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ABSTRACT 

PRIORITIZED EXPLORATION STRATEGY BASED ON INVASION 

PERCOLATION GUIDANCE 

Karahan, Murat 

 

M.S., Department of Electrical and Electronics Engineering 

Supervisor  : Prof. Dr. Aydan Erkmen 

Co-Supervisor  : Prof. Dr. İsmet Erkmen 

 

 

December 2009, 110 pages 

 

The major aim in search and rescue using mobile robots is to reach trapped survivors and 

to support rescue operations through the disaster environments. Our motivation is based 

on the fact that a search and rescue (SAR) robot can navigate within and penetrate a 

disaster area only if the area in question possesses connected voids Traversability or 

penetrability of a disaster area is a primary factor that guides the navigation of a search 

and rescue (SAR) robot, since it is highly desirable that the robot, without hitting a dead 

end or getting stuck, keeps its mobility for its primary task of reconnaissance and 

mapping when searching the highly unstructured environment We propose two novel 

guided prioritized exploration system: 1) percolation guided methodology where a 

percolator estimates the existence of connected voids in the upcoming yet unexplored 

region ahead of the robot so as to increase the efficiency of reconnaissance operation by 

the superior ability of the percolation guidance in speedy coverage of the area; 2) the 

hybrid exploration methodology that makes the percolation guided exploration 

collaborate with entropy based SLAM under a switching control dependent on either 

priority given to position accuracy or to map accuracy This second methodology has 

proven to combine the superiority of both methods so that the active SLAM becomes 

speedy, with high coverage rate of the area as well as accurate in localization. 

Keywords: SLAM, Robotic Exploration, Search and Rescue Mobile Robots, Percolation 

Theory, Active SLAM ,Entropy based methodologies. .
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ÖZ 

 

 

 

 

KUŞATMA AMAÇLI SÜZÜLÜM TEMELLI ÖNCELIKLENDIRILMIŞ KEŞIF 

STRATEJILERI 

 

 

Karahan, Murat 

 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi  : Prof. Dr. Aydan Erkmen 

Ortak Tez Yöneticisi : Prof. Dr. İsmet Erkmen 

 

 

Aralık 2009, 110 pages 

 

Arama kurtarma çalışmalarında mobil robotların kullanılmasındaki temel amaç enkaz 

altında sıkışan kazazedelere en kısa sürede ulaşabilmek ve gerekli kurtarma işlemlerini 

gerçekleştirebilmektir. Tezimizin motivasyonu arama kurtarma robotlarının enkaz 

ortamında ilerlerken birbirine bağlı boşlukları tespit edebilmesi ve bu yönde arama 

çalışmalarının hızlandırılabilmesi gerçeğine dayanmaktadır. Arama kurtarma robotlarının 

engellere takılmadan enkaz ortamında mobilitesini koruyarak ilerlemesi istenildiğinden; 

mobil robotun yönlendirilmesinde ortamda yer alan boşluklar arası geçişlerin tespit 

edilmesi önemli bir faktördür.Bu kapsamda iki yeni önceliklendirilmiş keşif stratejisi 

geliştirdik: 1) Süzülüm temelli keşif stratejisi ile robotun hareketi boyunca keşfedilmemiş 

bölgelerdeki boşlukları tahmin ederek arama çalışmalarının hızlandırılmasıdır 2) 

Süzülüm temelli ve entropi temelli keşif stratejileri arasında pozisyon ya da haritadaki 

belirsizliğe göre anahtarlama yapabilen bir hibrit keşif stratejisidir. Hibrit strateji süzülüm 

ve entropi temelli keşif stratejilerinin güçlü yönlerini alarak; arama faaliyetlerinde üstün 

ilerleme sağlarken pozisyon bilgisini de korumayı amaçlamaktadaır. 

 Anahtar Kelimeler: Arama Kurtarma Robotları, SLAM, İnsansız Keşif Araçları, 

Süzülüm Tabanlı Keşif 
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CHAPTER 1 

INTRODUCTION 

1. Introduction 

1.1 Motivation 

The major aim in urban search and rescue using mobile robots is to reach trapped 

survivors and to support rescue operations through the disaster environments. Many 

problems are defined in the literature so as to contribute new approaches for search and 

rescue mission such as reconnaissance and mapping, rubble removal, structural 

inspection, medical assessment and intervention, medically sensitive extrication and 

evacuation of causalities, adaptively shoring unstable rubble, serving as a repeater for 

wireless communication under trapped zone [1] The focus of this thesis is mainly related 

to the reconnaissance problem  that is a critical issue of search and rescue operations so 

as to generate a disaster inventory that helps predicting the possibility of survivors to 

reach them among the cluttered and highly unstructured disaster area that generally 

includes many entrapments. With this reconnaissance as our main aim, we target to 

improve mobile robot navigation algorithms so as to maintain considerable performances 

for time critical search and rescue missions within the irregular disaster areas. Our 

motivation is based on the fact that a search and rescue (SAR) robot can navigate within 

and penetrate a disaster area only if the area in question possesses connected voids. 

Traversability or penetrability of a disaster area is a primary factor that guides the 

navigation of a search and rescue (SAR) robot, since it is highly desirable that the robot, 

without hitting a dead end or getting stuck, keeps its mobility for its primary task of 

reconnaissance and mapping when searching the highly unstructured environment. 
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1.2 Goals and Objectives 

Reconnaissance mission consists of many distinct phases such as recognition of 

survivor’s health conditions, detection of cluttered ruin structure and finding available 

paths towards trapped survivors. Within the balance of this thesis, we have focused on 

finding available paths, and exploring ramified voids until reaching trapped survivors. 

Since search and rescue mobile robots have to explore available paths within unknown 

areas, they cannot be initially aware of their location with respect to any existing map. 

For this reason our search and rescue mobile robot uses particle filter based simultaneous 

mapping and localization (SLAM) algorithm to estimate position and orientation while 

learning the environmental conditions. Our further objective is also to improve mobile 

robot mapping and localization performances against time and accuracy criteria. The 

mobile robot requires sonar and odometry measurements for its SLAM processes. Since 

those measurements are noisy, obtained SLAM maps and their corresponding available 

paths to the trapped survivors are only estimates, imprecise at first and cannot be reliable 

guides for search and rescue robots. We set our first goal to estimate maps more reliably 

and generate corresponding paths to trapped zones as correctly as possible. In all our 

goals, processes are done in disaster environments, which are complicated irregular 

environments that are deprived from any special distinctions that can be used as 

landmarks for mobile robot localization. Thus our second goal is to overcome this 

problem using metric partitioning of the environment such as grids, for divide and 

conquer in SLAM processes. On the other hand, our mobile robots are autonomous and 

their remote control has an increased complexity within cluttered and labyrinth-wise 

areas where sensing conditions can yield noisy and imprecise data. Our third goal is 

therefore to explore the current region gathering sufficient data so as to guide the mobile 

robot in the unexplored regions based on the knowledge gathered from the explored one. 

This guidance should be to estimate upcoming voids of unexplored areas, decreasing the 

risk of getting trapped and thus decreasing the search time.   

1.3 Contributed Methodology  

Towards our objective and having met the goals previously stated, the robot builds 

incrementally the map of the disaster area as a spatial “inventory” that provides at each 

step of the search, evolutionary situation awareness. This situation awareness represented 

by an in-growing map becomes a reference when deciding on the next move, which is the 
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direction that should be taken for the most suitable evolution of search at the next step. 

Guidance to our SAR robot at any instance of time provides this direction which is most 

optimal for search since it is based on disaster inventory gathered during the previous 

time steps of navigation until the frontier of the already explored area. Moreover 

knowledge of the frontier map of the explored area provides an essential clue for where 

to enter the unexplored area. In this thesis work, we developed a novel SLAM 

methodology that gives the robot navigation all the properties that aforementioned which 

encompasses a robot motion guided by the frontier based prediction of upcoming 

connected voids of the unexplored region that will be explored in the next time steps 

ahead. More precisely, our contribution in this thesis work is the development of a novel 

guided SLAM approach that puts preference on the exploration of connected voids within 

the rubbles of a disaster area that make use of Invasion Percolation Guidance for mobile 

robots in unstructured disaster areas based on the continuum of obstacles partially seen at 

the frontiers of explored regions and continuing, into unexplored upcoming areas. Our 

contribution resides in the methodology of predicting connected voids of the upcoming 

area to be explored, under the clue of partially seen obstacles at the frontiers of explored 

areas with an approach relevant to frontier-based explorations. Moreover our frontier 

based conditioning of a posteriori occurrences of new connected voids uses the fact that 

every obstacle partially seen at the frontier of the explored domain has a spatial 

continuity into the unexplored area and makes use of this conditioning in invasion 

percolation based estimation of upcoming connected voids. By using spatial continuity of 

obstacles, we propose to estimate available upcoming paths through possible connected 

voids among the locally detected obstacles. Towards this end, we develop an “invasion 

percolation estimator” that guides particle filter-based incremental SLAM. Percolation 

estimator estimates the possibility of spanning voids, conditioned on the obstacle 

configuration at the frontier of the present explored domain so as to guide mobile robot 

through the connected voids. As a second major contribution we integrated the percolator 

with the classical entropy based approach in a switching process to combine advantage of 

both methodology which are speed, high coverage and localization accuracy , which are 

all three highly critical for search and rescue. 

1.4 Outline of the Thesis 

Within the scope of this thesis work, we begin by introducing a literature survey in 

chapter 2, consisting of the mathematical background spanning Bayesian Filters, Particle 
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Filters, Particle Filter approaches to SLAM techniques and Entropy based Exploration 

approaches. We introduce our proposed methodologies as purely applied Percolator 

based Exploration and Percolator Enhanced Entropy Based Exploration techniques in 

chapter 3.We also present the detailed algorithms of those proposed methodologies with 

their block diagrams in chapter 3.Our simulation environment and its tools are given in 

chapter 4 so as to introduce the experimental instruments to analyze and compare our 

results obtained using the proposed methodologies with those of the classical approaches. 

In chapter 5, we interpret and discuss the obtained simulation results together with 

performance sensitivity analyses. Finally, in chapter 6, we draw necessary conclusions 

from the performance analyses of our two new proposed percolation added approaches 

based on the figures of chapter 5. This final chapter also extrapolates into possible future 

works.  
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CHAPTER 2 

LITERATURE SURVEY 

2. Literature Survey 

2.1 Relevant Approaches in the Literature  

Robot navigation for search and rescue (SAR) in highly irregular and unpredictable 

natural disaster environments needs to handle different combinations of problems 

including localization, coverage and motion planning issues many of which are solved by 

probabilistic or geometrical approaches. While coverage process time and mapping 

accuracy are critical for SAR explorations, many different exploration techniques exist 

[5, 6, 7, 8] that need spatially distinctive landmarks in the unknown environment such as 

wall following [7]. Special landmarks cannot be naturally found or artificially placed in 

disaster area, therefore exploration techniques with metric representations based on 

evidence grids [9] such as frontier based approaches [10] are more suitable for mobile 

robots in cluttered irregular environments. On the other hand, classic coverage based 

exploration techniques rely on known robot position and therefore cannot deal with the 

uncertainty about mobile robot position within unknown environments. Using such a 

methodology under increased position uncertainty of a SAR mobile robot will mislead 

the mapping phase of unknown environment. However, integrated exploration techniques 

deal with generating motion commands, while concurrently mapping unexplored regions 

and disambiguating robot positions. They provide a trade-off between mapping and 

localization processes so as to optimize time and enhance accuracy during navigation in 

unknown environments. Makarenko et al. [11] have weighted the costs of map 

exploration, robot position localization and navigation according to their corresponding 

utility functions under the trade-off of pose uncertainty and mapping. They have used 
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integrated exploration technique based on frontier approach using distinguishable special 

landmarks in the environment [11]. So their algorithm is not appropriate for irregular, 

unknown environments that cannot be landmarked.  But Stanchiss et al. [12] develop an 

integrated exploration strategy without any landmark assumptions using active loop 

closing so as to disambiguate position uncertainty and enhance map accuracy. These 

proposed integrated exploration techniques generally consist of principles based on 

frontier-based exploration and information gain through entropy minimization strategies. 

Going beyond the recent integrated exploration approaches [11, 12, 20] the guidance of 

our SLAM approach, based on the prediction of connected voids leads our mobile robots 

into unexplored regions without losing their position awareness, tracking the connected 

voids within this new guided SLAM perspective. We have developed a novel extension 

to Grid Based Fast SLAM. 

2.2 Mathematical Background 

In this chapter, we give mathematical backgrounds that are introductory explanations for 

our proposed methodologies of chapter 3. We introduce the theoretical background of 

Bayesian filter and its approximation the particle filter. Mathematical framework of the 

simultaneous localization and adaptive mapping techniques that use particle filters are 

also presented in this chapter. Classical entropy based exploration methodology is 

overviewed including its mathematical derivations and its algorithm based representation. 

Finally, we give the mathematical background of invasion percolation methodology 

which our proposed methodologies of chapter 3 are based upon. 

2.2.1 Simultaneous Localization and Adaptive Mapping 

The simultaneous localization and mapping SLAM needs of a SAR robot are primarily, 

robustness, computational simplicity and speed. In Fast SLAM methodologies, these 

needs are met by Rao-Blackwellized particle filter approach speeding the computation by 

a factorization approach. Rao Blackwellized particle filter is a contribution of  Murphy 

et.al [2] using the sequential Monte Carlo sampling approaches [3,4] for Rao 

Blackwellized particle filter factorization as seen in equation 1 [13, 14]. This 

factorization enables us to express the posterior probability of map  and robot trajectory  

 over observation  and odometry measurement data   as expressed in the 

well known relation. 
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Here  is the robot trajectory that consists of robot states , where   

parameters correspond to horizontal, vertical and angular robot positions in 2D 

environment.  is the Odometry measurement u=  that consists of relative 

robot positions so as to define robot movements in 2D environments.  is the Proximity 

sensor (sonar, laser etc.) measurements until time step t.  corresponds to the variable set 

assigning map specifications. Feature based maps use mean and variance value pairs 

corresponding to landmark spatial position and uncertainties. On the other hand, metric 

based maps use binary variable set corresponding to grid based map occupation 

probabilities for each cell. In the scope of our thesis, we use metric based map 

representation. 

2.2.1.1 Grid Based Fast SLAM Algorithm Outline 

Rao-Blackwellized Fast Slam has individual trajectory estimation for each particle and 

therefore each particle carries individual estimation map according to sensor observations 

and their individual predicted trajectories. Grid based fast slam technique is outlined in 

Table 1 below. In that table, Grid Based Fast SLAM parameters are the particle set  

that represents the previous time step’s robot state belief , the sensor measurements or 

observations  at time step t, the odometry measurements  at time step t, the k th 

particle SLAM map  at time step t, the k th particle robot position  at time step t 

and the corresponding k th particle weight  at time step t. The Grid Based Fast 

SLAM returns the particle set  for the current robot state belief. The accuracy of the 

map estimation is known to be mostly dependent upon trajectory estimation which is 

computed with re-sampling which uses  weights proportional to the likelihood of the 

most recent  observation over obtained map and robot trajectory. There are no 

interactive effects for odometry control in this Grid Based Fast SLAM approach. State 

sampling processes with respect to motion model and odometry measurements, particle 

weight computations using measurement model and occupancy grid mapping using 

inverse measurement model, as expressed in the Sample State Extraction Phase of Table 

1 (first row) will be covered in the upcoming subsections. 
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Table 1: Grid Based Fast SLAM Algorithm 

Algorithm Fast SLAM (  ,  , ) 

Sample State Extraction 

Phase 

 ,    

  

// State sampling with respect to motion model and odometry 

measurements 

   

 // Particle weight computations using measurement model 

  

 // Occupancy grid mapping using inverse measurement model 

  

  

Resampling Process   

                 

                

  

Obtained Particle Set    

 

 

 

2.2.1.2 Sample Motion Model 

Firstly, state sampling processes is realized according to motion representation that 

models the noise effects on odometry measurements. Especially in slippery floor 

conditions, wheel movements can cause linear or angular errors within the odometry 

measurements. Odometry measurement is given by the vector components pair in 

 .In this pair of states in the vector components of ,  and 

 are vectors which entries correspond respectively to the 

horizontal, vertical and angular displacements with respect to time step between t and t-1. 

Odometry motion can be modeled with three parameters that consist of initial turn , 

translation  and second rotation  as is seen in Figure 1. [14] 
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Figure 1 Odometry Motion Model Parameters [14] 

According to that motion model representation of Figure 1, we can express the 

sample_motion_model function used in Table 2 generated from the time differential 

between sample robot states  and previous state 

with respect to given odometry measurement  and expected noise 

effects. We can express sample_motion_model with Table 2: 

 

 

Table 2 Sample Motion Model Odometry 

Algorithm sample_motion_model_odometry  (  ) 

 

// Motion Model Parameters 

  

  

  

 

//Noisy Motion Model Parameters 

=  

–   

  
 

//Generated Sample Robot State by Noisy Motion Model Parameters  

  

  

  
 

RETURN   

 

 

Sample (n) function in Table 2 corresponds to the Gaussian normal distribution, n being 

the variance. Noise characteristics are tuned using  motion model 

parameters which correspond to respectively the weights of importance given to initial 

turn , translation  and second rotation  (Figure 1). For example, if we 
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desire to model the angular noise effects on odometry measurements that arise from 

slippery wheel; we can increase the weights  accordingly.  

2.2.1.3 Measurement Model 

Measurement model determines the particle weights of generated robot states according 

to obtained sensor observations from the environment. Measurement model [14] is 

explained according to equations presented in Table 3. 

 

 
Table 3 Computing Particle Weights by Measurement Model 

Algorithm  

 

=P =  

The normalizer can be evaluated as  ; 

 

; 

 

  

 

 

As is seen from Table 3, measurement modeling gives P  post probability 

conditioned on robot state and SLAM map at time step t-

1.Without considering normalizer , the summation of all conditional probabilities 

P  of possible ray tracing values according to possible robot states can 

be greater than 1.Therefore we have to utilize a normalizer factor within the equations of 

measurement modeling to equate the maximum sum of probabilities to 1. 

2.2.1.4 Occupancy Grid Map Update Process 

Occupancy grid mapping process generates SLAM maps according to robot trajectory 

(  and sensor observation  that constitute information for each particle. We can 

express occupancy grid map (m) as a collection of grid cells . Each grid cell 

 has binary occupancy value that specifies is a cell is free or occupied. Those binary 

values are usually expressed with “1” for occupied grids and “0” for free ones in 

literature [10]. So we can express grid cell occupation probability with notations such 
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that .We can project down the posterior map estimation problem  

 over grid cells using the notation   as a separate estimation 

problem for each grid cell. Since each of these estimation problems on grid cells are 

binary with static state, we can approximate such factorization as 

. Using this factorization, the estimation of occupancy probability for 

each grid cell is now a binary estimation problem with static case.[14]  So binary Bayes 

filter can be applied to occupancy grid map posterior probability estimation problem as is 

seen from Table 4 and the occupancy grid mapping algorithm uses log odds 

representation as   for time t and i th grid cell on occupancy grid 

map representation. 

Table 4  Occupancy Grid Mapping [14] 

Algorithm occupancy_grid_mapping {   } 

For all cells   do 

If  in perceptual field of  then 

   

Else 

  

End If 

End For 

Return { } 

 

 

The  that the occupancy grid mapping uses (Table 4) 

 that is calculated as given in Table 5 [14]. 

Table 5 İnverse Sensor Model Algorithm [14] 

Algorithm inverse_sensor_model( ) 

Let  

  

  

  

IF      

 Return   

IF      

Return    

IF     

Return   

END IF 

 

The parameters of this calculation are represented on the sensor beam of Figure 2. 
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Figure 2 Sensor Beam Representation for Inverse Sensor Model 

We can see from the Figure 2 that is the maximum sensor range, the beam width , 

the possible obstacle width ,  expresses the sensor proximity reading to obstacle from 

sensor beam k and  represents grid cell centroids location. As is seen from Table 

5, grid cells that drop in the region between possible obstacle width correspond to 

possible void cells while grid cells drop in the region of possible obstacle width 

correspond to possible obstacle cells. On the other hand, other cells which are outside of 

the sensor cone expressed in Table 5 are unaffected grid cells from inverse sensor 

measurement model. 

