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ABSTRACT

MODELING AND CONTROL OF CONSTRAINED FLEXIBLE JOINT

PARALLEL MANIPULATORS

OGAN, Osman Can
M.S., Department of Mechanical Engineering
Supervisor: Prof. Dr. Kemal Ider

February 2010, 81 pages

The purpose of the thesis is to achieve a hybrid force and motion control
method of parallel manipulators working in a constrained environment, in the

presence of joint flexibility that occurs at the actuated joints.

A flexible joint is modeled and the equations of motion of the parallel
manipulator are derived by using the Lagrange formulation. The structural
damping of the active joints, viscous friction at the passive joints and the rotor
damping are also considered in the model. It is shown that in a flexible joint
manipulator, the acceleration level inverse dynamic equations are singular
because the control torques do not have instantaneous effect on the manipulator
end-effector contact forces and accelerations due to the flexibility. Implicit

numerical integration methods are utilized for solving the singular equations.

As a case study, a two legged constrained planar parallel manipulator with
three degrees of freedom is simulated to illustrate the performance of the
method.

Keywords: Parallel manipulator, flexible joint, inverse dynamics control
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ESNEK EKLEMLI KISITLANMIS PARALEL MANIPULATORLERIN

MODELLEMESI VE KONTROLU

OGAN, Osman Can
Yiiksek Lisans, Makine Miihendisligi Bolimii
Tez Yoneticisi: Prof. Dr. Kemal ider

Subat 2010, 81 sayfa

Bu tezin amaci, eklem esnekligi g6z oniline alinmis ve kisitli ortamlarda ¢alisan
paralel manipiilatorler i¢in kuvvet ve hareket kontrolii saglayacak bir kontrol

metodu gelistirmektir.

Esnek bir eklem modellenmis ve Lagrange formiilasyonu kullanilarak paralel
manipiilatoriin hareket denklemleri ¢ikarilmistir. Aktif eklemlerdeki yapisal
sontim, pasif eklemlerdeki viskoz siirtiinme ve eyletici rotorunun séniimii de
dikkate almmustir. Bir esnek eklemli manipiilatorde, kontrol torklarinin
esneklikten dolay1r manipiilator ucundaki temas kuvvetleri ve ivmelere ani etki
yapamadigi i¢in, ivme seviyesindeki dinamik denklemlerin tekil oldugu
gosterilmistir.  Tekil denklemlerin ¢oziimii i¢in kapali niimerik integral

metodolar1 kullanilmustir.
Metodun performansini gostermek icin, 6rnek olarak iki bacakli, ii¢ serbestlik
dereceli, kisitlanmis ve esnek eklemli diizelmsel bir paralel manipiilator ele

alinmustir.

Anahtar Kelimeler: Paralel manipiilatorler, esnek eklem, ters dinamik kontrol.
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CHAPTER 1

INTRODUCTION

1.1 Literature Survey

Parallel manipulators offer a closed-loop structure which yields some
advantages in comparison to serial manipulators such as ability to carry heavier
loads with greater accuracy and rigidity. The most common areas of
application for parallel mechanisms are where high-load capability and high-
motion accuracy are needed such as earthquake simulators and flight
simulators. Moreover, planar parallel mechanisms are commonly used in
micro-motion manipulators. Due to these advantages, parallel manipulators
have been studied intensively in the last two decades. On the other hand these
manipulators face with the trouble of having relatively smaller and limited
workspace and difficulties in design and control. Therefore, parallel

manipulators have become in the center of attention in various research areas.

There are many kinds of industrial robots which the end-effector moves along a
contact surface in order to perform operations such as assembling, welding,
grinding and deburring. In such applications, it is required to control the

contact forces and motion along the specified directions on the contact surface.

Besides, manipulators exhibit joint drive flexibility behavior, and it is
significant to take this into account in manipulator dynamics and control
system design in order to obtain high precision systems. Rivin [1] showed

experimentally that joint flexibility is the major source contributing to overall
1



robot flexibility. Also, Good et al. [2] showed that ignoring joint flexibility in
manipulator dynamics and controller design causes degradation in performance
of robots. Moreover, in some cases, joint flexibility may be a desired
phenomenon in especially high load systems for structural reasons.

Spong [3] introduced a flexible joint model which has led to many researchers
to study on flexible joint manipulators. He considered two nonlinear control
schemes; inverse dynamics approach and singular perturbation approach.
Inverse dynamics approach is based on elimination of intermediate variables
analytically and to obtain input torques as functions of end-effector motion.
The singular perturbation approach decomposes the system into slow (rigid
manipulator) and fast (flexible joints) subsystems consequently, system order
reduction is obtained.

Forrest-Barlach and Babcock [4] developed an inverse dynamics control
structure for a rigid-link cylindrical coordinate arm with drive train compliance

in the revolute and radial degree of freedom.

Jankowski and Van Brussel [5] presented inverse dynamics control in discrete-
time. In order to avoid the problem of computational complexity which arises
in classical inverse dynamics approach (resulting with the requirement of very
high sampling rates), numerical solution of singular sets of differential

equations is used.

Ider and Ozgodren [6] developed an inverse dynamics control algorithm at the
acceleration level. Implicit numerical integration methods that account for the
higher order derivative information are utilized for solving the singular set of
differential equations. Joint and rotor positions and velocities are the feedback

variables which are used to achieve asymptotic stability.

A hybrid force and motion trajectory control strategy for flexible joint robots is

studied by Hu and Vukovich [7] based on the concept of singular perturbation.



Jankowski and Elmaraghy [8] presented an analytical inverse dynamics
method for hybrid force and motion control. The input and output relationship
is obtained by analytically eliminating the intermediate variables. The
elimination procedure requires the differentiation of the equation of motion, the
acceleration level constraint equations and task equations twice which adds

complexity to calculations.

Ider [9] developed a force and motion trajectory control law for flexible joint
robots by numerically solving the acceleration level dynamic equations which
are singular. This study aims to avoid the drawbacks of classical methods.

Above mentioned studies are related on flexible joint serial manipulators.
There are very few contributions in the literature about parallel manipulators
which takes joint flexibility into account. Korkmaz [10] presented his M.S.
thesis on trajectory tracking control of a flexible joint parallel manipulator by
using the analytical inverse dynamics approach.

Survey of the literature related to modeling and control of flexible joint robots
provided by Ozgoli and Taghirad [11] ,and Dwivedy and Eberhard [12].

1.2 Objective

This thesis aims at hybrid force and motion trajectory control of the end
effector of a parallel manipulator, by using acceleration level analytical inverse

dynamics approach while taking joint drive flexibility into consideration.

To facilitate the solution, acceleration level inverse dynamic equations which
are singular are solved by using implicit numerical integration methods.
Structural damping in actuated joints, viscous friction in unactuated joints and
rotor damping characteristics are also included to the model. The control law
proposed achieves simultaneous and asymptotically stable trajectory tracking

control of the end-effector contact forces and the motion along the constraint

3



surfaces. It is aimed to avoid the further differentiations of the equation of
motion, the constraint and task equations which cause complexity for

calculations.

1.3 Outline of the Study

Following chapters are organized to explain the control method and the case

study.

In Chapter 2, flexible joint model and the dynamics of a parallel manipulator
with flexible joints are explained. Also, the system equation of motion and

closed loop constraints are introduced.

In Chapter 3, inverse dynamics control approach is explained. Task space
equations and the control law are introduced. The procedure to calculate the
control torques using acceleration level inverse dynamics equations is
explained. Also the procedure of elimination of unactuated joint variables from

the system constraint equations is explained.

In Chapter 4, a case study is performed by applying the theoretical knowledge
and method introduced in Chapters 2 & 3. A 2-RRR parallel manipulator is
studied, and results of simulations performed via the inverse dynamics control

method are presented.

Chapter 5 introduces a summary of the study, reviews and concludes the

simulation results.



CHAPTER 2

MANIPULATOR DYNAMICS

2.1 Overview

Consider an m-link parallel manipulator with n actuator rotors connected by
elastic transmissions. Usually, in a parallel manipulator the number of degree
of freedom is as many as the number of joints actuated unless the system is
overactuated or underactuated. Therefore, in this study it is taken as the parallel
manipulator has n degree of freedom. The closed loop system can be converted
into an open-tree structure by disconnecting a sufficient number of unactuated
joints. The degree of freedom of the open-tree structure is m, where the number
of independent loop closure equations is m-n. Let the set of generalized

coordinates corresponding to manipulator joint variables be denoted as
Gl = {01,...,9m} (21)

Therefore, manipulator joint variables of the open-tree system is denoted by the

vector
0=1[6y..6,] (2.2)

Let the manipulator joint variables be ordered such that the actuated and

unactuated joint variables are divided into two subvectors as
8=[q 6" (2.3)

where q is n x 1 vector of the actuated joint variables and 8" (m-n) x 1 vector

of the unactuated joint variables.



