
A WEB BASED MULTI-USER FRAMEWORK FOR THE DESIGN AND
DETAILING OF REINFORCED CONCRETE FRAMES - COLUMNS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

GÖKHAN ÜNAL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

CIVIL ENGINEERING

DECEMBER 2009

Approval of the thesis

�A WEB BASED MULTI-USER FRAMEWORK FOR THE DESIGN
AND DETAILING OF REINFORCED CONCRETE FRAMES -

COLUMNS �

submitted by Gökhan Ünal in partial full�llment of the requirements for the degree
of Master of Science in Civil Engineering by,

Prof. Dr. Canan Özgen
Dean,Graduate School of Natural and Applied Sciences

Prof. Dr. Güney Özcebe
Head of Department,Civil Engineering

Assist. Prof. Dr. Özgür Kurç
Supervisor,Departmant of Civil Engineering, METU

Examining Committee Members:

Prof. Dr. Güney Özcebe
Departmant of Civil Engineering, METU

Assist. Prof. Dr. Özgür Kurç
Departmant of Civil Engineering, METU

Assoc. Prof. Dr. Erdem CANBAY
Departmant of Civil Engineering, METU

Assist. Prof. Dr. Ali Murat Tanyer
Departmant of Architecture, METU

Assist. Prof. Dr. Semiha Ergan
Departmant of Civil Engineering, METU

Date:

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully cited
and referenced all material and results that are not original to this work.

Name, Last name : Gökhan Ünal

Signature :

iii

ABSTRACT

A WEB BASED MULTI-USER FRAMEWORK FOR THE DESIGN AND DETAILING
OF REINFORCED CONCRETE FRAMES - COLUMNS

Ünal, Gökhan

M.S, Department of Civil Engineering

Supervisor: Assist. Prof. Dr. Özgür Kurç

December 2009, 93 pages

In design and detailing of a reinforced concrete frame project, there are many engineers who

contribute to a single project. Wide variety of information is exchanged between these engi-

neers in design and detailing stages. If the coordination between engineers is not performed

su�ciently, data exchange may result in loss of important information that may cause inad-

equate design and detailing of a structure. Thus, a data model developed for di�erent stages

of design and detailing of reinforced concrete structures can facilitate the data exchange

among engineers and help improving the quality of structural design.

In this study, an object oriented data model was developed for exchanging information

for the design and detailing of reinforced concrete columns and beam column joints. The

geometry of the structure, amount, shape and placement of reinforcement were de�ned in

this data model. In addition to these, classes that facilitate the design and detailing of

reinforced concrete columns and beam column joints according to building codes were also

represented.

Another focus of this study is to develop a web based, platform independent data man-

agement and multi-user framework for structural design and detailing of reinforced concrete

frames. The framework allows simultaneous design of a structure by multiple engineers.

XML Web Services technology was utilized for the web based environment in such a way

that the design related data was stored and managed centrally by the server in XML �les.

As a �nal step, CAD drawings of column reinforcement details in DXF format are prepared.

iv

Keywords: multi-user, web based system, reinforced concrete frames, XML web services,

object oriented data mode, column design and detailing

v

ÖZ

BETONARME ÇERÇEVELER �Ç�N A� TABANLI TASARIM VE DETAYLANDIRMA
ORTAMI

Ünal, Gökhan

Yüksek Lisans, �n³aat Mühendisli§i Bölümü

Tez Yöneticisi: Assist. Prof. Dr. Özgür Kurç

Aral�k 2009, 93 sayfa

Betonarme yap�lar�n tasar�m ve detayland�rmas�na birden fazla mühendis katk� sa§lamak-

tad�r.Tasar�m ve detayland�rma a³amalar�nda proje çal�³anlar� aras�nda çok çe³itli veri pay-

la³�m� olmaktad�r. E§er çal�³anlar aras�ndaki koordinasyon yeteri kadar sa§lanamaz ise, pay-

la³�lan veride kay�plar olabilir. Bu kay�plar yetersiz ve yanl�³ tasar�ma veya detayland�rmaya,

dolay�s� ile zaman ve para kayb�na neden olabilir. Yarat�lacak olan veri modeli, veri kay-

b�n� ortadan kald�rarak, ortaya ç�kan veriyi yönlendirmeye yard�mc� olarak tasar�m kalitesini

art�r�r.

Bu çal�³mada betonarme kolonlar ve kolon-kiri³ birle³im noktalar� için nesne tabanl� bir

veri modeli geli³tirilmi³tir. Yap�n�n geometrisi, kullan�lacak olan donat�n�n miktar�, ³ekli

ve yerle³imi olu³turulan veri yap�s�n�n içinde tan�mlanm�³t�r. Buna ek olarak, kolon ve

kolon-kiri³ birle³im noktalar�n�n tasar�m�n�n ve detayland�r�lmas�n�n kolay bir ³ekilde yönet-

meliklere uygun gerçekle³tirilmesini sa§lamak amac�yla yeni nesneler de geli³tirilmi³tir.

Bu çal�³man�n bir di§er amac� da, birden fazla mühendisin ayn� anda betonarme bina

üzerinde çal�³mas�n� sa§layacak a§ tabanl� bir ortam�n olu³turulmas�d�r. Veri, merkezi

bir sunucuda bulunmaktad�r ve bu sunucunun programlanmas�nda XML a§ servisleri kul-

lan�lm�³t�r. Veri, sunucuda XML biçiminde tutulmaktad�r.

Son olarak, tasarlanan ve detayland�r�lan kolonlar�n üç boyutlu teknik çizimleri DXF

biçiminde haz�rlanmaktad�r.

vi

Anahtar Kelimeler: çoklu kullan�c�, a§ tabanl� sistem, betonarme çerçeveler, XML a§ servis-

leri, nesne tabanl� veri yap�s�, betonarme kolon tasar�m� ve detayland�r�lmas�

vii

ACKNOWLEDGMENTS

This study was conducted under the supervision of Assist. Prof. Dr. Ozgur Kurc. I would

like to express my sincere appreciation for the support, guidance, and insights he has provided

me throughout the thesis.

The scholarship provided by The Scienti�c & Technological Research Council of Turkey

(TÜB�TAK) during my graduate study is highly acknowledged

viii

To my family

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

ACKNOWLEDGMENTS . viii

TABLE OF CONTENTS . x

LIST OF FIGURES . xiii

LIST OF TABLES . xvii

LIST OF SYMBOLS . xviii

CHAPTERS

1 INTRODUCTION 1

1.1 Problem De�nition . 1

1.2 Literature Survey . 6

1.2.1 Data Models . 6

1.2.2 Web Services . 8

1.2.3 Extensible Markup Language (XML) 8

1.3 Objectives and Scope . 9

1.4 Thesis Outline . 10

2 DESIGN CODES 11

2.1 Introduction . 11

2.2 TS500-2000 . 11

2.2.1 Minimum Requirements for Columns in TS500-2000 11

2.2.2 Moment Magni�cation Method . 12

2.2.2.1 E�ective Length Calculation . 13

2.2.2.2 Buckling Load . 13

2.2.2.3 Moment Magni�cation Factor 14

x

2.2.2.4 Conditions in which Second Order Moments can be Neglected . 14

2.2.3 BASIC DEVELOPMENT LENGTH 15

2.3 TURKISH SEISMIC CODE . 15

2.3.1 Minimum Requirements for Columns in Turkish Seismic Code 15

2.3.2 Requirements of Having Columns Stronger Than Beams 18

2.3.3 Shear Safety of Columns . 19

2.3.4 Beam-Column Joints . 20

2.3.4.1 Minimum Transverse Reinforcement in Beam-column Joints . . 22

3 SECTION ANALYSIS UNDER AXIAL LOAD AND BIAXIAL BENDING MO-

MENT 24

3.1 Introduction . 24

3.2 Sections Under Axial Load and Uniaxial Bending Moment 24

3.3 Sections Under Axial Load and Biaxial Bending Moment 27

3.4 Determination of Points on Interaction Surface (Failure Surface) 29

3.5 An Example Problem . 32

4 DATA STRUCTURE 36

4.1 Introduction . 36

4.2 General Structure . 36

4.2.1 Analysis Package . 37

4.2.1.1 FrameElement Class . 37

4.2.1.2 FrameCrossSection Class . 39

4.2.1.3 Node Class . 39

4.2.1.4 Station Class . 41

4.2.1.5 AnalysisResult Class . 41

4.2.1.6 LoadCase Class . 42

4.2.1.7 LoadCombination Class . 42

4.2.2 Design Entities Package . 43

4.2.2.1 Column Class . 44

4.2.2.2 Beam Class and BeamStrip Class 46

4.2.2.3 Joint Class . 46

4.2.2.4 ColumnLine Class . 47

4.2.2.5 Story Class . 48

4.2.2.6 Building Class . 49

xi

4.2.2.7 DesignSection Class . 50

4.2.2.8 MaterialModel Class . 51

4.2.3 Reinforcement Package . 52

4.2.3.1 ReinforcementPattern Class . 53

4.2.3.2 LongitudinalBar Class . 54

4.2.3.3 EndStyle Class . 56

4.2.3.4 LongitudinalPattern Class . 60

4.2.3.5 Pre-de�ned Longitudinal Reinforcement Patterns 60

4.2.3.6 TransverseBar Class . 61

4.2.3.7 TransversePattern Class . 62

4.2.3.8 Pre-de�ned Transverse Reinforcement Patterns 62

4.2.4 Design Code Class . 63

5 CASE STUDY 73

5.1 INTRODUCTION . 73

5.2 CLIENT GUI . 73

5.3 IMPLEMENTATION . 76

5.3.1 Initialization Step . 79

5.3.2 Simultaneous Design of ColumnLines 80

6 CONCLUSION 86

6.1 FUTURE RECOMMENDATIONS . 89

APPENDICES

A CLASS RELATIONSHIP OF DATA MODEL 92

B COORDINATE TRANSFORMATION METHOD 93

xii

LIST OF FIGURES

FIGURES

Figure 1.1 Structural Design Process of Reinforced Concrete Structures 2

Figure 1.2 Participants in a single project (International Alliance for Interoperabil-

ity) . 3

Figure 1.3 The normal method of data exchange for the case in Figure 1.2 (Interna-

tional Alliance for Interoperability) . 5

Figure 1.4 (a) The normal method of data exchange ,(b) An approach using a neutral

�le (Eastman, 1999) . 5

Figure 1.5 Reinforcement Bar de�nition in IFC (IAI, 2009) 7

Figure 1.6 Sample XML Code . 9

Figure 2.1 Longitudinal reinforcement in beam-column joints (TEC-2007) 16

Figure 2.2 Unfavorable Earthquake Direction (TEC-2007) 19

Figure 2.3 Ma and Mü in column shear design . 20

Figure 2.4 Shear force in beam-column joint (TEC-2007) 21

Figure 2.5 Shear Reinforcement Detailing in Columns (TEC-2007) 23

Figure 3.1 A Section Under Axial Load and Uniaxial Bending Moment 25

Figure 3.2 Typical Moment Interaction Diagram 27

Figure 3.3 A Section Under Axial Load and Biaxial Bending Moment 27

Figure 3.4 Typical Biaxial Interaction Diagram . 28

Figure 3.5 Pseudo Code for Calculation of Points of Failure Surface 31

Figure 3.6 An example Problem . 32

Figure 3.7 Analysis of section rotated by 0o . 32

Figure 3.8 Analysis of section rotated by 30o . 33

Figure 3.9 Analysis of section rotated by 60o . 34

xiii

Figure 3.10 Analysis of section rotated by 90o . 34

Figure 3.11 M33 - M22 diagram for example section 35

Figure 4.1 General architecture of the object library 37

Figure 4.2 Analysis Package . 38

Figure 4.3 Major Elements In a Structure . 38

Figure 4.4 Attributes in FrameElement Class . 38

Figure 4.5 Attributes in FrameCrossSection Class 39

Figure 4.6 Frame elements connecting to a single node 40

Figure 4.7 Attributes in Node Class . 40

Figure 4.8 Attributes in Point Class . 40

Figure 4.9 Attributes in Displacement Class . 41

Figure 4.10 Attributes in Station Class . 41

Figure 4.11 Attributes in AnalysisResult Class . 42

Figure 4.12 Attributes in LoadCase Class . 42

Figure 4.13 Class Relationship of Building Class . 43

Figure 4.14 Attributes in LoadCombination Class 43

Figure 4.15 Attributes in CombinationParams Class 43

Figure 4.16 Design Entities Package . 44

Figure 4.17 Columns may be entered as more than one piece 45

Figure 4.18 Attributes in Column Class . 45

Figure 4.19 Class Relationship of Column Class . 46

Figure 4.20 Class Relationship of Joint Class . 47

Figure 4.21 Examples of Column Line . 47

Figure 4.22 Attributes in ColumnLine Class . 48

Figure 4.23 Class Relationship of ColumnLine Class 48

Figure 4.24 Attributes in Story Class . 49

Figure 4.25 Class Relationship of Story Class . 49

Figure 4.26 Class Relationship of Building Class . 50

Figure 4.27 Attributes in DesignSection Class . 50

Figure 4.28 Class Relationship of MaterialModel Class 52

Figure 4.29 Reinforcement Package . 53

Figure 4.30 Attributes in ReinforcementPattern Class 54

Figure 4.31 Attributes in Rebar Class . 54

xiv

Figure 4.32 Basic Straight Part of a LongitudinalBar and Possible Alternatives . . 55

Figure 4.33 Attributes in LongitudinalBar Class . 56

Figure 4.34 Splice is done at the �oor level . 56

Figure 4.35 Splice is done at the mid-height of the column 57

Figure 4.36 Second type of the end-style shape . 57

Figure 4.37 Third type of the end-style shape . 58

Figure 4.38 Splice is done at the �oor level . 59

Figure 4.39 Splice is done at mid-height of the column 59

Figure 4.40 Di�erent Directions of Longitudinal Reinforcement at Beam-Column Joints 59

Figure 4.41 Attributes in EndStyle Class . 60

Figure 4.42 Attributes in LongitudinalPattern Class 60

Figure 4.43 Pre-de�ned Longitudinal Reinforcement Patterns 61

Figure 4.44 Attributes in TransverseBar Class . 62

Figure 4.45 Attributes in TransversePattern Class 62

Figure 4.46 Pre-de�ned Transverse Reinforcement Patterns 63

Figure 4.47 Overwritten Methods in Code Class . 64

Figure 4.48 Class Relationship of Code Class . 65

Figure 4.49 Methods in TS500_2000 and TEC . 66

Figure 5.1 General view of the client GUI . 74

Figure 5.2 Concrete Tab of Project Preferences . 75

Figure 5.3 Reinforcement Tab of Project Preferences 75

Figure 5.4 Preferences Tab of Project Preferences 76

Figure 5.5 Design Tab of Project Preferences . 76

Figure 5.6 3D view of the sample project . 77

Figure 5.7 Flow Chart to Design a ColumnLine 78

Figure 5.8 Pseudo Code for Detection of Frame Elements in the Same Column . . 80

Figure 5.9 View of the sample project at client GUI 81

Figure 5.10 Selected ColumnLine in the sample project 82

Figure 5.11 Selection of prede�ned patterns at client GUI 83

Figure 5.12 Section view of selected column line 84

Figure 5.13 Side view of selected column line . 84

Figure 5.14 3D view of selected column line . 85

Figure A.1 Class Relationship of Data Model . 92

xv

Figure B.1 Rotation of coordinate system . 93

xvi

LIST OF TABLES

TABLES

Table 4.1 Surface texture enumerator . 54

xvii

LIST OF SYMBOLS

Ac Cross-sectional area of the con-
crete section.

Ast Longitudinal reinforcement area.

Ec Modulus of elasticity of concrete.

EI E�ective �exural rigidity.

i Radius of gyration.

i33 Radius of gyration of a section
about its major axis.

i22 Radius of gyration of a section
about its minor axis.

Ic Moment of inertia of gross con-
crete section.

I33 Moment of inertia of a section about
its major axis.

I22 Moment of inertia of a section about
its minor axis.

k Amultiplier that depends on whether
the frame is sway or not and is
a function of relative sti�ness of
columns and beams at the beam-
column joints above and below.

li Length of each column in ith �oor.
Length is measured form the cen-
ter of the joint to sthe center of
the joint.

lk The e�ective length of column.

ln Clear height of the column. It is
measured from the top of the slab
to the bottom of the beam above.

Md1,Md2 Design end moments found from
analysis.

Ndi Axial force in each column.

Ngd Design sustained axial load.

Nd Total design axial load.

Vgd Sum of the design shear forces in
the �oor caused by the sustained
load.

Vd Sum of the design shear force.

Vfi Sum of horizontal shear forces in
ith �oor.

Rm Factor that re�ects the e�ect of
creep.

S33 Section modulus of a section about
its major axis.

S22 Section modulus of a section about
its minor axis.

ρt Longitudinal reinforcement area.

∆i Lateral displacement of ith �oor,
relative to the �oor below.

xviii

CHAPTER 1

INTRODUCTION

1.1 Problem De�nition

In order to design and detail reinforced concrete structures, there are many steps to follow

: �Preliminary Design�, �Modeling and Analysis�, �Design and Detailing of Reinforcement�,

�Code Checking� and �Structural Drawings�. The interaction of these steps are presented in

Figure 1.1. The �rst step in designing and detailing of a reinforced concrete structure is the

�Preliminary Design� step. In this step, structural framing, initial member sizes, material

properties, support conditions, ductility level of the structure and loads to be applied to

the structure are determined. As a next step, the reinforced concrete structure is modeled

and analyzed in an analysis program with the properties de�ned in the �Preliminary Design�

step�. Element forces and displacements are obtained at the end of this step. In �Design

and Detailing of Reinforcement� step, amount, location and shape of the reinforcement are

determined by using the current member sizes and the element forces obtained in the previ-

ous step. In details, the diameter of longitudinal reinforcement, longitudinal reinforcement

mesh in the column or beam cross-section, the shape of the longitudinal reinforcement at

beam-column joints, length of the longitudinal reinforcement according to splice location, the

diameter of transverse reinforcement, spacing of transverse reinforcement at con�ned and un-

con�ned regions of columns and beams, transverse reinforcement detailing at beam-column

joints are determined in this step. Then, the structure is checked according to a speci�ed

design code in �Code Checking� step. Minimum cross-sectional dimensions and area, mini-

mum and maximum longitudinal reinforcement amount and diameter, minimum transverse

reinforcement diameter, maximum transverse reinforcement spacing, maximum de�ection

are some of the criteria that a design code checks. At any step of this design process, it may

be realized that the requirements of the design codes cannot be satis�ed with the current

1

design decisions. In such cases, the structural framing or the current member dimensions

are revised and the design process is repeated by reanalyzing the structural models of the

building. This indicates that design and detailing of reinforced concrete structures are not

serial processes but iterative ones between the analysis and design steps. Finally, structural

drawings that indicate the member dimensions and placement of reinforcement are prepared

in �Structural Drawings� step.

Preliminary

Design

Modeling and

Analysis

Design and

Detailing of

Reinforcement

Code Checking

Structural

Drawings

Code Checking

Frame

elements

and Nodes

Beam,

Column and

Joints

Figure 1.1: Structural Design Process of Reinforced Concrete Structures

Analysis and Design steps require di�erent kinds of information. In the �Modeling and

Analysis� step, one dimensional frame elements and nodes are used. These frame elements,

however, are not enough to design and detail the reinforced concrete structures. Therefore,

2

higher level geometrical objects such as beam, column and reinforcement are required in

�Design and Detailing of Reinforcement� step. Because of this reason, structural design

process of reinforced concrete structures includes complex information exchanges between

the steps de�ned in Figure 1.1.

Due to the the monolithic nature of cast-in-place reinforced concrete members, the design

of beams and columns is performed system based. In other words, continuous beams are

often designed as a whole. Similarly, columns on the same grid points are designed and

detailed continuously from the foundation level to the top of the building. Moreover, the

reinforcement detail of a member a�ects the way the neighbor members are designed and

detailed. Especially, in seismic design, the �exural capacities of beams of the special moment

frames are the key elements that determine the amount of shear force that can be transferred

to a column or a beam-column joint.

In engineering projects, people from many di�erent professions contribute to a single project

such as architects, technical drawers, structural engineers, soil engineers, mechanical engi-

neers, project managers, controllers, etc. [Figure 1.2]. They have all speci�c and di�erent

opinions about the same project before, during and even after the project. These people

come together and share their opinions in the progress of the project. Sometimes, they have

meetings, make conversations, send e-mails to each other, post drawings or reports, etc. to

be synchronic. All these procedures, however, may not be enough to be synchronic due to

the reasons described in the following paragraphs.

Figure 1.2: Participants in a single project (International Alliance for Interoperability)

People involved in a project may use di�erent software programs related to their profession

3

and format of data reports generated from these programs may be di�erent from each other.

To use data reports in di�erent formats means that either the program to be used should

be able to run for di�erent formats or data reports should be translated to required format

manually. Since integration of software systems is still a developing research area, the second

method is used which means that data loss is inevitable. Even if the same data format is

used while exchanging data, there are many reasons to lose data. Information not managed

centrally, use of di�erent versions of software programs, unreceived e-mails or posts, unsyn-

chorinized information and human factors are some of the reasons that cause loss of data

and time.

Besides data and time loss, data incompatibility causes huge amount of money loss. The

National Institute for Standards and Technology imposes at least one billion dollar per year

on the members of the U.S. automotive supply chain and has estimated that data incom-

patibility is a 90 billion dollar problem for manufacturing industry [Lo�redo]. Moreover,

the estimated cost of data incompatibility to the U.S construction industry was 15.8 billion

dollars in 2002 [Gallaher].

The most important reason that cause data loss is the information that is not managed

centrally. For example, if there are two project participants: A and B, and data is exchanged

in both direction between them, there should be two translators considering normal method

: A-to-B and B-to-A. If there are three project participants, however, there should be six

translators : A-to-B, B-to-A, A-to-C, C-to-A, B-to-C and C-to-B. When the case in Figure 1.2

is considered, the number of translators should be 56 (Figure 1.3). Generally, the number

of required translators between N project participants is N ∗ (N − 1),Figure 1.4(a). On

the other hand, if centrally managed information model is used while exchanging data, the

number of translators between participants reduces to 2 ∗N Figure 1.4(b) which shows the

importance of using information model.

4

Figure 1.3: The normal method of data exchange for the case in Figure 1.2 (International

Alliance for Interoperability)

Figure 1.4: (a) The normal method of data exchange ,(b) An approach using a neutral �le

(Eastman, 1999)

It is possible to encounter with the same problem in design and detailing of reinforced

concrete structures. There may be more than one engineer and draftsmen in design and

detailing of reinforced concrete frames. Di�erent members of structure can be designed and

detailed by di�erent engineers and di�erent draftsmen can prepare the structural drawings

of detailed members. When there is a failure to update or missing information between

engineers and draftsmen working in the same project, this may cause incorrect design and

detailing of reinforced concrete members which means inadequacy in structural safety, time

and money loss. Thus, an environment that keeps neutral data �les and allows multiple

engineers work on a single project improve the quality of design and detailing of reinforced

concrete structures. In a such a neutral data model, all entities related reinforced concrete

members and reinforcement should be de�ned. Moreover, code based calculations should be

5

performed with this data model.

