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ABSTRACT

CONTROL OF HEXAPEDAL PRONKING THROUGH A DYNAMICALLY EMBEDDEED
SPRING LOADED INVERTED PENDULUM TEMPLATE

Ankarali, Mustafa Mert
M.S., Department of Electrical and Electronics Engineering

Supervisor : Asst. Prof. Dr. Ats Saranl
Co-Supervisor : Asst. Prof. Dr. Ulusaranh

February 2010, 70 pages

Pronking is a legged locomotory gait in which all legs are used in synchusugally result-
ing in slow speeds but long flight phases and large jumping heights that ntexytipdy be
useful for mobile robots locomoting in cluttered natural environments. Itiataoms of this
gait for robotic systems sier from severe pitch instability either due to underactuated leg
designs, or the open-loop nature of proposed controllers. Nevesthddeth the kinematic
simplicity of this gait and its dynamic nature suggest that the Spring-Loadedé&ad/Pendu-
lum Model (SLIP), a very successful predictive model for both redtand robotic runners,
would be a good basis for more robust and maneuverable robotic pgonkirthe scope of
thesis, we describe a novel controller to achieve stable and controllalkipg for a planar,
underactuated hexapod model, based on the idea of “template-basenl’c@ntiontroller
structure based on the embedding of a simple dynantéraplatewithin a more complex
anchorsystem. In this context, high-level control of the gait is regulated thropgkd and
height commands to the SLIP template, while the embedding controller basegmxiap
mate inverse-dynamics and carefully designed passive robot morpterisgres the stability

of the remaining degrees of freedom. We show through extensive simukatfriments
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that unlike existing open-loop alternatives, the resulting control struginades stability,

explicit maneuverability and significant robustness against sensor. noise

Keywords: hexapedal pronking, legged locomotion, spring loadedtedy@endulum (SLIP),

embedding control, biologically inspired robotics
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ALTI BACAKLI PRONKLAMA DAVRANIS ININ Di_NAM IK OLARAK G OMULM us
YAYLI TERS SARKAC SABLONU ILE KONTROLU

Ankarali, Mustafa Mert
Yilksek Lisans, Elektrik ve Elektronik hendislgi Bolumii

Tez Yoneticisi : Yard. Dog. Dr. Afar Saranh
Ortak Tez Yoneticisi : Yard. Dog. Dr. UluGaranli

Subat 2010, 70 sayfa

Pronklama, bacakli mobil sistemlerdejtiin bacaklarin senkronize biekilde kullanldgt,
genellikle greceli olarak dsik hizlarda hareket eden, fakat uzumussiirelerine ve yiksek
ziplama irtifalarina uleabilen bir davranibicimidir. Bu davranis robotik sistemlerdeki kul-
lanimi, eksik eylem kapasitesine sahip bacak tasarimlari ve varolan kaeraiack-dongl
tabanli olmalarindan dolayi, yunuslama hareketinde ciddi kararsizliklaomrberaberinde
getirmektedir. Bununla beraber, bu davrami&inematik acdan basit yapisi ve dinamik
dogasi, dgal veya robotik koscular idn bagrisi defalarca ortaya konmiumsr kestirimci
model olan Yayli Ters Sarkg&Y TS) modelinin daha @grbliz ve yiksek manevra kabiliyetine
sahip bir pronklama davranrms elde edebilmek io temel olarak kullaniimasi fikrini destekle-
mektedir. Bu tez kapsaminda, yapisal olarak basit fakat dinamilabiosun, daha karmeés
bir dinamik sisteme gmilmesi tabanina dayanandtsion tabanl kontrol” yapisinin, kararli
ve manevra kabiliyeti itksek bir pronklama davranms, eksik eylem gciine sahip, dikey
duzlemde yaayan bir alti bacakli robot modelizerinde gereklemek ién kullanildigi yeni
bir kontrol algoritmasi gelirdik. Bu bajlamda, yiksek seviyedeatisan bir kogna kon-

trolciisi YTS sablonunun hiz ve gkseklik dgerlerini kontrol ederken, yaklasters dinamik
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yontemlerinin kullanimi ve dikkatlice tasarlannpiasif yapisabzelliklerin varlgina dayanan
gomme kontrali, kalan serbestlik derecelerinin kararlili bakiide denetlenmesi ile ilgilenir.
Kapsamli sinilasyon deneyleri araci ile, varolan ad-dongl tabanli kontrol@ler ile kar-

silaginidiginda, tasarlamisldugumuz bu yeni kontrol yapisinirok daha iyi kararlilik, ma-
nevra kabiliyeti ve kayda dger derecede ighizluk artis sagladgini gosterdik. Buna ek
olarak, ciddi oranda algilayici ve denetim komitigtusi altinda kontrold performansinin
korundwgunu da genibir similasyon yelpazesi iled@gterdik. Sonuolarak, dah@nce hidir

sekilde elde edilememilir pronklama davranigerformansina ulasayi basrdik.

Anahtar Kelimeler: alti bacakli pronklama, bacakli hareketlilik, yayl terkaa(YTS),

gomme kontrol, biyolojiden esinlenmeli robotik
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

At present, there are already many existing mobile platforms, such as dlwdtacked ve-
hicles, which provide dticient robustness, high speeds and energetic performance for many
applications. On the other hand, one must also consider that the perfmrrofithese tradi-
tional mobile robots largely results from the structured nature of their tpgrnvironments.
Increasing demand for robots to operate fdfatient applications is beginning to show the
limitations of wheeled and tracked systems due to the fact that they havetesbtriotion

capabilities over unstructured and rough surfaces [41].

Robotic mobility over highly broken and unstable terrain surely requireseigiatforms.
Despite severalftective behaviors and performance demonstrated by tracked and dheele
vehicles [64, 58], the repertoire of behaviors realizable with such nodogles inevitably
remains limited due to restricted directions in which forces can be applied tolibelyody.
Consequently in the long run, systems capable of operating in the widéstyvaf terrain

conditions, will be legged robots.

In [23] and [47], the disadvantages of wheels compared to the legsdigenessed. They say
that the #ficiency of wheels is restricted to flat surfaces, with application areas mostlydimite
to structured arenas (e.g roads and rails) since some limited natural satiingenhave lim-
ited motion capabilities in the presence of vertical obstacles. On the otherlaggdd robot
morphologies admit a wider range of behavioral alternatives than mori¢idred tracked

or wheeled platforms with added mobility provided by otherwise infeasiblevi@isasuch

as running [6], leaping and self-righting [54]. There are many out&tgnand challenging



examples of locomotion that can be achieved by using legs, butfiiitlior sometimes im-
possible for wheels. For instance, a good example is the RISE robot, gibally inspired
hexapedal climbing platform capable of locomotion offedent vertical structures such as
walls and trees [62, 57, 10]. Another example of the challenging envirotater robots are
sandy terrains wherein wheeled robots usually get stuck. HowevedB®s4 a bio-inspired

hexapedal robot, can impressively traverse over sand [31].

Even though we can easily conclude that legged robots can reachiaiisegat animals can
travel on foot (hypothetically), legged systems present mafficdities to engineers in their
design and control. Unlike traditional mobile robots, legged systelfisrsilom additional
hardware complexity to support leg mechanisms. During the design of leggets, engi-
neers have to increase the number of actuators to increase the freédummemnent while
sacrificing reliability. With this increased kinematic complexity and decreadiadbitiy, sta-

ble and dicient locomotion may become impossible due to physical (bandwidth, reliability

etc.) limitations with today’s technology.

Another dificulty that comes with legs is that, unlike traditional mobile robots, control of
locomotion with these platforms is veryflicult and requires a thorough understanding of
their dynamics and mechanical structure. The coordination of large ekegfdreedom and
redundancy in actuated joints compared to the small number of task dedréesdom,

present important challenges in the design of locomotion controllers foedegdpots.

A simple solution to these problems has been adopted by many legged robatghtistati-
cally stable gaits, keeping their center of mass within the support area ogth e 25]. The
effectiveness of this method is limited by the necessity of operating at very ladspehere
the kinematics dominate the behavior. ThEeetive actuation bandwidth is thus limited by
sacrificing speed for force, while considerably decreasing endfgyeacy. Moreover, the
possibility of dynamic gaits is eliminated due to thefstioupling of actuators to the envi-
ronment, since impacts and collisions with the environment is inevitable. A similaoivay
controlling legged robots is by keeping the Zero Moment Point (ZMP) withirsthpport are
of the legs, in which velocities are also taken into account [37, 36]. Hemtéis method also

sufers from many of the above problems.

If we look at nature, we can see that the speed and agility of animals resuftdfeir dficient

and dynamically dexterous use of their bodies. Consequently, nature seflaua good



way in which this mechanical complexity can be decreased while increasipgtfegmance
of robots is the use of dynamic modes of locomotion, wherein second oydeniics are
properly designed, tuned and exploited to achieve a wide variety of lmehaven in the
absence of full actuation [4, 56, 54]. Early instantiations of this idea edodnd in Raibert’s
runners [47], capable of fast and stable locomotion over rough tedtespite being severely
underactuated. In practice, this approach also has the advantagaititaigly improving
robustness and decreasing power requirements as a result of usemafetuators and the
associated reduction in weight and complexity [52]. Even though for tabkse, precision
is required, static stability may become desirable, it cannot match the speethiai@hcy

that a dynamical mode of operation can achieve [52, 42].

Unfortunately, the design, analysis and control of such dynamically aexdegged plat-
forms is more challenging than simpler but slow, statically stable platforms duffitutlies
in understanding and controlling second order dynamics. Despite stiktagearch in this

domain, stficiently general solutions to this problem remain elusive.

Figure 1.1: Snapshot of a planar hexapedal pronking stride

In this thesis, we present the mathematical basis and a practical implementattomptdte
based controbf dynamic legged locomotion, a controller structure based on the embedding
of a simple dynamical “template”(SLIP) within a more complex “anchor” syst2éj.[ We
concentrate on thgronkingbehavior for the hexapedal RHex platform [52], whose robust and
consistent realization in the absence of radial leg actuation has previmtdheen possible

[43].

Pronking (aka. stotting) is a running gait adopted by legged animals in whielgsiare used
in synchrony and a substantial flight phase is induced (see Fig. 1dnkiRg is rarely used

for running any distance, but llamas, deer, impalas, gazelles and spksngh use pronking

3



(see Fig. 1.2), often to signal their strength to potential predators [38,10561], it has

been suggested that increased ground clearance in pronking magfoehath for seeing
further, and for disseminating warning scents when predators are Bean though such
goals are unnecessary for robotic platforms, large jumping heightsiatsbuvith this gait
are potentially useful for locomotion on cluttered natural environments ancéwesyincrease
efficiency by decreasing damping losses. Moreover, the lateral symmetrg ghthadmits
the use of simpler, planar models and provides a rich domain for studyidbdek control
of dynamic legged locomotion, particularly in the presence of underactiledestructures.
Such a planar simplification also allows the analysis of similar gaits such as ttetrohe

pace [11].

Figure 1.2: Gazelle pronking [1]

1.2 Existing Work

There has been very little explicit focus on robotic pronking in the literatd8s 11, 19,

45], as opposed to the much more widely studied bounding behavior [4%74d.8]. In
several existing robots, fully actuated leg designs are used. Despéstades in mobility and
ease of control fered by such morphologies, the associated electromechanical complexity

significantly impairs performance for autonomous outdoor tasks and dyihaméaviors, [45].
In contrast, robots with carefully designed passive compliant dynamaseshthat a large
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pallet of behaviors are still possible with very few actuators [4, 47, &8Jnsequently, our
emphasis in this thesis is on how robust and maneuverable pronking cdridieed with

similarly underactuated robots, in particular, the RHex hexapod [52].

Regardless of available actuation, stable and maneuverable contrainiiny is a dificult
problem. Existing control strategies for pronking (as well as boundimggharely on open-
loop strategies (e.g. with constant hip torque inputs or open-loop leg angfilep) that
offer little or no control authority over high level gait parameters and requiensive tun-
ing to be successful. Even though the use of optimization methods promisesdtagiee
insight into useful design criteria for robots capable of such highly ohfadehaviors [17],
the range of operation and extensibility of resulting controllers remains limiteoted¥er,
many of these open-loop controllersfaun from severe pitch instability and even the addition
of low-bandwidth sensory components does not yielficgant robustness for autonomous
operation [43]. In fact, pronking dynamics under simple energy-bfssdback and largely
open-loop leg control was shown to be inherently unstable for certagesaof body inertia

and locomotion heights [12].

In this context, there is significant biological [24, 39] and engineerifly 8] evidence to
support the adoption of predominantly open-loop controllers with propenigd passive dy-
namics and minimal feedback for reliable locomotion. Nevertheless, higihabdiin feed-

back controllers based on accurate dynamic models of such systems awecstitary for the
insight they provide into the design of both the mechanism and its control. Aswrwess-
ful examples are use of zero dynamics for the stabilization of walking amung behaviors
[63, 21] as well as self-righting behaviors for the RHex hexapod, [4th of which use
suficiently accurate dynamical models and subsequent high-bandwidthafgettbhachieve
stable and dynamic locomotory behaviors. Our contributions in this thesisnhopoovide

a decompositional method that simplifies the design of such controllers, louillattrate

performance and maneuverability benefits associated with the use of nassel-feedback

control.

There is also a large body of literature studying simpler, more fundamentalsfut ba-
sic locomotory behaviors, motivating our adoption of the Spring-Loadeertied Pendulum
(SLIP) model. This model has received substantial attention in the literatiarting from

its biological foundations [13, 27], leading to its instantiation within dynamicallytetexis



monopods [47, 33], followed by subsequent analysis [59, 5, 55}andesign of associated
gait controllers. Our treatment of the SLIP model also benefits from @antevork on its

control through analytical return maps [9, 7].

1.3 Methodology and Contributions

Our method is based on decomposing system degrees of freedom intoworeents: A dy-
namical “template”, handling degrees of freedom most relevant for theig¢ion and control
of the high level task, and the “anchor”, encompassing the remainingetegf freedom rep-
resenting the specific morphology of the system. In this context, high-lemélat of the gait
is regulated through speed and height commands to the SLIP template, whitelibdding
controller based on approximate inverse-dynamics and carefully despgssive dynamics

ensures the stability of the remaining degrees of freedom.

