to segment customers. He also mentions the importance of the number of 

segments and its effect on the success and complexity of the models. Moreover, Han 

and Kamber (2001) extensively analyze general data mining approaches including 

clustering and classification. They also clarify different processes such as data 

processing, data warehousing and online analytic processing (OLAP) that are 

indispensable for data mining. 

Kilger and Meyr (2008) analyze the concept of customer hierarchies in ATP 

allocation.  They argue that customer structures can form a hierarchy similar to the 

geographic dimensions in demand planning. In this structure the forecasts are 

aggregated to the root element and then passed to master planning for production.  

In Figure 2-7 Kilger and Meyr (2008) demonstrate the ATP allocation in customer 

hierarchies. The numbers in parenthesis show the forecasted amounts and other 

numbers show the production quantities approved by master planning. The 

aggregated production quantities are passed downwards from the root according to 

different partitioning rules including rank based, per committed and fixed split.  

Kilger and Meyr (2008) also demonstrate a simulation study that implements ATP 

consumption rules between hierarchies. For example, if the requested quantity cannot 

be promised from East Germany‘s ATP quota then it can be promised from the next 

higher node Germany or even from the higher nodes (Figure 2-7). Also they consider 

the time dimension of ATP allocation, i.e. if the ATP quota of the current time 

bucket is not enough, past and future time buckets for the current node and higher 

nodes can also be searched for ATP promising. 

Quante et al., (2007) perform a comprehensive research on revenue management and 

demand fulfillment. They investigate the relations between traditional revenue 

management research and demand fulfillment and investigate industries and software 

applications. 
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Figure 2-7: Allocation of ATP in the customer hierarchy (Kilger and Meyr, 2008) 

Quante et al. (2007), as Talluri and van Ryzin (2004), divide revenue management 

(RM) into two fundamental dimensions: Quantity based approaches and price based 

approaches. Quantity based RM approaches uses customer heterogeneity and 

prioritizes customer classes while allocating scarce resources to them. Price based 

approaches use pricing decisions as a lever for demand management. This includes 

adjusting prices dynamically over time, in response to non-stationary demand or a 

finite selling season and actions as a price decision mechanism.  

As seen in Figure 2-8 price based models can be divided into 3 groups according to 

their replenishment consideration. Pure pricing models aim to determine the 

optimum selling price that maximizes the total revenues. Markdown models 

determine the right price path for the inventory that cannot be replenished during the 

planning horizon. Auctions provide a price determination process within the supply 

chain that is alternative to fixed prices. Trade promotion models consider 

replenishment as an exogenous input. In integrated pricing models, the price 
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decisions are integrated into the quantity and due date models that we mentioned 

previously. 

 

Figure 2-8: Revenue management and demand fulfillment model types (Quante et al., 2007) 

Quantity based models, are also seen in Figure 2-8 can be divided into three groups 

according to their replenishment consideration. We have investigated traditional RM 

and aATP before. The main difference between aATP and inventory rationing (IR) is 

in terms of exogenous and endogenous replenishment. IR models consider 

replenishment decisions with stationary deterministic or stochastic lead times. In 

contrast aATP models consider capacitated, dynamic and deterministic arrivals of 

replenishment (push based production) quantities. Namely, aATP usually assumes 

deterministic and dynamic demand forecasts while IR assumes stochastic demand. 

All in all, it is clear that pure real-time or batch order promising models without 

revenue management (RM) approaches are not capable of satisfying the dynamic 

needs of today‘s supply chains and markets. Although RM approaches increase the 

complexity of the ATO models, their contribution cannot be ignored. This 

contribution has been perceived by the software vendors and put into practice. We 

investigate some of them in the next section. 
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2.5. IT Challenges 

Today, IT (information technology) systems become one of the most important 

strategic and operational differentiators for the companies. Incredible developments 

in data processing, network speed and internet technology enhance the capabilities of 

enterprise resource planning (ERP), supply chain management (SCM) and advanced 

planning and scheduling systems (APS). Companies are investing billions of dollars 

on IT systems in order to increase their efficiency and minimize operational costs. 

ATP systems are generally short-term order promising systems that are executed too 

often, even for every customer order. Moreover, they require huge amount of data 

from different resources in a company including sales, purchases, production, CRM, 

etc. in order to generate the availability outlook database (Lee, 2006).  On the reverse 

side, updating the availability outlook after the promised orders is also an IT 

challenge. The availability level (conventional-advanced) and operating mode 

(online-batch) are the two most important properties that determine the complexity of 

the availability outlook generation. The simplest case is a conventional ATP system 

that is executed in batch mode. Here only finished goods inventory outlook is 

generated and used rarely on batch order promising process. On the other hand, the 

most difficult case is the advanced ATP system operating on real-time. Here, besides 

the finished goods, the availability outlook for production and supply chain resources 

should be generated and be attainable in real time for front end customer interacted 

systems. Thus, on the IT perspective, there is a tradeoff in selecting the most 

appropriate ATP system for the company. Moreover, the capabilities of the ATP 

system, i.e., quantity promising, quantity and due-date promising, partial delivery, 

integrated pricing etc. determine the complexity and the required investment of ATP 

systems. 

Since real time execution is too expensive, even today, most of the ATP systems are 

fully or partially executed in batch time horizons. Lee (2006) defines the availability 

at IT systems as system availability and the actual availability as physical 

availability. It is common that there becomes a slight difference between system 

availability and physical availability because of batch execution and replenishment. 
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Moreover, over-confirmation issues can occur when more than one promising engine 

works for the same resource for different customers. These inconsistencies can cause 

planning problems and customer dissatisfaction.  

When service level agreements, market dynamics and customer expectations force 

companies to real time order promising and ATP execution instead of pure real time 

systems, companies can use some hybrid solutions. One of them is to use two-stage 

order promising in which the customer is first given a soft promise in real time and a 

hard (certain) promise later after the batch ATP execution. The second approach is 

using some special data processing structures such as data marts, data warehouses, 

and materialized views that enable almost real time promising. Figure 2-9 shows 

sample data warehouse architecture. 

Data warehouses integrate the company‘s electronically stored data that are available 

at different locations in different formats. Data marts are smaller data warehouse 

entities that are constructed for business needs and enable fast access to the 

computed results. For example, in Figure 2-9, four data marts are constructed (ERP, 

sales, finance, and customer) in order to serve business needs and feed the data 

warehouse. The data marts are constructed from the online transaction processing 

(OLTP) data and generally replenished in batch time horizons. By shortening this 

replenishment time period, they can be used by ATP systems to promise customer 

orders almost in real time by using summarized and pure data that are constructed 

specially for ATP execution. They are widely used for forecasting and push based 

ATP planning.  

Materialized views are dynamic data structures that are used in relational databases. 

They are very similar to data marts, but they are not multi-dimensional. They can be 

replenished in certain periods and be used for ATP outlook generation. For example 

a materialized view can be constructed by using tens of tables including sales 

transactions, customer information, financing transactions, etc. and can be 

replenished in minutes only to provide almost real time summarized pure ATP 

outlook. 
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Figure 2-9: Sample data warehouse architecture 

Ervolina and Dietrich (2001) mention another important feature of IT Systems -high 

availability and clustering- and their relation with ATP. In an e-business 

environment, the ATP system must be up and running 24 hours a day and be able to 

respond to customer requests at web-speed. Because of these business requirements, 

generally there are more than one IT systems that work in a synchronized manner 

and respond to ATP requests. In these environments, the availability information is 

refreshed in one system, while the orders are still responded to by the other systems 

(Ervolina and Dietrich, 2001). This may give rise to some inconsistency issues that 

can be solved by various IT approaches. Another important consideration is the high 

availability issue, which means keeping the systems 24 hours alive. If there arises a 

problem with a system that is executing an important job, the job could be passed to 

other alive systems without loss of information and state. That is why clustering and 

backup systems are very important for mission critical ATP systems especially 

implemented in e-business environments. 

According to Meyr et al. (2005), memory resident databases (also known as live 

Cache) can also be used for real time order promising. They allow fast access to data, 
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because they are stored in the server memory, and accessing to them is much faster 

than the actual physical database at disks.  

As a summary, IT systems are one of the fundamental parts of today‘s ATP and 

SCM systems. They are defining not only the company‘s way of doing business but 

also the market conditions, service level agreements and even customer expectations. 

In order to win this challenge, companies are investing more in IT and keep IT in the 

middle of enterprise architecture. 

2.6. ATP in the Commercial Software 

ATP systems have been implemented at almost all of the commercial APS providers. 

Especially advanced ATP has become an important component of SCM and APS 

systems and a tool for competitive advantage.  

Meyr et al. (2005) introduce the most important tasks of SCM and classify them 

based on the two dimensions: planning horizon and supply chain processes. They 

also form a supply chain planning (SCP) matrix to demonstrate the relations between 

tasks and dimensions (Figure 2-10). They argue that the name of the modules can 

change from one APS provider to another, but the planning tasks that are supported 

are basically the same. They also mention that the third dimension can be added to 

the matrix in order to demonstrate industry-specific modules and differentiation.  

Since demand fulfillment and ATP module is a short term planning task and sales 

oriented, it is placed at the bottom right of the SCP matrix. Meyr et al. (2005) 

analyze the general structure and modules of the three most common commercial 

APS providers: I2 Six.One of I2 Technologies, EnterpriseOne of PeopleSoft and 

APO of SAP. Despite their different names (Demand Fulfillment in Six.One, Order 

Promising in EnterpriseOne and Global ATP in APO), the capabilities and logic 

underlying them are very similar. Moreover, they commonly use ILOG CPLEX for 

the optimization models of linear and mixed integer programming (Meyr et al., 

2005). 
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Figure 2-10: General software modules of APSs (Meyr et al., 2005) 

According to Ball et al. (2004), APS providers enhance their ATP functionalities by 

techniques such as heuristic search, rule-based search or optimization based models.  

Rule-based search mechanisms are commonly used, because it is easy to implement 

and use them. Moreover, some APS providers provide allocation mechanisms that 

enable implementing allocated ATP models.  

The software modules of APS are dedicated to deterministic planning. On the other 

hand, there are uncertainties on both inbound (unreliable suppliers, machine and 

labor problems, etc) and outbound (stochastic customer demand) side. To hedge 

against these uncertainties, buffers have to be installed either in the form of safety 

stock or safety times (Meyr et al., 2005). Thus, most of the APS solutions offer 

buffering mechanisms in order to hedge forecast errors in push based allocations. 

However, this approach can vary among different industries and mostly needs 

attention from more than one module, even from the entire supply chain planning. 

Quante et al. (2009) classify demand fulfillment and ATP software in three groups: 

traditional order promising, price-based solutions and quantity based solutions. 

Traditional order promising contains software modules for short term order 
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promising under known inventory availability. Price-based solutions are relatively 

newer due to the vast requirements of computing power and availability of past sales 

data. The rise of data warehouses and computing power has recently made the use of 

automated pricing systems that also uses vast amount of past sales data possible. 

Auction based systems at e-commerce, promotion optimization at retail 

environments and enterprise profit optimization are the new challenging areas in 

price-based systems. Quantity-based solutions are integrated with master planning 

and prepare deterministic demand forecasts and prices to it. Then, master planning 

systems determine the best combinations of sales, production and replenishment 

quantities and the corresponding inventories under given capacity constraints. These 

quantities can be allocated to different demand classes and revenue management 

approaches can be applied.  

Lee (2006) analyzes the availability management system (AMS) of IBM. The main 

element of IBM‘s AMS is the availability outlook. He defines four types of events 

that change the availability outlook: demand event, supply event, roll-forward event 

and data refresh event. Moreover, he has given an example that simulates all of these 

four events and their effect to order promising. 