Therefore, the aim of this study is to develop an object oriented library to facilitate the

design and detailing of reinforced concrete frames. Moreover, to develop an environment in

which more than one engineer perform code based design and detailing tasks simultaneously

on a single reinforced concrete project with this developed library is another aim of this

study.

1.2 Literature Survey

1.2.1 Data Models

The existence of incompatibilities between information technology systems used in the pro-

cesses of design, engineering, and manufacturing has resulted in the development of several

di�erent approaches for achieving the exchange of data. One of these approach is STEP

(Standard for the Exchange of Product modal data). STEP was launched in 1984 by ISO

(International Standardization Organization) under the umbrella of ISO 10303. The funda-

mental aim of STEP is to exchange data and share information. STEP addresses product

data from mechanical and electrical design, geometric dimensioning and tolerancing, anal-

ysis and manufacturing, with additional information speci�c to various industries such as

automotive, aerospace, building construction, ship, oil and gas, process plants and others.

STEP uses EXPRESS which is a standard data modeling language for product data and

is standardized as IS0 10303-11 by ISO. Application data in STEP is exchanged either by

a STEP-File, most widely used exchange form of STEP and whose format is de�ned in

ISO 10303-21, STEP-XML, an alternative way to STEP-File and speci�es the use of the

Extensible Markup Language (XML) to represent EXPRESS.

According to Fowler, at the initial stages of STEP, building and construction were not

very active branches within STEP. With the following three application protocols, AP225:

�Building elements using explicit shape representation�, AP228: �Building services: heating,

ventilation and air conditioning� and AP230: �Building structural frame: steel work�, the

role of STEP in these branches became widespread and within the collaborative projects

such as ATLAS (ESPRIT program), COMBINE and COMBINE 2 (JOULE program) and

CIMSTEEL (EUREKA program) these application protocols have been developed.

Another approach to exchange data without incompatibilities is IFC (Industry Foundation

Classes). IFC was developed by International Alliance for Interoperability (IAI) in 1995.

6

Although, it has still not been fully accepted, it is the most utilized platform for interoper-

ability [Ilal]. More than 600 organizations around the world are committed to producing and

using IFC standard object de�nitions [Coble]. The main goal of IFC is to facilitate inter-

operability in the building industry. The IFC data model is an object-oriented data model

based on class de�nitions representing the things (elements, processes, shapes, etc.) that are

used by software applications during a construction or facility management project. The IFC

data model focuses on those classes that are needed to share information (rather then pro-

cessing it in a particular software). The IFC data model is a neutral and open speci�cation

that is not controlled by a singular vendor or group of vendors. The Japanese Chapter of

IAI incorporated the reinforced concrete structural model into IFC as an extension. In this

extension, reinforcing bars were de�ned with the �IfcReinforcingBar Class� with the prop-

erties of diameter, length, cross-sectional area, usage of reinforcement, and surface texture

(Figure 1.5). Although this extension covered de�nitions of geometry of reinforcing bars in

reinforced concrete members, design code based calculations and detailing of reinforcement

at special zones were not handled in IFC.

Figure 1.5: Reinforcement Bar de�nition in IFC (IAI, 2009)

7

1.2.2 Web Services

A Web Service is de�ned by the World Wide Web Consortium (W3C) as a software sys-

tem designed to support interoperable machine-to-machine interaction over a network. It

uses XML, SOAP, WSDL and UDDI open standards. XML is used in Web Services so

that information can be exchanged between disparate application and platforms. SOAP,

Simple Object Access Protocol, is a messaging protocol for transporting information and

instructions between Web Services. Web Services Description Language (WSDL) provides

a standard method to describe Web Services and Universal Description, Discovery and In-

tegration (UDDI) de�nes standard rules for Web Service directories and is used for listing

what services are available. Both WSDL and UDDI are based on XML.

The most important advantage of Web Services over previously distributed-computing tech-

nologies (DCOM, CORBA) is that Web Services use open standards (XML, SOAP, WSDL,

UDDI) [Deitel, 2003]. It means that Web Services enable any two software components

whose programming languages and platforms are di�erent to communicate. In other words,

Web Services are platform-independent.

1.2.3 Extensible Markup Language (XML)

Extensible Markup Language (XML) is a way of representing information hierarchically and

lossless exchange of complex data between systems that use di�erent formats can be achieved

with XML. It was developed by World Wide Web Consortium (W3C) for a new version of

Standard Generalized Markup Language (SGML) in 1996. In a few years, XML was used as

the basis of many technologies. These applications of XML helped make the technology less

abstract and more real [William, 2002]. Then, which properties of XML made it so powerful?

First of all, XML uses human, not computer, language. Then, it is readable by even people

who have no formal introduction on XML. Then, XML parsers are quickly available. Finally,

XML is extendable. On the other hand, the major disadvantage of XML is that XML �les

can become very large easily. Size of the XML node of a value is always larger than the size

of the stored value itself due to start and end tag of the value.

XML documents have an object oriented structures composed of blocks of data. Every data

block in an XML document is enclosed between tags (start tag and end tag) and is called

as a node. Start tag starts with �<� and ends with �>�, end tag starts with �</� and ends

with �>�. Nodes can contain other child nodes. As it can be seen in �gure Figure 1.6,

ColumnForces is the main node in this sample XML code. ColumnForces node includes a

8

Story node with an identi�er attribute �story� whose value is �STORY1�. Moreover, Story

node contains two Column nodes with an identi�er attribute �ID� whose values are �C4� and

�C18�. In each Column node, there are two LoadCase node with an identi�er attribute �load�,

namely �DEAD� and �LIVE�. Each LoadCase node has 6 properties, namely �P�, �V2�, �V3�,

�T�, �M2� and �M3�. Before ending a main node, child nodes in the main node should be

closed. For example, in �gure Figure 1.6, to end Story node with </Story>, Column node

should be ended with </Column>.

<?xml version="1.0" encoding=""utf-8" ?>

-<ColumnForces>

-<Story story="STORY1">

-<Column ID="C4">

-<LoadCase load="DEAD">

<P>-10000</P>

<V2>-15000</V2>

<V3>-10000</V3>

<T>0</T>

<M2>-10000</M2>

<M3>-10000</M3>

</LoadCase>

-<LoadCase load="LIVE">

<P>10000</P>

<V2>20000</V2>

<V3>0</V3>

<T>0</T>

<M2>0</M2>

<M3>35000</M3>

</LoadCase>

</Column>

</Story>

</ColumnForces>

Figure 1.6: Sample XML Code

1.3 Objectives and Scope

The main objective of this study is to develop an object oriented library to facilitate the

design and detailing of reinforced concrete columns and beam-column connection zones by

multiple engineers simultaneously. The object library involves object abstractions, de�ni-

tions of relations between objects and implementation of object functionality for performing

all required design tasks related to the design process of reinforced concrete columns. Imple-

mentation of the developed libraries into a web based system, which allows multiple engineers

work on a single project simultaneously, is the second objective of this study. Final objective

of this study is to test the performance and functionality of developed object oriented library

on an actual model.

In this research, the web-based platform that was previously developed by An�l [An�l, 2009]

9

will be extended. The new extensions are summarized as follows :

• Code based design and detailing of reinforced concrete columns amd beam-column

joints.

• A simple client GUI (Graphical User Interface) is developed to visualize RC building

and select RC columns to be designed and detailed.

• Detailed drawings, which are prepared at the end of the design and detailing of rein-

forced concrete columns and beam-column joints, are in AutoCAD dxf format. These

prepared drawings are not used as detailed shop-drawings but they are used to visualize

reinforcement arrangement in columns in 3D views.

For this purpose, C# .NET programming language is utilized for the development of the

object oriented data model and XML (eXtensible Markup Language) Web Services are used

to build web based multi-user environment.

1.4 Thesis Outline

The remainder of thesis is organized as follows: Chapter 2 presents requirements and lim-

itations for design and detailing of reinforced concrete columns according TS500-2000 and

Turkish Earthquake Code. In Chapter 3, analysis procedure of reinforced concrete sections

under axial load and biaxial bending moment is presented. Then, drawing procedure for

biaixal interaction diagram for speci�ed axial load is presented. Chapter 4 is devoted to

elements of data model. In this chapter, analysis and design layer are described in detail

and reinforcement and code classes are introduced. In Chapter 5, a case study for an actual

model is introduced and results are discussed. Finally, Chapter 6, is the �nal chapter which

summarizes the e�ciency and future plans of this study.

10

CHAPTER 2

DESIGN CODES

2.1 Introduction

In this study, two codes are used for designing and detailing of reinforced concrete columns

and beam-column joints, namely Turkish Reinforced Concrete Design Code (TS500-2000)

and Turkish Earthquake Code (TEC-2007). These codes are used to check minimum col-

umn dimensions, minimum and maximum diameter, spacing and reinforcement amount for

longitudinal and transverse reinforcement. Moreover, beam-column joints are also checked

for design shear force and detailing of shear reinforcement at these regions.

2.2 TS500-2000

2.2.1 Minimum Requirements for Columns in TS500-2000

According to TS00-2000, cross-sectional requirements, longitudinal reinforcement require-

ments, transverse reinforcement requirements are stated as follows:

• Cross-sectional Requirements:

� Minimum cross-sectional dimension :

∗ 250 mm for rectangular columns.

∗ 300 mm in diameter for circular columns.

� Minimum cross-sectional area:

∗ Ac ≥ Nd
0.6fck

≥ 75000mm2

• Longitudinal Reinforcement Requirements:

11

� Minimum longitudinal reinforcement ratio:

ρt ≥ 0.01 (2.1)

� Maximum longitudinal reinforcement ratio:

ρt ≤ 0.04 (2.2)

� Minimum diameter of longitudinal bar:

≥ φ14 (2.3)

• Transverse Reinforcement Requirements:

� The diameter of the transverse reinforcement should be greater than the 1/3 of

the maximum diameter of longitudinal bars and 8 mm.

φtransverse ≥ 1/3maxφlongitudinal (2.4)

φtransverse ≥ 8mm (2.5)

� The spacing between the transverse reinforcement should be smaller than 12 times

minimum diameter of longitudinal bars and 200mm.

stransverse ≤ 12minφlongitudinal (2.6)

stransverse ≤ 200mm (2.7)

2.2.2 Moment Magni�cation Method

When buildings are subjected to lateral loads, relative displacement between columns ends

exists. This relative displacement increases initial eccentricity of the column and therefore

causes additional moment in the column. This additional moment is called as �Second

Order Moment�. Second order moment depends on the geometry of the de�ected shape and

slenderness of the column.

In order to take the slenderness e�ects while calculating the design moment of a column,

�Moment Magni�cation Method� is introduced in TS500-2000. In this method, �rst order

design moment is multiplied by a factor β. This factor is calculated di�erently for braced

and unbraced frames. Therefore, as a �rst step it should be checked whether the frame is

braced against side-sway or not.

12

According to TS500-2000, to check whether a story is braced (non-sway) or not, it is stated

that if the parameter ψ de�ned in Equation 2.8 is equal to less than 0.05, the story can be

considered as braced (non-sway); otherwise, it is unbraced (sway).

ψ = 1.5∆i

∑ Ndi
li

Vfi
≤ 0.05 (2.8)

In ∆i,Ndi and Vfi calculations, only lateral load combinations (earthquake or wind) should

be considered.

2.2.2.1 E�ective Length Calculation

The e�ective length of a column is calculated by multiplying clear height of the column by a

factor �k� which takes into account the boundary conditions of column. The multiplier �k�

depends on whether the frame is sway or not and is a function of relative sti�ness of columns

and beams at the beam-column joints above and below. The multiplier �k� is calculated as

follows:

• For Non-sway Frames:

k = 0.7 + 0.05(α1 + α2) ≤ (0.85 + 0.05α1) ≤ 1.0 (2.9)

• For Sway Frames:

k =
20− αm

20
√

1 + αm if αm < 2 (2.10)

k = 0.9
√

1 + αm if αm ≥ 2 (2.11)

where α1,2 =

∑
(I/l)column∑
(I/l)beam

and αm = 0.5(α1 + α2). In calculating α values (relative

sti�ness values), moment of inertia of beams should be based on cracked section and

only beams in bending direction should be taken into consideration.

• For Columns with Hinge at One End:

k = 2.0 + 0.3α (2.12)

where α is the value at the joint where the column is no hinged.

2.2.2.2 Buckling Load

According to TS500-2000, column buckling load Nk, is calculated as follows:

Nk =
π2EI

l2k
(2.13)

13

where

EI =
EcIc
2.5

1
1 +Rm

(2.14)

Rm =
Ngd

Nd
for Braced Frames (2.15)

Rm =
∑
Vgd∑
Vd

for Unbraced Frames (2.16)

2.2.2.3 Moment Magni�cation Factor

According to TS500-2000, moment magni�cation factor for non-sway and sway frames is

calculated as follows:

• For Non-Sway Frames:

β =
Cm

1− 1.3Nd
Nk

(2.17)

where Cm = 0.6+0.4(Md1/Md2) ≥ 0.4 andMd1 ≤Md2. If the column is bent in single

curvature, Md1/Md2 is taken as positive. If it is bent in double curvature, Md1/Md2 is

taken as negative.

• For Sway Frames:

βs =
1

1− 1.3
∑

Nd∑
Nk

≥ 1.0 (2.18)

In TS500-2000, it is stated that β values should be calculated for all columns in an

unbraced system by using Equation 2.18 taking Cm = 1.0. In designing the column,

the maximum of β and βs should be used.

The design moment including the second order e�ects is calculated by multiplying the �rst

order design moment by β.

2.2.2.4 Conditions in which Second Order Moments can be Neglected

In TS500-2000 it is stated the second order moments can be neglected if the following equa-

tions are satis�ed. In such a case, the maximum moment obtained from the �rst order

analysis is taken as the design moment of the column.

• For Braced Frames:
lk
i
≤ 34− 12

Md1

Md2
≤ 40 (2.19)

14

• For Unbraced Frames:
lk
i
≤ 22 (2.20)

If the column is bent in single curvature,Md1/Md2 is taken as positive. If it is bent in double

curvature,Md1/Md2 is taken as negative.

2.2.3 BASIC DEVELOPMENT LENGTH

In TS500-2000, it is stated that the basic development length lb, is calculated as follows:

• For deformed bars:

lb = 0.12
fyd
fctd

φ ≥ 20φ (2.21)

• For plain(undeformed) bars:

lb = 0.24
fyd
fctd

φ ≥ 40φ (2.22)

If the diameter of longitudinal bar is 32mm < φ ≤ 40mm , the development length computed

should be multiplied by a factor which is 100
132−φ

2.3 TURKISH SEISMIC CODE

2.3.1 Minimum Requirements for Columns in Turkish Seismic Code

In Turkish Seismic Code, cross-sectional requirements, longitudinal reinforcement require-

ments, transverse reinforcement requirements are stated as follows:

• Cross-sectional Requirements:

� Minimum cross-sectional dimension :

∗ 250 mm for rectangular columns.

∗ 300 mm in diameter for circular columns.

� Minimum cross-sectional area:

∗ Ac ≥ Nd
0.5fck

≥ 75000mm2

• Longitudinal Reinforcement Requirements:

� Minimum longitudinal reinforcement ratio:

ρt ≥ 0.01 (2.23)

15

� Maximum longitudinal reinforcement ratio:

ρt ≤ 0.04 (2.24)

� Minimum diameter of longitudinal bar:

≥ φ14 (2.25)

� Turkish Seismic Code imposes the following requirements for the column longitu-

dinal bars:

∗ If lap splices are made at the mid-height of the column, the splice length is

equal to the basic development length. l0 = lb as calculated according to

TS500-2000.

∗ If lap splices are made at �oor level, the splice length should not be less than

the values given below:

· If only 50% or less of bars is lapped at the same section, the splice length

should be greater than 1.25 times basic development length. l ≥ 1.25lb

· If more than 50% of the bars are lapped at the same section, the splice

length should be greater than 1.5 times basic development length. l0 ≥

1.5lb

� When column size changes in the �oor above, the longitudinal reinforcement of

the column should be detailed as shown:

34

7.3.3.3 - In the case where the column cross-section changes between consecutive
stories, slope of the longitudinal reinforcement within the beam-column joint shall not
be more than 1/6 with respect to the vertical. When the change in cross section is more
or in the case of top storey columns; development length of the column longitudinal
reinforcement within the other side of the beam above shall not be less than 1.5 times
the development length �b given in TS-500 for tension reinforcement, nor shall it
be less than 40∅∅∅∅. In the case of no beam present on the other side, development shall
be achieved, if necessary, by downward bending of rebar along the far face of the
column. Length of 90 degree bent horizontal hook or downward bent vertical hook
shall be at least 12∅∅∅∅ (Fig. 7.2).

7.3.3.4 - Longitudinal distance between mechanical or welded connections on adjacent
longitudinal rebars shall not be less than 600 mm.

Figure 7.2

7.3.4. Transverse Reinforcement Requirements

Unless a more unfavourable situation governs in accordance with below given 7.3.7.6,
the minimum transverse reinforcement requirements of columns are those specified in
7.3.4.1 for column confinement zones and in 7.3.4.2 for the column central zone (Fig.
7.3). Special seismic hoops and special seismic crossties defined in 7.2.8 shall be used
along the full length of the column.

7.3.4.1 - Special confinement zones shall be arranged at the bottom and top ends of each
column. Length of each of the confinement zones shall not be less than smaller of
column cross section dimensions (diameter in circular columns), 1/6 the clear height of
column (measured upward from floor level or downward from the bottom face of the
deepest beam framing into the column), and 500 mm. Requirements for transverse
reinforcement to be used in confinement zones are given below. Such reinforcement

e
a

bc

e
a

b

1
≥≥≥≥ 6

(a+b+c) ≥≥≥≥ 1.5 �b
(a+b+c) ≥≥≥≥ 40 φφφφ
 c ≥≥≥≥ 12 φφφφ

(a+b) ≥≥≥≥ 1.5 �b
(a+b) ≥≥≥≥ 40 φφφφ
 b ≥≥≥≥ 12 φφφφ

e ≥≥≥≥ 1.5 �b
e ≥≥≥≥ 40 φφφφ

Figure 2.1: Longitudinal reinforcement in beam-column joints (TEC-2007)

16

• Transverse Reinforcement Requirements

� According to Turkish Seismic Code, there should be special con�nement zones

at the bottom and top ends of each column. These zones are called �Column

Con�nement Zone� and the zone between the con�nement zones is called �Column

Central Zone� (Figure Figure 2.5).

∗ Column Con�nement Zone :

· The length of each column con�nement zone shall not be less than max-

imum of column cross-section dimensions (bmax), 1/6 clear length of the

column (ln) and 500 mm.

≥ bmax

≥ ln/6 (2.26)

≥ 500mm

· The minimum transverse reinforcement diameter that shall be used in

column con�nement zones is 8 mm.

φmin ≥ 8mm (2.27)

· The spacing between the transverse reinforcement in the column con�ne-

ment zone shall not be less than 50 mm, and shall not be grater than 1/3

the smaller cross-sectional dimension and 100 mm.

sc ≥ 50mm

sc ≤ 100mm (2.28)

sc ≤ bmin/3

· In case where Nd > 0.2Acfck, minimum total area of transverse reinforce-

ment to be used in con�nement zones shall satisfy both of the following

conditions. In this calculation, core diameter of column , shall be consid-

ered separately for each direction. (Figure 1131313).

Ash ≥ 0.3sbk[(Ac/Ack)− 1](fck/fywk) (2.29)

Ash ≥ 0.075sbk(fck/fywk) (2.30)

17

· In the case where Nd ≤ 0.2Acfck minimum total area of transverse re-

inforcement to be used in con�nement zones shall be at least 2/3 the

transverse reinforcement given by Equation 2.29 and Equation 2.30.

∗ Column Middle Zone :

· The minimum transverse reinforcement diameter that shall be used in

column central zones is 8 mm.

φmin ≥ 8mm (2.31)

· The spacing between transverse reinforcement in column central zone

shall not be grater than 1/2 the smaller cross-sectional dimension and

200 mm.

s0 ≤ 200mm (2.32)

s0 ≤ bmin/2 (2.33)

2.3.2 Requirements of Having Columns Stronger Than Beams

In a beam-column joint, if the sum of ultimate moment resistances of columns is at least 20%

more than sum of the moment resistances of beams, it is considered columns are stronger

than beams in this particular beam-column joint (Equation 2.34).

Mra +Mrü ≥ 1.2(Mri +Mrj) (2.34)

Equation 2.34 shall be applied separately for both earthquake direction and sense to yield

the most unfavorable result (Figure 2.2). In calculating column ultimate moment resis-

tance, axial force Nd, shall be taken to yield minimum moments consistent with the sense

of earthquake direction.

If Nd ≤ 0.1Acfck in both columns at a beam-column joint, there is no need to check whether

columns are stronger than beams or not for that particular beam-column joint.

18

37

7.3.5. Requirement of Having Columns Stronger Than Beams

7.3.5.1 - In structural systems comprised of frames only or of combination of frames
and walls, sum of ultimate moment resistances of columns framing into a beam-column
joint shall be at least 20% more than the sum of ultimate moment resistances of beams
framing into the same joint (Fig. 7.4):

 (Mra + Mrü) ≥≥≥≥ 1.2 (Mri + Mrj) (7.3)

7.3.5.2 - In order that Eq.(7.3) is applied, beams framing into the joint shall satisfy the
dimensional requirements given in 7.4.1.1.

7.3.5.3 - Eq.(7.3) shall be applied separately for both earthquake directions and senses
to yield the most unfavourable result (Fig. 7.4). In calculating the column ultimate
moment resistances, axial forces Nd shall be taken to yield the minimum moments
consistent with the sense of earthquake direction.

7.3.5.4 – Special situations regarding the application of Eq.(7.3) are described in the
following:

(a) Eq.(7.3) need not to be applied in the case where Nd ≤≤≤≤ 0.10 Ac fck in both columns
framing into the joint.

(b) Eq.(7.3) need not to be checked in single storey buildings and in joints of topmost
storey of multi-storey buildings.

(b) Eq.(7.3) need not to be checked in the case where a wall connected by beams works
like a column in its weak direction.

Figure 7.4

7.3.6. The Case Where Some Columns Cannot Satisfy the Requirement of Having
Columns Stronger Than Beams

7.3.6.1 – In structural systems comprised of frames only or of combination of walls and
frames, Eq.(7.3) may be permitted not to be satisfied in a given earthquake direction at
some joints at the bottom and/or top of an i’th storey, provided that Eq.(7.4) given
below is satisfied.

Mrj

Mrü

Mri

Mra

Mri

Mra

Mrj

Mrü

Earthquake
 direction

Earthquake
 direction

Figure 2.2: Unfavorable Earthquake Direction (TEC-2007)

2.3.3 Shear Safety of Columns

To design column transverse reinforcement, the design shear force Ve, shall be calculated by

Equation 2.35

Ve = (Ma +Mü)/ln (2.35)

Design shear force, obtained according to Equation 2.35 shall not be less than the shear force

calculated under factored gravity and seismic loads combined. Moreover, the design shear

force shall not be greater than the values given by Equation 2.36. If the second condition in

Equation 2.36 is not satis�ed, the column cross-sectional dimensions shall be increased and

seismic analysis shall be repeated according to updated dimensions.

Ve ≤ Vr

Ve ≤ 0.22Awfcd
(2.36)

In order to obtain Ma and Mü in calculation of column design shear force, �rst of all, top

and bottom joints of column shall be checked whether the columns are stronger than beams.

