
VARIABLE STRUCTURE AND DYNAMISM EXTENSIONS TO A DEVS BASED
MODELING AND SIMULATION FRAMEWORK

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

FATİH DENİZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

FEBRUARY 2010

Approval of the thesis:

VARIABLE STRUCTURE AND DYNAMISM EXTENSIONS TO A DEVS
BASED MODELING AND SIMULATION FRAMEWORK

submitted by FATİH DENİZ in partial fulfillment of the requirements for the degree
of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Müslim Bozyiğit
Head of Department, Computer Engineering

Assoc. Prof. Dr. Halit Og̃uztüzün
Supervisor, Computer Engineering Dept., METU

Dr. Mahmut Nedim Alpdemir
Co-supervisor, TUBITAK UEKAE ILTAREN

Examining Committee Members:

Assoc. Prof. Dr. Ali Dog̃ru
Computer Engineering Dept., METU

Assoc. Prof. Dr. Halit Og̃uztüzün
Computer Engineering Dept., METU

Asst. Prof. Dr. Erol Şahin
Computer Engineering Dept., METU

Dr. Cevat Şener
Computer Engineering Dept., METU

Dr. Mahmut Nedim Alpdemir
TUBITAK UEKAE ILTAREN

Date: 03.02.2010

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully cited
and referenced all material and results that are not original to this work.

Name, Last Name: FATİH DENİZ

Signature :

iii

ABSTRACT

VARIABLE STRUCTURE AND DYNAMISM EXTENSIONS TO A DEVS BASED
MODELING AND SIMULATION FRAMEWORK

Deniz, Fatih

M.Sc., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Halit Og̃uztüzün

Co-Supervisor : Dr. Mahmut Nedim Alpdemir

February 2010, 57 pages

In this thesis, we present our approach to add dynamism support to simulation en-

vironments, which adopts DEVS-based modeling and simulation approach and builds

upon previous work on SiMA, a DEVS-based simulation framework developed at

TUBITAK UEKAE. Defining and executing simulation models of complex and adap-

tive systems is often a non-trivial task. One of the requirements of simulation software

frameworks for such complex and adaptive systems is that supporting variable struc-

ture models, which can change their behavior and structure according to the changing

conditions. In the relevant literature there are already proposed solutions to the

dynamism support problem. One particular contribution offered in this study over

previous approaches is the systematic and automatic framework support for post-

structural-change state synchronization among models with related couplings, in a

way that benefits from the strongly-typed execution environment SiMA provides. In

this study, in addition to introducing theoretical extensions to classic SiMA, perfor-

mance comparisons of dynamic version with classic version over a sample Wireless

Sensor Network simulation is provided and possible effects of dynamism extensions to

the performance are discussed.

iv

Keywords: Modeling and Simulation, DEVS, SiMA, Variable Structure Models, Dy-

namic Extensions

v

ÖZ

DEVS TABANLI BİR MODELLEME VE BENZETİM ÇERÇEVESİNDE
DEĞİŞKEN YAPI VE DİNAMİZM DESTEĞİ

Deniz, Fatih

Yüksek Lisans, Bilgisayar Mühendisliği

Tez Yöneticisi : Doç. Dr. Halit Og̃uztüzün

Ortak Tez Yöneticisi : Dr. Mahmut Nedim Alpdemir

Şubat 2010, 57 sayfa

Bu tezde DEVS tabanlı modelleme ve benzetim altyapılarında dinamizm desteği ile

ilgili formal bir yaklaşım sunulmakta olup, TUBITAK UEKAE tarafından geliştirilmiş

olan ve DEVS yaklaşımını esas alan Simülasyon Modelleme Altyapısı (SiMA) üzerinde

bahsedilen formal eklentiler gerçekleştirilmiştir. Karmaşık ve değişken sistemlerin

benzetim modellerinin tanımlanması ve koşturulması çoğu zaman zorlu bir süreci

içermektedir. Bu tür sistemlerin oluşturulmasında kullanılması planlanan benze-

tim yazılım altyapılarında aranan özelliklerden bir tanesi de değişken yapılı model

tanımlanmasına destek sağlanmasıdır. DEVS ortamında dinamizm desteği ile ilgili

daha önceden yapılmış çalışmalar bulunmaktadır. Bu çalışmanın önceki çalışmalara

önemli bir katkısı da yapısal bir değişiklik sonrasında sistematik ve otomatik bir şekilde

yeni eklenen bağlantılara göre modellerin durum parametrelerinin güncellenmesidir.

Bu çalışmada, değişken yapılı model kullanımı için gerekli olan formal dinamizm ek-

lentilerinin ve gerçekleştirilme detaylarının açıklanmasının yanı sıra, örnek bir kablo-

suz algılayıcı ağları benzetimi oluşturulmuş ve bu benzetim üzerinde SiMA’nın di-

namik versiyonu ile klasik versiyonunun performansları karşılaştırılmış ve dinamik

model kavramının performansta yapabileceği etkiler tartışılmıştır.

vi

Anahtar Kelimeler: Modelleme ve Benzetim, DEVS, SiMA, Değişken Yapılı Modeller,

Dinamik Eklentiler

vii

To my family...

viii

ACKNOWLEDGMENTS

I am heartily thankful to my supervisor, Assoc. Prof. Dr. Halit Og̃uztüzün, for his

professional guidance and suggestions throughout my thesis studies.

I would like to show my gratitude to jury members Assoc. Prof. Dr. Ali Dog̃ru, Asst.

Prof. Dr. Erol Şahin and Dr. Cevat Şener for reviewing and evaluating my thesis.

Special thanks to Dr. Mahmut Nedim Alpdemir. His invaluable ideas, suggestions

and help have been essential to my research. I appreciate all the time he has spent

for the development of my thesis.

I would like to thank TUBITAK UEKAE ILTAREN for deeply supporting my gradu-

ate studies. I also want to thank to my colleages at work for their understanding and

support during my academic studies.

I am also grateful to Ahmet Kara for his helpful discussions, suggestions and help

throughout my thesis studies.

I would also like to express my thanks to my friends, especially Erkay Uzun, Fatih

Gökbayrak, Osman Nuri Osmanlı, Enver Kayaaslan and Uzeyir Başer for their invalu-

able friendship, support and joy they bring to my life.

Finally, I would like to express my thanks to my family, making me who I am now with

their love, trust, understanding, encouragement and support throughout my life.

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

DEDICATION . viii

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xii

LIST OF FIGURES . xiii

LIST OF ALGORITHMS . xv

LIST OF ABBREVATIONS . xvi

CHAPTERS

1 INTRODUCTION . 1

2 BACKGROUND . 5

2.1 DEVS Formalism . 5

2.2 SiMA . 7

2.2.1 SiMA SOFTWARE ARCHITECTURE 9

2.2.1.1 Model-Driven simulation construction pipe-
line for SiMA 11

3 RELATED WORK . 14

3.1 DSDEVS . 14

3.2 DynDEVS . 15

4 OUR APPROACH . 17

4.1 ADDING DYNAMISM TO SiMA-DEVS 17

4.2 OUR IMPLEMENTATION APPROACH 19

x

4.2.1 Operations on Model Structures 21

4.2.2 SiMA Abstract Simulators Adapted for Dynamism
Support . 24

4.2.3 State Synchronization Mechanism 28

4.2.4 Change Request Message Structure 31

4.2.5 Time Management In Dynamic SiMA 33

4.2.6 Structure Change Types 33

5 CASE STUDY and PERFORMANCE ANALYSIS 36

5.1 Wireless Sensor Network Simulation 36

5.1.1 Simulation Scenario 40

5.1.2 WSN Simulator Application 41

5.1.3 Performance Analysis 46

5.1.3.1 Testing Environment 46

5.1.3.2 Testing Criteria 1 - Sensor Count 47

5.1.3.3 Testing Criteria 2 - Truck Step Size . . . 49

6 DISCUSSION AND FUTURE WORK 52

6.1 Future Work . 54

REFERENCES . 56

xi

LIST OF TABLES

TABLES

Table 5.1 Comparison of the two approaches according to sensor count 48

Table 5.2 Comparison of the two approaches according to total message count 49

Table 5.3 Comparison of the two approaches according to truck step size . . . 50

Table 6.1 Feature comparison of approaches 54

xii

LIST OF FIGURES

FIGURES

Figure 2.1 SiMA Software Architecture . 10

Figure 2.2 Simulation Construction Pipeline 11

Figure 2.3 Example Model Structure . 13

Figure 4.1 Initial Model . 23

Figure 4.2 Updated Model . 23

Figure 4.3 Dynamically Adding A Model and A Coupling 30

Figure 4.4 Dynamically Adding Couplings . 31

Figure 4.5 Change Request Message Structure 32

Figure 4.6 Time Management In Dynamic SiMA 34

Figure 4.7 Change Request Types . 35

Figure 5.1 WSN Main Model . 37

Figure 5.2 Single Sensor Model . 37

Figure 5.3 Main Sensor . 39

Figure 5.4 Choose Process Type Window . 42

Figure 5.5 Simulation Manager While Simulation Running 43

Figure 5.6 Simulation Manager When Simulation Paused 43

Figure 5.7 WSN Simulator Tool . 44

Figure 5.8 WSN Dynamic Simulation . 45

Figure 5.9 WSN Static Simulation . 45

Figure 5.10 Execution times of simulations according to sensor count 49

xiii

Figure 5.11 Performance advancement of dynamic approach according to sensor

count . 50

Figure 5.12 Execution times of simulations according to truck step size 51

Figure 5.13 Performance advancement of dynamic approach according to truck

step size . 51

xiv

LIST OF ALGORITHMS

ALGORITHMS

Algorithm 4.1 Root Coordinator . 25

Algorithm 4.2 Recursive Next Time Calculation 25

Algorithm 4.3 Structure Change in Coordinator - From Bottom 26

Algorithm 4.4 Structure Change in Coordinator - From Top 26

Algorithm 4.5 Structure Change in Simulator 27

Algorithm 4.6 IPortValueSource Interface . 28

Algorithm 4.7 Updating States . 29

xv

LIST OF ABBREVATIONS

DEVS Discrete Events System Specification

SiMA Simulation Modeling Architecture, Simülasyon Modelleme Altyapısı

DSDEVS Dynamic Structure DEVS

DynDEVS Dynamic DEVS

WSN Wireless Sensor Network

GUI Graphical User Interface

xvi

CHAPTER 1

INTRODUCTION

Analyzing the behavior of complex and adaptive systems through simulation often

requires the underlying modeling and simulation approach to support structural and

behavioral changes. This requirement may stem from the inherent nature of the real

world system under study such as ecological or social systems (as indicated in [22]),

it may stem from the modeling and simulation methodology of the analyst or it may

be due to the way system modelers approach to the modeling of inherent behavioral

complexity of their models. A good example to a combination of the latter two is

the case where the simulation study involves a large number of highly complex sys-

tems, the analyst wants to observe the behavior of these systems at varying levels

of fidelity, and the modeler constructs the models in a way to allow the models to

exhibit different observable behaviors during the course of simulation. This particular

case implies that models may switch between different behavioral specifications (e.g.

fidelity levels) dynamically at run time depending on various triggering events. Allow-

ing modifications to model structures and to internal functional specifications while

the simulation is running is a challenging task due to instabilities and inconsistencies

this may introduce, especially if the underlying modeling approach does not provide

a sound formal basis upon which the run-time infrastructures can be established.

