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ABSTRACT 
  

 

STUDENTS’ UNDERSTANDING OF LIMIT CONCEPT: AN APOS PERSPECTIVE 
 

 

 

ÇETĐN, Đbrahim 
Ph. D., Department of Computer Education and Instructional Technology 

                                Supervisor: Prof. Dr. Yaşar ÖZDEN 
Co-Supervisor: Prof. Dr. Ed DUBINSKY 

 
December 2009, 204 pages 

 

 

 

The main purposes of this study is to investigate first year calculus students’ 

understanding of formal limit concept and change in their understanding after limit 

instruction designed by the researcher based on APOS theory. The case study method 

was utilized to explore the research questions. The participants of the study were 25 

students attending first year calculus course in Middle East Technical University in 

Turkey. All students were first year mathematics majors. Students attended five weeks 

instruction in the fall semester of 2007-2008. In each week they met in two hours 

computer laboratory to study in groups, and then they attended four hours classes. In 

computer labs they were given some programming activities which give students 

opportunity to think on limit concept before they were given formal lecture in classes. 

Limit questionnaire including open-ended questions was administered to students as a 

pretest and posttest to probe change in students’ understanding of limit concept. At the 

end of the instruction a semi-structured interview protocol developed by the researcher 

was administered to all of the students to explore students’ understanding of limit 



 v 

concept in depth. The students’ responses in the questionnaire were analyzed both 

qualitatively and quantitatively. The interview results were analyzed by using APOS 

framework. The results of the study showed that constructed genetic decomposition was 

found to be compatible with student data. Moreover, limit instruction was found to play 

a positive role in facilitating students’ understanding of limit concept.  

 

 

Keywords: Computer programming in calculus, Constructionism, Cooperative 

Learning, Limit concept, APOS theory 
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ÖZ 
 

 

ÖĞRENCĐLERĐN LĐMĐT KONUSUNU KAVRAMALARI: APOS 

PERSPEKTĐFĐNDEN 

 

 

 

ÇETĐN, Đbrahim 
Doktora, Bilgisayar ve Öğretim Teknolojileri Eğitimi Bölümü 

                     Tez Yöneticisi: Prof. Dr. Yaşar ÖZDEN 
Yardımcı Tez Yöneticisi: Prof. Dr. Ed DUBINSKY 

 
Aralık 2009, 204 sayfa 

 

 

Bu çalışmanın başlıca amaçları, birinci sınıf analize giriş öğrencilerinin limit 

konusunu nasıl kavradıklarını incelemek ve bu kavrayışın araştırmacı tarafından APOS 

Teorisi kullanılarak tasarlanan öğretim ortamının uygulamasından sonra nasıl değiştiğini 

araştırmaktır. Çalışmanın amacına uygun olarak durum çalışması deseni kullanılmıştır. 

Çalışmaya Orta Doğu Teknik Üniversitenin Matematik Bölümünde öğrenim gören 25 

birinci sınıf analize giriş dersi öğrencisi katılmıştır. Öğrenciler 2007-2008 öğrenim 

yılının bahar döneminde, 5 hafta boyunca araştırmacı tarafından geliştirilen öğretim 

ortamına devam etmişlerdir. Öğrenciler her hafta iki saatlik laboratuvar uygulamalarında 

işbirlikçi bir ortamda kümeler halinde çalışmış daha sonra dört saatlik derslere 

katılmışlardır. Ders saatlerinden önce, bilgisayar laboratuvarlarında öğrencileri limit 

konusunda düşünmeye yönlendirici bilgisayar programlama etkinlikleri kullanılmıştır. 

Öğrencilerin limit kavramını anlama düzeylerindeki değişimi belirlemek için açık uçlu 

sorular içeren limit anketi öğrencilere ön-test ve son-test olarak uygulanılmıştır. Beş 

haftanın sonunda, öğrencilerin limit konusunu nasıl kavradıklarını derinlemesine 
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incelemek için, öğrencilerin tümüyle yarı yapılandırılmış görüşmeler düzenlenmiştir. 

Öğrencilerin limit anketinde verdiği cevaplar nitel ve nicel yöntemler kullanılarak 

incelenmiştir. Ayrıca görüşme sorularına verilen yanıtlar APOS çerçevesi kullanılarak 

analiz edilmiştir. Çalışmanın sonuçlarına göre, oluşturulan genetik çözümlemenin bu 

çalışmadan elde edilen öğrenci verileri ile uyumlu olduğu gözlenmiştir. Ayrıca 

araştırmacı tarafından geliştirilen öğrenim ortamının öğrencilerin limit konusunu 

kavramalarına olumlu etkide bulunduğu gözlenmiştir. 

 

 

Anahtar Kelimeler: Analize giriş dersinde bilgisayar programlama, Đşbirlikçi 

öğrenme, Limit kavramı, APOS teorisi 
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CHAPTER 1 

1.INTRODUCTION 
 
Throughout last century different practices of teaching and different views of learning 

has emerged. Mayer (1992) argued three views of learning: learning as response 

strengthening, learning as knowledge acquisition, and learning as knowledge 

construction. In the first view, response strengthening, learning occurs as the learner 

strengthens or weakens associations between stimulus and response. Rewards and 

punishments were used for the instruction. In the second view, knowledge acquisition, 

learning occurs through placing new information into long-term memory. Presentation 

of information in textbooks and lectures was used to transmit information from teachers 

to learners. In the last view, knowledge construction, learners actively construct their 

own knowledge. This view is called as constructivism.  

 

Constructivism involves two main principles; psychological and epistemological. 

Psychological principle explains that knowledge can not be directly transferred from 

teachers to students. Students do not receive knowledge in a passive way; instead they 

construct their own meaning. Piaget (1964, p.176) formulated this as follows   

 

To know an object is to act on it. To know is modify, to transform the object, 

and to understand the process of this transformation, and as a consequence 

to understand the way the object is constructed. An operation is thus the 

essence of knowledge; it is an interiorized action which modifies the object 

of knowledge. 

 

Epistemological principle is about reality. In constructivism reality is determined in a 

subjective way. Since individual constructs knowledge in a subjective way, outside 

reality either does not exist or if exist can not be known by the individual. So reality is 
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determined in a personal or subjective way (von Glasersfeld, 1990). Constructivist puts 

the notion of viability in place of outside reality.  Rather than searching for absolute 

truth, constructivism searches for usefulness and viability of knowledge in different 

context. 

 

Constructivist researchers have been trying to find ways to improve instruction so that 

active and meaningful learning occur. In parallel to these efforts, there has been rapid 

development in computer and communication technologies. Since the development of 

computers and communication technologies, researchers have been searching for its uses 

in education. Depending on their views of learning, researchers proposed different uses 

of computers and communication technologies for instructional purposes. Among these 

different proposals, constructivists claimed that electronic technologies can reinforce the 

pedagogical shift to active learning (Kaput & Thompson, 1994). Moreover, it was 

suggested that constructivist learning context is thought to facilitate learning with 

technology (Jonassen & Reeves, 1996). 

 

In the intersection of constructivism and use of technology for the instructional 

purposes, one specific learning theory has surfaced, namely constructionism. In 

constructionism, students are seen as natural learners. With guidance, these learners can 

achieve their potentials. In instructor’s guidance, the aim is to help students to learn how 

to learn, or learn their ways of learning, rather than one global approach for all students. 

If society provides necessary materials, students can learn mathematics as they learn 

their mother tongue.  

 

Constructionism appreciates students’ constructions of external public entity (Ackerman, 

1996). In construction of this sharable entity, constructionism emphasizes the role of 

cultural artifacts which will be internalized and on the role of artifacts that students 

construct and share with the others in learning process. In this construction, students 

internalize what is outside and then externalize what is inside and by this way they shape 

their ideas. But in what ways does construction of tangible entity help students to 
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construct the subject in question?  This is explained by the basic belief of the 

constructionism that I call as parallel construction. Papert (1993, p.28) put this idea as 

follows “… Programming the Turtle starts by making one reflect on how one does 

oneself what one would like the turtle to do. Thus teaching Turtle to act or to “think” can 

lead one to reflect on one’s own actions and thinking”.   

 

Constructivist theory and the idea of parallel construction found its place in the 

advanced mathematical thinking. Dubinsky (1991) proposed to use of reflective 

abstraction of Piaget (Beth & Piaget (1966) in advanced mathematical thinking. Later, 

APOS theory has been developed by Dubinsky and his colleagues. Action, Process, 

Object, Schema are the mental structures that an individual builds by the mental 

mechanism of reflective abstraction. Dubinsky (1991) and Asiala, Brown, DeVries, 

Dubinsky, Mathews, and Thomas (1996) determined six kinds of reflective abstractions: 

interiorization, coordination, reversal, encapsulation, thematization, and generalization 

in undergraduate mathematics education. According to the theory, concept formation 

begins with transformations of existing mental (or physical) objects. This type of 

transformation is called action.  Then by repeating an action and reflecting on it, an 

individual might interiorize it as a process.  If an individual pays attention to and 

becomes aware of the fact that actions or operations can act on the process being 

concerned, she/he might encapsulate process into an object. In order to encapsulate a 

process, process should be seen as a completed totality on which actions or processes 

can act. Actions, processes, and objects are organized into mental structures which are 

called schemas. Once constructed, schemas can be applied to other schemas to give 

meaning to mathematical situations. In describing students’ constructions and 

mechanisms which are used to produce those constructions, APOS researchers devise a 

tool called genetic decomposition.  

APOS researchers used several programming languages (mostly used one is ISETL) to 

foster students constructions for specific mathematical subject. Then they introduced 

cooperative learning into their instruction (Dubinsky, 1995). Johnson, Johnson, and 
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Holubec (1993, p.9) defined cooperative learning as “the instructional use of small 

groups so that students work together to maximize their own and each other’s learning”. 

 

Some researchers argued that whether all small group learning is cooperative or not 

(Hagelgans, Reynolds, Schwingendorf, Vidakovic, Dubinsky, Shahin, Wimbish 1995). 

Then research studies (e.g., Johnson and Johnson, 1999) about cooperative learning 

proposed five components that are essential for successful cooperative learning to occur: 

individual accountability, positive interdependence, promotive interaction, social skills, 

and group processing. 

 

From the beginning of research area about cooperative learning, there has been a 

passionate question “Does cooperative learning work”. In general, the answer is yes with 

the precaution that cooperative learning is useful if certain conditions are satisfied 

(Slavin, 1995). Slavin (2009) considered the question in two different domains: well-

structured and ill-structured. He concluded that although there is less research about 

cooperative learning in ill-structured domains than in well-structured domains, for both 

domains favorable results of cooperative learning are consistently reported, but again, 

with the following precaution. First is that students need to feel to facilitate other 

members’ learning, and second is that there must be individual accountability. 

Moreover, by reviewing research on cooperative learning Biehler and Snowman (1997, 

p.421) concluded that “Students who learn cooperatively tend to be more highly 

motivated to learn because of increased self-esteem, the pro-academic attitudes of group 

mates, appropriate attribution for success and failure, and greater on-task behavior. They 

also score higher on tests of achievement and problem solving and tend to get along 

better with class mates with different racial, ethnic, and social class backgrounds”. 

 

Turning back to APOS theory, introduction of cooperative learning strategies into 

computer activities to facilitate students’ constructions resulted in a standard structure 

called ACE (Activities, Class, and Exercises) cycle.  
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According to this standard structure (Hagelgans et al., 1995), at the beginning of the 

lesson, groups including three or four members are formed. Groups meet in the 

computer laboratory to study on the materials which is prepared by the instructor. They 

are, usually, required to write code segments or modify given code. Computer activities 

are designed to foster specific mental constructions suggested by genetic decomposition. 

This pre-class activity gives students chance of informal introduction to the concept in 

consideration and of thinking on the concept before class session. After computer 

laboratory, students meet in the classroom to work on the tasks prepared by the 

instructor. In classes, all of the members of the groups are required to participate to tasks 

within their groups. Then, one of the groups presents their report to whole class to be 

discussed. At the end of the discussion, instructor may clarify certain points, and 

introduce formal ideas. Lastly, after the class students are given relatively traditional 

exercise sets as homework. This homework can be done individually or as a group. Aim 

of the homework is to reinforce and apply what they learned in the computer activities 

and class. 

1.1 Purpose of the Study 

 

Understanding limit concept is crucial for calculus students since it establishes a ground 

for development of the concepts of continuity, derivative, and integral. Although 

importance of limit understanding has been recognized, introduction of this concept, 

because of its complexity, causes serious difficulties.  

 

The purpose of this study is two fold: (1) to explore how students understand limit 

concept by using APOS framework, (2) to construct a base for the future studies with the 

aim of making instruction more effective. 
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1.2 Research Questions 

 

The following research questions guided this study: 

 

1. How do students develop understanding in limit of a function? 

 

1.1. How do students explain their informal understanding of limit of a function? 

 

1.2. How do students explain their formal understanding of limit of a function? 

 

1.3. What kind of difficulties do students encounter in transition from informal 

understanding   to formal understanding of limit of a function? 

 

2. How different is students’ understanding of limit of a function after the instruction 

based on APOS theory? 

1.3. Significance of the Study 

 

Notion of limit of a function is fundamental for understanding calculus and the basis of 

all that follows it. Differentiation and integration, the core of study in calculus, are built 

on the limit concept. Nevertheless, in literature, it is generally agreed that students have 

difficulties in understanding limit concept. It is argued that most students have intuitive 

understanding of limit but very few of them accomplish understanding of the limit 

definition (Ervynck, 1981; Cottrill, Dubinsky, Nichols, Schwingerdorf, Thomas & 

Vidakovic, 1996). 

 

Schwarzenberger and Tall (1978) proposed that, in order to convey formal mathematical 

ideas to students, they are translated into suitable forms. Together with students’ prior 

experience, this translation might cause some conflicts. Monaghan (1991) concluded 

that daily life meanings of the phrases “approaches”, “tends to”, “converges”, and “limit 

might become potential cognitive conflict factors when students are exposed to limit 
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instruction, and moreover, such meanings might be continued to be hold after formal 

instruction. 

 

In addition to daily life meanings attached to words, some of the researchers studied 

other factors that makes limit concept hard to understand for students. Sierpinska (1985) 

went in that way and identified five main epistemological obstacles and rearranged this 

list (1987) as follows. “Obstacles related to four notions seem to be the main sources of 

epistemological obstacles concerning limits: scientific knowledge, infinity, function, real 

number”. 

 

In explaining students’ difficulties in understanding limit concept, some researchers 

(Williams, 1991; Tall & Vinner, 1981) put a dichotomy between dynamic and static 

notions of limit. For them, “as x goes to a f(x) goes to L” is a process which includes 

dynamic feeling of motion. Nevertheless, in formal conception, an individual deals with 

intervals in which x and f(x) values do not move. So, it is dynamical element in informal 

limit notion that prevents students to move more formal understanding of limit concept. 

An opposition to this idea came from Cottrill et al. (1996). They considered dynamical 

notion as a mental process in APOS terms. Actually this is not a single process, rather is 

coordination of domain and range processes via function in consideration, thus a 

schema. Contrary to the belief that process conception is easy to understand, they 

suggested that coordinated process schema is not easily constructed by students. 

Moreover, they argued that informal process schema of limit concept is necessary in 

building formal understanding of limit. Formal understanding of limit concept is built on 

coordinated process of informal limit, rather than hindered by it. Difficulty in moving 

from informal understanding to formal understanding comes from students’ weak 

understanding of quantification. 

 

Based on their Action, Process, Object, Schema framework, Cottrill et al. (1996) 

proposed their first theoretical genetic decomposition. However, data from student 
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interviews did not allow authors to validate some of the steps in the genetic 

decomposition.  

 

An opposition to APOS theory in general and genetic decomposition of limit concept in 

specific came from Pinto and Tall (2001). They (2001, p. 57) described two different 

learning styles: one is formal other is natural. “Formal thinkers attempt to base their 

work on the definitions… Natural thinkers reconstruct new knowledge from their 

concept image”. They contended that formal thinkers are compatible with APOS theory, 

whereas, APOS theory does not explain the way of natural thinkers’ learning. 

 

As seen in the literature, there is not a consensus about how limit concept is learned by 

students, and what the potential causes for students’ difficulties are. Nevertheless, there 

is a general agreement that students have difficulties in understanding limit concept. 

And, mostly cited difficulty is that whether a function can reach its limit or not 

(Williams, 1991; Tall, 1980a; Tall &Vinner, 1981)  

 

One of the main aims, in this study, is to explore how students understand limit concept. 

In order to address this question Cottrill et al.’s (1996) genetic decomposition is taken as 

a primary genetic decomposition. The result of this study might have a contribution to 

literature to the extent that how students understand limit concept and what type of 

difficulties do they encounter in learning this concept. In addition, knowing how 

students learn limit concept and students’ difficulties about it might help instructors in 

sequencing content, in our case limit, and in designing learning environments. 

 

Designing instruction for helping students to overcome their difficulties is as important 

as determination of students’ difficulties in limit concept. Some of the researchers tried 

to develop instruction to facilitate students’ understanding of the concept. However, in 

literature, it is seen that most of them failed to help students (Buyukkoroglu et al., 2006; 

Cottrill et al., 1996; Davis & Vinner, 1986; Li & Tall, 1993; Monaghan, Sun & Tall, 

1994; Parameswaran, 2007; Sierpinska, 1987; Williams, 1991).  
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Since the development of computers and communication technologies, researchers have 

been searching for its uses in education. Some of the researchers claimed that electronic 

technologies can reinforce the pedagogical shift to active and meaningful learning 

(Kaput & Thompson, 1994; Jonassen & Reeves, 1996). Moreover, Tall and Ramos 

(2004) claimed that computers can radically change mathematical learning environment. 

In this study, researcher designed an instruction based on cooperative learning integrated 

with technology. The other purpose of this study is to construct a base for the future 

studies with the aim of making instruction more effective. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 10 

1.4 Definition of the Terms 

 

The constitutive and operational definition of important terms will be given in this 

section. 

 

Instructional Technology: Early definitions viewed instructional technology as 

media via which instruction is presented to learners. Then it has been evolved to  

“Instructional technology is the theory and practice of design, 

development, utilization, management, and evaluation of processes 

and resources for learning” (Seels & Richey, 1994, p. 1). 

 

Technology: “In addition to machinery, technology includes processes, systems, 

management, and control mechanisms both human and non-human” (Finn, 1960, as 

cited in, Gentry, 1995, p.2). 

 

Informal Limit Definition: “If f(x) is defined for all x near a, except possibly at a 

itself, and if we can ensure that f(x) is as close as we want to L by taking x close enough 

to a, we say that the function f approaches the limit L as x approaches a” (Adams, 1999). 

 

Formal Limit Definition: “We say that f(x) approaches the limit L as x 

approaches a if the following condition is satisfied: 

For every number ε>0 there exists a number δ>0, depending on ε, such 

that0 | |  implies | ( ) | .x a f x Lδ ε< − < − < ” (Adams, 1999). 

 

 

 

 



 11 

 

CHAPTER 2 

2. REVIEW OF LITERATURE 
 

Present chapter of the study includes relevant theoretical frameworks and studies on 

which research is grounded. First of all literature review about constructionism is 

presented. Then cooperative learning literature is provided. In the third part, literature 

about APOS theory is given. And lastly, students’ understanding of limit concept and 

effectiveness of previously designed instructions are discussed.  

 

2.1 Constructionism 

 

Constructionism is a theory of learning which builds on constructivism and reconstructs 

it. To dwell on constructionism, first, we need to address principles of constructivism. 

Constructivism involves two main principles; psychological and epistemological. 

Psychological principle explains that knowledge can not be directly transferred from 

teachers to students. Students do not receive knowledge in a passive way; instead they 

construct their own meaning. Piaget (1964, p.176) formulated this as follows:  

 

To know an object is to act on it. To know is modify, to transform the object, 

and to understand the process of this transformation, and as a consequence 

to understand the way the object is constructed. An operation is thus the 

essence of knowledge; it is an interiorized action which modifies the object 

of knowledge. 

 

Epistemological principle is about reality. In constructivism reality is determined in a 

subjective way. Since individual constructs knowledge in a subjective way, outside 

reality either does not exist or if exist can not be known by the individual. So reality is 
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determined in a personal or subjective way (von Glasersfeld, 1990). Constructivist puts 

the notion of viability in place of outside reality.  Rather than searching for absolute 

truth, constructivism searches for usefulness and viability of knowledge in different 

context. 

 

Constructionism shares abovementioned principles of constructivism. For example, 

Papert (1996) complained that in English there is no word for the art of learning whereas 

word “pedagogy” used for the art of teaching. He proposed the word “mathetics” for the 

art of learning to emphasize that students are not passive recipients of the knowledge. 

Moreover, he saw the role of teacher as a guide rather than transmitter and contended 

that students often learn best when taught least. The important point is that students need 

to learn how to learn. “The constructionist attitude to teaching is not at all dismissive 

because it is minimalist- the goal is to teach in such a way as to produce the most 

learning for the least teaching. Of course, this cannot be achieved simply by reducing the 

quantity of teaching while leaving everything else unchanged. The principal other 

necessary change parallels an African proverb: If a man is hungry you can give him a 

fish, but it is better to give him a line and teach him to catch the fish himself”. (1992, 

p.139) 

 

The difference between constructivism and constructionism starts with the appreciation 

of students’ constructions of external public entity. In construction of this sharable 

entity, constructionism put more emphasize on the role of cultural artifacts which will be 

internalized and on the role of artifacts that students construct and share with the others 

in learning process. In this construction, students internalize what is outside and then 

externalize what is inside and by this way they shape their ideas. Papert (1990, p.3) puts 

this distinction in the following way or it might be more appropriate to say, in 

constructionist terms, Papert reconstructs constructivism in the following way.   

 

We understand “constructionism” as including, but going beyond, what 

Piaget would call “constructivism”. The word with the v expresses the 

theory that knowledge is built by learner, not supplied by the teacher. The 
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word with the n expresses the further idea that this happens especially 

felicitously when the learner is engaged in the construction of something 

external or at least sharable… a sand castle, a machine, a computer 

program, a book. This leads us to a model using a cycle of internalization 

what is outside, then externalization of what is inside and so on. 
 

Making ideas tangible and sharable are keys to learning in constructionism (Kafai and 

Resnick, 1996). By doing so, students share these ideas and communicate with others 

through their own expressions. But in what ways does construction of tangible entity 

help students to construct the subject in question?  

 

This is explained by the basic belief of the constructionism that I call as parallel 

construction. It is the belief that transforming and constructing objects on the computer 

will facilitate students’ learning in that they construct corresponding transformations and 

objects in their mind. Papert (1993, p.28) put this idea as “… Programming the Turtle 

starts by making one reflect on how one does oneself what one would like the turtle to 

do. Thus teaching Turtle to act or to “think” can lead one to reflect on one’s own actions 

and thinking”.   

 

Another difference between Piagetian constructivism and constructionism is about the 

role of culture and social interaction in the learning process (Hagelgans et al., 1995). 

According to Piaget knowledge construction is preceded as the individual interacts with 

her/his environment. Social interaction and culture are elements of this environment, so, 

they are important in individual’s learning. Nevertheless, when we come to the essential 

elements of individuals’ development, social interaction and culture become secondary 

factors. Although they may enhance individuals’ development, they cannot influence the 

process of development in crucial ways.  

 

On the other hand, in constructionism, culture plays a major role in individuals’ 

development. Culture provides artifacts for the construction of the knowledge. If these 

artifacts are provided enough, then they may enhance individuals’ development as in 
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Piagetian theory. But, unlike the Piagetian interpretation, constructionists believe that 

absence of these artifacts intervene development of the individuals’ in essential ways.  

 

All builders need materials to build with. Where I am at variance with 

Piaget is in the role I attribute to the surrounding cultures as a source of 

these materials. In some cases the culture supplies them in abundance, thus 

facilitating constructive Piagetian learning. For example, the fact that so 

many important things (knives and forks, mothers and fathers, shoes and 

socks) come in pairs is a “material” for the construction of an intuitive 

sense of number. But in many cases where Piaget would explain the slower 

development of a particular concept by its greater complexity or formality, I 

see the critical factor as the relative poverty of the culture in those materials 

that would make the concept simple and concrete. (Papert, 1993, p.7) 

 

Thus, for constructionists, knowledge is built actively in a social environment by 

constructing and reconstructing tangible and sharable entities whose construction helps 

students to make parallel constructions in their mind. In order to engage in intellectual 

activities, individuals need to see these activities as personally meaningful. Moreover, 

social interaction and artifacts supplied by the culture play a crucial role in students’ 

shaping their ideas. Cultural artifacts help individuals to concretize the abstract and 

artifacts constructed by individuals help them to express and shape their ideas, that is, to 

owe knowledge rather than being given.   
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2.2 Cooperative Learning and Its Elements 

 

 

In this section cooperative learning, its components, teacher’s role in cooperative 

learning, methods of cooperative learning, and lastly research on effectiveness of 

cooperative learning are addressed. 

 

Johnson, Johnson, and Holubec (1993, p.9) defined cooperative learning as “the 

instructional use of small groups so that students work together to maximize their own 

and each other’s learning”. Some researchers argued that whether all small group 

learning is cooperative or not (Hagelgans, Reynolds, Schwingendorf, Vidakovic, 

Dubinsky, Shahin, Wimbish 1995). Then research studies (e.g., Johnson and Johnson, 

1999) about cooperative learning proposed five components that are essential for 

successful cooperative learning to occur.  

 

1. Individual Accountability: Slavin (1995) mentions about free-rider effect. In a group 

work it is possible that some of the group members do all of the work while others take 

their free time. Individuals, in cooperative learning, are responsible for their contribution 

to the end product of the group. End product is not the product of some of the group 

members, rather, it is constructed by the efforts of each individual member. Teachers 

can facilitate individual accountability by making individual assessments, giving 

individual feedback, monitoring students’ performances during cooperative learning 

process, and giving group rewards for individual behavior.  

 

2. Positive Interdependence: Individual performances isolated from the other group 

members do not ensure successful cooperative learning. Every member has her/his 

unique contribution, however, achievement of the goal depends on other members’ 

attaining their goals. So, students know that their success depends on the success of 

other group members as well as their individual success. Teacher can help to improve 
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positive interdependence by assigning a clearly defined task to the group, by assigning 

interconnected goals to each group member, and by rewarding them as a group.  

 

3. Promotive Interaction: In order to successful cooperative learning occur, students 

need to facilitate each others learning. This can be done by providing information, 

assistance, feedback, and resources needed, explaining their thoughts, negotiating 

meaning, and challenging each other’s ideas. Teacher can encourage promotive 

interaction by providing time schedule for group to meet, promoting discussions among 

group members, and arranging physical conditions to meet and negotiate.  

 

4. Social Skills: Unlike individual work, in a cooperative environment, students need to 

express their ideas to others, persuade others, respect other group members’ thoughts, 

know when to interrupt, resolve conflicts by discussions, helping group members. For an 

effective cooperative learning, students need to have or develop these interpersonal 

skills. Knowing how to work with others is an essential for cooperative learning, 

nevertheless as Gillies (2007, p.41) put “Placing children in small groups and telling 

them that they are to cooperate does not ensure that they will use interpersonal and small 

group skills needed to work effectively together”.  Jacobs, Power, Inn (2002) suggested 

that for teachers, one important way of the teaching social skills is to be an explicit 

model for collaborative behavior.  

 

5. Group Processing: This is about group members’ reflection on their learning process. 

Group processing allows students to discuss how well they are achieving their goals and 

maintaining effective working relationships (Gillies, 2007). Group members question the 

usefulness of member actions, effectiveness of their way to accomplish group goal, and 

consider whether changes are necessary or not. Teachers can enhance group processing 

by having a contact with each group, monitoring their development, and giving feedback 

about effectiveness of the individual and group work.  
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2.2.1 Teachers in Cooperative Learning Environment 

 

Gillies (2007, p.195) developed some strategies for teachers to establish productive 

cooperative learning environment. 

 

• Establish a cooperative learning environment that is inclusive of all students, 

• Negotiate expectations for small group behaviors, 

• Develop communication skills that facilitate small group discussion, 

• Develop appropriate helping behaviors, 

• Choose tasks for small group discussion, 

• Monitor students’ progress and evaluate outcomes. 

 

Johnson and Johnson (1999) argued the importance of following steps for conducting 

cooperative lesson. The first step is to make some pre-instructional decisions. These 

include objective determination, consideration of group size, assigning students to 

groups, assigning roles to group members, arrange the physical environment. The 

second step is about task and cooperative structure. In this step students should be 

informed about the task, criteria for success, and behaviors expected from the students 

during cooperative learning. The third step happens as cooperative lesson is conducted. 

Each group is observed and students’ behavior and learning are monitored, and if it is 

needed group work is intervened to give feedback. The last step is about evaluation of 

group performance. Achievement of group members and members as a group is 

assessed. They are given feedback about their effectiveness of their group performance. 

As students reflect on their performance, teacher can facilitate them to devise a plan 

about future work.  

 



 18 

 

 

2.2.2 Cooperative Learning Methods 

 

Although there are others, studies about cooperative learning emphasized four main 

cooperative learning methods: Students Teams-Achievement Divisions, Teams-Games-

Tournament, Jigsaw, and Group Investigation. Moreover, one specific method (ACE 

cycle) for collegiate mathematics education will be addressed.  

 

Student Teams-Achievement Divisions (STAD) (Slavin, 1995): STAD starts with 

instructor’s presentation. This presentation focuses on the unit on which students will 

take quiz. After teacher presentation, students are assigned to heterogeneous groups 

including four or five members to study material provided by the instructor. In group 

work, responsibility of the group members is to master the unit and help other group 

members to master. Then, all students take quizzes individually and they get individual 

scores from these quizzes. Individual scores are compared to individual base scores 

which are determined by the average that they get in the past. Then individual 

improvements are added to group score. In order to provide team recognition, groups 

whose scores satisfy certain condition are rewarded. Since STAD is easy to implement, 

it is recommended for beginning teachers. 

 

Teams-Games-Tournaments (TGT) (DeVries & Slavin, 1978): TGT includes a similar 

path with STAD, but instead of quizzes there exists some academic games that member 

of one group competes the member of another group whose past performances are 

similar. Then group score is given by adding individual scores obtained from academic 

games.  

 

Jigsaw (Aronson, Blaney, Stephan, Sikes & Snapp, 1978): In Jigsaw method, each 

member of the group is assigned to a subtopic of main unit to get expertise. Members, 
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who are assigned to same topic, from different groups come together to study on the 

shared topic. Then, they go back to their home group to teach the topic to other members 

of the team. At the end, students are given a quiz that covers the main unit, and 

according to their performance they are graded individually.  

 

Group Investigation (GI) (Sharon and Hertz-Lazarowitz, 1980): This method is different 

from the previously mentioned ones in that choice of the topic and choice of the group 

are left to students. Each member in the group chooses a subtopic of an issue. Then they 

study the issue individually or as a group. For each subtopic a report is prepared by the 

owner and this report is discusses among group members. And final report of the group 

is presented to whole class. 

 

ACE cycle (Hagelgans et al., 1995): In addition to above frequently quoted methods, 

one specific cooperative learning method is generated for collegiate mathematics 

education. This is called ACE cycle (Asiala et al., 1996) which is closely related with 

APOS theory which will be touched later. In ACE cycle, cooperative learning is 

integrated with computer activities. At the beginning of the lesson, groups including 

three or four members are formed. Groups meet in the computer laboratory to study on 

the materials which is prepared by the instructor. They are, usually, required to write 

code segments or modify given code. This pre-class activity gives students chance of 

informal introduction to the concept in consideration and of thinking on the concept 

before class session. After computer laboratory, students meet in the classroom to work 

on the tasks prepared by the instructor. All of the members of the groups are required to 

participate to tasks within their groups. Then, one of the groups presents their report to 

whole class to be discussed. At the end of the discussion, instructor may clarify certain 

points, and introduce formal ideas. Lastly, after the class, students are given a set of 

exercises to be done by all of the group members.  

 

As seen in methods, some of them (e.g., TGT) include elements of competitive goal 

structure, in which students compete against each other; and still others (e.g., GI) include 
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elements of individualistic goal structure in which students study alone. Johnson and 

Johnson (1999) suggested that these two goal structures can be integrated with 

cooperative goal structure for an effective instruction under strong cooperative context, 

and contended that “When the three goal structures are used appropriately and in an 

integrated way, their sum is far more powerful than each one separately” (Johnson and 

Johnson, 1999, p.10). 

 

2.2.3 Research on Cooperative Learning 

 

From the beginning of research area about cooperative learning, there has been a 

passionate question “Does cooperative learning work”. In general, the answer is yes with 

the precaution that cooperative learning is useful if certain conditions are satisfied 

(Slavin, 1995). Slavin (2009) considered the question in two different domains: well-

structured and ill-structured. He concluded that although there is less research about 

cooperative learning in ill-structured domains than in well-structured domains, for both 

domains favorable results of cooperative learning are consistently reported, but again, 

with the following precaution. First is that students need to feel to facilitate other 

members’ learning, and second is that there must be individual accountability. 

Moreover, by reviewing research on cooperative learning Biehler and Snowman (1997, 

p.421) concluded that “Students who learn cooperatively tend to be more highly 

motivated to learn because of increased self-esteem, the pro-academic attitudes of group 

mates, appropriate attribution for success and failure, and greater on-task behavior. They 

also score higher on tests of achievement and problem solving and tend to get along 

better with class mates with different racial, ethnic, and social class backgrounds”.  
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2.3 APOS Theory 

 

APOS theory is a constructivist theory that focuses on individual’s mental constructions 

of mathematical knowledge and mental mechanisms that yield these constructions 

within social context. It builds on Piaget’s notion of reflective abstraction. Piaget (Beth 

& Piaget, 1966) differentiated empirical abstraction in which the focus is on the general 

characteristics of objects and reflective abstraction in which focus is on the actions or 

operations done by subject on (mental) objects. Moreover, he paid attention to 

constructivist aspect of the notion: 

 

It is then necessary to suppose that abstraction starting from actions and 

operations- which we shall call “reflective abstraction”- differs from 

abstraction from perceived objects- which we shall call “empirical 

abstraction” (assuming the hypothesis that non-perceptible objects are the 

product of operations) - in the sense that reflective abstraction is necessarily 

constructive. In fact, as opposed to empirical abstraction, which consists 

merely of deriving the common characteristics from a class of objects (by 

combination of abstraction and simple generalization), reflective 

abstraction consists in deriving from a system of actions or operations at a 

lower level, certain characteristics whose reflection (in the quasi-physical 

sense of the term) upon actions or operations of a higher level it guarantees 

for it is only possible to be conscious of the process of an earlier 

construction through a reconstruction on a new plane… reflective 

abstraction proceeds by reconstructions which transcend, whilst integrating, 

previous constructions  (p. 188-189). 
 