Due to sensory limitations of our experimental platform, we use a non-dimesjmevi-
ously validated planar simulation to provide a careful and thorough deaization of the

stability properties and noise performance of the proposed pronkirigptien

Our primary contribution in this thesis is the application of the template-basedtatds,
presented in [51] in the context of alternating tripod running, to dynamiaking, while
also providing a much more careful characterization of its stability propemidsobustness
against model and measurement uncertainty. Our extensions and imprasé¢otee existing
ideas makes the stability and maneuverability properties of our controllerisupethose
that were obtained for alternating tripod gaits in [51, 53]. We use extessivulation studies
to show that unlike existing open-loop alternatives, the resulting contiedtate provides

explicit maneuverability and significant robustness against model, sanda@ctuator noise.

In addition to the main contributions of the thesis, as a by-product we dectbpmew ana-
lytical approximation to the stance dynamics of the Spring-Loaded Invegedufum model

that also takes into account non-negligible damping in the leg.

6



1.4 Organization of the Thesis

In the first part of the thesis in Chapter 2, we start with the introduction dsthE model. We
give the necessary background including assumptions, dynamics sotladsd terminology.
Later in Section 2.2, we nondimensionalize the equations of motion of the modwhiio the
dynamics that are free from units. Subsequently, in Section 2.3, we gigésdabout control
of SLIP locomotion and make an overview of two existing approximations tleaterived
for its stance map. At the end of Chapter 2 we introduce the SLIP model witipidg and

derive a new analytical approximation method that also takes into accaupimgin the leg.

We then present in Chapter 3, our embedding control framework in thiextoof a one-
legged system that captures most relevant actuator limitations in the RHexpla&kcept
the pitch degree of freedom. Finally, we proceed with the pronking contraiethe full

planar hexapod model in Chapter 4.



CHAPTER 2

THE PLANAR SPRING LOADED INVERTED PENDULUM

In late-1970’s, biomechanists discovered the Spring-Loaded Inveetledulum (SLIP) model,
illustrated in Fig. 2.1, as a metaphor for running animals [3]. Subsequsedneh in biome-
chanics established the SLIP model as a very accurate descriptive foodeining animals

of widely differing sizes and morphologies as diverse as humans and cockroach@sg6].

In parallel, the same model was also used as the basis of numerous rgaditecz dynamic
locomotion such as Raibert’s hoppers [47], the ARL-Monopods [3&,Bbw-Leg hopper
[65], the BIMASC robotic leg [35] etc. These developments and growinipgical evidence
led to an increasing belief that the SLIP model may be more than just a descridel that
fits biological data, but also a literal control target whose dynamics aeffeutive and appro-
priate goal for running behaviors [29]. Evidence to this end was peavity Raibert’s robots
as well as work on active embedding of SLIP dynamics within more complexhotrgies

[6, 51, 55]. The main scope of this thesis is also included in this group.

Nevertheless, despite the apparent simplicity of this model, it presdiitsulties from an
engineering point of view to conduct formal analysis and design coalgokithms. SLIP is
a hybrid dynamical system with nonlinear stance dynamics that are notabtedn closed-
form under the fiect of gravity [34] , motivating a number of analytical approximations to

support the analysis of its behaviors and the design of associatedl®ratfs9, 51, 30, 9, 7].

We continue this chapter with the basic SLIP model and associated terminaldgyhen
give details about a particular type of SLIP control method and summarizeptexdous
approximate analytical stance maps. Finally, we introduce the SLIP model avitpidg and

derive a new analytical approximation method that also takes into accaupimizin the leg.



2.1 The Basic SLIP Model and Dynamics

> Nl

Figure 2.1: The Spring-Loaded Inverted Pendulum Model

Fig. 2.1 illustrates the the basic planar SLIP model, consisting of a pointmma#ached to

a freely rotating massless leg, with compliancé&gand rest length offy. Throughout loco-
motion, the system alternates betwestanceandflight phases. Due to the hybrid nature of
this model, its continuous dynamics change depending on the state of gntadtc During
flight, the body is assumed to be a projectile acted upon by gravity,where@asoesthe leg

is free to rotate around its toe (assumed to be fixed on the ground) with tlyentess feel-

ing radial forces induced by the leg. Moreover, the stance phasetli®futecomposed into

two subphases;ompressiorand decompressianSimilarly, the flight phase is decomposed
into theascentanddescensubphases. Four important events define transitions between these
subphasesouchdownas the leg comes into contact with the ground, marking the transition
from flight to stancebottom as the leg reaches its maximal compression during stance phase;
liftoff, as the toe takesffofrom the ground and finallgpex as the body reaches its maximum
height during flight. Fig. 2.2 shows a single stride starting from an apex atakéabels all
relevant phases and transition events. Furthermore, Table 2.1 detalsaint variables and

parameters for the basic SLIP model.

2.1.1 SLIP Dynamics

In flight, the dynamics of the system are those of a point mass acted upa@a\ity gvhich

has a well known analytical solution. Using the parameters detailed in Tablee2akite the
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Figure 2.2: SLIP locomotion phases (shaded regions) and transitiots€benndaries)

flight dynamics of the model in cartesian coordinates as

AN

During the stance phase, the dynamics of the system are those of andro@ripliant pen-

2.1)

dulum whose hinge is assumed to be fixed on the ground. The dynamicsobtiet in polar

leg coordinates take the form

(2.2)

E| | 807 - kme- IO)_gCOﬂ
7 (-2&y +gsiny)/&
2.2 Dimensionless System Model and Dynamics

Nondimensionalization is the removal of units from an equation set involviggighl quan-
tities by a suitable substitution of variables. Nondimensionalization can be appliait
guantitive models and itfers an éicient way to interpret complex data sets, i.e. simulation
and experimental data, because usually the physical models in their ofiyimaare rather
general. Formulation of systems with dimensionless variables simplifies anchqtazzes
problems, thus making subsequent analysis easier and more usefuetrt@eliminate re-

dundant parameters and provide diicgént way to interpret our simulation results, we will
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Physical | Dimensionlessg
Quantity Group Definition Description
t t =t/ Time (whered := +/lo/g)
[y, Z] [y, 2] =[Y/lo, Z/lo] Body position
[& v] [& v] =[&/lo, ¥ ] SLIP leg length and leg angle
v % =V (1/lp) Body Speed
[Za Yal [ Za, Yal :=[ Za/lo, Ya(4/l0) ] | Apex height and velocity
Ks Ks = ks (lo/(MQ)) SLIP leg spring sffness
F F =F /(mg Force variables
E E = E /(mgb) Energy variables
Py Py =Py (/l/(ml ) Angular momentum

Table 2.1: State variables, parameters and the definitions of their dimensioalegerparts
for the basic SLIP model. Variables with and without bars correspond tsigdlyand dimen-
sionless quantities, respectively.

use a dimensionless formulation of the dynamics both for the SLIP model &séuent,
more complex models. Previously, several researchers used dimensifortasilations in
oder to define the dynamics of legged systems (e.g. [18]) and our metlggdeilbbe simi-

lar to them.

We start our dimensionless formulation by redefining time as t/A with A := +/lp/g.
After that, scaling all distances with the spring rest lerigthnd using definitions detailed in

Table 2.1, we write the SLIP dynamics in dimensionless coordinates as

' ] l A
Flight: (2.3)
-1

Stance: (2.4)

EY? —cosy — ks(¢ - 1)‘
(-2€ ¢ +siny) /¢

Note that (1/dt)" = 2"(d/dt)" and all time derivatives in the above equations are with respect
to the newly defined, scaled time variable. Throughout the rest of the thesiwill only
work with dimensionless quantities and hence will not explicitly mention their dimelesie

nature unless necessary.

11



2.3 Control of SLIP Locomotion

In this section we will discuss the control objective of the SLIP model andthiobjective
can be achieved. For SLIP models and SLIP inspired robotic platformstiteot objective
is generally the regulation of apex states of the model during the locomotioardér to

formalize the control objective, we first define the set of controllable afses as

Xa={XalXa=[¥a, z]"} . (2.5)

Then a relation between successive apex states can be formed as
Xa[n+ 1] = fa(Xa[n], U[N]) , (2.6)
where f; is the apex return map and is the discrete control inputs of the SLIP model.

Details about control inputs will be explained in Section 2.3.1. Suppose thatant to reach

the desired apex states,

X5 =
Za

%a ‘ . (2.7)

Then the control objective is identifying the sequence of control ingufs])}., , to asymp-

totically converge to the desired apex stakXs,

2.3.1 SLIP Control Inputs

In the control of SLIP locomotion, there are two main control parametersatieatommon

to all SLIP models and spring-mass hopping robots. These are the touthetpangleq,

and the amount of change in the total mechanical eneéYBy, The first control parameter,
Yid, IS conceptually simple and corresponds to the control of the leg anglegdiight such
that at the instant of touchdown, the required leg angle is achieved. \g¢ovemergy control

of SLIP hopping can be achieved with a variety offelient control inputs [59, 65, 51]. A
good and detailed explanation of these control inputs and corresponditagations can be
found in [8]. In the scope of this thesis, we use leg lengths at touchdgvamd liftoff &, as

the remaining two control inputs. This choicfers several advantages. Firstly, it makes the

stance phase fully passive, allowing much simpler and more robust meahanfiot designs,
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simplifying controller designs etc. An exact realization of this control policZidglin’s Bow
leg hopper [66], where a curved compliant leg is used, together with dlaiextension
limit mechanism on the leg that satisfies precompressing the leg before toutlig and

limiting the leg to achieve premature liftd&).

As mentioned in Chapter 1 our actual aim of analyzing the SLIP model is its wseatrol
target for our hexapod robot platform, SensoRHex, through embgadits ideal dynamics.
Since our target platform, SensoRHex, does not have tunable legspridgts actuators lack
radial actuation fiordance [51], adjustment of the leg springTsiess from compression to
decompression is not a possible alternative for our SLIP controller tilavark behind the
hexapod model. It is also clear that we can not adjust touchdown and lgtplengths with
the fully passive physical legs of the RHex. However, as we will desdridlater chapters,
our embedding controller is based on the definition efrtual SLIP, whose toevirtual toe
admits us to arbitrarily control its leg length at touchdown. A similar choice wasrnmaithe

earlier work for the template based control of tripod running [53].

To summarize, the set of SLIP control inputs we use in this thesis is defined as

U={UIU=[yw. & 40]"} . (2.8)

2.3.2 Analytical Approximate Stance Maps

Earlier researchers implemented intuitive and simple controllers for the locomitiSLIP

model and SLIP-like robotic platforms [48]. Even though these controfjerserally had a
good performance to stabilize locomotion, their performance were very limiteztims of
tracking accuracy, basins of attraction etc. It is clear that we need miomn@ation than
intuition alone about the nature of the apex return map defined in (2.6) im trdkesign
high performance gait controllers and obtain insights about the stabilityeiep of SLIP
locomotion. The best way to do this is to obtain an analytical expression fapke return
map, f5. One needs to solve both the flight and stance dynamics of the model to aluthiars
expression. The analytical solution of flight dynamics is very simple sincedtg tollows

a ballistic trajectory. The solution details about the flight dynamics can belfouf8, 51].

Unfortunately, despite the structural simplicity of the SLIP model, its stancardigs are not

integrable [34]. Consequently, there are no exact analytical expnasdsr the stance map and
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consequently foif,. In order to overcome this problem, several researchers desigvetlse
controllers based on numerical solutions of the SLIP dynamics or empiratal chptured
from running videos of legged robots or animals [16]. These methods weeyenaccurate
and computationally irficient to designing control policies, also they provide very limited

information about the nature of the apex return map.

It seems that approximate analytical solutions to nonintegrable stance dgremmithe best
solutions to this problem. In the literature, there are a number of accurdigiam@prox-
imate stance maps to support the analysis of SLIP locomotion and the desigsocfated
controllers and planning algorithms [59, 51, 30, 9]. The general idemteapproximate
stance maps is the estimation of the all liftstates, given the touchdown states. On the other
hand, for a given initial apex stat¥,[n], touchdown states are calculated solving the flight

dynamics and using selected set of control inpu{s], as boundary conditions.

In the following sections, two previous analytical approximate stance mapsand [30], are
summarized and modified to be consistent with our dimensionless notation ackdealet

of control inputs.

2.3.2.1 Approximate Stance Map by Saranli

In this section, we will review the the analytical approximate stance map bynlSgsa],
which is a modified version of the stance map developed by Schwind et. a. Tote

summary of the stance map with our dimensionless variables is presented below.

Suppose that necessary touchdown paramef@tsyid, &, Vi, are known. We can then
calculate the body speewg, and angular momentunp,,,, at touchdown. After that, the

total mechanical energy of the system at touchdown is found as

2
Vi ~
Es= -+ Uglé). (2.9)

where Ug(gtd) is the approximated potential energy. This stance map uses the linearized

gravity approximation where the true potential energy

Ug(u.£) = (6~ 1P +¢ cosy. (2.10)
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is approximated by

Oge) = 5 (€ - 1P +¢ . (2.11)

The next step is calculating the bottom leg length of the spring. We assume that along the
stance period angular momentum of the body is conserved sucphatp,,,. Using this

assumption and the conservation of mechanical energy we obtain

1 B2, g (2.12)
2 Ks

§b4 1 3
— -1 =
2 +(KS )gb +( 2Ks

which can be solved in closed form to figgl We observed that this polynomial always has
two real roots. One of the rots is always in the rang&f), and the second root is in the
range fq, +o0]. Since the sign of always negative during compression phase, we select the
root that in the range of [@] as the solution to be used fgp. Once the maximum leg

compression is identified, we only need to compute theffifeg angle given by

Yo = Yd + Ar(éid, &b) + AY(ép, &io). (2.13)

where angular displacement of the leg as a function of the leg compressgjioemnsby

2 i -1
A &) = f SO DR g, (2.14)
f ¢ \J2(Es - Ugl@))e? - py2

as a result of angular momentum and the energy conservation assumpiidortunately the
integral in (2.14) can not be obtained in closed-form. A special versidtheomean-value

theorem [60] is adopted to approximate the integral, yielding

&2 — &1l py

: (2.15)
£ \J2(Es - Ug(@)2 - py?

