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ABSTRACT

ENTANGLEMENT IN THE RELATIVISTIC QUANTUM MECHANICS

Yakaboylu, Enderalp
M.S., Department of Physics
Supervisor : Assoc. Prof. Dr. Yusuf ipekoglu
Co-Supervisor : Prof. Dr. Namik Kemal Pak

January 2010, 44 pages

In this thesis, entanglement under fully relativistic settings are discussed. The thesis starts
with a brief review of the relativistic quantum mechanics. In order to describe the effects of
Lorentz transformations on the entangled states, quantum mechanics and special relativity are
merged by construction of the unitary irreducible representations of Poincaré group on the
infinite dimensional Hilbert space of state vectors. In this framework, the issue of finding
the unitary irreducible representations of Poincaré group is reduced to that of the little group.
Wigner rotation for the massive particles plays a crucial role due to its effect on the spin
polarization directions. Furthermore, the physical requirements for constructing the correct
relativistic spin operator is also studied. Then, the entanglement and Bell type inequalities are
reviewed. The special attention has been devoted to two historical papers, by EPR in 1935 and
by J.S. Bell in 1964. The main part of the thesis is based on the Lorentz transformation of the
Bell states and the Bell inequalities on these transformed states. It is shown that entanglement
is a Lorentz invariant quantity. That is, no inertial observer can see the entangled state as
a separable one. However, it was shown that the Bell inequality may be satisfied for the
Wigner angle dependent transformed entangled states. Since the Wigner rotation changes

the spin polarization direction with the increased velocity, initial dichotomous operators can
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satisfy the Bell inequality for those states. By choosing the dichotomous operators taking into
consideration the Wigner angle, it is always possible to show that Bell type inequalities can

be violated for the transformed entangled states.

Keywords: entanglement, Lorentz transformation, relativistic spin operator, Wigner rotation



0z

GORELI KUANTUM MEKANIGINDE DOLANIKLIK

Yakaboylu, Enderalp
Yiiksek Lisans, Fizik Boliimi
Tez Yoneticisi : Dog. Dr. Yusuf Ipekoglu
Ortak Tez Yoneticisi : Prof. Dr. Namik Kemal Pak

Ocak 2010, 44 sayfa

Bu tezde tamamiyla goreli rejimde dolaniklik problemi iizerinde calisilmistir. Tez teorik
altyap1 i¢in gereki olan goreli kuantum mekaniginin kisa bir 6zeti ile baglamaktadir. Lorentz
doniistimlerinin dolanik durumlardaki etkisini tanimlayabilmek i¢in Poincaré grubunun son-
suz boyutlu Hilbert uzayinda iiniter indirgenemez gosterimlerinin insa edilmesi gerekmekte-
dir. Ozel gorelilik ile kuantum mekanigini birlestiren bu gergevede Poincaré grubunun temsil-
lerinin bulunmasi1 problemi “’kii¢iik grup” diizeyine indirgenir. Bu grup kiitleli parcaciklarda
Wigner donmesine sebep olur. Bu dénme spin polarizasyon yonlerini etkiledigi icin biiyiik
bir 6neme sahiptir. Daha sonra da, bu tezde goreli spin operatorii icin fiziksel gerekliliklerin
ne oldugu calisgilmistir. Tez dolaniklik ve Bell tipi esitsizlikleri tamimlayarak devam etmek-
tedir. Tlki 1935°te A. Einstein, B. Podolsky ve N. Rosen (EPR) tarafindan kaleme alian ve
digeri 1964°te J.S. Bell tarafindan yazilan iki tarihsel makaleye de 6zel bir onem verilmistir.
Tezin temel boliimii ise, Bell durumlarinin Lorentz donesiimlerine ve bu doniisen durum-
lar icin Bell esitsizliklerine ayrilmistir. Bu tezde dolanikligin Lorentz doniisiimleri altinda
degismedigi gosterilmistir. Yani, hi¢ bir eylemsiz gézlemci bir dolanik durumu ayrilabilir
bir durum olarak goremez. Fakat, doniistiiriilen durumlarin Bell esitsizligini ihlal etmesi

hem gozlemcinin hizina hem de parcaciklarin hizina baglhidir. Wigner donmesi artan hizla
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beraber spin polarizasyonunu etkiledigi icin, baslangigtaki Bell operatorleri Wigner agisina
bagli dolanik durumlar i¢in Bell esitsizligini saglayabilirler. Wigner ag¢is1 dikkate alinarak
secilen Bell operatorleri ile, doniistiiriilen durumlar icin Bell tipi esitsizliklerin her zaman

ihlal edilebilecegi gosterilmigtir.

Anahtar Kelimeler: dolaniklik, Lorentz doniisiimleri, gdreli spin operatorii, Wigner donmesi
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CHAPTER 1

INTRODUCTION

Entanglement is one of the most amazing phenomena of the quantum mechanics. It is proba-
bly the most studied topic recently due to the fact that it is somehow related to a wide range of

research areas from quantum information processing to thermodynamics of the black holes.

It were Einstein, Podolsky and Rosen (EPR) and Schrédinger who first recognized a ”spooky™
feature of quantum mechanics [1], [2]. This feature implies the existence of global states
of composite systems which cannot be written as a product of the states of the individual
subsystems [3]. This feature shows that quantum mechanics has a non local character. In this

respect, this property seems to contradict to postulates of the special relativity.

The main aim of EPR was actually to discuss the “completeness” of the quantum mechanics.
The underlying assumption of the paper was the locality condition; with this assumption the
quantum mechanics seemed to be an incomplete theory. However, J. S. Bell showed that this

non local property lies at the heart of the quantum mechanics [4].

Due to the contradiction one faces with the postulates of the special relativity in discussing
the issue of locality, to settle those issues one needs to address the same problem in different
inertial frames which move with relativistic speeds. The first article that discusses the entan-
glement in different inertial frames was that of P. M. Alsing and G. J. Milburn [5]. After this
paper, there were numerous studies discussing the Lorentz covariance of the entanglement

and Bell type inequalities.

In this thesis, we study the properties of entangled states and Bell inequalities under Lorentz
transformations. For this purpose we first introduced the theoretical background for the rela-

tivistic quantum mechanics. This part briefly summarizes the quantum mechanics and mainly



concentrates on the Poincaré group and its unitary irreducible representations. Constructing
the representation of the Poincaré group in the Hilbert space of the single particle states re-
duces to that of the little group. It is shown that Wigner rotation play crucial role for the
entangled states. Moreover in this part, we have discussed the physical requirements of the
spin operator in detail due to the fact that there are some ambiguities on what the correct
relativistic spin operator is. Then, in the third chapter, we have devoted a special attention on
the two historical papers [1] and [4] for defining the entanglement, and then we have given
a more formal definitions of entanglement and written the Bell type inequalities in a more
elegant way. The next chapter forms the main part of the thesis in which we have investigated
the Lorentz transformation of entangled states and discussed the CHS H inequality for the

transformed states. Finally, the last chapter is devoted to the summary of the conclusions.



CHAPTER 2

RELATIVISTIC QUANTUM MECHANICS

Any physical theory which claims to describe the nature fully at all scales and speeds must
obey the rules of both quantum mechanics and the special theory of relativity. This fundamen-
tal unification can be attained via fields or point particles. Although the main stream starts
from the field concept, both ways end up with probably the most ’beautiful” theory of the
physics, that is the quantum field theory. Due to the our specific problem, we have preferred
the second way by following the Weinberg’s well known book [6]. Therefore, we have to start
with quantum mechanics and Poincaré algebra which includes all the aspects of the special

relativity.

2.1 Quantum Mechanics

Quantum mechanics can be briefly summarized as follows in the generalized version of Dirac.

1 Physical states are represented by rays in a kind of complex vector space, called Hilbert
space such that if |@) and |8) are state vectors, then so is a|a) +b|B) for arbitrary complex
numbers a and b. If we define |¢) = ), asla,) and |¢) = >, b,|B,), then one can

introduce the inner product complex number in this space such that

@) = Wie)
@y = > abulenlBn) @.1)

(#l¢y > O and vanishes if and only if [¢) = 0.

