

A HIERARCHICAL MODELING TOOL FOR INSTRUCTIONAL DESIGN

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

MEHMET SERHAT AZGUR

IN PARTIAL FULLFILMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

JANUARY 2010

Approval of the thesis:

A HIERARCHICAL MODELING TOOL FOR INSTRUCTIONAL DESIGN

Submitted by MEHMET SERHAT AZGUR in partial fulfillment of the

requirements for the degree of Master of Science in Computer Engineering

Department, Middle East Technical University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Müslim Bozyiğit

Head of Department, Computer Engineering

Assoc. Prof. Dr. Ali Hikmet Doğru

Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Müslim Bozyiğit

Computer Engineering Dept., METU

Assoc. Prof. Dr. Ali Hikmet Doğru

Computer Engineering Dept., METU

Dr. Attila Özgit

Computer Engineering Dept., METU

Dr. Faruk Ağa Yarman

General Manager, HAVELSAN

Dr. Mete Ahmet Çakmakcı

Secretary General, Türkiye Teknoloji GeliĢtirme Vakfı

 Date: 21.01.2010

 iii

PLAGIARISM

I hereby declare that all information in this document has been

obtained and presented in accordance with academic rules and ethical

conduct. I also declare that, as required by these rules and conduct, I have

fully cited and referenced all material and results that are not original to this

work.

 Name, Last name : Mehmet Serhat Azgur

 Signature :

 iv

ABSTRACT

 A HIERARCHICAL MODELING TOOL FOR INSTRUCTIONAL DESIGN

Azgur, Serhat Mehmet

 M.Sc., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ali Doğru

January 2010, 94 pages

A component-oriented tool for hierarchical modeling of instructional designs is

developed. The motivation is to show that hierarchical representation of

instructional designs is easier, better and more effective for modeling.

Additionally a modeling language is developed to provide an effective, flexible

and easy to use integration model in which all teaching components are

discovered, defined and connected. In order to fulfill the above purposes an

abstract notation is developed that is sufficiently general and adapting top-down

hierarchic approach to represent Units of Learning (UoL), Operational Knowledge

Units (OKU), Learning Objects (LO), and Learning Components (LC) with

respect to the common structures found in different instructional models.

COSEML, a top-down hierarchic, and component oriented modeling language has

been used as a reference and the core concept in developing the Educational

Component Oriented Modeling Language (ECOML). The high-level architecture

of ECOML provides the means for designing instructional structures. It describes

how LOs, UoLs, OKUs and LCs are sequenced in a certain context or knowledge

domain. The resulting model can be reused in different contexts and across

different educational platforms.

Keywords: Component Oriented Educational Modeling Language, COSEML,

Hierarchical Framework, Top-down Graphical Instructional Design, Component

Oriented Software Engineering.

 v

ÖZ

 EĞĠTĠMSEL TASARIM ĠÇĠN HĠYERARġĠK MODELLEME DĠLĠ

Azgur, Mehmet Serhat

 Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç.Dr. Ali Doğru

Ocak 2010, 94 sayfa

Eğitimsel uygulamaların biçimlendirileceği bileĢen-yönelimli bir iskelet mimari

geliĢtirilmiĢtir. Hedef; herbir öğretim bileĢeninin bulunduğu etkili, esnek ve

kullanımı kolay bir bütünleme modelinin bulunması, tanımlanması ve

iliĢkilendirilmesidir. DeğiĢik eğitim modellerinde bulunan ortak yapılar esas

alınarak Öğrenme Birimleri (ÖB), Operasyonel Bilgi Birimleri (OBB), Öğrenme

Nesneleri (ÖN) ve Öğrenim BileĢen‘lerini yeteri kadar genelleyerek

gösterebilecek yukarıdan-aĢağıya hiyerarĢik yaklaĢımı esas alacak bir soyut

notasyon geliĢtirilmiĢtir.

Eğitimsel BileĢen Yönelimli Modelleme Dili (EBYMD) nin geliĢtirilmesinde,

yukarıdan-aĢağıya hiyerarĢik ve bileĢen yönelimli yazılım mühendisliği

modelleme dili olan COSEML örnek kaynak ve ana fikir olarak kullanıldı.

EBYMD‘nin üst düzey mimarisi eğitimsel yapıların tasarımında gerekli araçları

sunmaktadır. ÖB,OBB, ÖN ve öğrenim bileĢenlerinin, belirli bir ortamda veya ilgi

alanı bilgisinde nasıl sıralanacağını tarif eder. GeliĢtirilen model değiĢik amaçlarla

ve değiĢik eğitim platformalarında tekrar kullanılabilir.

Keywords: BileĢen Yönelimli Eğitimsel Modelleme Dili, COSEML, Hierarchical

Framework, Yukarıdan-aĢağıya grafiksel eğitim tasarımı, BileĢen yönelimli

yazılım mühendisliği.

 vi

To My Father & Mother

 vii

ACKNOWLEDGMENTS

First and foremost I offer my sincerest gratitude to my supervisor,

Asoc.Prof.Dr.Ali Doğru, who has supported me throughout my thesis with his

advice and knowledge whilst allowing me the room to work in my own way.

Without him this thesis would not have been completed or written. One simply

could not wish for a better and friendlier supervisor.

The author would also like to thank to Prof.Dr Müslim Bozyiğit, Dr.Attila

Özgit, Dr.Faruk A. Yarman and Dr.Mete A. Çakmakcı for their understanding and

support.

In my daily work I have been lucky to be accompanied with a friendly and

industrious group of fellow students. Necibe Nur Koç, Deniz Peker and Taner

Mansur, who helped me in the Java programming efforts for the realization and

implementation of the idea.

 viii

TABLE OF CONTENTS

ABSTRACT .. IV

ÖZ ... V

ACKNOWLEDGMENTS ... VII

TABLE OF CONTENTS .. VIII

LIST OF TABLES... X

LIST OF FIGURES ... XI

CHAPTER

1. INTRODUCTION .. 1

1.1.1.1. Motivation ... 3

1.2.1.2. Organization of the Thesis .. 4

2. BACKGROUND .. 6

1.3.2.1. Standards and Definitions of Relevant Terms 8

1.4.2.1.1. Definitions of Relevant Terms .. 19

1.5.2.2.2. Educational Standards ... 19

1.6.2.2. Providing a Structure ... 17

1.7.2.2.1. Component Based Software Engineering 19

1.8.2.2.2. COSE Approach and Education .. 20

1.9.2.2.3. Instructional design and the ECOML approach 23

1.10.2.3. Taxonomies ... 24

3. RELATED WORK ... 27

1.11.3.1. What is IMS-LD? .. 28

1.12.3.2. Authoring Tools .. 29

 ix

1.13.3.3. Comparison of two authoring tools. ... 32

1.14.3.3.1. ReLoad LD Editor ... 33

1.15.3.3.2. COSMOS ASK-LTD Editor .. 37

4. A MODELING TOOL FOR INSTRUCTIONAL DESIGNERS 44

1.16.4.1. Overview of Requirements ... 45

1.17.4.2. Software Modeling ... 48

1.18.4.3. Defining the Language – Essentials .. 50

1.19.4.4. Components - Graphical Modeling Elements 60

1.20.4.5. An Example Model ... 65

1.21.4.6. Comparison of ECOT with Others ... 70

5. CONCLUSION AND RECOMMENDATIONS .. 80

1.22.5.1. Quality Concerns .. 81

1.23.5.2. Conclusions ... 84

1.24.5.3. Future Work and Recommendations .. 85

REFERENCES ... 88

 x

LIST OF TABLES

TABLES

Table 1. Authoring Tools as compiled by IMS-UNFOLD 30

Table 2. ECOML Graphical Symbols .. 62

Table 3. Comparison of ECOT with Other Authoring Tools 72

 xi

LIST OF FIGURES

FIGURES

Figure 1. Learning Object and its metadata. .. 13

Figure 2. Unit of Learning vs. Learning Design .. 15

Figure 3. Learning Design Systems (Schneider, 2009)14 31

Figure 4. Welcome Page of the ReLoad LD Editor ... 34

Figure 5. ReLoad can be used as either Level A or B or C editor 35

Figure 6. Weak points of ReLoad LD editor .. 36

Figure 7. Main menu and the first dialogue page... 38

Figure 8. It is possible to import IMS complaint LDs. .. 39

Figure 9. Menu that shows selection of possible scenarios 40

Figure 10. Main menu and first dialogue page of ASK-LDT 41

Figure 11. ―Content Packager‖ dialogue page ... 42

Figure 12. ―Educational Scenario‖ dialogue page ... 42

Figure 14. ECOML‘s Approach to Educational Modeling 47

Figure 15. ECOML Authoring Process .. 48

Figure 16. Structural Properties of ECOML .. 51

Figure 17. Fields of a COSEML (ECOML) component. 55

Figure 18. Class hierarchy of CosemlFrame .. 56

Figure 19. Class hierarchy of CosemlToolBar ... 56

Figure 20. Class hierarchy of CosemlSplitPane ... 56

Figure 21. Class hierarchy of CosemlTree and CosemlTreeNode 57

Figure 22. Class hierarchy of CosemlDrawPanel .. 57

Figure 23. Class hierarchy of dialog classes .. 58

Figure 24. Tree data structure .. 59

Figure 25. ECOML‘s Graphical Symbols .. 61

Figure 26. ECOML‘s Main Menu .. 66

Figure 27. Learning Design Properties in Main Diagram 67

Figure 28. Learning Design in Main Diagram ... 68

Figure 29. Hierarchical Representation of Learning Components......................... 69

 xii

Figure 30. Lowest Level with Physical Components .. 70

Figure 31. An instructional model generated by MOT+ .. 71

Figure 32. An instructional model generated by LAMS .. 73

Figure 33. Instructional models generated by Dialog+ .. 74

Figure 34. An instructional model generated by Collage. 75

Figure 35. An instructional model generated by Moodle. 76

Figure 36. An instructional model generated by ASK-LDT
47

. 77

Figure 37. Main menu of CopperAuthor. ... 78

1

CHAPTER 1

1 INTRODUCTION

Information and Communications Technologies (ICT) industry has

advanced so rapidly that one can find software engineering in almost every aspect

of modern life. Field of Education is not an exception. And, effects of ICT can

easily be seen in almost all phases of Education as efficient and effective ways of

improving the educational competency. Instructional design (ID) and delivery of

pre-designed courses with computer-based methods with the help of computers

are getting common every day.

In order to improve the quality of different fields of education, efficient

use of software tools is gaining wide acceptance among scholars as well.

Supporting instructional design with visual tools is one of them. As Botturi

(2004) says, visual models are being developed for supporting and enhancing the

instructional design process in recent years. The objective of these development

efforts is to represent the instructional design as a sequence of steps or as a set of

elements that characterize the educational process. Özçınar (2009) has recently

made a broader definition of the instructional design as the systematic

development of instructional specifications, using learning and instructional

theory derived from behavioral, cognitive and constructivist theories, in order to

ensure the quality of instruction. It is the entire process of the analysis of learning

needs and goals and the development of a delivery system to meet those needs,

including development of instructional materials and activities, together with the

testing and evaluating of all instruction and learner activities. On the other hand,

Paquette (2004) defines the term instructional engineering (IE) as a method that

supports the planning, analysis, design and the delivery of a learning system,

integrating the concepts, the processes and the principles of ID, software

engineering, and cognitive science. It has much in common with educational

2

modeling languages, sharing software engineering and cognitive science

approaches. The main difference is that IE is a methodology mostly concerned

with the processes and principles that will produce specifications of a learning

system.

By the same token, teaching/learning processes has become open to wider

audiences with the advancements in ICT and Internet technology. Which in turn,

made instructional process more complex, sophisticated and more difficult to

design, implement and administer. Words like e-learning, blended learning,

learning management system or course management system are being used

commonly and they already took their place in the instructional and/or

pedagogical dictionaries as technical terms.

Yuen and Ma‘s research (2008) indicated that the successful pedagogical

use of technology depends on teachers‘ attitudes and acceptance towards

technology. As Breen et al. (2001) and Marriott et al. (2004) claim that the actual

formal use of information technology in undergraduate and graduate studies still

remains inconsistent and varies significantly from individual courses to individual

institutions (as cited in Yuen A. H.K. & Ma W.W.K, 2008). Of course, use of

technology does not involve only the delivery of the course but it starts right from

the beginning, with the design of the course.

Blended learning technology certainly opens possibilities for new ways of

engagement and invites innovative pedagogies. But, not all teachers are

necessarily motivated to use it. Inclusion of new software tools that are helpful

and easy to use will definitely encourage the rather computer illiterate and hesitant

teachers. Since, it will not be possible to resist the upcoming of new ICT

technologies, academicians are opt to follow the trend and make use of new

facilities or conveniences that are being developed for them. This researcher

believes that afore mentioned engagement process should start with the design of

the course and continue with the delivery process. If software tools with user-

friendly graphical interfaces are provided for the educators they will certainly get

motivated for other innovative blended learning facilities.

3

The Princeton University defines ―education‖
1
 as ―the gradual process of

acquiring knowledge‖, and ―the activities of educating or instructing‖. This

definition of education suits very well to the concepts of component-oriented

software engineering and process management. The activities and the knowledge

acquirement process can easily be defined in terms of components and represented

within graphical models. As component modeling and related technologies

improve process modeling, modeling of complex systems becomes easier, quicker

and more efficient.

1.1. Motivation

The main encouraging idea was to show that hierarchical representation of

instructional designs is easier, better and more effective for modeling. Another

motivational idea was to develop a modeling language to provide an effective,

flexible and easy to use integration model in which all teaching components are

discovered, defined and connected. And, in order to fulfill the above purposes an

abstract notation was need to be developed that is sufficiently general and

adapting top-down hierarchic approaches to represent Units of Learning (UoL),

Operational Knowledge Units (OKU), Learning Objects (LO), and Learning

Components (LC) with respect to the common structures found in different

instructional models.

Karampiperis and Sampson (2005) say that the need for modeling

educational systems that support a diverse set of pedagogical requirements has

been an important issue in educational environments. But, Caeiro et al. (2004)

and Knight et al. (2005) point out to the fact that lack of standardization and

considerable abundance of pedagogical approaches have made didactically

feasible designs difficult to become widespread.

After the introduction of IEEE Learning Technology Systems Architecture

(LTSA) standards, ADL Sharable Content Object Reference Model (SCORM),

which refines the IEEE LTSA reference architecture (Karampiperis and Sampson,

2005), and IMS-LD specifications, significant R&D effort started being devoted

to modeling educational systems that are tailored to specific pedagogical

1 http://wordnetweb.princeton.edu/perl/webwn?s=education last accessed October 04, 2009.

4

approaches. Various articles in the literature and world-wide presentations in the

seminars and conferences indicate the lack of educational (authoring) tools that

provide easier representation of units of learning for non-expert authors, including

instructional design authors and teachers/instructors who want to share

knowledge, skills, perspectives and views with others, in order to develop new

knowledge, or reuse existing knowledge resources (Burgos & Griffiths, 2005;

Dodero, Tattersall, Burgos, & Koper, 2006; Griffiths & Blat, 2005; Hernandez-

Leo, Harrer, Dodero, Asension-Perez, & Burgos, 2006).

Knowing that Component Oriented Software Engineering (COSE)

approach, as suggested by Dogru and Tanik (2003) as part of the Abstract Design

Paradigm (Tanik and Chan, referenced by Dogru, 1999), can decompose the

system structure hierarchically within the specified environments. And, its

applicability to the educational processes that are similar in nature and availability

of experts in METU motivated the researcher to:

 Develop a graphical educational language that is easier to use in

modeling educational processes.

 Support COSE with another case study.

 Provide yet another case to support the justification of COSEML.

A graphical tool with significant set of requirements and easy-to-use

features that provide basic scaffolding in the form of wizards and templates may

be an ideal authoring environment in support of instructional designers, as well as

non-expert authors for a convenient way of modeling their knowledge.

1.2. Organization of the Thesis

The first chapter is an introductory chapter, which gives some preliminary

thoughts an insight about the purpose, and motivation of this researcher towards

the application of COSE approach to the field of Education. It also connects the

link between instructional modeling and the hierarchical approach.

Beyond the first chapter, thesis is organized as follows: In Chapter Two,

necessary background on graphical software tools in the field of education,

software components, component-based modeling and top-down hierarchical

component architectures are given. Chapter Three describes the COSE approach,

5

defines the ECOML modeling language and its relation with COSEML, and

compares ECOML with other authoring tools that are available in the market.

Also an example model that is created with ECOML is presented. In Chapter

Four, the design overview of the developed educational graphical modeling editor

is given. Finally, Chapter Five makes the conclusion, and presents the

recommendations for future work.

6

CHAPTER 2

2 BACKGROUND

The advent of technologies and fast grow of Internet have changed the idea

of what a course is. Computer-based teaching, learning and course offerings are

swiftly becoming popular. So-called ―online learning‖, ―e-learning‖ and/or

―blended learning‖ courses are being discussed among scholars and increasingly

offered in many schools. This trend in course offerings and delivery brings the

changes in the design of the courses, as well.

