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ABSTRACT 

 

DESIGN OF SELF-ORGANIZING MAP TYPE ELECTROMAGNETIC 

TARGET CLASSIFIERS FOR DIELECTRIC SPHERES AND 

CONDUCTING AIRCRAFT TARGETS WITH INVESTIGATION OF THEIR 

NOISE PERFORMANCES 

 

KATILMIŞ, Tufan Taylan 

M.S. Department of Electrical and Electronics Engineering 

 Supervisor :Prof. Dr. Gönül TURHAN SAYAN 

 

November 2009, 147 pages 

 

The Self-Organizing Map (SOM) is a type of neural network that forms a regular grid of 

neurons where clusters of neurons represent different classes of targets. The aim of this 

thesis is to design electromagnetic target classifiers by using the Self-Organizing 

Map (SOM) type  artificial neural networks for dielectric and conducting objects 

with simple or complex geometries. Design simulations will be realized for perfect 

dielectric spheres and also for small-scaled aircraft targets modeled by thin 

conducting wires. The SOM classifiers will be designed by target features extracted 

from the scattered signals of targets at various aspects by using the Wigner 

distribution. Noise performance of classifiers will be improved by using slightly 

noisy input data in SOM training. 

 

Keywords: Electromagnetic target classification, Self-Organizing Maps, Wigner-

Ville distribution, feature extraction, noise analysis. 
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ÖZ 

 

YALITKAN KÜRELER VE İLETKEN UÇAKLAR İÇİN ÖZ-

ÖRGÜTLENMELİ HARİTA TİPİ ELEKTROMANYETİK HEDEF 

SINIFLANDIRICILARIN TASARIMI VE GÜRÜLTÜ 

PERFORMANSLARININ İNCELENMESİ 

 

KATILMIŞ, Tufan Taylan 

Y. Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi  : Prof. Dr. Gönül TURHAN SAYAN 

Kasım 2009, 147 sayfa 

 

Öz Örgütlenmeli Harita, haritadaki her nöronun bir sınıfı temsil ettiği, girdi 

verilerinden düzenli bir harita oluşturan yapay sinir ağı çeşididir. Bu tezin amacı, Öz 

Örgütlenmeli Harita tipi yapay sinir ağları kullanarak basit veya karmaşık 

geometrilere sahip yalıtkan ve iletken cisimler için elektromanyetik hedef 

sınıflandırıcılar tasarlamaktır. Tasarım benzetimleri mükemmel yalıtkan küreler ve 

ince iletken tellerle modellenmiş küçük ölçekli uçaklar için yapılacaktır. Öz 

örgütlenmeli haritaların tasarımında, hedeflerin çeşitli görüş açılarına ait saçınım 

işaretlerinden Wigner dağılımı kullanılarak çıkarılmış öznitelikler kullanılacaktır. 

SOM eğitiminde az gürültülü girdi verileri kullanarak, sınıflandırıcıların gürültü 

performanları iyileştirilecektir. 

Anahtar sözcükler: Elektromanyetik hedef sınıflandırma, Öz Örgütlenmeli Harita, 

Wigner-Ville dağılımı, öznitelik çıkarımı. 
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CHAPTER 1 

 

 INTRODUCTION 

 

 

Radar target identification has been an active research area for over half a century 

[1] as accurate and fast recognition of targets is an important problem especially 

for military applications. All the characteristic information of an electromagnetic 

scatterer (i.e. the target) is implicitly contained in its scattered response signals. 

For that reason, the raw database needed by an electromagnetic target classifier 

must contain scattered signatures for each library target over a proper bandwidth 

[2]. However, target recognition from scattered electromagnetic fields is a very 

difficult problem to solve, not only because scattering mechanisms are very 

complicated even for geometrically simple targets, but also due to the fact that 

such data are highly frequency, aspect and polarization dependent [1-5]. A feasible 

target classifier must be based on a proper feature extraction technique to obtain 

aspect and polarization invariant target features. Correct classification rate of a 

target classifier can be maximized as a result of training by such special target 

features. It must be also emphasized that extracted features must be highly 

sensitive to geometrical and material properties such as size, shape and electrical 

parameters (permittivity, permeability, conductivity) of individual targets to 

discriminate similar objects from each other.  

 

Another complication in target recognition is the presence of noise contaminating 

scattered signals. In general, any unwanted signal component is considered to be 

noise. Recognition of targets becomes more difficult as the level of noise 

contamination in the available electromagnetic scattered database signals gets 
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higher [4, 6, 29].  The contamination may be simply due to additive Gaussian 

noise or it may be due to clutter type noise caused by the signals scattered by some 

other objects around. In this thesis, only the effects of additive Gaussian noise will 

be investigated on the performance of target recognition at various signal-to-noise 

ratio (SNR) levels.  

 

There are various techniques suggested for target classification in electromagnetic 

target recognition literature such as the techniques based on the use of natural 

resonance frequencies of a target [1-7], artificial neural network (ANN) based 

techniques [7-13], time-frequency analysis based techniques [3-4, 6-9] and 

statistical signal processing based techniques [4, 6, 11, 29].  In particular, use of 

Artificial Neural Network (ANN) based target classification techniques in target 

recognition, has been a popular approach since late 1980’s. ANN’s are composed 

of a large number of highly interconnected paralel processing elements (neurons) 

working in coordination to learn certain patterns contained in the training data. 

Learning algorithms used to train ANNs may be either supervised or 

unsupervised.  Self-organizing map (SOM) type neural networks learn in an 

unsupervised manner. 

 

A SOM output can be considered as a topographic map of input data where each 

neuron in the network represents a class of inputs, so it is considered as an 

attractive tool for target classification [14-17]. As it is mentioned above, a SOM 

learns without any form of supervision. In other words, when an input data vector 

is fed into a SOM, the class information of the input is not provided. However, 

this information is acquired eventually as a result of the cluster formation 

capability of the SOM [18, 21-24]. The output of a SOM is a grid composed of 

neurons. Each neuron has a weight vector, which is assigned randomly at the 

beginning of the training phase and updated at each iteration of the learning 

process. The length of weight vectors are the same as the length of the training 

input vectors. In SOM based electromagnetic classifier design problems, the 
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length of the input vectors (and hence the length of the weight vectors) is usually 

the same as the length of the time-domain scattered signal [7, 8, 13] 

 

In this thesis, SOM type electromagnetic classifiers will be designed for two 

different types of targets. First, a set of dielectric spheres of the same size but of 

different relative permittivity values will be used as library targets. Secondly, 

target classifiers will be designed for a set of small-scaled aircraft which are 

modeled by perfectly conducting thin wires [19]. The SOM classifiers will be 

trained by target feature vectors which are extracted from scattered signals of such 

targets by using a Wigner Distrubition (WD) based target feature computation 

technique [3, 4, 20]. The resulting input feature vectors are called late-time feature 

vectors (LTFVs) as they are extracted over an optimal late-time interval [4].  

 

Evaluation of the classifier accuracy under noisy testing conditions is a very 

important issue. Therefore, all of the SOM based classifiers designed in this thesis 

are thoroughly tested at various signal to noise ratio (SNR) levels. Also, various 

SOM classifiers are designed in this thesis by using slightly and/or moderately 

noisy training input data to improve the classifier accuracy at lower SNR testing 

conditions. 

 

The organization of the rest of the thesis is as follows: 

 

Chapter 2 gives the theory and design steps of the SOM based classifiers including 

an outline of the WD based feature extraction technique.   

 

Chapter 3 presents eight different classifier design simulations for various target 

libraries composed of only dielectric spheres. Classifiers designed under 
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difference noise conditions will be tested at various SNR levels to evaluate noise 

performances of the resulting SOM classifiers.   

 

Nine different SOM classifiers are designed in Chapter 4 for various target 

libraries of small-scale model aircraft. Noise performances of all these classifiers 

will be evaluated at different SNR levels both in the classifier design phase and in 

the test phase.  

 

Finally, the concluding remarks and suggestions for future study will be outlined 

in Chapter 5. 

 

There is also an Appendix containing a sample MATLAB code used to design and 

test SOM classifiers.  
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CHAPTER 2 

 

THEORY 

 

 

In this chapter, theoretical background of the SOM (Self-Organizing Map) based 

classifier design problem will be presented with a special emphasis on the issue of 

target feature extraction. Firstly, the basic properties of SOM type artificial neural 

networks will be discussed. SOM design parameters will be defined. Next, the use 

of Wigner Distrubution based feature extraction process will be outlined. 

 

2.1 Self Organizing Map Type Artificial Neural Networks 

 

Artificial Neural Networks (ANNs) are information processing devices which are 

inspired by the biological learning processes that are believed to take place in 

human brain. An ANN is, in general, composed of a large number of highly 

interconnected paralel processing elements (neurons) working in coordination to 

solve specific problems through learning. ANNs, like people, learn by examples. 

Learning in an ANN is accomplished by exposing the network to training inputs 

which are randomly selected from an available training database. With their ability 

to learn and generalize, ANNs can be used in specific applications such as pattern 

recognition, speech processing, data classification, microwave circuit design and 

electromagnetic target recognition.   

Type of an ANN is determined by its network topology and its learning rules. 

ANNs are categorized according to their learning strategy as supervised or 
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unsupervised neural networks. In the case of supervised ANNs, such as multi-

layer perceptrons, avaliable training inputs are provided together with their class 

information. Conversely, in the case of unsupervised ANNs, no class information 

is provided during training [14]. The Self-Organising Map (SOM) type neural 

network is a well-known unsupervised ANN, which acquires the class information 

of training inputs by itself during the training phase through cluster formation [14-

18, 21-24]. Electromagnetic target classifiers to be designed in this thesis use the 

SOM type ANNs as the basic signal processing tool. Basic topological structure of 

the SOM together with its design parameters and its learning algorithm will be 

desribed in the following subsections. 

 

 

2.1.1. Structure of Self Organizing Maps 

 

The Self-Organizing Map type artificial neural network technique discussed in this 

thesis, is one of the most important model of unsupervised learning ANN class, 

which is introduced by Kohonen [14,15]. SOM type ANNs can be used in 

applications such as vector quantization, speech prosessing, robotics, control, 

statistical pattern recognition, radar classification and image compression. 

 

A SOM algorithm creates a mapping from a high dimensional vector space onto a 

low dimensional grid. SOM consists of neurons organized on a regular low 

dimensional grid such as the hexagonal and rectangular grids shown in Figure 2.1.  

Each neuron i of the SOM has an associated d-dimensional vector mi =

[mi1, mi2, … , mid ], where d is equal to the dimension of the input vectors. The 

neurons are connected to adjacent neurons by a neighborhood relation [16, 17]. 

The number of map units (i.e. neurons), which typically varies from a few dozen 

up to several thousand depending upon the application in hand, determines the 

accuracy and generalization capability of SOM [17]. 
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Figure 2.1. Two dimensional  lattice structures of SOM. 

 

 

During training, neurons of the SOM grid are exposed to each available input 

according to an unsupervised learning rule. When the training is over, each neuron 

is tuned to a specific signal or classes of pattern through this unsupervised learning 

process. The coordinates of a neuron in the network then correspond to a 

particular domain of input signal patterns. Each neuron or local neuron group acts 

like a separate decoder for the same input. Then, the interpretation of the input 

information is provided by the presence or absense of an active response at that 

location, rather than the exact input-output signal transformations or magnitude of 

the response [14, 15]. Different types of SOM output grids are shown in Figure 

2.1 and Figure 2.2. In two dimensional case, the neurons of the map can be 

arranged either on a rectangular or a hexagonal lattice as shown in Figure 2.1. If 

the sides of the map are connected to each other, the global shape of the map 

becomes a cylinder or a toroid, as shown in Figure 2.2.  
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Figure 2.2 Different Types Of SOM Output Maps (reproduced from Demo #3 of 

The SOM Toolbox 2 of [18]). 

 

In the classical SOM, the number of neurons and their topological relations are 

fixed from the beginning. There are three issues which need to be apriorily 

decided: dimensions of the map grid, map lattice and shape. The number of 

neurons should usually be selected as big as possible, with the neighborhood size 

controlling the smoothness and generalization of the mapping. However, as the 

size of the map increases, the computational load of the training phase becomes 

too heavy for most applications. In our simulations, dimensions of the map grids 

will be selected as [12*12], [21*21], [30*30] in 2-target, 3-target and 4-target 

applications and a sheet-shaped map grid with rectangular lattice will be used.  
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2.1.2.  Kohonen Learning Algorithm 

 

The Kohonen model consists of two groups of units: input units (input vectors) 

and hidden units (neurons with weight vectors) on the map. Initially, there is no 

connection between the input vectors and neurons [14]. Ordering the weight 

vectors of the neurons in such way that they will represent the similarites of the 

input vectors is accomplished by using the Kohonen’s learning algorithm.  

 

The first step in constructing a SOM is to initialize the weight vectors prior to 

training. Initial values are assigned to each vector of the SOM grid. The SOM is, 

in general, very robust with respect to initialization but a properly accomplished 

initialization may allow the algrotihm to converge faster to a good solution. In this 

thesis work, random initialization is used in all SOM simulations where the weight 

vectors are initialized with small random values. 

After initialization, training part of Kohonen Learning algortihm is started. The 

SOM is trained iteratively. In each training step, one sample vector 𝒙 from the 

input data set is chosen randomly and the distances between this input vector and 

all the weight vectors of the SOM grid are calculated using some distance 

measure. The winning neuron, denoted by the index 𝑐, is the unit whose weight 

vector 𝒎𝒄  is closest to the input vector 𝒙. The similarity is usually defined by 

means of a distance measure, typically the Euclidian distance [18]. Formally, the 

winning neuron is defined as the neuron for which 

 𝒙 − 𝒎𝑐 = 𝑚𝑖𝑛𝑖  𝒙 − 𝒎𝑖 }                                           (2.1) 

where  .   is the Euclidian distance. After finding the winning neuron, the weight 

vectors of the SOM neurons are updated.  The SOM update rule for the weight 

vector of the unit 𝑖 is given as 

𝒎𝑖 𝑛 + 1 = 𝒎𝑖 𝑛 + 𝑎 𝑛 ℎ𝑐𝑖 [𝑟[𝑛]](𝑥 𝑛 − 𝒎𝑖 𝑛 )               (2.2) 
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where 𝑛 denotes iteration number, 𝑎 𝑛  is the learning rate and ℎ𝑐𝑖 [𝑟 𝑛 ] is the 

neighborhood function centered at the winning neuron 𝑐, with neighborhood 

radius 𝑟 𝑛 . The critical distinguishing feature of Kohonen Learning Model, is that 

the other neurons physically close to the winning neuron are also trained at weaker 

learning levels. So, the choice of training parameters, the learning rate and the 

neighborhood function, are important for successful learning. The values of 

weight vectors are usually very small at the beginning of the training, but during 

the iterations of training, the weights adapt themselves to the input vectors 

according to the learning rule stated in Equation (2.2) for specified types and 

values of the learning rate and the neighborhood function [18].  

Learning rate 𝑎 𝑛 , which defines the intensity of the neuron weight adaptation, is 

a decreasing function of iteration. Three well-known learning rate functions; 

linear, inverse-of-time, and a power series are illustrated in Figure 2.3. Learning 

rate is a critical variable as it controls the rate of evolution of vectors. Initial 

learning rate is the starting value of learning rate at the training phase. Linear 

learning rate function with 0.5 initial learning rate will be used in all simulations 

to be presented in this thesis. 

 

Figure 2.3 Three possible functions for learning rate: Linear (red), power series 

(black) and inverse-of-time (blue). (The figure is reproduced from Demo #3 of the 

SOM Toolbox 2 of [18]). 
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The choice for the neighborhood function determines how strongly the neurons are 

connected to each other in a given SOM grid. The Gaussian neighborhood 

function, which will be used in our simulations, is defined as; 

ℎ𝑐𝑖  𝑟 𝑛  = exp⁡(−
 𝑟𝑐−𝑟𝑖 

2

2𝜎2[𝑛]
)                                                 (2.3) 

 where 𝑟𝑖  is the location of the unit 𝑐 on the map grid and 𝑟𝑐   is the winning neuron 

location at which the neighborhood function is centered and the 𝜎[𝑛] is the 

neighborhood radius at the 𝑛𝑡ℎ   iteration. Notice that this is a function of distance 

 𝑟𝑐 − 𝑟𝑖  between map units on the SOM grid. 

 

                 (a)                        (b)                         (c)                        (d) 

Figure 2.4 The four neighborhood functions (a) bubble, (b) gaussian, (c) cut 

gaussian and (d) epanechicov. 

 

Typically, the  neighborhood radius is decreased with increasing number of 

iterations. Larger neighborhood radius means that the training takes place at a 

more global level. It is preferred to have larger values of the neighborhood radius 

during the early training of the network so that the topological ordering of the 

network can be possible. Subsequent reduction of neighborhood radius then helps 

to refine the cluster formation. This interplay determines the accuracy and 

generalization capability of the SOM [14-18]. 
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Maximum iteration number used in the training phase is an important parameter. 

During the training phase of SOM, training vectors are selected in random order 

for updating the weights of the map. Using each and every training vector only 

once corresponds to a complete iteration in SOM training phase. Maximum 

iteration number is set to 500 epochs in all design simulations in this thesis. This 

means that the whole database will be introduced to the SOM grid 500 times, but 

the individual training vectors of the database will be applied for training in a 

random order within each iteration. 

 

SOM training is usually performed in two phases; the ordering phase and the 

convergence phase. In the former phase, relatively large values for the initial 

learning rate and for the neighborhood radius are used. In the latter phase, both 

learning rate and neighborhood radius assume smaller and smaller values as the 

training process continues. 