Elasticity in the transmission elements causes flexibility at the actuated joints.
The sources of elasticity are harmonic drives, couplings, and thin shafts used in

drive trains.

Joint elasticity and structural damping of an actuated flexible joint is modeled
as a torsional spring and a torsional damper. Figure 2.1 demonstrates the
dynamic model of a flexible joint.

e
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Figure 2.1 An Elastic Joint Model

The figure shows the i transmission, where 8y ; stands for manipulator joint

variable which corresponds to angular position of the driven link (k;) with

respect to the link (Z;) that the i actuator is mounted.

In this flexible joint model, z; stands for the rotor position of i actuator with
respect to the link that the actuator is mounted. ¢;, stands for the actuator

variable which is obtained as

¢ ="/r, i=1,.,n (2.4)



where 7; is the speed reduction ratio.
Second set of generalized coordinates corresponding to the actuator variables

are

GZ = {(nbl' R (nbn} (25)

Therefore, actuator joint variables of the manipulator is denoted by the vector

(I) = [¢1' ""d)n]T (26)

For the i™ transmission, K; represents the spring constant and D; represents the
damping constant.

2.2 Manipulator Dynamics

Some assumptions which were stated by ref [3] are made in the modeling of
the parallel manipulator in order to simplify the equations of motion and make

them more appropriate for analysis and control.

e The gear ratio is large enough so that the kinetic energy of the rotor is

due mainly to its own rotation. The rotational kinetic energy of the ith
actuator is 1/2 [I{(a)z +ri<i)i)2 + I (w? +w§)] where I7 is the
moment of inertia of the ith rotor about its rotational axis, I/ is the
moment of inertia of the cylindrical rotor about the axes perpendicular
to the rotation axis through the mass center and wx, wy, w, are the
angular velocity components of the link on which the actuator is
mounted where the rotor angle is measured about z-axis. Since wy, wy,
o, and ¢; have the same order of magnitude, the rotational Kinetic
energy of the rotor is approximately 1/2 1] (rl-dJi)Z if r; is sufficiently
large [13].



e The rotor/gear inertia is symmetric about the rotor axis of rotation so
that the gravitational potential of the system and the velocity of the
rotor center of mass are independent of rotor position.

e The links of the manipulator are rigid.

The elastic transmission between the links and the actuators introduce
additional degrees of freedom. Therefore, rotor of each actuator is modeled as a
fictitious link. As a result, n degree of freedom is added to the system which
makes the overall system a 2n degree of freedom system.

Lagrange’s equations are used to find the equations of motion corresponding to
two sets of generalized coordinates which were declared in Equations 2.1 and
2.5.

The Lagrange’s equation for the first set of generalized coordinates

corresponding to the manipulator joint variables

d (9K\ 0K 0D U _, . 1 @7
—_— ] - — _— —_ = P . = ) ...,m .
dt\oe;) 96, a6, a6 T T !

The Lagrange’s equation for the second set of generalized coordinates

corresponding to the actuator joint variables

d (0K 0K N oD N ou 0’ 1 2.8)
— — | — - — = . i=1,..,n .
dt\og;) 0¢i o, 0o,

where K, D, U, 0, Q' and Q" stand for kinetic energy, dissipation function,
potential energy, generalized contact force, generalized constraint force and

generalized actuator force terms respectively.

2.2.1 Kinetic Energy

Kinetic energy of a link can be defined as
8



KEy =3mH(Vph) Vek + 2 @17 oyt (2.9)
where

Vel = 2, W6, (2.10)
ot =X, Q56 (2.11)
fiL = [ced]t[con] (2.12)

In the above equations,

is the mass of the i link.

is the mass center velocity vector of the i link as expressed in fixed
reference frame.

is the velocity influence coefficient vector.

is the angular velocity of the i link as expressed in fixed reference
frame.

is the angular velocity influence coefficient vector.

is the moment of inertia matrix of the i link as expressed in fixed
reference frame.

is the transformation matrix from the reference frame attached to the i
link to the fixed reference frame.

is the moment of inertia matrix of the i" link as expressed in its body

reference frame.

The Kinetic energy of a link can be rewritten by substituting the Equations 2.10
and 2.11 into Equation 2.09:

m m
KE,, = Z Z mk, 6,6, (2.13)



mjj,; = 0.5m} (WijL)TWikL + % (ﬁijL)Tii " (2.14)

Kinetic energy of an actuator can be expressed similarly as

KEy = 0.5m{ (V") Vst +3 (@) 143, (2.15)
where
m
Vil = ) W4 (2.16)
j=1
m
B =) 0,6+ O, (2.17)
j=1
A= [C"(O,i)]Z‘iA[C"(O,i)]T (2.18)

mA is the mass of the i actuator rotor.

VA is the mass center velocity vector of the i actuator as expressed in
fixed reference frame.

W4 s the velocity influence coefficient vector.

@, is the angular velocity of the i actuator rotor as expressed in fixed
reference frame.

QL . isthe angular velocity influence coefficient vector of the previous link.

I.A is the moment of inertia matrix of the i™ actuator rotor as expressed in

fixed reference frame.

¢l s the transformation matrix from the reference frame attached to the ;"

actuator rotor to the fixed reference frame.

10
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S

is the moment of inertia matrix of the i"™ actuator rotor as expressed in
its body reference frame.

C©D s the transformation matrix from the reference frame attached to the i"
actuator rotor to the fixed reference frame.

is the unit vector along rotation axis of the i actuator rotor in the link

&

frame on which the actuator is mounted.

Assumption-1 which was introduced in Section 2.1 is called up into the
formulation and the angular velocity of the i"" rotor turns out to be as

w4 = COWu1, (2.19)

Therefore kinetic energy of an actuator can be expressed in more compact form

as
1 =T = 1 .
KEy =mf (Vé) vé + I (2.20)

By Assumption-2 which is associated with the mass distribution of the rotor,
symmetric mass distribution is assumed. From symmetry consideration, it is
assumed that the coordinate axes are principal axes of the cylinder. Moreover,
mass center velocity of the actuator rotor VGiA does not depend on the rotor
position since mass center velocity is the translational velocity of the fixed

point at the ;" link.

Total kinetic energy of the system is expressed as the sum of kinetic energy of

the links and actuators.

m n
K= Z KE,; + Z KE,; (2.21)
i=1 i=1

11



2.2.2 Potential Energy

For a rigid link, potential energy is due to gravity only, and depends on the

position of the link. This fact can be expressed as

PELi == —‘g_TmlL’FiL (222)

where
g’ is the gravitational acceleration vector

I is the mass center position of the link as expressed in the fixed

1

reference frame.

For an actuator, potential energy is due to the combination of both gravity and
elastic potential of the joints. This is expressed as

2
PEy = =g m{7 + 5 Ki(0, — &) (2.23)
where
K; is the spring constant of the joint of i"" transmission.
r is the mass center position of the actuator as expressed in the fixed

reference frame.

Total potential energy of the system is expressed as the sum of potential energy

of the links and actuators as expressed below.

m n
U= Z PE,, + Z PE,; (2.24)
i=1 i=1

12



2.2.3 Dissipation Function

There is a positive definite dissipation function in the manipulator system
which can be partitioned into four as
The dissipation function;

e due to structural damping at the actuated joints

e due to damping that occurs at the rotors of the actuators

e due to viscous friction at the unactuated joints

e due to viscous friction at the disconnected joints

Consequently, the total dissipative force of the manipulator is the sum of these

individual dissipative forces.

Dissipation function due to structural damping at the actuated joints,
n
a 1 als . N2
pe = Ez D& (6, —) (2.25)
i=1

where

Df is the joint damping constant of i transmission.

i

Dissipation function due to damping that occurs at the rotors of the actuators,
n
r 1 r Y
DT =2 D (rid) (2.26)
i=1

where

D is the damping constant of i actuator.

i

13



Dissipation function due to viscous friction at the unactuated joints,
m-—-n
u 1 u N2
D¥ == > Di'0f (2.27)
i=1

where

D} is the joint damping constant of i unactuated joint.

Finally, let D¢ denote the dissipation function due to viscous friction at the
disconnected joints.

Therefore, total dissipation forces of the system can be expressed as

D = D%+ D" + D* + D¢ (2.28)

2.2.4 Generalized Contact, Constraint and Actuator Forces

Generalized forces of the system model consist of generalized contact forces,
generalized constraint forces and the forces inherent in the structural members
of the drive trains. Contact forces are provided by drive trains and constraint
forces are imposed on the system by disconnecting a sufficient number of

unactuated joints.