The current availability management approaches from commercial APS vendors are 

mostly applying rule-based solutions and they are mostly focusing on one side of the 

availability management. There is still a need for more comprehensive solutions; and 

in order to increase capacity utilizations and customer service levels, more 

optimization based approaches should be implemented. 
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CHAPTER 3 

3. PROBLEM DEFINITION 

3.1. General Definitions 

Today, customers put three main pressures on companies that reshape today‘s market 

environment. Firstly, many customers are not satisfied with standard products and 

they want products that satisfy their specific needs. Secondly, many customers want 

their orders to be satisfied almost at web-speed despite the products‘ complex 

customized configurations. Thirdly, the customers do not accept to pay extra 

amounts for their customized products compared to the standard products. In order to 

satisfy these requirements, more and more firms are examining and improving their 

supply chain processes for providing almost completely customizable products and 

services to their customers at low costs. It is almost impossible to foresee the short-

term demand and get prepared for the high-mix, low-volume products before the 

actual customer orders and then to serve the customers immediately from stock by 

MTS strategies. That is why companies are refactoring their production processes, 

even the structure of their full supply chain to support ATO, CTO and MTO 

approaches. 

In MTS production environments, finished products are prepared according to 

forecasts and customer orders are met from stock. On the other hand, in MTO 

production environments, all of the production processes are initiated after the arrival 

of customer orders, considering the order-specific properties and configurations. In 

CTO production environments, raw materials are produced or procured according to 

forecasts, but final assembly and configuration of the finished products are made 

after the arrival of the customer order.  
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Order lead time is one of the most important and strategic properties that reflects 

customer satisfaction. In MTO environments, companies are able to satisfy almost 

every customer-order specific configuration because of the relatively higher marginal 

revenue and the relatively longer time that they have after the arrival of the customer 

order. However, many customers in MTO environments expect their orders to be 

satisfied almost with the same cost and lead time as in other strategies and also they 

expect the companies to be ready for their orders in order to respond them rapidly. 

These expectations of the customers can be satisfied by CTO approaches where the 

only lead time is due to the assembly and final configuration which is generally 

acceptable by the customers. Since the main time and resource consuming process is 

the production, in CTO supply chains, the company has all the components that the 

customer configuration requires when the customer order arrives. Only the assembly 

operation is delayed to the customer order arrival, which starts immediately upon the 

customer order arrival. 

Moreover, in CTO production environments, the companies have the advantage to 

replace some customer configurations with the proper substitutes according to the 

real time inventory and resource position if they are allowed to. By the help of this 

flexibility, order lead times can be further decreased. 

When we consider the order promising perspective, conventional available to 

promise (CATP) systems are more appropriate for MTS supply chains. On the other 

hand; CTO and MTO supply chains require much more advanced ATP mechanisms 

that consider resource and raw material availability which we address as advanced 

ATP (AATP). In CATP, simple database lookup can be enough to calculate the 

availability outlook, while in AATP, all of the critical resources, materials and their 

relationships should be considered. 

ATP resources are determined by the MPS and send as input to the allocation 

planning engines. Moreover, companies generally reserve some of their production 

capacity and resources as CTP (capable-to-promise). CTP quantities can be used 

when ATP resources become scarce. 
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3.2. Motivation of the Problem 

3.2.1. Introduction 

The motivation of this study originates from the real-life problems and research 

studies of IBM‘s Enterprise Server Hardware Division. IBM is one of the biggest 

hardware and software suppliers in the world. IBM offers a wide range of enterprise 

hardware solutions including Blade Servers, Blue Gene, Cluster Servers, Power 

Systems (System i, System p), Storage Servers, System x (x86) and System z 

(mainframe) and more. 

In our study, we focus on System x servers; one of the most well-known product 

families of IBM. Like most of the other server families, System x servers are 

produced in a CTO environment. The servers can have complex product structures in 

terms of complex BOMs and configuration rules. Before continuing to our problem 

definition, there is a need to clarify some terminology about System x production 

environment. 

System x servers are sold in two main ways. A Fixed Product Model is a predefined, 

customer-ready configuration of the product that can be ordered as a single part 

number. IBM creates these fixed products in its CTO production environment in 

order to satisfy frequently requested and most common customer configurations.  

These fixed models are called Single Entity Offerings (SEOs) and can be ordered by 

a single part number. However, as in all of the CTO environments, it is impossible 

for IBM to predefine and forecast all of the product configurations that the customers 

may desire. That‘s why IBM lets customers to configure their products at their 

respective orders as in classical CTO cases. IBM calls this environment as CTO. All 

of the possible configurations based on the same main part are called a product 

family.  

There are two main components that form a server: Machine Type Model (MTM) 

and Features (Figure 3-1). MTM is the main component (part) of a product family 
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that cannot be ordered alone. A Feature is a customer selectable item (part) on the 

configuration menu of a product family that is added to MTM. The combination of a 

MTM (main part) and a set of Features (parts) form a customer ready configuration 

in both fixed product and CTO case. 

 

Figure 3-1: IBM enterprise server CTO architecture 

Features can also be grouped by feature categories representing logical classification 

of them (Figure 3-1). For instance all of the hard disks that can be used in a server 

can be grouped into a feature category (FC) called ―hard disks‖. The mapping 

relations between a CTO configuration and feature categories can be in many ways 

and can be structured according to business needs. The relation can be one-to-one 

that means every configuration should have exactly one of the features in that feature 

category or it can be one-to-N and one-to-0 relationships, representing that every 

configuration may have one or more of the features in that feature category.  

In CTO and MTO environments, as in IBM case, we can call the parts (features) that 

the customer selects as a ―Sales Configuration‖ and its representation in MRP as 

―BOM Configuration‖. Generally, the complexities in the BOM structure are 
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simplified while presenting them to the customer. For example, there can be 

incompatibilities between parts or some parts need other parts to work, or there can 

be some hidden parts that the customer does not need to know. In such cases, there is 

a need for a translation from sales configuration to BOM configuration. IBM handles 

this need with a specific solution called ―BOM Configurator‖. Sometimes BOM 

Configurator makes easy the one-to-one transformations from features to MRP 

components. Sometimes, it makes complex transformations that are not one-to-one 

as exampled above (Ervolina and Dietrich, 2001) 

One of the main difficulties that arise in modeling CTO environments is the dynamic 

BOM structures that can be changed on every customer order. Especially it is 

difficult to associate features with MTMs; to calculate feature forecasts and define 

compatibilities between features.  

There are two main ways for calculating demand forecasts of features. Firstly, the 

demands for the features can be directly forecasted by examining the past orders and 

considering current market dynamics without considering their relations to MTMs 

and product families. The result of such a forecast is df,t representing the forecasted 

amount of feature f in period t. The second approach is using forecasted attach rates 

in order to calculate the feature demands. Here, the forecast df,t is calculated by 

df,t = dp,t   rf,p                                                                                     (3.1) 

where dp,t represents the forecasted demand of product family p in period t and rf,p 

represents the forecasted attach ratio of feature f to finished product p. The second 

approach is widely used in CTO environments, since it is very difficult to forecast 

individual feature demands. 

In System x servers CTO production environment, a server is made up of several 

components and a component can be used for several servers. This multi-product and 

multi-component production structure also increases the complexity of the planning 

models and introduces the need for modeling approaches at the feature level. 
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3.2.2. Allocated ATP and Order Segmentation 

ATP models can be classified into two main groups as push-based ATP models and 

pull-based ATP models. Push based ATP models are executed according to forecasts 

and other planning data before the arrival of customer orders, while pull-based ATP 

models are executed after the arrival of the customer orders. When we consider the 

dynamic needs of current business environments, hybrid approaches that involve 

both push and pull based ATP models are needed. This need can be realized by using 

push-based ATP approaches by using demand forecasts and allocating the raw 

materials and resources to customer and product classes before the decoupling point 

and performing pull-based ATP approaches after the arrival of customer orders.  

The multi-product and multi-component structure that we introduce in the previous 

section requires ATP modeling at the feature and MTM level. For each product 

family there can be some bottleneck resources or scarce components that can be used 

by more than one server types. Then ATP planning should be done for these 

bottleneck resources or components in order to increase efficiency. 

When we consider the ATP of a feature, we see that there are two main groups that 

consume this ATP: the product and the customer. In other words, the feature is used 

by a finished product (server) and it will be sold to a customer. When considering 

different finished products using the same scarce resources or materials, it is clear 

that the priority of the products may differ with respect to profit contribution or some 

other factors. On the other hand when considering the customers that are requesting 

the same scarce components in their configuration may have different priorities again 

with respect to profit contribution or some other strategic non-monetary factors. 

Then it can be worth to search for the contribution of these priority differences and 

their effect on the overall model performance from the revenue management 

perspective. Push based ATP allocation models can be applied in order to allocate 

scarce resources to important customer or demand classes. 

Customer segmentation approaches have been applied to manufacturing 

environments that are similar to the practices in airline sector in the literature (Ball et 
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al., 2004; Meyr, 2008; Chen et al., 2009). Customers are segmented into a pre-

defined number of classes according to their priorities for the company by using 

several clustering and classification approaches. These priorities are mostly 

calculated according to profit contributions and contractual relationships. Then ATP 

of scarce resources is allocated to high priority (more profitable) customer classes 

and they are protected from the consumption of low priority (less profitable) 

customer classes.  

According to the current business practices, it is clear that non-monetary factors also 

play an important role while classifying customers and assigning priorities to them. 

Moreover, pre-defining the number of customer classes is also a problematic 

decision that sometimes can only be determined by simulations. In addition to this, 

the specific order and product characteristics can also play an important role while 

determining the priority when the order arrives. In other words, the same customer 

may contribute different potential profits (values) with different products and other 

order characteristics. 

ATP allocation at the feature level also requires the consideration of feature‘s 

relation with the finished product and other features in terms of BOM structure and 

material compatibilities. Moreover, determining the priorities of the customer order 

classes and their effects on the ATP allocation is important. In other words, the 

method of calculating the value of satisfying one unit of product in the respective 

order class is an important decision. 

Order segmentation, allocated ATP and revenue management approaches in the 

manufacturing environments have a great potential to add values to supply chains 

that should not be overlooked. We see a potential value for applying them to IBM‘s 

Enterprise Server production environment. 

3.2.3. ATP Execution Mode 

There are two types of ATP executions: Real-time mode ATP execution and Batch 

mode ATP execution. In real-time ATP mode, both the quantity and due date are 
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quoted at the time of customer order arrival. In batch mode ATP, customer orders are 

collected for a pre-defined batching interval and processed together at the end of the 

interval.  

The choice of the execution strategy depends on the characteristics of the business 

environment, customer expectations, service level agreements and technical 

considerations. Today, especially at the e-business environment, customers desire 

ATP responses at web speed (real time). On the other hand, companies prefer to 

respond to customer orders in batch mode in order to gain advantage of scheduling 

and optimizing resource usages for a longer horizon and hence maximizing their 

profit. That is why the decision makers should consider both parties and look for the 

tradeoff for the selection of the batching time window.  

A hybrid two-stage approach that includes the advantages of both real-time and batch 

ATP executions can contribute to the success of order promising. A slightly easy 

model with some of the constraints relaxed and/or shorter planning horizons can be 

executed online or with a short batching interval, while advanced optimization or 

rule-based ATP models with harder constraints and longer planning horizons can be 

executed in relatively longer batching horizons. This two-stage order promising 

approach can improve the allocation of resources, if not optimal; while delivering 

higher customer satisfaction in shorter response times. Moreover, this approach 

contributes to the supply chain transparency in that the customer gets the position of 

the company at the time of her order; whether the company is able to fulfill her order 

immediately or not, and if not, the exact due date of her order after the first batch 

execution. 