As SOM is an unsupervised learning algorithm, there have to be no supervision 

provided during the training phase. Once the training parameters are fixed at the 

beginning and the SOM grid is initialized by assigning completely random weight 

vectors to all neurons, there will be no further control on any of the training steps 

in the SOM classifier design simulations.  

 

Desing of an electromagnetic target classifier using the SOM technique is a very 

challenging problem especially when the scattering objects are very similar to 

each other. The aspect and polarization dependent scattered signals of 

electromagnetic targets must be processed first for the extraction of proper target 

features. Then, the resulting aspect and polarization invariant features can be used 

as input vectors to train SOM classifiers. The next section will present an outline 

for the Wigner Distrubution based target feature extraction technique which is 

used in this thesis succesfully.   
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2.2  Target Feature Extraction Using Wigner Distribution 

 

Although the main emphasis of this thesis is not the Wigner Distrubution based 

feature extraction technique, the basic theory behind this approach will be outlined 

in this section for the sake of completeness.   

 

In Chapter 3 and Chapter 4, classifier design simulations will be presented for two 

different classes of electromagnetic targets, dielectric spheres and conducting 

small-scaled model aircraft, respectively. The input data vectors used to train the 

SOM based classifiers need to be extracted from time-domain scattered target 

responses of such targets by using the Wigner Distrubution (WD) for efficient 

SOM training. The need for this preprocessing can be explained as follows: As 

mentioned in the Introduction chapter, electromagnetic target classification from 

scattered target signatures is a very challenging pattern recognition problem where 

the patterns to be classified are not only functions of time and frequency but they 

are also strong functions of aspect angles and polarization. A successful feature 

extraction technique must produce target features with low aspect/polarization 

sensitivity so that signals scattered from the same target at different angles can be 

closely matched with each other. Also, the extracted features must be highly 

sensitive to geometrical and physical properties of the associated target to be able 

to discriminate this target from the other similar targets of concern [4]. System 

poles (called also as complex natural resonance frequencies) of a given target are 

determined by the geometrical and electrical properties of that target and they 

characterize this target in an aspect and polarization invariant manner. Therefore, 

target features related to system poles are, in general, found quite useful in 

electromagnetic target recognition problems [1-5] and the WD based target feature 

extraction technique has been demonstrated recently to be very successful in 

characterizing electromagnetic scatteres [3, 6].  
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2.2.1. Wigner Distrubution and the Formation of Late-Time Feature 

Vectors 

 

In this thesis, the input vectors which are used to train the SOM based target 

classifiers are obtained as follows: First, a raw database of time-domain scattered 

signals are generated for each library target at a set of pre-determined aspect 

angles. Each of these signals are recorded over a common time span and their 

spectra are generated over the same frequency bandwidth. Total energy of each 

scattered signal is also normalized to unity prior to the computation of their 

Wigner-Ville distributions. The Wigner-Ville distribution is a real-valued, 

quadratic time–frequency representation preserving time shifts and frequency 

shifts of the signal and its output represents an approximate energy density 

function over the joint time-frequency plane. The auto-WD of a given time 

domain signal )(tx is expressed as [20]; 

𝑊𝑥 𝑡, 𝑓 =   𝑥(𝑡 +
𝜏

2
)𝑥∗(𝑡 −

𝜏

2
)𝑒−𝑗2𝜋𝑓𝜏

𝜏
𝑑𝜏                             (2.4)  

where the superscript (*) denotes complex conjugation. The integral of WD 

output, 𝑊𝑥 𝑡, 𝑓 , computed over frequency corresponds to the signal’s 

instantaneous power as 

 𝑊𝑥𝑓
 𝑡, 𝑓 𝑑𝑓 = =  𝑥 𝑡  2                                            (2.5)  

Similarly, the integral of 𝑊𝑥 𝑡, 𝑓  computed over time gives the spectral energy 

density of the signal as 

 𝑊𝑥𝑡
 𝑡, 𝑓 𝑑𝑡 =  𝑃𝑥 𝑓 =  𝑋 𝑓  2                                           (2.6) 

where 𝑋 𝑓  is the Fourier transform of the signal 𝑥 𝑡 . The WD output does not 

give an exact time-frequency energy density function defined at every point in the 

time-frequency plane. As explained by the uncertainty principle, it is not possible 

to have infinite resolution in both time and frequency simultaneously [20]. 

Accordingly, the WD outputs contain very strong and highly oscillatory 
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interference terms that may seriously deteriorate the identification capability of the 

classifier. Due to these oscillatory interference terms, the WD outputs may have 

negative values which cannot be interpreted as energy density terms. Therefore, 

these non-physical negative values in the WD output matrix are simply replaced 

by zeros to obtain a modified WD output as;  

𝑊𝑥
  𝑡, 𝑓 =  

𝑊𝑥  𝑡,𝑓 +     (𝑊𝑥  𝑡,𝑓  

2
                                           (2.7) 

as suggested in [3]. 

The modified auto WD output is further processed to obtain a partitioned energy 

density vector which is indirectly related to target poles. In obtaining this target 

feature for a given target at a given aspect, the total time span 𝑇0  of the scattered 

target signal is divided into 𝑄 time bands (each having equal lengths of  𝑇0/𝑄 

seconds) as the first step. Spectral distrubution of partial energy packets confined 

to each of these non-overlaping subintervals is computed to construct an 

intermediate feature vector. The amount of signal energy contributed to 

subinterval 𝑞 by a spectral component at   𝑓 = 𝑓𝑚 =
 𝑚−1 

2𝑇0
    [3, 4] is; 

 

𝐸𝑞 𝑓𝑚 =   𝑊𝑥 𝑡, 𝑓𝑚  𝑑𝑡         𝑓𝑜𝑟 𝑞 = 1,2,3 … . . 𝑄
𝑞∆

(𝑞−1)∆
                         (2.8) 

 

where  ∆=
𝑇0

𝑄
    and , 𝑚 = 1,2, … ,

𝑁

2
. 

As all the scattered signals 𝑥 𝑡  are real-valued, the WD output matrix has even 

symmetry with respect to frequency. Therefore it is enough to process only half of 

the WD output matrix for non-zero frequency samples, i.e. for , 𝑚 = 1,2, … ,
𝑁

2
 .  

Then, the spectral distrubution of the partial signal energy confined to the 

subinterval q can be expressed in vector form as [4]; 
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𝐸𝑞= 𝐸𝑞 𝑓1   𝐸𝑞 𝑓2   …   𝐸𝑞  𝑓𝑁

2

                                               (2.9)                       

 

As there are Q non-overlapping time bands altogether, the partitioned energy 

density vector 𝐸  is formed as 

𝐸 = [ 𝐸1
      𝐸2

       …   𝐸𝑄
     ]                                                  (2.10) 

      

having the length of  (
𝑁

2
∗ 𝑄). 

 

This operation is performed over the total time span of input signals. To capture 

the behavior of natural resonance components in the late-time region, only a 

couple of successive partitions of 𝐸  vector can be used to  construct the 

corresponding late-time feature  vector (LTFV). If we choose two successive time 

bands (𝑞 and 𝑞 + 1) or (𝑞 − 1 and 𝑞) for feature vector construction to include the 

pair 𝐸 𝑞  and 𝐸 𝑞+1 or the pair 𝐸 𝑞−1 and 𝐸 𝑞 , the resulting energy feature vector 

contains information also about the real parts of the natural resonance frequencies. 

The resulting 2-band aspect dependent feature vectors are called Late-Time 

Feature Vectors (LTFV). One of the most important steps of the classifier design 

is the selection of the optimal late-time interval for classification. In other words, 

we need to determine the late-time interval index  𝑞∗  which corresponds to two 

successive time bands (𝑞 and 𝑞 + 1) or, (𝑞 − 1 and 𝑞). The value of  𝑞∗  can be 

determined by maximizing the Correct Classification Factor (CCF) given in 

Equation (2.11) for a pre-selected 𝑄 value [4]. The value of the parameters 𝑄 and 

𝑞∗ of classifier design are decided by using scattered data only at the reference 

aspects.  

 

𝐶𝐶𝐹 𝑞∗ =  
1

𝑀𝑡𝑎𝑟 𝐾2
 𝑟𝑖 ,𝑗

𝑚𝑎𝑡𝑐 ℎ𝑒𝑑
𝑖 ,𝑗 −  

1

(𝑀𝑡𝑎𝑟
2 −𝑀𝑡𝑎𝑟 )𝐾2

 𝑟𝑖 ,𝑗
𝑚𝑖𝑠𝑚𝑎𝑡𝑐 ℎ𝑒𝑑

𝑖 ,𝑗       (2.11) 
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where  𝑀𝑡𝑎𝑟   is the number of targets and K is the number of reference aspects, 

𝑟𝑖 ,𝑗
𝑚𝑎𝑡𝑐 ℎ𝑒𝑑

 
is the correlation coefficient between any two LTFVs which belong to 

the same target at different aspects,  𝑟𝑖 ,𝑗
𝑚𝑖𝑠𝑚𝑎𝑡𝑐 ℎ𝑒𝑑  is the correlation coefficient 

between any two LTFVs which belong to different targets. The index 𝑞∗ is chosen 

from the possible values 𝑞∗ =1,2…Q-1.  

 

In the classifier design simulations of this thesis, the first step of target classifier 

design will be the computation of the optimal late-time design interval by using 

the previously computed partitioned energy density vectors [4, 6].The optimal 

design interval is also a function of the SNR level of the database signals. 

Therefore, determination of the optimal design interval should be repeated all over 

again for each SNR design level before the late-time feature vectors are computed. 

Then, these LTFVs can be used to train the SOM classifiers as to be demonstrated 

in the application chapters.  
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CHAPTER 3 

 

DESIGN OF SOM CLASSIFIERS FOR DIELECTRIC SPHERES 

 

 

In this chapter, SOM type electromagnetic target classifiers will be designed for 

three different target libraries TL1, TL2 and TL3 which contain two, three and 

four dielectric spheres, respectively, as shown in Table 3.1. The lossless dielectric 

spheres S1, S2, S3 and S4 are very similar to each other as they have exactly the 

same shape and the same size with radii of 10 cm and their relative permittivity 

values  6,5,4,3r  are all close to each other. Although these spheres have 

simple geometrical features, they are challenging targets as electromagnetic waves 

can penetrate into such perfect dielectric objects to create very complicated 

internal resonance mechanisms. Therefore, late-time scattered signals of these 

dielectric spheres may contain many damped sinusoidal signal components 

corresponding to a large number of complex conjugate target pole pairs. For each 

given dielectric sphere, its system poles are located quite densely along pole 

strings in the complex frequency plane [25, 26]. When the spheres are very similar 

to each other (as in the case of targets S1, S2, S3 and S4) certain pole values of 

one sphere may be very close to the pole values of other targets. This situation 

complicates the classification problem.  

 

As discussed in Chapter 2, target classifiers will be designed by training self-

organizing maps by means of Wigner Distribution (WD) based target feature 

vectors which are indirectly related to the aspect and polarization invariant system 

poles of the library targets [4]. The SOM Toolbox 2.0 developed by J. Vesanto 
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et.al will be utilized for sequential SOM training [20]. A couple of simple 

MATLAB codes developed during this thesis study will be used for classifier 

testing and for displaying the results in user friendly forms.  

 

For any given target library, the SOM classifier will be first designed by using 

noise-free reference data at a chosen set of reference aspect angles. Then, the 

resulting classifier will be tested for its accuracy rate at the signal-to-noise ratio 

(SNR) levels of infinity (the noise-free testing database case), 20 dB, 15 dB and 

10 dB to see if this classifier is robust under noisy testing conditions. If the noise 

performance of the SOM classifier is not found satisfactory, the design procedure 

will be repeated all over again by using slightly noisy (with SNR=20 dB) and 

moderately noisy (with SNR=10 dB) reference data. In each case, the resulting 

classifier will be tested against the same noisy feature database at the SNR levels 

of infinity, 20 dB, 15 dB and 10 dB. Usefulness of designing SOM classifiers by 

using noisy reference data will be evaluated based on the comparisons of resulting 

noise performances.  

 

Table 3.1 Descriptions of target libraries containing the same size lossless 

dielectric spheres with different permittivity values r 0 . 

Target Library Targets 

TL1 S1 (r=10 cm ,εr =3), S2 (r=10 cm , εr =4) 

TL2 S1 (r=10 cm , εr =3), S2 (r=10 cm , εr =4),  

S3 (r=10 cm , εr =5) 

TL3 S1 (r=10 cm , εr =3), S2 (r=10 cm , εr =4),  

S3 (r=10 cm , εr =5), S4 (r=10 cm , εr =6) 
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3.1  Description of Electromagnetic Scattered Data of Dielectric Spheres 

and Simulation Parameters Used in Classifier Design and Testing  

 

Time response waveforms of the dielectric spheres S1, S2, S3 and S4 are 

analytically synthesized in response to a plane wave excitation that is linearly 

polarized in x-direction and propagates in z-direction as described in Figure 3.1.a. 

 

 

 

 

 

              

                                                        (a) 

 

                         

 

 

 

                                (b)                                                                (c) 

Figure 3.1 (a) Problem geometry used to synthesize electromagnetic signals 

scattered from dielectric spheres. (b) Scattered response of the sphere S2, at θ=75 

degrees aspect angle with SNR = 20 dB SNR level. (c) LTFV of sphere S2, at the 

reference aspect angle θ =75º for 20 dB SNR level. 
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These far field scattered responses are computed at the Φ= π / 2 plane for different 

values of the angle θ in the frequency domain over a bandwidth from zero to 19.1 

GHz with frequency steps of Δf 37.3 MHz (i.e. at 512 frequency sample points) by 

using the analytical solutions provided in the reference [26]. These computations 

are performed at 13 different values of the bistatic aspect angle θb  where  θb =

 180o −  θ and the angle θ assumes the values θ = 5º, 15º, 30º, 45º, 60º, 75º, 90º, 

105º, 120º, 135º, 150º, 165º and 179º. Corresponding time domain responses of 

the library targets are computed by using the Inverse Fast Fourier Transformation 

(IFFT) of the windowed frequency-domain data at 1024 sample points in time 

over a total time span of sec8.260 nT  . As an example, Figure 3.1.b shows the 

scattered time-domain response of the target S2 at θ = 75º for SNR=20 dB level. 

 

Generally, a very large-size reference database is needed for training neural 

network based electromagnetic target classifiers at many different target aspects. 

For example, use of training data at more than 30 or 40 aspects are reported in 

literature to design neural network classifiers over an aspect range of only 90 

degrees [27]. However, this need is conveniently eliminated in the present thesis 

work as a result of the special feature extraction technique applied prior to SOM 

training. A total of only six reference aspects, which corresponds to θ = 5º, 30º, 

75º, 105º, 135º, 179º are used in designing classifiers through SOM training. 

These reference aspects are chosen to span the total θ range of 180 degrees in 

angular steps of about 30-40 degrees for efficient characterization of targets in this 

aspect dependent problem. The rest of the scattered database (at non-reference 

aspects) is used for performance testing only. 

 

As discussed in Chapter 2, the first step of target classifier design is to extract the 

WD based target feature vectors (LTFVs) over a common optimal late-time 

interval for each target at each reference aspect. Then, these normalized LTFVs 

are used to train the SOM. Selection of an optimal late-time interval for feature 
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extraction is a very important step. After the computation of discrete Wigner-Ville 

distributions and the corresponding energy density vectors for each reference 

scattered signal, the optimal late-time interval can be selected by using the 

optimization approach outlined in Chapter 2. This critical design interval is 

affected by the SNR level of the signals in the reference database. For example, 

combination of the late-time bands 11 and 12 are chosen (out of Q=16 equally-

wide non-overlapping time intervals) to determine the optimal design interval 

[16.8-20.1] nsec in the case of noise-free classifier design for the library target 

TL1 based on the correct classification factor (CCF) versus interval index (q) 

plot shown in Figure 3.2. The CCF values of this plot are computed for each time 

interval index q =1, …, Q-1 by using Equation 2.11 as discussed in Chapter 2.  

 

Figure 3.2 The CCF versus q* plot generated to determine the optimal late-time 

design interval for the target library TL1 in the case of  noise-free classifier 

design. 

 

For the classifiers designed for the target library TL1 with noisy reference 

databases at the SNR levels of 20 dB and 10 dB, the optimal late-time design 

intervals are found to be [16.8-20.1] nsec and [9.8-13.0] nsec, respectively, based 

on the CCF versus q* plots shown in parts (a) and (b) of Figure 3.3.  
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After selecting the optimal design interval and computing the late-time feature 

vectors (LTFVs) over this interval, the reference feature database of the classifier 

is constructed as the collection of all these LTFVs, which will be used to train the 

SOM classifier. As an example, LTFV of sphere S2, at the reference aspect angle 

θ=75º for 20 dB SNR level, extracted over the optimal late time interval [16.8-

20.1] is shown in Figure 3.1.c. 

 

(a)                                                                  (b) 

 Figure 3.3 The CCF versus q* plot generated to determine the optimal late-time 

design interval for the target library TL2 in the case of  (a) SNR level of 20 dB 

and (b) SNR level of 10 dB classifier designs. 

 

As mentioned in Chapter 2, a SOM consists of neurons organized on a regular 

low-dimensional grid and there are important structural parameters involved in 

SOM training. Before reporting the details of SOM classifier design and test 

simulations for different target libraries, it would be better to outline the common 

types and/or common values of the structural parameters used in SOM training. 