As Cantoni and Di Blas (2002) say the process of designing courses has

grown a more structured and interdisciplinary process, which is becoming a

highly complex task even for a professor let alone a simple instructor to cope

with. In some respects, as Cantoni and Di Blas (2002) say teaching is developing

from craftsmanship to a large-scale production process. The researcher believes

that COSE approach may well be the solution and certainly will help the

instructional designers at this respect. Representing the process in a component-

oriented and top-down hierarchical way will help the instructional designers for

better structured and easy-to-understand designs. That is to say, object oriented,

component-based and top-down hierarchically approached methodologies are

better for developing educational software applications within the instructional

and pedagogical paradigms. Then software tools that make use of COSE

approach will be the effective guidelines for easier and more efficient ways of

instructional modeling efforts. Of course, as Koper and Olivier (2004) said the

underlying assumption is that learning process is a process of consuming content

and teaching is envisioned as the art of selecting and offering content in a

structured, sequenced way, and of tracking the learner‘s progress and assessing

the acquired knowledge. Although, building better tools, which in turn create

better educational models does not mean better teaching and/or learning. It is

7

only the first step for instructional designers to understand and manipulate the

design process easier and better. Koper and Olivier (2004) also assume that every

educational practice can be represented in a design description. As a

consequence, once the process is represented with components that represent

content then teaching process can easily be modeled.

There are hundreds of different pedagogical models described in the

literature and, there are many so-called lesson plans that are shared on the

Internet. Since teaching environments are not equally developed and modernized

among different primary, secondary and high schools, as well as higher education

institutions through out the world, students are being educated with different

teaching methods in different discipline plans. Even though, this poses important

problems for modeling software efforts, new methods of teaching/learning designs

with new models, and best practices continue to be developed and formulated.

Christiaans and Venselaar (2005) claim that a lot of individuals who

possess domain specific knowledge of their chosen field are motivated to develop

the modeling of their knowledge into instructional designs, but complexity of

modeling tools and lack of sufficient design experience discourage them to

translate their educational knowledge into effective instructional modeling for

interoperability and share of knowledge between various platforms. As it is also

declared by Knight et al. (2005) specifying reusable chunks of learning content

and defining an abstract way of designing different units (e.g. courses, lessons

etc.) are two of the most current research issues. Hence, the affluence of research

studies on educational modeling, complexities of pedagogical methods and the

continuing development of software tools created chaos in this field.

Consequently, significant R&D effort has been started and being devoted

to set up standards and specifications for modeling educational systems. The

main ones that are widely accepted and related to the educational issues are IEEE-

1484 Standards, IMS-LD specifications, ADL-SCORM and AICC-AGR. These

standards are sometimes complete each other (IEEE-LOM and IMS-LD) and

sometimes compete (SCORM and IMS-LD-IM) for similar purposes. Each

approach comes with its own definition of educational content and process. The

main purpose is to generate content that can be created once and used in many

8

different systems and situations without modification. And, eventually attain the

possibility of creating meta-models of educational systems with the help of new

software modeling approaches.

2.1. Standards and Definitions of Relevant Terms

2.1.1. Definitions of Relevant Terms

The terms that are referenced through out this document are briefly

explained as follows:

Advanced Distributed Learning (ADL) is the product of the ADL

Initiative, established in 1997 to standardize and modernize training and education

management and delivery. The vision of the ADL Initiative is to provide access to

the highest-quality learning and performance aiding that can be tailored to

individual needs and delivered cost-effectively, at the right time and in the right

place. The ADL Initiative developed SCORM and the ADL Registry.

SCORM is explained in detail at the ―2.1 Standards and Definitions of

Relevant Educational Terms‖ section of Chapter 2.

ADL Registry contains all of the registered entries that contain metadata

about the content in a repository. ADL Registry provides centrally searchable

information, in the form of metadata records (not actual content). The metadata

describes many different kinds of objects to enable their discovery and reuse

regardless of their location or origin. ADL uses structured and collaborative

methods to convene multi-national groups from industry, academia, and

government who develop the learning standards, tools, and content. ADL Co-

Laboratory‘s web site can be reached at http://www.academiccolab.org/.

Creative Commons License: Creative Commons is a nonprofit

corporation that provides free licenses and other legal tools to mark creative work

with the freedom the creator wants it to carry, so others can share, remix, use

commercially, or any combination thereof. For more information please have a

look at http://creativecommons.org/about/ (last accessed January 17, 2010).

GNU: GNU General Public License (GNU GPL), popular free software

license, and the only license written with the express purpose of promoting and

9

preserving software freedom. Related licenses include the GNU Lesser General

Public License (GNU LGPL), the GNU Affero General Public License (GNU

AGPL) and the GNU Free Document License (GNU FDL). For more information

please have a look at http://www.fsf.org/licensing/licenses/lgpl.html (last accessed

January 17, 2010).

Institute of Electrical and Electronics Engineers (IEEE) is an

international non-profit, professional organization for the advancement of

technology related to electricity. Brief explanation of the standards that are

published by the IEEE Learning Technology Standard Committee can be found in

at the ―4.3 Standards and Definitions of Relevant Educational Terms‖ section of

Chapter 2. Relevant information is also available at http://ltsc.ieee.org/p1484.

Instructional Design is the name of the discipline, as it is used in the

American literature (Paquette, 2004). It is defined as ―the process of analyzing

students' needs and learning goals, designing and developing instructional

materials‖ by the University of Texas
2
.

IMS: The Instructional Management Systems (IMS) Global Learning

Consortium
3
 is a non-profit international organization composed of commercial

and academic institutions, which creates specifications for distributed learning.

These include IMS Metadata, IMS Content Packaging, IMS Simple Sequencing,

and IMS QTI (Question and Test Interoperability, that defines a standard format

for the representation of assessment content and results)
4
.

Learning Activity (LA) is defined by the IMS Learning Design

specifications as the structured lesson plan, which is organized according to

specific pedagogical models. An activity can be formally defined as a triple

containing the content that is delivered by an educational system the actors

participating in the activity (such as the learner or a group of learners, the tutor

etc.) and their corresponding interactions. (Karampiperis P, Sampson D, 2005).

2 http://www.utexas.edu/academic/diia/assessment/iar/glossary.php, last accessed December 06, 2009

3 http://www.imsglobal.org/, last accessed June 02, 2009.

4 http://www.unfold-project.net/general_resources_folder/AboutLD/introld last accessed June 02, 2009.

10

Learning Component (LC) is any digital or non-digital educational

building block, which can be used, re-used or referenced during any platform

independent teaching/learning process. A Learning Component can be assembled,

disassembled and combined with similar learning objects (and/or learning units)

to form a module that can be used or referenced in a pedagogical model. They

may incorporate meta-data, which represent educationally meaningful

construction such as a learning objective.

Learning Components are meant for run-time connecting modules which

may include any digital or non-digital text document, file, book, questionnaire,

database, quiz, etc as well as collaborative tasks such as discussion, voting, small

group debate, etc.

Learning Design (LD) is an application of a pedagogical model for a

specific learning objective, target group, as a specific context and content, so that

pedagogical models can be shared and reused across instructional contexts and

subject domains (Koper & Olivier, 2004). It is the description of the specific

ordered learning & support activities that have to be performed (or are performed)

by users to attain a specific learning goal (Koper, 2005).

Learning Object (LO): any entity, digital or non-digital, which can be

used, re-used or referenced during technology supported learning. (David Wiley,

2000, as cited in Cliff Gibson and Stephen Harlow, 2004).

Learning Object is an aggregation of one or more digital assets,

incorporating meta-data, which represent an educationally meaningful stand-alone

unit. (Daiziel (2002) as cited in Cliff Gibson and Stephen Harlow, 2004).

Learning Object Metadata (LOM): is a data model, usually encoded in

XML, used to describe a learning object and similar digital resources used to

support learning. The purpose of learning object metadata is to support the

reusability of learning objects, to aid discoverability, and to facilitate their

interoperability, usually in the context of online learning management systems

(LMS). The IEEE 1484.12.1 – 2002 Standard for Learning Object Metadata is an

internationally recognized open standard (published by the IEEE Standards

Association) for the description of ‗learning objects‘. Relevant attributes of

learning objects to be described include: type of object; author; owner; terms of

11

distribution; format; and pedagogical attributes, such as teaching or interaction

style.
5

Operational Knowledge Unit (OKU) is defined by Tanik et al. (2009) as

an innovative method of decomposing courses into electronically manageable

―semantic‖ units. These semantic units correspond to specific learning

competencies. The difference is that an OKU is a ―process‖ not just a module in

the classical sense. Tanik et al. [2009] argue that in an OKU students need to

perform a certain process (activity) to internalize the knowledge presented to

them. To be able to demonstrate mastery of a specific knowledge competency, the

learner goes through the same process to generate an answer. Hence, OKUs are

learning components and/or units of learning, as well as semantically and

electronically managed processes. Knowledge becomes the operational piece of

the process in every OKU.

With the above factors in mind, OKUs are designed in such a way that

they play the role of intelligent interfaces to create knowledge. OKUs pull

information together in intelligent ways, including the ability to reason and take

inferences from the data and embed logic in the educational model.

UML: The Unified Modeling Language (UML) is used to specify,

visualize, modify, construct and document the artifacts of an object-oriented

software intensive system under development.
6

ZIP file: A file that has been compressed, or reduced in size, to save

storage space and allow faster transferring across a network over the Internet. To

read the information, the file must be uncompressed into its original form.
7

2.1.2. Educational Standards

The researcher believes that any research & development effort should be

built on available standards and specifications wherever possible. Obviously, this

5 http://wiki.cetis.ac.uk/What_is_IEEE_LOM/IMS_LRM, last accessed January 17, 2010

6 http://en.wikipedia.org/wiki/Unified_Modeling_Language last accessed January 17, 2010

7 http://dl.austincc.edu/students/DLGlossary.html, last accessed December 06, 2009.

12

includes the educational standards and specifications that are declared by IMS
8
,

IEEE LTSC
9
, AICC

10
, ADL

11
, and ISO/IEC JTC1/SC36

12
. All of these standards

specify architectures for information technology-supported learning, education

and training systems that describe the high-level system design and the

components of those systems. However, as indicated by Knight et al. (2005) no

standard has yet been established for the graphical representation of learning

designs. But, Knight (2005) also indicates that there are many possible methods

of graphical representations.

Each standards organization has its own educational terminology. Brief

description of them includes:

Sharable Content Object (SCO) and Sharable Content Object

Reference Model (SCORM). SCORM is a collection of standards and

specifications for web-based learning and it defines communications between

client side content and a host system called the run-time environment (commonly

a function of a learning management system). SCORM also defines how content

may be packaged into a transferable ZIP file. SCORM defines a specific way of

constructing Learning Management Systems and training content so that they

work well with other SCORM conformant systems. Therefore, as Griffiths (2005)

says it is a publishing system for educational resources in www and/or CD/DVD.

On the other hand, a SCO
13

 is defined as the most granular piece of

training in a SCORM world. Some would call it a module, a chapter or a page…

the point is that it considerably varies. It is the smallest piece of content that is

both reusable and independent.

Griffiths (2005) claims that SCOs and SCORM has been extensively

criticized in the educational world with shortcomings such as activities and

8 http://www.imsproject.org, last accessed September 20, 2009.

9 http://www.ltsc.ieee.org, last accessed September 20, 2009.

10 http://www.aicc.org/pages/aicc2.htm#CMI, last accessed September 20, 2009.

11 http://www.adlnet.org, last accessed September 20, 2009.

12http://www.iso.org/iso/standards_development/technical_committees/list_of_iso_technical_committees/iso_

technical_committee.htm?commid=45392, last accessed September 20, 2009.

13 http://www.scorm.com/scorm-explained/one-minute-scorm-overview, last at September 20, 2009.

13

collaborations not being supported. That‘s why, SCORM V2.0 is getting prepared

(Rustici, 2008) but it is not published, yet.

Learning Object (LO) and IEEE Standards 1484. The IEEE-1484

Learning Technology Standards is an internationally recognized open standards

and it is published by the IEEE Standards Association. As Agostinho et al. (2003)

also admits that even though there are alternative terms, which are being used

interchangeably with learning objects such as instructional objects, educational

teaching objects, knowledge objects, intelligent objects, digital learning items and

data objects, ―Learning Object‖ entity has been commonly accepted and widely

used as an educational term in the literature. A Learning Object is defined in

IEEE standards as any entity, digital or non-digital that can be used, reused, or

referenced during technology supported learning (Duval, 2002). Dalziel (as cited

in Gibson & Harlow, 2004) defines the same, as ‗Learning Object‘ is an

aggregation of one or more digital assets incorporating meta-data, which represent

an educationally meaningful stand-alone unit. Koper (2001) says that there are

several ways of viewing learning objects. The most common, but often implicit,

idea is depicted in Figure 1, as given by Koper (2001).

Figure 1. Learning Object and its metadata.

In principle learning objects have content (attributes and other learning

objects) and descriptions of the behavior of the learning object (operations).

Learning Object Metadata

Learning Object

Content (optional)

Method (optional)

refers to

14

Clearly, the idea of a learning object model conforms to the principles of objects

in the theories of object-oriented design approaches. This implies that principles

of encapsulation, abstraction and inheritance may also be present. But, according

to Koper (2001) learning objects suffer from a lack of ability to semantically

express relations between different types of objects in the context of the use of an

educational setting. That is to say, the learning object model fails to provide a

model for the structure of the content of different objects. The typing of objects

also varies according to different pedagogical stances, so there is a need for

another meta-model to describe the relationships. To overcome this issue another

group of efforts referred to as Learning Design (LD) has developed.

Unit of Learning (UoL) and IMS Learning Design (LD) Specifications.

IMS Global Learning Consortium has published the IMS-LD specifications that

provide an information model and XML binding which facilitates the

conceptualization and formalization of a Learning Design (LD) for the purpose of

standardized information exchange and integration with software systems (IMS-

LD-IM, 2003). Because of the fact that many of the tools and editors for learning

designs are to be developed around this specification, maintaining the

compatibility is considered to become an important issue.

A unit of learning (UOL) is defined by Vogten et al. (2006) as a package

that consists of meta-data about the course, the learning design of the course and

references to physical resources and/or the physical resources themselves

(learning objects and learning services) that are used in the course. Similarly,

Koper and Manderveld (2004) define UoL as ―A Unit of Learning is defined as an

artifact that is designed for learners to achieve one or more interrelated learning

objectives. A unit of learning can not be broken down into its component parts

without loosing its semantic and pragmatic meaning‖. In another article Koper &

Olivier (2004) mention about LD and its relation with UoL as LD being used to

specify the learning design of e-learning courses (UoLs). By providing a generic

and flexible language, the LD specification supports the use of a wide range of

pedagogies. It is based on a pedagogical meta-model (Koper & Manderveld,

2004; Koper & Olivier, 2004).

15

According to Koper and Olivier (2004), a LD can be defined as an

application of a pedagogical model for a specific learning objective, target group,

and a specific context or knowledge domain. Koper (2005) assumes that every

unit of learning has a learning design that can be described explicitly:

 Learning designs refer to resources (learning objects or services)

 Everyone who is creating or adapting a unit of learning is a 'learning

designer' at that moment in time.

And the difference with a unit of learning is explained as:

 Every unit of learning contains a learning design and its connected

resources.

 A learning design refers to learning resources, but does not include the

resources themselves.

Figure 2. Unit of Learning vs. Learning Design

Eventually, this work led to the development of IMS Learning Design

Specifications. IMS LD evolved from Educational Markup Language (EML).

IMS LD was formally published in 1993. The latest version is published in 2003.

In Europe, several research communities use IMS LD as a basis for various kinds

of projects. IMS LD is financially supported by the European Union. But

Schneider (2009) claims that there is no end-user ready implementation of an

authoring tool or a delivery platform as of April 2008
14

. Since development of

reference implementations are continuing, we may expect to see some day a

14 http://edutechwiki.unige.ch/en/IMS_Learning_Design, last accessed December 02, 2009.

Unit of Learning

Learning Design

Resources

16

friendly end-user solution. Nowadays, there exist some user-friendly tools like

the Recourse editor. However, use of these tools still requires understanding the

LD standards and as of May 2009, user-friendly players still don't seem to exist
14

.

Knight, Gasevic, and Richards, (2005) say that this process of representing

UoLs can be conceptually pictured as pulling learning objects from a repository

and using the learning designs to integrate learning objects into activities that

involve learners. Therefore, learning designs can be represented graphically

formalized according to an information model. But, the fact of the matter is that,

as it is also claimed by Knight et al. (2005), there is no standard has yet been

established for the graphical representations of learning designs; however, there

are many possible methods.

On the other hand, there are still questions regarding the Learning Design

yet to be answered. Knight et al. (2005) ask such questions as: How can we

employ only specific parts of a learning object, rather than the learning object as a

whole in a specific learning design, and how can we reuse the same learning

design in different contexts with different learning objects.

International Standardization Office (ISO) is an international-standard-

setting body composed of representatives from various national standards

organizations
15

. ISO standards that are related to Information technology includes:

ISO/IEC 24738:2006 - Information technology -- Icon symbols and

functions for multimedia link attributes

ISO/IEC TR 14471:2007 - Information technology -- Software engineering

-- Guidelines for the adoption of CASE tools

ISO/IEC 14102:2008 - Information technology -- Guideline for the

evaluation and selection of CASE tools

ISO/IEC TR 11580:2007 - Information technology -- Framework for

describing user interface objects, actions and attributes.

ISO/IEC 24751-1:2008 - Information technology -- Individualized

adaptability and accessibility in e-learning, education and training.

15 http://www.iso.org/iso/home.htm, last accessed January 17, 2010

17

AICC: The Aviation Industry CBT (Computer-Based Training)

Committee
16

 is an international association of technology-based training

professionals. The AICC develops guidelines for aviation industry in the

development, delivery, and evaluation of computer-based training technologies.