2.2.1.5 Bayes Filter and Its Approximated Derivatives 

A belief represents the robot’s internal knowledge about its environment. Since the robot 

cannot measure its pose or state information directly from its environment, this 

information must be inferred from acquired data from its surrounding. Robot state belief 

is represented by a distribution that corresponds to the posterior probabilities over state 

variables conditioned on obtained data from the environment. We can express this belief 

distribution as: 

 

More specifically the posterior probability distribution  of robot state variable 

is given as conditioned on past measurements  and control data . Bayes filter 

algorithm is the most general algorithm to calculate beliefs distributions from 

measurement and control data based on recursions that computes belief distribution 

 at the current time step  from belief distribution  at the previous time 

step with most recent control  and measurement data  (Table 6). 
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Table 6 Bayes Filter Recursive Algorithm [14] 

Algorithm Bayes_Filter( ) 

FOR all  do 

  

  

END FOR 

RETURN  

 

Bayes filter has two main steps as prediction and measurement update. In the prediction, 

step belief  over robot state , is computed by the integral of the product of prior 

belief distribution  and conditional probability distribution 

corresponding to the state transition between  and  performed by 

the control . At the measurement update step,  is obtained as a measurement 

probability  conditioned over robot state multiplied by the predicted belief 

distribution . The normalization constant  is used for the case that multiplication 

 violates the probability range. Hence normalization constant  is used as 

a normalizer to obtain a probability value for  

2.2.1.5.1 Bayes Filter Mathematical Derivation  

In this section, we will prove the Bayes filter algorithm using mathematical induction. 

We will demonstrate how Bayes filter recursive iterations are obtained as a computation 

of current posterior probability  from the belief set  of the 

previous time step. In the derivation of Bayes filter, the robot state has to be complete 

information while control actions are chosen at random [14]. Completeness of a robot 

state means that the knowledge of one step past states, measurements or controls carries 

no additional information that would help us predicts the future more accurately. Namely, 

a state  is called complete if it is the best predictor of the future state. Temporal 

processes that fit those completeness conditions are known as Markov Chains. The 

Markov assumption postulates the past and future data are independent if one knows the 

current state  [14]. At the first step of Bayes derivation; let use the Bayes rule for our 

target posterior probability conditioned on odometry measurements and proximity sensor 

observations: 
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In this derivation, we assumed that  robot state is complete. This means there is no 

parameter prior to robot state  in the stochastic evaluation of future states. Hence past 

measurements and past control data cannot provide additional information for robot 

state . So we can derive equation 3 as:  

 

Since equation 3 means conditional independence, it leads equation 2 to equation 4 

 

So we can trivially write equation 5 as an expression of robot current belief state  

 

On the other hand, equation 5 corresponds to the measurement update phase of the Bayes 

filter algorithm in Table 6. Now, we can derive the computation of predicted belief state 

distribution  from the control data and belief state distribution at the previous time 

step, that is expressed as in equation 6 

 

Let use our robot state completeness assumption in equation 6 to prove the Bayes filter 

prediction step. As is seen from equation 7, we know the  robot state at time  . 

So due to the robot state completeness, past measurements and control data  

do not yield any additional information, thus, 

 

As a result of completeness assumption in equation 7, we can reach equation 8 

 

Equation 8 corresponds to the prediction step equations in Bayes filter in Table 6.If we 

summarize the derivation results, the Bayes filter algorithm computes posterior 
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probability over robot state conditioned on the past measurements and control data 

until time step t. On the other hand, the importance of the completeness assumption on 

the robot state has been seen on the derivation of Bayes filter prediction (equation 8) and 

measurement update (equation 5) equations. 

2.2.1.5.2 Particle Filter and Importance Sampling 

The particle filter is one of the most popular nonparametric implementations of Bayes 

filter algorithm. A particle filter represents the posterior probability of a robot state as a 

sampled robot state belief distribution. In particle filters, the samples drawn from a 

posterior probability distribution are called particles and can be listed as is seen in 

equation 9. 

 

Particles in equation 9 are instantiations of the state at time t. Each particle 

 corresponds to a hypothesis that expresses what the true state may be at time t. The 

aim of the particle filter is to estimate the belief  in the Bayes filter which 

algorithm is provided in Table 6 using the set of particles . The generic particle filter 

algorithm is known to be as given in Table 7. As is seen from Table 7, the input of the 

particle filter algorithm is the particle set , control data  and measurement data . 

The particle filter algorithm firstly constitutes a temporary particle set  corresponding 

to the predicted state  of the Bayes Filter algorithm explained in Table 6. A 

hypothetical robot state  for time step t is generated from the m th particle within the 

particle set   labeled as particle  by control . After that this sampled robot 

position is generated, the particle filter algorithm assigns importance factors  to 

those robot positions  particles by incorporating the most recent measurement 

data . The Importance factor corresponds to the probability of generated robot 

position particle  with respect to measurement data as expressed by 

 in line 4 of Table 7. If importance factors are interpreted as particle weights 

then we can interpret  that weighted set of particles approximately represents the 

posterior belief distribution . Resampling or importance sampling process are 

processed between line 7 and line 10 in Table 7 so as to draw M particles from the 

temporary particle set  according to importance weights . Importance sampling 
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process transforms the temporary particle set  into a new particle set of same size 

using particle displacements. Since particles set is re-sampled according to most reliable 

particles, there exist particle duplications within the re sampled particle set . As a 

consequence of importance sampling process, some particles with lower importance 

weights are removed from the temporary particle set . Consequently, the particle set 

obtained at the end of re sampling process is approximately distributed with respect to 

posterior . 

Table 7 Particle Filter Algorithm [14] 

Algorithm Particle Filter( ) 

 

1.   

2. FOR m=1 to M do 

3.   

4.   

5.   

6. END FOR 

7. FOR m=1 to M do  // Importing Sampling Phase 

8.   

9.   

10. END FOR 

11. RETURN  

 

Importance sampling process corresponds to the measurement update step of the Bayes 

filter algorithm that implements measurement update using 

. Importance sampling process yields particles within 

the temporary particle set   that are distributed according to the target posterior  

In some particle filter algorithms, resampling process is not applied to the generated 

particle set in line 3 so as to maintain diversity of particle set. Particle weights are 

initialized by 1 and updated multiplicatively as given in the following equation: 

 

In this case, the particle filter approximates a posterior distribution that is similar to the 

previous one that the importance sampling has used. Since many particles converge to 
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regions with low posterior probabilities, resampling process is necessary as an adaptive 

mechanism that refocuses the particle set to the higher posterior probability regions so as 

to use computational resources more effectively. Let us now present the mathematical 

background of the particle filter outlined in Table 7. In order to derive the particle filter 

mathematically, we consider particles as a sequence of state samples:  

 

The particle filter computes the posterior probability over all state sequences of equation 

10; the posterior probability is expressed as in equation 11, instead of the expression 

of the Bayes filter approach. 

 

Using Bayesian rule we can derive equation 12 from equation 11; 

 

Let use the robot state completeness assumption to reduce equation 12 as; 

 

 

Let us use mathematical induction in this step by assuming that the initial particle set is 

obtained by sampling  and that the particle set at time t-1 is distributed with respect 

to . Thus we can derive proposed distribution in equation 14 for  the m 

th particle sample generation process that correspond to line 3 of particle filter algorithm 

in Table 7 

 

Particle weights are expressed as the equation below: 
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By multiplying the proposed distribution  with 

particle weights , the resulting particle distribution is approximated by the posterior 

probability of belief function  as given in equation 15 

 

 

2.2.1.5.3 Importance Sampling: Mathematical Derivation 

In this section we provide the mathematical background of the importance sampling 

process that is used for particle filter posterior probability approximations. Let us assume 

that we are computing an expectation over a probability density function  with given 

samples generated with respect to different density function g. Let assume that we are 

also interested in expectation  for . In order to express the expectation 

 for  using expectation over  instead of expectation over  which is not 

directly available base on chain rule as follows [14]: 

 

Thus we can derive equation in 17 according to equation 16 to express the expected value 

for function  using expected value for function : 

 

In equation 17,  weights correspond to the mismatch between two 

distributions f and g.  should have similar monotonicity such as 

 for equation 17 to hold. Importance sampling process in particle filter is based 

on the transformation expressed in 17. As we recall from particle filter explanations in 

the previous section, the targeted distribution  is approximated from the proposed 

distribution  using importance sampling. We should note that the finite number of 

counted particles  that fall into interval A converges to the integral of g under A as 

expressed in equation 18 
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Let use  importance weights to offset the difference between f and g 

density functions then equation 19 arises: 

 

is the normalizer in equation 19 for all importance weights. It is seen that 

we have reached weighted particles that converge to density  from a set of sampled 

particles according to the density  under mild conditions. In similar conditions, particles 

in particle set  are distributed with respect to  and density  in equation 

18 can be matched to the product distribution as expressed by . 

2.2.1.5.4 Low Variance Sampler Algorithm 

During resampling processes, displacement of lower weighted particles could cause 

particle deprivation as a result of decreased diversity among particles within the particle 

set. Since decreasing diversity of particles increase particle filter variance as an estimator, 

obtained estimations could be faulty as time passes by. In order to prevent the sudden 

decrease of particle diversity, we use low variance sampler algorithm in the resampling 

phase of the particle filter between lines 7 and 10 in Table 7. Low variance sampler 

algorithm has been shown in Table 8. Low variance sampler takes the particle set  and 

particle weights  (importance or resampling weights) as input parameters and returns 

re-sampled particle set as output parameter .M is the number of particles within the 

given particle set .At the first step, a random number  is generated from the interval 

0 . Then the first particle weight value is assigned to the  parameter in the 

third line. Thus the sampler algorithm starts the looping process in line 6 to setting the 

particle weight values based on the  variable that starts to be computed from r value 

with stepping constant interval . In each step, the sampler algorithm compares the 

reached value  with the accumulation of particle weights  in order to decide particle 

inclusion within the re-sampled particle set . 
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Table 8 Algorithm Low Variance Sampler [14] 

Algorithm Low Variance Sampler( ) 

1.   

2.   

3.   

4.   

5. FOR m=1 to M do 

6.   

7. WHILE  

8.   

9.   

10. END WHILE 

11.   

12. END FOR 

13. RETURN  

 

Until the accumulation of particle weight values reaches the step value , the low 

variance sampler algorithm omits the lowest weighted particles based on regular 

comparisons at each step instead of randomly driven cases. Thus the diversity of particles 

in the re-sampled particle set  is protected by distinct selection intervals  at 

consecutive steps. 

2.3 Active SLAM Techniques 

2.3.1 General 

Active SLAM techniques provide odometry commands based on the decision making 

performed using the observations from the explored environment. Active SLAM guides 

two types of actions; first ones are exploitation actions that localize the robot and the 

second ones are exploration actions that help the mobile robot in reaching unexplored 

regions. Entropy based Fast SLAM techniques [11, 20] are optimized active slam 

methodologies that utilize a trade off mechanism between exploitation and exploration 

actions. 
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2.3.2 Entropy Based Exploration Strategy 

Entropy based exploration method aims to gain maximum information during robot 

navigation. This gain information is necessary for robot localization and map exploration. 

In SLAM approaches we have to decrease localization uncertainties that tend to build up 

while exploring new regions. Entropy based exploration methods choose optimal action 

from a proposed set of alternative actions in order to obtain the maximum information 

gain about robot position and its environment. We can express information gain as the 

decrement of robot position and environment map uncertainties, where uncertainty 

changes are computed using Shannon Entropy. First of all, we have to state the 

uncertainty values related with robot position and map based on the acquired sensory data 

and given motion commands. As is seen from equation 20 derived in [20]; Rao-

Blackwellized (equation 1 in section 2.2.1) factorization is used so as to obtain the total 

Shannon Entropy as the summation of position and map individual entropies. So we can 

compute the total entropy value related with robot uncertainty as a summation of position 

and map entropy values that correspond respectively to position and map uncertainties as: 

 

 

Where  is the entropy value that corresponds to total uncertainty about 

robot and its environment  is the entropy value that corresponds to the robot 

position uncertainty and  is the entropy value that 

corresponds to map uncertainty. Here   is the i th particle weight at time t; ,the i th 

particle SLAM map at time t; ,the sensor measurements at time step t ; , motion 

commands until time t-1; and  corresponds to . The computations of 

individual position and map entropies are given in equations 21 through 25. Since  

values are binary and considered independent, we can state the total map entropy using 

Binary Shannon Entropy as shown in equation 21 below: 
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Here  is the occupation probability of grid cell  

. Where  is the (i, j) th grid cell on the grid based SLAM map.  is 

the expression for Position Entropy Value which is approximated as equation 22 

 

This approximation in equation 22 can be done because of the completeness of robot 

state variable .  state can also be expressed from previous states and 

measurements in equation 23 : 

 

Since we generate samples  with respect to the probability distribution function as 

shown in equation 24, corresponds to the state transition probability and 

 states robot state belief distribution at previous time step. Since 

previous belief distribution is represented by a particle set, in a similar way, 

 is also stated with a generated sample state set instead of a parametric type 

of expression. 

 

Since those generated sample states are selected randomly but weighted according to the 

measurement update step, we can approximate  probability value of equation 23 

with an iteratively multiplied particle weights as shown in equation 25.We consider that 

the initial belief set is distributed properly and that the iteratively multiplied particle 

weight until any time step corresponds to the previous particle set distribution. Hence: 

 

In accordance with equation 25, we obtain approximately the robot position entropy 

expression as shown in equation 26. Such an approximation is considerable since the 

uncertainty amount for the robot position can be approximately estimated from the 

uncertainty amount of the particle set distribution that corresponds to the robot state 

belief distribution in particle filter implementations. 
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In this equation,  is the odometry measurement at time step t;  are the proximity 

sensor measurements until time step t;  are the robot states until time step t;  

corresponds to the   parameters. For map entropy computations, it is 

significant to reach those uncertain occupancy grid map cells within the SLAM map 

during action selection process so as to maximize information gain from the SLAM map. 

Mapping unknown regions is more effective for gaining map information than mapping 

obstacle or void cells for entropy based exploration strategy. After unknown regions are 

explored, the robot localization uncertainty is reduced according to recently explored 

regions. For this reason, obstacle or void cells will be more informative on the recovery 

of robot position awareness. The trade-off between precision on localization and that of 

the map has to be dealt with all along the whole mobile robot exploration process. Since 

position and map entropies are derived as shown in equations 21 and 26 [20] with 

considered assumptions, we can state the information gain computation as in equation 27 

below:  

 

Where,  is the proposed action at time step t;  is the hypothetical robot position at 

time step t+1;  is the obtained virtual measurements using ray tracing for time step 

t+1;  is the SLAM map at time step t;  is the robot states until time step t;  

corresponds to the   parameters. In order to realize equation 27, we iterate the 

SLAM computations one step forward using proposed odometry action alternatives and 

compare their effects on the position and map uncertainties. On the other hand, sonar 

measurements not being available at the unreal mobile robot next step; we generate ray 

tracing measurements on the obtained SLAM maps that correspond to proximity 

measurements at the next time step. Those proximity measurements obtained from ray 

tracing values are called as virtual measurements  as stated in equation 27.As a 

consequence of information gain function of equation 27, we can state our mobile robot 

entropy based exploration strategy as in Table 9. According to Table 9; the entropy based 

exploration methodology takes the particle set that corresponds to the current belief 

distribution of mobile robot  and returns a proposed action  as odometry command in 

SLAM processes. On the other hand the inner loop of entropy based exploration 

algorithm repeats the Fast SLAM processes   with 

simulated virtual measurements  and generates the sample robot 

state . So for every proposed action, the entropy minimization is 
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computed as denoted by   and the trade-off between cost and entropy 

minimization   is provided as  

 

Table 9 : Entropy Based Exploration Algorithm 

Algorithm Entropy Based Exploration (  ) 

  

  

  

  

  

  

  

  

   

  

  

 

 

.In our thesis work, we did not considered  in entropy based exploration 

implementations since we have mostly focused on information gain based exploration 

guidance. Thus our update equation of   is as:  meaning that 

action selection through the alternatives is realized according to a tradeoff between 

information gain and cost in performing that action.  

2.4 Invasion Percolation Model 

Percolation theory has been of a particular interest to us since it is the study of connected 

objects  in applications fluid flow in porous media [15,16], molecular connectivity of 

water, diffusion of different materials, city growth [17].Percolation is also important for 

oil extraction since oil exists as connected cluster underneath the earth. One characteristic 

that has caught researchers’ attention is minimum path in percolation among connected 

clusters (spanning voids) which provides a conditional probability that is related, in oil 

research, to the time elapsed between injection of water until the extraction of the first bit 

of oil [15, 21].Invasion percolation models the diffusion of one fluid (invader) into other 
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fluid (defender) within a porous medium. Invasion percolation theory differs from 

ordinary classical percolation in that it automatically finds the critical points of the 

system that determine existence of spanning clusters [15, 19]. Furthermore the primary 

principle of invasion percolation is to diffuse along a path of least resistance [19]. 

Consequently invasion percolator finds the site which has lowest resistance porosity 

among all already invaded adjacent sites and then invades it. Invasion depends on the 

threshold pressure of each pore which is defined as an occupation probability. Lattice 

representation used for site percolation is also an integrated part of invasion percolation 

as that each lattice site becomes equipped with invasion probability similar to percolation 

probability. The mathematical model of the invasion percolation has been summarized in 

[15]. As stated in there, , is an independent random variable indexed by the 

set of all edges  in the d-dimensional lattice  , having uniform distribution on 

the interval [0, 1].In our situation; we can illustrate a 2 dimensional lattice whose edges 

are indexed by random variables  as in Figure 3. 

 

 

Figure 3 2 Dimensional Lattice Structure 

Figure 3 shows lattice edges and vertices of a 2 dimensional array. Invasion percolation 

algorithm starts its iteration with initially given graph and a sequence of random 

connected sub graphs of the array is constructed in an iterative way. We can illustrate that 

process by representing sample iteration on the 2 dimensional arrays. For this, consider  

 corresponding to our initial sub graph represented by red marked vertices on the 

lattice in Figure 3. In the scope of invasion percolation, our iteratively expanding sub 

graph corresponds to the invader matter while given array structure corresponds to the 
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defender one. Those vertices of initially given sub graph select their neighboring edges 

that have minimum assigned random variable ( ). Neighboring edges are defined 

as edges that have one of their vertices connected with the iterated sub graph while others 

are outside of that sub graph. Neighboring edges are represented in Figure 4 with red 

marked arrows for the  sub graph. 