AY(é1,62) =

whereé := &1 + (& — &)/4. Once the liftdf angle is computed, radial and angular velocities

can be easily calculated using the conservation of engigwand the angular momenturm,,

yielding
AL
Yo = o (2.16)
o = ie? + 200g(éw) - Ugléio)) . (2.17)
fo = % = W) (2.18)
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Finally, the magnitude of the liftdvelocity is corrected, keeping the angle of attack constant
to account for the actual change in potential energy arising from thatifterence between

the touchdown and liftd events.

2.3.2.2 Approximate Stance Map by Geyer et al.

In this section, we will review the the analytical approximate stance map byr@eya. [30]
and make modifications to be consistent with our selected set of control empaditimension-
less formulation. Geyer makes two critical assumptions; first, iffacsently small angular
spanAqg is assumed for the stance phase, tifieat of gravity can be linearized arousd= 0,

yielding simplified equations of motion

£ = EPP-ks(e-1)-1, (2.19)
d 2
& (2.20)

making both the angular momentypp and the total mechanical energy constants of motion.

The total mechanical energy of the reduced system can now be written as

2 )
E::g— Py

Ks 2
2+?+§(§—1) +&. (2.21)

Defining a new parameter:= ¢ — 1 < 0 and substituting it into (2.21), yields
2

. P
2E = p2 + i fp)z + ko2 +2(1+p) . (2.22)

At this point, in order to obtain an analytical solution a second assumption dede&eyer
assumes that the relative spring compression rematfisisatly small,|p| < 1, and approx-

imates the term A1 + p)? by Taylor series expansion, resulting in

1

TP =0 = 1- 20+ 3p% - O(p°%) . (2.23)

Combining (2.22) and (2.23) together with further simplifications detailed in fa@jal and

angular stance trajectories in our dimensionless coordinates take the form

40
()

1+a+bsin(@ot), (2.24)

2bpy, . .
Ynd + Py (1 - 28)(t — ta) + o [coq@wo t) — cogwotd)] (2.25)
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where we define

o = AJKks+3p2, (2.26)

2
1
a = X (2.27)
Wo
2E— p,2-2
b = |a2+ P72 (2.28)
@

The equation (2.24) can be used to determine the times for critical eventastmichdown,
bottom and liftdt relative to an unknown time origin. Geyer assumes that touchdown and
lifto ff lengths are equal to the rest length of the spring. Consequently in ordecnsistent
with our control inputs, we us&q andé, as the boundary conditions on (2.24) to compute

the times for critical events, as

n —arcsin(fy — 1 - a)/b)

. i (2.29)
o
o - 21 + arcsm(gﬁo -1-a)/b) ’ (2.30)
o
- (2.31)
200

Using the trajectories in (2.24) and (2.25), together with theftitimme defined in (2.30), all
necessary lifti parameters can be calculated to complete the stance map derivation. Finally,
Geyer corrects the horizontal component of the fift@locity to account for the actual change

in potential energy arising with a similar approach introduced in Section 2.3.2.1.

2.3.3 Deadbeat Gait Control of SLIP Locomotion

One possible way to achieve the control objective stated in Section 2.3 isalué dsadbeat

control, that is, determining the control inputs

U= [ &a* s €017, (2.32)

such that

X;: fa( Xa, U*), (233)
taking the current apex state to the desired state in a single stride. Compufd¢igitemgths
at touchdown and lifth can be easily accomplished by using the energfedince between
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X5 andXa:
AE = (72 + 5 (03~ 6)) (2:3)

Depending on the sign of this desired energy change, we either injeglyant the system
by precompressing the leg during flight, or take out energy by prematiftely off with the
spring still compressed. Table 2.2 gives the corresponding leg length amifsrbased on a

simple linear spring model.

Table 2.2: Computation of leg length control inpéisandé,

AE >0 AE <0

&d || 1- V2AE/ks 1

&lo 1 1- v2AE/«ks

Once the control inputgy andé, are determined through desired energy balance, in order to
find the last control inputyq, the approximate apex return mal, is formed using one of
the analytical approximate stance maps summarized in sections 2.3.2.1 and 2dg:th2rto
with the ascent and the descent phase maps of the dimensionless SLIP $iockele have
only one remaining control input to be determined, we reduce the deactian! problem

to the one dimensional equation

Vi = (7y, 0 fa)(Wa) » (2.35)

where theny, operator retrieves the forward velocity component of the approximate ape
return map. Unfortunately, neither one of the approximate return maps isvastible in
closed form. However their simple one dimensional form and monotonic behaviaq,

admits an easy numerical solution to the minimization problem

Y = argmin (yi— (7, 0 fa))?, (2.36)

T<Y<7
yielding an dfective, step-based deadbeat controller for the SLIP model.
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2.4 The SLIP Model with Damping

Most existing work on the SLIP model, including the approximate stance mapsiatized
in Section 2.3.2, completely disregard theeet of damping, which often cannot be ignored
for physical robot platforms. In order to fill this gap in the literature, weaddtrce a new
approximate analytical solution to the the dynamics of the SLIP model that als@eonthe
leg damping. In the following sections, we describe the lossy SLIP modeltha&mndpresent

the derivations of an approximate stance map for this system.

2.4.1 System Model and Dynamics

Figure 2.3: The Spring-Loaded Inverted Pendulum Model with Damping

The only diference of the SLIP model with damping, as illustrated in Fig. 2.3, from the
ideal SLIP model introduced is that it has a lossy leg with viscous dantiing he flight
dynamics of both models are identical, whereas for the stance phasielezomgsthe éect of

viscous damping, the stance equations of motion of the ideal SLIP model jraf&i32.4),

‘|

wherecs := ds (lo/(Am@) is the dimensionless damping d¢heient. Subsequent sections

are modified as

EY% —cosy — ks(€ — 1) — Cof

. : (2.37)
(=2&y +siny) /&

present our analytical approximations to these dynamics.
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2.4.2 A New Analytical Approximate Stance Map for SLIP Model with Damping

We start the presentation of our approximations by derivations basessamang conserva-
tion of angular momentum in Section 2.4.2.1, followed in Section 2.4.2.2 by the cotigputa
of components necessary to assemble the full stance map, concludediam 2et.2.3 with

a method to compensate for energy inaccuracies resulting from our st@ssogption.

2.4.2.1 Approximating Stance Trajectories under Damping

We first rearrange the angular component of (2.37) to yield a more o@mmteform of the

stance dynamics as

EyP —ks(é—1)— cf — cosy, (2.38)
dgt(g%/}) +&sing . (2.39)

e
|

In order to derive our analytical approximation, we continue with the commasdy assump-
tion that the leg remains close to the vertical throughout the entire stanee [@@ssequently,
the dfects of gravity can be linearized around- 0. The resulting conservation of the angular
momentumpy, = £2) reduces the radial dynamics of (2.38) to

2
$+c5§+/<s§—%:—l+xs. (2.40)

Unfortunately, even these reduced dynamics do not admit an analytloiibeo However,
inspired by the method proposed by Geyer [30], we further assume thatlttive spring
compression remains ficiently small with|1 - ¢| < 1, allowing the term 12 to be approx-

imated by a Taylor series expansion arognel 1 to yield

% ~1-3(¢-1)+0((¢-1)). (2.41)
&,y

Under this approximation, (2.40) reduces to

E+CsE+(r+3p0)E =1+ +4p] . (2.42)
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In order to solve (2.42) in a more compact form, we define

Do = K+ 3p2, (2.43)
;= 2C_al (2.44)
wd = @o+1-22, (2.45)
F o= —l+ks+4p], (2.46)

and obtain the most simplified form of the radial dynamics as

E+ 2o+ 05 =F . (2.47)

This is a second order ordinaryfidirential equation that can easily be solved analytically.

Assuming{ < 1, we have

1) = e fY(Acosqgt) + Bsin(wgt)) + Aiz , (2.48)
“o

with A andB determined by touchdown states as

F
A = -ftd—Tz,
- a)o
B - ftd"'(&)OA.
wd

Simple diferentiation yields the radial velocity as

E(t) = =M €759 (750 cosfugt + ¢) + wq SiN(wgt + @) ,

whereM := VA? + B2 and¢ := arctan¢-B/A). Further manipulations yield the simplest form

of the radial motion as

&) = Me @t cosgt + ¢) + 52 , (2.49)
Wo
&) = —Mdg e @t cosqugt + ¢ + @) . (2.50)

whereg, := arctan¢ /1 - £2/7).

Now that an analytical approximation to the radial trajectory is available, thgelantra-

jectory can be determined by using the constancy of the angular momeinturrpw/fz.
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Linearizing /&2 arounds = 1 yields

12 =1-2¢-1)+0O((¢-1)?), (2.51)
&en

further reducing the angular dynamics in (2.39) to

U =py(3-2£), (2.52)

with which we can obtain an analytical solution for the angular velocity of thaseg

. 2p¢|: _ront
(1) = 3py — —5— — 2p,Me ' cosfudt + ¢) . (2.53)
w

0

This solution can then be used to determine the angular trajectory of the leg as

W(t) = g + X t+ Y(€5% cosgt + ¢ — ¢2) — COSE — ¢2)) (2.54)
where
2pyF
X = 3py - —o,
)
2p,M

y o= P

wo

The approximate solutions in (2.49), (2.50), (2.54) and (2.53) yieldfecEntly simple ana-
Iytic solution to the stance dynamics of the SLIP model with damping. Howeverder ¢o
complete the apex return map, we still need to solve for the times and states o lawito

lifto ff events.

2.4.2.2 Times of Critical Events: Bottom and Liftoff

The bottom of stance is reached with the leg at its maximal compressio#i(tt= 0. Using

(2.50), we have
_n/2-¢—¢2

wd

th (2.55)

In contrast, liftdf occurs when the toe loses contact with the ground. For a lossless SLIP with
¢ = 0, this corresponds to the usual leg length condifigr:= (o), that can easily be solved

analytically through the use of (2.49). However, when damping is présehne system, the
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lifto ff event does not depend on the leg length alone, but must take into atcewground

reaction force on the toe. This can be formalized as a condition on the Egvath

ks(1— EQAEN) — Cs €(tE) = 0. (2.56)

An alternative liftdf condition arises within platforms where the lifideg length can be
explicitly chosen by a controller (e.g. as in the Bow Leg hopper [65])ubhsases, the time

of lifto ff is given by the solution to the equation

E(t2) = &p (2.57)

Using both (2.56) and (2.57), the actual liftime can then be found as

tio = Min(ty, t2) . (2.58)

Unfortunately, exact analytical solution of these equations is not posgivien though nu-

merical methods are feasible due to the simple, one dimensional nature oéthedions, we

use a sfficiently accurate approximation to compute both fiftomes in order to preserve the

analytical nature of our approximations. To this end, we approximate th@nexpal term

in (2.49) with its value at a specific instant during decompressiceT#s! ~ e ¢ with

v > 1 introduced as a tunable parameter. A reasonable chojce i$ + (¢0 — &b)/(1 — &),

which incorporates the relative ratios of rest length andfliflength (usually chosen to be

equal) to estimate the liffbtime. We hence obtain

21t — arccoss(1 — F/®3)/(MMe 5007y — ¢ — g
wd

21 — arccos(o — F/3)/(Me4@0)) — ¢

wd

cl
tIo

(2.59)

X

(2.60)

X

c2
tIo

where we define

M = \J(Csb0)? + K — 2sCeido COS(h2)
Cswo Sin
$3 = arctan—>2 ©¢2) .
bswo COS(h2) — Ks

Once the time instants associated with each event are identified, the codiggpstate can

be computed, completing all the components in the apex return map.
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2.4.2.3 Energy Based Correction on Liftéf States

Finally, we correct the lift angular velocity to account for the energytdrence erroneously
induced by our approximations while keeping radial leg length, its der&vatind leg angle

constant. This correction is formulated as,

Vio = \/Vtzd + ks((&d — 1)? = (G0 — 1)?) + 2(&d COSYtg — &0 COSYo) — 2E¢,
- R\ A1
Yo = signyio) ———, (2.61)

&lo

WherelZm is the corrected liftf angular velocity andc, is the energy loss due to damping

and it is computed as

tio .
Ee, = f Cs E2(t)dlt
0
1 5. Con Con
= 3 M203( £( cOS(D + ¢2) — COS(Quglio + 20 + p)e @0t ) 4 1 — g %ot ),
It is also possible to use gravity corrections on the angular momentum [9ffdw of this
linearization is minimal compared to damping losses and this simple correctiordpmie

more than adequate.

2.4.3 Simulation Results for the Lossy SLIP Model
2.4.3.1 Predictive Performance

In order to assess the performance of our new method, we simulated a singgeof the
dimensionless SLIP model with damping using a range fiednt initial conditions and

damping co#icients, and compared its predictions to Geyer’s [30] analytic approximations

All simulations were done witliiq = &0 = 1, together with initial conditions and remaining
parameters accordingly scaled to be representative of natural suryieiding 94248 sim-
ulations coveringy € [0.3,1.6], z € [1.151.75], ks € [25,200], Y14, € [—0.15025] and

{o := Cs/(2+/ks) € [0,0.5], whereyqq,, denotes the deviation of the touchdown angle from its
value that would result in a neutral stride. For each simulation, we evaltieqmerformance

of each approximation method using the percentage &foe 100% associated
with each relevant variable.
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Table 2.3: Averageercentageprediction errors for both Geyer's and our methods in predict-
ing various elements of the SLIP state.

Geyer’s Approximation|| Proposed Method
U+o | max p+o | max
liftoff pos. pio 325+3.00 | 21.37 || 0.36+0.44 | 4.58
total energy Et || 2290+ 2049 | 102.95|| 0.05+0.08 | 1.44
apex height hy | 2979+ 2805 | 170.07| 0.11+0.36 | 16.36
apex pos. pa || 3792+ 3423 | 170.78|| 0.28+0.84 | 29.26
liftoff vel. v, || 4552+ 46.74 | 291.20|| 0.66+1.98 | 61.23
stance time tg 9.28+8.35 41.50 || 0.20+0.28 | 3.23
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Figure 2.4: Left: Average apex position prediction performance as etitumof damping.
Right: Average total mechanical energy prediction performance ascidarof damping.
The vertical bars represent the corresponding standard deviation.