3.3. General Structure and Assumptions of the Solution Approach 

After considering the above problems that companies face in today‘s competitive 

high-mix and low-volume environment, we develop a four-stage approach that 

includes order segmentation, allocation planning and two-stage order promising.  
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We investigate the applicability of the proposed framework to the IBM‘S Enterprise 

Server Production processes. Our framework is designed for CTO environments, but 

it is also applicable to MTS, ATO and MTO environments with only slight changes.  

In our solution framework, we make some assumptions about the CTO production 

environment, orders structure and historical data availability. We assume that 

historical sales data have the cost and revenue attributes so that we can calculate the 

profit. Moreover, the business owners are able to segment customers as low, medium 

and high priority customers. We also assume that there is no substitution among 

components, i.e., if the exact customer configuration can be satisfied, then the order 

is accepted, otherwise it is rejected. In addition to this, there is no partial delivery; in 

other words, the order has to be promised fully, otherwise it is rejected. Moreover, 

we assume that there is only a single production facility and multi-site ATP is not 

applicable, hence there is no transportation cost. We only consider ATPs and CTPs 

of the parts as the only bottleneck resources in our models. 

3.4. Contributions of the Study 

The main aim of our availability management approach is to investigate the 

contribution of order segmentation, allocated ATP and two-stage order promising to 

the CTO production environments.  We analyze the results of our approach on IBM 

Enterprise Server data and compare our results against several approaches‘ results, 

including the ones without order segmentation. Moreover, various sensitivity 

analyses are carried out based on the number of order classes, demand and supply 

changes and batching intervals.  

Another important characteristic of the study is its ability to handle CTO 

environments where there is no fixed BOM and it is impossible to forecast all of the 

possible customer configurations. Moreover, the fixed model (SEO) expansion of the 

model addresses hybrid production environments having MTS, CTO, ATO and/or 

MTO processes at the same time. 
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Despite the fact that all four phases of the proposed approach are loosely coupled, 

Order Promising System (OPS) that is developed for our computational studies is an 

integrated system that satisfies all of the order promising needs with minimal manual 

adjustments. Also it is easy to understand and use it. Since a relational database is 

used for outputs of the system, all results can be pushed to other enterprise software 

systems easily or other systems can access our results easily. 

Since our availability management approach includes calculations and decisions with 

some non-monetary factors such as; customer priority, effect of product complexity 

on company strategy and effect of direct responding to customers via the two-stage 

order promising, some of the results cannot be measured directly. More interestingly, 

these non-monetary decisions may decrease profit or increase operational costs in 

order to increase service levels for all or some customers. 
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CHAPTER 4 

4. THE SOLUTION APPROACH 

4.1. Methodology 

We develop a four-stage availability management approach that addresses the issues 

of order segmentation, allocation planning and ATP consumption. All of the four 

stages are so designed that they are loosely coupled and they can be considered 

independently. The inputs and outputs from one stage to another are clearly defined 

in Figure 4-1. 

At Stage 0, historical sales data and customer information are evaluated in order to 

define potential order segments. There are three attributes that determine the order 

segments and their corresponding values: profit of the order, importance of the 

customer placing the order, and complexity of the product ordered. The individual 

values coming from these three attributes are normalized and weighted in order to 

calculate a single value for the order. Then the orders are segmented according to 

their values. 

At Stage 1, a push-based ATP allocation is executed by using the order segments and 

their respective values from Stage 0. Moreover, this stage needs demand planning 

information that is the forecasted demand of each order segment in the planning 

period and supply planning information from the MPS that includes the ATP and 

CTP quantities available in the planning period. The mathematical model -MIP- 

helps in allocating the optimum quotas to the order segments in order to maximize 

potential order promising profit. 
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Figure 4-1: The four-stage solution approach 

At Stage 2, a pull-based ATP consumption model is executed online or in very short 

time periods. Every order can get one of the three replies from the model: 1: The 

order is accepted and due date is given (hard promise), 2: The order is rejected for 

the planning time horizon, 3: The order is accepted, and given a time window for 

delivery (soft promise) and the date when the firm due date will be given.  The orders 

that are soft promised are passed to stage 3. This approach contributes to the 

customer service levels by giving a reply to every order in a very short time interval. 
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At Stage 3, a batch ATP execution is done for the soft promised orders coming from 

the previous stage. Every order that comes to Stage 3 is certainly given an exact due-

date; in other words, it is certainly hard promised.  

Stage 0 can be considered a strategic planning phase that should be conducted for a 

long period of time; for example, at the beginning of every year for the entire year. 

Stage 1 can be considered a planning phase where global ATP is allocated to the 

order segments. Stage 1 can be executed for shorter time periods, for example, at the 

beginning of every half-year for the entire half-year. Stage 2 is almost an online 

execution mechanism that is executed more often. On the other hand, Stage 3 is a 

batch execution mechanism that is executed at the end of each batching horizon. 

Now, we introduce our 4-stage solution framework stage by stage and elaborate on 

our models. 

4.2.  Stage 0: Order Segmentation 

Stage 0 can be defined as a strategic planning phase in which order segments and 

their values (priorities) are determined. In this stage, we use historical data of sales 

transactions and demand. In other words we are not only interested in the orders 

accepted, but also in the orders rejected during the past years. Moreover, we also 

assume that both the total revenue and total cost of every order i are known whether 

the order is accepted or rejected. Revenue for the rejected order can be thought as the 

total price that the customer would be willing to pay at the time of the order. 

Stage 0 has two main parts: first calculation of vali and then clustering on vali. First 

calculation of vali is presented. Then clustering this vali in order to get order clusters 

is examined.  

Three major attributes contribute to the value indicator vali of order i: 

 Profit of order i: Pi (that is normalized as  𝑃𝑖
𝑛𝑜𝑟𝑚   such that 0 ≤  𝑃𝑖

𝑛𝑜𝑟𝑚  ≤ 1) 
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 Priority of customer of order i: Ci (that is normalized as  𝐶𝑖
𝑛𝑜𝑟𝑚  such that     0 

≤  𝐶𝑖
𝑛𝑜𝑟𝑚  ≤ 1) 

 Complexity value of the product configuration of order i: Compi (that is 

normalized as  𝐶𝑜𝑚𝑝𝑖
𝑛𝑜𝑟𝑚  such that 0 ≤  𝐶𝑜𝑚𝑝𝑖

𝑛𝑜𝑟𝑚  ≤ 1) 

The first attribute, profit of order i, Pi, is the difference of the total cost of order i 

from the total revenue of order i. We normalize Pi as: 

                                              𝑃𝑖
𝑛𝑜𝑟𝑚 =

𝑃𝑖 − 𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛
                                                       (4.1) 

where 𝑃𝑚𝑎𝑥  and 𝑃𝑚𝑖𝑛  are the maximum and minimum profits that is observed in the 

past, respectively.  

The second attribute, priority of customer who places the order i, Ci, is used to define 

the importance of the customer for the company. The sub-attributes that can be used 

to define the importance of the customer can be her profit contribution, historical 

relationships, contractual relationships, sector the customer belongs to, site 

(geography) of the customer, customer‘s sensitivity to order promising decisions, etc. 

Here it is important to emphasize that non-monetary factors also contribute to the 

priority of the customer. 

Without any loss of generality we categorize the customers based on priority in three 

groups: 

 Low priority customers (Ci = 1) 

 Medium priority customers (Ci = 2) 

 High priority customers (Ci = 4) 

Here, the priority of the respective customer is a subjective criterion and should be 

determined by the business owner. Besides the techniques like AHP (Analytic 

Hierarchy Process) and some technical calculations, subjective comments of the 

business owners can be used to define them.  
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We also normalize Ci as: 

                            𝐶𝑖
𝑛𝑜𝑟𝑚 =

𝐶𝑖 − 𝐶𝑚𝑖𝑛

𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛
=

𝐶𝑖 −  1

4 −  1
=

𝐶𝑖 −  1

3
                                (4.2) 

where 𝐶𝑚𝑎𝑥  and 𝐶𝑚𝑖𝑛  are the pre-determined maximum and minimum priority 

values, respectively.  

The third attribute, the complexity value of the product configuration of order i can 

be defined based on the cost of the product configuration. It is the cost of the MTM, 

plus costs of the add-in features. We use this attribute in order to emphasize that 

companies wish to produce and sell more complex and more value added products 

instead of the basic products. The reasons can be the respectability that they can get, 

the high competency they can acquire or the potential high profits and market share 

in the future. 

Normalized cost of the product configuration of order i, 𝐶𝑜𝑠𝑡𝑖
𝑛𝑜𝑟𝑚 , is used as a 

surrogate measure for the complexity of the product configuration: 

                                𝐶𝑜𝑚𝑝𝑖
𝑛𝑜𝑟𝑚 = 𝐶𝑜𝑠𝑡𝑖

𝑛𝑜𝑟𝑚 =  
𝐶𝑜𝑠𝑡𝑖 − 𝐶𝑜𝑠𝑡𝑚𝑖𝑛

𝐶𝑜𝑠𝑡𝑚𝑎𝑥 − 𝐶𝑜𝑠𝑡𝑚𝑖𝑛
                    (4.3) 

where 𝐶𝑜𝑠𝑡𝑚𝑎𝑥  and 𝐶𝑜𝑠𝑡𝑚𝑖𝑛  are the maximum and minimum costs that is observed 

in the past, respectively. 

By using the three normalized attributes, the value vali  of order i can be calculated 

as: 

                 𝑣𝑎𝑙𝑖 = 𝑤1 𝑃𝑖
𝑛𝑜𝑟𝑚 + 𝑤2 𝐶𝑖

𝑛𝑜𝑟𝑚  +  𝑤3 𝐶𝑜𝑚𝑝𝑖
𝑛𝑜𝑟𝑚                       (4.4) 

where wj  is the respective weight of the attribute in calculating vali and without loss 

of generality: 
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                                       𝑤𝑗  =  30

3

𝑗=1

 and  0 ≤  𝑣𝑎𝑙𝑖 ≤  30.                                        (4.5) 

The selection of wj s defines the weights given to the three attributes in accordance 

with the company‘s business structure. For example, a company may give a higher 

value to wj in order to make it more effective.  

An interesting observation about this order valuation approach is that two orders 

having different normalized attribute values can have the same vali. This is similar to 

the grading of students at the end of a term. A student whose homework grades are 

low but exam grades are high can get the same final grade as another student with 

higher homework grades and lower exam grades. In our case, an order belonging to a 

high priority customer but with a low profit margin can have the same value as an 

order belonging to a low priority customer with a high profit margin. 

After calculating the values, vali s, of the orders from the past sales data, we come 

across with m different vali values associated with n orders, where m ≤ n. The 

difference between m and n is because of the different orders having the same value. 

Since it is almost impossible to plan our supply chain for each order type, we cluster 

n orders (with m different values) into k classes in order to make an aggregation (see 

Figure 4-2). 

Most of the clustering algorithms in data mining (like K-Means) require the number 

of clusters k to be given as input. It is very difficult to select the most appropriate 

number of clusters k in advance; hence it is usually done by trying different k values. 

In order to avoid this difficulty, we use the TwoStep Clustering component of SPSS. 

TwoStep Clustering is introduced in order to deal with large datasets and avoid the 

problem of determining the number of clusters k in advance. 