 

Figure 4 Neighbor Edge Iterations 

Invasion percolation model adds an edge ( ) to the initially given sub graph according to 

its assigned random variable ( ) that has the minimum value among the other 

neighboring edges. In brief edge  is chosen from the outer edge boundary of  that 

minimizes  to expand initially given sub graph at each iteration step as seen from 

Figure 4. Red arrows corresponds to the edges while randomly assigned  are 

determined which neighbor edge will be selected. As is seen from the iterations of Figure 

4, each perimeter vertices of sub graph has been shown with added red arrow 

corresponding to the neighbor edges between perimeter and neighbor vertices. On the 

other hand, those random variables ( ) assigned to the edges can be modeled as 

porosity values for the grid based site lattice structures [19].Thus we handle those invader 

and defender representations so as to model the continuity of possible void and obstacles 

represented by grid based SLAM maps based on adjustment of porosities. Due to the 

occupation probabilities of grid cells, their porosity levels are assigned according to our 

analogy for modeling continuity of voids and obstacles on SLAM map as introduced in 

chapter 3. 
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CHAPTER 3 

METHODOLOGY 

3. Methodology 

3.1 Most Relevant Methodologies at the Foundation of Our 

Approach 

We consider our mobile robot exploration problem as an invasion of voids over 

occupancy grid cells of the environment being explored under the defense of obstacle 

cells (defender). Our primary aim is to obtain spanning probabilities of the voids in order 

to be able to choose, under this guidance, the most suitable regions to explore next, in the 

upcoming unknown regions. Percolation theory has been of a particular interest to us to 

achieve this objective [15] having found strong applications to fluid flow in porous media 

[15] , molecular connectivity of water , diffusion of a different materials, city growth 

[17]. Percolation is also important for oil extraction since oil exists as connected clusters 

beneath the earth. One characteristics that has caught researchers attention is minimum 

path in percolation among connected clusters (spanning voids) which provides a 

conditional probability that is related , in oil recovery , to the time elapsed between 

injection of water until the extraction of the first lit of oil [21].However in our 

exploration problem , spanning voids of unexplored area are not known explicitly and it 

is nonsense to measure time passed in our exploration problem since our mobile robot 

does not know where to go in our unknown environment. Furthermore we cannot obtain 

any percolation probability of our unexplored medium before exploration due to 

excessively high unknowns. Therefore the classical percolation methodology has been 

proven non applicable for predictive SLAM in search and rescue robotics. On the other 

hand, gradient percolation [15] such as modeling diffusion in variably porous material is 

of high relevance to our objective. Among those, invasion percolation that models the 
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percolating invader into a material occupied by defender molecules depending upon its 

porosity degrees is highly appropriate for our mobile robot exploration in unknown 

irregular environments. This diffusion in materials modeled by invasion percolation 

inspired us into using it to estimate the “diffusion” of possible paths within unknown 

regions based on “extrapolation” of obstacles detected at the vicinity of frontiers of the 

explored region as a continuum into the unexplored region. Porosity term has been used 

for defender resistance to traversability of invader [15, 19]. To represent traversability 

between the defender and invader, we assign porosity degrees to the lattice sites of the 

percolation environment. The invasion model proposed by Wilkinson and Willemsen 

[19] is based on assigning the threshold pressures of pores to site occupation 

probabilities. Invasion percolation expands iteratively by porosity minimization on sites 

of outer boundary. These iteratively added sites trace the percolating path of the invader 

over defender molecules. In our approach we model the spatial distributions of obstacles 

and voids using the displacement of defender and invader fluids within the porous 

medium. We represent voids by invader fluid and obstacles by defender fluid. The key 

motivation behind using invasion percolation in our approach is the continuity of 

percolating invader expanding through neighboring sites with lowest porosity degrees. 

Thus, invasion percolation ramifications continue through neighboring sites with lower 

degree porosity while other ramifications coming across higher porosity, die out. Since 

occupancy grid cell representation is also similar to the site lattice structure of reference 

[19], we have also related occupation probabilities of occupancy grid cells with the 

porosity degrees of the lattice sites. We adjust these porosity degrees of unexplored sites 

so as to impose the continuity of previously detected obstacles to trace possible spanning 

voids into the unexplored areas. Our percolator modification augments the porosity 

degrees at obstacle sites and decreases it for free sites. Iteratively added neighbor sites 

that have lowest porosity degrees represent the expansion of invader percolation. This 

builds a representation of the frontier of the explored area such that is indented by 

obstacles that plunge into the unexplored region. Thus, we can model the indentations of 

spatially connected spanning voids by increasing the porosity degrees at the vicinity areas 

of obstacles. Our robot is guided in this way, by upcoming spanning voids avoiding the 

possible continuities of obstacles in the unexplored region, just detected at the boundary 

of the explored region. We have generated two novel systems in this thesis work, which 

can be easily explained by the block diagrams that we outlined in Figure 5 and Figure 9 

The first one is the Percolator Based Exploration architecture of a Grid Based Fast 
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SLAM guided by a percolator module as seen in Figure 5.This approach will be detailed 

in section 3.2 going through each of its modules one by one in the subsections. The 

second one is a hybrid system that we name the Percolation Enhanced Entropy Based 

exploration (Figure 9) where the guidance of SLAM switches between the entropy based 

one when precision in localization is highly required , and the percolator based one when 

map precision in highly demanded. This hybrid system is detailed in section 3.3. 

3.2 Percolator Based Exploration with Grid Based Fast SLAM 

The simultaneous localization and mapping needs of a SAR robot are primarily, 

robustness, computational simplicity and speed. These needs are met by the Rao-

Blackwellized particle filter approach. We adapt and modify here, the Fast SLAM 

technique [13] which is an efficient extension of Rao-Blackwellized particle filter 

approach to simultaneous localization and mapping problem. Rao-Blackwellized particle 

filter provides robustness and simplicity to SLAM with a factorization assumption. There 

are no interactive effects for odometry control in the classical approach. However our 

invasion percolator realizes this active control for the mobile robot by providing our 

active feedback to the classical SLAM. Thus our percolator guided grid based fast SLAM 

follows the orientation advised by the percolator so as to reach larger probable connected 

voids rather than wandering without guidance among rubbles or getting entrapped with 

small isolated dead-end voids. Our percolator based exploration technique is outlined in 

Table 10 below: 

Table 10 : Percolator Based Exploration with Grid Based Fast SLAM Algorithm 

Algorithm of   

Apply Grid Based  Fast SLAM Algorithm   

Extract Map and Trajectory Information   

Percolator Controller Guidance 

(module 7 in Figure 9) or system of Figure 

5 

  

 

 

Where,  is the particle set at time step t-1;  is the k th particle weight at time step 

t;  is the k th particle’s SLAM map at time step t;  is the k th particle’s 



30 

 

hypothetical robot position at time step t;  is the proximity sensor measurements at time 

step t;  is the given odometry guidance for the robot navigation. 

3.2.1 Invasion Percolator Guidance Infrastructure 

 

Figure 5 Outline of the Invasion Percolator Guidance Module (Module 7 of Figure 9 ) 

 

The Invasion Percolator guidance module has the basic infrastructure as seen from Figure 

5. We initialize percolator based exploration with the classical Fast SLAM (module 1) 

overviewed in chapter 2 section 2.21.1 .that provides an initial map according to the 

sensor readings obtained from the environment. This initially found SLAM map is input 

to the Invasion Percolation Configuration Generator (module 2) that will be introduced in 

section 3.2.2. Invasion Percolation Configuration Generator generates the percolator map 

according to given SLAM maps. The generated percolator maps are analyzed for dead 

ends over generated percolator map. If no dead ends are encountered on the percolator 

map then, the mobile robot continues its navigation through the connected voids in the 

previous same direction as seen in module 5. Otherwise , Percolator Motion Estimator 

(module 3), as explained in section 3.4.2, estimates available spanning directions and a 

new guidance is selected at the most spanning path direction (module 4). Within module 

6, we construct odometry displacement vector as explained in chapter 2 section 2.2.1.2 

from those coordinate couples consisting of robot position coordinates and available 

spanning path destination coordinates which are obtained from module 4. 
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3.2.2 Invasion Percolation Configuration Generator (module 2 of 

Figure 5) 

The invasion percolator estimates percolating voids and detects obstacles by obtaining 

spanning probabilities of voids through the unexplored regions. For this reason the 

classical invasion percolation process mentioned in section 2.4 needs modifications to 

make it sensitive to obstacles. Thus, we modify the porosity distribution in our approach 

by increasing the porosity degrees of neighboring sites of the previously detected 

obstacles. So that invasion of the voids mostly spread over the unexplored region, while 

avoiding previously detected obstacles. This is the key idea for efficient and fast 

reconnaissance that predicts upcoming voids and obstacles based on the assumption of 

their continuity from the frontier of the already explored area. Occupancy grid cells 

correspond to the sites of the lattice structure; the porosity of unknown sites neighboring 

the occupied sites within the locally explored region has high values while the porosity of 

unknown sites neighboring the free sites has low porosity. So invasion percolator 

generates a ramification (path) conditioned on these given porosity degrees. Invasion 

Percolation Configuration Generator generates different ramifications for each different 

weighted particle. Invasion percolation ramification has been derived as a guidance map 

from particle’s SLAM map by the Invasion Percolator Configuration Generator algorithm 

as explained in Table 11 above. Invasion percolation configuration generator algorithm 

takes occupancy grid based SLAM maps as input parameter represented by three 

occupancy matrices that have occupation probabilities according to each grid cell of 

occupancy grid map. The three matrices that are the cluster, perimeter and porosity 

matrices, have the same size based on the given occupancy grid map. Cluster matrix is an 

array where the invaded cells take the value of 1 while invasion free ones are assigned 0 

values. Porosity matrix arranges the transitions possibilities of invasion expansion on the 

Cluster array. Porosity matrix has been formed between line 6-14 in table 15.Entries of 

the Porosity matrix take the value of 1 for obstacles that has occupation probability 

values  greater than 0.5 where I,J is the occupancy grid index on the map. While -

1 value is assigned to Porosity entries that have occupation probability  value 

lower than 0.5, thus corresponding to void cells. This classification is performed to fit a 

guidance that avoid obstacles and lead to void regions. We use Perimeter matrix to 

control invasion through the Cluster array. We can explain the mechanism with Figure 6 

below: 
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Table 11 Invasion Percolator Configuration Generator Algorithm 

Invasion Percolator Configuration Generator Algorithm (M) 

1.   //Initialize Cluster Matrix 

2.  //Initialize Perimeter Matrix 

3.  //Initialize Porosity Matrix 

4. //Construct Porosity Matrices 

5. FOR   

6. FOR   

7. IF  

8.  //For obstacles 

9. ELSE 

10.  //For Voids 

11. END 

12. END  

13. END 

14.   

15. WHILE ( ) 

16.  

17.  

18.  

19.  

20. //Update Perimeter and Cluster Matrices 

21. IF   

22.   

23. END 

24. IF   

25.   

26. END 

27. IF   

28.   

29. END 

30. IF   

31.   

32. END 

33. END WHILE 

34. RETURN Spanning Grid Cells = CLUSTER 
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Figure 6 Invasion Percolation Perimeter Matrix Transition 

Consider an array as seen in Figure 6 where, empty cells correspond to the 0 valued 

elements of Perimeter matrix while black dotted cells correspond to the 1 valued entries 

of the same matrix. As is seen from the red arrows on the array, the invasion percolator 

generator algorithm seeks neighboring cells that have minimum porosity value. To 

realize this step as seen in Figure 6 , we have to find first the perimeter cells in line 17 

and then find the neighbor cells of that perimeter cell that has minimum porosity in line 

18. We know that Porosity matrix has 0 values for occupancy grid map cells 

corresponding to unknown region with .5; the values of -1 for occupancy grid 

map cells corresponding to void cells .5 and 1 for occupancy grid map cells 

corresponding to obstacle cells .5. Thus perimeter cells that correspond to 

void or unknown region in Perimeter matrix are selected as cells of occupancy grid cell 

values .5 that have not been invaded yet but having neighboring cluster cells 

invaded as shown in Figure 7. Thus our invasion percolation will expand through the 

void or unknown regions avoiding obstacles. At the last step, invasion generator 

algorithm updates Perimeter and Cluster matrices between the lines 21-33. Cluster matrix 

entries that correspond to the invaded neighbor cells then reverse their values from 0 to 1. 

On the other hand, Perimeter matrix values corresponding to the invaded cell are 

assigned as new perimeter cells at the lines through 21-33. Hence this Cluster matrix is 

called a Spanning Grid Cell matrix in our invasion percolator guidance estimator 

computations. Spanning Grid Cell Matrix is a two dimensional matrix that holds the 

invasion situations of the grid cells with respect to occupancy grid map cell indices. 1 

valued Spanning Grid Cell Matrix entry corresponds to the invaded regions while 0 

valued regions correspond to the invasion-free regions. Invaded regions correspond to the 
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voids or void continuities while invasion free regions correspond to the obstacles or 

obstacle continuities. In occupancy grid mapping representation of particle SLAM maps 

as shown in Figure 7 (left) , voids correspond to the occupation probability values lower 

than 0.5 while possible obstacle cells have occupation values higher than 0.5. 

 

Figure 7 Invasion Percolator Configuration Map Generation (right) from given SLAM Map (left) 

On the right of Figure 7, an invasion percolator configuration map is obtained for a 

particle’s occupancy grid map. As is seen from the right part of Figure 7; blue colored 

cells correspond to the invasion free cells while red ones are invaded. White colored 

arrow on percolator map in Figure 7 (right) corresponds to mobile robot next direction, 

while black one corresponds to its current bearing in Figure 7 (right).If mobile robot’s 

measurements were noise-free then we could consider only one Spanning Grid Cell 

matrix so as to determine robot orientation and maximum span range. But we have to 

generate more invasion percolation configurations for different particles because of 

robot’s noisy odometry and sonar measurements. Thus for each Spanning Grid Cell 

matrix corresponding to a particle set, the Invader Motion Estimator module needs to 

estimate the spanning range and orientation. 

3.2.3 Percolator Motion Estimator (module 3 of Figure 5) 

Percolator Motion Estimator provides the average span range and robot orientation from 

each particle’s invasion configuration. The Spanning Grid Cells matrix represents the 

invasion configuration of each particle according to their individual hypothetical robot 

positions and SLAM maps. Since our odometry and sensor measurements are noisy, we 
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cannot trust any particle’s orientation command or maximum span distance information.  

Thus we have to take weighted averages of these hypothetical spanning orientation 

commands and maximum span distance values according to the Percolator Motion 

Estimator algorithm as outlined below in Table 12.  

 

Table 12 : Percolator Motion Estimator Algorithm 

Algorithm Percolator Motion Estimator (Spanning Grid Cells Matrix Collection) 

P
a

rt
 1

 

1. FOR  

2. Sensor Based Cells =Extract Sensor Based Cells( Spanning Grid Cells Matrix Collection) 

3. FOR    

4. FOR    

5. IF(

 

6.  ; 

7. ELSE   

8. BREAK; 

9. END 

10. END 

11. 

 ; 

12. END 

13. END 

14.  (Sensor 

Direction) 

15. 

  

16. END 

P
a

rt
 2

 

17. 

  

18. 

  

19. RETURN   

 

We can explain Percolator Motion Estimator in two parts as shown in Table 12. Firstly in 

part 1; our estimator takes Spanning Grid Cell Matrix Collection as an initially given 

parameter. Spanning Grid Cell Matrix Collection contains Spanning Grid Cell Matrix for 

each particle. Thus we realize the spanning range estimations on this Spanning Grid Cell 
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Matrix through the sensor directions relative to the hypothetical robot bearing. We form 

an array consisting of grid cells through the mobile robot sensor directions, as called 

Sensor Direction Based Cells, using line 2. Sensor Based Direction Cells array is a two 

dimensional matrix that holds the invasion situations of Spanning Grid Cells Matrix 

through the sensor direction at the particle robot positions. Sensor Direction Based Cells 

array contains invasion situations of grid cells through the sensor directions within the 

Spanning Grid Cells Matrix 

.  

Figure 8 Sensor Direction Based Grid Cells are represented with black and white markers on the 

Spanning Grid Cell Matrix representation 

In Figure 8, Sensor Direction Based Cells are seen as white and black dots on the array 

that is represented by the Spanning Grid Cell Matrix. Sensor Direction Based Cells 

contains invasion situations according to the grid cells addresses that can be seen on 

Figure 8 as black and white markers. Black markers correspond to the available grid cells 

invaded by voids taking a value of 1 in the Spanning Grid Cell Matrix, while white 

markers correspond to the non available grid cells through the Sensor Based Grid Cells 

array that corresponds to the 0 valued grid cells in the Spanning Grid Cell Matrix. Our 

percolator motion estimator algorithm counts the available grid cells that correspond to 

the invaded cells within the Sensor Direction Based Cells array that is obtained from 

Spanning Grid Cells Matrix values, according to the sensor directions. Percolator motion 
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estimator algorithm checks the invasion situations through the Sensor Direction Based 

Cells array for the sensor direction orientation with an if statement in line 5, which 

detects the invasion situation that changes from 1 valued situation to 0 valued situation 

on Spanning Grid Cell Matrix ,that is to say from an invaded phase to an invasion free 

phase. So such a transition ends the spanning range and our algorithm counts the 

available grid cells until dead-end using line 5.For the dead-end phase, line 8 breaks the 

loop process for counting available grid cells. In lines 14 and 15; most spanning sensor 

direction and its range value are found and saved as Spanning Direction and Spanning 

Range vectors for each particle. Part 2 computes the expected spanning directions and 

spanning range values with respect to particle weights as is seen in lines 17 and 18. As a 

consequence of these processes, each particle has individually spanning direction and 

spanning range according to its particle robot position and SLAM map. Those spanning 

specifications differ from each other according to measurement noises. Therefore we 

compute the average values of those spanning range and orientation values according to 

particle weight values so as to obtain guidance feedbacks that are closer to true values for 

mobile robot exploration. 

3.3 Percolator Enhanced Entropy Based Exploration  

3.3.1 Motivation 

Our proposed percolator based exploration methodology in section 3.2 is developed to 

reach connected voids with an increased efficiency according to classical exploration 

techniques. Percolator realizes that objective by estimating the continuity of voids 

beyond the explored region. Thus percolator guided mobile robot mostly explores 

unknown regions rather than revisiting navigated sides. That type of navigation strategy 

increases the map information but decreases the localization precision. Furthermore, 

obtained maps of the explored areas also cannot be reliable due to the lower localization 

precision. For this reason, percolator can mislead mobile robot as a consequence of 

localization corruption. We proposed a hybrid solution to solve localization problem of 

the purely applied percolator exploration. In the frame of that hybrid solution, we have 

supported percolator’s localization lankness by entropy based switching mechanism. 
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3.3.2 General Architecture 

In this system either the switch always favors the percolator guidance and we have the 

novel system introduced in section 3.2 which is the Percolator based exploration with 

Grid Based Fast Slam or the switch undergo its switching process with proposed 

guidance by Entropy based exploration and we have the novel system introduced in this 

section. The Entropy based Fast SLAM (modules 1 and 8 of Figure 8) classically chooses 

optimized trajectory from the given action set so as to explore unknown regions beyond 

the frontiers or exploit within the known regions for localization. Entropy based Fast 

SLAM realizes its decision making process by comparing entropy decrements for the 

selected action alternatives. In thesis work, the proposed action set consists of directional 

displacements between robot position and frontier grid centroids within the grid based 

SLAM map. On the other hand, the switching operator, firstly, determines the most 

effective action alternative for entropy minimization from a given proposed action set. 

Then, the selected action is investigated according to its effect on position and map 

entropy decrements. If selected action alternative causes more entropy change for map 

information then, switching favors the use of invasion percolator guidance instead of 

entropy based proposed action alternative that was restricted to the frontiers of obtained 

environment map. As a consequence of our approach, we have been able to increase 

exploration performance of information gain based Fast SLAM technique using invasion 

percolation guidance instead of classical entropy based technique. Our robot starts SLAM 

from a given initial direction (module 1 of Figure 9), but is periodically controlled by the 

percolation estimation of connected voids (module 7 of Figure 9). Module 7 of Figure 9 

is the exact module 2 of Figure 5 and is the system already detailed in section 3.2. 