The term "AICC Compliant" means that a training product complies with one or

more of the 11 AICC Guidelines & Recommendations (AGR's). AGR stands for

AICC Guidelines & Recommendations. As the name implies, AGR's are technical

recommendations. Each AGR makes a technical recommendation in a specific

area such as; CMI - Computer-Managed Instruction, CBT - Computer-Based

Training, COM - Communications, CRS - Courseware Technology, EXC -

Executive Committee, ITL - Independent Test Lab, MPD - Media and Peripheral

Devices, PLT – Platform, WOS - Window & Operating Systems, etc..

2.2. Providing a Structure

What should be the desired software architecture for a graphical

educational tool? Besides pedagogical perspectives there are other perspectives

that should be taken into consideration when commenting on an educational

modeling language. Software architecture is defined as ―the structure or

structures of a system, which comprises software elements, externally visible

properties of those elements, and the relation between them‖ (Bass et al. 2003,

Clemens et al. 2005). Therefore, one needs to pre-establish the system structure

as the necessary building blocks that determine the user friendliness, efficiency

and effectiveness of the software tool.

Bass et al. (2003) claims that the software architecture as the development

product, which gives the highest return on investment with respect to quality,

schedule, and cost. This is because an architecture appears early in a product‘s

lifetime. If it is constructed right then it sets the stage smooth for everything to

come in the system‘s life cycle as the development, integration, testing, and

modification. If it is wrong then the fabric of the system is wrong, and it cannot

be fixed by weaving in a few new threads or pulling out a few existing ones,

which often cause the entire fabric to decompose and perish. Bass et al. (2003)

16 http://www.aicc.org/pages/aicc_faq.htm, last accessed January 17, 2010

18

also mentions about the fact that analyzing architectures is inexpensive, compared

to other development activities. As a summary, architectures give a high return on

investment, because of the fact that: decisions made for the architecture have

substantial important consequences, and checking and fixing an architecture is

relatively inexpensive. Since life cycle of a good product starts with a good

architectural design, one can say that successful product can influence how other

products are built and cause better products to be developed.

On the other hand, Wilson et al. (2004) mentions the benefits of a

reference architecture for educational organizations and orders them as such:

 A reference architecture provides better return on technology

investment. New learning components can be developed or acquired

when needed, which means that only those parts of an educational

model that really needs to be changed are replaced, retaining the other

components that comprise the model. Hence, purchasing and

implementation costs are reduced.

 A reference architecture enables faster deployment of technology. As

learning technology components are independent it will be easier to

deploy new components as long as the new components are compatible

with the existing interfaces. If the latter is not the case it may still be

simpler to alter or to replace other learning technology components to

supply the requirements of the e-Learning solution.

 A reference architecture provides a modular and flexible technology

base. The rationale for the reference architecture is to enable the

development of flexible educational models, in which individual

learning components can be added or replaced more easily than in a

solution without it.

Therefore, setting up the reference architecture is a must concern in

software development life cycle. In order to ensure a better reference architecture

and enforce the provision of a better and globally acceptable quality of an end

product, there is an enormous activity of standardization is going on. As

mentioned earlier, regarding the field of Education, Americans and Europeans

19

carry out such efforts. Australians and other communities of the world tend to

support either Americans (IEEE, SCORM and AICC) or Europeans (ISO and

IMS) or both when and where applicable.

But the fact of the matter is that, although there exist several standards like

AICC-AGR-006 (computer managed instruction) or AICC-AGR-009 (icon

standards), ISO/IEC 24738:2006 (icon symbols and functions for multimedia link

attributes), IMS-LD or IEEE 1484, they do not directly apply to the graphical

modeling of instructional processes. Therefore, as it is claimed by Knight (2005)

inexistence of standards related to the graphical representations of educational

models, one can easily say that there are many variations of graphical models of

instructional processes in today‘s market. Karampiperis and Sampson (2007)

paraphrase this fact and say that despite the wide adoption of the IMS LD

specification still a common language for graphically representing learning flows

is missing. Karampiperis et al. (2007) goes forward and offers BPMN (Business

Modeling Notation standard) and adoption of BPEL (Business Process Execution

Language) workflows into IMS LD Level-A authoring tools.

At the same time, developments in software engineering have brought new

approaches to the design and development of information systems. Moreover, as

complexities of educational systems increasing, resultant development times are

getting longer and longer. Consequently, modern and better model development

techniques are replacing traditional approaches.

2.2.1. Component Based Software Engineering

When we consider the fact that current software systems are large-scale

and very complex, as Dogru (1999) also admits, because of their high

development costs and unmanageable software quality, development of such

systems is not easy in an environment where technologies and requirements also

change frequently. Therefore, the focus should be on composing and assembling

components that are likely to have been developed separately, and even

independently. Hence, components can be added, deleted, modified and/or

changed easily without affecting the original model. This approach intends to

accelerate software development and reduce development costs by using

20

prefabricated software components. Szyperski (1998, cited in Dogru, 1999)

defines the components as units of implemented software building blocks.

Selecting various components and assembling them together rather than

programming an overall system from scratch, develops component-based software

systems. Therefore, development life cycle of component-based software systems

is different from that of the traditional software systems. As Dogru (1999) says

the idea of building systems completely with components and prepare models

accordingly solve most of the software engineering problems.

Component Based Software Engineering specifies that component

identification (selection), customization and integration are the main activities in

the life cycle of component-based systems. This activity comprises two main

parts. First, evaluation of each candidate component based on the functional and

quality requirements and second, customization of that candidate component,

which should be restructured before being integrated into the new component-

based software system. Integration as being the last phase of modeling effort

means that key decisions can be taken on how to provide communication and

coordination among various components of the target software system. When we

apply this principle to the instructional modeling and think about it from the

educational perspective; pedagogical approach will be leading the designer to

make such decisions for the integration phase.

2.2.2. COSE Approach and Education

One of the most promising system modeling approaches today is the

component-based software development approach. Any component-oriented

approach assumes that functions have been implemented in components.

Therefore, the system development problem reduces to locating and connection of

pre-defined components. Utilization of the components is the main concern when

developing the respective model of the system. Despite reported difficulties in

their utilization, components are meant for run-time connecting modules. Also

when more semantics will be included as part of the component interface

specifications in the future, this will definitely aid in locating and integration of

components.

21

Learning systems can also be individually assembled by using the

components to provide the functionality that instructional designers really need.

ECOML enables instructional designers to graphically model various

teaching/learning resources (=components) and incorporate them into their

instructional content, speeding up the preparation and design process of the

learning system and significantly reducing development cost and time.

Therefore, main concern should be to locate and retrieve the needed

component. Software organizations organize the independently developed

components in a component repository. The question of ―How are the

components represented in and retrieved from a repository?‖ is resolved by the

formal specification that describes functional properties of components. This

formal specification requires the logical description of the semantics of the

software component. Hence, component retrieval is based on the semantic match,

and it is based on using formal specification used in the component representation.

It is believed that software components, which reside in the repository, should

meet the requirements below to be reused easily by the designers, which are also

stated by Kara (2001):

 The components should be classified and stored in different component

libraries according to their semantics and domains.

 The components should be useable in many contexts.

 The components should be efficient to meet the system performance

requirements.

 There should be enough components in a component library such that

the designers can find all components needed.

 The components should be independently upgradeable.

 The components should be customizable on the appearance and

behavior of them.

 The components should be interconnectable to generate larger

components or complete applications.

 The components should know the time, namely, design-time or run-

time. Because, at design-time, the component should expose its

22

property editor and event editor according to some signals. However, at

run-time, it should expose its behaviors according to same signals.

The libraries, subroutines, objects, and components are the examples of

reusable software. Component Based Software Engineering (CBSE) and

Component Oriented Software Engineering (COSE) seem to be two similar

approaches for system‘s modeling that are based on reusable software

components. But, because of the fact that educational components are not like

software components, which can be added, deleted or changed according to the

functional needs of the system, the educational modeling efforts incline more to

the COSE approach rather than CBSE.

From the educational point of view the components can be units of

learning, operational knowledge units, learning objects, and learning components

(which includes all similar educational definitions), as we have defined earlier.

There are already established repositories and web services, which are hosting

such educational components (e.g. government web sites like

http://internettv.meb.gov.tr, http://egitim.gov.tr, http://www.free.ed.gov/, Learning

Resource Exchange
17

 portal (provided by European Schoolnet
18

 together with 20

Ministries of Education from Europe, and it offers more than 130 000 learning

objects and assets in more than 20 languages), The Learning Object Repository

Network
19

 (LORN, Australia's national learning object repository network for the

vocational education and training (VET) sector, which contains more than 3000

learning objects) or digital libraries like http://www.computer.org/portal/web/csdl,

etc. etc.. It is for sure that affluence of such services will need respective UDDI‘s

being prospered in the future.

Since, COSE approach is based on structural decomposition of the system,

it enables the analysis and design phases of instructional processes in a higher

level of abstraction with graphical representations of various educational

components. Changes in the requirements of the system can be easily handled by

17 http://lreforschools.eun.org/, last accessed January 05, 2010.

18 http://www.europeanschoolnet.org/, last accessed January 05, 2010.

19 http://lorn.flexiblelearning.net.au/, last accessed January 05, 2010.

23

changing graphical symbols and relational definitions. Unlike other modeling

approaches, the pedagogical model, itself, is not affected much from the changes.

Regarding the above mentioned issues of component oriented software

engineering, this researcher thinks that educational models can be created in such

a way that any teaching/learning scenario can be designed and implemented with

components as being OKUs, UoLs, LOs, and LCs. This approach definitely

reduces the course development efforts and improves maintainability of the

pedagogical model. Hence, this researcher thinks that selecting various learning

components and assembling them together with the help of a modeling tool can

easily develop component-based educational systems. That‘s why preparation of

future teaching/learning designs will be different than traditional ones.

Advancements in Internet technologies and UDDI related web services will bring

new design tools, which will make use of the new technologies for easier, better

and more efficient course designs. Certainly, ECOML is one them.

2.2.3. Instructional design and the ECOML approach

Dogru (1999) described the software process in COSE approach as:

 structural decomposition starts in a top-down manner with dividing the

process into logical modules,

 this process continues until reaching the existing components,

 then those components are integrated in a bottom-up fashion in order to

build the system.

Because of relational dependencies between learning components of any

educational process, similar hierarchical approach is also suitable for instructional

modeling efforts. One can find such building blocks in any teaching/training

and/or learning effort. Based on the experience level of the instructional designer,

and the applied pedagogical method, instructional process can be divided into

logical modules. Then related components are identified and they are integrated

in a bottom-up fashion for the complete system.

Finally, almost all pedagogical approaches mention about internalization of

information in order to construct the ―knowledge‖. Stephan Morris (1994) also

admits that construction of knowledge is hierarchical, "belief", and thus

24

"knowledge", is interpreted as properties of individuals‘ preferences (that‘s why,

in principle, they are observable choices). Every piece of information is

dependent on previous piece that is already internalized. This description of

knowledge construction makes instructional designs perfectly suitable for

hierarchical modeling tools. COSEML is a good example of such a modeling

tool. Hence, ECOML, which is an offspring of COSEML, places itself into that

category of CASE tools, as well.

2.3. Taxonomies

As Yongwu et al. (2009) put forward many learning design languages have

been developed recently. Yongwu (2009) categorizes the learning designs by

saying Falconer and Littlejohn (2008) distinguish two categories of learning

designs in a recent study:

 those meant for learning (the executable design) and,

 those meant for teaching (the inspirational design).

The audience of the former learning designs is a machine, and the

audience of the latter learning designs is the teacher. The first version of ECOML

is meant for inspirational design, as is the case for authoring editors of executable

designs. Future versions of ECOML will consider the executable designs, as well.

That‘s why, the taxonomy, aims at providing the teacher with a

classification that is arranged in a hierarchical structure and covering a range of

options (at a greater or lesser level of detail). Depending on the particular

pedagogical approach, teacher typically organizes course material by parent-child

relationships, such as processes of weekly teachable materials or problem/case

oriented materials and individual OKUs, UoLs and LOs as parents then related

sub-materials (again can be composed of further OKUs, UoLs and/or LOs) can be

defined as siblings. Of course, in such a structural relationship, the subtype by

definition should have the same constraints as the super type similar to

inheritance, or mostly, the relationship can represent composition. Obviously, the

lowest level of the hierarchy contains only LOs or LCs. That is to say, individual

OKUs and UoLs ought to be designed in accordance with the pedagogical

approach used in the methodological representation of the parents, i.e. time wise,

25

process wise or case/problem wise, etc. The teacher can then use this as a guide

when creating a Learning Design.

On the other hand, Instructional Design (ID) is concerned with the

processes to produce good specifications of learning experiences (―Smith, P.L.,

and T.J. Ragan, Instructional Design (2
nd

 edition) Wiley & Sons Publishers, 1999‖

as cited in Caeiro Rodriguez, M.; Anido Rifon, L.; Llamas Nistal, M. (2004)).

Caeiro et al. (2004) say that instructional design of a course is a top-down activity

that starts with the teacher gaining understanding of the learners and their goals,

the resources and services available, the pedagogical approach, etc. Which

means, as constructors of courses, teachers design their believes, knowledge and

experience in hierarchical manner and relay them to the learners.

Caeiro et al. (2004) continue to describe the process by giving the example

of a course; the design continues with organizing the activities that have to be

carried out by learners and academic staff. In the next step, it is necessary to

define the control flow between the different activities, and for each activity to

describe the actors involved, the environment (with its resources and services, and

the properties, conditions and events associated) the way in which the actors are

going to interact, communicate, etc.

The effort of the teacher to identify the primitives and to place them in a

hierarchical structure may be a powerful course development activity. Providing

teachers with graphical software tools to accomplish the design and representation

of such educational structures is definitely an improvement, which ICT brings for

them. Also, as Blackwell (1997) and Lewalter (2003) say visual tools allow a

synthetic representation of complex objects and reduce the cognitive load of

teachers and help them organize their work both mentally and physically.

Development of visual instructional design languages is a fairly recent

research trend in the field of educational technology. Koper (2001) says that it all

started with a research project aimed at building a semantic notation for complete

units of study to be used in e-learning, in the Open Univesity of the Netherlands in

1998.

26

The notion of units of study was called as an ―Educational Modeling

Language‖ at that time. The idea evolved by the time and several educational

modeling languages developed.

Sampson et al. (2005) categorized visual instructional design languages

into two; form-based and graphical-based. Form-based Learning Design

authoring tools are tools that provide form-based interfaces for the definition of

the learning scenarios. The main advantage of these tools is that they provide

direct control of the Learning Design information model elements. However, as

Sampson et al. (2005) said they are rather difficult to be used by less experienced

designers and they require pre-processing of the structure of the desired scenario

in order for the designer to be able to express it directly in XML notation.

Examples of such tools include the reload project
20

. On the other hand, graphical-

based Learning Design authoring tools are tools that provide drag-and-drop

interfaces for the definition of the learning scenarios. Their main advantage is

that they support the definition of a pedagogical scenario without requiring pre-

existing knowledge on the details of the IMS Learning Design information model.

Examples of such tools include ASK-LTD.

One of the objectives of this study is to introduce yet another one of new

professional tools for instructional designers. Therefore, one can say that the

main concern is the development of a meta-model of a pedagogical approach. If

the tool is graphical-based with ergonomic graphical user interface (GUI) then it

will serve the purpose better. It is also desired that the tool should be general

enough to cover most of the pedagogical approaches, if not all.

20 www.reload.ac.uk/, last accessed November 14, 2009.

27

CHAPTER 3

3 RELATED WORK

A pedagogically independent tool that is valid for different instructional

designs may well be a starting point for instructional designers. To focus on the

modeling activity, without explicit knowledge about the underlying design

theories and pedagogies, is certainly a big advantage for efficient instructional

preparations. Besides that, inspection and commenting on easy-to-understand

graphical models will be more practical and effective.

Significant R&D effort has been kept devoted towards modeling

educational systems tailored to specific pedagogical approaches. The proposed

modeling languages attempted to provide a formal way of representing the

educational process in commonly agreed manners. But, as Caeiro et al. (2004)

say that there are abundance of learning theories and approaches for instructional

designs in the learning domain. This thesis study tries to list all educational

modeling languages, which are discussed within the related literature that this

researcher could access. The current version of ECOML, as being a graphical

editor (or, according to the naming conventions stated in the IMS‘s

unfold_d9_sustainability_plan
21

, it can also be named as a graphical authoring

system), represents top down hierarchical approaches as a better modeling method

for educational instruction designs. Since, the researcher believes that

hierarchical approach is more appropriate for instructional modeling, he considers

only the domain of hierarchical designs and tries to comment on them within the

scope of this thesis.

21 http://dspace.ou.nl/bitstream/1820/639/1/Unfold_d9_sustainability_plan_14feb06.pdf, last accessed July

02, 2009.

28

3.1. What is IMS-LD?

IMS-LD as being the latest, most comprehensive, and most controversial

pedagogical standard, and an educational modeling language, which describes

technology supported pedagogical scenarios based on instructional design models.

EduWiki
22

 claims that IMS-LD currently represents the most popular formal

language to describe learning designs.

