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ABSTRACT

PSEUDOSPIN SYMMETRY AND ITS APPLICATIONS

Aydoğdu, Oktay

Ph.D., Department of Physics

Supervisor : Prof. Dr. Ramazan Sever

December 2009, 70 pages

The pseudospin symmetry concept is investigated by solving the Dirac
equation for the exactly solvable potentials such as pseudoharmonic po-
tential, Mie-type potential, Woods-Saxon potential and Hulthén plus ring-
shaped potential with any spin-orbit coupling term κ. Nikiforov-Uvarov
Method, Asymptotic Iteration Method and functional analysis method are
used in the calculations. The energy eigenvalue equations of the Dirac par-
ticles are found and the corresponding radial wave functions are presented
in terms of special functions. We look for the contribution of the ring-
shaped potential to the energy spectra of the Dirac particles. Particular
cases of the potentials are also discussed. By considering some particular
cases, our results are reduced to the well-known ones presented in the liter-
ature. In addition, by taking equal mixture of scalar and vector potentials
together with tensor potential, solutions of the Dirac equation are found
and then the energy splitting between the two states in the pseudospin
doublets is investigated. We indicate that degeneracy between members
of pseudospin doublet is removed by tensor interactions. Effects of the
potential parameters on the pseudospin doublet splitting are also studied.
Radial nodes structure of the Dirac spinor are presented.

Keywords: Pseudospin Symmetry, Dirac Equation, Nikiforov-Uvarov Method, Asymp-

totic Iteration Method, Pseudoharmonic Potential, Mie-Type Potential, Hulthén Po-

tential, Ring-Shaped Potential, Woods-Saxon Potential, Tensor Potential
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ÖZ

SANKİSPİN SİMETRİ VE UYGULAMALARI

Aydoğdu, Oktay

Doktora, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Ramazan Sever

Aralık 2009, 70 sayfa

Sankispin (psüdospin) simetri kavramı, herhangi bir spin-yörünge çiftlenim
terimi κ için sankiharmonik (psüdoharmonik) potansiyel, Mie-tipi potan-
siyel, Woods-Saxon potansiyel, ve Hulthén artı halka-biçimli (ring-shaped)
potensiyel gibi tam olarak çözülebilen potansiyeller ile Dirac denklemi
çözülerek, araştırıldı. Hesaplamalarda Nikiforov-Uvarov metodu, asimp-
totik tekrarlama metodu ve fonksiyon analiz metodu kullanıldı. Dirac
parçacıklarının enerji özdeğer denklemleri bulundu ve bunlara karşılık ge-
len ışınsal dalga fonksiyonları özel fonksiyonlar cinsinden sunuldu. Halka-
biçimli (ring-shaped) potansiyelin, Dirac parçacıklarının enerjisine yaptığı
katkıyı araştırdık. Potansiyellerin belli durumları tartışıldı. Elde edilen
sonuçların, bazı özel durumlarda, literatürdeki bilinen sonuçlara indirgendi-
ği gösterildi. Bununla birlikte, eşit skaler ve vektör potansiyel ile birlikte
tensör potansiyel gözönüne alınarak Dirac denkleminin çözümü elde edildi
ve sankispin (psüdospin) çiftlerindeki iki düzey arasındaki enerji yarılması
incelendi. Sankispin (Psüdospin) çiftindeki enerji yarılmasına potansiyel
parametrelerinin etkileri çalışıldı. Dirac spinörünün ışınsal düğüm yapısı
sunuldu.

Anahtar Kelimeler: Sankispin (Psüdospin) Simetri, Dirac denklemi, Nikiforov-Uvarov

Metodu, Asimptotik Tekrarlama Metodu, Sankiharmonik (Psüdoharmonik) Potan-

siyel, Mie-Tipi Potansiyel, Hulthén Potasiyel, Halka-biçimli Potansiyel, Woods-Saxon

Potansiyel, Tensör Potansiyel
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CHAPTER 1

INTRODUCTION

Pseudospin concept was introduced for the first time in 1969 [1, 2]. It is based on

the experimental observation of quasi-degeneracy in nuclei between single-nucleon

states with non-relativistic quantum numbers (n, l, j = l + 1
2) and (n − 1, l + 2, j =

l + 3
2), where n, l and j are the radial, the orbital and the total angular momentum

quantum numbers, respectively. These two states are considered as a pseudospin

doublet with (ñ = n − 1, l̃ = l + 1, j̃ = l̃ ± 1/2) because of that they lie very close

in energy. Pseudo-orbital angular momentum l̃ and pseudospin s̃ = 1/2 quantum

numbers have been introduced to express these two states as a doublet structure. The

members of the pseudospin doublets have the same pseudo-orbital angular momentum

quantum numbers, i.e., [ns1/2, (n− 1)d3/2] will have l̃ = 1 and can be represented as

[ñp̃1/2, ñp̃3/2]. In Figure 1.1 which has been taken from Ref. [3], schematic presentation

of the pseudospin doublets is presented. In the context of the pseudospin concept,

np1/2 states are pseudospin singlets represented as ñs̃1/2 while 0s1/2, 0p3/2, 0d5/2 etc.

states are intruder orbital states that do not have a partner. This symmetry has

been successfully applied to explain many different phenomena in nuclear structure

involving deformation [4], superdeformaiton [5], identical bands [6, 7].

Although the history of the pseudospin symmetry has been very well known for a long

time, its origin has no accurate explanation in the non-relativistic framework. Thus,

lots of studies have been devoted to comprehend the origin of pseudospin symmetry [8,

9, 10, 11, 12, 13]. In Refs. [8, 9, 10], Blokhin et. al. have found that there is a

connection between the pseudospin symmetry and the relativistic mean field theory.

However, there has been no remarkable advance until Ginocchio’s work [12]. He has
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Figure 1.1: Schematic representation of the pseudospin doublets

noticed that pseudo-orbital angular momentum l̃ is nothing but the usual orbital

angular momentum of the small (lower) component of the Dirac spinor. One of the

inherent characteristic of the relativistic mean field theory is the near equality of an

attractive scalar potential S(r) and a repulsive vector potential V (r) in magnitude but

different in sign [12]. Ginocchio has indicated that this near equality S(r) + V (r) ∼ 0

leads to pseudospin symmetry in nuclei (see Ref. [13] and references therein). Meng

et al. [14, 15] have presented that exact pseudospin symmetry occurs in the Dirac

equation when d[V (r)+S(r)]
dr = 0 or V (r) + S(r) = Constant. After these pioneering

studies, numerous works have been made to study the pseudospin symmetry and

spin symmetry d[V (r)−S(r)]
dr = 0 or V (r)− S(r) = Constant in nuclei and in the Dirac

phenomenology [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48] (and see Ref. [49] and references therein).

Marcos et al. [38] have studied the similarities and differences between pseudospin and

spin symmetry in the relativistic framework. To do this, they have investigated the

effects of the symmetry breaking terms, spin-orbit potential and pseudospin-orbit

potential. In their recent paper [42], they have obtained particular aspects of the

spin and pseudospin symmetries by considering the different central potentials in the

Dirac phenomenology. Under the condition of the spin symmetry, Ginocchio [50]

has obtained the energy eigenvalues and corresponding wave functions of the Dirac

particles for equal scalar and vector triaxial, axially deformed and spherical oscillator

potentials.
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Solutions of the Dirac equation for particle dynamics in the relativistic quantum me-

chanics are very significant in describing the nuclear shell structure under the condition

of the pseudospin symmetry [1, 2, 55]. Thus, in recent years, there has been much

effort to investigate the pseudospin symmetry and spin symmetry by solving the Dirac

equation in terms of different methods for exactly solvable potentials [51, 52, 53, 54, 55,

56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79].

In the present thesis, we investigate the pseudospin symmetric solutions of the time-

independent Dirac equation for pseudoharmonic potential, Mie-type potential and

Hulthén plus ring-shaped potential with any spin-orbit coupling term κ. In the cal-

culations, we use the Nikiforov-Uvarov (NU) method [80] and Asymptotic Iteration

(AI) method [81]. Energy eigenvalue equations and corresponding wave functions

of the Dirac particles are obtained. Some numerical solutions are given in terms of

numerical values of the potential parameters. The contribution of angle-dependent

potential to the energy spectra of the Dirac particles is investigated by taking into

account the Hulthén plus ring-shaped potential. Particular cases of the potential are

also discussed. By considering some special limits, our results are reduced to the

well-known ones obtained previously. In addition, by solving the Dirac equation for

equal mixture of scalar and vector potentials together with tensor potential, we in-

vestigate the energy splitting between the two states in the pseudospin doublets. We

show that degeneracy between members of pseudospin doublet is removed by tensor

interactions. Effects of the potential parameters on the pseudospin doublet splitting

are also studied. Radial node structures of the lower and upper components of the

Dirac spinor are presented.

The thesis is organized as follows, pseudospin symmetry in nuclear physics is briefly

introduced in the following chapter. The Dirac equation with pseudospin symmetry

is presented in chapter 3. In chapter 4, solutions of the Dirac equation with well-

known potentials under the condition of the pseudospin symmetry are performed and

corresponding results are given. The last chapter is devoted to conclusion.
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CHAPTER 2

PSEUDOSPIN SYMMETRY IN NUCLEAR PHYSICS

The pseudospin symmetry has been successfully applied to explain different phenom-

ena in nuclear structure including deformation [4], superdeformation [5] and identical

bands [6, 7] since it was introduced in 1969 [1, 2]. Because of these successes, much

effort has been put into clarifying the origin of the pseudospin symmetry in atomic

nuclei since discovery of this symmetry [8, 9, 10, 11, 12, 13]. Blokhin et. al. [8, 9, 10]

have shown that there is a connection between the pseudospin symmetry and the rela-

tivistic mean field theory. Although the history of the pseudospin symmetry has been

very well known for a long time, its origin has no accurate explanation in the non-

relativistic framework. In recent years, Ginocchio [13] has noticed that pseudo-orbital

angular momentum l̃ is nothing but the usual orbital angular momentum of the small

(lower) component of the Dirac spinor. A connection between V (~r) + S(~r) ∼ 0 and

pseudospin symmetry has been also established in Refs. [13, 18] and then it has been

built that the origin of pseudospin symmetry is relativistic. After these pioneering

studies, there has been spent much efforts to investigate the pseudospin symmetry

and spin symmetry in nuclei [16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48].

Ginocchio [18, 19] has studied the relativistic magnetic dipole transitions and relativis-

tic Gamov-Teller transitions in nuclei under the condition of pseudospin symmetry.

He has shown that although these two transitions between the members of pseudospin

doublet are forbidden in the non-relativistic framework, both of them are admissible

relativistically. In the other work, he [20] has investigated the pseudospin symmetry

in nucleon-nucleus scattering and obtained that it has validity for medium energy

nucleon scattering. The violation of the pseudospin symmetry in nucleon-nucleus
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scattering has been studied in Ref. [10]. The effects of the pseudospin and spin sym-

metry breaking on the single-nucleon wave functions in nuclei have been explored in

Ref. [30]. By considering Zr and Sn isotopes from the proton drip line to the neutron

drip line, Meng et. al. [14] have explored the pseudospin symmetry in exotic nuclei.

They have found out that the competition between pseudo-centrifugal barrier and the

pseudo-orbital potentials determines the quality of the pseudospin symmetry. In order

to investigate the pseudospin symmetry in nuclei, solution of the Dirac equation for

Woods-Saxon potential has been obtained by Alberto et. al. [26]. They have also

studied the energy splittings between members of pseudospin doublets with nuclear

potential parameters. Based on the relativistic mean field theory, Chen et. al. [27]

have explored the origin of the pseudospin symmetry and its broken in real nuclei.

They have proved that pseudospin symmetry is approximate in real nuclei. The pseu-

dospin symmetry in the resonant states has been studied by solving the Dirac equation

for Woods-Saxon potential in Ref. [39].

2.1 The Dirac Hamiltonian

Ginocchio et. al. [12, 13] have indicated that origin of the pseudospin symmetry is

related with the invariance of the Dirac Hamiltonian for V (~r) + S(~r) = 0 under an

SU(2) algebra. In the presence of an external scalar S(~r) and vector V (~r) potentials,

the Dirac Hamiltonian is given as

H = [α · p + β (M + S(~r)) + V (~r)] (2.1)

where p = −i∇ is the three-dimensional momentum operator. Here, we take h̄ = c = 1

for the simplicity. In this equation, α and β are the 4× 4 usual Dirac matrices given

as

αi =


 0 σi

σi 0


 , β =


 I 0

0 −I


 with i = 1, 2, 3 (2.2)

where I is the 2× 2 unitary matrix and the three 2× 2 Pauli matrices σi are given by

5



σ1 =


 0 1

1 0


 σ2 =


 0 −i

i 0


 σ3 =


 1 0

0 −1


 . (2.3)

For two conditions: V (~r) + S(~r) = Cps and V (~r) − S(~r) = Cs where Cps and Cs

are constants, the Hamiltonian (2.1) is invariant under SU(2) transformation [82,

83]. Energy spectrums of some mesons having small spin-orbit splitting have been

explained by using the limit V (~r) − S(~r) = Cs [84]. In addition, this limit has been

used to investigate the spectrum of an antinucleon in the mean field of nucleons [49, 85].