A ray is a set of normalized vectors (i) = 1 with |i/) and |/") belonging to the same

ray if ') = {Jy), where { is an arbitrary complex number with |[{| = 1. As a result, |y)



and |y’) represent same physical state.

Observables are represented by Hermitian operators which are mappings |¢) — Aly)

of Hilbert space into itself, linear in the sense that
A(ala) ; b|/3>) — dAla) + DAB), 2.2)
and satisfying the reality condition

(<e1)(a1) = (<eta™)(182) 2.3)

If state vectors [) are eigenvectors of an operator A, then state has a definite value for

this observable

For the Hermitian operator A, a,, are real and (¢ ,|/,) = Oum-

Measurement are described by a collection of measurement operators {M,,} where m
refers to outcomes measurement that may occur in the experiment and satisfying the
completeness relation such that

Z MM, = 1. 2.5)

m

Just before the measurement, if the state is |¢), then probability of getting the result m

just after the measurement is
pm) = WIM;Myly) " pm) = 1 (2.6)
m

and initial state collapses to
Mly)

\p(m)

Special case of the measurements defined here is the projective measurement. Any

2.7

observable can be written in spectral decomposition form
A= Z 7 (2.8)
m

where a,, are the eigenvalues and P,, = |a,){a,,| are corresponding projectors and |a,,)

is the eigenstate of the observable A such that Ala,,) = apl|a,).

For the projective measurement, the result of the measurement is one of the eigenvalues

of the observable A with the probability
plam) = Kaml)P, 2.9)
and the collapsed state after the measurement is the corresponding eigenvector.

4



4 Total Hilbert space of multi partite system consisting of n subsystems is a tensor product

of the subsystem spaces

H = (X) Hi. (2.10)

In addition to these postulates, it must be defined that if a physical system is represented by
state vector |¢) and |)” in different but equivalent frames, then transformation between these
two frames must be performed by either a unitary and linear or anti-unitary and anti-linear

transformations due to the conservation of probability, which is proven by Wigner [7].

oy — 1) 2.11)
Y = Uly)

2.2 Poincaré Algebra

According to Einstein’s principle of relativity if x* and x"* are two sets of coordinates in
inertial frames S and S’, then they are related as x’* = A*,x” + a. The physical requirement

relating these two sets are the invariance of the infinitesimal intervals:
Nuwdx*dx" = 1, dx'dx” (2.12)

where n = diagonal(+1,—1,—1,—1). This invariance of the interval imposes the following

constraints on the transformation coordinates

nuvA'uaAvﬁ = Nap- (2.13)

This transformation is called Poincaré transformation or inhomogeneous Lorentz transforma-
tion. When a* = 0 then this transformation reduces to homogeneous Lorentz transformation.

It can be easily shown that these transformations form a group, as briefly summarized below:

e Closure:

let X’ = Ajx +aq and X7 = Arx’ + ap, then

X' = AMAix+a)+a

= MAAix+ MAoay +ay = Asx + as.

As a result (Az, az)(A] , al) = (AQA] , A2a1 + az).



e Identity:
1=(,0)

e Inverse:

(A2, a2)(A1,a1) (A2A1, Asar +az) = (1,0)

= A2 = AIl and ay = —A2a1 = —Aflal
As a result inverse of (A, a) is (A~!, —A~1a).
e Associativity:

(A2, a)[(Ar, an)(A, a)] = [(Az, a2)(Ar, a)l(A, a)

Furthermore, this group can be restricted further by the choice of sign of both the determinant
and the ”00” component of the A as the follows: take the determinant of both sides of (2.13),
and get

(DetA)* =1

which leads to DetA = 1 or DetA = —1. Next, considering the ”00” element of g in (2.13),
(M%) - (A%)? =1
which means that (A%)? > 1. The possible solutions are (A%) > 1 or (A%) < —1.

The Lorentz group that satisfies the DetA = 1 and (A%) > 1 is called proper orthochronous
Lorentz group and any Lorentz transformation that can be obtained from identity must belong
to this group. Thus the study of the entire Lorentz group reduces to the study of its proper
orthochronous subgroup. Hereafter, we will deal only with inhomogeneous or homogenous

proper orthochronous Lorentz group.

The infinitesimal transformation for the inhomogeneous Lorentz group now can be written as
A, =601, + oy, df =€

Then, one get from (2.13)
My = Nuy + Wyy + Wy + O(Cuz)

which implies that w,,, = —w,,; note that w,, = 1,,w"’,.

6



This transformation can be represented by U(A, a)
UA, a)x*U™ (A, a) = A, x" + .
For an infinitesimal transformation U(A, a) can be parameterized as
Ul+w,e)=1+ éwwM’” —ig P! + - (2.14)

Here, M* and P* are the generators of the homogeneous Lorentz transformations and trans-
lations respectively. Since wy,, is antisymmetric, M*" can be taken antisymmetric also. One

can easily show that U(A, a) also form a group. Then, it follows

UA,a)U( +w,U " (Aa) = UAI+w)A™", Ae — AwA™'a)

U(A, a) (1 + %w,,VM‘“’ - ie#P#) U'lAa) = 1+ %(AwA‘l)WM‘“’ — i(Ae — AwA ™ a), PP,

We can now read of the transformation rules of the generators of the Poincaré group, from

this equation:

U(A, a)MPTU (A, a)

ALNT(MP = d'PY + a¥ PH)

UA,a)PPU (Aa) = ALPA (2.15)

For the infinitesimal transformations as A¥, = &, + «/,, and using (2.14) we get
l-[M[lV’ Mp(f] — UV/)M/J(T _ TI/J[)MV(T _ n(r,uMpV + nO'VMp/J
P M) = P — PP (2.16)

0.

[P, P°]

This is the Lie algebra of the Poincaré group.

Let’s define P° as Hamiltonian, P’ as three-momentum, K = MY as boost three-vector, and
Ji = éikpm jk as the total angular momentum three-vector. In terms of these, the Lie algebra
becomes
_ ik
[Ji,P;]] = igj Py,
—_ .k
i, Jil = i€ Ji,
[Ji.Kj]l = igfKe,

[Pi,P;]1 = [Ji,Pol =[Pi,Po]l =0,

(K, Kjl = —i&j T,
[Ki, P;] = =id;jPo,
[Ki, Po] = —iP;.



As one can see from the commutator of [J;, J;] = ig; jk Ji, transformation generated by J; forms
also a group which is the three dimensional rotation group, S O(3), and it is the subgroup of
the Poincaré group. However the boost generators do not form a group and this is the reason

of the famous Thomas precession.

Poincaré group is a connected Lie group, which means that each element of the group is
connected to the identity by a path within the group, but is not compact since the velocity can

not take the ¢ value after boost transformations.

A well known theorem states that any non-compact Lie group has no finite dimensional uni-

tary representation. It has unitary representations in the infinite dimensional space.

As a result representations of the Poincaré group on the state vectors in the infinite dimen-

sional Hilbert space is unitary:

) = UA, a)ly) 2.17)

and in order U(1 + w, €) given in (2.14) to be unitary, all the generators M*” and P* must be

Hermitian.

2.2.1 Casimir Operators

A Casimir operator is an operator which commutes with any element of the corresponding Lie
algebra. Furthermore, if one finds all the independent Casimir operators for an algebra, then
the representation of this algebra in the space of eigenvectors of these Casimir operators will
be irreducible. In other words, classification of the irreducible representations of a Lie group
reduces to finding of a complete set of Casimir operators and calculating the eigenvalues of

these operators.

In [8], it is shown that Poincaré group has two independent Casimir operators which are

P*=ptp, (2.18)

C1

c = W= WHW, (2.19)

1
where WH = —EE“VWMVPP(, is the Pauli-Lubanski Vector.