As shown in Table 2.3, the average predictive performance of ouritdgoacross the en-
tire range of simulations is significantly better than that of Geyer's method [Sibhilarly,

Fig. 2.4 illustrates the dependence of prediction errors for our method eyet'& method on
damping ratiap := Cs/(2+/ks). Results show that the prediction performance of the method
proposed by Geyer decreases significantly as the damping ratio ingredsée our map
seems to be uiected. Additionally, Fig. 2.5 illustrates the same graphs in Fig. 2.4, plotted
in logarithmic scale so that the trends of two methods are simultaneously visilbézedt
ingly, there is even a slight increase in the prediction performance fopre@osition as the
amount of damping increases as a result of shorter stance times that bjgugatries closer

to satisfying assumptions underlying the derivations of Section 2.4.2.1
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Figure 2.5: Left: Average apex position prediction performance as etitumof damping.
Right: Average total mechanical energy prediction performance ascidanof damping.
Error axes are plotted in logarithmic scale to simultaneously show the pregietif@mances
of Geyer’s approximations with the proposed method, which yields mearseiat are two
orders of magnitude better than its alternatives.

2.4.3.2 Tracking Performance

In order to characterize the utility of our approximation method for the dedifptomotion
controllers, we compared the tracking performance of the deadbeabgaioller defined in

Section 2.3.3 based on Geyer’s approximations and our new method.

Simulations were done coveriyg € [0.3,1.3], y; € [0.3,1.3], 3 € [1.5,1.8], Z; € [1.5,1.8],
ks € [100,200] andZp € [0, 0.3], wherey; andz, denote the desired goal state.

Fig. 2.6 shows average steady state tracking errors for gait contrblieesl on Geyer’s ap-
proximations and our method in trying to stabilize locomotion around the desiesdspeed
and height. Our results show that in both apex states of the SLIP, the ggu&iformance
of the controller based on our algorithm outperforms existing alternativéiseirpresence
of damping. Even though the accuracy* of both controllers decreaskesnereased damp-
ing, Geyer’s map is much more sensitive to this parameter. The riéatatice between the
controllers is seen in the apex height performance, which indicates the alungfect of
damping in the vertical dynamics. Overall, these results show that our anabgroxima-
tion provides a very accurate characterization of the SLIP stance dys&nighysical robot

platforms where thefBects of damping cannot be ignored.
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Figure 2.6: Comparison of apex forward speed (left) and height (righgn tracking errors
at steady-state for a spring-mass runner witfedént damping cd@cients in the leg.

2.5 Conclusion

In this chapter, we first introduced necessary background for tie 8aring Loaded Inverted
Pendulum model, together with its dynamics and control using dimensionlessl&tion. In
Section 2.3.2 we summarized two existing methods [51, 30] for the derivatimmpobximate
analytical maps for the non-integrable stance dynamics of SLIP anamelated them to be

consistent with our dimensionless variables.

In Section 2.3.3 we showed how control of ideal SLIP locomotion can bieeth dfectively
using these analytical stance maps. For the ideal SLIP plant, steadyrsidi@amsient per-
formance of the dead-beat controller developed by Geyer’s map is bettgrared to the one
that is formed by Saranli’s stance map. However in this thesis our actualfeamatyzing
the SLIP model is using it as a dynamical “template” within the planar hexapoceinod
achieve stable and controllable pronking. However even for this cager&enap gives bet-
ter performance outputs so that in Chapter 3 and Chapter 4 we will prefgr& analytical

approximations for the control of the template SLIP model.

In this chapter, we finally proposed an analytical approximation to the stymaenics of the
Spring-Loaded Inverted Pendulum model that also takes into acconrtemligible damping
in the leg. Our simulation studies showed that both the predictive perfornoance fully an-

alytic approximations as well as the tracking performance of the resultirdbdaacontroller

significantly outperform existing approximation methods. We believe that anatcurate
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analytical stance map to the dynamics of the SLIP model will be invaluable in digrdend
analysis of physically realizable anéfective controllers for robots that are directly inspired

from the SLIP model.
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CHAPTER 3

The Torque Actuated Spring Mass Hopper

A number of diferent legged platforms, including the Scout family of quadrupeds [46], th
RHex hexapod [52] as well as a number of monopedal platforms [S@n26tporate only a
single, rotary actuator for each leg, making it impossible to directly use the 8lodels of
Section 2.1 and Section 2.4 and the deadbeat controller described in S8t®nn which

radial actuation is the only mode of controlling the actuation.

Nevertheless, we can still achieve the desired template dynamics by defiwingial SLIP”
between the center of mass of such platforms and an imaginary toe on thelgriouthis
chapter, we will present how this can be accomplished in the context of éesjrape-legged
system, called SLIP-T , with only torque actuation at the hip that posse®seatrtie charac-

teristics as the aforementioned underactuated legged robots.

3.1 System Model and Dynamics

The SLIP-T model, as illustrated in Fig. 3.1, is structurally very similar to the Shéelel
introduced in Chapter 2 except that it has a fully passive leg equippedaittear spring-

N A

Figure 3.1: SLIP-T : Spring-mass hopper with a fully passive leg andeayrbip actuation
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Table 3.1: State variables, parameters and the definitions of their dimensioalegerparts
for the SLIP-T model.

Physical | Dimensionless
Quantity Group Definition Description
0 0 =p /lo Physical leg length
¢ ¢ =¢ Physical leg angle
f f =1 /lo Physical leg toe position
k K =K (lo/(mQ) Physical leg spring dtiness
d c :=d (lop/(Amg) | Physical leg viscous damping
T T =71 /(Mgb) Hip torque
m Nt =m/m Toe mass

damper pair of compliandeand dampingl, while incorporating only a single motor at the hip
with a controllable torque. Tn order to achieve such a torque possible without adding an extra
degree of freedom, we assume the presence of a rigid body withmpagsose orientation is
constrained to be horizontal (i.e. having infinite inertia). Finally, we alsorassa very small

massm, < mlumped at the toe to capture the flight dynamics of the leg.

In addition to possible physical realizations of this model through explicjpiegsion of body
pitch freedom [56, 20], its main utility for us is the fact that it captures moshefcritical
attributes in RHex platform relevant to the dynamic embedding of SLIP templhatke, being

suficiently simple to clarify the presentation of our method.

In this model, we define threeftirent reference frames: A fixed inertial world fram,

a body frameB attached to the center of mass of the model and finally a virtual toe frame,
V, marking the fixed location of the virtual SLIP toe on the ground during stafi¢’ and

V are coincident with the ground plane and all frames have identical oriemgagioce the
body angle is constant. The toe location of the physical legris denoted by_, whereas

the physical leg length and the hip angle are denoted witmdg, respectively. The hybrid
structure of the SLIP-T model is identical to the SLIP model and in the SL#ystem, we
introduce an additional flags, defined to indicate whether the leg is in fligist£ 0) or in

stance § = 1).

In our derivation of the dimensionless equations of motion for the SLIP-Temduke defini-
tions of in Table 2.1 will be used for the virtual leg defined between the bodyatual toe
frames, and also for common definitions between two models. However, walsolineed

additional definitions listed in Table 3.1 specific to the SLIP-T model and relai#édtiae
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physical leg of SLIP-T .

In order to facilitate similar derivations for the planar hexapod model Chdpteir derivation
of the SLIP-T dynamics is based on Newton-Euler force analysis. In timtegt, when the

leg is in stance, the toe position is fixed on the ground and the radial spgimget force

Fri=—«(-1)-cp, (3.2)

the dfect of the hip torque

Fri=-1/p, (3.2)

acting orthogonally té-, and the gravitational acceleration constitute the only external forces
acting on the SLIP-T body. The total force vector exerted on the bodlyeoleg during stance

can be formulated as

F=R()

F. ‘
, (3.3)

r

whereR(¢) denotes the 2-D rotation matrix

(3.4)

R(G) = [ COS¢ —sing ]

sing  cos¢

that determines the orientation of the leg with respedit@alsoB). In contrast during flight,
we assume that leg doesn’t exert any forces on the body. Insteanotien of the toe mass
is governed by associated leg forces. Combining (3.3) with flight dynamidsg@ making

use of the stance flag we can obtain the overall SLIP-T dynamics as

y -7 0

ly‘ = SR o ‘ (3.5)

z —k(p—-1)-cp -1

wi = s-)RrRG)| 7| (3.6)
—k(p—-1)-cp
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3.2 Template Control of SLIP-T Locomaotion

3.2.1 Virtual Foot Placement and Virtual Toe Coordinates

As noted above, control inputs available on the SLIP-T model are incongpatith those
that we used to perform gait control on the SLIP template of Section 2.3.&n twugh
the touchdown angle can be realized within the SLIP-T model by controllingethangle
with appropriate torque commands during flight, it is unclear how touchdmaHitoft leg

lengths can be commanded in the absence of any radial leg actuation.velo@wy attempt
to use the hip torque during stance will substantially change the angular memarndund

the toe of the SLIP-T , pushing its dynamics farther from the SLIP template.

Fortunately, both of these problems can be solved with the realization tha¢sired SLIP
template does not need to exactly coincide with the physical leg of the SLiRt&rs. As
evident from the illustration in Fig. 3.1, when the virtual toe positipis different than the
physical toe positiof, the virtual leg length of the SLIP template also ends up beiffgreint
than the physical leg length. As a consequence, during flight, if we dah&dip motor with

a simple PD controller to bring the physical leg angle to

¢; = arccos; cos)) , (3.7)

we can achieve botfy andy by choosing the virtual toe position as

(3.8)

fV=

y + &t COS{lt)
0 ,

also determining the position of the virtual toe frarvefor the following step. Note that,
the state of the physical leg at touchdown is determined by the flight dynaifnice emall
but finite toe mass so that it may not exactly match the commanded angle. In s&sh ca
our choice of the virtual toe position prioritizes the desired SLIP touchdamgie over its
leg length and uses adjusted versions of the touchdown SLIP stategwithy; andé; =

Z/ cosy;. Hence, our controller modifies the virtual toe position as

fV=

(3.9)
0

y + & cos(ir) }
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Following the placement of the virtual toe frari& we define a new set of dimensionless po-
lar coordinates for the stance dynamics in which the SLIP embedding will take, plefined

as
c=léu] . (3.10)

3.2.2 Control of SLIP-T Stance Dynamics

The control of the SLIP-T model in stance can be done through activedstiny of the SLIP
dynamics. In this context, it is more convenient to work with the equations of mitiartual

toe coordinates. The stance equations of motion of SLIP-T model in virtaaldordinates

are given by
E = &EyP—cosy+ Ky, (3.11)
i ‘25‘”%'”‘” K. (3.12)

whereK := [ K¢, Ky ]T is the forcing vector that captures theet of both the physical leg

spring and the external hip torque on the virtual toe coordinates andecaritten as

K:=[Ke, Ky | = (Dct) 7+ (Dep) Fi (3.13)

whereDeg = [ 8¢/0¢, 0¢/0y | andDep := [ dp/d&, dp/dw |T denote Jacobian matrices of

the hip angle and physical leg length with respect to virtual leg coordinates w

o9 _ sin@-¢)
3 p
5o = Soosy-0).
T = cosy-9).
W= Esne-0)

For the sake of simplicity, we defink:= (D¢¢) andB := (D¢p)F;. In the stance phase, as
a primary goal, the embedding controller must choose appropriate hip toogu@ands to
force the dynamics of (3.11) and (3.12) to match the basic SLIP dynamicslina@close as

possible. Simple inspection reveals that this goal can be achieved pedelstiy we have
K*=[DU*(¥), 0], (3.14)
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whereU*(¢) and DU*(£) denote the desired radial potential law and corresponding radial
force, respectively, for the SLIP template. Moreover, the second coer in (3.14) enforces

the conservation of angular momentum around the virtual toe fr&mé&nfortunately, the
SLIP-T model has only a single actuator, meaning that both componendscainot be
regulated independently. Furthermore, especially when the virtual toesis tahe physical

toe of the SLIP-T model, radial controffardance orK is very low. Consequently, in the
design of the embedding controller we will not consider Kpecomponent and choose to
focus our control fort on the angular dynamics and attempt to preserve angular momentum

around the virtual toe as

r=J,'(0-B,) = —ptan@ - ¢)F; . (3.15)

whereJ, andB, denote rows of andB associated with the coordinate, respectively. The
constraint,, = 0 reduces the system to a central force problem, which is actually the most
important constraint for the SLIP dynamics. Our assumption is that if theigaiyeg com-
pliance (i.e. the passive dynamics of the robot) is properly chosen, tilegpproximately

yield the , desired result for the remaining coordinate in the virtual leg frame.

3.2.3 Gait Level Control of SLIP-T Locomotion

In order to develop a gait level controller for the SLIP template that is dgtermbedded on
the SLIP-T system, we will use the deadbeat control strategy introduceedtion 2.3.3, in
which we will prefer the analytical approximate stance map of Geyer in dodform the

apex return map.

However, not surprisingly, our prioritization of angular dynamics owafial dynamics in
(3.15) causes the SLIP embedding scheme to perform poorly in regulaérgtti energy
in the system, which depends mostly on the dynamics in radial direction of videato-
ordinatesc,. The presence of this phenomenon was one of the most significanesafrc
error in the embedding controller example for alternating tripod running iph [B8king ex-
plicit control of running height impossible and leading to several sowtésstability. This
necessitates a number of model-inspired modifications in our gait level taigooithm to
account for energetic errors introduced by both radial inaccurasiegll as the presence of

damping.
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Our modifications primarily aim to achieve the desired energy change of)(2RBdr the

SLIP-T model, we also need to supply the energy lost through dampigss, with

AE: = (7~ 22 + 5063 ~ (o)) + s (316)

Unfortunately, accurate estimation of damping losses is a hard problenepadds critically

on physical implementation details. Even under simple viscous damping with

Atg
AEigss = f ¢t (3.17)
0

it is not possible to obtain a ficiently accurate analytic solution. Fortunately, radial stance
trajectories of both the SLIP-T model, as well as the pronking behaviote&f $2ctions do
not exhibit significant variability across strides in their damping lossess&pnrently, we use

a sinusoidal fit, inspired by the form of (2.24), to the measured data, thedown and liftdéf

leg compression rates, and stance duration, within each step to estimate theglesges
within the next stance phase. As shown in Section 3.3 and Section 4.3, this yéejdgood

results at limit cycle, as well as good performance even during transients.