The second limit leads to pseudospin symmetry in nuclei [12].

The pseudospin generators have the following form [12]

Si =


 s̃i 0

0 si


 . (2.4)

Here, si are the usual spin generators and are given as

si =
σi

2
(2.5)

s̃i = UpsiUp (2.6)

where Up = σ·p
p is the momentum-helicity unitary operator [9]. This operator preserves

the parity, time-reversal, rotational and translational invariance when it deals with

the transformation from the usual shell model space to pseudo shell model space [9].

Commutation relation between the Dirac Hamiltonian (2.1) and the operator Si is [26]

[H, Si] =


 [V (~r) + S(~r), s̃i] 0

0 0


 . (2.7)

When V (~r)+S(~r) = Cps or d
dr (V (~r)+S(~r)) = 0, Si commutes with the Hamiltonian.

Therefore, the operator Si generates an SU(2) symmetry of the Dirac Hamiltonian [33]

under the condition of the pseudospin symmetry.
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2.2 The Dirac Eigenfunctions

The Dirac wave functions for the two states in the pseudospin doublet structure are

given as [13, 14, 15]

Ψn,κ<0(~r) =




Fn,κ<0(r)
r Y l̃−1

jm (θ, φ)

i
Gn,κ<0(r)

r Y l̃
jm(θ, φ)


 (2.8)

Ψn,κ>0(~r) =




Fn,κ>0(r)
r Y l̃+1

jm (θ, φ)

i
Gn,κ>0(r)

r Y l̃
jm(θ, φ)


 (2.9)

where Gnκ(r) and Fnκ(r) are the lower and upper radial functions, respectively,

Y l̃
jm(θ, φ) and Y l

jm(θ, φ) are the pseudospin and spin spherical harmonics, respectively.

Here, κ are the eigenvalues of spin-orbit coupling operator K = −β(σ · L + 1) and

κ = (j + 1
2) > 0 and κ = −(j + 1

2) < 0 for the unaligned spin j = l − 1
2 and the

aligned spin j = l + 1
2 , respectively. The members of the pseudospin doublet contain

unaligned pseudospin for κ < 0 and aligned pseudospin for κ > 0. The two states in

the doublet have the same energy and connected by the pseudospin generators Si given

by Eq. (2.4). In the pseudospin symmetry, radial wave functions of the lower compo-

nents which are a doublet according to si are equal in shape and magnitude for the

members of the doublet [12, 13, 14]. This is the consequence of the relativistic pseu-

dospin symmetry SU(2). Thus, the node structures of the Gn,κ>0(r) and Gn,κ<0(r)

are also same. On the other hand, upper components Fn,κ<0(r) and Fn,κ>0(r) have

n and n − 1 nodes, respectively. One cannot reach these results by considering the

pseudospin symmetry in the non-relativistic framework. The structure of the radial

nodes occurring in pseudospin doublets has been investigated in Ref. [25] under the

condition of the pseudospin symmetry.

2.3 Pseudospin Symmetry Breaking

In the Dirac phenomenology, the following condition is necessary to form bound states

in real nuclei

Σ(~r) = V (~r) + S(~r) < E −M (2.10)

7



where M − E is the binding energy (for more details see Ref. [12, 22]). This means

that there has to be a region where binding energy is smaller than the depth of the

single-nucleon potential [12]. However, vector potential V (~r) and scalar potential S(~r)

have same magnitude but different in sign (V (~r) = −S(~r)) in the exact pseudospin

symmetry. Therefore, the bound Dirac valance states cannot be formed in the exact

pseudospin symmetry. Thus, pseudospin symmetry must be broken in nuclei [12].

Notwithstanding, it has been shown that the necessary breaking of the pseudospin

symmetry in nuclei is small [14, 22, 86, 87]. As a consequence, pseudospin symmetry

is an approximate symmetry in real nuclei.

In recent papers, the bound state properties of the nuclei have been explained by

considering the pseudospin symmetry breaking (see Ref. [20] and references therein).

In addition, Ginocchio has used the pseudospin symmetry breaking to reexamine the

nucleon-nucleus scattering. He has obtained that pseudospin symmetry has validity

for medium energy nucleon scattering.

2.4 Pseudospin Symmetry and QCD Sum Rules

The near equality in magnitude of a repulsive vector and an attractive scalar potentials

V (~r) ≈ −S(~r) in nuclear matter can be proved by using the QCD sum rules (see

Ref. [43] and references therein). One can obtain the following scalar and vector

potentials for the nucleon by using the detailed QCD sum rules [43]

S = −4π2σNρN

M2mq
(2.11)

V =
32π2ρN

M2
(2.12)

where σN is scalar density of quarks, ρN is taken to be the central matter density of

nuclei, q is the quark field operator, mq is the quark mass and N is the nucleon state.

In Eqs. (2.11) and (2.12), σN , ρN ,mq and M are positive. Thus, scalar potential is

attractive and vector potential is repulsive. This result is in good agreement with one

obtained in the relativistic mean field theory.

From Eqs. (2.11) and (2.12), the ratio of scalar potential to vector potential is
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S

V
= − σN

8mq
. (2.13)

In QCD, average quark mass mq and scalar density of quarks σN in the proton are

approximately 5MeV and 45MeV , respectively. Thus the ratio between S and V

becomes

S

V
≈ −1.1. (2.14)

Above result coincides mysteriously with one determined in relativistic mean field

models [49].
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CHAPTER 3

METHOD

3.1 The Dirac Equation with Pseudospin Symmetry

One of the most significant wave equations is the Dirac equation. It is commonly used

to describe the elementary spin-1/2 particles dynamics, such as electron, proton and

neutron, in relativistic quantum mechanics. Solutions of the Dirac equation in the

presence of the mixed potentials for the pseudospin symmetry are very essential in

describing the nuclear shell structure [1, 2, 55]. Thus, in recent years, investigation of

the pseudospin symmetry whose detailed discussion will be given in the next section

by solving the Dirac equation with exactly solvable potentials in terms of the different

methods has attracted much attention [51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,

63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79]. Solutions of the Dirac

and s(s̃)-wave Dirac Equations for the Woods-Saxon potential under the conditions of

the pseudospin and spin symmetry have been investigated in Refs. [51, 52, 53]. In the

pseudospin and spin symmetry limits, Jia et. al. [56] have found out the exact solution

of the s(s̃)-wave Dirac Equation with Eckart potential by using the sypersymmetric

quantum mechanics approach and functional analysis method. By considering same

potential, Zhang et. al. [54] and Soylu et. al. [55] have obtained the solutions of

the Dirac equation in terms of different methods for any spin-orbit coupling term κ

under the conditions of the pseudospin and spin symmetry. Approximate analytical

solutions of the Dirac equation with the Pöschl-Teller potential including the spin-

orbit coupling term have been studied by Jia et. al. [57, 59] and Xu et. al. [58].

They have obtained the bound state energy eigenvalues and corresponding wave func-

tions of the Dirac particles in the case of pseudospin symmetry. To get the energy

eigenvalues equation and the associated radial wave functions of the Dirac particles
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in the spin and pseudospin limits, Taskin [60] and Wei et. al. [61] have solved ap-

proximately the Dirac equation with the Manning-Rosen potential for the any κ term.

Berkdemir [62], Qiang et. al. [63] and Bayrak et. al. [64] have investigated the pseu-

dospin symmetry by solving the Dirac equation for the Morse potential in terms of

different methods. They have also given some numerical solutions for special values

of the relevant potential parameters. Pseudospin symmetric solution of the Dirac

equation for an angle-dependent potential has been solved by Berkdemir et. al. [65].

In their study, they have also discussed the contribution of the angle-dependent po-

tential to the energy eigenvalues of the Dirac particles. In addition, some authors

have sought pseudospin symmetric solutions of the Dirac equation for several physical

potentials [66, 67, 68, 69, 70, 71, 72].

Recently, exact solutions of the Dirac equation for the quadratic vector and scalar

potentials together with a linear tensor potential in the pseudospin and spin symmetry

cases have been studied by Lisboa et al. [79, 36]. More recently, Akcay [76, 77] has

obtained the exact solution of the the Dirac equation for scalar and vector quadratic

potentials and Coulomb-like tensor potential under the pseudospin and spin symmetry.

Both Lisboa et al. and Akcay have argued that the degeneracy between two states in

the pseudospin doublet can be removed by tensor interactions.

In the relativistic mean field theory, time-independent Dirac equation for a nucleon

with mass M moving in a repulsive vector potential V (~r) and an attractive scalar

potential S(~r) reads as follows [88]

[α · p + β (M + S(~r)) + V (~r)]Ψnκ(~r) = EnκΨnκ(~r) (3.1)

where Enκ is the relativistic energy of the system. The total angular momentum

operator J and spin-orbit coupling operator K = −β(σ · L + 1), where L is orbital

angular momentum, of the spherical nucleons commute with the Dirac Hamiltonian.

The eigenvalues of spin-orbit coupling operator are κ = (j+ 1
2) > 0 and κ = −(j+ 1

2) <

0 for the unaligned spin j = l − 1
2 and the aligned spin j = l + 1

2 , respectively.

(H, K, J2, Jz) can be taken as the complete set of the conservative quantities. Thus,

the Dirac spinors can be written according to radial quantum number n and spin-orbit

coupling quantum number κ as follows
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Ψnκ(~r) =


 fnκ(~r)

gnκ(~r)


 (3.2)

where fnκ(~r) is the upper (large) and gnκ(~r) is the lower (small) components of the

Dirac spinors. Inserting Eq. (3.2) into Eq. (3.1), we can get the following coupled

differential equations

fnκ(~r) =
(σ · p)

[Enκ −M − Σ(~r)]
gnκ(~r) (3.3)

gnκ(~r) =
(σ · p)

[Enκ + M −∆(~r)]
fnκ(~r) (3.4)

where Σ(~r) = V (~r) + S(~r) and ∆(~r) = V (~r) − S(~r). As we mentioned in the intro-

duction, the pseudospin symmetry occurs in the Dirac equation when Σ(~r) = Cps =

Constant and pseudo-orbital angular momentum is normal orbital angular momen-

tum of the lower (small) component of the Dirac spinor [12]. Thus, we deal with the

lower component of the Dirac spinor to investigate the pseudospin symmetry in the

Dirac phenomenology. By eliminating fnκ(~r) from Eq. (3.4), the following uncoupled

equation for the lower component can be obtained

{
σ · p 1

[Enκ −M − Σ(~r)]
σ · p− [Enκ + M −∆(~r)]

}
gnκ(~r) = 0. (3.5)

This equation can be separated into the angular and radial wave functions with respect

to potentials Σ(~r) and ∆(~r). By considering general form of the second-order differ-

ential equation (3.5), we can now give the derivation of the second-order differential

equations for the radial and angular wave functions of the Dirac spinor.

3.1.1 The Dirac Equation for Radial Potentials

If the potential considered has only radial dependence ∆(~r) = W (r), Eq. (3.5) is

reduced into the following form under the condition of the pseudospin symmetry

Σ(~r) = Cps = constant:

{(σ · p) (σ · p)− [Enκ −M − Cps] [Enκ + M −W (r)]} gnκ(~r) = 0. (3.6)
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Lower component of the Dirac spinor can be written in terms of radial and angular

functions as follows

gnκ(~r) = i
Gnκ(r)

r
Y l̃

jm(θ, φ)Λξ (3.7)

where Gnκ(r) is the lower radial function, Y l̃
jm(θ, φ) is the pseudospin spherical har-

monics, ξ = ±1
2 is the projection of pseudo-angular momentum on the z-axis and

Λξ are two component spinors, i.e


 1

0


 or


 0

1


. Thus, pseudo-orbital angular

momentum l̃ and pseudospin s̃ can be separately seen in the lower spinor component.