SPSS TwoStep clustering method uses a two-step procedure that determines and then 

applies the optimum number of clusters to the given dataset. It uses a cluster number 

range, i.e., asks the user the minimum and maximum number of clusters. At its first 

stage, it goes through the data and evaluates the initial estimates of the number of 



 

50 

 

clusters. Then in the second stage the initial estimate is refined and thus the optimum 

number of clusters is set; then each dataset member is assigned to a cluster. 

After having the m different values of n many orders coming from the historical data, 

we use the SPSS TwoStep Clustering method to segment our orders into k number of 

classes where 1 ≤ k ≤ 3. For example, k = 2 means that we have two order classes: 

high-priority orders and low-priority orders classes. For k = 3 we have low-priority 

orders, medium-priority orders and high-priority orders. This important decision 

variable k is determined in a dynamic manner by the algorithm in order to maximize 

inter-class difference and minimize in-class difference. 

 

Figure 4-2: Example data set for clustering (x: orders, y: their values) 

Here it is important to mention that, since we have only one dimension of data, that 

is vali, it is possible to define order segments without using a statistical software. 

Segments can also be introduced by using average of vali s or number of orders. 

However, especially when there is more than one dimension of data, it is worth using 

statistical software. 
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4.3. Stage 1: Allocation Planning 

In Stage 1 of our availability management approach, we discuss our MIP model that 

aims at allocating ATP and CTP quantities to the order classes. First we introduce the 

relevant notation. 

Indices: 

k = 1, …, K  order classes 

m = 1, …, M  fixed models 

p = 1, …, P  product families 

i = 1, …, I  parts 

t = 1, …, T  time periods 

Parameters: 

ATPi,t   ATP value of part i in period t 

hi   inventory holding cost of one unit of part i  

CTPi,t   CTP value of part i in period t 

ci   production cost of one unit of part i 

dm,k,t   forecasted demand for fixed model m in order class k  

                                    in period t 

dp,k,t   forecasted demand for product family p in order class k  

                                    in period t 

vm,k   value of satisfying one unit of demand of fixed model m  

                                    in order class k 

vp,k value of satisfying one unit of demand of product family p in 

order class k 

ri,p   attach ratio of part i in product family p 

αi,p per unit penalty for the deficit allocation of part i to product 

family p with respect to ri,p 

βi,p per unit penalty for the excess allocation of part i to product 

family p with respect to ri,p 
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BOMi,m  the amount of part i required for a fixed product m 

SLAk   required service level for order class k 

Decision Variables: 

y1m,k.t supply availability of fixed model m allocated to order class k 

in period t 

y2p,k,t supply availability of product family p allocated to order class 

k in period t 

y3i,p,t supply availability of part i allocated to product family p in 

period t 

y4i,m,k,t supply availability of part i allocated to fixed model m 

and order class k in period t  

Ii,t   ending inventory of part i in period t 

xi,t   quantity of part i produced in period t 

exci,p,t amount of excess allocation of part i to product family p in 

period t with respect to ri,p 

defi,p,t amount of deficit allocation of part i to product family p in 

period t with respect to ri,p 
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MIP Model: 

maximize 

   𝑣𝑚,𝑘

𝑇

𝑡=1

𝐾

𝑘=1

𝑀

𝑚=1

 𝑦1𝑚,𝑘,𝑡 +    𝑣𝑝,𝑘

𝑇

𝑡=1

𝐾

𝑘=1

𝑃

𝑝=1

 𝑦2𝑝,𝑘,𝑡 −   (𝑕𝑖

𝑇

𝑡=1

𝐼

𝑖=1

𝐼𝑖,𝑡  + 𝑐𝑖  𝑥𝑖,𝑡)

−     (𝛼𝑖,𝑝

𝑇

𝑡=1

𝑃

𝑝=1

𝐼

𝑖=1

 𝑒𝑥𝑐𝑖,𝑝,𝑡 +  𝛽𝑖,𝑝  𝑑𝑒𝑓𝑖,𝑝,𝑡)                                      (4.6) 

subject to 

 𝑦1𝑚,𝑘,𝑡′

𝑡

𝑡′=1

≤  𝑑𝑚,𝑘,𝑡′

𝑡

𝑡′=1

                                                                         ∀𝑚, 𝑘, 𝑡        (4.7) 

 𝑦2𝑝,𝑘,𝑡′

𝑡

𝑡′=1

≤  𝑑𝑝,𝑘,𝑡′

𝑡

𝑡′=1

                                                                            ∀𝑝, 𝑘, 𝑡         (4.8) 

𝑦4𝑖,𝑚,𝑘,𝑡  =  𝑦1𝑚,𝑘,𝑡   𝐵𝑂𝑀𝑖,𝑚                                                                      ∀𝑖, 𝑚, 𝑘, 𝑡    (4.9)                                 

𝑥𝑖,𝑡 +  𝐴𝑇𝑃𝑖,𝑡 +  𝐼𝑖,𝑡−1 = 𝐼𝑖,𝑡 +   𝑦4𝑖,𝑚,𝑘,𝑡

𝐾

𝑘=1

𝑀

𝑚=1

+  𝑦3𝑖,𝑝,𝑡

𝑃

𝑝=1

            ∀𝑖, 𝑡          (4.10) 

  𝑦1𝑚,𝑘,𝑡

𝑀

𝑚=1

𝑇

𝑡=1

 ≥  𝑆𝐿𝐴𝑘     𝑑𝑚,𝑘,𝑡

𝑀

𝑚=1

𝑇

𝑡=1

                                                  ∀𝑘            (4.11) 

  𝑦2𝑝,𝑘,𝑡

𝑃

𝑝=1

 

𝑇

𝑡=1

 ≥   𝑆𝐿𝐴𝑘     𝑑𝑝,𝑘,𝑡

𝑃

𝑝=1

𝑇

𝑡=1

                                                    ∀𝑘            (4.12) 

𝑦3𝑖,𝑝,𝑡  =    𝑟𝑖,𝑝

𝐾

𝑘=1

 𝑦2𝑝,𝑘,𝑡 + 𝑒𝑥𝑐𝑖,𝑝,𝑡  − 𝑑𝑒𝑓𝑖,𝑝,𝑡                                    ∀𝑖, 𝑝, 𝑡           (4.13) 
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𝑥𝑖,𝑡  ≤  𝐶𝑇𝑃𝑖,𝑡                                                                                            ∀𝑖, 𝑡                  (4.14) 

𝑦1𝑚,𝑘,𝑡  ,  𝑦2𝑝,𝑘,𝑡  ,  𝑦3𝑖,𝑝,𝑡   
,  𝑦4𝑖,𝑚,𝑘,𝑡  ≥  0                                  ∀𝑚, 𝑘, 𝑡, 𝑝, 𝑖           (4.15) 

𝑦1𝑚,𝑘,𝑡 ,  𝑦2𝑝,𝑘,𝑡 ,   𝑦3𝑖,𝑝,𝑡   ≥  0 ,    and  𝑖𝑛𝑡𝑒𝑔𝑒𝑟                        ∀𝑚, 𝑘, 𝑡, 𝑝, 𝑖         (4.16) 

𝐼𝑖,𝑡  , 𝑥𝑖,𝑡 , 𝑒𝑥𝑐𝑖,𝑝,𝑡  , 𝑑𝑒𝑓𝑖,𝑝,𝑡  ≥  0                                                       ∀𝑡, 𝑝, 𝑖                   (4.17) 

 

In (4.6) we have the objective function that maximizes total value (revenue) of 

allocating available parts to products and order classes minus production, inventory, 

backlogging costs, penalty for deviation from attach ratios.  

In constraints (4.7) and (4.8) we limit the cumulative ATP allocation by the 

cumulative demand of order classes for fixed products and product families 

respectively. 

In equation (4.9) the amount of a certain part allocated to a fixed model in an order 

class for a period is equated to the amount of usage of the part by that fixed model in 

that order class. 

Constraint (4.10) is the primary constraint that balances the total inflow and total 

outflow of a part in a period. Total inflow is the sum of production amount, ATP, and 

inventory from the previous period; total outflow is the sum of inventory left to the 

following period, amount used for fixed product allocation, and amount used for 

product family allocation. 

In constraints (4.11) and (4.12) the service level requirements are met for the 

corresponding order classes in all periods. 

In constraint (4.13) the amount of a part allocated to a product family is forced to be 

equal to the expected usage of the part by making use of the attach ratio. The positive 
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or negative deviation from the expected usage is punished by means of the excess 

and deficit variables in the objective function. 

Constraint (4.14) is the CTP constraint that limits the production amount of a part by 

the CTP available in the corresponding time period. 

Constraints (4.15) and (4.17) are the sign restrictions of the decision variables. 

Constraint (4.16) requires the main decision variables that are passed to Stage 2 to be 

integer. 

Assembly capacity constraints for fixed model, product family and component 

assembly can be incorporated into the model in case any of these resources is a 

bottleneck resource. 

One of the most interesting parts of the allocation model of our availability 

management approach is the meaning and calculation of the parameters vm,k  and vp,k 

in the objective function that represent the values of allocating one unit of fixed 

model m to order class k and one unit of product family p to order class k, 

respectively. The calculation of these values is different for the fixed models and the 

product families as defined below: 

i) Value for the fixed model (vm,k) 

In the order placement of the fixed model product configuration, the customer orders 

the model with a single part number the BOM structure of which is fixed. Fixed 

models have certain prices that are determined based on the costs of its constituent 

parts and a constant profit margin for them (e.g. 15%).  

The price is constant for all of the order classes and the order; however, the value of 

satisfying the fixed model demand may change from one order class to another. We 

define the value of satisfying one unit of fixed model demand of order class k as: 

                                      𝑣𝑚,𝑘 =  𝑓{𝑝𝑟𝑖𝑐𝑒(𝑚), 𝑉 𝑚,𝑘}                                                     (4.18) 
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where 

                                             𝑉 𝑚,𝑘 =  𝑣𝑎𝑙𝑖  / |𝐶𝑘
𝑚 |

𝑖 ∈ 𝐶𝑘
𝑚

                                                   (4.19) 

In (4.19) we calculate the average value, 𝑉 𝑚,𝑘 , over all orders  that include the fixed 

model m in the order class k, where |𝐶𝑘
𝑚 | is the number of orders that include the 

fixed model m in the order class k. Then we use both the price of the fixed model m 

and  𝑉 𝑚,𝑘  to calculate 𝑣𝑚,𝑘   by using the function f as expressed in (4.18). 

The implementation of the function f can change from one company to another; but 

without loss of generality, the below implementation can be used where l is a 

constant coefficient: 

𝑓(𝑝𝑟𝑖𝑐𝑒(𝑚), 𝑉 𝑚,𝑘)  =   𝑝𝑟𝑖𝑐𝑒(𝑚)(1 +  𝑙  𝑉 𝑚,𝑘)                   (4.20) 

ii) Value for the product family (vp,k) 

Unlike the fixed models, the BOM structure is not known for the configurations in 

the product families until the arrival of the customer order. Moreover, because of the 

unknown BOM, the price of the product family is not known in advance.  