According to the IMS Learning Design (LD) specifications, ―The core

concept of the LD is that, regardless of the pedagogical approach, a person gets a

role in the teaching-learning process, typically a learner or a staff role. In this role

he or she works toward certain outcomes by performing more or less structured

learning and/or support activities within an environment‖. The particular

characteristics of the roles, which a person takes on, the activities to be carried

out, and the particular characteristics of the environment define a specific learning

scenario. This learning scenario can be represented in IMS Learning Design,

where it is called a Unit of Learning (UoL). Koper (2001) also defined the

smallest unit as the ‗unit of study‘, which is providing learning events for learners,

satisfying one or more interrelated learning objectives. A unit of study could be

delivered through what is called:

 online learning (completely through the web).

 blended learning (mix of online and face-to-face)

 hybrid learning (mix of different media: paper, web, e-books, etc.).

The UoL can then be run on any Learning Design compliant system. IMS

claims that Learning Design does not offer a particular pedagogic model or

models, but can rather be used to define a practically unlimited range of scenarios

and pedagogic models. Because of this it is often referred to as a pedagogic meta-

model. Learning Design was developed in the context of e-learning, but there is

no reason why Units of Learning cannot be used in mixed face-to-face and online

learning contexts, or in entirely face-to-face learning (IMS, 2003).

As can be easily deducted, above requirements of IMS-LD are not easy to

comply. As Caeiro et al. (2004) also agrees, because of the fact that IMS-LD aims

22 http://edutechwiki.unige.ch/en/IMS_Learning_Design, last accessed December 09, 2009.

29

to be pedagogically neutral, which is extremely difficult to attain considering the

fact that there are abundance of them.

Neumann and Oberhuemer (2009) also admit the same difficulty by saying

that what the language IMS LD offers is hard to understand, and that it takes

considerable effort to apply. As Barrett-Baxendale says (2007, as cited in

Neumann et al. 2009) without sufficient technical support, instructors cannot

easily create Units of Learning as it is described in the IMS-LD.

3.2. Authoring Tools

IMS classifies educational software tools with respect to their functional

properties:

 Engine, (e.g. Coppercore).

 Editors, (e.g. Reload editor, ASK LTD, Copperauthor, MOT+, Cosmos).

 Players, (e.g. Reload LD Player, Coppercore Player).

Although there are other software tools that do not comply with IMS

specifications, like LAMS
23

 (which is both an editor and a player)
24

, the current

version of ECOML can be classified as an editor in that respect.

According to IMS-LD, engines, editors and players can be further grouped

into three categories:

 Level A; contains the core elements of the meta-language. Described as

series of time ordered learning activities to be performed by learners

and teachers, using learning objects and/or services.

 Level B; enables the use of generic properties and conditions (i.e.

properties (storing information about a person or group), and conditions

(placing constraints upon flow)).

 Level C; provides the ability to use notifications, enables activities to be

set dynamically (i.e. notifications, triggered events - e.g. student asks a

question, the teacher needs to be notified that a response is needed).

Therefore, current version of ECOML is a ―Level A‖ editor.

23 http://www.lamsinternational.com/, last accessed December 08, 2009.

24 http://moodle.org/mod/forum/discuss.php?d=24384%20%28June,2005%29, last accessed December 08,

2009, logged in as a ―guest‖.

30

It was only in 2005 that the first IMS Learning Design editors and players

became available, and were first presented at the UNFOLD meeting in February

2005
21

. Since then IMS Global Consortium makes surveys about educational

technology products and repeats the survey every year. The latest survey lists 837

of such products
25

. And 266 out of 837 educational technology products are

software tools
26

. The survey lists the major products; their descriptions, functions,

advantages and disadvantages, then ask the participants to give feedback out of a

7-point Likert scale (Very dissatisfied, moderately dissatisfied, slightly

dissatisfied, neutral, slightly satisfied, moderately satisfied, very satisfied). 130

out of 266 has received ―slightly satisfied‖ to ―very satisfied‖ ratings from the

participants. And, only 13 out of 130 listed products are graphical editors.

Table 1. Authoring Tools as compiled by IMS-UNFOLD

Name Producer Purpose Ownership

Higher Level Editors

MOT+ University of Quebec Graphical editor Open source

eLive ELive GmbH Germany Specialized editor (Not released)

EduPlone Sequencer EduPlone Specialized editor Open source

EduCreator Editor Chronetech General purpose editor (Not released)

LAMS LAMS foundation
Learning activity

management system
Open source

Dialog+ toolkit Dialog+ Learning Activity editor Open source

Collage University of Vallodolid Learning design authoring Open source

Lower Level Editors

aLFanet AL.Fanet project Tree editor (Not released)

ASK-LDT Editor
Informatics & Telematics

Institute Greece
Graphical editor Freeware

CopperAuthor Editor
Open University of the

Netherlands
Tree based editor Open source

Komposer GTK Press Tree based editor Under development

COSMOS editor
Yongwu Miao, University

of Duisburg
Tree based editor Open source

RELOAD Learning

Design Editor
Reload project (JISC) Tree based editor Open source

25 http://www.imsglobal.org/productdirectory/directory.cfm, last accessed July 02, 2009.

26 http://www.imsglobal.org/productdirectory/products.cfm, last accessed July 02, 2009.

31

IMS Consortium classified the editors that have been considered in the

unfold_d9_sustainability_plan, which includes all significant development

initiatives about which the UNFOLD project is aware of.
27

. This classification is

shown in Table 1.

Botturi (2004) also mentions visual aids in instructional designs. Botturi

evaluated two such modeling languages that were available at that time. These

were E
2
ML (Educational Environment Modeling Language) and CADMOS-D,

which represent the educational activity and models that support the

representation of the learning goals, the instructional activities and/or the learning

materials. Later on, Schneider (2009) also evaluated educational modeling tools

and said that he didn't find any stable, user-friendly and easy to install LD runtime

environment as of May 2009
14

. He continued with claiming that the only popular

learning design system environment seems to be LAMS
28

 (but it is not based on

IMS LD).

Figure 3. Learning Design Systems (Schneider, 2009)14

27http://dspace.ou.nl/bitstream/1820/639/1/Unfold_d9_sustainability_plan_14feb06.pdf, last accessed July 02,

2009.

28 http://www.lamsfoundation.org/, last accessed December 06, 2009.

32

On the other hand, Griffith et al. (2005, as cited in Schneider, 2009)

defined two dimensions with respect to LD tool designs. The two dimensions are:

 Close to specification - distant from specification,

 General purpose tools - specific purpose tools.

Later on Oberhuemer (2008, as cited in Schneider, 2009)), using Griffith‘s

approach, refined and developed the categorization of LD tools. Schneider (2009)

reproduced Oberhuemer‘s categorization of LD tools with some currently

available LD authoring tools. Oberhuemer‘s approach and Schneider‘s inclusion

of sample LD tools is depicted in Figure 3.

Schneider (2009) criticizes the classification because it implies typical

teachers are not supposed to learn a general purpose LD tool. Useful tools for

course authors seem to be distant from the specification, in the sense that "real"

users should not understand IMS LD and that their designs are just compiled into

IMS LD. Then he claims that if such tools could import (and not just export IMS

LD), IMS LD would turn into a sort of "assembly" language of pedagogical

designs. But this raises the question of how designs could be described with a

common high-level language in order to promote exchange, i.e. why we should

still need "mid-level" languages? And, he is searching an answer for ―would one

want to be able to author with the same tool several types of activities within a

larger course-level design?‖ That is to say, does the educational world need to

distinguish between general-purpose tools and specific tools (e.g. a Computer-

Supported Collaborative Tool (CSCL) like Collage
29

)?

Sodhi, Miao, Brouns and Koper (2007), as being the forefront supporters

of IMS-LD specifications, also admit that there is a deep conceptual gap between

the needs of the non-expert authors and the support that is afforded to them in

Today‘s IMS-LD authoring tools. Therefore, this researcher has tried to select, to

the best of his current knowledge, the two editors that are user-friendly.

3.3. Comparison of two authoring tools.

This researcher selected the following two authoring tools for evaluation:

29 http://edutechwiki.unige.ch/en/Collage, last accessed December 09, 2009.

33

 Reload editor. Selected based on the information given in Figure 2.

Reload represents the tools closest to the ―general purpose‖ and it is

also the one that is closest to the IMLS-LD specifications. It is a

reference implementation of IMS-LD
30

.

 The other selected editor is the ASK-LDT (ASK Learning Design

Toolkit). Because it is a hierarchically represented graphical-based

LD authoring tool. ASK-LDT‘s starting point is the Business Process

Execution Language (BPEL), which is an XML based language that

represents a business process (Karampiperies and Sampson, 2007)

and based on the graphical design elements and standards of Business

Process Modeling Notation (BPMN). BPEL was developed to enable

business user to model business processes in an understandable

graphical representations (White S.A., 2005). White (2004) also says

that BPMN is based on a flowcharting technique tailored for creating

graphical models of business process operations, which means in

essence it supports hierarchical representations.

Both tools are IMS-LD specifications conformant and general purpose.

3.3.1. ReLoad LD Editor

ReLoad (Reusable eLearning Object Authoring and Delivery) is a software

tool to create IMS Learning Design compliant Units of Learning. It is free, open

source and cross-platform. It was developed as part of the European-funded

TENCompetence project
31

. There are two separate products, which can work

integrated; Reload LD editor and the Reload LD player. ReLoad LD editor is the

modeling tool that can export a zip file (called as Learning Design Package) with

all the files related with the model already depicted in. The ReLoad LD Player is

the player tool that can accept the exported zip file to execute the modeled

Learning Design. The editor‘s latest version was released in January 2009.

According to IMS-LD specifications ReLoad editor is a Level A editor (i.e. a

30 http://lemill.org/trac/wiki/ReportLearningDesignAnalysis, last accessed December 23, 2009.

31 http://www.tencompetence.org/ldauthor/, last accessed December 06, 2009.

34

series of activities (assessment, discussion, and simulation), performed by one or

more players (learners, teachers etc.) in an environment consisting of learning

objects or services).

Version 2.1.3 of ReLoad Learning Design Editor is downloaded from its

main web site (http://www.reload.ac.uk). This editor is implemented with Eclipse,

needs Java installed on your computer and supposed to run on all platforms.

Unfortunately, in order to use it effectively users should be familiar with the IMS-

LD language, i.e. understand its logic and the purpose of its most important

elements.

Figure 4. Welcome Page of the ReLoad LD Editor

Although, it is claimed that ReLoad editor is a tree-based editor by IMS

(see Table 1), this researcher was not able to figure out how it hierarchically

represents the instructional models (see Figure 5). Internal representation and

data structures may be implemented with tree-based methods, but the constructed

and displayed instructional model is not a hierarchical one, in regard to common

software terminology. Therefore, this researcher claims that Reload Editor is a

form-based editor (see Figure 5). It is not possible to represent learning units

and/or learning objects with graphical symbols and show them in a hierarchical

tree-based model. Another important aspect is that, because of its compliance

35

with IMS-LD specifications, users must have enough knowledge about the IMS-

LD language. That‘s why welcome page of the editor contains help entries for

inexperienced users to learn more about Learning Design and other related IMS-

LD concepts (see Figure 4).

Although IMS claims that the ReLoad LD Editor is a Level A editor, usage

of the editor permits to designate the model in Level A, B or C (see Figure 5). A

ready made sample, which was obtained from the web site of ReLoad editor was

imported to execute at the ReLoad LD Player. Surprisingly, the attempt was not

successful, because of the reason that the Player gave errors during parsing the

designated zip file. Execution of the finished models is beyond the scope of this

thesis study. Therefore, further work on why the attempt failed on the sample file,

which was recommended by the official ReLoad web site, was not researched and

finalized for any conclusion.

Figure 5. ReLoad can be used as either Level A or B or C editor

For every Learning Design (i.e. instructional model) the ReLoad editor

keeps a separate xml file and distinguishes them by assigning different project

names on the monitor. That is to say, although ReLoad Editor shows every

Learning Design on the same screen, it treats them as independent and separate

36

entities. Which exhibits another weak point of the ReLoad editor when compared

to ECOML. It is not possible to define a certain project within another one, in

ReLoad Editor (see Figure 6). For instance, any LD can be designed as an

independent OKU part in any instructional model then this independent OKU can

be assigned as a Learning Component in another model, even it can be repeated as

separate LCs in the same model. This recurrence of independent Learning

Components is not possible in ReLoad Editor while such a structure is perfectly

representable in ECOML.

Figure 6. Weak points of ReLoad LD editor

ReLoad is also criticized with its role assignment capability
32

. According

to IMS-LD role assignments and corresponding activity assignments are possible.

IMS-LD defines two roles teacher (staff) and learner (student). However, if an

instructional designer had two main roles for students: Student A and Student B,

s/he therefore knew that s/he would have to add two new Learner roles. If the

roles where not assigned in the Roles interface section, it would not be possible to

assign the different activities to the different role-parts in the method section.

32 http://lemill.org/trac/wiki/ReportLearningDesignAnalysis, last accessed on December 23, 2009.

37

This might be considered as an interface design problem in the Reload editor but

it could also come from the way roles are handled in IMS LD.

There are some other criticized points of the ReLoad editor but, they are

usually related to its connection with the LD players, which is out of the scope of

this thesis study. As a result, evaluation of ReLoad LD editor indicated that it

offers an additional product that can be integrated for playing the instructional

models. Its form-based construction is easy to use once the user is familiar with

the IMS-LD terminology. Therefore, it may create some challenges for

inexperienced designers and classroom teachers.

Additionally, ReLoad‘s inability to represent instructional models

hierarchically with graphical symbols makes ECOML a better modeling tool for

instructional designers.

3.3.2. COSMOS ASK-LTD Editor

Sampson et al. (2005) defines the ASK (Advanced eServices for the

Knowledge Society Research Unit)
33

 Learning Designer Toolkit (ASK-LDT) as

an authoring tool based on the use of IMS LD Level B specification that provides

the environment for a pedagogical designer to define complex learning scenarios.

ASK-LDT was presented with real-time examples during the Unfold

project meeting in Barcelona, Spain, during 20-22 April 2005
34

. This researcher

was not able to find out any installable version of the original ASK-LDT software

tool, although it is claimed by Sampson et al. (2006) ASK-LDT is funded by the

European Union Commission, Information Technology Society Programme, FP6

Project (ICLASS contract IST-507922). All the links given in the above

mentioned project meeting (and others elsewhere) were found to be broken,

including the one ~15x10
6
 Euro-worth iClass project‘s link

35
. ASK_LDT is

supposed to be developed in the context of the iClass project
34

. Project leader is

Greek‘s Informatics and Telematics Institute‘s CERTH (the Center of Research

33 http://www.ask4research.info/new/index.php, last acceed December 23, 2009.

34 http://www.unfold-project.net/project/events/cops/bcna2/overview, last accessed December, 12 2009.

35 (broken link): http://www.iclass.info/. iClass: Intelligent distributed Cognitive-based open Learning System

for Schools. Project was funded by European Commission, Information Technology Society Programme,

FP6, during the period 2004-2008.

38

and Technology Hellas)
36

. Original web page of the ASK-LDT is the CERTH‘s

http://www.ask4research.info/products_toc.php. But, neither iClass nor ASK-

LDT‘s home page has got any live www link on the respective web pages where it

is introduced. Only documents related to its development and pictures of its menu

dialogue pages exit in the literature. Even Schneider (2009) couldn't figure out

whether this language/system is still alive or being further developed.

The evaluated copy is downloaded from the European Union‘s Cosmos

Portal
37

. Version 1 of the installer carries the last update tag as 19/05/2008.

According to the information that is given in the COSMOS web site
38

 the

COSMOS Learning Activities Authoring Tool is based on ASK Learning Design

Toolkit and enables the definition of Learning Activities implementing the

COSMOS Generic Technology-Enhanced Educational Scenario Templates.

Learning Activities created with COSMOS ASK-LDT are stored in zip format and

can be viewed with the Reload Learning Activity Viewer. Therefore COSMOS

ASK-LDT itself is not a Level B tool.

Figure 7. Main menu and the first dialogue page

36 http://www.ask4research.info/project.php, last accessed December 12, 2009.

37 http://www.cosmosportal.eu/cosmos/toolbox/cosmostools, last accessed December 12, 2009.

38 http://www.cosmosportal.eu/cosmos/node/3498, last accessed December 12, 2009.

39

Figure 7 indicates the opening page, which shows the main menu and the

first dialogue page of the COSMOS ASK-LTD Editor. As it can be easily

verifiable on the first dialogue page, COSMOS ASK-LDT is a product of

Informatics and Telematics Institute‘s CERTH program.

Authoring with COSMOS ASK-LDT involves five steps:

 Create New Educational Scenario: during this step the user can create

a new educational scenario based on six pre-defined Educational

Scenario Templates, namely the ―Guided Research Model‖, ―Inquiry-

based Teaching‖, ―Project-based Learning‖, ―The 5E Instructional

Model‖, ―The Learning Cycle (Supporting Conceptual Change)‖ and

the ―ICT supported Culture Awareness Learning (ICCAL)‖.

Preparation of a model based on any other pedagogical approach is

simply not possible.

 Assign Resources to Learning Activities of the Educational Scenario:

Once the educational scenario is selected then the user can assign

resources (html pages, images, etc.) to learning activities of the

educational scenario or change the existing ones.

Figure 8. It is possible to import IMS complaint LDs.

40

 Open Educational Scenario (Optional). The user can open the

previously created educational scenario that is already stored in the

local repository of the COSMOS ASK-LDT. Then re-work or

continuation of the earlier work can be carried out easily.