Inserting Eq. (3.7) into Eq. (3.6) and using the following relation [88]

σ · p =
σ · r̂
r

(r r̂ · p + iσ · L) (3.8)

together with the useful properties [89]

σ · L




Y l̃
jm(θ, φ)

Y l
jm(θ, φ)

=





(κ− 1)Y l̃
jm(θ, φ)

−(κ + 1)Y l
jm(θ, φ)

(3.9)

σ · ~r
r





Y l̃
jm(θ, φ)

Y l
jm(θ, φ)

=




−Y l

jm(θ, φ)

−Y l̃
jm(θ, φ)

(3.10)

Eq. (3.6) turns into a second-order differential equation:

[
d2

dr2
− κ(κ− 1)

r2
− (M + Enκ −W (r)) (M − Enκ + Cps)

]
Gnκ(r) = 0. (3.11)

This is the second-order Schrödinger-like radial equation for the lower component of

the Dirac spinors. Here, κ(κ− 1) = l̃(l̃ + 1) and relation between κ and l̃ is given as

κ =





(l̃ + 1) j = l̃ + 1/2 aligned pseudospin

−l̃ j = l̃ − 1/2 unaligned pseudospin
. (3.12)
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3.1.2 The Dirac Equation for Radial Plus Θ-dependent Potentials

Now, we consider radial plus angular-dependent potential ∆(~r) = W (r) + W (θ)
r2 . In

this case, under the condition of the pseudospin limit Σ(~r) = Cps = constant, Eq. (3.5)

becomes

{
p2 − [Enκ −M − Cps]

[
Enκ + M −

(
W (r) +

W (θ)
r2

)]}
gnκ(~r) = 0 (3.13)

where p2 = −~∇2. In the spherical coordinates, lower component of the Dirac wave

functions can be written as follows

gnκ(~r) =
G(r)

r
H(θ)Φ(φ)Λ̃ξ. (3.14)

Inserting Eq. (3.14) into Eq. (3.13), we obtain three second-order differential equations

for the angular and the radial wave functions as follows

d2Φ(φ)
dφ2

+ m̃2Φ(φ) = 0 (3.15)

d2H(θ)
dθ2

+
cos θ

sin θ

dH(θ)
dθ

+
[
l̃(l̃ + 1)− m̃2

sin2 θ
− γW (θ)

]
H(θ) = 0 (3.16)

d2G(r)
dr2

+

[
β2 − l̃(l̃ + 1)

r2
− γW (r)

]
G(r) = 0 (3.17)

with

γ = Enκ −M − Cps (3.18)

β2 = (Enκ + M)(Enκ −M − Cps) (3.19)

where m̃ and l̃ are separation constants and l̃(l̃ + 1) = κ(κ− 1).

3.1.3 The Dirac Equation for Radial Potential together with Tensor Po-

tential

In the relativistic mean field theories and relativistic Hartree approach model, nuclear

properties have been studied by using tensor coupling [90, 91, 92]. In those works,
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they have shown that single-particle level splitting in nuclei increases considerably

spin-orbit coupling. In this context, Alberto et. al. [79, 32, 93] have argued that

contribution of the tensor coupling to pseudospin splitting can be significant in nuclei

as well. They have found out that effects of the tensor coupling on the two states

in the pseudospin doublet are considerable. Thus, investigation of the pseudospin

doublet splitting by introducing tensor coupling is very significant.

The time-independent Dirac equation of a nucleon with mass M moving in the pres-

ence of a potential (more details can be found in Ref. [79] and references therein) is

given as

HΨ(~r) = EΨ(~r) (3.20)

where

H = α · p + βM + W (3.21)

is the Dirac Hamiltonian. Here W is the matrix potential and it can be written as

a linear combination of sixteen linearly independent matrices. Under the Lorentz

transformation, these matrices can be classified as scalar, pseudoscalar, vector, pseu-

dovector and tensor. In order to investigate the effects of the tensor interaction on

the pseudospin doublet splitting, we can consider the following potential

W = βS(~r) + V (~r)− iβα · r̂U(r) (3.22)

where V (r) is the time component of a vector potential, S(r) is a scalar potential and

U(r) is a tensor potential.

As mentioned in the section 2.1 , the Dirac spinor can be written in the following form

Ψnκ(~r) =


 fnκ(~r)

gnκ(~r)


 =




Fnκ(r)
r Y l

jm(θ, φ)

iGnκ(r)
r Y l̃

jm(θ, φ)


 (3.23)
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where Y l
jm(θ, φ) and Y l̃

jm(θ, φ) are the spin and pseudospin spherical harmonics, re-

spectively. Inserting Eq. (3.23) into Eq. (3.20), the Dirac equation becomes

(σ · p− iσ · r̂U(r))
iGnκ(r)

r
Y l̃

jm(θ, φ) = [Enκ −M − Σ(~r)]
Fnκ(r)

r
Y l

jm(θ, φ) (3.24)

(σ · p + iσ · r̂U(r))
Fnκ(r)

r
Y l

jm(θ, φ) = [Enκ + M −∆(~r)]
iGnκ(r)

r
Y l̃

jm(θ, φ). (3.25)

From now on, we consider that Σ(~r) = Cps = constant (pseudospin symmetry) and

∆(~r) = W (r) has only radial dependence. By using Eqs. (3.8), (3.9) and (3.10), one

can obtain the following coupled equations

(
d

dr
+

κ

r
− U(r)

)
Fnκ(r) = [M + Enκ −W (r)] Gnκ(r) (3.26)

(
d

dr
− κ

r
+ U(r)

)
Gnκ(r) = [M −Enκ + Cps] Fnκ(r). (3.27)

Eliminating Fnκ(r) from Eq. (3.26), second-order differential equation for the lower

radial component of the Dirac spinor is computed as

[
d2

dr2
− κ(κ− 1)

r2
+ (E + M −W (r)) (E −M − Cps)

+
2κ

r
U(r)− U(r)2 +

dU(r)
dr

]
Gnκ(r) = 0. (3.28)

In the literature, several methods such as the NU method, AI method, functional

analysis method, supersymmetric WKB approximation, supersymmetric quantum me-

chanics approach and exact quantization rule have been used to solve the Schrödinger,

Klein-Gordon and Dirac equations [54, 55, 56, 62]. In the present thesis, we shall use

the NU method, AI method and functional analysis method. In the next subsections,

we briefly introduce AI method and NU method.

3.2 The Asymptotic Iteration Method

Ciftci et al [81] have proposed the AI method to solve the second-order differential

equations which have the following form (see Ref. [64] and references therein)
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y
′′
n(r) = λ0(r)y

′
n(r) + s0(r)yn(r) (3.29)

where prime denotes the derivative with respect to r and λ0(r) is different from zero.

Here, λ0(r) and s0(r) are sufficiently differentiable functions. One can differentiate

Eq. (3.29) with respect to r and iterate it up to (k + 1)th and (k + 2)th derivatives

to obtain a general solution to the second-order differential equation. Then, one can

find out the following equations

y(k+1)
n (r) = λk−1(r)y

′
n(r) + sk−1(r)yn(r) (3.30)

y(k+2)
n (r) = λk(r)y

′
n(r) + sk(r)yn(r) (3.31)

where

λk(r) = λ
′
k−1(r) + sk−1(r) + λ0(r)λk−1(r) (3.32)

sk(r) = s
′
k−1(r) + s0(r)λk−1(r) (3.33)

which are called as the recurrence relations. The following equation can be easily

obtained from the ratio of the (k + 1)th and (k + 2)th derivatives :

d

dr
ln

[
y(k+1)

n (r)
]

=
y

(k+2)
n (r)

y
(k+1)
n (r)

=
λk(r)

[
y
′
n(r) + sk(r)

λk(r)yn(r)
]

λk−1(r)
[
y′n(r) + sk−1(r)

λk−1(r)yn(r)
] . (3.34)

Using asymptotic aspect of the method which is acceptable for adequately large k

sk(r)
λk(r)

=
sk−1(r)
λk−1(r)

=: ς(r) (3.35)

Eq. (3.34) can be turned into

d

dr
ln

[
y(k+1)

n (r)
]

=
λk(r)

λk−1(r)
(3.36)
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which leads to

y(k+1)
n (r) = D0 exp

(∫
λk(r)

λk−1(r)
dr

)
= D0λk−1(r) exp

(∫
[ς(r) + λ0(r)] dr

)
(3.37)

where D0 is the integration constant. Substituting Eq. (3.37) into Eq. (3.30), the

first-order differential equation is found as

y
′
n(r) = −ς(r)yn(r) + D0 exp

(∫
[ς(r) + λ0(r)] dr

)
. (3.38)

Physical solution of the Eq. (3.29) can be obtained by using the solution of the first-

order differential equation as

yn(r) = D1 exp
(
−

∫ r sn(r1)
λn(r1)

dr1

)
(3.39)

where D1 is the integration constant and n represents the radial quantum number.

Eq. (3.39) is called as a wave function generator. In the asymptotic iteration method,

energy eigenvalues are found out from the root of the following equation

∆k(r) = λk(r)sk−1(r)− λk−1(r)sk(r) = 0 with k = 1, 2, 3, ... (3.40)

where k is the iteration number. For an exactly solvable potential, the radial second-

order differential equation is converted to the form of Eq. (3.29). Then, sk(r) and λk(r)

parameters are computed by considering the recurrence relations given in Eqs. (3.32)

and (3.33) after determining s0(r) and λ0(r) parameters. Finally, using Eqs. (3.39)

and (3.40), energy eigenvalues equations and corresponding radial wave functions can

be obtained. As significant point, radial quantum number n is all times smaller than

iteration number k in the numerical solutions [81, 64].

3.3 The Nikiforov-Uvarov Method

Nikiforov et al. [80] have presented the NU method to obtain the exact solution of the

second-order differential equations such as the Schrödinger, Klein-Gordon and Dirac

equations. The second-order differential equations can be given as the following form
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Ψ′′(s) +
τ̃(s)
σ(s)

Ψ′(s) +
σ̃(s)
σ2(s)

Ψ(s) = 0 (3.41)

where σ(s) and σ̃(s) are at most second-degree polynomials, and τ̃(s) is a first-degree

polynomial. In the Nikiforov-Uvarov method, second-order differential equation is

reduced to hypergeometric type equation by using

Ψ(s) = Ω(s)y(s) (3.42)

transformation which leads

σ(s)y′′(s) + τ(s)y′(s) + λy(s) = 0 (3.43)

where

π(s) = σ(s)
Ω′(s)
Ω(s)

(3.44)

τ(s) = τ̃(s) + 2π(s) with τ ′(s) < 0 (3.45)

and

λ = λn = −nτ ′(s)− n(n− 1)
2

σ′′(s) with n = 0, 1, 2.... (3.46)

Solutions of Eq. (3.43) are given by the Rodrigues relation [94]

yn(s) =
Bn

ρ(s)
dn

dsn
[σn(s)ρ(s)] (3.47)

where Bn is the normalization constant and the weight function ρ(s) must satisfy the

following condition

[σ(s)ρ(s)]′ = τ(s)ρ(s) (3.48)

where prime denotes the derivative with respect to s. The function π(s) is defined as
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π(s) =
σ′(s)− τ̃(s)

2
±

√(
σ′(s)− τ̃(s)

2

)2

− σ̃(s) + kσ(s) (3.49)

and λ parameter is also given in terms of π′(s) and k as

λ = k + π′(s). (3.50)

The expression under the square root in Eq. (3.49) must be the square of a polynomial

of first degree [80], since π(s) is the first-degree polynomial. Then discriminant of the

square root has to be zero. Using this relation, an equation for k is found and then,

π(s) can be easily obtained from relevant k values. Finally, comparing Eq. (3.46) with

Eq. (3.50), one can calculate the energy eigenvalues for a given potential.
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CHAPTER 4

CALCULATIONS AND RESULTS

4.1 Solutions of the Dirac Equation with Pseudospin Symmetry

Solutions of the Dirac equation in the presence of the mixed potentials for the pseu-

dospin symmetry are very essential in describing the nuclear shell structure [1, 2, 55].

Thus, in recent years, there has been increased attention to investigate the pseu-

dospin symmetry by solving the Dirac equation with exactly solvable potentials such

as Woods-Saxon potential [51, 52, 53], Eckart potential [54, 55, 56], Pöschl-Teller po-

tential [57, 58, 59], Manning-Rosen potential [60, 61], Morse potential [62, 63, 64]etc..

In this section, we shall investigate the solution of the Dirac equation with some well-

known potentials under the condition of the pseudospin symmetry. In the calculations

we use different methods such as NU method and AI method.

4.1.1 Pseudoharmonic Potential

The pseudoharmonic potential plays a fundamental role in chemical and molecular

physics, since it can be used to describe the molecular vibrations and to obtain

the energy spectrum of linear and non-linear systems. One can consider the pseu-

doharmonic potential as an intermediate potential between the harmonic oscillator

potential and the Morse-type potentials which are more realistic anharmonic poten-

tials in good agreement with experimental data [94, 95]. The pseudoharmonic po-

tential and anharmonic potentials have wide applications in molecular and chemical

physics [96, 97, 98, 99, 100]. The pseudoharmonic potential has some advantages ac-

cording to the other anharmonic potentials such as Morse potential. For instance, wave

function of the pseudoharmonic potential vanishes at the origin, but the Morse po-
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Figure 4.1: Pseudoharmonic potential as functions of the equilibrium intermolecular
separation re and the dissociation energy De

tential does not. Besides, the pseudoharmonic potential is one of the exactly solvable

potentials like Coulombic potential. The pseudoharmonic potential is also important

to define the real physical systems which have generally anharmonical properties. Re-

cently, solutions of the Schrödinger and the Klein-Gordon equations for the pseudohar-

monic potential have been investigated [101, 102, 103, 104, 105, 106]. In those works,

the authors have obtained the energy spectra of all the bound states. In other work,

Gang et al. [107] have considered the special case of the pseudoharmonic potential

evaluated the energy spectra and corresponding wave functions of the Klein-Gordon

and Dirac equations by using supersymmetric quantum mechanics, shape invariance

and alternative method. Recently, pseudoharmonic potential has also been studied by

Dong to investigate the realization of the creation and annihilation operators [108].