The virtual work done by the manipulator corresponding to the first set of
generalized coordinates, i.e. the manipulator variables is used to obtain the
generalized contact forces. The virtual work done by the second set of
generalized coordinates, i.e. the actuator variables is used to obtain the torques

after speed reduction. Equations 2.29 & 2.30 indicate the virtual work done by

14



the manipulator corresponding to the manipulator and actuator variables

respectively.
SW; = F£86; i=1,..m (2.29)
6W”i+m = Ti6¢i i = 1, . n (230)

Therefore the generalized force terms obtained from the virtual work equations

are found as
Q; =Ff i=1,..m (2.31)

Q”i = Ti i = 1, W n (232)

m-n loop closure constraint equations are obtained by reconnecting the

disconnected joints. This can be expressed at position level as
Y, (64, ...,6,) =0 i=1,..(m—n) (2.33)

Differentiating Equation 2.33, following velocity level relation is obtained,

m

ZBUe'?j:o i=1,..(m—n) (2.34)
j=1

which can be expressed in matrix form as
BO =0 (2.35)

where B is the (m — n) x m constraint Jacobian matrix with

15



By = alpi/agj (2.36)

Velocity level constraint equations can be written in virtual form in order to

obtain generalized constraint forces.

Z B, 66, =0 i=1,..,(m—n) (2.37)
i=1

Furthermore, it can be written as

3

B, 66| =0 (2.38)

Ui ij 'j

—n m
=1

L

J

Il
_

i [mil uiBij] 56, =0 (2.39)

]:1 i=

Therefore, the generalized constraint forces corresponding to the manipulator

variables can be defined as

Q; = Z By j=1,..,m (2.40)

where

u; are the Lagrange multipliers with i = 1,...,m —n

16



2.3 System Equations of Motion

Two sets of generalized coordinates lead to two sets of equations of motion for
the dynamic system. When the kinetic energy, potential energy, dissipation
forces and generalized forces which were described in previous sections, are
imposed into Equations 2.7 and 2.8, and manipulated for both sets, equations of

motion are obtained.

The equations of motion corresponding to the first set of generalized

coordinates, i.e. the manipulator variables are

m-—-n

n
Z Mllj{ Hl + Qi + Dai + Stl(Ql - d)l) - Fl-C - Z ,LllBl] =0 (24‘1)
k=1 i=1

The equations of motion corresponding to the second set of generalized

coordinates, i.e. the actuator variables are
I'r?¢; + Drig; — Di(éi - ¢1) - K6, —¢) =T, (2.42)

The equations 2.41 and 2.42 can be written in matrix form as follows.

M(0)6 + Q(6,0) + Da(6, ) + St(6, p) — FC —BT(@)u =0 (2.43)
where

M(0) is the mxm symmetric positive definite generalized mass matrix,
Q(e,0) is the mx1 vector which contains Coriolis, centrifugal and

gravitational terms.

Da(6, p) is the mx21vector which contains damping terms,
St(6, ¢) is the mx1vector which contains stiffness terms,
F¢ is the generalized contact force vector

17



BT(0)p

is the generalized constraint force vector

1 is the (m—n)x1 vector whose elements consist of the Lagrange
multipliers which mean the constraint forces imposed on the
disconnected joint.

"¢ +D'¢-D*(q-¢)-K@-¢) =T (2.44)

where

Ir is an n x n matrix whose elements are the inertial parameters of
the links and can be expressed as
I' = diag[l] ] (2.45)

Dr IS an nxn matrix whose elements are the inertial parameters of
the rotors and can be expressed as
D' = diag[D] 1/ (2.46)

D2 IS an nxn matrix whose elements are damping constants of the
actuated joints and can be expressed as

D? = diag|[D;] (2.47)

K is an nxn matrix whose elements are spring constants of the
actuated joints and can be expressed as
K = diag[K;] (2.48)

T is an nx1 vector whose elements are control torques after speed

reduction.
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2.4 Constraint Equations

System constraint equations are essential for derivation of generalized forces as
mentioned in Section 2.2.4.

Let the Cartesian end-effector coordinates be represented as x; i=1..,n. The
relation between the end-effector Cartesian coordinates and the generalized

coordinates, i.e the joint variables 6,, can be expressed as
x = f(0) (2.49)

The contact of the manipulator end-effector with the environment can be
described by following constraint equations.

g:(x,t) =0 i=1,...r (2.50)

Above equation can be written in velocity level and writing x and x in terms of

0 and 6 as follows

E;(6,8)6 +G;(6,t) =0 i=1,..r (2.51)
where

_0g;
E; = /aé,- (2.52)

Equation can be written in matrix form as

EO6+G=0 (2.53)
where E is an r x m matrix.

Generalized contact forces can be expressed as

F¢ = ET} (2.54)
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where

A is the vector of Lagrange multipliers that represent the contact forces
which are perpendicular to the constraint surface

Also, m-n constraint equations are derived by disconnecting sufficient number
of unactuated joints which are necessary to obtain generalized constraint
forces. This physically means the net torque applied by the joint forces at the
disconnected joint(s). Constraint equations are also used to express unactuated
joint coordinates in terms of the actuated ones which are necessary to reduce
the number of dynamic equations by eliminating the unactuated joint variables.

As described in Section 2.1, manipulator joint variables can be partitioned into

two subvectors as

. . . T

6=[q 6 (2.55)
where q is n x 1 vector of the actuated joint variables and 8 (m-n) x 1 vector

of the unactuated joint variables.

Loop closure equations are used to construct (m-n) x m matrix B as in

Equation 2.34. Matrix B can be subdivided into two subvectors as
B =[B* BY] (2.56)

where B? is an (m-n) x n matrix corresponding to actuated joint variables and

B" is an (m-n) x (m-n) matrix corresponding to unactuated joint variables

ence Equation 2.35 can be written as

BU6" = —B?q (2.57)
Above equation can be solved for 8" as follows.
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0" = —(BY)1B2q (2.58)
Further differentiation of the Equation 2.58 yields

ou = — ((B“)_lBa + (Bu)—lBa) q - (BY)"1B3j (2.59)
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CHAPTER 3

INVERSE DYNAMICS CONTROL

3.1 Task Space Equations

The control method used for the parallel manipulator is based on the
calculation of input torques in order the system to perform the specified tasks.
The prescribed end-effector contact forces and the prescribed motion

trajectories along the constraint surfaces are the tasks of the manipulator.

It is necessary to specify a relation between input and outputs of the system.
System inputs are joint torques, or voltages applied to the actuators and system
outputs are the end-effector contact force and independent end-effector

positions along the constraint surfaces.

Let the independent coordinates along the constraint surface represented as y;,

i=1..,n - r which can be expressed as
v; = h;(x,t) i=1.,n—7) (3.1)

Above expression leads to the following velocity relation with writing x and x

in terms of 8 and 6

= Z P, (0,06 +H(6,8)  i=1,.,(n—71) (3.2)
=
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where

_ Oh
P, = /ae'j (3.3)

Equation 3.2 can be written in matrix form as
y= PO +H (3.4)
where P is the (n-r) x m manipulator Jacobian matrix.

The matrices E and P which were derived in Equations 2.52 and 3.3
respectively can be written in terms of actuated variables, by making use of the
Equation 2.58.

E can be partitioned into » x n matrix E? and » x (m-n) matrix E* according to
the the coefficient matrices of the joint variables to which they correspond.

This can be expressed as follows.

[E2 EY] [;{l]+c=0 (3.5
Above equation can be written as

E?q+ E"9"+ G =0 (3.6)
Substituting Equation 2.58 into Equation 3.6 yields

E2q + E'[-(BY)1B2q]+ G =0 (3.7)
Factoring out the joint coordinates of the actuated variables yields
E'q+G=0 (3.8)
where E* is » x n matrix as below.

E* = E2 — EY(BY)"!B2 (3.9)
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Differentiating Equation 3.8 gives
E‘§+E'q+G=0 (3.10)

Similar operations can be performed for partition of P and following
expression can be obtained.

P'q+H=y (3.11)
where P* is (n-r) x n matrix as below.

P* = P2 — PY(B")"1B2 (3.12)
Differentiating Equation 3.11 gives

P'g+Pq+H=5 (3.13)

Equations 3.8 and 3.11 can be written in augmented form as follows.

pla+ ) =5) (314

Therefore, the relation between the actuated joint coordinates and the

independent end-effector coordinates can be defined as
q=vy— (MG + vH) (3.15)

where n X m matrix n and n x (n-m) matrix v are defined as
m vi=[E]" (3.16)
= p- ,

At this point, it is convenient to write the system equations of motion in terms
of the actuated joint variables by eliminating the unactuated joint accelerations
and the Lagrange multipliers p which represent the forces at the disconnected

joints.

M and Q can be partitioned according to the actuated and unactuated joint

variables to which they correspond as follows.
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_ [BI/\I/I"“T xu:] (3.17)
and
Q= [8] (3.18)
where

M2 is an n x n submatrix generated from symmetric generalized mass

matrix.

M2 s an n x (m-n) submatrix generated from symmetric generalized mass

matrix.