APOS theory extends Piaget’s notion of reflective abstraction to undergraduate 

mathematics education. Asiala et al. (1996, p.32) describe mathematical knowledge in 

the following way. 

 

An individual’s mathematical knowledge is her or his tendency to respond to 

perceived mathematical problem situations by reflecting on problems and 

their solutions in a social context and by constructing or reconstructing 

mathematical actions, processes and objects, by organizing these in 

schemas to use in dealing with the situations. 
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Action, Process, Object, Schema are the mental structures that an individual builds by 

the mental mechanism of reflective abstraction. Dubinsky (1991) and Asiala et al. 

(1996) determined six kinds of reflective abstractions: interiorization, coordination, 

reversal, encapsulation, thematization, and generalization in undergraduate mathematics 

education.   

 

According to the theory, when an individual encounters a new mathematical concept, 

concept formation begins with transformations of existing mental (or physical) objects. 

This transformation is called action. At the action level, transformations are perceived as 

external. Individuals need external cues to carry out the transformation (Dubinsky, 

1991). For example, students who are limited to action conception of function require a 

formula (as an external cue) and use it to plug numbers in to evaluate.  

 

By repeating an action and reflecting on it, an individual might interiorize it as a process 

(Asiala et al., 1996). Internalization allows individual to perform transformations in the 

absence of external cues. Process is being concerned as internal, moreover, she/he can 

imagine steps of the process without actually performing each step explicitly. For 

example, students who have process conception of function do not need any external 

cues, such as formulas, to conceive it as a function. Rather, it is conceived in the way 

that objects in the domain set are transformed to corresponding objects in range set. 

Evaluations are not limited to taking a particular value in the domain and finding 

corresponding value in the range. Actually, they can imagine that objects in the domain 

set are transformed into objects in the range set without actually doing evaluations step 

by step for each element. Interiorization is not the only way to construct processes. An 

individual can construct processes by reversing it or by coordinating it with other 

previously constructed processes.  

 

If an individual pays attention to and becomes aware of the fact that actions or 

operations can act on the process being concerned, she/he might encapsulate process into 

an object (Dubinsky, Weller, Stringer, Vidakovic, 2008). In order to encapsulate a 



 23 

process, process should be seen as a completed totality on which actions or processes 

can act. Process is a transformation one does, whereas object is a static entity one 

transforms. For example, students who have the object conception of function can apply 

derivative on a given function. It is often necessary to de-encapsulate object back to its 

process in mathematical situations.  

 

Actions, processes, and objects are organized into mental structures which are called 

schemas (Asiala et al., 1996). A schema can be thematized into an object that might be 

included in other schemas. Once constructed, schemas can be applied to other schemas 

to give meaning to mathematical situations. For example, quantification schema can be 

applied in the limit case to get understanding of formal definition of limit. When an 

individual sees that available schema can be applied to wider situations, then the schema 

is generalized. 

 

 In describing students’ constructions and mechanisms which are used to produce those 

constructions, APOS researchers devise a tool called genetic decomposition (Asiala et 

al., 1996). Genetic decomposition is firstly constructed theoretically. This includes the 

researchers’ understanding of the concept, conclusions drawn from the literature, and 

historical development of the concept. This preliminary version is needed to be 

empirically tested. This could be done in two ways. First is done by questioning students 

qualitatively who already attended a course. Second is done by designing an instruction 

based on preliminary version of genetic decomposition, and then by questioning those 

students qualitatively. Second type allows us to empirically test the results of the 

designed instruction. In both ways, qualitative data is gathered and analyzed based on 

APOS theory. If the preliminary version of genetic decomposition does not describe 

students thinking appropriately, then it must be modified. This can result in a new cycle 

that begins with modified version to be empirically tested with new set of data. Cycles 

are repeated until reasonable understanding is deduced. If data is in now way compatible 

with genetic decomposition, then theory should be questioned.  
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2.4 Limit Literature 

 

In this section literature about learning limit concept and its instructional suggestions 

will be addressed. 

2.4.1 Concept Image 

 

Schwarzenberger and Tall (1978) studied the conflicts in the learning of limits. It was 

proposed that, in order to convey formal mathematical ideas to students, they are 

translated into suitable forms. Together with students’ prior experience, this translation 

might cause some conflicts. And these conflicts might lead to greater conflicts, or even 

totally blocking further learning. Schwarzenberger and Tall (1978) considered, as an 

example, informal translation of limit as a ground for some conflicts. Word “close” in 

the translation might infer the meaning near but not coincident with, which can cause 

one to think that sn can be close but not equal to s. And “as close … as” might carry the 

hidden meaning we can get infinitely close. So, when designing curricula, particular 

attention should be paid to such conflicts. 

 

To explain these conflicts Tall and Vinner (1981) differentiated formal mathematical 

concept and the way the concept developed in an individual’s mind by defining concept 

image as “… total cognitive structure that is associated with the concept, which includes 

all the mental pictures and associated properties and processes”.  

 

At a particular time, a portion of concept image might be activated. Tall and Vinner 

(1981) called it as evoked concept image. Concept image might include conflicting 

portions which might be activated at different times. In order to conflict occur, it is 

needed that conflicting portions are evoked simultaneously in the individuals’ mind. Not 

only portions of concept image can be in conflict each other but also conflict might 

happen between concept image and its formal definition.  
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Tall and Vinner (1981), moreover, defined potentiality and actuality of conflict as 

follows “We shall call a part of the concept image or concept definition which may 

conflict with another part of the concept image or concept definition, a potential conflict 

factor. Such factors need never be evoked in circumstances which cause actual cognitive 

conflict but if they are so evoked the factors concerned will then be called cognitive 

conflict factors”. 

 

Potential conflict factor, which is between concept image and formal concept definition, 

is very serious. If an individual cannot develop concept image of formal theory and then 

cannot simultaneously evoke conflicting parts, then there is no way that potential 

conflict factor becomes actual cognitive conflict. Tall and Vinner (1981) stated that 

“Students having such a potential conflict factor in their concept image may be secure in 

their own interpretations of the notions concerned and simply regard the formal theory 

as inoperative and superfluous”. 

 

Dynamic Notion of Limit, Infinitesimals and Potential Infinity 

 

Some of the researchers have focused on to figure out potential conflict factors created 

in learning limit concept. They determined several such factors, but, commonly cited 

conflict factor is that function does not attain its limit. “A common misinterpretation of 

the limit definition among these students is that it says that limits are not attainable” 

(Juter, 2003).  

 

In explaining cause of this potential conflict factor, some researchers (Williams, 1991; 

Tall & Vinner, 1981) put a dichotomy between dynamic and static notions of limit. For 

them, “as x goes to a f(x) goes to L” is a process which includes dynamic feeling of 

motion. Nevertheless, in formal conception, an individual deals with intervals in which x 

and f(x) values do not move. So, it is dynamical element in informal limit notion that 

prevents students to see that function can attain its limit value. 
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Williams (1991) examined students’ concept images of the notion of limit. A brief 

questionnaire applied to 341 second-semester university calculus students and it was 

detected that students have various conceptions of limit including dynamical notion of 

limit, static formal like notion of limit, limit as unreachable, limit as a boundary, and 

limit as an approximation. He then selected 10 students to be interviewed. According to 

results, he concluded that “…Limits tend to be seen as processes performed on 

functions, an idealized form of evaluating the function at a series of points successively 

closer to a given value. The dynamic element here is clear, and because the actual value 

of the function at the point of interest is irrelevant, the limit is never reached”.  

 

Similarly, Tall and Vinner (1981) argued that concept image of dynamic limit definition, 

which includes definite feeling of motion, is so strong in students. So, their concept 

image includes the potential conflict factor that function never reaches its limit value. 

 

Tall (1980a) contended that dynamic conception is easy to grasp and natural to develop 

for students. He came to this conclusion by focusing on the duality of process and object 

conceptions of limit, followed by a suggestion that students have primary intuition of 

limit as a process rather than limit as a static object. “… before limiting process had 

been discussed, the concept image intuitively alights on the infinite nature of the process 

rather than finite numerical limits”. Even, after students are exposed to formal limit 

instruction, they continue to hold dynamic view of limit.  

 

Williams (1991) echoed same ideas and he, further, concluded that dynamical notion of 

limit prevents development of formal notion of limit. “It is easily understood, and it is 

likely the most coherent and well-organized model of limit available to students… such 

a view of limit does present a cognitive obstacle to further understanding.” 

 

Still, another serious set of students’ difficulties in understanding limit concept 

determined by other researchers (Tall, 1980b; Mamona-Downs, 1990; Tall, 1980a). 

These are infinitesimal quantities and potential infinity. 
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Tall (1980b) contended that notion of the limit of a function is often interpreted in 

dynamical sense, never ending process of getting close to limit value rather than the 

limit value itself. This dynamism often leads students to construct infinitesimal 

quantities. 

 

Mamona-Downs (1990) came to same conclusion. “Expressions like “as x gets closer 

and closer to a, f(x) approaches l” do convey a feeling of motion and flow. The question 

“how close do you mean?” disturbs pupils who give either tautologous answers of the 

kind “as close as you can” or again infinitesimal arguments such as “x differs from a by 

an incredibly small amount””. 

 

Corresponding to infinitesimal quantities, it was argued that potential infinity is another 

conflict factor. Tall (1992b) suggested that students’ predominant notion of infinity is 

potential infinity, which implies process of getting closer to limit value goes n for ever, 

without being completed. Thus students’ idea that 0.999… is less than 1 might be 

because of their intuitions of potential infinity. 

 

Mamona-Downs (1990) concluded, similarly, about potential infinity in limiting 

process. “ 0.9ɺ  must be constructed by an unending process of adding a 9 to what you 

already have, starting with 0.9. This process is ruled out by time; every step has at least 

interval of time for it to be performed …The statement is false as although in the limit it 

may be said that this is true 0.999… would never actually reach 1 but would always be a 

very small amount less than 1”. 

 

In order for proper understanding of limit notion, students need to move from notion of 

potential infinity to notion of actual infinity. Introduction of sets promote the secondary 

intuitions of actual infinity. And development of notion of infinity and limit goes hand in 

hand. Nevertheless, intuition of actual infinity of sets may not be applicable to limit 
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situation. “Many university students go through a stage where they accept the actual 

infinity of a set but only potential infinity of a process” (Tall, 1980a). 

 

How to Help Students to Overcome Their Difficulties 

 

In order to help students to overcome mentioned difficulties, some researchers suggested 

alternative ways of teaching. Li and Tall (1993) proposed “function/numeric computer 

paradigm”. Students made some programs in BASIC programming language to 

experience that what happens to values of s(n) as n becomes larger and larger. 

Underlying idea was that for large values of n students computed s(n)  and looked for 

the values of s(n)  to see whether stabilization occur for a given accuracy. As the 

accuracy increases the greater value of n is needed for stabilization. They expected that 

this idea would lead to the ε-N definition of limit. Nevertheless, the expected transition 

from informal process view of limit of a sequence to informal object view of sequence 

did not happen. 

 

Monaghan, Sun, and Tall (1994) proposed that “function/numeric computer paradigm” 

emphasizes process of computing values of s(n) for larger and larger n so that students 

hold the belief that limit is a process not an object. They posited another paradigm: “the 

key stroke computer algebra paradigm”. By using Derive computer algebra system 

students can evaluate limits with simple key strokes. The underlying idea is that 

computer handles necessary process internally to evaluate limits so that learner is free to 

experience properties of object produced by computer before, at the same time, or after 

studying process itself. To explore possible effects of this paradigm, they constructed 

two groups. The study revealed that students in both groups were beginning to see the 

limit sum as an object. But, simultaneously, students in both groups had the well known 

misconception that limit is never ending process.  

 

Williams (1991) took another route to help students. He selected 10 students to be 

exposed to carefully designed instruction based on conceptual change approach in which 
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students faced with situations creating cognitive conflict. Results indicated that students 

had idiosyncratic variations on dynamical notion of limit and notion of limit as 

unreachable. Nevertheless, students failed to adopt more formal model of limit.  

 

Oppositions to Results of Dynamical Notion of Limit 

 

Two different oppositions came to the idea that dynamical conception of limit is natural 

for students and hinders their development toward more formal understanding of limit 

concept from a researcher and group of others (Oehrtman, 2003; Cottrill et al., 1996). 

 

Oehrtman (2003) investigated students’ metaphors for limits. Results revealed that 

students hold five strong metaphors: collapse, approximation, closeness, infinity as a 

number, and physical limitation. One of the strong metaphors was exemplified: collapse 

metaphor. For collapse metaphor, students imagined a physical referent for the changing 

dependent quantity, and this quantity loosed one or more dimensions by collapsing along 

one of its dimensions in a limiting situation. It is noticeable that strong metaphors did 

not include motion metaphor, rather it was included in weak metaphors which were the 

followings: motion, zooming, and arbitrary smallness. And he concluded that although 

weak metaphors, such as motion, run in the background, strong metaphors, such as 

collapse, organized ideas and were touchstones for reasoning. Thus, dynamical notion of 

limit is not as natural as suggested and cannot hinder development of more formal 

conceptions of limit.  

 

Second opposition came from Cottrill et al. (1996). They considered dynamical notion 

as a mental process in APOS terms. Actually this is not a single process, rather is 

coordination of domain and range processes via function in consideration, thus a 

schema. Contrary to the belief that process conception is easy to understand, they 

suggested that coordinated process schema is not easily constructed by students. 

Moreover, they argued that informal process schema of limit concept is necessary in 

building formal understanding of limit. Formal understanding of limit concept is built on 
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coordinated process of informal limit, rather than hindered by it. Difficulty in moving 

from informal understanding to formal understanding comes from students’ weak 

understanding of quantification. 

 

Spontaneous Conceptions 

 

When students come to the classroom to learn limit concept, their learning does not 

begin on blank slate. Rather, students come to the class with some understanding about 

limit, which they have built from daily life experiences. Cornu (1991) defines 

conceptions that occur prior to formal education as spontaneous conceptions.  

 

Another source of students’ conflicts can be their spontaneous conceptions. Before 

introduced formal limit instruction, students have some kind of understanding of the 

language used by the instructor to communicate calculus concepts. Educators use 

phrases “approaches”, “tends to”, “converges”, and “limit” with a special meaning, 

whereas, these phrases have different meanings in students’ daily language which is 

created by their experience. Monaghan (1991) explored the effects of language on high 

school students’ understanding of limit concept. Students were given six curves in 

graphs and required to decide whether each curve tends to 0, has 0 as limit, converges to 

0, approaches to 0. Although these four words mathematically equivalent, students often 

agreed with one of them but disagreed with the other, considering the same curve. 

Moreover, interviews conducted with the students revealed following results. 

 

Most of the students saw the “limit” as a boundary which cannot be passed (sometimes 

as a rule, sometimes impossible). In mathematical situations limit is seen as an 

unreachable boundary point and as a final point: 0.9ɺ  is the final point of the sequence 

0.9, 0.99, 0.999, 0.9999, …, but limit is also 1 to which sequence never reaches.  

 

“Approaches” was seen in a more dynamic way than limit in students’ daily life 

languages. Majority of the students held the idea that “approaches” involved a 
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movement of one thing toward other things (constant or moving), sometimes with the 

contention that the thing that is approached will eventually be reached, and sometimes 

with the contention that it is never reached. 

 

Most of the students used “tends to” in the meaning of personal inclination or of general 

trend. In mathematical situations both “tends to” and “approaches” were seen as same, 

representing movement of an object that never reaches point being approached. 

 

For majority of the students “approaches” meant that two continuous objects come 

together and touch each other. However, in mathematical context, students were often 

unsure about what “converges” mean. 

 

Based on these results, Monaghan concluded that daily life meanings of these words 

might become potential cognitive conflict factors when students are exposed to limit 

instruction, and moreover, such meanings might be continued to be hold after formal 

instruction. 

 

Similarly, Kim, Sfard and Ferrini-Mundy (2005) studied students’ colloquial and literate 

use of the word “limit”. Their sample consisted of two elementary school students, two 

middle school students, two high school students, and two university students. They 

found that colloquial use of the “limit” (as an upper bound and being unreachable) is in 

conflict with mathematical definition of limit. Unlike Monaghan (1991), they found that 

well defined misconception “being unreachable”, was used only by university and high 

school students who are exposed to formal limit instruction. This leads to conjecture that 

the misconception “being unreachable” is not because of daily use of the word, but 

rather related to education. However, we must take their small sample size into 

consideration, we should be precautious to make generalizations. 

 

 



 32 

2.4.2 Obstacles to Learning 

 

Learning is not a smooth process without breaks. In transition from one mental state to 

another, unstable behavior is possible. Some of the researchers have focused on 

students’ difficulties in these transitions. Bachelard (Bachelard, 1938, as cited in Cornu, 

1991) considered epistemological obstacles in the acquisition of scientific knowledge. 

 

“We must pose the problem of scientific knowledge in terms of obstacles. It is not just a 

question of considering external obstacles, like the complexity and transience of 

scientific phenomena, nor the lament the feebleness of the human senses and spirit. It is 

in the act of gaining knowledge itself, to know, intimately, what appears, as an 

inevitable result of functional necessity, to retard the speed of learning and cause 

cognitive difficulties. It is here that we may find the causes of stagnation and even 

regression, that we may perceive the reasons for inertia, which we call epistemological 

obstacles.” 

 

Sierpinska (1987), Cornu (1991) and Brousseau (1997) applied such obstacles to 

mathematical learning. Brousseau (1997) defined epistemological obstacle as a piece of 

knowledge that functions well within a limited context, thus becomes well established in 

the students’ mind, nevertheless, it is not generalizable beyond its specific context. So, 

this piece of knowledge cause conflicts in another context in which students face new 

mathematical objects and processes.  

 

Cornu (1991) described three forms of obstacles depending on their origin: genetic and 

psychological obstacles, didactical obstacles, and epistemological obstacles. Genetic and 

psychological obstacles are related to mental development of child. Didactical obstacles 

emerge as a result of instructional sequence. So, there is a possibility that didactical 

obstacles can be overcome by implementing carefully designed instruction. 

Nevertheless, origin of epistemological obstacles is nature of mathematical concept 

itself.  
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Tall (Tall, 1986 as cited in Tall, 1991) suggested similar explanation to this phenomena 

by introducing generic extension principle which is defined as “If an individual works in 

a restricted context in which all the examples considered have a certain property, then, in 

the absence of counter-examples, the mind assumes the known properties to be implicit 

in other contexts” (p. 8).  

 

Tall (1991) put generic extension principle into practice in the following way. When 

students first introduced to limit of a sequence, simple sequences given by a formula are 

used, such as 1/n. This sequence converges to zero, but its terms never equal to the limit. 

Moreover, colloquial use of the phrases like “gets close to” supports this belief. In the 

absence of any counter examples, students gradually form the implicit belief that terms 

of a convergent sequence gets closer and closer to limit without actually attaining it. 

 

The idea of “whether limit is actually attained or not” is determined as an 

epistemological obstacle, by Cornu (1991), which occurred in the history of the 

development of the limit concept. Cornu (1991) determined three other epistemological 

obstacles in the history of development of the limit concept; the failure to link geometry 

with numbers, the notion of the infinitely large and infinitely small, the metaphysical 

aspect of the notion of limit.  

 

It is interesting for mathematics education research to detect the epistemological 

obstacles that occurred in the history also occur in today’s classrooms. Sierpinska (1985) 

went in that way and identified five main epistemological obstacles and rearranged this 

list (1987) as follows. “Obstacles related to four notions seem to be the main sources of 

epistemological obstacles concerning limits: scientific knowledge, infinity, function, real 

number” (p. 371). 

 

Recent research focused on investigating obstacles of students in limit concept. Moru 

(2009) found that some of the students directly input a into function f to find limit of f at 
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the point a. Using only one value to determine limit was also seen in the context of the 

limit of sequences, but with a different reasoning. Some of the students substituted one 

big value for n in the formula of sequence to determine limit. Although the result 

achieved by these students was the same, the ways that students used to achieve this 

result were different. For example, in finding 
( 1)

lim
n

n n→∞

−
 students substituted a big value 

for n, and the result obtained was number close to 0. Some of the students take 0 as the 

limit value because the word “approach” means “nearer to”, whereas, others rounded off 

the result.  

 

 

Similarly, Parameswaran (2007) detected that students tend to take very small numbers 

as zero and very large numbers as infinity. This tendency leaded students to face with 

cognitive obstacles under limiting situations. Introduction of ε-δ definition of limit is 

supposed to overcome such difficulties, but contrarily after introducing students to ε-δ 

definition, their difficulties persisted. 

 

Hofe (1999) studied epistemological obstacles of the students who attended computer 

based learning environment. Two students used Math View CAS software to experience 

limiting behavior of the difference quotient and of secant lines at the same time. 

According to results of this study  

 

(i) students held the notion of infinitely small quantities which famous mathematicians 

used in the development of infinitesimal calculus, 

(ii) there is a problem in the interplay between students’ process and object conceptions 

of informal limit, and hence, 

(iii) the main problem is in the relationship between intuitive idea and its mathematical 

specification. 

Some others concentrated on teachers’ understanding of limit concept, and didactical 

transmission of epistemological obstacles. Huillet (2005) concluded that teachers have 
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weak concept images of limit concept; based on mostly algebraic tasks and having 

difficulty in transition between representations, and dependence on procedural 

knowledge. Cinvestav and Chavez (1999) found that teacher’s dynamical idea of limit 

was passed to students via instruction and this primitive idea was a cognitive obstacle in 

the construction of the concept of limit.  

 

How to Help Students to Overcome Their Obstacles 

 

Once the obstacles to learning limit concept is determined, the natural question to pose is 

that how can educators help students to overcome these obstacles. Schwarzenberger and 

Tall (1978) claimed that these obstacles can be overcome by carefully designing 

instructional sequence. In helping students to understand limit concept, the important 

point is to be aware of the difficulties that students have had, and not to misguide them, 

which might cause aforementioned obstacles. So, instructional sequence can be designed 

in a way that the conflicts determined in the literature are avoided. “Mathematics is a 

difficult enough subject to understand without the additional hazards which are 

introduced by misguided attempts to provide the wrong sort of motivation or help; the 

helper conscious of the havoc caused by conflict between concept will try to adopt an 

approach which conflicts neither with the preconceptions of the pupil nor with 

neighboring mathematical material” (p. 49). 

 

Davis and Vinner (1986) followed a similar path. In order to avoid cognitive obstacles 

arising from the colloquial use of “limit”, they did not use the word “limit” in the initial 

stages of the instruction. Nevertheless, they came to the conclusion that there are 

unavoidable misconception stages that occur in developing understanding of limit 

concept, and “avoiding appeals to such pre-mathematical mental representation 

fragments may very well be futile”. 

 

Sierpinska (1987) had a different path in dealing with cognitive obstacles. He studied 

with 17 and 16 year old humanities students. The first attempt was to determine 
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epistemological obstacles that students have about limit concept. It was found that the 

students’ beliefs about mathematical knowledge, in particular, infinity are very serious 

obstacles. In order to help students to overcome their obstacles, he designed a didactical 

situation emphasizing cognitive conflict. Results revealed that “It is rather clear from the 

foregoing that none of the epistemological obstacles has been completely overcome. But 

mental conflicts were born and this may be starting point”. 

 

Szydlik (2000), further, explored the relationship between second-semester calculus 

students’ beliefs about mathematical knowledge and their conceptual knowledge. 

Students who have external sources of conviction depend on authority to determine 

mathematical truth, whereas students who have internal sources of conviction consider 

their intuition, and look for logic and empirical evidence. Results showed that students, 

seeing calculus as collection of facts and procedures and devalued the underlying theory, 

held contradictory or primitive limit models with misconceptions “limit as bound”, 

“limit is unreachable”. Contrarily, students with internal sources of conviction were able 

to construct conflict free concept images and more likely held static conception of limit 

which author believes as an important step to formal limit ideas. So, for students with 

internal sources of conviction it is appropriate to provide formal structure, but, for 

students with external sources of conviction this formal structure can cause cognitive 

obstacles. Thus, instructor should be aware of the fact that they need to make sense of 

mathematics and are not ready for proofs. 

 

2.4.3 Other Difficulties to Learning Limit Concept 

 

In addition to above studies, other researchers (e.g., Tall, 1992a; Przenioslo, 2004; Elia, 

Gagatsis, Panaoura, Zachariades & Zoulinaki, 2009) studied high school students’ and 

university students’ difficulties in learning limit concept.   
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Tall (1992a) considered that notion of limit does not rely on simple arithmetic and 

algebra which causes difficulties for students. “The calculus represents the first time in 

which the students are confronted with the limit concept, involving calculations that are 

no longer performed by simple arithmetic and algebra, and infinite processes that can 

only be carried out by indirect arguments” (p. 13). 

 

Przenioslo (2004) considered university students’ (some of them studying limit concept 

and the others saw the concept in their previous courses) key elements of concept image 

of limit of functions. He defined key element of the image as “…the element, which a 

student appeared to perceive as most significant for solving problems…” (p. 105).He 

determined six key elements with given percentages: neighborhoods (10%), graph 

approaching (34%), values approaching (16%), being defined at x0 (18%), limit of f at x0 

is f(x0) (9%), use of algorithms (13%).  

 

Students who focused on the “neighborhoods” applied formal definition (not always 

correctly) to solve given problem, and were the most efficient problem solvers. Students 

who had the key elements “graph approaching” and “values approaching” used 

dynamical language in limiting situations (mostly involving misconceptions). Students 

in both groups were less efficient in problem solving than the students in 

“neighborhoods” group. Moreover, some of the students saw that to limit exist function 

must be defined at the given point. Some of the students went further and held the idea 

that limit is f(x0) at x0. The last group applied algorithms in problem situations in a 

schematic fashion to get a result, but their schemes were quite frequently incorrect. 

 

Then, a questionnaire designed by Elia et al. (2009) administered to 222 12-th grade 

high school students who had mathematics as a major subject and had already been 

taught elementary calculus. Instruction did not include the formal definition of limit. 

Results revealed that only 20.7% of the students gave the correct definition of limit, and 

majority of the students held some misconceptions: including limit is a number that 

cannot be reached, limit of a function at a point is the evaluation of the function at this 
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point, function must be defined at the point where limit is looked for, limit of the 

function does not exists only under the condition that left and right limits are not equal, 

and 1.999… is not equal to 2. Moreover Elia et al. considered students’ translation from 

algebraic to geometric representations and vice versa. Authors concluded that students 

who had the conceptual understanding of limit were more likely to make such transitions 

between representation types. 

  

Another study (Cetin, 2009) focused on procedural and conceptual knowledge to explain 

student difficulties. She asked 63 university students, who completed their first year 

mathematics study involving limit concept, to find limit of four functions at a point a 

and approximate values of those functions at a point which is near to a. For example, 

students were asked: 

 

0

sin
( ) ,  (0.015) ?  (x variable is in radian)

sin
( ) ,  lim ( ) ?

x

x
f x f

x

x
f x f x

x →

= ≅

= =
 

Majority of the students find the limit of given functions, but did not use this data to find 

approximate values of the given functions, rather they tended to evaluate functions for 

the given point. Cetin concluded that most of the students used some procedures to find 

limit of a function for a given point but they did not consider the idea underlying these 

procedures. 

 

An investigation done by Williams (1991) corroborated this finding, and searched for 

the reason in didactic contract. “… students often considered ease and practicality of a 

model more important than mathematical formality. This is particularly true in the sense 

that models of limit that allow them to deal with the realities of limits in the classroom, 

the kind they see on tests, tend to be seen as sufficient for the purposes of most students. 

It was noted by several students that neither formal nor dynamic models of limit figure 

heavily in the procedures students use to work problems from their calculus classes; 

their procedural knowledge (e.g., substituting values into continuous functions, factoring 
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and canceling, using conjugates, employing L’Hopital’s rule) is largely separate from 

their conceptual knowledge.” (p. 233). 

 

Przenioslo (2004) echoed similar results “… the particular elements of an image were 

often not conceptually connected in students, who were then unaware of the 

contradictions among them. Students could correctly state an ‘official’ definition but 

would not notice a contradiction between this definition and his or her other, more 

‘private’ conceptions, and, worse, would not try to confront the two parts of his or her 

knowledge. More importantly still, for the majority of the students the definition was not 

the most significant element of the image, the criterion of ‘significance’ being its 

usefulness in solving problems.” (p. 129). 

 

Tall and Vinner (1981) asked first year university students to write down definition of 

lim ( )
x a

f x l
→

= , if they knew one. Results showed that most of the students who give the 

dynamical definition were able to state it correctly whereas students who recalled formal 

definition misstated it. 

 

Table 2.1: Dynamic- Formal Responses 

 Correct Incorrect 

Formal 4 14 

Dynamic 27 4 

 

 

Cornu (1991) and Cottrill et al. (1996) ascribed students’ difficulty in understanding 

formal limit concept to their weak understanding of the concept quantifiers.  

 

Bloch (2000), also, took the attention on quantifiers. “Many statements of theorem in 

mathematics have quantifiers in them, sometimes multiple quantifiers. The importance 

of the quantifiers in the rigorous proofs cannot be overestimated. From the author’s 

experience teaching undergraduate mathematics courses, confusion arising out of either 
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the misunderstanding of quantifiers in complicated definitions and theorems, or the 

ignoring quantifiers when writing proofs, is the single largest cause of the problems for 

students who are learning to construct proofs” (p. 42).  

 

Lastly, Fernandez (2004) detected that notation used in the formal definition causes 

problems in learning formal definition of limit.  

 

2.4.4 APOS Approach 

 

Based on their Action, Process, Object, Schema framework APOS researchers Cottrill et 

al. (1996) proposed their first theoretical genetic decomposition. 

 

1. The action of evaluating the function f at a few points, each successive point closer to 

a than was the previous point. 

 

2. Interiorization of the action of Step 1 to a single process in which f(x) approaches L as 

x approaches a. 

 

3. Encapsulate the process of 2 so that, for example, in talking about combination 

properties of limits, the limit process becomes an object to which actions (e.g., 

determine if a certain property holds) can be applied. 

 

4. Reconstruct the process of 2 in terms of intervals and inequalities. This is done by 

introducing numerical estimates of the closeness of approach, in symbols, 0 | | δ< − <x a  

and| ( ) | ε− <f x L . 

 

5. Apply quantification schema to connect the reconstructed process of the previous step 

to obtain the formal definition of limit. 
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6. A completed ε-δ conception applied to specific situations. 

 

Then, depending on interview data they revised their primary genetic decomposition. 

One step was added to the beginning and Step 2 is revised in the way that it is not a 

single process, rather, it includes coordination of two processes, that is, it is schema. 

Then they concluded that since it is not a single process, students’ difficulties are due to 

this coordinated process schema whose construction is not easy for students. Revised 

genetic decomposition is as follows.    

 

1. The action of evaluating f at a single point x that is considered to be close to, or even 

equal to a. 

 

2. The action of evaluating the function f at a few points, each successive point closer to 

a than was the previous point. 

 

3. Construction of a coordinated schema as follows. 

 (a) Interiorization of the action of Step 2 to construct a domain process in which  

                  x approaches a.        

 (b) Construction of a range process in which y approaches L. 

 (c) Coordination of (a), (b) via f. 

 

4. Perform actions on the limit concept by talking about, for example, limits of 

combinations of functions. In this way schema 3 is encapsulated to become an object. 

 

5. Reconstruct the process of 3(c) in terms of intervals and inequalities. This is done by 

introducing numerical estimates of the closeness of approach, in symbols, 0 | | δ< − <x a  

and| ( ) | ε− <f x L . 

 

6. Apply quantification schema to connect the reconstructed process of the previous step 

to obtain the formal definition of limit. 
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7. A completed ε-δ conception applied to specific situations. 

 

Actually, data from student interviews did not allow authors to validate the Steps 5 (a 

few students constructed), 6, and 7 (no student constructed). But they chose not to drop 

them. “We repeat them in the revised version, although they might be dropped for the 

present since there is no evidence for them”.  

 

As mentioned above, in literature there was a common distinction between dynamic 

informal (process) limit conception and static (formal) limit conception. Cottrill et al. 

(1996) opposed this belief by using theoretical Step 6 in secondary genetic 

decomposition. According to this step, students apply quantification schema. But, 

application of quantification schema, at this level, is not a static entity, rather it is 

process. Moreover, it is not the dynamic nature of limit conception that hinders students’ 

transition to more formal ideas. Cottrill et al. conjectured that it is students’ weak 

quantification schema that hinders development of formal limit conception. 

 

Without using APOS framework, Roh (2007) conducted a study about transition from 

intuitive understanding of limit to more formal understanding of limit in the case of 

sequences. In his study he developed a tool called ε-strip. He used this tool to assess 

students understanding of the limit concept, as well as help students to develop concept 

of limit. Students’ use of ε-strip prevents us to see how students relate ε, N, n and an, 

since for a fixed ε value, it automatically produces an N value. Nevertheless, students are 

free to vary ε value. In this sense, students’ use of this tool can give some indications 

how they understand phrase “any ε”.  Moreover, in informal models, students first think 

of index and corresponding term for this index. Then, they consider the difference 

between each term and the limit value as index increases to infinity. But, in formal 

definition students are required to, first, consider the error bound, then, proper index for 

the given error bound. Roh calls this transition as reverse thinking process, and he adds 

understanding the relation between ε and N to this process to define reversibility. Then 
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to classify students’ level of reversibility he made 1-hour interviews with 12 students for 

5 weeks. Analysis of the results indicated five level of reversibility as given below. 

 

“Reversibility level 4 includes the case where students conceptualize the following three 

ideas: (1) the dependency of N on ε, (2) the arbitrary choice of ε, and (3) the dynamic 

feature of ε to decrease to 0.” 

 

“Reversibility level 3, on the other hand, includes the case where students conceptualize 

the first two ideas, “the dependency on N on ε” and the “arbitrary choice of ε”, but not 

the third one, “such chosen values of ε can be rearranged to decrease to 0”.” 

 

“Reversibility level 2 describe the case where students conceptualize that “N can be 

dependent on ε”, but improperly perceive the second notion “the arbitrary choice of ε”. 

To be precise, students in this level can perceive only some positive values for ε.” 

 

“At reversibility level 1, students tend to complete the ε- process preferentially so as to 

fix the value of ε at 0 or infinity. These students assume that any positive value of ε can 

be ultimately substituted to 0 or infinity, and as a consequence, limit values of a 

sequence are found by replacing 0 or infinity for ε.” 

 

“Students at level 0 of reversibility tend to select a value of N first and then determine 

the value of ε.” (p. 107). 

 

Although limit in sequences and limit of functions are two different subjects, they have 

commonalities: relationship between ε and N, relationship between ε and δ. Findings of 

Roh and conjectures of APOS researchers (Asiala et al., 1996) are compatible. In Roh’s 

study, firstly, students could not reverse the relationship between ε and N, which can be 

taken as corresponding to students’ difficulties in transition from 3(c) to 5. Moreover, 

students, firstly, considered only one fixed ε. Then, some ε values come into 

consideration. And lastly, some of them come to the conclusion that every ε value 



 44 

should be taken into account in the relationship between ε and N. These levels of 

understanding are compatible with what APOS theory conjectures. 