22



The pseudoharmonic potential has the following form [109]

V (r) = De

(
r

re
− re

r

)2

(4.1)

where De is the dissociation energy and re is the equilibrium intermolecular separation.

This potential can be simply written as [102, 110, 111]

V (r) = Ar2 +
B

r2
+ C (4.2)

where

A = Der
−2
e , B = Der

2
e and C = −2De. (4.3)

We now investigate the solution of the Dirac equation with pseudoharmonic potential

given in Eq. (4.2) under the condition of the pseudospin symmetry. By considering

Eq. (3.11), we obtain the following second order differential equation for the relevant

potential

[
d2

dr2
− α

r2
− ν2r2 − µ

]
Gnκ(r) = 0 (4.4)

where α, ν and µ are the dimensionless parameters given as

α = κ(κ− 1) + γB (4.5)

ν =
√

Aγ (4.6)

µ = β + Cγ (4.7)

with

γ = Enκ −M − Cps (4.8)

β = (M + Enκ)(M − Enκ + Cps). (4.9)

By using the following coordinate transformation
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s = r2 (4.10)

we obtain

d2Gnκ(s)
ds2

+
1
2s

dGnκ(s)
ds

− 1
4s2

[
ν2s2 + µs + α

]
Gnκ(s) = 0. (4.11)

In this form of the above equation, we can use the Nikiforov-Uvarov method to evaluate

the solution of the relevant second-order differential equation. Thus, the following

polynomials are obtained by comparing Eq. (4.11) with Eq. (3.41):

τ̃(s) = 1, σ(s) = 2s, and σ̃(s) = −(ν2s2 + µs + α). (4.12)

From Eqs. (3.49) and (4.12), we get the π(s) as follow

π(s) =
1
2
± 1

2

√
4ν2s2 + 4(µ + 2k)s + 1 + 4α. (4.13)

In this equation, discriminant of the square root has to be zero due to π(s) is at most

first-degree polynomial. Then, we can determine the k values as

k± = −µ

2
± ν

2
√

1 + 4α (4.14)

which yields

π(s) =





1
2 + 1

2(2νs−√1 + 4α) for k− = −µ
2 − ν

2

√
1 + 4α

1
2 − 1

2(2νs−√1 + 4α) for k− = −µ
2 − ν

2

√
1 + 4α

1
2 + 1

2(2νs +
√

1 + 4α) for k+ = −µ
2 + ν

2

√
1 + 4α

1
2 − 1

2(2νs +
√

1 + 4α) for k+ = −µ
2 + ν

2

√
1 + 4α





. (4.15)

In the Nikiforov-Uvarov method, τ ′(s) < 0 must be satisfied in order to obtain a

physical eigenfunction. To do this, we can take the k− = −µ
2 − ν

2

√
1 + 4α and then,

we have
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π(s) =
1
2
− 1

2
(2νs−√1 + 4α). (4.16)

τ(s) is obtained from Eq. (3.45) as

τ(s) = −2νs + 2 +
√

1 + 4α. (4.17)

Using Eqs. (3.46) and (3.50) and combining Eqs. (4.16) and (4.17), we find the λn and

λ, respectively, as

λn = λ = 2nν (4.18)

λ = −µ

2
− ν

2
(
2 +

√
1 + 4α

)
. (4.19)

Comparing Eq (4.18) with Eq. (4.19) and recalling the values of α, ν, µ, γ and β given

in Eqs. (4.5), (4.6), (4.7), (4.8) and (4.9), respectively, we can consequently obtain the

following energy eigenvalue equation

A

(
2 + 4n +

√
(2κ− 1)2 + 4(Enκ −M − Cps)B

)2

−(Enκ −M − Cps)(Enκ + M − C)2 = 0. (4.20)

In the pseudospin symmetry limit, the Dirac wave function Gnκ(r) can be found

out in terms of special orthogonal functions after obtaining Ω(s) and ynκ(s) given in

Eqs. (3.44) and (3.47), respectively. Using Eq. (3.44) with Eqs. (4.12) and (4.16), we

have

Ω(s) = s
1
4
+ 1

4

√
1+4αe−

νs
2 . (4.21)

Considering Eq. (3.48) with Eqs. (4.12) and (4.17), ρ(s) is obtained as

ρ(s) = s
1
2

√
1+4αe−νs (4.22)

and then, we get the ynκ(s) given by equation (3.47) as
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ynκ(s) = Bnκeνss−
1
2

√
1+4α dn

dsn

(
(2s)ns

1
2

√
1+4αe−νs

)
(4.23)

where Bnκ is the normalization constant. ynκ(s) can be expressed in terms of the

generalized Laguerre Polynomials as follows [106]

ynκ(s) = BnκLε
n(νs) (4.24)

where ε = 1
2

√
1 + 4α. Finally, the lower radial wave function Gnκ(r) is obtained as

Gnκ(r) = Cnκr
1
2
+εe−

νr2

2 Lε
n(νr2). (4.25)

Here, normalization constant Cnκ is given in Refs. [94, 135] as

Cnκ =

√√√√2ν(1+ ε
2)n!(

n + ε
2

)
!

. (4.26)

Consequently, upper radial wave function can be found from the following equation

Fnκ(r) =
1

M −Enκ + Cps

(
d

dr
− κ

r

)
Gnκ(r)

4.1.2 Mie-Type Potential

Mie-type potentials [112] can be taken by the following general form

VMt =
A

r2
− B

r
+ C. (4.27)

Kratzer-Fues potential can be given as an example on the Mie-type potentials by

setting A = Der
2
e , B = 2Dere and C = 0 [113, 114]

VKF = −De

(
2re

r
− r2

e

r2

)
(4.28)

where De is the dissociation energy and re is the equilibrium intermolecular length.
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Figure 4.2: Kratzer-Fues potential as functions of the equilibrium intermolecular sep-
aration re and the dissociation energy De

The other example is the modified Kratzer potential obtained by setting A = Der
2
e ,

B = 2Dere and C = De (see Ref. [115] and references therein) as

VMK = De

(
r − re

r

)2

. (4.29)

One can easily see that this potential is shifted in amount of De from the standard

Kratzer potential. Kratzer-Fues and modified Kratzer potentials have been considered

as a model to describe internuclear vibration of a diatomic molecule [116, 117, 118,

119, 120]. To find out the exact energy levels of all bound states and corresponding

wave functions, some authors have solved the Schrödinger equation for these Mie-type

potentials [130, 122]. In the pseudospin symmetry notion, one can include the diatomic

potential models with the reduced mass (µ = m1m2
m1+m2

) if the nuclei have masses m1

and m2 [54]. Recently, considering some diatomic molecular potential models such
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Figure 4.3: The modified Kratzer potential as functions of the equilibrium intermolec-
ular separation re and the dissociation energy De, respectively

as Eckart potential [54] and Pöschl-Teller potential [58], the pseudospin symmetry

and spin symmetry have been investigated by solving the Dirac equation in terms of

different methods. We now investigate the bound state solution of the Dirac equation

for the nuclei by considering Mie-type potential under the pseudospin symmetry.

In Eq. (3.11), if we take the W (r) as the Mie-type potential, then we have the following

second-order differential equation for the lower (small) component of the Dirac spinor

[
d2

dr2
− κ(κ− 1)

r2
− γ

(
A

r2
− B

r
+ C

)
− β2

]
Gnκ(r) = 0 (4.30)

where

γ = Enκ −M − Cps, (4.31)

β2 = (M + Enκ)(M − Enκ + Cps). (4.32)
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In order to obtain the solution of Eq. (4.30), we should convert this equation into

the form of Eq. (3.29). If we take Gnκ(r) = r
1
2 gnκ(r), then Eq. (4.30) reduces to the

following form

d2gnκ(r)
dr2

+
1
r

dgnκ(r)
dr

+
[
−ε2

r2
+

ν2

r
− µ2

]
gnκ(r) = 0 (4.33)

where ε2 = κ(κ−1)+γA+ 1
4 , ν2 = γB and µ2 = γC +β2. Considering the asymptotic

behavior of the radial wave function as gnκ(∞) ∼ e−µr for r →∞ and gnκ(0) ∼ rε for

r → 0, the reasonable physical solution can be expressed as

gnκ(r) = rεe−µrΛnκ(r). (4.34)

Substituting Eq. (4.34) into Eq. (4.33), we get the following second-order homogeneous

linear differential equation

d2Λnκ(r)
dr2

=
(

2µr − 2ε− 1
r

)
dΛnκ(r)

dr
+

(
2εµ + µ− ν2

r

)
Λnκ(r) (4.35)

We can determine the s0(r) and λ0(r) parameters by comparing Eq. (4.35) with

Eq. (3.29) as

s0(r) =
2εµ + µ− ν2

r
(4.36)

λ0(r) =
2µr − 2ε− 1

r
(4.37)

From Eqs. (4.36) and (4.37), one can easily see that s0(r) and λ0(r) parameters are

sufficiently differentiable functions and λ0(r) is different from zero. Thus, Eq. (4.35) is

suitable to use the asymptotic iteration method. Considering the recurrence relations

given in Eqs. (3.32) and (3.33), we can calculate the other parameters as follows
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s1(r) =
4εµ2 + 2µ2 − 2µν2

r
+

2ν2 + 2εν2 − 6εµ− 2µ− 4ε2µ

r2
(4.38)

λ1(r) = 4µ2 − 6µε + 3µ + ν2

r
+

2(ε(2ε + 3) + 1)
r2

(4.39)

s2(r) =
(µ + 2εµ− ν2)(6 + 4ε2 + ε(10− 6µr)− 5µr + 4µ2r2 − rν2)

r3
(4.40)

λ2(r) =
2(1 + ε)(1 + 2ε)(4µr − 2ε− 3) + 8µ2(µr − 2ε− 1)r2

r3

+
4(ε− µr + 1)ν2r

r3
(4.41)

... etc.

Using Eq. (3.40), we get the following eigenvalues equations

ε0 =
ν2 − µ

2µ
from s0(r)λ1(r)− s1(r)λ0(r) = 0 (4.42)

ε1 =
ν2 − 3µ

2µ
from s1(r)λ2(r)− s2(r)λ1(r) = 0 (4.43)

ε2 =
ν2 − 5µ

2µ
from s2(r)λ3(r)− s3(r)λ2(r) = 0 (4.44)

... etc.

We can easily generalize the above equations as

εn =
ν2 − (2n + 1)µ

2µ
, n = 0, 1, 2, ... (4.45)

Thus, the energy eigenvalues equation for the nuclei in the relativistic Mie-type po-

tentials is obtained by using the Eq. (4.45) and recalling the values of ε, µ, ν, γ and β

as follow

(M + Enκ − C)
[
1 + 2n +

√
(2κ− 1)2 + 4(Enκ −M − Cps)A

]2

+(Enκ −M − Cps)B2 = 0 (4.46)

Eq. (4.46) is a rather complicated transcendental equation. However, energy eigen-

values can be found by setting the parameters in the Mie-type potentials to suitable
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values.

Now, let’s evaluate the eigenfunction for the Mie-type potentials in the pseudospin

symmetry. The eigenfunctions can be calculated by using Eq. (3.31) as follows

Λ0(r) = D1 (4.47)

Λ1(r) = −D1(ν2 − 2µ)

(
1− 2µr

ν2−3µ
µ + 1

)
(4.48)

Λ2(r) = D1(ν2 − 4µ)(ν2 − 3µ)

×

1− 4µr

ν2−5µ
µ + 1

+
4µ2r2

(
ν2−5µ

µ + 1
)(

ν2−5µ
µ + 2

)

 (4.49)

... etc.

General formula for Λn(r) can be obtained from above equations as [64]

Λn(r) = D1(−1)n

[
2n−1∏

k=n

(ν2 − (k + 1)µ)

]
1F1(−n, 2εn + 1; 2µr) (4.50)

which leads

Gnκ(r) = rεn+ 1
2 e−µrC2(−1)n

[
2n−1∏

k=n

(ν2 − (k + 1)µ)

]
1F1(−n, 2εn + 1; 2µr). (4.51)

Radial wave function of lower component of the Dirac spinor can be converted into the

following form when hypergeometric function 1F1 is written in terms of the Laguerre

polynomials

Gnκ(r) = Nnκrεn+ 1
2 e−µrL2εn

n (2µr) (4.52)

where N is the normalization constant given as [64]

Nnκ =
1
n!

(2µ)εn+ 1
2

√
(n− 2εn)!

n!
. (4.53)
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And upper component of the Dirac spinor can be calculated from the following relation

for the pseudospin symmetry case

Fnκ(r) =
1

M −Enκ + Cps

(
d

dr
− κ

r

)
Gnκ(r) (4.54)

Here, Fnκ(r) is admissible for E 6= M +Cps which is valid only for negative energy so-

lutions. Thus, only negative energy spectrum is obtained in the pseudospin symmetry

limit.