A more important source of inaccuracy in the overall performance ofittieedding controller
is how the touchdown and liftbleg lengths are selected to realize the desired energy supply
by the hip actuator given in (3.16). Depending on the signBf we have diferent types of

inaccuracies.

WhenAE; < 0, i.e. when we need to take energy out of the system, it is necessaryrtersho
the liftoff length of the SLIP template while touchdown leg length is kept equal to the rest
length according the the scheme given in Table 2.2. In the SLIP-T modelughhee can
easily realize the touchdown leg length by explicit placement of virtual toe, due to the lack

of radial control &ordance in radial direction, arbitrary liffitlengths cannot be realized by
the embedding controller. Instead, the liftength of the SLIP template is a product of the
uncontrolled radial dynamics. However due to presence of dampinggdi@@omotion, the
sign of AE; becomes rarely negative and there is rarely r never a need to exteagy/drom

the system by using the actuators. Damping already does this passivelgoAsequence, we
assume thafiyg = &0 = 1 and damping removes some amount of energy Wil becomes

negative. As a consequenggis no longer a control input for the embedding controller.
Alternatively, whenAE, > 0, we adjusttyy to inject energy to the system, while assuming
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&o = 1. Since the radial dynamics of the controlled embedding deviate from thepslsive
stance dynamics of the ideal SLIP model, the touchdown leg length formulage g Ta-
ble 2.2 is not convenient (inaccurate) and a better analysis is needixgt fenergy supplied

by the hip torque. In particular, we have

tio . tio .
AE = f 7o(t) dt = f —p(t) tan@(t) - O)Fr(H) $(0) dt. (3.18)

ttd ttd

Having already compensated for damping, we can assume tfiat —«(o(t) — 1) to yield

tio .
AE; ~ ft p(t) @an@(t) - ¢(1)) ¢(1) «(o(t) - 1) dt, (3.19)

td

which, despite the availability of analytical approximations to all of its comportendsigh
(2.24) and (2.25), still does not admit an analytic solution. Neverthelesgprapose an
approximation to this integral to further improve on the poor energetic pedoce arising
from deploying the ideal SLIP energy control. Firstly we assume thapjl~ (1 - &), which
is reasonable if desired changes in gait parameters are not too dramatenvdr, the angle
difference between the physical and virtual leg stays relatively constangthout stance and
can be approximated on the average with its value at bottom. This yields ayxapation to

the integral in (3.19) as

tIo .
AE, ~ ft (&) — 1) tangs — d) po do dt (3.20)

td

which, once the radial solution of (2.24) is plugged in, reduces to

AE; ~ & tan{s — ¢v) pb ¢b (At — tio) — b(COSEotia) — COSEotio)) /o) (3.21)

wherea, b, @9 and event times are all as defined in Section 2.3.2.2 and are functions of the
control inputs. In order to avoid numerically solving this equation in multiple dinogisswe

recall our observation that the angular dynamics do not substanti&digt ¢he radial, ener-
getic behavior of the system. Consequently, we modify (3.21) to use theahtutchdown
angle

Un =Wt l [Va 2] = fa@e[ Vo z]")] (3.22)

as one of the input commands, yielding a one dimensional analytic equatiah wé then

solve for&; to achieve the desired pumping energy.

Once the appropriate leg lengths are determined, the deadbeat contr@kstion 2.3.3 is

used to find the corresponding touchdown angie
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Table 3.2: Kinematic and Dynamic Parameters of the SLIP-T Model

Dimensionless SLIP-T Parameters
Leg stifness K 259
Leg damping c 111
Stall Torque Tmax 5.91
Maximum Motor Speed Pmax 6.88
Physical SLIP-T Parameters(with g = 9.8 m/s?)
Body mass m[kq] 9
Rest length lo [M] 0.19
Leg stifness K[N/m] 12000
Leg damping d[N m/g| 72
Stall Torque Tmax[N m| 991
Maximum Motor Speed ¢max[rad/s] | 49.4

3.3 Simulation Studies

This section presents our simulation results where we provide simulation eeiteiiustrate
that the embedding controller developed for the SLIP-T model is capapl®diicing stable
and maneuverable locomotion. To this end, we analyze the existence aititysifithe limit

cycles as well as the tracking accuracy of the proposed SLIP-T dient/dl experiments

were run in Matlab, using our hybrid dynamical simulation toolkit based on Sih{5@)].

Table 3.2 details kinematic and dynamic parameters of the SLIP-T model used;iout

our simulations. These parameters are selected in order to closely matchaheetss of

the planar hexapod model (Slimpod) detailed in Table 4.2 in order to establ@mimadtion
between SLIP-T and Slimpod models and make legitimate comments on the simulatlts resu
of the SLIP-T model.

3.3.1 Existence and Stability of Limit Cycles

Firstly, we investigate whether our embedding controller leads to a stable linh wythin
the state space of the system. Fig. 3.2 illustrates an example run for the $hdidel, starting
from an arbitrary initial condition and converging to the selected goal state d.1,y = 1.1
(corresponding to a physical goal & 21 cmandy = 1.5 m/s for the SensoRHex platform,
with a leg length ofg = 19cm). In the figure, left two plots show forward velocity and body

height as a function of dimensionless time, while the rightmost plot show theqssign of
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Figure 3.2: An example SLIP-T simulation witBh,g = 30 (teng = 4.2 s for SensoRHex),
starting from an initial condition af = 1.4,y = 0.9, towards an apex goal = 1.1,y* = 1.1.

apex states at each step. Results show that the model quickly conveegisitocycle with
very small steady-state errors indicating that the combination of the embecllirigpller

with the SLIP deadbeat controller successfully stabilizes locomotion.

In all of our simulations, we observed that the controller either convdmeassingle, stable
limit cycle, or irrecoverably fails due to a structural faults such as toe sighiy the SLIP-T
body colliding with the ground. No controller parameters or initial conditiomslpced gaits

with period-two or more oscillations.

3.3.2 Stability and Basins of Attraction

In order to generalize our observations in Section 3.3.1 and more adgutaeacterize sta-
bility properties of the SLIP-T controller, we systematically ran simulations faorariety of
different initial conditions toward the same goal setting‘of 1.16,y* = 1.1 (corresponding

to Z = 0.22cmandy; = 1.5 m/s for SensoRHex). We considered each individual run with
tend = 52 (teng = 7 S for RHex) stable if the apex states of the last 5 steps were within 1% of

their average.

Fig. 3.3 shows the resulting domain of attraction for SLIP-T running undeatiion of our
controller. Even though it is not surprising to see that stable locomotiorotéenachieved
at very high speeds, it also does not perform well for very slow dpeé&low speeds are
problematic due to the underactuated nature of the SLIP-T model whicimesconable to
inject energy into the system at slow speeds where the leg angle is nardostfect of hip-
torque is primarily in the forward direction. Nevertheless, this does naepitea serious
problem since our controller successfully stabilizes running for the kengge of speeds in

between, also covering a large range of initial heights.
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Figure 3.3: Stable domain of attraction for the SLIP-T model towards theyjoall.1 and
z, = 1.16. The green region shows initial conditions from which locomotion cgegto a
stable limit cycle. Dashed lines illustrate a few example runs to show conerdemavior.

3.3.3 Maneuverability

In order to characterize maneuverability properties of our SLIP-T oblatr we ran a series

of simulations with diferent apex goal settings, starting from initial conditions close to the
goal. As in the previous section, we identified goal settings for which stabberiotion was
possible by checking the last 5 apex states and making sure they are witbirttiéis average
and also are with in 5% of the desired goal state. Fig. 3.4 shows the resdlts e blue
region illustrates the reachable set of apex goal settings for our emigextiitroller designed

for SLIP-T model. These results show that speed and height can Hlieitgxgontrolled

within a very large region using our embedding controller.

3.4 Conclusion

In this chapter we presented the implementation of our template based cordtefgtm
order to achieve stable and maneuverable control of the Torque Acttjpited) Mass Hopper
(SLIP-T ) model, which captures most of the critical attributes in our tarigetgpm RHex,

while being stficiently simple to clarify the presentation of our method. Our method is based
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Figure 3.4: Maneuverability of the SLIP-T controller. The blue region ilkies the set of
apex goal settings for which stable pronking is possible and steady-stat®ithin 5% of the
desired goal.

on an active embedding of template dynamics, the SLIP model in our case, otque
actuated monopedal morphology. The end result is a clean separatiangbla dynamical

model for the specification and control of higher level task parameters.

We illustrated the utility of this methodology on the problem of stable and manéalgera
control of SLIP-T running, which is diicult to achieve in the absence of radial leg actuation.
We provided simulation evidence to establish the existence and stability of limitsoyitie
large basins of attraction. We also established that the resulting contralades explicit
maneuverability, with a large region of possible locomotion speeds and hagioss which

explicit control is possible.
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CHAPTER 4

CONTROL OF HEXAPEDAL PRONKING

As described earlier, our long-term target experimental platform foptbaking behavior
is RHex, an autonomous hexapod robot with only a single rotary actuateaanhip. This
platform has been capable of a wide variety of successful dynamiwioesb2] but it has
never been able to achieve robust and maneuverable pronking. Whaa-tateral legs on
this platform are used in synchrony for behaviors such as the promispitawled posture of
the morphology ensures that locomotion dynamics live on the saggital plamseQuently,
a saggital planar model is often capable of capturing relevant aspdbis dynamics for the
purposes of modeling and analyzing such behaviors [54, 32]. In toi®eewe will describe
and use such a planar model, Slimpod [50, 51], to extend the results ofeCl®&qmnd to

design a feedback controller for pronking.

4.1 Background: Slimpod - A Planar Hexapod Model

In this section we describe in detail the Slimpod model [51], its dynamics amtiatsd

simplifications with our dimensionless formulation.

4.1.1 System Model and Assumptions

The Slimpod model, illustrated in Fig. 4.1, consists of a rigid body with inéraad mass
m, to which three compliant legs, each representing a saggitally symmetric pagbn

RHex, are attached. The position and orientation of the body are repeddsy a body-fixed
frame8B with respect to an inertial world franm®/. The orientation of8 determines the body

pitch @ and is also expressed by the rotation may‘lR, following the standard notation in

41



Figure 4.1: Slimpod: A planar dynamic model for hexapedal pronking

robotics [22]. As in Chapter 3, we define a "virtual leg” extending frora body center
of mass (COM) to a stationary point on the ground coincident with the virtwafreomeV

having the same orientation as the world frame.

Legs are considered massless during stance, with the toe position fixed grotind af;
without any slippage. However, in order to properly represent protra dynamics during
flight, very small toe masses, < m are placed at each toe, assuming that body dynamics
remain unéfected by legs in flight. Each leg is attached to the body through a pin joint
with an independently controllable torqug [ocated af; in body coordinate®. Each leg is
composed of a radial spring with8tiess; and incorporates viscous damping with fiagent

d;.

Throughout locomotion, each leg can independently be either in standghtr Three sep-
arate binary flagss; € {0, 1}, are used to indicate contact configuration of each leg. In each
of the possible 8 contact states, the system hiisrdnt continuous dynamics resulting in a

hybrid dynamic system model.

In the following section it will be necessary to mask various the leg forcevgbased on the
current contact configuration of the system. In order to facilitate thisgzthe following

projection matrix will be used.

ss 0 O
S=l0 s 0 (4.1)
0 0 s
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Table 4.1: Variables, parameters and the definitions of their dimensionlesteguarts for
the Slimpod model.

Physical | Dimensionless

Quantity Group Definition | Description
a a =a Body Orientation
I j 1/(miZ) Inertia
3 a =a/lo Hip position (inB)

=1li/lg Leg vector (inB)
= pi/lo Hip position (inV)

o
S

4.1.2 Dimensionless Dynamics

As in previous chapters, we will use dimensionless variables in the denafttbe dynamics
for the Slimpod model. To this end, in addition to variables defined in Tables &.3.4nwe

will also use Slimpod-specific definitions detailed in Table 4.1.

The configuration of the rigid body (Translation and Rotation) with resfmedd’ together

with the configurations of each toe, determines the configuration space as

Since the legs are the only external forcing inputs acting on the rigid body bietter to
express the orientations and positions of these legs in the body frame ted®uthe spec-
ification of actuation and compliance models. Given the current configarafithe system

ch € Ch, leg vectors in the body frame are calculated as

i = RY()(fi-[y, z]")-a (4.3)

I D.R™(@)(fi - [y, z]" )a + RT(@)(fi - [, 2]) (4.4)

We then express these leg vectors in polar coordingtes, [pi, ¢i] T, with

pi = |||||| = ‘“Ey-l- IEZ ¢i = atani Ii’y, —Ii’z) (45)

T s Niyliz—ligl
|I |I _ iy |,y+ 1,z ',z ¢i — Lzl’zl’y . (46)
pi pi Pi

pi =

In the Slimpod model, each stance leg, se= 1, exerts a radial force
Fri=—«i(oi—1)-Gpi, (4.7)
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resulting from the spring-damper pair on the legs, and a tangential force

Fri=—7i/pi , (4.8)

coming from the action of hip-torque, on the body through its interaction wittgtband.