Module 1 has been given in section 2.2.1 of chapter 2. A proposed action set for entropy 

evaluations (module 9) consists of computed displacements by ray tracing to the frontier 

cells on obtained SLAM maps. Then Module 9 computes information gain values 

corresponding to those alternative actions. Module 10 finds the action alternative that 

causes maximum information gain. Our switching mechanisms detect if map precision or 

position precision is required by analyzing the selected action alternative offered by 

module 10. Switching mechanism decides to continue with selected action alternative if 

localization precision is required and switches to percolator exploration technique 

(module 7) if map information is dominant within the total uncertainty. 
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Figure 9 Percolation Enhanced Entropy Based exploration 

 

Entropy based exploration technique runs under selected action set based on entropy 

minimization; our invasion percolator contributes in our enhanced approach to this active 

control for the mobile robot by providing active feedback to the classical slam and 

generating a predictive action into the unexplored region. The grid based Fast SLAM 

then works under this generated action and its outcome is evaluated in terms of entropy 

which them is given to the switch function for decision making of which action to take 

next. Thus our percolator guided grid based fast SLAM follows the orientation advised 

by the percolator (section 3.2) so as to reach larger probable connected voids rather than 

wandering without guidance among rubbles or getting entrapped with small isolated 

dead-end voids. But it is known that exploration actions are not solely adequate for 

mobile robot navigations. Exploitation actions are also necessary so as to protect its 

localization knowledge. Invasion Percolator (in section 3.2) mechanism provides 

exploration actions as a consequence of estimating connected voids beyond the frontiers 

of explored terrains. But invasion percolator cannot re localize mobile robot position 

preserving its localization precision. We have seen some dead-end crashes through the 
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percolator guided robot trajectory during our simulations since adequate position 

precision cannot be maintained. Thus we can collaborate with the entropy based 

exploration methodology at the utilization of percolator guidance whenever localization 

precision is required besides map precision. Our invasion percolator contributes to the 

entropy based exploration methodology (section 2.3) at the selection of exploration 

actions. Percolator enhanced entropy based exploration has action set that consists of 

exploitation actions for localizations and exploration action for map building precision 

based on connected voids. Hence we intend to use exploitation actions if the position 

entropy minimization is required (left hand after switch) while using exploration action 

for the map entropy minimization necessities based on percolator (right hand after 

switch). We set switching operation that drives the decision making process between 

exploitation and exploration actions. We can summarize our switching operation within 

the percolator enhanced entropy based exploration by the investigation methodology on 

the chosen proposed action. Percolator enhanced approach investigates the chosen action 

by entropy based exploration whether exploitation or exploration action is. If chosen 

action by the end of entropy minimization process is detected as exploitation action, then 

it is applied to mobile robot for localization. Otherwise, chosen action by the end of 

entropy minimization process is exploration action. In this case our percolator breaks into 

the process and determines new exploration action instead of proposed one by the end of 

entropy based exploration methodology. Thus we have more enhanced exploration action 

alternatives so as to find out connected voids estimated by our invasion percolator 

through the unknown terrain. But simultaneously, position awareness is provided for 

required situations. Our percolator enhanced entropy based exploration technique is 

outlined in Table 13 below: 

Table 13 Percolator Enhanced Entropy Based Exploration 

Algorithm  of   Percolator Enhanced Entropy Based Exploration ( ) 

= Entropy Based Exploration (  ) ; 

[ ]=Recall Entropy Changes( ); 

IF  ( )  then 

return  

Else IF (  then 

  

return  

End IF 
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In Table 13, entropy based exploration methodology (module 8) introduced in the 

mathematical background of chapter 2 section 2.3, is driven at the first step according to 

the current mobile robot state belief distribution  and gives optimized action 

 from the proposed action set. On the other hand, proposed 

action set constitutes of possible directional displacements to the frontier neighboring 

cells of mobile robot position. While entropy minimization values are computed 

according to the principles of section 2.3; position entropy and map entropy changes for 

the proposed action set are saved in memory. Entropy based exploration compares total 

entropy changes that consist of map and position entropy changes; then chooses action 

index that has the maximum total entropy change value among the proposed actions. 

Then we recall the position and map entropy changes of selected proposed action index 

by Recall Entropy Changes method in Table 13. Hence we can compare position entropy 

change  and map entropy change  values so as to realize the switching 

operation between entropy based exploration actions and invasion percolator guided 

exploration actions. If percolator guidance is switched according to the map entropy 

minimization mode; then invasion percolator provides percolating exploration action 

 according to the particle maps   and trajectories . 
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CHAPTER 4 

SIMULATION ENVIRONMENT 

4. Simulation Environment 

4.1 Overview to Simulation Environment 

4.1.1 General Architecture 

In order to test our novel methodology, we developed a simulation environment in 

MATLAB as a simulator of a mobile robot navigating within an unstructured area. We 

modeled a 2D search area where the robot is equipped with online sensors acquiring data 

modeled as ray tracing techniques. Similar to sensor measurements, the simulator also 

obtains odometry measurement from modeled robots movements which are generated 

based on time steps using robot coordinates on 2D search environment. In our 

experimental simulation runs, we also added a noise factor to the odometry 

measurements in order to analyze the capabilities of our probabilistic approach to noisy 

robot measurements. We have added noises at the given percentage of odometry motions. 

We added linear error with a given percentage  to odometry linear displacement at each 

time step and added angular error with a given percentage  to odometry angular 

displacement at each time step. We will discuss the effects of  and  odometry error 

percentages over SLAM methodologies by simulating them within our simulator. All 

computations results about mobile robot measurements and probabilistic localization and 

mapping algorithms are regularly recorded according to time steps and particles of the 

applied particle filter runs. In this chapter we will introduce the details of the simulator 

for which the general architecture is given in Figure 10. Within the scope of the given 

architecture in Figure 10, we constitute a generic GUI for different type of algorithm 

implementations. That GUI is shown in Figure 11 and its entries are initial simulation 
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specifications as is seen from Figure 10. Our simulator runs real time simulation with 

animated sensor readings and robot movements. A simulator environment is also initially 

given with GUI entries to the simulator to realize robot’s simulation. 

 

Figure 10: Simulator Environment Abstraction 

Meanwhile real time mobile robot realizes a simulation environment with given SLAM 

parameters; robotic exploration algorithms perform their controls on the running robot 

simulations. As a consequence of that intervention, obtained results such as SLAM maps, 

particle resampling displacements, particle weight values, particle robot trajectories, 

particle percolator maps, entropy computations and their related action alternatives on 

SLAM maps, ray tracing values for particle filter measurement updates, obtained 

proximity sensor readings and mobile robot odometry measurements are saved to 

SimBackUp (Simulation Back Up as seen in Figure 10) structure. After simulation steps 

are completed, we can easily investigate and interpret those recorded simulation 

parameters according to their time steps and particle set specifications such as particle 

number, particle weight, re-sampling displacements. Our simulator analysis tools contain 

required instruments to plot related specifications of investigated parameters that listed 

above. We introduce those analysis instruments through the coming subsections. 

4.2 Simulation Environment: User Interface Specifications 

The mobile robot exploration simulator user interface consists of interactive text box 

groups and menus for user tailored test configuration arrangements. An outline of our 
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simulator user interface control module is shown in Figure 11 below. As is seen from 

Figure 11, text box groups are classified as Simulation Parameters, Motion Model 

Parameters, Mapping Parameters, Load Sim Back Up, Simulation Analyses Results, 

Robot Odometry Driver Step and Motion Model Tester.  

 

 
 

Figure 11 Our Simulator Control Module 

 

Our simulations are configured with those experiment parameters. Those text box 

parameters are discussed in the next sub sections. We introduce Simulation Parameters, 

Motion Model Parameters, and Mapping Parameters in subsection 4.2.1, 4.2.2 and 4.2.3 
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respectively. Simulator analysis instruments given with Load Sim Back Up, Robot 

Odometry Driver Step, Motion Model Tester and Simulation Analysis Results groups in 

Figure 11 are handled in subsections 4.2.4, 4.2.5, 4.2.6 and 4.2.7 respectively. On the 

other hand, we also introduce simulator menu at the subsection 4.3.Interactive text boxes 

on the user interface in Figure 11 are useful in determining the mobile robot 

specifications and the parameters of the exploration algorithm. As is seen from Figure 11, 

there exist interactive text boxes such as Simulation Parameters, Motion Model 

Parameters, and Mapping Parameters so as to determine simulation’s initial parameters. 

We have already explained the details of text box groups related with initial simulator 

parameters in section. We also introduce text box groups about simulator analysis 

instruments. We outline those analysis box groups as Load Sim Back Up, Robot 

Odometry Driver Steps, Motion Model Tester and Simulation Analysis Combo Box. 

4.2.1 Simulation Parameters Text Box Group 

First of all, we assign a name to our experiment in order to record all simulation results 

with chosen experiment specifications with that name. We can also choose our simulation 

environment from “Sim Env Name” text box. Simulation environments are prepared 

before running the experiment and recorded with a special name to recall its parameters 

using that special given name. On the other hand; we can determine the total time steps of 

the experiments and the particle filter particle numbers with “Total Time Step” and 

“Particle Number” text boxes. 

4.2.2 Motion Model Parameters Text Box Group 

Mobile robots that are used for search and rescue operations in real world have noisy 

odometry measurements. Angular and linear errors can be encountered within their 

odometry measurements. In this part of simulator text box groups, we determine the 

generated noise specifications for our robot odometry within simulator. “Linear Err” and 

“Angular Err” text boxes determine the linear and angular cumulative error percentages 

of odometry measurements. On the other hand; “Alfa 1-4” text boxes correspond to the 

Alfa parameters of classical odometry motion model to estimate noisy odometry data. 

4.2.3 Mapping Parameters Text Box Group 

Mapping text box parameters are used for grid based SLAM mapping using Inverse 

Measurement Model technique. As is seen from Figure 11, mapping parameters consist 
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of Alfa (possible width of the obstacle within grid based area.), Beta (angular width of 

each sonar sensor), and Sensor Number, ZMax (maximum sonar range), Grid Resolution 

(grid cell sizes for grid based mapping), Initial Heading (mobile robot initial bearing) and 

Percolator Interval (step size for percolator estimator). 

4.2.4 Load SimBackUp Text Box Group 

Our simulator saves all our experiment results and specifications with an assigned name 

in “Simulation Name” text box within Simulation Parameters Text Box Group. So we 

can easily analyze any past experimental results according to different criteria such as 

particle and time steps. After the desired experiment has been selected from the text box 

embedded in Load SimBackUp text box group, the experiment can be run and all its 

records from the run can be loaded in Load SimBackUp text box for being analyzed later. 

4.2.5 Robot Odometry Driver Steps Text Box Group 

In this text box group; we investigate robot odometry motion steps within the simulation 

environment. A previously saved simulation run can be reloaded from load SimBackUp 

text box, and the selected experimental motion steps can be shown according to time 

steps.  

4.2.6 Motion Model Tester Text Box Group 

Percolator based and percolator enhanced entropy based SLAM use particle filter in order 

to disambiguate mobile robot localization. During SLAM, alternative robot positions are 

generated according to the motion model explained in earlier sections for each particle at 

each odometry command. To understand the effects of motion model we have to compare 

location from the noisy odometry and those generated by the motion model. “Sample 

Number” text box determines the number of samples generated by the motion model. On 

the other hand, the motion model tester assigns the odometry motion model specifications 

of the motion model text box group.  

4.2.7 Simulation Analysis Combo Box  

Simulation results are saved within the Sim Back Up mat files in MATLAB environment 

that consist of configuration and performance parameters of realized experiments. 

Configuration parameters are explained in sections 4.2.1,4.2.2,4.2.3. The analysis of each 

experiment should be done according to its particle specifications and time steps. Hence 
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we develop suitable simulation analysis tools in our simulator in accordance with particle 

parameters and time steps. Simulation analysis issues such as True Robot Trajectory and 

Position Uncertainty Analysis, Map Coverage Analysis, Motion Model Analysis, Particle 

Memory Analysis, Proximity Sensor Analysis, Ray Tracing Analysis, SLAM Map 

Analysis, Percolator Map Analysis, and Proposed Action Set Analysis are represented by 

selecting Simulation Analysis Results combo box options. We select analysis type from a 

combo box to investigate recorded experiment results as seen from Figure 12. 

 

 
 

Figure 12 Simulation Analysis Results Part 

 

4.2.7.1 Robot Trajectory & Position Uncertainty Analysis Option 

We can represent mobile robot trajectory through the simulation environment matrix and 

position uncertainty according to time steps as is seen in Figure 13. 

 

 
 

Figure 13 : Robot Trajectory (left side) and Position Entropies (right side) 

 

Robot odometry measurements have noise and their localization errors are corrected by 

particle filter based algorithms. But we can clearly see true positions through the 



48 

 

simulation environment matrix with labeled time steps. On the other hand; we can 

investigate position uncertainties according to those mobile robot positions. We have 

utilized MATLAB plot tools to obtain true robot position trajectory in Figure 13 (left) 

and position entropy change levels with respect to time in Figure 13 (right). We record 

the robot position values through the simulation within the SimBackUp which is a mat 

file that is one of the file types of MATLAB. We also record computed entropy levels 

with that SimBackUp mat file through the simulation running. Red marked points 

correspond to the plotted values of initially given environment matrix to model 

simulation environment. To obtain environment matrix, we firstly draw our simulation 

environment in two colored gray scale bitmap. We paint obstacles black colored and 

voids white colored using a paint program. Then we track over those two colored maps 

according to their bit values representing colors. We take the perimeter bits of the 

obstacles on the map represented with black colors on two colored bitmaps so as to 

constitute the simulation environment matrix that indicates the obstacles of the simulation 

environment. We can see those perimeter points that indicate obstacles, extracted from 

the bitmap in Figure 13 (right). 

4.2.7.2 Map Coverage Analysis Option 

We can analyze coverage of explored area based on utilized exploration technique at each 

time step using map coverage option within simulation analysis results part. Map 

coverage with respect to time steps and related robot positions can be seen with this 

analysis option as for which an example is seen in Figure 14. 

 

 
 

Figure 14 : True Robot Positions and Map Coverage with respect to Time Steps 



49 

 

We have explained how the environment matrix and simulated environment represented 

is shown in Figure 14 (left) in section 4.2.7.1. On the other hand, we record coverage 

level values according to each time step through the simulation runs. We obtained 

coverage levels by counting the grid cell numbers used in SLAM map and then 

multiplying that number of void grid cells with grid cell area that are used in that SLAM 

map. We reach a unit area of grid cell by computing the square of the grid cell size. 

Therefore after we obtained those coverage values according to SLAM maps, we then 

record those values in SimBackUp mat file. To analyze coverage levels with respect to 

time steps, we recall SimBackUp mat file and extract the value of coverage levels 

according their time steps. Then we trivially plot those coverage levels corresponding to 

time steps using MATLAB plot function as seen in Figure 14 (right). 

4.2.7.3 Motion Model Analysis Option 

Since robot odometry measurements are noisy; we have to use motion model in order to 

generate samples for possible localizations. Particle filter assigns those generated 

possible localizations with respect to ray casting correction on SLAM maps. We can see 

the effect of our motion model on noisy odometry measurement in Figure 15. 

 

Figure 15: Noisy, Noise-Free Odometry Measurements and Generated Motion Model Samples 

As is seen from Figure 15; red and black colored markers represent true and noisy robot 

positions while circled positions correspond to the generated localization samples 

according to previous noisy robot position. There exists linear error within the odometry 

measurements in Figure 15; that can be seen from the position difference of red and black 

colored markers with respect to initial robot position marker. On the other hand; the 

initial robot position marker is always placed at the origin as an offset to the noisy robot 

position and true robot position markers so as to represent noisy and true odometry 
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measurements respectively. We generate Figure 15 using MATLAB plot tools which plot 

our given sample positions, true odometry positions and noisy odometry position 

coordinates with 2D representation. We record the particle sample positions proposed by 

motion model, true odometry positions obtained by computed guidance values from 

exploration methods and noisy odometry positions obtained by adding initially defined 

error values within the SimBackUp mat file which is a type of file in MATLAB. Since 

we recorded those values with respect to their time steps and particle number values, we 

can easily figure noisy odometry position, true odometry position and generated particle 

sample positions with extract from SimBackUp and show on 2D frame using MATLAB 

plot function. 

4.2.7.4 Particle Memory Analysis Option 

This simulation analysis option represents the particle weights at each time step and 

particle situations through the resampling processes on a notepad file as seen in Figure 16 

 

Figure 16: Particle Weights (left side) and Re-sampling Situations (right side) 
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At the bottom of the particle weight history; the particle set resampling process can be is 

seen at each time step according to saved SimBackUp records during the simulation. 

4.2.7.5 Proximity Sensor Analysis Option 

Proximity sensor scans are modeled with ray tracing technique on simulation 

environment matrix. There exist three types of ray tracing operation between mobile 

robot position and obstacles within the simulation environment as left side tracing, inner 

side tracing and right side tracing according to the mobile robot sensor direction. So 

similar to the real proximity sensors; nearest ray tracing corresponds to sonar sensor 

measurements. On the other hand; there exist a number of sonar sensors determined by 

the Simulation Parameters text box. 

 

Figure 17: Sonar Sensor Measurements Representation on Simulation Environment Matrix 

Figure 17; represent sonar sensor directions colored in blue while red colored lines 

represent the boundary of sonar waves. On the other hand; red colored circles represents 

nearest obstacles that sonar sensors read. In MATLAB red colored markers on Figure 17 

are saved within the environment matrix which explained in section 4.2.7.1. According to 

extracted environment matrix from SimBackUp at each time step, we compute ray 

tracing values so as to simulate proximity measurements within our experiments. We 

utilize ray tracing to red marked obstacle points within the sonar cones that represented 

with red colored lines in Figure 17. We compute the minimum ray tracing value which is 

represented by blue colored line in Figure 17. Red circled places on Figure 17 correspond 

to the sonar reading points as consequence of the ray tracing. We use line function of 

MATLAB to plot those ray tracings on the 2D plot diagram as seen in Figure 17. 
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4.2.7.6 SLAM Map Analysis Option 

Simultaneous localization and mapping technique is used for both entropy and percolator 

based exploration methodologies. Our mobile robot uses inverse measurement model in 

order to construct grid based map from sonar sensor measurements. Those SLAM maps 

are used for localization and guidance for exploration algorithm in our simulator. Our 

simulator represents SLAM map that are bounded with sonar measurements and also 

represents the totally accumulated SLAM maps at each time step. SLAM map at each 

time step. Bounded SLAM maps are used for localization and guidance instead of total 

SLAM maps so as to decrease computation burden. 

 

Figure 18: Bounded (left side) and Total SLAM (right side) Maps 

 As is seen from Figure 18, bounded and total accumulated SLAM maps are represented 

according to particle index and time step values. While regions bearing a color near to 

blue represent possible voids; regions colored by colors near to red represent possible 

obstacles in Figure 18. The green colored regions represent unexplored or uncertain parts 

in SLAM maps. We utilize imagesc function of MATLAB to represent those SLAM 

maps in Figure 18. MATLAB imagesc function converts two dimensional matrices into 

colored image maps as seen in Figure 18. We recorded SLAM map occupation 

probabilities as a 2D matrix which corresponds to total or bounded SLAM maps within 

the SimBackUp mat file according to each time step and each particle individually. Then 

we recall those occupation probability matrices from the SimBackUp mat file according 

to the desired time step and particle index and then, those occupation probabilities are 

converted to image maps as seen in Figure 18 by MATLAB imagesc function. Converted 

image maps consist of grid cells that are placed on image map corresponding to elements 

of occupation probability matrix. Grid cells are placed on the image map according to its 
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corresponding row and column element indices while their color is assigned according to 

the value of occupation probability matrix value. Their colors are assigned according to 

the color scale between 0 and 1. Occupation probabilities correspond to the existence 

probability of obstacle within any grid cell. We can see those color scales easily at the 

right sides of image maps representing SLAM maps in Figure 18.According to that color 

scale, occupation probability matrix elements that are less than 0.5 are represented by 

blue colored grid cells while other matrix elements that are greater than 0.5 are 

represented by colors which near to red. Green colored grid cells are also assigned to 

occupation probability matrix elements that have 0.5 occupation probability, namely 

uncertain regions. 

4.2.7.7 Ray Tracing Analysis Option 

Since mobile robot odometry measurements are noisy, our mobile robot needs to correct 

its localization according to obtained SLAM maps. This correction step take place within 

the particle filter based SLAM technique by assigning weights to the generated 

alternative localization samples. This correction step consists of ray tracing operations 

between each particle’s robot position and possible SLAM map obstacles. Then those ray 

casting values are compared to sonar sensor measurements. We can see the comparison 

in Figure 19.  

 

Figure 19: SLAM Map (left side) and Sonar Measurement (right side) 

As is seen from Figure 19, ray tracing operation can be seen on SLAM map 

corresponding to the sonar sensor measurements on third step of mobile robot trajectory. 

It is seen that there is no large amount of mobile robot localization error in Figure 19. We 

have explained how we generated SLAM maps in section 4.2.7.6 Figure 19 (left) and 

sonar measurement in section 4.2.7.5 in Figure 19 (right). We utilize ray tracing 

operation on SLAM map as seen with red colored lines and red points in Figure 19 (left). 

We realize ray tracing operation in a similar way with proximity measurement 

representation as seen in Figure 19 (right) as explained in section 4.2.7.5. But this time 
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for SLAM map ray tracing, we use the coordinate values of grid cells on image map of 

SLAM map representation. In a similar way to measurement computation in section 

4.2.7.6, we constitute cones and select minimum obstacle grid cell coordinate to find out 

ray tracing distance. We have shown those ray tracing distances with red colored lines in 

Figure 19 using MATLAB line function which takes two coordinate and then combine 

them by a line. 