Components of the Pauli-Lubanski vector are

1 ...
WO = —EEOl'lkMiij

J-P (2.20)
and
1 1 ivpo
who= —56 MvaO'
1 ijkO 1 ivpj
= —56 MjkPO_Ef Mprj
1 1 s 1 o0
= —€é*MyPy— =" MyP; - =" MyyP;
2 2 2
= J'Py+ €M MyP; (2.21)

= JiP() - GijkPij.

In this thesis we concentrate on the entanglement in the massive particles. For a massive

particle, one can go to the rest frame where P* = (m, 0); then, in that frame
wl = 0 (2.22)
W= mS' (2.23)

where we defined the spin S’ as the value of total angular momentum J in the rest frame.
Thus we get,
¢ = P=m? (2.24)
¢ = W2=-m?S% (2.25)
From ¢, one can obtain two very important results. First, S? is Lorentz invariant which means

that spin-statistics is frame independent, and second, relativistic spin operator is related to the

Pauli-Lubanski vector.

As aresult, for the massive case mass and spin are two fundamental invariants of the Poincaré

group that do not change in all equivalent inertial frames.

2.3 Relativistic Spin and Position Operators

Before defining the spin and position operators the physical requirements about these opera-

tors can be given as,



First of all, the square of the three-spin operator must be Lorentz invariant, i.e, one can

not change the spin-statistics by applying Poincaré transformation.

Due to the similar structure to the total angular momentum, S must be pseudovector
just like J. In other words S do not change sign under Parity transformation, and should

satisfy the usual commutation, like any three vector
— ik
[/i, S ;] = i€ Sk
Components of spin operator must satisfy the SU(2) algebra, i.e,
— ik
[Si,S;]1=1i€; Sk
Spin can be measured simultaneously with momentum and position operator

[S,P]=1[S,Q]=0

Components of position operator must satisfy the canonical commutation relations
[Qi, Pjl = i6ij

Position operator must be true vector. i.e, it must change sign under parity transforma-
tion and

[Ji, R, = i€;;*Ry.

It was shown in [9] that the spin operator that satisfies all these requirements is

W WoP
S = m m(m + Py) (2:20)

Pi]_PXK_ PP-))

m m (Py + m)m
and the position operator is
iP PxW
= _plK-—_ - 2.27
Q 0 2P2 mPo(m + Po) 2
1 PxS
= ——(P(;IK + KPal) -
2 Po(m + Py)

which is the Newton-Wigner position operator. In reference [9], it is shown that these opera-

tors are unique.

10



2.4 Single Particle and Unitary Irreducible Representations of the Poincaré

Group

A state vector of a free particle must transform according to an irreducible unitary represen-
tation of the Poincaré group. Then one can determine completely the behavior of the free
particle in the four dimensional Minkowski space-time. In Poincaré group, every irreducible
representation corresponds to an elementary particle. As a result particles are classified in
terms of their irreducible representation of Poincaré group which may unified with the dis-

crete symmetries such as C,P,T as in the case of the Dirac particle.

2.4.1 Single Particle

In the previous section two Casimir invariants have been defined. Now we can define the

single free massive particle as an eigenstate of the complete set:
2 Q2
m-,8°,5.,P, Py (2.28)

which is
Im, s, o, p, po) = |p, o). (2.29)

The eigenvalues of these operator are defined as

m’|p,o) = m’lp,o), (2.30)
Szlp,a) = s(s+ Dip,o), (2.31)
S:Ap,o) = olp,o), (2.32)
Plp,o) = plp,o), (2.33)
Polp,o) = wplp,0) (2.34)

where wp = 4/m? + p? and the normalization of the single particle state is set to
(P'.o'lp,o) = 650 6(P" — P)- (2.35)
Before proceeding further, we would like to first introduce ladder operators for the spin—% for

future use. Since we know the algebra of the spin operators and the eigenstates of S* and S ,

one can define the ladder operator in the usual manner:
Si=8,%iS, (2.36)

11



and

Sip.oy = \s(s+ 1) —o(o + D|p,o + 1).

As a result one can define eigenstates of the S, and S, as

| . ! | 1>+| 1)
,Ox = 7 = = s ~/ E s A/ ]
D, 0 x 5 2 P 3 P 5

1 1 1 . 1
|p’0-y = i§> = @(lpa §> + l|pa_§>)

Since the resolution of identity can be given as,

1= [ @Yool

then, the spectral decomposition of S; in the basis of S, can be found as

1 1 1 1 1
S. = = | & —Xp, =] = Ip,—=Xp,—=

1

1 3 1 1 1
Sy = Efd p(lp,§><p,—§|+lp,—5><p,§

1 L1 1. 1 1
Sy = Efd3p(—llp,§><p,—§|+l|p,—5><p,zl).

As a result one can conclude that
_ 0ij
{Si,8;= >

and using (2.3), one can obtain also

6ij .
S,‘Sj = 7 + lEiijk.

. . . . . N .
For practical purposes it is better to define the normalized spin operator, S* to satisfy

NoN _ ¢, : aN
Sl.Sj—é,J+16,JkSk.

2.4.2 Unitary Irreducible Representations of the Poincaré Group

)
)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

Let x’* = A*,x” +a" then, in general the transformation is represented by the unitary operator

as

UA,a)=Ul,a)U(A,0)

on the Hilbert space. Under translation U(/, a), the state vector transforms as

U(l,a)lp,o) = e P"%|p, o).

12
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The homogeneous Lorentz transformation which is U(A, 0) = U(A), produces an eigenvector

of the four momentum with eigenvalue Ap as follows,

PrUN)Ip, o)

UA) U N (NPFUA) Ip, o)
N e’
A—]pl’Pp

= AP, o)
= A umpip, o)
= A PPUN)p, o)

= (ApY'UN)Ip, o).
This means that U(A)|p, o) must be linear combination of |Ap, o) ,i.e,

UN)Ip.o) = Z Coro(A, pIAp, o). (2.48)

Consider p* = L', (p)k” where k” is four momentum of particle in its rest frame and L some
Lorentz transformation connecting this frame an arbitrary one in which the particle is moving

with momentum p. Thus, it will depend on p. Transformation of the state is then,

lp, o) = N(p)U(L(p))lk, o) (2.49)

where N(p) is the normalization factor which must satisfy (2.35). The procedure for defining

N(p) is the following. First, it can be required that
k', o'k, 0) = 6556k —K).

Then

(P, |p, o) = IN(P)P6 6K —K).
It must also satisfy (2.35). Therefore
IN(p)P5(K' — k) = 6(p" - p)

To be able to find the |[N(p)?, it is necessary to define the relation between d(k’ — k) and
6(p’ — p)- For this purpose, the Lorentz invariant integral for an arbitrary function f(p) with

the conditions p?> = m? and p° > 0 can be defined as
[ @*pst - mraes10) 250
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where 0(p°) is the step function. Then, the equation can be simplified as

f d*ps(p* —mHO(p")f(p) = f Ppdp®s(p°” - p* - M) F(p°. p)

_ f 7p dp06<p0 - VP2 +m?) +6(p° + \p? + m?)

B e 0", p)
P m

_ 1fd3pf(\/p2+m2,p)
: NEra

In other words,

(2.51)

&*p
f fp——
P2+ m2
is a Lorentz invariant integral. From this result, one can also find the Lorentz invariant delta

function as

&p’
3.7 ’ ’ — 4 - ——
fd p'f(p)é(p —p)—ff(p)(\/p2+m25(l’ p)) 2 rm?

In this equation, +/p? + m25(p’ — p) must be Lorentz invariant. Thus
pPs(p’ — p) = K%k’ - k) (2.52)

must hold. As a result, we can define

N(p) = 4]~ (2.53)
p

kO
lp,o) = \/;U(L(P))Ik, o). (2.54)

If we apply the Lorentz transformation to the state |p, o) expended in terms of |k, o) as in

Then, (2.54) becomes

(2.54), we get

|7

UN)Ip, o) UMU(L(p)lk, o)

0

!

1= %%

U(AL(p))lk, o)

ULAp)UL™ (Ap)UAL(p))lk, o)

sULAp)YUL™ (Ap)AL(p))Ik, o).