M"* is an (m-n) x (m-n) submatrix generated from symmetric generalized

mass matrix.

Q? isann x 1 submatrix generated from Q vector that contains centrifugal,

Coriolis and gravitational terms

QU is an (m-n) x 1 submatrix generated from Q vector that contains

centrifugal, Coriolis and gravitational terms

Equation 2.43 can be written in two parts as

Mg + M28" + Q* + D*(q— $) + K(q— ) +E'A—B* p=0 (3.19)

and

M2t § + M"Y + QU+ RO — BV u=10 (3.20)
where

R is an (m-n) x (m-n) matrix containing the dissipation terms related to

the unactuated joints.
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Equation 3.20 can be solved for Lagrange multipliers as follows.

w=(B") {M™"§ + M™B® + Q" + ROV} (3.21)

Substituting Equations 2.58, 2.59 and Equation 3.21 into Equation 3.19 yields

the n dimensional dynamic equation shown below.
MG+Q +D*(q—¢) +K(q—p) +EA=0 (3.22)
where,
M* = [M2 — MauBu~"B2] — BaT(Bu—l)T[MauT — M"BB?]
(3.23)
Q = [_MauBu—lBa n BaT(Bu—l)TMuuBu—lBa] q
+ [-Mauutgo 4 BaT(Bu1) ' MuBHTIBY + R| 6" + Q°

—BT(B* ) Qv (3.24)

Intermediate variables g and @ can be eliminated from the dynamic equations
to obtain a relation between the input torque T and outputs which are the
contact forces A and independent coordinates of end effector along constraint
surface, y. After the similar elimination procedure which is explained in ref [1],

the input output relation is obtained as follows.

AMY® +ZWA+ R ¥,¥,y,4,1) =T + ST (3.25)
where
A = K 1IRM*v (3.26)
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Z =K 11"E*" (3.27)
S=K1D (3.28)

R=K{rr[m" (3vy + 3y + vy

— (/G + 311G + 301G + nG + VH + 3VH + 3vH + nH)

+2M G+ Mg + 0" + DG + Kg + E* A+ E*T)L)]

+ D"(Dq + Kq)

+@+D) (MG+MG+Q +E A+ETA)}+ Mg +Q

+ETA

(3.29)

An inverse dynamics control law can be formulated using the above equation
which will linearize and decouple the system. Corresponding control torque
vector T can be calculated by using numerical integration. However, this
operation will require the calculation of M, M, Q, Q, i}, , V,V, G, G, H, H which
will cause extremely long and complex expressions which will end up with

long computation time. As a result, this approach is impractical for real time

applications especially for systems with degrees of freedom more than 3 [9].

3.2 Control Law

In order to avoid the drawbacks of the above mentioned algorithm, the
dynamic equations will be utilized at the acceleration level to compute the

required input torques.

Equations 3.22, 2.42, 3.10 and 3.13 can be written in augmented form as
below.
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M* ue lf—Q* -D(q-¢) -K(g—¢) - E*TF]I

1?* IJ (I) b| = | D(a - q;);r K((.? —¢) | (3.30)
* T - -

oo | -P'q-H+z |

¥y and A are replaced by control variables z and I" which represent ‘command

accelerations’ and ‘command contact forces’ respectively.

Equation 3.25 shows that, in the forward dynamics, torque vector T
instantaneously affects the end-effector jerk rate y* and end-effector contact
force second derivative 4. In order to linearize and decouple the system,
highest order derivative in the input output relation should be taken into
consideration, therefore in the control law command jerk rates and command
contact force second derivatives should be expressed. Z and I' can be
formulated with errors and the desired values which are denoted by superscript

d as below.

Z=yWi+¢y (Y(3)d - Y(3)) + C; (Yd - Y) +C3 (37(1 - Y) + C4(yd - Y)
(3.31)

and
=2 +B; (A -1) + B, =) (3.32)

where C;, and B; are constant feedback diagonal matrices which can be

formulated as below.
C; = diag[C;] i=1,..4 j=1.,n—r  (3.33)

B; = diag[B;| i=1,2 j=1,.,r (3.34)
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For the inverse dynamics problem solution, Equation 3.30 can be written with
rows that involve only kinematic variables. First, third and fourth rows of the
Equation 3.30 will yield the inverse kinematic equations. It involves inertia,
elastic and prescribed contact force terms because of the joint flexibility in the
system. Second row of the Equation 3.30 is for computing torques. Hence,

inverse kinematic equations can be written as below.

M* 0] g -Q' -D(a-9)-K@-)—E"'T
ol e
P* 0 -P'q—-H+1z
However, acceleration coefficient matrix in Equation 3.35 is not invertible
which leads to a singular set of differential equations. This is caused by the
elastic media where the torques are transmitted to the end-effector. Elasticity in
the joints prevent the control torques to have instantaneous effect on the end-
effector accelerations and contact forces which can also be justified by
Equation 3.25 showing the control torques have effect on second derivatives of

end-effector accelerations and contact forces.

Since explicit system of ordinary differential equations cannot be obtained
from Equation 3.35 because of the singularity, implicit numerical integration
methods must be used. Among the implicit integration methods, backward

Euler method will be applied.

Below shown backward difference approximation is used to obtain backward

Euler formulation.

Virr & Vkr1 — i) /h (3.36)

Therefore, the backward Euler method is shown as

Yi+1 = hWVk41 + Yk (3.37)

where h is the sampling time and k is the time step number.
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At this point, Equation 3.30 can be rewritten by using Equation 3.37 at time

tev1. TO do this, @, q, ¢ and ¢ are replaced by %(qkﬂ — i), hQrs1 + Qi

%((i)kﬂ — ¢k) and A1 + ¢y respectively as follows.

1 . . i . :
M*E (k1 — @) + Q" + D (A1 — Prs1)

+ K(hQus1 + Qe — hprrr — i) +E' T =0

(3.38)
1, . g , .
I n (b1 — dx) + D*drrs — D(Qis1 — Prcs1)
— K(hQis1 + 9 — A1 — Pi) = Tis
(3.39)
E*%(qk+1 —q) +E'q1 +G=0 (3.40)
1. . L :
P*—(Qi+1 — i) + P qeyr + H = Ziyq (3.41)

In the above equations M*(hqy;+1 + qx), Q*(hQk+1 + Ak, Aks1)s E*(RQge1 +
A t),  E'(hQei1+ G i t), P (R + o t), P (Rieq + Qi
A+t 1), G(hir1 + Qi Qierrt) and H(hQyyq + Qi i, t) depend on
Qx+1- Equations 3.40 and 3.41 represent n number of nonlinear algebraic
equations. Therefore, Equations 3.38 - 3.41 represent 3n algebraic equations

which can lead to the solution of 3n unknowns which are .1, $rsq and

Ti+1.

For the calculation of unknowns, command accelerations zx+; and command
contact forces I «+1 need to be specified. Therefore it is required to integrate
Equations 3.31 and 3.32 twice. Since desired motion and force trajectories are
given as piecewise smooth functions in common practical applications, let the

integration be performed in the time interval t, <t < t;.
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Integration of Equation 3.31 twice yields the following expression.

Z=2,+2,(t —t,) + ¥ — 3 -yt - t) + C[(y' —y) - (32 — va) —
(yg - Ya) (t - ta)] + CZ[(yd - Y) - (y;ll - Ya) - (Y::il - Ya)(t - ta)] -
C3(y8 = ya) (¢ — to) + C3 J, W (D)dz + €4 [, | [ W (s)ds|dr

(3.42)
where w = y9 —y.
And integration of Equation 3.32 twice yields the following expression.
T=T, +(t—t)+ 2% =22 — 22t —t,) —B1(A2 — A)(t —t) +
B, ftta p()dt + B, f; [f; p (s)ds] drt
(3.43)

where = A4 — A.

Since the dynamic equations are written at time ty+1, Zx+1 and I" 41 are written
in discrete time and use the y, y*, A, &Y and their derivatives at time t.

Therefore Equations 3.42 and 3.43 can be written as

Zir1 = Za + Za(r1 — to) + Vit — Y8 — ¥ (tys1 — to)
+ C1[ (78 — i) — (78 — ¥a) — (78 — ¥a) (tres1 — )]
+ C[(7% — vid) — (v8 = va) — (58 = ¥a) (tie1 — ta)]

— C3(yd — ya) (tiy1 — ta) + C3(AWyq + Wy)
+ C4_ (hZWk+1 + hWk + Wk) (344)

where Wy, = y& — vy and,

Tipr = Lo 4+ TGy — t) + A — 28 — A (tgpq — t) = B1 (A — A) (tr41 —
to) + By (hpry1 + D) + Co(R2Pyy1 + hpy + pi) (3.45)
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Where P.k+1 == Az - Ak'

It should be noted that since control torques cannot effect the end-effector
accelerations, jerks, contact forces and its derivatives, any jump or step change
iN Zks1, Tke1, Zies and T e will result with infinitely large input torque
requirements. To be away from this condition, Zxs1, Tk+1, Zker and T a1 are
matched at the discontinuities of the desired trajectories. This is obtained by
freely selecting the integration constants such thatz, = z(t}) = z(t;),
72, =2(tD) =2z(t]), T, =Tt =T(t;) and I, =T} =T(t;). If the

system is at rest initially, therefore, z, = 0,2, =0,T, =0, I, = 0.