4.2.7.8 Percolator Map Analysis Option  

Since each particle proposes an alternative to the SLAM map and localization correction; 

their percolator guidance as a continuity of explored regions has different accuracy levels 

according to their particle weights. So each particle has individual void prediction that 

has been derived from its SLAM map using our invasion percolator algorithm in section 

3.2 in chapter 3. We can investigate particle percolator map guidance of each particle 

from Particle Percolator Map option of simulation analysis results part as is seen in 

Figure 20.  

 

Figure 20: Particle Percolator Map and Bounded SLAM Map 

We utilize MATLAB imagesc function which converts 2D matrix to an image map so as 

to obtain percolator maps as seen in Figure 20 (left). We have explained insection 4.2.7.6 

how that imagesc function converts 2D occupation probability matrix to an image map 

for SLAM map representation as seen in Figure 20 (right). For percolator map in Figure 

20, we convert 2D spanning probability matrix to image map. Spanning probability 

matrix is explained in chapter 3 section 3.2.2. But we can state that Spanning Probability 

Matrix has 0 or 1 valued elements that correspond to available or unavailable regions for 

robot motion. So MATLAB imagesc function assigned 0 valued elements to red colored 



55 

 

grid cells while 1 valued element to blue colored as seen from Figure 20. Black and white 

arrows on Figure 20 correspond to the current and next motion directions that are 

represented with MATLAB line function. On the other hand, white and black colored 

markers on the Figure 20 correspond respectively to the available or unavailable paths. 

 

4.2.7.9 Proposed Actions Analysis Option 

We can investigate proposed action alternatives that are used for guidance determination 

during entropy based exploration experiments. Entropy based exploration algorithm in 

our simulator determines the most suitable action alternative in order to increase 

information gain. Information gain is consisting of decrement of robot position and map 

uncertainties. We can measure information gain using Shannon entropy. So proposed 

action option can represent the information gain amount related with map and robot 

position for selected proposed action alternative as is seen Figure 21. 

 
 

Figure 21 : Proposed Action Displacements Represented with White Colored Circles on SLAM Map 

(left) and Proposed Action Information Gain Values with respect to Map and Position Uncertainties 

(right). 

As is seen from Figure 21, we obtain map and position information gain values for each 

proposed action alternatives. We compute those action alternatives according to obtained 

proximity measurements and then compute their entropy change values as is seen from 

(right) Figure 21. We have generated proposed action set representation in Figure 21(left) 

using imagesc and plot functions that are utilized for SLAM map generation and 

proposed action goal points on that SLAM map. We record the robot position and its 

bearing according to each time step and particle within the SimBackUp mat file. On the 

other hand, we also record the proposed action goal points that are generated by sonar 
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measurement within the SimBackUp mat file. Using imagesc MATLAB function as 

explained we firstly generate SLAM map for chosen particle and time step to analyze as 

explained in section 4.2.7.6, than we represent robot position and bearing using plot and 

line MATLAB function that determine its position and bearing respectively as seen in 

bold black point with its black arrow in Figure 21 (left). Over those SLAM map and 

robot representations, we plot odometry goal points using MATLAB plot function on 

Figure 21(left). On the other hand, we also record computed position and map 

information gain values for each action alternative and each time step within the 

SimBackUp mat file. So we use MATLAB stem function to plot those positions and map 

information gain values in Figure 21 (right). We plot map information gain levels with 

red colored points and position information levels with blue colored points in Figure 

21(right) 

4.3 Simulator Menu Options  

Simulator menu options consist of Simulator Configuration Menu, Experiment Results 

Menu, Select Simulation Type Menu and Simulation Environment Menu. Those menu 

options are used to represent experiment results in previously defined file formats or save 

their initial run configuration parameters so as to repeat another experiment with same 

parameters. 

4.3.1 Simulator Configurations Menu 

 

Figure 22 : Simulator Configurations Menu 

Each experiment has specified experimental configurations related with robot and 

simulator environment which consist of mapping parameters and simulation parameters 

text box groups entries as is seen in Figure 11 in section 4.2.We save those simulation 

parameters as test configuration structure that is assigned by predefined configuration 

name. Thus those simulation parameters placed in user text boxes in Figure 11 are 

reloaded by selecting previously saved simulation configuration file from Load Simulator 

Configuration menu as is seen from Figure 22. Using memorized parameters of previous 

experiments, in our simulator; we can simulate experiments with changing specified 
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parameters such as mapping or odometry motion model parameters while others are 

fixed. Hence we can easily compare percolator based exploration, entropy based 

exploration and percolator enhanced entropy based exploration methodologies using 

similar sensitive parameters and initial conditions on experiment scenarios. 

4.3.1.1.1 Experiment Results Menu 

 

Figure 23 : Experiment Results Menu 

Our simulator keeps configuration parameters which are simulation name, total time step, 

particle number, simulation environment, alfa obstacle width, cone width, sensor number, 

grid cell size interval, initial robot heading, motion model parameters , injected noise 

parameters and their experimental performance parameters which are the total coverage 

area, position entropy and elapsed time. Those configuration and performance parameters 

can be displayed within a Microsoft Excel file as is seen in Figure 24. 

 

Figure 24 : Configuration and Performance Parameters Microsoft Excel File Representation 

 

In order to display configuration and parameters as an Excel file, Excel Data Loader 

Options menu is used. Excel Data Loader Options menu can be selected from pull down 

menu on the Experiment Results menu in Figure 23.After this menu is selected, Excel 

Data Loader Options GUI opens up as seen in Figure 25.We can select the experiment 

type and its configurations and performance parameter options from the opened up GUI 

in Figure 25. In this specific GUI of Figure 25 ; motion model parameters have not been 

selected to thus cannot be seen .We save those performance parameters with their test 

configuration parameters within our simulator buffer using Data Accumulation Options 

sub-menu in Figure 23 and using popup menu in Figure 25. Data Accumulation Options 
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menu works as a toggle switch that open up or reset the parameter buffer. “Load Data To 

Excel” sub menu loads all accumulated experimental configuration and performance 

parameters to excel file. In addition to these parameter buffering operations, all 

parameters related with different experiments types such as Percolator Based Fast 

SLAM, Entropy Based Fast SLAM.etc are saved in the form of different Excel files 

 

Figure 25 : Excel Data Loader Options GUI 

 

4.3.1.1.2 Select Simulation Type Menu 

 

Figure 26 : Select Simulation Type Menu 

We can choose four types of simulator modes which consist of Fast SLAM Simulation 

mode, Purely Applied Percolator Based Exploration Simulation mode, Entropy Based 

Exploration model and Percolator Enhanced Entropy Based Exploration Simulation mode 

is seen on Figure 26. Mobile robot exploration algorithms running behind the GUI and 

related analysis tools with chosen exploration algorithms are determined with this Select 

Simulation Type menu of Figure 26 
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4.3.1.1.3  Simulation Environments Menu 

 
 

Figure 27 : Simulation Environments Menu 

We can prepare and load simulation environments using Simulation Environments menu 

as is seen in Figure 27.Our simulator converts given bitmaps to the 2 dimensional 

simulator environment matrices in order to model disaster environments for search and 

rescue mobile robots. We can see a sample simulation environment matrix that converted 

from a given bitmap in Figure 28. 

 
 

Figure 28 : Simulation Environment Matrix (left side) and Related Bitmap (right side) 

Our simulator realizes mobile robot movements and its sonar sensor measurements 

within the simulator environment matrix in Figure 28.We can convert given bitmaps to 

the simulation environment matrices with “Prepare Simulation Environment” menu and 

load those simulation environment matrices within a mat file structure to the simulation 

environment archives of our simulator. After these steps; we can choose any loaded 

simulation environment matrix from Sim Env Name text box. While disaster 

environments are represented with the simulation environment matrices; mobile robots 

are represented as a circle with a specified radius value and a direction arrow as seen in 

Figure 29. 

 

 
 

Figure 29 : Mobile Robot Representation with Given Radius and Its Direction Arrow 
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CHAPTER 5 

EXPERIMENT RESULTS 

5. Experiment Results 

5.1 Introduction to Experiment Results 

Our objective in this thesis is to navigate through connected voids exploring highly 

unstructured environment without getting trapped in dead-ends before reaching enough 

coverage of the area in question. Since disaster regions have highly irregular labyrinth 

conditions; mobile robot exploration of the area is a complicated mission that includes 

significant challenges in terms of correct localization about its position awareness and 

handling map uncertainties over time and space. Classical approaches that handle 

precision in localization and map uncertainties are mainly entropy based approaches. 

Thus, we aim not only at comparing our percolator based exploration methods of sections 

3.2 and 3.3 with entropy based technique by their time and coverage performances using 

our simulator but also integrate percolator with entropy based techniques. We run our 

comparison on robot localization and map coverage progressions between entropy based 

and percolator based exploration methodologies depending upon time and coverage 

specifications. From experimental results we see that our invasion percolator 

methodology that reach connected voids through the unknown region beyond the 

explored frontiers promises better coverage performance at the initial steps while the 

entropy based methodology maintains more reliable robot trajectory through the 

exploration of unknown regions. Entropy based exploration methodology owes this 

reliable trajectory to better localization during the exploration process. SLAM maps 

obtained from proximity sensor readings are faulty due to deficient localization 

information. Since percolator based exploration guidance focusing on reaching unknown 
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regions via connected voids reduces that localization awareness, percolator guidance will 

be adversely affected by localization uncertainties. However we will see from our 

experimental results, that our proposed percolator enhanced entropy based methodology 

introduced in section 3.3 is able to compensate the localization deficiencies encountered 

during the exploration process that is the main disadvantage of in percolator guidance 

methodology applied alone in section 3.2.In this chapter ,we run comparisons between 

percolator based exploration ,percolator enhanced entropy based exploration and classical 

entropy based exploration techniques in order to better enhance the critical contribution 

of a percolator as an estimator in the performance of an active SLAM performance. 

Based on this comparison, this chapter will unveil the value of contribution we made in 

this thesis work. We also conduct in this chapter a sensitivity analysis of performance to 

its parameters, since the reliability of the exploration guidance also depends upon 

mapping parameters mentioned in section 2.1.2.3, this guidance being obtained according 

to SLAM maps, Proposed action set given for entropy based exploration in section 2.2 

and percolator probability computations in section 3.3 are evaluated SLAM map 

parameters. Therefore we evaluated performance sensitivity through experiment trials 

based on different grid cell sizes; different possible obstacle width  and different sensor 

beam width  and mapping parameters in section 2.1.2.3.We also evaluated sensitivity to 

noise in the odometry measurements. According to section 2.1.2.1; we saw that noise 

effects on odometry measurements and depend on 4 parameters  

according to the error rates on the odometry measurements of linear and angular robot 

movements. We run our comparisons considering the same initial conditions.  

5.2 Introduction to Rating Framework for Simulation Results 

Fast SLAM performance responses are in this section analyzed according to injected 

noise types and amounts, and to odometry measurement data. How Particle filter 

implementation compensates noisy odometry measurements with respect to obtained 

proximity sensor measurements has been investigated in this section. And we discuss 

here particle filter implementation as passive Fast SLAM utilization with given odometry 

commands. But exploration experiment discussions in this section are related with how 

Fast SLAM odometry commands are derived according to obtained SLAM maps in the 

previous time steps. Hence we introduce our fundamental approach to sensitivity analysis 

of exploration experiments. Rating criteria of compared exploration methodologies 

through the sensitivity analyses are determined according to their coverage performance 
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and accuracy levels of their map and position information. In Figure 30, we have outlined 

the philosophy of the exploration performance analysis according to given and outcome 

parameters. Coverage of unknown environment depends upon implemented exploration 

techniques, particle SLAM maps and particle hypothetical robot position used on 

exploration guidance computations. 
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Figure 30 Exploration Experiments Analysis Philosophy 

We compare coverage performances of exploration techniques by matching their elapsed 

time for their coverage. Exploration speed also determines the coverage performance. 

Map Accuracy and Robot Localization are other criteria of performance analysis. Map 

accuracy and Robot Localization accuracies are associated with obstacle width , 

occupancy grid map cell size and sensor cone width  (section 2.2.1.4) and parameters 

required for localization consisting of motion model parameters . In 

addition to those parameters, injected noise parameters which are and  also critical 

in performance while analyzing exploration experiment results due to map and 

localization accuracies, particle weights specifications such as particle set variance, most 

reliable particle weight value are considered. We also compare in this chapter sensitivity 

factors of required parameters such as possible obstacle width, sensor cone width, 

occupancy grid map cell size and motion model parameters to SLAM map accuracy. 

Injected noise parameters  and  are used to assess sensitivity of implemented 

exploration algorithm against added noises to odometry measurements. For sensitivity 

analysis of map and localization accuracies or coverage performance against noisy 

measurements, we have fixed the mapping and motion model parameters while changing 

linear  or  angular  cumulative error rates to observe the robustness of driven 

exploration algorithm to injected noise disturbance levels. For ease of comparative 

analysis we developed a coverage performance summary table as the one shown for 
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coverage performance in Table 14 and for map and localization accuracies in Table 15. 

All comparisons will be done by comparing data in those standardized tables. 

 

Table 14 Data Table for Coverage Sensitivity Analysis 

Initial Simulation Parameters 

Total Time Step  

Particle Number  

Sensor Number  

Maximum Proximity Sensor Range  

Sensitivity Analysis of Coverage Performance 

Experiment 

Name 

 Possible 

Obstacle 

Width 

Occupancy Grid 

Map Cell Size 

Sensor 

Cone 

Width 

Motion 

Model 

Parameters 

Exploration 

Methodology 

Coverage Area( ) 

    

          

 

 

Table 15 Data Table for Map Accuracy and Localization Sensitivity Analysis 

Initial Simulation Parameters 

Total Time Step  

Particle Number  

Sensor Number  

Maximum Proximity Sensor Range  

Sensitivity Analysis of Map Accuracy and Localization Performance 

Experiment  

Name 

 

Possible 

Obstacle 

Width 

Occupancy 

Grid Map 

Cell Size 

Sensor 
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Width 
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Model 

Parameters 

Injected 
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Parameter 

Exploration 

Methodology 
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Particle 

Weight 

Value 

Particle Set  

Variance(Position 

Entropy Level) 

      

             

 

Particle set variance corresponds to the reliability of particle filter as an estimator through 

the simulated experiment. On the other hand, the most reliable particle means particle 

that has the greatest particle weight value within the evaluated particle set through 

simulated experiment. Sensitivity analyses outcomes as particle weights and particle set 

variance are represented in Table 15. Similar to the data table template in Table 14, 

experiments are exposed to odometry measurement noise expressed with injected linear 
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and angular noise  parameters. Since we have completed defining our experiment 

rating framework on simulation results using sensitivity and robustness data table 

templates, we can compare our proposed exploration algorithms according to that 

experiment rating framework. We will run exploration simulations for entropy based 

exploration (section 5.4), purely percolator based exploration (section 5.5) and percolator 

enhanced entropy based exploration (section 5.6) methodologies. While performing those 

experimental runs, we will extract sensitivity and robustness analyses data as is defined 

in data table templates represented in Table 14 and Table 15.Finally, we will compare the 

significant sensitivity and robustness analyses results of performed experiments at the 

end of chapter 5. Before starting the exploration experiments, we will investigate 

sensitivity analysis on Fast SLAM implementation as explained in section 5.3. Coverage 

performance is meaningless for Fast SLAM implementation since we have provided 

odometry command before simulation. Hence we realize sensitivity analyses for only 

map and localization accuracy in the experiments of section 5.3 and then, in subsequent 

sections, we will show the effects of these sensitivities in the performance of our two 

novel methodologies (section 5.5 through 5.7) 

5.3 Fast SLAM Performance Analysis 

As we recall from section 5.3.1 sensitivity parameters consist of obstacle width ; 

occupancy grid map cell size, sensor cone width; motion model parameters. From those 

sensitivity parameters, obstacle width , occupancy grid map cell size, sensor cone width 

are related with SLAM mapping while motion model parameters are related with 

localization process. As we explained in section 2.1.2, obstacle width; occupancy grid 

map cell size, sensor cone width parameters define the scanning of proximity sensor on 

SLAM map in order to assign occupation probability values to the grid cells of SLAM 

map. We illustrate that relationship between those sensitivity parameters and mapping 

process. As is seen from the Figure 31, occupancy grid map cell size corresponds to the 

SLAM map representation grid cell sizes and especially, length of the cell edges. On the 

other hand, sensor cone width corresponds to the cone angle shown in Figure 31, while 

obstacle width correspond to the obstacle cells that are indicated by the vicinity of ray 

traced proximity sensor point on the SLAM map. 
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Figure 31 : Occupancy Grid Map for SLAM Map Representation with 0.2 Sized Grid Cell Edges 

Inverse sensor measurement model decides on the grid cell occupation probabilities if 

they drop inside of the cone. As explained in section 2.2.1.4, grid cells whose centroids 

drop in the vicinity of obstacle region will be assigned occupation probability greater 

than 0.5 values to indicate those cells as probable obstacle cells. Cells of regions until 

obstacle regions inside of the cone will be assigned as void cells. In this point, it is 

important to fit grid cells centroids with the sensor cone. If we choose appropriate 

obstacle width and sensor cone width according to chosen grid cell sizes, our sensor cone 

will hardly match grid cell centroids to decide if they are void or obstacle cells. To 

illustrate this situation we can look into the Figure 32 given below. As is noticed from the 

Figure 32, grid centroids that drop in the possible width region have dramatically 

decreased due to inappropriate selection of obstacle width compared to the chosen grid 

cell size. On the other hand, number of grid cell centroids that drop inside the proximity 

sensor cone can be increased by widening the sensor cone angle (sensor cone width) and 

obstacle width. Another sensitivity parameter related with map accuracy and robot 

position awareness is motion model configuration. As explained in section 2.2.1.2, 

motion model parameters consist of , .Those parameters ,  are 

weighted according to estimated linear or angular deviations from noisy odometry 

measurement data in our experiments. We can illustrate linear deviation with 0.1 

percentage of true displacement in Figure 33.With a similar percentage rate for true 

angular displacement, we can also represent angular error effects on odometry 

measurements in Figure 34. 
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Figure 32 Occupancy Grid Map for SLAM Map Representation with 0.5 Sized Grid Cell Edges 

 

Since red marked displacements represent noisy odometry measurements with respect to 

the same origin for true odometry measurements shown with black marked displacements 

in Figure 33 and Figure 34, we have generated samples to estimate true odometry 

measurements. 

 

Figure 33 Linear Error Effect on Odometry Measurement  
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Figure 34 Angular Error Effect on Odometry Measurement 

Those samples are generated with respect to motion model parameters ,  so as 

to estimate true odometry displacements from noisy odometry measurements. Angular or 

linear errors can exist with different weights in odometry measurement faults. Hence we 

utilize those motion model parameters ,  to weight generated samples with 

respect to expected error model of obtained odometry measurements. We have motion 

model configuration that consist of parameter values: =0.1,  

for sample generation in Figure 35. 

 

Figure 35 Generated Samples by Motion Model Configuration 
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Figure 36 Generated Samples by Motion Model Configuration 

 

In Figure 36, we generated samples for angular based odometry measurement error 

motion model configuration with respect to parameter values of 

=0, .We can start Fast SLAM sensitivity analyses according to those given 

introductory information in this section. Table 16 shows the sensitivities of Fast SLAM 

map accuracy and robot position awareness performance to changing sensitivity 

parameters which are obstacle width α, occupancy grid map cell size and sensor cone 

width over the fixed motion model configuration and noise distribution. These 

sensitivities demonstrate expected reactions on the particle set specifications which are 

particle set variance and particle weight values. As particle set variance decreases 

estimated position or map information certainty increases respectively as explained in 

chapter 2 section 2.2.1.5.4. Particle weight values correspond to achievement of 

localization with respect to obtained sensor readings as explained in chapter 2 in section 

2.2.1.3 We have realized all Fast SLAM trials using a particle filter having 20 particles. 

We have implemented that particle filter in all our trials in Table 16 with 6 proximity 

sensors that have 2br maximum sensing ranges through 20 time steps. We have applied 

different scenarios through the Table 16 experiments. At the first glance, we change 

obstacle width α through the FS_Exp_1, FS_Exp_2 and FS_Exp_3 experiments while 

other parameters are fixed. We have seen that increasing obstacle width changes the 

localization level of mobile robot. FS_Exp_1 , FS_Exp_2 and FS_Exp_3 have individual 
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particle variances as 2.94, 2.83 and 2.89. Particle set variance means the certainty of 

estimated robot position. While particle set variance decreases, position certainty 

increases. 