If so, the sum of ultimate moment capacities of beams connecting to column in speci�ed

direction shall be distributed to columns in proportion to column sti�ness. The distributed

moments are used in Equation 2.35 as Ma and Mü. Otherwise, column moment capacities

shall be used in Equation 2.35 as Ma and Mü(Figure 2.3).

19

39

7.3.7.4 – The moment Ma at the bottom of a column framing into the foundation shall

also be calculated as the ultimate moment capacity in accordance with 7.3.7.3.

7.3.7.5 – Shear force , Ve , obtained according to Eq.(7.5), shall not be less than the

shear force calculated under factored gravity and seismic loads combined, and in

addition it shall satisfy the conditions given by Eq.(7.7) below. In the case where the

condition given by Eq.(7.7b) is not satisfied, cross section dimensions shall be

increased as required and the seismic analysis shall be repeated.

 Ve ≤≤≤≤ Vr (7.7a)

 Ve ≤≤≤≤ 0.22 Aw fcd (7.7b)

Figure 7.5

7.3.7.6 – In calculating the column transverse reinforcement for shear force, Ve ,

contribution of concrete to the shear strength of the section, Vc , shall be determined in

accordance with TS-500. However it shall be taken Vc = 0 in calculating the transverse

reinforcement along the column confinement zones defined in 7.3.4.1 when Ve ≥≥≥≥0.5Vd

and at the same time Nd ≤≤≤≤ 0.05 Ac fck .

7.3.8. Conditions Related to Short Columns

Short columns may be developed due to structural arrangements or due to openings

provided in infill walls between columns (Fig. 7.6). In cases where short columns

cannot be avoided, shear force for transverse reinforcement shall be calculated by

Columns stronger

than beams

Columns stronger

than beams

Columns stronger

than beams at column

top end

Columns not

stronger than beams

at column top end

Columns stronger than

beams at column

bottom end

Columns not stronger

than beams at

column bottom end

Calculation of Mü Calculation of Ma

Mhü(i) : Moment obtained at top end of ith story column
Mha(i) : Moment obtained at bottom end of ith story column

Figure 2.3: Ma and Mü in column shear design

While calculating the shear strength of a reinforced concrete section for a load combination,

if this load combination satis�es the following conditions, concrete contribution to the shear

strength of the section shall be taken as zero for this load combination:

• The combination shall include earthquake case.

• Shear force due to earthquake case shall be greater than half of the shear force due to

whole combination.

• Axial force due to whole combination shall be less than 0.05Acfck.

2.3.4 Beam-Column Joints

In Turkish Earthquake Code, beam-column joints are divided into two groups as con�ned

and uncon�ned joints.

• The joints that are surrounded by beams at each side and the width of each beam is

20

smaller than 75% of the adjoining column width are de�ned as con�ned beam-column

joints.

• All joints not satisfying the above conditions are de�ned as uncon�ned beam-column

joints.

The shear force in beam column joints along the earthquake direction considered shall be

calculated by the following formula:

Ve = 1.25fyk(As1 +As2)− Vcol (2.37)

In the case where beams frame into a column from only one side and discontinuous on the

other side, As2 shall be taken equal to zero. Moreover, there is a limitation for the maximum

shear force at beam-column joints. If the shear force calculated according to Equation 2.37

exceeds the maximum shear force calculated by Equation 2.38 in a beam-column joint, cross-

sectional dimensions of columns and/or beams shall be increased and the analysis shall be

repeated.

Ve ≤ 0.60bjhfcd for con�ned joints

Ve ≤ 0.65bhfcd for uncon�ned joints
(2.38)

45

7.5.2.2 – The shear force calculated by Eq.(7.11) in a joint along the given earthquake

direction shall in no case exceed the limits given below (Fig.7.10) (*). In the cases

where those limits are exceeded, cross-section dimensions of column and/or beam shall

be increased and the seismic analysis shall be repeated.

(a) In confined joints: Ve ≤≤≤≤ 0.60 bj h fcd (7.12)

(b) In unconfined joints: Ve ≤≤≤≤ 0.45 bj h fcd (7.13)

7.5.2.3 – Requirements for minimum transverse reinforcement in beam-column joints

are given below (Fig. 7.3):

(a) In confined joints, at least 40 % of the amount of transverse reinforcement existing

in the confinement zone of the column below shall be provided along the height of the

joint. However, diameter of transverse reinforcement shall not be less than 8 mm and its

spacing shall not exceed 150 mm.

(b) In unconfined joints, at least 60 % of the amount of transverse reinforcement

existing in the confinement zone of the column below shall be provided along the height

of the joint. However in this case, diameter of transverse reinforcement shall not be less

than 8 mm and its spacing shall not exceed 100 mm.

Figure 7.10

(*) Amended on July 2, 1998. Official Gazette No.23390.

As1

As2

Va

Vkol = min (Va , Vü)

(See. 7.5.2.1)

Vü

1.25As2fyk

1.25As1fyk

C1

C2

In the case bw1 < bw2

bj = 2 min (b1, b2)

 bj ≤ (bw1 + h)

bw1

b

bw2

bw3

bw4

h

b2

b1

Earthquake

direction

Confined joint conditions

bw1 and bw2 ≥≥≥≥ 3/4 b

bw3 and bw4 ≥≥≥≥ 3/4 h

(See 7.5.1)

Figure 2.4: Shear force in beam-column joint (TEC-2007)

21

2.3.4.1 Minimum Transverse Reinforcement in Beam-column Joints

The requirements related to minimum amount, diameter and spacing of transverse reinforce-

ment in beam-column joints are stated as follows:

• Con�ned beam-column joints

� The transverse reinforcement shall be at least 40% of the of transverse reinforce-

ment amount computed at the con�nement zone of the column below along the

height of the joint.

� The diameter of the transverse reinforcement shall not be less than 8 mm.

� The spacing of the transverse reinforcement shall not be greater than 150 mm.

• Uncon�ned beam-column joints

� The transverse reinforcement shall be at least 60% of the of transverse reinforce-

ment amount computed at the con�nement zone of the column below along the

height of the joint.

� The diameter of the transverse reinforcement shall not be less than 8 mm.

� The spacing of the transverse reinforcement shall not be greater than 100 mm.

22

36

Figure 7.3

Figure 2.5: Shear Reinforcement Detailing in Columns (TEC-2007)

23

CHAPTER 3

SECTION ANALYSIS UNDER AXIAL

LOAD AND BIAXIAL BENDING

MOMENT

3.1 Introduction

In reinforced concrete structural buildings, although most columns are subjected to biaxial

bending moment, design is performed according to major bending moment and axial load

[Ersoy, 2004]. Especially corner columns, however, are subjected to signi�cant bending

moments in two directions and should be designed considering both bending moments.

The fundamental feature of the reinforced concrete section analysis subjected to axial load

with biaxial bending moment is that there are two parameters to de�ne the neutral axis,

namely depth and inclination of the neural axis. This property makes the analysis more

complicated for hand calculations.

In this chapter a procedure developed for the analysis of reinforced concrete sections sub-

jected to axial load and biaxial bending moment is introduced. Having drawn the moment

interaction diagram (M22 �M33) for speci�ed axial load, it is easy to see whether the design

is su�cient or not by locating the design moment in this diagram.

3.2 Sections Under Axial Load and Uniaxial Bending Moment

In Figure 3.1, a reinforced concrete section under axial load and uniaxial bending moment,

strain distribution of this section and forces are presented.

24

Figure 3.1: A Section Under Axial Load and Uniaxial Bending Moment

In Figure 3.1(a), the steel area is at each level is marked as As1, As2, As3, . . . , Asn. The shaded

area is the compression zone of the section. As it can be seen from the Figure 3.1(e), the

strain at each level changes linearly from zero to εcu for compression zone. To calculate the

force on compression zone, the compression zone is divided into sections (Figure 3.1(d)). Area

of each concrete compression section is marked as Ac1, Ac2, Ac3, . . . , Acm. In Figure 3.1(e),

the strain at middle height of each compression slice and distance of each section from the

centroid are marked as εc1, εc2, εc3, . . . εcm and xc1, xc2, xc3, . . . , xcm respectively. The strain

in steel in each level is marked as εs1, εs2, εs3, . . . εsn . and the distance of each steel layer

from the centroid is marked as xs1, xs2, xs3, . . . , xsn (Figure 3.1(b)). The force at each layer

of steel is calculated by multiplying the steel area by the corresponding stress at that level

(Figure 3.1(c)). For concrete force, area of each compression section is multiplied by the

stress at the mid-height of that section (Figure 3.1(f)). Moreover, �cg� is the center of

gravity of the section and �n.a� is the neutral axis.

With above information, the following equilibrium, compatibility, and force deformation

equations can be written. Compression and shortening are taken as positive and and the

values measured in the direction of eccentricity are also taken as positive.

• Equilibrium :

� Axial Force Equilibrium :

N =
∑

(Aciσci) +
∑

(Asjσsj) (3.1)

� Moment About Centroid :

M = N ∗ e =
∑

(Aciσcixci) +
∑

(Asjσsjxsj) (3.2)

• Compatibility :

25

From the strain diagram in Figure 3.1(b),

c

εcu
=
xp − c− xsj
−εsj

(3.3)

c

εcu
=
xp − c− xci
−εci

(3.4)

• Force Deformation :

� Bilinear steel model :

σsj = εsjEs ≤ fyd (3.5)

� Trilinear steel model :

σsj = εsjEs if εsj ≤ εsy

σsj = σy if εsy ≤ εsj ≤ εsp

σsj = σy + σu−σy

εsu−εsy
(ε− εsy) if εsj ≥ εsp

(3.6)

� σci is determined according to concrete model such as Rectangular Stress Block

Model, Rectangular Parabola Model, Hognestad Concrete Model, Kent & Park

Uncon�ned Concrete Model.

There are three equations Equation 3.1, Equation 3.2 and (Equation 3.5 or Equation 3.6)

to determine the moment capacity of an arbitrary shaped cross-section. Having known all

the geometric and material properties, moment capacity of cross-section is determined for

speci�ed axial load, N.

The fundamental feature of the section analysis under axial load and uniaxial bending mo-

ment is having the neutral axis parallel to direction of bending. Having known all the

geometric properties of the cross-section, arrangement of longitudinal bars, material prop-

erties, and design axial load, axial force equilibrium is satis�ed by adjusting the depth of

neutral axis. Having found the depth of neutral axis, moment capacity is found by just

summing moments of all steel and concrete forces about the center of gravity. For di�erent

axial load levels, corresponding moment values can be found for a given cross-section. When

axial load-moment pairs are plotted, interaction diagram is obtained for that cross-section

(Figure 3.2). To check whether the design is su�cient or not, the design axial force-moment

pair is plotted on the interaction diagram. If it is in/on the surface, the longitudinal rein-

forcement is su�cient. Otherwise, the amount of reinforcement should be increased.

26

Figure 3.2: Typical Moment Interaction Diagram

3.3 Sections Under Axial Load and Biaxial Bending Moment

In reinforced concrete buildings, most columns are subjected to biaxial bending moment

and axial load. In practice, the minor moment in one axis is neglected and columns are

designed according to axial load and major uniaxial bending moment. Especially the corner

columns, however, might be subjected to axial load and signi�cant bending moments in

two principle directions. Neglecting one of these signi�cant bending moments may cause

inadequate design. To design such columns, both bending moments in two directions should

be taken into consideration.

Figure 3.3: A Section Under Axial Load and Biaxial Bending Moment

27

When the section is under axial load and uniaxial bending moment, the only parameter to

de�ne the position of neutral axis is the depth of neutral axis. The depth itself is, however,

not enough to determine the position of the neutral axis in case of axial load and biaxial

bending. The second parameter to de�ne the position of neutral axis is the inclination of

neutral axis (Figure 3.3). These two parameters are changed until the equilibrium is satis�ed.

However, the solution is di�cult and lengthy because of the trial and error approach which

includes two variables namely, depth and inclination of neutral axis [Ersoy, 2004]. Moreover,

analysis for biaxial bending is signi�cantly more di�cult, as moments are not applied in a

plane of symmetry [Furlong, 2004].

By varying the depth and inclination of neutral axis, a series of interaction diagrams can be

obtained in case of axial load and biaxial bending. When these diagrams are put together,

interaction surface (failure surface) is formed (Figure 3.4). For a speci�ed axial load, a

horizontal section cut is taken through the interaction surface. This horizontal section cut is a

curve which represents the interaction between the two moments,M22 andM33 (Figure 3.4).

For a certain axial load, by checking whether the design moment pair (Md22 and Md33) is

in/on the taken interaction diagram between M22 and M33 , the supplied reinforcement can

be controlled.

Figure 3.4: Typical Biaxial Interaction Diagram

28

3.4 Determination of Points on Interaction Surface (Failure

Surface)

A procedure to determine points of interaction surface has been developed (Figure 5.8). This

procedure is for an arbitrary shaped cross-section and there is no limitation for longitudinal

reinforcement mesh in the cross-section. Having de�ned cross-sectional dimensions, material

properties, material models, and reinforcement mesh in the cross-section, the interaction

surface of the section can be computed.

The procedure to determine points of interaction surface is outlined below :

• The section is rotated form 0 to p/2. For each section rotated :

� Depth of section is calculated.

� By changing top and bottom strain of returned section, the neutral axis is calcu-

lated. For each neutral axis :

∗ Steel Forces: Strains at each steel level are calculated. According to calcu-

lated strain and preferred steel model, steel force for each longitudinal bar is

calculated.

∗ Concrete Forces: The compression zone is divided into sections parallel to

the neutral axis. The number of division is equal to the depth of neutral

axis / strip thickness. Then, the strain at the mid-height of each section is

calculated according to similar triangle principle. Having calculated strain at

that level, the stress for that level is determined according to concrete model.

By multiplying this stress level with strip thickness and strip width, force is

obtained for that level. Concrete force is obtained by summing all strip forces

in the compression zone.

∗ Total Moment: By multiplying all forces (concrete strip forces and steel

forces) with their own moment arm according to centroid of the section, mo-

ment values are obtained according to rotated section. Moment values about

principle directions are obtained by converting moments for rotated section

by utilizing the coordinate transformation method described in Appendix B.

Having calculated all points of interaction surface, it is time to determine a horizontal section

taken through the interaction surface for design axial load. To do this, all points of interaction

29

surface are checked and points whose axial component is close enough to design axial force

are used to draw interaction diagram between moments.

In determining biaxial interaction diagram, the following assumptions are made :

• Plane sections remain plane after bending.

• Concrete does not take any tension.

• When there is a tension in the cross-section, a constant value of 0.003 is used for εcu.

Under uniaxial compression εcu is taken as 0.002. εcu is changed from 0.002 to 0.003

when the whole section is under compression by rotating the strain axis about a �xed

point (xc = 1/3 h) [Ersoy,2004]

• There is a perfect bound between steel and concrete. Therefore, the strain of steel is

equal to that of concrete located at the same distance from the neutral axis.

30

ϴ = 0

Rotate original section by ϴ

Calculate depth of section

Change top or/and bottom strain

Calculate neutral axis from similar triangles

Calculate strain and force at each steel layer

Divide compression zone into sections. Calculate

strain at the mid-height of each concrete section, and

then force.

Sum all steel and concrete forces: Ftotal

Calculate moments of all steel and concrete forces about

center of gravity of the section and about the principle

axes of rotated section and sum : Mtotal

Convert moments about major principle axes

Store Ftotal, Mtotalx, Mtotaly

If ϴ > π / 2

YES

STOP

NO

ϴ += ϴincrement

Figure 3.5: Pseudo Code for Calculation of Points of Failure Surface
31

3.5 An Example Problem

To demonstrate the developed analysis procedure in section 3.4, M33 and M22 diagram of

the cross-section in Figure 3.6 will be drawn for speci�ed design axial load.

Cross-section dimensions, b & h : 300 mm.

Clear cover : 30 mm

Materials : C20 & S420

Longitudinal reinforcement : 4φ20

Design axial load, Nd : 279.5 kN

Figure 3.6: An example Problem

As a �rst step, there is no rotation in cross-section (Figure 3.7). Height of the section

is calculated. Then, axial load and moment values are calculated as described in 3.4 by

changing top and bottom strain. Since these moments are already about the major axes 2

and 3, there is no need to translate these moments about major axes. The calculated axial

load and moment values represent a point on failure surface in biaxial interaction diagram.

Figure 3.7: Analysis of section rotated by 0o

Then, the cross-section is rotated by 30o (Figure 3.8). Having calculated height of the

32

rotated section, axial load and moment values are calculated according to local axes (2
′
and

3
′
) by changing top and bottom strains. Calculated moments (M

′
22 and M

′
33) in local axes

(2
′
and 3

′
) are converted to moments (M22 and M33) in major axes (2 and 3) by utilizing the

coordinate transformation method described in Appendix B.

Figure 3.8: Analysis of section rotated by 30o

Next, the cross-section is rotated by 60o and then 90o (Figure 3.9 and Figure 3.10). The

same procedure described above for 30o is followed for 60o and 90o and moment values (M22

and M33) about major axes are obtained.

33

Figure 3.9: Analysis of section rotated by 60o

Figure 3.10: Analysis of section rotated by 90o

34

When the section rotation is completed, there are lots of points to de�ne the biaxial in-

teraction diagram (failure surface) of the cross-section. Since to use 3D biaxial interaction

diagram is di�cult to check whether the reinforcement is su�cient or not, a horizontal sec-

tion cut is taken at the design axial load level. This horizontal section cut is a curve which

represents the interaction between the two moments, M33 and M22.

Having obtained all biaxial interaction diagram points for the example cross-section, a hor-

izontal section cut is taken through the interaction surface for axial load, 279.5 kN (Fig-

ure 3.11).

Figure 3.11: M33 - M22 diagram for example section

To obtain a su�cient reinforcement design, the design bending moments, Md33 and Md22,

should be on/inside the curve in Figure 3.11. For example, if design bending moments Md33

and Md22 are 80 kN.m and 40 kN.m respectively, the supplied reinforcement is su�cient. If

design bending moments Md33 and Md22, however, are 80 kN.m and 70 kN.m respectively,

the reinforcement amount is not enough to resist against design moments.

35

CHAPTER 4

DATA STRUCTURE

4.1 Introduction

In a reinforced concrete building, there are various subparts that constitute a structure, such

as stories, columns, beams, column lines, beam strips and reinforcements. All these parts

have common and special characteristics. To re�ect reinforced concrete building in a data

model, all properties of these subparts should be transferred in the data model in detail.

In this chapter, an object oriented data model which is developed for characterizing a rein-

forced concrete building and facilitating code based design and detailing tasks in a multi-user

environment is presented.

4.2 General Structure

The design process of a reinforced concrete building can be brie�y summarized in four steps,

i.e, preliminary design, structural modeling and analysis, design and detailing of reinforce-

ment. These steps are usually followed in an ordered fashion at the initial stages but as the

design progress, this process becomes an iterative one with continuous repetitions of anal-

ysis and design steps. Moreover, each step pictures the same building in di�erent point of

views, where a structural model is composed of frame elements but the design model utilizes

structural components, such as columns and beams.

Thus, in order to support the iterative process of design and coordinate the di�erent infor-

mation requirements of each step, information related to design process is considered into

two layers : Design Layer and Analysis Layer. Figure 4.1 presents the general architecture

of the data model that is composed of two layers with the developed four main packages :

Analysis Package, Design Entities Package, Reinforcement Package and Design Code Pack-

36

age. Analysis Package was introduced for de�ning the geometry and section properties of

members, and for storing the analysis results of the structure obtained from the structural

analysis step. Design Entities Package contains the information about the structural enti-

ties of a structure such as beam, column, joint, and story de�nitions. Detailed geometry,

properties and relations of reinforcing bars in reinforced concrete frames were de�ned in the

Reinforcement Package. Design Code Package was developed to facilitate calculations and

checks according to various design codes.

MaterialModel

ConcreteModel SteelModel

ColumnBeam Rebar

1

111

1

Design

Code
Reinforcement

Design Entities Analysis

Entities

Analysis Layer
Design Layer

Figure 4.1: General architecture of the object library

4.2.1 Analysis Package

In case of linear structural analysis, there are no distinction between beams and columns but

there are one dimensional frame elements and nodal points for modeling frame structures.

Therefore, in order to represent these frame elements and their end nodes, FrameElement

Class and Node Class were introduced. The cross-sectional properties of each FrameElement

object were stored at FrameCrossSection Class. The analysis results and displacement val-

ues of various locations of the frame elements were stored at certain points called Station.

Relationships of classes introduced in the Analysis Package are presented in Figure 4.2.

4.2.1.1 FrameElement Class

While modeling a structure in an analysis program, frame elements are utilized for de�ning

columns or beams between nodes (Figure 4.3). These frame elements are the basic elements

of the structure. In this study, FrameElement Class is introduced to represent these basic

parts of the structure. The major properties of a frame element are the section, start and

end nodes, type of the frame element (whether it is a part of a beam or a column) and

37

FrameElement

Node Station FrameCrossSection

AnalysisResult DisplacementPoint

1 1

1

1

1

1

1

1..*

1..*

1..*1..*

2

Figure 4.2: Analysis Package

Figure 4.3: Major Elements In a Structure

stations on the frame element (Figure 4.2 & Figure 4.4). To re�ect all these properties on

FrameElement Class, the following additional classes are introduced : FrameCrossSection,

Node and Station.

+startNode : Node

+endNode : Node

+section : FrameCrossSection

+isPartOfAColumn : bool

+stations : Station

FrameElement
+location : double

+analysisResults : AnalysisResult

+displacements : Displacement

Station

+width : double

+depth : double

+area : double

+I33 : double

+I22 : double

+i33 : double

+i22 : double

+S33 : double

+S22 : double

FrameCrossSection

+nodePoint : Point

+frames : FrameElement

+displacements : Displacement

Node

+x : double

+y : double

+z : double

Point

+ux : double

+uy : double

+uz : double

+rx : double

+ry : double

+rz : double

Displacement

+P : double

+V2 : double

+V3 : double

+M22 : double

+M33 : double

+T : double

AnalysisResult

+caseName : string

+caseType : string

LoadCase

+params : CombinationParams

LoadCombination

+loadCase : LoadCase

+multiplierFactor : double

CombinationParams

Joint

+analysisResults : AnalysisResult

+reinforcement : ReinforcementPattern

+onFrame : Column

+location : double

+width : double

DesignSection

+frame_List : FrameElement

+startJoint : Joint

+endJoint : Joint

+section : FrameCrossSection

+designSections : DesignSection

+concModel : ConcreteModel

Column

ConcreteModel

+column_list : Column

+start_joint : Joint

+end_joint : Joint

ColumnLine

+isSwayX : double

+isSwayY : double

+height : double

+elevation : double

+nodes : Node

+frames : FrameElement

+columns : Column

+beams : Beam

+beamStrips : BeamStrip

Story

Beam
BeamStrip

+longPattern : LongitudinalPattern

+transPattern : TransversePattern

ReinforcementPattern

+longBars : LongitudinalBar

+longPattern : enumLongPattern

LongitudinalPattern

+transBar : TransverseBar

+transPattern

+spacing : double

+count : int

+distOfFirstTransBar : double

TransversePattern

+endTop : EndStyle

+endBot : EndStyle

+basicPartPoints : Point

LongitudinalBar

+ver_Main : double

+hor_Main : double

+ver_Sec : double

+direction : int

+isTop : bool

EndStyle

+diameter : double

+texture : enumSurfaceTexture

Rebar

+points : Point

TransverseBar

enumSurfaceTexture

enumLongPattern

Figure 4.4: Attributes in FrameElement Class

38

4.2.1.2 FrameCrossSection Class

To design and detail a column, cross-sectional properties of the column should be known.