In this study, we take a particular stand to the problem of dynamism support in

simulation environments by adopting DEVS based modeling and simulation approach

and by building upon previous work on SiMA [13, 14], a DEVS-based modelling and

simulation framework developed at TUBITAK UEKAE. Some of the reasons why

dynamism support is required in a modeling and simulation framework can be listed

1

as follows:

1. Some simulation scenarios can efficiently be executed only through dynamic

structure support. For example, consider a simulation scenario in which two

planes follow the terrain at a specific altitude. In this scenario, the provision

of the terrain information to plane models could be implemented using an envi-

ronment model. When this scenario is executed in a high resolution setting, it

may be impossible to load the terrain that represents the whole world. So, if the

simulation requires the whole world, terrain has to be decomposed into regions,

such that, the environment model representing each of these regions interacts

with the models representing the planes flying over it. When a plane crosses

over a region, the couplings with the region left behind are removed and new

couplings with the region plane enters are added.

2. Dynamism support can be used to yield an optimal model execution structure.

Adding dynamism support is most likely to increase performance. A model can

be loaded into the memory whenever needed and can be removed from the mem-

ory after completing its job. Continuing from the previous plane example, in

order to use the resources effectively, unnecessary sections of the terrain can be

removed from the memory. In addition, through dynamic management of cou-

plings and ports, unnecessary message transfers can also be eliminated, thereby

increasing the performance by doing less work in each step.

3. Dynamism support may become a necessity for creating more realistic simula-

tions. Model structure may have to be changed whenever necessary while the

simulation is running. For example, if a missile explodes, the model representing

it should also be removed from the model structure. Dynamism support is the

natural way of handling this kind of situations.

4. Complex systems that require behavioral or structural changes to adapt to

changing situations can be modeled more efficiently with variable structure mod-

els. Examples of these systems include wireless sensor networks, distributed

computing systems and ecological systems.

5. Also, there may be unpredictable changes that need to be modeled at run-time.

Consider a human population simulation, in which civilians and combatants

2

are represented by different models. By human nature, a civilian can change

into a combanant according to the occuring events and since human emotions

cannot be easily predicted, such cases cannot be easily modeled in the simula-

tion construction phase. In order to allow simulations to adapt these types of

unpredictable changes, dynamism support can be used.

We observe that several approaches to dynamism are already proposed in the relevant

literature [2, 3, 16, 18, 22]. We note that three distinct categories of change are dis-

cussed in those existing approaches: 1 - A change in the overall compositional state of

models, 2 - A change in the connectivity relationships (coupling) among the models, 3

- A change in internal functional behavior of the model. We find two of the formal ap-

proaches to the variable structure models in DEVS environment particularly relevant

to our work. The first one is DSDEVS (Dynamic Structure DEVS), introduced by

F.J. Barros [3]. The second one is DynDEVS, introduced by Uhrmacher [22]. A brief

introduction to both of these approaches is given in Chapter 3. In addition to these

formal extensions, there are approaches which adopt existing formal specifications

but contribute through different routes. For instance [20] extend their existing sim-

ulation engine by adopting a combination of DSDEVS and DynDEVS. Similarly [12]

take a software engineering oriented stand and propose a component-based simulation

environment. Our contribution to the work in this field is extending SiMA with dy-

namism support building upon our specialized basic DEVS formalism with dynamism

extensions.

In addition to introducing our approach in a formal way, we also discuss how to

implement these formal definitions and what type of functionalities these definitions

add over classic SiMA. Introducing a systematic state synchronization mechanism

between networks of connected models that works in the opposite direction of the

normal message flow, defining a change request message structure that is compatible

to a XML Schema, allowing also root coordinator to initiate a structural change step

are some of the features added over classic SiMA with the dynamism extensions.

In this thesis, it also discussed that, adding dynamism to SiMA does not just gives

flexibility to the SiMA users, but allows them to increase performance by using the

resources more effectively. For this reason, a sample WSN Simulator is implemented

and using different sample scenarios, performance improvement of dynamic version

3

over classic version is shown.

The rest of this thesis is organized as follows: Chapter 2 gives a summary of the

relevant background work, Chapter 3 summarizes previous efforts about dynamism

support in modeling and simulation environments, Chapter 4 provides a detailed dis-

cussion of our approach, Chapter 5 provides analysis and performance measurements

of our approach with a case study, Chapter 6 provides conclusions and future work.

4

CHAPTER 2

BACKGROUND

2.1 DEVS Formalism

The Discrete Event System Specification (DEVS) is a formalism introduced by Bernard

Zeigler in 1976 to describe discrete event systems. In this formalism, there are two

types of models: Atomic models and coupled models. Atomic models have behavioral

logic. On the other hand, coupled models consists of other models and connections

between those models, but no behavioral logic. An atomic model in classical DEVS

formalism consists of a set of input events, a state set, a set of output events, an

internal and external transition function, and an output and time advance function.

Formal definition of an atomic model in classical DEVS formalism is described as

follows:

M = 〈X,S, Y, δint, δext, λ, ta〉

where,

X = {(p, v)|p ∈ InPorts, v ∈ Xp} is the set of input ports and values,

Y = {(p, v)|p ∈ OutPorts, v ∈ Yp} is the set of output ports and values,

S is the set of states,

δint : S → S is the internal state transition function,

δext : Q×X → S is the external state transition function such that:

Q = {(s, e) |s ∈ S, 0 ≤ e ≤ ta(s)} is total state set,

e is elapsed time since last transition,

λ : S → Y is the output function,

ta : S → R+
0,∞is the time advance function.

5

In DEVS formalism, models communicate with each other using their ports, which

are interfaces of models. Input ports receive external input events X and output

ports send output events Y. Every state s ∈ S is associated with a time, calculated

by time advance(ta) function, which determines the duration of the state. If no

external event is fired during this time, first output function (λ) and then the internal

transition function(δint) is executed. If model receives an external event during this

time, then the external transition function(δext) is executed. Current state of the

model is updated in internal and external transition functions.

Coupled models are composition of components(atomic or coupled models) and the

links between these components. Coupled models do not contain any behavioral logic,

states or transition functions to be executed. They are intermediate structures for

forming the hierarchy in model structure. A coupled model in classical DEVS formal-

ism is defined formally as follows:

CM = 〈X,Y,D, {Mi} , EIC,EOC, IC, Select〉

where,

X = {(p, v)|p ∈ InPorts, v ∈ Xp} is the set of input ports and values,

Y = {(p, v)|p ∈ OutPorts, v ∈ Yp} is the set of output ports and values,

D is the set of component names,

Mi is the model of component i, for i ∈ D,

EIC, EOC and IC define the coupling structure,

EIC is the set of couplings between input ports of the coupled model itself

and input ports of its components.

EOC is the set of external output couplings, which connect its components

output ports to models own output ports.

IC is the internal couplings, which connect a components output port to

another components input within the coupled model.

Select: 2D − {} → D is the tie-breaker function and used for ordering simulta-

neous events. This function is used in the classic DEVS and eliminated in the

parallel DEVS. Since SiMA-DEVS discussed in Section 2.2 is an extension of

parallel DEVS, this function is not used.

6

As it can be observed from the coupled model definition, in DEVS formalism, no

direct feedback loops are allowed. In other words, no input port of a coupled model

can be connected to an output port of the same model.

Complete description of DEVS semantics can be found in [7, 24].

2.2 SiMA

SiMA (Simulation Modeling Architecture) [13,14] is a modeling and simulation frame-

work that is based on the DEVS approach as a solid formal basis for complex model

construction. SiMA Simulation Execution Engine implements the parallel DEVS pro-

tocol which provides a well-defined and robust mechanism for model execution. SiMA

builds upon a specialized and extended form of DEVS formalism, namely SiMA-DEVS,

which:

1- Formalizes the notion of ”port types” leading to a strongly-typed (and therefore

type-safe) model composition environment. In this respect, specializes the basic

DEVS formalism by introducing semantic constraints on the port definitions;

2- Introduces a new transition function to account for model interactions involving

state inquiries with possible algebraic transformations (but no state change),

without simulation time advance. In this respect, extends the basic DEVS for-

malism. This is similar to the notion of zero-lookahead in HLA [10] from a

time-management point of view.

An atomic model in SiMA-DEVS formalism is defined formally as follows:

〈X,S, Y, δint, δext, λ, ta, δdf 〉

where,

X: Set of input values arriving from set of input ports, Pin,

Y: Set of output values sent from set of output ports, Pout,

Pin, Pout: Set of input and output ports such that:

Pin : {(τ, Ix) |Γ 7→ τ ∧ Ix ⊆ X ∧ ∀x ∈ Ix, τ 7→ x},

Pout : {(ρ,Oy) |Γ 7→ ρ ∧Oy ⊆ Y ∧ ∀y ∈ Oy, ρ 7→ y},

7

Γ: XMLSchema type system,

τ, ρ: data types valid wrt XMLSchema type system,

δdf : PDFTin ∈ Pin × S → P
′
out ⊆ Pout is the direct feed through transition

function.

Note that the set of input ports Pin, is formally defined as a set of pairs where each

pair defines one input port of a model uniquely. The first element of each pair, τ , is a

data type conforming to XMLSchema type system (denoted with Γ) and the second

element of the pair (Ix) denotes the set of input data values flowing through that

port, where each element of the value set conforms to data type τ . Similar semantics

apply to output ports, too. Thus, makes strong typing and type-system dependency

of the ports explicit in the formal model. Although introducing a run-time oriented

property into the formal model may seem unusual, it is argued that there are a number

of merits in doing so:

1. Introduces a type discipline to the definition of the externally visible model

interfaces (i.e. ports) leading to an information model for the overall system

being modeled (coherency in modeling level information space), as well as for

the simulation environment (consistency and robustness in run-time-level data

space).