 

An opposition to APOS theory in general and genetic decomposition of limit concept in 

specific came from Pinto and Tall (2001) and Pinto and Tall (2002) respectively. Pinto 

and Tall (2001) described two different learning styles: one is formal other is natural. 

“Formal thinkers attempt to base their work on the definitions… Natural thinkers 

reconstruct new knowledge from their concept image” (p. 57). They contended that 

formal thinkers are compatible with APOS theory, whereas, APOS theory does not 

explain the way of natural thinkers’ learning. Formal learners’ starting point is concept 

definition. They build their concept image from formal concept definition by focusing 

on rules and procedures and by routinising them reflectively. Then, they deductively 

construct formal theory. On the other hand, natural learners’ starting point is their 

concept image. They try to assimilate formal theory into their concept image which 

results in cognitive conflicts. Then, they proceed by making thought experiments to 

reconstruct their concept images on which formalism is built. Finally, they build formal 

theory which is integrated with imagery.   

 

In their later research (Pinto & Tall, 2002) they gave a specific example, Chris, for 

natural learning style. In this example, Chris started knowledge building with his 

concept image, that is, he interpreted formal definition in terms of his old knowledge. 

His concept image included both limit processes and limit objects. Then, Chris made 

some thought experiments to reconstruct his image. Finally, he built formalism on his 

modified images to get formal understanding which is integrated with his concept image.  

 

After Cottrill et al. (1996) and Pinto and Tall (Pinto & Tall, 2001; Pinto & Tall, 2002) 

this subject has not been studied to generate hypothesis and solutions to mentioned 

discrepancies. However, some researchers used APOS framework as a starting point to 

further elaborate students’ difficulties. For example, Swinyard and Lockwood (2007), by 

using APOS, contended that in order to understand formal limit concept, requires 
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students to understand purpose of definition, individual components of definition, role of 

quantifiers.  

 

How to Help Students to Construct Limit Concept 

 

Cottrill et al. (1996) designed an instruction based on first version of genetic 

decomposition to help students to construct limit concept. ISETL software was used to 

help students in this construction. In studying groups, they wrote some ISETL code, or 

modified given code to start to make constructions mentioned in the theoretical version 

of genetic decomposition of limit concept. This is followed by classroom discussions to 

reflect on what they do. Nevertheless, this approach was not proved successful.   

 

  

2.4.5 Instructional Approaches to Facilitate Learning Limit Concept 

 

Understanding limit concept is crucial for calculus students since it establishes a ground 

for development of the concepts of continuity, derivative, and integral. Although 

importance of limit understanding has been recognized, introduction of this concept, 

because of its complexity, causes serious difficulties. So, the question of “How can 

educators/teachers facilitate students in developing limit concept?” is inevitable. 

 

To investigate whether formal definition should be given from the start or not Mamona-

Downs (1990) conducted a comparison study between Greek and English students. “A 

comparison between the nationals is interesting in that the English have no formal 

instruction about limits on real line, contrary to Greek case. We find the English use 

“infinitesimals” which often confounds the completion of a limiting process, whereas 

Greeks sometimes display difficulties in using formal symbolism and reasoning, 

suggesting that little insight is given by the strict definition”. 
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Parameswaran (2007) tested the idea that whether the introduction of ε-δ definition of 

limit helps students in overcoming their difficulties about informal limit concept or not. 

Negative results were drawn by the author: after introducing students to ε-δ definition, 

their difficulties persisted. Moreover, author concluded that instructor’s emphasis on ε-δ 

definition as rigorous, mathematically accurate alternative for intuitive notion of limit 

caused them to distrust informal limit notion. Even for some questions which could be 

easily solved with informal limit approach, some of the students tended to use 

(sometimes incorrect) formal ε-δ arguments. 

 

Williams (1991) took another route. He examined second semester calculus students’ 

conceptions of limit. Results indicated that students had idiosyncratic variations on 

dynamical notion of limit and notion of limit as unreachable. He took these notions as a 

starting point for the learning of more formal limit notion. Then, he carefully designed 

an instruction based on conceptual change approach with the focus of creating cognitive 

conflict to help students in moving from informal dynamic models to more formal 

models of limit. Nevertheless, students failed to adopt more formal model of limit.  

 

Relatively positive result came from the study of Roh (2006). He developed a tool, 

called ε-strip, to help students in transition from informal understanding of limit to 

formal understanding. Students who had not any experience with ε-N proof were chosen 

for the study. They used ε-strips to explore ε-N relation for monotone bounded, 

unbounded, constant, oscillating convergent, and oscillating divergent sequences. 

Finally, students were presented two ε-strip definitions, one of them is correct and the 

other one is incorrect. Although intention was not to facilitate students’ learning of 

formal limit concept, after 5 weeks of interviews (one hour for each week) students 

showed better understanding of formal limit concept. Author concluded that ε-strip is a 

promising tool which might be used to help students in learning limit concept. 

 

Then, Li and Tall (1993) proposed “function/numeric computer paradigm” to help 

students in transition from informal understanding of limit to formal understanding of 
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limit in the context of sequences. Students learned, first, BASIC programming language. 

They use it to experience what happens to values of s(n) as n becomes larger and larger. 

Then their attention was shifted from index, namely n, to the given accuracy within s(n) 

values stabilized. As the accuracy increases the greater value of n is needed for 

stabilization. They expected that this idea would facilitate students’ learning in transition 

from informal view of limit to formal view of limit. Nevertheless, the expected transition 

from informal process view of limit of a sequence to formal, ε-N, view of sequence did 

not happen. 

 

Similarly, Oehrtman (2004) addressed the approximation metaphor to see how it affects 

students’ learning of limit of a function and a sequence. Unlike Li and Tall (1993) who 

stated that designing instruction depending on approximation metaphor did not help 

students to move from informal process view to more formal view, Oehrtman found that 

approximation metaphor is a productive tool for the calculus students’ understanding 

and application of limit concept. Moreover, he concluded that approximation metaphor 

can help students to move from informal view of limit to formal ε-δ and ε-N view of 

limit with guidance from instructor. 

 

Monaghan, Sun, and Tall (1994) used the idea that introduction of computers into school 

environments give students opportunity to shift from emphasis on routine work to bigger 

picture. They criticized “function/numeric computer paradigm” in that it emphasizes 

process of computing values of s(n) for larger and larger n so that students hold the 

belief that limit is a process not an object. They posited another paradigm “the key 

stroke computer algebra paradigm”. The underlying idea is that computer handles 

necessary process internally to evaluate limits so that learner is free to experience 

properties of object produced by computer before or at the same time studying process 

itself. To explore possible effects of this paradigm, they constructed two groups: 

experimental (Derive) group in which students were exposed to the key stroke computer 

algebra paradigm and control group in which students had similar backgrounds but 

without computer algebra system. The study revealed that students in both groups were 
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beginning to see the limit sum as an object. But, simultaneously, students in both groups 

had the well known misconception that limit is never ending process. Thus, in 

comparison to students who are exposed to “function/numeric computer paradigm” in 

the previous study of Li and Tall (1993), students in Derive group made more progress 

in transition from process view of informal limit to object view of informal limit. 

However, Derive group students showed similar performance with control group in this 

transition. 

 

In another study (Lauten, Graham, and Ferrini-Mundy, 1994), students are exposed to 

graphics calculator-based environment. Researchers interviewed 7 students, but then 

decided to focus on interview of one student: Amy. Analysis showed that formal 

definition of limit seemed to have no meaning for her and considering informal 

definition she had the view that points moved along a curve and never quite reached the 

limit point, which is well known misconception. It is found that “Amy seemed 

comfortable with her view that points moved along a curve and never quite reached the 

limit point” and it is stated that “In fact, the formal definition seemed to have no 

meaning for her” (p. 234). 

 

Buyukkoroglu et al. (2006) constructed two groups; control group was instructed by 

classical methods and experimental group was instructed by using computer support. 

Using MATLAB applet, researchers designed computer laboratory sessions for 

experimental group students. MATLAB applets were used mainly for the visualization 

of the informal limit idea. To assess students’ performance in informal limit concept, 

researchers prepared a questionnaire including four open ended questions. Study 

revealed that there is no significant difference between two groups. 

 

In the study about how students learn limit concept, Cottrill et al. (1996) commented that 

“We have not, however, found any reports of success in helping students to overcome 

these difficulties” (p. 171). In my literature review I either came to same conclusion (for 

most of the studies), or found some promising approaches in helping students to learn 
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limit concept. Nevertheless to see their real potential, these approaches must be, further, 

systematically investigated. Contrary to all studies mentioned above, one systematic 

study that produced positive result is the following. 

 

Fernandez (2004) decided to take students’ viewpoints into consideration for lesson 

planning in teaching formal limit concept. Students’ difficulties in understanding formal 

definition of limit were detected as “definition contained too much notation and that the 

need for this notation should be motivated” (p. 45). Depending on this result, Fernandez 

designed a 100-minute lesson. At the beginning of the lesson distinction between 

informal and formal approach was discussed. Then for a given specific epsilon, students 

are required to find appropriate delta. This continued until students began to see the 

pattern in the formal definition of limit and became tired of calculation. Then, by 

making discussions, students were introduced to formal definition of limit with interval 

notation rather than absolute value notation, since students were more familiar and 

comfortable with interval notation. After this lesson, students’ understanding was 

evaluated with two questions: first one required students to show that limit of a given 

function is L, and for the same function and the same point, last one required students to 

find appropriate delta for a given specific epsilon. 34 of the 48 students successfully 

solved first question while 22 of the 48 students responded second question correctly. 

However, only 15 of the 48 students responded both of the questions correctly. 

Comparing the results with his previous teaching experiences, Fernandez concluded that 

this new approach helped students to improve their performance in problem solving. 

 

As a result of using more familiar notation, of motivating students for the necessity of 

formal definition, and of discussing what the formal definition of limit means, students’ 

showed relatively better performance in solving these two questions. However, we do 

not have enough evidence for conceptual understanding, since it is possible that students 

solved questions without having conceptual understanding of the formal limit concept. 
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CHAPTER 3 

3. METHOD 
 

In this chapter, the methodology utilized in the study is presented in detail. These 

include design of the study, pilot study, participants and context, instruments of the 

study, procedures of the study, analysis of the data, reliability and validity issues, 

assumptions of the study, and lastly limitations of the study. 

 

3.1 Design of the Study 

 

The purpose of the study is two folds: (1) to explore how students develop 

understanding of limit of a function, (2) to explore how students’ understanding of limit 

of a function differ after the instruction. The research problems and sub-problems that 

guide this study are listed below: 

 

1. How do students develop understanding in limit of a function? 

 

1.1. How do students explain their informal understanding of limit of a function? 

 

1.2. How do students explain their formal understanding of limit of a function? 

 

1.3. What kind of difficulties do students encounter in transition from informal 

understanding   to formal understanding of limit of a function? 
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2. How different is students’ understanding of limit of a function after the instruction 

based on APOS theory? 

 

In order to address these research questions case study is utilized. Stake (1995, p. xi) 

defined case study as “the study of the particularity and complexity of a single case, 

coming to understand its activity within important circumstances”.  

 

 

Hitchcock and Hughes (1995, p.317) described the characteristics of case studies as 

follows. 

 

• It is concerned with rich and vivid description of events relevant to the case. 

• It provides a chronological narrative of events relevant to the case. 

• It blends a description of events with the analysis of them. 

• It focuses on individual actors or groups of actors, and seeks to understand their   

perception of events. 

• It highlights specific events that are relevant to the case. 

• The researcher is integrally involved in the case. 

• An attempt is made to portray the richness of the case in writing up the report. 

 

In case studies, generally, researchers gather rich data from multiple sources to address 

the complexity of the case. So, triangulation of the data is the issue in case studies to 

address complexity of the case and quality of the research. Bogdan and Biklen (1998, 

p.104) defined triangulation as “It came to mean that many sources of data were better in 

a study than a single source because multiple sources lead to a fuller understanding of 

the phenomena you were studying”.  

 

Gall, Gall, and Borg (2003, p.472) determined some advantages and disadvantages of 

case study as follows: 
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Advantages 

 

• Case studies provides flexibility, 

• Case studies provides thick descriptions, 

• Thick description helps readers to compare cases with their own situations, 

• Case study reports may have better basis for developing theories, designing 

educational interventions, 

• Researchers’ perspective is included in case study, thus it enables readers to 

determine whether researcher and reader shares same perspective or not. 

 

Disadvantages 

 

• Case studies are labor intensive,  

• Ethical problems may arise, 

• Little or no generalization can be made from the findings of the case study. 

 

Simons (2009) opposed to the last item of the disadvantages of a case study, and stated 

that generalization is possible in case studies. He proposed five ways of generalization in 

case studies: cross-case generalization, naturalistic generalization, concept 

generalization, process generalization, situated generalization. 

 

Yin (2003) provided another kind of generalization called analytic generalization. 

Analytic generalization differs from statistical generalization in that it does not 

generalize findings from sample to population. Rather, aim is generalizing from case 

study to theory. In analytic generalization (Yin, 2003, p. 32-33) “… previously 

developed theory is used as a template with which to compare the empirical results of 

the case study. If two or more cases are shown to support the same theory, replication 

may be claimed. The empirical results may be considered yet more potent if two or more 

cases support the same theory but do not support an equally plausible, rival theory”. 
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In order to address the questions of this research two instruments were developed. First 

one is the limit questionnaire and the second one is interview protocol. This study 

included two phases. In the first phase pilot study was done. Depending on the pilot 

study results main study was conducted. In the main study, limit questionnaire was 

administered as a pretest. After pretest, students attended five weeks instruction. In each 

week they meet in two hours computer laboratory to study in groups, and then they 

attended four hours traditional classroom instruction. In computer labs they were given 

some programming activities which give students opportunity to think on limit concept 

before they are given formal lecture in classes. At the beginning of computer labs, small 

discussions about previou week’s activities were done. After the classroom instruction, 

students were given relatively classical question sets about week’s concept as 

homework. At the end of the instruction limit questionnaire was administered as a 

posttest. And then a semi-structured interview protocol developed by the researcher 

administered to all of the students.  

 

3.2 Pilot Study 

 

In this research two instruments were developed: limit questionnaire and interview 

protocol. During the summer school of 2008, the semester prior to the actual study, the 

researcher conducted a pilot study that lasted five weeks. This study was done at Middle 

East Technical University (METU) in which 37 students attended classes of Math153. 

Math153 is a calculus course for mathematics majors. Aims of the students to take this 

course were to increase the grade that take in regular classes, because of they failed in 

their regular class, and lastly to gain more information about calculus. 

 

Nine students volunteered to attend the computer lab sessions in addition to regular 

classes. They attended two hour labs and four hour regular classes. In lab hours, 

researcher was the guide for students. And in classes, instructor was from Department of 

Mathematics. Students studied in three groups each including three members in lab 

sessions. They studied on lab sheets and were responsible to complete the tasks in the 
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week’s lab sheets and to give them to the researcher. In lab sessions, researcher observed 

students in order to assess the quality of the activities in lab sheets. Moreover, researcher 

examined the student responses to tasks in lab sheets to assess the quality of the 

activities. In this assessment, five criteria were used: (i) whether the instructions before 

activities are easily understandable by students or not, (ii) whether activities are suitable 

for students’ level or not, (iii) whether given activities work or not, (iv) whether 

activities are motivating or not, (v) whether activities help students to construct limit 

concept or not. As a result of this assessment, some of the activities were modified and 

some new activities were added. 

  

In the preparation process of lab sheets researcher used different resources. Activities in 

the lab sheets were either taken or modified from the suggested lab activities of the book 

“Calculus, Concepts, and Computers” (Dubinsky, Schwingendorf, & Mathews, 1995) or 

of Cottrill et al.’s limit study (Cottrill et al., 1996). In addition to these, some of the 

activities were prepared originally by the researcher.  

 

After five weeks of instruction, limit questionnaire was administered to all 37 students. 

Depending on the results 7 students were chosen for the interview phase. Four of 7 

students were from regular class, and three of 7 students attended lab hours and regular 

class. The criterion of selection of students for interview phase was their performance on 

limit questionnaire. Two of 7 students were low achievers, three of 7 students were 

average achievers, and two of 7 students were high achievers.  

 

All 7 interviews were audio-taped, and their analysis was done by considering APOS 

framework (Asiala et al, 1996). Genetic decomposition of Cottrill et al. (1996) was taken 

as primary genetic decomposition which is as follows:  

 
1. The action of evaluating f at a single point x that is considered to be close to, or even 

equal to a. 
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2. The action of evaluating the function f at a few points, each successive point closer 

to a than was the previous point. 

3. Construction of a coordinated schema as follows: 

(a) Interiorization of the action of Step 2 to construct a domain process in which 

x approaches a. 

(b) Construction of a range process in which y approaches L. 

(c) Coordination of (a), (b) via f. 

4. Perform actions on the limit concept by talking about, for example, limits of 

combinations of functions. In this way schema 3 is encapsulated to become an 

object. 

5. Reconstruct the process of 3(c) in terms of intervals and inequalities. This is done by 

introducing numerical estimates of the closeness of approach, in symbols, 

0 | | δ< − <x a  and| ( ) | ε− <f x L . 

6. Apply quantification schema to connect the reconstructed process of the previous 

step to obtain the formal definition of limit. 

7. A completed ε-δ conception applied to specific situations. 

 

According to data analysis no students found above the fifth step of the genetic 

decomposition. One of the aims of the pilot study was to gain experience in interviewing 

and asking appropriate follow up question. Nevertheless, none of the interviewed 

students showed progress after fifth step of the genetic decomposition. Then, two 

research assistants in Mathematics Department in METU were interviewed to get more 

experience in interviewing. They showed understanding of the seventh step of the 

primary genetic decomposition.  

The two purposes of the pilot study were to test questionnaire and interview protocol for 

their effectiveness in gaining information about students’ limit conception. All of the 

interview questions were maintained. But one of the questions in the questionnaire is 

removed because it did not give necessary information about students’ understanding of 

limit concept. No new question was added to questionnaire because it sufficiently 

provided information about students’ understanding of the concept.  The other aims of 
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the pilot study were for researcher to gain experience in analyzing student responses in 

the interview and lastly, by using student responses on the limit concept, to help refine 

primary genetic decomposition. 

3.3 Participants and the Context  

 

In this section participant selection procedure, demographic information of the 

participants, detailed description of the instruction and the context that study took place 

are given. 

3.3.1 Participants 

 

In this study, sample selection was based on purposeful strategies, in particular criterion, 

and convenience sampling were used.  Vaughn, Schumm, and Singagub (1996, p.58) 

defined purposeful sampling as “a procedure by which researchers select a subject or 

subjects based on predetermined criteria about the extent to which the selected subjects 

could contribute to the research study”.  In purposeful sampling, particular participants 

are chosen because they are believed to facilitate the expansion of developing theory 

(Bogdan & Biklen, 1998). Miles and Huberman (1994) identified 16 purposeful 

sampling strategies including extreme or deviant case sampling, intensity sampling, 

typical case sampling, maximum variation sampling, stratified purposeful sampling, 

homogeneous sampling, critical case sampling, snowball or chain sampling, criterion 

sampling, theory-based sampling, confirming and disconfirming case sampling, random 

purposeful sampling, convenience sampling, and opportunistic sampling.  

 

In criterion sampling, selection of cases is done considering some pre-determined 

criterion, and all individuals meet this criterion. Cases chosen depending on 

predetermined criterion are assumed to yield rich information about the concept in 

consideration. Miles and Huberman (1994) contended that criterion sampling can help in 

assurance of the quality of the research. Moreover, convenience sampling is the strategy 
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for selection of cases because participants are easily available for the researcher. This 

strategy saves time, money, and effort (Miles & Huberman, 1994).  

 

The major aim of this study was to explore students’ understanding of informal and 

formal limit concept. In Turkey, students are first introduced the limit concept at 12th 

level in high school. Nevertheless, in high schools formal definition of limit is not 

covered. They start to study formal limit in universities. Since both informal and formal 

understanding of limit concept of the students is investigated, high school students were 

not appropriate subjects for this study. Then researcher considered university students as 

subjects of this study. In universities, limit concept is studied in calculus or introductory 

analysis courses in their first year of the study. But, there is no uniform approach for all 

departments. Mostly, non-mathematics and non-mathematics education majors are 

introduced the limit of functions quickly: within two or three weeks. The instruction 

prepared for this research study lasts in five weeks. So, subjects of this study are needed 

to be limited mathematics and mathematics education majors.  

 

Researcher contacted with five departments in different universities, namely, Gazi 

University, Ankara University, METU, Hacettepe University, and Abant Đzzet Baysal 

University. First four of these universities are in the city of Ankara and the last one is 

located in the city of Bolu. All five departments were volunteered to provide facilities 

for the researcher. Then researcher applied additional criteria for the selection of the 

research site. First of all, instructor of the course should volunteer to design the 

instruction for the limit concept with the researcher of this study. In each part of the 

instruction, researcher is involved in decision making process. Permission taken from 

the university does not guarantee that instructor of the course collaborate with the 

researcher of this study. Second criterion was the availability of the computer labs for 

the lab hours and availability of the computers in general for the use of the students. 

Activities in lab hours, in general, are long enough to be not completed in two lab hours. 

So, students need to study in front of the computer after dedicated lab hours. Thus, 

researcher used the following criteria for sample selection: 
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1. Introduction of both informal and formal limit concept, 

2. Five weeks of instruction time, 

3. Acceptance of researcher by the instructor of the course in instructional 

decisions,  

4. Availability of computer facilities. 

   

In addition to above criteria, researcher considered easy accessibility of the subjects for 

classes and for interviews. Thus, researcher chose the students who attend Math153 

course at METU among other possibilities. The participants of this study included 25 

volunteer students who attended Math153 course in fall semester of 2008. All students 

were freshmen mathematics majors who are taking their first formal course about limit 

of functions Table 3.1 presented demographic information of participants of the study. 
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Table 3.1: Demographic Information of the Participants of the Study 

Sex Number Percentage (%) 
Male 7 28 

Female 18 72 

Age  

18 5 20 

19 15 60 

20 3 12 

21 2 8 

Type of High School     

Anatolian H.S. 16 64 

Science H.S. 6 24 

Regular H.S. 3 12 

Location of High School     

Ankara 16 64 

Đzmir 2 8 

Đstanbul 2 8 

Kayseri 1 4 

Samsun 1 4 

Bursa 1 4 

Denizli 1 4 

Zonguldak 1 4 
 

3.3.2 Context 

 

METU is one of the biggest universities in Turkey located in Ankara which is the capital 

of Turkey. Mathematics department is one of the central units of METU that provides 

service courses for other departments and compulsory and elective courses for 

mathematics majors. In Turkey there is a central university entrance exam, called OSS. 

After high school graduation, students who want to have university degree enter OSS to 

pursue their education. Mathematics department in METU is one of the top departments 

in Turkey. According to 2007 OSS statistics, mathematics department students in METU 

were among the top 11.344 students who entered OSS. Likewise, in 2008 they were 

among the top 17.853 students. 
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In METU students have computer facilities in dormitories. They can access computers 

with internet connection in these computer labs 24 hours/ 7 weeks. Moreover, in 

Mathematics department, there is a computer lab including 40 computers with internet 

connection. This computer lab serves students 24 hours/ 7 weeks. The computes 

program that is used in this study is ISETL which is freely distributed in the internet. 

Once ISETL is copied into hard disk, it runs immediately without any installation 

procedures. In Mathematics Department, ISETL was installed before the study began, 

and students can install ISETL easily to computer labs in their dormitories and to their 

personal computers.   

 

 Math-153 is a compulsory course for the first year mathematics majors in their first 

semester. Its content mainly includes functions, limit, continuity, and derivative of 

functions of one variable. In addition to Math-153, students are given another 

compulsory course called Fundamentals of Mathematics (Math-111) in their first 

semester. Math-111 includes the contents of symbolic logic, proof techniques, set 

theory, Cartesian product, relations, functions, and induction. Before studying formal 

limit concept in Math-153, students have been introduced to Quantifiers in Math-111. 

 

Before the beginning of the instruction, instructor of the course and teaching assistants 

including researcher of this study met to discuss content of the course, sequencing, and 

design of instruction. In addition, each week, previous to classes and lab hours, 

instructor of the course and research assistants met to discuss about how to instruct 

week’s content, and what questions to give as homework.  

 

Students attended five weeks instruction. In each week they met in two hours computer 

laboratory to study in groups, and then they attended four hours classical classes. In 

computer labs they were given some programming activities which give students 

opportunity to think on limit concept before they are given formal lecture in classes. 

Researcher of this study participated to laboratory hours as a teaching assistant. In 

general two hours were not enough to complete lab activities. Students were required to 
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complete lab activities after the laboratory hours till next laboratory meeting. At the 

beginning of computer labs, small discussions (approximately 30 minutes) about last 

week’s activities were done. In classes teacher used chalk and board to instruct. After 

the class students were given relatively classical question sets about week’s concept as 

homework. 

 

In computer laboratory students were required to either write a code or modify given 

code. ISETL, stands for Interactive SET Language, was used as a programming 

language. In the following figure, an example of ISETL window is shown. 

 

 

 

Figure 3.1: ISETL Window 
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The advantage of ISETL for mathematical programming is that its syntax is similar to 

mathematical language. Consider following examples. 

 

• The set { }2,3,5,7,11A = is expressed in ISETL as { }: 2,3,5,7,11 ;A = . 

• The set { }|    is evenB x x C and x= ∈ is expressed in ISETL as 

{ }: :  in | even(x) ;B x x C=  

• The statement “For all x in A, x>0” is translated into ISETL language as “forall x 

in A| x>0;” 

• The statement “For all x in A, there exists y in B such that x>y” is translated into 

ISETL language as “forall x in A| exists y in B| x>y” 

 

In the first lab session, students were introduced to ISETL syntax and required to use 

table function of ISETL so that intuitive introduction of limit of a function is done. For 

example following question was one of the activities in the first session. 

 

Q.  Write an ISETL function f that accepts x and returns
sin( )x

x
. Use command                           

“table(f,-0.99,0.01,20);” to examine function values around x=0. And answer the following. 
 

sin( )
( )

x
f x

x
= , what happens with f(x) if x values is close to 0? 

 

In the second lab session, students were given a code called LimitProcess. By using this 

function they studied on domain process, range process, coordination of domain and 

range process via function, and representation of these processes by inequalities. 

 

In the third lab session, students were given the following code: 
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lim:=func(f,a); 
s:=[a+((-1)**n)/(10**n): n in [1..6]]; 
for i in [2..6] do 
if abs(f(s(i))-f(s(i-1)))<0.0001 then return f(s(i)); 
end; 
end; 
return "Unable to find limit"; 
end; 

 

This code finds approximate value of limit. By using “lim” function, students found 

approximate limit value of several functions. Then they were required to write a code 

that finds approximate value of addition or multiplication of two functions, namely 

“limadd” and “limprod”. In order to do that, students needed to input “lim” function to 

the function that they are required to write. Lastly, students studied on “lim” function to 

produce a function called “limatinf” that finds approximate value of limit at infinity. In 

order to do that, they needed to modify “lim” function. 

 

In the fourth lab session, students studied on ε-δ window activities. They were given 

vertical dimensions of a graph on computer screen, and asked to find domain scale for 

the graph so that graph resides in the computer window, or does not leave computer 

window. They studied on several different functions to find domain scale. 

 

In the last lab session, students started to study on truth table of implication and its 

negation. Then, for fixed ε and δ they studied on formal definition. For example, they 

were asked to translate the following expression into ISETL language and to test its truth 

by using ISETL. 

 
  0<|x-1|<0.1 implies |2x-2|<0.2 

 

After this, for a fixed ε, they were allowed to vary δ to study on formal limit definition. 
For example, they were asked to translate the following statement into ISETL syntax 
and to test its truth by using ISETL. 
 

There exist d in D={0.05,0.005,0.0005,0.00005} such that for all x in 
X={0.9,0.99,0.999,1.001,1.01,1.1},  0<|x-1|<d implies |2x-2|<0.01. 
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And then they were allowed to vary both ε and δ to study on formal definition. For 
example, they were asked to translate the following statement into ISETL syntax and to 
test its truth by using ISETL. 
 

For all e in E, there exist d in D, such that for all x in X, 0<|x-1|<d implies |2x-2|<e. 
 

Moreover, at each step they considered the negation of given statement by expressing it 

in ISETL and testing its truth in ISETL. Lastly, they were required to study on negation 

of formal definition of limit by expressing it in ISETL and testing its truth in ISETL.  

 

After computer laboratories, students met in classes. There were four 50 minutes 

sessions per week, and treatment was conducted over five weeks. In classes, they studied 

individually. The content of the class was parallel to content of the lab sessions. In 

general, 50 minutes divided into 15 minutes discussions and 35 minutes lecture. In 15 

minutes discussions, teacher asked questions to be discussed as a class. Questions were 

either parallel to the lab activities or for about content of lecture. Moreover, instructor let 

students to ask questions to be discussed. In 35 minutes lecture, instructor was dominant. 

He used chalk and board to write definitions, prove theorems, and solve problems. 

Students listened to the instructor, asked questions about what is written on the board 

when necessary. 

 

After classes, students were given, except first week, question sets as homework to be 

solved till next week. They studied on questions as a group and they gave the homework 

individually, that is, although they solved questions as a group, they wrote the solutions 

in their own words and homework was graded individually. Homework questions were 

prepared by researcher. Questions were prepared to reinforce the concepts being 

considered and challenge students’ thinking. Moreover, question sets were another base 

for discussion, so reflections, for students.  

 

Some of the questions were drill and practice problems. Following question is an 

example for such questions. 
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E1. Find the limit if exists. If not explain why. 
 

 a)
0

| |
lim
→x

x

x
 

  b)
2

2

| 6 |
lim

2→

+ −
−x

x x

x
 

 c) 
3

23

27
lim

9→

−
−x

x

x
 

 

Some of the questions were more challenging. Following question is an example for 

such questions. 

 

E2. Prove that  
 a) If lim ( )

x a
f x L

→
= then lim | ( ) | | |

x a
f x L

→
= , 

 b) Converse does not hold (by giving counter example). 
 
On the other hand some of the questions required reflection on what is learned in 

laboratory and class sessions. Following question is an example for such questions. 

 
E3. A friend of yours was given homework about “limit” concept. She/he knows only 
limits of simple functions. To start her/his homework she/he needs your help. What short 
explanations and examples would you use to explain to your friend what the “limit” is 
all about? 
 

3.4 Instruments of the Study  

 

3.4.1 Limit Questionnaire 

 

A questionnaire is a research instrument that asks same questions to all participants of 

the study with the purpose of gathering information about participants’ thoughts, values, 

feelings, attitudes, beliefs, and personality. Questionnaires can be in the form of 

structured, semi-structured, and unstructured. “Between a completely open questionnaire 

that is akin to an open invitation to ‘write what one wants’ and a completely closed, 

completely structured questionnaire, there is a powerful tool of semi-structured 
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questionnaire” (Cohen, Manion, Morrison, 2007, p. 321). All of the items in the 

questionnaire were open ended items.  

 

In this study, the limit questionnaire (see Appendix B) was prepared by the researcher. 

As a pilot, it was administered to 37 first year mathematics major who were taking 

introductory calculus course in METU in the summer school of 2008. The aim of the 

pilot was to 

 

• check the clarity of the questionnaire items, 

• eliminate ambiguities in wording, 

• determine redundant and irrelevant items, 

• consider the time taken to complete the questionnaire, 

• check the difficulty level, 

• check the effectiveness of questionnaire items in gaining information about 

students’ limit conception. 

• check commonly misunderstood items. 

 

As a result of the pilot testing, one of the items in the questionnaire was found redundant 

and removed completely. Other questionnaire items were found useful and kept. 

 

After pilot testing, peer review of the limit questionnaire was done by two experts whose 

subject areas were mathematics and mathematics education. Then to address the 

reliability of the questionnaire, evaluation of student responses was done both researcher 

of the study and research assistant of the course. Then results were compared and 

discussed. 100 % agreement was achieved.  

 

Limit questionnaire was then applied as both pretest (before the treatment) and posttest 

(after the treatment) to 25 first year mathematics majors who are taking Math153 course 

in the main study in autumn semester of 2009. 
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Then, to address the reliability of the questionnaire, evaluation of student responses was 

done both researcher of the study and two research assistants of the course. Then results 

were compared and discussed. 100 % agreement was achieved.  

 

Limit questionnaire was used to probe the difference between students’ understanding of 

the concept of limit of a function before and after attending the instruction based on 

APOS theory. It was composed of seven open ended questions. First item was about 

students’ understanding of the limit concept. They were asked to describe what it means 

to say that the limit of the function f at the point a is L. The aim of this item is to address 

students’ concept images of limit of a function. Second item was about whether a 

function attains its limit value at the point limit is looked for and at other points. In 

literature (e.g., Williams, 1991), the mostly cited misconception is that “a limit is a 

number or point the function gets close to but never reaches”. The aim of the second 

item is to check, in practice, whether students hold this misconception or not. In the third 

item, students were given graph of a function, and asked to determine limit value, if 

exists, for continuous, removable discontinuous, and jump discontinuous points. The 

aim of this item was to address how students apply their limit knowledge in a graphic 

situation where formula of the function is not available. Fourth item was again about 

finding limit of a given function for a given point. But this time, algebraic formula of the 

function was given, rather than its graph. Given functions were oscillatory 

discontinuous, removable discontinuous, or continuous for given points. The aim of this 

item was to address how students apply their limit knowledge in situations where 

formula of the function is available, but not its graph.  

 

5th, 6th, and 7th items were about formal definition of limit. In the fifth item, students 

were given a function that has limit for the given point. Then, students were asked for 

given epsilon values, whether there is delta value that satisfies formal definition of limit 

or not. Here the intention is to deal with how students relate epsilon and delta values. In 

sixth item, students were asked to prove, by using formal definition of limit, that the 

limit of the function is the proposed value for a given point. The aim of this item was to 
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tackle with how students apply formal definition of limit. In seventh item, students were 

asked to prove, by using formal definition of limit, that limit of a function is not the 

proposed limit value for a given point. In this item, students needed to negate the formal 

definition of limit. So again, the aim of this item was to address how students apply 

formal definition of limit in the situation where its negation is needed. 

 

3.4.2 Interview  

 

An interview is a data collection method in which purposeful conversation between two 

or more people happens so that interviewer obtains information about interviewee by 

asking question or questions about topic in consideration. We cannot observe 

everything, for example, we cannot observe thoughts or feelings. If we cannot observe 

such things, reasonable strategy is to ask people about points in consideration. So, the 

purpose of the interview is to find out what is in the interviewee’s mind, or more 

appropriately, what interviewee thinks or feels about topic in consideration. Interviews 

can take variety of forms in the degree to which they are structured. Fraenkel and 

Wallen (2006) determined three types of interviews: structured, semi-structured, and 

informal interviews. In structured interviews questions were determined beforehand. 