 Content packaging. The user can save an educational model as a

Content Package (zip format), which conforms the IMS LD

specifications. This ability makes the COSMOS ASK-LDT to be

playable in any IMS-LD complaint player. Since players are not

within the interest area of this study, validity of the exported files are

not verified with respect to different IMS-LD players. Besides that,

unfortunately, ―Create Content Package‖ part of the editor was not

possible to activate. The button remained dimmed no matter what

type of information is entered. Therefore, even it is considered as a

valid extension of the editor, it was not possible to comment about the

file that is supposed to be created by the editor.

Figure 9. Menu that shows selection of possible scenarios

 COSMOS ASK-LDT official help document also describes the

product as ―The COSMOS ASK-LDT is used in order to design

educational scenarios based on pre-defined educational scenarios

41

templates and generate packages conformant to the IMS Learning

Design specification‖.
39

 Therefore, COSMOS ASK-LDT is not

immune to pedagogical methods and enforces the user to a selected

few pedagogical approaches. It can be easily said that it is not for

non-expert educational designers (See Figure 9).

 The resulting UoL makes use of IMS Learning Design Level B, but

the tool does not set out to provide a general purpose Level B

authoring environment (See figure 10).

Figure 10. Main menu and first dialogue page of ASK-LDT

 COSMOS ASK-LDT offers a relatively easy path into Learning

Design authoring (although it is intended as a tool for learning

designers rather than classroom teachers). Therefore, there is no

―help‖ provided inside the tool. The menu items are not self-

explanatory (e.g. names of the pre-defined educational scenarios are

not easy to understand for non-experts, nor any help button provided

39 http://www.cosmosportal.eu/cosmos/files/help/Learning_Activities_Authoring.pdf, last accessed

December, 12 2009.

42

for run-time explanations). Consequently, ASK-LDT and its off

spring COSMOS ASK-LDT is not for non-experts (see figure 11).

Figure 11. ―Content Packager‖ dialogue page

Figure 12. ―Educational Scenario‖ dialogue page

43

 COSMOS ASK-LDT offers also an ―Educational Scenario‖ dialogue

page, although it is not possible to edit the given scenario. Inspection

of the items on the dialogue page indicated that the graphical symbols

are old-fashioned, far from today‘s 3D and/or animated graphical

icons. Secondly, although ASK-LDT claims it is a hierarchical

modeling tool, it does not have the ability to show the overall

graphical representation of the model (i.e. activities with learning

components, see Figure 12).

Evaluation of COSMOS ASK-LDT indicated that it seems relatively easy

to develop Learning Design models, since it offers pre-formatted educational

scenarios. But, it is intended as a tool for learning designers rather than classroom

teachers. Because of unavailability of help menu items, it turns into a rather

difficult and user-unfriendly tool when used by non-experts. Although, it claims

its main function is to prepare IMS-LD conformant ―Content Packages‖ so that

the design can be played later with another IMS-LD conformant player, because

of non-functional button it was not possible to create any file.

Therefore, the impression of this researcher is that even though its much

publicized and published literature, the inspected COSMOS ASK-LD version is

not serving as a general-purpose instructional design modeling language neither it

is a hierarchical modeling tool in the sense that ECOML offers to the instructional

designers.

44

CHAPTER 4

4 A MODELING TOOL FOR INSTRUCTIONAL DESIGNERS

The educational system is primarily focused on the question of "What

should people learn?" and from this the answer to "What should instruction

attempt to teach?" is driven. Then, the next question of "How do we teach?" that

most educational systems address may partially be derived from the answers of

the first two questions. Although, in general, answers to the earlier questions

seem to be independent from the pedagogical method, in reality they are directly

related to the applied pedagogical philosophy and method that is used in that

educational system. While this philosophy attempts to form a comprehensive

view of what would be useful for an individual to learn, it also dictates how this

information will be relayed to the learner, in practice.

Therefore, the core of the philosophy is the model that humans interact

within the system (and further this system often interacts with others) to exchange

information under certain methodological restrictions. Consequently, humans

have devised various mental and physical tools to study and influence the system

that they can make use of while interaction. Hence, in order for humans to learn

about the system, they are required to learn the tools that will empower them to

manipulate that system. Eventually, the success of the tool and its user will

depend upon the efficiency and the effectiveness of the tool and what it offers to

its users.

Choosing the right modeling tool can be quite a challenge. Already, there

are many instructional modeling products to choose from on the market today.

How can one choose? This chapter elaborates the topic and tries to list the helpful

decisive factors, which are found in the literature. Meanwhile, ECOML‘s answers

to those factors are also demonstrated.

45

4.1. Overview of Requirements

Educational system is not an exception and the tools that are created to

model it are rather new and still developing. Koper (2001) suggests the following

requirements for an educational modeling language, which describes a unit of

study:

1. The notational system must describe units of study in a formal way, so

that automatic processing is possible (formalization). The current version of

ECOML satisfies the requirement by creating an IMS-LD complaint

imsmanifest.xml file for possible export to an IMS-LD player.

2. The notational system must be able to describe units of study that are

based on different theories and models of learning and instruction (pedagogical

flexibility). The current version ECOML does not impose any pedagogical

method to start with in its modeling structure for an instructional designer. Any

pedagogical approach should be possible to be modeled with in ECOML.

3. The notational system must explicitly express the semantic meaning of

the different learning objects within the context of a unit of study. It must provide

for a semantic structure of the content or functionality of the typed learning

objects within a unit of study, alongside a reference possibility (explicitly typed

learning objects). With its easy-to-understand graphical icons and GUI, ECOML

may be the best tool that satisfies this requirement.

4. The notational system must be able to fully describe a unit of study,

including all the typed learning objects, the relationship between the objects and

the activities and the workflow of all students and staff members with the learning

objects (completeness). And regardless of whether these aspects are represented

digital or non-digital. ECOML permits the abstraction of learning units, learning

objects and/or learning components in LDs and/or OKUs. Therefore, graphical

representation of any instructional component (digital or non-digital) is possible

in the models that are created with ECOML.

5. The notational system must describe the units of study so that repeated

execution is possible (reproducibility). Even recursive applications are possible

in ECOML’s hierarchical approach, which in turn, makes repeated executions

possible.

46

6. The notational system must be able to describe personalization aspects

within units of study, so that the content and activities within units of study can be

adapted based on the preferences, prior knowledge, educational needs and

situational circumstances of users. In addition, control must be able to be given, as

desired, to the student, a staff member, the computer or the designer

(personalization). ECOML provides the facility to personalize LDs and/or OKUs

within its IMS-LD complaint structural properties. But, current version of

ECOML cannot execute the pre-designed instructional models. This feature (i.e.

LD player) is being implemented as a future add-on.

7. The notation of content components, where possible, must be medium

neutral, so that it can be used in different publication formats, like the web, paper,

e-books, mobile, etc. (medium neutrality). Current version of ECOML is written

in Java using the Eclipse software development environment. Therefore, the

notational representation of content components should be possible in all

complaint mediums.

8. When possible, a ‗wall‘ should be placed between the standards that are

used for notating units of study and the technique used to interpret the notation of

the units of study. Through this, investments in educational development will

become resistant to technical changes and conversion problems (interoperability

and sustainability). Current version of ECOML is not coded to satisfy this

requirement.

9. The notational system must fit in with available standards and

specifications (compatibility). Up to the knowledge of this thesis study, there are

no published standards for graphical symbols, which are indicated several times

with up-to-date references through out this study. Nevertheless, IMS-LD and

SCORM based standards/specifications, concerning the authoring tools (i.e.

Level-A editors), are tried to be satisfied.

10. The notational system must make it possible to identify, isolate,

decontextualize and exchange useful learning objects, and to re-use these in other

contexts (reusability). ECOML abstracts learning objects with graphical symbols.

Although, it is the responsibility of the instructional designer to validate and

47

maintain the availability of learning objects, there should not be any problem in

the reproduction of the model in other contexts.

11. The notational system must make it possible to produce, mutate,

preserve, distribute and archive units of study and all of its containing learning

objects (life cycle). Current version of ECOML saves the instructional model

with all its structural properties within its own database, and it also exports the

IMS-LD complaint xml file on demand for possible reproduction.

This comprehensive list embraces almost all necessary requirements that

can be desired to have in an educational modeling language. Obviously, whole

list is not easy to comply with. Nevertheless, ECOML‘s COSE approach satisfies

almost all of Koper‘s above stated requirements. How current version of ECOML

approaches to the educational modeling is also presented in Figure 14.

Figure 14. ECOML‘s Approach to Educational Modeling

Recently Waters and Gibbons (2004) pointed out that almost all creative

and technological fields have developed one or more notation systems and design

instructional

designers

 learning

resources

UoL

Pedagogical

Approach

Player

LMS/CMS

etc. SCORM

OKU

LU

LO

Knowledge

Model

content creators

and providers

metadata

authoring

content

packaging

LC LD

48

languages. Unfortunately, no standards have been established for graphical

representation of educational learning designs and models, yet (Knight et. al,

2005). ECOML has used COSEML as the reference model when developing the

graphical modeling language.

4.2. Software Modeling

As Richards (2005) quotes what Nobel Prize winning physicist Charles

Townes elaborated the question of ―What is the purpose or meaning of life? Or of

our universe?‖. And concluded as ―These are the questions which should concern

us all.... If the universe has a purpose, then its structure, and how it works, must

reflect this purpose‖.

How can human beings be able to study the structure of a system and

comments on how the system works? Most probably, modeling efforts stem form

this fact. Models describe the structure and behavior of a real-life system whose

requirements are being analyzed in a certain notational system. A model is an

abstraction of the desired real-life facts with small, simple and discrete

components. This abstraction makes the study and investigation easier when

compared to the actual behavior of the real-life system. Booch et al. (2000)

emphasize the importance of software modeling by saying a model is a

simplification of reality and they are important for visualizing and controlling the

system's architecture. Models provide a better understanding of the processes,

which expose opportunities for simplification and reuse. ECOML models the

educational process as depicted in Figure 15.

Figure 15. ECOML Authoring Process

49

As is the case for every type of modeling efforts, software modeling also

needs rules, according which the model is designed and described. In educational

modeling efforts, rules should define the software in such a way that the outputted

model will be able to successfully describe how people (teacher, learner) in roles

carries out activities (teaching, learning) with resources (LUs, LOs, LCs, etc.).

Knight et al. (2005) emphasized the ground rules about what learning

design must poses. From which we can deduct the structural components.

A Learning Design can choreograph;

 the order in which the content will be presented,

 how it will be sequenced,

 how it will be assigned to learners in a lesson,

 how it will be assessed.

And Knight et al. (2005) continued describing the educational model with

saying ―Conceptually this can be pictured as pulling learning objects from a

repository and using the Learning Designs to integrate learning objects into

activities that involve learners. Hence, Learning Designs can be represented

graphically or formalized according to an information model. No standard has yet

been established for the graphical representation of learning designs; however,

there are many possible methods‖.

Since this thesis study considers the COSE approach, which is based on

structural decomposition of the system, and claims that educational systems can

be represented best in hierarchical models. Then the hierarchical decomposition

of the system should be the starting point. In any hierarchical component-oriented

approach the main rule is the ownership and dependency relations. Every

component must have an owner (the component that is responsible for its creation

and destruction). Next is the dependency, which means any bit of data that is used

to evaluate a dependent component must have a precedent. Last rule is the

identification of the identity that means all components have unique identity

(meaning; everybody that is accessing an identical object can expect the same

uniform behavior). Component properties of ECOML are described in Figure 16.

50

4.3. Defining the Language – Essentials

ECOML provides facilities to represent all instructional components for

modeling purposes. Modeling can start either in top-down or bottom-up fashion.

Usually, instructional modeling starts with top-down decomposition of the system,

but construction of the model continue in bottom-up fashion. Modeling starts

with a top-down decomposition of the system, and simply, abstract building

blocks of the system are found in this phase. This top-down activity continues

with searching the graphically represented learning components among the ones

offered by the modeling language. When they are found, component composition

is carried out bottom-up to reach the desired representation of the system.

Development of a visual notation system for supporting and enhancing the

design process is a time consuming effort that needs different skills and

experience. Visual notation that defines graphical elements should be clear

enough to indicate the intended meaning. Therefore, learning goals should also be

considered when defining some of the graphical elements, while others can easily

address the definition of learning activities, services or learning materials.

Obviously, the visual notation system should provide users with an easy to use

GUI and comprehensive design environment for creating educational interactive

content. If the model is going to be played with the help of a LD player then

creation of the interactive content gains more importance rather than simply

representing the instructional model with graphical symbols.

On the other hand, when working in the design phase, instructional

designers who can be instructors, course authors, administrators and/or mentors

and coaches, basically deal with the problem-solving activities about possible

content of teaching/learning activity and how it will be delivered. This problem

solving activity encompasses the identification of people their roles and activities,

which will be carried out together with the resources and the learning services that

are involved in the instructional process. Therefore, a graphical modeling tool

should be designed in such a way that it should help to reduce the cognitive load,

which refers to the load on working memory during problem solving, thinking and

reasoning of the instructional designer. And such a tool should provide enough

51

number of enhanced communication facilities between the designer and the

modeling tool via smart and easy to use interfaces.

Secondly, It should be a design tool for developing instructional materials

using all available learning elements. That is to say, all possible learning elements

(i.e. UoL, OKU, LD, LU, LO, LC and others) should be represented in a

meaningful way and relations should be clearly defined with respect to the

delivery of the course content.

On top of all, the outcome must be pedagogically sound, as well. Different

pedagogical methods must be demonstrable in a comprehensible model. In order

to provide a universal acceptance, this flexibility of the pedagogical immunity

should be the most essential part of the modeling language.

In order to satisfy these concerns, and come up with a better approach,

ECOML has further updated the IMS-LD defined properties (literature-wise

criticized items were taken into consideration). ECOML‘s structural properties

are depicted in Figure 15.

Figure 16. Structural Properties of ECOML

Learning Design

title

learning objectives

title

item

metadata
title

item

metadata

prerequisites

component

roles

activities

environment

learner

staff

learning activity

support activity

title

servic

e
environment-ref

metadata

method

metadata

Learning Component

group

individual

count

size

52

There are two different component types in ECOML. These symbols are

defined in Section 4.4. Mainly, the first group is the package abstraction group

that indicates further related elements in an encapsulation. An instructional

package that is named as Learning Design or Learning Component can contain

further packages, and component abstractions. Both of them are the fundamental

structural elements that are used in the definition of part-whole relations. System

decomposition is made using packages and decomposition is detailed using other

component abstractions including physical elements that abstract physical

components of the instruction. Data, activity and control abstractions are

designed as form-based. The related information is kept upon if and when the

user submits relevant data. If user wants to play the instructional model in the

future, s/he needs to enter the activity and control related data, otherwise the

instructional model stays as a graphically represented educational unit of learning

and can be saved for future references for the same purpose.

Physical elements, their communications with other components and

interfaces are also represented with symbols. There are connectors to represent

communications among components, both in abstract and physical levels. There

are two types of connectors and their main purpose is to show the parent-sibling

relation in the hierarchical tree. In abstraction, a connector may represent many

message or event connections between two components. It represents at least one,

but possibly more than one message (or event) link. A message link may

represent a function call (local or remote) originating in one component and

terminating at the interface of another. Events are similar to messages but

semantically they stand for calls initiated by external causes in contrast to calls

made under program control. In ECOML, one type of connector indicates the

relation between abstract elements, i.e. Learning Design, OKU and Learning

Components that may contain further LDs, and OKUs. This type of connector can

be described as an event connection and indicates external activation of the

abstract element during model playing with Level-B or Level-C authoring tools.

The other type simply indicates the parent-sibling relation between physical

elements and the immediate root structure. This type is solely a message

connection. Its activation is done automatically given the satisfaction of the

53

constraint that is imposed upon the abstract element during model playing with

Level-B or Level-C authoring tools. Table 2 shows the graphical representation of

such elements of ECOML.

ECOML is based on COSEML‘s structural architecture and using the same

software elements as its basic fundamental modules. COSEML‘s main Java code

is also used as the basic infrastructure and groundwork when developing the

ECOML.

Mili et al. (1995) discusses the software reuse in software engineering as

the (only) realistic approach to bring about the gains of productivity and quality

that the software industry needs. Software reuse includes reusing both the

products of previous software projects and the processes deployed to produce

them. According to Mili et al. (1995) software reuse can be vertical or horizontal.

Vertical reuse can exist if there is a single application, and in this application

others can share many software modules developed by one. Horizontal reuse can

exist if there are many application areas. Vertical reuse offers more benefits, but

requires developers to make domain analysis in order to design systems.

The success of COSEML makes itself reusable in both vertically and

horizontally. ECOML proves that COSEML can be horizontally used in another

area of interest like Education. And, additionally as a hierarchical modeling

language COSEML‘s software modules can also be reused in similar projects

where main philosophy is the hierarchically represented models. Therefore,

ECOML reuses the COSEML in both vertically and hierarchically.

Software reuse can be measured by looking at the ratio of reused code to

total code in terms of Lines Of Code (LOC). However, Mili et al. (1995) says that

it is more convenient for programmers and project managers, to measure the reuse

in terms of modules. And, Mili et al. suggest the following steps for a better

approach;

 existing program modules should be rewritten for reuse,

 the purpose, capability, constraints, interfaces, required resources,

objects, and interfaces between objects of existing program modules

should be well-defined,

54

 before writing of a new module, existing modules should be searched.

If it is not found then that module should be written by obeying the

first and second steps.

In fact, this is partly the theory that lies beneath the COSE approach (i.e.

re-usage of components where and whenever applicable).