Size of the SOM grid and radius of the neighborhood function may change from 

one design simulation to another but the other SOM parameters will remain the 

same for all simulations to be reported in this chapter.  
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Firstly, the SOM is initialized with randomly generated weight vectors assigned to 

each and every neuron over a planar square grid of size N by N. The length of 

each weight vector is equal to the length of the WD based feature vectors (LTFVs) 

of the feature database. In this chapter, WD based target features have the length 

1024 for all dielectric spheres at all target aspects. After the initialization, 

sequential SOM training will be accomplished in two steps; target features at the 

reference aspects θ = 30º, 75º, 105º, and 135º will be used in the first step of 

training and then, those at reference aspects  θ = 5º and 179º will be added to 

training feature database in the second step. Based on experience, this two-step 

training is found useful to improve the performance of classifier at those aspects 

close to θ = 0º and 180º boundaries.   

 

Also, the maximum number of iterations will be 500 epochs, initial learning rate 

will be 0.5, and the Gaussian type neigborhood function is used in all design 

simulations. 

 

 

3.2 Design of SOM Classifiers for the Target Library TL1 of Two 

Dielectric Spheres 

 

In this subsection, three different SOM classifiers will be designed for the simplest 

target library of only two dielectric spheres S1 (r=10 cm, ε =3), S2 (r=10 cm, ε 

=4). The first classifier will be designed by using noise-free reference data and it 

will be tested at all non-reference aspects for the SNR levels of infinity, 20 dB, 15 

dB and 10 dB. Secondly, slightly noisy reference data at 20 dB SNR level will be 

used in SOM training. The resulting classifier will also be tested at the SNR levels 

of infinity, 20 dB, 15 dB, 10 dB. Finally, the similar classifier design and test 

simulations will be repeated while using the reference data at a moderate noise 

level of 10 dB for SOM training. 
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3.2.1. Classifier Simulation #1: Design of a SOM Classifier Using Noise-

Free  Reference Data for the Target Library TL1 with Spheres S1 

and S2 

 

As indicated in Section 3.1, this classifier is designed over the late-time interval  

[16.8-20.1] nsec using noise-free scattered data of spheres S1 and S2 at the 

reference aspects θ = 5º, 30º, 75º, 105º, 135º, 179º. The LTFV features extracted 

for both dielectric spheres at these bistatic aspects are used to train a SOM grid of 

size [12x12]. The SOM is initialized randomly at the beginning and the radius of 

the Gaussian neighborhood function is chosen to decrease from 7 to 3 during 

iterations. Sequential training of the SOM is completed after 500 epochs. During 

this training, a total of 12 training features (for 2 targets at 6 reference aspects) are 

selected in random order to train the self organizing map. When the training phase 

is completed, the resulting SOM output with 12x12=144 weight vectors (each 

having the length of 1024) is saved as the classifier design matrix of size 

144x1024. Figure 3.4 shows the contour plot of the norms of the trained weight 

vectors over the SOM grid of size 12x12. It is seen in this figure that two separate 

cluster regions are formed at the lower-left and the upper-right corners of the SOM 

output grid corresponding to the targets S1 and S2, respectively. The cluster 

region for the target S1, for example, is formed by the weight vectors whose 

distances to the LTFVs of the target S1 at all reference aspects are very small. 

This fact is more clearly shown in Figure 3.5 where the winning neuron locations 

for the training target features belonging to each dielectric sphere are marked on 

this SOM output. Although two different cluster regions can be clearly observed 

on this SOM output map, it is still necessary to draw the boundary curve 

separating these two regions over the map. In fact, there is no definite rule to 

divide the whole map into two well-defined regions as “the S1 region” and “the S2 

region”. Such a separation is needed, however, during the test phase to classify an 

“unknown” target.  When a scattered signal is received from a test target, the first 

thing to do is to extract the late-time feature vector (LTFV) from this test signal 
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over the previously selected optimal late-time design interval. Then, the distance 

of this feature vector to each weight vector is computed (in the L2 norm sense) 

at144 neuron locations. The target cluster region containing the winning test 

neuron determines the class of this test target.    

 

Among many others, three rules can be defined to determine the cluster boundary 

for the SOM output as shown in Figure 3.5: 

 

i) Rule 1: The cluster boundary is drawn as the dot-dashed red curve 

which passes through the neuron locations with smallest norm 

values.  

 

ii) Rule 2: The cluster boundary is drawn as the dashed orange curve 

which passes through the midpoints of closest training winning 

neurons from different clusters. For example, one such midpoint is 

obtained for the neuron locations for 05/1S  and 0179/2S  training 

features. Another example point on the border curve is the midpoint 

of winning neurons for  030/1S  and  0179/2S  training features. 

 

 

iii) Rule 3: Cluster boundary curves drawn in black leave a wide 

neutral region in between two target cluster regions. These black 

boundaries pass through neuron locations at which the weight 

norms do not have to be very close to the absolute minimum but 

they need to be sufficiently small. Obviously, “sufficiently small” 

is a vague definition and depends on the subjective decision of the 

designer.  
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While testing the performance of Classifier #1 designed in this first simulation, all 

three of the cluster boundaries shown in Figure 3.5 will be used to compute the 

corresponding accuracy rates of the classifier to choose the best fitting boundary 

curve. 

 

The SOM based Classifier #1 is tested first with noise-free target features at seven 

non-reference aspects. Locations of the winning neurons for these tests are marked 

in Figure 3.6 with a correct decision rate of 93 percent based on the black cluster 

boundary. The only incorrect classification decision is made for the sphere S1 at 

15 degrees aspect angle. As a matter of fact, the winning neuron for this test 

feature falls in the neutral region in between the two target cluster regions. 

Therefore, the target is not incorrectly labeled but the classifier can not classify 

this target with certainty. The accuracy rate of 100 percent is obtained, on the 

other hand, based on the orange and red cluster boundaries.  

 

Figure 3.4 SOM output trained by the noise-free WD-based late time energy 

feature vectors of the dielectric spheres S1 and S2. 
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Figure 3.5 Winning neuron locations for the training features of  spheres S1 (blue 

circles),  S2 (magenta crosses) and three possible boundary curves to separate the 

cluster regions for S1 and S2 over the SOM output grid for the Classifier #1. 

 

Figure 3.6 SOM Classifier #1 tested by noise-free feature vectors of the spheres 

S1 (blue circles) and S2 (magenta crosses), using three different cluster boundaries 

drawn by Rule 1 (red curve), Rule 2 (orange curve) and Rule 3 (black curve). 
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Next, the Classifier #1 is tested by noisy feature vectors at 20 dB, 15 dB and 10 

dB SNR levels. As the feature vectors at reference aspects are not the same as 

their noise-free counterparts anymore, Classifier #1 is tested with a total of 26 

noisy features (for two targets at 13 aspects) under noisy conditions. Locations of 

the testing winning neurons are marked in Figure 3.7, Figure 3.8 and Figure 3.9 

for the SNR levels of 20 dB, 15 dB and 10 dB, respectively. The correct 

classification rates computed at each testing SNR level for each type of cluster 

boundary are listed in Table 3.2 and also plotted in Figure 3.10. Table 3.2 also 

gives the accuracy rates obtained over a restricted bistatic aspect range excluding 

 = 5, 15, 165 and 179 degree cases because most of the classification errors occur 

at those aspects close to the ends of the overall aspect range. In general, the 

accuracy rate of the classifier decreases as the testing SNR level gets smaller, as 

expected.   

 

Figure 3.7 SOM Classifier #1 tested by noisy feature vectors of  spheres S1 (blue 

circles) and S2 (magenta crosses) at 20 dB SNR level, using three different cluster 

boundaries drawn by Rule 1 (red curve), Rule 2 (orange curve) and Rule 3 (black 

curve). 



 30 

 

Figure 3.8 SOM Classifier #1 tested by noisy feature vectors of  spheres S1 (blue 

circles) and S2 (magenta crosses) at 15 dB SNR level, using three different cluster 

boundaries drawn by Rule 1 (red curve), Rule 2 (orange curve) and Rule 3 (black 

curve). 

 

Figure 3.9 SOM Classifier #1 tested by noisy feature vectors S1 (blue circles) and 

S2 (magenta crosses) at 10 dB SNR level, using three different cluster boundaries 

drawn by Rule 1 (red curve), Rule 2 (orange curve) and Rule 3 (black curve).  
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Table 3.2 Correct decision rates for the Classifier #1 at different testing SNR 

levels for each type of cluster boundary. 

Black Orange Red Black Orange Red

Noise Free 93 100 100 100 100 100

20 dB 46 77 88 56 89 100

15 dB 15 69 84 17 78 88

10 dB 4 38 62 6 50 67

For 5º ≤ θ ≤ 179º For 15º < θ< 165º 

Type Of Cluster Boundaries and  θ Ranges

SNR

 

 

As it seen clearly from Figure 3.10 and Table 3.2, the SOM based Classifier #1, 

which is designed by noise-free reference data, can successfully discriminate the 

spheres S1 and S2 under low noise testing conditions but its performance degrades 

as the testing SNR decreases. In the next section, a new classifier will be designed 

for the same target library TL1 (of dielectric spheres S1 and S2) by using slightly 

noisy reference data at 20 dB SNR level to improve the classification performance 

at lower testing SNR values.  

 

 

Figure 3.10 Correct classification rates computed for the Classifier #1 at various 

testing SNR levels at all aspects for different cluster boundaries, red curve for  

Rule 1, orange curve for Rule 2 and black curve for Rule 3. 
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It is also concluded based on the results shown in Figure 3.10 and Table 3.2 that 

the best way to separate target clusters on the SOM output grid is to use a locus of 

neurons with minimum weight norms. In cases when this is not possible, the 

cluster boundaries can be constructed by using the midpoints of closest training 

winning neurons of different target clusters.  These approaches will be used in the 

classifier design simulations in the rest of this thesis. 

 

 

3.2.2. Classifier Simulation #2: Design of a SOM Classifier Using Slightly 

Noisy (SNR Level of 20 dB) Reference Data for the Target Library 

TL1 with spheres S1 and S2 

 

The classifier of this simulation is designed over the late-time interval  [16.8-20.1] 

nsec using slightly noisy (SNR level of 20 dB) scattered data of spheres S1 and S2 

at the reference aspects θ = 5º, 30º, 75º, 105º, 135º, 179º, with the same design 

parameters used in Classifier Simulation #1. The optimal late-time intervals of the 

first and second classifier design simulations are turned out to be the same. When 

the training phase is completed, the resulting SOM output with 12x12=144 weight 

vectors (each having the length of 1024) is saved as the classifier design matrix of 

size 144x1024. Figure 3.11 shows the contour plot of the norms of the trained 

weight vectors over the SOM grid of size 12x12.  
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Figure 3.11 SOM output trained by slightly noisy (at the SNR level of 20 dB)  

WD-based late time energy feature vectors of the dielectric spheres S1 and S2. 

 

It is seen in Figure 3.11 that, it is difficult to separate cluster regions by using 

neuron locations with smallest norm values only, so the cluster boundary is 

instead constructed by using the midpoints of closest training winning neurons of 

different target clusters also in other words, the Rule 1 and the Rule 2 are used 

together in selecting the cluster boundary in this design example. The winning 

neuron locations for the training target features belonging to each dielectric sphere 

are marked on the SOM output in Figure 3.12.   
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Figure 3.12 Winning neuron locations for the training features of  spheres S1 (blue 

circles) and S2 (magenta crosses) and the boundary curve to separate the cluster 

regions for S1 and S2 over the SOM output grid for the Classifier #2.  

 

Next, the Classifier #2 is tested with a total of 26 features (for two targets at 13 

aspects) under noise free and noisy conditions with SNR level of 15 dB and 10 

dB. It is also, tested with SNR level of 20 dB noisy target features at seven non-

reference aspects. Locations of the testing winning neurons are marked in Figure 

3.13, Figure 3.14, Figure 3.15, and Figure 3.16 for the SNR levels of infinity, 20 

dB, 15 dB and 10 dB, respectively. The correct classification rates computed at 

each testing SNR level for each type of cluster boundary are listed in Table 3.3 

and also plotted in Figure 3.17 Table 3.3 also gives the accuracy rates obtained 

over a restricted bistatic aspect range excluding  = 5, 15, 165 and 179 degree 

cases. 
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 Figure 3.13 SOM Classifier #2 tested by noise-free feature vectors of  spheres S1 

(blue circles) and S2 (magenta crosses).  

 

 

 

Figure 3.14 SOM Classifier #2 tested by noisy feature vectors of  spheres S1 (blue 

circles) and S2 (magenta crosses) at 20 dB SNR level.  
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Figure 3.15 SOM Classifier #2 tested by noisy feature vectors of  spheres S1 (blue 

circles) and S2 (magenta crosses) at 15 dB SNR level.  

 

 

Figure 3.16 SOM Classifier #2 tested by noisy feature vectors of  spheres S1 (blue 

circles) and S2 (magenta crosses) at 10 dB SNR level. 
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Table 3.3. Correct decision rates for the Classifier #2 at different testing SNR 

levels. 

For 5º ≤ θ ≤ 179º For 15º < θ< 165º 

Noise Free 100 100

20 dB 93 100

15 dB 92 100

10 dB 77 83

SNR

Type Of θ Ranges

 

 

 

 

Figure 3.17 Correct classification rates computed for the Classifier #2 at various 

testing SNR levels.  

 

Based on the correct decision rates reported in Table 3.2 and Table 3.3, it is 

clearly seen that Classifier #2 displays a much better noise performance as 

compared to Classifier #1. Using slightly noisy data in SOM classifier design 

helps improving the classifier performance.  
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3.2.3. Classifier Simulation #3: Design of a SOM Classifier Using 

Moderately Noisy (SNR Level of 10 dB) Reference Data for the 

Target Library TL1 with spheres S1 and S2 

 

The optimal late-time interval is found to be [9,8-13.0] nsec for the design of 

Classifier #3 while using noise-free scattered data of spheres S1 and S2 at the 

reference aspects θ = 5º, 30º, 75º, 105º, 135º, 179º. After the classifier training 

phase is completed, the resulting SOM output with 12x12=144 weight vectors 

(each having the length of 1024) is saved as the classifier design matrix of size 

144x1024. Figure 3.18 shows the contour plot of the norms of the trained weight 

vectors over the SOM grid of size 12x12.  

 

Figure 3.18. SOM output trained by noisy (at SNR level of 10 dB) WD-based late 

time energy feature vectors of the dielectric spheres S1 and S2. 

 

The cluster boundary is constructed by using the midpoints of closest training 

winning neurons of different targets as shown in Figure 3.19. The winning neuron 

locations for the training target features belonging to each dielectric sphere are 

marked on the SOM output shown in this figure. Then, the Classifier #3 is tested 

at the SNR level of infinity, 20 dB, 15 dB and 10 dB. Locations of the testing 
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winning neurons are shown in Figure 3.20, Figure 3.21, Figure 3.22, and Figure 

3.23 for these SNR levels, respectively. The correct classification rates computed 

at each testing SNR level for Classifier #3 are listed in Table 3.4 and  plotted in 

Figure 3.24 

 

Figure 3.19. Winning neuron locations for the training features of  spheres S1 

(blue circles) and S2 (magenta crosses) and the boundary curve to separate the 

cluster regions for S1 and S2 over the SOM output grid for the Classifier #3.  

 

Figure 3.20. SOM Classifier #3 tested by noise-free feature vectors of  spheres S1 

(blue circles) and S2 (magenta crosses). 
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Figure 3.21. SOM Classifier #3 tested by noisy feature vectors of  spheres S1 

(blue circles) and S2 (magenta crosses) at 20 dB SNR level.  

 

 

Figure 3.22. SOM Classifier #3 tested by noisy feature vectors of  S1 (blue circles) 

and S2 (magenta crosses) at 15 dB SNR level.  
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Figure 3.23. SOM Classifier #3 tested by noisy feature vectors of  spheres S1 

(blue circles) and S2 (magenta crosses) at 10 dB SNR level. 

 

Table 3.4. Correct decision rates for the Classifier #3 at different testing SNR 

levels for each type of cluster boundary. 

For 5º ≤ θ ≤ 179º For 15º < θ< 165º 

Noise Free 50 50

20 dB 58 50

15 dB 65 72

10 dB 86 92

SNR

Type Of θ Range

 

 

Correct classification rate of Classifier #3 is found acceptable only at the design 

SNR of 10 dB as shown in Table 3.4. When this classifier is tested by noise-free 

data, the accuracy rate turned out to be only 50 percent. Therefore, we can 

conclude that too much noise in training data results in an unsuccesful SOM 

classifier design.  
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Figure 3.24.  Correct classification rates computed for the Classifier #3 at various 

testing SNR levels 

Finally, the correct classification rates of all three classifiers, Classifier #1 

(designed by noise-free data), Classifier #2 (designed by slightly noisy data at 20 

dB SNR level) and Classifier #3 (designed by moderately noisy data at 10 dB 

SNR level) are compared in Figure 3.25. Classifier #2 turns out to be the best 

classifier while Classifier #3 if found almost useless. The accuracy rates of 

Classifier #1 and Classifier #2 degrades as the testing SNR gets smaller as 

expected. 

In conclusion, design of a SOM classifier with slightly noisy reference data is 

found usefull in the 2-target classifiers of this section. 

 

Figure 3.25.  Correct classification rates computed for the Classifier #1, Classifier 

# 2 and Classifier #3 at various testing SNR levels for the aspect range 5º < θ< 

179º 
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3.3 Design of SOM Classifiers for the Target Library TL2 of Three 

Dielectric Spheres 

In this subsection, three different SOM classifiers will be designed for the target 

library TL2 which contains three dielectric spheres S1 (r=10 cm ,ε =3), S2 (r=10 

cm, ε =4) and S3 (r=10 cm, ε =5). The first classifier will be designed by using 

noise-free reference data and it will be tested at the SNR levels of infinity, 20 dB, 

15 dB and 10 dB. Secondly, slightly noisy reference data at 20 dB SNR level will 

be used in SOM training. The resulting classifier will also be tested at the SNR 

levels of infinity, 20 dB, 15 dB, 10 dB. Finally, the similar classifier design and 

test simulations will be repeated while using the reference data at a moderate noise 

level of 10 dB for SOM training. 

