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Electrical and Electronics Engineering Dept., METU

Prof. Dr. Yasemin Yardımcı Çetin
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ABSTRACT

DECENTRALIZED ESTIMATION UNDER COMMUNICATION CONSTRAINTS

Üney, Murat

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Kemal Leblebicioğlu

Co-Supervisor : Assist. Prof. Dr. Müjdat Çetin

August 2009, 136 pages

In this thesis, we consider the problem of decentralized estimation under communication

constraints in the context of Collaborative Signal and Information Processing. Motivated by

sensor network applications, a high volume of data collected at distinct locations and possibly

in diverse modalities together with the spatially distributed nature and the resource limita-

tions of the underlying system are of concern. Designing processing schemes which match

the constraints imposed by the system while providing a reasonable accuracy has been a major

challenge in which we are particularly interested in the tradeoff between the estimation per-

formance and the utilization of communications subject to energy and bandwidth constraints.

One remarkable approach for decentralized inference in sensor networks is to exploit graph-

ical models together with message passing algorithms. In this framework, after the so-called

information graph of the problem is constructed, it is mapped onto the underlying network

structure which is responsible for delivering the messages in accordance with the schedule

of the inference algorithm. However it is challenging to provide a design perspective that

addresses the tradeoff between the estimation accuracy and the cost of communications. An-

other approach has been performing the estimation at a fusion center based on the quantized
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information provided by the peripherals in which the fusion and quantization rules are sought

while taking a restricted set of the communication constraints into account.

We consider two classes of in-network processing strategies which cover a broad range of

constraints and yield tractable Bayesian risks that capture the cost of communications as well

as the penalty for estimation errors. A rigorous design setting is obtained in the form of

a constrained optimization problem utilizing the Bayesian risks. These processing schemes

have been previously studied together with the structures that the solutions exhibit in the

context of decentralized detection in which a decision out of finitely many choices is made.

We adopt this framework for the estimation problem. However, for the case, computationally

infeasible solutions arise that involve integral operators that are impossible to evaluate exactly

in general. In order not to compromise the fidelity of the model we develop an approximation

framework using Monte Carlo methods and obtain particle representations and approximate

computational schemes for both the in-network processing strategies and the solution schemes

to the design problem. Doing that, we can produce approximating strategies for decentralized

estimation networks under communication constraints captured by the framework including

the cost. The proposed Monte Carlo optimization procedures operate in a scalable and effi-

cient manner and can produce results for any family of distributions of concern provided that

samples can be produced from the marginals. In addition, this approach enables a quantifica-

tion of the tradeoff between the estimation accuracy and the cost of communications through

a parameterized Bayesian risk.

Keywords: Collaborative Signal and Information Processing, Decentralized Estimation, Com-

munication Constrained Inference, Random Fields, Message Passing Algorithms, Graphical

Models, Sensing Architectures, Monte Carlo Methods.
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ÖZ

İLETİŞİM KISITLARI ALTINDA DAĞITIK KESTİRİM

Üney, Murat

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Kemal Leblebicioğlu

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Müjdat Çetin

Ağustos 2009, 136 sayfa

Bu tez çalışmasında, İmeceli Sinyal ve Bilgi İşleme kapsamında iletişim kısıtları altında

dağıtık kestirim problemini ele almaktayız. Algılayıcı ağı uygulamalarıyla gündeme gelen

yüksek hacimli, ayrı ayrı konumlardan toplanan ve muhtemelen farklı yapılardaki veri ile

beraber altta yatan sistemin uzamsal dağıtık doğası ve kaynak sınırlarının göz önünde bu-

lundurulması önemlidir. Başlıca bir zorluğu bir yandan kabul edilebilir doğrulukta sonuçlar

sağlarken öte yandan sistemin dayattığı kısıtlara uyan işleme yöntemlerinin tasarlanması olan

bu kapsamda özel olarak kestirim başarımı ile enerji ve bantgenişliği kısıtlarına tabi olan

haberleşme kullanımı arasındaki ödünleşim ile ilgilenmekteyiz.

Algılayıcı ağlarında dağıtık çıkarsama için dikkat çeken yaklaşımlardan biri çizge model-

leri ve ileti geçme algoritmalarından faydalanmaktır. Bu çerçevede problemin bilgi çizgesi

olarak da anılan gösterimi kurgulandıktan sonra söz konusu çizge çıkarsama algoritmasının

çizelgesi uyarınca iletileri dağıtmakla sorumlu olan temeldeki ağ yapısına eşlenir. Ancak

açık bir biçimde kestirim doğruluğu ve iletişimin maliyeti arasındaki ödünleşimi dikkate

alan tasarımlar yapmak zordur. Bir başka yaklaşım ise kestirimi yan birimlerden sağlanan

nicemlenmiş bilgiye dayalı olarak bir kaynaşım merkezinde gerçekleştirmektir ki dar bir dizi
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iletişim kısıtı gözetilerek kaynaşım ve nicemleme kuralları bulunmaya çalışılır.

Biz ise geniş bir kısıtlar yelpazesini kapsayan ve de hem kestirim hataları için ceza hem de

iletişim maliyetini içeren çözümlenebilir bir Bayesçi risk tanımlanmasına olanak veren iki

sınıf ağda işleme stratejisi ele almaktayız. Söz konusu Bayesçi riskler kullanılarak, kısıtlı

eniyileme problemi biçiminde, matematiksel kesinlikli bir tasarım çerçevesi elde edilmekte-

dir. Bu işleme yöntemleri, çözümlerin sergilediği yapılar ile birlikte, sonlu sayıda seçenekten

bir kararın söz konusu olduğu dağıtık sezim kapsamında henüz çalışılmıştır.

Bu çerçeveyi kestirim problemine uyarlamaktayız. Ancak, bu durumda, değerlemesi genel

olarak imkansız tümlev işleçleri içeren, hesapsal olurluğu olmayan çözümler ortaya çıkmaktadır.

Biz ise modelin sadakatinden ödün vermemek için Monte Karlo yöntemlerini kullanarak bir

yaklaşıklama çerçevesi geliştirmekte ve hem ağda işleme stratejileri hem de tasarım prob-

leminin çözümü için parçacık temsilleri ile yaklaşık hesapsal yöntemler elde etmekteyiz.

Böylece bu çerçevenin kapsadığı ve maliyeti de içeren iletişim kısıtları altında dağıtık ke-

stirimci ağları için yaklaşıklayan stratejiler üretebilmekteyiz. Önerilen Monte Karlo eniy-

ileme yordamları ölçeklenebilir ve verimli bir şekilde işlemekte ve bileşen dağılımlarından

örneklem elde edilebilen herhangi dağılım aileleri için sonuç vermektedir. Ek olarak, bu

yaklaşımla parametrik bir Bayesçi risk kullanılarak kestirim doğruluğu ve iletişim maliyeti

arasındaki ödünleşim nicemsel olarak gözlemlenebilmektedir.

Anahtar Kelimeler: İmeceli Sinyal ve Bilgi İşleme, Dağıtık Kestirim, İletişim Kısıtları Altında

Çıkarsama, Rasgele Alanlar, İleti Geçme Algoritmaları, Çizge Modelleri, Algılayıcı Mimari-

leri, Monte Karlo Yöntemleri.
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reviewing parts of the thesis.

I apologize to the people whom I undeliberately fail acknowledging due to the already missed

time schedule. I also kindly require understanding for any typos and inaccurate sentences

left. I want to acknowledge the partial support provided by the Scientific and Technological

Research Council of Turkey under grant 105E090, and by the European Commission under

grant MIRG-CT-2006-041919.

Finally, I want to thank to my family and my love Şükran D. Çavdar for their support and love
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CHAPTER 1

INTRODUCTION

Statistical inference captures a variety of problems in signal and information processing in

which a system is expected to draw results on a physical phenomenon of interest based on

the observations that contain relevant information together with uncertainities. Detection and

Estimation Theory covers such problems where the phenomenon is described by a quantity

that can take values from a well defined set and we are able to provide a probabilistic model

describing a characterization of the uncertainities of or between this quantity and the obser-

vations induced.

As the problem size grows, the performance of the physical systems which realize the solu-

tions of such problems heavily depends on the constraints driven by the available resources

of which limited energy, communication bandwidth and computational power are the most

eminent. Consider, for example, a typical scenario that arise in wireless sensor network ap-

plications in which there are many such observations due to multiple quantities of interest,

collected by devices of various modes and located at various places [1]. In addition to the

spatially distributed nature of the underlying physical system, it is often the case that there

is no infrastructure provided by the environment and the components rely on limited energy

stored in batteries [2].

It is possible to handle various modes of measurement in a unified manner under a probabilis-

tic framework. Since the observations are characterized by corresponding likelihood func-

tions, fundamental rules of the Probability Theory yield a natural fusion scheme through these

functions and apparent dependecies of the variables. However, a straightforward treatment of

the corresponding inference problem yields processing schemes that become extremely ex-

pensive with an increase in the number of variables. Considering the inherent computational
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power limitations of the system together with the high volume of data, scalability is one of

the key characteristics of feasible solutions for which to be achieved necessary computations

are systematically reduced and preferably carried out in a distributed manner while provid-

ing reasonably accurate results. In addition, the apparent need for communications has to

be supported by the bandwidth limited links provided by the underlying communication net-

work structure. Another fundamental issue is the limited energy budget and it is often the

case that transmitting bits is far more costly than computing them in terms of energy dis-

sipation [3]. Collaborative signal and information processing is involved extracting useful

information from observations in such a scenario while taking the aforementioned tradeoffs

into account [4].

In this thesis we employ a probabilistic framework and consider decentralized estimation.

We are interested in processing schemes that match a certain description of communication

constraints including the set of available links and their capacity. We consider the trade of

between the estimation accuracy and the cost of communications in particular.

Graphical models together with message passing algorithms has proved useful for decentral-

ized statistical inference in sensor networks (see e.g. [5] and the references therein ). In

this framework, a graph representation that reveal the information structure beared by the

set of variables associated with the probabilistic model of the problem is provided together

with message passing algorithms that yield efficient statistical inference. On the other hand,

the underlying system maintains a communication network which renders a distinct graph in

terms of available links. After mapping the former onto the later, a decentralized inference

scheme is obtained that can be realized by the physical system provided that the capacity of

the communication network supports that required by the messagings. However it is hard to

solve the problem given the available links and capacities together with cost of transmission

over them.

We consider two classes of decentralized estimation strategies that cover a broad range of

communication constraints and yield graph representations. The vertices of the graphs corre-

spond to platforms and the edges are subsets of available links that render a Directed Acyclic

Graph for the first, and an Undirected Graph for the second. Associated with each edge is a

set of admissible sysmbols that comply with the link capacity. The processing strategies rep-

resented by the graphs are such that a tracktable Bayesian objective is achieved. Having the
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Bayesian cost penalize the estimation errors as well as the transmissions, a communication

constrained design setting is obtained through constraining the set of feasible strategies by

the graph. We explore the solution strategies for the design problem exhibiting scalability and

efficiency.

1.1 Motivation

1.1.1 Networking Sensor Platforms

Sensor Networks have provided a technology base for large scale distributed sensory sys-

tems constituted of platforms that have limited capabilities. Mounted on each device are

circuitries for communication, processing and sensing as well as batteries for energy storage.

A conceptual block diagram of the hardware is given in Figure 1.1. Simple devices such as

thermometers and more complicated devices similar to one which performs multi-array pro-

cessing and find the direction-of-arrival of an incoming signal are referred to as sensors as

well as peripherals such as GPS receivers and gyroscopes.

Figure 1.1: Conceptual block diagram of a sensor platform hardware.

The communication circuitry is in accordance with the physical layer specifications for wire-

less ad-hoc networking ( e.g. IEEE 802.15.4 ) which can maintain limited capacity links with

the peers that fall in a certain range. Connections established among nearby platforms yield

a graph in which the edges are communication links maintained by the circuitries. Also asso-

ciated with each edge is the capacity which depends on many factors including the condition

of the channels1 and the transmitter powers. The connectivity of the graph can be controlled

by adequate adjustment of the power levels [6]. Over a connected topology, it is possible to

transmit messages between any two nodes through appropriate multi-hop routing protocols in

1 The condition of the channels refers to the issues affecting the capacity such as the fading the regime (e.g.

Rayleigh or Rician) and interference considering the multiple-access medium.
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sensor networks. Moreover, the network layer can provide services for aggregating or broad-

casting data as well as maintaining higher level topologies over the connectivity graph referred

to as multi-tier architectures (see, for example, [7][8][9]). An example deployement scenario

is illustrated in Figure 1.2 through the connectivity graph in Figure 1.2a. In Figure 1.2b, the

corresponding Gabriel Graph is presented. Gabriel Graphs are geometric graphs which are

considered by routing protocols. Hence, it is possible for the network layer to provide a view

of the network to the upper layers in the OSI model as the Gabriel Graph itself or clusters

constructed through in which an edge does not necessarily correspond to a 1-hop link.
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Figure 1.2: We consider an example deployement in which 50 platforms are randomly spread

over a square region of edge length 100 meters. Each platform is assumed to be able to com-

municate with peers located within a distance of 30 meters. We illustrate the corresponding

Connectivity Graph (a) in which the edges are 1-hop links, and the Gabriel Graph (b) which

is considered by some routing algorithms. Note that the Gabriel Graph is not necessarily a

subgraph of the Connectivity Graph and the edges do not necessarily correspond to 1-hop

links.

Let us consider the OSI model with a simple twist of treating all the entities above the net-

work as a single application layer which bears the processing tasks (Figure 1.3). Hence,

it is possible to consider the network as an entity which offers some data services that re-

spond upon requests of the processing block and provide input from the other platforms in the

network. From the processing point of view, the underlying ad-hoc network may appear in

various topologies which are not necessarily subgraphs of the connectivity graph. Moreover,

the edges do not necessarily correspond to 1-hop neighbors.
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Figure 1.3: An example architecture for the sensor platforms. The network layer reponds to

the requests issued by the application which bears the processing entities. Hence the input to

the processing block is provided both from the sensors and from other platforms through the

network layer.

1.1.2 The Cost of Communications

The sensor platforms rely on stored energy and prudent use of it is crucial in order to extend

the operational lifetime of a sensor platform. Therefore, energy-aware operation at all levels

is crucial for which the energy cost of communications is of concern among others.

The energy consumption of the communication circuitry of a sensor platform is considerably

high in comparison with the sensors and the processing unit when not turned off2. The com-

munication circuitry is constituted of a processor for tasks such as coding-decoding, power

amplifiers and the antenna. The energy dissipation depends on factors such as the coding

scheme, modulation, channel fading regime and the output power (see, for example Chp. 2

of [10]). The radiated power decreases with 1/d2 and 1/d4 in free space and near ground

respectively, due to the ground reflecting waves [3]. The relaibility of communication de-

pends on the received signal power. Hence, it is possible to vary the maximum hop distance

by adjusting the output power and together with code selection and voltage/frequency selec-

tion for the communication processor, topology control and power-aware communications are

2 For example, a Rockwell WINS node dissipates 383.3 mW of Power when the communication circuitry

is removed and both the sensors and the processing unit is active. Setting the transceiver in idle mode results

with 727.5 mW which is nearly twice that of the former case. Switching the transceiver to the receiver mode and

highest power transmitter mode results with 751.6 mW and 1080.5 mW of power dissipation respectively [2].
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achieved [11].

A first order radio model in order to estimate the energy consumption for both transmitting

and receiving k bits at d meters distance is given in [12]. Consider Figure 1.4. For the

transmission of k bits over a distance d requires Eelec ∗ k + eampkd2 joules at the transmitter

and Eelec ∗ k joules at the reciever where Eelec = 50nJ/bit and eamp = 100pJ/bit/m2.

k bits package
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Rx

Circuitry
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elec


k
e

amp


kd 
2


Figure 1.4: First order radio transmission model as appeared in [12].

Considering this model, it is possible to estimate the energy cost of a k bit packet over the path

between two nodes maintained by the routing protocol from the network entity. These paths

correspond to available links and together with their capacities, the energy cost constitute a

considerably broad set of the communication constraints.

1.1.3 Random Field Estimation

A motivating example for decentralized estimation under communication constraints is ran-

dom field estimation. Consider the scenario in which a number of platforms are spread over

a region to monitor turbulent flow. Mounted on each platform is a sensor that measures the

velocity of the flow along the direction of its normal at that spatial location. The magnitudes

at proximal locations are similar and it is possible to capture this fact in terms of a Markov

Random Field (MRF) representation with a Gaussian joint density for turbulent flow (Chp. 12

of [13]). Statistical models based on covariance descriptions of spatial variables are also used

for geostatistics data [14] such as temperature measurements over a field (Chp. 1 in [15]).

The platforms are wirelessly networked in an ad hoc manner such that communication links

are maintained which render a connected planar graph such that any messages sent between
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(a)

(b) (c) (d)

Figure 1.5: Illustration of a random field estimation scenario: (a) Sensor platforms (black

squares) spread over a region to monitor turbulent flow presented by the blue vector field. (b)

The observation model: Each sensor measures the magnitude of the flow at its spatial location

along the direction of its normal, i.e. yi = xi+ni where ni ∼ N(0, σ2
i
). (c) An example Markov

Random Field prior for x = (x1, x2, ..., x10). (d) The underlying network structure rendered by

the available links.

two nodes will travel along paths in this graph. The components of this scenario is illustrated

in Figure 1.5.

We are particularly interested in the estimation task itself and do not consider conditions on

how the result is stored by the network. From the global point of view, it is possible to treat

the example network constituted of N platforms evaluating a function γ : RN → RN such that

an estimate for the random vector of concern x ∈ RN , i.e. x̂ = γ(y), is output. In one possible

case, after the evaluation of γ is completed, one of the platforms hold all the components of

the result, i.e. {xi} for i = 1, 2, ...,N. It can also be the case that the fields of x are stored at

distinct platforms. For both cases, it is possible to treat the sensor network as a distributed

database system from which queries including that for the results can be responded through
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appropriate schemes (see e.g. Chp.6 of [16]). This abstraction has the advantage of isolating

the inference scheme in the system architecture and enabling detail hiding among entities.

Consider, for example, an application in which the rate of requests regarding the value of x̂

is well below the rate at which it is produced. Another example is a case in which the user

is interested in the occurance of a certain event defined by a set of conditions on x and in

this respect, the estimation result is an intermediate level output. Therefore we restrict the

discussion with schemes which result with the network to store x̂ without any conditions on

the association between the platforms and the components of x̂.

A straightforward estimation strategy is to have each platform i estimate its local variable xi

based on yi. This so-called myopic approach does not demand any communications and it

scales well with the number of platforms and hence variables. Considering the dependency

of flow magnitudes at nearby locations, the estimation accuracy will be worse than that the

conventional approach achieves in which the inference is based on all the observations, i.e. y =

(y1, y2, ..., y10). One of the major drawbacks is that it is required to constantly forward all the

observations to a center without taking the corresponding energy dissipation into account and

creating a tremendous traffic in the network. Second, the center platform undertakes a huge

amount of computations (consider, e.g. the number of platforms on the order of thousands)

while the rest of the platforms do not contribute to the evaluation of γ.

We are interested in schemes that fall between the myopic and the conventional approach in

the sense of achieving a reasonable estimation accuracy while arising an acceptable commu-

nications and computations demand in an energy-aware manner. Since communications is

the most energy consuming action, we consider introducing its cost into the design problem

involving specification of γ.

1.1.4 Target Localization in Tracking

Target tracking in a surveillance scenario has been another envisioned application of sensor

networks [17]. Objects moving in the coverage of platforms spread over a region are of con-

cern. After an object is detected, a record of its location at successive time steps is required

for the time window it stays in the coverage. Conventionally, the uncertainities in this sce-

nario has been handled in a Bayesian framework and the localization at a certain time instant

is performed through the posterior distribution of the location based on all the relevant ob-
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servations since detection. Assuming a Markov Chain model for the target maneuver, it can

easily be shown that the posterior is obtained by recursive Bayesian filtering of observations

collected at consecutive time steps which specializes to the celebrated Kalman filtering in the

case of Gaussian uncertainities and linear dynamics and particle filtering in the case of sam-

pling based and Monte Carlo approximations to the distributions and the integrations involved

respectively (Such approximations are needed in order to handle non-linear dynamics and/or

non-Gaussian uncertainities) [18].

The recursive filtering involves an update stage in which the current observations are fused

with the track information and the posterior density of location is obtained, and a prediction

phase in which a predictive distribution is obtained based on the posterior and the dynamic

model of the target. Hence, the statistical inference problems involved are in multiple levels

such as detecting a target and initiating a track, based on the previous record and the cur-

rent observations updating the track with the current estimation of the target location and a

predictive distribution. In the multiple target case, it is also necessary to discriminate the

observations from different targets and associate them with the tracks accordingly, which is

referred to as the data association problem [19]. All these tasks are required to be carried out

in accordance with the in-network processing paradigm [20] in sensor networks. This is pos-

sible by exploiting the local structures that the problem exhibit and distributing the processing

accordingly.

In our motivating example, at a certain time instant, not all the sensors collect observations of

a certain quality. The most informative measurement is likely to be made by the platform that

is nearest to the target. The set of measurements which could provide additional information is

collected by a cluster of platforms located in the vicinity. It is possible to select the platform

that is expected to make the most informative measurement in the next step based on the

target dynamics, observations models and the predictive density captured by the track [21]. A

collaborative tracking scheme is obtained through having the current leader platform, at each

time step, hand off the track to the next leader which will be responsible for the next update

[22]. It is also possible to arrange clusters for the leadership of each platform and invoke

platforms to contribute to the track update (and hence to the localization of the target)[23].

Consider the case in which acoustic intensity sensor are mounted on the platforms. At time
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instant n, the measurement of a sensor located at ls due to a target at lt[n] is given by

ys[n] = A f (d[n]α) + ω (1.1)

where A is the nominal intensity of the acoustic signal emitted by the target, d , ‖ls − lt‖2
is the Euclidean distance between the sensor and the target, f is a monotonically decreasing

function with f (0) = 1, α is the attenutation coefficient and ω is a zero mean Gaussian random

variable with variance σ2 [24]. The attenuation coefficient, depending on the physical envi-

ronment, varies between 2 and 4. It is apparent that such a measurement bears information

on the displacement but it is possible to fuse information from distinct platforms and infer

the position of the target. The monotone behaviour of f reveals that the SNR decreases as

the distance between the sensor and the target gets larger. In other words, the contribution of

observations collected by platforms located farther than a certain distance is negligible. We

present the displacement versus SNR for unity noise variance and A = 10 in Figure 1.6a. The

maximum SNR is achieved when the displacement is zero and platforms located more than

20 meters to the target can not provide useful information (Figure 1.6b).
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Figure 1.6: We consider an acoustic intesity sensor located at the origin and select the nominal

amplitude A = 10, noise variance of unity and attenuation coefficient α = 2.6. (a) the Graph

of the sensor-target displacement versus SNR. Note that the sensor has an SNR of 20, 3, 0 and

−3dBs for displacements of 0, 17.75, 20.772 and 23.152 meters. (b) Likelihoods of the target

location x corresponding to the observation ys = A f (dα) for d ∈ {0, 17.75, 20.772, 23.152}.
Note that, the likelihood mask for an observation made under condition of below 0dB SNR

reveals only the information that the target is somewhere farther than 20 meters.

In Figure 1.7 we present a localization scenario with a sensor network constituted of platforms

equipped with acoustic intensity sensors. The boundaries of the sets of points that are closest

to sensors render a voronoi tesellation of the region. It is possible to predict a target’ s location
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and hence the patch it would reside, based on the track information and have the associated

platform assigned as the new leader and handed off the track information. The influence re-

gion of the target is a circle that is centered at the target location with a radius of 20 meters

considering the discussion above. The platforms that fall within this region collect observa-

tions that would increase the accuracy of the location estimation. A straightforward approach

would be forwarding the observations over the available links. Such a communication struc-

ture can be represented by a directed ayclic graph implying the direction of information flow

from the parentless nodes to the leader node. The concerns on the cost of communications

yield another approach in which only the measurement of the leader node is used to update

the track [20]. The communications required regarding only the localization is still not zero

since it is necessary to execute a protocol to make the nodes in the target influence region

aware that the target they are sensing is led by another node [23].

The concerns on the trade-off between the utilization of communications and the accuracy

of localization becomes more complicated considering that the exact target position is not

known and information is required from all nodes that fall in the convex hull rendered by the

influence regions of all possible target locations within in the voronoi patch. It is apparent

from Figure 1.7 that some of these nodes can not provide any useful information that worths

the cost paid for communications. Similar to the discussion in Section 1.1.3, we treat the

estimation task as the evaluation of a function γ that maps the space of observations to the

space of locations. For the functions γ yielding a certain form that enables distributed eval-

uation, it is possible to find an information collection mechanism which yields a relatively

reasonable network traffic through the construction of a graph representation for the commu-

nication structure together with local functions for the nodes that constitute γ restricted on a

discretization of both its domain and range sets [25].

On the other hand, given a certain communication structure, the question of how to design

γ that achieves a reasonable estimation accuracy for a reasonable communication cost while

taking the communication constraints into account including the limited capacity of the links

and the energy cost required to transmit over them remains. For example, over the example

communication structure presented in Figure 1.7, the nodes can perform a variety of compu-

tational schemes that would result with the position of the target with a certain accuracy. We

are interested in design procedures that would allow for graceful degradation of this accu-

racy when it is preferred to reduce the utilization of communications in order to lower power
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Figure 1.7: Illustration of a target localization scenario in sensor networks: A target (red star)

is located in the brown voronoi patch and the associated node (brown dot) is assigned as the

leader. The influence region of the target is bounded by the red circle centered at the target

location with a radius of 20 m.s. The union of influence regions of possible target locations

in the brown patch renders a convex hull (region within the magenta boundary). The nodes

that fall in the influence region of the target (green dots) would contribute to the localization

task. A possible communication structure over the available links is shown by solid arrows

rendering a directed acyclic graph in which starting from the parentless nodes and ending

at the leader node, upon receiving messages from its parents, each node send messages to

the child nodes. Notice that the underlying network topology might not allow for nearest-

neighbor communication in a single hop due to possible obstacles in the environment such as

rocks or walls. Moreover, since the target location is not known exactly, it can be the case that

information from all nodes that fall in the convex hull, including the non-informative ones

(cyan dots), is required. A possible communication structure is the extension of the former

with the dashed arrows.
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dissipation and hence increase operational lifetime of the network.