2. Facilitates Model-Driven Engineering through well-typed and type system de-

pendent external plugs to enable automated port matching and model compo-

sition. In fact, Model-Driven simulation construction pipeline for SiMA is suc-

cessfully implemented, via a number of tools such as a code generator, a model

builder and a model linker. This simulation construction pipeline is discussed

in detail in Section 2.2.1.1.

3. Reduces the gap between modeling level logical composability constraints and

run-time level pluggability constraints, thus forcing all implementations of spe-

cialized DEVS model to respect type-system compatibility and to offer a strongly

typed environment.

Note also that, in addition, SiMA introduces a new transition function, δdf , that

enables models to access the state of other models through a specific type of port,

8

without advancing the simulation time. As such, it is possible to establish a path

of connected models along which models can share parts of their state, use state

variables to compute derived values instantly within the same simulation time step.

As stated earlier, this is similar to the notion of zero-lookahead found in HLA [10].

One may argue that the zero-lookahead behavior could be modeled by adjusting the

time advance function of an atomic model such that the model causes the simulation

to stop for a while, do any state inquiry via existing couplings, then re-adjusting the

time advance to go back to normal simulation cycle. Although this is possible, it is

argued that by introducing a transition function and a specific port type which is tied

(through run time constraints imposed by the framework) to that particular transition

function several advantages are gained:

1. The models can communicate and share state with each other without the in-

tervention of the simulation engine thus providing a very efficient run time in-

frastructure.

2. Allowing such communications only to occur through a specific port type (com-

pile time and run-time checks are carried out) the framework is able to apply

application independent loop-breaking logic at the ports to prevent algebraic

loops, thereby ensuring model legitimacy.

2.2.1 SiMA SOFTWARE ARCHITECTURE

SiMA is a software framework for developing simulation models and executing simu-

lations. There are also other frameworks, such as parallel simulation execution frame-

work for grid environments [8], that SiMA can work in accordance with. As it can

be observed in Figure 2.1, SiMA consists of two main layers: SiMA Core and C++

Interface.

SiMA Core consists of five sub-components that are used for modeling and simula-

tion. Modeling Framework is a set of classes and data types to be used in model

development. Atomic models and all their subclasses are defined in this framework.

Connection Ports is the transportation component that contains classes for defining

ports and their connection limits. Simulation Engine Core uses these two compo-

9

nents, Modeling Framework and Connection Ports, to execute a simulation. In other

words, it implements the DEVS simulation protocol and in addition exposes admin-

istrative interfaces to manage and track the simulations at run time. The Distributed

Simulation Adapter is the interface for connecting SiMA simulations with external

distributed simulation infrastructures. Messaging Constructs is the component that

presents all base data type classes and rules for inter-communication of atomic models

and SiMA Core components.

Figure 2.1: SiMA Software Architecture

The C++ Interface layer is implemented to allow C++ to be used as a model im-

plementation language for SiMA atomic models. All core SiMA components are de-

veloped in .NET but SiMA supports models implemented in both .NET and C++

to co-exist in the same run-time environment during a simulation. However, since

there is a strict boundary between their coding environments, various adapters and

components that manage the interoperability between .NET and C++ atomic models

and SiMA components are implemented in the C++ Interface layer.

The C++ Interface layer consists of three sub-components. Unmanaged Modeling

Adapter has the same interface and class hierarchy as the .NET Modeling Framework

except it is developed in pure C++ language. Managed Modeling Adapter is developed

in C++/CLI, which is a special edition of C++ language in .NET, that allows access to

10

both C++ and .NET methods and data types. Managed Modeling Adapter handles the

interoperability management and delegates all simulation commands to C++ models,

and provides all information required by them from the simulation environment. Data

Converters are special adapters that perform marshalling all values between .NET and

C++ data types in both ways. A model developer can use the KODO tool (described

in Section 2.2.1.1) to auto-generate these data converters for his/her data types.

2.2.1.1 Model-Driven simulation construction pipeline for SiMA

Scenario

Analyzer

Port Type

Mapping Rules
Scenario

Document

Model

Builder

Model

Linker
KODO

XSLT
Code

Generation

Rules

Port Data

Structures

XSLT

Simulation

Models

Simulator
Model

Editor

Data Type

Mapping Rules

KODO data

type definitions

Figure 2.2: Simulation Construction Pipeline

SiMA is supported with a number of tools that collectively allows automatic sim-

ulation model construction from previously defined SiMA models. The simulation

construction pipeline consists of four steps with the support of five tools (Figure 2.2):

• KODO: A model developer using SiMA needs to define data types to be used for

model initialization and inter-port communication. Due to .NET/C++ interop-

erability requirements SiMA needs to apply special handling on port data types

for serialization/deserialization of data values flowing between atomic models.

Similarly, model initialization phase requires access to input configuration data

types. KODO plays its relieving role for the developer by auto generating not

only data beans but also additional processing logic for marshaling and type

conversion, for access to model input configuration files for state initialization,

and for trace generation. KODO allows definition of data types with simple

11

XML definitions and generates all classes and methods required for the model

developer.

• Scenario Analyzer: There are two starting points in the simulation construc-

tion pipeline. One of those has a more constrained initial specification where

a simulation study is defined by a scenario that describes all required models,

model coupling information and model initialization data. In this case, Sce-

nario Analyzer interprets a scenario definition and identifies all atomic models

(from the component library) and defines their composition hierarchy in an in-

termediate form to be used by the model linker. It is generally an application

dependent analyzer that converts the application dependent scenario file to be

used by application independent model linker.

• Model Editor: The second route to the pipeline is the SiMA Model Edi-

tor. This editor provides a context independent model composition environment

where both atomic and coupled models can be organized as libraries, thereby fa-

cilitating reusability of simulation models. SiMA allows defining atomic models

either in C++ or in C# programming languages. Once these models are com-

piled into library files, they can then be graphically coupled using SiMA Model

Editor in hierarchical block diagrams to construct more complex systems. In

Figure 2.3, the model structure and couplings for a sample simulation can be

seen. Dark rectangular shapes with an ’A’ sign on the top-left corners indicate

atomic models and lighter rectangular shapes with no signs on the top-left cor-

ner indicate coupled models. Couplings are shown with directed arrows between

model ports. The direction of the arrow connotes the direction of the data flow.

Port names are denoted as labels beneath the ports. The Model Editor produces

an intermediate form to be used by the Model Builder.

• Model Linker: Model linker reads scenario document and loads the data type

mapping rules for the current configuration and then produces two output files.

The first file, mapping definition, includes all port connections, names and loca-

tions of atomic models and their hierarchy mapping to produce a simulator for

the scenario. This mapping definition file is used by the model builder. Second

file, SiMA configuration, includes all initialization data for each atomic model

in the scenario.

12

Figure 2.3: Example Model Structure

• Model Builder: Builder is the Sima tool that reads the linker output and

generates the real model that will be executed by a simulator. Dissimilar to

Linker, Builder is a worker that does the given tasks in order. It reads the

document and:

– Constructs atomic models,

– Creates coupled models with their input and output ports,

– Applies the requested port couplings. The final output of the model builder

is a coupled model that has the exact structure requested in the Model Link

Map.

13

CHAPTER 3

RELATED WORK

In the relevant literature, there are two main approaches to the dynamism support

problem. In this section a brief introduction to these formalisms will be given.

3.1 DSDEVS

The Dynamic Structure Discrete Event System Specification (DSDEVS) is introduced

by F.J. Barros in 1995 [3–5]. In this approach, atomic model definitions remain the

same as classic DEVS formalism, but classical coupled model definition is extended.

An executive atomic model, which decides when and what kind of structural operations

will take place, is added to each coupled model definition. In other words, each

coupled model is associated with a dynamic structure atomic model which handles

the structural changes in its associated coupled model. This executive model has no

behavioral logic other than structural change operations and its state is the current

structure of the associated coupled model.

A DSDEVS network model is formally described as follows: DSDEV SN = 〈 X∆,

Y∆, χ, Mχ 〉 where ∆ is network name; χ is the name of DSDE network executive;

Mχ is the model of χ; X∆ is the set of input events; Y∆ is the set of output events.

Mχ, the model of the network executive χ, is a basic DSDE model and defined as:

Mχ =
〈
Xχ, Sχ, Yχ, δintχ , δextχ , λχ, taχ

〉
Mχ contains information about network composition and coupling. A state sχ ∈ Sχ

has information about the structure of the network model and it is defined as: sχ =(
Dχ, {Mχ

i } , {I
χ
i } ,

{
Zχi,j

}
, SELECTχ, V χ

)
where Dχ is the set of component names;

14

Mχ
i is the model of component i, for i ∈ Dχ; Iχi is the set of component influencers

of i, ∀i ∈ Dχ ∪ {χ,∆}; Zχi,j is the i-to-j output to input translation function, ∀j ∈ Iχi ;

SELECTχ is the tie-breaker function; V χ represents other state variables of the

network executive.

In DSDEVS, only the network executive can make structural changes and any change

made in one of these 5-tuples
(
Dχ, {Mχ

i } , {I
χ
i } ,

{
Zχi,j

}
, SELECTχ

)
will be auto-

matically reflected to the structure of the network model. A detailed explanation of

DSDEVS formalism can be found in [5], and abstract simulators necessary to simulate

DSDEVS models can be found in [6].

3.2 DynDEVS

Dynamic DEVS (DynDEVS) is the second approach for supporting dynamic structure

models. It is introduced by A. M. Uhrmacher in 2001 [22]. Unlike DSDEVS, Dyn-

DEVS formalism does not introduce a specific type of model (i.e. the network execu-

tive model) to apply structural changes dynamically. Instead, transition functions, ρα

and ρN are added to the atomic and coupled model definitions respectively to support

dynamism. There are two types of models defined in DynDEVS formalism, which are

dynDEVS (atomic) and dynNDEVS (coupled) models. Atomic models in DynDEVS

formalism are formally defined as follows: dynDEV S = df 〈X,Y,minit,M (minit)〉

where X,Y are structured sets of inputs and outputs; minit ∈ M (minit) is the initial

model; M (minit) is the least set having the structure 〈S, sinit, δint, δext, λ, ta, ρα〉 where

S is the set of states; sinit ∈ S is the initial state; δint, δext, λ, ta are the same functions

as in classical DEVS formalism; ρα : S →M (minit) is the model transition function.