 

The optimal late-time intervals for classifier design are determined based on the 

CCF versus q* plots shown in Figure 3.26 for noise-free design case, in Figure 

3.27.(a) for SNR=20 dB design and in Figure 3.27.(b) for SNR=10 dB design. The 

resulting design intervals are found to be [16.8-20.1] nsec for both noise free and 

SNR=20 dB cases. The optimal interval shifts to [9.8-13.0] nsec for classifier 

design at 10 dB SNR. 

 

 

Figure 3.26 The CCF versus q* plot generated to determine the optimal late-time 

design interval for the target library TL2 in the case of noise-free classifier design. 
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(a)                                                                    (b) 

 Figure 3.27 The CCF versus q* plot generated to determine the optimal late-time 

design interval for the target library TL2 in the case of  (a) SNR level of 20 dB 

and (b) SNR level of 10 dB classifier designs. 

 

3.3.1. Classifier Simulation #4: Design of a SOM Classifier Using Noise-

Free Reference Data for the Target Library TL2 with Spheres S1, S2 

and S3 

 

This classifier is designed over the late-time interval  [16.8-20.1] nsec using noise-

free scattered data of spheres S1,S2 and S3 at the reference aspects θ = 5º, 30º, 

75º, 105º, 135º, 179º. The LTFV features extracted for all three dielectric spheres 

at these reference aspects are used to train a SOM grid of size [21x21]. The SOM 

is initialized randomly at the beginning and the radius of the Gaussian 

neighborhood function is chosen to decrease from 10 to 7 during iterations. 

Sequential training of the SOM is completed after 500 epochs. During this 

training, a total of 18 training features (for 3 targets at 6 reference aspects) are 

selected in random order to train the self organizing map. When the training phase 

is completed, the resulting SOM output with 21x21=441 weight vectors (each 
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having the length of 1024) is saved as the classifier design matrix of size 

441x1024. Figure 3.28 shows the contour plot of the norms of the trained weight 

vectors over the SOM grid of size 21x21 . 

 

 

Figure 3.28 SOM output trained by the noise-free WD-based late time energy 

feature vectors of the dielectric spheres S1,S2 and S3. 

 

 It is seen in this figure that three separate cluster regions are formed at the lower-

left and lower-right corners and along the upper side of the SOM output grid 

corresponding to the targets S3, S2 and S1, respectively. The winning neuron 

locations for the training target features belonging to each dielectric sphere are 

marked on the SOM output map as shown in Figure 3.29. The cluster boundary is 

convinently constructed by using the locus of neurons with minimum weight 

norms as shown in this figure.   

 

The SOM based Classifier #4 is tested first with noise-free target features at seven 

non-reference aspects. Locations of the winning neurons for these tests are marked 

in Figure 3.30 with a correct decision rate of 100 percent. 
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Figure 3.29 Winning neuron locations for the training features of  spheres S1 (blue 

circles), S2 (magenta crosses) and S3 (red plus signs) over the SOM output grid 

for the Classifier #4.  

 

 

Figure 3.30 SOM Classifier #4 tested by noise-free feature vectors of  spheres S1 

(blue circles), S2 (magenta crosses) and S3 (red plus signs).  



 47 

Then, the Classifier #4 is tested at by noisy feature vectors at 20 dB, 15 dB and 10 

dB SNR levels at all aspects. Locations of the testing winning neurons are marked 

in Figure 3.31, Figure 3.32 and Figure 3.33 for the SNR levels of 20 dB, 15 dB 

and 10 dB, respectively. The correct classification rates computed at each testing 

SNR level are listed in Table 3.5 and these rates are also plotted in Figure 3.34. 

Table 3.5 reports the accuracy rates obtained over a restricted aspect range 

excluding the test cases for  = 5, 15, 165 and 179 degree cases because most of 

the classification errors occur at those aspects which are close to the ends of the 

overall aspect range.  

 

 

 

Figure 3.31 SOM Classifier #4 tested by noisy feature vectors of  spheres S1 (blue 

circles), S2 (magenta crosses) and S3 (red plus signs)  at 20 dB SNR level. 
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Figure 3.32 SOM Classifier #4 tested by noisy feature vectors of  spheres S1 (blue 

circles), S2 (magenta crosses) and S3 (red plus signs)  at 15 dB SNR level. 

 

 

Figure 3.33 SOM Classifier #4 tested by noisy feature vectors of  spheres S1 (blue 

circles), S2 (magenta crosses) and S3 (red plus signs) at 10 dB SNR level. 
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Table 3.5 Correct decision rates for the Classifier #4 at different testing SNR 

levels. 

For 5º ≤ θ ≤ 179º For 15º < θ< 165º 

Noise Free 100 100

20 dB 92 100

15 dB 80 89

10 dB 54 59

SNR

Type Of θ Range

 

 

 

Figure 3.34 Correct classification rates computed for the Classifier #4 at various 

testing SNR levels. 

 

As it seen clearly from Figure 3.34 and Table 3.5, the SOM based Classifier #4, 

which is designed by noise-free reference data, can successfully discriminate the 

spheres S1, S2 and S3 under low noise testing conditions but its performance 

degrades sharply as the testing SNR decreases, as also observed in the case of 2-

Sphere Classifiers. In the next section, a new classifier will be designed for the 

same target library TL2 (of dielectric spheres S1, S2 and S3) by using slightly 

noisy reference data at 20 dB SNR level to improve the classification performance 

at lower testing SNR values.  
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3.3.2. Classifier Simulation #5: Design of a SOM Classifier Using Slightly 

Noisy (SNR Level of 20 dB) Reference Data for the Target Library 

TL2 of Spheres S1, S2 and S3 

 

Classifier #5 is designed over the late-time interval  [16.8-20.1] nsec using slightly 

noisy (SNR level of 20 dB) scattered data of spheres S1, S2 and S3 at the same 

reference aspects indicated in the previous simulations with default SOM design 

parameters. When the training phase is completed, the resulting SOM output with 

21x21=441 weight vectors (each having the length of 1024) is saved as the 

classifier design matrix of size 441x1024. Figure 3.35 shows the contour plot of 

the norms of the trained weight vectors over the SOM grid of size 21x21.  

 

Figure 3.35 SOM output trained by slightly noisy (SNR Level of 20 dB)  WD-

based late time energy feature vectors of the dielectric spheres S1, S2 and S3. 

 

The cluster boundary is constructed by using the midpoints of closest training 

winning neurons of different target clusters, as there is no natural cluster boundary 

implied in Figure 3.35. The winning neurons of all three spheres S1, S2, and S3 at 
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the training aspect of θ = 5º fall in the same lower left corner location. Therefore, 

that cell is chosen to be the intersection point of two cluster boundary curves 

drawn in Figure 3.36. The winning neuron locations of the reference features are 

also marked on this figure.  

 

Figure 3.36 Winning neuron locations for the training features for spheres S1 (blue 

circles), S2 (magenta crosses) and S3 (red plus signs) over the SOM output grid 

for Classifier #5.  

Next, Classifier #5 is tested with a total of 39 features (for three targets at 13 

aspects) under noise free conditions and under noisy conditions with SNR levels 

of 15 dB and 10 dB. This classifier is also, tested with SNR level of 20 dB noisy 

target features at seven non-reference aspects. Locations of the testing winning 

neurons are marked in Figure 3.37, Figure 3.38, Figure 3.39 and Figure 3.40 for 

the testing SNR levels of infinity, 20 dB, 15 dB and 10 dB, respectively. The 

correct classification rates computed at each testing SNR level are listed in Table 

3.6 and also plotted in Figure 3.41.  

The correct classification rate of Classifier #5 is found to be 92 percent under 

noise-free testing. The test targets are discriminated clearly except the sphere S2 at 

θ =5º, 15º and 165º cases. 
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The winning test neurons of the sphere S1 are well localized on the upper left 

corner of the SOM grid. Most of the testing winning neurons for the sphere S2 are 

found on the lower right corner while most of the testing winning neurons of 

sphere S3 are localized on the upper right corner, as shown in Figure 3.37.   

Figure 3.37 SOM Classifier #5 tested by noise-free feature vectors of  spheres S1 

(blue circles), S2 (magenta crosses) and S3 (red plus sign).  

Figure 3.38 SOM Classifier #5 tested by noisy feature vectors of spheres S1 (blue 

circles), S2 (magenta crosses) and S3 (red plus sign) at 20 dB SNR level. 
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Accuracy rate of the Classifier #5 is found to be 86 percent at 20 dB testing SNR 

which is the same SNR level used for the design of this classifier. The only 

incorrect classification decisions are made for the spheres S1, S2 and S3 at 15 

degrees aspect angle at this slightly noisy scenario as shown in Figure 3.38. 

 Figure 3.39 SOM Classifier #5 tested by noisy feature vectors of  spheres S1 

(blue circles), S2 (magenta crosses) and S3 (red plus signs) at 15 dB SNR level. 

 

              Figure 3.40 SOM Classifier #5 tested by noisy feature vectors of  spheres 

S1 (blue circles), S2 (magenta crosses) and S3 (red plus signs) at 10 dB SNR 

level. 



 54 

Table 3.6 Correct decision rates for Classifier #5 at different testing SNR levels. 

For 5º ≤ θ ≤ 179º For 15º < θ< 165º 

Noise Free 92 100

20 dB 86 100

15 dB 67 78

10 dB 33 37

SNR

Type Of θ Range

 

 

Figure 3.41 Correct classification rates computed for Classifier #5 at various 

testing SNR levels.  

 

The accuracy rate of the classifier is found around 67 percent at 15 dB testing 

SNR and it becomes too low for 10 dB SNR testing level. 

 

3.3.3. Classifier Simulation #6: Design of a SOM Classifier Using 

Moderately Noisy (SNR Level of 10 dB) Reference Data for the 

Target Library TL2 of Spheres S1, S2 and S3 

 

Classifier #6 is designed over the late-time interval [9,8-13.0] nsec using  SNR=10 

dB scattered data of spheres S1, S2 and S3 at the reference aspects θ = 5º, 30º, 75º, 
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105º, 135º, 179º. When the training phase is completed, the resulting SOM output 

with 21x21=144 weight vectors (each having the length of 1024) is saved as the 

classifier design matrix of size 441x1024. Figure 3.42 shows the contour plot of 

the norms of the trained weight vectors over the SOM grid of size 21x21.  

 

 

Figure 3.42. SOM output trained by noisy (SNR Level of 10 dB) WD-based late 

time energy feature vectors of the dielectric spheres S1,S2 and S3. 

 

The winning neuron locations for the training target features belonging to each 

dielectric sphere are marked on SOM output in Figure 3.43. It is easily seen in this 

figure that, it is almost impossible to seperate cluster regions in a dependable 

manner as 12 of 18 reference aspect winning neurons are located in the same 

neuron on the lower left corner of the SOM output map grid. The cluster boundary 

is roughly constructed however, using the remaining six winning neurons for 

training data as shown in Figure 3.43. 
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Figure 3.43 Winning neuron locations for the training features for S1, S2 and S3 

over the SOM output grid for the Classifier #6. 

 

As the Classifier #6 can not be succesfully designed by using noisy reference data 

at 10 dB SNR, the accuracy rates obtained at various testing SNR levels stay 

around 20 percent. Details of these test results are not reported as they are not 

practically meaningful. The major conclusion that can be drawn out of Classifier 

Simulation #6 is that using too much noise in reference data leads to unsatisfactory 

design results especially as the number of spherical targets get larger.  

 

Figure 3.44 Correct classification rates computed for the Classifier #4 (noise-free 

design) and Classifier # 5 (design at 20 dB SNR at various testing SNR levels for 

aspect angles 5º ≤ θ ≤ 179º. 
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Finally, before closing Section 3.3, the correct classification rates of Classifiers 4 

and 5 are plotted in Figure 3.44 against decreasing SNR levels. As it seen clearly 

from this figure,  the SOM based Classifier #4, which is designed by noise free 

reference data can successfully discriminate the spheres S1, S2 and S3 especially 

under low noise testing conditions although its performance degrades as the 

testing SNR decreases. Classifier #5 which is designed by slightly noisy ( SNR 

level of 20 dB ) reference data can also discriminate the spheres, but its 

performance of accuracy is poor as compared to Classier #4 at all testing noise 

levels. This difference in the performance of the Classier #4 and Classier #5 is 

probably due to the degenerate neuron location at the lower left corner of the SOM 

output map shown in Figure 3.36 which is found to be the winning neuron for the 

target features S1/5º, S2/5º and S3/5º. 

 

3.4 Design of SOM Classifiers for the Target Library TL3 of Four 

Dielectric Spheres 

 

In this subsection, two different SOM classifiers will be designed for the target 

library TL4 of four dielectric spheres S1 (r=10 cm ,ε =3), S2 (r=10 cm, ε =4), S3 

(r=10 cm, ε =5), S3 (r=10 cm, ε =6). The first classifier will be designed by using 

noise-free reference data and it will be tested at SNR levels of infinity, 20 dB, 15 

dB and 10 dB. Secondly, slightly noisy reference data at 20 dB SNR level will be 

used in SOM training. The resulting classifier will also be tested at the SNR levels 

of infinity, 20 dB, 15 dB, 10 dB. Classifier design with reference data at 10 dB 

SNR level will not be considered as the use of moderately noisy data in classifier 

design is demonstrated to be useless in Classifier Simulation #6 of Section 3.3.3 

 

For the classifiers to be designed for the target library TL3, the optimal late-time 

design interval is found to be [16.8-20.1] nsec for both noise free design case and 
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for the slightly noisy (at SNR=20 dB) design case, based on the CCF versus q* 

plots shown in Figure 3.45. 

 

 

(a)                                                                     (b)  

Figure 3.45 The CCF versus q* plot generated to determine the optimal late-time 

design interval for the target library TL3 in the case of  (a) noise-free and (b) 

slightly noisy (SNR level of 20 dB) classifier designs. 

 

 

3.4.1. Classifier Simulation #7: Design of a SOM Classifier Using Noise-

Free  Reference Data for the Target Library TL3 with spheres S1, 

S2, S3 and S4 

 

This classifier is designed over the late-time interval  [16.8-20.1] nsec using noise-

free scattered data of spheres S1, S2, S3 and S4 at the reference aspects θ = 5º, 

30º, 75º, 105º, 135º, 179º. The LTFV features extracted for all dielectric spheres at 

these aspects are used to train a SOM grid of size [30x30]. The SOM is initialized 

randomly at the beginning and the radius of the Gaussian neighborhood function is 

chosen to decrease from 15 to 11 during iterations. Sequential training of the SOM 

is completed after 500 epochs. During this training, a total of 24 training features 
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(for 4 targets at 6 reference aspects) are selected in random order to train the self 

organizing map. When the training phase is completed, the resulting SOM output 

with 30x30=900 weight vectors (each having the length of 1024) is saved as the 

classifier design matrix of size 900x1024. Figure 3.46 shows the contour plot of 

the norms of the trained weight vectors over the SOM grid of size 30x30 . 

 

 

Figure 3.46 SOM output trained by the noise-free WD-based late time energy 

feature vectors of the dielectric spheres S1, S2, S3 and S4. 

 It is seen in this figure that four separate cluster regions are formed at the corners 

of the SOM output grid. The winning neuron locations for the training target 

features belonging to each dielectric spheres are marked on the SOM output map 

as shown in Figure 3.47. The cluster boundary is constructed by using the locus of 

minimum weight norms as well as using the midpoints of closest training winning 

neurons of different target clusters. 
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Figure 3.47 Cluster boudaries and winning neuron locations for the training 

features for S1 (blue circles), S2 (magenta crosses), S3 (red plus signs), S4 (black 

triangles)  over the SOM output grid for Classifier #7.  

 

Next, this SOM based Classifier #7 is tested first with noise-free target features at 

seven non-reference aspects. Locations of the winning neurons for these tests are 

marked in Figure 3.48 with a correct decision rate of 100 percent. 

 

Then, the Classifier #7 is tested by noisy feature vectors at 20 dB, 15 dB and 10 

dB SNR levels. Locations of the testing winning neurons are marked in Figure 

3.49, Figure 3.50 and Figure 3.51 for the SNR levels of 20 dB, 15 dB and 10 dB, 

respectively. The correct classification rates computed at each testing SNR level  

are summarized Table 3.7 and also plotted in Figure 3.52. Table 3.7 also gives the 

accuracy rates obtained over a restricted aspect range where  = 5, 15, 165 and 

179 degree cases are excluded because most of the classification errors occur at 

those aspects close to the ends of the overall aspect range. 
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Figure 3.48 SOM Classifier #7 tested by noise-free feature vectors of the spheres 

S1 (blue circles), S2 (magenta crosses), S3 (red plus signs), S4 (black triangles).  

 

 

Figure 3.49 SOM Classifier #7 tested by noisy feature vectors of the spheres S1 

(blue circles), S2 (magenta crosses), S3 (red plus signs), S4 (black triangles) at 20 

dB SNR level. 
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 Figure 3.50 SOM Classifier #7 tested by noisy feature vectors of the spheres S1 

(blue circles), S2 (magenta crosses), S3 (red plus signs), S4 (black triangles) at 15 

dB SNR level. 

  

Figure 3.51 SOM Classifier #7 tested by noisy feature vectors of the spheres S1 

(blue circles), S2 (magenta crosses), S3 (red plus signs), S4 (black triangles) at 10 

dB SNR level. 
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Table 3.7 Correct decision rates for the Classifier #7 at different testing SNR 

levels. 