Interviewer asks the same questions to all interviewees. In semi-structured interviews 

interviewer determines interview questions beforehand, but can ask follow up questions, 

and can ask new questions depending on the situation. In informal interviews, interview 

questions were not determined beforehand. Questions emerge from the immediate 

context.  

 

In this study semi-structured interview protocol (see Appendix C) prepared by the 

researcher was used. After preparation peer review of it was done by an expert. Before 

applying interview protocol in the main study, as a pilot, it was applied to 7 first year 

mathematics major who were taking introductory calculus course in METU in the 
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summer school of 2008 and to two research assistants in Mathematics Department in 

METU. The aim of the pilot was to 

 

• check whether there is a need for rephrasing questions or not, 

• check whether there is a question that interviewee’s are uneasy to answer, 

• check whether questions are ambiguous or not, 

• check effectiveness of interview questions in gaining information about students’ 

limit conception 

• check whether questions are leading or not. 

 

Above considerations were held after pilot. And all of the questions were kept, because 

they satisfied the above conditions. In addition to above aims about interview questions, 

researcher aimed to gain experience in interviewing, in asking appropriate follow up 

question, in analyzing student responses in the interview, and lastly, to help refine 

primary genetic decomposition by using student responses on the limit concept. 

 

First part of the interview deals with the demographic information about students. 

Second part of the interview probes the students’ understanding of the concept of limit 

of a function. Second part composed of eight questions which are parallel to the items in 

questionnaire. First question was about students’ general understanding of the limit 

concept. Students made general comments about how to determine limit of the function f 

at the point a in the context where no formula or graph is present. Questions 2, 3, and 4 

were about to find limit of a three different type of functions for a given point: 

removable discontinuous, oscillatory discontinuous and continuous functions. The aim 

of these questions was to address students’ knowledge about informal limit concept. 

Fifth question was about how to determine limit of addition of two functions for a given 

point. The aim of this question was to address how students treated limit concept in the 

given condition. Questions 6, 7, and 8 were about the use of formal definition under 

different context. The aim of these questions was to address students’ knowledge about 

formal limit concept.  
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3.5 Procedures of the Study 

 

The study included 17 main steps: (1) Designing and developing questionnaire, 

interview protocol, and laboratory activities, (2) Expert review, (3) Piloting 

questionnaire, interview protocol, and laboratory activities, (4) Analyzing data in pilot 

study, (5) Expert review, (6) Revisions, (7) Finding participants, (8) Taking necessary 

permissions to make the main study, (9) Administrating limit questionnaire as a pretest 

to 25 volunteer students, (10) 5 weeks instruction including computer laboratory 

activities within groups, (11) Administrating limit questionnaire to same students as a 

post test, (12) Analyzing students’ responses in questionnaire, (13) Applying interview 

protocol, (14) Analyzing students’ responses in the interview, (15) Expert review, (16) 

Interpreting and writing the results, (17) Expert review. Time table of the study was as 

follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 71 

Table 3.2: Timetable of the study 

Stages/Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

April, May 
2008 

 
� 

 
� 

               

June, July 
2008 

   
� 

 
� 

             

August 
 2008 

    
� 

 
� 

 
 

 
� 

 
� 

         

September 
2008 

    
� 

 
� 

 
� 

   
� 

 
 

       

October 
 2008 

          
� 

       

November 
2008 

          
� 

 
� 

 
� 

 
� 

    

December 
2008 

             
� 

    

January-June 
2009 

              
� 

 
� 

  

July 
2009 

              
� 

 
� 

 
� 

 

August 
2009 

                
� 

 

September 
2009 

                
� 

 

October 
2009 

                
� 

 
� 

 
(1) Designing and developing questionnaire, interview protocol, and laboratory activities, 
(2) Expert review, 
(3) Piloting questionnaire, interview protocol, and laboratory activities, 
(4) Analyzing data in pilot study, 
(5) Expert review, 
(6) Revisions, 
(7) Finding participants,  
(8) Taking necessary permissions to make the main study,  
(9) Administrating limit questionnaire as a pretest to 25 volunteer students,  
(10) 5 weeks instruction including computer laboratory activities within groups,  
(11) Administrating limit questionnaire to same students as a post test, 
(12) Analyzing students’ responses in questionnaire, 
(13) Applying interview protocol,  
(14) Analyzing students’ responses in the interview,  
(15) Expert review,  
(16) Interpreting and writing the results,  
(17) Expert review. 
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In the first stage of the study, limit questionnaire, interview protocol, and laboratory 

activities were designed and developed. Then, expert review of them was done by an 

independent researcher. In the third stage, pilot study was done. Gained data in pilot 

study was analyzed at the fourth stage. Following data analysis, expert review was done. 

And depending on results of data analysis and expert review, revisions were considered 

in instruments and lab activities.  

 

At the seventh and eight stages, participants of the study were determined and necessary 

permissions to conduct the study were taken. After this, main study started with the 

administration of the limit questionnaire as a pre test to 25 students. Following pretest, 

five weeks of instruction was done with same 25 students. The same questionnaire 

administered to same 25 students after the instruction. After the administration of the 

limit questionnaire, researcher of this study interviewed all of the 25 five students 

attended to this study. Researcher administered interviews in which only researcher and 

interviewee were present. The interviews were conducted in a non-formal friendly 

environment, in the building of Mathematics Department in which students attended 

their classes. During the interviews, eight open ended questions were asked to the 

participants in an order. Interviews were recorded with voice recorder. Approximate 

interview length was about one hour. Analysis of the questionnaire responses and 

administration of interview protocol were done in parallel. 

 

After this, the part of the study that took the longest time (analysis of student responses 

to interview questions) happened. This part was check by an expert as the analysis went 

on. Lastly, researcher of this study interpreted and wrote the results which were 

accompanied by the expert review. 

 

3.6 Analysis of the Data 

   

In this study, two instruments, namely limit questionnaire and interview protocol, were 

used to gather both quantitative and qualitative data. At each step of the process- design, 
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development, administration, data analysis- peer review was done by different 

researchers from different areas. 

 

From the questionnaire both quantitative and qualitative results were gained. First item 

of the questionnaire, that yielded qualitative results, addressed the students’ concept 

images of limit of a function. The responses to this item were grouped in three 

categories: informal, formal, and others. Informal response is related with informal 

conception of limit, formal response is related with formal conception of limit, and 

remaining responses are categorized as others. Informal category has three 

subcategories: pre-action, action, and process. Responses, including evaluation of only 

one point to determine limit, were put under pre-action. Responses, in which several 

values used to determine limit, were categorized as action. Lastly responses, including 

dynamism in domain, or in range, or in both in determination or description of limit, 

were put under process. Moreover, formal category has three sub-categories: incorrect, 

lack of quantifiers, and correct. Responses, that stated formal limit definition incorrectly, 

were categorized under incorrect. Responses including lack of quantifiers over one (or 

more) of x, δ, ε, were categorized as lack of quantifiers. And lastly, responses, that stated 

formal limit definition correctly, were categorized under correct. 

 

Remaining items of the questionnaire yielded quantitative scores. Rubric to evaluate 

student responses was adapted from Asiala, Cottrill, Dubinsky, and Schingendorf (1997) 

by the researcher as follows:   

 

• 0 for empty or irrelevant response, 

• 1 for responses that showed some progress toward solution but far from the 

correct solution, 

• 2 for almost correct responses with minor flaws in the solution, 

• 3 for totally correct responses. 
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All of the remaining items, both in pre and posttest, were analyzed by using this rubric. 

After analysis of the responses of all items by the researcher, categories and rubric were 

explained to two research assistants in the Department of Mathematics in METU. Then 

they analyzed questionnaire responses depending on the same criteria. Researcher of this 

study and two research assistants met to discuss discrepancies in analysis results. After 

discussion, 100 % agreement was accomplished. Data gained from the analysis was 

entered into SPSS software to construct descriptive statistic. This form of data, then, was 

used in the conclusion and interpretation part of this research. Results of the first item 

and remaining items were used to triangulate qualitative data gathered from interviews 

that will be explained in the following paragraphs.  

 

Second instrument of the study was interview protocol. Analysis of the data gathered 

from interviews was done according to the framework suggested by Asiala et al. (1996). 

The data recorded during the interviews were transcribed by the researcher. Then, by 

using Word 2003 software, this transcribed text was segmented and put into two-column 

format. Segments were meaningful units in which interviewee discusses about a specific 

mathematical point. Each segment was numbered so that it is easy to handle the text 

later. The first column included original transcribed text and the second column included 

the brief statement about what is going on at the first column as shown in the following 

figure.  
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Figure 3.2: Segmented Transcript 

 

Then researcher started to read each transcribed text carefully to produce issues for each 

individual. Issues were very specific mathematical point of view. Also, we can call them 

as subcategories. When producing issues, researcher noted the segment number of it. 

These lists of issues of each individual were rearranged as a single list of issue including 

issues of each individual and its segment number. Then depending on list of issues (or 

subcategories) researcher created categories. At this point, an independent researcher 

peer reviewed of the all process.  

 

Researcher had categories, issues, and segment numbers of each issue in his hand. At 

this point, each issue was again read carefully by the researcher. In this reading, the 

researcher considered the performances of each individual on the issue. Then, by 

comparing these performances of individuals, the researcher tried to explain differences 

in terms of actions, processes, objects, and schemas.  In this process, whether they 

constructed a specific mental construction or not were considered. This part of the 

analysis was peer reviewed by an independent researcher who is expert on APOS theory.  
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3.7 Reliability and Validity Issues 

 

Yin (2003) described reliability as “… if a later investigator followed the same 

procedures as described by an earlier investigator and conducted the same case study all 

over again, the later investigator should arrive at the same findings and conclusions… 

The goal of reliability is to minimize the errors and biases in the study” (p. 37). Lincoln 

and Guba (1985) suggested dependability in place of reliability in qualitative research. 

In order to produce dependable research, researchers need to address the changing 

context within which research occurs. Following measures were taken to address 

reliability issues in this research. 

 

• In this research, triangulation was done by using both questionnaire and 

interview to address research questions. 

 

• Students attended treatment, questionnaire, and interview sessions in the same 

building in which they take their mathematics courses throughout their 

undergraduate studies.  

 

• Researcher of this study and two independent experts analyzed the questionnaire 

results individually. And they came together to discuss to discrepancies. 100 % 

agreement was achieved. 

 

• Researcher of this study and an independent expert produced subcategories and 

categories depending on the subset of interviews. Then they come together to 

discuss to discrepancies. 100 % agreement was achieved on the subcategories 

and categories. 

 

Internal validity is defined by Cohen, Manion, and Morrison (2007) as “the explanation 

of a particular event, issue or set of data which a piece of evidence provides can actually 

be sustained by the data” (p. 135). Lincoln and Guba (1985) suggested credibility in 
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place of internal validity in qualitative research. In order to meet the credibility 

researcher needs to identify and describe the subject and to take into account subject’s 

point of view, hence multiple realities. Following measures were taken to address 

internal validity issues in this research. 

 

• In this research, triangulation was done by using both questionnaire and 

interview to address research questions. And results of responses of students to 

two instruments were compared. 

 

• In each step of instrument (questionnaire and interview protocol) design and 

development, experts made peer review.  

 

• In each step of data analysis, experts made peer review. 

 

• In determining research methodology for this research, members of thesis follow 

up committee made peer review.  

 

• Low level descriptors were used in presenting results.  

 

• Researcher used APOS theory framework to interpret the student responses in 

the interview. An expert peer reviewed the interpretations of the researcher. 

 

• Researcher considered rival theories in interpreting the results.  

 

External validity refers to the degree to which the results of the study can be generalized 

to other cases, settings, to the wider population. In this study, subjects were limited to 25 

first year first semester mathematics major who were taking introductory calculus course 

in METU. So, the researcher of this study did not aim to generalize the result of this 

study to whole population. Nevertheless, researcher provided rich descriptions about the 

context and participants and their responses in instruments so that other researchers who 
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want to transfer the results of this research to their situations have a rich base of 

information. Moreover, another issue is the analytical generalization. The term 

introduced by Yin (2003, p.32-33) as “…previously developed theory is used as a 

template with which to compare the empirical results of the case study”. In this research, 

APOS theory and its implications in the form of genetic decomposition (Cottrill et al., 

1996) were used with the aim of analytic generalization.  

 

In addition to above concerns, in order to address the quality of the research, researcher 

made a pilot study to test effectiveness of instruments and laboratory activities used in 

the main study and to get experience in data collection and analysis.  

 

3.8 Assumptions of the Study 

 

For this study, the following assumptions were made: 

 

1. The participants responded accurately to all instruments used in this study. 

 

2. The data were truthfully recorded and analyzed. 

 

3. Reliability and validity of all the measures used in this study were accurate 

enough to permit accurate conclusions. 

 

3.9 Limitations of the Study 

 

Limitations of this study were the followings: 

 

1. Number of participants was limited to 25 first semester mathematics majors in 

METU. 
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2. Validity of this study was limited to the reliability of the instruments used in this 

study. 

 

3. Validity and reliability were limited to the honesty of the participants of this 

study. 

 

4. Generalizations are only possible for similar situations and contexts.   
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CHAPTER 4 

4. RESULTS AND CONCLUSIONS 
 
In this chapter analysis of results of research problems is given. Analysis of students’ 

responses to interview protocol is presented. Also students’ responses to limit 

questionnaire is stated. 

 

4.1 Students’ Understanding of Limit Concept 

 
In this section following research questions will be addressed.  
 
 
1. How do students develop understanding in limit of a function? 

 

1.1. How do students explain their informal understanding of limit of a function? 

 

1.2. How do students explain their formal understanding of limit of a function? 

 
In describing students’ constructions and mechanisms which are used to produce those 

constructions, APOS researchers devise a tool called genetic decomposition. This 

includes the researchers’ understanding of the concept, conclusions drawn from the 

literature, historical development of the concept, and previously constructed versions. 

This preliminary version is needed to be empirically tested. Genetic decomposition of 

Cottrill et al. (1996) is taken as primary genetic decomposition for this study which is as 

follows:  

 

1. The action of evaluating f at a single point x that is considered to be close to, or even 

equal to a. 
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2. The action of evaluating the function f at a few points, each successive point closer 

to a than was the previous point. 

3. Construction of a coordinated schema as follows: 

(a) Interiorization of the action of Step 2 to construct a domain process in which 

x approaches a. 

(b) Construction of a range process in which y approaches L. 

(c) Coordination of (a), (b) via f. 

4. Perform actions on the informal limit concept by talking about, for example, limits 

of combinations of functions. In this way schema 3 is encapsulated to become an 

object. 

5. Reconstruct the process of 3(c) in terms of intervals and inequalities. This is done by 

introducing numerical estimates of the closeness of approach, in symbols, 

0 | | δ< − <x a and| ( ) | ε− <f x L . 

6. Apply quantification schema to connect the reconstructed process of the previous 

step to obtain the formal definition of limit. 

7. A completed ε-δ conception applied to specific situations. 

 

In order to investigate students’ understanding of limit concept, a semi-structured 

interview protocol was administered. Results are represented, as follows, parallel to the 

form of genetic decomposition. First four steps of the genetic decomposition are related 

with the sub-problem 1.1 and remaining steps of genetic decomposition are related with 

sub-problem 1.2. 

 

1. Action of evaluating f at a single point x that is considered to be close, or even 

equal to a. 

 

There were no students who were limited to step1 considering students’ responses in the 

interview. This step can be dropped from the genetic decomposition. Nevertheless, as 

explained in the coming section, in analysis the of responses to limit questionnaire as a 

pretest it was observed that, before students were given instruction, some of them 



 82 

responded what it means limit to them as determining limit by evaluating f at the point a 

or at very close point to a. This might indicate that there were some students who were 

limited to this step before the instruction. Moreover, in the literature, there are some 

studies that show examples for this step. For example, Cottrill et al. (1996, p.11) 

reported the following excerpt. Here Jean clearly shows the elements of this step. 

 

I: So when you’re actually looking at a limit situation and trying to determine if a limit 

does or does not exist, what are you doing? 

 

Jean: First I plug the negative 2 into my function f(x) to see it is defined. 

 

I: Mhm. 

 

Jean: If it is, then that is the limit. If negative 2 does not exist, or if it’s not defined at 

negative 2,… 

 

I: Mhm. 

 

Jean: … then I would take a point very close to negative 2, may be on each side of 

negative 2 

 

I: Mhm. 

 

Jean: to see if those two values are very close to the same number.  

 

In addition to above example, Przenioslo (2004) showed that some of the students see 

the limit of f at x0 as f(x0). And Elia et al. (2009) reported that some of the students see 

the limit of a function at a point as evaluation of the function at this point.  

Similar to step 1, no students were found to be limited to steps 2 and 3(a) in the 

interview, after the instruction, in the main study. However, unlike step 1, some students 
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were observed to limited to steps 2 and 3(a) in the pilot study done previous to main 

study. In the coming steps 2 and 3(a), example excerpts are from the pilot study, not 

from the main study. Absence of observation of steps 1, 2 and 3(a) in the main study 

might be accounted for the positive role played by the instruction. At the same time, 

because of the absence of observation of these steps in the main study, they can be 

dropped from the genetic decomposition. However, in questionnaire (as a pretest, before 

the instruction) some of the students showed elements of step 1 and in the literature there 

are some studies (Cottrill et al., 1996; Przenioslo, 2004; Elie et al., 2009) that show 

examples for this step. Moreover, in the pilot study of this research some students were 

observed to be limited to steps 2 and 3(a). Thus, although it is possible to remove them 

from the genetic decomposition, it seems more appropriate to hold them in the genetic 

decomposition.  

 

2. Action of evaluating function f at a few points, each successive point closer to a 

than was the previous point. 

 

In the following excerpt the discussion is about what it means to say that limit of the 

function f at the point a is L. Hazan was talking about smallest number (sometimes 

numbers) which is very close to a. When prompted by the researcher, she showed the 

awareness that there is no closest number to 3. But she insisted on to use such closest 

number. Hazan took several closest numbers to a to determine the limit. This indicates 

that she did not construct domain process rather she had static evaluation conception. 

 

I: What do you mean by left and right approach, can you explain it more? 

 

Hazan: You take a so small value, how to say, … for example we take a value from the 

left which is smallest but is not equal to a. 

 

I: What type of number is this? 
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Hazan: Numbers which are not equal to a, but very close to it. 

 

I: Number or numbers? 

 

Hazan: It is not always possible to find smallest. Since there is no such determined 

value it will be close to a as much as possible. 

 

Later in the case of “how to find limit of the function given by f(x)=2x,at the point 3” 

she explains that smallest number is the closest one to a. 

 

Hazan: We are not taking 3, we are taking the closest number to it … 

 

I: Can you exemplify the closest number to 3. 

 

Hazan: I cannot give. 

 

I: Then what is closest to 3. 

 

Hazan: Numbers. 

 

I: What do you do after you take closest numbers to 3. 

 

Hazan: We are looking at outputs of these values to determine limit. 
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3. Construction of coordinated process schema as follows 

 

3-a Domain Process 

 

Similarly, Gizem used closest number argument to determine limit value. She used two 

points, namely 3-a and 3+a, to determine the limit, but after prompt from researcher, she 

showed some indication of domain process by saying that “there is always closer one”. 

 

Gizem: From the right and left, at the closest points to 3, function values must be equal 

to each other. For example, let a be very very very small number. If values of f at the 

points 3+a and 3-a are equal to each other, limit exists at the point 3. 

 

I: Can you give such a number for this function? 

 

Gizem: I can say… but whatever I say there is always closer one. 

 

Later in the case of how to find limit of cos1 x  at 0, she showed some progression 

toward domain process. By saying “As I approach 0, there are many numbers… I find 

closer numbers to 0 by making interval around 0 narrower and narrower” she showed 

that in the domain she considers a process, rather than static values. But she did not 

show same progress in the case of range process, she used only closest numbers to find 

limit. 

 

Gizem: As I approach 0, there are many numbers. I make the interval around 0 

narrower. I find closer numbers to 0 by making interval around 0 narrower and 

narrower. I need their closest ones. 

 

I: What do you do after finding closest ones? 

 

Gizem: I look their function outputs… 
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I: When do you say limit exists? 

 

Gizem: If they are equal. 

 

3-b Range Process 

 

According to primary genetic decomposition, once the domain process is constructed, 

one can construct range process. In the following excerpt, when explaining limit of 

( ) 2=f x x at 3, Ozlen constructed two domain and range processes. Although she used 

word “function”, she did not use it to coordinate domain and range sequences. The 

sequence of numbers in the range was not constructed by applying function to domain 

process. This is so apparent when she took 3.009 and 3.008 for domain but 6,2 and 6.1 

for the range. 

 

Ozlen: How do I determine the limit at the point 3? When x approaches from left and 

right, function gets closer to 6. So, limit is 6. 

 

I: Well. How did you find 6? 

 

Ozlen: I get closer to 3 by taking x as 2.99, 2.999. And function will get the values like 

5.9, 5.99, 5.999. It is not important whether function gets 6 or not, but it continuously 

gets closer to the constant 6. That is, it points 6. Similarly, by taking values greater than 

3, for example, 3.008, 3.009, function will get values a bit greater than 6 like 6.1, 6.2. 

 

I: When you look from the left, you said 5.999 as a last number. But there is a difference 

between 6 and 5.999. How do you say that limit is 6? 

 

Ozlen: I feel, I think on it… I give many values other than 5.999. All of them point the 

same value. I feel what happens between 5.999 and 6. 
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A few minutes later, when considering limit of f, defined as
1 , 1

( )
, 1

x x
f x

x x

− ≤ 
=  

> 
, at the 

point 1, Ozlen started to use function to coordinate domain and range sequences. She, 

first, considered domain sequence 0.99, 0.999, 0.9999 and then constructed range 

sequence 0.01, 0.001, 0.0001. For right limit, she constructed another domain and range 

sequences. In her explanation and writings in Figure 4.1, it is clear that domain and 

range sequences were coordinated via the function. This is similar to phenomenon 

observed by Dubinsky, Elterman and Gong (1988). One student, named as REI, was not 

able to deal with two-level quantification, however, she was able to, in the same 

interview, coordinate two quantifiers in a different context after a few minutes. In some 

situations students are not able to show some structure, but in another situation they can 

show indication of this structure even after a few minutes. This is why Asiala et al. 

(1996) called mathematical knowledge as tendency.  

 

Ozlen: If I take x values as 0.99, 0.999, 0.9999 and continue like this, function will get 

the values 0.01, 0.001, 0.0001 and continue like this. In the same manner, from the right, 

it will get 1.9, 1.8, 1.7, 1.1. There are many values between 1.1 and 1, I cannot write all 

of them. But, values of the function point 1 by decreasing. 

 

 

Figure 4.1: Coordination via Function- Ozlen 



 88 

3-c Process Conception of Informal Limit 

 

All of the students showed indication of this step. There were two type of response. In 

the first type, students determined elements of domain sequence first, and then by 

applying function to this sequence of values, they determined range sequence to figure 

out limit. Whereas, in the second type, students determined one element for domain 

sequence, and by applying function, they determined corresponding element for range 

sequence. After, they determined second element for domain sequence, and then by 

applying function they determined corresponding element for range sequence. This goes 

on until the realization of the limit. I call this as simultaneous construction of domain 

and range sequences. Nevertheless, the point is that students might determine domain 

sequence first and applied function one by one to elements of this sequence as in the first 

case. We do not know whether they constructed first domain sequence and applied 

function one by one to elements of this sequence in their mind or they really constructed 

simultaneously domain and range sequence in their mind. But, in practice we know that 

there is such a distinction.   

 

Whatever route they took, function was used to coordinate domain and range sequences. 

Following excerpt is an example for the former type. Selin constructed, first, domain 

sequence 2.9, 2.99, 2.999, 2.9999, which yielded corresponding range sequence: 5.8, 

5.98, 5.998, 5.9998. Then to determine right limit, she took the following values in the 

domain 3.1, 3.01, 3.02 (she incorrectly wrote 3.02; correct value should be 3.001), which 

yielded corresponding function values 6.2, 6.02, 6.002. It is clear, from her explanations 

and what she wrote in Figure 4.2, that she constructed range sequences by applying 

function to domain sequences. 

 

I: Let f be a function given by f(x)=2x. How do you determine the limit of this function 

at the point 3? 

 

Pelin: By looking at values that it takes when approaching. 
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I: Let’s look then. 

 

Pelin: Let’s give values so close to 3: 2.9, 2.99, 2.999, 2.9999. For these values, as we 

see, function will get values 5.8, 5.98, 5.998, 5.9998 which are getting close to 6. 

 

I: How do you understand that these are getting close to 6? 

 

Pelin: 5.998, 5.9998 it will keep going like this.  

 

I: How will it go on? 

 

Pelin: It will take values which are getting closer to 6 constantly. Again at the same 

manner, I can get closer to 3 from the right. I can give values like 3.1, 3.01, 3.02. For 

these values, function will get values which are slightly bigger than 6: 6.2, 6.02, 6.002. 

These values are getting closer to 6 by decreasing. So limit is 6. 

 

Figure 4.2: Coordination via Function-Pelin 
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Following excerpt is an example for the latter type. Mert, simultaneously, constructed 

domain and range sequences for left and right limit. And since left and right limits are 

not equal, he concluded that limit does not exist. By saying, “When approaching from 

left, I will use1− x . When approaching from right I will use x.” he gave first indication 

for the application of function. Then by saying “I gave 0.8, function returned 0.2…” he 

explicitly used function to construct domain and range sequences simultaneously. 

Moreover, it is noticeable that in the middle of his explanation, without any question 

from the researcher, he mentioned his experience with ISETL in such questions.  

 

I: Let f be a function given by
1 , 1

( )
, 1

x x
f x

x x

− ≤ 
=  

> 
. How do you determine the limit of 

this function at the point 1? 

 

Mert: I approach both from right and left. When approaching from left, I will use1− x . 

When approaching from right I will use x. Then I figure out that if I approach to 1 from 

the left, function will go to 0. 

 

I: How did you figure out? 

 

Mert: How I figured out… First I gave 0.8, function returned 0.2; I gave 0.9, 0.1 was 

returned; I gave 0.99, 0.01 was returned; I gave 0.999999…9, 0.000000…1 was 

returned. Actually we did something like this before in ISETL (he mentions lab 

activities). Then I figured out that function goes to 0 when approaching from the left. 

When approaching from the right, first I gave 1.2, since function is defined as ( ) =f x x , 

it will return 1.2 for 1.2, 1.1 for 1.1, 1.01 for 1.01. Then I took 1.0000…1, and I 

understood that function goes to 1. Left limit is 0 and right limit is 1. So, since left and 

right limits are not equal, limit does not exist. 

 

Beside how function is applied in the construction of range sequences, there was another 

factor common in students’ explanations with two types. In the first type, students 
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coordinated domain and range sequences with finite terms, and then after seeing the 

pattern “as finite terms in the domain sequence get closer to a, corresponding terms of 

the range sequence get closer to L” they contemplated other values in the informal limit 

process. Similarly, in the other type, students imagined the steps of informal limit 

process after considering finite steps, nevertheless, they went further and see the 

informal limit process as a single action or as a whole. In the single action, generally 

students see domain process as 10 na −± (as n increases expression approaches to a) and 

range process as ( 10 )nf a −±  (as n increases function approaches to L). So, increasing n 

forces function to approach to L. We can see this distinction from the following two 

students’ excerpts: Basak is an example for the former type whereas Erhan is an 

example for the latter type. 

 

In the following excerpt Basak explains how she finds limit of 2x at 3. She constructed 

domain sequences (4, 3.5, 3.2) and (2, 2.2, 2.5, 2.7), and correspondingly range 

sequences (8, 7, 6.4) and (4, 4.4, 5, 5.4). She concluded that since the terms of the both 

range sequences approach to 6, limit is 6. Interviewer asked that depending on the 

sequences she formed, is it possible that limit is 6.1 rather than 6? She showed 

awareness that number of the terms in the sequences actually was not finite, there were 

infinitely many terms that she contemplated in her mind. And those numbers were 

ultimately approaching to 6 rather than 6.1. Thus, by constructing finite sequences she 

saw the pattern that for each closer term to 3 in the domain sequences, terms of the range 

sequences get closer to 6. After seeing this pattern she imagined remaining infinitely 

many terms in the sequences to conclude that as x goes to 3, 2x goes to 6, so limit is 6.  

 

Basak: Function gives 6 at the point 3, but this is not important for the limit. What I 

want to do is to get closer to 3. For x=4 it gives 8, for x=3.5 it gives 7, for x=3.2 it gives 

6.4.  For x=2, it gives 4, for x=2.2 4.4, for 2.5 5, for 2.7 5.4. As I approach from the right 

it decreases in the way 8, 7, 6.4. As I approach from the left it increases in the way 4, 

4.4, 5, 5.4. That is, from both sides function approaches to 6. So, limit is 6. 
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I: From the right, last value that you got is 6.4, and from the left you got 5.4. Cannot we 

say that function approaches to 6.1 by looking numbers that you produced? 

 

Basak: If I gave a smaller number for x, function could get 6.1. But I can give smaller x 

than the previous one, so, for example, function can get 6.001. So it approaches to 6 

rather than 6.1. I can give smaller and smaller numbers. Here we have infinitely many 

numbers, but I know where those numbers go ultimately. I know they approach to 6. 

 

Erhan constructed domain sequence x=(3.01, 3.001, 3.0001, …, 3+10-(n+2),…), then he 

applied function to terms of this sequence to get range sequence f=(6.02, 6.002, 6.0002, 

…,     6+2*10-(n+2),…). By taking index, n, to infinity he completed informal limit 

process. Further, although he did not mention explicitly, he saw the informal right limit 

process as single coordinated action: increasing 0s in 3.0001 causes to increase 0s in 

6.0002. Nevertheless, we can see explicitly this single coordinated process when he 

considered left limit: “As I increase the number of 9s in 2.9999, number of 9s in 5.9998 

will also increase”. 

 

Erhan: We want x to go 3, accordingly, we need to find where f(x) goes. Firstly I take 

x0=3.01, then f(x)=6.02. Then take x1=3.001, then f(x)=6.002. Take x2=3.0001, 

f(x)=6.0002. Values of f(x) are decreasing. If 2 goes to infinity (he means sub-index of x 

goes to infinity), x approaches 3 and f(x) goes to 6. This is the right limit. Now, take 

x0=2.99, then f(x)=5.98. Take x1=2.999, then f(x)=5.998. Take x2=2.9999, f(x2)=5.9998. 

As I increase the number of 9s in 2.9999, number of 9s in 5.9998 will also increase. That 

is, function will approach to 6. Since from both sides f goes to 6, I can conclude that as x 

goes to 3, f(x) goes to 6.  
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4. Object Conception of Informal Limit 

 

Once the students reflect on the process in 3(c), and can see this process as a totality that 

an action or process can act on it, then process of 3(c) might be encapsulated as an 

object. To observe this object conception, students were asked following type of 

questions. 

 

1. Assume that f and g have limit at the point a. How do you 

determine limit of f + g at the point a? 

 

2. Does the following limit exist? If yes, explain why. If no, explain why not. 

1
lim ( )
x

f x
→

, where 
, 1

( ) 2
1, 1

x
x

f x

x

 ≠ 
=  
 = 

 

 

For the first question, in their explanation, it is expected that students show the 

awareness of three distinct objects, namely, lim ( )
x a

f x
→

, lim ( )
x a

g x
→

, and lim( )( )
x a

f g x
→

+ . 

Moreover they are expected to show that these objects are produced by application of 

coordinated process of 3(c). For the second type of question, it is expected that students 

see left limit as a single action and also right limit as a single action. Then they are 

expected to compare left and right limit processes which are seen as a single action. 

Here, the comparison is an action that students apply to two processes which are seen as 

a whole. In order to apply an action or a process on a process it is needed to encapsulate 

this process into object. In our situation, objects are left limit object and right limit 

object.  

 

In the following excerpt, Nur used limit property to explain limit of sum of two 

functions at a point. In this way she treated limits as objects. But she did not show any 

indication for the de-encapsulated process. 
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Nur: Assume that as x goes to a f(x) goes to K, and similarly, as x goes to a g(x) goes to 

L. According to the limit rule, I can write as x goes to a, limit of (f+g) is equal to as x 

goes to a limit of f plus as x goes to a limit of g. We said that as x goes to a limit of f(x) 

is K and as x goes to a limit of g(x) is L. And we also said according to limit rule we can 

write lim( ) lim lim
x a x a x a

f g f g
→ → →

+ = + . I know individual limits were K and L. So I can say that 

limit of f+g as x goes to a, is K+L. 

 

In the following excerpt, Gokhan took two functions and find their sum. Then he applied 

informal limit process to these three functions to find their limit values. 

 

Gokhan: Let’s take f(x)=x and g(x)=2x. I will consider their limits at the point 1. 

( )( ) 3f g x x+ = . As I did in previous question, I look at the function values of finitely 

many points from the left and right of 1. And then I consider remaining infinitely many 

function values. If I do so limit of f(x)=x is 1, and limit of g(x) is 2. If I look at limit of 

f+g, I see that its limit is 3.  

 

In the following excerpt Seval explains why limit of f defined as 

1 , 1
( )

, 1

x x
f x

x x

− ≤ 
=  

> 
does not exist at x=1. By saying “I can increase 0s in 1.001, then f(x) 

goes to 1” and “As I increase 9s, 0s will increase”, she saw left limit process and right 

limit process as a single action, or as a totality. Then by comparing single action from 

left and single action from right she concluded that limit does not exist. Here, 

comparison is an action applied to two “left” and “right” processes which are seen as 

totality. If an individual sees process as a totality on which an action or process can act, 

then process might be encapsulated as an object. Then, need to apply action to this 

process makes it encapsulated.  So, Seval encapsulated left and right limits to compare 

them to determine limit. 

 

Seval: I need to look at left and right limits. On the x axis, I take values greater than and 

go to 1, for example, 1.1, 1.01, 1.001. Since f(x)=x, these values are also y values. Those 
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values are getting closer to 1. I can increase 0s in 1.001, then f(x) goes to 1. So, right 

limit is equal to 1. Now I will look at from the left. I will take ( ) 1f x x= − for this part. I 

take values less than 1, for example, 0.9, 0.999. If we look at f(x), it gets 1-0.9=0.1 for 

x=0.9. For 0.999, it gets 1-0.999=0.001. Similarly, f(x) is 0.0001 for x=0.9999. As I 

increase 9s (she means 9s in 0.9999), 0s (she means 0s in 0.0001) will increase. Then it 

will go to 0. Therefore left limit is equal to 0. And since left limit is not equal to right 

limit, limit does not exist. 