This transition function is capable of making changes only on its own atomic model.

It can change or remove itself.

Coupled models, which are composition of components and the links between these

components, are described in DynDEVS formalism formally as follows: dynNDEV S =

〈X,Y, ninit, N (ninit)〉 where X, Y are structured sets of inputs and outputs; ninit ∈

N (ninit) is the start configuration; N (ninit) is the least set having the structure

〈D, ρN , {dynDEV Si} , {Ii} , {Zi,j} , Select〉 where D is the set of component names;

ρN : S → N (ninit) is the network transition function with S = ×d∈D⊕m∈dynDEV SdSm

15

; dynDEV Si is the dynamic DEVS models with i ∈ D; Ii is the set of influencers of i;

Zi,j is the i-to-j output-input translation function; Select is the tie-breaking function.

In DynDEVS formalism, there are some operational boundaries. Just like atomic mod-

els, coupled models in DynDEVS formalism also cannot make structural changes out-

side of its enclosing model. Also, in DynDEVS formalism, dynamic port management

is not supported. Allowed operations include dynamic model and coupling addition

and removal. More details about DynDEVS formalism can be found in [11,22].

16

CHAPTER 4

OUR APPROACH

4.1 ADDING DYNAMISM TO SiMA-DEVS

Our approach to add dynamism to our basic DEVS model is similar to that of Dyn-

DEVS as indicated earlier. To be more precise, we conform to both dynDEVS and

dynNDEVS definitions as the underlying formal specification, with some extensions

which are given below:

1. We state that structured sets of inputs and outputs are defined in conformance to

our strongly typed-port definitions where the formal definitions for Pin, Pout ap-

ply; M (minit) is the least set having the structure 〈S, sinit, δint, δext, λ, ta, ρα, δdf 〉

where S, sinit, δint, δext, λ, ta, ρα are the same as in DynDEVS formalism; δdf is

the additional transition function defined in SiMA-DEVS. Thus, we ensure that

the meaning of a model in DynDEVS is firmly aligned with that of SiMA-DEVS,

while maintaining the top-level semantics of the DynDEVS definition. Note that

SiMA-DEVS extensions are non-disruptive to the overall semantics of the basic

DynDEVS formalism.

2. We introduce a state synchronization mechanism between networks of connected

models, to be performed at the end of a structural change phase, in case a model

wants to update the values of such state variables that are within the common

set of pre-and post change models (i.e. they are not introduced newly after

the model’s structural transition) but have values that stayed unchanged during

pre-change simulation period. This mechanism is instrumental in cases where

a model A initializes some of its state variables at the beginning of simulation

17

but does not receive updates for those variables until some influencer model

B goes through a structural change that causes those variables to be updated;

or in cases where a new model B is added which introduces a new coupling

influencing one of the input ports of model A. One might argue that after the

structural change, synchronization of such state variables would already take

place as a result of message passing via the coupling links during the normal

course of the simulation. However, it is important to note that due to differences

in state update rates (i.e. different step sizes), an influencee may have to go

through many state updates and produce many output sets before it can receive

the required updates from slower influencers; a case which might potentially

lead to significant errors in the behavior of the overall simulation, especially

if the simulation application is developed for an engineering analysis requiring

a high level of behavioral sensitivity. It is worth mentioning that the state

synchronization function must be executed as the last step of the structural

change transition phase to allow the influencers to perform the necessary state

updates before the influencees ask for the latest values of the state variables that

need to be synchronized

A variable structure atomic model is defined formally as follows:

V S AM = 〈X,S, Y, δint, δext, λ, ta, δdf , SO, ρα〉

where,

X,S, Y, δint, δext, λ, ta, δdf are same as basic SiMA-DEVS formalism,

SO is the set of structure change operations,

ρα : S × SO → S′ is the structure change transition function. ρα defines a

mapping from pre-change state and structure change operations (S × SO) to

post-change state (S′).

A variable structure coupled model is defined formally as follows:

V S CM = 〈X,Y, ninit, N(ninit)〉

where,

ninit ∈ N (ninit) is the start configuration;

N (ninit) is the least set having the structure

18

〈D,Mi, Ii, Zi,j , γ, τi〉

where,

D is the set of component names,

Mi is the model of component i, for i ∈ D,

Ii is the set of component influencers of i,

Zi,j is the i-to-j output-to-input translation function, ∀j ∈ Ii,

γ : SO × SN(ninit) → SN(ninit) is the network change structure transition

function where,

SN(ninit) = ×d∈DSMd

in which SN(ninit) is the selective topological sum of the states of the

models that are to be affected by the structural change operations.

τi : SMi → S′Mi
is the state synchronization function where,

S′Mi
=
⋃
j∈Ii {ΠL(σC(Sj))}

In other words, τi computes synchronized state (S′Mi
) for Mi, by ap-

plying selection(σ) and projection(Π) operations on the states of some

of the influencers of model Mi, then producing a union of those states.

In this definition, L denotes the reduced (projected) tuple for Sj and

C denotes the condition of the selection.

In this definition, when structural change is initiated by top-level simulator, γ transi-

tion function is executed. A structure change request initiated by top-level simulator

is disseminated to the children coupled models in a hierarchical way. Each coupled

model, receiving the request, applies the structural changes relevant to it and passes

the requests to other children that are relevant(i.e. addressed by the request). On the

other hand the network transition function can be executed when structural change

is initiated by a leaf-level atomic model. In this case, each coupled model collects re-

quest messages from its children, applies changes relevant to it and passes upper-level

requests to its parent coupled model.

4.2 OUR IMPLEMENTATION APPROACH

We now set out to describe the principles that govern the run-time algorithms of the

SiMA simulation engine when it manages structural change. In SiMA-DEVS, like

19

DynDEVS, atomic models are responsible for initiating structural changes. There

is no dedicated controller model that supervises over atomic models as described in

DSDE formalism. This model centric approach seems to be more reasonable since

most of the potential change-triggering events that require structural changes from

a particular model are naturally handled by the external transition function of that

atomic model, and it is that particular model which should have the knowledge of

re-structuring itself, whether this re-structuring is a switch to an internally defined

different functional model, or a re-adjustment of its port couplings. The only exception

where the model-centric approach may become restrictive is the case where a new

model (atomic or coupled) is to be added to the simulation. The logic for initiating

the model addition may require the aggregation of state variables from many different

models, or even it may be a user-initiated request which is not necessarily captured

by a single model. In current implementations of DynDEVS namely AgedDEVS and

JAMES, the atomic models are assumed to have access to a knowledge base from

where they can collect the necessary information to decide for new model additions.

Although this approach seems quite reasonable for agent-oriented implementations,

it introduces a dependency to a specific architectural and behavioral semantics for

simulation applications, which we are inclined to avoid. Therefore, in our approach:

• If an atomic model requires a structural change, it informs its parent coordinator

about the type and content of the operations to apply. Coordinators store all

structure change requests until all child models complete their operations. These

requests will be non-ambiguously aggregated, since SiMA’s type-safe model com-

position semantics enables the resolution of any potential overlapping requests.

An atomic model can create and send structure change requests to its parent

coupled model, but cannot change the structure itself. Coupled models process

these messages and executes the operations restricted to their bounding coupled

model and sends the upper level requests to their parent coupled model.

• An application that is running the simulation may require structural changes,

too. This request is sent to the root coordinator to be executed over the model

structure recursively. Root coordinator implements an interface that allows

applications to send their structural change requests to the simulation engine.

This operation is applied in two parts:

20

– Before applying the change operation, simulation is suspended at the be-

ginning of the next cycle.

– The change request is processed by the root coordinator and child model

operations are sent to the child coordinators recursively, causing all related

child coordinators to apply change operations specified in the request.

4.2.1 Operations on Model Structures

There are three types of structural change operations defined in SiMA: Adding/removing

a model, adding/removing a coupling and adding/removing a port.

• Removing a model : This operation consists of two steps: Removing all the

connections from/to the model. Removing the model.

• Adding a model : This operation consists of three steps:

1. Adding a model to the parent coupled model.

2. Calling ’init()’ function of the newly added model.

3. Calling ’AdvanceTime(CurrentTime)’ function for synchronization.

• Adding/Removing a coupling : Adding a coupling is also a critical operation in

our case. After adding a coupling, a process for synchronizing current states of

newly connected models is executed. For achieving this, a querying mechanism

between connected ports is implemented that operates in the opposite direction

of the normal message flow. An input port creates a query and sends this query

to the newly connected ports. An answer to this query is generated and sent to

the requesting port. These response messages will be handled when the external

transition function of the model is executed.

• ” Adding/Removing a port : This operation supports the addition of new ports

to coupled models. Before removing a port, all couplings from/to the port is

removed. Note that the new ports must conform to one of the existing port

types (i.e. the type space can not be extended at run time).

Our framework does not support the addition and removal of new port types to the

type space of the simulation at run-time. One rationale for this is to preserve the

21

models’ external identity as advocated by [22]. Another important reason for such

a restriction is the implied ambiguities in the run-time behavior of source and sink

models of the newly added ports with new port types. To be more specific, say for

instance, a new output port of a new type is to be added. This would normally cause

new connections to be established between its source and some other sink model. To

be able to process the data coming from the new port type, the sink model(s) have to

be structurally and behaviorally ready to receive, interpret and process data coming

from the new port. In a type-safe environment where port connectivity is regulated

and restricted by type compatibility between connected ports (which is the case in

SiMA), normally a new port will have to be added to the sink model too. However,

both the source and the sink model may not know in advance the processing logic of

the information flowing through those new ports. As such, such a support would rely

on the pre-existence of sophisticated application-specific semantics within the models.

We believe this case should be avoided for generic frameworks and therefore we exclude

this functionality. However, we do find addition of ports having a port type already

defined in the current type space useful, since it is likely to have an already defined

port with the same type in one of the existing models and it is reasonable for a model

to add a port to establish a new coupling with an existing model.