These properties are kept in FrameCrossSection Class. The required parameters related to

cross-section of a column are width, depth, area, moment of inertia about the major axis

(I33) and minor axis (I22), section modulus about the major axis (S33) and minor axis (S22),

radius of gyration about the major axis (i33) and minor axis (i22) (Figure 4.5). These cross-

sectional properties of a column are utilized to design the cross-section under axial load

and biaxial bending moment, to design the column under shear force or to determine the

arrangement of longitudinal reinforcements at beam-column joints.

+startNode : Node

+endNode : Node

+section : FrameCrossSection

+isPartOfAColumn : bool

+stations : Station

FrameElement
+location : double

+analysisResults : AnalysisResult

+displacements : Displacement

Station

+width : double

+depth : double

+area : double

+I33 : double

+I22 : double

+i33 : double

+i22 : double

+S33 : double

+S22 : double

FrameCrossSection

+nodePoint : Point

+frames : FrameElement

+displacements : Displacement

Node

+x : double

+y : double

+z : double

Point

+ux : double

+uy : double

+uz : double

+rx : double

+ry : double

+rz : double

Displacement

+P : double

+V2 : double

+V3 : double

+M22 : double

+M33 : double

+T : double

AnalysisResult

+caseName : string

+caseType : string

LoadCase

+params : CombinationParams

LoadCombination

+loadCase : LoadCase

+multiplierFactor : double

CombinationParams

Joint

+analysisResults : AnalysisResult

+reinforcement : ReinforcementPattern

+onFrame : Column

+location : double

+width : double

DesignSection

+frame_List : FrameElement

+startJoint : Joint

+endJoint : Joint

+section : FrameCrossSection

+designSections : DesignSection

+concModel : ConcreteModel

Column

ConcreteModel

+column_list : Column

+start_joint : Joint

+end_joint : Joint

ColumnLine

+isSwayX : double

+isSwayY : double

+height : double

+elevation : double

+nodes : Node

+frames : FrameElement

+columns : Column

+beams : Beam

+beamStrips : BeamStrip

Story

Beam
BeamStrip

+longPattern : LongitudinalPattern

+transPattern : TransversePattern

ReinforcementPattern

+longBars : LongitudinalBar

+longPattern : enumLongPattern

LongitudinalPattern

+transBar : TransverseBar

+transPattern

+spacing : double

+count : int

+distOfFirstTransBar : double

TransversePattern

+endTop : EndStyle

+endBot : EndStyle

+basicPartPoints : Point

LongitudinalBar

+ver_Main : double

+hor_Main : double

+ver_Sec : double

+direction : int

+isTop : bool

EndStyle

+diameter : double

+texture : enumSurfaceTexture

Rebar

+points : Point

TransverseBar

enumSurfaceTexture

enumLongPattern

Figure 4.5: Attributes in FrameCrossSection Class

4.2.1.3 Node Class

Frame elements are de�ned between two nodes. Therefore, a frame element is connected to

two nodes, namely start and end node. On the other hand, more than one frame element

may connect to a single node. To illustrate, in Figure 4.6 although all frame elements have

two nodes at ends, there are 6 frame element connecting to a common node. It means that

the �node A� has 6 frame element, 4 of which are horizontal and others are vertical.

39

Figure 4.6: Frame elements connecting to a single node

In a Node Class, coordinates of the node, frames connecting to this node and nodal dis-

placements are the major parameters (Figure 4.7). Therefore, Point Class (Figure 4.8) and

Displacement Class (Figure 4.9) are introduced to represent the coordinates of a node and

the displacement at a node respectively.

+startNode : Node

+endNode : Node

+section : FrameCrossSection

+isPartOfAColumn : bool

+stations : Station

FrameElement
+location : double

+analysisResults : AnalysisResult

+displacements : Displacement

Station

+width : double

+depth : double

+area : double

+I33 : double

+I22 : double

+i33 : double

+i22 : double

+S33 : double

+S22 : double

FrameCrossSection

+nodePoint : Point

+frames : FrameElement

+displacements : Displacement

Node

+x : double

+y : double

+z : double

Point

+ux : double

+uy : double

+uz : double

+rx : double

+ry : double

+rz : double

Displacement

+P : double

+V2 : double

+V3 : double

+M22 : double

+M33 : double

+T : double

AnalysisResult

+caseName : string

+caseType : string

LoadCase

+params : CombinationParams

LoadCombination

+loadCase : LoadCase

+multiplierFactor : double

CombinationParams

Joint

+analysisResults : AnalysisResult

+reinforcement : ReinforcementPattern

+onFrame : Column

+location : double

+width : double

DesignSection

+frame_List : FrameElement

+startJoint : Joint

+endJoint : Joint

+section : FrameCrossSection

+designSections : DesignSection

+concModel : ConcreteModel

Column

ConcreteModel

+column_list : Column

+start_joint : Joint

+end_joint : Joint

ColumnLine

+isSwayX : double

+isSwayY : double

+height : double

+elevation : double

+nodes : Node

+frames : FrameElement

+columns : Column

+beams : Beam

+beamStrips : BeamStrip

Story

Beam
BeamStrip

+longPattern : LongitudinalPattern

+transPattern : TransversePattern

ReinforcementPattern

+longBars : LongitudinalBar

+longPattern : enumLongPattern

LongitudinalPattern

+transBar : TransverseBar

+transPattern

+spacing : double

+count : int

+distOfFirstTransBar : double

TransversePattern

+endTop : EndStyle

+endBot : EndStyle

+basicPartPoints : Point

LongitudinalBar

+ver_Main : double

+hor_Main : double

+ver_Sec : double

+direction : int

+isTop : bool

EndStyle

+diameter : double

+texture : enumSurfaceTexture

Rebar

+points : Point

TransverseBar

enumSurfaceTexture

enumLongPattern

Figure 4.7: Attributes in Node Class

+startNode : Node

+endNode : Node

+section : FrameCrossSection

+isPartOfAColumn : bool

+stations : Station

FrameElement
+location : double

+analysisResults : AnalysisResult

+displacements : Displacement

Station

+width : double

+depth : double

+area : double

+I33 : double

+I22 : double

+i33 : double

+i22 : double

+S33 : double

+S22 : double

FrameCrossSection

+nodePoint : Point

+frames : FrameElement

+displacements : Displacement

Node

+x : double

+y : double

+z : double

Point

+ux : double

+uy : double

+uz : double

+rx : double

+ry : double

+rz : double

Displacement

+P : double

+V2 : double

+V3 : double

+M22 : double

+M33 : double

+T : double

AnalysisResult

+caseName : string

+caseType : string

LoadCase

+params : CombinationParams

LoadCombination

+loadCase : LoadCase

+multiplierFactor : double

CombinationParams

Joint

+analysisResults : AnalysisResult

+reinforcement : ReinforcementPattern

+onFrame : Column

+location : double

+width : double

DesignSection

+frame_List : FrameElement

+startJoint : Joint

+endJoint : Joint

+section : FrameCrossSection

+designSections : DesignSection

+concModel : ConcreteModel

Column

ConcreteModel

+column_list : Column

+start_joint : Joint

+end_joint : Joint

ColumnLine

+isSwayX : double

+isSwayY : double

+height : double

+elevation : double

+nodes : Node

+frames : FrameElement

+columns : Column

+beams : Beam

+beamStrips : BeamStrip

Story

Beam
BeamStrip

+longPattern : LongitudinalPattern

+transPattern : TransversePattern

ReinforcementPattern

+longBars : LongitudinalBar

+longPattern : enumLongPattern

LongitudinalPattern

+transBar : TransverseBar

+transPattern

+spacing : double

+count : int

+distOfFirstTransBar : double

TransversePattern

+endTop : EndStyle

+endBot : EndStyle

+basicPartPoints : Point

LongitudinalBar

+ver_Main : double

+hor_Main : double

+ver_Sec : double

+direction : int

+isTop : bool

EndStyle

+diameter : double

+texture : enumSurfaceTexture

Rebar

+points : Point

TransverseBar

enumSurfaceTexture

enumLongPattern

Figure 4.8: Attributes in Point Class

40

+startNode : Node

+endNode : Node

+section : FrameCrossSection

+isPartOfAColumn : bool

+stations : Station

FrameElement
+location : double

+analysisResults : AnalysisResult

+displacements : Displacement

Station

+width : double

+depth : double

+area : double

+I33 : double

+I22 : double

+i33 : double

+i22 : double

+S33 : double

+S22 : double

FrameCrossSection

+nodePoint : Point

+frames : FrameElement

+displacements : Displacement

Node

+x : double

+y : double

+z : double

Point

+ux : double

+uy : double

+uz : double

+rx : double

+ry : double

+rz : double

Displacement

+P : double

+V2 : double

+V3 : double

+M22 : double

+M33 : double

+T : double

AnalysisResult

+caseName : string

+caseType : string

LoadCase

+params : CombinationParams

LoadCombination

+loadCase : LoadCase

+multiplierFactor : double

CombinationParams

Joint

+analysisResults : AnalysisResult

+reinforcement : ReinforcementPattern

+onFrame : Column

+location : double

+width : double

DesignSection

+frame_List : FrameElement

+startJoint : Joint

+endJoint : Joint

+section : FrameCrossSection

+designSections : DesignSection

+concModel : ConcreteModel

Column

ConcreteModel

+column_list : Column

+start_joint : Joint

+end_joint : Joint

ColumnLine

+isSwayX : double

+isSwayY : double

+height : double

+elevation : double

+nodes : Node

+frames : FrameElement

+columns : Column

+beams : Beam

+beamStrips : BeamStrip

Story

Beam
BeamStrip

+longPattern : LongitudinalPattern

+transPattern : TransversePattern

ReinforcementPattern

+longBars : LongitudinalBar

+longPattern : enumLongPattern

LongitudinalPattern

+transBar : TransverseBar

+transPattern

+spacing : double

+count : int

+distOfFirstTransBar : double

TransversePattern

+endTop : EndStyle

+endBot : EndStyle

+basicPartPoints : Point

LongitudinalBar

+ver_Main : double

+hor_Main : double

+ver_Sec : double

+direction : int

+isTop : bool

EndStyle

+diameter : double

+texture : enumSurfaceTexture

Rebar

+points : Point

TransverseBar

enumSurfaceTexture

enumLongPattern

Figure 4.9: Attributes in Displacement Class

4.2.1.4 Station Class

In order to store the analysis results and displacements for each load case at various locations

on a frame element, Station Class (Figure 4.10) was introduced. The number and location

of station points are determined during the modeling of the structure and the internal forces

and displacements at these points are computed by the analysis program. The distance

between a station point and start node of the frame element is stored as the location of the

station point.

+startNode : Node

+endNode : Node

+section : FrameCrossSection

+isPartOfAColumn : bool

+stations : Station

FrameElement
+location : double

+analysisResults : AnalysisResult

+displacements : Displacement

Station

+width : double

+depth : double

+area : double

+I33 : double

+I22 : double

+i33 : double

+i22 : double

+S33 : double

+S22 : double

FrameCrossSection

+nodePoint : Point

+frames : FrameElement

+displacements : Displacement

Node

+x : double

+y : double

+z : double

Point

+ux : double

+uy : double

+uz : double

+rx : double

+ry : double

+rz : double

Displacement

+P : double

+V2 : double

+V3 : double

+M22 : double

+M33 : double

+T : double

AnalysisResult

+caseName : string

+caseType : string

LoadCase

+params : CombinationParams

LoadCombination

+loadCase : LoadCase

+multiplierFactor : double

CombinationParams

Joint

+analysisResults : AnalysisResult

+reinforcement : ReinforcementPattern

+onFrame : Column

+location : double

+width : double

DesignSection

+frame_List : FrameElement

+startJoint : Joint

+endJoint : Joint

+section : FrameCrossSection

+designSections : DesignSection

+concModel : ConcreteModel

Column

ConcreteModel

+column_list : Column

+start_joint : Joint

+end_joint : Joint

ColumnLine

+isSwayX : double

+isSwayY : double

+height : double

+elevation : double

+nodes : Node

+frames : FrameElement

+columns : Column

+beams : Beam

+beamStrips : BeamStrip

Story

Beam
BeamStrip

+longPattern : LongitudinalPattern

+transPattern : TransversePattern

ReinforcementPattern

+longBars : LongitudinalBar

+longPattern : enumLongPattern

LongitudinalPattern

+transBar : TransverseBar

+transPattern

+spacing : double

+count : int

+distOfFirstTransBar : double

TransversePattern

+endTop : EndStyle

+endBot : EndStyle

+basicPartPoints : Point

LongitudinalBar

+ver_Main : double

+hor_Main : double

+ver_Sec : double

+direction : int

+isTop : bool

EndStyle

+diameter : double

+texture : enumSurfaceTexture

Rebar

+points : Point

TransverseBar

enumSurfaceTexture

enumLongPattern

Figure 4.10: Attributes in Station Class

4.2.1.5 AnalysisResult Class

Having modeled the structure in a structure analysis program and introduced di�erent kinds

of load cases on the structure, analysis is performed and internal forces of each frame element

at station points are obtained. To store these internal forces for each load case at each station

point, AnalysisResult Class (Figure 4.11) is introduced.

In AnalysisResult Class, axial force, shear force in local x and local y direction, torque, and

bending moments about local x and local y directions are stored.

41

+startNode : Node

+endNode : Node

+section : FrameCrossSection

+isPartOfAColumn : bool

+stations : Station

FrameElement
+location : double

+analysisResults : AnalysisResult

+displacements : Displacement

Station

+width : double

+depth : double

+area : double

+I33 : double

+I22 : double

+i33 : double

+i22 : double

+S33 : double

+S22 : double

FrameCrossSection

+nodePoint : Point

+frames : FrameElement

+displacements : Displacement

Node

+x : double

+y : double

+z : double

Point

+ux : double

+uy : double

+uz : double

+rx : double

+ry : double

+rz : double

Displacement

+P : double

+V2 : double

+V3 : double

+M22 : double

+M33 : double

+T : double

AnalysisResult

+caseName : string

+caseType : string

LoadCase

+params : CombinationParams

LoadCombination

+loadCase : LoadCase

+multiplierFactor : double

CombinationParams

Joint

+analysisResults : AnalysisResult

+reinforcement : ReinforcementPattern

+onFrame : Column

+location : double

+width : double

DesignSection

+frame_List : FrameElement

+startJoint : Joint

+endJoint : Joint

+section : FrameCrossSection

+designSections : DesignSection

+concModel : ConcreteModel

Column

ConcreteModel

+column_list : Column

+start_joint : Joint

+end_joint : Joint

ColumnLine

+isSwayX : double

+isSwayY : double

+height : double

+elevation : double

+nodes : Node

+frames : FrameElement

+columns : Column

+beams : Beam

+beamStrips : BeamStrip

Story

Beam
BeamStrip

+longPattern : LongitudinalPattern

+transPattern : TransversePattern

ReinforcementPattern

+longBars : LongitudinalBar

+longPattern : enumLongPattern

LongitudinalPattern

+transBar : TransverseBar

+transPattern

+spacing : double

+count : int

+distOfFirstTransBar : double

TransversePattern

+endTop : EndStyle

+endBot : EndStyle

+basicPartPoints : Point

LongitudinalBar

+ver_Main : double

+hor_Main : double

+ver_Sec : double

+direction : int

+isTop : bool

EndStyle

+diameter : double

+texture : enumSurfaceTexture

Rebar

+points : Point

TransverseBar

enumSurfaceTexture

enumLongPattern

Figure 4.11: Attributes in AnalysisResult Class

4.2.1.6 LoadCase Class

Having modeled a reinforced concrete structure in an analysis program, di�erent types of

loads are applied to the structure. In order to de�ne these loads, LoadCase Class is intro-

duced. Each load case is de�ned with two strings, one of them is the name of load case and

the other is the type of the load case such as �DEAD� or �LIVE� (Figure 4.12).

+startNode : Node

+endNode : Node

+section : FrameCrossSection

+isPartOfAColumn : bool

+stations : Station

FrameElement
+location : double

+analysisResults : AnalysisResult

+displacements : Displacement

Station

+width : double

+depth : double

+area : double

+I33 : double

+I22 : double

+i33 : double

+i22 : double

+S33 : double

+S22 : double

FrameCrossSection

+nodePoint : Point

+frames : FrameElement

+displacements : Displacement

Node

+x : double

+y : double

+z : double

Point

+ux : double

+uy : double

+uz : double

+rx : double

+ry : double

+rz : double

Displacement

+P : double

+V2 : double

+V3 : double

+M22 : double

+M33 : double

+T : double

AnalysisResult

+caseName : string

+caseType : string

LoadCase

+params : CombinationParams

LoadCombination

+loadCase : LoadCase

+multiplierFactor : double

CombinationParams

Joint

+analysisResults : AnalysisResult

+reinforcement : ReinforcementPattern

+onFrame : Column

+location : double

+width : double

DesignSection

+frame_List : FrameElement

+startJoint : Joint

+endJoint : Joint

+section : FrameCrossSection

+designSections : DesignSection

+concModel : ConcreteModel

Column

ConcreteModel

+column_list : Column

+start_joint : Joint

+end_joint : Joint

ColumnLine

+isSwayX : double

+isSwayY : double

+height : double

+elevation : double

+nodes : Node

+frames : FrameElement

+columns : Column

+beams : Beam

+beamStrips : BeamStrip

Story

Beam
BeamStrip

+longPattern : LongitudinalPattern

+transPattern : TransversePattern

ReinforcementPattern

+longBars : LongitudinalBar

+longPattern : enumLongPattern

LongitudinalPattern

+transBar : TransverseBar

+transPattern

+spacing : double

+count : int

+distOfFirstTransBar : double

TransversePattern

+endTop : EndStyle

+endBot : EndStyle

+basicPartPoints : Point

LongitudinalBar

+ver_Main : double

+hor_Main : double

+ver_Sec : double

+direction : int

+isTop : bool

EndStyle

+diameter : double

+texture : enumSurfaceTexture

Rebar

+points : Point

TransverseBar

enumSurfaceTexture

enumLongPattern

Figure 4.12: Attributes in LoadCase Class

4.2.1.7 LoadCombination Class

The design codes require that the design forces to be used for the calculation of reinforcement

in reinforced concrete structures are determined with the superposition of di�erent load cases.

Thus, in order to de�ne a loading case formed with the superposition of di�erent load cases,

LoadCombination Class is introduced (Figure 4.13 and Figure 4.14). Since the multipliers

of each load case in a load combination can be di�erent form each other, an extra class is

required to de�ne a load case with its multiplier in a load combination. Because of this

reason, CombinationParams Class is introduced (Figure 4.15).

LoadCombination Classes are created by the Code Class and stored in Building Class.

42

+CheckSectionDim()

+CheckSectionArea()

+CheckReinfRatio()

+CheckDia()

+FrameType()

+MomentMagnification()

+DetEndStyle()

+DesignShearForce()

+DesignShearForce_BCJ()

+CheckReinf_BCJ()

+SetLoadCombinations()

Code

-ReturnMinSecDim()

-ReturnMinSecArea()

-ReturnMinLongReinfRatio()

-ReturnMaxLongReinfRatio()

-ReturnMinLongReinfDia()

-ReturnMinTransReinfDia()

-ReturnMaxTransReinfSpacing()

-RelativeStiffness()

-EffectiveLength()

-BucklingLoad()

-IgnoreSlenderness()

-DevelopmentLength()

TS500_2000

-ReturnMinSecDim()

-ReturnMinSecArea()

-ReturnMinLongReinfRatio()

-ReturnMaxLongReinfRatio()

-ReturnMinLongReinfDia()

-ReturnMinTransReinfDia()

-ReturnMaxTransReinfSpacing()

-DevelopmentLength()

-CheckColumnsInAJoint()

-IsJointConfined()

-ReturnMinAmountOfReinf_BCJ()

-ReturnMinTransReinfDia_BCJ()()

-ReturnMaxTransReinfSpacing_BCJ()

-ReturnDesignShearForce()

-ReturnDesignShearForce_BCJ()

TEC

Building

Code ColumnLine Story

1

1 1..* 1..*

LoadCombination

1 1

1

1..*

LoadCombination

CombinationParams

1

1..*

LoadCase
1 1

Building
1..* 1

Figure 4.13: Class Relationship of Building Class

+startNode : Node

+endNode : Node

+section : FrameCrossSection

+isPartOfAColumn : bool

+stations : Station

FrameElement
+location : double

+analysisResults : AnalysisResult

+displacements : Displacement

Station

+width : double

+depth : double

+area : double

+I33 : double

+I22 : double

+i33 : double

+i22 : double

+S33 : double

+S22 : double

FrameCrossSection

+nodePoint : Point

+frames : FrameElement

+displacements : Displacement

Node

+x : double

+y : double

+z : double

Point

+ux : double

+uy : double

+uz : double

+rx : double

+ry : double

+rz : double

Displacement

+P : double

+V2 : double

+V3 : double

+M22 : double

+M33 : double

+T : double

AnalysisResult

+caseName : string

+caseType : string

LoadCase

+params : CombinationParams

LoadCombination

+loadCase : LoadCase

+multiplierFactor : double

CombinationParams

Joint

+analysisResults : AnalysisResult

+reinforcement : ReinforcementPattern

+onFrame : Column

+location : double

+width : double

DesignSection

+frame_List : FrameElement

+startJoint : Joint

+endJoint : Joint

+section : FrameCrossSection

+designSections : DesignSection

+concModel : ConcreteModel

Column

ConcreteModel

+column_list : Column

+start_joint : Joint

+end_joint : Joint

ColumnLine

+isSwayX : double

+isSwayY : double

+height : double

+elevation : double

+nodes : Node

+frames : FrameElement

+columns : Column

+beams : Beam

+beamStrips : BeamStrip

Story

Beam
BeamStrip

+longPattern : LongitudinalPattern

+transPattern : TransversePattern

ReinforcementPattern

+longBars : LongitudinalBar

+longPattern : enumLongPattern

LongitudinalPattern

+transBar : TransverseBar

+transPattern

+spacing : double

+count : int

+distOfFirstTransBar : double

TransversePattern

+endTop : EndStyle

+endBot : EndStyle

+basicPartPoints : Point

LongitudinalBar

+ver_Main : double

+hor_Main : double

+ver_Sec : double

+direction : int

+isTop : bool

EndStyle

+diameter : double

+texture : enumSurfaceTexture

Rebar

+points : Point

TransverseBar

enumSurfaceTexture

enumLongPattern

Figure 4.14: Attributes in LoadCombination Class

+startNode : Node

+endNode : Node

+section : FrameCrossSection

+isPartOfAColumn : bool

+stations : Station

FrameElement
+location : double

+analysisResults : AnalysisResult

+displacements : Displacement

Station

+width : double

+depth : double

+area : double

+I33 : double

+I22 : double

+i33 : double

+i22 : double

+S33 : double

+S22 : double

FrameCrossSection

+nodePoint : Point

+frames : FrameElement

+displacements : Displacement

Node

+x : double

+y : double

+z : double

Point

+ux : double

+uy : double

+uz : double

+rx : double

+ry : double

+rz : double

Displacement

+P : double

+V2 : double

+V3 : double

+M22 : double

+M33 : double

+T : double

AnalysisResult

+caseName : string

+caseType : string

LoadCase

+params : CombinationParams

LoadCombination

+loadCase : LoadCase

+multiplierFactor : double

CombinationParams

Joint

+analysisResults : AnalysisResult

+reinforcement : ReinforcementPattern

+onFrame : Column

+location : double

+width : double

DesignSection

+frame_List : FrameElement

+startJoint : Joint

+endJoint : Joint

+section : FrameCrossSection

+designSections : DesignSection

+concModel : ConcreteModel

Column

ConcreteModel

+column_list : Column

+start_joint : Joint

+end_joint : Joint

ColumnLine

+isSwayX : double

+isSwayY : double

+height : double

+elevation : double

+nodes : Node

+frames : FrameElement

+columns : Column

+beams : Beam

+beamStrips : BeamStrip

Story

Beam
BeamStrip

+longPattern : LongitudinalPattern

+transPattern : TransversePattern

ReinforcementPattern

+longBars : LongitudinalBar

+longPattern : enumLongPattern

LongitudinalPattern

+transBar : TransverseBar

+transPattern

+spacing : double

+count : int

+distOfFirstTransBar : double

TransversePattern

+endTop : EndStyle

+endBot : EndStyle

+basicPartPoints : Point

LongitudinalBar

+ver_Main : double

+hor_Main : double

+ver_Sec : double

+direction : int

+isTop : bool

EndStyle

+diameter : double

+texture : enumSurfaceTexture

Rebar

+points : Point

TransverseBar

enumSurfaceTexture

enumLongPattern

Figure 4.15: Attributes in CombinationParams Class

4.2.2 Design Entities Package

The geometrical de�nitions of the classes belonging to the Analysis Package are not ad-

equate for designing a reinforced concrete structure. Realization of an actual structure's

geometry during the design calculations is di�erent than that of the analysis step. At the

analysis step, the structure is modeled with one-dimensional frame members connected to

two di�erent nodes. These nodes may not always coincide with the actual beam or column

connections, as in the cases where frame members are �ne meshed to provide continuity with

the meshing of the slabs. In such cases, beams of a frame can be modeled with several frame

elements. On the other hand, due to the monolithic nature of cast-in-place reinforced con-

crete members, their design is performed system based. In other words, continuous beams

are often designed as a whole. Similarly, columns on the same grid points are designed and

detailed continuously from the foundation level to the top of the building. Moreover, the

design of beam-column joints belonging to special moment frames have special seismic de-

43

sign requirements, hence these connections must be specially attributed. In order to provide

such improved de�nitions to the structural engineer, speci�c classes were de�ned. Design

Entities Package contains higher level geometrical objects, which groups, connects, or uti-

lizes the objects in the Analysis Package. Relations between these classes are presented in

Figure 4.16.