4.1.3 Hulthén plus Ring-Shaped Potential

One of the significant short-range potentials is the Hulthén potential [123] which acts

like a Coulomb potential under r → 0 limitation. It has been widely used in the

solid-state physics [124], atomic physics [125], nuclear and particle physics [126] and

chemical physics [127, 128] (see Ref. [128] and more references therein). Recently,

some authors have also studied the Hulthén potential in the non-relativistic and the

relativistic quantum mechanics [129, 130, 131, 132]. Ring-shaped potentials which

have applications to ring-shaped cyclic polyene and benzene type organic molecules

have been considered to solve the Schrödinger equation and Dirac equation [65, 133,

134]. Thus, it is worth to investigate the solution of the Dirac equation for the

generalized Hulthén potential plus a ring-shaped potential under the condition of the

pseudospin symmetry.

The Hulthén plus ring-shaped potential can be given as

V (r, θ) = −Zα
e−αr

1− qe−αr
+ β

cos2 θ

r2 sin2 θ
(4.55)

where α and β are the screening parameter and a positive real constant, respectively.

Z is related with atomic number when the potential is used for atomic structure and

q is the deformation parameter. The Hulthén plus ring-shaped potential has both

radial and angular dependence. Thus, we consider Eqs. (3.15), (3.16) and (3.17) to

investigate the pseudospin symmetric solution of the Dirac equation for the relevant
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Figure 4.4: The Hulthén and the Hulthén plus ring-shaped potentials as functions of
potential parameters and θ.

potential. Then, we obtain the following three second-order differential equations by

using Eqs. (3.15), (3.16) and (3.17)

d2Φ(φ)
dφ2

+ m̃2Φ(φ) = 0 (4.56)

d2H(θ)
dθ2

+
cos θ

sin θ

dH(θ)
dθ

+
(

l̃(l̃ + 1)− m̃2 + γβ cos2 θ

sin2 θ

)
H(θ) = 0 (4.57)

d2R(r)
dr2

+

(
− l̃(l̃ + 1)

r2
+ ς2 +

γZαe−αr

1− qe−αr

)
R(r) = 0 (4.58)

For bound states, we have the boundary conditions that Φ(φ + 2π) = Φ(φ), H(0)
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and H(π) have a finite value and R(0) = R(∞) = 0 in Eqs. (4.56), (4.57) and (4.58),

respectively.

4.1.3.1 The φ-dependent equation

Taking into account the boundary condition Φ(φ + 2π) = Φ(φ), solution of Eq. (4.56)

can be obtained immediately as

Φm̃(φ) =
1√
2π

eim̃φ (4.59)

where m̃ = 0,±1,±2....

4.1.3.2 The θ-dependent equation

In order to obtain the solution of Eq. (4.57), we introduce a new variable s = cos θ

and set

<̃ = l̃(l̃ + 1)− m̃2, =̃ = l̃(l̃ + 1) + γβ. (4.60)

Then, Eq. (4.57) becomes

d2H(s)
ds2

− 2s

1− s2

dH(s)
ds

+
1

(1− s2)2
(
<̃ − =̃s2

)
H(s) = 0. (4.61)

Comparing Eq. (4.61) with Eq. (3.41), we get the following polynomials

τ̃(s) = −2s, σ(s) = 1− s2, σ̃(s) = <̃ − =̃s2. (4.62)

Using Eq. (3.49), π(s) is obtained as

π(s) = ±
√

(=̃ − k)s2 + (k − <̃). (4.63)

As mentioned, discriminant of the square root has to be zero. Then, the function π(s)

is obtained in the following four possible values
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π(s) = ±




√
=̃ − <̃ for k+ = =̃(√
=̃ − <̃

)
s for k− = <̃



 (4.64)

In the Nikiforov-Uvarov method, τ ′(s) < 0 must be satisfied in order to obtain a

physical solution. Thus, one can choose the following k values to satisfy this condition

k− = <̃ (4.65)

which leads to

π(s) = −
(√

=̃ − <̃
)

s. (4.66)

From Eq. (3.45), τ(s) is calculated as

τ(s) = −2s

(
1 +

√
=̃ − <̃

)
. (4.67)

Using Eqs. (3.46) and (3.50), we obtain

λn′ = n′2 + n′
(

1 + 2
√
=̃ − <̃

)
(4.68)

λ = <̃ −
(√

=̃ − <̃
)

(4.69)

where we put prime on n coming from θ-dependent part to distinguish it from n

coming from radial part. Recalling the values of =̃, <̃ and γ and comparing Eq. (4.68)

with Eq. (4.69), we have

l̃(l̃ + 1)− m̃2 −
√

(E −M − Cps)β + m̃2 = n′2 + n′ + 2n′
√

(E −M − Cps)β + m̃2.

(4.70)

Making some arrangement on Eq. (4.70), one can obtain

35



l̃(l̃ + 1) + (E −M − Cps)β =
(

n′ +
√

(E −M − Cps)β + m̃2

)

×
(

n′ +
√

(E −M − Cps)β + m̃2 + 1
)

. (4.71)

By setting l′(l′ + 1) = l̃(l̃ + 1) + (E −M − Cps)β, Eq. (4.71) becomes

l′(l′ + 1) =
(

n′ +
√

(E −M − Cps)β + m̃2

)(
n′ +

√
(E −M − Cps)β + m̃2 + 1

)
.

(4.72)

From Eq. (4.72), one can easily see that there arises the following relation between l′

and n′

n′ = l′ − µ n′ = 0, 1, 2... (4.73)

where µ =
√

(E −M − Cps)β + m̃2. Here, although the parameter l′ does not need

to be an integer, n′ has to be an integer. Therefore, l′−µ term has to be an integer. In

Eq. (4.73), l′ term is called as the ’modified’ pseudo-orbital angular quantum number

because of that the usual pseudo-orbital angular quantum number l̃ is destroyed by

the contribution coming from the angle-dependent potential. This result coincides

with previous one obtained in Ref. [65].

To obtain the θ-dependent angular wave function, we should first calculate Ω(s) and

y(s). Ω(s) can be found out by using Eq. (3.44) as

Ω(s) =
(
1− s2

)µ
2 (4.74)

After calculating the weight function ρ(s) given in Eq. (3.48), we can obtain the

solution of hypergeometric type equation (3.43). By using Eqs. (4.62) and (4.67), we

first get the following weight function

ρ(s) =
(
1− s2

)µ
. (4.75)
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Then, yn′(s) is found from Eq. (3.47) as

yn′(s) = Bn′
(
1− s2

)−µ dl′−µ

dsl′−µ

[
(1− s2)l′

]
(4.76)

yn′(s) = Bn′P
µ, µ
n′ (s) (4.77)

where Bn′ is the normalization constant. Finally, we obtain the θ-dependent wave

function in terms of associated-Legendre functions by setting s = cos θ as follows [94]

Hn′(θ) = Bn′ (sin θ)µ Pµ,µ
n′ (cos θ) (4.78)

The normalization constant can be obtained from the orthogonality relation of the

associated-Legendre functions as [136]

Bn′ =

√
(2n′ + 2µ + 1)n′!

2Γ (n′ + 2µ)
. (4.79)

4.1.3.3 The radial equation

Now, we study the radial equation given in Eq. (4.58). Due to the centrifugal-like

term, radial equation cannot be solved exactly. Therefore, the following approximation

which is valid only small α value can be used to get an approximate analytical solution

of the radial Eq. (4.58) [63]

1
r2
≈ α2e−αr

(1− qe−αr)2
. (4.80)

Considering above approximation and introducing a new variable s = e−αr, Eq. (4.58)

becomes

d2R(s)
ds2

+
(1− qs)
s(1− qs)

dR(s)
ds

+
1

s2(1− qs)2
(
νs2 + ηs− ε2

)
R(s) = 0 (4.81)

with
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ε2 = − ς2

α2
(4.82)

ν = q2 ς2

α2
− q

γZ

α
(4.83)

η =
γZ

α
− 2q

ς2

α2
− L̃(L̃ + 1) (4.84)

L̃(L̃ + 1) = (n′ + µ)(n′ + µ + 1) + µ2 − m̃2. (4.85)

Comparing Eq. (4.81) with Eq. (3.41) and tracking similar calculations used to find

out the solution of the angle-dependent second-order differential equation, we get the

following polynomials

τ̃(s) = 1− qs, σ(s) = s(1− qs), σ̃(s) = νs2 + ηs− ε2 (4.86)

π(s) = −q
s

2
− 1

2





2qε + q

√
1 +

4L̃(L̃ + 1)
q


 s− 2ε


 (4.87)

τ(s) = 1 + 2ε− q


2 + 2ε +

√
1 +

4L̃(L̃ + 1)
q


 s (4.88)

λn = qn2 + qn


1 + 2ε +

√
1 +

4L̃(L̃ + 1)
q


 (4.89)

λ =
γZ

α
− L̃(L̃ + 1)− q

(
ε +

1
2

)
1 +

√
1 +

4L̃(L̃ + 1)
q


 . (4.90)

Recalling γ and ε and comparing Eq. (4.89) with Eq. (4.90), relativistic energy eigen-

values equation is obtained as

[M −E + Cps][M + E] = α2


−

(M−E+Cps)Z
qα − L̃(L̃+1)

q − n2 − n

√
1 + 4L̃(L̃+1)

q

2n + 1 +
√

1 + 4L̃(L̃+1)
q

− 1
2




2

(4.91)

Radial wave function can be obtained by using the same procedure used to find the

θ-dependent angular wave function as

R(r) = Be−αεr
(
1− qe−αr

) 1
2
+%

P 2ε,2%
n (1− 2qe−αr) (4.92)
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where % = 1
2

√
1 + 4L̃(L̃+1)

q .

4.1.4 Woods-Saxon plus Coulomb-like Tensor Potential

The Woods-Saxon potential which is a spherically symmetric potential plays an essen-

tial role in nuclear physics and microscopic physics, since it can be used to describe

the nucleon-heavy nucleus interactions. The Woods-Saxon potential is given by [137]

V (r) = − V0

1 + e
r−R

a

(4.93)

where V0 is the potential depth, a is the diffusivity related with the surface thickness

and R is the width of the potential.

Under the condition of the pseudospin symmetry, the radial dependent potential W (r)

and the tensor potential U(r) can be taken as

W (r) = − V0

1 + e
(r−R)

a

, U(r) = −D

r
(4.94)

where D is a constant. By inserting above potentials into Eq. (3.28) and defining the

following new parameters together with x = r −R

γ̃ =
(κ + D)(κ + D − 1)

R2
(4.95)

µ̃ = (E −M − Cps)V0 (4.96)

β̃ = (E + M)(E −M − Cps) (4.97)

ν =
1
a

(4.98)

the second-order differential equation obtained for the lower radial wave function

Gnκ(r) transforms into

d2Gnκ(x)
dx2

−
(

γ̃(
1 + x

R

)2 −
µ̃

1 + eνx
− β̃

)
Gnκ(x) = 0. (4.99)
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Figure 4.5: The Woods-Saxon potential as functions of the width R and the diffusivity
a of the potential.

This equation can not be solved analytically for γ̃ 6= 0 because of the pseudospin-orbit

coupling term γ̃

(1+ x
R)2 . Therefore, we shall use the Pekeris approximation [138] in

order to deal with the pseudospin-orbit coupling term.

In the Pekeris approximation, the centrifugal potential is expanded in a series around

x = 0 as

Vso(r) =
(κ + D)(κ + D − 1)

r2
=

γ̃(
1 + x

R

)2

= γ̃

(
1− 2

x

R
+ 3

( x

R

)2
− 4

( x

R

)3
+ ...

)
. (4.100)

This series expansion is valid only for low vibrational energy states. Thus, we can use

this expansion near the minimum point r ≈ R where the maximum force is experienced

(see Ref. [139] and references therein). Thus, it is sufficient to keep expansion terms

only up to the second order. The following form of the potential can be used instead
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of the centrifugal potential in the Pekeris approximation [62]

Ṽso(x) = γ̃

(
D0 +

D1

1 + eνx
+

D2

(1 + eνx)2

)
(4.101)

where D0, D1 and D2 are new arbitrary parameters. The expression of Eq. (4.101)

can be expanded around x = 0 up to the second order term as

Ṽso(x) = γ̃

((
D0 +

D1

2
+

D2

4

)
− ν

4
(D1 + D2)x +

ν2

16
D2x

2...

)
. (4.102)

Comparing the equal powers of Eqs. (4.102) and (4.100), arbitrary parameters D0, D1

and D2 are found in terms of a(= 1/ν) and R as follows

D0 = 1− 4
νR

+
12

ν2R2
(4.103)

D1 =
8

νR
− 48

ν2R2
(4.104)

D2 =
48

ν2R2
. (4.105)

Now, we can take the Ṽso(x) potential instead of the pseudospin-orbit coupling poten-

tial.