Equations 3.40 and 3.41 represent n number of nonlinear algebraic equations
which n dimensional vector ;.1 can be solved. Measured qy and q, are used
to find y, and yy to obtain zx+1 which is expressed in Equation 3.44 and used in
Equation 3.41.

After obtaining .1, Px.1 is calculated by using Equation 3.38 as follows.

$ii1 = (Kh+D)7! [M*%(qk+1 — ) + Q"+ K(qi — ¢i) + E*Trk+1] +

Qi1 (3.46)

Ic,+1 can be obtained from Equation 3.45. The required contact force A, value
for calculation of command contact forces I, does not need to be measured
since it can be calculated from measured quantities. Solving Equation 3.22 for

¢ and inserting into Equation 3.10 in time tx yields the following expression.

L = (E'MTET) {—E'M Q" + DA(ay — i) + K(qi — bi0)] + E*di
+GJ
(3.47)
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where M*, Q*,E*,E* and G are calculated at time t.

Finally, Equation 3.39 is utilized to compute the control torques T+1.

3.3 Error Dynamics

Command jerk rates and command contact force second derivatives are
specified in the previous section and system is linearized and decoupled with
the computed torques.

Let e, and ey represent the deviations of the measured position and contact

p
forces from the desired ones as follows.

e, =y"—y (3.48)

er = A1 —1 (3.49)

Assume that there is no modeling error and disturbances in the system. After
application of control torques, this condition will lead to the actual
accelerations and contact forces to be equal to z and I" respectively, i.e. y = z
and A = T'. Therefore following error dynamics is obtained by using Equations
3.31 and 3.32.

el + C1&, + Cy6, + C3¢, + Cye, = 0 (3.50)

Asymptotic stability is realized by an appropriate selection of feedback gains.
To do this, performance indices such as Integral Square Error (ISE), Integral of
the Absolute Magnitude of Error (IAE), Integral Time Absolute Error (ITAE)
and Integral Time Square Error (ITSE) can be utilized. In this study ITAE

performance index which is shown below will be utilized.

ITAE = [ tle(t)| dt (3.52)
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By using ITAE performance index, due to the multiplication by time t, effect of

large initial error is reduced while small errors in long-term are penalized.

The form of the characteristic equation based on the ITAE criterion for a

closed-loop system is s™ + C;s™ ™1 + C,s™ 2 + -+ C,,. The coefficients for a
second order and fourth order systems according to ITAE are given below[15].

Table 3.1 Feedback Gains

Feedback Gains

Second Order system

Fourth Order System

Bi, C1 1.4wg 2.1 wo

B,, C» o- 3.4 wy’
Cs - 2.7 wo’
Ca - w0’

where wg is a constant value.
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CHAPTER 4

CASE STUDY AND SIMULATIONS

4.1 Case Study

To demonstrate and evaluate the performance of the control law explained in
the previous chapters, a planar parallel manipulator shown in Fig.4.1 is
considered. Classification of parallel manipulators is usually according to the
number of legs from the fixed base to the moving platform, and the number
and type of the joints that these legs have. The parallel manipulator to be
studied is called as a 2-RRR parallel manipulator which means that it has two
legs and each of them has three revolute joints from the fixed base to the

moving platform.

The planar parallel manipulator’s end-effector is in contact with a defined
surface which is a fixed plane parallel to the x-z plane for this case study. The

contact force which is perpendicular to that surface is imposed on the system.
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Figure 4.1 2-RRR Parallel Manipulator

The system has six links including the fixed link and six revolute joints. It is
actuated by three actuators placed at A, B and C whose joint variables are 6,
6, and 5. The manipulator has three degrees of freedom. Additional degrees of
freedom take place due to flexible joints which increases the degrees of
freedom of the system to six. Rotation of the actuators is perpendicular to the

plane of motion and the weights act in —y direction.

The viscous damping of the actuators and the torsional damping characteristics

of the structural members in the drive train are included in the dynamic model.

Let the sets of generalized coordinates corresponding to the manipulator and

actuator variables expressed respectively as follows.
Gl = {91I92I 9?”94: 95} (41)

Gy = {91, $2, 93} (4.2)

The vector of manipulator variables for the rigid links can be written as
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0=1[0, 6, 6; 6, 065]" (4.3)

which can be partitioned into two subvectors according to actuated and

unactuated joint variables as follows.

8=[q 6 (4.4)
where,

q=1[0, 0, 65]" (4.5)
ou=1[6, 6] (4.6)

The vector of actuator variables are expressed as

d=1[p1 ¢ ¢sl" 4.7

The manipulator has three degrees of freedom, i.e. n =3 excluding the
additional degrees of freedom that come up due to the flexible joints and five
joint variables are defined, i.e. m = 5. This leads to two constraint equations
since m —n = 2 after disconnecting the joint at point F to get two open
kinematic chains. These open kinematic chains with the unit vectors are shown
in Fig. 4.2 and Fig. 4.3. In the figures, A and u;, i = 1, 2 stand for the contact
force perpendicular to the constraint surface and the forces apply to the

disconnected joints in horizontal and vertical directions respectively.
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Figure 4.2 First Open Kinematic Chain
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Figure 4.3 Second Open Kinematic Chain
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As described in Chapter 2, equations of motion for the system are going to be
derived by using the Lagrangian formulation in the following sections.

4.1.1 Kinetic Energy

Kinetic energy expressions are obtained by substituting the translational and
angular velocity components for each link and actuator into Equations 2.9 and
2.20 as shown below.

Link-1
o _Li _ _
Tal = 7 (u1C01 + u2591) (4‘8)
{‘759191}
V(O) _G(O) =5 (—u150191 +1,¢6,6;) = | L, | (4.9)
' | 70 191 |
L “ o |
0
@ = 6,ii3 = [Q] (4.10)
6
Therefore kinetic energy of Link-1 is expressed as
1 le
KELl = 2 4 + IlZZ 91 (411)
Link-2
L
oy = dotly + 72(171692 + U;56,) (4.12)
L .
20
V(O) —(0) Ly, _ ; — . | |
7o (—u159292 +1Uyc0,0,)=| L, . (4.13)
2 l 76‘9292 J
0
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0
6&0) = ézﬁg = [O]

6,

Therefore kinetic energy of Link-2 is expressed as

KE —1 L22+I 0
L2_2 4_ 2zz

Link-3

L
_(0 _ B 3 ~
TG(3) = Ll(ulcel + u2591) + 7(1116'913 + u25913)

V(O) —(0) — Ll(—u159191) + ( u15913913 + u2c913913)

. L3 . —l
—L156,0, — —5913 013 |

. L, I
Lic6,6, + C913913 |
o ]

I
| ——

0
6§0) = 0.117.34_0.317.3 = [0 ]
013

Therefore kinetic energy of Link-3 is expressed as

1 .y .
—m§L1L3C(01 - 013)01(91 + 93)

1 .
= _méleelz + 2

KE
1375

1 L2
+5 |m [ 43 +I3”l(91 +65)°
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Above expression can be written in expanded form as follows.

1 ) 1 ) 1 ..
KE; 3 = EméL%Blz +§m§L1L3c(—03)012 +§m§L1L3c(—93)9193
1 L23 L3 .
+§ 37 — 4 I3, | 6% + m3z+l3zz 6,65
[ I3 :
+§Iméz3+ I3zzl 9%
Link-4:

d0u1 + Lz(U1C92 + quez) + (U1C024 + u25924)

(4.20)

(4.21)

_ . . L . .
0) _ (0 _ _ 40 _ _
VG(4) - rG( )= LZ(_u159292 + u2C9292) + —(—u15924924 + u20924924)

|[—L259292 - _5024024}
. Ly I
L2C0202 > C024024 Jl

—_—
o

0
6&0) = 9.217.3_,_9.417.3 = [0 ]
024

Therefore kinetic energy of Link-4 is expressed as

1 . 1 .. .
KE 4 = EmlziLzzezz + EmiL2L4c(92 — 074)6, (92 + 924)
1 Lf
+§l i +I4zzl(02+04)
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Above expression can be written in expanded form as follows.