 

Lastly, in the following excerpt, Mehmet reasoned on his limit concept and deduced that 

if a function has a limit then it is bounded on an interval around a. His reasoning on his 

limit schema to conclude such a statement is an indication for object conception of 

informal limit. If his schema was limited to process conception, since process is an 

action one does, it was not possible to reason on this dynamic action to conclude that 

function must be bounded. In order to act on (reason about) informal limit process, what 

needed is to encapsulate informal limit process to get static object of it. Once the process 

is encapsulated, one can act on it to deduce another result. Moreover, since type of 

functions were not known, Mehmet determined randomly domain interval and range 

bound (notice that in order to be mathematically correct point a in the domain interval 

should be excluded). Then by saying “By making 0.001 smaller and smaller, we can see 

that x goes to a and f(x)+g(x) goes to L+M.”, he de-encapsulated this object, and applied 

resulting process to conclude that limit of f+g is L+M. 

 

Mehmet: Let’s say limit of ( )f x is L and limit of g(x) is M. And let’s take                               

- 0.001 0.001a x a< < + . We do not know whether the functions f and g are increasing, 

decreasing, or constant. But, anyway, we know that functions have limits. Since both 

functions have limits, there will be a bound for them. For the present purpose, I can pick 

a random bound for them. Let’s say - 0.000001 ( ) 0.000001L f x L< < + and                                    

- 0.000001 ( ) 0.000001M g x M< < + . If we add inequalities, we get                                         

- 0.000002 ( ) ( ) 0.000002L M f x g x L M+ < + < + + , for - 0.001 0.001a x a< < + . So 



 96 

f(x)+g(x) is in the interval of L+M with a small size. I took 0.001 randomly. By making 

0.001 smaller and smaller, we can see that x goes to a and f(x)+g(x) goes to L+M. 

 

5. Reconstruction of informal limit process conception in terms of intervals or 

inequalities 

 

16 of 25 students showed indications of this step. Students reconstruct the process of 

3(c) in terms of intervals and inequalities. This reconstruction includes construction of 

proposition valued function of variable x. Given fixed positive numbers ε and δ, the 

value of this function is the truth or falsity of the following statements 

 

0< |x-a|<δ implies |f(x) – L| <ε  or 

If x is in (a- δ, a+ δ)-{a}, f(x) is in (L- ε, L+ ε) where L is the possible limit value. 

 

Let’s represent this function as  

1 : { , }P x T F→ . 

 

This new reconstructed process includes universal quantification on x. That is, P1 is not 

checked for only single x, rather it is true for all x. The underlying process is that 

variable x is iterated and P1 is evaluated at each point then iteration is controlled by 

universal quantification.  

 

In the following excerpt Veli used both words epsilon and delta. But he used these 

words to determine domain and range sequences, rather than constructing intervals or 

inequalities. Here, Veli makes a discussion about what the formal definition of limit 

means by considering f(x)=5x at the point 2. 

 

Veli: I say that from here to 2, I started to give values starting from 2-δ and I started to 

give values that go to 2 and this goes towards 10 from 10-ε. And then I started to give 

values starting from 2+δ, I see that this goes towards 10 from 10+ε. 
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Veli assimilated formal limit concept into informal limit schema. Assimilation is not 

proper way to move towards understanding of formal limit concept. What students need 

is accommodation. In the following excerpt, Sevda might begin to make such an 

accommodation. She took fixed epsilon and delta intervals, and just like Veli she used 

words epsilon and delta to determine domain and range sequences. But after the question 

from the interviewer she started to consider epsilon and delta as intervals. Then she said 

“y values of x values in the (a-ε, a+ε) interval must be in (L-δ, L+δ) interval”. This 

might indicate that she checked the truth value of implication, but she did not iterate for 

all x values.  

 

Sevda: Here is L+δ, here is L-δ. Starting from a-ε if we give values getting closer to a, 

on the y axis these values get closer to L starting from L-δ. And as we approach a from 

right, starting from a+ε if we give values getting closer to a, starting from L+δ it gets 

closer to L on the graph. And limit is L at the point a. 

 

I: When can we say that limit exists? 

 

Sevda: Hımmm when does limit exist? Those delta values…, when delta interval 

satisfies epsilon interval, when these two intervals satisfy each other. 

 

I: What do you mean by saying that these two intervals satisfy each other? 

 

Sevda: These two intervals satisfy each other. Epsilon and delta should be grater than 0 

and x minus, ııı one second, so ııı (a-ε, a+ε) interval should go in (L-δ, L+δ) interval. So 

it could be closer … as it gets closer … these two intervals, how to say, should satisfy 

each other. 

 

I: So how, what does satisfy mean? 
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Sevda: Satisfy means, y values of x values in the (a-ε, a+ε) interval must be in (L-δ, 

L+δ) interval. 

 

Following excerpt is another example in which epsilon and delta are taken fixed. By 

saying that “for increasing or decreasing x values”, Alev showed awareness of iteration 

over x and then she checked truth value of implication. Moreover by saying “all values 

that I take in the (a-δ, a+δ)”, she controlled iteration over x with universal quantification. 

She put relation between epsilon and delta incorrectly by saying “for all delta there must 

be an epsilon”. Nevertheless her explanation was based on specific epsilon and delta. 

She did not show any iteration over epsilon and/or delta in practice. This might suggest 

that in her schema she had static epsilon and delta values with incorrectly remembered 

relationship “for all delta there must be an epsilon”. 

 

Alev: f(x) has a value at the point a, has a value at the point a-δ, has a value at the point 

a+δ. These values are at the certain distance at f(x). I call this interval as epsilon. If I 

take f(x) as L, it becomes ε+L and L-ε. That is, if I choose x in the (a-δ, a+δ) interval, my 

f(x) values will be in the (L- ε, L+ε) interval. This gives the formal definition. So, if limit 

of f(x) is L, for increasing or decreasing x values that I take, f(x) will take values like L+ε 

or L-ε. But here we have a requirement that for all delta there must be an epsilon. So, the 

values that I take in this interval, that is, all values that I take in the (a-δ, a+δ) interval 

will be at the ε distance at f(x). 

 

6. Applying quantification schema to connect the reconstructed process of the 

previous step to obtain the formal definition of limit. 

 

10 of 25 students showed indication of this step. In (5) variable x is iterated and P1 is 

evaluated at each point. Now to go towards understanding of formal limit concept, it is 

needed that this process is encapsulated by means of action of universal quantification to 

obtain object T or F, one for each fixed value of ε and δ. Let’s call this object as Q1. 

They are then varied, first δ and then ε, to get processes in the following way. 
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With fixed ε, students iterate over δ. And value of Q1 is considered until finding 

appropriate δ. Let’s call this proposition valued function of δ as P2 and express it in the 

following way. 

 

2 : { , }P T Fδ → . 

 

Then this process is controlled by existential quantification to obtain object true or false 

for fixed value of ε. Let’s call this object as Q2.  

 

Lastly, epsilon is varied and for all epsilon, value of Q2 is considered. Let’s call this 

proposition valued function of ε as P3 and express it in the following way. 

 

3 : { , }P T Fε →  

 

In the following excerpt, Sude discussed what the formal definition of limit means. She 

says “For epsilon interval here, I will find a delta interval here” and “All values will go 

into epsilon interval”. This might indicate that she took epsilon fixed and find a proper 

delta value among possible delta values. That is, she iterated over delta and controls this 

iteration with existential quantification. This shows us that Sude reconstructed process 

conception of informal limit in terms of intervals and correctly varied first x, and then δ. 

Nevertheless she did not go beyond this to apply iteration over ε. She only considered 

one epsilon value to conclude that limit exists. 

 

Sude: For epsilon, we will find a delta interval, (a-δ, a+δ). For epsilon interval here, I 

will find a delta interval here. That is, in the epsilon interval, or let’s say in this way, all 

values that I take in the delta interval will go into epsilon interval, go into epsilon 

interval here. That is, f(x) values of the all values in the delta interval will go into epsilon 

interval. 
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I: Well, you considered an epsilon interval. 

  

Sude: Yes. 

 

I: You find a delta interval for it. Then the values you take in the delta interval (Sude 

intervenes) 

 

Sude: All values will go into epsilon interval. 

 

I: Well. Is it enough to show this for one epsilon value? For example, let’s say epsilon 

1 2  and you find delta1 4 , can you say that limit exists? 

 

Sude: I can. 

   

I: So, for an epsilon finding a delta is enough to say that limit exists. 

 

Sude: Yes, it is enough. Otherwise it does not satisfy definition. 

 

Cihan previously found δ as ε/5 to prove that limit of 5x is 10 at point 2. In the following 

excerpt, he explained on the graph what the formal definition of limit means with this 

specific example. He first took an epsilon interval and finds an appropriate delta. Then 

since he found δ as ε/5 in his previous work, for ε=10 he finds δ as 2. After that, last two 

lines might indicate that he varied epsilon and controls it by universal quantification. 

 

Cihan: Let’s draw the graph (he draws graph of ( ) 5f x x= ). When we draw the graph of 

function ( ) 5f x x= , here for all epsilon we need to find delta. Let’s take an epsilon first, 

we restricted ( )f x  in the (10-ε, 10+ε) interval. Now we need to find a delta on the x 

axis such that function values of all x values that we take in the (2-δ, 2+δ) interval must 

go into (10-ε, 10+ε) interval. Previously, we found the general relationship between 

epsilon and delta to see what delta should be chosen for all epsilon. For example, if we 
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choose epsilon as 10, if we want function to be in 0 and 20, then it should be between 0 

and 4. Since we take δ as ε/5, we take δ as 2. 

 

I: Is this true for one epsilon or for all? 

 

Cihan: This is true for all epsilon. Indeed we found the general relationship between 

epsilon and delta. 

 

Eda is given ( ) 5f x x= and asked to prove that limit is 10. She found δ=(ε/5) in her 

previous work, and here she explained what the formal definition of limit means with 

this specific example. For a given epsilon, Eda found an appropriate delta among 

possible delta values. This is an indication for existential quantification over delta. Then 

for ε=100 she found δ=20, and she says that this is a general relationship. So, it might be 

concluded that she iterates over epsilon and this iteration is controlled by universal 

quantification. 

 

Eda: I am given epsilon and I am asked to find a delta. As I found here, I can take δ as 

ε/5. If I input all x values here (showing delta interval) into function, they will go into 

this interval (showing epsilon interval). 

 

I: Well, is this valid for 2? 

 

Eda: Yes, it is valid for this question. 

 

I: So if we think limit in general. 

 

Eda: No, function would take another value for 2. But the important thing for me is 

what the function points for the values around 2. 

 

I: You wrote delta in terms of epsilon. Why did you write this? 
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Eda: Because to make it general. I do not know epsilon. I need to find delta depending 

on epsilon. So, by writing it in terms of epsilon I made it general. If I took epsilon 100, 

delta would be 20 and satisfy it, for this reason, for making it general. 

 

I: What did you generalize? I could not understand. 

 

Eda: Because I do not know epsilon… Epsilon can take all values greater than 0. So, I 

need to find such a delta that images of all x values in this delta interval will reside in 

epsilon interval. So, by writing it in terms of epsilon I guarantee this. 

 

Here is example in which for an epsilon value Nur found an appropriate delta among 

possible delta values which is an indication for existential quantification over delta. For 

this delta value she iterated over x and checked truth of implication for all x values. Then 

she said “epsilon can be given as 5, or as 1/2. I want this for all epsilon values”. This 

might indicate that she iterated over epsilon values and this iteration was controlled by 

universal quantification. 

 

Nur: What I want to find is delta. I can change this delta. That is, since epsilon is given 

to me I can find a delta depending on it. Then I choose x values from (a-δ, a+δ) interval. 

My aim is that I want these x values to go in (L-ε, L+ε). I know this from the definition. 

And I look for the values in (a-δ, a+δ) (interviewer intervenes) 

 

I: All values or some values? 

 

Nur: Indeed, I need to choose such an interval that all values will go into this interval 

(she shows epsilon interval). That is, for example, if all values satisfy but only one value 

does not, if this one goes out of (L-ε, L+ε) interval, then this means that this delta does 

not run … does not satisfy. That is, I will pick such an interval that all x values in (a-δ, 

a+δ) interval, except a, will go into epsilon interval which is considered previously… 

Absolutely, no value will go out of this interval. 
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I: Well, is it sufficient that for one epsilon value you find one delta?  For example, let’s 

say you for ε=3 you find δ=2. And what you said is satisfied, values in (a-2, a+2) 

interval goes into (L-3, L+3) interval. Then, can you say that limit exists? 

 

Nur: No, it is not sufficient that it runs for only ε=3. Since I said for all epsilon greater 

than 0, I do not only want that for all x values in (a-2, a+2) interval goes into (L-3, L+3). 

For example epsilon can be given as 5, or as 1/2. I want this for all epsilon values.  

 

I: Well, do you take one delta value, or does delta changes depending on epsilon? 

 

Nur: Delta changes depending on epsilon. It is not correct to take it as constant. Why? If 

I take it as constant… let’s say I take δ=3. That is, my interval on the x axis is (a-3, a+3) 

interval. Now, I can take epsilon whatever I want. This does not satisfy for all epsilon 

values. Let’s say this satisfies for ε=6, but this may not satisfy for ε=5. Eventually, there 

could be an interval which it does not satisfy.  

 

Here is another example in which for a given epsilon appropriate delta was found and 

truth value of implication was checked for all x values. Moreover, process of iteration 

over epsilon and controlling this iteration with universal quantification was apparent. Ali 

iterated over epsilon by taking it as 1000, 500, 100, 50, 1, 4, 3.5, and 3. Then by saying 

“Then this must be true for all” he controlled this iteration with universal quantification. 

 

Ali: If as x goes to a f(x) goes to L, then for given any epsilon we find a delta. And for 

the delta that we found, all the values between a-δ and a+δ -except a, because we do not 

consider a- all these values will go into (L-ε, L+ε) interval. 

 

I: Did you consider this for one epsilon value? 
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Ali: The epsilon value that I take may not be this one, we can take it from here (showing 

another epsilon interval on the graph). That is, whenever I am given an epsilon value, if 

limit exists, I can find an appropriate delta. 

 

I: Then, can we say that limit exists if for some epsilon values we find delta? 

 

Ali: Rather than taking 3 values, we take decreasing epsilon values at each time, and if 

for each one we can find satisfying delta, we can say that limit exists? 

 

I: Well. If you take finite number of decreasing epsilon values and for these you find 

delta values, then can you say that limit exists? 

 

Ali: Iıı you give finite number of epsilon values… But let’s say in this way. Let’s take 

epsilon starting from 1000, decrease it, 500, 100, 50, 10, 4, 3.5, 3. That is, I take finite 

number, for example from 1000 to 3 there are finite number of values, and for each one I 

find a delta. But still limit might not exist. 

 

I: So, if we consider formal definition, is it for all epsilon values or for some? 

 

Ali: Whatever epsilon value I take, next one can be smaller than previous one. And this 

is of course true for… if limit exists, for each epsilon value I can find delta. But if given 

value is not correct limit (interviewer intervenes) 

 

I: Let’s assume that limit exists. 

 

Ali: Then this must be true for all. 
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7. A completed ε-δ conception is applied to specific situations 

 

Epsilon-delta conception can be used to solve problems, following three are such 

examples. 

 

(a) Showing that limit of a function at the point a exists and is equal to L, formal limit 

conception is needed, 

(b) Showing that limit of sum of two functions that have limit is equal to sum of limit of 

these functions, formal limit conception is needed, 

(c) Showing that limit of a function at a given point is not equal to proposed limit value, 

formal limit conception is needed. 

 

6 of 25 students showed indications of this step. In the interview, students were given 

last situation: to show that
2

lim2 5
x

x
→

≠ . Negation is needed to solve this question, and 

negation is transformation of limit concept. In order to negate limit statement, process 

conception of formal limit which is called P3 in (6) is needed to be encapsulated as 

object: let’s call this object as Q3. In order to respond effectively this situation, it is 

proposed that students must show two developments: (i) Q3 is transformed to its 

negation, let’s say 3Q and (ii) 3Q is properly interpreted. For the latter, in order to 

interpret 3Q , it is needed to be de-encapsulated to get its process, let’s say P4. For the 

former, students used two different kinds of negation methods which are defined 

(Dubinsky et al., 1988, p.60) as follows: 

 

Negation by rules: The most mechanical method of negating a proposition is 

to express it in formal language and apply rules such as DeMorgan’s law 

from memory. 

 

Negation by reasoning: The student has a mental representation of a set of 

situations that correspond to the statement being true and can then take the 

complementary set of situations which corresponds to its falsity. 
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In the following excerpt, Aysenur used epsilon-delta argument to get a relation between 

epsilon and delta: 1 2δ ε= − . She took epsilon equal to 1 that makes delta equal to 0 

which is contradiction and enough to conclude that limit is not 5. This is a kind of 

assimilation of new condition (here it is showing that limit is not 5) into epsilon-delta 

argument. But assimilation is not a proper way to construct necessary mental structures 

to handle this new condition. What needed is special reflective abstraction that can be 

named as encapsulation of process conception of formal limit concept into an object. 

Following excerpt is such an example. 

 

Aysenur: Let’s write | 2 5 |x − as | 2 4 1|x − − , then we have 2 | 2 1 2 |x − − . We know that    

- - 2xδ δ< < , then we have 1 2 2 1 2 1 2δ δ− − < − − < −x . I need to write 2 1 2− −x  

within the absolute value, that is, I need to find absolute value of - 2 -1 2x  is less than 

what. Is it 1 2δ − , no! We can say that | 2 1 2 | 1 2x δ− − < + . Then this (showing 

2 | 2 1 2 |x − − |) becomes less than 2( 1 2)δ + , let’s take 2( 1 2)δ + as epsilon. 

Then 2 1 2δ ε= − . But if epsilon is equal to 1 then delta is 0. Delta must be greater than 

0. Thus limit is not 5. 

 

In the following excerpt, Yasemin chose epsilon as ½ and x as 1.8 to make 

| 2 5 |x − greater than ε=1/2. The reason is that in negation of formal definition it is said 

that | 2 5 |x ε− ≥ . So, for her, this makes negation of formal definition true, which means 

formal definition is false. Then she says limit cannot be 5. Taking negation of formal 

limit and concluding that if its negation is correct, formal limit statement must be false 

might be considered as indications of seeing formal limit concept as object. But after 

applying negation over formal limit process we get another process which is called P4 

above. What was absent in Yasemin’s explanations was this process. She fixed epsilon 

as 1/2. Now, if process P4 was correctly interpreted, the thing to do would be to consider 

fixed delta value and for this delta to find an x value which makes 0 | 2 |x δ< − < true but 

| 2 5 | 1 2x − <  false. Then it is needed that for another delta, an x value is found, and this 

is done for all delta values which are greater than 0. However, rather than having this 
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process she uses intuitive idea “if I take an x value which is so close to 2 and is at the left 

of 2, I feel that its image is not close to 5” to determine only one x value by disregarding 

delta values. 

 

Yasemin: As x goes to 2, function does not go to 5, but 4. If I approach 2 from the left, 

function values does not go beyond 4, function values will never approach to 5. Then I 

choose such an x value that its image does not go into epsilon interval around 5. 

 

I: Let’s do then. 

 

Yasemin: Let’s choose ε=1/2, then we have the interval (4.5, 5.5). Considering graph of 

the function, if I take an x value which is so close to 2 and is at the left of 2, I feel that its 

image is not close to 5. Then let’s choose x as 1.8. According to formal definition of 

limit | ( ) |f x L−  must be less than epsilon, that is. If I input 1.8 into function, I get 3.6. 

Then this (showing| 3.6 5 |− ) must be less than epsilon, if limit is 5. But I see that this 

( | 3.6 5 |− ) is greater than epsilon. So, I proved that limit is not 5. 

 

I: Well. Considering formal definition of limit what was your plan at the beginning to 

solve this question? 

 

Yasemin: In the formal definition it is said that for all epsilon there exists delta. I need 

to find its negation. There exists epsilon for all delta such that 0 | 2 |x δ< − <  

and| ( ) |f x L ε− ≥ . If I find that | ( ) |f x L− is greater than epsilon, since in formal 

definition it is said that| ( ) |f x L ε− < , I prove that negation of formal definition of limit 

is correct. That is, limit is not 5.  

 

In the following excerpt, Mehmet used negation by reasoning and started to do so by 

choosing epsilon as 1/2. Then in order to determine δ for ε=1/2, he found x values whose 

images are between 4.5 and 5.5: 2.25 2.75x< < . But he figured out that since delta 
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interval should be in the form of (2-δ, 2+δ) and delta must be greater than 0, there is no 

possible delta interval. Nevertheless, this is not complete negation of formal limit 

statement. 

 

Mehmet: I will show that limit is not 5. If we look at the graph (he draws graph of 

f(x)=2x), we see that its limit is 4, but you said it is 5. Let’s choose epsilon equal to 1/2. 

If we look at the x values whose images are between 4.5 and 5.5 we get an interval 

which is at the right of 2. This is the reason why I choose epsilon as 1/2. Now in the 

formal definition of limit it is said that if x is between 2-δ and 2+δ then function must 

me between 5-ε and 5+ε. Our function is 2x and we choose epsilon as 1/2, then 

4.5 2 5.5x< < . Let’s look for x, by dividing both sides with 2, we get 2.25 2.75x< < . 

Now we have two inequalities, 2.25 2.75x< <  and 2 2xδ δ− < < + . There is no delta 

value such that both of these two inequalities are satisfied, because delta must be greater 

than 0. 

 

Following two excerpts are good examples for understanding of formal limit concept. In 

the first example, Erhan used negation by reasoning. Just like Mehmet, he started to 

reason on quantifications over epsilon and delta, and Erhan chose ε=1/2 and then he 

considered x values whose images are between 9/2 and 11/2:9 4 11 4x< < . But unlike 

Mehmet, he took an x0 between 2-δ and 2. Fixing epsilon as 1/2 among possible epsilon 

values might be considered as starting to interpret P4, and choosing an x0 might be an 

indication for negation of quantification over x. Following these, he figured out that x0 

must be between 9/4 and 11/4, which is impossible for any delta value since intersection 

of (2-δ, 2) and (9/4, 11/4) is empty. Then he specifically chose x0 as 2-δ/2. 2-δ/2 which is 

always between 2-δ and 2 but f(2-δ/2) is not in (5-1/2=4.5, 5.5= 5+1/2) for any delta 

value. By doing so he fixed an epsilon and delta. Variable x is iterated and statement “x0 

is in (2-δ, 2+δ), but f(x0) is not in (5-ε, 5+ε)” is evaluated at each point then iteration is 

controlled by existential quantification. This might suggest us two things: one is that he 

completed the transformation of Q3 into its negation 3Q and the other is that he 
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continued to interpret 3Q correctly. Moreover, he said “there is no delta value that 

satisfies this”. This might be an indication for iteration over delta, and for controlling 

this iteration with universal quantification. And lastly, choosing one epsilon among 

possible epsilon values might be an indication for iteration over epsilon and controlling 

it with existential quantification which means that he completed interpretation of 3Q  

correctly. 

 

Erhan: If limit of it is 5, in the line of definition of limit, for given any epsilon interval I 

can find at least one delta interval. If it was correct this would be satisfied for all epsilon 

values, for all epsilon values I could find a delta. But I know that it is false, actually I 

guess it is false. And in order to show that it is false, I choose an epsilon. If for this 

epsilon I cannot find any delta, then I show that limit is not 5. For example let’s choose 

ε=1/2. In the light of limit definition, if 0 | |x a δ< − <  then| ( ) |f x L ε− < . Then 

| 2 5 |x − is less than 1/2. Let’s find the interval: 1 2 2 5 1 2x− < − < , 9 2 2 11 2x< < , 

9 4 11 4x< < . For epsilon 1/2 the delta that we need to find should be in the following 

form: 0 | 2 |x δ< − < , that is, 2xδ δ− < − < , 2 2xδ δ− < < + . Now If I choose an x0 

value… I want to choose x0 between 2-δ and 2. For epsilon, the x0 that I choose should 

be satisfied, that is, it should go between 4.5 and 5.5. I can take x0 between 2- δ and 2. 

For ε=1/2 whatever delta value I choose, x0 should be between 9/4and 11/4. But 

whatever delta I take, this condition is not satisfied for x0 that I choose. Since delta is 

greater than 0 and 02 2xδ− < < , x0 is always less than 2. We can take x0 as 2- δ/2 which 

is always between 2- δ and 2. Whatever delta value I choose, x0 is never between 9/4 

and 11/4. I can input x0 value here (showing | 2 5 | 1 2x − < ): | 2(4 2) 5 | 1 2δ− − < , 

| 1 | 1 2δ− − < , since delta is greater than 0 we can take -1- δ out of absolute value as    

1+ δ. Then we have 1 2δ < − . This is contradiction, since in the light of limit definition 

delta must be greater than 0. 
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Erhan assumed that limit of 2x at the point 2 is 5, then by negating limit statement and 

interpreting negation of limit statement simultaneously he got contradiction to conclude 

that what is assumed at the outset is false. In the last example, Yasir employed a 

different strategy. He first negated limit statement and then showed that negation of limit 

statement is true which implies that limit statement is false. Thus limit is not 5. He 

started to negate statement from quantification part and at the end he negated 

implication. He made universal quantification existential, existential universal and used 

equivalent form of negation of implication to get 3Q . This is an example for negation by 

rules. Then he took epsilon 1/2 and x=2-(δ/3) which is always in the delta interval for 

any delta. Since x=2-(δ/3) satisfies 0 | |x a δ< − < and | 2 5 | 1 2x − ≥  for all delta values, 

3Q is true. So Q3 must be false which implies that limit is not 5. This solution is an 

indication for correct interpretation of 3Q , but to get more information interviewer asked 

him to explain all these by using a graph. Yasir fixed epsilon to 1/2 and determined 

epsilon interval: (4.5, 5.5). Then by choosing x=2-(δ/3) he guaranteed that x is in the 

delta interval for all delta values. He fixed delta to 3 which means x is 1 and f(x) is 2. 

And he checked whether f(1) is in the epsilon interval or not. Finding one x value for 

fixed epsilon and delta values is an indication for existential quantification over x. Then 

he iterated over delta by taking two more delta values and checked whether f(x) is in the 

epsilon interval or not for fixed epsilon and for each delta iteration. Moreover by saying 

that “we can choose delta any number which is greater than 0” he controlled this 

iteration with universal quantification. After interviewer’s prompt he explained why he 

chose epsilon 1/2. He, first, restricted epsilon values to (0, 1) interval by using properties 

of function f. Secondly, by saying that “for epsilon, for example, 1/2, 1/3, 1/5 can be 

taken. But I am looking for only one epsilon value.”, he iterated over epsilon values and 

controlled this iteration with existential quantification. 

 

Yasir: I think this is false. If I show that negation of limit statement is true, then I show 

that limit statement is false. If limit was 5 we would say that for all ε>0 there exists a 

δ>0 such that for all x, 0 | |x a δ< − <  implies | ( ) |f x L ε− < . Let’s negate this statement: 
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there exists an epsilon>0 such that for all delta>0 there exists an x in the domain of f, - 

not (p implies q) is equivalent to (p and not q) then- 0 | |x a δ< − <  and | ( ) |f x L ε− ≥ . 

Now, since one epsilon is enough, I take epsilon 1/2. And for given any delta, I need to 

choose such x values that they must be in the delta interval. Then, I choose x=2-(δ/3) for 

all delta. Since 2-(δ/3) is always in the delta interval, 0 | |x a δ< − <  is satisfied 

(interviewer intervenes) 

 

I: What is a? 

 

Yasir: a is equal to 2. 

 

I: What about f(x)? 

 

Yasir: It is 2x, and L is 5. Then we have | 2(2 3) 5 | 1 2δ ε− − ≥ = . Then we get 

|1 2( 3) |δ+ . Since the expression within the absolute value is positive, we can take it 

out as1 2( 3)δ+ . Then,1 2( 3) 1 2δ+ ≥ . This is true for all delta values, since delta is 

greater than 0. So, since its negation is correct, limit statement must be false. And then 

limit of 2x is not 5 at the point 2. 

 

I: Well. Can you explain all this by using a graph? 

 

Yasir: Okay. (he draws graph of y=2x correctly). Since we choose ε=1/2, epsilon 

interval is (4.5, 5.5). We choose x=2-(δ/3). x values are always in the delta interval for 

all delta values. If I take delta 3, x will be 1, and it is in the delta interval. Whatever delta 

I take, that is for all delta (interviewer intervenes) 

 

I: Can you exemplify these delta values? 
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Yasir: If I take delta=3, then x is 2-(3/3) =1. f(1)=2, but 2 is not in (4.5, 5.5). Choose 

δ=6, x is 2-(6/3)=0, f(0)=0, again 0 is not in (4.5, 5.5). Or let’s choose δ=30, 2-10=-8,   

f(-8)=-16, again this is not in (4.5, 5.5). In this way, we can choose delta any number 

which is greater than 0. The x values that I choose are always in the delta interval, but 

image of x is never in (4.5, 5.5), that is, it is never in the epsilon neighborhood of L. 

 

I: Why did you choose ε=1/2? 

 

Yasir: I can take any value less than 1 for epsilon, for example, 1/2, 1/3, 1/5 can be 

taken. But I am looking for only one epsilon value. 

 

I: Can you explain why you can take any value less than 1 for epsilon? 

 

Yasir: If I take epsilon less than 1, lower bound of epsilon neighborhood of 5 is always 

greater than 4. Since delta is greater than 0, 2-(δ/3) is always less than 2, and the x that I 

choose is always at the left of 2. Then image of it is always less than 4. Thus I guarantee 

that image of the x is not in the epsilon neighborhood of 5. 

 

4.2 Students’ Difficulties in Transition from Informal to Formal 
Understanding  

 

In this section following sub-question will be considered: 

 

1.3 What kind of difficulties do students encounter in transition from informal 

understanding to formal understanding of limit of a function? 

 

In the previous section, students’ understanding of limit of a function was explored with 

the help of genetic decomposition. Student responses under genetic decomposition 

proposed some difficulties that students encounter in transition from informal to formal 

understanding of limit. In this section, these difficulties will be explored explicitly by 
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considering students’ responses in the interview. Since they are representative, excerpts 

used in the previous section will also be used in this section.  

 

Reverse Thinking Process 

 

In informal models of limit of a sequence, students first think of index and 

corresponding term for this index. Then, they consider the difference between each term 

and the limit value as index increases to infinity. But, in formal definition students are 

required to, first, consider the error bound, then, proper index for the given error bound. 

Roh (2007) calls this transition as reverse thinking process. Reverse thinking process is 

necessary in the case of limit of a function. One of the difficulties that some students 

had, in transition from informal to formal understanding of limit of a function, is this 

reverse thinking process. Some of the students in this study could not achieve reverse 

thinking process. 

 

In the following excerpt Veli makes a discussion about what the formal definition of 

limit means by considering f(x)=5x at the point 2. Rather than reconstructing his 

informal understanding of limit concept he assimilated formal limit concept into 

informal limit schema. This shows us that he was not able to achieve reverse thinking 

process.  

 

Veli: I say that from here to 2, I started to give values starting from 2-δ and I started to 

give values that go to 2 and this goes towards 10 from 10-ε. And then I started to give 

values starting from 2+δ, I see that this goes towards 10 from 10+ε. 

 

In the following excerpt, Sude considered first epsilon then delta. This shows us that she 

achieved reverse thinking process 

 

Sude: For epsilon, we will find a delta interval, (a-δ, a+δ). For epsilon interval here, I 

will find a delta interval here. That is, in the epsilon interval, or let’s say in this way, all 
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values that I take in the delta interval will go into epsilon interval, go into epsilon 

interval here. That is, f(x) values of the all values in the delta interval will go into epsilon 

interval. 

 

Weak Understanding of Quantifiers 

 

Cornu (1991) and Cottrill et al. (1996) ascribed students’ difficulty in understanding 

formal limit concept to their weak understanding of the concept quantifiers. Bloch 

(2000), also, took the attention on quantifiers. “Many statements of theorem in 

mathematics have quantifiers in them, sometimes multiple quantifiers. The importance 

of the quantifiers in the rigorous proofs cannot be overestimated. From the author’s 

experience teaching undergraduate mathematics courses, confusion arising out of either 

the misunderstanding of quantifiers in complicated definitions and theorems, or the 

ignoring quantifiers when writing proofs, is the single largest cause of the problems for 

students who are learning to construct proofs” (p. 42).  

 

Another difficulty, detected in this study in transition from informal to formal 

understanding of limit, was caused by weak conception of quantifiers. Following excerpt 

is such an example. In explaining what formal definition of limit means to her, Alev 

considered fixed epsilon and delta values. She did not show any iteration over epsilon 

and/or delta in practice. Moreover, she put relation between epsilon and delta incorrectly 

by saying “for all delta there must be an epsilon”. She had difficulty in explaining 

quantifiers in the formal definition of limit. This might be because of her weak 

conception of quantifiers. 

  

Alev: f(x) has a value at the point a, has a value at the point a-δ, has a value at the point 

a+δ. These values are at the certain distance at f(x). I call this interval as epsilon. If I 

take f(x) as L, it becomes ε+L and L-ε. That is, if I choose x in the (a-δ, a+δ) interval, 

my f(x) values will be in the (L-ε, L+ε) interval. This gives the formal definition. So, if 

limit of f(x) is L, for increasing or decreasing x values that I take, f(x) will take values 
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like L+ε or L-ε. But here we have a requirement that for all delta there must be an 

epsilon. So, the values that I take in this interval, that is, all values that I take in the (a-δ, 

a+δ) interval will be at the epsilon distance at f(x). 

 

In the following excerpt, Sude believed that consideration of only one epsilon satisfies 

what is said in formal definition. In other words, she took phrase “for any epsilon” or 

“for all epsilon” as “for one epsilon”. This suggests us that she had difficulty in three-

level quantification in the context of formal conception of limit.  

 

I: Well, you considered an epsilon interval. 

  

Sude: Yes. 

 

I: You find a delta interval for it. Then the values you take in the delta interval (Sude 

intervenes) 

 

Sude: All values will go into epsilon interval. 

 

I: Well. Is it enough to show this for one epsilon value? For example, let’s say epsilon 

1/2 and you find delta 1/4, can you say that limit exists? 

 

Sude: I can. 

   

I: So, for an epsilon finding a delta is enough to say that limit exists. 

 

Sude: Yes, it is enough. Otherwise it does not satisfy definition. 
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4.3 Change in Students’ Understanding after the Instruction 

 

Limit questionnaire was administered both as a pretest and posttest. Responses of 

students in the pretest and posttest and their difference is addressed in this section to 

address following research problem. 

 

2. How different is students’ understanding of limit of a function after the instruction 

based on APOS theory? 

 

4.3.1 Analysis of Responses to Item 1 in the Limit Questionnaire 

 

In first item of the limit questionnaire, students were asked to describe what limit means 

to them rather than definition of limit concept. So, the aim was to address students’ 

concept images of limit concept. First item of the limit questionnaire was the following. 