A

14



where we have inserted the identity, U(L(Ap))U(L"'(Ap)) = I in the third line. We next
define W = L™'(Ap)AL(p). One can obviously see that W does not change k, i.e, W¥ k" = k.

This is called the little group [10]. As a result the state transformation under W is
UW)lk,o) = Z Dy o(W)lk, o) (2.55)
0—/

where D(W) is the little group representation of U(W) on the state. Using (2.55) in U(A)|p, o)

kO
\/—0 UL(Ap)UW)lk, o)
p

kO
= /> Z Do (W) UWL(AP))Ik, o)
p p —

we get

UN)Ip, o)

|Ap,o’)
VKO /(Ap)°
A 0
( pl;) ZDU'U(W(A, P)IAp,a’). (2.56)

Thus, to transform the state one should find the little group representations for the Lorentz
group. This means that finding the C, is now reduced to finding the D,,. This method is

called method of induced representations.

2.4.3 Massive and Massless Particles

In this thesis, we are only interested in massive particles. Unitary representation of the Lorentz
group is determined by the little group of the massive particle. Since the W leaves invariant
the k#, and in the Lorentz group, only three dimensional rotation can leave the k* invari-
ant. As a result Dy is the unitary representation of the SO(3); which is exactly the spin-s

representation of the SU(2) and it can defined as:

D, (W) (s, 0|V W5, o)

_ 9 0
D=12(w) 1cos 7W +i(o - ) sin TW (2.57)

where Oy is the Wigner angle.

However for the massless case, the group that leaves the k* invariant is the ISO(2). This is the
group of Euclidean geometry, which includes rotations and translations in two dimensions.

For this case, the little group representation reduces to

Dy g(W) = €768 .. (2.58)
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Table 2.1: Various classes of four momentum and the corresponding little groups.

Standard k# | Little Group
ayp>=m>>0,p°>0 | m0,0,0) | SOQB)
b)p?=m?>>0,p° <0 | (-m,0,0,0) | SO3)

) p>=0,p">0 (x,0,0, ) 1S O(2)
d)p?=0,p"<0 (—«,0,0,k) | ISO(2)
e)p>=—«><0 (0,0,0,) | SO®3)
Hp'=0 (0,0,0,0) | SO@3,1)

In the table (2.1), only a), c), and f) have physical meanings, and p* = 0 case describes the

vacuum. Further information about the structure of the Poincaré group can be found in [6].

2.4.4 Multi-particle Transformation Rule

First, multi-particle state can be defined as

|p1, 015 p2, 025+ ).

Therefore, one can transform the multi-particle state similar to one-particle state such that

(Ap1)°(Ap2)° -

UNIpr,o1;p2,025--) = \/ 00
plpz---

We now define the states with the help of creation operators

’ !
0—10—2...

Ip, o) = a'(p, 0)|0)

D" Doto\ Doy, -+ IAp1, 045 Apa, i)

(2.59)

(2.60)

where |0) is the Lorentz invariant vacuum state. Then (2.59) can be written in terms of creation

operators as

U(A)a' (p1,01)a’ (pa, 2) -+ 0)

_ \/(Apl)ompz)o :
p(l)p(z) ...

J J
710,

Then form (2.61) one gets

. Ap)°
UN)a' (p, ) U™ (A) = (,TI;) D Dore (WA, p))a' (Ap, o).

For the massive particle it is equivalent to

. Ap)°
UA)a'(p, ) U™ (A) = \/( pﬁ) ZD;,(,(W(A,p)) a'(Ap, o).
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2.4.5 Wigner Rotation

We have seen that the commutator of two boost generators are

[Ki, K}] = —i€;* Jy. (2.64)
This means that two boosts in different directions are not equivalent to a single boost.

BiBpy = Raxin(Ow)B (2.65)

where B is some boost. Rjxx(0w) is the so called "Wigner Rotation”, and Oy is the "Wigner

angle”. By using B’ = RBR™!, (2.65) can be re-written as

BiBi = Risein(0w)BR; ) (Ow)Riscin(Ow) = B Rasein(Ow).- (2.66)

There is an easy way of calculating Winger angle. For example consider two boosts, in the

x-direction and y-directions respectively:

Yo -vifr 0 O Y2 0 —yB2 O
— 0 0 0 1 0 0
B, = yiBi n . By = 2.67)
0 0 1 0 -y, 0 0%) 0
0 0 0 1 0 0 0 1

So one can verify that ByB; is not equal to another boost, since the boost matrix must be a

symmetric matrix. Indeed from (2.65), we have

B;B; = R_:B (2.68)
one can compute B from here

B = R!B;B; (2.69)

1 0 0 0 Y2 0 —yB2 O yi v 00

0 cos GW —sin 9W 0 0 1 0 0 —)qﬂl Y1 0 0

= X X
0 sinfy cosOy O -3 0 0%) 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1

Y271 72711 -y2B2 0

—y1B1cos O + yay1BasinOw  y1cos Oy — yay1fof1sinfy  —yasinfy 0

—y1B1 sin Oy — yoy1B2cos by y1sin by + yory1 8261 cosOyw  yacosby 0 '
0 0 0 1

17



From symmetry properties of the boost matrix, we have —y; sin 8y = y; cos 8w —y>y182831 sin Oy,

and finally

tan gy = Y211 (2.70)

Y2t Y1

is the Wigner angle.

2.4.6 Lorentz Transformation of a Single Particle

We have defined the Wigner rotation as W = L‘I(Ap)AL(p). Here L(p) is the boost which
transforms the four-momentum & to some standard p*. Since we take the & in the particle’s

rest frame, then the components of L(p) are obtained as [6],

L'ip) = ou+y—Dpipx (2.71)
Lio(p) = LO%p)=pily* -1 (2.72)
L%(p) = vy where ﬁ,;'%'l, y = A[p? + m2/m. 2.73)

To able to determine the Wigner angle, first it is necessary to specify our situation. We have
spin—% particle moving in the z-direction relative to the Lab frame, S and there is another
frame, S’ which is boosted in in the x-direction relative to the S -frame as shown in the figure

(2.1). As aresult L(p); is

g
—>
e E—

| » X

S

Figure 2.1: Lab frame S, and the boosted frame S’
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0
L(p): = 0 (2.74)

where v is the rapidity and the Aj is

cosha sinha O

0
sinha cosha 0 O
0

Az = 2.75)
0 0 1
0 0 0 1
where cosha = 7y’ and sinha = —y'#’.
Then the Wigner rotation is,
W = L(Ap)AL(p)
AL(p) = L(Ap)W (2.76)
more explicitly
AzL(p): = LAp)W_3(6w)
A:L(p):W = (Ow) = L(Ap). 2.77)
Then, we get
L(Ap) = A:L(p): W= (6w) = (2.78)
cosha sinha 0 0 % 0 0 y2-1|[1 0 0 0
sinha cosha 0 O 0 1 0 0 cosOy 0 sinfy
0 0 1 0 0 0 1 0

0
0 0 1 0
0

—sinfy 0 cosby

0 0 0 1Jl+y*2-1 0 0 vy

ycosha sinhacosy + /y2— 1sinfycosha 0 —sinhasinfy + +/y2 — 1cos by cosha
ysinha +/y? — 1sinhasinfy + cosfy cosha 0 —coshasinfy + +/y? — 1cos by sinh a

0 0 1 0
Vy: -1 v sin Oy 0 v cos By

From symmetry, we have

ysinfy = — cosha sin By + /y? — 1 cos Oy sinh a.
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Thus we can determine the Wigner angle in terms of @ and v as,

. h 2__1 A7 ’
an gy = Sohavy =1 =B (2.79)
v + cosha Y +y

Finally, spin—— representation of W(fy) is

_ 0 0
D=12y) = 1c057w+i(a'-ﬁ) smTW (2.80)
9 9
= 1lcos 7W — i(ory) sin 7W (2.81)
1/2 1/2 il 6
Da”:%o‘:% DU,:%UZ_% _ cos »F  —sin = 2.82)
D;./,Z_ [P i./,z_ 1y ] sin HTW Cos HEV
——2Y72 ——2Y772