For 5º ≤ θ ≤ 179º For 15º < θ< 165º 

Noise Free 100 100

20 dB 88 100

15 dB 75 81

10 dB 42 47

SNR

Type of θ Range

 

 

 

Figure 3.52 Correct classification rates computed for the Classifier #7 at various 

testing SNR levels. 

 

As it seen clearly from Figure 3.52 and Table 3.7, the SOM based Classifier #7, 

which is designed by noise-free reference data, can successfully discriminate the 

spheres S1, S2, S3 and S4 under noise free and low noise testing conditions but its 

performance degrades as the testing SNR decreases. In the next section, a new 

classifier will be designed for the same target library TL3 (of dielectric spheres 

S1, S2, S3 and S4) by using slightly noisy reference data at 20 dB SNR level to  

see if the classification performance can be improved at lower testing SNR values.  
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3.4.2. Classifier Simulation #8: Design of a SOM Classifier Using Slightly 

Noisy (SNR Level of 20 dB) Reference Data for the Target Library 

TL3 with Spheres S1, S2, S3 and S4 

 

Classifier #8 is designed over the late-time interval  [16.8-20.1] nsec using slightly 

noisy (SNR level of 20 dB) scattered data of spheres S1, S2, S3 and S4 at the 

same reference aspects cited in the previous simulations. When the training phase 

is completed, the resulting SOM output with 30x30=900 weight vectors (each 

having the length of 1024) is saved as the classifier design matrix of size 

900x1024. Figure 3.53 shows the contour plot of the norms of the trained weight 

vectors over the SOM grid of size 30x30.  

 

Figure 3.53 SOM output trained by slightly noisy (SNR Level of 20 dB)  WD-

based late time energy feature vectors of the dielectric spheres S1,S2,S3 and S4. 

 

The cluster boundary is constructed by using the midpoints of closest training 

winning neurons of different target clusters, as shown in Figure 3.54.  
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The winning neuron locations for the training target features belonging to each 

dielectric sphere are also marked on this SOM output. 

 

Figure 3.54 Winning neuron locations for the training features of the spheres S1 

(blue circles), S2 (magenta crosses), S3 (red plus signs), S4 (black triangles) over 

the SOM output grid for the Classifier #8.  

 

Next, the Classifier #8 is tested with a total of 52 features (for four targets at 13 

aspects) under noise free and noisy conditions. Locations of the testing winning 

neurons are marked in Figure 3.55, Figure 3.56, Figure 3.57, and Figure 3.58 for 

the SNR levels of infinity, 20 dB, 15 dB and 10 dB, respectively. The correct 

classification rates computed at each testing SNR level are listed in Table 3.8 and 

also plotted in Figure 3.59.  

 

The correct classification rate of Classifier #8 under noise free testing condition is 

98 percent, all the targets at all test aspects are discriminated clearly except the 

sphere S2 at 5 degrees aspect angle. 
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Figure 3.55 SOM Classifier #8 tested by noise-free feature vectors of the spheres 

S1 (blue circles), S2 (magenta crosses), S3 (red plus signs), S4 (black triangles).  

Accuracy rate obtained for SNR=20 dB testing noise turned out to be 89 percent. 

The incorrect classification decisions are made for the spheres S2 and S4 at 15 

degrees aspect angles; and for the sphere S2 at 165 degrees aspect angle.  

Figure 3.56 SOM Classifier #8 tested by noisy feature vectors of the spheres S1 

(blue circles), S2 (magenta crosses), S3 (red plus signs), S4 (black triangles) at 20 

dB SNR level. 
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Figure 3.57 SOM Classifier #8 tested by noisy feature vectors of the spheres S1 

(blue circles), S2 (magenta crosses), S3 (red plus signs), S4 (black triangles) at 15 

dB SNR level. 

 

 

  

Figure 3.58 SOM Classifier #8 tested by noisy feature vectors of the spheres S1 

(blue circles), S2 (magenta crosses), S3 (red plus signs), S4 (black triangles) at 10 

dB SNR level. 
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Table 3.8 Correct decision rates for the Classifier #8 at different testing SNR 

levels. 

For 5º ≤ θ ≤ 179º For 15º < θ< 165º 

Noise Free 98 100

20 dB 89 100

15 dB 88 100

10 dB 67 75

SNR

Type Of  θ Ranges 

 

 

 

Figure 3.59 Correct classification rates computed for the Classifier #8 at various 

testing SNR levels.  

 

The correct decision rate obtained with Classifier #8 for 15 dB SNR testing is still 

very high (88 percent) but the winning neurons for test features belonging to 

different spheres get very close to cluster boundaries in this case as seen in Figure 

3.57. This situation gets even worse for the testing SNR level of 10 dB as shown 

in Figure 3.58. However the lowest correct classification rate obtained at this 

moderately noisy case is stil acceptable especially when the aspects close to the 

ends of the θ range are excluded. 
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Before closing this section, the correct classification rates obtained over all aspects 

for the Classifier #7 and Classifier #8 are plotted in Figure 3.60 against various 

testing SNR levels. Based on this figure, it can be concluded that use of slightly 

noisy reference data for the design of this 4-Sphere classifier helps improving the 

accuracy performance. 

 

 

Figure 3.60 Correct classification rates computed for the Classifier #7, Classifier # 

8 at various testing SNR levels.  
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CHAPTER 4 

 

DESIGN OF SOM CLASSIFIERS FOR SMALL-SCALE MODEL 

AIRCRAFT 

 

 

In this chapter, SOM type eletromagnetic target classifiers will be designed for 

three different target libraries TL4, TL5 and TL6 which contain two, three and 

four small scale model aircraft, respectively, as shown in Table 4.1. The library 

targets Airbus, Boeing 747, P-7 and Tu 154 are named as AC1, AC2, AC3 and 

AC4 in the rest of this chapter. These aircraft targets are modeled by perfectly 

conducting, straight, thin wires with length to radius ratio of 2000 for all wire 

structures. The wire lenghts for body, wing and tail of each target are indicated in 

Table 4.2. These lenghts are obtained by using a scale factor of 100 as compared 

to actual aircraft dimensions. 

 

Table 4.1 Descriptions of target libraries containing small-scale aircraft targets. 

Target Library Targets 

TL4 AC1 (Airbus), AC2 (Boeing 747) 

TL5 AC1 (Airbus), AC2 (Boeing 747), AC4 (Tu 154) 

TL6 AC1 (Airbus), AC2 (Boeing 747), AC3 (P-7), AC4 (Tu 154) 

 

As discussed in Chapter 2, target classifiers will be designed by training self-

organizing maps by means of Wigner Distribution (WD) based target feature 

vectors which are indirectly related to the aspect and polarization invariant system 
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poles of the library targets. The SOM Toolbox 2.0 developed by E. Alhoniemi 

et.al is utilized for sequential SOM training. Several MATLAB codes developed 

during this thesis study are used for classifier testing and for displaying the results 

in user friendly forms.  

 

For any given target library, the SOM classifier will be first designed by using 

noise-free reference data at a chosen set of reference aspect angles. Then, the 

resulting classifier will be tested for its accuracy rate at the signal-to-noise ratio 

(SNR) levels of infinity (the noise-free testing database case), 20 dB, 15 dB, 10 dB 

and 5 dB to see if this classifier is robust under noisy testing conditions. If the 

noise performance of the SOM classifier is not found satisfactory, the design 

procedure will be repeated all over again by using slightly noisy (with SNR=20 

dB) and moderately noisy (with SNR=10 dB) reference data. In each case, the 

resulting classifier will be tested against the same noisy feature database at the 

SNR levels of infinity, 20 dB, 15 dB, 10 dB and 5 dB to evaluate its noise 

performance. Usefulness of designing SOM classifiers by using noisy reference 

data will be evaluated based on the comparisons of resulting noise performances 

of these classifiers. 

 

Table 4.2 Dimensions of the small-scale aircraft targets used in Chapter 4. 

Substructures 
AC1 

 (Airbus) 

AC2  

(Boeing 747)    

AC3  

(P-7) 

AC4  

(Tu 154) 

Body length (m) 0.5408 0.7066 0.3435 0.4790 

Wing length (m) 0.4484 0.5964 0.3250 0.3755 

Tail length (m) 0.1626 0.2217 0.1573 0.1340 
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4.1 Description of Electromagnetic Scattered Data of Small Scale 

Aircraft and Simulation Parameters Used in Classifier Design and Testing  

Scattered responses of aircraft targets were obtained by using a simulation 

program FEKO, which is based on the Method of Moments, as described in [19] 

by Mehmet Okan Ersoy. The backscattered responses of the aircraft targets are 

obtained for Φ-polarized uniform plane wave at a fixed elevation of Θ= 60 

degrees over the frequency band from 4 MHz to 1024 MHz with frequency steps 

of 4 MHz at 12 different aspect angles Φ = 5, 10, 15, 22.5, 30, 37.5, 45, 52.5, 60, 

67.5, 75 and 82.5 degrees. Five of them, which are equal to Φ = 5, 15, 37.5, 60 

and 82,5 degrees, are chosen as the reference aspect angles to construct the feature 

databases of the classifiers using noise free, slightly noisy (with SNR=20 dB) and 

moderately noisy (with SNR=10 dB) reference data. The rest of the scattered 

database (at non-reference aspects) is used only for performance testing. The 

common time span of all these scattered responses is 250 nanoseconds with 512 

time samples. The problem geometry used to synthesize the electromagnetic 

signals scatted from small-scale aircraft is described in Figure 4.1. 

As discussed in Chapter 2, the first step of target classifier design is to extract the 

Wigner Distrubution based target feature vectors (LTFVs) over a common optimal 

late-time interval for each target at each reference aspect.  

k






 

y 

z 

x 

Body 

Wing 

Tail 

 

Figure 4.1 Problem geometry for aircraft library where the vector    denotes the 

propagation direction of incident plane wave. 
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After the computation of discrete Wigner-Ville distributions and the 

corresponding energy density vectors for each reference scattered signal, an 

optimal late-time interval must be selected by using the optimization approach 

outlined in Chapter 2. This critical design interval depends on the SNR level of the 

signals in the reference database, so we have to choose the combination of the 

late-time bands (out of Q=16 equally-wide non-overlapping time intervals) to 

determine the optimal design interval in all design cases for library targets TL4, 

TL5 and TL6 based on the correct classification factor (CCF) versus interval index 

(q) plots. The CCF values of such plots are computed for each time interval index 

q =1, ……, Q-1 by using Equation (2.11) as discussed in Chapter 2. 

 

 The SOM desing parameters described in Section 3.1 will also be used in this 

chapter. Size of the SOM grid and radius of the neighborhood function may 

change from one design simulation to another but the other SOM parameters will 

remain the same for all simulations to be reported in the following sections. 

Firstly, the SOM is initialized with randomly generated weight vectors assigned to 

each and every neuron over a planar square grid of size N by N. The length of 

each weight vector is equal to the length of the WD based feature vectors (LTFVs) 

of the feature database. In this thesis work, WD based target features have the 

length 512 for all small scale aircraft targets. 

 

After the initialization, sequential SOM training will be accomplished in two 

steps; the target features at reference aspects θ = 15º, 37.5º and, 60º will be used in 

the first step training, and then, those at reference aspects  θ = 5º and 82.5º will be 

added to the training feature database in the second step. Based on experience, this 

two-step training is found useful to improve the performance of classifier at those 

aspects close to the ends of θ–range 0º < θ <90º.   

The maximum number of training iterations will be 500 epochs, initial learning 

rate will be 0.5 and the Gaussian type neighborhood function will be used in all 

design simulations. 
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4.2 Design of SOM Classifiers for the Target Library TL4 of Two Small 

Scale Aircraft 

 

In this subsection, three different SOM classifiers will be designed for the simplest 

target library of only two aircraft AC1 (Airbus) and AC2 (Boeing 747). The first 

classifier will be designed by using noise-free reference data and it will be tested 

at all non-reference aspects for the SNR levels of infinity, 20 dB, 15 dB,10 dB and 

5 dB. Secondly, slightly noisy reference data at 20 dB SNR level will be used in 

SOM training. The resulting classifier will also be tested at the SNR levels of 

infinity, 20 dB, 15 dB, 10 dB, and 5 dB. Finally, the similar classifier design and 

test simulations will be repeated while using the reference data at a moderate noise 

level of 10 dB for SOM training. 

 

As the discrete Wigner-Ville distributions and the corresponding energy density 

vectors for each reference scattered signal were computed [6, 19, 28] earlier, the 

optimal late-time interval can be selected by computing the correct classification 

factor (CCF) versus interval index (q) plot. Combination of the late-time bands 5 

and 6 are chosen (out of Q=16 equally-wide non-overlapping time intervals) to 

determine the optimal design interval [62.6-93.8] nsec in the noise-free classifier 

design case for the target library TL4 based on the correct classification factor 

(CCF) versus interval index (q) plot shown in Figure 4.2. The CCF values of this 

plot are computed for each time interval index q =1, … Q-1 by using Equation 

(2.11) as discussed in Chapter 2.  

 

For the classifiers designed for the target library TL4 with noisy reference 

databases at the SNR levels of 20 dB and 10 dB, the optimal late-time design 

intervals are found to be [31.3-62.5] nsec and [15.6-46.9] nsec, respectively, based 

on the CCF versus q* plots shown in parts (a) and (b) of Figure 4.3.  
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Figure 4.2 The CCF versus q* plot generated to determine the optimal late-time 

design interval for the target library TL4 in the case of noise-free classifier design. 

 

 

                                                

(a)                                                               (b) 

Figure 4.3 The CCF versus q* plots generated to determine the optimal late-time 

design interval for the target library TL4 in the case of (a) SNR=20 dB and (b) 

SNR=10 dB noise levels. 

 

4.2.1. Classifier Simulation #9: Design of a SOM Classifier Using Noise-

Free Reference Data for the Target Library TL4 with Two Aircraft 

 

As indicated in Section 4.2 above, this classifier is designed over the late-time 

interval [62.6-93.8]  nsec using noise-free scattered data of aircraft AC1 and AC2 
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at the reference aspects θ = 5º, 15º, 37.5º, 60º, 82.5º. The LTFV features extracted 

for both small scale aircraft at these aspects are used to train a SOM grid of size 

[12x12]. The SOM is initialized randomly at the beginning and the radius of the 

Gaussian neighborhood function is chosen to decrease from 7 to 3 during 

iterations. Sequential training of the SOM is completed after 500 epochs. During 

this training, a total of 10 training features (for 2 targets at 5 reference aspects) are 

selected in random order to train the self organizing map. When the training phase 

is completed, the resulting SOM output with 12x12=144 weight vectors (each 

having the length of 512) is saved as the classifier design matrix of size 144x512. 

Figure 4.4 shows the contour plot of the norms of the trained weight vectors over 

the SOM grid of size 12x12. It is seen in this figure that two separate cluster 

regions are formed at the right and the left side of the SOM output grid 

corresponding to the targets AC1 and AC2, respectively. As two different cluster 

regions can be clearly observed on this SOM output map, it is straightforward to 

draw the boundary curve separating these two regions over the map. The dot-

dashed orange curve passes through the neuron locations with smallest norm 

values to define the cluster boundary for the SOM output as shown in Figure 4.5. 

The winning neurons for the training target features are also indicated on this 

figure. 

 

Figure 4.4 SOM output trained by the noise-free WD-based late time energy 

feature vectors of the small scale aircraft AC1 and AC2.  
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Figure 4.5 Winning neuron locations for the training features and the boundary 

curve to separate the cluster regions AC1 (blue circles) and AC2 (magenta 

crosses) over the SOM output grid for the Classifier #9.  

This SOM based classifier is tested first with noise-free target features at seven 

non-reference aspects. Locations of the winning neurons for these tests are marked 

in Figure 4.6 with a correct decision rate of 100 percent. 

 

Figure 4.6 SOM Classifier #9 tested by noise-free feature vectors of aircraft AC1 

(blue circles) and AC2 (magenta crosses).  
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Next, the Classifier #9 is tested by noisy feature vectors at 20 dB, 15 dB, 10 dB, 5 

dB and 0 dB SNR levels. As the feature vectors at reference aspects are not the 

same as their noise-free counterparts anymore, Classifier #9 is tested with a total 

of 24 noisy features (for two targets at 12 aspects). Locations of the testing 

winning neurons are marked in Figure 4.7, through Figure 4.11 for the SNR levels 

of 20 dB, 15 dB and 10 dB 5 dB and 0 dB, respectively. The correct classification 

rates computed at each testing SNR level are listed in Table 4.3 and also plotted in 

Figure 4.12. Table 4.3 also gives the accuracy rates obtained over a restricted 

backscattered aspect range excluding  = 5, 10, 75 and 82.5 degree cases because 

most of the classification errors are observed to occur at those aspects close to the 

ends of the overall aspect range. The accuracy rate of the classifier is observed to 

decrease sharply with decreasing SNR levels as the winning neurons of two 

different aircraft get closer to each other on the SOM output grid at lower testing 

SNR levels. 

 

 

Figure 4.7 SOM Classifier #9 tested by noisy feature vectors of aircraft AC1  (blue 

circles) and AC2 (magenta crosses) at 20 dB SNR level.  
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Figure 4.8 SOM Classifier #9 tested by noisy feature vectors of aircraft AC1 (blue 

circles) and AC2 (magenta crosses) at 15 dB SNR level.  

 

 

Figure 4.9 SOM Classifier #9 tested by noisy feature vectors of aircraft AC1 (blue 

circles) and AC2 (magenta crosses) at 10 dB SNR level.  
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Figure 4.10 SOM Classifier #9 tested by noisy feature vectors of aircraft AC1 

(blue circles) and AC2 (magenta crosses) at 5 dB SNR level. 