 

I-1. Describe in your own words what it means to say that the limit of the function f at 

the point a is L. 

 

This item yielded qualitative data. The responses to first item were group in three 

categories: informal, formal, and others. Informal response is related with informal 

conception of limit, formal response is related with formal conception of limit, and 

remaining responses was categorized as others. Informal category has three 

subcategories: pre-action, action, and process. Responses, including evaluation of only 

one point to determine limit, were put under pre-action. Responses, in which several 

values used to determine limit, were categorized as action. Lastly responses, including 

dynamism in domain, or in range, or in both in determination or description of limit, 

were put under process. Moreover, formal category has three sub-categories: incorrect, 

lack of quantifiers, and correct. Responses, that stated formal limit definition incorrectly, 

were categorized under incorrect. Responses including lack of quantifiers over one (or 
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more) of x, δ, ε, were categorized as lack of quantifiers. And lastly, responses, that stated 

formal limit definition correctly, were categorized under correct. 

 

4.3.1.1 Pretest Results 

 

1) Category “Others” 

 

Examples to this category included the following responses: 

 

1. The slope of the function is equal to L at the point a. 

2. There is a function and this function has a point which has limits. 

3. It is a kind of boundary. It is used for finding result of f(x) function for limited 

values. 

 

In addition to above responses, seven of 25 students gave no response to first item, and 

one student graphed two functions, first one had removable discontinuity and the second 

one had jump discontinuity at the point a. She then said that since left and right limit is 

equal for first one, it has limit. But since left and right limit are not equal for the second 

one, limit does not exist. 

 

As a result, seven of 25 students left first item blank, two of 25 students mentioned 

about derivative instead of limit (first response above), one of the students gave self 

referential answer (second response above), one of the students saw limit as boundary 

but without clear explanation (third response above), and lastly one of the students 

determined two conditions, namely, removable discontinuity and jump discontinuity at 

the point a, and concluded that for the former condition there is a limit, but for the latter 

there is not. Thus, totally twelve of 25 were categorized under “Others”.     
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2) Category “Informal” 

 

Under this category we have three subcategories: pre-action, action, and process. Nine of 

25 responses were categorized under pre-action. Following four were examples for pre-

action subcategory. 

 

1. At the point a, the value of the function f is equal to L or it is very close to L. 

 

2. ( )f a L=  

 

3. If we replace x with a in function f(x), the result is L. 

 

4. When a number which is very close to a is placed in the function f, the result is 

very close to L. 

 

Only one response was categorized as action, which is as follows. 

 

1. Numbers that are slightly less than a correspond L, numbers that are slightly 

greater than a correspond L. 

 

There were three responses which were categorized under process. These were as 

follows: 

 

1. Closest points to a in x axis gets close to L in y axis under the function f. It does 

not matter if a refers to L, but, both left and right of a should be getting closer to 

L. 

 

2. When we come to the point a from right and left we get the same value for f. 

 

3. L is the nearest value, whether f(a) is equal to or not, that the function can reach. 
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3) Category “Formal” 

 

In high school curriculum in Turkey, only informal limit conception is covered. Students 

need to wait to deal with formal limit conception until university education. So, in the 

pretest students were not expected to give responses under formal category. Parallel to 

this expectation, no students used formal ideas to describe what limit is in item one of 

the questionnaire. Thus no response was categorized as formal in pretest.  

 

4.3.1.2 Posttest Results 

 

1) Category “Others” 

 

Only one response was put under category “Others” in posttest. It was the following: 

 

1. It is about how function behaves at near a and is not interest in value of f(x) at a.  

 

2) Category “Informal” 

 

Under this category, three sub-categories were determined in pretest: pre-action, action, 

and process. Nevertheless, in posttest only one of these sub-categories was observed, 

namely, process sub-category under which thirteen responses was categorized. 

Followings are examples for process sub-category: 

 

1. When x approaches to a from right and left side, the value of function approaches 

to L. 

 

2. When we approach from left and right of a, value which f(x) approaches is the 

limit. 
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3. When the variable of function f approaches to point a from left and right, the 

function approaches to the point L.  

 

4. In f function, when x approaches to a on both sides, f(x) approaches to L.  

 

In addition to above responses in this sub-category, there was one different type 

including dynamism but within delta and epsilon intervals. In this type, two responses 

were observed in which students assimilated delta and epsilon intervals into informal 

conception of limit in a way that x approaches to a in the interval ( - ,  ),  a a x aδ δ+ ≠ , 

and correspondingly f(x) approaches to L in the interval ( - ,  )ε ε+L L . Following is an 

example for such response. 

 

1. When x approaches to a in the interval ( - ,  ),  a a x aδ δ+ ≠ , f(x) approaches to L 

in the interval ( - ,  )L Lε ε+ .  

 

3) Category “Formal” 

 

Responses, including formal definition of limit, were included in this category. Formal 

category has three sub-categories, namely, incorrect, lack of quantifiers, and correct. 

There was one response that stated limit incorrectly as follows: 

 

1. For given 0ε > , there exists 0δ > such that | |  and | ( ) |x a f x Lδ ε− < − < . 

 

There was another response that did not include quantifiers over ε  and δ of the formal 

definition but the remaining without excluding point a in the domain for the definition. It 

was as follows: 

 

1. Every point in ( - ,  )a aδ δ+ goes to ( - ,  )L Lε ε+ . 
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Remaining nine students correctly stated formal definition of limit. Followings are 

examples: 

 

1. 0,  0,  ( )x D fε δ∀ > ∃ > ∀ ∈ such that if 0 | |  then | ( ) |x a f x Lδ ε< − < − < . 

 

2. For given any 0ε > , we can find 0δ > such that 

if 0 | |  then | ( ) |x a f x Lδ ε< − < − < . 

 

3. lim ( )
x a

f x L
→

= , if for every 0ε > there exists 0δ > such that | ( ) |f x L ε− <  

whenever 0 | |x a δ< − < . 

 

4. lim ( )
x a

f x L
→

=  means that 0,  0ε δ∀ > ∃ >  such that  ( )x D f∀ ∈ , 0 | |x a δ< − <  

implies | ( ) |f x L ε− < . 

 

4.3.1.3 Comparison of results  

 

Three categories were determined in the analysis of first item of limit questionnaire. 

These were Informal, Formal, and Others. Others was mainly comprised of incorrect 

responses, no response, and irrelevant response. In pretest, there were twelve responses 

under the Others category, whereas in posttest there were only 1 response. 

 

The second category was Informal. This category included three subcategories, namely, 

pre-action, action, and process. In pre-action, responses included evaluation of only one 

value (either a or a number close to a) to determine limit of the function at the point a. 

In action, responses included evaluation of several values close to a to determine limit of 

the function at the point a. In process, responses included dynamism in the domain, or in 

the range, or in both in the consideration of informal limit. In pretest, nine of 25 

responses were categorized under pre-action, one response was categorized under action, 

and three responses were categorized under process conception. Whereas, in posttest, 
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there were 13 responses, categorized under only process. Moreover, comparing the 

results under process category of pretest and posttest, it was seen that statements in 

posttest were more mathematically mature than the statements in pretest. 

 

The last category was Formal. Formal category was composed of three sub-categories, 

namely, incorrect, lack of quantifiers, and correct. Responses under incorrect was 

comprised of incorrect statement of formal definition of limit. Responses under lack of 

quantifiers included statement of formal definition of limit with some of the quantifiers 

in it omitted. And lastly, correct included responses with correct statement of formal 

definition. In pretest, no students were detected under Formal category, whereas, in 

posttest one of 25 responses was categorized under incorrect, one was categorized under 

lack of quantifiers, and lastly nine responses were categorized under correct. Summary 

of categories in pretest and posttest was given in the following tables. 

 

Table 4.1: Responses to “what limit means”- before instruction 

Others Informal 
Pre-Action     Action   Process 

Formal 
Incorrect     Lack of Quantifiers   Correct       

Total Number 
of students 

12        9                  1              3       0                            0                          0 25 

 

 

Table 4.2: Responses to “what limit means”- after instruction 

Others Informal 
Pre-Action     Action   Process 

Formal 
Incorrect   Lack of Quantifiers     Correct 

Total number 
of students 

1        0                  0              13       1                           1                           9   25 

 

As seen in the tables, mainly, responses under Others and pre-action of pretest moved to 

process and correct of posttest. Movement from Others or pre-action to process might be 

counted for indication of improvement in students’ understanding of informal limit 

concept. Moreover, comparing the results under process category of pretest and posttest, 

it was seen that statements in posttest were more mathematically mature than the 

statements in pretest. And lastly, movement from Others or pre-action to correct might 

be counted for indication of improvement in students’ understanding of limit concept.  
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4.3.2 Analysis of Responses to Item 2 in the Limit Questionnaire 

 

Remaining items of the questionnaire including second item was evaluated with the 

following rubric adapted from Asiala, Cottrill, Dubinsky, and Schingendorf (1997): 

 

• 0 for empty or irrelevant response, 

• 1 for responses that showed some progress toward solution but far from the 

correct solution, 

• 2 for almost correct responses with minor flaws in the solution, 

• 3 for totally correct responses. 

 

Second item of the limit questionnaire was about whether a function attains its limit 

value at the point limit is looked for and at other points. In literature (e.g., Williams, 

1991), the mostly cited misconception on limit concept is that “a limit is a number or 

point the function gets close to but never reaches”. The aim of the second question is to 

check, in practice, whether students hold this misconception or not. Second item of the 

questionnaire was the following. 

 

I-2. Suppose lim ( )
x a

f x L
→

= , is it possible that the value of f(x) is equal to L at a, and at 

some values of x other than a? Explain your answer. 
 

Responses to this item in the pretest and in the posttest are given in the following table.  

 

Table 4.3: Item-2, Pretest- Posttest  

Item-2 Pretest 
0      1      2      3 

Item-2 Posttest 
0      1      2      3 

 16      2      5      2    1      1     12     11 

 

Students, whose response graded as 2 or 3, correctly stated “it is possible that the value 

of f(x) is equal to L at a” and explained why it is the case or gave an example case. In the 

literature (e.g., Williams, 1991), the reason for the misconception “a limit is a number or 
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point the function gets close to but never reaches” is attributed to the dynamical 

character or feeling of motion in informal conception of limit. In pretest, only three 

students were categorized under process, in which dynamical element was evident, as 

seen in Table 4.1. So, correct examples that students used to explain in pre-test might be 

because of incorrect reasons. For example, one of the students in pre-test gave a constant 

function as an example and wrote lim ( ) ( ) lim ( )
x a x b

f x f a L f x
→ →

= = = . This was a correct 

example, but same student explained what limit means to him as lim ( ) ( )
x a

f x f a
→

= . So, 

seeing limit as evaluation of function at the limit point might cause him to give correct 

example because of incorrect reasons. Thus, seven responses graded as 2 or 3 in pre-test 

might be irrelevant to deduce a result about mentioned misconception.  

 

On the other hand, from the responses to item 1 in the posttest and to interview 

questions, it can be concluded that all of 25 students had strong process conception of 

informal limit in which mentioned dynamism or movement is evident. So, this question 

addresses mentioned misconception in the posttest. And as seen in above table only two 

students’ responses were graded as 0 or 1. This shows us that most of the students in the 

practice of item 2 did not show the mentioned misconception. Then, it might be 

concluded that instruction might facilitate student understanding of informal limit 

concept so that they did not show mentioned misconception in the context of item 2. 

Nevertheless, when drawing conclusions from analysis of responses to this item, it is 

needed to be careful. In the literature, it is known that students might respond similar 

questions differently under different situations (Tall, 1991; Vinner, 1991). This has an 

implication for analysis of responses to item 2 in that students might show mentioned 

misconception under different situations although they did not show in item 2. To gain 

full understanding of whether students had this misconception or not, interviewing is 

more appropriate, but it is beyond the scope of this study.  To sum up, 23 students did 

not show mentioned misconception in item 2 in posttest, and it might be concluded that 

instruction might facilitate students’ understanding of informal limit concept so that they 

did not show mentioned misconception in the context of item 2. 
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4.3.3 Analysis of Responses to Item 3 in the Limit Questionnaire 

 

Third item of the limit questionnaire required students to find limit of a function, given 

in graphical form, at given points. Third item of the questionnaire was the following. 

 

I-3. Let f be a function whose graph is shown below. In each of the following situations 
find the indicated limit. If not possible, explain why not. 
 

(a) 
2

lim ( )
x

f x
→−

   (b) 
1

lim ( )
x

f x
→−

   (c) 
0

lim ( )
x

f x
→

   (d) 
1

lim ( )
x

f x
→

 

 

 
 

Figure 4.3: Item-3, Given Function 
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4.3.3.1 Pretest Results 

 

Responses to this item in the pretest are given in the following table.  

 

Table 4.4: Item-3, Pretest  

 

3 (a)  
0      1      2      3 

3 (b) 
0      1      2      3 

3(c) 
0      1      2      3 

3 (d) 
0      1      2      3 

  12     1      0     12   11     1      0      13    3      2      0     20    9      3      3     10 

 
                       
 
Analysis of the responses to sub-items 3(a), 3(b), and 3(d) yielded that about twelve of 

25 responses were evaluated as fully correct. However, there was an increase in the 

correct responses for sub-item 3(c); twenty of 25 students solved it correctly. This 

increase worth mentioning, but, first of all, responses to item 1 and item 3 (including all 

sub-items) will be compared, then discrepancy between number of correct responses 

between sub-items of item 3 will be addressed. 

 
In item-1 only three students were categorized under process subcategory. This category 

is the only category that students showed elements of dynamism, or in APOS terms of 

process. Responses, under different category and sub-categories, did not show any 

indication of mentioned dynamism. Rather, these responses either included static 

evaluation of function at the point a or some points close to a, or were incorrect, 

confused, left blank. As indication of dynamism in responses does not guarantee that 

students had process conception of informal limit as mentioned in genetic 

decomposition, lack of dynamism does not prove that students did not have process 

conception of limit. Nevertheless, in order to determine limit, evaluation of f at the point 

a or some points close to a is a strong indication for weak concept images, or in APOS 

terms weakly formed schemas. Thus, if most of the students had weakly formed 

schemas, how could they achieve to solve sub-items of item 3? One of the possible 
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explanations is that although they had weak conceptual understanding their procedural 

understanding helped them to solve these sub-items.  

 

Turning back the discrepancy between number of correct responses between sub-items 

of item 3, we need to consider those of students’ responses to sub-items of item 3. 

Following four were example responses to item 3.  Example N represents the same 

student under different sub-items, e.g., responses called Example 2 under 3(a), 3(b), 3(c) 

3(d) were from the same student.  

 

Responses to 3(a) 

 

Example 1. 
2

lim ( ) 2
x

f x
−→

= , 
2

lim ( ) 2
x

f x
+→

= so 
2

lim ( ) 2
x

f x
→

=  

Example 2. f(-2) = 2 but at the same time f(-2) is not defined, so limit does not exist.  

Example 3. 
2

lim ( ) 2
x

f x
→

=  

Example 4. Left the question empty. 

 

Responses to 3(b) 

 

Example 1. 
1

lim ( ) 1
x

f x
−→−

= , 
1

lim ( ) 1
x

f x
+→−

= , and since function is not defined at -1, limit 

does not exist. 
Example 2. Since, f(-1) is not defined, limit does not exist. 

Example 3. Left the question empty. 

Example 4. Left the question empty. 

 

Responses to 3(c) 

 

Example 1 
0

lim ( ) 0
x

f x
−→

= , 
0

lim ( ) 0
x

f x
+→

= , so 
0

lim ( ) 0
x

f x
→

= . 

Example 2. Since f(0) = 0, 
0

lim ( ) 0
x

f x
→

=  



 128 

Example 3. 
0

lim ( ) 0
x

f x
→

=  

Example 4. 
0

lim ( ) 0
x

f x
→

=  

 

Responses to 3(d) 

 

Example 1. Limit does not exist. 

Example 2. f(1) = 2 but at the same time f(1) is not defined, so limit does not exist. 

Example 3. 
1

lim ( ) 2
x

f x
→

=  

Example 4. Left the question empty. 

 

Considering above four examples and others responses in the questionnaire, it can be 

concluded that in order to determine limit of the function at the point a some of the 

students, first, considered whether function defined at the point a or not. If it is defined, 

most probable strategy is to look for the value of f(a) to determine limit. This might 

explain why correct responses to 3(c) were more than the correct responses in other sub-

items. In 3(c), function was continuous at the given point, so abovementioned students 

achieved to correctly find limit 3(c) by directly evaluating function at the given point to 

determine limit. But, since most of them just wrote the solution, e.g., Example 1, 3, 4 in 

3(c), they got the full point. On the other hand, in 3(a), 3(b), and 3(d), function was 

continuous at given points, and in their explanations students tried to evaluate function 

at given points to determine limit. This leaded to incorrect solutions or correct answers 

with incorrect explanations, which were assigned to grade 0. 

 

By considering above discussions, it might be concluded that before taking instruction 

some of the students had and used their procedural understanding to solve questions. On 

the other hand, some of the students had weak schemas as mentioned others, but they 

were persistent to use these weak schemas rather than procedures to determine limit of a 

function given in the graphical form.  

 



 129 

4.3.3.2 Posttest Results 

 

Responses to third item in the posttest are given in the following table.  

 

Table 4.5: Item-3, Posttest  

3 (a)  
0      1      2      3 

3 (b) 
0      1      2      3 

3(c) 
0      1      2      3 

3 (d) 
0      1      2      3 

   0      0      0     25    1      0      0     24    0      0      0     25    0      0      0     25 

 

 

As seen in the above table, almost all of the students gave correct responses to all four 

items. This might indicate that instruction helped students to improve their performance 

in the questions where function is given in the graphical form.  

 

4.3.4 Analysis of Responses to Item 4 in the Limit Questionnaire 

 

Fourth item of the limit questionnaire required students to find limit of a function, given 

in algebraic formulas, at given points. This item included four sub-items as follows: 

 

I-4. Do the following limits exist? If yes, explain why. If no, explain why not. 
 

(a) 
0

1
lim cos
x

x
x→
  

(b)
2

0

| 4 |
lim

2x

x

x→

−
+

   

(c)
1

lim ( )
x

f x
→

, where 
, 1

( ) 2
1, 1

x
x

f x

x

 ≠ 
=  
 = 

  

(d) 2lim 1
→∞

+ − −
x

x x x  
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4.3.4.1 Pretest Results 

 

Analysis of responses to this item in the pretest is given in the following table. 

 

Table 4.6: Item-4, Pretest  

 

4 (a) 
0      1      2      3 

4 (b) 
0      1      2      3 

4 (c) 
0      1      2      3 

4 (d) 
0      1      2      3 

   25    0      0      0    7     12     0      6    18    1      1      5   24     0      0      1 

 

As seen in the above table, none of the students’ responses was graded greater than 

equal to 2 in the item 4(a), similarly in item 4 (d), only one response graded as 3 

whereas all the other responses graded as 0. In 4(b), six of 25 responses were graded as 3 

and nineteen responses were graded less than 1. Similar to 4(b), in 4(c) five responses 

were graded as 3 and eighteen responses were graded as 0. Different from other sub-

items, in 4(b), it is seen that almost half of the responses were graded as 1. This needs to 

be more closely addressed. Most of the responses graded as 1 included the one of the 

following reasoning: 

 

1. 
2

0

| 4 |
lim

2x

x

x→

−
+

=
2 2| 4 | | 0 4 |

2
2 0 2

x

x

− −
= =

+ +
 

2. 
2

0

| 4 |
lim

2x

x

x→

−
+

=
2| 0 4 |

2
0 2

−
=

+
. 

 

In both type of responses, it is seen that students evaluated function at the point 0 to find 

its limit at the point 0. This is especially evident in response type 1, in which student 

equated limit with the function, and then evaluated function at the given point. In 

response type 2, if students point out that function is continuous at the point 2, so it is 

legitimate to evaluate function at the point 0 to determine limit, then they would be 

graded as 3. However, none of them mentioned about continuity of the function, but 

directly evaluated function at the point 2. So, response types one and two were 

compatible with how students described limit and how they evaluated limit in the 
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previous item. Thus, this might be taken as another indication for weak schemas 

included static evaluation of function. 

 

4.3.4.2 Posttest Results 

 
Analysis of responses to this item in the posttest is given in the following table. 

 

Table 4.7: Item-4, Posttest  

 
4 (a) 

0      1      2      3 
4 (b) 

0      1      2      3 
4 (c) 

0      1      2      3 
4 (d) 

0      1      2      3 
   4      0     10    11    7      1      1      16    2      0      0      23    9      0      5      11 

 

 

In all of the sub-items, there was an increase in the totally correct or almost correct 

responses compared to pretest. Twenty-one of 25 responses were graded as greater than 

or equal to 2 in 4(a). Similarly, in 4 (c), twenty-three of the responses were graded as 3. 

Seventeen of 25 responses were graded as greater than or equal to 2 in 4(b). Similarly, in 

4(d), sixteen of the responses were graded as greater than or equal to 2. Increase in the 

totally correct or almost correct response rates is evident if we compare pretest and 

posttest results. This increase might be attributed to effectiveness of the instruction. 

However there are some points in the posttest results whose consideration might be 

helpful for gaining more information students’ understanding. 

 

More information about students’ understanding can be gained by comparing the 

posttest results of 4(b) and 4(c) with 3(c) and 3 (a) correspondingly. Although 

represented in different forms, namely graphical and algebraic, students were asked 

about same mathematical phenomena in 4(b) and 3(c). In both of 4(b) and 3(c) students 

needed to consider limit of a function at the point where function is continuous. 

Similarly, in 4 (c) and 3(a) students were asked about same mathematical phenomena 

under different representations. In both of the sub-items, students needed to consider 

limit of a function at the point where function has removable discontinuity. Considering 
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the responses to 4(c) and 3(a), we see that all of the 25 responses were graded as 3 in 

3(a), similarly twenty-three of the responses were graded as 3 in 4(c). Nevertheless, if 

we look at results of 4(b) and 3(c) there is no such parallelism as in 4(c) and 3(a). In 3(c) 

all of the 25 responses were graded as 3, whereas, 16 responses were graded as 3 and 

one response was graded as 2 in 4(b). To dwell more into this discrepancy, seven 

responses that were graded as 0 in 4(b) is needed to be addressed. Considering such 

responses, there was a systematic error in six of seven of them. It was the following: 

 

2

0 0 0

| 4 | | 2 || 2 |
lim lim lim 2 2

2 2x x x

x x x
x

x x+ + +→ → →

− − +
= = − = −

+ +
 

2

0 0 0

| 4 | | 2 || 2 |
lim lim lim 2 2

2 2x x x

x x x
x

x x− − −→ → →

− − +
= = − =

+ +
 

Since
0 0

lim ( ) lim ( )
x x

f x f x
+ −→ →

≠ , limit does not exist. 

 

There might be two possible explanations for this systematic error. One is just misuse of 

the absolute value function in the solution. The other is that students confused 

2

0

| 4 |
lim

2x

x

x→

−
+

with the case
2

2

| 4 |
lim

2x

x

x→−

−
+

. In the original question 0 is not a critical point so 

that consideration of left and right limit produces the same result. Whereas, in the latter 

limit, -2 is critical point, and consideration of left and right limits are crucial and 

produces different results so that limit does not exist. It might be the case that students 

who made mentioned systematic mistake perceived original item as former case.  

 

4.3.5 Analysis of Responses to Item 5 and 6 in the Limit Questionnaire 

 

In this part, analysis of the responses to items 5 and 6 will be done together. But, 

contrary to questionnaire, in this part firstly analysis of responses to item 6 is reported, 

and then item 5 is reported. In sixth item, students were asked to prove, by using formal 

definition of limit, that the limit of the function is the proposed value for a given point. 
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The aim of this item was to tackle with how students apply formal definition of limit. 

Sixth item of the questionnaire was the following. 

 

I-6. Use definition of limit to establish followings.  
 

(a) 
2

lim3 6
x

x
→

=                     (b) 2

1
lim 5 6
x

x
→

+ =  

 

 

Before discussing results in the posttest, it is needed to consider how grading was done. 

In responses that were graded as 1, students only considered relationship between 

epsilon and delta, but did not use this data to prove what was asked. Following was an 

example for grade 1 for sub-item (a). 

 

Step 1.  

For given any 0, there exists 0 such that 0 | - 2 |  implies | 3 - 6 |x xε δ δ ε> > < < < , 

Step 2. 

0 | 2 | ,  | 3 6 | 3 | 2 |x x xδ ε< − < − = − <  so choose 
3

ε
δ = . 

 

In responses that were graded as 2, students determined relation between epsilon and 

delta, and used this to prove what was asked, but in final statement 

0<|x-2|<  implies |3x-6|<δ ε is not explicitly given. Following was an example for grade 

2 for sub-item (a). 

 

Step 1.  

For given any 0, there exists 0 such that 0 | - 2 |  implies | 3 - 6 | .x xε δ δ ε> > < < <  

Step 2.  

0 | 2 | ,  | 3 6 | 3 | 2 |x x xδ ε< − < − = − <  so choose 
3

ε
δ =  
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Step 3. 

0 | 2 | ,  
3

| 3 6 | 3 | 2 | 3
3

                     <

x

x x

ε

ε
ε

δ

< − <

− = − < =

↓

 

 

In responses that were graded as 3, students determined relation between epsilon and 

delta, and used this to prove what was asked and final statement is explicitly given. 

Following was an example for grade 3 for sub-item (a). 

 

Step 1.  

For given any 0, there exists 0 such that 0 | - 2 |  implies | 3 - 6 |x xε δ δ ε> > < < <  

 

Step 2.  

0 | 2 | ,  | 3 6 | 3 | 2 | ,x x xδ ε< − < − = − <  so choose 
3

ε
δ = , 

 

Step 3.  

For given any >0, choose 0
3

ε
ε δ = >  

 assume 0 | - 2 |  then 

3 | - 2 | 3 3
3

             

x

x

δ
ε

δ ε

δ

< <

< = =

↓<

 

 

Analysis of responses to item 6 in the pretest and in the posttest is given in the following 

table. 
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Table 4.8: Item-6, Pretest- Posttest 

 

6 (a) Pretest 
0      1      2      3 

6 (b) Pretest 
0      1      2      3 

6(a) Posttest 
0      1      2      3 

6(b) Posttest 
0      1      2      3 

  25      0      0      0   25      0      0      0    0      4      4     17    0      2      9      14 

 

As seen in the above table, in the pretest, all of the responses were graded as 0 for both 

sub-items (a) and (b). The reason for this was that all of the 25 responses were empty 

responses. Formal limit concept is not covered in high schools in Turkey, they first 

encounter formal limit concept at their first semester in the university. So, since pretest 

was applied before limit instruction, these results were expected. Considering posttest 

results, twenty-one of 25 responses to sub-item 6(a) were graded as greater than or equal 

to 2, and similarly, twenty-three of 25 responses to sub-item 6(b) were graded as greater 

than or equal to 2. This is a clear improvement in student performances.  

 

In the fifth item, students were given a function that has a limit for the given point. 

Then, students were asked, for given specific epsilon values, whether there is delta value 

that satisfies formal definition of limit or not. There is a mixture of general and specific 

in this situation. Specific epsilon value is given, but function and delta values are needed 

to be considered in a general way. Students can find specific delta values for a specific 

function and given epsilon values, but may not handle general definition. This was the 

case found by Pinto and Tall (2002). Fifth item of the questionnaire was the following. 

 

I-5. Assume that
3

lim ( ) 5
x

f x
→

= . Determine whether following statements true or not. 

Explain your answer. 
 

       (a)One can find a δ0 such that 00 | 3 | | ( ) 5 | 0.05x f xδ< − < ⇒ − < , 

(b)One can find a δ1 such that 10 | 3 | | ( ) 5 | 0.001x f xδ< − < ⇒ − < , 

  (c)One can find a δ2 such that 20 | 3 | | ( ) 5 | 0.0001x f xδ< − < ⇒ − < . 
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Analysis of responses to item 5 in the pretest and in the posttest is given in the following 

table. 

 

Table 4.9: Item-5, Pretest- Posttest 

 

Item-5 Pretest 
0      1      2      3 

Item-5 Posttest 
0      1      2      3 

 25      0      0      0    2      5      5     13 

 

As in item 6, in the pretest all of the 25 responses were graded as 0. This was an 

expected result, since students first encountered formal limit definition in limit 

instruction in this study. Considering posttest responses, eighteen of 25 responses were 

graded as greater than or equal to 2 and 7 of 25 responses were graded as less than or 

equal to 1. This might be counted as an improvement in student performances related 

with formal conception. Nevertheless, we can gain more information about students’ 

understanding by considering their responses. When five responses that were graded as 1 

considered, it was found that four of them were graded as greater than or equal to 2 in 

6(a) and/or 6(b). Then, these four responses were analyzed and following common 

misinterpretation was found:  

 

Response to 6 (a) 

True, because of the formal definition of limit: 

For all ε>0 there exists δ>0 such that 00 | 3 | | ( ) 5 | 0.05x f xδ ε< − < ⇒ − < =  

 

In the above response, it is seen that, in the statement, “for all epsilon” and “0.05= ε” 

were taken together. One of the possible explanations is that for those students “for all” 

mean “only for one” or “for some”. This is parallel to the findings of Roh (2007). In his 

study, it was stated that for some of the students “for all” meant “for one” or “for some”.   

 

In addition to above analysis, one more point should be addressed. Eighteen students 

gave correct and almost correct response to item 5 whereas this number increased for the 
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item 6. In the fifth item, students were given a function that has a limit for the given 

point. Then, they were asked, for given specific epsilon values, whether there is delta 

value that satisfies formal definition of limit or not. There is a mixture of general and 

specific in this situation. Specific epsilon value is given, but function and delta values 

are needed to be considered in a general way. In the item 6(b), students were given a 

function and asked to prove that limit of this function is L at the given point. They were 

not given a specific epsilon value, needed to consider all epsilon values, and for all these 

epsilon values they needed to find a delta value. In this sense, item 6(b) is more general 

than item 5, so students who gave correct response to item 6(b) were also expected to 

give correct response to item 5. Nevertheless, eighteen of the students gave correct and 

almost correct answer to item 5 whereas twenty-three of the students gave correct or 

almost correct answer to item 6(b). To dwell more into this discrepancy, researcher of 

this study considered five students who gave correct answer to item 6(b), but incorrect 

answer to item 5. It was found that all of these five students were counted below step 5 

of genetic decomposition, which means they were limited to informal conception of 

limit. So, from conceptual understanding point of view, they were not expected to give 

correct answers to item 5 and 6(b). Questions like item 6 can be found at the exercise 

section of most of the calculus text-books, but item 5 is more rarely found in such books. 

Thus, it is possible that since these five students did not show progress toward formal 

understanding of limit, or since they were limited to informal understanding of limit 

concept, they focused on the procedural aspects of the application of formal definition of 

limit in the questions like item 6. 

  

4.3.6 Analysis of Responses to Item 7 in the Limit Questionnaire 

 

In seventh item, students were asked to prove, by using formal definition of limit, that 

limit of a function is not the proposed limit value for a given point. In this item, students 

needed to negate the formal definition of limit. So again, the aim of this item was to 

address how students apply formal definition of limit as in item 5 and item 6. 
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Nevertheless, unlike item 5 and 6, in item 7 students need to negate formal definition of 

limit to solve the question. There are two difficulties about negation. First one is that 

according to APOS theory in order to apply, conceptually, negation over a statement, 

students need to encapsulate formal limit definition into object. And in some cases 

(Dubinsky, Weller, McDonald & Brown, 2005) it is reported that encapsulation of 

process in to an object is very difficult to handle. So, compared with item 5 and 6, to 

correctly solve item 7, students need to higher level conceptual knowledge, or in APOS 

terms, students need to reflectively abstract from a lower level plane to higher one. In 

addition to mentioned cognitive difficulty, there is another difficulty reported in the 

literature (Dubinsky et al., 1988) that students need to handle to correctly respond to this 

item. Dubinsky et al., (1988) showed that students have difficulties in negating a 

statement, especially in the negation of mathematical implication. So, compared with 

item 5 and 6, item 7 is more challenging. Seventh item of the questionnaire was the 

following. 

 

I-7. Prove that the statement 
2

lim4 8.2
→

=
x

x  is false by using ε-δ definition of limit. 

 

Analysis of responses to item 7 in the pretest and in the posttest is given in the following 

table. 

 

Table 4.10: Item-7, Pretest- Posttest 

 

Item-7 Pretest 
0      1      2      3 

Item-7 Posttest 
0      1      2      3 

 25      0      0      0    3     15     2      5 

 

 

As in item 5 and item 6, all of the students left blank item 7 in the pretest. This is 

expected, since this item is related with formal conception also. As seen in the above 

table, seven of 25 responses were graded as greater than or equal to 2, whereas, eighteen 

of the responses were graded less than or equal to 1. Compared to results of item 5 and 



 139 

item 6, there is a reverse tendency. Students’ lower performance in item 7 might be 

because of higher order knowledge needed to be constructed to handle with the question. 

In addition, consideration of students’ responses to item 7 can give more information 

about the reason for lower performance. Nine of 18 responses, which were graded as 

less than or equal to 1, included errors in negation of formal limit statement.  Three of 

nine responses included error in the negation of quantifiers. And in all remaining six, 

students correctly negated quantifiers but negation of implication was not done. 

Following is a typical example: 

 

0, 0, ( ) such that 0 | 2 |   | 4 8.2 |x D f x xε δ δ ε∃ > ∀ > ∃ ∈ < − < ⇒ − ≥  

 

Moreover, in four of 18 responses, that were graded as less than or equal to 1, it was 

found that negation of formal statement was done correctly, but in the solution either 

chosen epsilon or chosen delta was not appropriate. For example, in one of the 

responses, student chose epsilon as 1 and x as 3 and let delta vary. Choosing x as 3 is not 

correct according to negation of definition. This might show us that for a fixed epsilon 

( 1ε = ), in the negated statement, “ 0, ( )x D fδ∀ > ∃ ∈ ” was understood by student as 

only one x value is enough to consider. In another response, a student took epsilon as 

1

2
and x as 

4

3

δ−
to show that 0 | 2 |x δ< − < and

1
| 4 8.2 |

2
x ε− ≥ = . It is correct 

that
4 1

| 4( ) 8.2 |
3 2

δ−
− ≥ , but choice of x as 

4

3

δ−
does not guarantee that 0 | 2 |x δ< − < . 

 

Lastly in nine of 18 responses, that were graded as less than or equal to 1, it was found 

that students did not try to negate the formal statement. Rather, they tried to use the truth 

2
lim4 8
x

x
→

= to show that
2

lim4 8.2
x

x
→

≠ . 