A

where 71 is the direction of the rotation which is é X p, in our case it is X X Z = —3.
One can find the spin-up state in the S’-frame. Firstly, spin-up state can be constructed as
g, 1
| T)=a'(p, 5)I0>- (2.83)

We have previously found the transformation rule for the massive particle as

UNITY = UMl (p, %)U_I(A)U(A)|0) = U(N)d'(p, %)U_I(A)l())
= \/(‘;? ZD;,%(HW)aT(Ap, a")|0). (2.84)
Thus
UMlp. %> = W (D”zww)a*(Ap, 5 +D, (ew)a*(Ap,——)) 0)
(‘;—?O (cos %me, %) + sine%wlAp,—%)) (2.85)
where (A’(’))O =y, Oy = arctan(ZL222) and

Ap = m(=y'yB'i + Byk). (2.86)
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CHAPTER 3

ENTANGLEMENT

Entanglement is the most distinctive feature of quantum mechanics that certainly differentiates
it from classical mechanics. Actually this amazing phenomenon is a manifestation of the non
local character of the quantum theory. It was first introduced by A. Einstein, B. Podolsky,
and N. Rosen as a thought experiment in a 1935 [1] to argue that quantum mechanics is not a
complete physical theory. In time due to the works triggered by EPR, this issue grew into a
new field of research activity. One of the milestones in this direction is the work of J.S. Bell
who has shown that a local theory can not describe all the aspects of quantum mechanics [4].
In this respect, entanglement must be discussed in the context of the question raised by EPR

and the solution proposed by J.S. Bell.

3.1 Can Quantum Mechanical Description of Physical Reality Be Considered

Complete?

Let’s briefly review this one of the most cited articles of human history. This article starts
with the discussion and definition of “complete theory” and “condition of reality”. They
define a complete theory as any physical theory must include all the elements of physical
reality, on the other hand the condition of reality is described as predicting physical quantity
in a certain way without disturbing the system. However in quantum mechanics, incompatible
observables can not be simultaneously measured. As a result, either the quantum mechanical
description of physical realty is not complete, or the values of the incompatible observables
can not be simultaneously real. If the quantum mechanics is a complete theory then second

argument is correct.
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Consider two particles with a space-like separation. In quantum mechanics, one can define

the wave function of the composite system as
W, 0) = ) Yn()itn(x1) (3.1)
n=1

where u,(x;) is the wave function of the first particle which is the eigenfunction of some
operator A with the corresponding eigenvalue a,, and ¥, (x;) is wave function of the second
one. According to the measurement postulate of quantum mechanics, if the observable A is
measured on the first particle with the value a, then after the measurement the wave function

of the first particle collapses to the u(x;), and second one collapses to the ¥y (x;).

Alternatively, this physical function can be expanded in terms of the eigenfunctions of some

different operator B, such that
Wi, 1) = ) ¢s(x)vi(x). (3.2)
s=1

Then if the result of the measurement of B, is b, and corresponding collapsed function is

v,(x1) for the first particle, then second particle automatically collapses to the ¢,(x7).

Furthermore, this process can be performed with the incompatible observables A and B. The
strange thing is that one can predict the physical values of A and B with certainty without

disturbing the second particle, via a single measurement on the joint system.

Here, we have started our discussing by accepting quantum mechanics as complete theory,

however we have ended up with the result that contradicts it.

Then one can conclude naturally that quantum mechanical description of physical reality can

not be considered complete. One resolution of the problem was based on the hidden variables.

Actually one of the most important aspect of that paper was the introduction of the entangled
states. It was shown that this paradox occurs only in entangled states, and this phenomenon

is known as “entanglement”. It was originally called by Schrodinger ”Verschrankung” [2].

As one can see, the main assumption that lies in the background of EPR’s argument is the

locality condition.
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3.2 On the Einstein-Poldolsky-Rosen paradox

In his analysis of the EPR problem, J.S. Bell uses the version of D. Bohm and Y. Aharonov
[11]. This entangled state is well known singlet state which is

1
V2

where § is the spin polarization direction.

|singlety = — (I5; DI 1) = 1 DIS 1)) (3.3)

In quantum mechanics, the correlation function for the singlet state is given by
C(a,b) = (singletlor; - & 07 - blsinglet) = —a - b. (3.4)
To prove this, let us first note that
o|singlet) = —o;|singlet)

then

(o1jai02jbjy = —aibio;01;)

= —a,-bj(éij + ieijko_lk> =-a-b
where we used the fact that the expectation value of o, is zero in the singlet state.

Let’s introduce a hidden variable A which can be anything such that the complicated measure-
ment processes are determined by this parameter and measurement direction. The result of

the measurement of o; - & on the first particle and o - b on the second particle are
A@ ) ==l and B(b,21) = =l 3.5)

respectively. The crucial point is that result on the first particle does not depend on b and vice

versa. Then the correlation for the singlet state is given by

C(a,b) = f dAp(D)A(a, D)B(b, 1) (3.6)

where p(1) is the probability distribution that depends on A. This result has to match with the

quantum mechanical result. But it is shown that this is impossible.

Before showing the contradiction, first it is easy to show how hidden variable theory can work

on a single particle and on a singlet state.
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For the single particle, let the hidden variable be a unit vector with uniform probability distri-

bution over the hemisphere A - § > 0, and the result of the measurement becomes:
sign - & (3.7)

where unit vector &’ depends on & and §. ( This result does not say anything about when 1-&’,

however the probability of getting it is zero, P(1-& = 0) = 0.) The expectation value for a

Figure 3.1: Single particle configuration

single particle in the spin polarization direction §, is then

. . 20’
@ ) =1PQ-& >0)— 1P <0)=1—- 22 (3.8)
T

where @ is the angle between @’ and 2 as shown in the figure (3.1). Then, ¢ can be adjusted

such that

2 4
122 oso (3.9)
T

where 6 is the angle between a and §. Thus we have reached the desired result as in the

quantum mechanics.

For the singlet state, it can be shown that

C(a,a)

Ca,-a) =-1 (3.10)

C(a,b) 0 for a-b=0.

To show this, let A be a unit vector A, with uniform probability distribution over all directions,
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and

A@, ) =signa- 2 (3.11)

Figure 3.2: Singlet state configuration [12]

Then one gets

o SA>0
C(a,b) = lP((A A< 0)0r(

>

-1<0 a-1<0\ (a-2>0 26
A > 0)) - 1P((A A< O)Or(fo-ﬁ > 0)) =l ra (3-12)
where 6 is the angle between & and b as shown in the figure (3.2). This equation satisfies

(3.10).

S
SO
S

Furthermore one can reproduce the quantum mechanical value in (3.4), by allowing that the
result of the measurement on each particle depend also on the measurement direction of the
other particle corresponding the replacement of & with &', which is obtained from a by rotating
towards b until

C(&,B)=—1+79/ = —cos¥ (3.13)
holds, where ¢’ is the angle between &’ and b. However we can not permit this since we are

looking for a local theory.
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Next we turn our attention to comparing the hidden variable theory and quantum mechanics.
To show the contradictions between the result of local hidden variable theory and the quantum

mechanics, we proceed as follows:

Since p is normalized, we have

f dip(d) = 1 (3.14)
and for the singlet state
A(a, ) = -B(a, A). (3.15)
Then (3.6) can be written as
Ca,b)=- f dAp(DA@, DA, A). (3.16)

Next, we introduce another unit vector ¢, and consider

C(a,b) - C(a,?o)

- f dAp(D) (A@, DAb, 1) - A@, DAE, D) (3.17)

f dAp(DA@, DA, 1) (A, DAE, 1) - 1)

where we have used the fact that [A(B, D? = 1. Since A(@, ) = =1, this equation can be
written as

IC(a,b) — C(a, &) < f dap(D) (1 - A(b, DA, ) (3.18)

then finally we get
1+ Ckh,&) > |C@a,b) - C@,e) (3.19)

This is the original form of famous Bell inequality. It is easy to show that for some special

a

\
o

Figure 3.3: Angles that violates the Bell inequality

directions this inequality can not be satisfied by the quantum mechanical result. The Bell

inequality (3.19) for the quantum mechanics becomes

1 — cos(Bp¢) > | cos(Bp) — cos(B)l. (3.20)
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One can easily see that this is not satisfied for the angles shown in figure (3.3).