 

 

Figure 4.11 SOM Classifier #9 tested by noisy feature vectors of aircraft AC1 

(blue circles) and AC2 (magenta crosses) at 0 dB SNR level. 
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Table 4.3 Correct decision rates for the Classifier #9 at different testing SNR 

levels for two different θ range 

For 5º ≤ θ ≤ 82,5º For 10º < θ< 75º 

Noise Free 100 100

20 dB 75 75

15 dB 42 50

10 dB 21 19

5 dB 4 6

0 dB 4 0

SNR

Type Of Boundary

 

 

As it seen clearly in Figure 4.12 and Table 4.3, the SOM based Classifier #9, 

which is designed by noise-free reference data, can successfully discriminate the 

small scale aircraft AC1 and AC2 under noise-free testing conditions but its 

performance degrades sharply as the testing SNR decreases, especially at SNR 

levels of 5 dB and 0 dB, winning neurons are gathered on the cluster boundary. In 

the next section, a new classifier will be designed for the same target library TL4  

by using slightly noisy reference data at 20 dB SNR level to improve the 

classification performance at lower testing SNR values.  

 

 

Figure 4.12 Correct classification rates computed for the Classifier #9 at various 

testing SNR levels for two different θ range. 
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4.2.2. Classifier Simulation #10: Design of a SOM Classifier Using Slightly 

Noisy (SNR Level of 20 dB) Reference Data for the Target Library 

TL4 with Two Aircraft 

 

Classifier Simulation #10 is designed over the late-time interval  [31.3-62.5] nsec 

using slightly noisy scattered data of small scale aircraft AC1 and AC2 at the 

reference aspects θ = 5º, 15º, 37.5º, 60º, 82.5º. When the training phase is 

completed, the resulting SOM output with 12x12=144 weight vectors (each 

having the length of 512) is saved as the classifier design matrix of size 144x512. 

Figure 4.13 shows the contour plot of the norms of the trained weight vectors over 

the SOM grid of size. The cluster boundary drawn as a curve passing through the 

neuron locations with smallest norm values. The winning neuron locations for the 

training target features belonging to each small scale aircraft are also marked on 

this SOM output. 

 

Figure 4.13 Winning neuron locations for the training features and the boundary 

curve to separate the cluster regions AC1 (blue circles) and AC2 (magenta 

crosses) over the SOM output grid for the Classifier #10. 
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Then, the Classifier #10 is tested by noise-free and noisy feature vectors at 20 dB, 

15 dB, 10 dB, 5 dB and 0 dB SNR levels. Locations of the testing winning 

neurons are marked in Figure 4.14, Figure 4.15, Figure 4.16, Figure 4.17, Figure 

4.18 and Figure 4.19 for the SNR levels of infinity, 20 dB, 15 dB, 10 dB, 5 dB and 

0 dB, respectively. The correct classification rates computed at each testing SNR 

level turn out to be 100 percent as listed in Table 4.4 and plotted in Figure 4.20. 

Therefore, we can safely come to the conclusions that training the SOM with 

slightly noisy reference data leads to a prominent improvement in classifier 

accuracy at lower SNR testing levels. The correct classification rate of the 

Classifier #9 was only 21 percent at 10 dB testing SNR, but that of Classifier #10 

is now found to be 100 percent.  

 

 

Figure 4.14 SOM Classifier #10 tested by noise-free feature vectors of aircraft 

AC1 (blue circles) and AC2 (magenta crosses).  
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Figure 4.15 SOM Classifier #10 tested by noisy feature vectors of aircraft AC1 

(blue circles) and AC2 (magenta crosses) at 20 dB SNR level.  

 

 

Figure 4.16 SOM Classifier #10 tested by noisy feature vectors of aircraft AC1 

(blue circles) and AC2 (magenta crosses) at 15 dB SNR level.  
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Figure 4.17 SOM Classifier #10 tested by noisy feature vectors of aircraft AC1 

(blue circles) and AC2 (magenta crosses) at 10 dB SNR level. 

 

 

Figure 4.18 SOM Classifier #10 tested by noisy feature vectors of aircraft AC1 

(blue circles) and AC2 (magenta crosses) at 5 dB SNR level. 
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Figure 4.19 SOM Classifier #10 tested by noisy feature vectors of aircraft AC1 

(blue circles) and AC2 (magenta crosses) at 0 dB SNR level. 

 

Table 4.4 Correct decision rates for the Classifier #10 at different testing SNR 

levels for two different θ range. 

 

 

Figure 4.20 Correct classification rates computed for the Classifier #10 at various 

testing SNR levels for two different θ range. 

For 5º ≤ θ ≤ 82,5º For 10º < θ< 75º 

Noise Free 100 100

20 dB 100 100

15 dB 100 100

10 dB 100 100

5 dB 100 100

0 dB 79 81

SNR

Type Of Boundary
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4.2.3. Classifier Simulation #11: Design of a SOM Classifier Using 

Moderately Noisy (SNR Level of 10 dB) Reference Data for the 

Target Library TL4 with Two Aircraft 

 

Classifier #11 is designed over the late-time interval  [15.6-46.9] nsec using 

moderately noisy (at 10 dB SNR) scattered data of small scale aircraft AC1 and 

AC2 at the reference aspects θ = 5º, 15º, 37.5º, 60º, 82.5º. The resulting SOM 

output with 12x12=144 weight vectors (each having the length of 512) is saved as 

the classifier design matrix of size 144x512. Figure 4.21 shows the contour plot of 

the norms of the trained weight vectors over the SOM grid of size 12x12. 

 

 

Figure 4.21 SOM output trained by noisy (SNR Level of 10 dB) WD-based late 

time energy feature vectors of the small scale aircraft AC1 and AC2. 
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Figure 4.22 Winning neuron locations for the training features and the boundary 

curve to separate the cluster regions AC1 and AC2 over the SOM output grid for 

the Classifier #11. 

 

The winning neuron locations for the training target features belonging to each 

small scale aircraft are marked on this SOM output in Figure 4.22. Also the cluster 

boundary is drawn as a curve passing through the neuron locations with smallest 

norm values on the same figure. Then, the Classifier #11 is tested by noise-free 

and noisy feature vectors at 20 dB, 15 dB, 10 dB, 5 dB and 0 dB SNR levels. 

Locations of the testing winning neurons are marked in Figure 4.23, Figure 4.24, 

Figure 4.25, Figure 4.26, Figure 4.27 and Figure 4.28 for the SNR levels of 

infinity, 20 dB, 15 dB,10 dB, 5 dB and 0 dB, respectively. The correct 

classification rates computed at each testing SNR level are listed in Table 4.5. 
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Figure 4.23 SOM Classifier #11 tested by noise-free feature vectors of aircraft 

AC1 (blue circles) and AC2 (magenta crosses). 

 

 

 

Figure 4.24 SOM Classifier #11 tested by noisy feature vectors of aircraft AC1 

(blue circles) and AC2 (magenta crosses) at 20 dB SNR level. 
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Figure 4.25 SOM Classifier #11 tested by noisy feature vectors of aircraft AC1 

(blue circles) and AC2 (magenta crosses) at 15 dB SNR level.  

 

 

 

Figure 4.26 SOM Classifier #11 tested by noisy feature vectors of aircraft AC1 

(blue circles) and AC2 (magenta crosses) at 10 dB SNR level.  
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Figure 4.27 SOM Classifier #11 tested by noisy feature vectors of aircraft AC1 

(blue circles) and AC2 (magenta crosses) at 5 dB SNR level.  

 

 

Figure 4.28 SOM Classifier #11 tested by noisy feature vectors of aircraft AC1 

(blue circles) and AC2 (magenta crosses) at 0 dB SNR level.  
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Table 4.5 Correct decision rates for the Classifier #11 at different testing SNR 

levels for two different θ range 

 

 

 

Figure 4.29 Correct classification rates computed for the Classifier #11 at various 

testing SNR levels for two different θ range  

 

Accuracy levels of the Classifier #9, Classifier #10 and Classifier #11 are plotted 

in Figure 4.30 against decreasing SNR levels. As it seen clearly in Figure 4.30,  

the SOM based Classifier #9, which is designed by noise-free reference data, can 

successfully discriminate the aircraft AC1 and AC2 under noise free testing 

conditions but its performance degrades as the testing SNR decreases. On the 

other hand, performances of the Classifier #10 and Classifier #11 are perfect, at 

least for the SNR level considered. This results demonstrate the usefullness of 

using slightly / moderately noisy reference data in classifier design problems. 

For 5º ≤ θ ≤ 82,5º For 10º < θ< 75º 

Noise Free 100 100

20 dB 100 100

15 dB 100 100

10 dB 100 100

5 dB 96 94

0 dB 92 94

SNR

Type Of Boundary
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Figure 4.30 Correct classification rates computed for the Classifier #9, Classifier 

#10 and Classifier #11 at various testing SNR levels. 

 

4.3 Design of SOM Classifiers for the Target Library TL5 of Three 

Small-Scale Aircraft 

 

In this subsection, three different SOM classifiers will be designed for the target 

library TL5 of three aircraft AC1 (Airbus), AC2 (Boeing 747) and AC4 (Tu 154). 

The first classifier will be designed by using noise-free reference data and it will 

be tested at all non-reference aspects for the SNR levels of infinity, 20 dB, 15 dB, 

10 dB, 5 dB and 0 dB. Secondly, slightly noisy reference data at 20 dB SNR level 

will be used in SOM training. The resulting classifier will also be tested at the 

SNR levels of infinity, 20 dB, 15 dB, 10 dB, 5 dB and 0 dB. Finally, the similar 

classifier design and test simulations will be repeated while using the reference 

data at a moderate noise level of 10 dB for SOM training. 

 

The optimal late-time interval for the classifier designed by noise-free reference 

database is found to be [31.3-62.5] nsec from the CCF versus q* plot shown in 

Figure 4.31. Similarly, for the classifiers designed for the target library TL5 with 

noisy reference databases at the SNR levels of 20 dB and 10 dB, the same optimal 
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late-time design interval is found to be [15.6-46,9] nsec, based on the CCF versus 

q* plots shown in parts (a) and (b) of Figure 4.32.  

 

 

Figure 4.31 The CCF versus q* plot generated to determine the optimal late-time 

design interval for the target library TL5 in the case of noise-free classifier design. 

 

(a)                                                                 (b) 

 Figure 4.32 The CCF versus q* plot generated to determine the optimal late-time 

design interval for the target library TL5 in the case of  (a) SNR level of 20 dB 

and (b) SNR level of 10 dB designs. 
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4.3.1. Classifier Simulation #12: Design of a SOM Classifier Using Noise-

Free Reference Data for the Target Library TL5 with Three Aircraft 

 

This classifier is designed over the late-time interval  [31.3-62.5] nsec using noise-

free scattered data of of aircraft AC1,AC2 and AC4 at the reference aspects θ = 5º, 

15º, 37.5º, 60º, 82.5º. The LTFV features extracted for all three small scale aircraft 

at these backscattered aspects are used to train a SOM grid of size [21x21]. The 

SOM is initialized randomly at the beginning and the radius of the Gaussian 

neighborhood function is chosen to decrease from 10 to 7 during iterations. 

Sequential training of the SOM is completed after 500 epochs. During this 

training, a total of 15 training features (for 3 targets at 5 reference aspects) are 

selected in random order to train the self organizing map. When the training phase 

is completed, the resulting SOM output with 21x21=441 weight vectors (each 

having the length of 512) is saved as the classifier design matrix of size 441x512. 

Figure 4.33 shows the contour plot of the norms of the trained weight vectors over 

the SOM grid of size 21x21. 

 

 

Figure 4.33 SOM output trained by noise-free WD-based late time energy feature 

vectors of the small scale aircraft AC1, AC2 and AC4. 
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Figure 4.34 Winning neuron locations for the training features and the boundary 

curve to separate the cluster regions AC1 (blue circles), AC2 (magenta crosses) 

and AC4 (red plus signs) over the SOM output grid for the Classifier #12. 

 

Three separate cluster regions are formed at the lower left, upper left and the upper 

right corners of the SOM output grid corresponding to the targets AC1,AC2 and 

AC4, respectively. The dot-dashed orange curve passing through the neuron 

locations with smallest norm values to define the cluster boundary for the SOM 

output is shown in Figure 4.34. Then, the Classifier #12 is tested by noise-free and 

noisy feature vectors at 20 dB, 15 dB, 10 dB, 5 dB and 0 dB SNR levels. 

Locations of the testing winning neurons are marked in Figure 4.35, Figure 4.36, 

Figure 4.37, Figure 4.38, Figure 4.39 and Figure 4.40 for the SNR levels of 

infinity, 20 dB, 15 dB, 10 dB, 5 dB and 0 dB, respectively. The correct 

classification rates computed at each testing SNR level are listed in Table 4.6 and 

also plotted in Figure 4.41. 
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Figure 4.35 SOM Classifier #12 tested by noise-free feature vectors of the aircraft 

AC1 (blue circles), AC2 (magenta crosses) and AC4 (red plus signs). 

 

 

 

Figure 4.36 SOM Classifier #12 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses) and AC4 (red plus signs) at 20 dB SNR 

level.  
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Figure 4.37 SOM Classifier #12 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses) and AC4 (red plus signs) at 15 dB SNR 

level.  

 

 

Figure 4.38 SOM Classifier #12 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses) and AC4 (red plus signs) at 10 dB SNR 

level.  
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Figure 4.39 SOM Classifier #12 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses) and AC4 (red plus signs) at 5 dB SNR level. 

 

           

 

Figure 4.40 SOM Classifier #12 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses) and AC4 (red plus signs) at 0 dB SNR level.  
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Table 4.6 Correct decision rates for the Classifier #12 at different testing SNR 

levels for two different θ range 

 

 

 

Figure 4.41 Correct classification rates computed for the Classifier #12 at various 

testing SNR levels for two different θ range 

 

Accuracy level of the Classifier #12 becomes less than 100 percent only at 5 dB 

and 0 dB testing SNR levels. Although, a perfect accuracy figure of 100 percent is 

obtained at other SNR levels, the winning neurons of tested target features get 

closer to each other in the center of the SOM grid as the SNR levels gets smaller. 

In other words, not the accuracy figure itself but the safety margin of classification 

degrades by decreasing SNR. 

For 5º ≤ θ ≤ 82,5º For 10º < θ< 75º 

Noise Free 100 100

20 dB 100 100

15 dB 100 100

10 dB 100 100

5 dB 96 94

0 dB 92 94

SNR

Type Of Boundary
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4.3.2. Classifier Simulation #13: Design of a SOM Classifier Using Slightly 

Noisy (SNR Level of 20 dB) Reference Data for the Target Library 

TL5 with Three Aircraft 

 

Classifier #13 is designed over the late-time interval  [15.6-46.9] nsec using 

slightly noisy scattered data of small scale aircraft AC1, AC2 and AC4 at the 

reference aspects θ = 5º, 15º, 37.5º, 60º, 82.5º. The resulting SOM output with 

21x21=441 weight vectors (each having the length of 512) is saved as the 

classifier design matrix of size 21x512. Figure 4.42 shows the contour plot of the 

norms of the trained weight vectors over the SOM grid of size 21x21. The 

boundary curve seperating the target clusters is shown in Figure 4.43 together with 

the winning neuron locations for the training target features belonging to each 

small scale aircraft. Two branches of the cluster boundary pass through the neuron 

locations with minimum norm values. The third branch of the boundary curve, 

however, is passed through the midpoints of closest winning neurons belonging to 

aircraft AC2 and AC3. 

 

Figure 4.42 SOM output trained by slightly noisy (SNR Level of 20 dB)  WD-

based late time energy feature vectors of the small scale aircraft AC1, AC2 and 

AC4. 
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Figure 4.43 Winning neuron locations for the training features of the aircraft AC1 

(blue circles), AC2 (magenta crosses) and AC4 (red plus signs) over the SOM 

output grid for the Classifier #13. 

 

Next, the Classifier #13 is tested by noise-free and noisy feature vectors at 20 dB, 

15 dB, 10 dB,5 dB and 0 dB SNR levels. Locations of the testing winning neurons 

are marked in Figure 4.44, Figure 4.45, Figure 4.46, Figure 4.47, Figure 4.48 and 

Figure 4.49 for the SNR levels of infinity, 20 dB, 15 dB, 10 dB, 5 dB and 0 dB, 

respectively. The correct classification rates computed at each testing SNR level 

are listed in Table 4.7 and also plotted in Figure 4.50. 
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Figure 4.44 SOM Classifier #13 tested by noise-free feature vectors of the aircraft 

AC1 (blue circles), AC2 (magenta crosses) and AC4 (red plus signs).  

 

  

Figure 4.45 SOM Classifier #13 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses) and AC4 (red plus signs) at 20 dB SNR 

level.  



 104 

 

Figure 4.46 SOM Classifier #13 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses) and AC4 (red plus signs) at 15 dB SNR 

level.  

 

 

Figure 4.47 SOM Classifier #13 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses) and AC4 (red plus signs)  at 10 dB SNR 

level. 
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Figure 4.48 SOM Classifier #13 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses) and AC4 (red plus signs) at 5 dB SNR level.  

 

 

Figure 4.49 SOM Classifier #13 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses) and AC4 (red plus signs) at 0 dB SNR level.  
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Table 4.7 Correct decision rates for the Classifier #13 at different testing SNR 

levels for two different θ range. 

 

 

Accuracy level of Classifier #13 is found to be 100 percent at all testing SNR 

levels except the SNR level of 0 dB as can be seen in Table 4.7 and Figure 4.50. 

 

In other words, the SOM based Classifier #13, which is designed by using slightly 

noisy reference data, can perfectly discriminate the aircraft targets AC1, AC2 and 

AC4 under all these testing cases. Locations of winning neurons show little 

changes with decreasing SNR level, as opposed to the case that observed for the 

Classifier #12. 