For an example where some of these operations are applicable, consider a simulation

scenario involving two planes flying in formation. A graphical representation of the

models involved in this scenario can be seen in Figure 4.1. When the simulation

starts execution, the models representing the planes send their properties to each

other from their ports once and subsequently they only send their current locations

and directions, which are the only updated parameters of the planes throughout the

simulation period. Assume that at some point in time, a third plane is to be added

to the simulation to connect to the existing planes. This updated model can be seen

in Figure 4.2. Since the first two planes send only their updated parameters, which

are location and direction, newly added plane will not be aware of the remaining two

planes’ properties. Therefore a state synchronization is required.

Dynamic SiMA handles this case by implementing an automated state synchronization

mechanism via a querying system between connected port pairs. When a coupling is

added to the model structure while the simulation is running, this querying system

22

Plane 1 Plane 2IN OUT IN OUT

Figure 4.1: Initial Model

Plane 1 Plane 2IN OUT IN OUT

Plane 3IN OUT

Figure 4.2: Updated Model

23

automatically works as a service provided by the infrastructure, without incurring

an additional implementation overhead on the model developer. A more detailed

discussion of the state query mechanism is provided in Section 4.2.3.

4.2.2 SiMA Abstract Simulators Adapted for Dynamism Support

Recall that SiMA is an implementation of SiMA-DEVS formalism as discussed at

the beginning of this section. SiMA run-time layer is implemented in C# program-

ming language but it can interface to models implemented in both C++ and C#

programming languages. In this section, extensions to abstract simulators required

for executing variable structure SiMA models are described in pseudo code format:

Root Coordinator The algorithm that is executed at the top-level root coordinator

is shown in Algorithm 4.1. It can be observed in this algorithm that, there are three

types of simulation cycles: Change structure initiated by an external request, change

structure initiated by a leaf level atomic model and normal simulation cycle.

After a structural change operation, all models that have new couplings will execute

state synchronization mechanism, discussed in Section 4.2.3, to update their state

information. ’ChangeStructure’and ’GetNextTime’functions of both simulators and

coordinators correspond to the case when a message of type sc and @ are received

from the parent models in [6, 11,20] respectively.

Coordinator

In ’GetNextTime’function, shown in Algorithm 4.2, next simulation time and whether

any structural change is required at that time is resolved recursively down the model

hierarchy and the result is sent back to the parent coordinators up the hierarchy.

If a change structure step is initiated by a leaf level atomic model, in each coupled

models coordinator, Algorithm 4.3 is executed. On the other hand, if the step is

initiated by top level root coordinator, similar but the inverse algorithm shown in

Algorithm 4.4 is executed. The basic idea in both algorithms is applying necessary

updates in the coupled model they are associated with and redirecting the remaining

requests to the places where they will be applied.

24

1: while simulation end condition not satisfied do

2: if Structure change requested from top level then

3: Process change request

4: Send subrequests to related child coordinators

5: Do state synchronization

6: Initialize newly added models

7: end if

8: 〈CurrentT ime, StructureChangeRequested〉 ←MainModel.GetNextT ime ()

9: Advance simulation time to CurrentTime

10: if StructureChangeRequested is True then

11: Execute a structural change step

12: Do state synchronization

13: Initialize newly added models

14: else

15: Execute a normal simulation cycle

16: end if

17: end while
Algorithm 4.1: Root Coordinator

1: for all inner model M do

2: 〈time, structureChangeRequest〉 ←M.GetNextT ime ()

3: if time < minTime then

4: minTime← time

5: commonStructureChangeRequest← structureChangeRequest

6: else if time = minTime and structureChangeRequest is True then

7: commonStructureChangeRequest← True

8: end if

9: end for
Algorithm 4.2: Recursive Next Time Calculation

25

1: for all inner model M do

2: if M requested structure change then

3: Call M’s change structure function

4: Add M’s change requests to changeReq set

5: end if

6: end for

7: Process changeReq set

8: Apply necessary updates in current level

9: Send upper-level operations to parent model

Algorithm 4.3: Structure Change in Coordinator - From Bottom

1: Process requests

2: for all inner coupled model C do

3: if a request exists for model C or its submodels then

4: Send related requests to model C

5: end if

6: end for

7: Apply necessary updates in current level

Algorithm 4.4: Structure Change in Coordinator - From Top

26

Simulator

In ’GetNextTime’ function of the simulator, shown in Algorithm 4.5, next internal

transition time and an indication of whether any structural change request exists at

that time are sent to the parent coordinator. Structural change function of an atomic

model is executed if and only if its next time is imminent and a structural change

request has been made by that model.

1: if StructureChangeRequired is True and simulation time = tN then

2: Call ρα

3: StructureChangeRequired← False

4: Send required change packages to parent model

5: end if
Algorithm 4.5: Structure Change in Simulator

If the state of an atomic model satisfies certain conditions that require structural

changes, atomic model marks itself and informs its simulator to initiate a structural

change process and this simulator recursively sends this request to the root coordina-

tor. Structural change requests can be issued by any atomic model during one of its

transition functions. These requests are handled in the next internal transition phase.

Modifications required for supporting variable structure models can be summarized

as follows:

• A property, named ’StructureChangeRequired’, is added to the atomic models’

simulators.

• Atomic models that may require structural changes while the simulation is run-

ning implement ρα transition function.

• The get-next-time functions of the coordinators and simulators are modified and

they now return a ’StructureChangeRequired’flag, too. To initiate a struc-

tural change, an atomic model simply sets its ’StructureChangeRequired’flag

to true.

• When a structure change request arrives at the root coordinator with the mini-

mum advanced time value, a structure change step is executed. For each atomic

27

model that requires structural changes at the new current time, the change

structure transition function is executed.

4.2.3 State Synchronization Mechanism

In SiMA, there is a state query mechanism between connected ports. A port can

create a query and send this query to other source ports to which it is connected.

This mechanism works in the opposite direction of the normal message flow and it

is instrumental in supporting the implementation of variable structure models. It

enables newly added models or newly added couplings to acquire the current state of

the simulation. This capability is crucial for SiMA, since ports are managed by event

and object managers where object managers send only modified data for efficiency

reasons. Therefore a sink model would not have up-to-date values of certain state

variables from the source models if before the structural change the sink model did

not use those particular state variables. If a model requires the previously updated

fields, it can prepare and send a query to gather this information. Implementation

details of this mechanism are discussed below.

An interface named ’IPortValueSource’is defined in SiMA as below:

1: QuerySource(destModel:string, destPort:Port):Message []

Algorithm 4.6: IPortValueSource Interface

This interface has only one member function which takes destination model and des-

tination port as input parameters and returns port’s related data. In a structural

change step, after all structural updates are completed, the states of the models are

updated accordingly as illustrated in Algorithm 4.7. Each coupled model contains a

list of couplings, in its level, that are added in the last structural change step.

Destination ports create queries and send these queries to source ports that are con-

nected to them. When an atomic model receives a query, it sends its state as a

response. When a coupled model receives a query, it redirects this query to the source

ports that are connected to this port and collects and returns the responses received

from those redirected ports. For example, in Figure 4.3 a model named ’D’ and a

coupling from C’s ’Out1’ port to D’s ’In1’ port is added dynamically. In this example,

28

1: for all inner coupled model M do

2: Call state synchronization procedure of M

3: end for

4: for all new coupling c do

5: Add destionation port to the affected ports list

6: Message[] messages ← c.SourcePort.QuerySource(destination model, destina-

tion port)

7: for all Message m in messages do

8: Put values of m into destination port

9: end for

10: end for

11: for all affected port P do

12: Synchronize sources of P

13: end for

14: Clear new couplings list

Algorithm 4.7: Updating States

29

state synchronization process works as follows;

1. ’In1’ port of model ’D’ sends a query to ’Out1’ port of model ’C’.

2. ’Out1’ port of model ’C’ redirects this query to ’Out1’ ports of model ’A’ and

model ’B’.

3. ’Out1’ port of model ’C’ collects response messages from ’Out1’ ports of model

’A’ and ’B’.

4. Sends these messages back to ’In1’ port of model ’D’.

C D
OUT

IN

A

B

OUT

OUT

C
OUT

A

B

OUT

OUT

Figure 4.3: Dynamically Adding A Model and A Coupling

State synchronization mechanism works from bottom-to-top. In other words, parent

models execute state synchronization mechanism after the completion of all of its

submodels. As it was mentioned before, communication in SiMA is bidirectional and

destination ports are aware of the source ports they are connected to. However,

while updating the states, destination ports are not aware of the source ports that

they are newly connected to. As it can be observed in Algorithm 4.7, sources of

destination ports are synchronized after the state updating procedure. In this way,

SiMA prevents unnecessary queries as well as duplicate messages, therefore implements

state synchronization in an efficient way. For example, in Figure 4.4 two couplings are

added dynamically; from ’OUT2’ port of ’C’ to ’IN’ port of ’D’ and ’IN’ port of ’D’

to ’IN’ port of ’E’. In this example, state synchronization process works as follows;

• From ’IN’ port of ’D’ to ’IN’ port of ’E’:

30

1. ’IN’ port of model ’E’ sends a query to ’IN’ port of model ’D’.

2. ’IN’ port of model ’D’ redirects this query to ’OUT1’ port of model ’C’.

3. ’OUT1’ port of model ’C’ redirects this query to ’OUT’ port of model ’A’.

4. Response messages of model A are sent to the model ’E’ from the same

path.

• From ’OUT2’ port of ’C’ to ’IN’ port of ’D’:

1. ’IN’ port of model ’D’ sends a query to ’OUT2’ port of model ’C’.

2. ’OUT2’ port of model ’C’ redirects this query to ’OUT’ port of model ’B’.

3. Response messages are sent to ’IN’ port of model ’D’ from the same path.

4. ’IN’ port of model ’D’ sends a copy of these messages to ’IN’ ports of both

model ’E’ and ’F’.

C

A

B

OUT

OUT

OUT1

OUT2

D

EIN

IN

FIN

C

A

B

OUT

OUT

OUT1

OUT2

D

EIN

IN

FIN

Figure 4.4: Dynamically Adding Couplings

4.2.4 Change Request Message Structure

Change requests in SiMA are defined as XML documents that are compatible to

a XML Schema shown in Figure 4.5 and this allows interoperability for structural

31

changes between different simulations.

Figure 4.5: Change Request Message Structure

A change request consists of several actions and each action consists of attributes and

structure change operations. Attributes of an action specify the destination model

that will execute structure change operations defined in the action. An action has

three attributes; type, level and path. Level and path are optional attributes and

their data types are int and string respectively. Type attribute of an action can

have one of the following values: Relative path, Absolute path, Relative level

and Absolute level. For example, if type attribute is set to relative level and level

attribute to one, then the action will be executed in the parent coupled model. If

level attribute was set to two, then the action will be executed at the parent coupled

model of the parent coupled model and so on.