Defining a new variable y = 1
1+eνx and inserting it into Eq. (4.99) yields

y(1− y)
d2

dy2
Gnκ(y) + (1− 2y)

d

dy
Gnκ(y)

− 1
ν2y(1− y)

(
(γ̃D0 − β̃) + (γ̃D1 − µ̃)y + γ̃D2y

2
)

Gnκ(y) = 0. (4.106)

By setting the following factorization

G(y) = yσ̃(1− y)τ̃g(y) (4.107)

with
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σ̃ =

√
γ̃D0

ν2
− β̃

ν2
(4.108)

τ̃ =

√
γ̃(D0 + D1 + D2)

ν2
− β̃ + µ̃

ν2
(4.109)

and substituting it into Eq. (4.106), we obtain

y(1− y)
d2g(y)
dy2

+
(
c̃− (ã + b̃ + 1)y

) dg(y)
dy

− ã b̃ g(y) = 0 (4.110)

where

ã = σ̃ + τ̃ +
1
2
− 1

2

√
1 + 4

γ̃D2

ν2
(4.111)

b̃ = σ̃ + τ̃ +
1
2

+
1
2

√
1 + 4

γ̃D2

ν2
(4.112)

c̃ = 2σ̃ + 1. (4.113)

Eq. (4.110) is the well-known hypergeometric equation and its solution can be written

in terms of hypergeometric functions. Thus, recalling the variables y and x and the

value of ν, final solution of the lower radial wave function of the Dirac spinor can be

written as follows

Gnκ(r) = C1

(
1 + e

r−R
a

)q̃
e

τ̃(r−R)
a 2F1

(
ã, b̃, c̃;

1

1 + e
r−R

a

)
(4.114)

where

q̃ = −(σ̃ + τ̃). (4.115)

We can also obtain the other component of the Dirac spinor under the pseudospin

symmetry by using Eq. (3.27) as follows

Fnκ(r) =
C1

M −E + Cps

(
1 + e

r−R
a

)q̃
e

τ̃(r−R)
a

{[
−κ + D

r
+

1
a

(
q̃

1 + e
−(r−R)

a

+ τ̃

)]

× 2F1

(
ã, b̃, c̃;

1

1 + e
r−R

a

)
+

ãb̃

c̃
2F1

(
ã + 1, b̃ + 1, c̃ + 1;

1

1 + e
r−R

a

)}
(4.116)
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where we have used the following identity of the hypergeometric function [140]

d

dz
2F1(ξ1, ξ2, ξ3; z) =

ξ1ξ2

ξ3
2F1(ξ1 + 1, ξ2 + 1, ξ3 + 1; z). (4.117)

Here, Fnκ(r) is admissible for E 6= M + Cps which is valid only for negative energy

solutions. Thus, the energy spectrum obtained in the pseudospin symmetry limit is

negative.

The hypergeometric function 2F1 can be reduced to polynomial degree n if ã = −n or

b̃ = −n, where n is an integer. Therefore, one can determine that lower radial wave

function Gnκ(r) can be finite under the following quantum condition

ã = −n, n = 0, 1, 2, ... (4.118)

By substituting Eqs. (4.108) and (4.109) into Eq. (4.111) together with quantum

condition ã = −n, we can get the energy eigenvalues equation for the nuclei under the

pseudospin symmetry limit as

E2 −M2 − Cps(E + M) =

γ̃D0 − 1
a2

(
n +

1
2
− 1

2

√
1 + 4γ̃D2a2 +

√
γ̃D3a2 − (E −M − Cps)(E + M + V0)a2

)2

(4.119)

4.1.5 Pseudoharmonic Potential together with Tensor Potential

We shall consider the pseudoharmonic potential given in Eq. (4.1) as a radial potential

W (r) whereas the linear tensor potential is taken as

U(r) = σr (4.120)

where σ is a constant. By inserting these potentials into Eq. (3.28), the second-order

differential equation can be transformed into

d2

dr2
Gnκ(r) +

[
β − µ(µ− 1)

r2
− ν2r2

]
Gnκ(r) = 0 (4.121)
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where

γ = Enκ −M − Cps (4.122)

ν =
√

σ2 + A(Enκ −M − Cps) (4.123)

µ =
1
2

+
1
2

√
1 + 4l̃(l̃ + 1) + 4(Enκ −M − Cps)B (4.124)

β = (Enκ −M − Cps)(Enκ + M − C) + 2κσ + σ (4.125)

From Eq. (4.121) one can see that the behavior of the solution of the second-order

differential equation is determined by the centrifugal term at r = 0 and asymptotic

behavior of this equation is determined by the oscillator term [141]. In this context,

we can propose the following factorization

Gnκ(r) = rµe−
1
2
νr2

hnκ(r) (4.126)

Inserting above expression into Eq. (4.121), the equation for hnκ(r) reads

d2

dr2
hnκ(r) +

[
2µ

r
− 2νr

]
d

dr
hnκ(r) + [β − ν(1 + 2µ)]hnκ(r) = 0 (4.127)

It is suitable for introducing the following variable

x = νr2 (4.128)

which leads to

x
d2

dx2
hnκ(x) + [b− x]

d

dx
hnκ(x)− ahnκ(x) = 0 (4.129)

where

a =
1
2

(
µ +

1
2
− β

2ν

)
(4.130)

b = µ +
1
2

(4.131)
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Eq. (4.129) is a confluent hypergeometric equation with the following general solu-

tion [140]

hnκ(r) = Λ1 1F1(a, b; νr2) + Λ2ν
−(µ+ 1

2
)r−(2µ+1)

1F1(a− c + 1, 2− c; νr2) (4.132)

where Λ1 and Λ2 are normalization constant and 1F1 is the confluent hypergeometric

function. In this solution, second part is in contradiction with normalization at r =

0 [141]. Thus, Λ2 should be zero. Consequently, lower component of the Dirac spinor

can be written by considering Eqs. (4.126), (4.130), (4.131) and (4.132) as follows

Gnκ(r) = Λ1r
µe−

1
2
νr2

1F1

(
1
2

(
µ +

1
2
− β

2ν

)
, µ +

1
2
; νr2

)
(4.133)

By using special interest among confluent hypergeometric function and generalized

Laguerre polynomials [141], we can write the lower component in terms of generalized

Laguerre polynomials as follows

Gnκ(r) = Λ1
n!(µ− 1

2)!
(n + µ− 1

2)!
rµe−

1
2
νr2

L
(µ− 1

2
)

n (νr2). (4.134)

Upper component of the Dirac spinor can be calculated by using the following relation

obtained from Eq. (3.27)

Fnκ(r) =
1

M − Enκ + Cps

[
d

dr
− κ

r
+ σr

]
Gnκ(r). (4.135)

In Eq. (4.135), one can see that Fnκ(r) is admissible for E 6= M + Cps which is

valid only for negative energy solutions. Thus, the energy spectrum obtained in the

pseudospin symmetry limit is negative. From Eq. (4.133), we must have a = −n,

with n = 0, 1, 2..., for bound states [141]. Moreover, the relativistic energy spectrum

is derived from a = −n condition as

√
σ2 + A(Enκ −M − Cps)

(
2 + 4n +

√
1 + 4l̃(l̃ + 1) + 4(Enκ −M − Cps)B

)

−(Enκ −M − Cps)(Enκ + M − C)− 2κσ − σ = 0 (4.136)
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Eq. (4.136) is the energy eigenvalue equation of the Dirac particle for the pseudo-

harmonic potential in the presence of the tensor potential under the condition of the

pseudospin symmetry.

4.2 Results

4.2.1 Pseudoharmonic potential

The energy eigenvalues equation (4.20) and corresponding lower radial wave func-

tion (4.25) have been obtained for the Dirac particles with pseudoharmonic potential

under the condition of the pseudospin symmetry. It is found out that the energy

eigenvalues equation (4.20) is a rather complicated intangible equation. However, one

can carry out the energy eigenvalues by choosing the suitable parameters in the pseu-

doharmonic potential. Equation (4.20) shows that energy eigenvalues Enκ depend on

n, κ(l̃), Cps as well as parameters A, B, C and M .

Using energy eigenvalues equation (4.20), we have computed the some energy levels

with the help of the computer for several values of n and κ. Energy eigenvalues

equation yields three values for the each states. However, we have seen that only one

of them is real and physical. In Table (4.1), we give some numerical solutions of the

equation (4.20) with parameters M = 10.0fm−1, re = 2.4fm, De = 5.0fm−1, Cps =

−10.3834fm−1 and Cps = −11.5fm−1. Ginocchio [49] showed that there are only

negative energy bound states in the pseudospin symmetry limit. From Table (4.1),

one can observe that there are only negative energy bound state solutions for Cps ≤
−10.3834fm−1. However, there are no negative energy bound state solutions if we take

Cps > −10.3834fm−1. One can also see from Table (4.1) that there are degeneracies

between the eigenstates (1s1/2, 0d3/2), (1p3/2, 0f5/2), (1d5/2, 0g7/2), (1f7/2, 0h9/2) etc..

In fact, each of these eigenstates forms a pseudospin doublet. For instance, 1p3/2 with

n = 1 and κ = −2 is the partner of 0f5/2 with n− 1 = 0 and κ = 3.

On the other hand, by using Eq. (4.20), energy eigenvalues equation of harmonic

oscillator potential can be obtained by setting A = 1
2Mw2

1, B = C = Cps = 0 and

recalling κ(κ− 1) = l̃(l̃ + 1) in the pseudospin symmetry case as
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Table 4.1: The bound state energy eigenvalues in units of fm−1 for several values of n
and κ with Cps = −10.3834fm−1 and Cps = −11.5fm−1 in the pseudospin symmetry.

Cps = −10.3834 Cps = −11.5 Cps = −10.3834 Cps = −11.5
l̃ n, κ<0 (l, j) En,κ<0 En,κ<0 n− 1, κ>0 (l + 2, j + 1) En−1,κ>0 En−1,κ>0

1 1,-1 1s1/2 -0.000014 -0.985845 0,2 0d3/2 -0.000014 -0.985845
2 1,-2 1p3/2 0.098293 -0.876620 0,3 0f5/2 0.098293 -0.876620
3 1,-3 1d5/2 0.222963 -0.737799 0,4 0g7/2 0.222963 -0.737799
4 1,-4 1f7/2 0.367395 -0.577439 0,5 0h9/2 0.367395 -0.577439
1 2,-1 2s1/2 0.478572 -0.424705 1,2 1d3/2 0.478572 -0.424705
2 2,-2 2p3/2 0.577344 -0.319515 1,3 1f5/2 0.577344 -0.319515
3 2,-3 2d5/2 0.707842 -0.179754 1,4 1g7/2 0.707842 -0.179754
4 2,-4 2f7/2 0.861192 -0.015172 1,5 1h9/2 0.861192 -0.015172

(E
nl̃

+ M)

√
(E

nl̃
−M)

2M
= w1

[
2n + l̃ +

3
2

]
. (4.137)

Equation (4.137) is same as that Eq. (62) obtained for the harmonic oscillator poten-

tial in Ref. [36]. One can easily see that there is no pseudospin-orbit coupling term in

the equation. Thus, the states which have same radial n and pseudo-orbital angular

momentum l̃ quantum numbers with j = l̃ + 1
2 and j = l̃ − 1

2 are degenerate. In the

non-relativistic limit E
nl̃
−M → E

nl̃
and M +E

nl̃
→ 2M [36], equation (4.137) yields

E
nl̃

=
w2

1

2M

[
2n + l̃ +

3
2

]2

(4.138)

where w1 =
√

2De
Mr2

e
is the classical frequency for small harmonic vibrations [141].

Right-hand side of the Equation (4.138) is always positive; therefore there are only

positive energy eigenvalues in the non-relativistic limit for harmonic oscillator poten-

tial [36].

4.2.2 Mie-type potential

In the section 4.1.2, we have obtained the energy eigenvalues equation (4.46) and

corresponding wave function (4.52) of the Dirac particles for the general form of the

Mie-type potential under the pseudospin symmetry limit. Kratzer-Fues and Modified

Kratzer potentials can be given as examples on the Mie-type potentials. Thus, we

discuss the bound state energy equations of these two Mie-type potentials. In addition,

we give some particular cases of the energy eigenvalues equations.
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4.2.2.1 Kratzer-Fues potential

Using Eq. (4.46), we can obtain the energy eigenvalues equation for the nuclei in the

relativistic Kratzer-Fues potential (4.28) by setting A = Der
2
e , B = 2Dere and C = 0

under the condition of pseudospin symmetry limit as

(M + Enκ)
[
1 + 2n +

√
(2κ− 1)2 + 4(Enκ −M − Cps)Der2

e

]2

+(Enκ −M − Cps)(2Dere)2 = 0 (4.139)

If we take Cps equal to zero, our result agrees with one obtained in Ref. [65] for the

pseudospin symmetry case given in Eq. (42) computed by using the Nikiforov-Uvarov

method.

We have calculated some energy levels of the pseudospin symmetry Kratzer-Fues po-

tential for several values of n and κ with the help of the computer by using Eq. (4.139).

In the calculation, we use the parameters M = 5fm−1, De = 1.25fm−1, re = 0.35fm

and Cps = 0. The numerical results are presented in Table (4.2) for the pseu-

dospin symmetry case. From Table (4.2), we observe that energies of bound states

given in same line are degenerate such as (1s1/2, 0d3/2), (1p3/2, 0f5/2), (1d5/2, 0g7/2),

(1f7/2, 0h9/2) etc.. Thus, each pair is considered as the pseudospin doublet. Each of

the two states in the pseudospin doublet has the same pseudo-orbital angular quan-

tum number and pseudospin quantum number. In addition, in Table (4.2), one can

observe that levels in the pseudospin doublets have the negative energy as mentioned.