ConcreteModel

Building

Code

Story

ColumnColumnLine

FrameElement

ReinforcementPattern

BeamStripBeam

Joint

DesignSection

1

1

1

1

1

1
1

1

1

1

1

1

1..*

1

1

1 1

1..*

1..*

22

0..2

1..*

3

1..*

1..*

1..*

1..* 1..*

1

1

LoadCombination

1

1..*

1

1

Figure 4.16: Design Entities Package

4.2.2.1 Column Class

Columns are de�ned as vertical structural components between two stories. While modeling

a reinforced concrete building, a column can be de�ned with more than one frame elements

(Figure 4.17). In such cases, there are more than one frame element for a column in the list

�frames� de�ned in section 4.2.2.5 and that's why frame elements that constitute the same

column should be detected for each story.

44

Figure 4.17: Columns may be entered as more than one piece

All detected frame elements construct a new column de�ned with Column Class (Figure 4.18

and Figure 4.19). These frame elements are stored in a list called frame_list in such a way

that the frame element at the bottom of the column is the �rst element, the one at the top

is the last element of the list.

The de�ned column must re�ect all properties of its frame elements. In other words, cross-

section of column should be the same as its frame elements. Therefore, Column Class

includes a FrameCrossSection Class for storing cross-sectional information. Moreover, in

order to de�ne material properties of the column, the Column Class stores a ConcreteModel

Class.

In a reinforced concrete column, there are usually two types of reinforcement, namely lon-

gitudinal reinforcement and transverse reinforcement. To design reinforcement and to store

information related to reinforcement, three DesignSection Classes are de�ned per Column

Class for top, middle and bottom con�nement zones. In addition, start and end joint are

the other parameters in Column Class.

+startNode : Node

+endNode : Node

+section : FrameCrossSection

+isPartOfAColumn : bool

+stations : Station

FrameElement
+location : double

+analysisResults : AnalysisResult

+displacements : Displacement

Station

+width : double

+depth : double

+area : double

+I33 : double

+I22 : double

+i33 : double

+i22 : double

+S33 : double

+S22 : double

FrameCrossSection

+nodePoint : Point

+frames : FrameElement

+displacements : Displacement

Node

+x : double

+y : double

+z : double

Point

+ux : double

+uy : double

+uz : double

+rx : double

+ry : double

+rz : double

Displacement

+P : double

+V2 : double

+V3 : double

+M22 : double

+M33 : double

+T : double

AnalysisResult

+caseName : string

+caseType : string

LoadCase

+params : CombinationParams

LoadCombination

+loadCase : LoadCase

+multiplierFactor : double

CombinationParams

Joint

+analysisResults : AnalysisResult

+reinforcement : ReinforcementPattern

+onFrame : Column

+location : double

+width : double

DesignSection

+frame_List : FrameElement

+startJoint : Joint

+endJoint : Joint

+section : FrameCrossSection

+designSections : DesignSection

+concModel : ConcreteModel

Column

ConcreteModel

+column_list : Column

+start_joint : Joint

+end_joint : Joint

ColumnLine

+isSwayX : double

+isSwayY : double

+height : double

+elevation : double

+nodes : Node

+frames : FrameElement

+columns : Column

+beams : Beam

+beamStrips : BeamStrip

Story

Beam
BeamStrip

+longPattern : LongitudinalPattern

+transPattern : TransversePattern

ReinforcementPattern

+longBars : LongitudinalBar

+longPattern : enumLongPattern

LongitudinalPattern

+transBar : TransverseBar

+transPattern

+spacing : double

+count : int

+distOfFirstTransBar : double

TransversePattern

+endTop : EndStyle

+endBot : EndStyle

+basicPartPoints : Point

LongitudinalBar

+ver_Main : double

+hor_Main : double

+ver_Sec : double

+direction : int

+isTop : bool

EndStyle

+diameter : double

+texture : enumSurfaceTexture

Rebar

+points : Point

TransverseBar

enumSurfaceTexture

enumLongPattern

Figure 4.18: Attributes in Column Class

45

Column

FrameElement Joint

DesignSection

FrameCrossSection

ConcreteModel

1..*

1..*1 1 1

1

1

1

0..2

2

1 1

Figure 4.19: Class Relationship of Column Class

4.2.2.2 Beam Class and BeamStrip Class

Beam Class is de�ned as a design member that connects to two Joint objects and composed

of a single or series of horizontally positioned FrameElement objects. BeamStrip Class is

created to enable design of continuous beams. BeamStrip Class stores an ordered array of

Joint and Beam Classes on itself. This way, the design algorithms can move between Beam

and Joint objects to perform calculations such as calculating the design moments and the

amount and the total length of the longitudinal reinforcement at the beam-column joints

[Anil, 2009].

4.2.2.3 Joint Class

Node Classes where more than one FrameElements from di�erent planes are connected to

are de�ned as Joint Classes. Therefore, beams, which are composed of horizontally

positioned FrameElements, and columns, which are composed of vertically positioned

FrameElements, connecting to a common node are stored in a Joint Class. Moreover, in

order to check the shear strength of beam-column joint and store possible transverse

reinforcements at beam-column joint, a single DesignSection Class was de�ned as a part of

the Joint Class. Figure 4.20 presents the relationship of Joint Class with other classes.

46

JointNode

Column

DesignSection

Beam

1 1

2

2

1..*

0..2

11

Figure 4.20: Class Relationship of Joint Class

4.2.2.4 ColumnLine Class

In practice columns are not designed for a single story, but for the whole height of the

building. In other words, columns at the same grid points are designed and detailed as a

whole. Thus, in order to store information about columns through the height of the building,

ColumnLine Class (Figure 4.22 and Figure 4.23) was introduced. Two ColumnLine objects

of an example building are presented in Figure 4.21 with dashed lines.

Figure 4.21: Examples of Column Line

Having detected all columns in a story, columns at the same grid point at each story are

detected with end node connectivity information and added to the column_list of Column-

Line Class. In a ColumnLine Class, the beginning and end joints of the column line are also

47

stored for facilitating the preparation of column reinforcement detail drawings.

+startNode : Node

+endNode : Node

+section : FrameCrossSection

+isPartOfAColumn : bool

+stations : Station

FrameElement
+location : double

+analysisResults : AnalysisResult

+displacements : Displacement

Station

+width : double

+depth : double

+area : double

+I33 : double

+I22 : double

+i33 : double

+i22 : double

+S33 : double

+S22 : double

FrameCrossSection

+nodePoint : Point

+frames : FrameElement

+displacements : Displacement

Node

+x : double

+y : double

+z : double

Point

+ux : double

+uy : double

+uz : double

+rx : double

+ry : double

+rz : double

Displacement

+P : double

+V2 : double

+V3 : double

+M22 : double

+M33 : double

+T : double

AnalysisResult

+caseName : string

+caseType : string

LoadCase

+params : CombinationParams

LoadCombination

+loadCase : LoadCase

+multiplierFactor : double

CombinationParams

Joint

+analysisResults : AnalysisResult

+reinforcement : ReinforcementPattern

+onFrame : Column

+location : double

+width : double

DesignSection

+frame_List : FrameElement

+startJoint : Joint

+endJoint : Joint

+section : FrameCrossSection

+designSections : DesignSection

+concModel : ConcreteModel

Column

ConcreteModel

+column_list : Column

+start_joint : Joint

+end_joint : Joint

ColumnLine

+isSwayX : double

+isSwayY : double

+height : double

+elevation : double

+nodes : Node

+frames : FrameElement

+columns : Column

+beams : Beam

+beamStrips : BeamStrip

Story

Beam
BeamStrip

+longPattern : LongitudinalPattern

+transPattern : TransversePattern

ReinforcementPattern

+longBars : LongitudinalBar

+longPattern : enumLongPattern

LongitudinalPattern

+transBar : TransverseBar

+transPattern

+spacing : double

+count : int

+distOfFirstTransBar : double

TransversePattern

+endTop : EndStyle

+endBot : EndStyle

+basicPartPoints : Point

LongitudinalBar

+ver_Main : double

+hor_Main : double

+ver_Sec : double

+direction : int

+isTop : bool

EndStyle

+diameter : double

+texture : enumSurfaceTexture

Rebar

+points : Point

TransverseBar

enumSurfaceTexture

enumLongPattern

Figure 4.22: Attributes in ColumnLine Class

ColumnLine

Joint Column

11

1..*2

Figure 4.23: Class Relationship of ColumnLine Class

4.2.2.5 Story Class

Node, FrameElement, Beam, BeamStrip and Column objects that are at the same story level

are grouped into a Story Class. Node and FrameElement objects are stored in the Story Class

during the initialization of the project and then Beams, Columns and BeamStrips are created

by the algorithms of the Story Class. While investigating the slenderness e�ects in columns

and calculating the moment magni�cation factors, the story drifts and story heights must

be known in addition to the total vertical load and horizontal story shear (TS500_2000) in

order to determine whether frames are sway or non-sway.

In Story Class, there are two boolean parameters to re�ect whether the story is sway or non-

sway in x and y direction : isSwayX and isSwayY. Height and Elevation are other required

parameters to classify the story as sway or non-sway and to check the lateral de�ection of

the story in x and y direction. A Story Class also keeps information related with nodes,

frames, beams, beam strips and columns located at the story (Figure 4.24 & Figure 4.25).

48

+startNode : Node

+endNode : Node

+section : FrameCrossSection

+isPartOfAColumn : bool

+stations : Station

FrameElement
+location : double

+analysisResults : AnalysisResult

+displacements : Displacement

Station

+width : double

+depth : double

+area : double

+I33 : double

+I22 : double

+i33 : double

+i22 : double

+S33 : double

+S22 : double

FrameCrossSection

+nodePoint : Point

+frames : FrameElement

+displacements : Displacement

Node

+x : double

+y : double

+z : double

Point

+ux : double

+uy : double

+uz : double

+rx : double

+ry : double

+rz : double

Displacement

+P : double

+V2 : double

+V3 : double

+M22 : double

+M33 : double

+T : double

AnalysisResult

+caseName : string

+caseType : string

LoadCase

+params : CombinationParams

LoadCombination

+loadCase : LoadCase

+multiplierFactor : double

CombinationParams

Joint

+analysisResults : AnalysisResult

+reinforcement : ReinforcementPattern

+onFrame : Column

+location : double

+width : double

DesignSection

+frame_List : FrameElement

+startJoint : Joint

+endJoint : Joint

+section : FrameCrossSection

+designSections : DesignSection

+concModel : ConcreteModel

Column

ConcreteModel

+column_list : Column

+start_joint : Joint

+end_joint : Joint

ColumnLine

+isSwayX : double

+isSwayY : double

+height : double

+elevation : double

+nodes : Node

+frames : FrameElement

+columns : Column

+beams : Beam

+beamStrips : BeamStrip

Story

Beam
BeamStrip

+longPattern : LongitudinalPattern

+transPattern : TransversePattern

ReinforcementPattern

+longBars : LongitudinalBar

+longPattern : enumLongPattern

LongitudinalPattern

+transBar : TransverseBar

+transPattern

+spacing : double

+count : int

+distOfFirstTransBar : double

TransversePattern

+endTop : EndStyle

+endBot : EndStyle

+basicPartPoints : Point

LongitudinalBar

+ver_Main : double

+hor_Main : double

+ver_Sec : double

+direction : int

+isTop : bool

EndStyle

+diameter : double

+texture : enumSurfaceTexture

Rebar

+points : Point

TransverseBar

enumSurfaceTexture

enumLongPattern

Figure 4.24: Attributes in Story Class

Code Building ColumnLine

Story

FrameElement Beam BeamStrip

Node Column

11 1

1 1

1

1

1

1

1

1

1

1..*

1..*

1..*

1..*

1..*1..* 11..*

1..*

1..*

1..*

1..*2

Figure 4.25: Class Relationship of Story Class

4.2.2.6 Building Class

While designing and detailing of reinforced concrete structures, some general parameter

related to the structure such as code parameters, loading parameters, story information and

columnLines are usually required. Therefore, to store these general information related to

the reinforced concrete structure to be designed, an outer class, namely Building Class, was

introduced (Figure 4.26).

49

+CheckSectionDim()

+CheckSectionArea()

+CheckReinfRatio()

+CheckDia()

+FrameType()

+MomentMagnification()

+DetEndStyle()

+DesignShearForce()

+DesignShearForce_BCJ()

+CheckReinf_BCJ()

+SetLoadCombinations()

Code

-ReturnMinSecDim()

-ReturnMinSecArea()

-ReturnMinLongReinfRatio()

-ReturnMaxLongReinfRatio()

-ReturnMinLongReinfDia()

-ReturnMinTransReinfDia()

-ReturnMaxTransReinfSpacing()

-RelativeStiffness()

-EffectiveLength()

-BucklingLoad()

-IgnoreSlenderness()

-DevelopmentLength()

TS500_2000

-ReturnMinSecDim()

-ReturnMinSecArea()

-ReturnMinLongReinfRatio()

-ReturnMaxLongReinfRatio()

-ReturnMinLongReinfDia()

-ReturnMinTransReinfDia()

-ReturnMaxTransReinfSpacing()

-DevelopmentLength()

-CheckColumnsInAJoint()

-IsJointConfined()

-ReturnMinAmountOfReinf_BCJ()

-ReturnMinTransReinfDia_BCJ()()

-ReturnMaxTransReinfSpacing_BCJ()

-ReturnDesignShearForce()

-ReturnDesignShearForce_BCJ()

TEC

Building

Code ColumnLine Story

1

1 1..* 1..*

LoadCombination

1 1

1

1..*

LoadCombination

CombinationParams

1

1..*

LoadCase
1 1

Building
1..* 1

Figure 4.26: Class Relationship of Building Class

4.2.2.7 DesignSection Class

Longitudinal reinforcement in a reinforced concrete column exists for the whole height of the

column and the amount of longitudinal reinforcement is determined by designing the top

and bottom face of the column. Moreover, there are closely spaced transverse reinforcement

at column ends for seismic design of columns which requires shear design at more than one

section. Therefore, in order to perform design calculations and to store reinforcement at a

particular section, DesignSection Class was introduced (Figure 4.27).

+startNode : Node

+endNode : Node

+section : FrameCrossSection

+isPartOfAColumn : bool

+stations : Station

FrameElement
+location : double

+analysisResults : AnalysisResult

+displacements : Displacement

Station

+width : double

+depth : double

+area : double

+I33 : double

+I22 : double

+i33 : double

+i22 : double

+S33 : double

+S22 : double

FrameCrossSection

+nodePoint : Point

+frames : FrameElement

+displacements : Displacement

Node

+x : double

+y : double

+z : double

Point

+ux : double

+uy : double

+uz : double

+rx : double

+ry : double

+rz : double

Displacement

+P : double

+V2 : double

+V3 : double

+M22 : double

+M33 : double

+T : double

AnalysisResult

+caseName : string

+caseType : string

LoadCase

+params : CombinationParams

LoadCombination

+loadCase : LoadCase

+multiplierFactor : double

CombinationParams

Joint

+analysisResults : AnalysisResult

+reinforcement : ReinforcementPattern

+onFrame : Column

+location : double

+width : double

DesignSection

+frame_List : FrameElement

+startJoint : Joint

+endJoint : Joint

+section : FrameCrossSection

+designSections : DesignSection

+concModel : ConcreteModel

Column

ConcreteModel

+column_list : Column

+start_joint : Joint

+end_joint : Joint

ColumnLine

+isSwayX : double

+isSwayY : double

+height : double

+elevation : double

+nodes : Node

+frames : FrameElement

+columns : Column

+beams : Beam

+beamStrips : BeamStrip

Story

Beam
BeamStrip

+longPattern : LongitudinalPattern

+transPattern : TransversePattern

ReinforcementPattern

+longBars : LongitudinalBar

+longPattern : enumLongPattern

LongitudinalPattern

+transBar : TransverseBar

+transPattern

+spacing : double

+count : int

+distOfFirstTransBar : double

TransversePattern

+endTop : EndStyle

+endBot : EndStyle

+basicPartPoints : Point

LongitudinalBar

+ver_Main : double

+hor_Main : double

+ver_Sec : double

+direction : int

+isTop : bool

EndStyle

+diameter : double

+texture : enumSurfaceTexture

Rebar

+points : Point

TransverseBar

enumSurfaceTexture

enumLongPattern

Figure 4.27: Attributes in DesignSection Class

In order to design a DesignSection, analysis results at this section are required. That's why

a DesignSection stores a hashtable of AnalysisResult Classes. Having designed the section,

details of longitudinal and transverse reinforcement at this section are kept in Reinforcement-

Pattern Class stored in DesignSection Class. In order to de�ne the region of a DesignSection

, two parameters, namely location and width are stored in the DesignSection Class. More-

over, a DesignSection Class keeps the owner column or beam with the parameter called

�OnFrame�.

50

DesignSection Classes are utilized either for �exural or shear design. For �exural design,

they represent a section. For shear design, however, they represent a region de�ned by the

width and location of the region. The same transverse reinforcement spacing and pattern

are utilized at a single DesignSection. In case of column design, three DesignSection Classes

are de�ned per column for top, middle and bottom con�nement zones. This way, di�erent

reinforcement information for each region can easily be stored and reached.

4.2.2.8 MaterialModel Class

Material properties of concrete and steel such as modulus of elasticity of concrete, compres-

sive strength of concrete, modulus of elasticity of steel and yield strength of steel are used

while designing and detailing of columns and beam-column joints. In order to de�ne material

properties of concrete and steel, Concrete Model Class and SteelModel Class derived from

MaterialModel Class were introduced, respectively. Moreover, Concrete Model Class stores

an enumerator for the concrete model that de�nes the strain-stress relationship of concrete.

According to the value of this enumerator, Rectangular Stress Block, Hognestad or Kent

& Park models were utilized while computing the interaction diagram for columns. Like-

wise, SteelModel Class stores an enumerator for the steel model that de�nes the strain-stress

relationship of steel.

In order to perform design and detailing of the members modeled with di�erent concrete

strengths, a relation between ConcreteModel Class and Beam and Column Classes was

created. Moreover, a relation between SteelModel Class and Rebar Class which is the abstract

class of LongitudinalBar and TranverseBar Classes is created to allow having reinforcements

with di�erent steel strengths (Figure 4.28).

51

MaterialModel

ConcreteModel SteelModel

ColumnBeam Rebar

1

111

1

Design

Code
Reinforcement

Design Entities Analysis

Entities

Analysis Layer
Design Layer

Figure 4.28: Class Relationship of MaterialModel Class

4.2.3 Reinforcement Package

In order to de�ne the detailed geometry and design speci�c information of reinforcing bars

in reinforced concrete frames, several classes were developed in the Reinforcement Package.

First, the Rebar Class was introduced to de�ne a base class for reinforcing bars. Object

relations in the Reinforcement Package are presented in Figure 4.29. Two child classes were

introduced to de�ne more specialized properties for the two kinds of reinforcement found in

reinforced concrete members : LongitudinalBar and TransverseBar. LongitudinalBar Class

represents the reinforcement that is placed parallel to the member axis, whereas Transverse-

Bar objects are placed perpendicular to the member axis.

The longitudinal bars can be placed in a section in many. Thus, in order to keep all the

LongitudinalBar objects in a section and facilitate the design, LongitudinalPattern Class

was de�ned. In a similar manner, TransversePattern Class stores the TransverseBar objects

in each section at a region. EndStyle Class was introduced for de�ning the geometry of

the longitudinal bar ends. Each LongitudinalBar object has two EndStyle objects one for

beginning, one for the end of the bar.

52

According to the proposed object model, each DesignSection object has a single Reinforce-

mentPattern object. The ReinforcementPattern Class not only stores one LongitudinalPat-

tern and one TransversePattern object belonging to its DesignSection but also has methods

for modifying the placement of longitudinal and transverse reinforcement in relation with

each other.

DesignSection

ReinforcementPattern

LongitudinalPattern TransversePattern

LongitudinalBar TransverseBar

EndStyle Rebar SteelModel

1 1

1

2

1 1

1 1

1 1

1

1

1..* 1..*

Figure 4.29: Reinforcement Package

4.2.3.1 ReinforcementPattern Class

In reinforced concrete columns there are two types of reinforcement: longitudinal and trans-

verse reinforcement. To keep all information related to reinforcement in a cross-section,

Reinforcement Pattern Class (Figure 4.30) was introduced. In Reinforcement Pattern Class

there are two main classes which are Longitudinal Pattern Class for storing the location

and sizes of longitudinal reinforcement and Transverse Pattern Class for storing the size,

orientation, and spacing of transverse reinforcement.