 

As a result, majority of the students either incorrectly negated definition or negation was 

correctly done but it was used incorrectly. Thus, students’ lower performance might be 

attributed to, first, their difficulties in negation of formal statement. Second, in order to 
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apply, conceptually, negation over a statement, students need to encapsulate formal limit 

definition into object. This requires higher level of conceptual knowledge. It is possible 

that students who did not have such knowledge incorrectly solved the question. 

 

4.4 Conclusions 

 

In the light of the findings in this research followings can be deduced: 

 

Findings of this research study support the genetic decomposition suggested by Cottrill 

et al. (1996). Data from students’ interviews were compatible with the following 

description of how students learn limit concept: 

 

1. The action of evaluating f at a single point x that is considered to be close to, 

or even equal to a. 

 

2. The action of evaluating the function f at a few points, each successive point 

closer to a than was the previous point. 

 

3. Construction of a coordinated schema as follows. 

(a) Interiorization of the action of Step 2 to construct a domain process in which 

x approaches a. 

 (b) Construction of a range process in which y approaches L. 

 (c) Coordination of (a), (b) via f. 

 

4. Perform actions on the informal limit concept by talking about, for example, 

limits of combinations of functions. In this way schema 3 is encapsulated to 

become an object. 
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5. Reconstruct the process of 3(c) in terms of intervals and inequalities. This is 

done by introducing numerical estimates of the closeness of approach, in 

symbols, 0 | | δ< − <x a  and | ( ) | ε− <f x L . 

 

6. Apply quantification schema to connect the reconstructed process of the 

previous step to obtain the formal definition of limit. 

 

7. A completed ε-δ conception applied to specific situations. 

 

Two difficulties of students in transition from informal to formal understanding were 

determined. First one is about reverse thinking process. In informal models of limit of a 

sequence, students first think of index and corresponding term for this index. Then, they 

consider the difference between each term and the limit value as index increases to 

infinity. But, in formal definition students are required to, first, consider the error bound, 

then, proper index for the given error bound. Roh (2007) calls this transition as reverse 

thinking process. Reverse thinking process is necessary in the case of limit of a function. 

One of the difficulties that some students had, in transition from informal to formal 

understanding of limit of a function, is this reverse thinking process. 

 

Second difficulty, detected in this study in transition from informal to formal 

understanding of limit, was caused by weak conception of quantifiers. Some of the 

students could not coordinate quantifiers in the formal definition of limit. 

 

Before students were given instruction on limit concept, their limit schemas mainly 

included static evaluation of function at the point a or at a close point to a. After the 

instruction, all of the students showed process understanding of informal limit and 

sixteen of 25 students showed understanding beyond the informal process conception. In 

addition to this, in the literature (e.g., Williams, 1991), the mostly cited misconception 

on limit concept is that “a limit is a number or point the function gets close to but never 

reaches”.  Twenty-three of 25 students did not show mentioned misconception in the 
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context of item 2 in limit questionnaire. Thus it might be concluded that limit instruction 

played a positive role in facilitating students’ understanding of limit concept.  
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CHAPTER 5 

5. DISCUSSION, IMPLEMENTATION AND RECOMMENDATIONS 
 
In this chapter the summary of the study, discussion of the results obtained in Chapter 5 

implications of the results and some recommendations for further studies was presented. 

 

5.1. Summary of the Study 

 
 

 Before conducting the main study, limit questionnaire, interview protocol, and 

laboratory activities were prepared. During the summer school of 2008, the semester 

prior to the actual study, the researcher conducted a pilot study that lasted in five weeks. 

This study was done in Middle East Technical University (METU) in which 37 students 

attended classes of MATH153. MATH153 is a calculus course for mathematics majors. 

Limit questionnaire was administered to all 37 students. Nine of 37 students attended 

computer laboratory. Lastly, depending on the results of the questionnaire seven students 

were chosen for the interview. All 7 interviews were audio-taped, and their analysis was 

done by considering APOS framework (Asiala et al, 1996). Depending on results, 

necessary changes were made in limit questionnaire, interview protocol, and laboratory 

activities. 

 

The main aims of this study were to explore how students understand limit concept by 

using APOS framework and to construct a base for the future studies with the aim of 

making instruction more effective. The participants, in the main study, included 25 

volunteer students who attended Math-153 course in autumn semester of 2008. All 

students were first year mathematics majors who were taking their first formal course 
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about limit of functions. Prior to instruction all 25 students were given limit 

questionnaire as pretest. Then students attended five weeks of instruction. In each week 

they met in two hours computer laboratory to study in groups, and then they attended 

four hours classical classes. In computer labs they were given some programming 

activities which give students opportunity to think on limit concept before they are given 

formal lecture in classes. Researcher of this study participated to laboratory hours as a 

teaching assistant. At the beginning of computer labs, small discussions (approximately 

30 minutes) about last week’s activities were done. After computer laboratories, students 

met in classes. There were four 50 minutes sessions per week. In classes, they studied 

individually. The content of the class was parallel to content of the lab sessions. In 

general, 50 minutes divided into 15 minutes discussions and 35 minutes lecture. In 15 

minutes discussions, teacher asked questions to be discussed as a class. Questions were 

either parallel to the lab activities or for about content of lecture. Moreover, instructor let 

students to ask questions to be discussed. In 35 minutes lecture, instructor was dominant. 

He used chalk and board to write definitions, prove theorems, and solve problems. After 

classes, students were given, except first week, question sets as homework to be solved 

till next week. They studied on questions as a group and they gave the homework 

individually, that is, although they solved questions as a group, they wrote the solutions 

in their own words and homework was graded individually.  

 

At the end of the five weeks all of the 25 students were given limit questionnaire as a 

posttest. Limit questionnaire was used to probe the difference between students’ initial 

understanding of the concept of limit of a function before attending treatment and after 

attending the treatment. Following posttest, researcher administered interviews, to all 25 

students, in which only researcher and interviewee were present. The aim of the 

interview was to probe students’ understanding of the concept of limit of a function. The 

interviews were conducted in a non-formal friendly environment, in the building of 

Mathematics Department in which students attended their classes. Interviews were 

recorded with voice recorder. Approximate interview length was about one hour. 
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From the questionnaire both quantitative and qualitative results were gained. Analysis of 

the data gathered from interviews was done according to the framework suggested by 

Asiala et al. (1996). Findings of this research study support the genetic decomposition 

suggested by Cottrill et al. (1996). Moreover, it might be concluded that limit instruction 

played a positive role in facilitating students’ understanding of limit concept. Results of 

the analysis will be discussed more deeply in the next section. 

 

5.2. Discussion of the Results 

 

Notion of limit of a function is fundamental for understanding calculus and the basis of 

all that follows it. Differentiation and integration, the core of study in calculus, are built 

on the limit concept. Nevertheless, in literature, it is generally agreed that students have 

difficulties in understanding limit concept. It is argued that most students have intuitive 

understanding of limit but very few of them accomplish understanding of the limit 

definition (Ervynck, 1981; Cottrill et al., 1996). 

 

One of the aims of this study was to explore how students understand limit concept by 

using APOS framework. Based on their Action, Process, Object, Schema framework, 

Cottrill et al. (1996, p.9-10) proposed following genetic decomposition about how 

students learn limit concept.  

 

1. The action of evaluating f at a single point x that is considered to be close to, 

or even equal to a. 

 

2. The action of evaluating the function f at a few points, each successive point 

closer to a than was the previous point. 

 

3. Construction of a coordinated schema as follows. 

(a) Interiorization of the action of Step 2 to construct a domain process in which  

x approaches a. 
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 (b) Construction of a range process in which y approaches L. 

 (c) Coordination of (a), (b) via f. 

 

4. Perform actions on the informal limit concept by talking about, for example, 

limits of combinations of functions. In this way schema 3 is encapsulated to 

become an object. 

 

5. Reconstruct the process of 3(c) in terms of intervals and inequalities. This is 

done by introducing numerical estimates of the closeness of approach, in 

symbols, 0 | | δ< − <x a and| ( ) | ε− <f x L . 

 

6. Apply quantification schema to connect the reconstructed process of the 

previous step to obtain the formal definition of limit. 

 

7. A completed ε-δ conception applied to specific situations. 

 

In Cottrill et al.’s study (1996), steps 1-4 were observed and explained. There were a 

few students giving indication of step 5. Moreover, data from student interviews did not 

allow authors to observe and explain steps 6 and 7 in the genetic decomposition. The 

findings of this research study support first four steps of the genetic decomposition 

suggested by Cottrill et al. (1996). In addition to this, some of the steps were explained 

in a more detailed way. For example, in step-3, there were two kinds of process 

conception. One was process conception as explained by Cottrill et al. and the other was 

process conception that is seen as a single action. Furthermore, for steps 5-7, data from 

students’ interviews were compatible with the proposed steps of Cottrill et al. 

 

  An opposition to APOS theory in general and genetic decomposition of limit concept 

of Cottrill et al. (1996) in specific came from Pinto and Tall (2001) and Pinto and Tall 

(2002) respectively. Pinto and Tall (2001) described two different learning styles: one is 

formal other is natural. “Formal thinkers attempt to base their work on the definitions… 
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Natural thinkers reconstruct new knowledge from their concept image”. They contended 

that formal thinkers are compatible with APOS theory, whereas, APOS theory does not 

explain the way of natural thinkers’ learning. Formal learners’ starting point is concept 

definition. They build their concept image from formal concept definition by focusing 

on rules and procedures and by routinising them reflectively. Then, they deductively 

construct formal theory. On the other hand, natural learners’ starting point is their 

concept image. They try to assimilate formal theory into their concept image which 

results in cognitive conflicts. Then, they proceed by making thought experiments to 

reconstruct their concept images on which formalism is built. Finally, they build formal 

theory which is integrated with imagery.   

 

What Pinto and Tall (2001) ascribed for APOS theory seems to be conflicting with 

genetic decomposition constructed by using APOS framework. Related steps of genetic 

decomposition, with the above discussion, of this study are the followings: 

 

3(c) Process Conception of Informal Limit 

5. Reconstruction of informal limit process conception in terms of intervals or 

inequalities 

6. Applying quantification schema to connect the reconstructed process of the 

previous step to obtain the formal definition of limit. 

 

According to results of interviews and genetic decomposition, students first constructed 

coordinated process of informal limit. Then, they reconstructed this schema of 

coordinated process in terms of intervals and inequalities. And then they applied their 

quantification schema to previously reconstructed process schema. This is quite different 

from style of formal thinkers of Pinto and Tall (2001). Formal thinkers build their 

knowledge on formal concept definition. However, according to genetic decomposition, 

students’ formal understanding of the limit concept builds on their informal process 

schema. Moreover, formal thinkers of Pinto and Tall (2001) not only build their concept 

image from formal concept definition but also focus on rules and procedures and tries to 
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routinise them reflectively. This is also quite different from what is suggested by genetic 

decomposition. According to genetic decomposition of this study, quantification schema 

is applied to previously reconstructed process schema. The important point is the 

individual’s level of understanding of quantification. Here, if an individual has 

understanding of three-level quantification schema, he or she might apply directly 

her/his schema without any attempt for routinization. But, if an individual does not have 

proper understanding of three-level quantification, she/he might try to focus on rules and 

procedures and try to routinise them reflectively. Moreover, an individual might have 

understanding of three-level quantification, but may not apply it properly in the context 

of formal definition. So, reconsideration of quantification schema might be necessary. 

Nevertheless, this is another case which is beyond the scope of this discussion.  

 

In their later research (Pinto & Tall, 2002) they gave a specific example, Chris, for 

natural learning style. In this example, Chris started knowledge building with his 

concept image and felt difficulty in reversing focus from first x values then y values to 

first y values then x values. Then, Chris made some thought experiments to reconstruct 

his image. After successful reconstruction, he built formalism on his modified images to 

get formal understanding. But in his first attempts, he considered “for all epsilon” as “for 

some epsilon”. And by reconstructing his schema, he came to the correct understanding 

of “for all epsilon” and of formal limit definition. Considering steps of genetic 

decomposition, Chris’s development is quite compatible with steps 3(c), 5, and 6. In 

transition from step 3(c) to 5 what students need is reversing focus from first x values 

then y values to first y values then x values. And in transition from step 5 to 6, students 

need to coordinate three-level quantification. In this coordination, as seen in the analysis 

of students responses in the interview, students might have difficulties like Chris. Thus, 

it seems that style of natural learners is compatible with genetic decomposition of this 

research.  

 

Some researchers (Williams, 1991; Tall & Vinner, 1981) put a dichotomy between 

dynamic and static notions of limit. For them, “as x goes to a f(x) goes to L” is a process 
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which includes dynamic feeling of motion. Nevertheless, in formal conception, an 

individual deals with intervals in which x and f(x) values do not move. So, it is 

dynamical element in informal limit notion that prevents students to move towards more 

formal understanding of limit. 

 

An opposition came to the idea that dynamical conception of limit is natural for students 

and hinders their development toward more formal understanding of limit concept from 

a group of researchers (Cottrill et al., 1996). They considered dynamical notion as a 

mental process in APOS terms. Actually this is not a single process, rather is 

coordination of domain and range processes via function in consideration, thus a 

schema. Contrary to the belief that process conception is easy to understand, they 

suggested that coordinated process schema is not easily constructed by students. 

Moreover, they argued that informal process schema of limit concept is necessary in 

building formal understanding of limit. Formal understanding of limit concept is built on 

coordinated process of informal limit, rather than hindered by it. Difficulty in moving 

from informal understanding to formal understanding comes from students’ weak 

understanding of quantification. 

 

To address this discussion, results of this study can be used. The question here to ask is 

that how many of the students who showed understanding of formal limit also do 

possess, dynamic, notion of limit? If we can find some students who showed 

understanding of formal limit but didn’t show dynamic notion of limit, results would be 

more in line with former camp of researchers who believed that dynamical element in 

informal limit notion prevents students to move towards more formal understanding of 

limit. But, if all of the students who showed understanding of formal limit also had the 

strong dynamical notion of limit, or in APOS terms process conception of informal limit, 

then the results would be more in line with the second camp of researchers who believed 

that strong dynamical notion of limit is necessary for understanding of formal limit 

concept, and it does not hinder students’ development toward formal understanding. 
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 According to results of this study all of the students who showed understanding of 

formal limit concept, also had strong process conception of limit, or strong dynamical 

notion of limit. Thus, this study supports the conjecture that strong dynamical notion of 

limit is necessary for understanding of formal limit concept, and it does not hinder 

students’ development toward formal understanding (Cottrill et al., 1996). 

 

In this study, two difficulties of students in transition from informal to formal 

understanding were determined. First one is about reverse thinking process. In informal 

models of limit of a sequence, students first think of index and corresponding term for 

this index. Then, they consider the difference between each term and the limit value as 

index increases to infinity. But, in formal definition students are required to, first, 

consider the error bound, then, proper index for the given error bound. Roh (2007) calls 

this transition as reverse thinking process. Reverse thinking process is necessary in the 

case of limit of a function. One of the difficulties that some students had, in transition 

from informal to formal understanding of limit of a function, is this reverse thinking 

process. This finding is compatible with the findings of Roh (2007) and Swinyard and 

Lockwood (2007).  

 

Some researchers proposed that the quantifiers “for every, there is such that and 

whenever” cause difficulty in understanding formal limit concept (Cornu, 1991; Cottrill 

et al., 1996). Second difficulty, detected in this study in transition from informal to 

formal understanding of limit, was caused by weak conception of quantifiers. Some of 

the students could not coordinate quantifiers in the formal definition of limit. Thus, 

conjecture of Cornu (1991) and Cottrill et al. (1996) was supported by findings of this 

study.   

 

It is important to describe how students learn a specific subject. Different learning 

theories suggested different explanations. Depending on Piaget’s notion of reflective 

abstraction, Dubinsky (1991) and his colleagues (Asiala et al., 1996) developed APOS 

theory. In this research, students’ learning of limit concept is described in the form of 
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genetic decomposition. Nevertheless, in order to bring the work on learning to the stage 

at which it is useful in practice, developing an instruction facilitating meaningful and 

higher order learning is necessary.   

 

Some of the researchers tried to develop instruction to facilitate students’ understanding 

of the concept. However, summary of related literature showed that most of them failed 

to help students (Tall & Vinner, 1981; Davis & Vinner, 1986; Sierpinska, 1987; 

Williams, 1991; Li & Tall, 1993; Monaghan, Sun & Tall, 1994; Cottrill et al., 1996; 

Buyukkoroglu et al., 2006; Parameswaran, 2007).  

 

It is argued that most students have intuitive understanding of limit but very few of them 

accomplish understanding of the limit definition (Ervynck, 1981). Tall & Vinner (1981) 

asked first year university students to write down definition of lim ( )
x a

f x l
→

= , if they knew 

one. Results showed that most of the students who give the dynamical definition were 

able to state it correctly whereas students who recalled formal definition misstated it. 

 

Table 5.1: Dynamic-Formal Responses 

 Correct Incorrect 

Formal 4 14 

Dynamic 27 4 

 

 

Williams (1991) concluded that “… students often considered ease and practicality of a 

model more important than mathematical formality. This is particularly true in the sense 

that models of limit that allow them to deal with the realities of limits in the classroom, 

the kind they see on tests, tend to be seen as sufficient for the purposes of most students. 

It was noted by several students that neither formal nor dynamic models of limit figure 

heavily in the procedures students use to work problems from their calculus classes; 

their procedural knowledge (e.g., substituting values into continuous functions, factoring 
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and canceling, using conjugates, employing L’Hopital’s rule) is largely separate from 

their conceptual knowledge.” 

 

In this study, before students were given instruction on limit concept, their responses in 

the limit questionnaire indicated that students mainly saw the limit of a function as static 

evaluation of function at the point a or at a close point to a. After the instruction, all of 

the students showed process understanding of informal limit and sixteen of 25 students 

showed understanding beyond the informal process conception and moved to step 5. 

Although there was no control group in the study, it was seen from students’ pretest and 

posttest limit questionnaire results that the instruction developed by the researcher had a 

positive effect on students’ understanding of limit concept. In addition to this, in the 

literature (e.g., Williams, 1991), the mostly cited misconception on limit concept is that 

“a limit is a number or point the function gets close to but never reaches”.  Twenty-three 

of 25 students did not show mentioned misconception in the context of item 2 in limit 

questionnaire. Thus it might be concluded that limit instruction played a positive role in 

facilitating students’ understanding of limit concept.  

 

In this study there was no control group. It is possible that same students might show 

similar level of understanding in the context of traditional instruction. Nevertheless, in 

literature it is common that students have weak conceptual understanding of limit 

concept. Some of these studies showed that they have difficulties in learning informal 

process conception of limit (Davis & Vinner, 1986; Monaghan, 1991; Bezuidenhout, 

2001; Juter, 2003; Buyukkoroglu et al., 2006; Cetin, 2009). Moreover, transition from 

informal to formal understanding of limit of a function is rarely observed. The 

researcher of this study made an extensive literature review and was able to found only 

two such studies. 

In the first one of these, Fernandez (2004) decided to take students’ viewpoints into 

consideration for lesson planning in teaching formal limit concept. Students’ difficulties 

in understanding formal definition of limit were detected as “definition contained too 

much notation and that the need for this notation should be motivated”. Then Fernandez 
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developed two 100-minutes instruction addressing students’ difficulties. After the 

instruction, students’ understanding was evaluated with two questions: first one required 

students to show that limit of a given function is L, and for the same function and the 

same point, last one required students to find appropriate delta for a given specific 

epsilon. 34 of the 48 students successfully solved first question while 22 of the 8 

students responded second question correctly. However, only 15 of the 48 students 

responded both of the questions correctly. Fernandez concluded that as a result of using 

more familiar notation, of motivating students for the necessity of formal definition, and 

of discussing what the formal definition of limit means, students’ showed relatively 

better performance in these two questions. However, we do not have enough evidence 

for conceptual understanding, since in the literature it is well documented that students, 

sometimes, may solve questions without having conceptual understanding. 

 

In the second study, Roh (2007) explored students’ intuitive understanding of formal 

limit definition in the case of sequences. In his study, he developed a tool called ε-strip. 

He used this tool to assess students understanding of the limit concept, as well as help 

students to develop concept of limit. Results of this study showed that ε-strip is a 

promising tool in teaching limit of sequences. Nevertheless, this study focused on 

students’ intuitive understanding of formal definition limit of sequences and did not 

address formal understanding of limit of sequences. Thus, although ε-strip was seen as 

promising activity to help students to construct intuitive understanding of formal 

definition of sequences, it is left unquestioned whether ε-strip activity effective in 

helping students to form formal understanding of limit of sequences.   

 

In contrast to these two studies, literature is abundant of studies reporting low level 

understanding of formal limit concept (Tall & Vinner, 1981; Sierpinska, 1987; Williams, 

1991; Li & Tall, 1993; Monaghan, Sun & Tall, 1994; Cottrill et al., 1996; 

Parameswaran, 2007). For example, Cottrill et al. (1996, p.17) reported that “Only a few 

of the students that we observed gave any indication of passing very far beyond the first 

four steps of this genetic decomposition. In general, they had only the vaguest notion of 
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the standard inequalities involved in the ε-δ definition of limit… There were no students 

who progressed to the point where we could ask questions that indicated their thinking 

relevant to the last two steps of the preliminary genetic decomposition”. In this study, all 

of the students achieved to form process understanding of informal limit concept 

(corresponding to step 3 of genetic decomposition). Moreover, sixteen of 25 students 

showed progress toward formal understanding of the concept (corresponding to step 5 of 

genetic decomposition), and ten of 25 students showed indication of understanding of 

formal limit concept (corresponding to step 6 of genetic decomposition). Lastly, six of 

the 25 students applied ε-δ conception to show that limit of a function is not L at the 

given point (corresponding to step 7 of genetic decomposition). Last step of genetic 

decomposition requires subtle thinking process to deal with formalism. Considering 

seventh step of genetic decomposition that six of 25 students achieved to construct, in 

the literature there was no study that address this type of higher order understanding 

with one exception. The exception was the study conducted by Pinto and Tall (2002). In 

their study, they reported a student, named Chris, who was able to deal with such 

formalism in the context of limit of sequences. Thus, although there was no control 

group in this study, by taking findings of literature into consideration, we might 

conclude that instruction in this study was effective in helping students to move from 

informal understanding to formal understanding of limit of a function.  

 

Then next question to ask is that how can we explain this level of understanding. One 

possible answer is the characteristics of the students. In Turkey there is a university 

entrance exam, named OSS. After high school, students who want to pursue university 

education take OSS. According to results of the OSS exam done in 2007, students who 

chose METU mathematics department were among the top 11.344 students who took 

OSS. Similarly in 2008, METU mathematics students were among the top 17.853. Thus 

it is possible that students’ success level in limit concept is because of their 

characteristics. 
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On the other hand, as mentioned above, this level of success is not common in the 

literature. So, other possibility for their success level might be the given instruction. 

Students attended technology integrated cooperative learning environment. In this 

environment, laboratory activities designed in a way to facilitate students’ constructions, 

that is, one of the primary interests was to help students to develop constructions of the 

genetic decomposition. Similar studies using APOS theory were done for other 

mathematical concepts. Weller et al. (2000, p.1) examined such studies and concluded 

that “instruction based upon APOS theory is an effective tool in helping students to learn 

mathematical concepts”. Thus, more probable explanation of students’ success, which is 

inline with Weller et al.’s conclusion, might be that instruction based on APOS theory 

help them to learn the limit concept.  

 

In this study, qualitative data gathered through interviews with the aim of probing 

students’ understanding of limit concept, and quantitative data gathered through limit 

questionnaire in order to explore difference between students’ understanding before the 

instruction and after the instruction. By checking the compatibility of these two data 

sets, we can gain more information about students’ understanding of limit concept. The 

expected outcome, in this comparison, is that the higher the genetic decomposition level 

is, the higher the score in limit questionnaire is.  

 

All of the students showed indication of step 3 (called informal limit process) of genetic 

decomposition, so they were expected to correctly solve item 3 and 4 in the limit 

questionnaire. By looking questionnaire results, it was seen that almost all of the 

students solved these items correctly. 

 

Sixteen of 25 students showed indications of step 5 or more. Twenty-one of the 

responses to item 6(a) and twenty-three of the responses to item 6(b) were graded as 

greater than or equal to 2, that is, either solution was almost correct or correct. Fifteen of 

the 25 students who gave correct and almost correct responses to item 6 were counted at 

the step 5 or more. Moreover, similarly, eighteen of students’ responses to item 5 in the 
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questionnaire were graded as greater than or equal to 2.  Considering these correct and 

almost correct eighteen solutions, fourteen of them were the students who were counted 

at step 5 or more of the genetic decomposition.  

 

Lastly, seven of 25 students gave correct or almost correct responses to item 7. 

Correspondingly six of these seven students were counted at the step 7 of the genetic 

decomposition. Thus, it might be concluded that, in general, the higher the genetic 

decomposition level is, the higher the score in limit questionnaire is. 

 

5.3. Implications 

 

Based on the findings, the following implications can be offered. 

 

1. Students’ prior knowledge is very important in the learning of new concepts. 

Their weak schemas or misconceptions might hinder the acquisition of new 

knowledge. Instructor should take students’ prior knowledge into 

consideration in designing instruction. Instructors should reflect on students’ 

prior knowledge before the instruction and prepare instruction accordingly. 

 

2. Use of technology is believed to improve active and meaningful learning. 

Instructional environment in this study included use of computers and was 

described in detail. Instructors can use this environment as a beginning point 

to develop effective instructional environments. 

 

3. In this study, specific aim of the computer laboratories was to help students 

to develop structures defined in genetic decomposition and to create an 

environment in which students frequently reflect on what they learn. 

Instructors can use and develop lab activities used in this study to design 

instruction. 
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4. In this study, cooperative learning environment integrated with technology 

was utilized. And after taking instruction, students showed improvement in 

their understanding of limit concept. Instructors might use similar strategies 

in designing instruction about other mathematics concepts. 

 

5. It is believed that cooperative learning environments are more effective than 

the competitive learning environments in students learning of mathematical 

concepts. Instructors should create classroom environments that facilitate 

cooperative learning. 

  

6. Students have many obstacles in learning limit concept. This study 

determined that students have difficulties in reverse thinking process and 

quantifiers present in the formal limit definition. Instruction which 

consciously considers mentioned difficulties might assist students to 

overcome their difficulties. 

 

7. Knowing students’ structures and mechanism to construct these structures are 

important in both sequencing and designing instruction. This study provided 

genetic decomposition of limit concept. This genetic decomposition can be 

used in designing instruction. 

 

8. The aim of mathematics education is to enhance meaningful understanding of 

mathematics concepts. One way to make instruction meaningful is to take 

students’ way of understanding into account. The genetic decomposition 

suggested by this study might serve to this purpose. 

 

9. One of the sources of the knowledge is textbooks for students. Textbook 

authors can make use of genetic decomposition in writing books including 

limit concept.  
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5.4 Recommendations 

 
Based on the results, the researcher offered the following future studies: 

 

1. Online collaborative learning environment including similar strategies used 

in the instruction in this study can be constructed, and, effectiveness of it in 

students’ understanding of limit concept and in other constructs, such as 

motivation and attitude, can be investigated. 

 

2. Implications of APOS theory can be used to design and develop online 

learning environments. Different aspects related with online learning 

environments, such as students’ satisfaction and motivation, can be further 

investigated.  

 

3. Mindtools are defined by Jonassen (2000, p.9) as “computer-based tools and 

learning environments that have been adapted or developed to function as 

intellectual partners with the learner in order to engage and facilitate critical 

thinking and higher order learning”. Research on mindtools can be combined 

with genetic decomposition suggested by this research to investigate students 

understanding.  

 

4. The study can be conducted at different universities in different countries 

with larger sample size to increase generalization of results.  

 

5. Further studies can be conducted to investigate students’ retention about limit 

concept.  

 

6. Further research can be conducted to explore effect of cooperative learning 

environment integrated with technology on students’ attitudes toward 

mathematics. 
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7. Similar studies can be conducted with high school students to examine 

students’ understanding of informal limit concept. 

 

8. Another idea to be investigated is conceptions of high school mathematics 

teachers’ and university teaching assistants’ on limit notion and their practice 

in the class. 

 

9. The effectiveness of instruction used in this study can be compared with 

traditional instruction by using control group. 

 

10. Similar studies can be conducted to investigate students’ understanding in 

other mathematics concepts by using APOS framework. 

 

11. Findings of this study can be used to investigate students’ understanding in 

other concepts built on limit notion, such as, integration and derivation. 
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 APPENDICES 

APPENDIX A 

A. INSTRUCTIONAL OBJECTIVES 
 

At the end of the instruction students will be able to  

 

• State informal definition of limit 

• Evaluate limits by using graphs 

• Evaluate limits by using tables 

• Differentiate limit of a function at a point and value of a function at a point 

• Define algebraic laws for limits 

• Use limit laws to calculate limits including polynomials, rational functions, 

algebraic functions, and transcendental functions 

• Apply limit to solve real world velocity problems 

• Identify indeterminate forms for limits 

• Find the limit of functions in indeterminate forms 

• Define a one-sided limit 

• Evaluate one-sided limits 

• Determine the existence of a limit 

• Illustrate where a limits does not exist 

• Define limit laws for limits involving infinity 

• Evaluate limits involving infinity 

• Investigate special limits involving the sine and cosine functions 

• Write correctly the epsilon-delta definition for the two-sided limit  

• Use definition to prove assertions concerning the limits of simple functions 

• Use the epsilon-delta definition of limit to prove simple limit statements 
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• Use definition to prove assertions concerning nonexistence of limit of simple 

functions 

• Use the squeeze theorem to determine the value of simple indeterminate limits 
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APPENDIX B 

B. LIMIT QUESTIONNAIRE 
 

1. Describe in your own words what it means to say that the limit of the function f at the 

point a is L. 

 

2. Suppose lim ( )
x a

f x L
→

= , is it possible that the value of f(x) is equal to L at a, and at 

some values of x other than a? Explain your answer. 

 

3. Let f be a function whose graph is shown below. In each of the following situations 

find the indicated limit. If not possible, explain why not. 

 

(a) 
2

lim ( )
x

f x
→−

   (b) 
1

lim ( )
x

f x
→−

   (c) 
0

lim ( )
x

f x
→

   (d) 
1

lim ( )
x

f x
→
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4. Do the following limits exist? If yes, explain why. If no, explain why not. 

 

(a) 
0

1
lim cos
x

x
x→
 

 

(b)
2

0

| 4 |
lim

2x

x

x→

−
+

   

 

(c)
1

lim ( )
x

f x
→

, where 
, 1

( ) 2
1, 1

x
x

f x

x

 ≠ 
=  
 = 

 

 

(d) 2lim 1
→∞

+ − −
x

x x x  

 

5. Assume that
3

lim ( ) 5
x

f x
→

= . Determine whether following statements true or not. 

Explain your answer. 

 

(a)One can find a δ0 such that 00 | 3 | | ( ) 5 | 0.05x f xδ< − < ⇒ − < , 

(b)One can find a δ1 such that 10 | 3 | | ( ) 5 | 0.001x f xδ< − < ⇒ − < , 

  (c)One can find a δ2 such that 20 | 3 | | ( ) 5 | 0.0001x f xδ< − < ⇒ − < . 

 

6. Use definition of limit to establish followings.  

 

(a) 
2

lim3 6
x

x
→

=                     (b) 2

1
lim 5 6
x

x
→

+ =  

 

7. Prove that the statement 
2

lim4 8.2
→

=
x

x  is false by using ε-δ definition of limit. 
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APPENDIX C 

C. INTERVIEW SCHEDULE 
 

Research Question: How do students understand limit concept? 

 

Introduction 

 

Hello, my name is Đbrahim Çetin, from Computer Education and Instructional 

Technologies Department. I am here to talk you about your understanding of limit 

concept. I am interviewing students involved in Math-153 course in this semester in 

METU. I hope my findings will help instructors who are teaching limit concept. So, I am 

really interested in your personal thoughts about limit notion. I will ask you some 

questions about limit concept. Your responses will not be graded. Feel free to answer 

these questions. What you say to me is completely confidential. Your name will not be 

used anywhere. Any further questions I can answer? I would like to tape our 

conversations, Is it OK with you? 

 

Background Questions 

 

1. Sex? :  Female      Male  

2. How old are you? 

3. What type of high school did you graduate from? 

4. Where is your high school located? 

 

Questions about Limit Understanding 
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1. Let f be a function. How do you determine limit of the function f at the point a? 

 

Prompt: Is a necessary to find limit? 

              Evaluation of f at the point a                

              Left limit, right limit         

 

2. Let f be a function given by f(x)=2x. How do you determine the limit of this function 

at the point 3? 

 

Alternative Question: What is meant with the expression “as x goes to 3 f(x) goes to 6”? 

 

3. How do you determine
0

1
lim sin( )
x x+→

? 

4. Let f be a function given by
1 , 1

( )
, 1

x x
f x

x x

− ≤ 
=  

> 
. How do you determine the limit of 

this function at the point 1?  

 

Prompt:  Is a necessary to find limit? 

              Evaluation of f at the point a                

              Left limit, right limit 

 

5. Assume that f and g have limit at the point a. How do you determine limit of f + g at 

the point a?  

 

6. a) Please state formal definition of limit.  

    b) By drawing graphics can you explain what is meant by this definition? 

  

Prompt: Relationship between epsilon and delta. 

              Is one epsilon enough?  
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7. a) We know that
2

lim5 10
x

x
→

= , how do you prove this by formal definition of limit? 

    b) Can you explain what you did in part (a) by drawing graphics? 

 

Prompt: Relationship between epsilon and delta. 

              Is one epsilon enough? 

 

8. Consider the statement
2

lim2 5
x

x
→

= . Determine truth or falsity of the statement. How do 

you prove your response? 

 

Prompt: How to prove by using formal definition of limit? 
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APPENDIX D 

D. LAB ACTIVITIES 
 

LAB-1 ACTIVITIES 
 
Name 
ID: 
 
1. Use ISETL to make your screen look similar to followings. At the right hand side, there are 
brief explanations.  
 
 
Entering Expression In ISETL 
 
> 7+10; 
17; 
> 2*5; 
10; 
> 8/4; 
2; 
> (13+14)/(24+12); 
0.750000; 
> 13+14/24+12; 
25.583333; 
> (17+3)*2; 
40; 
> 17+3*2; 
23; 
> 17 
>> +3 
>> *2 
>> ; 
23; 
> 2**3; 
8; 
> sqrt(9); 
3.000000; 
> abs(-4.6);abs(-3+4);abs(0); 
4.6; 
1; 

“>” is ISETL symbol that shows ISETL is 
ready to accept your code. Each expression 
must be ended with semicolon “;”. 
In the left “7+10;” is written and then enter 
pressed. ISETL responded then answer “17;” 
 
“+” is for addition, “–“ is for subtraction, “/” is 
for division and “*” is for multiplication. 
 