Table 16 Sensitivity Analyses for Fast SLAM Map Accuracy and Robot Position Awareness 

Performance 

Initial Simulation Parameters 

Total Time Step 20 

Particle Number 20 

Sensor Number 6 

Maximum Proximity Sensor Range 2br 

Sensitivity Analysis of Map Accuracy and Position Awareness Performance 

Experiment  

Name 

 

Possible 

Obstacle 

Width 

Occupancy 

Grid Map 

Cell Size 

Sensor 

Cone 

Width 

Motion 

Model 

Parameters 

Injected 

Noise 

Parameter 

Exploration 

Methodology 

Most 

Reliable 

Particle 

Weight 

Value 

Particle Set  

Variance(Position 

Entropy Level) 

      

FS_Exp_1 0.2 0.3 30 0 0 0.1 0.1. 0.1 0 Fast SLAM 0.055 2.94 

FS_Exp_2 0.4 0.3 30 0 0 0.1 0.1 0.1 0 Fast SLAM 0.062 2.83 

FS_Exp_3 0.6 0.3 30 0 0 0.1 0.1 0.1 0 Fast SLAM 0.059 2.89 

FS_Exp_4 0.6 0.3 40 0 0 0.1 0.1 0.1 0 Fast SLAM 0.089 2.83 

FS_Exp_5 0.6 0.3 60 0 0 0.1 0.1 0.1 0 Fast SLAM 0.11 2.303 

FS_Exp_6 1 0.3 60 0 0 0.1 0.1 0.1 0 Fast SLAM 0.17 2.5 

FS_Exp_7 1.5 0.3 60 0 0 0.1 0.1 0.1 0 Fast SLAM 0.35 1.94 

FS_Exp_8 1.5 0.5 60 0 0 0.1 0.1 0.1 0 Fast SLAM 0.27 1.94 

FS_Exp_9 1.5 0.7 60 0 0 0.1 0.1 0.1 0 Fast SLAM 0.21 2.3 

FS_Exp_10 1.5 0.5 60 0.1 0.1 0 0 0 0.1 Fast SLAM 0.35 2.303 

FS_Exp_11 1.5 0.5 60 0.1 0.1 0.1 0.1 0 0.1 Fast SLAM 0.2 2.303 

FS_Exp_12 1.5 0.5 60 0.2 0.2 0.2 0.2 0 0.1 Fast SLAM 0.26 1.94 

FS_Exp_13 1.5 0.5 60 0.1 0.1 0.5 0.5 0 0.1 Fast SLAM 0.24 2.197 

 

On the other hand, particle weights correspond to the comparison between ray tracing 

values obtained from SLAM map and sensor reading values. Hence increasing particle 

weight corresponds to the consistency between robot position information and sensed 

environment. According to those facts, FS_Exp_2 possesses to the best localization 

compared to FS_Exp_1 and FS_Exp_3. This means that increasing obstacle width cannot 

directly enhance localization. We have increased sensor cone width through the 

FS_Exp_4 and FS_Exp_5, and changed sensor cone width from 40 degree to 60 degree. 

As a consequence of increased sonar cone we can assign more grid cells on the SLAM 

map in accordance with inverse sensor measurement model in (chapter 2 section 2.2.1.4). 

Hence our mapping capability has spanned over wider region within the SLAM map. 

Since we have mapped wider region we can compare more specifications on the map and 
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reach more certain localization levels. As noticed from Table 16, FS_Exp_5 has particle 

variance 2.303 that is less than FS_Exp_4 particle variance which is 2.809. So FS_Exp_5 

has more certain localization results with respect to FS_Exp_4. But wider regions are 

also tuned with obstacle width. Exaggerated obstacle width can also deteriorated mobile 

robot localization. As noticed from FS_Exp_6, we have increased obstacle width 

parameter as 1 and fixed other FS_Exp_5 parameters. So our particle variance has 

increased to 2.5 in FS_Exp_6 meaning that our certainty in localization decreased. We 

have also changed grid cell size values to see their effects on localization through 

FS_Exp_6 to FS_Exp_9 experiments. We have changed grid cell size values from 0.3 to 

0.7 and it is seen that coarser grid cell sizes leads to deteriorated localization as noticed 

from FS_Exp_9 particle set variance as 2.3 while FS_Exp_7 and FS_Exp_8 with finer 

grid cells has particle set variance as 1.904. Finally, we have tested motion model 

parameter effects on localization performance. We have applied different motion model 

parameters with injected angular noise as 0.1 percentages at each mobile robot step. We 

have tuned sampling variances corresponding to the  and  values 0.1 in FS_Exp_10. 

Those sampling variances correspond to the angular deviation samplings as seen from 

Figure 36 and as explained in chapter 2 section 2.2.1.2. In FS_Exp_11 we have also 

tuned  and  for linear sample deviations as seen from Figure 35(explained in chapter 

2 section 2.2.1.2) besides of the  and  values that are set to 0.1. According to their 

particle set variance values which mean the certainty of their position localizations, 

FS_Exp_11 and FS_Exp_10 have similar particle set variances but FS_Exp_10 has 

particle weight value that is greater than FS_Exp_11 particle weight value. We can 

explain that fact with the existence of constant sample numbers where sampling was done 

according to those motion model sampling variances. Since FS_Exp_10 is only generated 

according to the angular deviation while FS_Exp_11 is generated according to both linear 

and angular deviations, FS_Exp_10 has more appropriate samples for angular based 

odometry errors. So FS_Exp_10 has greater particle weight (value of 0.35) while 

FS_Exp_12 has smaller valued ones (value of 0.2). On the other hand, FS_Exp_12 

motion model parameters are tuned with larger deviation variances (value of 0.2) 

according to FS_Exp_10 and FS_Exp_11. As a consequence, larger deviation leads to 

larger error probabilities and FS_Exp_12 has particle set variance level as 1.94 which is 

smaller than FS_Exp_10 and FS_Exp_11 particle set variance values as 2.303. But 

similar to the FS_Exp_11, increased probability variations leads to lower particle weights 

in FS_exp_12 as 0.2. But our priority to determine localization is particle set variance. 
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We firstly compare particle set variances of those trials. Then we compare their particle 

weights if the trials have similar particle set variance. This priority is due to the fact that 

particle set variance means the certainty of our estimator to predict true robot states, 

while particle weight correspond to which sample is more correct within the particle set. 

The particle set variance is a low value then, localization is successfully achieved on that 

particle set. So we can infer that FS_Exp_12 has better localization performance 

compared to FS_Exp_10 and FS_Exp_11 due to their particle set variance levels. At the 

last trial in FS_Exp_13, we have increased linear sampling generation variance by 

increasing the corresponding variables  and , and inFS_Exp_12  we decreased 

angular sampling generation variance by decreasing the corresponding variables  

and . We have set  and  to values 0.1 while  and  variables are assigned 

values of 0.5 in FS_Exp_13 Since we increased the possibility of linear deviation sample 

generations according to angular based ones, we have lowered the localization 

performance as noticed from lowered particle set variance FS_Exp_13 (as value of 

2.197). That situation of FS_Exp_13 is similar to the redundant sample generation for 

linear based deviations in FS_Exp_11.As noticed from Table 16, FS_Exp_11 has lowered 

localization certainty attested by its particle set variance value, compared to FS_Exp_10. 

In a similar way, FS_Exp_13 has lowered localization performance with increased linear 

generated error samples. But FS_Exp_13 has smaller variance than FS_Exp_10 since its 

sampling variances under motion model parameters which are 

=0.5, .5, are greater than those of FS_Exp_13 under motion model 

parameters : =0.1 .1. At the next step in this section we 

will illustrate and discuss the given experiments in Table 16 over their obtained SLAM 

maps. Thus we will observe the effect of localization on the SLAM map generation 

process. We can see the effect of obstacle width parameter on the SLAM maps of 

related experiments as shown in Figure 37 and Figure 38. As is seen from Figure 37 and 

Figure 38, increasing  enhances sensing obstacles within the SLAM maps, this is seen 

by the existence of more reddish colors on the maps as α is increased It is important to 

tune obstacle width  parameters with respect to grid cell size. More irregular 

environments including narrow passages require finer grid cells sizes and thinned 

possible obstacles width α , while coarser grid cell sizes and wider obstacle widths can be 

considered for environments including voids and wide passages for the robot to get 

through. As is seen from the tunnels that are circled at the top side of the SLAM maps 

represented in Figure 37,Figure 38 and Figure 39, using the obstacle width α as value of 
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1.5 with grid cell size 0.5 within experiment 8 opposes the tunnel traversability on SLAM 

map compared to the tunnels in Figure 37 and Figure 38 with finer grid cell sizes as 0.3 

with more thinner obstacle widths α as 0.6 and 1 respectively. 

 

Figure 37 Most Reliable Particle SLAM Map in FS_Exp_5 Experiment with α=0.6 and grid cell size= 

0.3 

 

Figure 38 Most Reliable Particle SLAM Map in FS_Exp_6 Experiment with α=1 and grid cell size= 0.3 
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As a consequence of that coarser grid cell size selection with thick obstacle widths, we 

cannot see exact path consisting of connected voids in Figure 39. 

 

Figure 39 Most Reliable Particle SLAM Map in FS_Exp_8 Experiment with α=1.5 and grid cell size= 

0.5 

As we compare the tunnel regions of FS_Exp_8 with FS_Exp_5 and FS_Exp_6 of Figure 

37, Figure 38 and Figure 39 respectively all zoomed in and summarized in Figure 40. The 

tunnel represented by connected voids consisting of void cells represented with blue 

colored cells are narrowed by obstacle cells represented with colors near to red color 

through the FS_Exp_5 to FS_Exp_8 as grid cell size and obstacle width value are 

increased. So it is hard to distinguish connected voids from obstacles in FS_Exp_8 

SLAM map when compared to FS_Exp_6 and FS_Exp_5 with finer grid cell sizes and 

thinner obstacle widths. FS_Exp_5 in Figure 40 allows traversability of the tunnel that 

was blocked within other two experiments. On the other hand, we have injected linear 

errors to odometry measurements for experiments FS_Exp1 till FS_Exp_9.In order to see 

the difference between linear based and angular based odometry error effects on SLAM 

maps, we have realized Fast SLAM experiments with angular error injected in odometry 

measurement from experiment 10 until experiment 13. At the next step we investigate the 

linear and angular error affects on the generation process of SLAM maps. As noticed 

from Table 16, we have realized experiment according to those linear  and angular  
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based errors. Firstly, we can recall the relationship between particle’s robot positions and 

generated SLAM maps. 

 

Figure 40 Tunnel Comparisons of FS_Exp_5, FS_Exp_6 and FS_Exp_8 

As seen from Figure 41, particle robot positions are shown on the SLAM map so that 

each particle robot position has its individual bearing and coordinates on its SLAM map.  

 

Figure 41 Particle Robot Position Representation 
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Furthermore, particles generate their SLAM maps according to their particle robot 

position coordinates on the SLAM map. As explained in chapter 2 section 2.2.1.4, grid 

cells that drop in the sonar cones are assigned as voids cells and obstacle cells. In this 

concept, our sonar cone directions are determined within the SLAM map according to the 

particle robot bearing. Thus obstacles or voids that are seen on Figure 41 with reddish 

and blue toned colors are assigned on the SLAM map according to their particle robot 

position bearing and coordinate values. So our SLAM map will be shaped with respect to 

robot coordinates and bearing selections since robot position is chosen as origin point in 

inverse sensor mapping cone as explained in chapter 2 section 2.2.1.4. We can illustrate 

that fact with generated SLAM maps in Figure 43 where obstacle grid cells are 

represented with reddish colors and void grid cells with blue toned colors as a 

consequence of navigation through the environment seen in Figure 42. Red marked 

points correspond to the obstacles in Figure 42. 

 

Figure 42 Simulation Environment for Linear and Angular Error Comparisons 

 

We have started our mobile robots with same bearings and same particle robot position 

bearings. Furthermore, their particle robot position bearings and true robot position 

bearings are chosen as 0 degree. While FS_Exp_13 is under angular errors of 0.1 

percentages in the true odometry commands at each step, FS_Exp_8 is under linear errors 

of 0.1 percentages in its true odometry displacements. As a consequence of that error 

differences, SLAM map orientations also change according to the fact that explained with 
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Figure 41 which explains why SLAM map generation process is dependent on particle 

robot position coordinate and bearings. 

 

Figure 43 Particle SLAM Maps According to Particle Robot Positions with Different Bearings 

We see from Figure 43 that FS_Exp_13 SLAM map rotates 135 degree counter 

clockwise according to the voids and obstacle placements of FS_Exp_8 which is a map at 

the true angle consistent with real world map as seen in Figure 42. Figure 43 shows us 

how particle robot position affects obtained SLAM maps with respect to their bearing and 

position coordinates. Thus we have shown how the robot position accuracy i.e. its 

bearing affects the obtained SLAM map as illustrated and explained with Figure 43. We 

conclude from this relationship that localization of mobile robot can also affect the 

SLAM generation process.  

5.4 Entropy Based Exploration Performance Analyses 

Before discussing the experimental results of each of our contributed methodologies, we 

have to analyze the experimental outcomes of classical methodologies in order to be able 

to compare our contribution with them. Hence we have chosen to provide the 

performance analysis of the entropy based exploration methodology heavily used in the 

literature as explained in section 2.3.2. Entropy based exploration approach is the 

classical methodology, preferred by many practical implementations in real life and is 

based on the evaluation of entropy changes in position and map information according to 

a selected action from a proposed action set. The optimal navigation is therefore 
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maintained through the exploration process by minimizing entropy in localization and in 

mapping, this optimality provided by comparing entropy changes corresponding to 

exploration and exploitation actions. Exploration actions obtain decrements in the map 

information entropy values, in other words reduce the uncertainty in map information. On 

the other hand, exploitation actions provide decrements in the position entropy levels, in 

other words reduce the uncertainty in position. Measurement values obtained from 

proximity sensor directions according to mobile robot bearing reference are considered as 

available odometry command steps. Then odometry commands are evaluated according 

to their capability to minimize total entropy level and their performance costs, so that cost 

of the selected odometry command is considered with weighted entropy change in the 

objective function explained in section 2.2 as is expressed below:. 

 

 

 

In the equation above  corresponds to the entropy change in the case of performing 

action  while  corresponds to the cost value to perform action .We considered 

cost values corresponding to the actions in proportion to the displacement amounts 

according to their odometry command. On the other hand, parameter , weighting 

entropy change against action costs, is changed in the experimental sensitivity evaluation. 

In this evaluation, we observe the effects of that trade off. On the other hand, we 

constitute our proposed action set from obtained sensor readings. We compute odometry 

displacements between mobile robot and sensed points at the vicinity of mobile robots. 

We can illustrate that situation within the figures below: 

 

Figure 44 Obtained Measurements using Proximity Sensor Measurements from Simulation 

Environment 
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Figure 45 Proposed Actions According to Obtained Measurement Distances as shown in Figure 44 

 

Figure 44 and Figure 45 have been generated according to our proposed action set that 

we will also make use in the Percolator Enhanced Entropy Based SLAM on the most 

reliable particle entropy based SLAM map using measurement distances obtained from 

proximity sensor. As seen from the occupancy grid map represented by Figure 45, grid 

cells that correspond to the lower occupation probabilities with blue tones are assigned as 

voids cells while grid cells that correspond to the higher occupation probabilities with red 

tones are assigned as obstacles. Obtained sensor measurements given in Figure 44 are 

assigned on the SLAM map with white colored circles on Figure 45. Our entropy based 

methodology considers its goal points as those white colored circles in Figure 45. Hence 

an action set for entropy based exploration is prepared according to those goal points 

with white colored circles on Figure 45.According to those goal points, we select robot 

position and the goal point position individually to constitute odometry vector which 

consisting of two coordinate that express displacement between them. As explained in 

chapter 2 section 2.2.1.2, odometry command vector  consist of two 

coordinate vectors for next position  and current position . We assign our current 

robot position to  coordinate vector while goal position to  vector. So we 

provide odometry command from the robot position and goal point coordinates. Thus we 

obtain number of action alternatives as number of goal points. Then, we compute 
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possible information gains of those proposed actions alternatives according to their 

effects on particle set during the SLAM process. We compute map and position 

information entropy changes according to those alternative actions generated in Figure 

45. We tried SLAM operation with each alternative action then computes its effect on 

given particle set with the equations explained in section 2.3.2.Thus we can plot all 

information gain values corresponding to the alternative actions as seen in Figure 46 

below: 

 

  

Figure 46 Information Gain Values According to Action Indices 

 

We see from the Figure 46 that horizontal axis correspond to the action indices of action 

alternatives while vertical axis corresponds to the information gain or entropy change 

level values. At this step, we have used the implementation tips proposed in reference 

[19].We iterate the SLAM over the obtained particles’ SLAM. Measurements are taken 

as ray tracing distances to the uncertain grid cells corresponding to the occupation 

probabilities indicating neither void nor obstacle, because those uncertain grid cells 

mostly influence the information gain over the SLAM map. We will compare entropy 

based exploration simulation trials with changing sensitivity parameters such as obstacle 

width α, occupancy grid cell sizes and motion model sampling parameters. We have 

initialized all experiments of Table 17 with 20 particles, 9 proximity sensors having 

maximum proximity sensor range 2br, all experiments running over 10 time steps. We 

have observed localization performances of entropy based exploration methodology by 

comparing their most reliable particle weight values and particle set variances. We have 
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also injected linear odometry measurement at each step with the added 0.1 percentage of 

odometry motion linear displacements. We have also changed the motion model 

variances through the experiments. 

 

Table 17 Entropy Based Exploration (EBE) Sensitivity Analyses for Map Accuracy and Robot Position 

Awareness 

Initial Simulation Parameters 

Total Time Step 10 

Particle Number 20 

Sensor Number 9 

Maximum Proximity Sensor Range 2br 

Sensitivity Analysis of Map Accuracy and Position Awareness Performance 

Experiment  

Name 

 

Possible 

Obstacle 

Width 

Occupancy 

Grid Map 

Cell Size 

Sensor 

Cone 

Width 

Motion 

Model 

Parameters 

Injected 

Noise 

Parameter 

Exploration 

Methodology 

Most 

Reliable 

Particle 

Weight 

Value 

Particle Set  

Variance(Position 

Entropy Level) 

      

E_Exp_1 1.2 0.5 40 0 0 0.1 0.1 0.1 0 E B E 0.59 1.79 

 

E_Exp_2 1 0.5 40 0 0 0.1 0.1 0.1 0 E B E 0.27 2.079 

E_Exp_3 1.5 0.7 40 0 0 0.1 0.1 0.1 0 E B E 0.71 1.609 

E_Exp_4 2 1 40 0 0 0.1 0.1 0.1 0 E B E 0.05 3 

E_Exp_5 2 1 40 0 0 0.5 0.5 0.1 0 E B E 0.8 0.6 

 

E_Exp_1 and E_Exp_3 have larger most reliable particle weight value as 0.59 and 0.71 

respectively while E_Exp_2 has 0.27 valued most reliable particle weight values. 

Moreover E_Exp_1 and E_Exp_3 have narrower variances as 1.79 and 1.609 respectively 

compared to the ones of E_Exp_3 that have 2.079 value. Particle set variance 

corresponds to the entropy levels of mobile robot localizations through the experiments 

in Table 17. Particle set variance decreases as the certainty of localization increases. 