1 . 1 . 1 .
—m];L%QZZ +_miL2L4C(—04)022 +_miL2L4C(—94)9294

KE,, =
La=5 2 2
1 L3 . L .
+§Imiz+l4zzlezz +[miz+l4zz 9294
1 L2 .
+5 lmﬁ 14 + Lml 62 (4.25)
Link-5:

fG(SO) = Ll(ﬂlcel + ﬂ2591) + L3(ﬂ1C013 + ‘l_l25913)

+ gslit;c(6135 + B) + ty5(6135 + B)] (4.26)

i7(0) _ =(0)
VGs - TGs

= Ll(—ﬂlsﬁlél + azcelél) + L3(—ﬁ15913 913 + ﬂ2C913 913)
+ gs |15 (0135 + B)O13s + ¢ (6135 + B35 ]
—L15616; — L3s013613 — gss(B135 + B)b:3s

L1c610; + L3cB13613 + gsc(6135 + B)013s (4.27)
0
0
65()0) == 9.117.3_,_9.317.3 + 9.517.34_ = [0 ] (428)
0135
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Therefore kinetic energy of Link-5 is expressed as

1 . 1 . NI | . . )

+ ‘méLngC(@l - 013)91(91 + 93)

KE;s =

+mkLygsc(8; — 0135 — £)61 (61 + 05 + 65)
+mELzgsc(613 — 135 — ,3)(91 + 93) (4.29)

Above expression can be written in expanded form as follows.

KEys = mEL207 +-mE1307 + mi136,0; + - mbi367 + > [mig? +

I5,,10% +%[mégé +I5,, 165 +%[m§g§ +15,,105 + [mkgé + I5,, 16,65 +
[mégé + Is,,10,65 + [mégé + Is,,16305 + mELiLyc(—63)607 +
mEL;Lyc(—03)0,05 + mEiL gsc[—(05 + 05 + B)107 + mEL, gsc[—(65 +

05 + B)16165 + miLygsc[—(63 + 05 + B)16165 + meLsgsc[—(65 + B167 +
mgLygscl—(6s + B)16,63 + mELs gsc[—(0s + B)16105 + méLygsc[—(0s +
B)16,65 + méLsgsc[—(0s + B)165 + mELsgsc[—(65 + B)]6;365

(4.30)
Actuator-1:
VA=0 (4.31)
0
ol = [ 0 ] (4.32)
ré:
Therefore kinetic energy of Actuator-1 is expressed as
1 21T i2
KEy = 5[, ]1é3 (4.33)

2
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Actuator-2:

VZA =O

0
w1 =[ 0 ]
¢,

Therefore kinetic energy of Actuator-2 is expressed as

1 .
KEAZ = E [Tzzlgzz]d)%

Actuator-3:
_ _—Llselél
V3A = L1C0191
0
0
wf =0
73603

Therefore kinetic energy of Actuator-3 is expressed as

1 . 1 ,
KEA3 = _[ él'% + Igzz]elz +§[r321§22]¢?2>

N

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

Total kinetic energy of the system is the sum of all kinetic energy contributions

of links and actuators.
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The Lagrange components related to the Kinetic energy are given below.

d (0K . Ly?
E(a_é’) = {Im%T + Ilzzl +m5Ly* + mhLy Lyc(—65)

L 2
ot S | b b b + 1

+2mEL Lyc(—03) + 2mELy gsc[—(63 + 65 + B)]

+2m§L3g5c[—(95 + .8)] + m§L12 + Ir3ZZ}

) L L5
+93 {mé ?11436'(—93) + lmé f + Igzzl + méL32

+[mkgé + Is,,] + mEL;Lzc(—03)
+mgLygsc[—(63 + 05 + B)]+2miLsgsc[—(6s + B)]}
+05{[mkgé + Is,,] +mEL 1 gsc[—(63 + 05 + B)]

+méL3gsc[—(6s + )]

d (0K " L22
a(£> ~ % {[’” %7 ’l +mytLy? + mytLyLyc(~6,)

L,*
+ Im4L T + I4ZZ]}

. (1 Ly?
+ 04_ {Em4LL2L4C(—94) + Im4L T + 14221}
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d (0K . Lsy?
E(a_QJ =% {Im3LT + IgzZl +mstLy® + [mstgs? + Is,, ]

+ 2ms" Ly gsc[— (65 + ,3)]}

2

L, Ly
_L3C(—03) + [mgL T'l‘ Igzzl + mSLL32

. ,
+ 61 {mg 2
+ [mst gs® + Is,, ] + ms“LyLyc(—63)
+mstLygsc[—(63 + 05 + )] + 2mst Lz gsc[—(0s + ,3)]}

+ O5{[mstgs? + Is,, ] + msL Lz gsc[— (05 + B)]}

(4.42)

d (0K _ LL42+I
dt 094 = Uy My 4 4zz

. (1 Ly’
+ 02 {§m4LL2L4C(—04) + [m4L % + I4ZZ]}

(4.43)

d (0K .\
a (9% _ L 2
it (695> Os{[ms"gs* + Is,, 1}

+6,{[ms"gs® + Is,, ] + mstLigsc[—(65 + 65 + B)]
+ms Ly gsc[—(6s + B)1}
+ 63{[mstgs? + Is,, ] + mstLygsc[— (65 + )1}

(4.44)
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d oK\ .
at\ o9, = P1{r 1" 1,,} (4.45)
d [ 0K .
E(a_) = ¢2{7‘221T2zz} (4.46)
d [ 0K .
| — = 2r
dt <a¢3> ¢3{T3 I 322} (447)
oK =0 448
oK =0 4.49
0K 1.
= = —912{m3LL1L3S(—93) +2mstLyL3s(—653)
30, 2

+2mstLigss[—(65 + 65 + B)I}

.. (1

+ 6193 {§m3LL1L3S(—03) + m5LL1L35(—93)

+mstLygss[—(63 + 65 + ,3)]}

+ 0105{ms'L,gss[— (03 + 65 + B1}

(4.50)
oK 1., .1
30, 2% Myt LyLys(—0,) + 60,6, §m4LL2L4S(—94)
(4.51)
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0K

3. = 'ZZ{mSLngSS[—(Bg + 65 + B)] + ms'L3gss[— (65 + A1}

+ 932{m5LL3955[—(95 + )1}

+6105{ms"L; gss[—(65 + 65 + B)]

+2ms Ly gss[—(6s + B)1}

+6,05{ms" L gss[—(65 + 05 + B)] + ms"L3gss[—(6s + )]}
+ 0305{ms’ L3gss[— (05 + )]}

(4.52)
4.1.2 Potential Energy
Potential energy expressions for links and actuators are given below.
L
PELl = mng (?1591) (453)
L
PELZ = mng (?2502) (454)
— o L L3
PEL3 =m3 g (L1591 +75913) (455)
— o L Ly
PEL4 =my g (Lzsez + 75024) (456)
PE;5 = ms'g[Lys6; + L3563 + gss(B135 + )] (4.57)
PE;; =5 Ki(¢1 — 6)? (4.58)
PE;; = 5 Ky (¢ — 6,)? (4.59)
PE;3 = %Ka (5 — 03)* + m3?g(Lys6,) (4.60)

Total potential energy of the system is the sum of above expressions.
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U= mng(

L
2 75913)

+mstgl[Lys0; + L3sOi3 + gss(0135 + Bl + mylyg (

L
—1591> +mslyg (Llsel +

L 1
_45924) + §K1(¢1 —6,)?

+ ‘m4Lg <L2502 + >

1 1
+§K2(¢2 —6,)% + §K3(¢3 —63)? + m3?g(Lys6,)

L,
7592)

(4.61)

The Lagrange components associated with total potential energy of the system

are as follows.

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

(4.68)

Ul ) Ly

0_61 =my g (?C91> + m3 g <L1C91 + ?C913)
+mstg[LicO; + LycOi3 + gsc(0135 + B)] — Ky (1 — 6)
+mgztg(Lich,)

ou L L

— =m,lyg (_2092> +mylyg <L2c92 + _40924) — K (¢, — 6;)

26, 2 2

ou L

— =m3lyg (_30913> +mstg[Lsci3 + gsc(B135 + B)]

30, 2
— K3(¢p3 — 63)

oU L (L . L,

0_64 = mz g (7C02> + m4 g (chez + 76‘924)

au

— =mslglgsc(6135 + B)]

90-

au

— =K (¢py — 6,)

Py 1(¢p1 — 64

au

— = K,(¢, — 6;)

2%, 2(¢y — 0,
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U _ K3(¢3 — 63) (4.69)
0¢3

4.1.3 Dissipation Function Expressions

Dissipation functions for actuated joints, unactuated joints and rotors are
expressed as

1 . N | . 2 1 . . N2

D* = §D1(91 —$1) + 5 D2 (6, —¢2)" + §D3(93 ~ ¢3) (4.70)
1 .2 1 .2

D% = §D404 + §D595 (471)
1 2 1 2 1 .2

DT = EDrlrlzd)l +§Dr27’22¢2 +§Dr3r32¢3 (472)

Additionally, when the disconnected joint is reconnected, dissipation function

related to the viscous friction at the disconnected joint appears to be
1 . . N2
D4 = E1)6(674 —6s) (4.73)

The dissipation function of the system is the sum of above expressions. This is
formulated as below.
1 . . N2 1 . N 1 . : N2 1 . 2
D = 501(91 —¢1) +5D2(92 —¢;) +5D3(93 — ¢3) +5D40, +
1 . 2 1 . . 2 1 . 2 1 . 2 1 . 2
5 Ds0s +5D6(94 —0s)" + EDT17”12¢1 + EDT2T22¢2 + EDr3T32¢3 (4.74)

The Lagrange components associated with the dissipation function of the

system are as follows.

oD

%, D1(6; — ¢1) (4.75)
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oD

—=D,(6, — ¢ 476

692 2( 2 d)Z) ( )

oD . .