1.2 Contributions

In Sections 1.1.1 and 1.1.2, we have introduced an overview of networked sensing with an

emphasis on the communication constraints including the energy cost as well as the layered

architecture together with the distinction between the underlying channels and the links main-

tained for the processing entities by the network layer. The examples in Sections 1.1.3 and

1.1.4 present scenarios in which an estimation task is to be carried out in accordance with the

in-network processing paradigm and underline the distinction between the information struc-

ture exhibited by the probabilistic model of the problem and the communication structure that

the system relies upon.

We are concerned with the design of decentralized estimation networks under the communi-

cations constraints including the topology and the capacity of the links as well as the cost,

possibly due to energy consumption, of transmitting over them. We consider two classes

of decentralized strategies that are composed of local communication and computation rules

and yield graph representations in which the nodes represent the platforms and the edges

correspond to available links. Under reasonable assumptions, these strategies yield tractable

Bayesian objectives which capture penalty for inference errors as well as cost of commu-

nications. A rigorous design problem is obtained in the form of a constrained optimization

problem after employing the Bayesian risk and constraining the feasible decentralized strate-

gies to the space defined through the graphs. The two classes, together with the structures that

the solution exhibits have been recently studied in [26] and [27] in the context of decentralized

detection in which a decision from a finite set is to be made.

We adopt this framework for the decentralized estimation in which a decision from a denu-

merable set is of concern. Similar to the detection case, a Team Theoretic investigation for

each class yields an iterative solution which starting from an initial strategy converges to a set

of person-by-person optimal local rules while decreasing the Bayesian risk.

However, due to the fact that the estimation problem is involved with denumerable sets, the

iterations contain expressions with integral operators that have no closed form solutions in

general. We introduce an approximation framework utilizing Monte Carlo methods under
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which the particle representations of the local rules and approximate computational schemes

for the operators replaces the original expressions. As a result, the iterative solutions turn to

Monte Carlo optimization methods which also maintain the appealing features of the former.

We provide the following benefits:

• The framework we utilize enables us to consider a broad range of communication and

computation structures for the design of decentralized estimation networks. Since the

approach is Bayesian, it is possible to introduce prior information and the cost of com-

munications captured by the Bayesian risk provides a graceful degredation for the es-

timation accuracy when it is required to communicate less and hence energy-aware

operation. Under reasonable assumptions the optimization procedures scale with the

number of platforms as well as number of variables involves and also admit message

passing interpretations which render them fit for network self-organization.

• The Monte Carlo optimization schemes we propose maintain all the features above

and scale with the number of samples required. In addition, they are valid for any set

of distributions provided that samples can be generated from the marginals. Hence

they are not restricted with standard distributions such as Gaussians and do not require

coordinated sampling schemes such as Gibbs sampling.

• Employing a Bayesian risk that captures penalties for both the estimation errors and the

utilization of communications, we are able to address the tradeoff between the commu-

nication cost and the estimation accuracy through considering the performance points

while varying a parameter that admits the interpretation of equivalent estimation penalty

per unit cost of communications.

The main contributions of the thesis are the Monte Carlo optimization schemes summarized

in Algorithm 4 presented in Section 3.4 and Algorithm 5 presented in Section 4.3. We provide

a design methodology for decentralized estimation networks under a broad range of commu-

nication constraints with the benefits discussed.
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1.3 Thesis Organization

The organization of the thesis is as follows; in Chapter 2 we introduce notation and back-

ground that provides a common language for the rest of the thesis. We start with an overview

of mathematical preliminaries and introduce the terms and notation used throughout. Then we

introduce the two classes of decentralized strategies in the context of detection in Section 2.7.

We discuss the online communication and computation schemes represented by directed and

undirected graphs together with the construction of the constrained optimization problem re-

garding communication constrained inference. Then the Team Theoretic investigation and the

iterative solutions are given.

In Chapter 3, we introduce decentralized estimation strategies with a directed acyclic com-

munication structure. We discuss the conditions of optimality and point out that unlike the

detection case, we are not able to achieve useful representations of rules local to nodes. It is

also not possible to evaluate the operators that appear in the iterations. Then we introduce the

Monte Carlo optimization framework for this class of strategies in Section 3.4 with the cor-

responding strategy optimization scheme. Through examples, we present the features of the

proposed approach and address the tradeoff between the estimation accuracy and utilization

of communication.

In Chapter 4 we consider the class of strategies over undirected graphs. We similarly discuss

the conditions of optimality and the implications exhibited for this case. We present the

approximation framework for the undirected case in Section 4.3 together with the Monte

Carlo optimization scheme. We discuss that the proposed approximation framework is also

valid for two-tiered networks in which a higher level undirected strategy is performed among

nodes of a lower level directed acyclic graph.

Finally we present future extensions of the work including possible research directions in

Chapter 5.
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CHAPTER 2

BACKGROUND

The material in this chapter is arranged with the intention of providing a background on

decentralized Bayesian inference motivated by sensor network applications. Starting with

a review of the conventional centralized setting a progressive treatment of the problem is

developed by pointing out inherent intricacies regarding Bayesian inference and introducing

constraints that arise in a decentralized setting.

We begin with presenting mathematical preliminaries in order to introduce the nomenclature

used throughout. In Section 2.1.1, an overview of basic definitions in Graph Theory is given

which are often referred in the proceeding discussion. In the following section, elements of

Probability Theory are introduced in a similar fashion. The focus is on the characterization

of a number of variables through their joint probability density function and the properties

that this characterization exhibits as a result of certain relations among the variables such as

independence and conditional independence. In addition, the law of total expectation and its

utilization for statistical Bayesian inference is given. In Section 2.2 it is pointed out that a

number of conventional Bayesian detection and estimation problem can be handled through

this law which results a variational form for the detector or estimator that acieves minimum

risk.

A straightforward utilization of Bayesian inference exhibits exponential increase in complex-

ity with the problem size. Probabilistic graphical models, reviewed in Section 2.3, provide

a means to both represent the problem structure and exploit possible sparsities for efficient

inference through message passing algorithms. We explain how this perspective is used in

order to handle decentralized inference problems in Section 2.4.

Another subtlety of Bayesian inference is the evaluation of integrals that arise in the case of
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continous random variables. In Section 2.5 we present Monte Carlo methods which are nu-

merical approximations that are successfully employed for expressions involving expectations

of functions over denumerable sets. As an example, particle filters are algorithms obtained by

utilizing Monte Carlo approximations in recursive Bayesian filtering.

We start discussing the communication constrained setting in Section 2.6 and elaborate ap-

proaches addressing the tradeoff between the utilization of communication and estimation

accuracy. A remarkable design approach that exhibits graceful degredation of the global in-

ference performance has been recently introduced in the context of decentralized detection

and we summarize this perspective Section 2.7. Specifically, we consider [28] together with

[27],[26] and [29], but unlike the problem setting considered in these work we assume error-

free communication links and present the overview accordingly. Two classes of decentralized

inference strategies are of concern. The first class, discussed in Section 2.7.1, can be rep-

resented with a directed acyclic graph and yields a rigorous design problem in the commu-

nication constrained setting. The second class is the two stage decentralized strategies over

undirected graphs and provide similar benefits as presented in Section 2.7.2. In the following

chapters, we utilize these strategies in the context of estimation.

2.1 Mathematical Preliminaries

In this section basic elements from graph theory together with probability theory and statistics

are presented in order to establish a common notation and nomenclature throughout. Some

notation for sets, index sets and functions over multiple arguments is introduced first.

Given a setV, we denote with \ the difference operation. Given i ∈ V the complementary of

i with respect to V, i.e. the set V \ {i}, is denoted by \i where it is obvious from the context

that the universal set of concern isV. Let |.| denote the set cardinality. P(V) is the power set

ofV, i.e. the set of all subsets ofV, and it holds that |P(V)| = 2|V |.

We use {.} to denote that the elements are unordered whereas (.) implies an ordering. When a

recursive operation based on an index set is of concern, we assume that the choice of elements

follows the trivial ordering. In this respect, let ⊗ denote consecutive Cartesian Products, then,

e.g. X = X1 × X2 × X3 and X = ⊗
i∈{1,2,3}

Xi are synonymous noting that ⊗ is based on {1, 2, 3}.
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Given a set A ⊂ V where V = {1, 2, ...,N}, and an indexed set X = {X1, X2, ..., XN}, XA

denotes a subset of X given by XA = {Xi|i ∈ A}. Similarly X\i denotes the set {X j| j ∈ V \ {i}}

and X\A is {X j| j ∈ V \ A}.

Given an n-tuple (x1, x2, ..., xN) we denote with [.]i the ith component of its n-tuple argument,

e.g. [(x1, x2, ..., xN)]i = xi. Similarly, given a group of variables {x1, x2, ..., xN} such that

xi ∈ Xi, we denote with [.]Xi
the element of its argument that takes values from the set Xi, e.g.

[{x1, x2, ..., xN}]i = xi .

Finally, we sometimes let any permutation of arguments of a function to refer to the same

value, e.g. given f (x1, x2) and f (x2, x1) refer to the same value when it is obvious from the

context that f (x1, x2) and f (x2, x1) denotes fX1,X2
(x1, x2) and fX2,X1

(x2, x1) respectively such

that fX1,X2
(x1, x2) = fX2,X1

(x2, x1) holds. In this sense ifA = {1, 2} then f (xA) denotes any of

fX1,X2
(x1, x2) or fX2,X1

(x2, x1).

2.1.1 An Overview of Graph Theory

A graph is a pair G = (V,E) where V is the set of vertices (or nodes) and E ⊆ V × V is

the set of edges. G is said to be a graph on V whereas an edge (i, j) ∈ E connects vertices

i, j ∈ V, initiating from i and terminating at j.

Two vertices i, j ∈ V are neighbours if they are connected, i.e. (i, j) or ( j, i) ∈ E. Hence

the set of neighbours of a vertex j is defined by ne( j) , {i ∈ V|(i, j) ∈ E ∨ ( j, i) ∈ E}, in

other words all vertices v ∈ V adjacent to j. The graph G is simple if it does not contain any

self-adjacent vertices, i.e. (v, v) < E, ∀v ∈ V, which we will be dealing with throughout the

thesis.

The set of parents of a vertex j, denoted by π( j), is the collection of vertices that are connected

with j through edges terminating at j, i.e. π( j) , {i ∈ V|(i, j) ∈ E}. Similarly the set of

children of a vertex j, denoted by χ( j), is constituted of vertices that are connected with j

through edges initiating from j, i.e. χ( j) , {k ∈ V|( j, k) ∈ E}.

The indegree of a vertex j is the number of its parents, i.e. |π( j)| and similarly the outdegree

of j is the number of its children, i.e. |χ( j)|. The degree of a vertex is defined as the number

of its neighbours, i.e. |ne( j)|.
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A graph G is said to be directed if there is no pair of edges connecting the same vertices

such that one terminates at the vertex the other initiates from, i.e. if (i, j) ∈ E ⇒ ( j, i) <

E,∀(i, j) ∈ E. In Figure (2.1a), we illustrate an example directed graph on V = {1, 2, ..., 8}

with an edge set E = {(1, 2), (1, 3), (2, 4), (3, 5), (3, 8), (4, 5), (5, 6), (7, 6)}. Similarly, a graph

1
 3
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8
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2
 4
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(a) (b)

Figure 2.1: Illustration of (a) the directed graph G = (V,E) where V = {1, 2, ..., 8} and

E = {(1, 2), (1, 3), (2, 4), (3, 5), (3, 8), (4, 5), (5, 6), (7, 6)}, (b) its undirected counterpart as an

example to an undirected graph.

is said to be undirected if it holds that two vertices i and j connected by an edge (i, j) implies

that they are also connected by ( j, i), i.e. if (i, j) ∈ E ⇒ ( j, i) ∈ E,∀(i, j) ∈ E. If a graph

is declared to be undirected, for convenience, the pair of edges connecting the same pair

of vertices will be denoted by only one element in the edge set E, either by (i, j) or ( j, i)

relaxing the orderedness of these pairs. This interpretation also yields a natural definition for

the undirected counterpart of a directed graph. In Figure (2.1b) we give the illustration of an

undirected graph which is the undirected counterpart of the example above. We note that in

an undirected graph, the indegree, outdegree and degree of a vertex are equal.

A path P = (V,E) is a graph where the set of vertices and edges are of the form

V = { j1, j2, ..., jn} and E = {( j1, j2), ( j2, j3), ..., ( jn−1, jn)} respectively. The number of edges

is the length of P. A cycle (or loop) is a path with an additional edge ( jn, j1). Hence a cycle

of length n is a path from j1 back to itself.

A subgraph G′ = (V′,E′) of G is a graph such that V′ ⊆ V and E′ ⊆ E. If E′ contains all

edges (i, j) ∈ E such that i, j ∈ V′, then G′ is referred to as theV′ induced subgraph of G. A

path (or cycle) is said to be contained in G if it is a subgraph of G. A chord of a cycle in G is

an edge (i, j) ∈ E which is not in that cycle but connects its two vertices in G.
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Given three disjoint setsA,B and C ⊂ V, B is said to separateA and C in G if G\B induced

subgraph of G does not contain any path between any two vertices selected from A and B

respectively.

Consider an undirected graph G. It is triangular if every cycle of length greater than four

has a chord. It is connected if there exists a path linking any pair of its vertices and acyclic

if it contains no cycles. An undirected graph which is acyclic and connected is called a tree.

Tree graphs have the property that there is only one path between any two vertices. On a tree,

vertices with degree 1 are called leaf nodes. An undirected path which is also a tree is called

a chain. A clique is a set of nodes C ⊆ V such that any pair i, j ∈ C is connected in G. A

clique is maximal if there are no nodes i ∈ V\C such that C ∪ {i} is a clique. G is a complete

graph if it is a maximal clique itself.

Given a collection of subsets ofV, i.e. VT ⊆ P(V), a junction tree GT = (VT ,ET ) is a tree

onVT such that every vertex on the (unique) path between iT and jT ∈ VT contains iT ∩ jT .

This condition is also known as the running intersection property. The seperator set between

two adjacent vertices iT , jT ∈ VT is given by SiT , jT = iT ∩ jT and the set of all seperators

by ST = {SiT , jT |(iT , jT ) ∈ ET }.

A bipartite graph has the property that its set of vertices V can be separated into two non-

empty class sets such that any edge (i, j) ∈ E connects vertices of different classes.

Consider a directed graph G. The set of ancestors of a vertex j, denoted by an( j), is the

maximal subset ofV \ j such that initiating from each of its members there exists a directed

path to j in G. Similarly, the set of descendants of j is denoted by de( j) and defined as the

maximal subset ofV\ j such that for any given member, there exists a directed path initiating

from j and terminating at that member in G.

A directed acyclic graph admits a partial ordering; a forward partial ordering proceeds after

assigning an initial count to the parentless nodes, e.g. l = 0, and after removing them from

V by increasing the count by one, and recursively continuing the same procedure. A similar

approach starting with childless vertices yield a backward partial ordering. Moreover an( j)

and de( j) are disjoint, i.e. an( j) ∩ de( j) = {}. Note that, an acyclic directed graph does not

necessarily have an acyclic undirected counterpart. If the undirected counterpart of a directed

graph is also acyclic, it is called a polytree. In this case, for any vertex j no two parent vertices

20



have a common ancestor and no two child vertices have a common descendant.

Altough the definitions might slightly vary in different resources on graphs (e.g. a clique is

maximal by definition in [30] whereas this property is not required in [31]) we refer to the

definitions above throughout.

2.1.2 An Overview of Probability Theory

Given a probability space (Ω,F ,P) where Ω is a sample space, F is an event space and P is

a probabiliy measure, and a measurable space (X,B), a random variable X is a measurable

function X : Ω→ X with the probability measure P.

When X is a finite set, we can talk about the probability that X takes a specific value x.

This probability is captured in the probability mass function pX : X → [0, 1] given by

pX(x) = P({ω ∈ Ω|X(ω) = x}). Consider the case where X = R and B the Borel field on R, in

which we can talk about the probability that X takes a value in an interval (x1, x2) with x1 < x2.

This probability is conveyed by the cumulative distribution function PX : X → [0, 1] given

by PX(x) = P({ω ∈ Ω|X(ω) ≤ x}) whereas the probability density function pX : X → [0,∞) is

given by pX(x) = dP(x). Given a measurable function f : X → X, Z = f (X) is also a random

variable with a cumulative distribution PZ(z) = P({ω ∈ Ω| f (X(ω)) ≤ z}). With sufficient care,

we can treat a random variable x taking values from a discrete (or continous) set X as char-

acterized by its probability mass (or density) function, without further considerations on the

underlying probability space. We refer to X as a continous random variable if the distribution

function PX is continous and as a discrete random variable if PX is piecewise constant.

A random vector X is constituted of N random variables, i.e. X = (X1, X2, ..., XN)T and

takes values from X = X1 × X2 × ... × XN where Xi is the range of Xi for i = 1, 2, ...,N.

Consider a continous random vector with a joint probability density pX(x1, x2, ..., xN). The

individual density functions of Xi are called marginal densities of X and given by p(xi) =
∫

X\i
dx\i pX(x1, x2, ..., xN). Similarly, the joint distribution of a subset of components of X,

denoted by XA is given by pXA(xA) =
∫

X\A
dx\ApX(x1, x2, ..., xN). These definitions are also

valid for a discrete random vector where we replace integrations with summations.

Given Xi fixed to xi such that p(xi) , 0, the remaining components X\i in the context of X are

characterized by the conditional density function given Xi which is equal to pX\i |Xi
(x\i|xi) =
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pX(x1, x2, ..., xN)/pXi
(xi) through the celebrated Bayes’ rule. Note that pX\i |Xi

can be inter-

preted as a family of distributions from which one is selected by xi. Similarly, given some

components fixed, i.e. XA = xA such that p(xA) , 0, the set of remaining variables XB = X\A

are characterized by the conditional density function over XB given XA which is equal to

pXB |XA(xB|xA) = pXB,XA(xB, xA)/pXA(xA).

Starting from a joint density pX of a random vector X, probabilistic characterizations of in-

dividual and grouped components of X for marginal and conditional cases are introduced.

Additional relations which provide further conceptuallization are characterized through cer-

tain conditions on the functions defined above.

Any two components where pXi,X j
(xi, x j) = pXi

(xi)pX j
(x j) holds are said to be independent. A

stronger concept is mutual independence for which to exist given X = {X1, X2, ..., XN}, it holds

that the joint density pX(x1, x2, ..., xN) =
∏

i∈{1,...,N} p(xi). Similarly, given 3 non-empty sets

XA, XB and XC, the components XA and XB are said to be conditionally independent given XC

if and only if p(xA, xB|xC) = p(xA|xC)p(xB|xC) holds for all values of xC ∈ XC with nonzero

probability1. This relation is denoted by XA ⊥⊥ XB | XC .

Given a continous random vector, its expected value, also referred to as the mean vector, is

given by EX{X} =
∫

X dx x pX(x) and denoted by µX . It can easily be shown that the components

of µX are expected values of the components of X, i.e. µX = (µX1
, µX2

, ..., µXN
) where µXi

=

EXi
{Xi}. Given a function c overX, the expected value of the function EX{c(X)} is given by re-

placing x in the integrand with c(x). The variance of a single random variable is the exptected

value of the function c(xi) = (xi − mXi
)2. The covarianceσXiX j

of two random variables Xi and

X j is given as the expected value of the function, c(xi, x j) = (xi−µXi
)(x j−µX j

) whereas the co-

variance matrix CX of the random vector X is the expected value of c(X) = (X − µX)(X − µX)T

and has the covariance of Xi and X j at its (i, j)th field. Two random variables are called uncor-

related if their covariance is zero. Hence, the components of X are mutually uncorrelated if

CX is diagonal. Through an inner product interpretation of EXiX j
{XiX j}, two random variables

are said to be orthogonal if EXiX j
{XiX j} = 0, denoted by Xi ⊥ X j.

The conditional expectation is defined in a similar fashion by substituting the relevant condi-

tional distribution in the integrand and setting the integration domain appropriately. Suppose

that the conditions we have previously discussed for the existence of pxB |xA hold. Then the

1 Note that the subscripts of the distributions are dropped since it is possible to identify them from the context.
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conditional expectation of XB given XA = xA is given by

EXB |xA{XB|XA = xA} =
∫

XB
dxBxBpXB |XA(xB|xA)

and denoted by µXB |xA . Similarly, EX{c(X)} = EXA{EXB |XA{c(X)|XA}} where the conditional

expectation in the right hand side is interpreted as a function over XA given by

EXB |XA{c(X)|XA} =
∫

XB
dxBc(XA, xB)pXB |XA(xB|XA)

The celebrated law of total expectation is obtained considering c : XB → R and in a similar

fashion with the discussion above as EXB{c(XB)} = EXA{EXB |XA{c(XB)|XA}}.

The definitions above are valid for discrete random vectors and variables with the difference

that integrations are replaced with summations where necessary. Equivalently, we can stay

within the contionus framework given by the expressions above and consider a probability

density function constructed by superpositioning impulses scaled to integrate to the corre-

sponding value of the probability mass function and shifted to the corresponding value of

x ∈ X, i.e. given the probability mass function pX , it is possible to proceed with the corre-

sponding continous distribution pc
X

(x) given by

pc
X(x) =

∑

x̃∈X
pX(x̃)δ(x − x̃)

Several examples with an extended discussion related with the subject can be found in several

textbooks including [32]. We refer to the definitions and notation introduced above throughout

the thesis, with an emphasis on conditional independence and expectations of functions.

2.2 Bayesian Detection and Estimation

Statistical inference deals with drawing conclusions about some quantities based on the ob-

servation vector y = (y1, y2, ..., yn)T ( or simply the “data”). Detection and estimation is a well

established area of statistical inference, also known as the statistical decision theory, in which

the value of an unknown quantity x ∈ X is of concern given observations induced under un-

certainities. The mathematical model asserts that we are given observations y ∈ Y due to a

probabilistic mapping from X to Y where X is the set of possible values of x. Evaluating a

function γ : Y → X at the observation y, a guess x̂ is produced (Figure 2.2). The problem is

to find γ∗ among the possible functions that results with the desired quality of inference. This
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Figure 2.2: Illustration of the conventional scenario in detection and estimation; a random

vector x which takes values from the set X induces a measurement y ∈ Y where the observer

is to decide on the value of x based on y. Hence the mathematical description of the system is

a function γ : Y → X which maps an observation y ∈ Y to a value in X called an estimate of

x, i.e. x̂ = γ(y). The set of all possible such γ is given by Γ = {γ|γ : Y → X}.

scenario is referred to as a detection problem if X is of finite cardinality, i.e. |X| < ∞, and an

estimation problem if X is denumerable. The uncertainities of the observation process such

as sensor noise is captured by the probabilistic mapping and characterized by the observation

likelihood function pY |X . In addition, it is possible to treat x as a realization of a random vector

X which takes values from X in accordance with the a priori density function pX . Therefore,

the vector constructed by aggregating the latent variables X and the observation variables Y ,

i.e. Z = (XT ,YT )T , admits a characterization through the joint density (or mass) function

pZ(x, y) = pY |X(y|x)pX(x). Such a probabilistic model enables a characterization of the un-

certainities related to the latent variables X based on the observed value y through the Bayes

rule and a “rational guess” on the realized value of X can be drawn utilizing the law of total

expectation.

In the Bayesian estimation setting, we assign costs to all possible (x, x̂) pairs through a func-

tion c : X×X → R and select γ such that the expected cost, also referred to as the Bayes risk

is mimimum. In order to proceed, we note that X̂, being a function of Y , is a random variable

and selection of γ where x̂ = γ(y) induces the conditional distribution p(x̂|y) 2. In addition,

since γ operates on only Y , the conditional independence relation X ⊥⊥ X̂ |Y holds and the

joint distribution p(x, x̂, y; γ) is given by

p(x, x̂, y; γ) = p(x̂|y; γ)p(x|y)p(y) (2.1)

Therefore, for any selection of γ : Y → X, there exists an expected cost given by

2 In other words, the distribution p(x̂|y) is specified by selecting the function γ. We denote such dependencies

by “; γ” as in p(x̂|y; γ) throughout the thesis. Let us assume that γ is a deterministic rule, then p(x̂|y) = δ(x̂− γ(y))

where δ is the Dirac’ s delta distribution. A discussion regarding possible non-deterministic rules is introduced

later in this section.
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J(γ) = E{c(x, x̂); γ}, where the underlying distribution is p(x, x̂; γ) =
∫

Y dyp(x, x̂, y; γ). Hence,

the Bayesian estimation problem can be expressed as

(P0): min E {c(x, x̂); γ} (2.2)

subject to γ ∈ Γ

where Γ is the set of all functions mapping Y to X, i.e. Γ = {γ|γ : Y → X}.

Before proceeding with the solution to (P0), we note that it is possible to treat γ as a determin-

istic function as well as a randomized rule. Let Γ̄ denote the set of deterministic estimation

rules. A randomized mechanism proceeds as follows: Suppose that a probability density func-

tion p(k) is given for the random variable K which takes values on the interval (0, 1). It is also

possible to define a mapping from (0, 1) to Γ̄. Therefore a denumerable set of deterministic

rules {γk}k∈(0,1) can be obtained. As soon as y is received, a randomized γ̃ refers to drawing k

from p(k) and evaluating the corresponding deterministic rule, i.e. γ̃(y) = γk(y). Let Γ̃ denote

the set of all such γ̃. Note that for γ̃ ∈ Γ̃ it holds that J(γ̃) =
∫ 1

0
dkp(k)J(γk). Moreover, γk ∈ Γ̄

and Γ̄ ⊂ Γ̃ yielding

inf
γ∈Γ̃

J(γ) = inf
γ∈Γ̃

∫ 1

0

dkp(k)J(γk)

=

∫ 1

0

dkp(k) inf
γ∈Γ̄

J(γk)

= inf
γ∈Γ̄

J(γk)

Therefore, for the problem (P0), we can confine ourselves to the set of deterministic rules and

hence choose Γ = Γ̄.