Particle weights also correspond to the consistency of robot position with the true 

odometry measurements. According to those facts, tuning between grid cell sizes and 

obstacle widths are more appropriately selected for localization in E_Exp_1 and 

E_Exp_3 than for E_Exp_2. Because E_Exp_1 and E_Exp_3 have lower entropy levels 

with respect to E_Exp_2 while E_Exp_1 and E_Exp_3 have higher particle weights with 

respect to E_Exp_2 particle weight. On the other hand, we see that coarser grid cells 

cause uncertainty in localization while the obstacle width selection cannot compensate 

that situation as seen from E_Exp_4 with grid cell size of 1, which has most reliable 

particle weight as 0.05 but a position entropy level highest among all in the last column 

carrying the value of 3. On the other hand, progression of localization does not only 
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depend upon mapping parameters, we also consider motion model parameters to deal 

with robot localization accuracy using generated particles with a given variance by 

motion model parameters.  

 

Table 18 Entropy Based Exploration (EBE) Sensitivity Analyses for Coverage Performance 

Initial Simulation Parameters 

Total Time Step 10 

Particle Number 20 

Sensor Number 9 

Maximum Proximity Sensor Range 2br 

Sensitivity Analyses of Coverage Performance 

 

Experiment 

Name 

 Possible 

Obstacle 

Width 

Occupancy 

Grid Map Cell 

Size 

Sensor 

Cone 

Width 

Motion 

Model 

Parameters 

 

Exploration 

Methodology 

Coverage Area( ) 

    

E_Exp_1 1.2 0.5 40 0 0 0.1 0.1 E B E 16   

E_Exp_2 1 0.5 40 0 0 0.1 0.1 E B E 21   

E_Exp_3 1.5 0.7 40 0 0 0.1 0.1 E B E 20   

E_Exp_4 2 1 40 0 0 0.1 0.1 E B E 20   

E_Exp_5 2 1 40 0 0 0.5 0.5 E B E 13  

 

As seen from E_Exp_5 with a larger motion model sampling variance that is given in 

motion model parameters columns of Table 17, we have reached most reliable particle 

weight of 0.8 and particle set variance of 0.6 that is a much better localization 

performance compared to experiments that has finer grid cell sizes such as E_Exp_1 and 

E_Exp_3. At the first glance to the analyses of results in Table 17, tuning between 

possible obstacle width and occupancy grid cell size parameters have been found to be an 

important issue for localization performance. As seen from E_Exp_1 and E_Exp_3, their 

obstacle widths in their SLAM maps have provided better ray tracing comparison for 

localization, while E_Exp_2 has provided less information about the obstacles for ray 

tracing of localization. As a consequence of experimental results of Table 18, mapping 

and motion model parameters have not affected dramatically the coverage performance 

of entropy based exploration guided mobile robot. Since entropy based exploration 

methodology defines its action set based on sensor readings as explained in Figure 45 in 

our implementations, mapping sensitivity parameters have not changed coverage 

performance as affected localization performance. It is noticeable point that while 

E_Exp_5, E_Exp_1 and E_Exp_3 have better localization performances according to 

other experiments in Table 17, their covered area are smaller than E_Exp_2 and 
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E_Exp_4. But E_Exp_3 is not dramatically worse or better in terms of the coverage and 

localization performance results. So we can infer that E_Exp_3 has successfully realized 

entropy based trade off among other experiment trials given in tables above. Even though 

we cannot see any dramatic change within the coverage performance depending upon 

mapping parameters, we will observe more dramatic coverage performance changes 

within the next percolator based analyses sections. 

5.5 Purely Applied Percolator Based Exploration  

In this section, we will investigate the performance of our proposed purely percolator 

based exploration methodology through the simulated runs. We have outlined the phases 

of purely percolator based exploration methodology in section 3.2.Since purely applied 

percolator based exploration methodology leads the mobile robot through connected 

voids to reach survivors as soon as possible in the context of our thesis, exploration 

activity dominates the information gain process, when putting the preferences on 

minimizing uncertainty. Hence our purely applied percolator based approach is a 

suboptimal technique when compared to the entropy based methodology since 

localization entropy minimization is not a primary concern besides that of the map 

entropy. While entropy based exploration algorithms consider both map and position 

uncertainties during odometry command selecting, the priority in our purely applied 

percolator approach is based on accuracy of the map so that, Percolator guided actions 

mostly speed up coverage process over unknown terrains until any detected dead-end. In 

the mean time, robot position uncertainty increases as mobile robot navigates through 

unexplored regions. Due to lack of position awareness, SLAM maps accuracy cannot be 

maintained any longer through the simulation steps. Since robot position accuracy is not 

priority , purely applied percolator exploration starts to provide guidance in inaccurate 

directions after multiple runs. In spite of that deficiency, purely applied percolator based 

technique reduces the computational burden of the mobile robot and speeds up the 

coverage process using considerable amount of odometry measurements. We will discuss 

these specifications in sensitivity analyses in Table 19 and Table 20. In the context of 

Table 19, we will discuss map and localization sensitivities on sensitivity parameters 

such as obstacle width , occupancy grid map cell size, sensor cone width, motion model 

parameters and injected noise parameters. As is seen from the Table 19, we realized 4 

percolator based exploration experiments with initial parameters such as total time step 

set as 10, particle number as 20, sensor number as 9 and maximum proximity sensor 
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range as 2br. On the other hand, we have applied different scenarios for those 

experiments of Table 19. We have increased the occupancy grid cell size of SLAM map 

from 0.5 to 1 as is seen from the P_Exp_1 experiment to P_Exp_4. We have fixed the 

noise and motion model parameters to see the effect of SLAM parameters on localization 

accuracy. We interpret the sensitivity results according to particle set variance and most 

reliable particle weight value. We have started our sensitivity analyses from P_Exp_1 

with 0.5 occupancy grid cell size and obstacle widths parameter value α being 1.2 then 

we have obtained most reliable particle weight as 0.2 and particle set variance as 2.303. 

At the experiment of P_Exp_2, we have decreased possible obstacle width parameter 

value to 1 and we encountered that mobile robot localization performance has been 

enhanced at the end of percolator exploration with most reliable particle weight value as 

0.53 and particle set variance as 2.079. Since particle set variance (position entropy level) 

decreases as particle filter samples get close to the true values. Hence our purely applied 

exploration methodology has been tried with decreased obstacle width in P_Exp_2 that 

tuned with 0.5 grid cell size that causes better localization level. The reason depends 

upon the percolator mechanism. With same grid cell sizes, percolator determines 

obstacles more intensively as in P_Exp_1. So it can easily predict continuity of those 

obstacles, but within the lower obstacle width selection, guidance of the percolator 

worsens due to uncertainty on obstacle regions. For that reason coverage performance of 

P_Exp_1 is better than P_Exp_2. As seen from Table 20, P_Exp_1 coverage was found 

to be 40  while P_Exp_2 was found as 30 . So while P_Exp_1 has navigated to 

wider area with its intensive obstacle regions that enhance its guidance, P_Exp_2 has 

navigated at the narrower region according to P_Exp_1 based on weaker guidance 

because of less intensive obstacle region. So P_Exp_2 was revisiting cells of the 

environment, enhancing its localization with respect to P_Exp_1. Obstacle width 

parameter arranges the obstacle width that falls within the sensed distance. Extending 

obstacle width narrows the zone of void cells. So our mobile robot starts to map 

obstacle cells rather than void cells within the obtained SLAM map, since obstacles begin 

to occupy predominantly grid cells. In that situation, exaggerated obstacle cells mislead 

localization as is seen in P_Exp_1.On the other hand, selecting coarse grid cell sizes as in 

P_Exp_3 and P_Exp_4 experiments causes a drop in localization performance of 

percolator based exploration guided mobile robot. Since coarser grid cell sizes affect 

SLAM maps so that obtained sensor measurements overlap with voids near obstacles. 

Then void regions in the simulation environment are detected as obstacles. 
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Table 19 Pure Percolator based Exploration (PBE) Sensitivity Analyses for Map and Localization 

Accuracies 

Initial Simulation Parameters 

Total Time Step 10 

Particle Number 20 

Sensor Number 9 

Maximum Proximity Sensor Range 2br 

Sensitivity Analyses of Map Accuracy and Position Awareness Performance 

Experiment  

Name 

 

Possible 

Obstacle 

Width 

Occupancy 

Grid Map 

Cell Size 

Sensor 

Cone 

Width 

Motion 

Model 

Parameters 

Injected 

Noise 

Parameter 

Exploration 

Methodology 

Most 

Reliable 

Particle 

Weight 

Value 

Particle Set  

Variance(Position 

Entropy Level) 

      

P_Exp_1 1.2 0.5 40 0 0 0.1 0.1 0.1 0 P B E 0.2 2.303 

P_Exp_2 1 0.5 40 0 0 0.1 0.1 0.1 0 P B E 0.53 2.079 

P_Exp_3 1.5 0.7 40 0 0 0.1 0.1 0.1 0 P B E 0.18 2.303 

P_Exp_4 2 1 40 0 0 0.1 0.1 0.1 0 P B E 0.24 2.303 

 

That faulty situation also decreases the accuracy of ray tracing for localization. Similar to 

exaggerated obstacle width selection in P_Exp_1, coarser grid cell selection is also 

corrupting localization accuracy. For this reason we have seen from Table 20 that 

P_Exp_1 which has larger obstacle width and P_Exp_3 and P_Exp_4 which has coarser 

grid cell sizes have particle variance namely position entropy level with 2.303 while 

P_Exp_2 which has appropriate obstacle width and finer grid cell sizes has lower particle 

variance namely position lower entropy level as 2.079. That means P_Exp_2 has better 

localization performance than P_Exp_1, P_Exp_3 and P_Exp_4 which have larger 

obstacle width and coarser grid cell sizes. We will also interpret percolator based 

exploration coverage sensitivity analyses according to Table 20 experiment results. As is 

seen from P_Exp_1 to P_Exp_2, finer grid cell size leads the percolator based 

exploration guided mobile robot to explore more connected voids, while coarser grid 

cells size prevent such an expansion of robot exploration through the connected voids as 

seen in P_Exp_3 and P_Exp_4.Because we see from the Table 20 that coverage 

performances of experiments with coarser grid cells according to the environment 

obstacles, can cause to extrapolate detected obstacles within the environment. So many 

tunnels and connected voids are seen as dead-end. For that reason, P_Exp_3 and 

P_Exp_4 have coarser grid cells and their coverage values are 24  that are smaller 

than P_Exp_1 and P_Exp_2 experiments which have finer grid cell sizes. We can 

illustrate the effect of that tuning of parameters between grid cell size and obstacle width 
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parameters with an another percolator based exploration experiment that runs through 

20 time steps for obstacle width parameters values that are set as 0.8 for the first 

experiment and 0.6 for the second one. We have shown their respective trajectories in 

Figure 47 and Figure 48. 

 

Table 20 Pure Percolator based Exploration (PBE) Sensitivity Analyses for Coverage Performance 

Initial Simulation Parameters 

Total Time Step 10 

Particle Number 20 

Sensor Number 9 

Maximum Proximity Sensor Range 2br 

Sensitivity Analyses of Coverage Performance 

 

Experiment Name 

 Possible 

Obstacle 

Width 

Occupancy Grid 

Map Cell Size 

Sensor 

Cone 

Width 

Motion 

Model 

Parameters 

Exploration 

Methodology 

Coverage 

Area( ) 

    

P_Exp_1 1.2 0.5 40 0 0 0.1 0.1 P B E 41   

P_Exp_2 1 0.5 40 0 0 0.1 0.1 P B E 30   

P_Exp_3 1.5 0.7 40 0 0 0.1 0.1 P B E 24   

P_Exp_4 2 1 40 0 0 0.1 0.1 P B E 22  

 

 

Figure 47 Percolator Based Exploration Experiment with 0.8 Possible Width.  
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Figure 48 Percolator Based Exploration Experiment with 0.6 Possible Width 

 

As is seen from comparisons of Figure 47 and Figure 48, percolator guided mobile robot 

explore more connected voids in the second experiment that has obstacle width parameter 

 while the mobile robot exploration of the first experiment that has obstacle 

width parameter  has been restricted at the bottom corner of the simulation 

environment where the region has been interpreted as narrow due to the large α 

parameter.  

 

Figure 49 Percolator Map (left) and Corresponding SLAM Map (right) for Time Step 13 of Figure 47 
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Figure 50 Percolator Map (left) and Corresponding SLAM Map (right) for Time Step 13 of Figure 48 

 

We can also explain that situation on their percolator maps at the left of Figure 49 and 

Figure 50. Before interpreting the percolator map and SLAM map figures we recall that 

SLAM maps at the right side of Figure 49 and Figure 50 correspond to the obstacle 

occupation probabilities of obtained maps by sensor readings. Occupancy grid cells with 

probabilities lower than 0.5 and represented by blue color tones in SLAM maps 

correspond to the void regions, while the grid cells that has occupation probability greater 

than 0.5 and represented by red color tones correspond to the obstacle regions. On the 

other hand, green color toned grid cells correspond to uncertain regions in the SLAM 

map. On the other hand, we generate percolator maps from SLAM maps (on the left of 

the figures) and red colored grid cells represent spanning voids or available regions while 

blue colored grid cells represent obstacle regions . As is seen from Figure 49 (left) and 

Figure 50 (left), percolator maps generated from SLAM maps, their isolated regions are 

blue colored cells and are not available for robot motion while invaded regions that are 

red colored regions are available for robot motion After those reminders, we can 

investigate the percolator and SLAM maps of the experiments to understand how 

obstacle width affects percolation exploration performance. Figure 49 corresponds to the 

experiment that is displayed in terms of mobile robot navigation in Figure 47 with 

 for obstacle width parameter. We have seen from those figures that percolator 

guides the mobile robot through the connected voids until time step 13. Because there 

exist red colored regions in front of the robot motion within the percolator maps given at 

time step 13 represented with black circle, its percolator map given by Figure 49 cannot 



88 

 

lead the mobile robot through the continuum of voids since its SLAM map causes an 

isolated region on Figure 49 (left) represented by the black circle. Hence the percolator 

considers that tunnel as a dead end as seen in Figure 49 and starts to seek new guidance. 

We have shown those guidance directions with following black and white marker 

sequences that is seen on the percolator map given with Figure 49 (left). Black markers 

correspond to available paths while white ones correspond to unavailable paths. So the 

percolator guided mobile robot selects a reverse direction as shown with white arrow 

meaning the next action bearing while black arrow corresponds to current robot bearing. 

On the other hand, SLAM map of the experiment that is given in Figure 48 with , 

has void cells at the bottleneck which is represented by the black circle on Figure 

50(right) and those void cells are the ones on percolator map guidance given by black 

circle on the map at the left in Figure 50. Percolator map in Figure 50(left) has invaded 

regions at the black circled bottleneck represented with red colored grid cells. Since red 

colored grid cells in percolator map correspond to available regions for mobile robot 

motion, percolator map in Figure 50 (left) leads mobile robot through the tunnel as seen 

in Figure 48 at time step 13. Therefore percolator map region in Figure 50 (left) with 

black circle is red colored invaded part as a consequence of void regions in SLAM map 

circled in Figure 50 (right )and correspond to regions that are available for robot motions. 

The mobile robot continues its current direction toward that direction of Figure 50. 

Therefore we have compared decision making phase of two percolator based exploration 

methodology experiments by their percolator maps given by Figure 49 and Figure 50. It 

is a noticeable point that their SLAM maps affect percolator maps that determine mobile 

robot guidance. Since larger obstacle width parameter α has been used in Figure 49, 

exaggerated mapped obstacle cells prevent to percolate through the tunnel in Figure 49 

while percolation continues in Figure 50 by appropriate obstacle width α value selection. 

So we have represented how percolator depends upon SLAM map and its mapping 

parameter. Let us take the experiment that is given in Figure 48 and apply angular and 

linear odometry errors with percentage of 0.1 at each step. So we will analyze how our 

percolator exploration guidance is affected from injected odometry noise as represented 

in Figure 51. It is noticed that injected odometry noise can drop coverage performance 

according to the noise free case. Due to those intensive odometry errors injected as 0.1 

percentages at each time step, our mobile robot localization faults mislead obtained 

SLAM maps. Since such a faulty SLAM map, our percolator guidance cannot be reliable 

as seen in the situation given in Figure 49 and as a consequence of that fact; our mobile 
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robot has a stuck condition in the dead end of simulation environment as seen from 

Figure 51 bottom right. 

 

Figure 51 Percolator Based Exploration Guided Mobile Robot Trajectory with Injected Odometry 

Noise 

But in order to handle such unwanted failures to noise that our purely applied percolator 

guided exploration can encounter and not solve, we have developed our proposed 

percolator enhanced methodology that can handle those abnormal disruptive situations. 

We will run comparisons of both methodologies in section 5.7. 

5.6 Percolator Enhanced Entropy Based Exploration  

We have discussed sub optimality of purely applied percolator based exploration 

methodology versus the classical entropy based exploration methodology in the previous 

sections. In order to integrate the advantages in both methodologies we chose to use 

entropy based and percolator based explorations in a switching mode. We have explained 

the details of the switching mode hybrid methodology in section 3.3. In this hybrid 

methodology, we can say that exploration activities are driven by percolator based 

guidance while exploitation actions are driven by entropy based exploration 

methodology. Hence we expect the switching mode to be more reliable and robust 

against odometry measurement noises when compared to purely applied percolator based 

exploration methodology and to have more enhanced coverage capability when compared 

to the entropy based exploration methodology. Hence we use entropy based exploration 

methodology to maintain map accuracy and position awareness but in the meanwhile 
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switching mode utilizes percolator based exploration guidance to speed up map coverage 

through the simulation environment. We have realized sensitivity analyses in Table 

21and Table 22. As is seen from Table 21, we have carried out the localization 

performance analyses of percolator enhanced entropy based exploration technique while 

coverage performances are compared in Table 22. Those experiments are realized with 

20 particles, 9 proximity sensor and maximum sensor range as 2br through 10 time steps. 

On the other hand, 0.1 percentages rated angular error has been injected to odometry 

measurements within the implementation of those experiments in Table 21 and Table 22. 

As is seen from Table 21, PEE_Exp_1 has reached approximately 0 particle set variance 

with particle weight values of 0.98. While we decreased the obstacle width value as in 

PEE_Exp_2, our mobile robot reaches particle variance of 1.96 with most reliable 

particle weight 0.52 valued. Increasing particle set variance, namely position entropy 

level; correspond to the increment of the localization uncertainty. That decrement of the 

obstacle widths in PEE_Exp_2 causes lower existence possibilities of obstacles in SLAM 

map that are used for ray tracing compared to PEE_Exp_1. So the absence of obstacle 

cells in SLAM map leads to worsen localization certainty in PEE_Exp_2 compared to 

PEE_Exp_1. On the other hand, increasing the grid cell sizes of SLAM maps causes to 

worsen localization in a similar way as for the percolator based results of section 5.5. 

Therefore coarse grid cells involve less information with respect to finer ones as 

expected. As a consequence of that, better localization can be realized with finer grid cell 

sizes. This is attested based on results by PEE_Exp_3 with 0.7 grid cell size. Its most 

reliable particle weight is 0.05 while PEE_Exp_1 and PEE_Exp_2 have larger particle 

weight values and smaller particle set variance. That means the betterment of robot 

localization with narrower particle set variance. On the other hand, we have also applied 

motion model with larger variances as seen from PEE_Exp_5 motion model parameter 

columns. Motion model parameters and  in Table 22 correspond to the linear error 

sample generation variance as explained in section 2.2.1.2.We have set and  motion 

model parameters with larger variance as 0.5 for PEE_Exp_4 while using and  

motion model parameters set as 0.1.Increase of sampling variance also decreases mobile 

robot localization. PEE_Exp_4 has most reliable particle weight values of 0.82 with 

decreased particle set variance compared to PEE_Exp_2. Hence increasing the variance 

of motion model sampling leads to better localization performance (PEE_Exp_4) than 

other trial (PEE_Exp_2) that has finer grid cell size. On the other hand, coverage 
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performances differ with respect to the tuning between occupancy grid cell sizes and α 

width parameter values. 