As it is discussed in Section 4.2.1 and as it can be observed in Figure 4.5, allowed

32

operations in dynamic SiMA are:

• Adding/Removing models

• Adding/Removing couplings

• Adding/Removing ports

In dynamic SiMA, requests can be sent both from top-to-bottom and bottom-to-top

(see Section 4.2.6). For both purposes, the same schema, introduced in this section,

is used. By using the functionalities of this schema, for messages sent from top-to-

bottom, requests can be broken into pieces and for messages sent from bottom-to-top,

requests can be combined.

4.2.5 Time Management In Dynamic SiMA

The time management diagram of a simulator in dynamic SiMA can be observed

In Figure 4.6. The parts with red color are the dynamism extensions to the time

management flow of classical DEVS formalism. After each simulation cycle, whether

there exists a structure change request in the next cycle is controlled by the simulator.

If there exists such a request and if current simulation time equals to the change request

time then the required changes are executed. Changing model structure in SiMA is

handled in three steps:

• Changing the model structure

• Synchronizing states (details are discussed in Section 4.2.3)

• Initialization of newly added models. Current times of newly added models are

also advanced to the current simulation time.

After changing the structure, this cycle continues with the updated model structure.

4.2.6 Structure Change Types

In DSDEVS, network executive models, which are associated with each coupled model,

and in DynDEVS, atomic and coupled models initiate structure change steps. On the

33

ComputeOutput

Function

IF CurrentTime =

RequestedTime

IF Value in

Input Ports

NO

NO

YES

Confluent Transition

Internal

Transition

External

Transition

IF Value in

Input Ports

YES

Internal

Transition

External

Transition YES
NO

Requested Time =

GetNextTime()

Change Request =

GetChangeRequest()

IF Structure

Change

Requested

NO

Change

Structure

Transition

State

Synchronızation

Initialize New

Models

YES

Figure 4.6: Time Management In Dynamic SiMA

34

other hand, in dynamic SiMA, atomic models, due to their internal logic, and root

coordinator, due to an external request can initiate a structure change step. When

atomic models initiate a structure change step, request messages are sent from leaf

level atomic models to upper level coupled models and when root coordinator initiates

a structure change step, request messages are sent from top-most coupled model to

the lowest level coupled models.

Main

Model

Root

Coordinator

Coupled

Coordinator

Atomic

Simulator

Atomic

Simulator

Atomic

Simulator

Atomic

Simulator

Top to
Bottom Bottom

to Top

Figure 4.7: Change Request Types

35

CHAPTER 5

CASE STUDY and PERFORMANCE ANALYSIS

5.1 Wireless Sensor Network Simulation

In this section, performance measurements and analysis of SiMA environment with

dynamism extensions will be presented. To conduct the performance tests, a Wireless

Sensor Network (WSN) simulation has been developed as a sample case. Models

representing the sensors will be implemented in both classic SiMA and dynamic SiMA

frameworks and their performances will be compared. A top level visual representation

of DEVS models, which are defined according to [1, 19], is given in Figure 5.1. The

proposed WSN system consists of five components:

1. Sensors sense the movement activities in the environment and can communicate

with other sensors within their range. Each sensor is represented by a coupled

model and consists of four subcomponents. These components and their inner

relationships can be observed in Figure 5.2.

• Antenna is used for communicating with main sensor and other sensors

within their range. It is the intermediate model between outside world and

the processor. Messages coming from the outside world are sent to the

processor and messages received from the processor are sent to the other

sensors. Routing protocol is also implemented in this model. For this case

study, greedy forwarding which is the simplest form of geographic routing

is used. Each node makes decisions according to the locations of its direct

neighbors. Each sensor sets the neighbor that has the shortest distance to

the sink model as its parent model. More details about greedy forwarding

36

Figure 5.1: WSN Main Model

Figure 5.2: Single Sensor Model

37

can be found in [15].

• Sensing Unit is used for sensing the movement activities in the environ-

ment. When a sensing unit detects some movement activities it estimates

a value between [0, 1] and sends a message containing this data to the pro-

cessor.

• Processor receives messages from both antenna and sensing unit. It cre-

ates and sends data messages to the antenna according to messages received

from sensing unit. When processor receives a message from antenna which

is originated from sink sensor, it sends an activation message to its sensing

unit.

• Battery is connected to antenna, processor and sensing unit. It has a

power and when this power runs out battery model informs other models

with an event message and all models in the sensor changes their states

to ’Dead’ phase. In classic implementation, when battery power runs out,

sensor only changes its phase to ’Dead’, but still remains in the simulation.

However, in dynamic version, sensor is also removed from the simulation

structure.

2. Main Sensor can communicate with the sensors within its range. It sends

activation messages to the sensors and waits for the response messages. Unlike

other sensors, main sensor does not sense the environment and it does not contain

a battery unit. Main sensor contains two subcomponents. These components

and their relationships can be observed in Figure 5.3

• Sink Antenna sends activation messages and listens to the incoming mes-

sages within a specific range. It redirects received messages to the sink

processor.

• Sink Processor follows trucks movement activities. During the simula-

tion, it collects data messages received from the sensors. At the end of the

simulation, it analyzes these messages and determines the locations and

times in which the truck is passed. Analyzing trucks location for each time

unit is handled as follows:

– If only one sensor detects trucks location: Truck is estimated to be at

exactly sensors location.

38

Figure 5.3: Main Sensor

39

– If two sensors detect trucks location: Trucks location is estimated to

be on the line connecting these sensors. According to the sensors cal-

culated accuracy results, trucks location on this line is determined.

– If at least three sensors detect trucks location: Three sensors are se-

lected and using trilateration, discussed in ??, exact location of the

truck is determined.

3. Truck has a predefined path and follows this path during the simulation. Each

sensor has a sensing range and when truck enters into a sensors range sensor

prepares a message that contains accuracy data and sends this message to its

parent to be delivered to the main sensor.

4. Logger saves all the location and data packages, created by truck and sensors

respectively, in a file. This file can be used for analyzing simulation results.

5. Sensor adder: This model exists only in the dynamic version of the simulation

and it is used for adding sensors at runtime.

5.1.1 Simulation Scenario

In this simulation, a wireless sensor network system is constructed. Sensors that are

capable of sensing movement activities are randomly distributed. Each sensor has

an antenna range, sensing range and lifetime. Sensors can communicate with the

nodes within their antenna ranges and can sense movement activities within their

sensing ranges. There also exists another type of sensor, namely main sensor (sink

sensor). Sink sensor is connected to a computer and collects data messages coming

from other sensors. When simulation starts running, a truck that has a predefined

velocity and random path starts moving and follows its track during the simulation.

When truck enters a sensor’s sensing range, the sensor detects truck’s location and

sends an accuracy value in the interval [0 − 1] to its parent to be sent to the main

sensor. At the end, main sensor analyzes collected messages and determines truck’s

observed path.

In this case study, tests are performed according to the following scenario:

40

• A truck starts moving along a random path with a constant speed.

• Main sensor creates and broadcasts an activation message.

• When a sensor receives this message, it also broadcasts it to be able to distribute

to the maximum number of nodes.

• Sensors that receive the activation message start collecting movement activities

from the environment via their sensing units.

• When a sensing unit receives movement activities from the truck, it sends a

message to its processor.

• Processor creates data messages according to the collected data from the envi-

ronment.

• When messages are ready, processors send them to their antenna to be sent to

the main sensor.

• Main sensor collects these data messages and understands the current location

of the truck.

5.1.2 WSN Simulator Application

WSN Simulator Application is implemented as visual experimentation tool that is

used for conducting the simulation runs, observing the behavior of wireless sensor

networks via a visually plausible graphical interface and verifying simulation results

both through textual output information and visual cues. The tool provides a con-

trolled experimentation environment which ensures that both static and dynamic cases

are tested in a systematic and consistent way.

When wireless sensor network simulator first started, the windows shown in Figure 5.4

opens. In this window two buttons with different functionalities exist. If the button

with label ’Performance Tests’ is clicked, all active windows gets closed and perfor-

mance tests start executing. Parameters for these tests are read from a previously

defined file and results are saved into a file to be used for later analysis. Results of

the performance tests are discussed in Section 5.1.3.

41

Figure 5.4: Choose Process Type Window

When user wants to debug the simulation or wants to see the behavior of the simula-

tion, he/she clicks on the ’Debug Simulation’ button in choose process type window.

Then, a new window shown in Figure 5.7 opens. This window consists of five sections:

• Simulation Parameters: Values of these parameters are saved into config files

and given to the related models in the initialization phase. By changing these

parameters different simulations can be executed. For debugging reasons only

three parameters, which are sensor count, sensor adder frequency and simulation

type(static or dynamic) are set here, but if needed more parameters can be

added.

• Simulation Manager: Controls a simulation. Before starting the simulation

execution, simulation end conditions can be defined by simulation time units,

execution time units or in step count. While a simulation is running, by using

simulation manager, it can be paused or stopped. In Figure 5.5, simulation

manager is shown while the simulation is running. When simulation is paused,

allowed operations with simulation manager are: Iterating the simulation for

one step, resuming execution, stopping the simulation and finally changing the

model structure. In Figure 5.6, we can see the simulation manager when the

simulation is paused. Changing the structure defined here is a top-to-bottom

structure change operation that is discussed in Section 4.2.6 and structure change

requests read from an XML document is sent from root coordinator to the related

subcomponents to be applied.

• Simulation Panel: Visual representation of the running simulation is shown

42

Figure 5.5: Simulation Manager While Simulation Running

Figure 5.6: Simulation Manager When Simulation Paused

43

in this section of the screen. Trucks path is shown with a polygon and sensors

are represented by dots with different colors according to their states.

• Statistics Control: Statistics of completed simulations are shown in this sec-

tion. By just looking into the visual representation of the simulation it is hard

to make sure that both static and dynamic simulations have executed the same

simulation. So, statistical data are used for determining this. In addition to

the simulation execution time and simulation type, how many times the truck

is located by how many sensors is also shown as statistical data and this is the

main metric we used for making sure that we are executing the same simulation

with different approaches.

• Meanings of Colors in Simulation: In order to make simulations more

understandable, sensors with different phases, sink sensor and range, truck path

and detected truck locations are all represented by different colors.