Let us denote the solution to (P0) by γ∗ and consider the law of total expectation for J(γ), i.e.

E {c(x, x̂); γ} = E{E{E
{

c(x, x̂)|X̂,Y; γ
}

|Y}}

An explicit form for the expression above is obtained after substituting Eq.(2.1) in J(γ) to-

gether with some arrangements, i.e. having

J(γ) =

∫

Y

dyp(y)

∫

X

dx̂p(x̂|y; γ)

∫

X

dxc(x, x̂)p(x|y)

and noticing that J(γ∗) is minimum if and only if γ∗(y) = arg minx̂∈X
∫

X dxc(x, x̂)p(x|y) for all

y ∈ Y with nonzero probability. Equivalently, since p(y|x)p(x) ∝ p(x|y) for all such y ∈ Y,

γ∗(Y) = arg min
x̂∈X

∫

X

dxc(x, x̂)p(Y |x)p(x) (2.3)
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with probability one.

Hence, the solution to (P0) is obtained in a variational form through applying the law of to-

tal expectation to the Bayesian objective. The discussion above holds also for the detection

problem through replacing integrations with summations where appropriate (and construct-

ing a randomized rule through a positive finite integer K and considering a probability mass

function p(i) for i = 1, 2, ...,K together with a finite set of deterministic decision rules [33] ).

Example 2.2.1 Consider problem (P0) with X = Y = R, and the squared error cost, i.e.

c(x, x̂) = (x− x̂)2. The solution is obtained in closed form through differentiating the objective

function in Eq.(2.3) with respect to x̂ as

X̂ = γ∗(Y) =

∫

X
dx x p(x|Y) (2.4)

which is nothing but the expected value of the posterior density. This well known result in

the literature on estimation is referred to as the Minimum Mean Squared Error (MMSE)

Estimator [34]. It is possible to make an extension to the case where X and Y are random

vectors, i.e. X = R
N andY = R

M with the cost given by c(x, x̂) = ‖x − x̂‖2 = (x− x̂)T (x− x̂) =

∑N
i=1(xi − x̂i)

2. The above steps yield a solution with the components equal to the expected

values of posterior marginals, i.e. X̂ = γ∗(Y) = (E{X1|Y}, E{X2|Y}, ..., E{XN |Y})T .

Returning to the single variable case, another common choice for the cost function is the

complementary ε-neighborhood indicator given by

c(x, x̂) =























0 , |x − x̂| ≤ ε

1 , |x − x̂| > ε

for which the solution is similarly obtained by

X̂ = γ∗(Y) = arg max
x∈X

p(x|Y) (2.5)

as lim ε → 0 and called the Maximum A Posteriori (MAP) Estimator [35]. This solution

generalized to the random vectors case does not exhibit any simplifications for its components,

but for c(x, x̂) =
∑N

i=1 ci(xi, x̂i) where ci’ s are complementary ε-neighborhood indicators,

ith the component of X̂ = γ∗(Y) is equal to x̃i that maximizes the ith marginal posterior, i.e.

x̂i = arg maxx̃i∈Xi
p(x̃i|Y) and γ∗ is called the Maximum Posterior Marginal (MPM) Estimator.

Another well known problem is m-ary detection in which case X = {1, 2, ..., M} and Eq.(2.3)

turns to γ∗(Y) = arg mini∈{1,2,...,M}
[

Θp(Y |x)
]

i where Θ is a coefficients matrix such that the
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(i, j)th entry is given by [Θ]i, j = c(x̂ = i, x = j)p(x = j) and p(Y |x) is interpreted as a vector

such that jth field is given by
[

p(Y |x)
]

j = p(Y |x = j). This form further simplifies for the binary

detection case, i.e. |X| = 2, and the minimum Bayesian risk decision is found as a likelihood

ratio test given by

Λ(y) ,
p(y|x = 1)

p(y|x = 2)

x = 1
><

x = 2

[Θ]1,2 − [Θ]2,2

[Θ]2,1 − [Θ]2,2

(2.6)

2.3 Probabilistic Graphical Models

Many statistical inference tasks including estimation (and detection) are involved with marginals

of the joint density function introduced in Section 2.1.2. For example, MMSE and MPM esti-

mators presented in Example 2.2.1 rely on marginal densities of the joint a-posteriori density

function. Although the joint distribution provides a complete probabilistic model for the vari-

ables of concern, the complexity of performing Bayesian inference inhibits straightforward

computation of marginals. Consider a random vector with N components each taking a value

among M choices. With a straightforward approach, storage of the joint mass function and

computing the marginal distribution of one of the variables through simple marginalization

yield a storage and computation complexity of O(MN) and O(MN−1) respectively.

On the other hand, if the global function fX(x) subject to marginalizations is in the form

of product of functions over subsets of its arguments, i.e. fX(x) =
∏

C∈C fXC(xC) where

C ⊂ P(V), this complexity might be reduced through the application of the well known

distributive law. Roughly speaking, the complexity of the solution to the “Marginalize Prod-

uct of Functions” problem is related to the particular factorization of the global function in

terms of local functions, i.e. { fXC
(xC)}C∈C, and smaller domain set dimensions of these func-

tions and fewer number of variables shared among them results with reduced complexity. In

the extreme case, the global function is such that it is the product of functions over single

components, i.e. fX(x) = fX1
(x1) fX2

(x2)... fXN
(xN). A generalization along these lines is pre-

sented in [36], together with an algorithm which corresponds to computation of marginals

through invoking the distributive law in accordance with the particular factorization and re-

sults with reduced complexity. Still, in the worst case, it is shown that Bayesian inference is

NP-hard [37].
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In the context of statistical inference, given a set of random variables, independence rela-

tions defined in Section 2.1.2 lead factorizations of the joint density for which case it is the

global function of interest. Hence, these relations describing the interactions among vari-

ables are fundamental to analysis and synthesis of probabilistic models as well as drawing

inferences over them. Such relations are also referred to as Markov properties of the set of

random variables of concern. Similar to the MPF discussion, Probabilistic Graphical Models

provide means of representing these properties in terms of relations on graphs together with

inference mechanisms acting over them which, in a sense, tailor the complexity to that of the

interactions.

A Graphical Model consists of a graph G = (V,E) which represents a set of random variables

X = {X1, X2, ..., XN} constituting the process to be modeled and Markov properties among

them together with functions defined on a subset of random variables, i.e.
{

ψ j(X j)
}

where

X j ⊂ X. They come in two varieties of directed and undirected models which differ in the

way they express these properties and the corresponding factorization of the joint distribution.

Directed Graphical Models: Directed Graphical Models, also referred to as Bayesian

Networks or Belief Networks, are directed acyclic graphs which are commonly interpreted to

be presenting causality relationships among variables through conditional distributions. A

directed graph G = (V,E) expresses that the joint distribution of concern satisfies

pX(x) =
∏

v∈V
p(xv|xπ(v)) (2.7)

The factors of this product form are determined by the parent-child relationships in G and

conditional distibutions over them. Considering Eq. (2.7), the example directed graph given

in Figure (2.1a) corresponds to

p(x1, x2, ..., x8) = p(x1)p(x2|x1)p(x3|x1)p(x4|x2)p(x5|x3, x4)p(x6|x7)p(x8|x3)

For efficient inference on Bayesian networks, it is possible to transform G to an undirected

model GM through moralization and then proceed in the undirected framework [38]. This

approach will be presented in the discussion of undirected graphical models.

Undirected Graphical Models: We will focus specifically on Markov Random Fields

which are often mentioned throughout the thesis3. Markov Random Fields are undirected

3 Another common undirected graphical model is Factor Graphs which, together with the sum-product and

the max-product algorithms, render well known algorithms such as Kalman filtering on Markov chains and Viterbi

decoding as special cases [39]. Also, for connections of factor graphs, Bayesian networks and Markov random

fields, the interested reader is referred to this reference.
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graphical models where each node v ∈ V is associated with a set of random variables Xv ⊂ X

and Markov properties of X are represented through separation relations on G. The pairwise

Markov property is that the absence of an edge between two nodes indicates conditional inde-

pendence of the corresponding random variables given the remaining, i.e. if (v1, v2) < E,

then Xv1
⊥⊥ Xv2

| XV\{v1,v2} . Consequently, for any v ∈ V, the local Markov property,

p(xv|xV\{v}) = p(xv|xne(v)) , holds. In general, X is Markov with respect to graph G if given

disjoint sets A,B,C ⊂ V satisfying the property that B separates A and C in G, the random

variables XA and XC are conditionally independent given XB.

Given X Markov with respect to G, a theorem due to Hammersley and Clifford guarantees

that the joint distribution factorizes to local functions over cliques of G, also commonly called

compatibility functions.

Theorem 2.3.1 (Hammersley-Clifford) X is Markov with respect to G if and only if any posi-

tive and continuous joint probability density pX factorizes according to G, i.e.

pX(x) ∝
∏

C∈C
ψC(xC) (2.8)

where C is the set of all cliques of G.

Proof. See, for example [31], where the proof sets the equivalence of pairwise and local

Markov properties, X being Markov with respect to G and the factorization above. �

This theorem provides us a basis for constructing a factorization for the joint density given a

Markov Random Field, or conversely, a Markov Random Field given a certain factorization

of the joint density. For the former case, we expect the compatibility functions to be in the

form of product of local conditional and joint densities, however exact identification requires

additional care.

If G is a tree, then the cliques are single vertices and pairs of vertices that are connected, i.e.

C = V ∪ {{v1, v2}|(v1, v2) ∈ E} and the joint distribution satisfies

p(x) =
∏

v∈V
pv(xv)

∏

(v1,v2)∈E

p(xv1
, xv2

)

p(xv1
)p(xv2

)
(2.9)

The compatibility functions are easily identified comparing this equation with Eq.(2.8). Hence,

we achieve a means to describe the joint probability distribution of a large number of random
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variables in terms of functions of lower dimensions in their domain set. Similar to the MPF

case, inference algorithms on graphical models exploit this property for solving problems

dealing with the computation of marginal distributions of a subset of variables or their value

at the peak of the joint distribution.

On a tree graph G, the marginal probabilities at any node v ∈ V is given by the product of the

node compatibility function and functions regarding each neighbor node as

pv(xv) ∝ ψv(xv)
∏

u∈ne(v)

mu→v(xv) (2.10)

where

mu→v(xv) ∝
∫

xu∈Xu

dxu ψv,u(xv, xu)ψu(xu)
∏

z∈ne(u)\v
mz→u(xu) (2.11)

and represent a set of fixed point equations due to the acyclic structure of GT [40]. An

exact solution to this set of equations yields a treatment where each node G is viewed as an

entity which can compute its state given by Eq.(2.10) and messages given by Eq.(2.11) to be

transmitted to neighboring nodes together with a messaging schedule, leading to a Message

Passing Algorithm.

One possible solution for computing the marginal of a certain variable in a message passing

fashion is to select the associated node as the root and start a message flow from the leaves

directed to the root. For the leaf nodes, the term in Eq.(2.11) due to messages from neighbors

drops and the schedule begins to proceed. As node u receives messages from all its neigbours

except v ∈ ne(u) it is triggered to compute Eq.(2.11). The marginal distribution of concern is

achieved through Eq.(2.10) as soon as the root node receives messages from all of its neigbors.

In order to compute all marginals, Belief Propagation utilizes the same structure without

any particular root. Node u sends only one message to any of its neighbour v ∈ ne(u) by

suppressing any trigger if it has already. Hence, after a finite number of steps, the message

passing operations stop and the node states are the corresponding marginals. Similarly, the

problem of finding the value of the variable associated with node v, i.e. xv, at the maximum

of the joint density is expressed by replacing the integration (or summation if X is discrete)

in Eq.s (2.10) and (2.11) by max operations and the solution has the same schedule as that in

the previous problem.

It is possible to treat Belief Propagation as a generalization of recursive Bayesian filtering
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on chains which turn to Kalman smoothing with Gaussian distributions. Similarly, viterbi

decoding can be described as an instance of the max-product algorithm.

Note that the nodes of an MRF is not necessarily associated with a single random variable.

Suppose G = (V,E) is not a tree and each node is associated with a single random vari-

able. It is possible to obtain another representation GP = (VP,EP) through an appropriate

aggregation of nodes v ∈ V to super-nodes vP ⊂ V such that the corresponding factorization

takes the form where each compatibility function is over a super-node vP ∈ VP or an edge

(uP, vP) ∈ EP [41]. In other words

p(x) ∝
∏

vP∈VP
ψvP(xvP)

∏

(uP,vP)∈EP
ψuP,vP(xuP , xvP) (2.12)

holds which is similar to that for a tree given in Eq.(2.9) except that for the case it is not

straightforward to identify the compatibility functions. Moreover, with the representation GP,

our resolution is decreased in a sense, since further Markov properties among single variables

are not visible anymore.

A related approach which can be used to exploit the advantages that the tree structures exhibit

is to construct the corresponding junction tree representation. There exist a junction tree over

maximal cliques of a triangular graph and it is possible to triangulate G by adding chords such

that no Markov property that has not been presented in G is added. Suppose G∆ = (V,E∆) is

such a triangulation of G. Then we can construct a tree on the set of maximal cliques of G∆
denoted by CM, i.e. J = (CM,EM), such that the running intersection property is satisfied

and the joint probability distribution is given by

pX(x) =

∏

C∈CM pC(xC)
∏

S∈ST pS(xS)
(2.13)

where ST is the set of separators of J [42]. Then we can still apply the message passing

algorithms on trees with simple twists.

Considering inference on a Bayesian NetworkG = (V,E), together with Eq.(2.7) and Eq.(2.8)

we notice that any node v ∈ V must lie in the same clique with its parents in the MRF

representation. Therefore, after constructing the undirected counterpart of G, we add edges

between unconnected parents of each node with respect to the original graph. This procedure

is known as moralization and the resulting undirected graph GM as the moral graph of G.

Then the discussion for constructing a junction tree is valid.
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Example 2.3.2 In Figure(2.3a) we illustrate the moral graph of G given in Figure (2.1a).

Note that edges are added to connect parent nodes 3, 4 of 5 and 5, 7 of 6 respectively. There

are two possible triangulations; obtained through adding a chord connecting nodes 2 and

3 or nodes 1 and 4 as given in Figure 2.3b and Figure 2.3c respectively. Also seen is the

maximal cliques with dashed lines, on which the junction trees are constructed. Given the

set of maximal cliques, any tree satisfying the running intersection property is valid. Some

possible junction trees corresponding to the two possible triangulated graphs are given in

Figure2.4a-c and Figure 2.4d-e respectively (Other junction trees can be constructed, for

example, by swithcing the nodes 1, 2, 4 and 1, 3, 4 in Figure 2.4d-e ). Note that the junction

trees corresponding to a particular triangulation have the same set of separators and hence

represent the same product form given by Eq. ( 2.13). They differ, for example, in the message

schedule they imply.

1
 3
 5


2
 4


8
 6
 7


1
 3
 5


2
 4


8
 6
 7


1
 3
 5


2
 4


8
 6
 7


(a) (b) (c)

Figure 2.3: Illustration of (a) the moral graph of G given in Figure (2.1a) (b) a possible

triangulation of the moral graph constructed by adding a chord connecting nodes 2 and 3, (c)

another possible triangulation by adding a chord connecting nodes 1 and 4.

Although Equations (2.10) and (2.11) describe the situation for a loop free graph GT , they are

also well defined for any MRF G through the corresponding pairwise factorized form given

in Eq.(2.12). Hence, given a pairwise MRF GP, rather than constructing the junction tree

representation and applying inference algorithms on junction trees, one may prefer to ignore

the loops in GP and run (2.11) on a loopy graph. A number of reasons motivate this approach

including the facts that aggregating the nodes to form a junction tree results in increased

domain set dimensions for the corresponding compatibility functions which consequently in-

hibits suitability for distributed computations and complexity reduction and that construction

of the corresponding compatibility functions is not straightforward, in general.
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Figure 2.4: Illustration of some possible junction trees on the maximal cliques of the triangu-

lated moral graphs constructed by connecting them such that the running intersection property

is satisfied. The nodes which are maximal cliques are represented with the ellipse shapes and

the separator sets although not a part of the graph, are shown by rectangles for convenience;

(a),(b),(c) corresponds to the triangulation given in Figure (2.1b), (d),(e) corresponds to the

triangulation given in Figure (2.1c).

Loopy variants of the sum-product rule have been successful in many applications including

decoding of low-density parity check codes [43] which is characterized by graphs with long

cycles. The error bounds and performance of loopy versions of inference algorithms have

been studied further. Examples of the various papers on the subject are [44] and [45] just

to mention a few. Inference algorithms on loopy graphs together with the assessment of their

performance are of interest in the sensor network context where typically graphs with short

cycles arise [5].
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2.4 Graphical Models for Statistical Inference in Sensor Networks

The treatment of a sensing problem in the statistical inference framework is provided through

a probabilistic characterization of uncertainities. However, the conventional approaches given

in Section (2.2) necessitates the collection of observations at a processing center and fail

to meet the requirements in such a scenario where the probabilistic model is composed of

a large number of variables and the observations are collected by devices that are located

apart, have limited processing and communication capabilities and energy budget. In sensor

networks, it is preferable to utilize a framework which distributes the computational load over

the nodes through a balanced and acceptable amount of communications and hence yields a

collaborative scheme for the processing of the observations.

Considering sensor network applications, it is often the case that the quantities subject to

inference are associated with physical locations and exhibit interactions that are local, i.e.

each variable relies on the ones associated within a neighborhood and renders the remaining

as nuisance variables. In addition, the noise processes associated with sensor platforms are

independent and the observations collected by platforms are induced only by the quantities

associated with that region. Provided that these interactions render a sparse enough infor-

mation structure, it is possible to decompose the corresponding global processing scheme in

terms of local procedures that are distributed in the network. Probabilistic graphical models

introduced in Section 2.3 provide a rigorous base for representing the information structure

of the problem and efficient processing schemes through message passing algorithms. In this

respect, the information graph refers to any type of graphical model, which might vary re-

garding the specific application. For example, the random field estimation scenario presented

in Section 1.1.3 is well suited for Markov random fields. The discussion of distributed statis-

tical inference in sensor networks for different representations is similar, so let us consider the

case in which the information structure is represented by a Markov random field and the joint

density has the form given by Eq. (2.8). Observed variables introduced with label Y results

with

p(x, y) ∝
∏

C∈C
ψC(xC, yC) (2.14)

The a-posteriori joint distribution of the variables constituting x given all observations y is

proportional to the right hand side of Eq. (2.14) and without loss of generality, equality
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is satisfied through appropriate scaling of the compatibility functions. In Section 2.3, we

pointed out that it is possible to aggregate nodes of an MRF and obtain the joint density in

a pair-wise factorized form given by with respect to the modified graph Eq. ( 2.12). For the

case, this approach yields

p(x|y) ∝
∏

v∈V
ψv(xv, yv)

∏

(s,t)∈E
ψs,t(xs, xt, yst) (2.15)

where yv and yst are the set of noisy observations induced only by the set of random variables

xv and {xs, xt} respectively.

If the measurements satisfy the observation locality property, i.e. for each observation yv, yv is

independent of xu∈V\{v} ∪ yu∈V\{v} given xv, then the information structure given by Eq. (2.15)

reduces to

p(x|y) ∝
∏

v∈V
ψv(xv, yv)

∏

(s,t)∈E
ψs,t(xs, xt) (2.16)

which is often the case in sensor network applications. Consider the example scenario pre-

sented in Section 1.1.3. The MRF representation of the prior for the latent variables together

with the observed variables satisfying the locality property yield the MRF representation given

in Figure 2.5.

Through mapping partitions of the graph G which represents the information structure onto

real sensor platforms, a collaborative processing scheme for sensor networks is possible. Con-

sidering a certain message passing algorithm for inference, messages between nodes of the

information graph that are hosted by two distinct sensor platforms correspond to real commu-

nication over the network for which the network layer should maintain links4. In addition to

the link availability, the computational resources of the platforms should be enough to perform

the message and state updates.

This mapping is trivial in the case that the locality of observations hold and consequently

each factor ψv(xv, yv) in Eq. ( 2.16) describes the contribution of a distinct sensor platform.

The platform that collects the observation(s) yv is then associated with yv, and the variable(s)

inducing yv, i.e. xv, together with the corresponding factor, e.g. ψv(xv, yv) (Considering the

random field estimation example, the partitions of G shown by dashed-ellipses in Figure 2.5

4 It is not reasonable to assume that these links are available since, as also indicated in Section 1.1.1, the graph

in which edges are available links between platforms, also referred to as the network graph, is a complete graph

provided that the underlying channels render a connected graph.
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are associated with the platforms that collect the observation variables contained in the par-

titions). In addition, two neighboring platforms should be provided enough information to

evaluate edge compatibility functions, i.e. ψs,t(xs, xt).

Figure 2.5: Illusration of the trivial mapping for the pairwise MRF representation for the

case that the property of locality of observations is satisfied. The information structure of the

problem is revealed by the MRF (seen in green, with the observed variables darker). Each

physical platform (black square) observes yv induced only by the random variable associated

with its physical location, i.e. xv. When the pairwise representation in Eq.(2.16) is valid, the

partition of the information structure containing xv and yv is mapped to the corresponding

platform (the partition of the information within the dashed-ellipses are associated with the

platform falling in the same ellipse). The message passings between neigboring nodes xu and

xv correspond to real communication between hosting platforms over the network (orange

graph with dashed lines).

The accuracy of the result depends on a number of factors. First of all, due to the limited

bandwidth of the links, it is not possible to transmit messages without errors (possibly due

to discretization and quantization) resulting with a degraded performance [46]. Second, the

problem structure might not yield exact inference through message passing schemes at all.

Note that, in order to perform exact inference on the general structure given in Eq. (2.14), in

principle, the corresponding junction tree J should be constructed. This approach exhibits

the subtleties argued in Section 2.3 and most likely obscures the mapping onto the platforms

and increases the computational resource demands on single platforms. The option to pro-

ceed with a loopy graph and perform a loopy message passing is more appealing considering
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the low overhead for mapping and identification of the compatibility functions together with

comparably lower computational demands on single platforms. On the other hand, this ap-

proach, yielding an infinite message schedule, often results with approximate inference and

an additional factor degrading performance is the fact that the message schedule can be fol-

lowed only for a finite number of iterations in a sensor network scenario. Nevertheless, it is

not uncommon that the resulting accuracy is reasonable despite the aforementioned factors.

This perspective has proved useful for various problems in sensor network applications in-

cluding multiple target tracking. Data association is central to multiple target tracking in

which observations are associated with targets that has induced them. It is NP-hard in general

and conventional approaches such as MHT [47] and JPDA [48] together with their extensions

(see e.g. [49] [50]) lack scalability or can not handle non-Gaussian non-linear dynamics [51]

in a sensor network scenario which requires in-network processing for all the relevant tasks

for tracking [20]. In [52], association hypoteses are represented through discrete random vari-

ables which render a Markov random field representation with a pairwise factorization for the

joint density in accordance with the sensor-target coverage information. The most likely hy-

pothesis is found using an approximate MAP estimation scheme on graphs with loops. This

scheme is amenable for distributed processing through the mapping of the information graph

such that each platform contains the association variables related to itself. It is also preferable

in a centralized setting for being suitable for parellel processing and producing approximate

results of reasonable quality to an NP-hard problem.

Similar treatment of signal and information processing problems arising in applications such

as self-localization in sensor networks, ambient temperature estimation via sensor platforms

distributed over a region, target localization problems as well as conventional settings such as

detection is possible( see for example [53] [54] [55] [24] [56] [5] [57] ).

2.5 Monte Carlo Integration

The tradeoff between the soundness of the model and the corresponding computational de-

mands is a fundamental issue in statistical inference. For example, throughout the previous

discussion on probabilistic graphical models, we have addressed the scalability of the scheme

in the number of variables. In this framework, one aspect of the model complexity is the de-
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gree of connectedness which corresponds to the intensity of the dependency relations among

the variables. The message passing computations exhibit a complexity in the number of vari-

ables in accordance with the sparsity of the graph. Another aspect involves the computation

of the expressions involved. For example, in a Bayesian setting, estimation of a random

vector requires computation of integrals with no closed form solutions in general. We can

either compromise the model accuracy and restrict ourselves to standard distributions with

well known expressions under certain operators or compromise point accuracy and proceed

in a numerical approximation framework.

Conventional numerical integration based on quadratures yield exponential increase in the

the number of grid points as well as computations with the dimensionality of the domain of

integration. Hence they lack scalability with the number of random variables in our context.

Numerical approaches that are based on grid points produced by random number generators,

also called Monte Carlo Methods, attempt to aviod the situation together with possible intri-

cacies related to the particular integrand [58] [59].

In the conventional Monte Carlo method, the value of an integral is of concern, i.e.

i =

∫

X
dx p(x) f (x) (2.17)

where i is bounded and p(x) has a bounded integral over X. It is often the case that X is

of multiple dimensions and the right hand side of Eq. 2.17 is a multi-dimensional integral.

Without loss of generality, it is possible to assume that p(x) integrates to 1 over the set of

all possible values of x, i.e.
∫

X dx p(x) = 1 and hence admits a joint probability density

interpretation.