Consequently, the total forcéfect of legi on the body is computed as

Fi =R(a+¢i)

Fei ‘
T, (4.9)

r

whereR (a + ¢;) represents the leg orientationd Combined with touchdown flags, the

equations of motion of the rigid body hence take the form

HEDRE

z

.
, (4.10)

ja

Il
1=
w
—_—
=
|
—
<

]xFL (4.11)

Complementary to the rigid body dynamics, the equations of motion of each smaibisse

are given by

mfi = (s-1DF. (4.12)

We will use these equations of motion for all of our simulations of the Slimpod mddel.
is important to note that, through the use of individual leg contact fsags the equations
(4.10) and (4.12), only the stance legs haffect on the rigid body dynamics, whereas when
a leg is in flight phase its corresponding radial and tangential forceemiats the equation
of motion of its toe mass. Besides, the collision of each toe mass with the growsslimed

to be fully plastic, such that at the beginning of each stance its velocity bacoene. As a

result, the toe remains stationary on the ground until it liffs o

4.1.2.1 Mode Transitions

Due to the hybrid nature of the Slimpod dynamics, throughout the motion of the &limp

model there exists discrete changes in the leg contact states. In ordéntottlese discrete
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transitions formally, we need to define threshold functions. Two eventsingfior touch-
down and liftdf for each leg are enough to formalize mode transitions. These definitions take

the form

htd Z— pi COS@; (4.13)

hi°

n,oFi, (4.14)

where ther;, operator retrieves the projection of the force veétanto the vertical coordinate
axis. WhenhitOI = 0, the touchdown event is triggered, and the leg contact state is changed
from flight to stance. Actually, this threshold function is nothing but the varposition of

the corresponding leg. On the other hand, Wh}én: 0, liftoff event is triggered, and the leg
contact state becomsas= 0. The projection operator takes the projectiofrobn the vertical

axis, which gives the ground reaction force on the toe of the leg. Whegrthad reaction

force becomes zero, the toe starts to taffe o

4.2 Template Control of Planar Hexapedal Pronking

In order to control the locomotion of the Slimpod model for the pronking bieinawe use
an embedding controller very similar to the controller presented in Section 82e¢r, the
presence of three individual legs as well as the pitch degree of ineedoessitates a number

of important extensions.

Firstly, we consider the SLIP template to have transitioned into stance as sabteast one
of the Slimpod legs touches the ground. This event also triggers explicemkd of the
virtual toe, thereby defining the new virtual toe coordinates in the frdmeow extended

with the pitch degree of freedom to yield

w=[& v, a] . (4.15)

Normally, the flight controller is responsible from controlling individual Slirdplegs to
proper locations to achieve the desired touchdown statesndéiy, for the SLIP template.
However, due to the nontrivial flight dynamics of Slimpod legs and the bactyal touch-
down states may not exactly match with the touchdown control inputs imposec lgaih
level controller. In such cases, we prioritize the touchdown angle oeaotichdown length

as in Section 3.2.1.
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4.2.1 Control of Slimpod Stance Dynamics

Following the explicit placement of the virtual toe frame, the stance controkestaver and
attempts to mimic ideal SLIP template dynamics by properly choosing hip torque ioputs
the Slimpod model. As in Section 3.2.2, we start by writing the rigid body stancandigs

in virtual toe coordinates to yield

E = &y®—cosy+Ke, (4.16)
" —Zéll/ + sinl// Kw

i o= — n 7 (4.17)
& = % , (4.18)

which are identical with the SLIP-T dynamics of (3.11) and (3.12) with theteadof pitch
dynamics. The forcing vector

K :=[Ke Ky, K17 (4.19)

captures theféect of both the hip torques

ti=[11, 72, T3]" (4.20)

and radial leg forces

Fr:=[Fr1 Fr2, Fr,3]T (4.21)

on each virtual toe coordinate. This vector takes the form

K = (De¢p) ST+ (Dep) S F: , (4.22)

with D¢ and Dcp denoting Jacobian matrices of the leg angles and lengths with respect to
virtual toe coordinates. The derivation of the Jacobians are given pergix A. As in
Section 3.2.2, we defing:= D¢¢ andB := (D¢p) S Fr and usel, andB,, to denote the rows

of J andB associated witly component, for simplicity. Also, specific to the Slimpod model,

we will useJ, , andB, , to denote the rows associated with ther components.

During stance, the main goal of the embedding controller is to force the dysarhihe
Slimpod to closely parallel those of the template SLIP model with appropriate lgpesr

Consequently, perfect embedding of this template requires the controliehizve
K*=[DU*(#), 0, M;] , (4.23)
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where first two components and their corresponding meanings are ideotitee ones in
(3.14) of SLIP-T model.M}, is an suitably choosen pitching torque which we will use for
the stabilization of the pitch degree of freedom. For this purpbkgeis computed using the
simple PD law

M = —Kq @ — Ky @ (4.24)

Exact realization of these target dynamics are only possible if the Jacaiaitix J is full-

rank, resulting in the inverse dynamics controller

r=J1(K"-B) . (4.25)

Unfortunately, as described in [51],often ends up rank deficient for robot configurations in
which legs are parallel and body pitch orientation is close to horizontal mweking direct
inversion impossible. The rank deficiency problem becomes even wdrse the legs are
vertical, reducing control degree of freedom to one. Since the prgrid@havior inevitably
must go through such configurations, we will address this problem in tkieseetion by
prioritizing appropriate coordinates of the SLIP template while also respetintgr torque

limits in order to ensure practical applicability of our controller.

4.2.1.1 Handling Singularities, Torque Limits and Partial Stance

Due to parallel configurations of the legs during pronking, first andrsgcows ofJ become
linearly dependent, such thatand&é components oK cannot be controlled independently.
Moreover, when the polar coordinates of the physical lggsare close to the ones of the
virtual leg, [£, ;.//]T, control &ordance along thé& direction becomes very low, such that
Je ~ [0 00]. This is very similar to the lack of radial controffardance in Section 3.2.2,
where we ignored thé component of (3.14) and our solution for the radial direction relied
on the passive dynamics of the morphology. Since all legs in the Slimpod madeporate
passive compliance, this will still possible, allowing us to focus active cbeffort on the

remaining two virtual toe coordinates.

As such, when the radial component is excluded from the inversion, veesis dynamics
controller attempts to simultaneously satisfy both angular template dynamics andtphch
lization with

tye =0 (B 30a) " (OMIT =By ) - (4.26)
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This solution minimizes all hip torques while satisfying the angular and pitch dysafioic

the COM under the assumption that associated components of the Jacehiah singular.

In order to ensure practical applicability of our controller, we also impose lonitsip torques
based on actuator torque-speed characteristics of RHex. Furtheme@mpose additional
constraints to prevent premature leg liftevhich often causes instability associated with loss
of actuation degrees of freedom. Formally, we specify these constraititemally for each

leg, yielding the allowable torque space
Tim ={ 7| Timin < 7i < Timax 1 <1 <3} (4.27)

In cases where torques returned by (4.26) are outside this rangeijiariéize the angular

momentum around the virtual toe, defining the associated feasible torqueapa

Ty ={r1dyt+B, =0}, (4.28)

whose elements can be writtenas 1, + 7, where

T, € NullspacgJ,)

= J,(33;) " -By (4.29)

In situations where this set of torques intersects the allowable torque Epacee find the

best choice using the equation

STty M i) 7= 7ual (4.30)

which is solvable with simple linear programming methods [51] and can be easdityped

in real-time. Otherwise, if7, N Tiim = 0, then the best solution is

Tg = min M

4.31
el @3y

which is, once again, easily solvable using linear programming [51].

The controller that results from using the solutions of (4.26), (4.30) 4/3dJ was formulated
under the assumption that all three legs are in stance. However, closelddooen and liftéf

events and particularly in the presence of noise, the number of legs irestaycbe smaller.
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The solution still applies when only two legs are on the ground but a regstetegy must

be introduced when only a single leg is in stance.

Earlier work on pronking [44] and our simulations show that pitch instabilitysgaificant
mode of failure for this behavior. Moreover, contr@iadance of a single leg is usually much
more pronounced in the pitch degree of freedom. Consequently, wiyena smgle leg is in

contact with the ground, we only enforce the pitch stabilization goal, yielding

7s= Jy 1 (M} - By) (4.32)

whereJ, andB, are now scalars. This computed scalar torque is then limited to the allowed

range given in (4.27).

4.2.2 Gait Level Control of Embedded Slimpod Model

As a result of the pitch stabilizing torqud, imposed by the stance controller, pitch oscil-
lations during pronking behavior are expected to be very small. Constguihe stance
dynamics of the Slimpod model are expected to be very close to those of tReTSLDue
to this similarity, we will use the gait controller developed for SLIP-T model iatiea 3.2.3

with only a few minor extensions for step-wise control of pronking.

Firstly, we choose the sthess and damping parameters of the gait controller as
3 3
d=>1d, k=>k. (4.33)
i=1 i

to reflect the presence of three legs assuming they act in parallel dteimgesperiod. Then,
using these dfiness and damping parameters, and following the algorithm defined in Sec-
tion 3.2.3, we compute gait level control inputgy and &, of the SLIP template for the
following stride of the Slimpod model. Once touchdown states of the SLIP template a
found, we attribute two responsibilities to the flight controller for pronkingsiing simul-
taneous touchdown of all three legs, and making sure that desired Shifldnputs can be
realized by explicit placement of the virtual toe. To this end, the flight cdatrcontinuously
solves kinematic equations for all legs and applies PD control to bring thergitaéguired

positions with respect to the world frame as illustrated in Fig. 4.2. Based orLtRec8ntrol
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Figure 4.2: Leg kinematics at the time of touchdown

decisions); and&;, target leg angles are given by

_ siny
i = & + R(at) (4.34)
COosYrt
$ig = arccosfy) - at, (4.35)

wherep; are the positions of the hips i for each leg anabi*’td are the target leg angles.

These target angles are realized with hip torques chosen as

Ti = =Ky (81 — ¢11) + K; 6. (4.36)

Since an estimation of the pitch angle at touchdowg,(through numerical integration of
flight dynamics), may not be very accurate, our controller simply usesutiert, measured

pitch anglex in (4.34), which yields the same result at the moment of touchdown.

All of our pronking simulations presented in Section 4.3 use this flight contratigether

with the embedding stance controller described in Section 4.2.1

4.3 Simulation Studies

In this section, we provide simulation evidence to illustrate that the embeddirigpiten
described in Section 4.2 for the Slimpod model is capable of producing stadbl@aneuver-
able pronking. We also characterize the robustness of the resultingitneigainst modeling
errors in the form of parameter mismatch, sensor noise in the form of stasuraeeents

polluted by white gaussian noise and actuation noise in the form of piecewistaat torque
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Table 4.2: Kinematic and Dynamic Parameters of the Slimpod Model

Dimensionless Slimpod Parameters

Body inertia j 0.62

Leg stifness K 8.62

Leg damping Ci 0.37
a [-1.26,0]

Hip attachment coordinates a [0,0]
as [1.26,0]

Stall Torque Tmaxi 1.97

Maximum Motor Speed Omaxi 6.88

Physical Slimpod Parametergwith g = 9.8 m/s?)

Body mass mkd] 9
Body inertia | [kg n?] 0.2
Rest length lo [M] 0.19
Leg stiftness ki [N/m]| 4000
Leg damping di [N m/g] 24
ap [m] [-0.24,0]
Hip attachment coordinates  a, [m] [0,0]
az [m] [0.24,0]
Stall Torque Tmaxi [N Ml 330
Maximum Motor Speed | ¢maxi [rad/s] 494

outputs updated at 1 KHz. To this end, we measure steady-state trackiogrzace as a
function of noise magnitude and show that an experimental implementation ofdpesed

pronking controller is feasible under realistic sensory performance.

As in the SLIP-T model, all simulations were run in Matlab, using our hybridadyical
simulation toolkit based on SimSect [50], whose qualitative correspoedenthe physical
performance of RHex was previously verified [51, 54]. All kinematic dgdamic parame-
ters for the Slimpod model, detailed in Table 4.2, were chosen to closely matchytbiead
SensoRHex robot to ensure future applicability of our results to an iexpetal implemen-
tation. Note that the results are applicable to a wide range of parameter ctiovisriue to

our dimensionless formulation of the models.

4.3.1 Existence and Nature of Stable Limit Cycles

As in the SLIP-T model, we first analyze whether our pronking controleverges to a

stable limit cycle within the state space of the system. Fig. 4.3 illustrates an example ru
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Figure 4.3: An example pronking simulation withg = 30 (teng = 4.2 s for RHex), starting
from an initial condition oz= 1.4,y = 0.9, « = 0, towards an apex goal = 1.1,y* = 1.1.

for the Slimpod locomotion, starting from the same initial condition with the locomotion
example of SLIP-T model in Section 3.3.1 and converging to the same selexdédtgte

of z = 1.1,y = 1.1 (corresponding to a physical goal of= 21 cmandy = 1.5 m/s for
SensoRHex, for which physical platform parameters are providedbfe ®2). Left two
plots indicate forward velocity and body height as a function of time, whileigigmost plot
indicate the progression of apex states at each step. These resulisictheate that Slimpod
locomotion converges to a limit cycle with very small steady-state errors indicttéat our

control strategy successfully stabilizes pronking behavior.

In all of our simulations, we observed that locomotion either converges itogée s stable,
period-one limit cycle, or irrecoverably fail due to structural faults sastoe stubbing or
pitch oscillations leading to the body colliding with the ground. No controllermpatars or
initial conditions produced period-two or more oscillations Also, it is worth rpthmat the
state progressions for both the SLIP-T and Slimpod models are very sinidgyesting that

the SLIP template was indeed correctly embedded.

Finally, in order to show the shape and nature of torque outputs of actuatershow in
Fig. 4.4 the torque trajectories of the last stance phase for the example Sliocpoabtion.
It can be seen that these torque profiles are realistic and reasonaliehaticommercial

actuators of our SensoRHex and our motor drivers can easily gettezagestorque commands.

4.3.2 Stability and Basins of Attraction

In order to generalize our observations of Section 4.3.1, and moresdelyucharacterize sta-
bility properties of the pronking controller, we systematically ran simulations faovariety

of different initial conditions toward a single common goalzof= 1.16,y* = 1.1 (corre-
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Figure 4.4: Torque Profiles of the Slimpod Model for a Single Stance Ph&eady State

sponding taz; = 0.22cmandy; = 1.5 m/s for RHex). Each individual run witlenq = 50
(tend = 7 s for SensoRHex) was considered stable if the last five apex states \ithie 16

of their average.