We introduce an approach that estimates the price of a product family by summing 

up the prices of its expected constituent parts according to the attach ratios: 

𝑒𝑠𝑡𝑝 =  𝑝𝑟𝑖𝑐𝑒 (𝑏𝑎𝑠𝑒 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑝)  +  𝑟𝑖,𝑝   𝑝𝑟𝑖𝑐𝑒 (𝑝𝑎𝑟𝑡 𝑖)

𝐼

𝑖=1

         (4.21) 

Then the calculation of  𝑣𝑝,𝑘  is similar to the calculation of the values of the fixed 

models: 

𝑣𝑝,𝑘 =  𝑓{𝑒𝑠𝑡𝑝 , 𝑉 𝑝,𝑘}                                            (4.22) 
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𝑉 𝑝,𝑘 =  𝑣𝑎𝑙𝑖  / |𝐶𝑘
𝑝 |

𝑖 ∈ 𝐶𝑘
𝑝

                                           (4.23) 

𝑓(𝑒𝑠𝑡𝑝 , 𝑉 𝑝,𝑘)  =   𝑒𝑠𝑡𝑝(1 +  𝑙  𝑉 𝑝,𝑘)                               (4.24) 

where  𝑉 𝑝,𝑘  is the average value over all orders  that include the product family p in 

the order class k, where |𝐶𝑘
𝑝 | is the number of orders that include the family p in the 

order class k, and l is a constant coefficient. 

Based on the val ‘s of the objective function, the supply of the fixed models is 

allocated to the order classes, and the parts are allocated to the product families and 

the fixed products so as to maximize the value of satisfying the demand of the order 

classes (a derivative of revenue) minus costs. 

4.4. Stage 2 and Stage 3: Online and Batch Order Promising 

In Stage 2 of our 4-stage availability management approach, arriving customer orders 

are responded immediately or in a very short time period according to their order 

class and respective allocations. The main assumption is that every customer would 

prefer to be given a due date for their order as soon as possible (ASAP) which is very 

common for current business practices. The model is executed on a rolling horizon 

basis with a horizon length of T. The planning horizon T is divided into two parts, the 

first part with t1 periods and the second part with t2 periods (t1<t2). Every new 

customer order has the opportunity to be promised for the rest of the periods within 

t1 periods and the forthcoming t2 time periods. The orders which can be promised 

for the first part of the planning horizon (t1 periods) are accepted and given a certain 

due date (hard promise). However, the orders which can be promised for the second 

part of the planning horizon (t2 periods) are given a time window for the due date 

instead of an exact due date, which is t2Start – t2End (soft promise). The orders 

which can be promised neither a due date nor a due time window for the rest of the 

planning horizon within t1 + t2 are rejected (Figure 4-3, Figure 4-4). 
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Figure 4-3: Planning time periods 

 

Figure 4-4: Rolling horizon 

In order to cover the full planning horizon T (= t1 + t2), we work on a rolling 

horizon basis. The planning horizon is divided into two parts and the middle point is 

named as t1Middle. Until the time point, t1Middle, all of the incoming orders are 

hard promised, if they can be promised till the end of t1 periods or soft promised if 

they can be promised within the following t2 periods. At the time point t1Middle, the 

batch order promising is executed for the orders which have been received and 

accumulated up to t1Middle and soft promised for the coming t2 periods. Then the 

current planning horizon is rolled forward by a period of length which is (t1Middle-

t1Start). This horizon rolling shifts both t1 and t2 planning periods forward and bring 

the execution to the initial state (Figure 4-5). 
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Figure 4-5: Full rolling horizon 

The system considers the availability of all items in t1 periods on a daily basis. On 

the other hand, the availability of all items in the following t2 periods is aggregated 

on a full batch promising period basis. In other words, if the cumulative total 

availability of an item for the t2 planning periods horizon is y, t2 periods are 

aggregated as a single time period which can be considered as temporal aggregation 

and the aggregated period then is the period t1End+1 with an availability of y for the 

corresponding item. This simplifying approach lets us solve the batch order 

promising problem in an integrated manner. 

The online promising of the fixed models (FM) and product families (PF) are fairly 

different: 

i) Online promising of the fixed models 

Since the availability of a fixed model m allocated to an order class k in period t, 

𝑦1𝑚,𝑘,𝑡 , is based on the finished product and does not need consideration of the 

configuration parts, we only check the corresponding availability of model m starting 

from the time when the order arrives. If availability for model m in order class k is 

found until t1End, this order is hard promised and the availability of model m is 
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decreased by one unit at the corresponding day. If availability for model m is found 

at t2Start which represents the aggregated availability of model m in the following t2 

periods, then this order is soft promised, given a due time window of [t2Start, t2End] 

and the availability of model m is decreased by one unit for t2Start. If there is no 

availability even in t2Start, the order is rejected according to the current rolling 

horizon (Figure 4-6). 

An important property of fixed model promising is that we allow the higher order 

classes to consume the allocated availability of the lower order classes, when there is 

not sufficient availability allocated to their own order class in the planning period. 

This extension lets the system promise the higher order classes in case of supply 

shortage for their own allocated availability. 

ii) Online promising of the product families 

Promising of product families is a more complicated process than that of the fixed 

models. It requires promising every individual part selected by the customer and 

there after consolidation of promises that are given to these independent parts to 

create the main order promise result. The availability of all parts allocated to product 

family p in period t, 𝑦3𝑖,𝑝,𝑡 , should be checked and consolidated.  

Figure 4-7 depicts the process flow of the product family order promising. The 

availability of all parts required by the order is controlled and the first-time 

availability of them is recorded. The maximum of the first-time availabilities of the 

constituent parts determines either the hard promised due date or the due time 

window of the order. 

However, if the due date falls in the t2 time period, the order has to be soft promised 

by giving a due time window ([t2Start, t2End]). In this case we search for the 

availability of the parts in t2 period whose due dates (the first availability) are 

actually up to t1End. If possible we shift the due dates of the corresponding parts to 

the next t2 time periods starting after t1End in order not to consume these parts 
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unnecessarily earlier than they are needed. If anyone of the parts‘ availability cannot 

be found up to time t2End, the order is rejected. 

 Another characteristic of the approach is that it lets the parts to be promised in more 

than one time periods. In other words, if the availability of the current time period is 

not enough for the requested quantity for that part, the available amount is promised, 

and the remaining (unmet) amount is shifted to the next period for availability 

lookup. It is normally expected that some of the parts will be configured with more 

than one unit in CTO orders. 

In Stage 3 of our 4-stage availability management approach, the soft promised orders 

coming from Stage 2 are promised exact delivery due dates (hard promises) 

according to their due date time windows that are defined in stage 2. All of the soft 

promised orders are ordered in a decreasing sequence with respect to their order 

values. Then the system promises due dates for all of the orders starting from the one 

with the biggest value in the time period, t2Start in a forward fashion. 

Normally, all of the orders that are soft promised in stage 2 will eventually be hard 

promised in Stage 3 of our approach which will give priority to the higher value 

orders in order to decrease the order lead time for the higher value orders as much as 

possible. This is also in accordance with our ASAP assumption in due date quoting.  

Due date quoting (or hard promising) for the soft promised orders in a backward 

fashion, that is, starting in period t2End and coming back to period t2Start with the 

higher value orders first can be an alternative way to the forward quoting described 

above. In this way, orders are given due dates within their soft promised due time 

windows as late as possible. In spite of the fact that this backward due date quoting 

increases the order lead times and thus decreases customer service levels somehow, it 

may increase the fraction of the hard promised orders for the next t1 periods in the 

rolled horizon which is the closest time to the then current time, because there will be 

more unused availabilities in the first t1 periods of the next rolled horizon. 
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Figure 4-6: Fixed model order promising 
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Figure 4-7: Product family order promising 
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Figure 4-7: Product family order promising (continued) 
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In some environments, the actual ATP and CTP quantities for the parts can deviate 

from the planned quantities. There may be an unexpected supply increasing the 

availabilities, and similarly there may be unexpected resource shortages decreasing 

the availabilities. In such cases the process of hard promising in stage 3 can be more 

interesting. There may even be situations in which some of the already soft promised 

orders should be rejected. Here, the choice of already soft promised orders for 

rejection can also be determined by this approach; for example, the orders that have 

the minimum contribution to the total value may be rejected. 
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CHAPTER 5 

5. COMPUTATIONAL STUDY 

Our 4-stage approach that includes the stages of order segmentation, allocation 

planning, both online order promising and batch order promising is tested with the 

real-life data of IBM Enterprise Server Hardware Division. We have all the 

information about the actual customer orders, product families, fixed models, parts, 

attach ratios and some other related information of the configuration environment for 

a defined time horizon of six months.   

Firstly, we introduce the experiment data and define its attributes. Then we apply 

stage 0 to the data at the database level in order to determine the order segments. 

After the introduction of our MIP model at stage 1 that allocates availabilities to the 

predefined order segments, we describe our web-based Order Promising System 

(OPS), developed in Java for stages 2 and 3: online and batch order promising 

processes. Finally we go over our experimental runs and analyze the results. 

5.1. Introduction to the Experiment Data 

IBM Enterprise hardware division produces several servers to satisfy various 

demands from the customers. The system x series division consists of middle 

segments servers that can not only be used by big companies, but also by small and 

medium-sized companies. This is the reason why the business growth and transaction 

amounts are relatively larger and the prices are relatively lower with respect to the 

other divisions. We have disguised some parts of the data due to confidentiality. IBM 

has provided us with their order structure and actual transactions within a specific 6-

month period. The original data seemed very complicated; for this reason, we have 

applied several data cleaning and data transformation processes. Then we converted 
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the data to the following format; the entity relationship (ER) diagram that is more 

readable (Figure 5-1). The only information that was missing in the original data was 

the customer information, prices and costs. We have defined random customers and 

meaningful price/cost information, and associated them with the orders. 

 

Figure 5-1: ER diagram of the main data 

Here there are two main structures. One of them is the ORDERMAIN which holds 

the order information and the other is the ORDERDETAIL which holds the 

information about the order configuration, i.e., the constituent parts of the 

configuration. We have analyzed these two main structures extensively to extract all 
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of the necessary information we need in our study. We have extracted the MTMs, 

features (parts), time periods, attach ratios, single-entity-offerings (SEOs), configure-

to-orders (CTOs) and some other necessary information from this initial data. 

After doing some statistical analyses in order to define the mostly and uniformly  

used items we have selected 2 MTMs, 5 SEOs and 10 features for our experimental 

study which are found to be the most common and widely used components in the 

order transactions. The selected components are listed in Tables 5-1, 5-2 and 5-3. It 

is clearly seen that if a product name is ending with a ―NEW‖, it means that this 

product is a CTO, in other words it has been configured by the customer. 

Table 5-1: Selected MTM‘s 

MTM LIST COST LIST PRICE 

7978 9000 12000 

7979 8000 10000 
 

 

Table 5-2: Selected products (SEO + CTO) 

MTM PRODUCT TYPE 

7978 7978BJU SEO 

7978 7978EHU SEO 

7978 7978NEW CTO 

7979 7979B4U SEO 

7979 7979B9U SEO 

7979 7979NEW CTO 

7979 X1RDRUS SEO 
 

 

After these selections we come up with 2,897 orders and 11,583 order details (order 

configurations) within 120 time periods, which corresponds to approximately 24 

orders per day. In Figure 5-2, an order structure is illustrated from the OPS. At the 

main part related to the order, we see the order no, customer, period, MTM, product, 

quantity information. At the order configuration part, we see seven feature 

configurations and their respective quantities. 
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Table 5-3: Selected features 

F.NO FEATURE NAME LIST COST LIST PRICE 

1148 RF3 system planar 600 750 

3663 QC In Pr E5430 2.66GHz/1333MHz 1200 1500 

3682 QC IntXProc E5420 2.5GHz 80W 1500 1750 

4144 CD-RW/DVD ComboV Ultrabay 300 500 

4334 PCI-Express Riser card 500 700 

5161 73GB 15K 3.5 Hot-Swap SAS HDD 700 900 

5162 146GB 15K 3.5 H-Swap SAS HDD 1000 1300 

542 1GB PC2-5300 CL5 ECC DDR2 100 140 

544 2GB PC2-5300 CL5 ECC DDR2 200 250 

556 4GB PC2-5300 CL5 ECC DDR2 400 550 
 

 

Similar to the transformations mentioned above, we have made some other 

transformations to have a relational data structure which will construct the base of 

the OPS. We have tried to minimize data repetition and increase data ‗read and write‘ 

transaction performance. 