If advantages of the software reuse can be briefly defined;

 it yields substantial productivity benefits. For example, Mili et al.

claims that software reuse in the construction phase increases the

productivity by 20% or more by using previously developed software

modules,

 it reduces the costs of construction and re-testing of the system,

 it increases overall quality and reliability. Obviously when quality

software modules are reused, overall product quality will improve, as

well. Of course, reliability of the modules and their certification with

a certain level of confidence is an important aspect. But, such

concerns are beyond the coverage of this thesis study.

As it is stated earlier, COSEML is a proven software code and a modeling

tool. And, ECOML reused COSEML‘s software modules as its starting point.

COSEML is composed of 6 packages and 6653 lines of code, altogether makes up

three different modules, namely GUI, UTILITY and GRAPHICAL OBJECTS

modules. ECOML has reused 80% of the GUI module (e.g. ToolBar,

DiagramTree, MainDiagram, etc.), 25% of Graphical Objects module (e.g.

AkNode, AkShape, AKRows and AKModelTree) and 100% of Utility Classes

module. Reused code is roughly equal to 65% of COSEML‘s total software code.

Approximately 100 lines of code were deleted because of their unrelated

functions. And, ECOML has introduced 2800 newly developed lines of code. As

a result, one can say that 35% of COSML‘s software coding has been modified

and/or inline code is introduced.

A software component is defined by Kara (2001) as the independent and

replaceable part of a system that has a function in a well-defined architecture. As

it is also described by Kara (2001) any component in COSEML (and so in

55

Component

 Description

 Properties

 Methods

 Events

ECOML) contains four fields as in Figure 17. Description field gives the

information about the component to semantically search for the component (e.g.

the statement of ―This component is a general purpose button‖ is a description).

Properties field is used to change the characteristics of the component (e.g.

―Color‖ is a property of the button component). Methods field gives the services

provided by the component (e.g. ―GetButtonState‖ is a method of the button

component). Events field is used to set the actions to be performed when an event

occurs in the component or from the environment (e.g. ―OnButtonClick‖ is an

event handler of the button component).

Figure 17. Fields of a COSEML (ECOML) component.

The following software components and definitions are borrowed from

COSEML whose characteristics are explained by Kara (2001) in his thesis study.

Some of the components are coded new, and, they are described at the proper

place inside this thesis study. Some of the components (like Graphical User

Interface (GUI); tool bar, main frame, split pane, and Graphical Editor (such as

the abstract and component level trees) are reused in ECOML and their structural

properties are as follows: Please note that Figures 18 thru 24 are taken from

Kara‘s (2001) thesis study.

56

Implements

KeyListenerJFrame

CosemlFrame

Figure 18. Class hierarchy of CosemlFrame

CosemlFrame is the main frame class in which the user interface fields,

like the main menu, main tool bar, split pane, and status bar, are created. Its class

hierarchy is represented in Figure 18. It implements the KeyListener class to get

the key clicks from keyboard.

Implements

ActionListenerJToolBar

CosemlToolBar

Figure 19. Class hierarchy of CosemlToolBar

CosemlToolBar class, which is depicted in Figure 19, creates the main tool

bar. It implements the ActionListener class to know the pressed button. This

class gets the figures of the buttons from gif files in Images directory.

JSplitPane

CosemlSplitPane

Figure 20. Class hierarchy of CosemlSplitPane

57

The split pane of the main frame contains the tree view of containers and

modeling page. The user can change the size of these elements by moving the

splitter between those. The class hierarchy is represented in Figure 20.

11..*

Implements

TreeSelectionListenerJTree

CosemlTree

DefaultMutableTreeNode

CosemlTreeNode

Figure 21. Class hierarchy of CosemlTree and CosemlTreeNode

Figure 21 shows the tree view of the containers is in a scrolling pane. It

enables to user to select the nodes, CosemlTreeNode, of the tree by implementing

TreeSelectionListener class.

Implements

MouseListenerJPanel

CosemlDrawPanel

MouseMotionListener

Printable

Figure 22. Class hierarchy of CosemlDrawPanel

The modeling page, i.e. draw panel, is also in a scrolling pane. It is

derived from JPanel class as depicted in Figure 22. It implements the

MouseListener, and MouseMotionListener classes to get the mouse events. Since

the tool can print the model, it also implements the Printable class.

58

JDialog

AKComponentPropDlg AKInterfacePropDlg AKNamePropDlg CosemlFindDialog CosemlFrame_AboutBox CosemlPrintDialog

Figure 23. Class hierarchy of dialog classes

The tool contains many dialog windows, some of them are derived from

JDialog class, and some of them are created from built-in message windows. The

dialog classes derived from JDialog are in Figure 23.

Tree algorithms are designed to graphically balance the locations of the

nodes such that every parent is centered above its children. There are recursive

routines to accomplish this goal. Kara (2001) mentions about three passes, which

are carried out in COSEML. Nodes are left justified and they are organized as

one linked-list per level at the end of the first pass,. Every level starts on the left

of the screen, and there are no gaps between the elements of the row.

Figure 24 shows the quadruply-linked-list structure used in the algorithm.

On the left, there is a linked-list (rows), holding pointers to the first and the last

elements of the rows. This list has an element for every row. On the right, there

is the tree that consists of nodes where each node contains the node information

and the pointers to parent, child, left and right nodes. The Child pointer points to

the leftmost child only. The same structure is used in ECOML with the exception

that if the child is defined as a LO or LU then it is not possible to assign another

child. It is perfectly possible to assign another child to its left or right, though.

Otherwise as long as the node is assigned as a parent then it is possible to branch

downwards with further siblings.

59

First

Last

Next

Parent

Node

Child

L
ef

t

R
ig

h
t

Figure 24. Tree data structure

A bottom-up second pass makes sure that every parent is centered above

its children. A third top-down pass adjusts one parent at a time, to assign the final

horizontal position. If a parent has to be shifted right, the amount of shift has to

be propagated to all the related sub-tree. The shift value for a parent is utilized at

the lower level, adding to the required shifts for the nodes at this lower level. So

this pass actually propagates a shift from top to bottom, with an added value to

this shift at every level per sub-tree.

The main modules to find tree nodes are LastChild, Siblings, MidSiblings,

RightCousin, and HasRightSibling. LastChild module returns the last child node

of a given parent node by a search starting from left most child and moving to the

right. The tree traversal is done in depth-first pre-order (prefix) traversal. Other

modules traverse the tree similarly and return an appropriate value (depending on

which module is called) provided that the child exists, otherwise either a ―Null‖ or

―False‖ is returned (e.g. HasRightSibling).

There are six different modules used for inserting new nodes. These are

InsertLeft, InsertRight, InsertChild, StartFamily, StartRow, and EnlargeFamily.

60

InsertLeft algorithm inserts a given node to the left of another given node.

InsertRight algorithm inserts a given node to the right of another given node.

While inserting, the algorithm updates the first pointer of the current tree row if

inserted node is the first. InsertChild algorithm inserts a given node as a child of

another given node. While inserting, if the row of parent node is the last row, the

algorithm starts a new row by calling StartRow algorithm. If the row is not the

last and the parent has no child then it starts the family of this parent by calling

StartFamily algorithm. If the parent has children then the algorithm enlarges the

family of that parent by calling EnlargeFamily algorithm.

After the insertion of nodes, all nodes in the tree are centered

automatically according to their children. This is done by calling another module

that is called as the PrepareTree algorithm.

As stated earlier, ECOML has reused 80% of the GUI (e.g. ToolBar,

DiagramTree, MainDiagram, etc.), 25% of Graphical Objects (e.g. AkNode,

AkShape, AKRows and AKModelTree) and 100% of Utility Classes modules.

Reused code is roughly equal to 65% of COSEML‘s total software code. And,

ECOML has introduced 2800 newly developed lines of code. As a result, 35%

of COSML‘s software coding has been modified.

4.4. Components - Graphical Modeling Elements

As Component Orientation is a new Software Engineering paradigm for

systems development, where development by integration is suggested. ECOML is

similarly designed to be a modeling language that is flexible enough to

incorporate all kinds of educational components to be represented in the modeling

phase. In order to accomplish various representations for object oriented and

component related modeling, commonly used graphical symbols are adopted

where applicable.

ECOML is based on a process model for the development of educational

models utilizing available components. As a graphical language it supports the

following components; OKUs, LCs and LOs. When OKUs, and/or LCs are used

as parent modules in a hierarchical design, their sub-components can be defined as

other primitives that are used during the delivery of the course, training or any

61

other similar teaching/learning process. Instructional model starts with the parent

node that is designated as the Unit of Learning as it conforms the IMS-LD

specifications. A UoL may have OKUs and/or LCs as other abstract sublevels.

The hierarchy is a key concept in design cognition, and it is not supported

effectively in all educational modeling languages. To address this concept better,

ECOML utilizes multiple hierarchical diagrams, as well as singled out designs

each of which shows the abstract decompositions and educational component

compositions together. ECOML‘s Main Diagram does not necessarily have to

represent the complete model. ECOML permits the user to have more than one

package with more than one sub packages (like OKUs and LCs). Each of them

can be represented in different linked-list structures at separate diagrams.

Meanwhile, split pane is designed to show the overall structure of the learning

design. That is to say, different levels and/or groups of components can be

selected in different diagrams, as well as selecting different kinds of links. The

structural breakdown will remain as the background view, and other views can be

turned off and on by selecting different levels from the split pane.

Figure 25. ECOML‘s Graphical Symbols

ECOML can addresses both abstract and physical components in every

level of the hierarchical model. In every-level, elements represent the abstractions

for package, data, function, and control. Figure 24 depicts the symbols used in

62

ECOML. The symbols that are used to abstract the physical components (i.e.

graphical symbols of LOs and/or LUs) have created, copied or edited from the

worldwide available icons that claim either Creative Commons License or

restricted GNU Lesser General Public License, which permit the usage of

graphical symbols for educational purposes.

The ―Learning Design‖ (root) abstraction indicates the instructional

package. Therefore, it is represented by the UML‘s package symbol. In the

lowest level only graphical symbols that abstract physical components can be

used. These are the components that indicate the resources, which are being used

during the delivery of the instructional process.

Besides the learning unit or learning object abstractions, also association

links are required to connect the symbols, which are depicted in Table 2. There

are two types of links, which are either the default link between two symbols that

is called as the message link and represent the mandatory control flow (represent

method relation) between the components. The other type of link is the event

connector that indicates the association relation. Association relation represents

the relation between higher-level abstractions of OKUs and/or LCs, which can be

an independent part of the overall instructional design. Both links show

ownership relations.

Table 2. ECOML Graphical Symbols

Symbol Explanation

Learning Design: Package is a container that wraps system-level entities

and functions etc. at a decomposition node. Can contain further LCs, OKUs,

LUs and LOs. Can own event connector ports

OKU or Learning Component: Can contain further Learning Components,

OKUs, LOs, LUs. Can own event connector ports.

LO, LU, LC: represents a help information

63

Table 2. Continued

Symbol Explanation

LO, LU, LC: represents a read-only document (e.g. pdf).

LO, LU, LC: represents a time dependent activity.

LO, LU, LC: represents an application. Can be any real-life application (e.g.

lab activities, outdoor activities, etc.) with the teacher.

LO, LU, LC: represents book(s).

LO, LU, LC: represents certain chapter(s) or reading material from an

information resource (e.g. book(s).

LO, LU, LC: represents a mail document

LO, LU, LC: represents a multimedia file

LO, LU, LC: represents a sound file

LO, LU, LC: represents an important document

LO, LU, LC: represents a HTML document

LO, LU, LC: represents a Wiki document

LO, LU, LC: represents a chat session.

LO, LU, LC: represents a forum session

64

Table 2. Continued

Symbol Explanation

LO, LU, LC: represents an in-class discussion

LO, LU, LC: represents an assessment item (quiz, exam, etc.)

LO, LU, LC: represents out of classroom assignments (homework, etc.)

LC: represents a face-to-face lecture or a teaching/learning session.

LO, LU, LC: represents a presentation or a guest speaker

LO, LU, LC: represents a video conference session

Message Connector: A method relation. Represents control flows across the

system modules of the lowest level.

Event Connector: An association relation. Represents control flows across

the system modules of the highest level.

Yet another important factor, which must be taken into consideration, is the

―constraints‖. Because of the fact that every phase of human life involves

constraints and one cannot think of a real-life process without constraints. Bartak

(1999) says a constraint is simply a logical relation among several unknowns (or

variables), each taking a value in a given domain. The constraint thus restricts the

possible values that a variable can take; it represents partial information about the

variables of interest. The important feature of constraints is their declarative

manner, i.e., they specify what relationship must hold without specifying a

computational procedure to enforce that relationship. First of all, any legal model

65

should satisfy such constraints. Secondly, to eliminate unwanted interpretations,

users may enforce additional constraints. So, every modeling language must

come up with abstractions of constraints, as well. These constraints stem from the

modeled domain, the implementation domain (e.g., no multiple inheritance), and

even from the modeling process domain (like UML‘s sequence diagrams, which is

required for each external event).

ECOML as an instructional modeling language bears both internal external

constraints. Internal constraints include syntactic and semantic constraints, which

are mainly inherited from COSEML and define the meaning of the language

primitives as well as the right way to use them. That‘s why, ECOML is bounded

by the same internal constraints of COSEML. External constraints are the ones

that must be taken into consideration when abstracting real-life instructional

processes into educational models. Mainly, such constraints become important

when an external player (like ReLoad or CopperAuthor) plays the instructional

model. Such as a sequence of an activity may depend on the learner‘s answers to

a certain assessment process, quiz, exam or homework. External constraints are

defined as conditions by IMS-LD specifications. Conditions in unit of learning

are used to show or hide parts of pages using classes, environments, activities-

structures and support-activities. They all have a basic structure, consisting of an

<if> statement checking a condition, a <then> part which describes what to do

when the condition is true and an <else> part which describes what to do when the

condition is false. ECOML describes such activities within its ―Assessment‖

group of graphical symbols and description of the constraint resides in the

prerequisites component structure (see Figure 16).

4.5. An Example Model

In this section, a sample model is prepared and explained. A typical course

material that is delivered in a blended learning environment, is modeled by

ECOML. Usages of various menu items are also explained with the help of

screen shots.

An undergraduate course, which is offered in the Department of Computer

and Instructional Technology Teacher Education of Bilkent University, was

66

modeled as an UoL to reflect the intended blended learning methodology with

OKUs, LCs and other learning materials (LOs and LUs). It is an introductory

course that teaches the fundamental concepts of Operating Systems to the

sophomore students in their 3
rd

 semester. The course consists of three semi-

independent parts. One part is designed as an independent OKU; concepts that

are referenced in OKU make up the main topics of the operating systems course.

This part can be taken out from the learning design without affecting the main

structure of the course. Primary learning objective of the OKU part is to teach

self-regulated learning concepts to the students. Second semi-independent part

contains the computer-lab practices where students learn and develop Unix shell

scripts using lab facilities. This part is also an independent part of the learning

design. Although, some of its concepts are relevant to the main course, it can be

easily taken out without affecting the delivery of the main course. And the third

part is the conventional lectures, which consist of formal face-to-face lectures and

discussion sections about the concepts of operating systems.

Figure 26. ECOML‘s Main Menu

The modeling language provides enough primitives to represent both

physical and logical entities as well as implementation units for instructional

67

designs. Figure 26 depicts the first dialogue page of ECOML. This page consists

of three parts. ―Main‖ is the area that is provided to draw the hierarchical tree

representation of the Learning Design. In the bottom of this part user can find the

necessary graphical symbols (abstractions) of educational components. Left part

of the page is reserved for the split pane and the graphical symbol groups. Split

pane contains the hierarchical structure of the Unit of Learning. User can select

different Learning Designs that represent different levels of the hierarchical

structure, and the corresponding part of the LD (or part of the tree) is shown on

the right hand part of the page, which is designated as the ―Main‖ area.

The upper part indicates the general controlling functions like, File, View,

Tools and Help. Also a toolbar which provides convenient functions to the user,

like ―new file‖, ―save‖ ―print‖, ―copy‖ ―paste‖, ―delete‖, ―‖search‖, etc, is also

provided in this section. Selectable functions that are applicable to the current

session become visible, so they are usable by the designer.

Figures 27 through 30 provide the detailed decomposition of the example

course with some of the graphical symbols that are listed in Table 2.

Figure 27. Learning Design Properties in Main Diagram

68

Figure 28. Learning Design in Main Diagram

Graphical representation of various physical resources is grouped under

six different categories as shown in Figure 27. Every instructional model starts

with the abstract symbol, which indicates that this is a learning design (LD).

Hence, the starting symbol is called a LD or Main. The ―Main‖ group contains

another abstraction that is called as OKU (which is an LC). These represent

independent or semi-independent parts of a course. Each visual notation inherits a

―learning objective‖ of the course, but each part can also be taken out completely

without affecting the delivery of the rest of the course. Each LD or OKU and/or

LC can be used in other contexts and/or platforms for similar purposes (satisfying

the inherited learning objective).

The Main Diagram (Unit of Learning) starts with the Main 1 symbol.

Right-click with the mouse on top of Main 1 symbol permits the user to enter the

deaign properties of the instructional model (see Figure 27). This pop-up window

also lets the designer to use ―copy‖, ―paste‖, ―delete‖, and etc. facilities for easier

modeling.

69

Figure 29. Hierarchical Representation of Learning Components

The other five categories of graphical symbols represent abstractions of

various physical elements, which are being used during the delivery of the course.

This second group of visual notations is defined as:

 “Continuous” Group: contains abstract that indicate educational

resources, which are continuous in nature, like multimedia files or

wikis, etc.