36, = D5(65 — 3) (4.77)

oD . . . . .

ﬁ = D404 + D6(04— - 05) = (D4 + D6)04- - D695 (4‘78)
4

oD . . . . .

P D585 — Dg(64 — 05) = (Ds + Dg)8s — Deby (4.79)
5

oD . . L

— = _Dl (91 — ¢1) + D 1M ¢1 (4‘80)

oo

oD . . .

—— = =D,(8, — ¢;) + D", %, (4.81)

oy

oD . . L

—_— = —D3 (03 — (l)3) + D 373 ¢3 (4‘82)

03

4.1.4 Constraint Equations

By disconnecting the joint at point F, two open kinematic chains are obtained

which lead to two constraint equations.

These constraint equations at the disconnected joint can be formulated in

velocity level as in Equation 2.33.

L1691 + L3C013 + L5C9135 - L2C92 - L4,C924, - dO =0 (483)
L1591 + L35013 + L559135 - Lzsez - L45924 =0 (484)

Above equations can be written in velocity level as follows.
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—L159191 - L35013 (91 + 93) - L559135 (91 + 93 + 95) + L259292 +
L4562, (6, +6,) =0 (4.85)

L1C919.1 + L3C613 (01 + 03) + L5C0135 (01 + 93 + 95) — chgzéz —
L4C924 (02 + 04) =0 (4‘86)

Velocity level constraint equations can be written in a matrix form as shown in
Equation 2.35.

[01]
|62 |

BZl BZZ BZ3 BZ4 BZS

lo, |

o, |
where
Bi1 = —L1561—L35013—L550;35 (4.88)
Bi; = LyS6,+L,s60,, (4.89)
Bi3 = —L3s6013—L5s0:35 (4.90)
Bi4 = L4634 (4.91)
Bis = —L5s0i3s (4.92)
Byy = LicO;+L3cO3+L5cH35 (4.93)
By, = —L,c0;—L4c0yy (4.94)
By3 = L3cO3+LscO 35 (4.95)
By = —L4cOyy (4.96)
Bys = LscO3s (4.97)

B can be subdivided into two as explained in Section 2.4 which yields the
following expressions.

Ba — By1 Bpz B13]

= 4,98
By By B (4.98)
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By B15]
B" = 4.99
Byy  Bas (4.99)
End-effector position can be written as below by using Equation 2.49.
X1 L1C01 + L3C013 + d5S(0135 + a’)
X = [Xz] = L1501 + L3$013 + d5S(0135 + a’) (4100)
X3 0135

where x1, X2 and x3 represent the position of the end-effector in x-direction, the
position of the end-effector in y-direction and the orientation of the end-
effector platform.

In order to specify the generalized forces due to the contact with the defined
surface, Equation 2.54 will be utilized. The contact surface is a fixed plane
parallel to the x-z plane as mentioned before, therefore r = 1. The constraint

equation describing the contact of the end-effector with the environment is

given in Equation 2.50 and can be written as

g, t) =x; —x3, =0 (4.101)
where x,, is the desired constant value which describing the location of the
fixed plane parallel to the x-z plane. Above equation can be written in terms of
0 as

L1591 + L35013 + d55(9135 + a) - xZO =0 (4102)

Therefore E can be derived by using Equations above and 2.52.
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[L1C91 + L3C013 + d5$(0135 + (l)]T
| 0 |
E= | L3C013 + d5C(0135 + (l) | (4103)
l ” |

dss(6y35 + )

Independent coordinates of the end-effector along the contact surfaces are

defined by using Equation 3.1.

_ X1 _ 1 _ L1C01 + L3C913 + d55(9135 + a’)
- [X3] - [}/2] - [ 0135 (4.104)
P can be obtained by using Equation 3.3 as follows.
[—Llsel — L35913 - d55(9135 + a) 1]T
| 0 0}
P= | L35913 — d55(9135 + Qf) 1| (4105)
| 0 0]
I. —d55(9135 + a) 1J

4.1.5 System Equation of Motion

The system equations of motion corresponding to the first set of generalized

coordinates in matrix form can be written as follows.

M O Mz 0 M) ?1 [Q1] [Pa] [Sti]
| 0 M;; 0 My O |?2 |Q2| [DPaz| |Stz|
|M13 0 Mz 0  Msslidy|+1Qs|+|Das|+]|Sts|+ETA -

O M24 O M4_4 0 | 9 IQ4_ IDa4 St4
M 0 My 0 Ml é‘; lo.]l [pagl Lst]
251
BT [#2] -0 (4.106)
where
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L, Ly®
M11 = ImlL % + Ilzzl + mgLle + mgLL1L3693 + lmgL %'i‘ IBZZ]
+ m5LL12 + m5LL32 + [m5L952 + IsZZ] + 2m5LL1L3C93
+2ms"Lygsc(0; + 05 + B) + 2ms" L3 gsc(6s + B)

+ [mgA le + Irgzz]

(4.107)

1 L3?
M3 = EmgLL1L3C63 + [m3L %+ Igzz] +mstLs® + [mstgs® + Is,,] +

ms"LiL3cO; + msbLygsc(0; + 05 + B) + 2mst Ly gsc(6s + B) (4.108)

M5 = [mstgs?® + I5,,] + mstL1gsc(65 + 05 + B) + msL3gsc (65 + B)

(4.109)
L,
MZZ = [mzL T + IZZZ] + m4LL22 + m4LL2L4C94
L L42
+ [my T+I4ZZ (4110)
_ 1 L L L4’
Moy =Smy"LyLacOy + [m4 -4 T I4zz] (4.111)

L;’
Mss = Im3L —+ I3ZZl +mstLs® + [mstgs? + Is,, ] + 2mstLygsc(6s + B)

4
(4.112)
Mss = [ms'gs? + Is,,] + ms L3 gsc(6s + B) (4.113)
L L42
M4_4 = |my T"‘ I4-ZZ (4’114’)
Mss = [ms"gs® + Is,,] (4.115)
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_ 1 (la L Ly
Qy =my"g|—cO|+m3"g|LicO; +— O3

2 2
+mstg[LicO; + L3cO13 + gsc(B135 + B)] + mz?gLico,
(4.116)
_ 1 (k2 L Ly
Q2 my~g ) CBZ + my-g L26‘92 + > C024_ (4‘117)

1.
Qs = 561 [ms"Li L3505 + 2msLLyLssOs + 2mstLy gss(B3s + )]
.. 1
+ 9103 I:Em3LL1L3SQ3 + msLL1L3593 + mSLL1g55(935 + ﬁ):l
L (L
+ 0,65[ms"L1gss(035 + B)] + m3'g (70913)
+mstg[L3cOi3 + gsc(By135 + B)] (4.118)

1.2 1 (L,
Q4 = 502 my L2L4594 + 929457714 L2L4504 + mo g(;cez)

L
+m4Lg <L2C02 +74C024> (4‘119)

Qs = 0y " [ms L1 gss (O35 + B) + ms Ly gss(Bs + B)]
+ 65 M5 Lagss (05 + B)
+6,05[ms' Ly gss(0s5 + B) + 2ms L3 gss(s + B)]
+6,05[ms"L1gss(035 + B) + ms"Lygss(65 + )]
+0305ms" L3 gss(6s + B) + ms"glgsc(O135 + B)]  (4.120)

Da; = D1(6; — ) (4.121)
Da, = D,(6, — ¢,) (4.122)
Da; = D5(6; — ¢3) (4.123)
Da, = (D4 + Dg)6y — D¢Bs (4.124)

56



Das = —Dgb, + (Ds + Dg)0s (4.125)

Sty = K1(6, — ¢1) (4.126)
Sty = K;(0; — ¢2) (4.127)
Stz = K3(05 — ¢3) (4.128)
Sty =0 (4.129)
Sts =0 (4.130)

The system equations of motion corresponding to the second set of generalized

coordinates can be written in matrix form as

Ly O ||, |+|D"2¢s| —|D2(6, — $2) | — | K2 (62 — 92D | = | T2

[111 0 0 ] b4 D"1¢ Di(6: — 1) K (01 — ¢1) [T1
0
0 0 Isllg, D" 3¢ D3(65 — ¢3) K3(03 — ¢3) Ts

(4.131)
where D' = diag[D] ;%] fori = 1,2,3.