We have used the same data for all of the four stages. Normally using two different 

data sets, i.e., belonging to different time periods, for stages 0 & 1 and stages 2 & 3 

is more appropriate. For this reason, we have used some randomization to create 

random deviations from the data used in stages 0 & 1, in order to have a different 

data at stages 1 & 2. Some examples are random disruption in costs, demand 

forecasts and attach ratios. 
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Figure 5-2: An example order structure from OPS 

5.2. Stage 0: Order Segmentation 

Order segmentation is the process of segmenting orders according to their values into 

meaningful number of order classes. An order value is calculated from tree main 

attributes: the normalized profit of that order, the normalized importance of the 

customer and the normalized complexity of the product. The calculation of these 

attributes is explained in detail at Chapter 4.  

We assume all of the wi‘s in equation (4.4) as 10. In other words we give the same 

importance to all of the three attributes generating the order value. After this 

assumption we come up with 758 distinct order values for 2897 orders having 

different values between 25.89 and 0.39. After applying SPSS Two-Step clustering 

to these 758 different order values, we get the order segments structure for k=2 order 

classes and k=3 order classes. In our experiments k=2 will be our main structure 
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which we will use for much of the analysis and k=3 will be a comparison dataset. We 

also experiment results of order segmentation without using a clustering software. 

5.3. Stage 1: Allocation Planning 

We implement the MIP of Stage 1 by using ILOG OPL Development Studio v6.1.1 

and ILOG CPLEX v11.2.1 which is given in Appendix A. We get input from an 

Excel sheet and write output to the database of OPS in our MIP model 

implementation.  

We have forced three of our eight decision variables to be integer-valued in our MIP 

problem: 𝑦1𝑚,𝑘,𝑡 , 𝑦2𝑝,𝑘,𝑡  and  𝑦3𝑖,𝑝,𝑡 . As we mentioned in Chapter 4, there are two 

main outputs of Stage 1 that will be used as input in Stages 2 and 3: 𝑦1𝑚,𝑘,𝑡  and  

𝑦3𝑖,𝑝,𝑡 , hence only these decision variables are forced to be integer-valued. Each of 

the variables, 𝑦4𝑖,𝑚,𝑘,𝑡 , automatically becomes an integer because of integer BOM 

values. The other four decision variables, I, x, exc, def, take on values as either 

integer or non-integer.  

Another approach to deal with the computational complexity of the MIP model 

might be relaxing all of the eight decision variables and rounding them later to 

integers. By this LP relaxation approach we can increase the performance of the 

model from the computational standpoint especially in larger problems. The 

rounding errors that might arise during the rounding process are negligible, because 

it should have very small effect on the optimality of the global 4-stage problem.  

The calculation of the value parameters in the objective function is very important. 

We use the formulas (4.18) through (4.24) in order to calculate vm,k and vp,k for the 

MIP model. 

We use a personal PC for all of our development and experiments having an Intel 2.0 

GHz Dual Core CPU with 3 GB of memory. The MIP model has 18,484 constraints 

and 23,281 decision variables. CPLEX cannot find an optimum solution for the MIP 
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problem and does not improve its solution significantly after a couple of minutes. 

That is why we use a time limit of 120 seconds after which we stop our execution, 

and use the current near optimal MIP solution (Figure 5-3). 

Our MIP implementation writes the results of the decision variables, 𝑦1𝑚,𝑘,𝑡  and  

𝑦3𝑖,𝑝,𝑡 , to the database for the use of OPS at Stages 2 and 3. 

 

Figure 5-3: CPLEX statistics tab 

5.4. Stage 2 and 3: Online and Batch Order Promising 

For stages 2 and 3 we develop a web-based Order Promising System (OPS) that is 

developed by using Java programming language. The system is designed to be able 

to host online order promising, batch order promising, online/batch integrated order 

promising and near global optimization in order to be used in our analyses. 

All of the parameters t1Start, t1Middle, t1End, t2Start, t2End, rollingT, 

numberOfOrderClasses, and numberOfPeriods can be changed easily for other 

scenarios or for the expectations of other enterprises.  

As mentioned in Chapter 4, the system works on a rolling horizon basis with a total 

of 120 time periods.  We assume that one week has 5 days; one month has 20 days 
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and one month has 4 weeks. It is possible to execute the system one by one for every 

rolling horizon or all of the rolling horizons at a time. In Figure 5-4, we see the main 

order promising screen of OPS. In this screen it is possible to execute the system one 

by one for every rolling time horizon. The Continue button moves the system to the 

next rolling time horizon; the Batch Execution button executes Stage 3 batch order 

promising for the currently soft promised orders; and the Restart button takes the 

system to the initial position. 

The columns of the ATP Execution Results give all of the important information to 

the user about the order promising results. Besides the basic information such as 

OrderNo, Product, and Result, it also reports the results of Stage 2 execution, order 

arriving date, value of the order, original order class and ―used‖ order class. These 

results are also open for further analysis by other external systems, since they are 

input to the database. 

In addition to the main order promising screen, it is also possible to get the promising 

details of features for CTO orders. Since order promising is done at the feature level 

for CTO orders, the system reports them to the user. For example, when we double 

click one of the CTO order results, we get the following screen in Figure 5-5. 

The main order that has the above configuration (Figure 5-5) arrives at OPS at t=7. 

At this time the hard promising time interval (t1) is between t=7 and t=15, and the 

batch promising interval (t2) is between t=16 and t=35 which is represented by t=16 

only with the aggregated availabilities. 
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Figure 5-4: OPS main order promising screen 

 

Figure 5-5: Order detail results for a soft promised order 

The Features 1148, 4334 and 542 are available at t=9 which is within t1. The features 

3663 and 4144 are available at t=7 which is also within t1. The only feature which is 

not available within t1 is 5161, which is available in t=16 within t2 period. This 

causes the main order to be soft promised. According to the algorithm that we have 
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proposed in Chapter 4, all of the features that we initially promised within t1 

(InitialDD column) are tried to be shifted to t2 interval. We see that from S2DD 

column all of them are successfully shifted to t=16 within t2. After that, the main 

order is soft promised with a time window of t=16 and t=35 which are actually 

t2Start and t2End values of the current iteration. 

The above case illustrates one of the main properties of our proposed approach for 

CTO environments especially where there is no fixed BOM. 

5.5. Experiments 

In order to be able to investigate the behavior of our approach under different 

situations, we have created different solution methods out of our main approach and 

tested them via different problem instances.  

We have defined two problem instances to diversify the problem and generated 

several solution methods. As we mention above, we have created our main problem 

instance from the real life order transactions of IBM after some transformations 

including data cleaning, transformation and normalization. This problem instance 

(experiment data) is our main problem instance on which most of the test runs are 

based (D1). In order to generate a different problem instance, we have increased all 

of the ATP quantities of the features which we have actually defined according to 

statistical analyses and diversification by 20% (D2). After this increase, all of the 

availabilities that will be assigned to order classes and the general results are 

changed. We keep the order transactions as the same in order not to move away from 

the real life data. 

We generate various solution methods out of our main 4-stage approach in order to 

investigate the behavior of our approach and the stages individually. These solution 

methods are differentiated based on the following characteristics: 

 number of order classes 

 clustering approach 



 

76 

 

 stages of the main 4-stage approach that are skipped 

 length of the batch order promising time interval 

 length of the online order promising time interval 

From the order class perspective, we create four different cases with three different 

order class numbers K=1 (K1), K=2 (K2) and K=3 (K3). In K1, we have only one 

order class and all of the orders belong to the same class. In other words we do not 

use Stage 0, that is, we skip Stage 0. In K2, we have two order classes with k=1 

being the high priority orders and k=2 being the low priority orders. This case is our 

main selection in this dimension. In K3, we have three order classes with k=1 being 

the high priority orders, k=2 being the normal priority orders, and k=3 being the low 

priority orders. Moreover, for the case K=2, we have defined an extra case where no 

clustering software is used for order segmentation. Here the number of distinct order 

values is divided by two and then orders are assigned to order classes based on their 

position. If they are in the half having higher values, they are assigned to order class 

1; if they are in the half having lower order values, they are assigned to order class 2 

(K2NCS: K2-No-Clustering Software). 

Then we generate seven different solution methods out of our main 4-stage approach 

by including all or some of the four stages: 

NGO: Near Global Optimization. All of the 2897 orders within 120 time periods are 

promised together with the rule-based batch promising feature of OPS.  

N1020:  Normal (online/batch) execution with t1=10 and t2=20 days. 

B30: Batch order promising within 30 days. Here Stage 2 of our approach (online 

order promising) is skipped. 

O10:  Online order promising within 10 days. Here Stage 3 of our approach (batch 

order promising) is skipped. 

N2040:  Normal (online/batch) execution with t1=20 and t2=40 days. 
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B60: Batch order promising within 60 days. Here Stage 2 of our approach (online 

order promising) is skipped. 

O20:  Online order promising within 20 days. Here Stage 3 of our approach (batch 

order promising) is skipped. 

When we consolidate these seven solution methods that are independent of the order 

clustering method, and the clustering methods called as K1, K2, K3 and K2NCS, we 

can come up with 49 different solution methods. We have only experimented with 29 

of them which we think is sufficient to understand the behavior of the 4-stage 

approach. Table 5-4 shows the solution methods together with the information which 

are implemented (as marked by X). 

When order class type or problem instance is changed, the Stage 1 MIP is to be 

solved with the new dataset. However, changing the solution method (independent of 

the order classes) only requires running OPS again with different parameters in 

Stages 2 and 3. 

Table 5-4: Problem instances and solution methods 

  D1 D2 

  K1 K2 K3 K2NCS K1 K2 K3 

NGO X - - - X - - 

N1020 X X X X X X X 

B30 X X X X X X X 

O10 X X X X X X X 

N2040 X X - - - - - 

B60 X X - - - - - 

O20 X X - - - - - 
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After examining the problem instances and solution methods, the performance 

measures of the executions should be given. All of the test runs‘ solutions are 

evaluated with respect to the three performance measures: 

1. Total value of orders that are hard promised within the full planning horizon 

2. Number of hard promised orders 

3. Average lead time 

All of these performance measures are also measured with respect to the number of 

order classes. The first one can be thought as the primary performance measure and 

the other two can be thought as secondary performance measures. 

5.5.1. Experiments With the Problem Instance D1 

The problem instance D1 that corresponds to the original company data has been 

solved using each of the nineteen solution methods. All of the performance measures 

obtained with each solution method, i.e., total value, number of hard promised 

orders, average lead time are listed in Table 5-5. 

It is seen that the highest total order value is achieved by NGO with 18,638.8. The 

highest number of hard-promised accepted orders is achieved by two order classes 

with N2040 method with a value of 1701. The smallest average lead time is achieved 

by K2NCS with B30 method with a value of 0.906 days. 