53

+startNode : Node

+endNode : Node

+section : FrameCrossSection

+isPartOfAColumn : bool

+stations : Station

FrameElement
+location : double

+analysisResults : AnalysisResult

+displacements : Displacement

Station

+width : double

+depth : double

+area : double

+I33 : double

+I22 : double

+i33 : double

+i22 : double

+S33 : double

+S22 : double

FrameCrossSection

+nodePoint : Point

+frames : FrameElement

+displacements : Displacement

Node

+x : double

+y : double

+z : double

Point

+ux : double

+uy : double

+uz : double

+rx : double

+ry : double

+rz : double

Displacement

+P : double

+V2 : double

+V3 : double

+M22 : double

+M33 : double

+T : double

AnalysisResult

+caseName : string

+caseType : string

LoadCase

+params : CombinationParams

LoadCombination

+loadCase : LoadCase

+multiplierFactor : double

CombinationParams

Joint

+analysisResults : AnalysisResult

+reinforcement : ReinforcementPattern

+onFrame : Column

+location : double

+width : double

DesignSection

+frame_List : FrameElement

+startJoint : Joint

+endJoint : Joint

+section : FrameCrossSection

+designSections : DesignSection

+concModel : ConcreteModel

Column

ConcreteModel

+column_list : Column

+start_joint : Joint

+end_joint : Joint

ColumnLine

+isSwayX : double

+isSwayY : double

+height : double

+elevation : double

+nodes : Node

+frames : FrameElement

+columns : Column

+beams : Beam

+beamStrips : BeamStrip

Story

Beam
BeamStrip

+longPattern : LongitudinalPattern

+transPattern : TransversePattern

ReinforcementPattern

+longBars : LongitudinalBar

+longPattern : enumLongPattern

LongitudinalPattern

+transBar : TransverseBar

+transPattern

+spacing : double

+count : int

+distOfFirstTransBar : double

TransversePattern

+endTop : EndStyle

+endBot : EndStyle

+basicPartPoints : Point

LongitudinalBar

+ver_Main : double

+hor_Main : double

+ver_Sec : double

+direction : int

+isTop : bool

EndStyle

+diameter : double

+texture : enumSurfaceTexture

Rebar

+points : Point

TransverseBar

enumSurfaceTexture

enumLongPatternFigure 4.30: Attributes in ReinforcementPattern Class

To keep diameter and surface texture of each reinforcement, whether longitudinal, transverse

or miscellaneous, Rebar Class (Figure 4.31) was introduced. There are two types of surface

texture of reinforcement, namely Plain and Deformed. Surface texture is kept in Rebar Class

as enumerator (Table 4.1) and is utilized during the calculation of development length of the

longitudinal reinforcement. Moreover, Rebar Class includes a method named as Area() that

returns the area of a single reinforcement.

Table 4.1: Surface texture enumerator

enumSurfaceTexture

plain

deformed

+startNode : Node

+endNode : Node

+section : FrameCrossSection

+isPartOfAColumn : bool

+stations : Station

FrameElement
+location : double

+analysisResults : AnalysisResult

+displacements : Displacement

Station

+width : double

+depth : double

+area : double

+I33 : double

+I22 : double

+i33 : double

+i22 : double

+S33 : double

+S22 : double

FrameCrossSection

+nodePoint : Point

+frames : FrameElement

+displacements : Displacement

Node

+x : double

+y : double

+z : double

Point

+ux : double

+uy : double

+uz : double

+rx : double

+ry : double

+rz : double

Displacement

+P : double

+V2 : double

+V3 : double

+M22 : double

+M33 : double

+T : double

AnalysisResult

+caseName : string

+caseType : string

LoadCase

+params : CombinationParams

LoadCombination

+loadCase : LoadCase

+multiplierFactor : double

CombinationParams

Joint

+analysisResults : AnalysisResult

+reinforcement : ReinforcementPattern

+onFrame : Column

+location : double

+width : double

DesignSection

+frame_List : FrameElement

+startJoint : Joint

+endJoint : Joint

+section : FrameCrossSection

+designSections : DesignSection

+concModel : ConcreteModel

Column

ConcreteModel

+column_list : Column

+start_joint : Joint

+end_joint : Joint

ColumnLine

+isSwayX : double

+isSwayY : double

+height : double

+elevation : double

+nodes : Node

+frames : FrameElement

+columns : Column

+beams : Beam

+beamStrips : BeamStrip

Story

Beam
BeamStrip

+longPattern : LongitudinalPattern

+transPattern : TransversePattern

ReinforcementPattern

+longBars : LongitudinalBar

+longPattern : enumLongPattern

LongitudinalPattern

+transBar : TransverseBar

+transPattern

+spacing : double

+count : int

+distOfFirstTransBar : double

TransversePattern

+endTop : EndStyle

+endBot : EndStyle

+basicPartPoints : Point

LongitudinalBar

+ver_Main : double

+hor_Main : double

+ver_Sec : double

+direction : int

+isTop : bool

EndStyle

+diameter : double

+texture : enumSurfaceTexture

Rebar

+points : Point

TransverseBar

enumSurfaceTexture

enumLongPatternFigure 4.31: Attributes in Rebar Class

4.2.3.2 LongitudinalBar Class

LongitudinalBar is the data which is used to keep information related to longitudinal bars

in a reinforced concrete column and is inherited from Rebar Class (Figure 4.31). Basically,

a LongitudinalBar was de�ned from the middle height of the column to the lower face

of the joining beam (Figure 4.32). This basic part of a LongitudinalBar is represented

with two points stored in a list in LongitudinalBar (Figure 4.33). In addition to this main

part which is always straight, the geometry of beam-column joints, development length and

splice location determine the bottom and top portion of the longitudinal reinforcement. To

illustrate, there are two alternatives for bottom portion of the longitudinal reinforcement

presented in Figure 4.32. The �rst alternative is that bottom portion extends to the �oor

level if the splice is done at the �oor level. The second alternative for the bottom portion of

54

the longitudinal reinforcement is that bottom portion extends with an amount of half of the

development length if the splice is done at mid-height of the column. Moreover, there are four

alternatives for the top portion of selected longitudinal reinforcement in Figure 4.32. The

�rst two alternatives are performed by extending longitudinal reinforcement into the upper

column. In remaining alternatives, however, longitudinal reinforcement does not extend into

the upper column but extends to the existing beam or turns into itself.

Figure 4.32: Basic Straight Part of a LongitudinalBar and Possible Alternatives

If the dimensions of bottom and top column at the beam-column joints are di�erent from

each other or there is no column above the top joint, the longitudinal reinforcements coming

from bottom column do not go straight up, but they are directed to beam if exists or turn into

itself. In order to describe the shape of the longitudinal reinforcements at such locations,

EndStyle Class (4.2.3.3) was introduced. Since bottom and top beam-column joints may

di�er in geometry for a column, two EndStyle Classes are de�ned for a single longitudinal

reinforcement to represent its shape at these zones.

55

+startNode : Node

+endNode : Node

+section : FrameCrossSection

+isPartOfAColumn : bool

+stations : Station

FrameElement
+location : double

+analysisResults : AnalysisResult

+displacements : Displacement

Station

+width : double

+depth : double

+area : double

+I33 : double

+I22 : double

+i33 : double

+i22 : double

+S33 : double

+S22 : double

FrameCrossSection

+nodePoint : Point

+frames : FrameElement

+displacements : Displacement

Node

+x : double

+y : double

+z : double

Point

+ux : double

+uy : double

+uz : double

+rx : double

+ry : double

+rz : double

Displacement

+P : double

+V2 : double

+V3 : double

+M22 : double

+M33 : double

+T : double

AnalysisResult

+caseName : string

+caseType : string

LoadCase

+params : CombinationParams

LoadCombination

+loadCase : LoadCase

+multiplierFactor : double

CombinationParams

Joint

+analysisResults : AnalysisResult

+reinforcement : ReinforcementPattern

+onFrame : Column

+location : double

+width : double

DesignSection

+frame_List : FrameElement

+startJoint : Joint

+endJoint : Joint

+section : FrameCrossSection

+designSections : DesignSection

+concModel : ConcreteModel

Column

ConcreteModel

+column_list : Column

+start_joint : Joint

+end_joint : Joint

ColumnLine

+isSwayX : double

+isSwayY : double

+height : double

+elevation : double

+nodes : Node

+frames : FrameElement

+columns : Column

+beams : Beam

+beamStrips : BeamStrip

Story

Beam
BeamStrip

+longPattern : LongitudinalPattern

+transPattern : TransversePattern

ReinforcementPattern

+longBars : LongitudinalBar

+longPattern : enumLongPattern

LongitudinalPattern

+transBar : TransverseBar

+transPattern

+spacing : double

+count : int

+distOfFirstTransBar : double

TransversePattern

+endTop : EndStyle

+endBot : EndStyle

+basicPartPoints : Point

LongitudinalBar

+ver_Main : double

+hor_Main : double

+ver_Sec : double

+direction : int

+isTop : bool

EndStyle

+diameter : double

+texture : enumSurfaceTexture

Rebar

+points : Point

TransverseBar

enumSurfaceTexture

enumLongPattern

Figure 4.33: Attributes in LongitudinalBar Class

4.2.3.3 EndStyle Class

There are three types of lap-splice shapes at beam-column joints at Turkish Earthquake

Code. If both top and bottom column exist at a joint and dimensions of top and bottom

columns are the same, the longitudinal bars coming from the bottom column can go straight

into the upper column with an additional length determined according to the development

length and splice region speci�cations of design codes. If the reinforcement is spliced at the

�oor level, this additional length is equal to beam depth plus the development length of the

reinforcement calculated according to speci�ed design code (Figure 4.34).If it is spliced at

mid-height of the column, however, the additional distance is equal to beam depth plus the

half of the clear length of the column plus half of the development length (Figure 4.35).

To represent this vertical length in EndStyle Class, an entity whose name is ver_Main is

introduced.

Figure 4.34: Splice is done at the �oor level

56

Figure 4.35: Splice is done at the mid-height of the column

The second type of the longitudinal reinforcement shape at the beam-column joints is de�ned

when the dimensions of bottom and top column are di�erent or top column does not exist

(Figure 4.36). In this case, the longitudinal reinforcement coming from the bottom column

does not go straight into the upper column but it is directed to the other side slab or

beam whose width is greater than the dimension of column in that direction. In this case,

ver_Main by itself is not su�cient to describe the shape of the longitudinal reinforcement.

Therefore, an extra parameter is required to describe this horizontal part of the longitudinal

reinforcement at beam-column joints. This connection parameter was de�ned as hor_Main

and describes the horizontal length of the bent portion (Figure 4.36).

Figure 4.36: Second type of the end-style shape

57

When the dimensions of the top and bottom columns are not the same or top column

does not exist and there is no slab or beam whose width is greater than the dimension of

bottom column on one of the sides of the column and if the sum of the lengths of ver_Main

and hor_Main is smaller than the development length calculated according to design code,

the longitudinal reinforcement should be bent down into the bottom column (Figure 4.37).

To represent this part, ver_Sec parameter is introduced in EndStyle Class. This parameter

is determined according to the design code and development length.

Figure 4.37: Third type of the end-style shape

In all of the cases described above, bottom portion of the longitudinal reinforcement coming

from top column to the bottom column are always straight and its length is determined

according to the splice region and development length, too. In other words, only �ver_main�

parameter of EndStyle is calculated for bottom portion of the longitudinal reinforcement. If

the splice is done at the �oor level, this distance is equal to the half of the clear length of

the column (Figure 4.38). If the splice is done at the mid-height of the column, however,

this length is equal to the half of the development length (Figure 4.39).

Another parameter in EndStyle Class is the direction of the bent reinforcement, since lon-

gitudinal reinforcement at di�erent edges of a column are bent at di�erent directions (Fig-

ure 4.40). Thus, in order to store the bent direction of the longitudinal reinforcements,

an integer representing positive x direction, negative x direction, positive y direction and

negative y direction is used.

58

Figure 4.38: Splice is done at the �oor level

Figure 4.39: Splice is done at mid-height of the column

Figure 4.40: Di�erent Directions of Longitudinal Reinforcement at Beam-Column Joints

59

A single longitudinal reinforcement has two end styles : top and bottom. In order to distin-

guish these two End Style Classes, a boolean isTop is stored in EndStyle Class (Figure 4.41).

+startNode : Node

+endNode : Node

+section : FrameCrossSection

+isPartOfAColumn : bool

+stations : Station

FrameElement
+location : double

+analysisResults : AnalysisResult

+displacements : Displacement

Station

+width : double

+depth : double

+area : double

+I33 : double

+I22 : double

+i33 : double

+i22 : double

+S33 : double

+S22 : double

FrameCrossSection

+nodePoint : Point

+frames : FrameElement

+displacements : Displacement

Node

+x : double

+y : double

+z : double

Point

+ux : double

+uy : double

+uz : double

+rx : double

+ry : double

+rz : double

Displacement

+P : double

+V2 : double

+V3 : double

+M22 : double

+M33 : double

+T : double

AnalysisResult

+caseName : string

+caseType : string

LoadCase

+params : CombinationParams

LoadCombination

+loadCase : LoadCase

+multiplierFactor : double

CombinationParams

Joint

+analysisResults : AnalysisResult

+reinforcement : ReinforcementPattern

+onFrame : Column

+location : double

+width : double

DesignSection

+frame_List : FrameElement

+startJoint : Joint

+endJoint : Joint

+section : FrameCrossSection

+designSections : DesignSection

+concModel : ConcreteModel

Column

ConcreteModel

+column_list : Column

+start_joint : Joint

+end_joint : Joint

ColumnLine

+isSwayX : double

+isSwayY : double

+height : double

+elevation : double

+nodes : Node

+frames : FrameElement

+columns : Column

+beams : Beam

+beamStrips : BeamStrip

Story

Beam
BeamStrip

+longPattern : LongitudinalPattern

+transPattern : TransversePattern

ReinforcementPattern

+longBars : LongitudinalBar

+longPattern : enumLongPattern

LongitudinalPattern

+transBar : TransverseBar

+transPattern

+spacing : double

+count : int

+distOfFirstTransBar : double

TransversePattern

+endTop : EndStyle

+endBot : EndStyle

+basicPartPoints : Point

LongitudinalBar

+ver_Main : double

+hor_Main : double

+ver_Sec : double

+direction : int

+isTop : bool

EndStyle

+diameter : double

+texture : enumSurfaceTexture

Rebar

+points : Point

TransverseBar

enumSurfaceTexture

enumLongPattern

Figure 4.41: Attributes in EndStyle Class

4.2.3.4 LongitudinalPattern Class

Longitudinal Pattern Class (Figure 4.42) is the main class that stores all information related

to longitudinal reinforcement in a concrete column cross-section. First of all, the arrangement

of longitudinal bars in the cross-section should be known. In other words the exact location

of each longitudinal bars should be de�ned to perform strain, stress and force calculations.

Therefore, an enumerator de�ned in section 4.2.3.5 related to longitudinal reinforcement

pattern is the �rst parameter Longitudinal Pattern Data stores. In addition to the arrange-

ment of longitudinal bars in a cross section, the pyhsical properties of each longitudinal bars

should be known. These properties are the diameter, surface texture, points of path of a bar

and top and bottom end style of a bar. All these properties are stored in LongitudinalBar

Class. Thus, a list of LongitudinalBar Class is the second parameter in Longitudinal Pattern

Class (Figure 4.29).

+startNode : Node

+endNode : Node

+section : FrameCrossSection

+isPartOfAColumn : bool

+stations : Station

FrameElement
+location : double

+analysisResults : AnalysisResult

+displacements : Displacement

Station

+width : double

+depth : double

+area : double

+I33 : double

+I22 : double

+i33 : double

+i22 : double

+S33 : double

+S22 : double

FrameCrossSection

+nodePoint : Point

+frames : FrameElement

+displacements : Displacement

Node

+x : double

+y : double

+z : double

Point

+ux : double

+uy : double

+uz : double

+rx : double

+ry : double

+rz : double

Displacement

+P : double

+V2 : double

+V3 : double

+M22 : double

+M33 : double

+T : double

AnalysisResult

+caseName : string

+caseType : string

LoadCase

+params : CombinationParams

LoadCombination

+loadCase : LoadCase

+multiplierFactor : double

CombinationParams

Joint

+analysisResults : AnalysisResult

+reinforcement : ReinforcementPattern

+onFrame : Column

+location : double

+width : double

DesignSection

+frame_List : FrameElement

+startJoint : Joint

+endJoint : Joint

+section : FrameCrossSection

+designSections : DesignSection

+concModel : ConcreteModel

Column

ConcreteModel

+column_list : Column

+start_joint : Joint

+end_joint : Joint

ColumnLine

+isSwayX : double

+isSwayY : double

+height : double

+elevation : double

+nodes : Node

+frames : FrameElement

+columns : Column

+beams : Beam

+beamStrips : BeamStrip

Story

Beam
BeamStrip

+longPattern : LongitudinalPattern

+transPattern : TransversePattern

ReinforcementPattern

+longBars : LongitudinalBar

+longPattern : enumLongPattern

LongitudinalPattern

+transBar : TransverseBar

+transPattern

+spacing : double

+count : int

+distOfFirstTransBar : double

TransversePattern

+endTop : EndStyle

+endBot : EndStyle

+basicPartPoints : Point

LongitudinalBar

+ver_Main : double

+hor_Main : double

+ver_Sec : double

+direction : int

+isTop : bool

EndStyle

+diameter : double

+texture : enumSurfaceTexture

Rebar

+points : Point

TransverseBar

enumSurfaceTexture

enumLongPattern

Figure 4.42: Attributes in LongitudinalPattern Class

4.2.3.5 Pre-de�ned Longitudinal Reinforcement Patterns

While designing column longitudinal reinforcement, location of each longitudinal bar is used

to calculate strain, stress and force on longitudinal bars. Common longitudinal patterns are

de�ned in order to determine location of longitudinal bars in a column cross-section (Fig-

ure 4.43). In these pre-de�ned longitudinal patterns, there are certain number of longitudinal

bars and the location of each longitudinal bar is determined according to width and height

60

of the column-cross section and clear cover. Each pre-de�ned longitudinal reinforcement

pattern is called with an enumerator (enumLongPattern).

Figure 4.43: Pre-de�ned Longitudinal Reinforcement Patterns

According to the selected pre-de�ned longitudinal pattern, number of longitudinal bars and

location of each longitudinal bar in the cross section are determined with the parameters of

height and width of the cross-section and clear cover.

4.2.3.6 TransverseBar Class

TransverseBar Class (Figure 4.44) is de�ned in order to store information related to trans-

verse bars in a column and is derived from Rebar Class. In addition to the properties de�ned

in the Rebar Class, a TransverseBar Class keeps a list of points that de�nes the shape of

the transverse reinforcement.

61

+startNode : Node

+endNode : Node

+section : FrameCrossSection

+isPartOfAColumn : bool

+stations : Station

FrameElement
+location : double

+analysisResults : AnalysisResult

+displacements : Displacement

Station

+width : double

+depth : double

+area : double

+I33 : double

+I22 : double

+i33 : double

+i22 : double

+S33 : double

+S22 : double

FrameCrossSection

+nodePoint : Point

+frames : FrameElement

+displacements : Displacement

Node

+x : double

+y : double

+z : double

Point

+ux : double

+uy : double

+uz : double

+rx : double

+ry : double

+rz : double

Displacement

+P : double

+V2 : double

+V3 : double

+M22 : double

+M33 : double

+T : double

AnalysisResult

+caseName : string

+caseType : string

LoadCase

+params : CombinationParams

LoadCombination

+loadCase : LoadCase

+multiplierFactor : double

CombinationParams

Joint

+analysisResults : AnalysisResult

+reinforcement : ReinforcementPattern

+onFrame : Column

+location : double

+width : double

DesignSection

+frame_List : FrameElement

+startJoint : Joint

+endJoint : Joint

+section : FrameCrossSection

+designSections : DesignSection

+concModel : ConcreteModel

Column

ConcreteModel

+column_list : Column

+start_joint : Joint

+end_joint : Joint

ColumnLine

+isSwayX : double

+isSwayY : double

+height : double

+elevation : double

+nodes : Node

+frames : FrameElement

+columns : Column

+beams : Beam

+beamStrips : BeamStrip

Story

Beam
BeamStrip

+longPattern : LongitudinalPattern

+transPattern : TransversePattern

ReinforcementPattern

+longBars : LongitudinalBar

+longPattern : enumLongPattern

LongitudinalPattern

+transBar : TransverseBar

+transPattern

+spacing : double

+count : int

+distOfFirstTransBar : double

TransversePattern

+endTop : EndStyle

+endBot : EndStyle

+basicPartPoints : Point

LongitudinalBar

+ver_Main : double

+hor_Main : double

+ver_Sec : double

+direction : int

+isTop : bool

EndStyle

+diameter : double

+texture : enumSurfaceTexture

Rebar

+points : Point

TransverseBar

enumSurfaceTexture

enumLongPattern

Figure 4.44: Attributes in TransverseBar Class

4.2.3.7 TransversePattern Class

In a reinforced concrete column, there are three zones which are top con�nement, bottom

con�nement and mid zone. Especially in seismic regions, di�erent amount of transverse re-

inforcement are placed in these zones. Thus, in order to keep number, distance and diameter

of Transverse Bars in these zones, Transverse Pattern Class (Figure 4.45) is introduced.

To de�ne the location of each transverse bar in a concrete cross-section and calculate shear

reinforcement area, an enumerator de�ned in section 4.2.3.8 is stored as the �rst parameter

in Transverse Pattern Class. A list keeping TransverseBar in the concrete cross-section is

the second parameter in Transverse Pattern Class. For the whole height of the column,

spacing, number of transverse reinforcements and distance of �rst transverse reinforcement

to the start joint are other parameters related to transverse reinforcement in a reinforced

concrete column.

+startNode : Node

+endNode : Node

+section : FrameCrossSection

+isPartOfAColumn : bool

+stations : Station

FrameElement
+location : double

+analysisResults : AnalysisResult

+displacements : Displacement

Station

+width : double

+depth : double

+area : double

+I33 : double

+I22 : double

+i33 : double

+i22 : double

+S33 : double

+S22 : double

FrameCrossSection

+nodePoint : Point

+frames : FrameElement

+displacements : Displacement

Node

+x : double

+y : double

+z : double

Point

+ux : double

+uy : double

+uz : double

+rx : double

+ry : double

+rz : double

Displacement

+P : double

+V2 : double

+V3 : double

+M22 : double

+M33 : double

+T : double

AnalysisResult

+caseName : string

+caseType : string

LoadCase

+params : CombinationParams

LoadCombination

+loadCase : LoadCase

+multiplierFactor : double

CombinationParams

Joint

+analysisResults : AnalysisResult

+reinforcement : ReinforcementPattern

+onFrame : Column

+location : double

+width : double

DesignSection

+frame_List : FrameElement

+startJoint : Joint

+endJoint : Joint

+section : FrameCrossSection

+designSections : DesignSection

+concModel : ConcreteModel

Column

ConcreteModel

+column_list : Column

+start_joint : Joint

+end_joint : Joint

ColumnLine

+isSwayX : double

+isSwayY : double

+height : double

+elevation : double

+nodes : Node

+frames : FrameElement

+columns : Column

+beams : Beam

+beamStrips : BeamStrip

Story

Beam
BeamStrip

+longPattern : LongitudinalPattern

+transPattern : TransversePattern

ReinforcementPattern

+longBars : LongitudinalBar

+longPattern : enumLongPattern

LongitudinalPattern

+transBar : TransverseBar

+transPattern

+spacing : double

+count : int

+distOfFirstTransBar : double

TransversePattern

+endTop : EndStyle

+endBot : EndStyle

+basicPartPoints : Point

LongitudinalBar

+ver_Main : double

+hor_Main : double

+ver_Sec : double

+direction : int

+isTop : bool

EndStyle

+diameter : double

+texture : enumSurfaceTexture

Rebar

+points : Point

TransverseBar

enumSurfaceTexture

enumLongPattern

Figure 4.45: Attributes in TransversePattern Class

4.2.3.8 Pre-de�ned Transverse Reinforcement Patterns

In order to determine the location of transverse reinforcement bars in a concrete cross-

section and to determine the number of shear reinforcement legs in two major directions

and therefore area of the shear reinforcement, pre-de�ned transverse reinforcement patterns

are utilized in shear design of reinforced concrete columns. (Figure 4.46). Each pre-de�ned

shear reinforcement pattern is called with an enumerator (enumTransPattern).