Such integrals often arise in Bayesian inference with continuous variables. For example, in

recursive Bayesian filtering, the predictive density of the state of a dynamical system at time t,

i.e. Xt, given posterior distribution of the previous state based on all the observations collected

up to time t − 1, i.e. p(xt−1|{yi}t−1
i=1

), and the state transition density p(xt|xt−1) is given by

p(xt|{yi}t−1
i=1) =

∫

Xt−1

dxt−1 p(xt|xt−1)p(xt−1|{yi}t−1
i=1)

under the assumption that Xt ⊥⊥ {Y i}t−1
i=1
| Xt−1 . This expression is simply Eq. ( 2.17) for all

xt ∈ Xt with f (x) = p(xt|Xt−1 = x) and p(x) = p(Xt−1 = x|{yi}t−1
i=1

). It is not possible to

compute this integration exactly, in general, unless the distributions involved has adequate

forms such as Gaussians.
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2.5.1 The Conventional Monte Carlo Method

Provided that we are able to generate M independent samples {x(1), x(2), ..., x(M)} from the

density p(x), an estimate for i = EpX
{ f (X)} is given by

îM =
1

M

M
∑

k=1

f (x(k)) (2.18)

and by the Strong Law of Large Numbers (SLLN) converges to i almost surely, i.e.

lim
M→∞

îM → i with probability 1

On the other hand, in order to estimate the density function p(x) given M independent samples

drawn from it, an appropriate approach is the Parzen Window estimate given by

pM(x) =
1

M

M
∑

k=1

1

h
K

(

x − x(k)

h

)

where K(x) is a weighting function for which a possible choice is

K(x) =



















1/2 |x| ≤ 1

0 otherwise

and h = h(M) such that limM→∞ h(M)→ 0. Under some mild conditions

lim
M→∞

E{pM(x)} = p(X)

with finite variance at all points x of continuity of p(x) rendering pM(x) an unbiased and

consistent estimator of p(x)[60]. The twist of the dependence of h on M and choosing h→ 0

regardless of M yields an emprical estimate

p̃M(x) =
1

M

M
∑

k=1

δ(x − x(k))

which substituted in place of p(x) in Eq.(2.17) yields exactly Eq.(2.18). Then the convergence

of iM follows the convergence of pM(x). The estimation error corresponding to Eq.(2.18) is

asymptotically normal denoted by

lim
M→∞

√
M(îM − i) ∼ N(0, σ2

g)

where σ2
g = E{(g(x) − i)2}. The rate of convergence is independent of the dimension of the

integrand [61] rendering this approach particularly preferable to grid based methods in the

case of multi-dimensional integrations.

39



2.5.2 Importance Sampling

The importance sampling method is used if it is not possile to sample from p(x) but from the

importance sampling density g(x). An alternative representation of Eq.(2.17) as

i =
∫

X dx g(x)
p(x)

g(x)
f (x) together with M independent samples {x(1), x(2), ..., x(M)} generated from

the density g(x) lead to the estimator

îM =
1

M

M
∑

k=1

p(x(k))

g(x(k))
f (x(k))

=
1

M

M
∑

k=1

ω(k) f (x(k)) (2.19)

where ω(k) is identifed as ω(k) = p(x(k))/g(x(k)). This estimate converges to EpX
{ f (X)} al-

most surely for reasons similar to the convergence of the conventional Monte Carlo method

(SLLN), provided that g(x) is non zero for all values of x where f (x) is non zero, i.e. supp(g) ⊃

supp( f ). The rate of convergence is related to the error variance and importance sampling

densities achieving a finite variance are found out to be, loosely speaking, mimicing p(x) [62].

An alternative estimator which relaxes this restriction on the choice of the importance sam-

pling density is given by

îM =
1

M
∑

k=1

ω(k)

M
∑

k=1

ω(k) f (x(k)) (2.20)

which again converges almost surely to i.

In addition, if the conditions E{ω(X)} < ∞ and E{ f 2(X)ω(X)} < ∞ are satisfied, then as

M → ∞,
√

M(îM − i) ∼ N(0, σ2) where σ2 = E{( f (X) − i)2ω(X)} [63]. In other words,

provided that the conditions hold, the estimates iM for different sample sets are “consistent”

such that as M increases, the estimation errors converge in distribution to a zero mean Gaus-

sian with decreasing variance. For cases where most of the weights are relatively small and

dominated by the rest, this esimator is preferable to the one given by Eq.(2.19) altough it is

slightly biased for small M [62]. Similar to the conventional Monte Carlo Method, the rate of

convergence is independent of the dimensionality of the integrand.

Monte Carlo methods (together with sample generation through Markov Chains) have been

successfully applied for many Bayesian inference problems involving non-Gaussian distri-

butions and/or nonlinear dynamics (see e.g. [64] [65] [66]) including particle filtering for
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Bayesian recursive filtering, e.g. in target tracking [67], and non-parameteric belief propaga-

tion [68] for inference in non-Gaussian Markov random fields with continuous variables, e.g.

in vision based tracking [69]. In this work, we employ Monte Carlo methods for optimization

rendering a Monte Carlo optimization framework.

2.6 Decentralized Statistical Inference Under Communication Constraints

In the preceding sections, it is pointed out that Bayesian inference is involved with construc-

tion of distributions based on the observations (e.g. the joint a posteriori density functions or

the posterior marginals) and integral operators over them (e.g. the expected values of certain

posterior marginals). It is also often the case that exactly performing the required computa-

tions has high complexity and adequate approximations are inevitable. Additional constraints

are introduced in the context of sensor networks due to the limited computation resources,

communication bandwidth and energy budget.

The primary consideration of in-network processing is to have the platforms perform the

necessary computations in a collaborative manner (preferably while taking the arising com-

munication load into account). From a global point of view, it is possible to treat the network

as evaluating a predetermined function γ at the set of observations y = (y1, y2, ..., yN) (period-

ically, considering the case in which the online processing proceeds after the measurements

are collected at each time step) and decompose γ in terms of local computations yielding a

directed acyclic graph representation in which the vertices are computation tasks and edges

are the transmissions of the outputs from the vertices they are emanating from to the vertices

they are terminated at (see e.g. Chp. 3 in [70] or Chp. 4 in [25]). For example, one trivial

decomposition is γ(y1, y2, ..., yN) = γ0(γ1(y1), γ2(y2), ..., γN(yN)) where the local function γi

for i ∈ {1, 2, ...,N} is the identity function and γ0 = γ, and this decomposition has a “star”

shaped tree representation in which each leaf node bears γi for i ∈ {1, 2, ...,N} directed to the

root node associated with γ0. After mapping the vertices of the computation graph to the

sensor platforms, in-network processing is achieved with a certain communication load since

the observations are collected by distinct platforms. The centralized approach corresponds

to mapping identity functions with all the platforms except associating γ0 (together with the

corresponding γi) with the designated fusion center in the previous example.
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On the other hand, there is a number of factors that affect the communication load. First of

all, in the case that some yis take values from denumerable sets and γ has a denumerable

range set, a discretization of γ through its domain and range sets are required in order the

resulting scheme to be realizable by digital machinery networked over limited capacity links.

Let us denote the resulting approximate scheme which is the realizable global function with

γ̃. Another factor related to the communication load is then, the decomposition properties of

γ̃. For each possible decomposition and each valid mapping, a certain communication and

computation structure over the network arise with a certain load together with a certain cost

of communications. The bounds related to the communication load arising for in-network

computation has been investigated for different structures that γ̃ exhibits and for different

network types(e.g. collocated networks in which every node is in 1-hop neighborhood with

the remaining and broadcasts through an assigned time slot in the multiple access channel or

random planar networks which is the case described in Section 1.1.1) [71]. It is also possible

to consider, among some possible mappings of the computation graph onto the network graph,

the one achieving less cost for the transmissions (see e.g. Chp. 4 in [70] and Chp. 4 and 5 in

[25]). To the best knowledge of the author’ s, a general problem setting is highly complicated

providing small chances of finding a feasible solution that is optimal in some sense. It is

rather often the case that the solution involves heuristics and it is not straigtforward to obtain

a scheme which also complies with the in-network processing paradigm and is amenable for

network self-organization.

The previous discussion aspires to provide a perspective in which given γ, a communication

and computation strategy over the network structure is sought that results with a judicious uti-

lization of communication resources. In this setting, the degredation in the accuracy is due to

substituting γ̃ for the global function computed because of the fact that it is suitable to realiza-

tion by the sensor network. However, it is not easy -if not impossible- to address the tradeoff

between the utilization of communications and the resulting accuracy such that a gracefull

degradation of the inference performance is achieved while decreasing the communication

load.

For example, consider γ in the context of Bayesian inference where it is reasonable to assume

it as one of the estimators (or detectors) presented in Example 2.2.1. In addition, it is possible

to handle the complexity of computing γ and obtain γ̃ through probabilistic graphical models

together with message passing algorithms considering the dependencies among variables and
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Monte Carlo methods considering the representation and integration of non-parametric forms

(e.g. Nonparametric Belief Propagation [72] ). For the case, given a graphical model and a

schedule regarding a certain message passing algorithm, a computation graph is obtained (see

e.g. [73]) for which a trivial mapping onto the platforms exists, provided that the locality of

observations hold (see the discussion in Section 2.4).

On the other hand, only for a limited number of cases it has been possible to consider the cost

of communications while deciding on this mapping. For example, in [74], a junction tree

representation is considered together with a communication network which provides links

between any two sensor platforms with appropriately assigned costs. An energy-aware in-

network processing scheme is obtained through handing-off variables associated with nodes

of the tree while keeping the information structure valid (consider, e.g. Figure 2.4 where we

present possible junction trees for the same information structure) such that the resulting com-

munication cost is reduced (Recall that message passing over junctions trees result with exact

clique potentials). In this setting, the trade-off is not addressed in the sense that it is not pos-

sible to have the estimation accuracy degrade gracefully as the utilization of communications

is decreased.

In the case of loopy graphs for which a junction tree representation is not useful, it has been

the usual practice to consider the communication constraints and energy-awareness after the

(trivial) mapping. Recall that loopy versions of message passing algorithms yield an infinite

schedule and converge asymptotically if they do, most often to approximate results. In the

context of sensor network additional modifications are utilized. First of all, a finite sched-

ule is selected which can be represented similarly by a computation graph and result with

a successive approximation. One possible method to modify the computation graph during

online processing is to censor the messages which has not been changed more than an amount

with respect to a measure. This approach is utilized in [75] where decision of sending or

censoring a message is given individually by sensor platforms regardless of any other infor-

mation such as states of the neighboring platforms or penalty for communication, resulting a

myopic behavior. Second, the limited bandwidth requires that finite representations should be

employed for the messages which are non-parametric functions over denumerable domains

in the case of continous variables, in general. A discretization is possible through Monte

Carlo methods which yield an approximation framework for Belief Propagation (known as

Nonparametric Belief Propagation) [72]. Moreover, encoding of the messages considering
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the cost of transmissions and induced errors due to successive approximations has also been

investigated (Chp. 5 in [46]).

Hence, it is possible to utilize successive approximations for message passing algorithms

in order to have them suitable to be realized by a sensor network and analyze the effects of

message errors introduced by the approximation framework on the resultant distributions [76].

However, it is not straightforward to address the estimation accuracy as well as its tradeoff

between the utilization of communications. Note that, all the examples above presume a

certain global function γ in the beginning and seek an approximation γ̃ that can be realized

by the sensor network for a reasonable amount of communications.

On the other hand, statement of a design problem in a communication constrained environ-

ment is concern to us, i.e. given available communication links and their capacities together

with costs of transmissions over them, we seek a communication and computation structure

γ which achieves a certain accuracy for a certain cost of communications. We are also in-

terested in schemes that exhibit graceful degredation of estimation accuracy by decreasing

communication load which has not been provided by the perspectives described above.

One possible mathematical statement of the design setting is in the form of an optimization

problem in which a global function γ is sought together with a communication and compu-

tation structure (or online processing scheme or strategy) which realizes γ over the network.

Suppose that the available links and their capacities are taken into account by this structure.

Provided that tractable measures for the estimation accuracy and the cost of transmissions

arising in the network are obtained, the in-network strategy with a desired performance can

be selected, in principle. However, we are not guaranteed to achieve a well-posed setting for

strategy optimization. On the other hand, it is possible to improve the behaviour of the solu-

tion if a useful characterization of γ can be utilized through in a multiple objective framework.

In [29], such an approach is utilized for decentralized detection and three classes of decentral-

ized strategies are considered. The first class is constituted by structures that yield a directed

acyclic computation graph rendered over the set of available links. Each vertex corresponds

to a platform and the uni-directional transmissions modelled with the directed edges comply

with the corresponding link capacities. Strategies that allow bi-directional transmissions and

render an undirected graph over the underlying links compose the second class such that the

messaging and inference are performed in two successive stages. Strategies from both classes
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yield tractable Bayesian risks that bears both penalty for decision errors and transmissions.

Moreover, a Team Theoretic investigation of the problem yields that the strategies that satisfy

an equilibrium condition admit a useful characterization through finite dimensional vectors

and starting with an initial strategy, it is possible to find a better one iteratively regarding

a dual objective Bayesian risk. The third class, namely “multi-stage architectures” extend

the two-stage approach on undirected graphs and yield subtle strategy optimization schemes

involving heuristics.

2.7 Optimization of Decentralized Detection Networks

There is a plethora of work on decentralized detection networks5 including earlier investiga-

tions involving a “star” network (also referred to as a parallel network) in which peripheral

nodes collect observations induced by one of a finite number of hypothesis and based on them,

transmit messages to a fusion center which performs the decision and mappings local to the

nodes are of concern [77, 78, 79, 80]. An overview of the general Bayesian setting given in

[33] is as follows: Denoting with 0 the fusion center and letting the peripherals take labels

from the set {1, 2, ...,N}, each peripheral sensor i ∈ {1, 2, ...,N} makes an observation yi ∈ Yi

due to a discrete random variable X which takes values from a finite set X and transmit a

symbol ui from a finite setUi to the fusion center based on yi. The fusion center produces X̂,

based on the incoming messages {ui}i∈{1,2,...,N}. The conventional centralized treatment given

in Section 2.2, requires each peripheral sensor to transmit yi to the fusion center. As soon as

|Ui| << |Yi| the decentralized scheme requires much less communication bandwidth. Also

similar to the discussion for the conventional setting, it is possile to treat each node of the net-

work evaluating a local function given by γi : Yi →Ui and γ0 : U1×U2 . . .×UN → X in the

case of a peripheral and the fusion center respectively. Note that the processing is distributed

to the sensor platforms through functions {γi}i∈V whereas a single function γ : Y → X is

of concern in the centralized approach. Optimization of the network in a Bayesian setting

refers to the search for {γ∗
i
}i∈V where V = {0, 1, 2, ...,N} such that the expected value of a

cost function c : X × X → R penalizing (x, x̂) pairs, i.e. E
{

c(x, x̂); {γ∗
i
}i∈V

}

is minimum.

This treatment leads to a problem definition similar to (P0) given by Expression (2.3) for

5 We refer to both binary decision problems and M-ary hypothesis testing as detection throughout, emphasiz-

ing that in both a decision among finitely many choices are made.
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which the observation space would beY = ⊗
i∈V
Yi. However, the argument of the optimization

can take values from a proper subset of Γ = {γ|γ : Y → X}, i.e. the set of functions mapping

the set of observations to the set from which X takes values from as defined in Section 2.2.

Let us define the strategy γ? = (γ0, γ1, ..., γN) with {γi}i∈V as defined above. It is clear that

γ? is a function which maps Y on to X. But, definining the set of possible local rules for

platform i by Γi = {γi|γi : Yi → Ui} and the set of possible strategies by Γ? = ⊗
i∈V
Γi from

which the strategy γ? takes values , it is apparent that Γ? ⊂ Γ. Then, the problem of concern

is

(P?): min E {c(x, x̂); γ} (2.21)

subject to γ ∈ Γ?

It is possible to treat (P?) as a team decision problem in which it is often the case that the

global optimal solution(s) can be found only for “highly structured” cases. It is rather feasible

to find a solution that satisfies an equilibrium condition in an iterative manner yielding local

rules in a variational form [33].

Besides the star topology, network settings such as tandem (or series) [81] and tree archi-

tectures [82] have been studied including the case in which multiple decision variables, also

referred to as multiple (local) event structures, are of concern [83] (see e.g. [84] for a review).

In [28], three strategy classes, two of which are of concern throughout, are presented that

extend the literature on optimization of decetentralized detection networks in a number of as-

pects including the set of communication constraints introduced in the model. Similar to (P?),

the optimization of these strategies involve finding local rules for platforms that minimize a

Bayesian risk which, in addition, captures the cost of transmissions as well as penalty for the

decision errors. The structures that the problem exhibit together with that of corresponding

Team Theoretic solutions under various assumptions are investigated.

The first class is constituted of strategies that admit a directed acyclic graph representation

in which the edges correspond to unreliable uni-directional communication links (see Chp.3

in [28], [85, 27] ). Extending the “star” topology, it is also possible to distribute the de-

cision process in the network through associating random variables with the vertices which

correspond to the platforms. Under certain assumptions, a team theoretic investigation yields

an efficient optimization procedure which admits a message passing algorithm and exhbits a

graceful degredation of the decision performance as the utilization of communication is re-
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duced. We present an overview of this class in Section 2.7.1 which also captures the literature

aforementioned.

The second class we consider covers strategies which utilize bi-directional communication

and can be represented with an undirected graph (see Chp.4 in [28] and also [26]). In order

to have a causal online processing scheme the local rules are restriced a two stage operation

in which the communication rules are executed based on the observations first. As soon as

a platform receives all incoming messages, it performs the decision rule based on both these

messages and its observation. Under certain assumptions, the class of two stage strategies on

undirected graphs, for which we provide a brief review in Section 2.7.2, exhibit properties

similar to that of the strategies on directed acyclic graphs.

2.7.1 Directed Graph Constrained Networks

In this section we summarize optimization of decentralized strategies defined over directed

acyclic graphs (the interested reader is referred to Chp. 3 in [28] for a detailed discussion).

We exclude unrelaible channel models and assume that all links provide error-free communi-

cations.

2.7.1.1 Online Processing Model and Problem Definition

A directed acyclic graph (DAG) G = (V,E) represents a communication and computation

structure for a decentralized system where each platform is associated with a node v ∈ V.

An edge (i, j) ∈ E corresponds to the finite capacity communication link from platform i to

j on which i can transmit a symbol ui→ j from the set of admissible symbols Ui→ j which is

finite and the number of elements
∣

∣

∣Ui→ j

∣

∣

∣ is in accordance with the link capacity capturing the

bandwidth constraints. For example, it is possible to represent a link with capacity log2 di j

bits with Ui→ j such that
∣

∣

∣Ui→ j

∣

∣

∣ = di j + 1 where 0 ∈ Ui→ j holds indicating no transmission

and enabling a message cencoring scheme.

Let uπ( j) denote the incoming messages to node j from the parent nodes π( j), given by

uπ( j) , {ui→ j|i ∈ π( j)}. Let Uπ( j) denote the set from which uπ( j) takes values from. This

set is constructed through consecutive Cartesian products given by Uπ( j) , ⊗
i∈π( j)
Ui→ j. The

set of outgoing messages from node j to child nodes χ( j), given by u j , {u j→k|k ∈ χ( j)}
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takes values from the set U j which can be defined in a similar way with that for Uπ( j) as

U j , ⊗
k∈χ( j)

U j→k.

In addition, each node j is associated with a random variable(s) X j that takes values from

the set X j and hence the inference is distributed in the network. Note that this mapping

is arbitrary, in principle, and provides a broad range of possibilities for decentralized infer-

ence. As node j measures y j ∈ Y j and receives uπ( j) ∈ U j, it evaluates a function, called

its local rule, defined by γ j : Y j ×Uπ( j) →U j × X j which produces an estimate x̂ j ∈ X j

as well as outgoing messages u j ∈ U j. The space of rules local to node j is given by

Γ
G
j

, {γ j|γ j : Y j ×Uπ( j) →U j × X j} where the superscript G denotes that the definition of

the set relies on G together with the set {Ui→ j|(i, j) ∈ E}.

As pointed out in Section 2.1.1 a DAG implies a partial ordering, e.g. in accordance with the

reachability relation. In Figure 2.6 we present an example DAG together with forward and

backward partial orderings in which the parentless and the childless nodes has the smallest

order respectively. The directed acyclic nature of G leads a causal online processing of the

observations when the nodes execute their local rules in accordance with the forward partial

order, i.e. starting from the parentless nodes, at each step, nodes with the corresponding

order evaluate their local rules and stop after the childless nodes perform theirs which do not

involve deciding on symbols to transmit. The example DAG illustrated in Figure 2.6 yields a

processing completed in 4 steps. Note that, all edges corresponding to communication links

are invoked once in this scheme and the process from node j’ s point of view is illustrated in

Figure 2.7.

The aggregation of local rules denoted by γ is called a strategy, i.e. γ = (γ1, γ2, ..., γN) and

takes values from the set of feasible strategies given by ΓG = ⊗
v∈V
Γ
G
v . Considering (P0) given

by Expression (2.3) we note that ΓG ⊂ Γ. The communication load of the system is the set of

all transmitted symbols during the processing given by u , {ui→ j|(i, j) ∈ E} and takes values

from the set U , ⊗
(i, j)∈E

Ui→ j. Also note that the random vector of concern, i.e. X, takes

values from the set X = ⊗
j∈V
X j and similarly, the observation Y takes values from the set

Y = ⊗
j∈V
Y j. The global view of the scenario is illustrated in Figure 2.7.

The Bayesian risk function c for the network described by the graph G is selected such that a

decision error penalty for the pair (x, x̂) and a cost due to the corresponding communication

load u are assigned. Hence c : U ×X × X → R and the objective function to be minimized
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(a) (b) (c) (d)

Figure 2.6: (a) An example directed acyclic graph G. (b) G with the forward orders on the

upper left side of the nodes. Ordering starts with assigning 1 to the parentless nodes and

proceeds with removing them from G, increasing the count by one and repeating the same

procedure untill all nodes are counted. (c) G with the backward orders on the lower left side

of the nodes. Ordering starts with assigning 1 to the childless nodes and proceeds similar

to the forward ordering. (d) A polytree in G. Note that no nodes has two parents that have

common ancesors or two children that has common descendants.

is given by J(γ) = E {c(u, x, x̂); γ} where the expectation is over p(u, x̂, x; γ). Therefore, the

problem of finding the best strategy for inference under communication constraints described

by G turns to a constrained optimization problem given by

(P1) : min E {c(u, x, x̂); γ} (2.22)

subject to γ ∈ ΓG

In order to show that for a given deterministic strategy γ ∈ ΓG, there exists an expected cost

value J(γ), consider the underlying distribution. The equality given by

p(u, x, x̂; γ) =

∫

y∈Y

dy p(u, x̂|x, y; γ)p(x, y) (2.23)

is satisfied which reveals the connection between the strategy γ and the objective function

through the distribution p(u, x̂|x, y; γ). We note that the strategy γ can be viewed as a function

given by γ : Y → X ×U. Therefore it specifies the corresponding distribution p(u, x̂|x, y; γ).

The causal online processing provided by the partial ordering on the directed acyclic graph

starting from the parentless nodes implies that the local rules are coupled into this expression

by

p(u, x̂|x, y; γ) =

N
∏

j=1

p(u j, x̂ j|y j, uπ( j); γ j) (2.24)
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(a)Node j point of view.

(b) Global view.

Figure 2.7: Online processing scheme modelled with a directed acyclic graph G = (V,E): (a)

The viewpoint of node j in G which evaluates its local rule γ j on its measurement y j as well

as the received messages uπ( j) and produces an inference on the value of the random variable

it is associated with, i.e. x̂ j, together with outgoing messages u j to its children, (b) The global

view of the decentralized decision strategy on G where a random process X takes the value

x as the outcome of an experiment and induces observations y on the decentralized system

represented with G = (V,E).

where the node labels recalled by j, without loss of generality, are in accordance with the

forward partial ordering on V (The interested reader is referred to Section A.1 for further

details). We note similarly that p(u j, x̂ j|y j, uπ( j); γ j) for each j ∈ V is specified by γ j. Since

both X j andU j are of finite cardinality, this specification is given by

p(u j, x̂ j|y j, uπ( j); γ j) = δx̂ j,[γ j(y j,uπ( j))]X j

δu j,[γ j(y j,uπ( j))]U j

(2.25)

where δ is the Kronecker delta.

In conclusion, given a set of local rules {γ j} for j ∈ V constituting a strategy γ in accordance

with a DAG G, an online processing is implied in a decentralized fashion. In addition, it is

possible to compute the corresponding expected cost due to both decision errors and cost of

communications by substituting Eq.s ( 2.23– 2.25) in J(γ).
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2.7.1.2 Team Theoretic Solution

In a team decision problem, N members constitute a team such that each can take actions

γ j ∈ Γ j with a single cost function J(γ1, γ2, ..., γN). The problem is to find γ∗
j
∈ Γ j for

j = 1, 2, ...,N such that J(γ∗
1
, γ∗

2
, ..., γ∗

N
) is minimum. It is often the case that finding a solution

to this problem is hard. A relaxation is to find a Nash equilibirium solution where no change

in a single member’ s action yields a better cost, i.e. Find γ∗ = (γ∗
1
, ..., γ∗n) such that

γ∗j = arg min
γ j∈Γ j

J(γ j, γ
∗
\ j) (2.26)

for all j ∈ {1, 2, ...,N}. Such a solution is also said to be person-by-person optimal.

It can easily be shown that, given γ0 = (γ0
1
, ..., γ0

N
) where γ0 ∈ Γ and Γ = ⊗

j∈{1,2,...,N}
Γ j with

the corresponding cost J(γ0), J(γ1) ≤ J(γ0) where γ1
\ j
= γ0
\ j

and γ1
j
= arg minγ j∈Γ j

J(γ j, γ
0
\ j

)

for any j. Hence, starting from an initial strategy, an iteration that converges to a person by

person optimal strategy in a coordinate descent manner is given by Algorithm 1.

Algorithm 1 Iterations converging to a person-by-person optimal strategy.

0) (Initiate) l = 0;

Choose γ0 = (γ0
1
, γ0

2
, ..., γ0

N
) such that γ j ∈ Γ j for j = 1, 2, ...,N

1) (Update) l = l + 1;

for j = N,N − 1, ..., 1

γl
j
= arg min

γ j∈Γ j

J(γl−1
1
, ..., γl−1

j−1
, γ j, γ

l
j+1
, ..., γl

N
)

2) (Check) If J(γl−1) − J(γl) < ε STOP, else GO TO 1;

Team Decision framework has been introduced in various fields such as optimal control and

decentralized detection ( see for example [86] and [33]). Note that (P1) given by Expres-

sion (2.22) is already suitable for such a treatment. In the next section, the corresponding

person-by-person optimality conditions in the context of the decentralized detection networks

constrained by graphs and expressions corresponding to steps of Algorithm 1 are presented.