4.2.2.2 Modified Kratzer potential

For the modified Kratzer potential (4.29), we can obtain the following energy eigen-

values equation by using Eq. (4.46) in the pseudospin symmetry limit,

(M + Enκ −De)
[
1 + 2n +

√
(2κ− 1)2 + 4(Enκ −M − Cps)Der2

e

]2

+(Enκ −M − Cps)(2Dere)2 = 0 (4.140)
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Table 4.2: The bound state energy eigenvalues in units of fm−1 of the pseudospin
symmetry Kratzer-Fues potential for several values of n and κ with Cps = 0.

l̃ n, κ < 0 (l, j) En,κ<0 n− 1, κ > 0 (l + 2, j + 1) En−1,κ>0

1 1,-1 1s1/2 −4.672305 0,2 0d3/2 −4.672305
2 1,-2 1p3/2 −4.860421 0,3 0f5/2 −4.860421
3 1,-3 1d5/2 −4.916782 0,4 0g7/2 −4.916782
4 1,-4 1f7/2 −4.943953 0,5 0h9/2 −4.943953
1 2,-1 2s1/2 −4.833547 1,2 1d3/2 −4.833547
2 2,-2 2p3/2 −4.913195 1,3 1f5/2 −4.913195
3 2,-3 2d5/2 −4.942941 1,4 1g7/2 −4.942941
4 2,-4 2f7/2 −4.959104 1,5 1h9/2 −4.959104

Eq. (4.140) is also complicated transcendental equation. However, energy eigenvalues

can be obtained by setting the parameters to suitable values. To compute some energy

levels of the pseudospin symmetry modified Kratzer potential for several values of n

and κ with the help of the computer by using Eq. (4.140), we consider the parameters

M = 5fm−1, De = 1.25fm−1, re = 0.35fm and Cps = 0fm−1. In Table (4.3), we

can observe that levels given in same line have same energy such as (1s1/2, 0d3/2),

(1p3/2, 0f5/2), (1d5/2, 0g7/2), (1f7/2, 0h9/2) etc.. These levels with same energy form

pseudospin doublets. We can also see in Table (4.3), all levels have negative energy

in the pseudospin symmetry as expected.

In addition, in the introduction section, we mentioned that modified Kratzer potential

is shifted in amount of De from Kratzer-Fues potential. This shift also arises in

the energy eigenvalues equations and energy eigenvalues obtained in the pseudospin

limit. Comparing Eq. (4.139) with Eq. (4.140), we can observe that energy eigenvalues

equations obtained in the pseudospin case are different from each other only De term.

From Table (4.2) and Table (4.3), we can see that difference between energies of the

same states is nearly in amount of De.

4.2.2.3 Particular case I : The A = 0 and the C = 0

In this case, general form of Mie-type potentials is reduced to well-known Coulomb-

like potential. Energy eigenvalues equation for the Coulomb-like potential can be

found out in the following forms under the condition of pseudospin symmetry by

using Eq. (4.46)

49



Table 4.3: The bound state energy eigenvalues in units of fm−1 of the pseudospin
symmetry Modified-Kratzer potential for several values of n and κ with Cps = 0.

l̃ n, κ < 0 (l, j) En,κ<0 n− 1, κ > 0 (l + 2, j + 1) En−1,κ>0

1 1,-1 1s1/2 −3.484888 0,2 0d3/2 −3.484888
2 1,-2 1p3/2 −3.630626 0,3 0f5/2 −3.630626
3 1,-3 1d5/2 −3.678048 0,4 0g7/2 −3.678048
4 1,-4 1f7/2 −3.701324 0,5 0h9/2 −3.701324
1 2,-1 2s1/2 −3.612693 1,2 1d3/2 −3.612693
2 2,-2 2p3/2 −3.675416 1,3 1f5/2 −3.675416
3 2,-3 2d5/2 −3.700567 1,4 1g7/2 −3.700567
4 2,-4 2f7/2 −3.714444 1,5 1h9/2 −3.714444

Eps
nκ =

(M + Cps)B2 − 4(n + κ)2M
B2 + 4(n + κ)2

. (4.141)

Eq. (4.141) agrees with Eq. (37) in Ref. [65] when Cps = 0.

4.2.2.4 Particular case II : The B = 0 and the C = 0

In this limit, Mie-type potential is reduced to pseudo-centrifugal potential. We can

obtain the bound state energy equation as follows

Eps
nκ = M + Cps +

(n− κ + 1)(n + κ)
A

(4.142)

For n = 0 and κ = 1 (ground state), energy equation is reduced into Eps
nκ = M + Cps

in the pseudospin symmetry limit.

4.2.3 Hulthén plus Ring-Shaped Potential

From Eq. (4.73) it is shown that although the parameter l′ does not need to be an

integer, n′ has to be an integer. Therefore, l′−µ term has to be an integer. Here, l′ term

is called as the ’modified’ pseudo-orbital angular quantum number because of that

the usual pseudo-orbital angular quantum number l̃ is damaged by the contribution

coming from the angle-dependent potential. This result is coincidence with previous

one obtained in Ref. [65].

50



From Eq. (4.91), we can say that energy eigenvalues equation depends on the potential

parameters Z, α, q, nucleon mass M and constant Cps as well as L̃ including n′. On

the other hand, the total wave function G(~r) in the pseudospin symmetry can be

written by combining Eq. (3.14) with Eqs. (4.59), (4.78) and (4.92) as

G(~r) =
B√
2π

√
(2n′ + 2µ + 1)n′!

2Γ (n′ + 2µ)
e−αεr

r

(
1− qe−αr

) 1
2
+%

×P 2ε,2%
n (1− 2qe−αr) (sin θ)µ Pµ,µ

n′ (cos θ) eim̃φ Λ̃ξ. (4.143)

4.2.3.1 Particular case : The β = 0 and q = 1

In this case, generalized Hulthén potential plus a ring-shaped potential is reduced to

the well-known Hulthén potential. In the limits β = 0 and q = 1, energy eigenvalues

equation (4.91) becomes

[M −E + Cps][M + E] = α2


−

(M−E+Cps)Z
α − l̃(l̃ + 1)− n2 − n

√
1 + 4l̃(l̃ + 1)

2n + 1 +
√

1 + 4l̃(l̃ + 1)
− 1

2




2

(4.144)

Remaining l̃(l̃+1) = κ(κ− 1) and making some arrangements on Eq. (4.144), one can

obtain the following energy eigenvalues equation

[M − E + Cps][M + E] = α2

[
−(M −E + Cps)Z

2α(n + κ)
− (n + κ)

2

]2

. (4.145)

Eq. (4.145) is just expression Eq. (47) in Ref. [66] obtained by using asymptotic

iteration method under the pseudospin symmetry limit.

4.2.4 Woods-Saxon plus Coulomb-like Tensor Potential

We have obtained the energy eigenvalues equation (4.119) that is an algebraic equation

in E. The solution of this algebraic equation with respect to E can be obtained in

terms of particular values of radial n and pseudo-orbital angular momentum l̃ quantum

numbers. From Eq. (4.119), we can obtain the energy eigenvalues equation of the
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Woods-Saxon potential by setting D = 0 for any spin-orbit quantum number κ as

follows

E2 −M2 − Cps(E + M) =

γ̃D0 − 1
a2

(
n +

1
2
− 1

2

√
1 + 4γ̃D2a2 +

√
γ̃D3a2 − (E −M − Cps)(E + M + V0)a2

)2

(4.146)

where γ̃ = κ(κ−1)
R2 . If we take κ = 1 in Eq. (4.146), it becomes

a

(√
(M −E + Cps)(E + M + V0) +

√
(M −E + Cps)(E + M)

)
= −n (4.147)

Eq. (4.147) is just expression (38) of Ref. [52], which is the energy eigenvalue equa-

tion of the s̃-wave Dirac equation for the Woods-Saxon potential with pseudospin

symmetry.

We can calculate the energy eigenvalues from Eq. (4.119) for different values of the

quantum numbers (n, κ) in the pseudospin symmetry limit. They are presented in

Table (4.4). We take the following parameters M = 10fm−1, a = 0.5fm, R = 7fm,

V0 = 10fm−1 and Cps = −10.1fm−1 in the calculations. From Table (4.4), one can

observe that every pair of orbitals (ns1/2, (n− 1)d3/2) with l̃ = 1, (np3/2, (n− 1)f5/2)

with l̃ = 2 and (nd5/2, (n − 1)g7/2) with l̃ = 3 has the same energy in the absence of

the tensor potential (D = 0). Thus, each of the pairs can be viewed as the pseudospin

doublets, i.e, the state 1s1/2 with n = 1, κ = −1 forms a pseudospin doublet with

0d3/2 state with n − 1 = 0, κ = 2. In addition, one can see in Table (4.4) that the

degeneracy between two states in the pseudospin doublets is removed in the presence

of the tensor potential (D 6= 0). From Table (4.4), one can observe that there are

degeneracies between the pair of orbitals (ns1/2, (n− 1)p1/2), (np3/2, (n− 1)d3/2) and

(nd5/2, (n − 1)f5/2) for D 6= 0. It is also interesting to note that all p1/2 states

considered as the pseudospin singlets (s̃1/2) may have pseudospin partner for D = 0.5.

To investigate these degeneracies, we change the parameter D and keep all other

parameters same. The pair of orbital (1d5/2, 0f5/2) is considered as an example. From

Table (4.4), one can observe that these two states in doublet are degenerate E1,−3 =
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Table 4.4: The bound state energy eigenvalues in units of fm−1 in the pseudospin
symmetry case for D = 0 and D = 0.5

l̃ n, κ < 0 (l, j) En,κ<0(D=0) En,κ<0(D=0.5) n− 1, κ > 0 (l + 2, j + 1) En−1,κ>0(D=0) En−1,κ>0(D=0.5)

0 - - - - 0,1 0p1/2 −0.169462 −0.168217
0 - - - - 1,1 1p1/2 −0.382147 −0.380728
0 - - - - 2,1 2p1/2 −0.752435 −0.750789
0 - - - - 3,1 3p1/2 −1.310610 −1.308650
1 1,-1 1s1/2 −0.166143 −0.168217 0,2 0d3/2 −0.166143 −0.163243
1 2,-1 2s1/2 −0.378364 −0.380728 1,2 1d3/2 −0.378364 −0.375059
1 3,-1 3s1/2 −0.748050 −0.750789 2,2 2d3/2 −0.748050 −0.744221
1 4,-1 4s1/2 −1.305380 −1.308650 3,2 3d3/2 −1.305380 −1.300820
2 1,-2 1p3/2 −0.159519 −0.163243 0,3 0f5/2 −0.159519 −0.154976
2 2,-2 2p3/2 −0.370818 −0.375059 1,3 1f5/2 −0.370818 −0.365645
2 3,-2 3p3/2 −0.739309 −0.744221 2,3 2f5/2 −0.739309 −0.733321
2 4,-2 4p3/2 −1.294960 −1.300820 3,3 3f5/2 −1.294960 −1.287840
3 1,-3 1d5/2 −0.149617 −0.154976 0,4 0g7/2 −0.149617 −0.143448
3 2,-3 2d5/2 −0.359547 −0.365645 1,4 1g7/2 −0.359547 −0.352532
3 3,-3 3d5/2 −0.726268 −0.733321 2,4 2g7/2 −0.726268 −0.718159
3 4,-3 4d5/2 −1.279440 −1.287840 3,4 3g7/2 −1.279440 −1.269800

E1,3 = −0.154976 for D = 0.5. However, if we take D = 0.8, we find out that

E1,−3 = −0.157800 and E1,3 = −0.151858. This means that degeneracies between

the pair of orbitals (ns1/2, (n − 1)p1/2), (np3/2, (n − 1)d3/2) and (nd5/2, (n − 1)f5/2)

are formed accidentally. Then, our results displayed that degeneracy between the

two states in doublet is removed by tensor interactions, and results presented are

coincidence with ones obtained in Refs. [36, 79, 76, 77]. In Table (4.4), we can also

see that energy levels of the pseudospin unaligned (κ < 0) and aligned (κ > 0) states

in the doublets move in the opposite directions for D 6= 0. This can be explained by

considering Eq. (4.119). The energy eigenvalues equation (4.119) depends on the term

2κD through γ̃. The pseudospin-dependent term 2κD takes negative and positive

values for the pseudospin unaligned and aligned states with respect to values of κ,

respectively.

We investigate the tensor potential dependence of the energies of the two states

in the pseudospin doublets. These dependencies are displayed in Fig. (4.6) for the

pseudospin-orbital partners (2s1/2, 1d3/2) and (1p3/2, 0f5/2). From Fig. (4.6), one can

observe that the magnitude of the energy difference between the two states in the

pseudospin doublets increases while D increases. The reason is that although energies

of the pseudospin unaligned states increase as D increases, energies of the pseudospin

aligned states decrease with increasing D due to the term 2κD in the energy eigen-

values equation.