62

Figure 4.46: Pre-de�ned Transverse Reinforcement Patterns

4.2.4 Design Code Class

Any structural design must follow speci�c rules de�ned by the design codes. Design codes

contain minimum member size and reinforcement ratio requirements, strength limitations,

material properties, behavior de�nitions, load combinations, design methods, strength equa-

tions, serviceability requirements and detailing rules. Thus, in order to perform design and

detailing of reinforced concrete columns and beam-column joints according to a design code,

Code Class is introduced.

In the Code Class, various overwritten methods that describe the common features of the de-

sign codes were de�ned. These overwritten methods utilized during the design and detailing

of reinforced concrete columns and beam-column joints are presented in Figure 4.47.

63

+CheckSectionDim()

+CheckSectionArea()

+CheckReinfRatio()

+CheckDia()

+FrameType()

+MomentMagnification()

+DetEndStyle()

+DesignShearForce()

+DesignShearForce_BCJ()

+CheckReinf_BCJ()

+SetLoadCombinations()

Code

-ReturnMinSecDim()

-ReturnMinSecArea()

-ReturnMinLongReinfRatio()

-ReturnMaxLongReinfRatio()

-ReturnMinLongReinfDia()

-ReturnMinTransReinfDia()

-ReturnMaxTransReinfSpacing()

-RelativeStiffness()

-EffectiveLength()

-BucklingLoad()

-IgnoreSlenderness()

-DevelopmentLength()

TS500_2000

-ReturnMinSecDim()

-ReturnMinSecArea()

-ReturnMinLongReinfRatio()

-ReturnMaxLongReinfRatio()

-ReturnMinLongReinfDia()

-ReturnMinTransReinfDia()

-ReturnMaxTransReinfSpacing()

-DevelopmentLength()

-CheckColumnsInAJoint()

-IsJointConfined()

-ReturnMinAmountOfReinf_BCJ()

-ReturnMinTransReinfDia_BCJ()()

-ReturnMaxTransReinfSpacing_BCJ()

-ReturnDesignShearForce()

-ReturnDesignShearForce_BCJ()

TEC

Building

Code ColumnLine Story

1

1 1..* 1..*

LoadCombination

1 1

1

1..*

LoadCombination

CombinationParams

1

1..*

LoadCase
1 1

Building
1..* 1

Figure 4.47: Overwritten Methods in Code Class

• CheckSectionDim() : Compares cross-section dimensions of a column with the mini-

mum cross-section dimensions speci�ed by design codes.

• CheckSectionArea() : Compares cross-section area of a column with the minimum

cross-section area speci�ed by design codes.

• CheckReinfRatio() : Compares longitudinal reinforcement ratio in a column cross-

section with maximum and minimum longitudinal reinforcement ratios speci�ed by

design codes.

• CheckDia() : Compares longitudinal and transverse reinforcement diameter in a col-

umn cross-section with maximum and minimum diameters speci�ed by design codes.

• FrameType() : Checks whether frames in a story are sway or non-sway.

• MomentMagni�cation() : Calculates moment magni�cation factor for a column.

• DetEndStyle() : Determines detailing shape of a longitudinal bar at top and bottom

joints of the column.

• DesignShearForce() : Calculates the design shear force for a reinforced concrete column

speci�ed by design codes.

• DesignShearForce_BCJ() : Calculates the design shear force for a beam-column joint

speci�ed by design codes.

• CheckReinf_BCJ() : Compares amount, spacing and diameter of reinforcement at a

beam-column joint with the requirements speci�ed by design codes.

• SetLoadCombinations() : Combines load cases to obtain most unfavorable loading

conditions according to design codes.

64

The Code Class is de�ned as the main class that provides methods common to all design

codes, but the design equations and rules of di�erent design codes are usually not the same

even if they follow the similar design approach. Because of this reason, the classes rep-

resenting the country codes are inherited from Code Class and the methods are overriden

according to prede�ned functionality of each method presented in Figure 4.47.

In Turkish reinforced concrete construction, two di�erent codes are utilized : TS500_2000

and TEC (Turkish Earthquake Code). TS500_2000 de�nes the general rules and speci�-

cations for reinforced concrete structures whereas TEC focuses on the earthquake resistant

design. In other words, the design against all loadings other than earthquake loads must be

performed according to TS500_2000 and the design for earthquake loads should follow TEC.

Thus, in order to handle dual codes during the design, two child classes, one for TS500_2000

and one for TEC, were introduced. All the design equations and speci�cations for both codes

were implemented within these two classes and managed by the higher level TurkishCodes

Class (Figure 4.48). The methods speci�c to both TS500_2000 and TEC are presented in

Figure 4.49.

Code

TurkishCodes

TS500_2000 TEC

Building

1

1

1

1 1

Figure 4.48: Class Relationship of Code Class

65

+CheckSectionDim()

+CheckSectionArea()

+CheckReinfRatio()

+CheckDia()

+FrameType()

+MomentMagnification()

+DetEndStyle()

+DesignShearForce()

+DesignShearForce_BCJ()

+CheckReinf_BCJ()

+SetLoadCombinations()

Code

-ReturnMinSecDim()

-ReturnMinSecArea()

-ReturnMinLongReinfRatio()

-ReturnMaxLongReinfRatio()

-ReturnMinLongReinfDia()

-ReturnMinTransReinfDia()

-ReturnMaxTransReinfSpacing()

-RelativeStiffness()

-EffectiveLength()

-BucklingLoad()

-IgnoreSlenderness()

-DevelopmentLength()

TS500_2000

-ReturnMinSecDim()

-ReturnMinSecArea()

-ReturnMinLongReinfRatio()

-ReturnMaxLongReinfRatio()

-ReturnMinLongReinfDia()

-ReturnMinTransReinfDia()

-ReturnMaxTransReinfSpacing()

-DevelopmentLength()

-CheckColumnsInAJoint()

-IsJointConfined()

-ReturnMinAmountOfReinf_BCJ()

-ReturnMinTransReinfDia_BCJ()()

-ReturnMaxTransReinfSpacing_BCJ()

-ReturnDesignShearForce()

-ReturnDesignShearForce_BCJ()

TEC

Building

Code ColumnLine Story

1

1 1..* 1..*

LoadCombination

1 1

1

1..*

LoadCombination

CombinationParams

1

1..*

LoadCase
1 1

Building
1..* 1

Figure 4.49: Methods in TS500_2000 and TEC

The detailed descriptions of each method in TS500_2000 Class are as follows :

• ReturnMinSecDim() : Returns the minimum column cross-section dimensions de�ned

in TS500_2000 (Section 2.2.1).

• ReturnMinSecArea() : Returns the minimum column cross-section area de�ned in

TS500_2000 (Section 2.2.1).

• ReturnMinLongReinfRatio() : Returns the minimum longitudinal reinforcement ratio

in a column cross-section de�ned in TS500_2000 (Section 2.2.1).

• ReturnMaxLongReinfRatio() : Returns the maximum longitudinal reinforcement ratio

in a column cross-section de�ned in TS500_2000 (Section 2.2.1).

• ReturnMinLongReinfDia() : Returns the minimum longitudinal reinforcement diame-

ter in a column cross-section de�ned in TS500_2000 (Section 2.2.1).

• ReturnMinTransReinfDia() : Returns the minimum transverse reinforcement diameter

in a column cross-section de�ned in TS500_2000 (Section 2.2.1).

• ReturnMaxTransReinSpacing() : Returns the maximum transverse reinforcement spac-

ing in a RC column de�ned in TS500_2000 (Section 2.2.1).

• RelativeSti�ness() : Calculates the relative sti�ness value of a joint (Section 2.2.2.1).

”I22” or ”I33” parameters of Frame Cross Section that Column and Beam include and

length of Column and Beam are used to calculate relative sti�ness value of a Joint.

66

• E�ectiveLength() : Calculates the e�ective length of a column (Section 2.2.2.1). To

decide whether a Column is sway or not, �isSwayX� and �isSwayY� parameters of a

Story that the Column belongs to are used. Next, α values (relative sti�ness values) for

top and bottom joints of the Column are calculated with the RelativeSti�ness() method

of TS500_2000 Class. Then, e�ective length multiplier, k, is calculated depending on

sway properties of the Column.

• Buckling Load() : Calculates the buckling load of a RC column (Section 2.2.2.2). E�ec-

tive length of a Column (lk) is calculated with E�ectiveLength() method of TS500_2000

Class. To decide whether a Column is sway or not, �isSwayX� and �isSwayY� param-

eters of a Story that the Column belongs to are used. If the Column belongs to a

non-sway frame, design sustained axial load (Ngd) and total design axial load (Nd) are

computed from the element forces of the Column for each combination in the Building

Class. If the Column belongs to a sway frame, however, the sum of the design shear

forces caused by the sustained load (Vgd) and sum of the design shear forces (Vd) are

computed from the element forces of all Columns in the Story that the Column belongs

to for each combination in the Building Class. Then, the resultant buckling load (Nk)

is the minimum one among the loads calculated for each combination.

• IgnoreSlenderness() : Checks whether slenderness is neglected for a RC column or

not (Section 2.2.2.4). To decide whether a Column is sway or not, �isSwayX� and

�isSwayY� parameters of a Story that the Column belongs to are used. The result of

E�ectiveLength() method of TS500_2000 Class is used as e�ective length of a Column,

lk. Moreover, �i22� and �i33� parameters of Frame Cross Section (Figure 4.5) that

Column includes are used as the radius of gyration, i.

• DevelopmentLength() : Calculates development length of longitudinal reinforcement

described in speci�ed design code (Section 2.2.3). To calculate development length,

�diameter� parameter of Longitudinal Bar (Figure 4.31) and �fyd� parameter of Steel

Model stored in Longitudinal Bar (Figure 4.29) are used.

The detailed descriptions of each method in TEC Class are as follows :

• ReturnMinSecDim() : Returns the minimum column cross-section dimensions de�ned

in TEC (Section 2.3.1).

• ReturnMinSecArea() : Returns the minimum column cross-section area de�ned in TEC

(Section 2.3.1).

67

• ReturnMinLongReinfRatio() : Returns the minimum longitudinal reinforcement ratio

in a column cross-section de�ned in TEC (Section 2.3.1).

• ReturnMaxLongReinfRatio() : Returns the maximum longitudinal reinforcement ratio

in a column cross-section de�ned in TEC (Section 2.3.1).

• ReturnMinLongReinfDia() : Returns the minimum longitudinal reinforcement diame-

ter in a column cross-section de�ned in TEC (Section 2.3.1).

• ReturnMinTransReinfDia() : Returns the minimum transverse reinforcement diameter

in a column cross-section de�ned in TEC (Section 2.3.1).

• ReturnMaxTransReinSpacing() : Returns the maximum transverse reinforcement spac-

ing in a RC column de�ned in TEC (Section 2.3.1).

• DevelopmentLength() : Calculates the development length of the longitudinal rein-

forcement described in speci�ed design code (Section 2.3.1). To calculate development

length, �diameter� parameter of Longitudinal Bar (Figure 4.31) and �fyd� parameter

of Steel Model stored in Longitudinal Bar (Figure 4.29) are used.

• ChecksColumnsInAJoint() : Checks whether Columns in a Joint are stronger than

Beams in that Joint or not (Section 2.3.2). While calculating moment resistance of

a Column or a Beam, Longitudinal Reinforcement Pattern in Reinforcement Pattern

(Figure 4.30) that a Column or a Beam includes is used to obtain longitudinal re-

inforcement mesh in cross-section, Frame Cross Section that a Column or a Beam

includes is used to obtain cross-section dimensions.

• IsJointCon�ned() : Checks whether a Joint is con�ned or not (Section 2.3.4). The

number of Beams connecting to a Joint is checked and �width� parameter of Frame

Cross Section that Beam includes is compared with the �width� or �depth� parameters

of Frame Cross Section that Column includes to check whether the Joint is con�ned

or not.

• ReturnMinAmountOfReinf_BCJ() : Returns the minimum amount of transverse rein-

forcement at beam-column joints de�ned in TEC (Section 2.3.4.1).

• ReturnMinTransReinfDia_BCJ() : Returns the minimum transverse reinforcement

diameter at beam-column joints de�ned in TEC (Section 2.3.4.1).

68

• ReturnMaxTransReinfSpacing_BCJ() : Returns the maximum transverse reinforce-

ment spacing at beam-column joints de�ned in TEC (Section 2.3.4.1).

• ReturnDesignShearForce() : Returns the design shear force of a column de�ned in TEC

(Section 2.3.3)

• ReturnDesignShearForce_BCJ () : Returns the design shear force of a beam-column

joint de�ned in TEC (Section 2.3.4)

The methods of the TurkishCodes Class utilize the TS500_2000 and TEC Class for per-

forming all the prede�ned design and detailing tasks mentioned in Figure 4.47 :

• CheckSectionDim() : Compares cross-section dimensions of a column with the min-

imum cross-section dimensions speci�ed by design codes. The �width� and �depth�

parameters in Frame Cross Section Class (Figure 4.5) that Column Class includes

(Figure 4.19) are set as current cross-section dimensions. These current dimensions

are compared with the maximum value of the results of ReturnMinSecDim() methods

of TS500_2000 Class and TEC Class.

• CheckSectionArea() : Compares cross-section area of a column with the minimum

cross-section area speci�ed by design codes. The �area� parameter in Frame Cross

Section Class (Figure 4.5) that Column Class includes (Figure 4.19) are set as current

cross-section area. This current area is compared with the maximum value of the

results of ReturnMinSecArea() methods of TS500_2000 Class and TEC Class.

• CheckReinfRatio() : Compares longitudinal reinforcement ratio in a concrete column

section with maximum and minimum longitudinal reinforcement ratios speci�ed by

design codes. Column Class includes Reinforcement Pattern Class (Figure 4.19). In

Reinforcement Pattern Class, there exists Longitudinal Pattern Class (Figure 4.30).

For each LongitudinalBar in the list Longitudinal Pattern Class keeps (Figure 4.42),

the Area() method of Longitudinal Bar is called to calculate the area of a single bar

and these calculated areas are summed for obtaining longitudinal reinforcement amount

in a cross-section. Then, calculated longitudinal reinforcement amount is divided by

the �area� parameter in Frame Cross Section Class (Figure 4.5) that Column Class

includes (Figure 4.19) to obtain longitudinal reinforcement ratio. Finally, calculated

longitudinal reinforcement ratio is compared with the minimum value of the results

of ReturnMaxLongReinfRatio() methods of TS500_2000 Class and TEC Class and

69

maximum value of the results of ReturnMinLongReinfDia() methods of TS500_2000

Class and TEC Class.

• CheckDia() : Compares longitudinal and transverse reinforcement diameter in a col-

umn cross-section with maximum and minimum diameters speci�ed by design codes.

The �diameter� parameter of each Longitudinal Bar (Figure 4.31) in the list Longitudi-

nal Pattern Class keeps (Figure 4.42), and each Transverse Bar (Figure 4.31) in the list

Transverse Patten Class (Figure 4.45) keeps is compared with maximum value of the

results of ReturnMinLongReinfDia() methods of TS500_2000 Class and TEC Class

and maximum value of the results of ReturnMinTransReinfDia() methods TS500_2000

Class and TEC Class, respectively.

• FrameType() : Checks whether frames in a Story Class are sway or non-sway (Section

2.2.2). For each combination in the Building Class, total factored vertical load and

horizontal story shear are computed from the element forces of the Column Classes in

a Story Class (Figure 4.24) and relative lateral de�ection of a Story Class is computed

with the top and bottom story information obtained from the Building Class. The

parameter ψ in Equation 2.8 is calculated with the computed force and drift values

and compared with the limit value de�ned by speci�ed design code. At the end of per-

forming this procedure for both major directions, �isSwayX� and �isSwayY� parameters

of a Story Class (Figure 4.24) are determined.

• MomentMagni�cation() : Calculates moment magni�cation factor for a column (Sec-

tion 2.2.2.3). To decide whether a Column is sway or not, �isSwayX� and �isSwayY�

parameters of a Story that the Column belongs to are used. Buckling load (Nk) is

calculated with Buckling Load() method of Code Class. For each combination in the

Building Class, factored vertical load (Nd), bending moments (Md1and Md2) are com-

puted from the element forces of the Column.

• DetEndStyle() : Determines End Style parameters of each Longitudinal Bar in a Col-

umn for top and bottom joints of the column. For the bottom joint of the column,

only �ver_main� parameter of End Style (Figure 4.41) that belongs to Longitudinal

Bar (Figure 4.33) is determined. Firstly, DevelopmentLength() method of TEC Class is

called for calculating the development length of Longitudinal Bar and then �ver_main�

parameter of End Style is determined according to the length of the Column, develop-

ment length and splice location of longitudinal bars. For the top joint of the column,

70

�rstly, the existence of upper column at a Joint is searched in Columns connecting to

the Joint. If the upper column exists, dimensions of the upper column are compared

with the corresponding dimensions of the bottom column by utilizing �width� and

�depth� parameters of Frame Cross Section stored in Column. If the corresponding

dimension of the top column is equal to or smaller than the dimension of the bottom

column, only �ver_main� parameter in End Style is calculated by utilizing the dimen-

sions of beams connecting to the joint, length of the top column, development length

and splice location. If the upper column does not exist at top joint, the parameters of

End Style (Figure 4.41) are determined by utilizing �width� and �depth� parameters

of Frame Cross Section stored in Column and Beam, and development length of a

longitudinal bar.

• DesignShearForce() : Calculates the design shear force for a reinforced concrete col-

umn. For top and bottom joints of a column, ChecksColumnsInAJoint() method of

TEC Class is called to understand whether the columns at a joint are stronger than

beams at that joint. If the columns are stronger than beams, moment capacities of the

columns are used to determine design shear force of a column (Section 2.3.3), otherwise

moment capacities of the beams are used.

• DesignShearForce_BCJ() : Calculates the design shear force for a beam-column joint.

To calculate design shear force for a beam-column joint, the longitudinal reinforcement

at the beam/beams connecting to the joint is used. Then, the calculated design shear

force is compared with the limit design shear values determined according to type of

the beam-column joint (con�ned or uncon�ned) (Section 2.3.4). To de�ne the type of

a beam-column joint as con�ned or not con�ned, IsJointCon�ned() method of TEC

Class is called.

• CheckReinf_BCJ() : Transverse reinforcement detailing such as diameter and spacing

are kept in TransversePattern Class stored in a Joint Class (Figure 4.20). The diam-

eter in TransversePattern Class is compared with the result of ReturnMinTransReinf-

Dia_BCJ() method of TEC Class. In addition to diameter, spacing in TransversePat-

tern Class is compared with the result of ReturnMaxTransReinfSpacing_BCJ() method

of TEC Class.

• SetLoadCombinations() : Combines load cases to obtain most unfavorable loading

conditions. LoadCombination Classes are developed according to speci�cations related

71

to loading combinations de�ned in TS500_2000 Class and stored in Building Class.

These LoadCombination are utilized to obtain design forces in desiging and detailing

of column and reinforcement.

72

CHAPTER 5

CASE STUDY

5.1 INTRODUCTION

The object library developed in this study was implemented and tested via a client-server

based framework where multiple engineers can work on a single project simultaneously. The

framework utilizes XML (Extensible Markup Language) web services technology. At the

server side, all the design and detailing related information was kept as XML �les and

managed by the developed service. On the client side, a GUI was developed to communicate

with the server, interact with the engineer while performing design and detailing calculations,

and visualize the objects and results of the calculations. All the design related information

is stored in XML format on the server side and no local copies of �les are allowed on the

client side.

First, the developed client GUI will be summarized and then the performance of proposed

library will be tested by designing an actual six-story reinforced concrete building. The

details of the server side services can be found at An�l's master thesis [Anil, 2009].

5.2 CLIENT GUI

While designing and detailing a reinforced concrete structure, a GUI (Graphical User In-

terface) was developed in order to visualize the structure and to interact with engineers for

performing design and detailing tasks. The GUI was developed with C#.NET programming

language and OpenGL graphic library. The GUI works at the client side and communicates

with the server for uploading and downloading design speci�c information. The general

template of the GUI is presented in Figure 5.1.

73

Figure 5.1: General view of the client GUI

The white area is the main part of the client GUI. In this part, 3D and 2D elevation and plan

views are drawn. The user can rotate, pan or move the 3D views of the structure, visualize

the columnLines and beamStrips and selects a columnLine for design and detailing.

The GUI was utilized not only for designing structural components but also for initialization

of the design project. Currently, the framework does not have any modeling and analysis

tools. Because of this reason, the structure is �rst modeled and analyzed by a third party

analysis software and then the initial geometry and analysis results are imported to the server

via the client GUI. For this purpose, �Put Structure� menu item of the GUI was utilized.

While uploading the initial information of the structure to the server, it is the duty of the

GUI to prepare the object de�nitions and XML �les. �GetStructure� menu item of the GUI

was utilized to retrieve the information about previously uploaded structure.

The GUI allows to determine some project parameters such as material classes, material

models, avaible diameters of reinforcement with the �Project Preferences� menu. At the

�Concrete� tab of the �Project Preferences� menu (Figure 5.2), concrete material class and

concrete model that de�nes the stress-strain relationship of concrete can be de�ned for both

columns and beams. On the other hand, steel material class and steel model that de�nes the

stress-strain relationship of steel can be de�ned at the �Reinforcement� tab of the �Project

Preferences� menu (Figure 5.3). Moreover, avaible diameters of reinforcement that will be

used while designing can also be determined at this tab.

74

Figure 5.2: Concrete Tab of Project Preferences

Figure 5.3: Reinforcement Tab of Project Preferences

While drawing the biaxial interaction diagram of a column cross-section, some parameters

such as strip thickness which is the thickness of a slice when the compression zone of the

section is divided into slices, maximum iteration, convergence value, and number of interme-

diate diagrams. The GUI allows to de�ne these parameters at the �Preferences� tab of the

�Project Preferences� menu (Figure 5.4). At the last tab of the �Project Preferences� menu

(Figure 5.5), the design code is speci�ed and load combinations are determined.