Figs. 4.5 and 4.6 illustrate two cross sections of the domain of attraction forlithpds

model, whose state space now has the additional pitch degree of freexopated to the
SLIP-T model. Not surprisingly, itis slightly harder to stabilize hexapedahking due to the
additional pitch degree of freedom (See Fig. 3.3), leading to a smaller dahattraction.
Nevertheless, the stable domain for the pronking controller is still largegéntu admit

practical deployment.

4.3.3 Maneuverability

As we noted before, an important novelty of template based control is itsprowf a simple,
task specific interface for high level control of locomotion. In contrasxisting pronking
controllers in the literature, this approach provides a high degree of mearadility for the

pronking gait with explicit control over its forward speed and hoppingttte
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Figure 4.5: Cross sectioly{-z,) of the domain of attraction towards the gggl= 1.1 and
z, = 1.16. The shaded green region illustrates initial conditions from which thepoek
converges to stable pronking. Dashed lines illustrate a few example rumsvacenvergence
behavior.
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Figure 4.6: Cross section4-z,) of the stable domain of attraction towards the gga+ 1.1
andz, = 1.16. The shaded green region illustrates initial conditions from which thapoek
converges to stable pronking. Dashed lines illustrate a few example rumsvwacenvergence
behavior.
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Figure 4.7: Maneuverability of the pronking controller. The shaded ldg®n illustrates the
set of apex goal settings for which stable pronking is possible and sgtatywas within 5%
of the desired goal.

In order to characterize the extent to which high-level gait parameterbeaontrolled for
the pronking gait, we ran a series of simulations witlfadtient apex goal settings from a
rectangular region in the apex state space. Each run was started fioitiehnondition close
to the goal and the stability criteria of the previous section were used to detesogoessful
runs. Moreover, we also checked whether the hexapod was ablectogtemdy-state at least
within 5% of the desired goal state. Under these criteria, Fig. 4.7 showsalllstates that
are successfully stabilized by the embedding controller for pronking witBlihgpod model.
Although, the resultant maneuverability region is smaller compared to the rebutsied
with the SLIP-T model (See Fig. 3.4), pronking speed and height cargdiieidly controlled

within a very large region using our embedding controller.

These results show that the embedding controller is not only capable dizetghisolated

goal settings, but that there is a large, contiguous range of goal statesathexplicitly be
requested by a high-level controller. Such maneuverability is essentighédndic behav-
iors such as pronking are to be deployed in complex terrain which wouldrescppid and
stable adjustment of gait parameters to successfully overcome obstaglebause proper

footholds.
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Figure 4.8: Pronking Slimpod model following a time varying desired apex t@jecBlue
pluses illustrates the progression of apex states with respect to time. Rethtiiczde the
desired apex state trajectories.

In order illustrate the maneuverability of our pronking controller with an exanmpe tested
our controller’s tracking performance in a scenario where the apdstia is a time varying
function. Fig. 4.8 shows the results, where the first plot illustrates the \egdegity track-

ing performance and the second plot illustrates the apex height trackiftgmance of the
pronking controller. Results show that the embedding controller sugegssiacks the de-

sired goal states without any loss of stability.

4.3.4 Sensitivity Analysis

Any physical implementation of our embedding controller will inevitably have &l déth
several sources of noise and uncertainty. First and foremost, irz@ies in measuring the
kinematic and dynamic parameters of the platform may have considerable iopacn-
troller performance. Moreover, digital torque control is often limited to piése constant
output as opposed to the continuous torque profile required by (4.R&)I\-state feedback

in a robotic platform requires the processing of sensory information, imghkarying levels
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Figure 4.9: Sensitivity of steady-state tracking performance of the prgrdontroller with
respect to a miscalibrated relative sprindgfegss;.

of noise both due to imperfect sensors as well as the approximate naestnoétion filters.
In this section, we characterize the sensitivity of our pronking controjfeinst all these three

sources of uncertainty.

4.3.5 Sensitivity to Parameter Uncertainty

Among most important and filicult to measure structural parameters for the Slimpod model
are the coordinates of the leg attachment poit&ith respect to the center of mass, and
the relative leg spring dinesses;. Moreover, initial estimates of these parameters may
become more inaccurate as a result of material fatigue and structurajeshamthe robot
after continuous use on complex terrain. Consequently, we first invisstiga impact of

an increasing discrepancy between the real and assumed valueseop#itameters on the

tracking accuracy of our pronking controller.

Fig. 4.9 illustrates the impact of inaccurate ledgfaiss values on the steady-state tracking
performance of the pronking controller, whe¢edenotes the dfiness value assumed by the
controller whereas; is the actual spring gthess. The tracking performance was character-
ized by comparing apex height and speed parameters associated withsttgadimit cycle,

z andy, with their commanded valueg; andy*. These results show that pronking remains
stable even in the presence of up to 10% error in the sprifigesis with steady state errors
under 4%. Note that the approximate nature of our controller causes seauy state bias

even wherx{/« = 1 with no modeling errors.
Similarly, Fig. 4.10 illustrates the impact of inaccuracies in the calibration of th G-
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sition on the steady-state tracking performance. We focus our attentionedmotizontal
position error for the COMycom — Ycom, Which we found to have significantly mor&ect

on the stability and performance of pronking. Beyond a certain discogpgarticularly in
the backwards direction, the pronking controller becomes increasinggfiainle and does
not converge to a limit cycle. Fortunately, the reliable range@05 < ycom — Ycom < 0.4
(-1cm< Yeom — Yeom < 8.cm, for SensoRHex platform) is very large and practically feasi-
ble. In this range, the pitch velocity at apex instant remains largelffectad by the errors,
whereas the height parametefists the most. Most interestingly, however, the results show
that when the actual body center of mass is ahead of the geometric cetiterrobot, there

is a notable increase in the tracking performance. Tfiéceis a natural result of the fact that
when the body COM is shifted forward, the positive pitch torque providedravity helps

balance the féect of leg torques in the opposite direction.

4.3.6 Sensitivity to Discrete Control and Sensor Noise

Our final set of simulations investigate the performance of our pronkimgrater under
substantial noise conditions. In contrast to the simulations of precedingregaibof which
were obtained using simultaneous integration of model and controller dynameiesgill now
discretize our controller actions and apply piecewise constant torque amiisrata frequency
of 1KHz. This is a much more realistic scenario since any physical robotfoptawill have

similar constraints, having to perform closed loop control digitally at a limitegifeacy.

In addition to this “discretization noise”, we also separately add zero-nvgzte gaussian
noise with increasing amounts of standard deviation to our force and staseimaeeent read-
ings in an attempt to characterize the sensitivity of our controller with respduoese sensory
inputs. Since our aim is controlling the apex variables, we investigatefitbet ef the noise

measurements on the apex height and apex velocity.

We summarize theffects of sensory noise on pronking performance through the relation of
the standard deviation in the steady-state tracking errors (taking intorgdbeuast 10 apex
states for each run) to the standard deviation of the sensory noise.sllec#ically, we ran

simulations using dierent noise conditions with standard deviatighse to determine the
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Figure 4.10: Sensitivity of steady-state tracking performance of thekprgmrontroller with
respect to a miscalibrated horizontal COM positiggom — Xcom > 0 means that the actual
COM is ahead of its position assumed by the controller.
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Table 4.3: Sensitivity of steady-state tracking errors to sensory nois@fenent state vari-
ables,s andy are slopes andftsets of a linear relation between the standard deviation of the
steady state error and the standard deviation of the noise.

Apex Height Apex Speed
State Variable B | va B | 7

Horizontal Position|| 0.189| 0.0038| 0.954 | 0.0047
Vertical Position 0.223| 0.0063| 2.067 | -0.0016
Horizontal Speed || 0.424| 0.0011| 1.421| -0.0010
Vertical Speed 0.288| 0.0017| 1.151| 0.0005

Pitch Angle 0.171| 0.0063| 0.940| 0.0051
Pitch Rate 0.700| 0.0008| 1.411| 0.0001
Force 0.028| 0.0008| 0.078| -0.0011

following relations

0z, = Bz0noiset Yz, (4.37)

0y, = ByaOnoiset Vyar (4.38)

where the fline parameters,,, vz, By., vy, Were determined using linear regression. Ta-
ble 4.3 summarizes our results where each row includes the fitted pararoetesisé injected

into a single specific sensory variable.

The analysis in this section will help identify the relative importance of sensingjfterent
components of the robot state with respect to their impact on controllerrpexfee. For
example, an accurate measurement of pitch rate seems to be importantu@t@acontrol
of both apex height and speed. In contrast, controller performansdouad to be not very
sensitive to force measurements, which is encouraging since it is varydeliably imple-
ment accurate force measurements on dynamic, autonomous hexaplo@s sensoRHex.
Not surprisingly, the two state variables that have impact on the total eoétigy system, the
horizontal speed and vertical position were also found to have sigrtificgact on the con-
troller performance and should be accurately measured on an expefipiatitam. Overall,
our results show that state elements that critically contribute to controller stalititpexfor-

mance are also those that can practically be estimated in a physical robotmplatf
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4.4 Conclusion

In this chapter, we extended the ideas developed for the SLIP-T modehipt€8 and intro-
duced a novel feedback controller to achieve stable and maneuvecaibtel ©f hexapedal
pronking. As a plant model for the RHex platform we used a previoudigatad planar

hexapod model, Slimpod [51], based on our dimensionless formulation.

Our control method is based on active embedding of template SLIP dynamidkertehav-
ior of a more complex hexapedal morphology, whose control is much miieutticompared
to the template model. At the end, this control scheme achieves a clean sepafratimple
dynamical model (SLIP) for the specification and control of higher lésejet parameters,
while remaining degrees of freedom of the Slimpod model are independemtisotted and
stabilized. In this context, high-level control of the gait is regulated thi@pged and height
commands satisfied by the deadbeat controller of the SLIP template, while trezleimip
controller based on approximate inverse-dynamics ensures the stabilityafbttementioned

renaming degrees of freedom.

In our simulation studies, we illustrated the utility of this methodology on the probfestae
ble and maneuverable control of hexapedal pronking, which hasveegulifficult to achieve
in the absence of radial leg actuation. We provided simulation evidence tdigistéhe ex-
istence and stability of limit cycles with large basins of attraction. The stabilityeptigs
of our controller were found to be superior to those that were obtainealtirnating tripod
gaits in [53]. We also showed that the our control policy results in a highlyemnarable
robotic pronking behavior, with a large region of possible locomotion speed heights

across which high-level control is possible.

Finally, in order to analyze the practical applicability of our controller, weegtigated in
simulation, the sensitivity of the pronking controller’s steady-state perfocem&o inaccura-
cies in the calibration of model parameters and varying levels of sensar witfsa realistic
actuation model with piecewise constant torque outputs. Although we relynauriadion

studies due to limitations of our experimental platform, SensoRHex, our rebioksthat the

designed pronking controller is Siciently robust to support a physical implementation.
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CHAPTER 5

CONCLUSION

In this thesis, we presented a novel method for controlling dynamic locombgdrgviors
based on the identification of a low dimensiotahplatemodel that accurately captures target
dynamics, often motivated by observations of similar behaviors in natudeharembedding

of this template system into a particular robotic morphology. This method simplifies the
control problem by dividing it into two separate, smaller and easier to sgee, “template”

and “anchor”, and also makes high level control of the resulting behawieh easier due to

the task-specific interface entailed by the template model.

We first illustrated the utility of this methodology, in Chapter 3, on the problentadis and
maneuverable control of the Torque Actuated Spring Mass Hopperhvelaigtures most of
the critical attributes in RHex platform relevant to the dynamic embedding d® &rhplate,
while being stfficiently simple to clarify the presentation of our method. To this end, we
adopted the Spring-Loaded Inverted Pendulum (SLIP) template, a simptelinoensional
model that has long been established as the best descriptive dynamicall fiorodunning
behaviors. In Chapter 2 we gave the necessary background foastie $LIP model, and
introduced an extended version of this model where damping in the leg is &k iteto
account. For this new model we provided a new analytical tool that appates the non-
integrable stance dynamics of the SLIP model with non-negligible damping.etowthe

results obtained for this model are somewhat dtitiee main scope of the thesis.

In the control problem of SLIP-T locomotion, we provided simulation evigeiocshow the
existence and stability of limit cycles with large basins of attraction, and establiblat the
resulting controller provides substantial maneuverability properties, withge legion of

possible locomotion speeds and heights across which explicit controlsibfms
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Later in Chapter 4, we illustrated the utility of our template based control strategihe
problem of stable and maneuverable control of planar hexapedatipgorwhich has been
very difficult to achieve in the absence of radial leg actuation. As in the SLIP-T apntr
we adopted the SLIP template. Using a deadbeat controller acting on thet&hfiate
together with its embedding within a planar hexapod model as a virtual leg, vectdeen
able to achieve robust and stable pronking, whose forward speedoppihg height can be

explicitly regulated, in the presence of severe underactuation.

Finally, in order to establish practical feasibility of our controller, we invedgdd in sim-
ulation, the sensitivity of its steady-state performance to inaccuracies iratieation of
model parameters, a realistic actuation model with piecewise constant toutugsoand
varying levels of sensor noise. We believe that, despite our reliance ofationustudies due
to present limitations of our experimental platform, the realization of this algorithrthe

experimental RHex platform will be possible.

5.1 Future Work

Our intent in the near future is to implement this controller in a planarized hexaperein
accurate state feedback and hence a direct implementation of the contralilel e possi-
ble. However, in the long term, we would like to progressively reduce tpert#ence of the
pronking controller on high bandwidth state measurements through identificzticritical
aspects of the control actions taken by this high-bandwidth pronkingaitemtand design a
corresponding open-loop controller (with possibly limited feedback dt staime) that inher-

its the stability and maneuverability properties of the feedback controller.

We believe that such a quasi-open-loop controller inspired by obseamgatio a successful
closed-loop pronking controller will be much more practical and robusaftegged robot
in the field, where accurate, high-bandwidth state estimation will be extremfékyuttiand

eventually enable the RHex platform to add pronking to its repertoire oftdi®haviors that

it can safely deploy in the outdoors.

63



[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

REFERENCES

http;//animals.howstfiworks.com. visited January 222010.