 “Discrete” Group: is for static resources like various text, or pdf files.

 “Collaborative” Group: contains interactive resources that describe

situations in which particular forms of interaction among people are

expected to occur. Such resources can be used either in face-to-face

educational environment (like classrooms) or in computer-supported

environments (like, chat, forum, etc.).

 “Assessment” Group: contains abstractions, which enables the

designer to conditional activities and assessment facilities, like quiz,

exam, etc.. Such conditional abstracts can be used to realize the

learning scenarios when UoL is tried to be played in Level-B or Level-

C authoring tools.

70

 “Others” Group: This group is used for abstractions that are not be

categorized in any one of the above explained four groups. This group

will also contain new graphical symbols that may appear in the future,

which were not thought of at the time of first implementation of

ECOML.

Figure 30. Lowest Level with Physical Components

Finally, the output of ECOML can be either a file (an XML file) that

contains information about; resources, activities, environments, properties,

conditions and/or notifications of the Learning Design specification or a visual

graphically represented instructional model. This model (the XML file) can be

played with IMS-LD complaint Level-B or Level-C authoring editors.

4.6. Comparison of ECOT with Others

ECOT (Educational Component Oriented modeling Tool) is the authoring

tool, which models educational processes according to the guidelines that are

prescribed by the ECOML. Table 3 compares ECOT with some of the well-

known authoring tools that are available in the market today. Compared authoring

tools are selected from the ones, which are proposed by the IMS (see Table 1).

71

The tools that are under development or not released are not included into the

comparison (see Table 1). Compared quality concerns (i.e. columns of Table 3)

represent the quality concerns that are mentioned in Section 5.1. The relevant

explanation of the columns of table with respect to its rows (i.e. chosen editors) is

given below.

MOT+ is developed by the University of Quebec. It is defined as an

object-oriented modeling tool, but rather than an authoring tool, it is a specialized

concept map editor (see Figure 31, which is given by Paquette et al. (2006)).

MOT+ represents instructional models in concept map style with rather (un)user-

friendly graphical symbols. Therefore it does not produce any hierarchically

represented instructional models. It is also claimed that MOT‘s representation

technique is wide-ranging. It applies to all cognitive fields and makes it possible

to build various types of models such as class or component hierarchies,

sequential, parallel or iterative procedures, verification theories and structures,

processes and methods.
40

 But, it is usage is awkward and needs user training.

Figure 31. An instructional model generated by MOT+

40 http://www.cogigraph.com/Produits/MOTetMOTplus/tabid/995/language/en-US/Default.aspx, last accessed

January 15, 2010

72

Table 3. Comparison of ECOT with Other Authoring Tools

Name Producer Ownership LD Editor
Conformed

Standard

Hierarchical

modeling with

symbols

Context

Sensitivity

Eclectic

Benefits

Course Quality

Assessment

Pedagogical

Immunity

MOT+
University of

Quebec
open source general purpose IMS-LD No No Yes

Yes, executable

model
Yes

LAMS
LAMS

foundation
open source general purpose

as future work

(IMS-LD)
No Yes Yes

Yes, executable

model
No

Dialog+
US & UK

Universities
open source

online learning

activity creator

SCORM,

IMS-LD
No N/A Yes Yes No

Collage
University of

Vallodolid
open source special purpose IMS-LD No No Yes No No

Moodle

Moodle Trust,

Martin

Dougiamas

open source not an LD editor SCORM No Yes Yes
partly executable

model
No

ASK-LDT

Informatics &

Telematics

Institute Greece

freeware

(unavailable)

claimed as

―general

purpose‖

SCORM,

IMS-LD

claimed so, but

unavailable for

testing

unavailable

for testing

unavailable for

testing

unavailable for

testing

claimed so, but

unavailable for

testing

CopperAuthor

Editor

Open University

of the

Netherlands

open source general purpose IMS-LD No No
No. Difficult to

use

Yes, executable

model
Yes

COSMOS
University of

Duisburg
open source

specific to few

pedagogical

methods

IMS-LD

Partly (only

prespecified

templates)

No, only

prespecified

templates

Likely. Needs

the designer to

know IMS

Yes, executable

model
No

RELOAD
Reload project

(JISC)
open source general purpose

SCORM,

IMS-LD

partly (only one

LD is displayed)
Yes

No. Difficult to

use

Yes, executable

model

ECOT
METU-CENG

Turkiye
freeware general purpose

as future work

(SCORM,

IMS-LD)

Yes Yes Yes No Yes

 73

Learning Activity Management System (LAMS) is a learning design

system to define and deliver learning activities, i.e. it is learning activity

management software. It is described as a visual authoring interface to design and

create learning sequences from a list of building blocks of individual or collective

activities.
41

. That is to say it is an educational modeling tool with authoring of

scenarios that is based on learning activities. In LAMS, groups (can be

considered as courses) are created and learning sequences are assigned to those

groups. Therefore, as it is shown in Figure 32, instructional models are not

represented hierarchically but they are represented in sequences of activities, one

after the other. LAMS cannot represent courses where more than two independent

or semi-independent parts, which should be executed in parallel, exists. Which

makes it undesirable from the context sensitivity point of view.

Figure 32. An instructional model generated by LAMS
42

41 http://edutechwiki.unige.ch/en/LAMS, last accessed January, 15 2010.

42 http://edutechwiki.unige.ch/en/LAMS, last accessed January, 15 2010

 74

As it is also admitted by Hernández-Leo et al. (2006) LAMS is capable of

supporting a range of pedagogical approaches, in that designers can select

different activities, which match their preferred style. But the fact of the matter is

that it does neither have the same pedagogical immunity that ECOML has got nor

it is creating hierarchically represented instructional models.

The DialogPLUS Toolkit is an online browser-based application to guide

and support teachers as they create, modify, and share learning activities and

resources. Its primary aim is explained by Davis et al. (2007) as to develop a

distributed enabling information infrastructure for the support of learning and

teaching in Geography; and innovative approaches to teaching and learning, based

on this infrastructure. Therefore, from context sensitivity point of view, Dialog+

not suitable for mixed-mode course or face-to-face lecture designs.

Figure 33. Instructional models generated by Dialog+
43

Instructional design is made using pre-specified templates.
44

 Dialog+ does

not provide any visual notation for the design of instructional models. Therefore,

it does not provide any hierarchical model with graphical symbols (see Figure 33).

43 http://edutechwiki.unige.ch/en/LAMS, and http://www.geog.soton.ac.uk/users/leungs/tdlsite/ last accessed

January, 15 2010

44 http://www.nettle.soton.ac.uk/toolkit/userarea/default.aspx last accessed January 15, 2010

 75

Additionally, although it is claimed that it covers tens of different teaching

methods, how pedagogical immunity can be possible with a form-based tool that

offers pre-specified methods?

Hernández-Leo (2006) describes the Collage authoring tool as a visual,

high-level and specialized Learning Design authoring tool for collaborative

learning. He also admits that it is a specialized editor for collaborative

pedagogical approaches. Hence, Collage is not a general purpose authoring tool

to start with. By the same token, one cannot mention about its context sensitivity

as a quality concern. As can be seen in Figure 34, Collage does not represent

instructional models in hierarchically either. Collage provides easy-to-use

graphical symbols for modeling. Therefore, it satisfies the quality concerns as far

as the eclectic benefits are concerned.

Figure 34. An instructional model generated by Collage.
45

Moodle is a free web application that educators can use to create online

learning sites. It is not an authoring tool in the classical sense. But, it is perfectly

possible to produce instructional models with learning activities and resources.

45 http://edutechwiki.unige.ch/en/Collage last accessed January 15, 2010

 76

Figure 35. An instructional model generated by Moodle.

As it is shown in Figure 35, a university undergraduate course is modeled

in a blended-learning fashion using the Moodle tool. Although Moodle is not

IMS-LD complaint, it can deliver content in standard SCORM packages.
46

Unfortunately, it cannot produce hierarchical instructional models and it is not

pedagogically independent (models ought to be based on time schedules therefore,

problem-based and/or case-based pedagogical designs are not possible to

represent).

Sampson (2006) describes the ASK-LDT as ―The core design concept of

the ASK-LDT is to provide a graphical user interface for the design and

sequencing of learning activities, which, on one hand uses a standard low-level

notation language for the description of learning scenarios and on the other hand

enables pedagogical designers to use their own design notation (high-level

notation) for the definition of learning scenarios‖. Figure 36 is obtained from an

46 http://moodle.org/about/ last accessed January, 15, 2010

 77

article written by Sampson et al. (2006) and published in Ed/ItLib (Education and

Information Technology Digital Library)
47

.

Figure 36. An instructional model generated by ASK-LDT
47

.

As it is declared in Section 3.3.2, neither this researcher nor others
48

 was

able to find out whether this project is still alive or not. Therefore, it is not

possible to make any inferences about the quality of the tool because of the

unavailability of the tool in spite of the fact that there are affluent of published

documents about it.

CopperAuthor
49

 is an open-source form-based editor developed by the

Open University of the Netherlands. It is general purpose and supports IMS-LD

Level A and B specifications. It can export UoL files, which can be validated and

47 http://www.editlib.org/ last accessed January 15, 2006

48 http://edutechwiki.unige.ch/en/ASK-LDT last accessed on January 16, 2010

49 http://sourceforge.net/projects/copperauthor/ last accessed January 16, 2010

 78

executed by the CopperCore engine. Last version is V1.6 that is published in

February 2006.
50

Figure 37. Main menu of CopperAuthor.

CopperAuthor is a form-based editor. Therefore it cannot represent

hierarchical models. And, it cannot produce any graphical model of an

instructional process. Secondly, Koper R (2009) says that courses that have no

online components or automation, courses that are designed and taught by the

same person all the time (classroom-teaching model), and simple, non-adaptive

courses) are not within the scope. Therefore, its context sensitivity is in doubt.

CopperAuthor is only for web-based designed courses. Its eclectic benefits is also

very restricted because of the fact that one has to be in very good command of

IMS-LD terminology in order to be able to design any instructional model (see

Figure 37). Non-expert designers have great amount of difficulty when

developing even for web-based simple courses.

50 http://dspace.ou.nl/simple-search?query=CopperAuthor&start=0 last accessed January, 17, 2010

 79

COSMOS ASK_LDT and RELOAD authoring tools are reviewed earlier.

Please see Sections 3.3.2 and 3.3.1, respectively.

For specific implementation and design details of ECOT please have a

look at Chapter 4. Obviously, there are a few shortcomings of ECOT V1.0 when

compared to some other similar tools. For example, the current version of ECOT

cannot export imsmanifest files for execution by IMS-LD complaint players. This

feature is started being implemented. Version 2.0 will have this feature

operational. Another desirable feature of ECOML would be the ability to execute

hierarchical models in e-learning environments. Planning and design of this part

as another stand-alone educational tool is also continuing at the time when this

thesis study has made.

 80

CHAPTER 5

5 CONCLUSION AND RECOMMENDATIONS

Usually the only documentation that is available after a course is designed

and developed, are the actual learning materials. Most of the time reproduction or

the reuse of the same instructional design may not be possible. This raises some

questions concerning the effort required in redesign or adaptation process when

the original developer is not available.

ECOML, as a graphical tool with significant set of requirements and easy-

to-use features provides basic scaffolding in the form of visual notations. This is

an ideal authoring environment in support of instructional designers, as well as

non-expert authors for a convenient way of modeling their knowledge. The

resulting model can be easily reused in different contexts and across different

educational platforms.

The implemented first version provides a flexible modeling tool in which

all teaching components are effectively discovered, defined and connected.

Development of an abstract notation that is sufficiently general to represent Units

of Learning (UoL), Learning Components (LC), Learning Objects (LO), and

Operational Knowledge Units (OKU) with respect to the common structures

found in different instructional models was made possible. As it is shown, so is

proven with the first version, hierarchical decomposition and modeling of

instructional processes is easier, better, much quicker and visually more effective

that any other method. Certainly ECOT is a good example, which is capable of

producing such instructional models.

On the other hand, COSEML was proposed as the primary modeling

language for Component Oriented Software Engineering approach by Dogru

(1999). Since then, researchers have been contributing for the improvement of it.

However, ECOML is the first modeling language that is an offspring of

 81

COSEML. Since, ECOML produces hierarchically models of educational

processes with a ―build by integration‖ approach, it also becomes another case

study that proves COSECASE can also be integrated with (educational)

components architecture.

5.1. Quality Concerns

Evaluating a modeling language from the educational point of view is not

an easy task. Because there are as many issues that should be taken into

consideration as there are pedagogical approaches, which exist today.

Nonetheless, there are some key issues that are discussed in the literature that are

considered during the evaluation process. According to Botturi (2004) an

instructional design language has to cope with at least four issues, some related to

design in general, others specific to educational settings. Those four key issues

are ―context sensitivity‖, ―eclectic benefits‖, ―course quality assessment‖ and the

‖importance of time‖. Keeping in those four key issues in mind, one can

elaborate the conformance of ECOML as such:

 Context Sensitivity. Botturi (2004) claims that the actual use and

effectiveness of a design language strictly depend on the designer, the

type of instruction to be designed, and the overall institutional and

educational context. Whether the course is suitable for system-level, a

mixed-mode course or a face-to-face lecture series, ECOML provides

variety of graphical symbols for different components of the

instructional approach. Depending on the pedagogical approach and

competencies of the designer, organizational and operational context

can be specified and by selecting different graphical symbols of the

course components, the corresponding model can easily be achieved.

Additionally, dynamic behavior of the educational system in both

abstract and component levels is also made possible in ECOML.

Furthermore, ECOML permits the modeling of the top-down

sequential interactions among instructional components.

 Eclectic Benefits. Botturi (2004) says that in order to evaluate the

impact of a tool, one should figure out benefits it brings to its users.

 82

As being a visual modeling language ECOML brings the easiness to

define and construct the courses by using graphical symbols.

Components are designated by abstract symbols and different learning

units can easily be represented using these abstract symbols. Hence,

any designer can grasp the rationale of a course by examining its

visual model. Graphical symbols can be cut, and/or copy pasted

easily, which makes the construction process easier to manipulate.

Graphical symbols are universal, therefore easier to transport cross

platforms, which makes ECOML models can be reused in different

contexts and across different educational platforms.

 Course Quality Assessment. Botturi (2004) says quality of the product

as a result of the modeling process is another relevant item in

evaluating the modeling language. Botturi (2004) argues what makes

a course a good one? Is a course a good course because all learners

achieve its objectives, although none of them were able to do any

other course in the same term because of work overload? And,

continues with other examples. The elements that indicate the quality

of a course are many – pedagogical, administrative, institutional,

teaching expertise, etc. – and they are often tightly intertwined.

Probably, Botturi (2004) considers a course as an end product of an

instructional modeling language, which can play the instructional

model. Of course the delivered/played course quality depends very

heavily on the quality of the model, in turn of the language that creates

the model. In this respect, current version of ECOML, as being a

Level-A editor that cannot play the instructional models in real-time,

is not responsible for the quality of the model that is designed.

 The Importance of Time. Botturi (2004) mentions about a book that

was published in 1967, authored by McLuhan M., & Fiore Q. The

medium is the massage. New Work: Bantam Books. McLuhan &

Fiore say that a new medium, as a new communication tool or a new

language, does not bring a sudden revolution, rather smoothly presses

on our perception and experience and slowly brings forth huge

 83

modifications. The book was published almost twenty years earlier

than the widespread use of Internet and claims that the dominant

communication media of our time will shape the way humans think,

act, and ultimately perceive the world around them. Similarly, Botturi

(2004) predicts that a language (e.g. a modeling language) creates –

step by step – a new communication environment, where new

concepts are used and new expressions are possible, while some old

concepts and expressions might become out of date, or even not

possible any more. Therefore, Botturi (2004) claims that time is of

paramount importance for the integration of a language in a

community‘s practice. That‘s why, Botturi (2004) thinks that a

complete evaluation should observe the evolution of the design

practice and of the instruction over a longer period of time. Regarding

the Botturi‘s (2004) lastly stated criteria, not only ECOML but, other

educational modeling languages must also wait and see how they

change the world of education.

Of course the issues that are presented above do not cover the whole set.

The quality of the tool also depends on the choice of technology, different

personal and cultural matters of the software developers, expressive power of the

modeling language, collaboration of designers and instructors, etc..

Luca Botturi (2004) also mentions about the Institutional Events as being

another matter of consideration in the evaluation of instructional design

languages. The impact of a language could also be observed on the social

dimension, as it provides for example the possibility to define different

pedagogical patterns, or to create a shared repository of courses. Besides that, the

tool can easily be included into the training of novice designers and/or instructors,

the sharing of expertise and best practices, the reuse of design, and the

communication inside and outside the instructional design team as elements of

knowledge management. Obviously, ECOML satisfies all above concerns when

used properly with the targeted objective is in mind.

The last key issue is the Expressive Power of the modeling language.

Botturi (2004) mentions about the extension of the domain of objects that a design

 84

language can describe. Can it answer the concerns like the language is able to

equally well represent the instruction to be delivered with different media, or in

different settings? Can it comprehend and relay the essence of different

pedagogical approaches? ECOML, being a visual modeling language for the

design of educational environments, does not depend on the particular

pedagogical approach or the type of media or delivery settings. Its top-down

representation of instructional scenarios allows designers to represent the

instructional process in any method that is desired using the proper graphical

symbols as long as the corresponding symbol is in the repository of the ECOML.

If a symbol is not in the repository it can be easily added up as an update.