2.7.1.3 Optimizing Directed Graph Constrained Networks

Consider J(γ), and the decentralized detection problem under communication constraints,

i.e. (P1). The directed acyclic network constraints guarantee that for the underlying distribu-
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tion the equality given by Eq.(2.24) holds. Moreover, it can be shown that further structure is

introduced in problem (P1) through certain assumptions which lead to a scalable coordinate

descent procedure that converges to a person-by-person optimal solution.

Assumption 1(Conditional Independence): This assumption states that, given the state of the

process X, the observations are conditionally independent, i.e. p(x, y) = p(x)
∏N

i=1 p(yi|x),

which is a consequence of the fact the noise processes of sensors are mutually independent.

Proposition 2.7.1 Consider (P1). Under Assumption 1, given a person-by-person optimal

strategy

γ∗ = (γ∗
1
, γ∗

2
, ..., γ∗

N
) and fixing the local rules other than the j th at the optimal, i.e. γ\ j = γ

∗
\ j

,

the j th optimal rule given by Eq.(2.26) is equivalent to

γ∗j(Y j,Uπ( j)) = arg min
(u j,x̂ j)∈U j×X j

∑

x∈X
p(Y j|x)θ∗j(u j, x̂ j, x; Uπ( j)) (2.27)

with probability 1, where

θ∗j(u j, x̂ j, x, uπ( j)) = p(x)
∑

u\ { j}∪π( j)

∑

x̂\ j∈X\ j

c(u, x̂, x)
∏

i, j

∫

Yi

dyi p(yi|x)p(ui, x̂i|yi, uπ(i); γ
∗
i ) (2.28)

Proof. See e.g. [28]. We provide a similar proof which differs in that it relies on the corre-

spondance between the j th local rule, i.e. γ j, and the conditional density p(u j, x̂ j|y j, uπ( j); γ j).

Consider the expected risk J(γ) = J(γ j, γ\ j) after substituting the mathematical statement of

Asumption 1, Eq.(2.24) and γ\ j = γ
∗
\ j

in Eq.(2.23), i.e.

J(γ j, γ
∗
\ j) =

∑

x∈X

∑

x̂X

∑

u∈U
c(u, x, x̂)p(x)p(u j, x̂ j|x, uπ( j); γ j)

N
∏

i, j

p(ui, x̂i|x, uπ(i); γ
∗
i )

=

∫

Yy

dy j

∑

x̂ j∈X j

∑

u j∈U j

∑

uπ( j)∈Uπ( j)

p(u j, x̂ j|y j, uπ( j); γ j)
∑

x∈X
p(y j|x)p(x)

∑

u\{ j}∪π( j)

∑

x̂\ j∈X\ j

c(u, x, x̂)

N
∏

i, j

p(ui, x̂i|x, uπ(i); γ
∗
i ) (2.29)

Considering the fact that “if there exists an optimal rule, then there exist an optimal determin-

istic rule” which is discussed in Section 2.2; given Y j = y j and Uπ( j) = uπ( j), and assigning

(u j, x̂ j) to (y j, uπ( j)) in γ j corresponds to selecting p(U j = u j, X̂ = x̂ j|Y j = y j,Uπ( j) = uπ( j); γ j) = 1

and zero for U j , u j, X̂ , x̂ j. (u j, x̂ j) ∈ U j×X j that yields a minimum value for the integrand

in Eq.(2.29) is such that its weight in Eq.(2.29), i.e.

∑

x∈X
p(y j|x)p(x)

∑

u\ j∈U\ j

∑

x̂\ j∈X\ j

c(u, x̂, x)
∏

i, j

∫

Yi

dyi p(yi|x)p(ui, x̂i|yi, uπ(i); γ
∗
i ) (2.30)
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is minimum6. Hence, the conditional distribution constructed by utilizing the procedure above

for all (y j, uπ( j)) with non-zero probability minimizes J(γ j, γ
∗
\ j

) while specifying a determin-

istic local rule γ j as

γ∗j(y j, uπ( j)) = arg min
(u j,x̂ j)∈U j×X j

∑

x∈X
p(y j|x)θ∗j(u j, x̂ j, x, uπ( j))

with probability 1, where θ∗
j
(u j, x̂ j, x, uπ( j)) is identified as

p(x)
∑

u\ { j}∪π( j)

∑

x̂\ j∈X\ j

c(u, x, x̂)

N
∏

i, j

∫

Yi

dyi p(yi|x)p(ui, x̂i|uπ(i), yi; γ
∗
i ) (2.31)

considering the weights of the assignments composing γ j given by Eq. (2.30). �

It is possible to regard θ j(u j, x̂ j, x; uπ( j)) as coefficients that provide a finite parameterization

for γ j that minimizes the Bayesian risk given any set of local rules γ\ j for nodes other than

the j th not necessarily fixed at the equilibrium. In other words, it is possible to treat the right

hand side of Eq.(2.28) as an operator ψ acting on any set of local rules γ\ j and produces a

finite dimensional coefficient vector θ j of |U j|× |X j|× |X|× |Uπ( j)| dimensions, i.e θ j = ψ(γ\ j).

Together with Eq.(2.27) which couples θ j to the local rule γ j, it is possible to utilize Proposi-

tion 2.7.1 for the Update step of Algorithm 1 and obtain an iterative scheme that starts with

an initial strategy and converges to a person-by-person optimal one.

However, the person-by-person optimal local rule requires marginalization over X and hence

does not scale with the number of random variables of concern. Moreover, evaluation of ψ

does not scale with the number of nodes. A further investigation in order to obtain strate-

gies for efficient online processing of observations as well as scalable iterative optimization

schemes yields that additional assumptions should hold which corresponds to a structured

information architecture.

Assumption 2(Measurement Locality): Every node j observes y j due to only x j, i.e. p(y j|x) =

p(y j|x j).

Assumption 2 substitutes the marginalization over X in Eq.( 2.28) with X j. Therefore the

person-by-person optimal j th local rule given by Proposition 2.7.1 can be restated as

γ∗j(Y j,Uπ( j)) = arg min
(u j,x̂ j)∈U j×X j

∑

x j∈X j

p(Y j|x j)φ
∗
j(u j, x̂ j, x j; Uπ( j)) (2.32)

6 If the cardinality of the set of minimizers is greater than 1, then one of its elements is selected arbitrarily

since we are considering a deterministic local rule and a corresponding distribution.
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with probability 1, where

φ∗j(u j, x̂ j, x j; uπ( j)) =
∑

x\ j∈X\ j

θ∗j(u j, x̂ j, x; uπ( j)) (2.33)

holds. Hence, scalability for online processing in the number of components is achieved. In

order the optimization procedure to be efficient, consider the following:

Assumption 3(Cost Locality): The Bayesian cost function is additive over the nodes j ∈ V,

i.e.

c(u, x̂, x) =
∑

j∈V
c j(u j, x̂ j, x j) (2.34)

Assumption 4(Polytree Topology): GraphG = (V,E) is a polytree, i.e. G is a directed acyclic

graph with an acyclic undirected counterpart (See the example in Figure 2.6 for comparison).

Proposition 2.7.2 Consider (P1) and Proposition 2.7.1. If Assumptions 3 and 4 hold in ad-

dition to Assumption 1 and 2, then Eq.(2.32) applies with a proportionality expression for

φ∗
j
(u j, x̂ j, x j; uπ( j)) given by

φ∗j(u j, x̂ j, x j; uπ( j)) ∝ p(x j)P
∗
j(uπ( j)|x j)

[

c j(u j, x̂ j, x j) +C∗j(u j, x j)
]

(2.35)

where

P∗j(uπ( j)|x j) =



























1 , if π( j) empty

∑

xπ( j)∈Xπ( j)

p(xπ( j)|x j)
∏

i∈π( j)

P∗
i→ j

(ui→ j|xi) , otherwise
(2.36)

with terms regarding to influence of i ∈ π( j) on j, i.e. P∗
i→ j

(ui→ j|x j)

P∗i→ j(ui→ j|xi) =
∑

uχ(i)\ j∈Uχ(i)\ j

∑

uπ(i)∈Uπ(i)

P∗i (uπ(i)|xi)
∑

x̂i∈Xi

∫

Yi

dyi p(ui, x̂i|yi, uπ(i); γ
∗
i )p(yi|xi) (2.37)

and the C∗
j
(u j, x j) term which is added to the local cost and given by

C∗j(u j, x j) =



















0 , if χ( j) empty

∑

k∈χ( j) C∗
k→ j

(u j→k, x j) , otherwise
(2.38)

with the terms regarding the influence of j over k ∈ χ( j), i.e. C∗
k→ j

(u j→k, x j)

C∗k→ j(u j→k, x j) =
∑

xk∈Xk

∑

x̂k∈Xk

∑

uk∈Uk

[

ck(uk, x̂k, xk) +C∗k(uk, xk)
]

Q∗k→ j(uk, x̂k, xk|u j→k, x j)

(2.39)
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with

Q∗k→ j(uk, x̂k, xk|u j→k, x j) =
∑

xπ(k)\ j∈Xπ(k)\ j

p(xπ(k)\ j, xk|x j)R
∗
k→ j(uk, x̂k|xk, xπ(k)\ j)

R∗k→ j(uk, x̂k|xk, xπ(k)\ j) =
∑

uπ(k)\ j∈Uπ(k)\ j

∫

Yk

dyk p(yk|xk)p(uk, x̂k|yk, uπ(k); γ
∗
k)

∏

m∈π(k)\ j

P∗m→k(um→k|xm)

Proof. We will present an overview of the proof whereas the interested reader is referred to

[28] for details. The proof starts with substituting Eq.(2.31) in Eq.(2.33) as well as mathe-

matical statements of Assumption 3. Next, we recognize that under directed acyclic topology

and Assumption 2, the set of incoming messages to node j, i.e. Uπ( j), does not depend on

local rules of the nodes other than the acestors of node j. Moreover, under Assumption 3, the

decision (u j, x̂ j) local to node j does not affect the costs of nodes other than the descendants

of j. Under Assumption 4, given γ j, the information flow among ancestors of j is independent

of the information flow among the descendats and leads to the form in Eq.(2.35). Moreover,

since Assumption 4 implies that no parents of j share a common ancestor and no child of

j share a common descendant, the likelihood terms, starting from the parentless ascendants

takes the recursive form in Eq.(2.36) and (2.37) down to node j and cost terms influenced by

the local decision of j, starting from the childless descendants takes the form in Eq.(2.38) and

(2.39) up to node j. �

Considering Eq.(2.36) and (2.37) we note that P∗
i→ j

(ui→ j|xi) is the likelihood of xi based on

the particular message ui→ j on the link from node i to j and under Assumption 4 P∗
j
(uπ( j)|x j)

is the likelihood of x j for the particular incoming message vector uπ( j), i.e. p(uπ( j)|x j; γan( j)).

A similar treatment of Eq.(2.38) and (2.39) reveals that C∗
k→ j

(u j→k, x j) terms are the expected

cost if the actual value of the random variable associated with node j takes the value x j and

node j sends the message u j→k on the link to its child k. Hence, under a polytree topology

C∗
j
(u j, x j) is the total expected cost induced on the descendats of j for transmitting u j. This

cost is added to the local cost c j(u j, x̂ j, x j) in Eq.(2.35) which also penalizes the transmis-

sion cost. Also considering Eq.(2.32) and (2.35), and noting that under these assumptions

p(x j)p(y j|x j)P(uπ( j)|x j) ∝ p(x j|y j, uπ( j)), we conclude that given the measurement y j and the

incoming messages uπ( j), node j chooses the output with the minimum expected cost where

the cost terms are sum of that due to the rules local to j and its descendants and the underlying

distribution is determined by the ascendants.

In the discussion above, person-by-person optimal local rules {γ∗
j
} are characterized by finite
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dimensional vectors {φ∗
j
} j∈V. Also considering Algorithm 1, it is possible to start with an

initial strategy γ0 = (γ0
1
, ..., γ0

N
) corresponding to {φ0

j
} j∈{1,...,N} and then proceed in a coordinate

descent fashion, i.e. φl
j
= ψ j(φ

l−1
1
, ..., φl−1

j−1
, φl

j+1
, ..., φl

N
) for j = N,N − 1, ..., 1 and l = 1, 2, ...,

and consequently obtain a non-increasing, convergent sequence
{

J(γl)
}

. Such an algorithm

is achieved through interpreting the right hand side of Eq.s(2.35)-(2.39) as operators that can

be evaluated at any γ = (γ1, ..., γN) ∈ ΓG not necessarily optimal. Consider d j, f j, g j and h j,

which summarize this treatment and given by

φ j = d j(P j,Cχ( j)→ j)

P j = f j(Pπ( j)→ j)

P j→χ( j) = g j(φ j, P j)

C j→π( j) = h j(φ j, Pπ( j)→ j,Cχ( j)→ j)

where Pπ( j)→ j = {Pi→ j}i∈π( j), Cχ( j)→ j = {Ck→ j}k∈χ( j) and C j→π( j) = {C j→i}i∈π( j). Given an

arbitrary {φ j} j∈V, it is possible to calculate the incoming message likelihoods for every node

through f j and g j starting with the parentless nodes (since they are never subject to receiving

Pi→ j terms for i ∈ π( j)) and proceeding in accordance with the forward partial ordering.

The childless nodes can then update their local rules using d j (since they are never subject to

receive any Ck→ j terms for k ∈ χ( j)) which corresponds to holding all the local rules other

than the childless nodes’ fixed and update the corresponding coordinates. Consecutively, it

becomes possible to compute the conditional expected cost terms for the parents by utilizing

h j and continue with other nodes in accordance with the backward partial ordering. This

forward-backward scheme exactly substitutes the Update step in Algorithm 1 such that at the

lth step the following computations take place:

Pl
j := f j(P

l
π( j)→ j)

Pl
j→χ( j) := g j(φ

l−1
j , Pl

j)

for j = 1, 2, ...,N and

φl
j := d j(P

l
j,C

l
χ( j)→ j)

Cl
j→π( j) := h j(φ

l
j, P

l
π( j)→ j,C

l
χ( j)→ j)

for j = N,N − 1, ..., 1.

Performing the computations above for l = 0, 1, ... a convergent sequence
{

J(γl)
}

is obtained
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where the expected cost is given by

J(γl) =
∑

j∈V
G j(γ

l
j) (2.40)

such that

G j(γ
l
j) =

∑

x j∈X j

p(x j)
∑

u j∈U j

∑

x̂ j∈X j

c j(u j, x̂ j, x j)
∑

uπ j∈Uπ j

Pl+1
j (uπ( j)|x j)p(u j, x̂ j|x j, uπ( j); φ

l
j) (2.41)

The iterative scheme which is a specialized form of Algorithm 1 for optimization of decen-

tralized detection networks under communication constraints in a Bayesian setting is given

by Algorithm 2. It is possible to perform this algorithm in a message passing fashion treating

Algorithm 2 Iterations converging to a person-by-person optimal decentralized detection

strategy over a directed acyclic graph G.

0) (Initiate) l = 0;

Choose γ0 = (γ0
1
, γ0

2
, ..., γ0

N
) such that γ0

j
∈ ΓG

j
for j = 1, 2, ...,N

1) (Update) l = l + 1;

i) (Forward pass)

for j = 1, 2, ...,N

Pl
j
= f j(

{

Pl
i→ j

(ui→ j|xi)
}

i∈π( j)
)

{

Pl
j→k

(u j→k|x j)
}

k∈χ( j)
= g j(φ

l−1
j
, Pl

j
)

ii) (Backward pass)

for j = N,N − 1, ..., 1

φl
j
= d j(P

l
j
,
{

Cl
k→ j

(u j→k, x j)
}

k∈χ( j)
)

{

Cl
j→i

(ui→ j, xi)
}

i∈π( j)
= h j(φ

l
j
,
{

Pl
i→ j

(ui→ j|xi)
}

i∈π( j)
,
{

Cl
k→ j

(u j→k, x j)
}

k∈χ( j)
)

2) (Check) If J(γl−1) − J(γl) < ε STOP, else GO TO 1;

each node j ∈ V as an entity which can perform communications and computations. Each

node j ∈ V starts only with the knowledge of p(x j, xπ( j)) and c(u j, x̂ j, x j) and an initial local

rule γ0
j
∈ ΓG

j
which determines p(u j, x̂ j|y j, uπ( j); γ

0
j
). In the forward pass, each node recieves

Pi→ j from its parents i ∈ π( j), compute P j→k for its children k ∈ χ( j) and transmit. The

message schedule proceeds in accordance with the forward partial ordering. In the backward

pass, each node receives Ck→ j from its children k ∈ χ( j) and computes C j→i for its parents

i ∈ π( j) which involves updating the local rule. The messaging proceeds, this time, regarding

the backward partial ordering.
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In conclusion, owing to the information structure introduced under Assumptions 1-4, an effi-

cient online processing strategy is achieved. In other words, the decentralized strategy scales

well with the number of variables. In addition, the optimization of the local rules in a person-

by-person sense admits a message passing algorithm which scales both with the number of

variables and the number of platforms. The resulting iterative scheme given as Algorithm 2

is amenable for network self-organization and the communication cost of this procedure is

reasonable for a network that would execute the resulting strategy for a certain amount of

time after initialization [26].

2.7.2 Undirected Graph Constrained Networks

A possible extension to the class of decentralized strategies over directed acyclic graphs which

utilize a uni-directional communication regime is obtained through allowing bi-directional

transmissions. Such a structure can be considered as more preferable in matching the ad-hoc

and multi-hop nature of the underlying network and has been introduced in the context of

decentralized detection in [26]. It is possible to achieve an online processing scheme which

yields a finite message schedule without any deadlock and a tracktable information structure

through separating the communication and decision actions in two stages. In this section,

we summarize two stage strategies over undirected networks and conditions under which an

efficient optimization procedure that also admits a message passing interpretation is possible.

2.7.2.1 Online Processing Model and Problem Definition

Owing to the partial ordering property of directed acyclic graphs (DAG), the implied on-

line processing scheme exhibits tracktability in a rather straightforward manner (Consider

Eq.s( 2.24) and ( 2.23) which complement the problem definition (P1) given by Expression

(2.22) ). On the other hand, the introduction of -loosely speaking- feedback into the process-

ing scheme through bi-directional communications arises a number of concerns. First, after

a finite step, termination should be guaranteed. Second, existence of possible deadlock7 The

approach utilized in [26] fullfills these requirements by considering a strategy in which each

platform performs in two stages: In the first stage, each platform evaluates a communica-

7 This term is used to refer to a situation in which some nodes wait to receive the messages from some

neighbours before evaluating their local rules that in turn prevents the neigbors from evaluating their local rules

and decide on the symbols admitting a chicken-and-egg problem.
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tion rule which is, unlike the DAG case, based on only the observation and not the incoming

messages. The second stage is performed successively, as soon as all expected messages are

received, and involves evaluating the decision functions based on the observations, incoming

messages and outcoming messages, in general.

Let us represent a set of platforms with the index set V = {1, ...,N}. Given an undirected

graph G = (V,E), each edge (i, j) ∈ E corresponds to a communication link of finite capacity.

Provided that G is an undirected graph (i, j) ∈ E ⇔ ( j, i) ∈ E holds enabling to model a bi-

directional setting. Similar to the DAG case, associated with each edge is the set of admissible

symbols Ui→ j for which, e.g.
∣

∣

∣Ui→ j

∣

∣

∣ = di j + 1 holds considering a capacity of log2 di j bits

such that 0 ∈ Ui→ j indicates no transmission.

Each j ∈ V is associated with a random variable X j that takes values from a finite set X j,

i.e.
∣

∣

∣X j

∣

∣

∣ < ∞. In the first stage, having observed y j ∈ Y j, node j transmits a message

u j→i taking values from U j→i to each of its neighbors i ∈ ne( j) constituting u j = {u j→i|i ∈

ne( j)}. The set of all possible outgoing messages is given by U j ⊗
i∈ne( j)

U j→i. In the second

stage, an inference on the value of X j is drawn based on the observation y j, the outgoing

messages produced in the first stage, i.e. u j, and the incoming messages from neighboring

nodes given by une( j) = {ui→ j|i ∈ ne( j)}. The set of all possible incoming messages is given by

Une( j) = ⊗
i∈ne( j)

Ui→ j.

A causal online processing of measurements y = (y1, y2, ..., yN) where Y = Y1 × ... × YN

takes place when each j ∈ V, first performs its local communication rule µ j : Y j → U j

acting on only y j, and after une( j) is received, proceeds with the local decision rule ν j : Y j ×

U j ×Une( j) → X j. Hence, the local rule of node j is a pair given by γ j = (µ j, ν j).

Similar to the discussion for the DAG case, the space of all stage one communication rules

is given by MG
j
= {µ j|µ j : Y j →U j} and the stage two decision rule space is defined as

NG
j
= {ν j|ν j : Y j ×U j ×Une( j) → X}. The local rule spaces Γ

G
j
= MG

j
× NG

j
for j ∈ V

construct the strategy space ΓG = ⊗
v∈V
Γ
G
v and the problem definition (P1) given by Expression

2.22 holds.

The causal processing provided through the two stage scheme described above implies that

the equation that couples the local rules for the directed case, i.e. Eq.(2.24), has the corre-
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spondance of

p(u, x̂|x, y; γ) =

N
∏

j=1

p(u j, x̂ j|y j, une( j); γ j) (2.42)

with

p(u j, x̂ j|y j, une( j); γ j) = p(u j|y j; µ j)p(x̂ j|y j, u j, une( j); ν j) (2.43)

in addition. Here, it holds that

p(u j|y j; µ j) = δu j,µ j(y j) (2.44)

p(x̂ j|y j, u j, une( j); δ j) = δx̂ j,ν j(y j,u j,une( j)) (2.45)

where δ is the Kronecker’ s delta. It is possible to substitute the expressions above in the un-

derlying distribution of the Bayesian risk J(γ) = E {c(u, x, x̂); γ} which is given by Eq.(2.23).

There corresponds, then an objective value for every given two stage strategy γ ∈ ΓG where

G is an undirected graph. Therefore, under the two stage local rules over an undirected graph

interpretation, the communication constrained problem (P1) given by Expression ( 2.22) is

valid.

2.7.2.2 Optimizing Undirected Graph Constrained Networks

The communication constrained problem (P1) exhibits a different nature in the case of two-

stage strategies over undirected graphs compared to that for strategies over a directed acyclic

graph (DAG). As discussed in Section 2.7.1.3, in the case of a DAG, the conditional inde-

pendence assumption alone enables the person-by-person optimal strategy to be in the form a

finite set of likelihood-ratio tests (Proposition 2.7.1). For two-stage strategies over undirected

graphs, an additional condition should hold:

Assumption 5(Separable Costs): The global cost function is the sum of costs due to the

stage-one communication rules and stage-two decision rules, which are in turn additive over

the nodes, i.e.

c(u, x̂, x) =

N
∑

i=1

[

cd
i (x̂i, x) + λcc

i (ui, x)
]

(2.46)

It is shown that, if only Assumptions 1 and 5 hold, then a person-by-person optimal two-

stage strategy over undirected graph in the form of a finite collection of likelihood-ratio tests

is obtained which is similar to Proposition 2.7.1 for the DAG case(See Chp. 4 in [28] or
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1
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(a) Constraining undirected graph.

1
 2
 3
 4


1'
 2'
 3'
 4'


(b) Unwrapped DAG counterpart.

Figure 2.8: (a) A loopy undirected graph of 4 nodes given by G = (V,X) where V =
{1, 2, 3, 4} and E = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 4), (4, 2), (4, 3), (3, 4)}, (b) the DAG coun-

terpart regarding the two-stage online processing. Nodes 1 − 4 correspond to platforms 1 − 4

but only performing the stage one communication rules, whereas nodes 1′ − 4′ correspond to

platforms 1 − 4 but only performing the stage two decision rules.

[26]). In addition, it is possible to inspect multi-stage schemes on undirected graphs through

unwrapping them on directed graphs 8. Consider, for example, the undirected graph and its

unwrapped directed counterpart in Figure 2.8. Under Assumptions 1 and 5, nodes 1 − 4

perform only the stage one rules, i.e. µ js, and nodes 1′ − 4′ are associated only with the

stage two rules, i.e. ν js. Node j and j′ correspond to the same physical platform but different

processing tasks, in this respect. Hence, Proposition 2.7.1 for the DAG case can be applied

to the corresponding unwrapped graphs. It is then possible to show that given a person-by-

person optimal two-stage strategy γ∗ over an undirected graph and fixing all local rules other

than the jth at the optimal, the jth person-by-person optimal stage-one rules lie in the set

{µ j|µ j : Y j →U j} and stage-two rules reside in {ν j|ν j : Y j ×Une( j) → X j}.

In order to reduce the complexity further and provide scalability for both the local rules in

the number of random variables (i.e. dimensionality of X) and for the iterative optimization

scheme in the number of platforms, assumptions of the measurement and cost locality, i.e.