 

Figure 4.50 Correct classification rates computed for the Classifier #13 at various 

testing SNR levels for two different θ range. 

For 5º ≤ θ ≤ 82,5º For 10º < θ< 75º 

Noise Free 100 100

20 dB 100 100

15 dB 100 100

10 dB 100 100

5 dB 100 100

0 dB 94 96

SNR

Type Of Boundary
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4.3.3. Classifier Simulation #14: Design of a SOM Classifier Using 

Moderately Noisy (SNR Level of 10 dB) Reference Data for the 

Target Library TL5 with Three Aircraft 

 

Classifier Simulation #14 is designed over the late-time interval  [15.6-46.9] nsec 

using noise-free scattered data of small scale aircraft AC1, AC2 and AC4 at the 

reference aspects θ = 5º, 15º, 37.5º, 60º, 82.5º. The resulting SOM output with 

21x21=441 weight vectors (each having the length of 512) is saved as the 

classifier design matrix of size 441x512. Figure 4.51 shows the contour plot of the 

norms of the trained weight vectors over the SOM grid of size 21x21. 

 

 

Figure 4.51 SOM output trained by noisy (SNR Level of 10 dB) WD-based late 

time energy feature vectors of the small scale aircraft AC1, AC2 and AC4. 

 

Figure 4.52 shows the boundary curve separating the target clusters as well as the 

winning neuron locations for the training target features belonging to each small 

scale aircraft. 
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Figure 4.52 Winning neuron locations for the training features of the aircraft AC1 

(blue circles), AC2 (magenta crosses) and AC4 (red plus signs) over the SOM 

output grid for the Classifier #14. 

 

Then, the Classifier #14 is tested by noise-free and noisy feature vectors at 20 dB, 

15 dB, 10 dB, 5 dB and 0 dB SNR levels. Locations of the testing winning 

neurons are marked in Figure 4.53, Figure 4.54, Figure 4.55, Figure 4.56, Figure 

4.57 and Figure 4.58 for the SNR levels of infinity, 20 dB, 15 dB, 10 dB, 5 dB and 

0 dB, respectively. The correct classification rates computed at each testing SNR 

levels are listed in Table 4.8 and plotted in Figure 4.59. 
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 Figure 4.53 SOM Classifier #14 tested by noise-free feature vectors of the aircraft 

AC1 (blue circles), AC2 (magenta crosses) and AC4 (red plus signs).  

 

 

Figure 4.54 SOM Classifier #14 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses) and AC4 (red plus signs) at 20 dB SNR 

level.  
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Figure 4.55 SOM Classifier #14 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses) and AC4 (red plus signs) at 15 dB SNR 

level.  

 

 

Figure 4.56 SOM Classifier #14 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses) and AC4 (red plus signs) at 10 dB SNR 

level. 
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Figure 4.57 SOM Classifier #14 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses) and AC4 (red plus signs) at 5 dB SNR level.  

 

 

 

Figure 4.58 SOM Classifier #14 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses) and AC4 (red plus signs) at 0 dB SNR level.  
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Table 4.8 Correct decision rates for the Classifier #14 at different testing SNR 

levels for two different θ range. 

 

 

Likewise Classifier #13, Classifier #14 also perfectly discriminates the aircraft 

targets AC1, AC2 and AC4 under all testing SNR levels except the 0 dB SNR 

case, with wide safety margins.  

 

 

 

Figure 4.59 Correct classification rates computed for the Classifier #14 at various 

testing SNR levels for two different θ range. 

 

For 5º ≤ θ ≤ 82,5º For 10º < θ< 75º 

Noise Free 100 100

20 dB 100 100

15 dB 100 100

10 dB 100 100

5 dB 100 100

0 dB 94 92

SNR

Type Of Boundary
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4.4 Design of SOM Classifiers for the Target Library TL6 of Four Small 

Scale Aircraft 

 

In this subsection, three different SOM classifiers will be designed for target 

library TL6 which contains four aircraft targets AC1 (Airbus), AC2 (Boeing 747), 

AC3 (P-7) and AC4 (Tu 154). The first classifier will be designed by using noise-

free reference data. Secondly, slightly noisy reference data at 20 dB SNR level 

will be used in SOM training. Finally, the similar classifier design will be repeated 

while using the reference data at a moderate noise level of 10 dB for SOM 

training. All three classifiers will be tested at the at the SNR levels of infinity, 20 

dB, 15 dB, 10 dB, 5 dB and 0 dB. 

 

The correct classification factor (CCF) versus interval index (q) for the target 

library TL6 with noise free reference database is shown in Figure 4.60. The 

optimal late-time design interval of [31.3-62.5] nsec is selected based on this 

figure. Similarly, the optimal design intervals of the classifiers designed at 20 dB 

and 10 dB reference SNR levels are found to be the same [15.6-46,9] nsec by the 

help of CCF versus q* plots shown in parts (a) and (b) of Figure 4.61. 

 

Figure 4.60 The CCF versus q* plot generated to determine the optimal late-time 

design interval for the target library TL6 in the case of noise-free classifier design. 

 



 114 

(a)                                                                (b) 

 

Figure 4.61 The CCF versus q* plot generated to determine the optimal late-time 

design interval for the target library TL6 in the case of (a) SNR=20 dB and (b) 

SNR=10 dB classifier design simulations. 

 

 

4.4.1. Classifier Simulation #15: Design of a SOM Classifier Using Noise-

Free  Reference Data for the Target Library TL6 with Four Aircraft 

 

This classifier is designed over the late-time interval  [31.3-62.5] nsec by using 

noise-free scattered data of aircraft AC1, AC2, AC3 and AC4 at the reference 

aspects θ = 5º, 15º, 37.5º, 60º, 82.5º. The LTFV features extracted for all four 

small scale aircrafts at these backscattered (monostatic) aspects are used to train a 

SOM grid of size [30x30]. The SOM is initialized randomly at the beginning and 

the radius of the Gaussian neighborhood function is chosen to decrease from 15 to 

11 during iterations. Sequential training of the SOM is completed after 500 

epochs. During this training, a total of 20 training features (for 4 targets at 5 

reference aspects) are selected in random order to train the self organizing map. 

When the training phase is completed, the resulting SOM output with 30x30=900 

weight vectors (each having the length of 512) is saved as the classifier design 
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matrix of size 900x512. Figure 4.52 shows the contour plot of the norms of the 

trained weight vectors over the SOM grid of size 30x30. 

 

 

Figure 4.62 SOM output trained by noise-free WD-based late time energy feature 

vectors of the small scale aircraft AC1, AC2, AC3 and AC4. 

 

Four separate cluster regions are formed at the corners of the SOM output grid. 

The dot-dashed orange curves passing through the neuron locations with smallest 

norm values to define the cluster boundary for the SOM output is shown in Figure 

4.63. Then, the Classifier #15 is tested by noise-free and noisy feature vectors at 

20 dB, 15 dB, 10 dB, 5 dB and 0 dB SNR levels. Locations of the testing winning 

neurons are marked in Figure 4.64, Figure 4.65, Figure 4.66, Figure 4.67, Figure 

4.68 and Figure 4.69 for the SNR levels of infinity, 20 dB, 15 dB, 10 dB, 5 dB and 

0 dB, respectively. Correct classification rates computed at each testing SNR level  

are listed in Table 4.9 and also plotted in Figure 4.70. 
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Figure 4.63 Winning neuron locations for the training features and the boundary 

curve to separate the cluster regions for the aircraft AC1 (blue circles), AC2 

(magenta crosses), AC3 (red plus signs) and AC4 (black triangles) over the SOM 

output grid for the Classifier #15. 

 

Figure 4.64 SOM Classifier #15 tested by noise-free feature vectors of the aircraft 

AC1 (blue circles), AC2 (magenta crosses), AC3 (red plus signs) and AC4 (black 

triangles). 
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Figure 4.65 SOM Classifier #15 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses), AC3 (red plus signs) and AC4 (black 

triangles) at 20 dB SNR level.  

 

 

 

Figure 4.66 SOM Classifier #15 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses), AC3 (red plus signs) and AC4 (black 

triangles) at 15 dB SNR level.  
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Figure 4.67 SOM Classifier #15 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses), AC3 (red plus signs) and AC4 (black 

triangles) at 10 dB SNR level.  

 

 

Figure 4.68 SOM Classifier #15 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses), AC3 (red plus signs) and AC4 (black 

triangles) at 5 dB SNR level.  
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Figure 4.69 SOM Classifier #15 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses), AC3 (red plus signs) and AC4 (black 

triangles) at 0 dB SNR level. 

 

Table 4.9 Correct decision rates for the Classifier #15 at different testing SNR 

levels for two different θ range 

 

. 

As it seen clearly from Figure 4.70 and Table 4.9, the SOM based Classifier #15, 

which is designed by noise-free reference data, can successfully discriminate the 

small scale aircraft targets AC1, AC2, AC3 and AC4 under noise-free testing 

conditions but its performance degrades slowly as the testing SNR decreases. 

More importantly, the safety margins of classification seriously degrades as the 

For 5º ≤ θ ≤ 82,5º For 10º < θ< 75º 

Noise Free 100 100

20 dB 98 97

15 dB 96 94

10 dB 85 88

5 dB 77 81

0 dB 50 50

SNR

Type Of Boundary
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testing SNR levels gets lower. In the next simulation, a new classifier will be 

designed for the same target library TL6 (of small scale aircraft AC1, AC2, AC3 

and AC4) by using slightly noisy reference data at 20 dB SNR level to improve 

the classification performance at lower SNR values.  

 

 

Figure 4.70 Correct classification rates computed for the Classifier #15 at various 

testing SNR levels for different θ range. 

 

4.4.2. Classifier Simulation #16: Design of a SOM Classifier Using Slightly 

Noisy (SNR Level of 20 dB) Reference Data for the Target Library 

TL6 with Four Aircraft 

 

Classifier Simulation #16 is designed over the late-time interval  [15.6-46.9] nsec 

using slightly noisy (with SNR=20 dB) scattered data of small scale aircraft AC1, 

AC2, AC3 and AC4 at the reference aspects θ = 5º, 15º, 37.5º, 60º, 82.5º. The 

resulting SOM output with 30x30=900 weight vectors (each having the length of 

512) is saved as the classifier design matrix of size 900x512. Figure 4.71 shows 

the contour plot of the norms of the trained weight vectors over the SOM grid of 

size. Two of the branches of the cluster boundary passing through the neuron 

locations with smallest norm values. The other two branches pass through the 

midpoints of the closest training winning neurons of different target clusters. The 
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cluster boundary is shown in Figure 4.72 where the winning neuron locations for 

the training target features belonging to each small scale aircraft are also marked 

on this SOM output. 

 

Figure 4.71 SOM output trained by slightly noisy (SNR Level of 20 dB)  WD-

based late time energy feature vectors of the small scale aircraft AC1, AC2, AC3 

and AC4. 

 

Figure 4.72 Winning neuron locations for the training features of the aircraft AC1 

(blue circles), AC2 (magenta crosses), AC3 (red plus signs) and AC4 (black 

triangles) over the SOM output grid for the Classifier #16. 
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As usual, the Classifier #16 is tested by noise-free and noisy feature vectors at 20 

dB, 15 dB, 10 dB, 5 dB and 0 dB SNR levels. Locations of the testing winning 

neurons are marked in Figure 4.73, Figure 4.74, Figure 4.75, Figure 4.76, Figure 

4.77 and Figure 4.78 for the SNR levels of infinity, 20 dB, 15 dB, 10 dB, 5 dB and 

0 dB, respectively. The correct classification rates computed at each testing SNR 

level are listed in Table 4.10 and plotted in Figure 4.79. 

 

Figure 4.73 SOM Classifier #16 tested by noise-free feature vectors of the aircraft 

AC1 (blue circles), AC2 (magenta crosses), AC3 (red plus signs) and AC4 (black 

triangles).  
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Figure 4.74 SOM Classifier #16 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses), AC3 (red plus signs) and AC4 (black 

triangles) at 20 dB SNR level.  

 

 

Figure 4.75 SOM Classifier #16 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses), AC3 (red plus signs) and AC4 (black 

triangles) at 15 dB SNR level.  
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Figure 4.76 SOM Classifier #16 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses), AC3 (red plus signs) and AC4 (black 

triangles) at 10 dB SNR level. 

 

 

Figure 4.77 SOM Classifier #16 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses), AC3 (red plus signs) and AC4 (black 

triangles) at 5 dB SNR level.  
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Figure 4.78 SOM Classifier #16 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses), AC3 (red plus signs) and AC4 (black 

triangles) at 0 dB SNR level.  

 

Table 4.10 Correct decision rates for the Classifier #16 at different testing SNR 

levels for two different θ range. 

 

 

Variations of the accuracy level of Classifier #16 against decreasing SNR level is 

plotted in Figure 4.79. This classifier, which is designed by slightly noisy 

reference data, can succesfully discriminate the aircraft AC1, AC2, AC3 and AC4 

For 5º ≤ θ ≤ 82,5º For 10º < θ< 75º 

Noise Free 100 100

20 dB 100 100

15 dB 100 100

10 dB 98 97

5 dB 98 97

0 dB 92 97

SNR

Type Of Boundary
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at all aspects and SNR levels except the target AC3 at 67.5 degree aspect angle for 

SNR=10 dB and SNR=5 dB testing conditions.  

 

 

Figure 4.79 Correct classification rates computed for the Classifier #16 at various 

testing SNR levels for different θ range. 

 

 

4.4.3. Classifier Simulation #17: Design of a SOM Classifier Using 

Moderately Noisy (SNR Level of 10 dB) Reference Data for the 

Target Library TL6 with Four Aircraft 

 

Finally, the Classifier #17 is designed over the late-time interval  [15.6-46.9] nsec 

using noise-free scattered data of small scale aircraft AC1, AC2, AC3 and AC4 at 

the reference aspects θ = 5º, 15º, 37.5º, 60º, 82.5º. The resulting SOM output with 

30x30=900 weight vectors (each having the length of 512) is saved as the 

classifier design matrix of size 900x512. Figure 4.80 shows the contour plot of the 

norms of the trained weight vectors over the SOM grid of size 30x30. 
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Figure 4.80 SOM output trained by noisy (SNR Level of 10 dB) WD-based late 

time energy feature vectors of the small scale aircraft AC1, AC2,AC3 and AC4. 

 

The cluster boundaries as well as the winning neuron locations for the training 

target features are marked on this SOM output, as shown in Figure 4.81. 

 

Next, the Classifier #17 is tested by noise-free and noisy feature vectors at 20 dB, 

15 dB, 10 dB, 5 dB and 0 dB SNR levels. Locations of the testing winning 

neurons are marked in Figure 4.82, Figure 4.83, Figure 4.84, Figure 4.85, Figure 

4.86 and Figure 4.87 for the SNR levels of infinity, 20 dB, 15 dB, 10 dB, 5 dB and 

0 dB, respectively. The correct classification rates computed at each testing SNR 

level for each type of cluster boundary are listed in Table 4.11 and shown in 

Figure 4.88. 
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Figure 4.81 Cluster boundaries and the winning neuron locations for the training 

features of the aircraft AC1 (blue circles), AC2 (magenta crosses), AC3 (red plus 

signs) and AC4 (black triangles) over the SOM output grid for the Classifier #17. 

 

Figure 4.82 SOM Classifier #17 tested by noise-free feature vectors of the aircraft 

AC1 (blue circles), AC2 (magenta crosses), AC3 (red plus signs) and AC4 (black 

triangles) .  
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Figure 4.83 SOM Classifier #17 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses), AC3 (red plus signs) and AC4 (black 

triangles) at 20 dB SNR level.  

 

 

Figure 4.84 SOM Classifier #17 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses), AC3 (red plus signs) and AC4 (black 

triangles) at 15 dB SNR level.  



 130 

 

Figure 4.85 SOM Classifier #17 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses), AC3 (red plus signs) and AC4 (black 

triangles) at 10 dB SNR level. 

 

 

Figure 4.86 SOM Classifier #17 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses), AC3 (red plus signs) and AC4 (black 

triangles) at 5 dB SNR level.  
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Figure 4.87 SOM Classifier #17 tested by noisy feature vectors of the aircraft AC1 

(blue circles), AC2 (magenta crosses), AC3 (red plus signs) and AC4 (black 

triangles) at 0 dB SNR level.  

 

Table 4.11 Correct decision rates for the Classifier #17 at different testing SNR 

levels for two different θ range. 

 

 

Accuracy rates of Classifier #17 against decreasing SNR levels are plotted in 

Figure 4.88.  

 

For 5º ≤ θ ≤ 82,5º For 10º < θ< 75º 

Noise Free 100 100

20 dB 100 100

15 dB 100 100

10 dB 100 100

5 dB 100 100

0 dB 92 97

SNR

Type Of Boundary
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Figure 4.88 Correct classification rates computed for the Classifier #17 at various 

testing SNR levels for different θ range. 

 

The correct classification rates of both Classifier #16 and Classifier #17 are 100 

percent at all testing SNR levels except the 0 dB SNR level. However, Classifier 

#17 actually performs better as its winning test neurons are not affected much 

from decreasing SNR levels. Therefore, Classifier #17 can discriminate all four 

model aircraft from each other by quite large safety margins. In this chapter it is 

demonstrated that the robustness of the SOM based electromagnetic target 

classifiers get much better when they are trained by slightly or moderately noisy 

reference database. An accuracy rate improvement of more than 40 percent is 

realized at 0 dB SNR levels for instance, by the classifier designs at 20 dB and 10 

dB SNR levels. 
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CHAPTER 5 

 

CONCLUSION 

 

 

In this thesis, the use of SOM type neural networks and Wigner distribution based 

feature extraction techniques are used for electromagnetic target classification. 