When we compare the N (Normal), B (Batch) and O (Online) methods with the same 

time horizons, we see that the total value is maximized in batch methods and 

minimized in online methods as expected. It is important to notice that, sometimes, 

despite the fact that the number of hard promised orders is decreased; the total value 

is increased because the orders that have higher values are promised. We can see this 

interesting result when we compare the methods N1020 and B30. Method B30 has 

99 less orders that are hard promised, but has a total order value which is 858.22 

units higher.  
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Table 5-5: Performance measures‘ values - Problem instance D1 

   Clustering Method 

Solution 

Method  
Performance 

Measure K1 K2 K3 K2NCS 

           

  Total value 18638.8 - - - 

NGO 
# of hard 

promised orders 1655 - - - 

  Avg. lead time 7.961 - - - 

           

  Total value 16340.37 16564.68 16752.46 15988.06 

N1020 
# of hard 

promised orders 1681 1668 1682 1615 

  Avg. lead time 9.052 8.889 8.724 9.015 

           

  Total value 17198.59 17162.95 17131.06 16372.15 

B30 
# of hard 

promised orders 1582 1558 1565 1473 

  Avg. lead time 1.277 1.394 1.285 0.906 

           

  Total value 15840.59 15989.4 15919.79 15047.56 

O10 
# of hard 

promised orders 1626 1612 1606 1524 

  Avg. lead time 2.413 2.493 2.250 2.587 

           

  Total value 16458.6 16884.54 - - 

N2040 
# of hard 

promised orders 1686 1701 - - 

  Avg. lead time 10.883 11.171 - - 

       
    Total value 17716.6 17857.82 - - 

B60 
# of hard 

promised orders 1601 1612 - - 

  Avg. lead time 1.877 2.386 - - 

       
    Total value 16008.9 16278.54 - - 

O20 
# of hard 

promised orders 1651 1645 - - 

  Avg. lead time 6.114 6.141 - - 
 

 

When we compare the method N1020 with respect to the clustering method (number 

of order classes), we see that the total value increases when the number of order 
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classes increases. This is also true for N2040 method and the other shorter term 

methods such as O10 and O20, with the exception of the decrease in O10 from K2 to 

K3. Without loss of generality we can conclude that order classification has 

increased the total order value. 

It is also important to notice that using clustering software instead of manually 

segmenting the orders through dividing the number of distinct total order values into 

two increases the total order value in the methods N1020, B30 and O10.   

When we examine the average lead times, we notice that pure batch executions are 

more successful from the lead-time perspective. On the other hand 2-stage order 

promising methods have the maximum average lead times. However, one should also 

consider that in 2-stage order promising methods, a time window is given to the 

customers at the time of the order and the exact due date is also given to them as 

soon as possible (i.e., every Friday afternoon) which may somehow increase 

customer satisfaction.  

When we examine the solution method N1020 in more detail, we get some more 

insights. In Table 5-6, 5-7, 5-8 and 5-9 the detailed results of the solution method 

N1020 for the three order classes are listed.  At first glance, it is clearly seen that the 

percentage of hard promised CTOs is lower than the percentage of hard promised 

SEOs. This is an interesting result that needs more attention.  

Table 5-6: Order promising results based on number of order classes 

Number of 

Order Classes 
Result 

Number of 

Orders 

1 Hard Promised 1681 

1 Rejected 1216 

2 Hard Promised 1668 

2 Rejected 1229 

3 Hard Promised 1682 

3 Rejected 1215 
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Table 5-7: Order promising results based on number of order classes and product 

types 

Number of 

Order Classes 
Product Type Result 

Number  
of Orders 

1 CTO Hard Promised 532 

1 CTO Rejected 1104 

1 SEO Hard Promised 1149 

1 SEO Rejected 112 

2 CTO Hard Promised 552 

2 CTO Rejected 1084 

2 SEO Hard Promised 1116 

2 SEO Rejected 145 

3 CTO Hard Promised 540 

3 CTO Rejected 1096 

3 SEO Hard Promised 1142 

3 SEO Rejected 119 
 

 

At Stage-1 MIP model, in CTO configurations, features are attached to MTMs in a 

loosely coupled manner by means of equation (4.13). In other words, by tolerating 

the deficiency costs, which are set as 1.2 times the production costs in our 

experiments, it is possible to have a solution in which certain amount, 𝑦𝑝,𝑘,𝑡 , is 

allocated to an order class, but without a sufficient amount of features attached to this 

MTM. This flexibility for CTOs, which does not exist for the fixed models, results in 

lower CTO promises in the overall. One way to avoid this might be increasing the 

deficiency costs. However, having increased the deficiency costs, we end up with 

lower total objective function values and fewer fixed model allocations that also 

decrease the overall performance of the OPS. 
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Table 5-8: Order promising results based on number of order classes, order class 

and product types 

Number of 

Order Classes 
Order Class 

Product 

Type 
Result 

Number 

of Orders 

1 1 CTO Hard Promised 532 

1 1 CTO Rejected 1104 

1 1 SEO Hard Promised 1149 

1 1 SEO Rejected 112 

2 1 CTO Hard Promised 214 

2 1 CTO Rejected 439 

2 1 SEO Hard Promised 259 

2 1 SEO Rejected 4 

2 2 CTO Hard Promised 338 

2 2 CTO Rejected 645 

2 2 SEO Hard Promised 857 

2 2 SEO Rejected 141 

3 1 CTO Hard Promised 187 

3 1 CTO Rejected 374 

3 1 SEO Hard Promised 233 

3 1 SEO Rejected 1 

3 2 CTO Hard Promised 218 

3 2 CTO Rejected 477 

3 2 SEO Hard Promised 687 

3 2 SEO Rejected 66 

3 3 CTO Hard Promised 135 

3 3 CTO Rejected 245 

3 3 SEO Hard Promised 222 

3 3 SEO Rejected 52 
 

 

It is also observed in Table 5-9 that more than 50% of the hard promised CTO orders 

are firstly soft promised at stage 2. The main reason for that is the resource shortage 

for CTO orders. 
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Table 5-9: Soft promised orders based on number of order classes 

Number of 

Order Classes 
Product 

Type 
Result 

Number 

of Orders 

1 CTO Soft Promised 296 

1 SEO Soft Promised 512 

2 CTO Soft Promised 328 

2 SEO Soft Promised 422 

3 CTO Soft Promised 327 

3 SEO Soft Promised 462 
 

 

5.5.2. Experiments With the Problem Instance D2 

The problem instance D2 that corresponds to the new dataset having more 

allocations with respect to D1 has been solved using ten solution methods. All of the 

performance measures obtained with each solution method, i.e., total value, number 

of hard promised orders, average lead time are listed in Table 5-10.  

It is clearly seen that all of the total order values and number of hard promised orders 

increase and all of the average lead times decrease with respect to the problem 

instance D1. This is somewhat expected, because we have increased the resources by 

20 %, but left the order structure as is.  In other words, the same amount of demand 

is satisfied by 20 % more availability.  

In this problem instance D2, we achieve the maximum total order value as 21,164.85 

with the method NGO as expected. The maximum number of hard promised orders is 

achieved as 1975 by the method N1020 with one order class only. The minimum 

average lead time is achieved as 0.868 days by the method B30 with 3 order classes. 

It is also clearly seen that as the number of order classes is increased, the total order 

value also increases in N1020 method.  The only decrease in the total order value is 

observed in the methods O10 and B30 from K2 to K3.  
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Table 5-10: Performance measures‘ values - Problem instance D2 

   Clustering Method 

Solution 

Method  
Performance 

Measure K1 K2 K3 

         

  Total value 21164.85 - - 

NGO # of hard promised orders 1927 - - 

  Avg. lead time 7.942 - - 

         

  Total value 19549.78 19635.99 19735.62 

N1020 # of hard promised orders 1975 1969 1969 

  Avg. lead time 8.195 8.396 7.883 

         

  Total value 19118.05 19265.49 19179.79 

B30 # of hard promised orders 1758 1770 1755 

  Avg. lead time 1.120 1.045 0.868 

         

  Total value 18218.95 18651.31 18498.77 

O10 # of hard promised orders 1863 1887 1850 

  Avg. lead time 2.190 2.295 2.294 
  

Similar to the results of the experiments with D1, average lead time is shorter with 

the pure batch methods (B10); however, it is higher in 2-stage order promising 

methods (N1020). Again it is worth mentioning that, in 2-stage methods, customers 

can get immediate answers for their order which means an improvement in customer 

satisfaction.  

One of the most unexpected results of this dataset D2 is the decrease in both the 

number of hard promised orders and total order value with the B30 method compared 

to the N1020 method. This result may be due to the order structure. When a high 

value order with an order value of a is promised, it is possible that two lower value 

orders having order values b and c respectively may be rejected because of resource 

shortage that may result after promising the previous high value order a. If a < b + c, 

then both the number of hard promised orders and total order value may decrease. 

This might be a drawback of the batch order promising logic of OPS. 
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5.6. Conclusion and General Comments about the Experiments 

Having obtained the results for the two problem instances D1 and D2, there are some 

common observations that can be stated for the overall behavior of the approach.   

Firstly, increasing the number of order classes increases the total order value with the 

exception of the pure batch methods as expected. Secondly, in 2-stage order 

promising methods, it is possible to reach similar total order values as in pure batch 

order promising methods, especially when there is more supply that can be used to 

satisfy the demand. Without a 2-stage order promising approach, all of the soft 

promised orders from stage 2 are to be rejected which may result in degradation in 

the total performance as in pure online methods. 

The relative importance of the performance measures is very decisive while 

determining the overall performance of the solution methods. In our approach the 

main performance measure is the total order value, because all of the stages of our 

approach try to maximize it. The normal way of doing it is also to maximize the 

number of hard promised orders, but as we illustrate above, sometimes total order 

value maximization may decrease the number of hard promised orders. Besides 

promising orders ASAP, nothing has been done in order to minimize average lead 

times, i.e. backorder costs, increasing inventory holding costs, etc. 

Testing the proposed approach with other real life data especially with those 

belonging to other sectors might add some more value to the approach. Moreover 

having more accurate forecasts and an execution horizon with more than six months 

may help to validate the performance of the approach in a better way.   
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CHAPTER 6 

6. CONCLUSIONS AND DIRECTIONS FOR 

FURTHER RESEARCH 

In this study, a 4-stage availability management approach is proposed for CTO 

production environments. Before the arrival of the customer orders, the orders are 

segmented based on the historical sales data and then ATP quotas are allocated to 

these segments by means of an MIP model in order to increase the potential profit 

that can be obtained while promising the actual orders. Then the actual orders are 

promised by a rule-based Order Promising System (OPS) that is developed by Java. 

The insights of the study are experimented on IBM Enterprise Server Hardware 

division‘s processes and data. The applicability of the proposed approach to the 

dynamically changing needs is tested and verified through the experimental runs 

based on several scenarios. 

The proposed 4-stage approach can be considered an end-to-end solution approach 

that includes both push-based planning and pull-based execution processes. Since the 

stages are loosely coupled with each other, one or more of the stages can be removed 

as we illustrate in our experiments or replaced by another internal or external system 

according to the needs of the process and the enterprise.  

The results of the OPS are kept in the database. This lets the other external 

transactional or planning systems such as ERP, MPS or APS access that database and 

read the order promising results. Moreover, some interfaces can be given to the 

customers that enable them to check their order status from the central system. 

Alternatively, informing the customers by external messaging systems such as SMS 

or e-mails can be added to the solution.  
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The assumption of eventually hard promising every soft promised order at stage 3 

can be relaxed. This might be done in order to incorporate some supply and demand 

changes into the model in the forthcoming time periods. On the other hand, since our 

proposed approach will certainly make some of the soft promised customers 

unhappy, some offerings to those customers might be developed such as discount 

option for their other future orders or paying them penalty costs. 