Assumptions 2 and 3, should also hold. Under these conditions, given a person-by-person

optimal strategy on the undirected graph, the jth rule is found -similar to that given in Propo-

sition 2.7.2- in a variational form and depending on the remaining:

Proposition 2.7.3 Consider (P1) and let Assumptions 1-3 and 5 hold. Given an undirected

graph G and considering a person-by-person optimal two-stage strategy γ∗, the jth optimal

8 See for example [73] for the utilization of an approach along these lines for examining the Loopy Belief

Propagation in which a computation tree is constructed such that the regular Belief Propagation over this graph

corresponds to m-step of the loopy counterpart.
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rule when the rest is fixed at the optimal, i.e. γ\ j = γ
∗
\ j

, reduces to

µ∗j(Y j) = arg min
u j∈U j

∑

x j∈X j

α∗j(u j, x j)p(Y j|x j) (2.47)

for the stage-one communication rule, where the rule coefficients α∗
j
∈ R|U j×X j| are given by

α∗j(u j, x j) ∝ p(x j)



















λcc
j(u j, x j) +

∑

i∈ne( j)

C∗i→ j(u j→i, x j)



















(2.48)

and

ν∗j(Y j,Une( j)) = arg min
x̂ j∈X j

β∗j(x̂ j, x j; Une( j))p(Y j|x j) (2.49)

for the stage two decision rule where the rule coefficients β j ∈ R|X j×X j×Une( j)|

β∗j(x̂ j, x j; une( j)) ∝ p(x j)c
d
j (x̂ j, x j)P

∗
j(une( j)|x j) (2.50)

with the incoming message likelihood and the likelihood message from neighbor node i ∈

ne( j)given by

P∗j(une( j)|x j) =
∑

xne( j)∈Xne( j)

p(xne( j)|x j)
∏

i∈ne( j)

P∗i→ j(ui→ j|x j) (2.51)

and

P∗i→ j(ui→ j|x j) =
∑

ui\ui→ j

p(ui|xi; µ
∗
i )

=
∑

ui\ui→ j

∫

Yi

dyi p(yi|xi)p(ui|yi; µ
∗
i ) (2.52)

respectively. The conditional expected cost term from each neighbor node i ∈ ne( j) is given

by

C∗i→ j(u j→i, x j) =
∑

xi∈Xi

∑

x̂i∈Xi

cd
i (x̂i, xi)

∑

xne(i)\ j∈Xne(i)\ j

p(xi, xne(i)\ j|x j)×

∑

une(i)\ j

p(x̂i|xi, une(i); ν
∗
i )

∏

j′∈ne(i)\ j

P∗j′→i(u j′→i|x j′) (2.53)

Proof. Note that under Assumptions 1-3 and 5, Eq.(2.43) specializes to

p(u j, x̂ j|y j, une( j); γ j) = p(u j|y j; µ j)p(x̂ j|y j, une( j); ν j)

which in turn yields the information structure of the strategy γ j ∈ ΓG as

p(u, x̂|x, y; γ) =

N
∏

j=1

p(u j|y j; µ j)

N
∏

j=1

p(x̂ j|y j, une( j); ν j)
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This structure admits the interpretation of being the information structure of a decentralized

scheme over a DAG (corresponding to the unwrapped counterpart of the originial undirected

graph) such that the rules local to parentless nodes are µ js and the rules local to childless

nodes are ν js, i.e.

p(u, x̂|x, y; γ) =
∏

j∈{1,...,N}
p(u j|y j; γ j)

∏

j′∈{1′,...,N′}
p(x̂ j′ |y j′ , uπ( j′); γ j′)

where γ j = µ j for j ∈ {1, ...,N} and γ j = ν j for j ∈ {1′, ...,N′}. Hence Proposition 2.7.2

applies to the unwrapped directed counterpart of the undirected graph with the set of nodes

V = {1, ...,N, 1′, ...,N′} and the corresponding set of local rules {µ1, ..., µN , ν1, ..., νN} yielding

the above expressions. For a detailed proof, see [28] under the assumption of error-free links.

�

Algorithm 3 Iterations converging to a person-by-person optimal decentralized two-stage

strategy over an undirected graph G.

0) (Initiate) l = 0;

Choose γ0 = (γ0
1
, γ0

2
, ..., γ0

N
) such that γ0

j
∈ ΓG

j
for j = 1, 2, ...,N

1) (Update) l = l + 1;

i) for j = 1, 2, ...,N

Pl
j→ne( j)

= g j(α
l−1
j

)

ii) for j = 1, 2, ...,N

Pl
j
= f j(P

l
ne( j)→ j

)

βl
j
= q j(P

l
j
) % Update the stage-two rule

Cl
j→ne( j)

= h j(β j, P
l
ne( j)→ j

)

iii) for j = 1, 2, ...,N

αl
j
= rl

j
(Cl

ne( j)→ j
) % Update the stage-one rule

2) (Check) If J(γl−1) − J(γl) < ε STOP, else GO TO 1;

Considering Proposition 2.7.3, it is possible to obtain an iterative scheme which starting with

an initial two-stage strategy, converges to a person-by-person optimal one in a similar fashion

discussed in Section 2.7.1.3 for the directed acyclic case. The treatment of the right hand

sides of Eq.s (2.48), (2.50)-(2.53) as operators that can act on any set of their arguments, not

necessarily corresponding to optimal local rules, is summarized by r j and q j together with
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f j, g j and h j given by

α j = r j(Cne( j)→ j)

β j = q j(P j)

P j = f j(Pne( j)→ j)

P j→ne( j) = g j(α j)

C j→ne( j) = h j(β j, Pne( j)→ j)

where Pne( j)→ j = {Pi→ j}i∈ne( j), Cne( j)→ j = {Ci→ j}i∈ne( j) and C j→ne( j) = {C j→i}i∈ne( j).

Considering the expressions above and following the steps similar to that presented in Sec-

tion 2.7.1.3, the iterative scheme given in Algorithm 3 is obtained for offline optimization

of two-stage strategies under communication constraints. In addition, the cost for any given

strategy γl is easily found in terms of the expressions above as

J(γl) =
∑

i∈V

∑

xi∈Xi

p(xi)
[

λGc
i (µl

i|xi) +Gd
i (νl

i|xi)
]

where

Gc
i (µl

i|xi) =
∑

ui∈Ui

cc
i (ui, xi)p(ui|xi; µ

l
i)

Gd
i (νl

i|xi) =
∑

x̂i∈Xi

cd
i (x̂i, xi)

∑

une(i)∈Une(i)

p(x̂i|xi, une(i); ν
l
i)

∑

xne(i)∈Xne(i)

p(xne(i)|xi)
∏

j∈ne(i)

Pl+1
j→i(u j|x j)

Note that, similar to that in the directed acyclic case, the Update step of Algorithm 3 also

admits a message passing interpretation. In the first pass, all nodes compute and send forward

likelihood terms to their neighbors. In the second pass, upon receiption of the likelihood

messages, all nodes update their stage-two estimation rules and compute and send expected

cost messages to their neighbors. After receiving cost messages from neighbors, each node

update its stage-one communication rule. This structure of the optimization scheme renders

it suitable for network self-organization.
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CHAPTER 3

DECENTRALIZED ESTIMATION NETWORKS UNDER

DIRECTED GRAPH CONSTRAINTS

In this chapter, we start presenting our investigation on decentralized estimation networks un-

der communication constraints. Consider the motivations for the problem introduced in Sec-

tion 1.1 including the possible applications in Section 1.1.3 and 1.1.4. A general treatment

of decentralized statistical inference has been presented in Section 2.6, considering a sys-

tem structure subject to resource constraints among which the emphasis is on the availability

of communication links, their finite capacity and transmission costs (possibly due to energy

dissipation). A number of approaches in the literature is addressed including the distributed

function evaluation framework and message passing algorithms under communication con-

straints.

We are particularly interested in design perspectives and the tradeoff between the estimation

accuracy and the communication cost. Similar challenges have been considered in the context

of decentralized detection for which we present an overview in Section 2.7. In this chapter,

we consider the class of decentralized strategies over directed acyclic graphs which is sum-

marized in Section 2.7.1 for detection. In Section 3.1 we provide an overview of literature

work on optimization of estimation networks. We adopt the communication constrained set-

ting in Section 3.2 and present the Team Theoretic investigation in Section 3.3 which yields

an iterative optimization scheme. In the estimation setting, unlike the detection problem, the

random variables of concern take values from denumerable sets, which prevents us to uti-

lize the iterative scheme in practice. We introduce a Monte Carlo framework in Section 3.4

and provide particle representations together with approximate computational schemes that

yield an approximation to a person-by-optimal strategy. In Section 3.5 we utilize the frame-
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work in examples and present the benefits including the smooth degredation of the estimation

performance with the decrease in utilization of the communications.

3.1 Introduction

In this chapter, we consider the estimation of a random vector that takes values from an N-

dimensional Euclidean space through a system with a communication and computation struc-

ture that exhibits collaborative processing and better matches the underlying communication

topology. This scenario captures, e.g. the estimation of a common parameter (as in e.g.[87])

as well as samples of a field (as in e.g.[88]) with an ad-hoc sensor network.

Similar to the case in the detection setting, the literature on decentralized estimation often

considers a structure in which a fusion center responsible for performing the estimation task

exploits messages from the peripheral platforms in order to improve the accuracy (see for

example [89][90] with [91] and the references therein). In this perspective, the limited band-

width is addressed through having the peripherals perform a quantization of the observation,

and the number of quanta is determined by the link capacity. The design problem involves

selecting the quantizers for the peripherals in terms of informativeness together with a fusion

rule that achieves a reasonable accuracy. Motivated by sensor networks, similar problem set-

tings under different domain knowledge such as the noise distribution and quantization level

constraints have been investigated (see e.g. [87] [92] [93] [94]) as well as the case in which

samples of a field are subject to estimation (see e.g.[95] [96] [88] and the references therein).

Altough these treatments consider keeping the communication demand as low as possible,

they are limited in capturing certain aspects of the problem. First of all, the communication

structures for which results can be produced for are restricted to star topologies (See Sec-

tion 2.7 for the discussion of such communication and computation structures in the context

of detection). The cost of transmissions from peripherals to the fusion center which possi-

bly vary considering the multi-hop nature is not explicitly accounted for. Often, a common

random variable is of concern and the estimation is performed only at the fusion center. This

restricts the collaboration among platforms for online processing of observations and opens

up a possibility for a computational bottleneck in the case of multiple random variables.

Unlike the canonical inference approaches mentioned above, we employ a design perspective
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in which the cost of communications and estimation errors are considered explicitly in a

Bayesian setting as well as the constraints including the availability and capacity of links.

Similar challenges are of concern in decentralized detection for which a general treatment has

been presented in [28] and summarized in Section 2.7.1. In this setting, the available links

between sensor platforms render a directed acyclic graph (DAG) G= (V,E) where nodes and

edges correspond to platforms and uni-directional links between two platforms respectively.

The inference task is distributed through associating random variables with sensor platforms.

Each node evaluates its local rule, given the incoming messages and its own measurement,

producing an inference on the associated random variable(s) and outgoing messages. The

design problem involves finding the set of local rules, which is referred to as the strategy,

that minimizes an expected cost which captures contributions of both cost of communications

and detection errors in a Bayesian setting with the set of feasible strategies constrained by

G. Decentralized detection is NP-hard in general, nevertheless necessary (but not sufficient)

optimality conditions yield nonlinear Gauss-Seidel iterations which converge to a person-by-

person optimal strategy [97]. In [27], this treatment is utilized for a directed acyclic topology

and an iterative solution together with conditions under which the iterations admit a message

passing interpretation that is scalable with the number of nodes are established.

We generalize this framework to decentralized estimation, and address some of the limitations

of the canonical distributed estimation algorithms mentioned above ([89, 87, 91]). However

this approach leads to an iterative scheme that involves integral equations that have no closed

form solutions in general. Such a problem arise in message passing algorithms over conti-

nous Markov random fields with general distributions and has been the motivation for algo-

rithms relying on particle representations together with approximate computational schemes

including Non-parametric Belief Propagation [68, 72] which has been successfully applied

for articulated visual object tracking [69, 98].

In order not to compromise model accuracy, we develop an approximation framework using

Monte Carlo integration methods. In the resulting network, the platforms perform compu-

tations which correspond to approximations to an approximately person-by-person optimal

rule. We maintain the scalability of the solution both in the number of nodes and sample sizes

and we can produce results for any set of distributions as long as samples can be generated

from them. In this respect, we present an efficient Monte Carlo optimization algorithm for de-

centralized estimation networks subject to communication constraints in a Bayesian setting.
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The algorithm can be carried out in a message passing fashion making it also suitable for

network self-organization. Also, the approach is valid for any distribution families as soon as

samples can be generated.

3.2 Online Processing Modelled With Directed Acyclic Graphs

We consider the class of decentralized strategies presented in Section 2.7.1.1 which comply

with directed acyclic graphs (DAGs). The nodes represent the sensor platforms and each edge

corresponds to a low capacity link on which error-free transmission of an element from the

set of admissible symbols is possible. The operation of the platforms are constrained by the

graph such that each node, based on its measurement and incoming messages from parents,

produces a local estimate and outgoing messages to children.

A causal online processing of observations is achieved through executing the local rules of the

platforms in accordance with the forward partial ordering regarding the reachability relation

over the DAG. The information structure imposed by the strategy in the context of estimation

is similar to that in the detection setting except that the setX from which the random variables

of concern take values from is denumerable.

Considering the graph constrained problem setting (P1) given by Expression( 2.22). The

Bayesian risk capturing the penalty both for the estimation error and communication load

u is defined as c : U ×X × X → R. The objective function is similarly given by J(γ) =

E{c(u, x̂, x); γ} where the underlying distribution is given by

p(u, x, x̂; γ) =

∫

y∈Y

dy p(u, x̂|x, y; γ)p(x, y) (3.1)

with the conditional imposed by the directed acyclic structure

p(u, x̂|x, y; γ) =

n
∏

j=1

p(u j, x̂ j|y j, uπ( j); γ j) (3.2)

Further details including the proof is presented in Section A.1. Unlike the detection case,

given γ j, it is convenient to treat p(u j, x̂ j|y j, uπ( j); γ j) as a finite set of distributions parameter-

ized on u j, i.e.

p(u j, x̂ j|y j, uπ( j); γ j) = pu j
(x̂ j|y j, uπ( j); γ j) (3.3)
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where

p[γ j(y j,uπ( j))]U j

(x̂ j|y j, uπ( j); γ j) = δ(x̂ j −
[

γ j(y j, uπ( j))
]

X j

) (3.4)

and δ is the Dirac’ s delta distribution. Hence, the local rule γ j and the distribution family

pu j
(x̂ j|y j, uπ( j); γ j) specify each other accordingly.

It follows that given a decentralized estimation strategy constrained by the directed acyclic

graph G, i.e. γ ∈ ΓG, there corresponds an expected Bayesian risk J(γ) = E{c(u, x, x̂); γ}

that can be computed by substituting Eq.s(3.1)-(3.4) in the expectation for which unlike the

detection case integrations overX appear. The communication constrained inference problem

(P1) given by Expression ( 2.22) is still valid and admits the interpratation of the problem of

decentralized estimation constrained by directed acyclic graphs.

This framework provides the benefits of extending the star-topology to directed acyclic graphs

while taking into account the availability and capacity of links together with a penalty due to

transmissions and estimation errors. However, it is not straightforward to choose a sensible

cost function for every realization of the process (U, X, X̂) unlike the detection problem in

which both the setsU andX are finite. In the estimation setting, it is unlikely that an arbitrary

selection of the function c : U × X × X → R would achieve consistency in penalyzing

estimation errors and the communication cost. A convenient approach is to consider the

additive form

c(u, x, x̂) = cd(x, x̂) + λcc(u, x) (3.5)

admitting the interpretation that cd is the cost of estimation errors and cc is the cost due to

communication together with a unit conversion coefficient λ which admits the interpretation

of the equivalent estimation error per unit communication cost. Note that for the case

J(γ) = Jd(γ) + λJc(γ) (3.6)

also holds where Jd(γ) and Jc(γ) are the expected penalties due to estimation errors and com-

munication respectively. When λ = 0, communications has no cost and the only consideration

is the constraint on the feasible strategy space which is based on the available links and the

corresponding capacities together with G. This multi-objective optimization setting yields

that γ∗ = arg minγ∈γG Jd(γ) + λJc(γ) vary with λ and {(Jc(γ∗), Jd(γ∗))|λ ≥ 0} describes the

achievable performance points which, in our case, is similar to a pareto-optimal front and

enables smoothly trading off estimation accuracy for less transmissions.
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One possible choice for the penalty of estimation error is cd(x, x̂) = (x − x̂)T (x − x̂) where

T denotes the transpose. For λ = 0, the minimum mean squared error strategy γ ∈ ΓG is of

concern.

In addition, it is possible to represent a selective communication scheme in this framework

through selecting the set of admissible symbols on a link (i, j) ∈ Ewith capacity di j asUi→ j =

{0, 1, 2, ..., 2di j − 1} without loss of generality and select the communication cost cc such as

cc(u) =
∑

j∈V

∑

i∈χ( j)

cc(u j→i, x j) (3.7)

where cc(u j→i, x j) = 0 if u j→i = 0. In this case, the symbol 0 represents no transmission but

still an informative signalling to the corresponding child node. If cc(u j→i, x j) = 1 for u j→i , 0

∀(i, j) ∈ E, then Jc(γ) is the expected network load under strategy γ ∈ ΓG.

3.3 Team Theoretic Solution Under DAG Constraints

In principle, given any communication and computation strategy for decentralized inference,

the Bayesian framework discussed in Section 3.2 is useful provided that the underlying dis-

tribution p(u, x, x̂; γ) together with the contribution of the strategy p(u, x̂|x, y; γ) are tractable.

On the other hand, further considerations on scalability of γ in the number of variables and

the optimization scheme in the number of both platforms and variables arise.

The online processing scheme we utilize yields an efficient detection strategy and offline opti-

mization under certain conditions as presented in Section 2.7.1.3 (recall that if the conditional

independence of observations does not hold, then the decentralized detection problem is NP-

hard [97]). Considering (P1) in the context of detection, if the sensor noise processes are

independent and equivalenty observations are conditionally independent (Assumption 1), a

team theoretic investigation yields a tractable solution to (P1) based on Proposition 2.7.1. This

scheme is iterative and corresponds to a set of non-linear fixed point equations that converge to

a person-by-person optimal strategy. Provided that the measurement locality(Assumption 2)

assumptions also hold, the decentralized detection strategy scales with the number of vari-

ables. Together with the cost locality (Assumption 3) and polytree topology (Assumption 4),

it is possible to find a person-by-person optimal decentralized strategy such that the set of

fixed point equations admit a message passing interpretation which also scales with the num-

ber of nodes.
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The intricacies in the detection setting described above suggest to endorse to the team theo-

retic investigation for the estimation problem as well. Consider the graph constrained problem

(P1) given in Expression 2.22 with X and X̂ taking values from a denumerable set X. Propo-

sition 2.7.1 restated for the estimation problem is as follows:

Proposition 3.3.1 Consider (P1) such that X and X̂ take values from a denumerable set X.

Under Assumption 1, given a person-by-person optimal strategy γ∗ = (γ∗
1
, γ∗

2
, ..., γ∗

N
), and fix-

ing all the local rules other than the j th at the optimum, i.e. γ\ j = γ∗\ j
, the j th person-by-

person optimal rule is given by

γ∗j(Y j,Uπ( j)) = arg min
(u j,x̂ j)∈U j×X j

∫

X
dxp(Y j|x)θ∗j(u j, x̂ j, x; Uπ( j)) (3.8)

where

θ∗j(u j, x̂ j, x, uπ( j)) = p(x)
∑

u\ { j}∪π( j)

∫

X\ j

dx̂\ j c(u, x̂, x)
∏

i, j

∫

Yi

dyi p(yi|x)p(ui, x̂i|yi, uπ(i); γ
∗
i )

(3.9)

Proof. The proof is similar to that for Proposition 2.7.1. After substituting γ\ j = γ
∗
\ j

, Eq.s(3.2),

(3.1) and the mathematical statement of Assumption 1 in J(γ) = J(γ j, γ\ j) we obtain

J(γ j, γ
∗
\ j) =

∫

X
dx

∫

X
dx̂

∑

u∈U
c(u, x, x̂)p(x)p(u j, x̂ j|x, uπ( j); γ j)

N
∏

i, j

p(ui, x̂i|x, uπ(i); γ
∗
i )

=

∫

Yy

dy j

∫

X j

dx̂ j

∑

u j∈U j

∑

uπ( j)∈Uπ( j)

p(u j, x̂ j|y j, uπ( j); γ j)

∫

X
dxp(y j|x)p(x)

∑

u\{ j}∪π( j)

∫

X\ j

c(u, x, x̂)

N
∏

i, j

p(ui, x̂i|x, uπ(i); γ
∗
i ) (3.10)

We similarly consider a deterministic local rule γ j. Given uπ( j) ∈ Uπ( j) and y j ∈ Y j the solu-

tion γ∗
j

minimizing Eq.(3.10) with probability 1 corresponds to selecting pu j
(x̃ j|y j, uπ( j); γ j) =

δ(x̂ j − x̃ j) for (u j, x̂ j) such that its weight in Eq.(3.10), i.e.

∫

X

dxp(y j|x)p(x)
∑

u\{ j}∪π( j)

∫

X\ j

dx̂\ jc(u, x, x̂)
∏

i, j

∫

Yi

dyi p(ui, x̂i|uπ(i), yi; γ
∗
i )p(yi|x) (3.11)

is minimum. Hence

γ∗j(Y j,Uπ( j)) = arg min
(u j,x̂ j)∈U j×X j

∫

X
dxp(Y j|x)θ∗j(u j, x̂ j, x; Uπ( j))
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where θ∗
j

is identified as

θ∗j(u j, x̂ j, x, uπ( j)) = p(x)
∑

u\ j∈U\ j

∫

X\ j

dx̂\ j c(u, x̂, x)
∏

i, j

∫

Yi

dyi p(yi|x)p(ui, x̂i|yi, uπ(i); γ
∗
i )

(3.12)

�

We note that altough Equations (3.8) and (3.9) are similar to Equations (2.27) and (2.28)

in that the observation likelihood p(y j|x j) appears as sufficient statistics and θ∗
j

admits the

interpretation of being optimal parameters specified by the local rules of nodes other than j.

Also considering Eq.(A.6), it is apparent that

∫

X
dxp(Y j|x)θ∗j(u j, x̂ j, x; Uπ( j)) ∝ E{c(u\ j, u j, x, x̂\ j, x̂ j)|Y j,Uπ( j); γ

∗
\ j}

Consider Algorithm 1 which is a general iterative scheme that converges to a person-by-

person optimal strategy (Section 2.7.1.2). It is useful to treat the right hand side of Eq.(3.9) as

an operator ψ such that given any set of local rules for nodes other than the jth, i.e. γ\ j, fixed

not necessarily at an optimum, ψ produces θ j, i.e. θ j = ψ j(γ\ j). Together with Eq.(3.8) the

local rule for the jth node is obtained which equivalently minimizes the conditional expected

cost. However, unlike the detection case in which θ j being a finite dimensional vector provides

a useful parameterization for the jth person-by-person optimal rule, for the estimation case,

since X is denumerable, the corresponding fixed point equations utilizing ψ in the Update

step of Algorithm 1 are not practically solvable in general.

Optimality in a person-by-person sense has also been the canonical approach in the decentral-

ized estimation literature. Proposition 3.3.1 applied for the conventional setting of decentral-

ized estimation, yields the same person-by-person optimality conditions given in [90]. The

system structure considered in this setting is similar to that for the conventional decentralized

detection (Section 2.7). A strategy on a star-topology γ? ∈ Γ? is considered in which node 0

is the fusion center and performs only estimation based on the symbols from finite sets trans-

mitted by the peripheralsV\ 0, i.e. γ?
0

: U1→0 ×U2→0 × ...×UN→0 → X and the peripherals

perform quantization through evaluating γ j : Y j → U j→1 given the number of quanta d j→0

for j ∈ V\0 and
∣

∣

∣U j→0

∣

∣

∣ = d j→0. The cost due to the communications is not considered but

rather MSE and MAP strategies are of concern. For c(u, x̂, x) = (x̂− x)2 the person-by-person

optimal MSE fusion rule that is performed by node 1 reduces to

γ0(u1→0, u2→0, ..., uN→0) = E{x|u1→0, u2→0, ..., uN→0}
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and in this sense of optimality, the quantization rule of the peripheral node j is given by

γ j(y j) = arg min
u j→0

E{E{x|y j, y\ j} − γ0(u1→0, ..., u j−1→0, u j→0, u j+1→0, ..., uN→0)|y j}

which are equivalently represented by Eqs.(3.8) and (3.9). Moreover for the particular case

in which there are two nodes; one peripheral and one fusion node with no observation noise

involved, the problem definition together with the necessary conditions of optimality reduces

to that for the conventional MSE quantizer design problem presented in [99][100]. The MAP

setting is similarly covered by Proposition 3.3.1 utilizing the complementary ε-neighborhood

indicator cost introduced in Example 2.2.1.

However, the structure of the local rules given above do not yield closed form representations

in general, altough relatively straightforward numerical computations are involved when the

joint density p(x, y1, ..., yN) is Gaussian and x is of dimension 1. The fact that the fusion rule is

not scalable in the number of peripherals opens up a possibility for computational bottlenecks.

This consideration has led to a fusion rule which is linear in the received symbols [89]. Further

work has been motivated by certain aspects of the vision of sensor networks such as that the

prior distribution for X and noise may not be known except the fact that they take values from

bounded sets, variable threshold quantizers are not cheap, and it is more reasonable to assume

a cheap device of a single imprecise threshold and consider a framework in which multiple

level quantizers can be captured in terms of two-level quantizers (see e.g. [87, 92, 93]).

On the other hand, certain aspects such as the cost of communications, structures beyond the

star topology and the tradeoff between the estimation accuracy and the transmission costs are

not addressed by these approaches. In addition, the case in which the dimensionality of X is

greater than one is endorsed to the fusion center alone which does not yield a scalable nor a

collaborative strategy.

The information structure we obtain by utilizing a strategy over a directed acyclic graph ex-

tends the set of possible structures as well as providing means of introducing the cost of

communication. Moreover, under certain conditions, scalability with the dimensionality of X

and collaborative processing among nodes are achieved.

Under Assumptions 1 and 2, the decentralized strategies over DAGs exhibit scalability in the

number of variables (and platforms). For the case, the local rules evaluate marginalizations

only over the set from which the associated variable that takes values, i.e. X j, rather than X.
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Hence, Proposition 3.3.1 reduces to1

γ∗j(Y j,Uπ( j)) = arg min
u j×x̂ j∈(U j×X j)

∫

X j

dx j p(Y j|x j)φ
∗(u j, x̂ j, x j; Uπ( j)) (3.13)

where

φ∗j(u j, x̂ j, x j; uπ( j)) =

∫

x\ j∈X\ j

dx jθ
∗
j(u j, x̂ j, x; uπ( j)) (3.14)

introducing scalability in the number of variables during online iterations, since given φ∗
j
, the

jth local rule involves marginalization over only X j.