The computer codes used to determine the optimal late-time design intervals and 

to test the classifiers are developed in MATLAB. The SOM Toolbox 2 [18] is 

used for initialization and sequential training of the SOM classifiers in the design 

phase. Target libraries used in design and test simulations have included two 

different target classes; dielectric spheres and small-scale aircraft modeled by 

perfectly conducting thin wires. 

 

Target features used in SOM training are extracted by using the Wigner 

Distribution which is a well-known time-frequency transformation technique and 

its output can be interpreted as a map giving the distribution of total signal energy 

in the two-dimensional time-frequency plane. Hence, WD output gives valuable 

information about the spectral content of natural target response over an arbitrarily 

chosen late-time interval. Noise performance of target classifiers, which process 

late-time scattered signals, should be carefully tested because the effective SNR 

levels of the design and test data over the chosen late-time design intervals are 

usually much lower than the overall SNR levels of these signals. In this thesis, all 

of the simulated SOM classifiers are tested at various SNR levels from infinity to 

very low values such as 5 dB or even zero dB. Also, for each chosen target library, 

several classifiers are designed by using SOM techniques first by using noise-free 
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reference data at predetermined reference aspects, then by using slightly noisy (at 

20 dB SNR) and moderately noisy (at 10 dB SNR) reference data. The simulated 

classifiers are extensively tested at various SNR levels changing from infinity (the 

noise-free case) to low SNR levels such as 10 dB or 0 dB. General trends observed 

in classifier performances may show variations from one target class to another as 

summarized below: 

 

First of all, SOM based classifiers are designed using noise-free reference data for 

various target libraries containing dielectric spheres. The target libraries named 

TL1, TL2 and TL3 are composed of 2, 3 and 4 dielectric spheres, respectively. 

The lossless dielectric spheres S1, S2, S3 and S4 are very similar to each other as 

they have exactly the same shape and the same size with radii of 10 cm and their 

relative permittivity values  ( 6,5,4,3r ) are close to each other. The first 

target library TL1 contains two spheres S1 and S2 with radii of 10 and relative 

permitivities of 3, 4, respectively. The second library TL2, has 3 spheres S1, S2 

and S3 with radii of 10 and relative permitivities of 3, 4, 5. Finally, the third 

library TL3, has 4 spheres S1, S2, S3 and S4 with radii of 10 and relative 

permitivities of 3, 4, 5, 6. Accuracy rates (i.e., the correct classification rates) for 

each one of these three libraries are computed and compared under the noise-free/ 

noisy design and noise-free/ noisy test cases.  

 

As it seen clearly from Figure 3.10 and Table 3.2, the SOM based Classifier #1, 

which is designed by noise-free reference data, can successfully discriminate the 

spheres S1 and S2 under low noise testing conditions but its performance degrades 

as the testing SNR decreases. Next, Classifier #2 is designed for the same target 

library TL1 (of dielectric spheres S1 and S2) by using slightly noisy reference data 

at 20 dB SNR level to improve the classification performance at lower testing 

SNR values.  Based on the correct decision rates reported in Table 3.2 and Table 

3.3, it is clearly seen that Classifier #2 displays a much better noise performance 
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as compared to Classifier #1. Then, Classifier #3 is designed for the same 2-target 

library TL1 using moderately noisy (SNR level of 10 dB) scattered data but the 

resulting classifier is not found useful at all. Therefore, it is concluded that a 

slightly noisy training data set helps improving the accuracy rate of the SOM 

classifier at low SNR levels but too much noise in the training data set leads to 

completely unsuccessful design results.   

Next, three different SOM classifiers are designed for the target library TL2 of 

three dielectric spheres S1 (r=10 cm ,ε =3), S2 (r=10 cm, ε =4), S3 (r=10 cm, ε 

=5). The first classifier, Classifier #4, is designed by using noise-free reference 

data and it is tested at all non-reference aspects for the SNR levels of infinity, 20 

dB, 15 dB and 10 dB. Then the same task is repeated with slightly noisy reference 

data at 20 dB SNR level to design Classifier #5 and also repeated with moderately 

noisy reference data at 10 dB SNR level to design Classifier #6. Classifier #4, 

which is designed by noise-free reference data, can successfully discriminate the 

spheres S1, S2 and S3 under low noise testing conditions but its performance 

degrades as the testing SNR decreases, as also observed in the case of two sphere 

classifiers. Classifier #5 which is designed by slightly noisy reference data can 

also discriminate the spheres, but its performance of accuracy as compared to 

Classifier #4 is poor at all testing noise levels. As the classifier #6 cannot be 

succesfully designed by using noisy reference data at 10 dB SNR, details of test 

results are not reported as they are practically not meaningful. 

 

At the last part of dielectric sphere classifiers, design and test tasks are repeated 

for the target library TL3, of four dielectric spheres S1 (r=10 cm ,ε =3), S2 (r=10 

cm, ε =4), S3 (r=10 cm, ε =5), S3 (r=10 cm, ε =6) but classifier design with 

reference data at 10 dB SNR level is not considered, as the use of moderately 

noisy data in classifier design is  demonstrated to be useless in Classifier 

Simulation #6.  Then, Classifier #7 (designed by noise-free reference data) and 

Classifier #8 (designed by slightly noisy reference data) are both found to 
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discriminate the spheres S1, S2, S3 and S4 successfully under noise free and low 

noise testing conditions. The performance of Classifier #8 is found even better at 

very low SNR levels. 

 

In summary, after all these eight classifier simulations for dielectric spheres, it can 

be concluded that the SOM classifiers which are designed with noise free or 

slightly noisy reference data can discriminate spheres under low noise testing 

conditions, but their performance of accuracy degrades with decreasing SNR, as 

expected. Also, slightly noisy reference data for the design of dielectric sphere 

classifiers helps improving the noise performance of the SOM classifiers.  

 

In Chapter 4, SOM type classifier design applications and their results are reported 

for target libraries TL4, TL5 and TL6 which contain two, three and four small 

scale aircraft, respectively. These target libraries contain model aircraft Airbus, 

Boeing 747, P-7 and Tu 154 which are called as AC1, AC2,AC3 and, AC4 in 

short. The small scale target dimensions are obtained using a factor of 100 with 

quite similar wire lengths for the body, wing and tail of these four conducting 

simplified aircraft models. The length to radius ratio of 2000 is used in all wire 

parts while modeling these targets.  

For any given aircraft target library, the SOM classifiers are designed by using 

noise-free, slightly noisy (with SNR=20 dB) and moderately noisy (with SNR=10 

dB) reference data at a chosen set of reference aspect angles. Then, each of the 

resulting classifiers is tested for its accuracy rate at the signal-to-noise ratio (SNR) 

levels of infinity (the noise-free testing database case), 20 dB, 15 dB, 10 dB, 5 dB 

and 0 dB to see if these classifiers are robust enough under noisy testing 

conditions.  
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Firstly, three different SOM classifiers are designed for the simplest target library 

TL4, which contains only two aircraft AC1 (Airbus) and AC2 (Boeing 747). The 

first classifier, the Classifier #9, is designed by using noise-free reference data and 

it is tested at all SNR levels of infinity, 20 dB, 15 dB,10 dB, 5 dB and 0 dB. Then, 

two more classifiers, the Classifier #10 and Classifier #11) are designed first with  

slightly noisy reference data (at 20 dB SNR level) and then using moderately 

noisy reference data (at 10 dB SNR level), respectively. The SOM based Classifier 

#9, can successfully discriminate the aircraft  AC1 and AC2 under low noise 

testing conditions but its performance degrades as the testing SNR decreases. On 

the other hand performances of Classifier #10 and Classifier #11 are perfect, at 

least within the SNR levels (from infinity to 0 dB) considered. 

 

Next, three different SOM classifiers are designed for the target library TL5, 

which is composed of three aircraft AC1 (Airbus), AC2 (Boeing 747) and AC4 

(Tu 154). The first classifier, Classifier #12, is designed by using noise-free 

reference data and it is tested at all SNR levels of infinity, 20 dB, 15 dB,10 dB, 5 

dB and 0 dB. Then the same task is repeated with slightly noisy reference data at 

20 dB SNR level for the design of Classifier #13, and then with moderately noisy 

reference data at 10 dB SNR level for the design of Classifier #14. Accuracy rate 

of Classifier #12 becomes less than 100 percent at 5 dB SNR level, and it degrades 

sharply  at 0 dB SNR level. Winning neuron locations of test aspects at 0 dB SNR 

level is gathered around cluster boundaries. On the other hand, accuracy levels of 

the Classifier #13 and Classifier #14 become less than 100 percent at only 0 dB 

SNR level, the locations of winning neurons show little changes with decreasing 

SNR levels as opposed to the case that is observed for Classifier #12.  

 

At the last part of conducting aircraft classifiers, design and test tasks are repeated 

for the target library TL6 which contains all four aircraft AC1 (Airbus), AC2 

(Boeing 747), AC3 (P-7), AC4 (Tu 154). Classifier #15 which is designed by 

noise-free reference data, can successfully discriminate the aircraft  AC1, AC2, 
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AC3 and AC4 under low noise testing conditions but its performance degrades as 

the testing SNR decreases, more importantly the safety margins of classification 

seriously degrades as the SNR level gets lower. The correct classification rates of 

both Classifier #16 and Classifier #17 are 100 percent at all SNR levels except 0 

dB. However, Classifier #17 actually performs better as the locations of its 

winning and test neurons are not affected much from decreasing SNR levels. 

In this thesis, usefulness of SOM based electromagnetic target classifiers is 

demonstrated for both dielectric and conducting targets. It is also demonstrated 

that use of noisy target features in SOM training improves the noise robustness of 

the resulting classifiers.  The classifiers for dielectric spheres can discriminate 

these targets even under low SNR testing conditions only when they are designed 

with noise free or slightly noisy reference data although their accuracy rates 

degrade with decreasing SNR, as expected. For the class of spheres, use of slightly 

noisy training features (at 20 db SNR) is found definitely advantageous but the 

same is not true for using moderately noisy (at 10 dB SNR) training features. The 

classifiers for conducting aircraft, however, show their best performance when 

they are designed by 10 dB SNR reference data.  

In summary, the SOM based target classifiers are designed with very high 

accuracy rates for both dielectric spheres and conducting aircraft models. The 

classifiers are found perfectly robust under low SNR levels especially when they 

are designed by using tolerably noisy reference target features. 

Performance of the SOM classifiers are dependent on the optimal late-time design 

interval over which the input vectors are computed prior to SOM training. A fully 

automatic method for the selection of this optimal time interval in a completely 

unsupervised manner, i.e. without knowing anything about the identity of targets, 

needs to be suggested in a future work. In other words, not only the learning 

algorithm of the SOM network but also the feature extraction process should be 

made unsupervised to get the full benefit of this self-organizing approach in 

electromagnetic target recognition problems.  
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APPENDIX 

 

A SAMPLE PROGRAM CODE WRITTEN IN MATLAB FOR 

DESIGNINIG SOM CLASSIFIERS  

 

 

        %THIS PROGRAM IS FOR CLASSIFYING DIFFERENT SPHERES BY 

USING SOM 
        %There are 5 Steps In Program Body 
        %1.Construct The DATA 
        %2.Initialize Map 
        %3.Training Step 
        %4.Visualize Map 
        %5.Analyze Map 

  
%=================================================================     
                    %1.Construct The DATA 
%=================================================================  

                     
clear; 
%For Taking The Date From the desired interval 
% 2*512=1024 variables are used in program 

  
%NL=input('Enter lower band index'); 
NL=11; 
%NU=input('Enter upper band index'); 
NU=12; 

  
% 2*512=1024 variables are used in program 
NLi=512*(NL-1)+1 
NUi=512*NU 

  
%cd ('c:\My Documents\PCA_paper\sphere_data\sph10eps3') 
load fw10_3_179.dat 
f1=fw10_3_179(NLi:NUi); 
load fw10_3_165.dat 
f2=fw10_3_165(NLi:NUi); 
load fw10_3_150.dat 
f3=fw10_3_150(NLi:NUi); 
load fw10_3_135.dat 
f4=fw10_3_135(NLi:NUi); 
load fw10_3_120.dat 
f5=fw10_3_120(NLi:NUi); 
load fw10_3_105.dat 
f6=fw10_3_105(NLi:NUi); 
load fw10_3_90.dat 
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f7=fw10_3_90(NLi:NUi); 
load fw10_3_75.dat 
f8=fw10_3_75(NLi:NUi); 
load fw10_3_60.dat 
f9=fw10_3_60(NLi:NUi); 
load fw10_3_45.dat 
f10=fw10_3_45(NLi:NUi); 
load fw10_3_30.dat 
f11=fw10_3_30(NLi:NUi); 
load fw10_3_15.dat 
f12=fw10_3_15(NLi:NUi); 
load fw10_3_5.dat 
f13=fw10_3_5(NLi:NUi); 

  
% %cd ('c:\My Documents\PCA_paper\sphere_data\sph10eps4') 
load fw10_4_179.dat 
f14=fw10_4_179(NLi:NUi); 
load fw10_4_165.dat 
f15=fw10_4_165(NLi:NUi); 
load fw10_4_150.dat 
f16=fw10_4_150(NLi:NUi); 
load fw10_4_135.dat 
f17=fw10_4_135(NLi:NUi); 
load fw10_4_120.dat 
f18=fw10_4_120(NLi:NUi); 
load fw10_4_105.dat 
f19=fw10_4_105(NLi:NUi); 
load fw10_4_90.dat 
f20=fw10_4_90(NLi:NUi); 
load fw10_4_75.dat 
f21=fw10_4_75(NLi:NUi); 
load fw10_4_60.dat 
f22=fw10_4_60(NLi:NUi); 
load fw10_4_45.dat 
f23=fw10_4_45(NLi:NUi); 
load fw10_4_30.dat 
f24=fw10_4_30(NLi:NUi); 
load fw10_4_15.dat 
f25=fw10_4_15(NLi:NUi); 
load fw10_4_5.dat 
f26=fw10_4_5(NLi:NUi); 

  
% The aim is clustering two types of spheres 
% First one is 10_3 the other is 10_4 

  
% ftotal is the whole data set which will be divided into 

Train&Test Sets 
ftotal=[f1 
    f2 
    f3 
    f4 
    f5 
    f6 
    f7 
    f8 
    f9 
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    f10 
    f11 
    f12 
    f13 
    f14 
    f15 
    f16 
    f17 
    f18 
    f19 
    f20 
    f21 
    f22 
    f23 
    f24 
    f25 
    f26]; 

  
%the components of the data set are usually normalized,  
% in this program example each component will have unit variance. 

  
for i=1:26 
    a=0; 
    for j=1:1024 
        a=a+(ftotal(i,j)*ftotal(i,j)); 
    end 
    payda=sqrt(a); 
    ff(i,:)=ftotal(i,:)/payda; 
end 

  
%8 vectors chosen from desired data groups for training 
% 135'',105',75',30' data for each group will used for training 

  
ftrain=[ff(4,:) 
    ff(6,:) 
    ff(8,:) 
    ff(11,:) 
    ff(17,:) 
    ff(19,:) 
    ff(21,:) 
    ff(24,:)] ; 

  

     

  
% 

%=================================================================     
%                     %2.Initialize Map 
%          %The following parameters have to be set; 
%          %i)  the topology (rectangular or hexagonal) 
%          %ii) the size of the map (X,Y dimensions) 
%          %iii)the initializatino of map units  
%                  %som_randinit  

%=================================================================  
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% %The [12*12] map is initialized randomly  
sM=som_randinit(ff,'msize',[12 12],'rect'); 

  

  

  
%================================================================= 

    
                    %3.Training Step 
            %At the training step,parameters are; 
            %i)  learning type (batch or sequential) 
                  % som_batchtrain, som_seqtrain 
            %ii) neighborhood function type 

("bubble,gaussian,cutgauss,") 
            %iii)neigborhood radious 
            %iv) learning rate 
            %v ) learning_lenght (number of samples /epochs) 
                 %som_randinit or som_lininit 
%================================================================= 

  
%In this program, sequential learning is used , with [12*12]map, 
%neigborhood radious decreased from 7 to 3 , initial learning rate 

set as 
%0.5 , training lenght is 500 epochs, the samples from data is 

chosen 
%randomly step by step, bubble is used as neighborhood function 

  
sM = som_seqtrain (sM, ftrain, 'msize', [12 12], 'radius',[7 3], 

'alphaini', 0.5, 'trainlen',500, 'trainlen_type', 'epochs', 

'sample_order','random','neigh','gaussian') 

  
ftrain=[ff(1,:) 
    ff(4,:)     
    ff(6,:) 
    ff(8,:) 
    ff(11,:) 
    ff(13,:) 
    ff(14,:) 
    ff(17,:) 
    ff(19,:) 
    ff(21,:) 
    ff(24,:) 
    ff(26,:)]; 

  
sM = som_seqtrain (sM, ftrain, 'msize', [12 12], 'radius',[7 3], 

'alphaini', 0.5, 'trainlen',500, 'trainlen_type', 'epochs', 

'sample_order','random','neigh','gaussian') 

  
%We will try to see the 'U Matrix'.It shows distances between 

neighboring units and thus 
%visualizes the cluster structure of the map.  
%High values on the U-matrix mean large distance between 
%neighboring map units, and thus indicate cluster 
%borders. Clusters are typically uniform areas of low values. 
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% 

%=================================================================   
%                     %4.Visualize Map 
% 

%=================================================================  

  
%The basic som_show_funtion is used for this purpose 

som_show(sM,'umat','all') 

 

 

  

  

 