R. M. Alexander. Three uses for springs in legged locomotlaternational Journal of
Robotics Resear¢®(2):53-61, 1990.

R. M. Alexander and A. S. Jayes. Vertical movement in walking amehing. Journal
of Zoology, London185:27-40, 1978.

T. Allen, R. Quinn, R. Bachmann, and R. Ritzmann. Abstracted biolbgitaciples ap-
plied with reduced actuation improve mobility of legged vehiclesintelligent Robots
and Systems, 2003. (IROS 2003). Proceedings. 2003MEEHnternational Conference
on, volume 2, pages 1370-1375 vol.2, Oct. 2003.

R. Altendorfer, D. E. Koditschek, and P. Holmes. Stability Analysis efjged Lo-
comotion Models by Symmetry-Factored Return Maf$e International Journal of
Robotics Resear¢l23(10-11):979-999, 2004.

R. Altendorfer, U. Saranli, H. Komsuoglu, D. E. Koditschek, J. H. Brown,

M. Buehler, N. Moore, D. McMordie, and R. Full. Evidence for springded inverted
pendulum running in a hexapod robot. In D. Rus and S. Singh, edEsxserimen-

tal Robotics VI) Lecture Notes in Control and Information Sciences, chapter 5, pages
291-302. Springer, December 2000.

M. M. Ankarali, O. Arslan, and U. Saranli. An analytical solution to th&se dynam-
ics of passive spring-loaded inverted pendulum with dampingl12ith International
Conference on Climbing and Walking Robots and The Support Techrofogiglobile
Machines (CLAWAR’09)stanbul, Turkey, September 2009.

O. Arslan. Model Based Methods for the Control and Planning of Running RolfitB
thesis, Bilkent University, Ankara, Turkey, July 2009.

O. Arslan, U. Saranli, and O. Morgul. An aproximate stance map of phieg mass
hopper with gravity correction for nonsymmetric locomotionsPoc. of the Int. Conf.
on Robotics and AutomatipKobe, Japan, May 2009.

K. Autumn, M. Buehler, M. Cutkosky, R. Fearing, R. J. Full, D. Guolah, R. Grd¥,
W. Provancher, A. A. Rizzi, U. Saranli, A. Saunders, and D. E. Ketigk. Robotics in
scansorial environment®roceedings of the SPIE5804:291-302, May 2005.

M. Berkemeier and P. Sukthankar. Self-organizing running inadguped robot model.
In Proceedings of the International Conference on Robotics and Automaismes
4108-4113, April 2005.

M. D. Berkemeier. Modeling the Dynamics of Quadrupedal Runnirige International
Journal of Robotics Research7(9):971-985, 1998.

64



[13] R. Blickhan and R. J. Full. Similarity in multilegged locomotion: Bouncing like a
monopode. Journal of Comparative Physiology A: Neuroethology, Sensoryyaileu
and Behavioral Physiology.73(5):509-517, Nov. 1993.

[14] R.A.Brooks. Arobot that walks; emergent behaviors fromraftaly evolved network.
Neural Computation1(2):253-262, 1989.

[15] T. M. Caro. Ungulate antipredator behaviour: Preliminary and coatpa data from
african bovids.Behavior 128(3-4):189-228, 1994.

[16] S. Carver.Control of a Spring-Mass HopperPhD thesis, Cornell University, January
2003.

[17] P. Chatzakos and E. Papadopoulos. Parametric analysis and desilglines for a
quadruped bounding robot. Proceedings of the Med. Conf. on Control and Automa-
tion, pages 1-6, June 2007.

[18] P. Chatzakos and E. Papadopoulos. Bio-inspired design ofieldlytrdriven bounding
gquadrupeds via parametric analydidechanism and Machine Theor#4(3):559 — 579,
2009. Special Issue on Bio-Inspired Mechanism Engineering.

[19] P. Chatzkos and E. Papadopoulos. A parametric study on the rollitignmad dynami-
cally running quadrupeds during pronking.Rroceedings of the Med. Conf. on Control
and Automationpages 754-759, Thessaloniki, Greece, June 2009.

[20] N. Cherouvim and E. Papadopoulos. Control of hopping speddaight over unkown
rough terrain using a single actuator.Rroceedings of the International Conference on
Robotics and Automatigikobe, Japan, 2009.

[21] C. Chevallereau, J. W. Grizzle, and C.-L. Shih. Asymptotically statdéking of a
five-link underactuated 3d bipedal robdEEE Transactions on Robotic85(1):37-50,
February 2009.

[22] J. J. Craig.Introduction to Robotic Mechanics and Contrédddison-Wesley, Reading,
Massachusetts, 1986.

[23] J. Diamond. Why animals run on legs, not on whe8lscover 4(9):64-67, September
1983.

[24] J. Duysens and H. W. A. A. V. de Crommert. Neural control of lnotion; part 1: The
central pattern generator from cats to humaaait and Posturg7(2):131 — 141, March
1998.

[25] K. S. Espenschied, R. D. Quinn, H. J. Chiel, and R. Beer. Biolilyiinspired hexa-
pod robot control. IfProceedings of the 5th International Symposium on Robotics and
Manufacturing Maui, Hawaii, Aug. 1994.

[26] C. T. Farley and D. P. Ferris. Biomechanics of Walking and Runn@®enter of Mass
Movements to Muscle ActiorExcrcise and Sport Science Re6:253-283, 1998.

[27] C.T. Farley, J. Glasheen, and T. A. McMahon. Running spriBgeed and animal size.
the journal of Experimental Biology.85:71-86, 1993.

[28] C. D. FitzGibbon and J. H. Fanshawe. Stotting in thomson’s gazelfesorest signal
of condition. Behavioral Ecology and Sociobiolog®3(2):69-74, Aug. 1988.

65



[29] R. J. Fulland D. E. Koditschek. Templates and anchors: Neuroamécal hypotheses
of legged locomotionJournal of Experimental Biology202:3325-3332, 1999.

[30] H. Geyer, A. Seyfarth, and R. Blickhan. Spring-mass runnirigipke approximate
solution and application to gait stabilitylournal of Theoretical Biology232(3):315-
328, Feb. 2005.

[31] D. Goldman, H. Komsuoglu, and D. E. Koditschek. March of the baigl Spectrum,
IEEE, 46(4):30-35, April 2009.

[32] A. Greenfield, U. Saranli, and A. A. Rizzi. Solving models of contraliiynamic planar
rigid-body systems with frictional contadinternational Journal of Robotics Reseaych
24(11):911-931, 2005.

[33] P. Gregorio, M. Ahmadi, and M. Buehler. Design, control, andrgetics of an
electrically actuated legged robofTransactions on Systems, Man, and Cyberngtics
27(4):626-634, August 1997.

[34] P. Holmes. Poincér celestial mechanics, dynamical-systems theory and "chaos”.
Physics Reports (Review Section of Physics Lett#88:137-163, September 1990.

[35] J. W. Hurst, J. Chestnutt, and A. Rizzi. Design and philosophy oBINASC, a highly
dynamic biped. IrProc. of the Int. Conf. On Robotics and Automatipages 1863—
1868, Pittsburgh, PA, April 2007.

[36] X. C. J. Liu and M. Veloso. Simplified walking: A new way to generateifiee biped
patterns. Inl2th International Conference on Climbing and Walking Robots and The
Support Technologies for Mobile Machines (CLAWAR'@@)09.

[37] G. C. K. Mitobe and Y. Nasu. Control of walking robots based onimaation of the
zero moment pointRobotica 18:651-567, 2000.

[38] E. Klavins, H. Komsuoglu, R. J. Full, and D. E. KoditschelNeurotechnology for
Biomimetic Robotschapter The Role of Reflexes Versus Central Pattern Generators
in Dynamical Legged Locomotion, pages 351-382. MIT Press, Bostioe, 2002.

[39] N. Kopell. We got rhythm: Dynamical systems of the nervous systBotices of the
American Mathematical Societ¥7(1):6—16, 2000.

[40] A. D. Kuo. The relative roles of feedforward and feedback ia ¢ontrol of rhythmic
movementsMotor Control 6(2):129-145, April 2002.

[41] M. LaBarbera. Why the wheels won't gad.he American Naturalistl21(3):395-408,
March 1983.

[42] T. McGeer. Passive dynamic walkingnternational Journal of Robotics Research
9(2):62-82, 1990.

[43] D. McMordie. Towards pronking with a hexapod robot. Masterssth, McGill Uni-
versity, 2002.

[44] D. McMordie and M. Buehler. Towards pronking with a hexapobdato In 4th Int.
Conf. on Climbing and Walking Robots, Karlsruhe, Germ&op1.

66



[45] G. M. Nelson and R. D. Quinn. Posture control of a cockroachrbket. IEEE Control
Systems Magazin&9(2):9-14, 1999.

[46] I. Poulakakis, J. A. Smith, and M. Buehler. Modeling and Experimehntdntethered
Quadrupedal Running with a Bounding Gait: The Scout Il Robbhe International
Journal of Robotics Researck4(4):239-256, 2005.

[47] M. Raibert.Legged robots that balanc®IT Press series in artificial intelligence. MIT
Press, Boston, 1986.

[48] M. Raibert, M. Chepponis, and J. Brown, H. Running on four l@gshough they were
one. |[EEE Journal of Robotics and Automatid2(2):70-82, June 1986.

[49] M. H. Raibert. Trotting, pacing and bounding by a quadrupedtrolmirnal of Biome-
chanics 23(1):79-98, 1990.

[50] U. Saranli. SimSect hybrid dynamical simulation environment. TechniepbR CSE-
TR-436-00, UM, Ann Arbor, MI, 2000.

[51] U. Saranli.Dynamic Locomotion with a Hexapod Rob&hD thesis, The University of
Michigan, Ann Arbor, Ml, September 2002.

[52] U. Saranli, M. Buehler, and D. E. Koditschek. RHex: A simple andhlyignobile robot.
International Journal of Robotics Resear@d(7):616—631, July 2001.

[53] U. Saranliand D. E. Koditschek. Template based control of heaprunning. IrPro-
ceedings of the IEEE International Conference On Robotics and Autamuatiime 1,
pages 1374-1379, Taipei, Taiwan, September 2003.

[54] U. Saranli, A. A. Rizzi, and D. E. Koditschek. Model-based dynaseié-righting ma-
neuvers for a hexapedal robdhternational Journal of Robotics Resear@8(9):903—
918, September 2004.

[55] U. Saranli, W. J. Schwind, and D. E. Koditschek. Toward the abiofra multi-jointed,

monoped runner. IRroceedings of the IEEE International Conference On Robotics and

Automation volume 3, pages 2676—82, New York, 1998.

[56] A. Sato and M. Buehler. A planar hopping robot with one actuatesigh, simulation,
and experimental results. Proceedings of the International Conference on Intelligent
Robots and Systemslume 4, pages 3540-3545, Sept.-2 Oct. 2004.

[57] A. Saunders, D. I. Goldman, R. J. Full, and M. Buehler. The rigeling robot: body
and leg design. In G. R. Gerhart, C. M. Shoemaker, and D. W. Gagleye®&PIE
Unmanned Systems Technology Miilume 6230, page 623017. SPIE, 2006.

[58] P. S. Schenker, T. L. Huntsberger, P. Pirjanian, E. T. Baumegarand E. Tunstel. Plan-
etary rover developments supporting mars exploration, sample returntamne fiuman-
robotic colonization Autonomous Robqgt44(2):103-126, Mar. 2003.

[59] W. J. Schwind. Spring Loaded Inverted Pendulum Running: A Plant ModBhd,
University of Michigan, 1998.

[60] W.J. Schwind and D. E. Koditschek. Approximating the stance magRafad monoped
runner.Journal of Nonlinear Scien¢c&olume 10, Issue 5:533-568, December 2000.

67



[61] N. Shukla. Yo-yos of the animal kingdonThe Tribune Online Edition, Chandigarh,
India, March 2002.

[62] M. J. Spenko, G. C. Haynes, J. A. Saunders, M. R. Cutkosk. Rizzi, R. J. Full,
and D. E. Koditschek. Biologically inspired climbing with a hexapedal roldoEield
Robot, 25(4-5):223-242, 2008.

[63] E. R. Westervelt, J. W. Grizzle, C. Chevallerau, J.-H. Choi, an8ris. Feedback
Control of Dynamic Bipedal Robot Locomotiofaylor and Francis, 2007.

[64] B. M. Yamauchi. Packbot: a versatile platform for military robotics Phoceedings of
SPIE: Unmanned Ground Vehicle Technologywslume 5422, pages 228-237, Septem-
ber 2004.

[65] G. Zeglin. The Bow Leg Hopping Rohoboctoral thesis in robotics, Carnegie Mellon
University, October 1999.

[66] G. Z. Zeiglin and H. B. Brown. Control of a bow leg hopping robat.In Proceedings
of the IEEE International Conference On Robotics and Automatiolume 1, pages
793-798, May 1998.

[67] H. Zou and J. Schmiedeler. Thdfect of asymmetrical body-mass distribution on
the stability and dynamics of quadruped boundin§EE Transactions on Robotics
22(4):711-723, Aug. 2006.

68



APPENDIX A

DERIVATION OF THE JACOBIANS FOR THE SLIMPOD
MODEL

A.1 Derivation of the Jacobians

The forcing vector that captures th&ext of the hip torques and radial leg forces on each

virtual toe coordinate was defined in Section 4.2.1 as

K :=[Ke Ky, Ko 1" = (Dc#) ST+ (Dep) SFr (A.1)

The Jacobian matricd3.¢ andD¢p are defined as

o016 90 o1 2 ps
ot o0& o€ o 9 0&
— | 041 92  O¢3 -— | 9p1 Jp2  Ips
Deop = % o , Dep = i A R (A.2)
201 00 903 o1 O o
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Recalling definitions of leg vectors, in the body frameB as well as the polar leg states,

ai := [pi, #1]", components of the Jacobians can then be computed as

a¢i _ 1 IT
o
x  p?

(A.3)

0 1 a_l' %_}ﬂa_li
-1 0 ox’ 8x_p'6x’

wherex is one of the virtual toe frame state variableg or a, Whereg—';( terms are computed

as
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i _ R () siny (A.4)
g — cosy

i T coss (A5)
- = R

d W[ A

A bR [fi—fv+§ siny ] (A.6)
da — cosy
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