Dynamic pricing, i.e., negotiating the price of the order with the customer during the 

order promising process and deciding whether to accept or reject the order by 

considering these negotiations can be added to the proposed approach. Moreover 

economies of scale, while determining the price and quantity of an order might be an 

interesting area to research. 

Applicability and value of the proposed approach for the other production 

environments such as ATO, MTO and MTS might be investigated deeply. Actually, 

our fixed model option is very similar to ATO and MTS environments. That is why 

the approach can easily been adapted to them with only slight changes. Moreover, 

hybrid production environments containing MTS, CTO and MTO processes at the 

same time might be investigated particularly from the availability management 

perspective.  

Determining the number of order classes and the actual orders classes can be 

considered to be one of the most challenging parts of the proposed approach. 

Moreover, the attribute -customer priority- that contributes to the value of the order 

is a subjective item that should be determined by the company. Increasing the 

number of order classes may increase the effectiveness of the approach; however, not 

only the computations and analyses become more complex, but also the approach 

becomes more vulnerable to forecast errors with respect to the order classes. In our 

approach, we have used only one dimension -total order value- as the segmentation 

attribute. On the other hand, more than one attribute can be used for order 

segmentation which means that the computations should be carried out in more than 

one dimension. In such cases, the use of a clustering algorithm/software like K-

Means or Two-Step Clustering becomes more valuable and unavoidable, since it 
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becomes even impossible to define the relationships among the attribute values 

manually. 

In our approach, for batch order promising, we use a rule-based java execution 

mechanism that tries to promise the orders having higher values as soon as possible. 

In other words, the order which has the highest value is hard promised first, then the 

second one and so on among the incoming orders during the whole batching horizon. 

This approach finds near-optimal solutions, because there is a possibility to get better 

results through a more involved optimization-based approach. The batch ATP 

mechanisms that are proposed in Ball et al. (2004), Chen et al. (2000), Chen et al. 

(2001) and Chen (2003) can provide better results from the total order value, number 

of hard promised orders and  average order lead time perspectives.  

In our 4-stage order promising approach, we do not use given due dates for the 

orders and backorder costs in both stage 1 and stages 2 & 3 online/batch java 

execution. We assume that all of the orders are expected to be promised as soon as 

possible (ASAP) and we give all the responsibility for early order promise to 

inventory holding costs. Introducing order due dates and backorder costs for the 

incoming orders or order classes might differentiate the problem and make the 

problem more appropriate and valid for some other enterprises and sectors.   

During our experimental studies, we do not face with performance problems in OPS 

system since our data are relatively small. In real life executions, especially where 

the number of transactions (orders) is extremely larger and number of clients using 

OPS at the same time is high, some technical considerations such as high availability, 

clustering, caching, etc. should be taken on board. Moreover, in e-business 

environments, where customers are also the stakeholders of the system, the response 

times of OPS might be a critical performance measure.   
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APPENDIX 

7. STAGE 1 OPL/CPLEX MODEL 

// *** DATA *** 

{string} ProductFamilies = ...;  // MTMs 

{string} FixedModels = ...;    // SEOs 

{string} Features = ...; 

{int}  Periods = ...; 

{int}  OrderClasses = ...; 

 

tuple BOMTuple { 

 key string m; 

 key string f; 

 int BOMAmount; 

}; 

{BOMTuple} BOM with m in FixedModels, f in Features = ...; 

int BOMValue[myBOM in BOM] = myBOM.BOMAmount; 

 

tuple ATPCTPTuple{ 

 key string f; 

 key int t; 

 int ATPAmount; 

 int CTPAmount; 

}; 

{ATPCTPTuple} ATPCTP with f in Features, t in Periods = ...; 

int ATPValue[myATPCTP in ATPCTP] = myATPCTP.ATPAmount; 

int CTPValue[myATPCTP in ATPCTP] = myATPCTP.CTPAmount; 

 

tuple ForecastFMTuple { 

 key string m; 

 key int k; 

 key int t; 

 int forecastAmountFM; 

}; 

{ForecastFMTuple} ForecastFM with m in FixedModels, k in OrderClasses, t in Periods = 

...; 

int ForecastFMValue[myForecastFM in ForecastFM] = myForecastFM.forecastAmountFM;  

 

tuple ForecastPFTuple { 

 key string p; 

 key int k; 

 key int t; 

 int forecastAmountPF; 
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}; 

{ForecastPFTuple} ForecastPF with p in ProductFamilies, k in OrderClasses, t in Periods = 

...; 

int ForecastPFValue[myForecastPF in ForecastPF] = myForecastPF.forecastAmountPF;  

 

tuple ValueTuple{ 

 key string mp; 

 key int k; 

 float val; 

}; 

{ValueTuple} ValueFM with mp in FixedModels, k in OrderClasses = ...; 

float ValueFMk[myValueFM in ValueFM] = myValueFM.val; 

 

{ValueTuple} ValuePF with mp in ProductFamilies, k in OrderClasses = ...; 

float ValuePFk[myValuePF in ValuePF] = myValuePF.val; 

 

tuple SLATuple { 

 key int k; 

 float SLAk; 

}; 

{SLATuple} SLA with k in OrderClasses = ...; 

float SLAkValue[mySLA in SLA] = mySLA.SLAk; 

 

float c[Features] = ...; 

float h[Features] = ...; 

 

tuple AttachRateTuple { 

 key string f; 

 key string p; 

 float attachRate; 

}; 

{AttachRateTuple} AttachRate with f in Features, p in ProductFamilies = ...; 

float AttachRateValue[myAttachRate in AttachRate] = myAttachRate.attachRate;  

 

tuple ExcDefTuple { 

 key string f; 

 key string p; 

 int exc; 

 int def; 

}; 

{ExcDefTuple} ExcDef with f in Features, p in ProductFamilies = ...; 

int ExcValue[myExcDef in ExcDef] = myExcDef.exc; 

int DefValue[myExcDef in ExcDef] = myExcDef.def;  

 

int NumberOfPeriods = ...; 

 

// *** DECISION VARIABLES *** 

dvar int+ yFM[FixedModels][OrderClasses][Periods]; 

dvar float+ yFMFeature[Features][FixedModels][OrderClasses][Periods]; 

dvar int+ yPF[ProductFamilies][OrderClasses][Periods]; 

dvar int+ yPFFeature[Features][ProductFamilies][Periods];  

dvar float+ x[Features][Periods]; 

dvar float+ I[Features][Periods]; 
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dvar float+ exc[Features][ProductFamilies][Periods]; 

dvar float+ def[Features][ProductFamilies][Periods]; 

 

// *** OBJECTIVE FUNCTION *** 

maximize 

 sum (m in FixedModels, k in OrderClasses, t in Periods) ValueFMk[<m,k>] * 

yFM[m][k][t] 

  + sum (p in ProductFamilies, k in OrderClasses,t in Periods) ValuePFk[<p,k>] * 

yPF[p][k][t] 

   - sum (f in Features, t in Periods) h[f] * I[f][t] 

   - sum (f in Features, t in Periods) c[f] * x[f][t] 

   - sum (f in Features, p in ProductFamilies, t in Periods) ExcValue[<f,p>] * 

exc[f][p][t] 

   - sum (f in Features, p in ProductFamilies, t in Periods) DefValue[<f,p>] * 

def[f][p][t];  

 

// *** CONSTRAINTS *** 

subject to { 

 

// Constraint 1 - FixedModel demand 

forall ( m in FixedModels, k in OrderClasses, t in Periods ) 

 sum ( t1 in 1..t ) yFM[m][k][t1] <= sum ( t1 in 1..t ) ForecastFMValue[<m,k,t1>]; 

 

 

// Constraint 2 - ProductFamily demand 

forall ( p in ProductFamilies, k in OrderClasses, t in Periods ) 

 sum ( t1 in 1..t ) yPF[p][k][t1] <= sum ( t1 in 1..t ) ForecastPFValue[<p,k,t1>]; 

 

// Constraint 3 - calculate y-i,m,k,t 

forall (m in FixedModels, f in Features, k in OrderClasses, t in Periods) 

 yFMFeature[f][m][k][t] == yFM[m][k][t] * BOMValue[<m,f>]; 

 

// Constraint 3 - is divided into two to avoid t-1=0 problem 

forall (f in Features) 

 ATPValue[<f,1>] + x[f][1] ==  

  I[f][1] + sum (m in FixedModels, k in OrderClasses) 

(yFMFeature[f][m][k][1]) +  

          

 sum(p in ProductFamilies) yPFFeature[f][p][1]; 

 

forall (f in Features, t in 2..NumberOfPeriods) 

 ATPValue[<f,t>] + I[f][t-1] + x[f][t] ==  

  I[f][t] + sum (m in FixedModels, k in OrderClasses) 

(yFMFeature[f][m][k][t]) +  

          

 sum(p in ProductFamilies) yPFFeature[f][p][t]; 

 

// Constraint 4 - FixedModel SLA 

forall (k in OrderClasses) 

sum ( m in FixedModels, t in Periods ) yFM[m][k][t] >=  

  SLAkValue[<k>] * sum ( m in FixedModels, t in Periods ) 

ForecastFMValue[<m,k,t>]; 
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// Constraint 5 - ProductFamilies SLA 

forall(k in OrderClasses) 

sum ( p in ProductFamilies, t in Periods ) yPF[p][k][t] >=  

  SLAkValue[<k>] * sum ( p in ProductFamilies, t in Periods ) 

ForecastPFValue[<p,k,t>]; 

 

// Constraint 6 - AttachRates - Excess - Deficit 

forall ( f in Features, p in ProductFamilies, t in Periods) 

 yPFFeature[f][p][t] == sum (k in OrderClasses) AttachRateValue[<f,p>] * 

yPF[p][k][t] + exc[f][p][t] - def[f][p][t]; 

 

// Constraint 7 - CTO Capacity 

forall (f in Features, t in Periods) 

 x[f][t] <= CTPValue[<f,t>]; 

  

} 

 

// POST PROCESSING 

 

tuple sonucSIIF{ 

 string a; 

 int b; 

 int c; 

 float d; 

}; 

{sonucSIIF} yFMler = {<m,k,t,yFM[m][k][t]> | m in FixedModels, k in OrderClasses, t in 

Periods}; 

{sonucSIIF} yPFler = {<p,k,t,yPF[p][k][t]> | p in ProductFamilies, k in OrderClasses, t in 

Periods}; 

 

tuple sonucSSIF{ 

 string a; 

 string b; 

 int c; 

 float d; 

}; 

{sonucSSIF} yPFFeatureler = {<f,p,t,yPFFeature[f][p][t]> | f in Features, p in 

ProductFamilies, t in Periods}; 

 

tuple sonucSSIIF{ 

 string a; 

 string b; 

 int c; 

 int d; 

 float e; 

}; 

{sonucSSIIF} yFMFeatureler = {<f,m,k, t,yFMFeature[f][m][k][t]> | f in Features, m in 

FixedModels, k in OrderClasses, t in Periods}; 

 

tuple sonucSIFF{ 

 string a; 

 int b; 

 float c; 
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 float d; 

}; 

{sonucSIFF} XIler = {<f, t, x[f][t], I[f][t] > | f in Features, t in Periods}; 

 

tuple sonucSSIFF{ 

 string a; 

 string b; 

 int c; 

 float d; 

 float e; 

}; 

{sonucSSIFF} ExcDefler = {<f, p, t, exc[f][p][t], def[f][p][t] > | f in Features, p in 

ProductFamilies, t in Periods}; 