75

Figure 5.4: Preferences Tab of Project Preferences

Figure 5.5: Design Tab of Project Preferences

5.3 IMPLEMENTATION

In order to test the performance of the proposed library, an actual six-story reinforced

concrete building (Figure 5.6) was designed as a high ductility moment frame structure. As

a starting point, the structure was �rst modeled and analyzed by ETABS v. 9.5, structural

analysis and design software. Then, the analysis outputs such as analysis results at station

points, cross-sectional properties, connectivity and coordinate information were exported to

a Microsoft Access Database �le by ETABS. Then, the created Microsoft Access Database

76

�le was selected at the client GUI and classes belonging to both analysis and design entities

packages were instantiated via the client GUI.

Figure 5.6: 3D view of the sample project

The main steps followed during the design and detailing of a ColumnLine are presented in

Figure 5.7. The �rst step is the initialization step where the design parameters are deter-

mined, the initial geometry and analysis results are exported and all the objects belonging

to analysis and design entities package are created. This step is performed once for each

project by a single engineer. As the information of all objects are uploaded to the server,

the second step, i.e, simultaneous design of ColumnLines is initiated. At this step, more

than one engineer can download all the necessary object information for designing a single

columnLine and by the help of the methods of Code object, the objects belonging to the

reinforcement package are created. This way, the design of a columnLine is �nalized. After

that, engineers can prepare 3D CAD drawings for further checks of reinforcement placement.

77

Building Object

TurkishCodes Object

with

TS500_2000

and

TEC Objects

- AnalysisResult Object

- Displacement Object

- Station Object

- FrameCrossSection Object

- Node Object

- FrameElement Object

- Story Object

- Joint Object

- Beam Object

- Column Object

- BeamStrip Object

- ColumnLine Object

- FrameType() method

- MomentMagnification()

- LongitudinalBar Objects

- DetBotEndStyle() and DetTopEndSyle()

- DesignShearForce()

- TransveseBar Objects

DesignShearForce_BCJ()

- TransverseReinforcementPattern

in Joint Objects

- CheckReinf_BCJ()

- CheckSecDim()

- CheckSecArea()

- CheckReinfRatio()

- CheckDia()

- 3D CAD drawings

IN
IT
IA
L
IZ
A
T
IO

N
 S
T
E
P

- MomentMagnification()

- LongitudinalBar Objects

- DetBotEndStyle() and DetTopEndSyle()

- DesignShearForce()

- TransveseBar Objects

DesignShearForce_BCJ()

- TransverseReinforcementPattern

in Joint Objects

- CheckReinf_BCJ()

- CheckSecDim()

- CheckSecArea()

- CheckReinfRatio()

- CheckDia()

- 3D CAD drawings

C
O
L
U
M
N
L
IN

E
 D

E
S
IG

N
 A
N
D
 D

E
T
A
IL
IN

G
F
IN

A
L
 T
A
S
K

1
st
Engineer n

th
Engineer

Figure 5.7: Flow Chart to Design a ColumnLine

78

5.3.1 Initialization Step

As a starting point, �rst the Building Object was initialized and the design parameters for

TurkishCodes Object were determined. Next, objects belonging to the analysis package were

created by utilizing the results of the analysis software. The created objects were Analysis-

Result, Displacement, Station, FrameCrossSection, Node and FrameElement Objects. Then,

higher level classes that utilize the classes in the analysis package were needed for design

purposes. Therefore, Story Objects were �rstly created and then Joint, Beam and Column

Objects were created and stored in corresponding Story Objects.

Frame elements which are connected to a common node are stored in that Node Class.

Moreover, each FrameElement Object keeps a parameter called �isPartOfAColumn� that

indicates whether the frame element belongs to a column or not. These two information

are used for grouping the frame elements of a story into columns by utilizing the algorithm

presented in Figure 5.8. The algorithm basically goes over every frame element belonging

to a story level and creates Column Objects. The algorithm is for classes where a column is

modeled with more than one frame element. Otherwise, a column is usually composed of a

single frame element.

Having detected columns at each story level, column lines were created with an algorithm

similar to the one utilized for detecting the columns. The detected ColumnLine Classes were

stored in Building Class.

The slenderness e�ects were considered by using by using the MomentMagni�cation method.

Thus, after having created all design objects that de�ne the geometry of a building, the

FrameType() method of the code object was called for determining whether the frames of

the stories are sway or not, and �isSwayX� and �isSwayY� parameters of each Story Object

were determined. These parameters will be utilized later during the �exural design of each

columnLine.

As all objects of the analysis and design entities package were create, they were uploaded to

the server. At this step, the initial checks about the material properties and member sizes

of the structure were performed utilizing the CheckForce(), CheckSize() and CheckMaterial-

Strength() methods of the Code Object. This step is performed once for each project.

79

5.3.2 Simultaneous Design of ColumnLines

After the initialization step, engineers can connect to the server and perform design and

detailing tasks on ColumnLine Objects simultaneously. As a �rst step, only the model ge-

ometry that is composed of FrameElement, Beam, Column, Joint, Story, BeamStrip and

ColumnLine Objects were downloaded from the server to each client GUI. To prevent un-

necessary network usage, analysis results and existing reinforcement information were not

downloaded at this step, yet. Figure 5.9 presents the 3D view of the structure at the client

side.

Select a frame element in the list of a Story Class

Check whether the selected frame element (SFE) is used

YES NO

Assign the selected frame element as used

Check whether the selected frame element is column type

NO YES

Another frame element whose type is column is

detected at the other node of the detected frame?

NO YES

Assign detected frame element as used

Another frame element whose type is column is

detected at the other node of the detected frame?

NO YES

Assign detected frame element as used

Frame element

detection is

completed for (SFE)

S
ta

rt
 n

o
d

e
ch

ec
k

 o
f

se
le

ct
ed

fr
am

e
 e

le
m

en
t

E
n

d
 n

o
d

e
ch

ec
k

 o
f

se
le

ct
ed

 f
ra

m
e

el
em

en
t

Figure 5.8: Pseudo Code for Detection of Frame Elements in the Same Column

80

Figure 5.9: View of the sample project at client GUI

Design and detailing of each Column in a ColumnLine is performed simultaneously. There-

fore, a column was selected to design and then properties of all other columns in the Column

Line (Figure 5.10) that the selected columns belongs to were uploaded from the server side

to the client side. On the other hand, in order to perform shear design of columns, the

design of all beams connecting to columns must be �nalized since beam's �exural capacities

were required to compute design shear force. That's why when the column was selected

to design, all properties of beams connecting to the Column Line that the selected column

belongs to were uploaded, too. When the column is selected by the engineer at the client

side, all columns in the Column Line and beams connecting to this Column Line are locked

for modi�cation and other engineers cannot modify this Column Line or connecting beams

until the lock is released, but they can view the details.

The �exural design of columns were performed by utilizing the biaxial interaction diagrams

at the DesignSection Objects located at the top and bottom ends of a column. Firstly, a

prede�ned longitudinal bar pattern was chosen (Figure 5.11) at the client side and Lon-

gitudinalPattern Object was initialized by creating LongitudinalBar Objects with an initial

diameter and positions determined according to selected prede�ned pattern. Then, biax-

ial interaction diagram was formed with the procedure de�ned in Section 3.4. For each

load combination in Building Object, MomentMagni�cation() method of TurkishCodes Class

was called and magni�ed design moments were obtained for each load combination. These

moments including second order moment e�ects were checked according to formed biaxial

interaction diagram. When the supplied longitudinal reinforcement was satis�ed for all load

combinations, the diameter of LongitudinalBar Classes was determined. Having de�ned the

81

Figure 5.10: Selected ColumnLine in the sample project

diameter of LongitudinalBar, the end conditions of each LongitudinalBar were checked by

DetEndStyle() method of TurkishCodes Object and EndStyle Object parameters for each

LongitudinalBar were determined according geometric properties of the beam-column joint

and calculated development length.

The shear design of columns was initiated by choosing a pre-de�ned transverse bar pat-

tern (Figure 5.11). Then, the shear reinforcement areas for two orthogonal directions were

calculated for the initial rebar diameter but the TransversePattern and TransverseBar Ob-

jects were created after having decided on the bar spacing for a speci�c DesignSection. The

shear design was performed according to the design shear force calculated with the Design-

ShearForce() method of TurkishCodes Object. Three DesignSections Objects were de�ned

per column for top and bottom con�nement and mid zones. This way, di�erent transverse

reinforcement patterns and spacing were de�ned for each zone.

As the design of all columns in a ColumnLine was �nalized, the beam-column joints were

checked. For this purpose, the design shear force for all beam-column Joints in selected

ColumnLine were calculated with the DesignShearForce_BCJ() method of TurkishCodes

Object and transverse reinforcement amount and spacing were determined according to cal-

culated design shear force. Then, transverse reinforcement detailing such as diameter and

spacing are checked with the CheckReinf_BCJ() method of TurkishCodes Object.

As a �nal step, cross-section dimensions and cross-sectional area of each column were checked

by CheckSectionDim() and CheckSectionArea() methods of TurkishCodes Class, respectively.

82

Then, the longitudinal and shear reinforcement ratios in the cross-section and reinforcement

diameters used were checked by CheckReinfRatio() and CheckDia() methods of TurkishCodes

Class, respectively.

Figure 5.11: Selection of prede�ned patterns at client GUI

When the design and detailing of selected column line was �nalized, the locks on selected

column line and connecting beams to this column line are released. At this point, updated

reinforcement information was uploaded to the server and other engineers were free to access

to selected column line and connecting beams to selected column line.

As a �nal task, CAD drawings of the selected columnLine were prepared. Since the coor-

dinates of all longitudinal and transverse bars in a column were stored with respect to the

coordinates of the bottom joint of the column, there was no need to convert these coordinates

to any other coordinate system. To draw reinforcement in a column, however, the coordi-

nates of the bottom joint were added to the coordinates of the reinforcements of a column

and the drawings were prepared. In these drawings, detailing of longitudinal reinforcement

at the cross-section, splice location, transverse reinforcement spacing at beam-column joints,

con�ned and uncon�ned regions of each column can be visualized. 3D CAD drawings of a

selected column line in the sample project are illustrated in Figure 5.12, Figure 5.13 and

Figure 5.14.

83

Figure 5.12: Section view of selected column line

Figure 5.13: Side view of selected column line

84

Figure 5.14: 3D view of selected column line

85

CHAPTER 6

CONCLUSION

While designing a reinforced concrete building, more than one engineer and draftsmen may

be involved. Before and during the deign process, they share information. If synchronization

between them is not performed well, the data to be shared may loss that will result in inad-

equate design and detailing of reinforced concrete buildings. Therefore, data management

has a crucial role in design and detailing of reinforced concrete buildings.

In design and detailing of reinforced concrete columns, �rstly, determined cross-sectional

properties of columns are checked according to minimum code requirements. Then, the lon-

gitudinal and transverse reinforcement amount are calculated according to loading conditions

and code requirements. In detailing of calculated reinforcement, longitudinal reinforcement

mesh in a column cross-section, and placement of transverse reinforcement along the column

height are determined according to a design code. Moreover, the transverse reinforcement at

beam-column joints are detailed according to the size and load carrying capacities of beams

and columns. Finally, shape and development length of longitudinal reinforcements are cal-

culated according to geometry of the beam-column joints and design code and therefore

splice locations of longitudinal reinforcement are determined.

To store all design and detailing information related to reinforced concrete columns, to

perform code based design and detailing calculations and to minimize data loss between

participant in a single project, a special data model is needed.

In this study, an object oriented data model storing dimensions of reinforced concrete

columns, analysis results on these columns, detailed longitudinal and transverse reinforce-

ment information along the column height, detailed shape and splice locations of longitudinal

reinforcements, placement of transverse reinforcement at beam-column joints has been devel-

oped. One of the features of the developed data model is to perform code based calculations.

86

Moreover, the developed data model is implemented into a client-server environment that

enables multi-user simultaneous design and detailing of reinforced concrete columns. Since

the developed data model is centrally located at a server, data loss between participant in a

single project is minimized.

In order to facilitate multi-user simultaneous design and detailing of reinforced concrete

columns, a web based system has been implemented with a client - server relationship. For

this relationship, XML Web Service Technology has been utilized. All information is kept

in XML �les and no calculation is performed at the server side. At the client side, however,

design calculations are performed with developed GUI. With this GUI, it is possible to

visualize reinforced concrete buildings in 3D view, to design and detail speci�ed reinforced

concrete columns, to get 3D CAD drawings of detailed reinforced concrete columns. When

a column or column line is selected to design and detail by an engineer, it is locked and until

the lock is released, other engineers cannot modify the selected column or column line.

The performance of the developed data model which was tested on an actual structure in

Chapter 5 reveals that :

• The developed data model is capable of re�ecting analysis results of the structure

such as geometry of the structure, analysis results of the frame elements and displace-

ments. To attain this, FrameCrossSection, Displacement, AnalysisResults, Station,

Node, FrameElement Classes in the Analysis Package of the data model are utilized.

• Story, Joint, Beam, Column, BeamStrip and ColumnLine Classes are introduced in

Design Entities Package. This way, not only the monolithic behavior of concrete struc-

tures is represented but also continuous columns on the same grid points are designed

and detailed as a whole.

• Code Class in the data model enables the engineers to design and detail the reinforced

concrete columns according to the speci�ed design code. Moreover, having de�ned

the main Code Class and determined overridden methods, it is easy to implement a

new design code to the data model by just describing the content of these overridden

methods according to the new code.

• The shape of a longitudinal bar at beam-column joints varies according to geometry

of the beam-column joints, development length and splice location of the longitudinal

bar. The complexity of having various shapes of longitudinal bars in beam-column

joints are simpli�ed by introducing EndStyle Class.

87

• De�nition of the Story Class not only helps storing the Columns that are at the same

level but also signi�cantly simpli�es the sway/non-sway frame de�nition.

• The de�nition of the Joint Class and its relationship with Column Objects allows the

computation of joining Beam's �exural capacities thus simpli�es the calculation of the

design shear force for columns and beam-column joints.

• The de�nition of MaterialModel Class with Concrete and Steel Class enables the en-

gineers to design and detail the members with di�erent material strength and specify

di�erent concrete models for detailed section analysis.

• DesignSection Class facilitates the design at various locations of a column or beam. For

example, transverse reinforcement details in top con�nement zone, bottom con�nement

zone and mid zone of a reinforced concrete column are handled with three DesignSecton

Classes stored in a Column Class. This way, di�erent transverse reinforcement patterns

and spacing can be de�ned at a single column.

• Having stored FrameElement Objects that connect to a common node in a Node Class

facilitates to group frame elements that constitutes the same column with the node

connectivity information. Similarly, to store Column Classes that connect to a common

joint in a Joint Class facilitates to group columns at the same grid point with the joint

connectivity information.

• Since the developed data model is implemented via a client-server environment. By

allowing columnLines to be designed simultaneously, multiple engineers can work on

a same project. The lock mechanism avoids the same components to be designed by

more than one engineer. When a columnLine is locked by an engineer, other engineers

cannot modify this column line, but they can work on another columnLine. This way,

multiple design and detailing of reinforced concrete columns are performed.

• 3D drawings of a detailed ColumnLine Objects enable the engineers to visualize the

reinforcement detailing such as con�nement zone lengths, transverse reinforcement

spacing along the column height, spacing at beam-column joints, longitudinal rein-

forcement arrangement in the column cross-section.

88

6.1 FUTURE RECOMMENDATIONS

In current data model, only the reinforced concrete columns and beam are designed and

detailed. In the future, the number of reinforced concrete members to be designed and

detailed can be increased with the design and detailing of slabs, shear walls, and foundations.

Therefore, an engineer can design and detail a complete reinforced concrete building.

In this data model, analysis layer and design layer are separate from each other. In other

words, analysis is performed by a di�erent software program and design layer uses the results

of the analysis layer such as structural geometry, column dimensions, column forces. In the

future, analysis engine can be implemented to the developed data model. Therefore, a

reinforced concrete building can be analyzed, design end detailed in a single framework.

89

REFERENCES

An�l, Engin Burak, 2009 A Web Based Multi-user Framework for the Design and Detailing

of Reinforced Concrete Frames - Beams. METU, ANKARA

Brunnermeier Martin , 1999 Interoperability Cost Analysis of the U.S. Automotive Supply

Chain.

Bresler Boris Design Criteria for Reinforced Columns under Axial Load and Biaxial

Bending.

Coble Richard J., Haupt Theo C.,Hinze Jimmie The management of construction safety

and health. 2000, Florida, USA

DBYYHY, 2007. Speci�cations for structures to be built in disaster areas. General

Directorate of Disaster A�airs, Turkish Ministry of Public Works and Settlement,

ANKARA.

Deitel H. M. , Deitel P.J. , 2003. Web Services - A Technical Introduction. Pearson

Education.

Eastman, Charles M., 1999. Building Product Models: Computer Environments Supporting

Design and Construction. CRC Press.

Ersoy Ugur, Ozcebe Guney, Tankut Tu§rul 2004. Reinforced Concrete. Middle East

Technical University, Ankara

Fowler Julian, Step for Data Management, Exchange and Sharing.

90

Gallaher, Michael P., O'Connor, Alan C., Dettbarn, Jr. John L., Gilday, Linda T., 2004.

Cost Analysis of Inadequate Interoperability in the U.S. Capital Facilities Industry.

IAI, 2009. Ifc 2x edition 3 model de�nition. URL

http://www.iai-international.org/Model/R2x3 �nal/index.htm.

International Alliance for Interoperability, An Introduction to the International Alliance

for Interoperability and the Industry Foundation Classes, BETA - January 10, 1999

�lal Mustafa Emre, The Quest for Integrated Design Systems : A Brief Survey of Past and

Current E�orts. 2007, METU JFA

Lo�redo David , Fundamentals of Step Implementation. www.steptools.com/library

Peterson Dave, 2003. The XML Schema Complete Reference. Pearson Education.

Sfakianakis M.G , 2001. Biaxial Bending with axial force of reinforced, composite and

repaired concrete sections of arbitrary shape by �ber model and computer graphics.

Stanek William R. , 2002. XML. Microsoft Press.W. Furlong Richard , Cheng-Tzu Thomas

Hsu, and S. Ali Mirza, June 2004. Analysis and Design of Concrete Columns for Biaxial

Bending - Overview. ACI Structural Journal

TS500, 2000. Requirements for design and construction of reinforced concrete structures.

Turkish Standards Institute, ANKARA.

W. Furlong Richard , Cheng-Tzu Thomas Hsu, and S. Ali Mirza, June 2004. Analysis and

Design of Concrete Columns for Biaxial Bending - Overview. ACI Structural Journal

91

APPENDIX A

CLASS RELATIONSHIP OF DATA

MODEL

MaterialModel SteelModel

ConcreteModel

Building

Code

Story

ColumnColumnLine

FrameElement

FrameCrossSection Node Station

StructuralElement

AnalysisResult

Displacement

ReinforcementPattern

LongitudinalPattern TransversePattern

LongitudinalBar TransverseBar

Rebar

BeamStripBeam

Joint

DesignSection

1

1 1

1 1

1 1

1 1

1

1

1

1

1

1

1

1..*

1

1

1

1

1 1 1

1
1

1

1

1

1

1

1 1

1..*

1..*

1..*

2

2

0..2

1..* 1..*

1..*

1..*

1..*

1..*

1..*

1..*

1

1..*

2

2 1..*

1..*

1..*

1

1

1

1..*

LoadCombination

CombinationParams

1

1

1

1..*

1

1..*

LoadCase
1 1

2

1

Figure A.1: Class Relationship of Data Model

92

APPENDIX B

COORDINATE TRANSFORMATION

METHOD

Coordinate Transformation Method is used to recalculate the coordinates of a point when

the coordinate system is rotated.

Figure B.1: Rotation of coordinate system

x′ = x ∗ cosθ + y ∗ sinθ (B.1)

y′ = −x ∗ sinθ + y ∗ cosθ (B.2)

To illustrate, x and y coordinates of point P in major axes are 40 and 60 respectively.

When the coordinate system is rotated by 300 in counterclockwise direction, the

coordinates (x′and y′) in rotated coordinate system turn to

x′ = 40 ∗ cos30 + 60 ∗ sin30 = 64.64

y′ = −40 ∗ sin30 + 60 ∗ cos30 = 31.96

93

	 ABSTRACT
	 ÖZ
	 ACKNOWLEDGMENTS
	 TABLE OF CONTENTS
	 LIST OF FIGURES
	 LIST OF TABLES
	 LIST OF Symbols
	 CHAPTERS
	1 Introduction
	1.1 Problem Definition
	1.2 Literature Survey
	1.2.1 Data Models
	1.2.2 Web Services
	1.2.3 Extensible Markup Language (XML)

	1.3 Objectives and Scope
	1.4 Thesis Outline

	2 DESIGN CODES
	2.1 Introduction
	2.2 TS500-2000
	2.2.1 Minimum Requirements for Columns in TS500-2000
	2.2.2 Moment Magnification Method
	2.2.2.1 Effective Length Calculation
	2.2.2.2 Buckling Load
	2.2.2.3 Moment Magnification Factor
	2.2.2.4 Conditions in which Second Order Moments can be Neglected

	2.2.3 BASIC DEVELOPMENT LENGTH

	2.3 TURKISH SEISMIC CODE
	2.3.1 Minimum Requirements for Columns in Turkish Seismic Code
	2.3.2 Requirements of Having Columns Stronger Than Beams
	2.3.3 Shear Safety of Columns
	2.3.4 Beam-Column Joints
	2.3.4.1 Minimum Transverse Reinforcement in Beam-column Joints

	3 Section Analysis Under Axial Load and Biaxial Bending Moment
	3.1 Introduction
	3.2 Sections Under Axial Load and Uniaxial Bending Moment
	3.3 Sections Under Axial Load and Biaxial Bending Moment
	3.4 Determination of Points on Interaction Surface (Failure Surface)
	3.5 An Example Problem

	4 DATA STRUCTURE
	4.1 Introduction
	4.2 General Structure
	4.2.1 Analysis Package
	4.2.1.1 FrameElement Class
	4.2.1.2 FrameCrossSection Class
	4.2.1.3 Node Class
	4.2.1.4 Station Class
	4.2.1.5 AnalysisResult Class
	4.2.1.6 LoadCase Class
	4.2.1.7 LoadCombination Class

	4.2.2 Design Entities Package
	4.2.2.1 Column Class
	4.2.2.2 Beam Class and BeamStrip Class
	4.2.2.3 Joint Class
	4.2.2.4 ColumnLine Class
	4.2.2.5 Story Class
	4.2.2.6 Building Class
	4.2.2.7 DesignSection Class
	4.2.2.8 MaterialModel Class

	4.2.3 Reinforcement Package
	4.2.3.1 ReinforcementPattern Class
	4.2.3.2 LongitudinalBar Class
	4.2.3.3 EndStyle Class
	4.2.3.4 LongitudinalPattern Class
	4.2.3.5 Pre-defined Longitudinal Reinforcement Patterns
	4.2.3.6 TransverseBar Class
	4.2.3.7 TransversePattern Class
	4.2.3.8 Pre-defined Transverse Reinforcement Patterns

	4.2.4 Design Code Class

	5 CASE STUDY
	5.1 INTRODUCTION
	5.2 CLIENT GUI
	5.3 IMPLEMENTATION
	5.3.1 Initialization Step
	5.3.2 Simultaneous Design of ColumnLines

	6 CONCLUSION
	6.1 FUTURE RECOMMENDATIONS

	 APPENDICES
	A Class Relationship of Data Model
	B Coordinate Transformation Method