Figure 5.7: WSN Simulator Tool

Figure 5.9 and Figure 5.8 illustrate the simulator after executing static and dynamic

simulations respectively. In dynamic approach, after a sensor completes its execution,

it is removed from the simulation structure. So, unlike Figure 5.9, in Figure 5.8 no

inactive sensors with color gray can be seen. By examining the final state of the

44

simulation panel and the statistics shown in Figure 5.9, it can be observed that the

same simulation scenario is executed with both static and dynamic approaches.

Figure 5.8: WSN Dynamic Simulation

Figure 5.9: WSN Static Simulation

45

5.1.3 Performance Analysis

In classical DEVS formalism, after the initialization phase, simulation goes into a

loop where in each cycle, all simulators execute their functions as mandated by the

applicable DEVS simulation protocol. The number of simulators for a simulation in

classical DEVS is fixed (since the model number is fixed) and does not change while

the simulation is running. However, in dynamic version, models can be included into

the simulation whenever they are needed and they are removed when they complete

their work. Therefore, number of simulators in the dynamic version of a simulation

will always be less than or equal to the number of simulators in classical version. As

a consequence, the number of calls to simulators in each cycle of the simulation loop

is always less than or equal to that of classical approach.

In addition to the above, even though incoming messages are not processed by inactive

models, messages are still received by their ports and then they are omitted. Therefore,

not only the presence of the inactive models but also unnecessary couplings between

those models cause performance degradation during simulation execution. Dynamic

DEVS approach eliminates such performance losses through its support for dynamic

coupling management.

As it is mentioned in the introduction section, supporting dynamic behavior in simu-

lations is not only required for performance reasons, but also for modeling unexpected

behavior and creating more realistic simulations. In our approach, dynamic port

management is also supported, but this feature does not have any effect on the per-

formance. This feature can be used for modeling unexpected behavior or creating

models that better represent real life entities.

5.1.3.1 Testing Environment

Tests are performed in Windows XP environment on a machine with the following

features: Intel(R) Core(TM)2 Quad CPU Q9550 @2.83GHz, 3.93 GB of RAM.

In this case study, execution times of wireless sensor network simulations in different

cases are measured. Two metrics are defined for his purpose: 1 - Execution duration

46

of simulations for varying sensor counts and 2 - Execution duraiton of simulation for

varying truck step sizes. The rationale behind specifying these metrics and the method

adopted for collecting them are given below in sections 5.1.3.2 and 5.1.3.3.

5.1.3.2 Testing Criteria 1 - Sensor Count

Execution times of simulations for varying sensor counts is our first metric. Sensor

count is a good measure of structural dynamism in that it indicates the impact of

dynamic model inclusion and removal as opposed to a static model coupling structure.

As it is discussed in Section 5.1, there are four fixed models in the proposed wireless

sensor network system and there are varying numbers of sensors. For example, when

there are 40 sensor models in the simulation, number of sensor models will be %90

of whole model structure. In dynamic version, these sensors are included into the

simulation when they are activated and removed from the simulation when they are

deactivated. However, in classical approach, all models are added to the simulation

at the beginning and removed when the simulation is terminated. When a model

is needed, its state is changed to active and when it is no longer needed its state is

changed back to inactive. In Table 5.1.3.2 execution times of simulations for both

static and dynamic approaches and performance improvement of dynamic approach

over static approach can be observed. Gain of dynamic approach over static approach

is calculated as the increase in velocity of dynamic execution over static one. For

example, if dynamic execution completes its work in 3 time units and static execution

in 4 time units, this means dynamic approach is %33 faster than the static approach.

This also means, dynamic approach improves static approach with %25, but the results

shown in Table 5.1.3.2 are calculated according to the first approach, which compares

velocities of static and dynamic approaches.

In order to better understand the results shown in Table 5.1.3.2, Figure 5.10 and Figure

5.11 are drawn. In Figure 5.10, execution times of static and dynamic approaches are

shown. As it can be observed from the results, execution times of static approach

are proportional with the sensor model count, whereas execution times of dynamic

approach are almost proportional with the logarithm of the sensor model count. In

Figure 5.11, performance gain of dynamic approach over static approach is graphically

47

Table 5.1: Comparison of the two approaches according to sensor count

Sensor # Static(s) Dynamic(s) Difference(s) Gain(%)
1 0.30 0.27 0.03 9.60
2 0.47 0.43 0.04 9.74
3 0.72 0.64 0.08 12.18
4 2.04 1.91 0.12 6.53
5 2.55 2.37 0.18 7.46
6 3.65 3.40 0.25 7.35
7 4.50 4.20 0.30 7.17
8 5.68 5.29 0.39 7.36
9 6.79 6.29 0.50 7.93

10 7.87 7.28 0.59 8.07
11 8.97 8.25 0.72 8.76
12 10.62 9.65 0.98 10.13
13 12.24 11.02 1.22 11.11
14 14.26 12.81 1.45 11.31
15 15.78 14.07 1.70 12.11
16 17.26 15.05 2.22 14.72
17 19.02 16.55 2.46 14.89
18 20.70 17.70 3.00 16.95
19 22.37 18.98 3.39 17.83
20 24.16 20.04 4.12 20.56
21 25.89 21.06 4.83 22.92
22 27.99 22.32 5.67 25.38
23 30.14 23.79 6.35 26.69
24 32.44 25.18 7.26 28.83
25 33.95 26.13 7.81 29.90
26 35.82 27.13 8.69 32.03
27 38.20 28.87 9.34 32.34
28 40.53 29.91 10.63 35.53
29 42.42 30.93 11.49 37.14
30 44.51 31.92 12.59 39.43
31 46.61 32.70 13.90 42.52
32 48.04 33.28 14.76 44.36
33 49.69 34.02 15.67 46.07
34 51.37 34.65 16.72 48.26
35 53.48 35.33 18.15 51.37
36 54.70 36.05 18.64 51.71
37 56.39 36.14 20.25 56.01
38 58.01 36.58 21.43 58.59
39 59.22 36.73 22.49 61.24
40 60.77 36.90 23.87 64.71

represented. It can be observed that, performance difference between approaches

increases almost linearly with the sensor count increasing.

48

Another metric that is actually dependent on the sensor count is total number of

messages transferred between models. It can be observed that, in static simulations,

total number of messages circulating in the simulation is proportional with the square

of sensor count. On the other hand, in dynamic simulations, message count does

not increases that fast with the sensor count increasing. In Table 5.1.3.2, number of

messages for different sensor counts are shown for both static and dynamic simulations.

By combining the results shown in Table 5.1.3.2 and Table 5.1.3.2, it can said that,

for different sensor counts, static and dynamic simulations create different number of

messages and this is the main reason in the performance difference.

Table 5.2: Comparison of the two approaches according to total message count

Sensor # Message # in Static Message # in Dynamic Difference (%)
10 1540071 1484869 3.70
20 5545412 4726308 17.33
30 11003793 7885944 39.53
40 16120844 9250767 74.26

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Sensor Model Count

A
ve

ra
ge

 E
xe

cu
ti

o
n

 T
im

e

Static

Dynamic

Figure 5.10: Execution times of simulations according to sensor count

5.1.3.3 Testing Criteria 2 - Truck Step Size

The simulation step size of the Truck model is a convenient parameter for increasing

or decreasing the number of messages traveling along the couplings between the mod-

els, which is instrumental in measuring the effect of dynamic coupling management in

49

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Sensor Model Count

P
e

rc
e

n
ta

ge
 G

ai
n

Percentage
Gain

Figure 5.11: Performance advancement of dynamic approach according to sensor count

reducing the message handling cost of the framework. Number of messages circulat-

ing between sensors is inversely proportional with the truck step size. So, increasing

truck step size will decrease the number of messages and hence amount of data ex-

changed between the models during the simulation. Tests for measuring this criteria

are executed for 10 sensors with varying truck step sizes for both static and dynamic

approaches. The impact of truck step size on performances can be seen in Table 5.3.

Table 5.3: Comparison of the two approaches according to truck step size

Sensor # Truck Step Size(s) Static(s) Dynamic(s) Difference(s) Gain(%)
10.00 0.001 24.79 17.53 7.26 41.41
10.00 0.002 15.25 11.52 3.73 32.36
10.00 0.003 12.22 9.50 2.72 28.61
10.00 0.004 10.12 7.99 2.13 26.74
10.00 0.005 8.84 7.15 1.69 23.59
10.00 0.006 8.61 7.05 1.57 22.24
10.00 0.007 8.29 6.82 1.46 21.46
10.00 0.008 8.07 6.72 1.34 19.99
10.00 0.009 8.05 6.74 1.31 19.40
10.00 0.010 7.52 6.44 1.07 16.66

Results shown in Table 5.3 are graphically represented in Figure 5.12 and Figure

5.13. According to Figure 5.12, it can be said that performances of both approaches

decrease with the step size increasing. This is an expected behavior. When truck

step size increases number of messages circulating between models decreases and so

performance increases. On the other hand, in Figure 5.13 it can be observed that

50

dynamic approach does not have as much performance loss as static approach. When

truck step size decreases, in other words number of messages circulating between sen-

sors increases, the gap between dynamic approach and static approach also increases.

So, when the system gets complexer, dynamic approach would be probably a better

choice.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0.0010.0020.0030.0040.0050.0060.0070.0080.0090.010

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Truck Step Size (s)

Static

Dynamic

Figure 5.12: Execution times of simulations according to truck step size

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

0.0010.0020.0030.0040.0050.0060.0070.0080.0090.010

G
ai

n
(%

)

Truck Step Size(s)

Percentage Gain

Figure 5.13: Performance advancement of dynamic approach according to truck step
size

51

CHAPTER 6

DISCUSSION AND FUTURE WORK

In this thesis, we have introduced our approach that contributes to the formal repre-

sentation and implementation of variable structure support to DEVS based modeling

and simulation environments.

In order to relate our work to similar work in the literature, we summarized fun-

damental properties of DEVS formalism and SiMA environment. DEVS is a widely

used formalism that is introduced by Bernard Zeigler in 1976 and SiMA is an imple-

mentation of an extended form of parallel DEVS formalism, which is developed at

TUBITAK UEKAE. In order to formalize required changes for dynamism support we

extended DEVS formalism’s definition and successfully implemented these theoretical

extensions in SiMA framework.