“()” has the first precedence, then “*”, then 
“+”, lastly “-”. That is in an expression, first 
expression in parentheses will be executed, 
then “*”, then “/”, then “+”, and lastly “-” will 
be executed. 
If you do not end an expression with 
semicolon “;” and press enter, ISETL will 
place >> on the screen. This means your 
command is incomplete. But you can continue 
to enter commands and end expression with 
semicolon “;”. 
 
To take power “**” is used in ISETL. 2**3 
means 23 in ISET. 
To take square root you can use sqrt() function 
of ISETL. 
To find absolute value of a number on 
expression you can use abs() function of 
ISETL. 
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0; 
> sgn(2.7);sgn(-4);sgn(0); 
1.000000; 
-1; 
0; 
> x:=10; 
> x; 
10; 
> x:=x+20; 
> x; 
30; 
> x:=x-4;x; 
26; 
> x:=x*2;x; 
52; 
> x:=3; 
> print x; 
3; 
 
 
 
 
 
Tuples in ISETL 
 
> p:=[3,-2,5];  
> p; 
[3, -2, 5]; 
 
 
> p(1);p(2);p(3);p(4); 
3; 
-2; 
5; 
OM; 
 
> p(1)*p(2)+p(3); 
-1; 
 
 
> q:=[1..8]; 
> q; 
[1, 2, 3, 4, 5, 6, 7, 8]; 
> r:=[1,1.1..2]; 
> r; 
[1.000000, 1.100000, 1.200000, 1.300000, 
1.400000, 1.500000, 1.600000, 1.700000, 
1.800000, 1.900000, 2.000000]; 
 

sgn() function in ISETL gives the sign of a 
number. If number is positive it returns 1, if 
number is zero it returns 0, if number is 
negative it returns -1. 
 
You can assign number to variable. On the left 
10 is assigned to x. Notice that “:=” is used for 
assignment, not “=”. When you write “x;” 
ISETL returns the number that you assigned to 
x. You can make operations with this variable. 
For example, on the left 20 is added to x and 
the result is assigned again to x (10+20=30). 
You do not have to enter only one expression 
in ISETL row. For example on the left 4 is 
subtracted from x, and value of x is asked to 
ISETL. ISETL responds “26;” 
Another way of learning which number is 
assigned to variable print command. "print x” 
returned 3 which was assigned to x before. 
Notice that each time you assign a number to 
x, it is content changed. 
 
 
A tuple is a finite set of elements in a specific 
order in ISETL. On the left “p” is defined as a 
tuple with first element 3, second element, -2, 
third element 5. When you write “p;” ISETL 
returns tuple in the defined order.  
 
You can ask for individual elements of a tuple. 
For example on the left, first “p(1)”, second 
“p(2)”, third “p(3)”, and fourth element “p(4)” 
of tuple “p” is asked. Notice that for “p(4)” 
ISETL returned “OM;” which means that p(4) 
is not defined. 
You can make operations with elements of 
tuple. For example on the left first element is 
multiplied with second and third is added. 
 
“q:=[1..8]” means the tuple, that contains 
integers from 1 to 8, is assigned to q. This is 
important notation which may be frequently 
used later. 
“r:=[1,1.1..2]” means “1.1-1=0.1” is taken and 
0.1 is added to 1 until reaching 2. Notice 1.1-
1=0.1 is the increment that ISETL uses to 
reach from first element 1 to last element 2.  
 
 



 177 

> a:=3; 
> s:=[a+((-1)**n)/(10**n): n in [1..6]]; 
> s; 
[2.900000, 3.010000, 2.999000, 3.000100, 
2.999990, 3.000001]; 
 
 
 
 
Sets in ISETL 
 
>  A:={1,3,4.5,7}; 
> A; 
{3, 1, 4.5,7}; 
>  A:={true,false}; 
> A; 
{false, true}; 
> B:={1..8}; 
> B; 
{7, 8, 5, 6, 4, 3, 2, 1}; 
> C:={2,4..16}; 
> C; 
{8, 6, 4, 2, 10, 12, 14, 16}; 
> D:={1,1.1..2}; 
> D; 
{1.500000, 1.400000, 1.800000, 1.900000, 
1.600000, 1.700000, 1.300000, 1.200000, 
2.000000, 1.100000, 1.000000}; 
 
 
 
 
If Statement 
 
>          x:=9; 
> if x>5 then 
>> print “x is greater than 5”; 
>> end; 
“x is greater than 5”; 
 
>          x:=4; 
> if x>5 then 
>> print “x is greater than 5”; 
>> else 
>> print “x is smaller than or equal to 5” 
>> end; 
“x is smaller than or equal to 5; 
 
 

3 is assigned to “a”. Then tuple “s” is 
constructed. Elements of tuple “s” are “a+((-
1)**n)/(10**n)” where n represents integers 
from 1 to 6. That is for n=1 to 6 “a+((-
1)**n)/(10**n)” is executed and each result 
added as an element to tuple “s”. This is 
important notation which may be used later. 
 
 
Sets in ISETL are constructed in a similar way 
with tuples. But order is not preserved. Notice 
when you ask for “A” on the left ISETL 
returned elements in different order. 
 
You can assign logical constants “true” and 
“false” in tuples and sets. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
General use of If is the following: 
 
if (boolean expression1) then 
 statements1; 
elseif (boolean expression2) then 
 statements2; 
else 
statements3; 
end; 
 
If boolean expression 1 is true then statements 
1 are implemented (statements 2 and 3 
omitted) . If boolean expression 1 is not true 
and boolean expression 2 is true, then 
statements 2 are implemented (statements 3 
omitted). If neither of boolean expression 1 
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> x:=-5; 
>> if sgn(x)=1 then 
>> print “x is positive”; 
>> elseif sgn(x)=0 then 
>> print “x is zero”; 
>> else 
>> print “x is negative”; 
>> end; 
“x is negative”; 
 
 
For Loop in ISETL 
 
> for i in [1 ..10] do 
>> print i; 
>> end; 
1; 
2; 
3; 
4; 
5; 
6; 
7; 
8; 
9; 
10; 
 
 
 
 
 
> p:=[1..9]; 
> for i in [2..9] do 
>> print p(i)-p(i-1); 
>> end; 
1; 
1; 
1; 
1; 
1; 
1; 
1; 
1; 
 
 
 
 
 
 

and boolean expression 2 is true, then 
statements 3 are implemented. 
 
“elseif” and “else” part of the statement is 
optional. In the first example on the left 
neither is used. In the second example on the 
left “elseif” is not used. 
 
  
 
 
A loop is designed to do something over and 
over. In ISETL it always has three 
components: the directions on what values to 
examine, the commands on what to do, and 
the end. Here is the syntax: 
        for variable in set or tuple do 
            some commands telling the computer 
what to do 

        end; 
 
First example prints values of “i” which is 
determined as [1..10]. In the first execution 
time “i” is equated to 1 and printed. In the 
second execution time, “i” is equated to 2, and 
printed… 
In the last execution time “i” is equated to 10 
and printed. Notice that in each time “i” is 
equated to one of the numbers in “[1..10]” 
orderly. And each time commands between 
“for … do” and “end” are executed. 
 
 
 
“p” is determined as “p:=[1..9];”. For loop 
prints the p(i)-p(i-1) for 8 times. Notice that 
“i” is assigned numbers [2..9].  In the first 
execution time, “i” is equated to 2 and p(2)-
p(2-1) is executed. In the second execution 
time, “i” is equated to 3 and p(3)-p(3-1) is 
executed… In the last execution time, “i” is 
equated to 9 and      p(9)-p(9-1) is executed. 
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Functions in ISETL 
 
> f:=func(x); 
>> return 2*x-x**3; 
>> end; 
> f(3);f(-2);f(0); 
-21; 
4; 
0; 
 
> f:=func(x); 
>> if x>0 then return x**2-1; 
>> elseif x=0 then return 1; 
>> else return x+1; 
>> end; 
>> end; 
> f(2);f(5);f(0);f(-1);f(-3); 
3; 
24; 
1; 
0; 
-2; 
 
> f:=func(x,y); 
>> return abs(x-y); 
>> end; 
> f(5,3); 
2; 
 
Logic in ISETL 
 
> 5=2+3; 
true; 
> 4>=2+3; 
false; 
>          x:=3; 
> abs(x-2)<1.001; 
true; 
> abs(x-2)=sgn(x-2); 
true; 
 
> a:=true; 
> b:=false; 
> not(a); 

 
 
 
 
 
A function in ISETL can include four 
components: the name of the function, the list 
of input variables, the directions on how to 
produce an output, and an end. Here is the 
syntax: 
        Name := func( list of input variables ); 
            some commands, which MUST include 

a return statement 
        end; 
 
For the first example name of the function is 
“f”. And “f” takes “x” as a variable and returns 
2x-x3. 
That is, f is defined as f(x)= 2x-x3. 
 
For the second example, following piecewise 
function is defined.  
 
 x

2
-1, if x>0 

    f(x)=                1,      if x=0 

                             x+1, if x<0 

 
 
For the last example function “f” with two 
variables is defined. “f” takes “x” and “y” as 
varibles and returns |x-y|. That is, f is defined 
as  f(x,y)=|x-y|. 
 
 
 
“:=” and “=” are different in ISETL. “:=” 
assigns a value to a variable as you see above. 
But “=” asks the question    “is equal”. On the 
left example “5=2+3;” means “is 5 equal to 
2+3”. ISETL returns “true”. 
Similarly “<” is for “is less than” question, 
“>” is for “is greater than” question, 
“<=” is for “is less than or equal” question, 
“>=” is for “is greater than or equal” question, 
“/=” is for “is not equal” question. 
 
 
You can assign “true” and “false” logical 
constants to a variable. On the left “true” is 
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false; 
 
> a and b; 
false; 
> a and not(b); 
true; 
> a or b; 
true 
> a impl b; 
false; 
> a impl not(b); 
true; 
> not(a impl b); 
true; 
 
 
 
 
> forall n in [6..9]|n>4; 
true; 
 
> exists n in {1,3..25}| n=8; 
false; 
 
 
 
 
 
Graphing in ISETL 
 
>          f:=func(x); 
>>        return x+1; 
>>        end; 
> plot(f); 
> plot(f,a,b); 
> plot(f,a,b,c,d); 
 
 
 
 
 
 
 
 
 
 
 
 
 

assigned to “a”, “false” is assigned to “b”.   
“not(a)” means negation of “a”. Since “a” is 
true, ISETL returns “not(a)” as false. 
 
Logical connector and is written as “and”, or 
written as “or”, implies is written as “impl” in 
ISETL. Examine commands on the left. 
 
 
 
 
 
 
 
 
 
 
 
Universal quantifier, for all, is represented as 
“forall”, and existential quantifier, there exists, 
is represented as “exists” in ISETL. 
First statement looks for the truth of “for all n 
in [6..9], n>4”. 
 
Second statement looks for the truth of “there 
exist n in {1,3..25} such that n=8”. 
 
 
To graph predetermined function f, write 
“plot(f)”. (Note that to draw a graph of a 
function, first, function that will be graphed 
should be defined). Your graph will be opened 
in a new window called “Graph Window”. 
 
Note that after your graphing task is complete, 
you need to place cursor on the graph window 
and to enter “q” to quit. After each drawing 
you need to quit for drawing new graph. If 
you do not quit, you cannot draw a new 
graph. 
 
To get “execution window” back (the window 
that you enter command), you need to 
minimize “Graph Window”. 
 
“plot(f,a,b)”  allows you to set the horizontal 
scale to [a, b] and uses the default scale for the 
vertical axis. (a; b must be numbers). That is 
on the x-axis only “[a,b]” portion of graph is 
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Tabling in ISETL 
 
>           f:=func(x); 
>>         return x**2; 
>>         end; 
> table(f,1,5,4); 
          x                            f 
 
      1.00000                1.00000 
      2.00000                4.00000 
      3.00000                9.00000 
      4.00000               16.00000 
      5.00000               25.00000 

drawn. 
 
“plot(f,a,b,c,d);” allows you to set both the 
horizontal [a, b] and vertical [c, d] scales. (a; 
b; c; d must be numbers). That is on the x-
axis, “[a,b]” portion of graph is drawn; and on 
the y-axis, “[c,d]” portion of graph is drawn. 
 
To read the coordinates of a point place the 
cursor to the point, on the upper left of the 
window coordinates will appear. 
 
 
 
 
 
 
Syntax of tabling in ISETL is “table(f,a,b,n)”. 
f is the name of function you have constructed, 
[a,b] is the interval over which you wish the 
table to run, and n is the number of points, 
evenly spaced between a and b at which you 
wish the function evaluated. 
 
 
On the left example f is defined as f(x)=x2. 
And, x values that will be evaluated are 
defined between 1 and 5. Then interval [1,5] is 
divided in 4 equal parts ([1,2], [2,3], [3,4], 
[4,5]. And at the each end point 1, 2, 3, 4, 5 
function f is evaluated and printed. 
 
 

 
 
Notice: For the below questions, write your code/answer into the space given under the 
question. 
 
2. Write an ISETL tuple which includes all integers from 5 to 120. 
 
 
 
3.  
a) In the below, a function h is written in ISETL notation. Express this function in mathematical 
notation. 
> h:=func(x); 
>> if x/=-1 then return x*(x-2)/(x+1); 
>> else return 1; 
>> end; 
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>> end; 
 
 
 
 
 
b) In the below, an ISETL code is written. Explain what the code is doing and execute it in 
ISETL. (Notice that the function h used in the below code is defined in 3(a)). 
 
> for i in [1..10] do 
>> print h(-1+(1/10**i)); 
>> end; 
 
 
 
 

4. Write an ISETL function f that accepts x and returns
2 1

1

x

x

−
−

. This code will be used in part b. 

 
 
 
 
 
b) Execute command “table(f,0.99,1.01,20);” in ISETL. ISETL will give you error “!Error: 
Divide by zero”. The reason for this error is that table command tries to execute “f(1)”. But 
evaluation of f at 1 makes the denominator of the function zero and ISETL cannot handle 
division by zero error. Then you must avoid division by zero error by changing your code of 
function. Test your modified function with table command in ISETL and write function’s code 
below. (Hint: Consider defined function in 3(a)) 
 
 
 
c) Use the table that you constructed in ISETL in (b) to answer the following: 

2 1
( )

1

x
f x

x

−
=

−
, what happens with f(x) if x values is close to 1? 

 
 
 

5.  Write an ISETL function f that accepts x and returns
sin( )x

x
. Use command                           

“table(f,-0.99,0.01,20);” to examine function values around x=0. And answer the following. 
 

sin( )
( )

x
f x

x
= , what happens with f(x) if x values is close to 0? 
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6. For following questions, you can use ISETL to plot to observe what happens. 
 
a) Let f be defined as ( )f x x= , what happens with f(x) if x values is close to 3? 

 
 
b) Let f be defined as ( ) 2f x x= + , what happens with f(x) if x values is close to 3? 

 
 

c) Let f be defined as 2( )f x x= , what happens with f(x) if x values is close to 3? 

 
 

d) Let f be defined as 2( ) 2f x x= + , what happens with f(x) if x values is close to 3? 

 
 

e) Let f be defined as 3( )f x x= , what happens with f(x) if x values is close to 3? 

 
 

f) Let f be defined as 3( ) 2f x x= + , what happens with f(x) if x values is close to 3? 

 
 
g) You may easily deduce that “as x values is close to a, then the values of the function f, defined 
by ( )f x x= , is close to a. By using this knowledge, answer the following question. 

Let f be defined as ( ) nf x x c= +  where n is positive integer and c is real, what happens with 

f(x) if x values is close to a? 
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LAB-2 ACTIVITIES 
Name: 
ID: 

 
There are some activities below. Do them and write your answers to the gaps that are 
given below the activity. 
 
1. Using ISETL, enter the following statement to begin for all three parts of this activity.  
 

LimitProcess(); 
 

After you type “LimitProcess();” some instructions will appear on the screen. Program is 
asking for you to type one of P1;, P2;, or P3;. After typing one of them a process will 
start and require you to type 1 followed by pressing enter-key repeatedly. To continue to 
process, you need to type 1 repeatedly. To stop process, you need to type 0 followed by 
pressing enter-key. Now follow the below instructions. 
 
(a) Type P1;.When prompted, type 1 repeatedly and note the output each time. 
Continue doing this until you feel that you understand what is going on. Write an 
explanation of what you think is going on. Explain what would happen ultimately if you 
continued to type 1. 
 
 
 
 
 
(b) In order to stop above process, type 0 followed by pressing the enter-key. Now you 
will implement process called P2. Type LimitProcess(); again, and then type P2 when 
asked. When prompted, type 1 repeatedly and note the output each time. Continue 
doing this until you feel that you understand what is going on. Write an explanation of 
what you think is going on. Explain what would happen ultimately if you continued to 
type 1. Compare and contrast what happens with the two processes P1 and P2. 
 
 
 
 
 
(c) Repeat the above, implementing the process P3. For the following discussion, denote 
by x the current value which appears on the screen when you enter 1, and denote by a 
the ultimate value that you would get if you entered 1 indefinitely. Answer the following 
questions as you repeatedly enter 1. 
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i. Write down your best guess for the value of a. 
 
 
ii. How many times must you enter 1 before it happens that |x − a| < 0.01? 
 
 
iii. Once this inequality is satisfied, does it continue to hold? 
 
iv. How many times must you enter 1 before it appears that the inequality will always 
hold? 
 
 
v. Repeat the previous three questions with 0.01 replaced by 0.0001. 
 
 
 
 
 
 
 
2. Let f(x)= x3+x+7 (You need to first construct this function in ISETL to do following 
questions). Using ISETL, enter the following statement to begin using LimitProcess for 
all three parts of this activity.  

LimitProcess(f); 
 
(a) Follow the instructions on the screen to implement the process called P1. When 
prompted, type 1 repeatedly and note the output each time. Continue doing this until 
you feel that you understand what is going on. 
In order to stop, type 0 followed by pressing the enter-key. Write an explanation of what 
you think is going on. Explain what would happen ultimately if you continued to type 1. 
 
 
 
 
(b) Repeat the above, implementing the process P2. Write an explanation of what you 
think is going on. Explain what would happen ultimately if you continued to type 1. 
Compare and contrast what happens with the two processes P1 and P2. 
 
 
 
 
 
(c) Repeat the above, implementing the process P3. For the following discussion, denote 
by f(x) the current value which appears on the screen when you enter 1, and denote by L 
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the ultimate value that you would get if you entered 1 indefinitely. Answer the following 
questions as you repeatedly enter 1. 
 
i. Write down your best guess for the value of L. 
 
 
ii. How many times must you enter 1 before it happens that |f(x) − L| < 0.01? 
 
 
iii. Once this inequality is satisfied, does it continue to hold? 
 
 
iv. How many times must you enter 1 before it appears that the inequality will always 
hold? 
 
 
v. Repeat the previous three questions with 0.01 replaced by 0.0001. 
 
 
 
 
 
 
3. Let f(x)= x2 (You need to first construct this function to do following questions).  
Using ISETL, enter the following statement to begin using LimitProcess for all three 
parts of this activity.  

LimitProcess(f,3); 
 
(a) Follow the instructions on the screen to implement the process called P. When 
prompted, type 1 repeatedly and note the output each time. Continue doing this until 
you feel that you understand what is going on. 
In order to stop, type 0 followed by pressing the enter-key. Write an explanation of what 
you 
think is going on. Explain what would happen ultimately if you continued to type 1. 
 
 
 
 
b) Repeat the above, implementing the process P. For the following discussion, denote 
by x and f(x) the current values which appear on the screen respectively when you enter 
1, and denote by a and L respectively the ultimate values that you would get for x, f(x) if 
you entered 1 indefinitely. Answer the following questions as you repeatedly enter 1. 
 
i. Set n=2. How many times must you enter 1 before you have the inequality |x-a|<10-n 
and this inequality appears as if it will continue to hold. Repeat for the values n=3, 4. 
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ii. Set k=2. How many times must you enter 1 before you have inequality |f(x)-L|<10-k 
and this inequality appears as if it will continue to hold. Repeat for values k=3, 4. 
 
 
 
 
 
iii. Try to fill in the dots so as to make statement (as general as possible) of the form, 
 

If |x-a|<….. then |f(x)-L|<….. 
 
 
 
 

 
 

4. Let f be a function given by
2 4

( )
2

x
f x

x

−
=

−
(You need to first construct this function to 

do following questions). Note that when doing this exercise ISETL may give error 
“!Error: Divide by zero”, but you learned how to handle with this error last week. 
 
Using ISETL, enter the following statement to begin using LimitProcess.  
 

LimitProcess(f,2); 
 
Follow the instructions on the screen to implement the process called P. When 
prompted, type 1 repeatedly and note the output each time. For the following discussion, 
denote by x and f(x) the current values which appear on the screen respectively when 
you enter 1, and denote by a and L respectively the ultimate values that you would get if 
you entered 1 indefinitely. Answer the following questions as you repeatedly enter 1. 
In order to stop, type 0 followed by pressing the enter-key.  
 
i. Set n=2. How many times must you enter 1 before you have the inequality |x-a|<10-n 
and this inequality appears as if it will continue to hold? Repeat for the values n=3, 4. 
 
 
 
ii. Set k=2. How many times must you enter 1 before you have inequality |f(x)-L|<10-k 
and this inequality appears as if it will continue to hold? Repeat for values k=3, 4. 
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iii. Try to fill in the dots so as to make statement (as general as possible) of the form, 
 

If |x-a|<…..   then |f(x)-L|<….. 
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LAB-3 ACTIVITIES 
Name: 
ID: 

 
There are some activities below. Do them and write your answers to the gaps that are 
given below the activity. 
 
1. The code given below is a computer function named lim. This computer function 
accepts as input any other computer function f and number a, and returns approximate 
value of the limit at a of the function represented by f if this limit exists, or the message 
“Unable to find limit” if there is no limit (or the computer cannot find an appropriate 
approximation). Examine the code and answer the questions in this activity. 
  

lim:=func(f,a); 
s:=[a+((-1)**n)/(10**n): n in [1..6]]; 
for i in [2..6] do 
if abs(f(s(i))-f(s(i-1)))<0.0001 then return f(s(i)); 
end; 
end; 
return "Unable to find limit"; 
end; 
 

 
 
a) What is the line two of code doing? What are the lines four and seven doing? 
 
 
 
 
 
 
b) Use the computer function lim to approximate and limits of the functions f, g, and h 

given by 
2 2, 0

( )
5, 0

x x
f x

x x

 + ≤
=  

+ > 
 at a=0, 2( ) 9g x x= −  at a=2, 

2 9
( )

3

x
h x

x

−
=

+
 at a=3. 

 
 
  
 
 
 
 
(c)  Give two examples of functions and a point a such that  
 i) lim(f,a) returns a number 
 ii) lim(g,a) returns “Unable to find limit” 
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d) Explain why does lim(f,a) returns a number, and why does lim(g,a) returns “Unable to 
find limit”? 
 
 
 
 
 
 
 
2. In this activity you are to create two computer functions named limadd and limprod 
respectively (Hint you may use computer function lim). 
 
a) limadd takes as input two functions, namely f and g, and a point say, a. And it finds 
approximated value of lim( )( )

x a
f g x

→
+ . That is, when limadd(f,g,a); is written your 

program finds approximated value of lim( )( )
x a

f g x
→

+ .Write code of your program below. 

 
 
 
 
 
 
 
 
 
 
b) limprod takes as input two functions, namely f and g, and a point say, a. And it finds 
approximated value of lim( )( )

x a
f g x

→
⋅ . That is, when limprod(f,g,a); is written your 

program finds approximated value of lim( )( )
x a

f g x
→

⋅ .Write code of your program below. 
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c) Use computer functions lim, limadd, and limprod to fill the following table 
 
 
f(x) g(x) a lim ( ) ?

x a
f x

→
=

 

lim ( ) ?
x a
g x

→
=

 

lim( )( ) ?
x a

f g x
→

+ =

 

lim( )( ) ?
x a

f g x
→

⋅ =

 
x2 5x 2     
x2 5x 4     

2

1

x

x −
 

1

1x
−

−
 

1     

 
 
 
 
3. In this activity, you are to create a computer function named limatinf which figures 
out an approximation to a limit of a function at infinity. This computer function should 
accept as input any other computer function f and should give as output an approximate 
value of the limit at infinity of the function represented by f if this limit exists, or the 
message “Unable to find limit” if the limit does not exist (or the computer cannot find an 
appropriate approximation). 
 
a) Write your code below (Hint: Modify second line of lim function. Is a necessary in 
limatinf?) 
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b) Approximate the each of the following limits by using computer function limatinf. 
 

(i)
3

2

2 9
( )

3

x
f x

x

−
=

+
=                                    (ii)

3

3 2

2 2.7 5.1
( )

34.7 3.6

x x
f x

x x

− +
=

+ +
=  

(iii)
2

3

7 9 27
( )

5 3

x x
f x

x

− +
=

+
=                            (iV)

1
( ) sin( )f x

x
= =        

 (V) 
1

( ) sin( )f x x
x

= =                         (Vi)
sin( )

( )
x

f x
x

= = 
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LAB-4 ACTIVITIES 
Name: 
ID: 
 
There are some activities below. Do them and write your answers to the gaps that are 
given below the activity. 
 
1. You have learned how to find limit of a function at a given point in your previous 
activities. For example, limit of f, defined as 2( )f x x= , at the point a=2 is L=4, and you 

used the notation 2

2
lim 4
x

x
→

=  for this. Now we will use this fact and make some activities 

that will help you in your formal study of limit. 
 
In this activity you will look at specific portions of graphs and investigate the possibility 

of keeping them within a given window. You know that 2

2
lim 4
x

x
→

= . We will give you an 

interval around limit L=4 and ask you for an interval around a=2 such that graph of the 
function will stay within the given bounds on the vertical interval around L=4. 
 
Let’s make an example. Suppose you are given function f denoted by 2( )f x x= , and we 
give you an interval around 4 in the form of (4-ε, 4+ ε), namely for ε = 0.9, (3.1, 4.9). 
The task is to find an interval around 2 in the form of (2-δ, 2+ δ) so that graph of the 
function will stay within   (3.1, 4.9). You can use plot command to draw graph of the 
function, but firstly you have to determine horizontal interval that is asked. Let’s choose 
δ=0.6, then your horizontal interval is (2-0.6, 2+0.6), that is (1.4, 2.6). Now use 
plot(f,1.4,2.6,3.1,4.9); command to plot graph which is shown below. 
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              Figure-1 
 
As you have seen in the figure-1, (1.4, 1.76) and (2.24, 2.6) parts of the function is not 
within the given horizontal interval (3.1, 4.9). But we have necessary information to 
complete problem now. If we choose horizontal interval within (1.76, 2.24) we are done. 
Now choose δ=0.2, then your horizontal interval is (2-0.2, 2+0.2), that is, (1.8, 2.2). 
Now use plot(f,1.8,2.2,3.1,4.9); command to plot graph which is shown below. 
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                                                                    Figure-2 
 
As you have seen figure-2, the curve does not leave the upper or lower boundaries of 
your window and you can see the entire curve for this interval of the domain variable. 
However, notice that in general the graph does not have to be within the horizontal 
interval at the single point where x = a. 
 
 
Now for the following situations, determine the possible limit value L. Then, for given ε, 
if possible, choose your δ and write the interval (c-δ, c+ δ), if not possible try to explain 
why. 
 
a) 3( ) 3f x x= + , ε =0.9  and a=5 
                            ε = 0.5 and a=5 
                            ε =0.1  and a=5 
 
 
 
 
 
 
 



 196 

 

b) 

2 1
,   1

( ) 1
5,          1 

x
if x

g x x

if x

 −
≠ 

= − 
 = 

 , ε = 0.9 and a=1 

                                                ε = 0.4 and a=1 
                                                ε =0.2  and a=1 

 
 
 
 
 
 
 
 
 
 
 

c) 

3

,   2
( ) 2

6,      2 

x
if x

h x

if x

 
≤ 

=  
 > 

,  ε = 3 and a=2 

                                            ε =2  and a=2                                             
                                            ε = 1 and a=2 
 
 
 
 
 
 
 
 
 
 
2. In the above activities, you find specific δ values for given ε (if possible), but as you 
know from your logic course, finding some specific δ values does not guarantee that for 
all ε you can find a δ. To guarantee this, you need to find a relationship between δ and ε. 
That is you need to find an algorithm for finding δ, once you have ε. Let’s make an 
example together. Take f to be function given by ( ) 2f x x= , c=2, L=4. Let me propose 

δ=
ε

2
. Now suppose that we are given ε=0.8, that is we are given (3.2, 4.8) for the 

vertical interval. Since we have a formula for δ, we can easily find its value, 

δ=
0.8

0.4
2
= , (1.6, 2.4). Now if you enter command plot(f,1.6,2.4,3.2,4.8); to ISETL, 

you will see that the curve does not leave the upper or lower boundaries of your window. 
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You can try this relationship with ε=0.4, ε= 0.2, ε=0.1… In each time you will see that 
the curve does not leave the upper or lower boundaries of your window. Now do 
following activities. 
 
 
 
 
a) In this activity, you will take f to be function given by ( ) 3f x x= , a=2, L=6. We do not 
mind telling you that in this case, given any ε>0, that is, given any interval of the form 
(6- ε, 6+ ε), you can find a δ>0, that is, an interval (2- δ, 2+ δ). Your problem is to verify 
this for a few decreasing values of ε, namely for 0.9, 0.6, and 0.1 by using ISETL. But 
then figure out analytically a general formula for δ, given ε. 
 
 
 
 
 
 
 
 
 
 
b) Do the exactly same thing for the function given by ( ) 3 2f x x= + , a=2, L=8. 
 
 
 
 
 
 
 
 
 
 
 
3. In this activity you are not allowed to use ISETL. You are given 2( )f x x=  with a=2. 
And you are asked to find out analytically a general formula for δ, given ε. You should 
be able to figure out the value of L. You should also be able to completely solve this 
problem by making rough sketch of the situation and thinking about it, without 
necessarily using the computer. 
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LAB-5 ACTIVITIES 
Name: 
ID: 
 
There are some activities below. Do them and write your answers to the gaps that are 
given below the activity. 
 
Remember that: implication is represented as impl in ISETL.  
 
 
1.  
a) By using ISETL, provide truth table for implication. 
 

p q →p q  

True True  
True False  
False True  
False False  

 
b) By using ISETL, provide truth table for negation of implication. 
 

p q ¬ →( )p q  

True True  
True False  
False True  
False False  

 
c) By using ISETL, verify that ¬ →( )p q is equivalent to ∧¬p q . 
 

p q ¬ →( )p q  ∧¬p q  

True True   
True False   
False True   
False False   
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Note that: You will use following information in doing some of the activities; a<b<c 
can be represented as (a<b) and (b<c) in ISETL. 
 
2.  
a) Express the following statement in ISETL code.  

 
  0<|x-1|<0.1 implies |2x-2|<0.2 

 
 
 
 
 
 
b) Express its negation in ISETL code. 
 
 
 
 
 
 
3.  
a) Express the following statements in ISETL code. Test their truth with ISETL, and 
write whether it is true or false  
 
 
 (i) For all x in X={0.9,0.99,0.999,1.001,1.01,1.1}, 0<|x-1|<0.1 implies |2x-2|<0.2. 
  
 
 
 
 
 (ii) There exist d in D={0.05,0.005,0.0005,0.00005} such that for all x in 
X={0.9,0.99,0.999,1.001,1.01,1.1},  0<|x-1|<d implies |2x-2|<0.01 
 
 
 
 
b) Express the negation of the statement in part (i) in ISETL code without placing "not" 
in front of it. 
 
 
 
 
c) Express the negation of the statement in part (ii) in ISETL code without placing "not" 
in front of it. 
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Note: For the activity-4 and activity-5 use the following sets. 
E={1, 0.1,0.01,0.001,0.0001}, D={0.5, 0.05,0.005,0.0005,0.00005}, 
X={0.9999,0.99999,0.999999,1.000001,1.000001,1.0001}. 
   
4. Express the following statement in ISETL code. Test its truth with ISETL, and write 
whether it is true or false. 
 
For all e in E, there exist d in D, such that for all x in X, 0<|x-1|<d implies |2x-2|<e.  
 
 
 
 
 
 
 
5. 
a) Express the following statement in ISETL code, and test its truth with ISETL. 
  
 For all e in E there exist d in D such that for all x in X, 0<|x-1|<d implies |2x-2.1|<e. 
 
 
 
 
 
 
b) ISETL will produce false for the above proposition. Can you make statement true by 
changing values in set E? If yes, explain why. If no, explain why not. 
 
 
 
 
c) Express the negation of the statement in part 5(a) in ISETL code without placing 
"not" in front of it, and test its truth with ISETL. 
 
 
 
d) ISETL returns true for the statement in 4, and false for the statement in 5(a). 
 
(i) What is the difference between these two statements?  
 
 
 
(ii) Explain why this difference makes one statement true and other false. 
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APPENDIX E 

E. WEEK-3 LABORATORY PLAN 
 

Collect Lab-2 Activities 

Return Homework-1 

Handout Homework-2 

 

State that your expectation is the group work in which each individual has her/his unique 

contribution to end product, and end product is the product of group not sum of the 

individual contributions. 

 

During the lab sessions, walk around the computer laboratory and observe what is going 

on within group: Is there a free-rider, whether group members facilitate each other. 

 

Important points in the laboratory sessions are  

 

• to give appropriate feedback to individuals and groups,  

• to monitor their performance,  

• to promote discussions among group members,  

• to be a model for colloborative behavior. 

 

 

You can use following phrases in communicating with individuals and with groups: 

 

• Let’s think in this way… 

• What do you think about… 
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• What is your opinion about … 

• Good point how could you contribute to your friends’ thought about… 

• Good point, but let’s focus on… 

• What can you do next to accomplish… 

• You can negotiate as a group on… 

 

 

Beginning Discussion: 

 

Let them close computer monitors and focus on your explanations. Explain the 

following two tasks, and make aware them about that they will first discuss tasks within 

the group, then discuss them among groups. 

 

Task 1. Let them use LimitProcess to estimate 
0

sin( )
lim
x

x

x→
 in groups. Then, let groups 

discuss their findings. If necessary give some prompts. 

 

Task 2. Let them use LimitProcess to estimate
0

sin(5 )
lim
x

x

x→
. Then, let groups discuss 

their findings. If necessary give some prompts. 

 

Handout Lab-3 Activities 

 

Week’s Activities: 

 

Let them close computer monitors and focus on your explanations.  

 

Activity 1. Briefly explain what lim function is doing and what the question 1 is asking. 
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Activity 2. Briefly explain what limadd and limprod are. If they have trouble in 

constructing these functions, you can give hint that lim function can be used to construct 

limadd and limprod. 

 

Activity 3. Briefly explain what limatinf is. If they have trouble in producing limatinf 

function, you can give hint that lim function can be used to construct limatinf. 

 

Attendence Sheet 
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