Hoyer and Brooke (2001) say that the quality of a tool is its adequacy to a

problem solving activity for its users. Let‘s further clarify how ECOML helps to

solve educational problems with an example; consider the complexity of

instructional design process and suppose a new designer in charge of redesigning

two courses developed by someone else. S/he has only the course materials for

the former, and a complete documentation (including instructional models

developed with ECOML) for the latter. Aid of the documentation, along with the

measure of effectiveness (e.g. time spent), would give the measure of the impact

of ECOML on this particular situation. The tool, with the help of graphical

models, would help the designer to overcome the problem of grasping the former

instructor‘s personal/cultural approach and his or her pedagogical method of

delivering the course.

5.2. Conclusions

This researcher‘s objective was to prove that educational processes could

be represented better with hierarchically decomposed models and develop a visual

educational modeling language where IMS-LD specified UoLs could be

hierarchically designed. Each UoL, as described by Koper and Tattersall (2005),

refers to a complete, self-contained unit of education or training, such as a

course, a module, a lesson, etc. The creation of a Unit of Learning involves the

creation of a learning design and also the bundling of all its associated resources,

either as files contained in the unit or as Web references, including assessments,

 85

learning materials and learning service configuration information. As it is

demonstrated in Section 4.5, ECOML represents the instructional model of a UoL,

which involves the creation of learning designs and all its associated resources, in

a top-down hierarchical fashion.

Educational Component Oriented modeling Tool (ECOT) is the first

implementation of ECOML. Version 1.0 of ECOT is able to produce

hierarchically represented instructional models. As can be seen in Table 3, ECOT

is at least as good as the well-known authoring tools that are proposed by IMS.

Excluding ASK-LDT, neither of the available authoring tools is able to produce

hierarchical models. As for ASK-LDT, in spite of all kinds of efforts, this

researcher was not able to find out its installable software program for

comparison.

5.3. Future Work and Recommendations

A basic literature survey easily indicates the following current issues in

Learning Design (with respect to research, development and implementation

phases). As stated in the introduction part, there are several topics that are of

major interest at the moment. These are the current research topics and future

work for instructional modeling tools. These were analyzed in the editorials of

several issues of the IEEE Educational Technology & Society journals (like IEEE

Transactions on Education and/or IEEE Transactions on Learning Technology,

etc.), and can be summarized as follows:

a) The use of ontologies and semantic web principles and tools to:

 create a new, and more precise binding for Learning Design;

 integrate learning objects and learning designs;

 represent specific pedagogical approaches (learning design

knowledge);

 build software agents that operate on the learning design

knowledge to support in the development of Units of Learning.

b) The use of learning design patterns:

 to support learning designers to develop specific learning designs

(e.g. collaborative designs, adaptive designs);

 86

 that are automatically detected (pattern recognition) in Learning

Design coded Units of Learning;

 to capture best practices and learning design knowledge (relates to

ontologies points c and d).

c) The development of Learning Design Authoring and Content

Management Systems, includes the following issues:

 The development of a (standard) graphical notation for learning

designs;

 How to support the reuse of Learning Design Knowledge and

Learning Design Packages;

 The development of learning design specific tools to support

teachers in a specific context;

d) The question how learning designers should be supported with tools

and how teachers (the teacher as a designer) should be supported with

tools;

 The integration of learning design and assessment editors in a

single authoring environment.

e) The development of Learning Design Players, including the following

issues:

 How to integrate the variety of specifications (eg, IMS LD, IMS

QTI, SCORM, IMS LIP) and the connections to other systems in

an e-learning infrastructure (student administration, portfolio

systems, financial systems) into a single, easy to use learning

environment.

 How to instantiate and integrate communication and collaboration

services that are called by a Learning Design. Eg, forums, wiki's,

chats; are generic service oriented architectures suitable to do the

job? At what costs?

 How to design a usable, powerful and flexible user-interface for a

Player environment?

 87

 How to integrate Learning Design into existing Learning

Management Systems (like Moodle, Blackboard and LAMS)?

 How to integrate Learning Design Authoring Systems and

Learning Design Players, including the question how to deal with

runtime adaptations?

f) How to use an integrated set of Learning Design tools in an integrated

way in a variety of settings (e.g. in universities, training, blended

learning).

Considering all of the above mentioned research topics, there are quite a

few recommendations that can be done to improve ECOML as an instructional

tool. Therefore, as a future work;

 Overview diagrams can be constructed to show the dependencies

between activities and the activity flow (a sort of graphical time

table). Which will make the ECOML model executable by any

IMS-LD complaint Learning Design Player.

 ECOML‘s integration with OpenCourseWare can be investigated

and proper interface modules can be developed.

 ECOT version 1.0+ can be developed to export SCORM

compliant zip files, which can be imported and executed by LMSs

like Moodle.

 ECOT version 1.0+ can be developed to execute the instructional

models that were developed in previous versions.

 ECOT version1.0+ can be developed to make ECOT able to

import all imsmanifest.xml files, which are created by other 3
rd

party developers, and execute them properly as a LD Player.

 88

REFERENCES

Agostinho S, Bennett S, Lockyer L and Harper B. Integrating learning objects

with learning designs. Crisp G., Thiele D, Scholten I, Barker S, and Baron

J.(Eds), Interact, Integrate, Impact: Proceedings of the 20th Annual

Conference of the Australasian Society for Computers in Learning in Tertiary

Education. Adelaide, 7-10 December 2003. Last accessed on December 20,

2009 from http://www.ascilite.org.au/conferences/adelaide03/docs/pdf/571.pdf

Azgur S. M. and Dogru A. H., (2009). A Component Oriented Modeling

Language for Top Down Educational Design. Twelfth Transdisciplinary

Conference-Workshop on Integrated Design & Process Science November 1-

5, 2009 Montgomery, Alabama 8 pp.

Bartak Roman, ―Constraint Programming: In Pursuit of the Holy Grail‖ in

Proceedings of Week of Doctoral Students (WDS99), Part IV, MatFyzPress,

Prague, June 1999, pp. 555-564. Last accessed on December 26, 2009 from

http://kti.mff.cuni.cz/~bartak/downloads/WDS99.pdf

Bass, L; Clements, P; Kazman, R; Software Architecture in Practice – Second

Edition, SEI Series in Software Engineering, Addison Wesley, 2nd Edition,

2003.

Booch G., Rumbaugh J., Jacobson I., "The Unified Modeling Language User

Guide", Addison Wesley, April 2000.

Botturi Luca, (2004). Visual Languages for Instructional Design: an Evaluation of

the Perception of E2ML. Proceedings of World Conference on Educational

Multimedia, Hypermedia and Telecommunications (EDMEDIA) 2004 (pp.

243-250). Lugano, Switzerland, 2004.

Botturi Luca, (2005). A framework for the evaluation of visual languages for

instructional design: the case of E
2
ML. Journal of Interactive Learning

 89

Research ISSN: 1093-023X Dec 22, 2005. Also on The Free Library: retrieved

July 09, 2009 from http://www.thefreelibrary.com/A framework for the

evaluation of visual languages for instructional...-a0139682090

Burgos Daniel, Griffiths David, (2005). E-learning specifications. An

introduction. Last accessed on October 21, 2009 online

http://dspace.ou.nl/handle/1820/547

Caeiro Rodriguez, M.; Anido Rifon, L.; Llamas Nistal, M., (2004). Towards IMS-

LD extensions to actually support heterogeneous learning designs: a pattern-

based approach. IEEE International Conference on Advanced Learning

Technologies. Proceedings. 30 Aug.-1 Sept. 2004 Page(s): 565 – 569.

Retrieved September 30, 2009 from

http://ieeexplore.ieee.org/search/wrapper.jsp?arnumber=1357478

Christiaans H., & Venselaar, K. (2005). Creativity in Design Engineering and the

Role of Knowledge: Modeling the Expert. International Journal of Technology

and Design Education, 2005(15), 217-236.

Clemens P; Bachmann, F; Bass, L; Garlan, D; Ivers, R; Nord, R; Stafford, J;

Documenting Software Architecture – Views and Beyond. Addison-Wesley.

2
nd

 Edition. 2003.

Davis H., DiBiase D., Fill K., Martin D., Rees P., (2007). The DialogPLUS

project consortium. 2007 (January). Last accessed online January, 15, 2010,

either http://www.dialogplus.soton.ac.uk/outcomes.php, or

http://www.dialogplus.soton.ac.uk/outcomes%5Cdialogplus_final_report.pdf

Dodero Juan Manuel, Tattersall Colin, Burgos Daniel, Koper Rob., (2006).

Transformational techniques for model-driven authoring of learning designs.

Unpublished Paper. Last accessed online September, 01, 2009,

http://dspace.ou.nl/handle/1820/783

 90

Dogru A. H., TR-99-3, Component-Oriented Software Engineering Modeling

Language: COSEML. Middle East Technical University, Department of

Computer Engineering. Tech. Rep. METU-CENG-1999-3.

Dogru A, H., Tanik M. M., A Process Model for Component Oriented Software

Engineering, IEEE Software, Vol.20, No. 2, March/April 2003: pp.34-41

Gibson Cliff and Harlow Stephen, (2004). E-learning Standards Overview. Last

accessed online September, 01, 2009, http://www.steo.govt.nz/download/Draft

Standards Overview.pdf

Griffiths, David; Blat, Josep, (2005). The Role Of Teachers In Editing And

Authoring Units Of Learning Using IMS Learning Design. International

Journal on Advanced Technology for Learning, Special Session on "Designing

Learning Activities: From Content-based to Context-based Learning

Services‖, volume 2, issue 4, October 2005. Last accessed December 05, 2009

online http://dspace.ou.nl/bitstream/1820/586/1/griffiths_atl_2005.pdf

Hernández-Leo, D., Harrer, A., Dodero, J. M., Asension-Pérez, J. I., & Burgos, D.

(2006). Creating by reusing Learning Design solutions. Proceedings of 8th

Simposo Internacional de Informática Educativa, León, Spain: IEEE Technical

Committee on Learning Technology. Last accessed December 05, 2009 online

http://dspace.ou.nl/handle/1820/788.

Hernández-Leo, D, Villasclaras-Fernández, E. D., Asensio-Pérez, J. I, Dimitriadis,

Y., Jorrín-Abellán, I. M., Ruiz-Requies, I., Rubia-Avi, B. (2006). COLLAGE:

A collaborative Learning Design editor based on patterns. Educational

Technology & Society, 9 (1), 58-71.

Hoyer, R.W. & Brooke B.Y. (2001). What is Quality? Quality Progress, July

34(7), 53-62

IEEE Learning Technology Standards Committee, IEEE Computer Society. Draft

Standard for Learning Technology-Learning Technology Systems Architecture

(LTSA). IEEE P1484.1/D9, 2001-11-30, 2001.

 91

Kara A., M. S. Thesis study, ―A Graphical Editor for Component Oriented

Modeling‖. Department of Computer Engineering, METU, April 2001.

Karampiperis P, Sampson D. (2005). Towards next generation activity-based

Web-based educational systems. Advanced Learning Technologies, 2005.

ICALT 2005. Fifth IEEE International Conference on (2005), pp. 868-872.

Karampiperis P, Sampson D. (2007). Towards a Common Graphical Language for

Learning Flows: Transforming BPEL to IMS Learning Design Level A

Representations. IEEE CS Digital. ICALCT 2007. Seventh IEEE International

Conference on Advanced Learning Technologies, pp 798-800.

Knight, C., Gasevic, D., Richards, G., (2005), ―Ontologies to integrate learning

design and learning content‖. Journal of Interactive Media in Education.

2005/07.

Koper Rob, (2001). ―Modeling units of study from a pedagogical perspective the

pedagogical meta-model behind EML‖. Last accessed on December 05, 2009,

http://dspace.ou.nl/bitstream/1820/36/1/Pedagogical%20metamodel%20behin

d%20EMLv2.pdf

Koper, Rob, Manderveld, J., (2004). ―Educational Modeling Language‖. British

Journal Of Education Technology.

Koper Rob, Olivier Bill, (2004). Representing the Learning Design of Units of

Learning. Educational Technology & Society, 7(3), pp 97-111.

Koper Rob (2005). ―Modelling Pedagogy with IMS Learning Design. The use of

IMS LD to notate units of learning‖. UNFOLD CoP Meeting, Braga, 15 June

2005. Last accessed on January 05, 2010, http://hdl.handle.net/1820/363

Koper Rob (2009). IMS Learning Design State-of-the-Art. Open University of

the Netherlands. 6 October 2009. Nice IMS-LD Presentation. Last accessed on

December 17, 2010 at http://dspace.ou.nl/handle/1820/2043

 92

Miao, Y., Van der Klink, M., Boon, J., Sloep, P. B., & Koper, R. (2009). Enabling

Teachers to Develop Pedagogically Sound and Technically Executable

Learning Designs [special issue: Learning Design]. Distance Education, 30(2),

259-276. Also accessed online on December 05, 2009 online

http://dspace.ou.nl/handle/1820/1605

Mili H., Mili F., Mili A., Boite P., 1995. ―Reusing Software: Issues and Research

Directions,‖ IEEE Transactions on Software Engineering, Vol. 21, Issue 6, pp.

528-562, June 1995

Morris Stephen, (1994). Revising Knowledge: A Hierarchical Approach.

Proceedings of TARK V. Last accessed on 30.November.2009,

http://www.tark.org/proceedings/tark_mar13_94/p160-morris.pdf.

Neumann, Susanne and Petra Oberhuemer (2009, to appear). User Evaluation of a

Graphical Modeling Tool for IMS Learning Design, International Conference

on Web-based Learning (ICWL) 2009. To be published in: Lecture Notes in

Computer Science, Springer. Last accessed December 08, 2009 online

http://www.heyerlevel.de/calimero/tools/proxy.php?id=12856.

Ozcinar Zehra, (2009). The topic of instructional design in research journals: A

citation analysis for the years 1980-2008. Australian Journal of Educational

Technology, 2009, 25(4), 559-580.

Paquette Gilbert, (2004). Educational Modeling Languages, from an Instructional

Engineering Perspective, in R. McGreal (ed), Online education using learning

objects, pp 331-346. London : Routledge/Falmer. Last accessed on December

05, 2009, online at

http://www.licef.teluq.uquebec.ca/Portals/29/docs/pub/ingenierie/Article%20E

ML-MISAedited.doc

Paquette, G., Léonard, M., Lundgren-Cayrol, K., Mihaila, S., Gareau, D. (2006).

Learning Design based on Graphical Knowledge-Modelling. Educational

Technology & Society, 9 (1), 97-112.

 93

Richards Jay W., (2005). What Intelligent Design Is—and Isn‘t: The more

scientifically sophisticated we get, the stronger the argument for intelligent

design. May 13, 2005. Last accessed December 27, 2009 online

http://www.discovery.org/scripts/viewDB/index.php?command=view&printer

Friendly=true&id=2571

Sampson D., Karampiperis P., and Panayiotis Zervas. (2005). Developing Web-

Based Learning Scenarios Using the IMS Learning Design: The ASK-LDT

Environment. Web Information Systems Engineering – WISE 2005

Workshops. WISE 2005 International Workshops, New York, NY, USA

November 20-22, 2005. Volume 3807/2005, pp. 104-113. Last accessed on

Dec 12, 2009 online at http://springerlink.com/content/703779838152rjr3 or

pdf can be found at

http://springerlink.com/content/703779838152rjr3/fulltext.pdf

Sampson, D.G. Karampiperis, P. (2006). Towards Next Generation Activity-

Based Learning Systems. International Journal on E-Learning, 5(1), 129-149.

Last accessed online January 15, 2010 at http://www.editlib.org/f/21766

Schneider Daniel, K. (2009). He is the coordinator of EduTechWiki, which is

about Educational Technology (http://edutechwiki.unige.ch/en/Main_Page,

last accessed online on December 06, 2006). Also

http://edutechwiki.unige.ch/en/User:Daniel_K._Schneider and also

http://tecfa.unige.ch/tecfa-people/schneider.html, all of them last accessed on

December 06, 2009.

Sodhi T, Miao Y, Brouns F and Koper R. (2007). Design Support for non-expert

authors in the creation of units of learning - a first exploration. Last accessed

at 09.July.2009, http://dspace.ou.nl/handle/1820/984 or,

http://en.scientificcommons.org/35787533.

Tanik Murat M., Tanju Murat N., Dogru Ali H., Azgur Serhat M., ―Generating

anytime anywhere knowledge units as learning competencies,‖ Middle East

 94

Technical University, Ankara, Turkiye. Tech. Rep. METU-CENG-2009-01,

July 2009.

Vogten, H., Tattersall, C., Koper, R., van Rosmalen, P., Brouns, F., Sloep, P., van

Bruggen, J. & Martens, H. (2006). ―Designing a Learning Design Engine as a

Collection of Finite State Machines‖. International Journal on E-Learning,

Vol. 5, Issue 4, pp. 641-661. October 2006. Association for the Advancement

of Computing in Education (AACE), Chesapeake, VA, USA.

Wilson, S; Oliver, B; Jeyes, S; Powell, A; A Technical Framework to Support e-

Learning; JISC paper; vol. 2005. JISC, 2004; downloaded from www.jisc.org]

White, S. A. (2004) Introduction to BPMN. Last accessed at December 23, 2009.

http://www.bpmn.org/Documents/Introduction_to_BPMN.pdf

White, S. A. (2005) An Example of Using BPMN to Model a BPEL Process. Last

accessed at December 23, 2009.

http://www.bpmn.org/Documents/Mapping_BPMN_to_BPEL_v3.pdf