In order to relate our work to similar work in the literature, we have discussed the

two most relevant approaches for supporting structure variability in DEVS based

modeling and simulation frameworks. These are DSDEVS which is introduced by

Fernando Barros in 1995, and DynDEVS which is introduced by Uhrmacher in 2001.

To summarize: Our approach to add dynamism to our basic DEVS model is similar

to that of DynDEVS as indicated earlier. However, we do not have the operational

boundaries that DynDEVS has. Unlike DynDEVS, our approach allows dynamic

port management and allows atomic models to make changes other than changing

themselves only. It can be said that DynDEVS and our approach are more generalized

form of DSDEVS formalism in that if change structure functions are only implemented

by one atomic model in each coupled model and only changes related to that coupled

model are handled, then our approach reduces to DSDEVS or DynDEVS.

52

One particular contribution we offered in this thesis is the systematic framework sup-

port for post-structural-change state synchronization among models with related cou-

plings. This operation works in the opposite direction of the normal message flow

and enables newly added models and newly added couplings to acquire the current

state of the simulation. This feature is used and tested in the sample simulations. For

example, in the sample WSN simulation, sensors start sensing movement actions in

the environment upon receiving activation messages sent from main sensor, indicating

that main sensor started execution. Main sensor sends this message only once after

the initialization phase and when a model included into the simulation dynamically,

it requires to know whether main sensor is executing to start sensing environment.

In order to enable newly added sensors to acquire the current state of the simulation

state synchronization mechanism is used.

In order to test our approach, we developed a sample Wireless Sensor Network Simu-

lator that uses dynamic SiMA. Since dynamic SiMA is an extended version of classic

SiMA, this simulator was able to simulate both static and dynamic simulations. Using

this simulator, we executed several scenarios with different parameters and measured

the performance according to two different metrics: 1 - the sensor count in the simula-

tion and 2 - the simulation step size of the truck model. As a result, using sensor count

metric, we observed in Section 5.1.3 that as the model structure complexity increased,

performance difference of dynamic approach over static approach also increased. For

this metric, performance of dynamic SiMA show more than %60 percent gain over

static version. According to our second metric, we observed that as the truck step size

(hence the number of data packets cycling in the simulation) increased, dynamic SiMA

improved the overall performance by %40. We argue that these results indicate the

utility of dynamism support in improving the performance of the simulations. This

performance improvement is mostly gained by variable structure model usage, not be-

cause of our theoretical approach or efficient implementation. If we have implemented

DSDEVS or DynDEVS approaches we would probably observe similar performance

achievements. What we provide with this study is more flexible and robust environ-

ment that is also easy to use for dynamic structure management. In our examples, a

sensor model, which consists of four atomic submodels and couplings between those

models, is included in the simulation when it is required and it is removed from the

53

simulation when its power goes off. In this way, we both get rid of unnecessary simu-

lators and unnecessary message transfers that, according to the statistics, have a huge

impact on the performance.

As it is mentioned above, our approach is more generalized form of DSDEVS approach

and we can manage structure as it is handled in this approach. For example, in the

sample WSN simulations, ’Sensor Adder’ model adds new sensors to the simulation

and also it does not contain any behavioral logic, other than structural changes. So,

this model is similar to the network executive model defined in DSDEVS approach.

Unlike DSDEVS, DynDEVS also allows atomic models to make structural changes.

However, it only allows atomic models to change themselves. In our approach, we

do not have such restrictions. For example, each sensor model contains a battery

model that handles sensors power and when power goes off this atomic model creates

a change request message that removes its enclosing sensor from the overall structure.

A summary of the most important features of these approaches can be observed in

Table 6.1.

Table 6.1: Feature comparison of approaches

DSDEVS DynDEVS Our Approach
Adding/Removing Model Yes Yes Yes
Adding/Removing Coupling Yes Yes Yes
Adding/Removing Port Yes No Yes
State Synchronization No No Yes

6.1 Future Work

In order to improve systems performance and in order to provide a more robust envi-

ronment, we are planning to implement more test simulations. Even though we tried

to test all features of the current system over sample simulations, we believe there

may still be cases that may cause errors or may have significant effects on the perfor-

mance. In order to get rid of such problems and improve our system we are planning

to prepare and execute more tests.

Also, in this thesis, we implemented our approach by extending classic SiMA that does

not support distributed simulations. Our objective for further studies is, implementing

54

our theoretical approach over distributed SiMA and supporting structural changes in

a distributed environment.

Our another objective is to support real world applications in the near future, antic-

ipating that there will be room for improvement to the mechanisms we devised. In

particular, scenarios where supporting dynamic fidelity-level adjustments of multiple

models in a coordinated way is a requirement, are potential use cases where we hope

dynamic SiMA would provide a viable solution for application developers.

55

REFERENCES

[1] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci.
Wireless sensor networks: a survey. Computer Networks, 38(4):393–422, 2002.

[2] Lassaad Baati, Claudia Frydman, and Norbert Giambiasi. LSIS DME M&S envi-
ronment extended by dynamic hierarchical structure DEVS modeling approach.
In SpringSim ’07: Proceedings of the 2007 spring simulation multiconference,
pages 227–234, San Diego, CA, USA, 2007. Society for Computer Simulation
International.

[3] Fernando J. Barros. Dynamic structure discrete event system specification: a
new formalism for dynamic structure modeling and simulation. In Simulation
Conference Proceedings, 1995. Winter, pages 781–785, Dec 1995.

[4] Fernando J. Barros. The dynamic structure discrete event system specification
formalism. Trans. Soc. Comput. Simul. Int., 13(1):35–46, 1996.

[5] Fernando J. Barros. Modeling formalisms for dynamic structure systems. ACM
Trans. Model. Comput. Simul., 7(4):501–515, 1997.

[6] Fernando J. Barros. Abstract simulators for the DSDE formalism. In WSC ’98:
Proceedings of the 30th conference on Winter simulation, pages 407–412, Los
Alamitos, CA, USA, 1998. IEEE Computer Society Press.

[7] Fernando J. Barros, Bernard P. Zeigler, and Paul A. Fishwick. Multimodels and
Dynamic Structure Models: An Integration of DSDE/DEVS and OOPM. In
Winter Simulation Conference, pages 413–420, 1998.

[8] Cumhur Doruk Bozag̃aç, Gulsah Karaduman, Ahmet Kara, and Mahmut Nedim
Alpdemir. Sim-PETEK : A Parallel Simulation Execution Framework for Grid
Environments. In Proceedings of Summer Computer Simulation Conference
(SCSC’09), pages 275–282. SCS, 2009.

[9] Fatih Deniz, Ahmet Kara, Mahmut Nedim Alpdemir, and Halit Og̃uztüzün. Vari-
able Structure and Dynamism Extensions to SiMA, A DEVS Based Modeling and
Simulation Framework. In Proceedings of Summer Computer Simulation Confer-
ence (SCSC’09), pages 117–124. SCS, 2009.

[10] Richard M. Fujimoto and Richard M. Weatherly. Time Management in the DoD
High Level Architecture. In In Proceedings of the 1996 Workshop on Parallel and
Distributed Simulation, 60-67. Institute of Electrical and Electronics Engineers,
Piscataway, pages 60–67. IEEE Computer Society, 1996.

[11] Jan Himmelspach and Adelinde M. Uhrmacher. Processing Dynamic PDEVS
Models. In MASCOTS ’04: Proceedings of the The IEEE Computer Society’s
12th Annual International Symposium on Modeling, Analysis, and Simulation of

56

Computer and Telecommunications Systems, pages 329–336, Washington, DC,
USA, 2004. IEEE Computer Society.

[12] Xiaolin Hu, Bernard P. Zeigler, and Saurabh Mittal. Variable Structure in DEVS
Component-Based Modeling and Simulation. Simulation, 81(2):91–102, 2005.

[13] Ahmet Kara, Doruk Bozagac, and Mahmut Nedim Alpdemir. SIMA: A DEVS
Based Hierarchical and Modular Modelling and Simulation Framework. 2. Na-
tional Defensive Applications Modelling and Simulation Conference, 2007.

[14] Ahmet Kara, Fatih Deniz, Cumhur Doruk Bozag̃aç, and Mahmut Nedim
Alpdemir. Simulation Modeling Architecture (SiMA), A DEVS Based Model-
ing and Simulation Framework. In Proceedings of Summer Computer Simulation
Conference (SCSC’09), pages 315–321. SCS, 2009.

[15] B. Karp and H.T. Kung. Greedy Perimeter Stateless Routing for Wireless Net-
works. pages 243–254. Sixth Annual ACM/IEEE International Conference on
Mobile Computing and Networking, 2000.

[16] K. Lee, K. Choi, J. Kim, and G. C. Vansteenkiste. A Methodology for Variable
Structure System Specification: Formalism, Framework, and Its Application to
ATM-Based Network System. ETRI JOURNAL, 18(4):245–264, 1997.

[17] Tuncer I. Ören. Dynamic templates and semantic rules for simulation advisors
and certifiers. pages 53–76, 1991.

[18] T. Pawletta and S. Pawletta. A DEVS-based simulation approach for structure
variable hybrid systems using high accuracy integration methods. In Proceedings
of the Conference on Conceptual Modeling and Simulation, Part of Mediterranean
Modelling Multiconference, pages 368–373, Genova, Italy, 10 2004.

[19] Hairong Qi, S. Sitharama Iyengar, and Krishnendu Chakrabarty. Distributed
sensor networks–a review of recent research. Journal of the Franklin Institute,
338(6):655 – 668, 2001.

[20] Hui Shang and Gabriel A. Wainer. A flexible dynamic structure DEVS algorithm
towards real-time systems. In SCSC: Proceedings of the 2007 summer computer
simulation conference, pages 339–345, San Diego, CA, USA, 2007. Society for
Computer Simulation International.

[21] Wikipedia. http://en.wikipedia.org/Trilateration. Last access date is
12.10.2009.

[22] A. M. Uhrmacher. Dynamic structures in modeling and simulation: a reflective
approach. ACM Trans. Model. Comput. Simul., 11(2):206–232, 2001.

[23] Bernard Zeigler and Herbert Praehofer. Theory of Modeling and Simulation.
Academic Press, January 2000.

[24] Bernard P. Zeigler. Theory of Modeling and Simulation. John Wiley, 1976.

[25] Bernard P. Zeigler, Tag Gon Kim, and Chilgee Lee. Variable structure modelling
methodology: an adaptive computer architecture example. Trans. Soc. Comput.
Simul. Int., 7(4):291–318, 1990.

57