The scalability in the number of nodes while constructing φ∗
j

requires additional assumptions

to hold. We will restate Proposition 2.7.2 with expressions corresponding to Equations (2.36)-

(2.39) in the estimation setting with the difference that we provide a more convenient form

for the Monte Carlo approximations that will be presented later.

Proposition 3.3.2 Consider (P1) such that X and X̂ take values from a denumerable set X.

Under Assumptions 1-4, Eq.(3.13) applies with a proportional expression for φ∗
j
(u j, x̂ j, x j; uπ( j))

given by

φ∗j(u j, x̂ j, x j; uπ( j)) ∝ p(x j)P
∗
j(uπ( j)|x j)

[

c j(u j, x̂ j, x j) +C∗j(u j, x j)
]

(3.15)

where

P∗j(uπ( j)|x j) =



























1 , if π( j) empty
∫

Xπ( j)

dxπ( j) p(xπ( j)|x j)
∏

i∈π( j)

P∗
i→ j

(ui→ j|xi) , otherwise
(3.16)

with terms regarding influence of i ∈ π( j) on j, i.e. P∗
i→ j

(ui→ j|xi)

P∗i→ j(ui→ j|xi) =
∑

uχ(i)\ j∈Uχ(i)\ j

∑

uπ(i)∈Uπ(i)

P∗i (uπ(i)|xi)

∫

Xi

dx̂i

∫

Yi

dyi p(ui, x̂i|yi, uπ(i); γ
∗
i )p(yi|xi)(3.17)

and the C∗
j
(u j, x j) term which is added to the local cost and given by

C∗j(u j, x j) =



















0 , if χ( j) = ∅
∑

k∈χ( j) C∗
k→ j

(u j→k, x j) , otherwise
(3.18)

with terms regarding the influence of k ∈ χ( j) on j, i.e. C∗
k→ j

(u j→k, x j)

C∗k→ j(u j→k, x j) =

∫

Xπ(k)\ j

dxπ(k)\ j

∫

Xk

dxk p(xπ(k)\ j, xk|x j)
∑

uπ(k)\ j∈Uπ(k)\ j

∏

m∈π(k)\ j

P∗m→k(um→k|xm)×

I∗k (uπ(k), xk; γ∗k) (3.19)

1 In a similar fashion with the reduction of Proposition 3.3.1 to Eq.s (2.32) and (2.33).
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with

I∗k (uπ(k), xk; γ∗k) =

∫

Yk

dyk

∫

Xk

dx̂k

∑

uk∈Uk

[

ck(uk, x̂k, xk) +C∗k(uk, xk)
]

p(uk, x̂k|yk, uπ(k); γ
∗
k)p(yk|xk)

(3.20)

Proof. For an overview of the proof, consider that for Proposition 2.7.2 in Section 2.7.1.3

together with that X and X̂ take values from a denumerable setX. A detailed proof is provided

in Section A.2 in the Appendix. �

The proposition above being an adoptation of Proposition 2.7.2 for the estimation problem is

subject to similar interpretations with thereunto including the treatment of Eq.s (3.16)-(3.20)

as operators for any given strategy γ\ j ∈ ΓG\ j
not necessarily optimal. Similarly, it is possible

to summarize this treatment by d j, f j, g j and h j such that

φ j = d j(P j,Cχ( j)→ j)

P j = f j(Pπ( j)→ j)

P j→χ( j) = g j(φ j, P j)

C j→π( j) = h j(φ j, Pπ( j)→ j,Cχ( j)→ j)

where Pπ( j)→ j = {Pi→ j}i∈π( j), Cχ( j)→ j = {Ck→ j}k∈χ( j) and C j→π( j) = {C j→i}i∈π( j). Note that

d j, f j, g j and h j are specified by the rigth hand sides (RHS) of Eq.s(3.15) and (3.18), Eq.(3.16),

Eq.(3.17) and finally Eq.s(3.19) and (3.20) respectively.

Therefore, the forward backward scheme given by Algorithm 2 also applies for (P1) in the

estimation setting, in principle.

In Section 3.2 it is pointed out that it is unlikely for an arbitrary selection of the cost function

c : U ×X × X → R to achieve consistency in penalyzing the estimation errors and communi-

cation costs. In addition additive structures render it possible to select an appropriate c which

yields the estimation accuracy smoothly degrade as the cost paid for communications is de-

creased. Considering Proposition 2.7.2, we present the additivity of the cost as an assumption

and investigate the reductions arise in Eq.s (3.16)-(3.20).

Assumption 5(Separable Cost): The global cost function c(u, x̂, x) is separable to functions

penalyzing estimation errors and communications given by c(u, x̂, x) = cd(x̂, x) + λcc(u, x)

where λ is a constant. Hence J(γ) = Jd(γ) + λJc(γ) here Jd(γ) = E{cd(x̂, x); γ} and Jc(γ) =

E{cc(u, x); γ}.
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Assumption 5, together with Assumption 3 implies that the local cost functions are seperable,

i.e.

c j(u j, x j, x̂ j) = cd
j (x j, x̂ j) + λcc

j(u j, x j) (3.21)

Corollary 3.3.3 Consider Proposition 3.3.2, if the local costs are separable, i.e. Assumption

5 holds in addition to Assumptions 1-4, then the person-by-person optimal local rule in the

variational form given by Eq.(3.13) is separated into two rules for estimation and communi-

cation as γ∗
j
= (ν∗

j
, µ∗

j
) given by

x̂ j = ν
∗
j(Y j,Uπ( j)) = arg min

x̂ j∈X j

∫

x j∈X j

dx j p(x j)p(Y j|x j)P
∗
j(Uπ( j)|x j)c

d
j (x̂ j, x j) (3.22)

u j = µ
∗
j(Y j,Uπ( j)) arg min

u j∈U j

∫

x j∈X j

dx j p(x j)p(Y j|x j)P
∗
j(Uπ( j)|x j)

[

λcc
j(x j, u j) +C∗j(u j, x j)

]

(3.23)

Moreover, the corresponding distribution p(u j, x̂ j|y j, uπ( j); γ
∗
j
) takes the form

p(u j x̂ j|y j, uπ( j); γ
∗
j) = p(x̂ j|y j, uπ( j); ν

∗
j)p(u j|y j, uπ( j); µ

∗
j) (3.24)

Proof. After substituting the separable local cost in Eq.(3.15) and Eq.(3.13), the optimization

is separated into two problems over arguments x̂ j ∈ X and u j ∈ U j. This separation also

implies that U j ⊥⊥ X̂ j | (Y j,Uπ( j)) yielding Eq.(3.24) by definition. �

Example 3.3.4 Consider a separable local cost where the contribution of the decision errors

is given by cd
j
(x̂ j, x j) = (x̂ j − x j)

2 in reminiscent of the mean square estimator. We obtain

a closed form expression for the estimation rule regarding he variational form in Eq.(3.22)

after differentiating with respect to x̂ and finding the zero solution as

x̂ j = ν
∗
j(Y j,Uπ( j)) =

∫

X j

dx j x j p(x j)p(Y j|x j)P
∗
j
(Uπ( j)|x j)

∫

X j

dx j p(x j)p(Y j|x j)P
∗
j
(Uπ( j)|x j)

(3.25)

Note that the information structure implies that P∗
j
(Uπ( j)|x j) = p(uπ( j)|x j; γ

∗
\ j

) holds which

in turn is equal to p(uπ( j)|x j; γ
∗
an( j)

) due to the polytree topology. In addition the condi-

tional independence relation Uπ( j) ⊥⊥ Y j | X j holds such that equivalently p(x j, y j, uπ( j)) =

p(x j)p(y j|x j)p(uπ( j)|x j). Hence the denominator in Eq.(3.25) is nothing but p(y j, uπ( j)) =

p(y j, uπ( j); γ
∗
an( j)

) and the estimator is given by

x̂ j = δ
∗
j(Y j,Uπ( j)) =

∫

X j

dx j x j p(x j|Y j,Uπ( j); γ
∗
an( j))
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which is the center of gravity of the posterior density conditioned on both the observation and

the incoming messages (this density is determined by the rules local to ancestors of j under

Assumption 1-4, which are fixed at the optimum). Therefore, under this particular choice of

the decision cost, any selection of the communication rules for ancestors manifest themselves

in the optimal estimation rule for node j through the likelihood P∗
j
(Uπ( j)|x j). Moreover, this

is also equivalent to treating Uπ( j) as another conditionally independent observation and

utilizing the MSE estimator using the posterior.

If the local cost functions are separable, then with the Corollaries above, certain simplifica-

tions in Proposition 3.3.2 takes place.

Corollary 3.3.5 Consider Proposition 3.3.2, if the local costs are separable, then I(uπ(k), xk; γ∗
k
)

given by Eq.(3.20) takes the form

I(uπ(k), xk; γ∗k) = Jd|xk ,uπ(k)
+ Jc|xk ,uπ(k)

(3.26)

where Jd|xk ,uπ(k)
is the local expected decision cost conditioned on xk and uπ(k) given by

Jd|xk,uπ(k)
=

∫

Xk

dx̂k cd
k (x̂k, xk)p(x̂k|xk, uπ(k); δ

∗
k) (3.27)

and Jc|xk ,uπ(k)
is the total expected cost of transmitting the symbol uk conditioned on xk and

uπ(k), including costs induced on the descendats, i.e. C∗
k
(uk, xk), and the transmission cost

captured in cc
k
(uk, xk);

Jc|xk ,uπ(k)
=

∑

uk∈Uk

(

λcc
k(uk, xk) +C∗k(uk, xk)

)

p(uk|xk, uπ(k); µ
∗
k) (3.28)

The distribution p(x̂k|xk|, uπ(k); δ
∗
k
) is the conditional probability density function of the esti-

mations specified by δ∗
k

given by

p(x̂k|xk, uπ(k); δ
∗
k) =

∫

Yk

dyk p(x̂k|yk, uπ(k); δ
∗
k)p(yk|xk) (3.29)

and p(uk|xk, uπ(k); µ
∗
k
) is the conditional probability mass function of the outgoing messages

specified by µ∗
k

given by

p(uk|xk, uπ(k); µ
∗
k) =

∫

Yk

dyk p(uk|yk, uπ(k); µ
∗
k)p(yk|xk) (3.30)
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Proof. After substituting the separable local cost for node k given by Eq.(3.21) in Eq.(3.20)

and rearranging terms

I∗k (uπ(k), xk; γ∗k) =

∫

Xk

dx̂kcd
k (x̂k, xk)

∫

Yk

dyk p(x̂k|yk, uπ(k); δ
∗
k)p(yk|xk)

+ λ
∑

uk∈Uk

[

λcc
k(uk, xk) +C∗k(uk, xk)

]

∫

Yk

dyk p(uk, x̂k|yk, uπ(k); γ
∗
k)p(yk|xk) (3.31)

is obtained. �

Providing the sufficient conditions of optimality in a person-by-person sense Equations (3.15)-

(3.20) under Assumtions 1-4 or Equations (3.15)-(3.19) together with Equations (3.26)-(3.30)

under Assumptions 1-5 imply an iterative optimization scheme for decentralized estimation

networks subject to communication constraints represented with a directed acyclic graph to-

gether with a Bayesian cost that penalizes both estimation errors and transmission over the

links. In principle, once the operators implied by these expressions are utilized in Algo-

rithm 2, it is possible to find a person-by-person optimal decentralized estimation strategy

starting with an initial one.

Finally, the Check step of Algorithm 2 requires the objective value achieved by the strategy

at the lth step, i.e. J(γl). This terms is obtained after replacing the summations in Eq.(2.41)

with integrals where necessary and rearranging terms as

J(γl) =
∑

j∈V
G j(γ

l
j) (3.32)

where

G j(γ
l
j) =

∫

X j

dx j p(x j)
∑

uπ j∈Uπ j

Pl+1
j (uπ( j)|x j)

∫

Y j

dy j

∫

X j

dx̂ j

∑

u j∈U j

c j(u j, x̂ j, x j)

p(u j, x̂ j|y j, uπ( j); γ
l
j)p(y j|x j) (3.33)

3.4 Monte Carlo Approximations for Directed Communication Constraints

In Section 3.3 we have provided conditions of optimality in a person-by-person sense ren-

dering Algorithm 2 suitable also for estimation networks under directed network constraints.

However, it is not possible to evaluate the right hand side of Eq.s (3.16)-(3.20) and corre-

spondingly d j, f j, g j and h j exactly, in general, for arbitrary prior marginals p(x j), observation
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likelihoods p(y j|x j) and rules local to nodes other than j, i.e. γ\ j. In this section, we propose

particle based representations together with approximate computational schemes so that this

conceptual iterative algorithm can be realized.

We exploit the Monte Carlo methods presented in Section 2.5 such that independent samples

generated from only the marginal distributions of X and Y are required, i.e.

S x j
, {x(1)

j
, x

(2)

j
, ..., x

(M j)

j
} such that x

(m)

j
∼ p(x j) for m = 1, 2, ..., M j (3.34)

and

S y j
, {y(1)

j
, y

(2)

j
, ..., y

(P j)

j
} such that y

(p)

j
∼ p(y j) for p = 1, 2, ..., P j (3.35)

for j ∈ V. Altough the sizes of the sample sets defined above might vary for each j ∈ V, we

assume that M j = M and P j = P for j ∈ V for brevity of discussion throughout.

This provides scalability in the number of variables and the number of samples together with

ease of application for a number of reasons. First, considering a single random variable, it is

a relatively straightforward task to generate pseudo random numbers from an arbitrary proba-

bility density function provided that the inverse of the corresponding cumulative distribution

can be evaluated ( see, e.g. Chp. 2 in [62]). In addition, the neccessary knowledge of dis-

tributions in order to utilize Algorithm 2, i.e. p(xπ(i), xi) and p(yi|xi) for all i ∈ V, implies

that the marginals are already known and hence we are not required the knowledge of any

additional distributions. Besides, we consider independent generations that require no coor-

dinations. For the case in which we consider scalability with the number of random variables

involved, sampling from the joint distribution is cumbersome where scalability can be main-

tained up to a degree with coordinated generation schemes, which require the evaluation of

characterizing densities such as the conditionals. For example Gibbs sampling introduced in

[101] requires the so called full conditionals {p(x j|x\ j)} j∈V whereas the Substitution Sampling

method requires N(N − 1) conditionals for N components [102].

We proceed by considering the sufficient condition of person-by-person optimality for the

jth rule given by Proposition 3.3.2. The Monte Carlo optimization algorithm we propose

follows successive approximations to the expressions involved. In other words, we consider

the jth node point of view and perform progressive approximations to the local rule until

all the components that involve arguments from denumerable sets are replaced with particle

representations including the node-to-note terms P∗
i→ j

and C∗
k→ j

for i ∈ π( j) and k ∈ χ( j)

respectively.
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3.4.1 Approximating the Person-by-Person Optimal Local Rule

Given a person-by-person optimal strategy γ∗ ∈ ΓG, consider the jth optimal local rule given

by Eq.(3.15) and Eq.(3.13) in the case that the remaining are fixed at the optimum γ\ j = γ
∗
\ j

.

After substitution we obtain

γ∗j(Y j,Uπ( j)) = arg min
u j×x̂ j∈(U j×X j)

R∗j(u j, x̂ j; Y j,Uπ( j)) (3.36)

where

R∗j(u j, x̂ j; y j, uπ( j)) =

∫

X j

dx j p(x j)p(y j|x j)P
∗
j(uπ( j)|x j)

[

c j(u j, x̂ j, x j) +C∗j(u j, x j)
]

(3.37)

for all u j ∈ U j, uπ( j) ∈ Uπ( j), y j ∈ Y j and x̂ j ∈ X j where unlike the detection case X j is a

denumerable set and the right hand side of Eq.(3.37) involves an integral overX j. It is reason-

able to assume that the observation likelihood p(y j|x j) and the cost c j(u j, x̂ j, x j) are known.

However, the incoming message likelihood, i.e. P∗
j
(uπ( j)|x j), together with the conditional

cost induced on the descendants, i.e. C∗
j
(u j, x j), depend on the remaining local rules γ∗\ j

(see

Section A.2) and do not necessarily admit closed form expressions for arbitrary γ\ j ∈ ΓGj .

Suppose that for all x j ∈ X j, P∗
j
(uπ( j)|x j) and C∗

j
(u j, x j) are known, i.e. it is possible to evaluate

them for all elements of their domains. The integral on the right hand side of Eq.(3.37)

still prevents R∗
j

to be evaluated exactly, in general. However, an approximation is possible

through the classical Monte Carlo method given by Eq.(2.18). Given M independent samples

generated from p(x j), i.e. S x j
given by Eq.(3.34),

R̃∗
j
(u j, x̂ j; y j, yπ( j)) =

1
∣

∣

∣S x j

∣

∣

∣

∑

x j∈S x j

p(y j|x j)P
∗
j(uπ( j)|x j)

[

c j(u j, x̂ j, x j) +C∗j(u j, x j)
]

(3.38)

where tilde denotes that it is an approximation, i.e. R̃∗
j
(u j, x̂ j; y j, yπ( j)) ≈ R∗

j
(u j, x̂ j; y j, yπ( j))

over all its domain.

Since we have assumed that P∗
j

and C∗
j

are known, it is implied that they can be evaluated

at x j ∈ S x j
, for all uπ( j) ∈ Uπ( j) and u j ∈ U j respectively. R̃∗

j
substituted in Eq.(3.36) in

place of R∗
j

corresponds to a local rule, which is an approximation to γ∗
j
. Let us represent the

approximation to the optimal local rule by γ̃∗
j

1
where the superscript 1 denotes that this is a

1-step approximation, then γ̃∗
j

1
(y j, uπ( j)) ≈ γ∗j(y j, uπ( j)) for all y j ∈ Y j and for all uπ( j) ∈ Uπ( j)

with nonzero probability.
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Consider Corollary 3.3.3. The objective of minimization in the variational form of the jth local

rule given by Eq.(3.36) is seperable, i.e. R∗
j
(u j, x̂ j; y j, uπ( j)) = R∗

j,d
(x̂ j; y j, uπ( j))+R∗

j,c
(u j; y j, uπ( j)),

under a separable cost function local to node j and yields two separate problems and corre-

sponding rules for estimation and communication denoted by ν j and µ j respectively. Similarly

the approximation R̃∗
j

given by Eq.(3.38) splits trivially underlying two separate approxima-

tions, i.e. ν̃ j
1 and µ̃ j

1.

Example 3.4.1 Consider Example 3.3.4. The explicit solution of the variational form for

the quadratic estimation error cost is given by Eq.(3.25). The conventional Monte Carlo

approximation given by Eq.(3.38) substituted in Eq.(3.36) specializes to

x̂ j = ν̃ j
1(y j, uπ( j)) =

M
∑

m=1

x
(m)

j
p(y j|x(m)

j
)P∗

j
(uπ( j)|x(m)

j
)

M
∑

m=1

p(y j|x(m)

j
)P∗

j
(uπ( j)|x(m)

j
)

(3.39)

3.4.2 Approximating the Message Likelihood and the Conditional Expected Cost

In the previous section, we proposed an approximation to the jth optimal rule under the as-

sumption that the incoming message likelihood and the conditional expected cost P∗
j
(uπ( j)|x j)

and C∗
j
(u j, x j) are known at x j = x

(m)

j
for m = 1, 2, ..., M, for all uπ( j) ∈ Uπ( j) and for all

u j ∈ U j respectively. Since it is not possible to express these functions in closed form for an

arbitrary set of local rules γ j ∈ ΓGj , in this step, we approximate them considering Eq.(3.16)

and Eq.(3.18) .

We start the discussion by considering Eq.(3.16) for the case in which π( j) , ∅. Suppose that

the forward node-to-node terms, i.e. P∗
i→ j

(ui→ j|x(m)

i
) for i ∈ π( j) are known such that we can

evaluate them at xi = x
(m)

i
where x

(m)

i
∼ p(xi) for m = 1, 2, ..., M and for all ui→ j ∈ Ui→ j. This

assumption is justified by the fact that if the 1-step approximation described in Section 3.4.1

were to be applied to the rules local to nodes i ∈ π( j), then S xi
would be utilized.

We next, note that it is possible to treat the concatenation of the elements of the parent sample

sets as a sample set that is drawn by the product of distributions associated with the former

sets. In other words, consider x
(m)

π( j)
, (x

(m)

i
)i∈π( j) for m = 1, 2, ..., M where x

(m)

i
∈ S xi

for

i ∈ π( j). These elements constitute a sample set S π( j) , {x(m)

π( j)
|x(m)

π( j)
= (x

(m)

i
)i∈π( j)} and it holds

that x
(m)

π( j)
x

(m)

π( j)
∼∏

i∈π( j) p(xi).
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This observation enables the Importance Sampling approximation given in Eq.(2.20) for P∗
j

through the importance sampling distribution
∏

i∈π( j) p(xi). Then the importance weights are

given by

ω
(m)(m′)
j

= p(x
(m′)
π( j)
|x(m)

j
)/

∏

i∈π( j)

p(x
(m′)
i

)

with the corresponding approximation

P̃ j
∗
(uπ( j)|x(m)

j
) =

1

M
∑

m′=1

ω
(m)(m′)
j

M
∑

m′=1

ω
(m)(m′)
j

∏

i∈π( j)

P∗i→ j(ui→ j|x(m′)
i

) (3.40)

for m = 1, 2, ..., M and for all uπ( j) ∈ Uπ( j).

Similarly, considering Eq.(3.18) for the case in which χ( j) , ∅ we assume that the node-

to-node backward cost terms, i.e. for all k ∈ χ( j), C∗
k→ j

(u j→k, x j), are known at x j = x
(m)

j

for m = 1, 2, ..., M and for all u j→k ∈ U j→k. Then the required values, i.e. C∗
j
(u j, x

(m)

j
) for

m = 1, 2, ..., M and for all u j ∈ U j can be computed exactly using Eq.(3.18).

From node j’ s point of view, given node-to-node terms P∗
i→ j

and C∗
k→ j

evaluated at points

generated from the appropriate marginal distributions, a further approximation to the jth

person-by-person optimal rule is obtained by computing P̃∗
j
and C∗

j
at values of their argument

required in Eq.(3.38) and substituting P̃∗
j
in place of P∗

j
. Let γ̃∗

j

2
denote the corresponding rule,

then γ̃∗
j

2
(y j, uπ( j)) ≈ γ̃∗j

1
(y j, uπ( j)) ≈ γ∗j(y j, uπ( j)) for all y j ∈ Y j and for all uπ( j) ∈ Uπ( j) with

nonzero probability.

3.4.3 Approximating the Node-to-Node Terms

In the previous section, the 2-steps approximation to the jth local rule is introduced provided

that for all i ∈ π( j), P∗
i→ j

(ui→ j|xi) is known for all ui→ j ∈ Ui→ j and xi = x
(m)

i
for m =

1, 2, ..., M. Another requirement is the evaluation of C∗
k→ j

(u j→k, x j) for all u j→k ∈ U j→k and

x j = x
(m)

j
where x

(m)

j
∈ S x j

. A further step involves approximating the node-to-node terms

P∗
i→ j

and C∗
k→ j

evaluated at the discretization of their domains provided by the sample sets.

We consider the parent nodes i ∈ π( j) and consider evaluation of Eq.(3.17) at the required val-

ues of its arguments. Suppose that γ∗
i

is fixed at the optimum, implying also that

p(ui, x̂i|yi, uπ(i); γ
∗
i
) is specified through Eq.s(3.3) and (3.4) for all i ∈ π(i). The multiple
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integral term in Eq.(3.17), rewritten as

p(ui|xi, uπ(i); γ
∗
i ) =

∫

Xi

dx̂i

∫

Yi

dyi p(ui, x̂i|yi, uπ(i); γ
∗
i )p(yi|xi)

for convenience, should be evaluated at xi = x
(m)

i
for m = 1, 2, ..., M, for all ui ∈ Ui and for all

uπ(i) ∈ Uπ(i). Since there is no closed form solution for arbitrary γ∗
i

and the observation like-

lihood p(yi|xi), we perform an Importance Sampling approximation through the importance

sampling distribution p(yi). Utilizing y
(p)

i
∈ S yi

and the importance weights given by

ω
(m)(p)

i
= p(y

(p)

i
|xm

i )/p(y
(p)

i
)

an importance sampling approximation to p(ui|x(m)

i
, uπ(i); γ

∗
i
) for m = 1, 2, ..., M, for all ui ∈

Ui and for all uπ(i) ∈ Uπ(i) is given by

p̃(ui|x(m)

i
, uπ(i); γ

∗
i ) =

1

P
∑

p=1

ω
(m)(p)

i

P
∑

p=1

ω
(m)(p)

i
δ

ui,[γ
∗
i
(y

(p)

i
,uπ(i))]Ui

(3.41)

where δ denotes the Kronecker’s delta. Note that, if Assumption 5 holds, the discussion

applies with the equality p(ui|xi, uπ(i); γ
∗
i
) = p(ui|xi, uπ(i); µ

∗
i
)

Regarding Eq.(3.17), having approximated the multiple integral term, we similarly assume

that P∗
i
(uπ(i)|x(m)

i
) is known for xi = x

(m)

i
where x

(m)

i
∼ p(xi) for m = 1, 2, ..., M and for all

uπ(i) ∈ Uπ(i). Note that the approximation introduced in the previous section acounts for this

function evaluated at such values of its arguments. Together with Eq.(3.41) we obtain

P̃∗i→ j(ui→ j|x(m)

i
) =

∑

uχ(i)\ j∈Uχ(i)\ j

∑

uπ(i)∈uπ(i)

P∗i (uπ(i)|x(m)

i
)p̃(ui|uπ(i), x

(m)

i
; γ∗i ) (3.42)

for m = 1, 2, ..., M and for all ui→ j ∈ Ui→ j. It is possible to replace the node-to-node terms

assumed to be known in Eq.(3.40) with Eq.(3.42) corresponding to a further step in the pro-

gressive approximations to γ∗
j
.

The remaining term for approximation is the conditional expected cost induced on descendats

of j on the branch initiating with the child k, i.e. C∗
k→ j

(u j→k, x j), for all k ∈ χ( j), evaluated

at x j = x
(m)

j
where x

(m)

j
∈ S x j

and for all u j→k ∈ U j→k. A similar reasoning leads to approx-

imating the required values through utilizing Monte Carlo methods on the right hand side of

the expression obtained by subsituting Eq.(3.20) in Eq.(3.19).