 

Table 21 Percolator Enhanced Entropy Based Exploration (PEEBE) Sensitivity Analyses for Map 

Accuracy and Robot Position Awareness 

Initial Simulation Parameters 

Total Time Step 10 

Particle Number 20 

Sensor Number 9 

Maximum Proximity Sensor Range 2br 

Sensitivity Analyses of Map Accuracy and Position Awareness Performance 

Experiment  

Name 

 

Possible 

Obstacle 

Width 

Occupancy 

Grid Map 

Cell Size 

Sensor 

Cone 

Width 

Motion 

Model 

Parameters 

Injected 

Noise 

Parameter 

Exploration 

Methodology 

Most 

Reliable 

Particle 

Weight 

Value 

Particle Set  

Variance(Position 

Entropy Level) 

      

PEE_Exp_1 1.2 0.5 40 0 0 0.1 0.1 0 0.1 PEEBE 0.98 0 

PEE_Exp_2 1 0.5 40 0 0 0.1 0.1 0 0.1 PEEBE 0.52 1.946 

PEE_Exp_3 1.5 0.7 40 0 0 0.1 0.1 0 0.1 PEEBE 0.05 2.96 

PEE_Exp_4 2 1 40 0 0 0.5 0.5 0 0.1 PEEBE 0.82 1.386 

 

Table 22 Percolator Enhanced Entropy Based Exploration (PEEBE) Sensitivity Analyses for Coverage 

Performance 

Initial Simulation Parameters 

Total Time Step 10 

Particle Number 20 

Sensor Number 9 

Maximum Proximity Sensor Range 2br 

Sensitivity Analyses of Coverage Performance 

 

Experiment 

Name 

 Possible 

Obstacle Width 

Occupancy Grid Map 

Cell Size 

Sensor Cone 

Width 

Motion 

Model 

Parameters 

Exploration 

Methodology 

Coverage 

Area( ) 

    

PEE_Exp_1 1.2 0.5 40 0 0 0.1 0.1 PEEBE 22.5  

PEE_Exp_2 1 0.5 40 0 0 0.1 0.1 PEEBE 23   

PEE_Exp_3 1.5 0.7 40 0 0 0.1 0.1 PEEBE 40   

PEE_Exp_4 2 1 40 0 0 0.5 0.5 PEEBE 21  

 

Larger occupancy grid cells size leads the percolator to explore more connected voids 

from within the percolator enhanced entropy based exploration methodology as seen 

from the comparisons of trials of PEE_Exp_3 with PEE_Exp_2 and PEE_Exp_1. Similar 
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to the other comparisons in sections 5.5. and 5.4, bad tuning between possible obstacle 

width and occupancy grid map cell size causes to assign smaller number of void cells 

with respect to PPE_Exp_3 so that its exploration performance through the connected 

voids decreased in PEE_Exp_4 versus PEE_Exp_3. 

5.7 Comparative Performance Analyses of Novel and Classical 

Exploration Approaches 

In this section we compare the performance results of purely percolator based 

exploration, entropy based exploration and percolator enhanced entropy based 

exploration methodologies under noisy odometry measurements. We have realized our 

comparison over 20 time steps keeping motion model and mapping parameters, constant 

for all three approaches. Firstly, we start from purely applied percolator based 

exploration results. As is seen from Figure 52, our mobile robot has navigated through 

the found connected voids in a straightforward direction. Numbers written within the 

circles represent the iteration number, where circles represent the location of the robot at 

that instant.  

 

Figure 52 Purely Applied Percolator Based Exploration 
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It is seen that mobile robot has navigated towards the  “cul de sac” to the bottom right of 

Figure 52 from time step 4 to 20 and got trapped. We notice here that purely applied 

percolator exploration guidance has quickly converged the mobile robot to the dead end 

through connected voids very speedily in 4 steps. But after the 4 th time step, purely 

applied percolator algorithm cannot recover its guidance to enable escape from that dead 

end consequently the robot has demonstrated that it cannot navigate through the more 

available and wide regions of the environment , when guided by the percolator. On the 

other hand, entropy based exploration methodology as classical approach is also applied 

to our mobile robot within the same initial conditions. As is seen from the Figure 53, 

entropy based exploration methodology leads our mobile robot to navigate through an 

exploitation random walk around the initial point rather than directing itself towards a 

new exploration direction at the first step. 

 

Figure 53 Entropy Based Exploration  

At the end of the black bold arrow on the right of the figure, one can find the enlarged 

behavior of the robot at the crowded spot of the Figure 53 itself. Entropy based 

exploration guided mobile robot is found to exploit unknown regions by roaming its 

surrounding rather than exploring new distant sites. Therefore its localization information 

is improved within the roamed regions due to data acquired from similar regions. For this 



94 

 

reason, entropy based exploration guided mobile robot undergoes stuck situation shortly 

with respect to purely applied percolator based exploration guided mobile robot in Figure 

52. 

 

Figure 54 Entropy Based Exploration Guided Mobile Robot Position Entropy Values through Time 

Steps 

 

Figure 55 Purely Applied Percolator Based Exploration Guided Mobile Robot Position Entropy Values 

through Time Steps 
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Hence entropy based exploration guided mobile robot shown in Figure 53 exploiting its 

surrounding while purely applied percolator exploration guided one shown in Figure 52 

explored other sites and even dead ends , but unfortunately getting stuck there. Let us 

compare now position entropy levels and coverage speeds of purely applied percolator 

based exploration guided mobile robot navigation in Figure 52 and the ones of entropy 

based exploration guided method of Figure 53. As is seen from the differences on Figure 

54 and Figure 55, localization behavior of entropy based exploration guided mobile robot 

in Figure 54 has dramatic decay in the position uncertainty (i.e. 2-4 and 6-14 time step 

intervals) versus that of percolator based exploration guided mobile robot uncertainty 

levels in Figure 55 leading to better localization accuracy in the first classical method in 

the time steps 6 and 14. In summary, entropy based exploration guided mobile robot has 

lower position uncertainty levels compared to those of the purely applied percolator 

based method. When we compare the coverage speeds of both exploration methods by 

plotting obtained SLAM map coverage of void cells with respect to time steps. We notice 

from the Figure 56 and Figure 57 that entropy based exploration guided mobile robot 

undergoes short stuck situation in the 18-19, 16-17 time step intervals, but purely applied 

percolator based exploration guided mobile robot is more adventurous and tends to 

suddenly go further around from its current position to increase sharply and suddenly 

coverage of the area. Therefore this type of navigation not being cautious as for the 

entropy based method can run into longer and dramatic stuck conditions such as in the 3-

10, 13-16 time step intervals. Furthermore, coverage level decreasing after time step 16 

in Figure 57 represents the deterioration of SLAM map accuracy thus degrading 

coverage. On the other hand, the horizontal axis in Figure 56 and Figure 57 corresponds 

to the elapsed time during the computation of the exploration that in fact informs us about 

the computational burden in the corresponding exploration algorithm. As is seen from 

Figure 56, coverage levels of entropy based exploration guided mobile robots are 

increased through time steps (TS) more quickly than percolator based exploration guided 

one in Figure 57. But it is seen that percolator based exploration guided mobile robot 

computations are performed in shorter time intervals than entropy based one in Figure 56 

rise time of the coverage in purely percolation guided SLAM is much shorter than 

classical entropy based one, therefore the percolation guidance provide the robot 

swiftness in response and more curiosity in exploring unentered regions, which a critical 

assest for search and rescue. For instance, entropy based exploration guided mobile robot 

reaches coverage level of 32  at the 12 th time step while percolator based exploration 
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guided one reaches 17 at that time step. On the other hand, entropy based exploration 

guided mobile robot completed its 20 time step in 270 seconds approximately while 

purely applied percolator based exploration guided mobile robot completed its 20 time 

step in 147 seconds approximately.  

 

Figure 56 Entropy Based Exploration Guided Mobile Robot Coverage Levels 

 

 

Figure 57 Purely Applied Percolator Based Exploration Guided Mobile Robot Coverage Levels 
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That interpretation shows us that percolator based exploration methodology lower the 

computational burden on the mobile robot decision making processes. On the other hand, 

purely applied percolator based exploration methodology has more impressive coverage 

speed at the initial time steps before the discussed stuck condition due to the localization 

inaccuracies. We observe that impressive coverage speed at 1-3 time steps interval in 

Figure 57. We notice that purely applied percolator based exploration guided mobile 

robot reaches 17  coverage within 3 time step and 20 seconds approximately while 

entropy based exploration guided one reaches that coverage level in 8 time step and 70 

seconds approximately. That shows clearly the potential of the percolator based 

methodology to reach and explore connected voids quickly with less computational 

burden. But its performance cannot be observed until 20 time step due to the deterioration 

in mobile robot localization.  

 

Figure 58 Percolator Enhanced Entropy Based Exploration 

 

Since percolator only aims to predict connected voids through the upcoming unknown 

environment, it is not equipped with any instrument to recover position uncertainty 

during navigating mobile robot into unknown regions. In order to equip this methodology 

with a localization recovery tool, we have developed a switching methodology that 



98 

 

utilizes the localization part of classical entropy based exploration methodology and the 

exploration part of our percolator based exploration methodology within a hybrid system 

called percolator enhanced entropy based exploration. As is seen from Figure 58, we 

applied the identical previous initial conditions to the percolator enhanced entropy based 

exploration methodology as well.  

 

Figure 59 Percolator Enhanced Entropy Based Exploration Guided Mobile Robot Coverage Levels 

 

Figure 60 Entropy Based Exploration Guided Mobile Robot Coverage Levels 
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We have represented the percolator enhanced entropy based exploration guided mobile 

robot navigation in Figure 58 until time step 8 since a collision with a wall is detected at 

that time step. In this experimental run, collision avoidance is disabled to be able to 

compare the 2 novel approaches and the classical one in equivalent terms in terms of 

computational burden. We will then enable the collision avoidance mechanism of our 

mobile robot navigation algorithms at the later comparisons at the end of this subsection 

5.7. We are now comparing our percolator enhanced entropy based exploration guided 

mobile robot navigation of Figure 58 with the classical entropy based exploration guided 

mobile robot navigation performance of Figure 53. We base our comparison on position 

uncertainty and coverage performances. As is seen from the comparison of Figure 59 and 

Figure 60, the percolator enhanced entropy based exploration guided mobile robot is 

showing better coverage performance with respect to the classical entropy based 

exploration guided mobile robot. The percolator enhanced entropy exploration reaches 

approximately 60  coverage area at time step 8 while entropy based exploration based 

mobile robot reaches that coverage levels at 20 the time step. On the other hand, the 

percolator enhanced entropy based exploration methodology reaches time step 10 in 300 

seconds while entropy based exploration implementation reaches 20 time step within the 

same time interval. This means that computational burden of percolator enhanced entropy 

based exploration is larger than classical entropy based one. Moreover the percolator 

enhanced exploration methodology reaches 60  in 160 seconds while classical 

entropy based one reaches approximately that value in 300 seconds. This represents the 

impressive performance of percolator enhanced entropy based exploration methodology 

over the classical approach. On the other hand, we neglect to interpret other time steps 

after time step 8 in Figure 59 since a collision has occurred during the simulation of 

percolator enhanced entropy based methodology. Since mobile robot cannot sense the 

wall in Figure 59, it continues to its path through walls. Therefore we consider the 

simulation of percolator enhanced entropy based exploration until time step 8. Although 

we have a collision avoidance mechanism for the mobile robot keeping it from hitting 

walls or passing through them, we have realized our experiments of Figure 52, Figure 53, 

Figure 58 without considering any collision avoidances. We have only compared 

methods for their coverage and localization performances and investigated the stuck 

points during navigation. As is seen from the comparison of Figure 61 and Figure 62, the 

percolator enhanced entropy based exploration guided mobile robot demonstrates better 

localization performance compared to the classical entropy based approach. There, 
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mobile robot position uncertainty decrement levels are more dramatically realized within 

the percolator enhanced entropy based exploration guided mobile robot navigation as 

seen in Figure 61. 

 

Figure 61 Percolator Enhanced Entropy Based Exploration Guided Mobile Robot Localization Levels 

 

 

Figure 62 Entropy Based Exploration Guided Mobile Robot Localization Levels 
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A considerable increment of the localization recovery can be seen at time step intervals 

between 1
st
 and 4

th
 time steps and 6

th
 and 8

th
 time steps in Figure 61. On the other side, 

there is no any tremendous change within the localization level decrements of Figure 62. 

As we recall from the coverage comparison, we neglect the time steps beyond the time 

step 8 in Figure 61 due to collision. As a comparison of Figure 61 and Figure 62, we have 

seen that percolator enhanced entropy based exploration methodology has a much better 

localization performance than the classical one.  

 

Figure 63 Entropy Based Exploration Guided Mobile Robot with Collision Detector 

 

 

Figure 64 Percolator Enhanced Entropy Based Exploration Guided Mobile Robot with Collision 

Detector 
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Since we have applied our exploration methodologies without collision avoidance in the 

experiments of Figure 52,Figure 53 and Figure 58.We now repeat those enabling the 

collision avoidance mechanism. Collision avoidance in our simulator is based on the 

detection of any obstacle or wall part by proximity sensor in all directions during 

navigation. When a wall or corner pieces have been detected then collision detector stops 

the mobile robot in order to seek to a new guidance. Using collision avoidance indirectly 

restricts the guided robot actions for passing through walls without hitting any one in our 

simulation environment. The obtained coverage performance comparisons for the 

percolator enhanced entropy based exploration and the entropy based exploration 

implementations both equipped with collision avoidance mechanism are given in Figure 

65 and Figure 66. As is seen from the comparison of Figure 65 and Figure 66, the 

percolator enhanced entropy based exploration guided mobile robot reaches coverage 

level of 64  while classical entropy based exploration guided one navigates an area of 

27  at the same time step interval. On the other hand, the horizontal axis in Figure 65 

and Figure 66 corresponding to the computational times for those exploration algorithms, 

we see that the computational time of our percolator based methodology is larger than the 

classical based one. But in real applications total time step does not only depend upon 

computational processes. 

 

 

Figure 65 Entropy Based Exploration Guided Mobile Robot Coverage Levels with Collision Detector 
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Figure 66 Percolator Enhanced Entropy Based Exploration Guided Mobile Robot Coverage Levels 

with Collision Detector 
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only localizing its position sparsely at the initial time steps. We can observe those initial 

time steps until 6
th
 time step in Figure 67 and Figure 68.  

 

Figure 67 Percolator Enhanced Entropy Based Exploration Guided Mobile Robot Position Entropy 

Levels 

 

 

Figure 68 Entropy Based Exploration Guided Mobile Robot Position Entropy Levels 
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But after 6
th
 time step the percolator enhanced methodology decreases the robot position 

uncertainty levels more than the classical entropy based approach. Since obtained SLAM 

map of percolator enhanced entropy based methodology have more details for 

localization with respect to the classical entropy based exploration approach, percolator 

enhanced localization in Figure 67 is more successful than classical entropy based 

approach in Figure 68. Therefore our percolator enhanced modification on the classical 

entropy based approach leads the hybrid system to have better exploration performance 

while maintaining high accuracy in its localization performance. 
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CHAPTER 6 

CONCLUSION 

6. Conclusion 

According to the simulation analyses of both our proposed methodologies, we have 

drawn a general conclusion in section 6.1 from the interpretations of the sensitivity 

analyses obtained from experiment results in section 5.4, section 5.5, section 5.6 and 

section 57. As an expansion to those drawn conclusions, we propose alternative future 

works related to problems handled within the balance of our thesis work. 

 

6.1 Experiment Analyses Conclusions 

Map and localization accuracies have been concerns that led to slowing down the SLAM 

process and to being more conservative in the coverage actions. Speed and poor coverage 

have been the major drawbacks of classical entropy based SLAM methodologies when 

tried to be used for search and rescue. Coverage and speed are critical in rescue 

operations without getting stuck at dead ends of unstructured environments. Thus 

connected voids are of the guides to search and rescue robot navigation, where in this 

disaster environment odometry measurements are also poor. Mapping the disaster area 

with suitable accuracy is also critical feedback that rescuers expect from robots sent for 

search in the disaster area. Hence we have investigated map accuracy and position 

awareness performances of exploration algorithms according to their odometry command 

guidance instead and their mapping parameters. We have witnessed to the localization 

deficiencies during sensitivity analyses of purely applied percolator based methodology 

since their actions tend to explore new regions that weaken the robot position awareness, 

while the pure percolator based SLAM shows superiority. In order to provide better 
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localized odometry commands to the SLAM mechanisms we chose to pair the percolator 

with entropy based method, collaborating in a switching mode Then we witnessed in our 

study that percolator enhanced and classical entropy based methodologies proposed 

better localized odometry commands regarding purely applied percolator based 

exploration methodology. Mobile robot position awareness is necessary for our 

exploration activity due to its effect on the map accuracy. Since inaccurate map of 

explored environment is useless to reach possible survivors, we have to sacrifice from 

noticeable coverage performance of the percolator based exploration methodology on 

behalf of obtaining accurate maps that refer correct routing through the unknown 

environment for subsequent followers. Coverage performance is another our primary 

issue in our thesis study since we aim to reach voids as soon as possible while 

maintaining position awareness through the unknown environment. We have seen that 

percolator guided exploration methodologies are greedy to reach connected voids. But 

accuracy of their maps cannot be maintained in the long run of SLAM activities during 

mobile robot exploration. But their exploration performances are noticeable high when 

coverage is analyzed sensitivity analyses when compared to entropy based 

methodologies. This coverage superiority has been coupled to high map accuracy and 

position awareness performances when percolator guidance has been coupled in a 

switching mode to the entropy based SLAM. Moreover, this percolator enhanced entropy 

based SLAM has been found to significantly when compared to entropy based 

methodology alone. So the switching mode in the percolator enhanced entropy based 

methodology has lead to more effective robot position recovery then the purely applied 

percolator based exploration methodology since switching mode methodology utilizes 

exploitation actions arisen from entropy based exploration methodology so as to 

minimize position uncertainty. On the other hand, this switching composition can be 

considered as an enhancement of exploration action proposals, selected by entropy based 

trade off mechanism to minimize either position or map uncertainty. Hence our 

percolator guidance is a suboptimal speedy coverage method related with the continuity 

of explored voids that does not guarantee to be more effective localization at each trial 

like in entropy based methodology. Appropriate environments that consisting of 

connected voids such as in search and rescue are useful platforms to show the efficiency 

of percolator guidance contributions versus the slow and insufficiency in coverage of the 

entropy based methodology. On the other hand, for more scattered environments 

deprived from connected voids, there will be hardly noticeable differences in coverage 
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performances between percolator enhanced and classical entropy based exploration 

methodologies. As a consequence that percolator enhanced entropy based exploration can 

be thought as ad hoc solutions for the environments consisting of connected voids or 

tunnels. Since such structures naturally existed within disaster environments, our 

percolator enhanced switching mode methodology is highly promising with effective 

performance to reach possible survivors at the end of the connected tunnels. 

6.2  Future Work 

As a consequence of our thesis work, we develop a novel mobile robot exploration 

methodology that enhance search and rescue reconnaissance missions in the objective of 

reaching trapped survivors under the disaster ruins. We proposed our exploration 

methodologies on the metric based map representations with obtained sonar proximity 

sensor models. Since metric based representations are not realistic ways for particle filter 

based SLAM computations, feature based representations of our proposed exploration 

methods need to be devised and a better computational performance need to be obtained. 

More complicated feature extraction methodologies can also be devised in accordance 

with irregular disaster environments. Therefore different sensing types such as camera, 

laser, infrared and RF based sensors can be utilized other than sonar based ones to extract 

distinguishable features from irregular disaster environments. Our approach in the scope 

of this thesis work consists of theoretical proposals and their performance analyses 

implementations within a simulator environment. For a future work, our theoretical 

proposals need to be implemented in real environments with equipped mobile robots. The 

proposed methodologies should also be tried on SAR swarms mapping the disaster area 

in 3D using sensors at multiple levels of valuation. Those experimental activities can be 

realized with the feedback of search and rescue professionals that are come up with their 

practical advices and critics on the mobile robot navigation. More progressive systems 

consisting of hardware improvements such as using FPGA or Power PC processors and 

software enhanced by such parallel computing techniques can be utilized so as to 

improve by far the computational facility of our simulator. Embedded guided SLAM 

systems should also be developed that guides real mobile robot systems for practical 

onboard data acquisition, mapping, area monitoring experiments using our proposed 

active guided SLAM methodologies.  
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