Keeping all other parameters fixed, we change the diffusivity to investigate how the
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Figure 4.6: Energy values computed as a function of D for the pseudospin doublets
(2s1/2, 1d3/2) and (1p3/2, 0f5/2).

Table 4.5: Effects of the parameter a and Cps on the energy levels of the two states
in the pseudospin doublets

E(D = 0) E(D = 0.5) E(D = 0) E(D = 0.5) E(D = 0) E(D = 0.5) E(D = 0) E(D = 0.5)
state a = 0.1 a = 0.4 a = 0.7 a = 1.0
1s1/2 −2.11613 −2.11871 −0.20566 −0.20765 −0.13161 −0.13395 −0.11266 −0.11554
0d3/2 −2.11613 −2.11253 −0.20566 −0.20289 −0.13161 −0.12835 −0.11266 −0.10871

Cps = −10 Cps = −12 Cps = −14 Cps = −16
1s1/2 −0.06567 −0.06773 −2.07668 −2.07909 −4.09242 −4.09536 −6.11725 −6.12107
0d3/2 −0.06567 −0.06279 −2.07668 −2.07330 −4.09242 −4.08832 −6.11725 −6.11193

energy levels are sensitive to the a in the presence (D 6= 0) and absence (D = 0)

of the tensor potential. The sensitiveness is given in Table (4.5) for the pseudospin

doublet (1s1/2, 0d3/2). From Table (4.5), we can observe that energies of these states

decrease while a increases both in the presence and absence of the tensor potential.

The reason of this can be explained by considering the derivative of the Woods-Saxon

potential given in Eq. (4.93). From Eq. (4.93), one can easily see that the derivative

of the Woods-Saxon potential decreases when the diffusivity increases.

The sensitivity of the energy levels to the width of the Woods-Saxon potential is given

in Fig. (4.7) in the presence and absence of the tensor potential. In Fig. (4.7), we vary

R and keep all other parameters fixed. We can see in Fig. (4.7) that though energies

of the bound states increase with increasing R, the sensitivity of the energy levels
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Figure 4.7: Energy values computed as a function of R for the pseudospin doublet
(1s1/2, 0d3/2) with D = 0 and D = 0.5.

to the width of the Woods-Saxon potential decreases with increasing R. This can

be also explained by considering the derivative of the Woods-Saxon potential. From

Eq. (4.93), one can see that the derivative of the Woods-Saxon potential increases

while the width R increases.

Finally, we investigate the dependence of the bound state energy levels to the parame-

ter Cps = V (r)−S(r) = Const in the presence of the tensor potential. In Table (4.5),

we fix all parameters except for the Cps. From Table (4.5), one can see that energies

of the pseudospin doublet (1s1/2, 0d3/2) increase almost linearly with the Cps.

4.2.5 Pseudoharmonic Potential together with Tensor Potential

Energy eigenvalues equation for the Dirac particles presence of the tensor potential

under the condition of the pseudospin symmetry has been obtained in section 4.1.5.

By setting σ = 0 and making some arrangements on Eq. (4.136), it becomes

A

(
2 + 4n +

√
(2κ− 1)2 + 4(Enκ −M − Cps)B

)2

−(Enκ−M−Cps)(Enκ+M−C)2 = 0

(4.148)
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Table 4.6: The bound state energy eigenvalues in units of fm−1 for Cps = −11.5fm−1

in the presence and absence of the tensor potential

En,κ<0 En,κ<0 En,κ>0 En−1,κ>0

l̃ n, κ (l, j) σ = 0 σ 6= 0 n− 1, κ (l + 2, j + 1) σ = 0 σ 6= 0
1 1,-1 1s1/2 -0.985845 0.058942 0,2 0d3/2 -0.985845 -0.637548
2 1,-2 1p3/2 -0.876620 0.345040 0,3 0f5/2 -0.876620 -0.772562
3 1,-3 1d5/2 -0.737799 0.643012 0,4 0g7/2 -0.737799 -0.853108
4 1,-4 1f7/2 -0.577439 0.948574 0,5 0h9/2 -0.577439 -0.893433
1 2,-1 2s1/2 -0.424705 0.714893 1,2 1d3/2 -0.424705 0.074972
2 2,-2 2p3/2 -0.319515 0.982156 1,3 1f5/2 -0.319515 -0.058697
3 2,-3 2d5/2 -0.179754 1.264342 1,4 1g7/2 -0.179754 -0.148071
4 2,-4 2f7/2 -0.015172 1.556767 1,5 1h9/2 -0.015172 -0.198569

Eq. (4.148) is just expression (4.20) obtained for the pseudoharmonic potential in

the pseudospin limit by using the Nikiforov-Uvarov method absence of the tensor

potential. We have shown that there are degeneracies between each pair of eigenstates

(ns1/2, (n− 1)d3/2), (np3/2, (n− 1)f5/2), etc.. Actually, these states which have same

pseudo-orbital angular momentum l̃ and pseudospin s̃ = 1/2 are pseudospin doublet.

Now, we investigate the degeneracy between the two states in pseudospin doublet and

radial nodes of the wave functions in the presence of the tensor potential.

Energy eigenvalue equation obtained in the presence of the tensor potential (4.136) is a

very complicated equation. So, one can obtain the numerical solution of this equation

with the help of the computer. In Table (4.6), we take a set of parameter used in

Ref. [72]. From Table (4.6), we can observe that all degeneracies between members

of pseudospin doublet are removed in the presence of the tensor potential. It can be

helpful to investigate the pseudospin doublet splitting. As mentioned before, levels

should have negative energy solutions in the pseudospin symmetry. In this context,

it is interesting to emphasize that some levels with negative energy obtained in the

absence of the tensor potential replace with positive energy state in the presence of

the tensor potential, which means that tensor potential damages the negative bound

state energy solutions in the pseudospin symmetry limit. For instance, although 1s1/2

state is a negative energy bound state E1,−1 = −0.985845 for σ = 0, it turns into

positive energy state E1,−1 = 0.058942 for σ 6= 0.

We investigate how the pseudospin doublet splitting is sensitive to the parameters De,

re, σ and Cps. In our calculations, we use the same set of pseudospin doublets :
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Figure 4.8: Effect of the potential parameter De, re, σ as well as Cps on pseudospin
doublet splitting.

ξ1 ≡ (1p3/2, 0f5/2), ξ2 ≡ (3d5/2, 2g7/2), ξ3 ≡ (2f7/2, 1h9/2). The results are given in

Fig. (4.8). From Fig. (4.8), we observe the following cases:

1. For all parameters, ξ3 is the most splitting pseudospin doublet.

2. For all parameter, ξ1 and ξ2 cross each other by increasing De, re, σ and Cps.

3. Splitting of the pseudospin doublets increases with increasing re, Cps and De.

However, the pseudospin doublet splitting decreases by further increasing re,

Cps and De. In this case, sign of the energy splitting is inverted.

4. In the absence of the tensor potential, there is no any energy splitting between the

two states in pseudospin doublet, this means that each state in the pseudospin

doublet has same energy with its partners. However, pseudospin doublet split-

ting is formed in the presence of the tensor potential. In addition, variation of

the energy splitting of the pseudospin doublet is quickly changed by increasing

σ.
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In Fig. (4.9), radial node structures of the upper and lower components of the Dirac

spinor are investigated. In calculations, we take following parameters: M = 10.0fm−1,

re = 2.4fm, De = 5.0fm−1 and Cps = −15fm−1. Then, the following energies for

the each member of the pseudospin doublet (2s1/2, 1d3/2) are obtained : E2,−1(σ =

0) = E2,2(σ = 0) = −3.07812, E2,−1(σ 6= 0) = −1.8036 and E2,2(σ 6= 0) = −2.53539.

We know that the generalized Laguerre polynomials of degree n have n distinct zero,

thus one can reach the following conclusion from Eqs. (4.134) and (4.135): lower

component Gnκ has n nodes while upper component Fnκ has n and n + 1 nodes for

κ > 0 and κ < 0, respectively [79, 142]. The radial node structure of the pseudospin

doublet (2s1/2, 1d3/2) is given in Fig. (4.9). One can see in Fig. (4.9a) and (4.9c)

that lower and upper radial wave functions of the state 1d3/2 (κ = 2) have 1 node.

Besides, lower radial wave function of the state 2s1/2 (κ = −1) has 1 node while

upper component has 2 nodes. This means that, number of nodes of the radial wave

functions is that nF = nG for κ > 0 and nF = nG + 1 for κ < 0. These results are

in good agreement those available in literature [36]. We can conclude from Fig. (4.9b)

and (4.9d) that tensor interaction does not change the node structure of radial wave

functions. However, it effects the shape of the radial wave functions.
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CHAPTER 5

CONCLUSION

In the present thesis, we have investigated the pseudospin symmetric solution of the

Dirac equation for the exactly solvable potentials, such as pseudoharmonic potential,

Mie-Type potential, Hulthén plus ring-shaped potential, Woods-Saxon together with

Coulomb-like tensor potential and pseudoharmonic together with linear tensor poten-

tial, in terms of different methods. In the calculations, we have used the NU method,

AI method and functional analysis method.

The energy spectra and corresponding wave functions of the Dirac equation for the

pseudoharmonic potential with pseudospin symmetry have been obtained by using

the Nikiforov-Uvarov method. For any spin-orbit coupling term κ, we have found out

the closed forms of the energy eigenvalues. Some numerical solutions of the energy

eigenvalues equation have been given in the pseudospin limit for the pseudoharmonic

potential. We have also investigated the energy eigenvalues of harmonic oscillator

potential which is the special case of the general form of the pseudoharmonic potential.

To get the energy spectra of linear and non-linear systems, solution of the Dirac

equation for pseudoharmonic potential is significant. Thus, our result can be used to

evaluate the energy spectra of linear and non-linear systems. We have also showed that

our results can be reduced well-known solution of the harmonic oscillator potential

by setting A = 1
2Mw2

1, B = C = Cps = 0 and recalling κ(κ − 1) = l̃(l̃ + 1) in the

pseudospin symmetry case. Finally, Eq. (4.20) can be used to evaluate the binding

energies of the pseudoharmonic potential for diatomic molecules such as CH, CO and

N2 in the relativistic framework with pseudospin symmetry case.

We have obtained the exact solution of the Dirac equation for the nuclei with Mie-
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type potentials under the condition of pseudospin symmetry limit by using asymptotic

iteration method. We have obtained the bound state energy equation and the corre-

sponding two-component spinor wave functions of the Dirac equation for the nuclei.

The Kratzer-Fues and modified Kratzer potentials which are two examples for the

Mie-type potential have been also investigated. We have obtained that there are de-

generacies between the pair of orbital such as (s1/2, d3/2), (p3/2, f5/2) and (d5/2, g7/2)

etc.. This means that each pair of orbital forms pseudospin doublets. By considering

particular cases of the Mie-type potentials, the energy eigenvalues equations for the

Dirac particle with relevant potentials have been given.

Analytic solution of the Dirac equation for the generalized Hulthén plus ring-shaped

potential with pseudospin symmetry has been investigated by using Nikiforov-Uvarov

method. We have obtained the energy eigenvalues equation and the corresponding

wave functions of the Dirac particles for the pseudospin limit. Radial and angular

wave functions have been also obtained in terms of special orthogonal functions in

the pseudospin symmetry limit. Besides, we have investigated the contribution of

the angle-dependent potential to the relativistic energy spectra. Finally, it has been

displayed that our results are compatible with those available in the literature.

We have obtained approximately the energy eigenvalues equation and corresponding

upper and lower radial functions of the Dirac particles for the Woods-Saxon potential

and Coulomb-like tensor potential under the condition of the pseudospin symmetry.

We have showed that tensor interaction removes the energy degeneracy between the

two states in the pseudospin doublets. These results agree with previous ones obtained

by Lisboa et. al and Akcay et. al.. We have also obtained that energy levels of the

pseudospin aligned and unaligned states move in the opposite directions due to the

pseudospin-dependent term. The sensitiveness of the energy levels to the parameters

a, R, D, Cps has been investigated in the case of the pseudospin symmetry limit.

We have investigated the exact solution of the Dirac equation for the pseudoharmonic

potential in the presence of the tensor potential under the condition of pseudospin

symmetry. Energy eigenvalue equation and corresponding radial wave functions have

been obtained for any spin-orbit coupling quantum number κ. Degeneracy between

members of the pseudospin doublet has been explored in the presence and absence of
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the tensor potential. We have seen that that tensor interaction removes this degener-

acy. Effects of the potential parameters as well as Cps on the energy levels of the each

state of the pseudospin doublet have investigated. We have analyzed the upper and

lower radial wave functions and their node structures. We have showed that results

presented agree with those available in the literature. Finally, we have concluded

that tensor interaction can be useful to study the pseudospin doublet splitting and to

remove the degeneracy between the members of the pseudospin doublet.

Consequently, our results will facilitate future discussions on pseudospin symmetry in

the Dirac phenomenology. Especially, effect of the tensor potential on the members

of the pseudospin doublets can be discussed in detail by considering different physical

systems.
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