It is required to write the equation of motion for the first set of generalized
coordinates in terms of actuated variables as mentioned in Chapter III.

Equations of motion can be written in two parts as shown below.
Mg + M28" + Q* + D*(q — $) + K(q — ) —B* p+ E"A =0 (4.132)
where D? = diag[D;], K = diag[K;] fori = 1,2,3

and
Mll 0 M13
M22=|0 M, O (4.133)
M31 0 M33
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Mau = [M24 0 ] (4134)
QT =[0 Q Qs (4.135)
MauTq + MUY + QU + ROY — BuT‘1 =0 (4.136)
where
uu —
M = |1 Mss] (4.137)
Q"' =[Qs Qs] (4.138)
_[DPs+ D¢ —Dg
R = [ o oy Ds] (4.139)

Using Equations 2.58 and 2.59 for elimination of unactuated joint variables and
solving Equation 4.136 for the Lagrange multipliers p and inserting into
Equation 4.132 yields

M*q_l_Q*_l_Da(q_(i))+R*q+K(q—(|)) +ETA=0 (4.140)

R* is derived similar to the derivation of E* and P* as explained in Chapter 3

and expressed as

R* = R? — RY(BY)"1B? (4.141)

4.2 Control Simulation and Results

The performance of the control law is checked by using MATLAB® software.
All system constants and variables are defined and an m-file is written which

performs the operations to calculate the control torques at each sampling time.
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For the solution of Equations 3.40 and 3.41, functional iteration is used.
Equations 3.40 and 3.41 are written as
Elve] [ Elac-¢

h 5 Ak

Qk+1 = 1

. 1 . (4.142)
P*;+P* P*Eqk_H+Zk+1

In the right hand side, initial value for qy,1 IS qx and Equation 4.142 is solved
for new qy.4. Iteration continues until the norm of difference in ., between
successive iterations is less than €. In the simulations, maximum 5 iterations

were needed for & = 107™°.

After calculation of the control torques for each sampling time, the control
torques are applied to the actual system which can be expressed as below.

M* o ETI[d —Q"-D(g—¢) —-Klg— )
[0 Ir oI ] $[=[T-D"¢+D(q—-¢)+K(q—¢) (4.143)
E- 0 olla —E'q-G

Joint and rotor accelerations are solved from Equation 4.14 and numerically
integrated to obtain the measured joint and rotor positions and velocities. There
is no need to measure the contact forces since it can be calculated as explained

in previous sections.

Performance of the control law is checked for two groups of simulations. For
each group, simulations including only the initial error, and simulations
including both initial and modeling errors are performed. Modeling error is
considered by setting the manipulator inertia and mass properties, the torsional

spring constants and the damping constants 10% larger in the model.

The geometric data and the mass, inertial properties and gear ratios used in the

simulations are shown in Table 4.1 and Table 4.2.
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Table 4.1 The Geometric Data

Symbol Value Symbol Value
L1 1.0m do 1.8
L, 1.0m Os 0.75
Ls 1.0m ds 0.80
L4 1.0m a 20 deg
Ls 1.5m S 7 deg

Table 4.2 The Mass, Inertial Properties and Gear Ratios

Symbol | Value | Symbol Value
m" | 10kg | ms" 1.2 kg
m~ | 10kg | 1%, | 7.0e-05 kg.m?
ms- | 10kg | 1", | 8.0e-05 kg.m?
ms- | 10kg | 13, | 9.0e-05 kg.m?
ms- | 15 kg r 100
m" | 1.2 kg r 100
my" | 1.2 kg rs 100
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Damping and spring constants are given in the table below.

Table 4.3 The Damping and Spring Constants

Symbol Value Symbol Value
D; |0.0355N.m.s/rad | D'y | 0.0003 N.m.s/rad
D, |0.0379N.m.sfrad | D', | 0.0003 N.m.s/rad
D; |0.0402N.m.s/rad | D'3 | 0.0003 N.m.s/rad
D4 0.0200 N.m.s/rad Ky 5000 N.m/rad
Ds 0.0200 N.m.s/rad K2 5000 N.m/rad
D¢ 0.0200 N.m.s/rad Ks 5000 N.m/rad

The system is initially at rest and the

follows.

6,, = 135°
6, = 75°
03, = —90°

This leads to the initial position of the end-effector as follows.

x1, = 0.6668 m

Xy, = 1.8563 m

x3, = 0.2364 rad = 13.55°
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(4.144)

(4.145)

(4.146)

(4.147)

(4.148)

(4.149)



The desired motion and force trajectories are given below.

0.70 m 0<t<Ty
0.5 T . 2 —T
=070+ e -1 - Lein™ W m T <e<T 4T
120 m t>T, +T
(4.150)
15 deg 0<t<Ty
15 T . 2 —T:
x¢ = 15+?[t—Tl—gsm¥] deg T, <t<T{+T
30 deg t>T+T
(4.151)
( 50— 0<t<T;
| T
/’Ld=450N Ti,<t<T;+T
| 50[1-"2 4TS t<T 4T+,
2
L o t>T,+T+T,
(4.152)

where T;=T,=0.1sand T=0.5s.
It is assumed that the desired motion trajectory is out of singular positions.

The feedback gain diagonal matrices are chosen according to ITAE criteria and
by USing Table 31, Cli = 2.10)1', CZi = 3.4‘(1)i2, C3i = 2.7(L)i3, C4i = (l)i4 ;
B, = 1.4B,B, = B?. w; and B are positive constants where i = 1,2. Sampling

time interval is taken as h = 0.001.

First group of simulations are held with w; = 50 rad/sand g = 200 rad/s.

Second group of simulations are held with w; = 70 rad/sand 8 = 300 rad/s.

Results are shown below.
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First Group of Simulations

a0

=
o

Digplacement (m)
[E8)
o
Displacement (dey)

]
o

10
Response
-------- Desired
1] | | | | | T T 0
0 0.1 0z 03 0.4 0.5 0.6 0.7 0.8

Time (=)

Figure 4.4 Position Response: 1. yi, 2. y3 (0i= 50 rad/s, p =200 rad/s)

&0 ! ) ) ! )

Response
------- Desired

Contact Force (M)

Figure 4.5 Contact Force Response (w;= 50 rad/s, p = 200 rad/s)
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Figure 4.7 Elastic Deflections: 1. 61 - &4, 2. 6, — @5, 3. 63 — @3 (w; =50 rad/s,
=200 rad/s)
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CHAPTER 5

DISCUSSIONS AND CONCLUSION

5.1 Discussions

The simulations are performed for two different simulation groups with
different feedback gain constants. In the simulations where the modeling error
is not considered while initial position error is taken into account, it is observed
that good tracking performances are achieved for motion and the contact force.
On the other hand, it is seen that initial position errors cause large initial
control torques. As seen in Figures 4.28, 4.29 and 4.30, tracking errors are
reduced by increasing o and B with the expense of larger control torques and
larger elastic deflections. The initial and final elastic deflections are nonzero

due to the gravitational forces.

For each group, the simulations are performed with considering both the initial
and modeling errors as well. For this purpose, mass/inertia parameters, spring
and damping constants are assumed to be 10 % larger in the model. No
significant change is observed in tracking errors, control torques and elastic
deflections. Control torques are increased at the discontinuities of the reference

motion and force trajectories.

Steady state errors are obtained as y; = -2.5 x 10 *'m, y, = 0.023 deg and A =
0.0077 N and y;=-1.099 x 10 °>m, y,= 7.6 x 10 “degand 1 =9.2 x 10 *N for

the first and second simulation groups simultaneously.
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5.2 Conclusion

This thesis presented the hybrid force and motion trajectory tracking control
law for flexible joint parallel manipulators based on solving the acceleration

level inverse dynamic equations which are singular.

Further differentiations of equations of motion, constraint equations and task
equations are avoided by the proposed method. This simplifies the calculations
and reduces the complexity in equations. The only feedback variables are joint
and actuator rotor positions and velocities. Since the constraint equation is
defined, there is no need to measure the contact forces. Contact forces are
found by appropriate calculations. However it must be noted that since the
contact force is not measured, in practical applications, any unexpected change
in the contact surface profile may result with inaccurate contact force feedback

information.

The important point about the algorithm is that since control torques cannot
make an instantaneous effect on the end-effector accelerations, end-effector
jerks, end-effector contact forces and contact force rates, any jump in T, T, z,
and z require infinitely large control torques. To avoid this,T, I', z, and z are
matched at the discontinuities of the reference force and motion trajectories by

freely selecting the integration constants.

Simulations are carried out for two simulation groups with different feedback
gain constants. As a result, it is shown that good tracking properties are
obtained for the desired force and motion trajectories by using the proposed

control algorithm.
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