As aresult, introducing a variable to account for the measurement process does not correspond
to the right statistical behavior of quantum mechanics. However as in the case of (3.13), if
the measurement result of one of the entangled pair depends also on the measurement of the
other, then it meets the quantum mechanical criteria. Then this hidden variable must propagate
instantaneously, but such a theory can not be Lorentz invariant.

Thus, the question asked by EPR is solved by J. S. Bell and this solution has been verified by

A. Aspect in a series of experiments [13].

3.3 Definition of Entanglement

After the discussion on the two historically important papers, one can describe the entangle-
ment in terms of the postulates of quantum mechanics. According to Postulate 4, total Hilbert
space of the composite system is formed by tensor product of Hilbert spaces of subsystems.
In that total space, there are such states that can not be written as a tensor product of states

representing the subsystem.
Consider an n-partite composite system, and
iy € H; where i=1,2,3,---.,n (3.21)

Then there are states in the H = ), H; such that

n
) # (X) i (3.22)
i=1
These states are called entangled states. Any state that is not entangled is called separable.

In this work, we only concentrate on bipartite states.

3.3.1 Bipartite Entanglement

Consider two quantum systems, the first one is owned by Alice, and the second one by Bob.
Alice’s system may be described by states in a Hilbert space H,4 of dimension N and Bob’s
one Hp of dimension M. The composite system of both parties is then described by the vectors

in the tensor-product form of the two spaces H = Hy ® Hp.
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Let |a;) be a basis of Alice’s space and |b;) be basis of Bob’s space. Then in Hy ® Hp we
have the set of all linear combinations of the states |a;) ® |b;) to be used as bases. Thus any

state in H4 ® Hp can be written as

N,M

W)= > cijfla ®1bj) € Hy @ Hyp (3.23)

ij=1

with a complex N X M matrix C = (c;;).

The measurement of observables can be defined in a similar way, if A is an observable on

Alice’s space and B on Bob’s space, the expectation value of A ® B is defined as

NM NM

WIABIW) = >\ > clievplalAlar)b;lBlby). (3.24)

ij=11i.7=1
Now we can define separability and entanglement for these states. A pure state |) € H is
called a “product state or separable” if one can find states |¢*) € H, and |¢®) € Hp such that

) = |¢*) ® |¢B) holds. Otherwise the state |y} is called entangled.

Physically, the definition of product state means that the state is uncorrelated. Thus a prod-
uct state can be prepared in a local way. In other word Alice produces the state |[¢*) and
Bob does independently |¢?). If Alice measures any observable A and Bob measures B, the

measurement outcomes for Alice do not depend on the outcomes on Bob’s side.

In a pure state, it is easy to decide whether a given pure state is entangled or not. i) is a
product state, if and only if the rank of the matrix C = (¢;;) in (3.23) equals one. This is due
to the fact that a matrix C is of rank one, if and only if there exist two vectors a and b such
that ¢;; = a;b;. So one can write

v = (Z ai|ai>] ® [Z b,-|b,->] (3.25)

i J

which means that it is the product state. Another important tool for the description of en-
tanglement for bipartite systems only is the Schmidt decomposition, we turn our attention

next:

Let [¢) = vajfl cijlaib;) € Ha®Hp be a vector in the tensor product space of the two Hilbert

spaces. Then there exists an orthonormal basis |i)4 of 4 and an orthonormal basis |i}p of

Hp such that
R
W) = )" Alida @lids (3.26)
i=1
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holds, with positive real coefficients A;. The A;’s are the square roots of eigenvalues of
matrix, CCT where C = (¢; i), and are called the Schmidt coefficients. The number R =
min(dim(Hy), dim(Hp)) is called the Schmidt Rank/Number of |y). If R equals one then, the
state is product state, otherwise it is entangled. For an entangled state, if the absolute values
of all non vanishing Schmidt coefficients are the same, then it is called maximally entangled

state.

3.3.2 von Neumann Entropy

It is worth pointing out that from Schmidt form one can define the von Neumann entropy

which can be used as a measure of entanglement, as
S == I log, |4, (3.27)
J

From this definition, one can easily observe that if a given state is a product state which means
that the Schmidt rank is equal to one in the spectral decomposition, then the von Neumann
entropy is zero. However for an entangled state, the von Neumann entropy never vanishes.

Furthermore, for a maximally entangled state, the von Neumann entropy is
S =log,(R) (3.28)

where R > 1.

3.3.3 Bell States

An important set of entangled states are the Bell states, which are maximally entangled states.

1 1
*y=—(01) +110 )y = —(100) + 11 3.29
) «/E(I ) +110)) 6™ \/E(I ) +I11D) (3:29)

1 1
Ty =—(01) - 10 Ty = —(|00) — [11)).
) \5(|>|>) 6™ \/E(|>I>)

They form an orthonormal basis on the composite Hilbert space of bipartite system, in the
sense that any other state in this space can be produced from each of them by local operations.
Since the Bell states are already in the Schmidt form, one can find the von Neumann entropy
of these states by using (3.28) as

S =1 (3.30)



3.4 CHSH Inequality

Bell inequality in (3.19) can be written in a more elegant way. For a bipartite system, consider
four dichotomous operators Q, R, S, and T which can take the values +1. Let Q and R be
defined on the one system, S and 7 be on the other system, then with these four operator one

can write such an equation that
(Q+R)S +(Q-RT =+2 (3.31)
always holds. Average of this equation leads to an inequality
K(Q+R)S +(Q—-RT) <2. (3.32)

It is the well known CHSH inequality [14]. This inequality states that any local theory must
satisfy it. However in quantum mechanics, expectation value of certain observables for the

entangled states violates this inequality as follows:

Consider the singlet state

|singlet) = % (8IS0 =18 DISS T (3.33)

Since the singlet state is an entangled state in the spin degree of freedom, (3.32) can be written

in terms of correlation functions as
|C(@,b) + C(a,b)+ Ca,b)-C@a,b) <2 (3.34)

where a, b, a’, and b’ are the spin measurement directions. If one chooses the a, b, a’, and o’

as
a = (0,0,1)
b = (1/v2,0,1/V2)
a = (1,0,0)
b= (1/¥2,0,-1/V2)

then CHSH inequality for the singlet state gives
IC(@a,b) + C(@,b) + C(a',b') - C(a, b)) = 2 V2. (3.35)
This is the verification of the non local character of quantum mechanics. CHSH inequality

is valid for the bipartite systems and any bipartite entangled state violates this inequality in

certain directions.
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Furthermore one can find the upper limit of this inequality. Since these four operator are
dichotomous, square of these operators are equal to identity operator. As a result, one can
find

[(Q+R)S +(Q—-RT>=4I-[Q,R]®[S,T]. (3.36)

Then, taking the expectation value, and using the Schwarz’s Inequality, one can obtain

(Q+R)S +(Q-RT) < V4-(Q,RI®[S,T]). (3.37)

This is the quantum generalization of Bell-type inequality [15]. One can find that upper
limit for the CHSH inequality is 2 V2. As a result, (3.35) is the maximum violation of the

inequality.
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CHAPTER 4

LORENTZ TRANSFORMATION OF ENTANGLED STATES
AND BELL INEQUALITY

4.1 Transformation of Entangled States

In this thesis, we have only been interested in the transformation of the Bell states. Consider
a frame, S which observes the four momenta of the particles as p; and p,, respectively. In

terms of the creation operators, these four states can be written in this frame as,

. 1 1 1 1 1
% = 5 (a*(pl, ) (p2,5) £ a'(pr,=3)d (2, —5>) 0) “.1)
Py = i(a*(m l)a*(m —1>+a*<p1 —1)a*<pz 1) |0) (4.2)
2 2 20T T2 20 ‘

For simplicity, it can be taken that these two particles identical and S frame can be chosen as
the zero momentum frame which means, p; = —p, = p = yBmZ and also p(l) = pg. Define

another frame S’ which is boosted in the positive & direction relative to the S -frame.

We will now work out the transformation of these states to the frame S’. First of all, we have
to determine the Wigner angles for both particles. For the first particle Di:” 2(HW) is given
by (2.82) and the Wigner angle, 6y is in (2.79). For the second particle since L(p)_; in the

—z-direction, the Wigner rotation is about the +y-direction, but the angle is not changed, so

i .0
DIy = cos =3 sin = 43)
5 = . .
—sin QTW cos BTW

However transformed momenta are not the same. We will keep it as (A(—p)) and it is given
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Figure 4.1: Zero momentum and boosted frame.

by

L(A = p) = AsL(p)—:W; ' (Ow) =

cosha sinha 0 0 y 0 0 —+y2-1}f1 0 0 0
sinha cosha 0 O 0 1 0 0 0 cosOy 0 —sinfy
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1){-v»*-1 0 0 y 0 sinfy 0 cosfy

0 0 1 0
—yr-1 —y sin By 0 ¥ cos Oy

Next, we will find the |®*) in the S’-frame,

1 1 S 1
UN)DY) = 5 (U(A)a*(p, E)U‘%A)U(A)ak(—p, §>U‘1<A>U<A>) |0)

1 1 1
t 5 (U(A)a*(p, ‘E)U_] (MU' (-p, —5>U“ (A)U(A)) 10).

Using the transformation properties of the creation operator, we get

1 (Ap)°
U0 = $(p‘(’)) > (Dl @wa (Ap, )3, @) (A-P), o)) 0)

o’ ’0_//

1 (Ap)

o0 2 (Pl s @0 (Ap. D G (AP 7)) 0)

oo’
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ycosha  sinhacos@y + /y? — 1sinfy cosha 0 sinhasinfy — /y? — 1cos Oy cosha
ysinha  4/y? — 1sinhasinfy + cosfy cosha 0 coshasinfy — /y? — 1cos by sinha



Now using the spin-s representation of rotations

1 (Ap)
V2 P

0 0 1 1 0 1 1
+ cos 7W sin 7Wa*<Ap, ) (A(=p), 3) = sin’ —Wa*(Ap, ~3)a (AC-p).=3)

9 1, 1 oy 0 1 1
UMD = (cos2 TWaT(Ap, )’ (A=), 3) - cos 7W sin TWaT(Ap, ' (ACp),~3)

—sin e—aT(Ap, —)a (A(-p), )—cos%w sin e—aT(Ap,—)aT(A( -p), ——)

+cos%wsm e—aT(Ap,——)a "(A(-p), —)+cos 9 T(Ap,——)a (A(-p), — ))|0>

one can obtain

1 (Ap)
V2 PP

+ sinOwa' (Ap, —E)aT(A(—p), 5) + cos Bwa' (Ap, —E)aT(A(—p), —5))|0>.

U(A)D*y = (cos Owa' (Ap, —)a*(A( -p), —) — sin Bya’(Ap, —)aT(A( -p), ——>

Finally, this can be written as

UMDY = cos Oy|DTY — sin Gy |P7)". 4.5)

Similarly, one can find the transformation properties of the other Bell states as

UAD) = [0 (4.6)
UAE*) = 9+ @.7)
UA)Y™) =sin 9W|q)+)' + cos Oy |P~Y (4.8)
where 0y = arctan( y,z'gy By,
0
oy = (’;f’) sz(“ (AP, 3)a (ACP), 3) = ' (Ap, ~)al (AC-), ——>)|0> 4.9)
0
Wy = (App) %(a <Ap,%>a (A-p). ——>+a(Ap,——>a (A(-D). —>)|0><4 10)
and
N . Ap)?
AGp) = m(-y'yB1 = Byk), (p‘;) =7 (4.11)

After these discussions it is obvious that entanglement is a Lorentz invariant property. No

inertial observer can see an entangled state as a product state.

This property can be proven in a general way starting from Schmidt form for bipartite states,

which is presented in the following section.
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4.2 Schmidt Decomposition and Its Covariance

Consider two particles A and B. The total state vector of the composite system can be decom-

posed as

R
)= Alida@lidg (4.12)

i=1

where A; are the Schmidt coefficients, R = min(dim(H,), dim(Hp)) is the Schmidt rank and
liY4 and |i)p are the orthonormal basis of the corresponding Hilbert spaces. These basis can

be normalized as

ACilja o(p’ 4 = Pa)Sij (4.13)

5(p’p — PB)dij

Blilj)B

where p4 and pp momenta of the particles A and B, respectively. Therefore, the normalization

of the state vector of the composite system becomes
Wly) = 6(p’s — Pa)S(P' 5 — PB) (4.14)
with the condition Y; |4;> = 1.

The orthonormal basis |i)4 and |i)p can be expanded in terms of the single particle states as

the following

SA

ba = > AVIpa,n) (4.15)
n=-—su
SB )

s = > Bilps.m)
m=—sp

where s4 and sp are the spins of the particles, respectively. As a result for this configuration,

R = min(sy, sp).
Since these basis should satisfy (4.13),

SA
D APADSD y —pa) = 604 — P (4.16)

n=-—s4

5B
Z 321(])3:(111)5(1’,3 —Ps) = 6(p'p — PB);j

m=-sp

must hold. Then, the Schmidt decomposition becomes

R SA SB
) = Zﬂi Z Z A By \pany ® Ips, m).
i=1

n=-—s4 m=—sp
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The single particle states can be written in terms of the creation operators as

lpa,ny = a'(pa,n)l0)

a'(pp, m)|0)

|pB, m)

where |0) is the Lorentz invariant vacuum state. Finally we get the Schmidt decomposition in

terms of the creation operators as

v = ZA Z Z AV Byla (pa,ma’ (ps, m)0).

i=1 n=-s4 Mm=—=sp

Now we can apply Lorentz transformation on our state ket by the unitary transformation U(A)

Ul = Zﬂ Z Z APBLUMG (pa, U™ (WU (s, mU™ (AU(A)(0),

i=1 n=—s4 m=—sp

Using the transformation relations of the creation operators

VAP &

\(/( P/;()) Z DEY(Waya'(Apa,n’)
PA n'=—s4

V(APB

U (ps,mU'(A) = Z Dy (Wp)a' (App,m')
V)P m——sg

UA)a' (pa, U™ (A)

and the Lorentz invariance of the vacuum, U(A)|0) = |0), we get

X & B NI VAps)Y .
UMY =D 4 > AVBLD S (WODLE (Wh)~—2a' (Apa, 1)~ =—=—a' (App, m)I0)
i=l  nn'=—sy mm'=—sp \Y (PA)O ! \Y (pB)O ?

or

.- e
U(M)ly) = Za Z Z AP DO WD Wy p. )0l pp, 'y Y22 V(Apo)

nn'=—sp mm’'=—sg " " V(PA)O V(PB)O

Next we define

n=—su V(PA)O
B - i DU (W) B V(A PB)O.
" me—sp V(pa)°

Then, the transformed state becomes

e J(Apa)©
AY = Z DD AD VALY

SA

R SB
UMWY =Y 2 Y > ADBDIApa. ) ® IAps.m').

i=1 n'=—sp m'=—sp

This expression can be re-written as

=

UMW) = Z DA ® 0
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where

SA SA SA
- G : ; ny NAPa)°
Da = D> AlApanh= Y > Df,f/;><WA>A§;>|ApA,n>(—”A

’—

0
n'=-sy n'=—s4 N=—54 Pa)

SB

5 = (i ’ (A B)O

B = Y. BOApg.m'y = Z Z D (Wi) B A, m')~—=L2
m'=—sg m'=—spg m=—sp \Y (PB)

It is necessary now to check whether {[7)} forms an orthonormal basis. For this, consider

Z Z ADR) (APl nIApan’)

n’=

R

—SA N'==5A
Ot 7 O(AP g =AP A)=0, 17 LA o(p’ 4 —Pa)

nn (/\ )O
SA
R (pa)°
— Z An(l)A(J) pa 05( pA)

ST (A
SA SA ) SA .
= >0 D APDS W Y DU WaALs® - pa)
n'=—sp m=—su m'=—s4

SA
>0 APADsw s - pa) Z D (WA)DU) (W)

m,m’ =—syu n'=—sy
6mml
SA - o
= > AADSP s - pa). 4.17)
m=—s4

Using (4.16), we get (i|j) = 6; 0(p’ 4 —Pa). This means that the transformed state is still in the
Schmidt decomposition form with exactly the same Schmidt coefficients. This result proves

the Lorentz covariance of entanglement.

Also note that since the Schmidt coefficients do not change under Lorentz transformation, the

Von Nuemann entropy as a measure of entanglement do not increase or decrease, since

= > P log; 44, (4.18)
N

Therefore, the von Neumann entropy is a Lorentz invariant quantity. To illustrate the invari-

ance, consider the transformed state (4.5), it can be written in the Schmidt form as,

U(AID) =
0 0 0
L{Cos(e'vm/(Ap) a(Ap,—>+sm(ew),/ )a<Ap,——> P ACp)3)
V2 P’ P
1 A 0 0 A 0
+ —={ cosow) PO (Ap.~5) ~ sin(ey) ) a'ap. )} e \[ P2 a ap). )
\/5 P
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where the bases satisfies (4.16). Then the von Neumann entropy is

1 1.1 1
S =- B logz(i) + 5 10g2(§)) =1

which is agree with (3.30).

4.3 Correlation Function and Bell Inequality

Now we turn our attention to the calculation of the correlation function
C(a,b) = (S -a,8Y - by (4.19)

for the state (4.8). There is an easy way of calculating this correlation function by using the

properties of entangled states, which is

SNty SoN@Ty (4.20)

Sy

~SHM Y

Then, the correlation function becomes

C@b) = (cosw(PT +sinu (@)Y a S} - b cos oui¥™ + sin ooy )

(cos? (IS 1Y aiS 2N bj1%7Y + sin® Oy (D*'S 1 Y a;S ) bl
+ cos Oy sinOw ((P71'S M aiS 2 b0y + (V'S N aiS b ¥y
= —cos” Oy (WIS 1S 1 b1 ¥7Y + sin® Oy (@S NS 1 Y |0

+ cos Oy sin Oy ((P1'S 1 MaiS Y107y — (7S N aiS M ¥Y)
and using ( 2.46) we get
c@b) = ab j( — cos? (W (6 + €S 1 V)Y + sin? By (@ (5, + ieiS 1 )|q>+>')
+ a,-b‘,-( cos By sin Oy ((\P-|’(5,~j + i€ S IOIDTY — (DT (6; + i€ kS 1kN)|\P->’))
After carrying out the algebra, this reduces to
C(a,b) = —a - bcos(20y) + % sin(20y)(a x b) - (<\P-|'slf |DFY — <q>+|'s¥|\y—>'). 4.21)
It can be re-written as

C(a,b) = —a - beos(20w) — @ x b) - 8(<\P—|’s¥|q>+>’) $in(20). (4.22)
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Figure 4.2: CHSH values versus velocity of the particles and the boosted frame, 8 and §’,

respectively.

Now we are ready to test the locality condition by using CHSH inequality

(4.23)

A

A

A

~

by +C(a',b)+C@,b)-C@b).

= C(@a,b

CHSH

One can choose the measurement directions as the following

a = (1/V2,-1/V2,0)

(4.24)

= (=1/V2,-1/v2,0)

0,1,0)

b

(1,0,0)

b
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corresponding to the case that they give maximum violation in the non relativistic limit. Then

one obtains the result of the CHS H as
CHSH = 2V2 cos(20y). (4.25)

Using (2.79), this result can be defined in terms of the particle velocity 8 and the velocity of
the boosted frame ', as
1-B2+1-p2+21-p2\1-p2%-pp?
cHSH = 2V3| =P P £ PP
1_/32_,_1_[3/2_,_2 /1_ﬁ2 /1 —B’2+,82,3’2

From these two equivalent results, it can be deduced that in the non relativistic domain, 8 and

(4.26)

B’ — 0 as shown in the figure (4.2), there is no Wigner rotation, so it gives the maximum
violation. Again if the boost direction is parallel or anti-parallel to the direction of the particle
as seen by the zero momentum frame, then there is no rotation and we get the maximum vio-
lation as in [16]. However in the ultra relativistic limit 8,8 — 1, we again get the maximum

violation as in the [16], contrary to that of [17].

Actually, it is an illusion that the CHS H inequality is satisfied for certain values of 8 and
B’. Since the Wigner rotation that increases with the increased velocity changes the spin
polarization direction as observed from the zero momentum frame, it is natural that initial Bell
observables, (4.24) may satisfy the CHS H inequality at certain velocities. As a result one can
still find some directions that violates the CHS H inequality for the mentioned velocities that
satisfies the inequality for the initial directions (4.24). For example, when 6y = 7, (4.25) is
zero, so CHS H inequality is satisfied. However at this Wigner angle, if one re-defines the

measurement directions as the follows,

a = (0,0,1)
a = (1,0,0)

b = (-1/¥2,0,-1/V2)
Bo= (1/v2,0,1/V2)

then, the correlation function (4.22) turns into
Ca,b) = —(ax b)- 8(<T—|'slf|q>+>') (4.27)

and it is found that

CHSH = -2V2. (4.28)
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The resolution of this illusion can be done by introducing the Wigner angle dependent di-
chotomous operators. In other words, it is necessary to choose these operators by taking
into consideration the Wigner angle. Thus, one can always show that transformed state still

violates the Bell type inequalities in certain directions.
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CHAPTER 5

CONCLUSION

In this thesis, we have investigated the entanglement problem in the context of relativistic
quantum mechanics. Entanglement lies at the heart of the quantum mechanics due to its non
local character. In this sense, studying its properties in the framework of special relativity
is crucial. For this purpose, we have first constructed the unitary irreducible representation
of Poincaré group in the infinite dimensional Hilbert space. In this framework, the issue of
finding the unitary irreducible representations of Poincaré group is reduced to that of the little
group. Namely in this formalism Poincaré group reduces to the three dimensional rotation
group for the massive cases, entangled states in different but equivalent frames undergo a

Wigner rotation which changes its spin polarization direction.

On the other hand, since there are some ambiguities on the correct relativistic operator in the
literature, we have critically studied physical requirements on it. Spin statistics must be a
frame-independent property, and therefore square of the correct three-spin operator should be

a Lorentz invariant as implied by the second Casimir operator of Poincaré group.

Specifically, we have analyzed the Bell states under Lorentz transformations. Although these
entangled states can mix, we have shown that the entanglement is a Lorentz invariant phenom-
ena. This invariance has been shown for any entangled bipartite system by starting from the
Schmidt decomposition. Then we have calculated the correlation function for the transformed
states. Using the correlation, we have constructed the CHS H inequality. At the first glance
, CHS H inequality seems to be satisfied for certain Wigner angles that depends on both the
velocity of the particle and velocity of the boosted frame relative to the zero momentum frame
of the entangled state. However, it is an illusion since changes in the velocities cause changes

in the Wigner angle that can affect the superposition of the entangled states which violate
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the CHS H inequality in different directions. Thus, it is natural that the initial dichotomous
operators may satisfy the inequality for these entangled states. This confusing situation can
be solved radically by performing the EPR experiment with the Wigner angle dependent di-
chotomous operators. As a result, Lorentz transformed entangled states still violates the Bell

type inequalities in certain directions that may depend on the Wigner angle.
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