Consider (3.20) and suppose that γ∗
k

is known also implying that p(uk, x̂k|yk, uπ(k); γ
∗
k
) is deter-
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mined for all k ∈ χ( j). Substituting Eq.(3.3) and (3.4) in Eq.(3.20) yields

I∗(uπ(k), xk; γ∗k) =

∫

Yk

dyk [ ck( [γ∗k(yk, uπ(k))]Uk
, [γ∗k(yk, uπ(k))]Xk

, xk)

+C∗k( [γ∗k(yk, uπ(k))]Uk
, xk) ]p(yk|xk) (3.43)

evaluation of which can be approximated at xk = x
(m)

k
for all x

(m)

k
∈ S xk

and for all uπ(k) ∈ Uπ(k)

by the Importance Sampling method, using the importance density p(yk). Assuming C∗
k
(uk, xk)

is known at xk = x
(m)

k
where x

(m)

k
is an element of the usual sample set local to k, i.e. S xk

, and

for all uk ∈ Uk and utilizing y
(p)

k
∈ S yk

together with the importance weights

ω
(m)(p)

k
= p(y

(p)

k
|x(m)

k
)/p(y

(p)

k
)

we obtain

Ĩ∗(uπ(k), x
(m)

k
; γ∗k) =

1

P
∑

p=1

ω
(m)(p)

k

P
∑

p=1

ω
(m)(p)

k
[ ck( [γ∗k(y

(p)

k
, uπ(k))]Uk

, [γ∗k(y
(p)

k
, uπ(k))]Xk

, xk)

+C∗k( [γ∗k(y
(p)

k
, uπ(k))]Uk

, xk) ] (3.44)

for m = 1, 2, ..., M and for all uπ(k) ∈ Uπ(k) such that Ĩ∗(uπ(k), x
(m)

k
; γ∗

k
) ≈ I∗(uπ(k), x

(m)

k
; γ∗

k
)

holds. Note that [γ∗
k
(y

(p)

k
, uπ(k))]Uk

and [γ∗
k
(y

(p)

k
, uπ(k))]Xk

are simply the communication symbol

and estimation output of γ∗
k

evaluated at the tuple (y
(p)

k
, uπ(k)).

In addition, if Assumption 5 holds, we consider Corollary 3.3.5 and Importance Sampling

approximations to Eq.(3.27) and Eq.(3.28) evaluated at x
(m)

k
and uπ(k) are similarly obtained

as

J̃
d|x(m)

k
,uπ(k)
=

1

P
∑

p=1

ω
(m)(p)

k

P
∑

p=1

ω
(m)(p)

k
cd

k (δ∗k(y
(p)

k
, uπ(k)), x

(m)

k
) (3.45)

and

J̃
c|x(m)

k
,uπ(k)
=

∑

uk

(

λcc
k(uk, x

(m)

k
) +C∗k(uk, x

(m)

k
)
)

p̃(uk|x(m)

k
, uπ(k); µ

∗
k) (3.46)

yielding Ĩ∗(uπ(k), x
(m)

k
; γ∗

k
) = J̃

d|x(m)

k
,uπ(k)
+ J̃

c|x(m)

k
,uπ(k)

.

Eq.(3.19) requires message likelihood terms from all parents of node k except node j and

it is reasonable to assume that for all j′ ∈ π(k) \ j, P∗
j′→k

(u j′→k|x j) is known at x j = x
(m)

j′

for m = 1, 2, ..., M where x
(m)

j′ is an element from the usual sample set local to node j′

and for all u j′→k ∈ U j′→k. Similarly, we observe that the set which is constituted of ele-

ments that are concetanation of elements from the usual sample sets local to j′ ∈ π(k)\ j is

distributed from the product of the corresponding marginals. In other words, let us define
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x
(m)

π(k)\ j
, (x

(m)

j′ ) j′∈π(k)\ j. Then it holds that x
(m)

π(k)\ j
∼∏

j′∈π(k)\ j p(x j′) and an importance sam-

pling approximation to Eq.(3.19) is possible through the importance distribution
∏

j′∈π(k)\ j p(x j′).

Having computed Ĩ∗(uπ(k), x
(m)

k
; γ∗

k
) and utilizing the usual sample sets local to nodes j′ ∈

π(k)\ j together with the importance sampling weigths

ω(m)(m′) = p(x
(m′)
π(k)\ j

, x
(m′)
k
|x(m)

j
)/p(x

(m′)
k

)
∏

j′∈π(k)\ j

p(x
(m′)
j′ )

we obtain

C̃∗k→ j(u j→k, x
(m)

j
) =

1

M
∑

m′=1

ω(m)(m′)

M
∑

m′=1

ω(m)(m′)
∑

uπ(k)\ j

∏

j′∈π(k)\ j

P∗j′→k(u j′→k|x(m′)
j′ )

Ĩ∗(uπ(k), x
(m′)
k

; γ∗k) (3.47)

for m = 1, 2, ..., M and for all u j→k ∈ U j→k which2, after substituting in place of C∗
k→ j

in the

right hand side of Eq.(3.18) for χ( j) , ∅ yields C̃∗
j
, i.e.

C̃∗j(u j, x
(m)

j
) =

∑

k∈χ( j)

C̃∗k→ j(u j→k, x
(m)

j
) (3.48)

for m = 1, 2, ..., M and for all u j ∈ U j.

Similarly, after substituting P̃∗
i→ j

in place of P∗
i→ j

in the right hand side of Eq.(3.40), we obtain

a further approximation to P∗
j
,

P̃ j
∗
(uπ( j)|x(m)

j
) =

1

M
∑

m′=1

ω
(m)(m′)
j

M
∑

m′=1

ω
(m)(m′)
j

∏

i∈π( j)

P̃∗i→ j(ui→ j|x(m′)
i

) (3.49)

for m = 1, 2, ..., M and for all uπ( j) ∈ Uπ( j), which substituted in R̃∗
j

together with C̃∗
k→ j

given

by Eq.(3.48) yields γ̃∗
j

3
(y j, uπ( j)) ≈ γ̃∗j

2
(y j, uπ( j)) ≈ γ̃∗j

1
(y j, uπ( j)) ≈ γ∗j(y j, uπ( j)) for all y j ∈ Y j

and for all uπ( j) ∈ Uπ( j) with nonzero probability.

3.4.4 Monte Carlo Optimization of Decentralized Estimation Networks Constrained

by Directed Graphs

In Section 3.4.1-3.4.3 we have introduced a Monte Carlo approximation framework regarding

the sufficient conditions of person-by-person optimality given in Proposition 3.3.2. Consider-

ing a person-by-person optimal decentralized estimation strategy constrained by a polytree G,

2 Note that we have approximated the forward likelihood terms regarding node j and its parents, i.e. P∗i→ j for

i ∈ π( j). However, we still assume that node-to-node terms regarding other nodes including P∗
j′→k

for j′ ∈ π(k)\ j

where k ∈ χ( j) are known over all their domains.

85



i.e. γ∗ ∈ ΓG and having γ\ j fixed at the corresponding set of optimal local rules, i.e. γ\ j = γ
∗
\ j

,

we have constructed a rule local for j, γ̃∗
j

3
(y j, uπ( j)) such that it is an approximation to the

optimal rule γ∗
j

given by Eq.(3.13) following the progression

γ̃∗
j

1
(y j, uπ( j)) = arg min

u j×x̂ j∈(U j×X j)

∑

x j∈S x j

p(y j|x j)P
∗
j(uπ( j)|x j)

[

c j(u j, x̂ j, x j) +C∗j(u j, x j)
]

where S x j
is given by Eq.(3.34),

γ̃∗
j

2
(y j, uπ( j)) = arg min

u j×x̂ j∈(U j×X j)

∑

x j∈S x j

p(y j|x j)P̃
∗
j(uπ( j)|x j)

[

c j(u j, x̂ j, x j) +C∗j(u j, x j)
]

where P̃∗
j

is given by Eq.(3.40),

γ̃∗
j

3
(y j, uπ( j)) = arg min

u j×x̂ j∈(U j×X j)

∑

x j∈S x j

p(y j|x j)P̃
∗
j(uπ( j)|x j)

[

c j(u j, x̂ j, x j) + C̃∗
j
(u j, x j)

]

(3.50)

where C̃∗
j
(u j, x j) and P̃∗

j
are given by Eq.s (3.48) and (3.49) respectively. Hence, in order to

obtain γ̃∗
j

3
we have utilized the proposed particle representations and approximate computa-

tional schemes for all terms that depend on γ∗\ j
including the node-to-node terms, altough it is

assumed that γ∗\ j
are known exactly.

On the other hand, given S x j
and S y j

, the approximation framework is valid for the rules lo-

cal to any node j ∈ V. Moreover, owing to fusing the message likelihoods via importance

sampling, the node-to-node terms would utilize the same discretization of their domains re-

gardless of which local rule is subject to approximation. In addition, it is possible to treat

the RHS of the expressions within the framework as operators valid for any strategy γ ∈ ΓG

including those in the “approximating” form given by Eq. (3.50). For the rest of this chapter,

we refer to as an approximation, one of the appropriate full-step approximations appearing in

Eq. (3.50) and denote with a single tilde, e.g. we denote γ̃∗
j

3
with γ̃∗

j
. Let us summarize the

Monte Carlo framework with

φ̃ j(S x j
, x̂ j) = d̃ j(P̃ j(S x j

), C̃χ( j)→ j)

P̃ j(S x j
) = f̃ j(P̃π( j)→ j)

P̃ j→χ( j) = g̃ j(φ̃ j(S x j
, x̂ j), P̃ j(S x j

))

C̃ j→π( j) = h̃ j(φ̃ j(S x j
, x̂ j), P̃π( j)→ j, C̃χ( j)→ j)

where

P̃ j(S x j
) = {(P̃ j(uπ( j)|x j), uπ( j), x j)|uπ( j) ∈ Uπ( j) ∧ x j ∈ S x j

}
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P̃π( j)→ j = {P̃i→ j(S xi
)}i∈π( j)

P̃i→ j(S xi
) = {(P̃i→ j(ui→ j, xi), ui, xi)|ui→ j ∈ Ui→ j ∧ xi ∈ S xi

}

P̃ j→χ( j) = {P̃ j→k(S x j
)}k∈χ( j)

C̃χ( j)→ j = {C̃k→ j(S x j
)}k∈χ( j)

and φ̃ j(S x j
, x̂) is given by

{

(p(y j|x j)P̃ j(uπ( j)|x j)
[

c(u j, x̂ j, x j) + C̃ j(u j, x j)
]

, u j, x j)|u j ∈ U j, uπ( j) ∈ Uπ( j), x j ∈ S x j

}

Note that φ̃ j(S x j
, x̂ j) is not exactly a discretization 3 of φ j and C̃k→ j(S x j

) can be defined in a

similar fashion to P̃i→ j(S xi
).

It is immediately possible to employ this framework in Algorithm 2 and achieve a Monte Carlo

optimization algorithm which, starting with initial local rules, iteratively results a strategy

that corresponds to performing computations to approximate a person-by-person optimal one.

Given by Algorithm 4, this scheme maintains the message passing interpretation admitted in

the Update step.

Starting with G, {Ui→ j|(i, j) ∈ E}, each node initially maintains the knowledge of p(xπ( j), x j)

and c(u j, x̂ j, x j). As soon as samples from the marginal distributions, i.e. S x j
, together with

samples from the marginal distributions of the observation processes, i.e. S y j
, are generated

for all j ∈ G and an initial local rule γ0
j
∈ ΓG is selected, the iterative scheme yields a set of

local rules such that each node performs computations corrresponding to an approximation to

a person-by-person optimum.

The approximate computation of the expected cost required in the Check step of Algorithm 4

for any given strategy, i.e. J̃(γ) is obtained through a Monte Carlo approximation G̃ j(γ
l
j
) to

Eq.(3.33) using the usual sample sets, i.e.S x j
and S y j

, as

G̃ j(γ̃
l
j) =

1

M

M
∑

m=1

∑

uπ( j)∈Uπ( j)

P̃l+1
j (uπ( j)|x(m)

j
)×

1

P
∑

p=1

ω
(m)(p)

k

P
∑

p=1

ω
(m)(p)

k
c j( [γ j(y

(p)

j
, uπ( j))]U j

, [γ j(y
(p)

j
, uπ( j))]X j

, x
(m)

j
) (3.51)

3 Considering Eq.(3.15), for the evaluation of φ j(u j, x̂ j, x j; uπ( j)), the argument x̂ j needs not to be discretized

since only c(u j, x̂ j, x j) acts on it which is assumed to be known over all of its domain. On the other hand, the

conventional Monte Carlo approximation drops p(x j) and discretizes φ in x j.
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Algorithm 4 Iterations converging to an approximate person-by-person optimal decentralized

estimation strategy over a directed acyclic graph G.

0) (Initiate) l = 0;

Choose γ0 = (γ0
1
, γ0

2
, ..., γ0

N
) such that γ0

j
∈ ΓG

j
for j = 1, 2, ...,N

1) (Update) l = l + 1;

i) (Forward pass)

for j = 1, 2, ...,N

P̃ j
l
(S x j

) = f̃ j(
{

P̃l
i→ j

(S xi
)
}

i∈π( j)
)

{

P̃l
j→k

(S x j
)
}

k∈χ( j)
= g̃ j(φ̃ j

l−1
(S x j

, x̂ j), P̃l
j(S x j

))

ii) (Backward pass)

for j = N,N − 1, ..., 1

φ̃ j
l
(S x j

, x̂ j) = d̃ j(P̃ j
l
(S x j

),
{

C̃l
k→ j

(S x j
)
}

k∈χ( j)
)

{

C̃l
j→i

(S xi
)
}

i∈π( j)
= h̃ j(φ̃ j

l
(S x j

, x̂ j),
{

P̃l
i→ j

(S xi
)
}

i∈π( j)
,
{

C̃l
k→ j

(S x j
)
}

k∈χ( j)
)

2) (Check) If J̃(γ̃l−1) − J̃(γ̃l) < ε STOP, else GO TO 1;

where ω
(m)(p)

k
= p(y

(p)

k
|x(m)

k
)/p(y

(p)

k
). If Assumption 5 holds, the expression above turns to

G̃ j(γ̃
l
j) =

1

M

M
∑

m=1

∑

uπ( j)∈Uπ( j)

P̃l+1
j (uπ( j)|x(m)

j
)×



















J̃
d|x(m)

j
,uπ( j)
+ λ

∑

u j∈U j

cc
j(u j, x

(m)

j
) p̃(u j|x(m)

j
, uπ( j); µ

l
j)



















(3.52)

Note that {J(γl)|l = 0, 1, 2, ...} obtained through Algorithm 2 is non-increasing whereas {J̃(γ̃l)},

being a Monte Carlo approximation to the former, is not necessarily ehxibits this property. Let

us defined an approximation error sequence err[l] = J(γl)− J̃(γ̃l). This sequence will be iden-

tically zero with probability one as M, P→ ∞. For finite M and P, it is possible to smooth the

fluctuation of err[l] through filtering and utilize the corresponding termination condition, e.g.

check whether J̃(γ̃l) ∗ h[l] < ε where h[l] is the impulse response of a linear, time invariant

filter and ∗ denotes convolution. Further investigation of robust termination of Algorithm 4 is

beyond the scope of this thesis.
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3.5 Examples

In this section we utilize the proposed scheme given by Algorithm 4 in example scenarios.

First, we consider a random vector X with a Gaussian a-priori distribution. The observation

noise processes are similarly assumed to be Gaussian. After presenting the results for this

canonical distribution family in the example scenario, we consider a heavy tailed a-prior dis-

tribution; a multidimensional symmetric Laplacian, in particular. It is not straightforward to

perform decentralized inference on such distributions which do not admit graphical model

representations (e.g. a Markov random field representation) or closed form expressions for

the canonical Bayesian estimation schemes. Algorithm 4, on the other hand, utilizing sample

sets generated from marginal distributions produces results even for such cases.

3.5.1 A Gaussian Example

We consider an example scenario in which a decentralized estimation network comprised of

four platforms perform an estimation task. A Gaussian random field X = {X1, X2, X3, X4} is

of concern and platform j is associated with X j. We assume the underlying communication

structure described by G = (V,E) in Figure 3.1a. We note that G includes partitions of a star

topology (induced by nodes {1, 2, 3}), and series topologies (induced by nodes {1, 3, 4} and

{2, 3, 4}. We assume that the bandwidth constraints renderU1→3 = U2→3 = U3→4 = {0, 1, 2}.

The online processing scheme operates as given in Section 3.2. Since nodes 1 and 2 are par-

entless, upon measuring y1 and y2 ∈ R induced by X1 and X2, they evaluate their local rules

as (u1→3, x̂1) = γ1(y1) and (u2→3, x̂2) = γ(y2) respectively. Upon receiving these messages and

measuring y3 ∈ R induced by X3 node 3 evaluates its local rule (u3→4, x̂3) = γ3(y3, u1→3, u2→3),

and similarly node 4 evaluates x̂4 = γ4(y4, u3→4). We note that the conditional indepen-

dence and observation locality together with the polytree topology hold and the strategy

γ = (γ1, ..., γ4) is subject to design.

In addition we comply with Assumption 3 and select separable local costs providing As-

sumption 5 to hold. The cost function local to node j is in a separable form given by

c j(u j, x̂ j, x j) = cd
j
(x j, x̂ j)+ λcc

j
(u j, x j) where cd

j
and cc

j
penalize estimation errors and commu-

nication respectively. Therefore λ is a unit conversion coefficient admitting the interpretation
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(b) Illustration of the MRF GX .

Figure 3.1: (a) Illustration of the directed graph G = (V,X) where V = {1, 2, 3, 4} and

E = {(1, 3), (2, 3), (3, 4)} which represents the decentralized estimation network that admits

the online processing described in Section 3.2, (b) illustration of the Markov Random Field

GX subject to estimation by the decentralized estimation network in example.

of equivalent estimation penalty per unit cost of communication.

cc
j(u j, x j) =

∑

k∈χ( j)

cc
j→k(u j→k, x j)

where cc
j→k

(u j→k) is the cost of transmitting the symbol u j→k on the link ( j, k) ∈ E. It is

selected as

cc
j→k(u j→k, x j) =























0, if u j→k = 0

1, otherwise

indicating the link use. Hence, U j→k together with cc
j→k

define a selective communication

scheme where u j→k = 0 indicates no communications and otherwise transmission of a 1 bit

message. The estimation error is penalized by cd
j
(x j, x̂ j) = (x j − x̂ j)

2. Hence the total cost of

a strategy is J(γ) = Jd(γ) + λJc(γ) where Jd is the MSE and Jc is the total link use rate.

The random field of concern is a multivariate Gaussian, i.e. x ∼ N(0,CX), and Markov with

respect to the graph GX presented in Figure (3.1b). The covariance matrix is given by

Cx =





















































2 1.125 1.5 1.125

1.125 2 1.5 1.125

1.5 1.5 2 1.5

1.125 1.125 1.5 2





















































(3.53)

which conforms with the Markov properties of GX . Altough the communication structure

of the DE network is not related with the MRF representation of X and Algorithm 3 would

produce results for any choice, for sake of simplicity we selected the graph in Figure 3.1b as

the undirected counterpart of that in Figure 3.1a.

The noise processes n j for j ∈ V are additive, mutually independent and given by n j ∼

N(0, 0.5), so that the observation likelihoods are p(y j|x j) = N(x j, 0.5). Considering CX , each
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sensor has an SNR of 6dB.

Since separable local cost functions are utilized, the person-by-person optimal rules are also

splitted into estimation and communications functions given by Eq.(3.22) and (3.23) respec-

tively. We initiate the local rules, i.e. ν0
j

and µ0
j

for j ∈ V, as follows:

1. All the nodes, regardless of the incoming messages apply a myopic inference rule which

is to make decisions regardless of incoming messsages as if they do not carry any in-

formation. We select this rule as the myopic MMSE estimation rule, i.e E{X j|Y j = y j}

given by

ν0
j(y j, uπ( j)) =

∞
∫

−∞

dx j x j p(x j|y j) (3.54)

2. All the nodes apply an initial communication rule as a quantization of the observation

y j, i.e.

µ0
i (yi, uπ(i)) =











































1 , yi < −2σn

0 , − 2σn 6 yi 6 2σn

2 , yi > 2σn

(3.55)

Considering J(γ) = Jd(γ)+λJc(γ) and person-by-person optimal estimation strategies achieved

by Algorithm 2, in principle, different values of λ would yield different performance points

(Jc(γ∗), Jd(γ∗)). Moreover, after a certain value λ = λ∗, the communication cost λJc will

dominate such that the decrease in the decision cost Jd with the contributions of the com-

municated symbols will not be enough to decrease J and symbol 0 will be the best choice.

Moreover, the individual estimators will be the myopic rules, since myopic rules with no com-

munications constitute a person by person optimal strategy. Hence, it is possible to interpret

λ∗ as the maximum price per bit that the system affords to decrease the expected estimation

error. As we increase λ from 0 we obtain approximate points from the performance curve for

Problem (P1) which lets us to quantify the tradeoff between the cost of estimation errors and

communication.

In Figure (3.2) we present approximate pairs (J̃c, J̃d) of the converged strategies γ̃∗ using

Algorithm 4, for different choices of λ and
∣

∣

∣Ui→ j

∣

∣

∣s, where Jc is the total link use rate and

Jd is the total MSE. The upper and lower limits are MSEs corresponding to the myopic rule

and the centralized optimal rule respectively. Note that, for the squared error cost, optimal
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Figure 3.2: The example scenario involving a Gaussian joint p(x, y) enables the exact compu-

tation of the MSE for the optimum centralized and myopic rules corresponding to the lower

bound (blue dashed-line) and upper bound (red dashed-line) respectively. The estimation net-

work in accordance with the directed acyclic graph G (Figure 3.1) is subject to optimization

through Algorithm 4 starting with the initial rules given by Eq.s(3.54)and(3.55). The initial

strategy achieves the performance (Jc(γ0), Jd(γ0)) given by the magenta cross. The pareto-

optimal performance curves achieved for the approximate person-by-person optimal strate-

gies while λ is increased from 0 with steps of 0.001 are approximated by {(J̃c(γ̃∗
λ
), J̃d(γ̃∗

λ
))}

where γ̃∗
λ

is the optimum strategy corresponding to λ. Results for 1, 2 and 3 bits selective

communication schemes are presented by black, blue and green dots.

centralized rule given by E{X|Y = y} and causes a communication cost of Jc = 3Q where

Q is the number of bits used to represent a real number y j before transmitting to the fusion

center. Considering (J̃c, J̃d) pairs for the 1-bit selective communication scheme, for λ = 0,

the transmission has no cost, but the link use rate is well below 75% of the total 3 bits. This

indicates that the information of receiving no messages is successfully maintained in this

perspective. Moreover, the communication stops for λ∗ ≈ 0.355. Similarly, approximate

points for 2-bits and 3-bits schemes indicate that, if λ is small enough, we can achieve less

MSE for the same total communication load as we increase the link capacities.

3.5.2 A Heavy Tailed Example

Altough, being a Monte Carlo scheme, Algorithm 4 produces strategies that are approximat-

ing a person-by-person optimum, utilizing sample sets drawn from the marginal distributions

of interest, it applies for arbitrary distributions provided that samples can be generated from

them. In certain problem settings, even the centralized rule do not yield closed form expres-
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sions. We consider such a scenario in which a random vector X is distributed by a heavy tailed

prior p(x), specifically a multivariate-symmetric Laplacian given by

p(x) =
2

(2π)d/2|Cx|1/2

(

xTC−1
x x

2

)1−d/2

K1−d/2(

√

2xTC−1
x x) (3.56)

where d is the dimension of x, Cx is the covariance matrix, and Kλ(u) is the Bessel function

of the second kind (also known as the Bessel function of the third kind) of order λ given by

Kλ(u) =
(u/2)λΓ(1/2)

Γ(λ + 1/2)

∫ ∞

1

eut(t2 − 1)λ−1/2dt (3.57)

for u > 0 and λ ≥ −1/2 where Γ is the Gamma function given by Γ(z) =
∫ ∞

0
tz−1e−tdt [103].

Let us denote this distribution by S Ld(CX). Unlike the Gaussian case, uncorrelatedness does

not imply independence in the case of S Ld(CX) and not being a member of the exponential

family this distribution does not imply a Markov random field.

On the other hand, it is possible to generate samples from a multivariate symmetric Laplacian

utilizing samples generated from a multivariate Gaussian of zero mean vector and the desired

covariance matrix together with samples drawn from the unit univariate exponential distribu-

tion. Given u ∼ N(0,CX) and z ∼ e−z, generate samples of X by x =
√

zu, then x ∼ S Ld(Cx).

Another implication is that it is possible to express S Ld(CX) as

p(x) =

∫ ∞

0

N(0, zCX)p(z)dz (3.58)

where p(z) = e−z. This form, being a scaled sum of Gaussians, generalizes Gaussian mixtures

and hence also referred to as a scale mixture of Gaussians. This family of distributions has

been employed to model multiple variables that exhibit uncorrelatedness yet dependence such

as the statistics of natural images (see e.g. [104][105]) and inference on such models exploit

the underlying Gaussian model (see e.g. [106]).

It is possible to approximately model an arbitrary prior in terms of Gaussian mixtures. Our

concern is to select a general model for a prior distribution to assess the performance of

Algorithm 4. For the Gaussian mixtures, the Monte Carlo framework trivially follows the

Gaussian case. We consider a generalization of Gaussian mixtures which turn out to be a

multivariate-symmetric Laplacian S Ld(CX). To the best knowledge of the author’ s, this prior

is also not suitable for decentralized inference in the sense that the exponential variable z

requires centralized coordination.

For our case, we exploit the fact that jth marginal distribution of S Ld(CX) is given by S L1([CX] j, j)

and it is straightforward to generate samples from these marginals [107]. We consider
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X = {X1, X2, X3, X4} such that pX(x) = S L4(CX) where the underlying Gaussian is that has

been considered in the previous section, i.e. CX is given by Eq.(3.53). Similar to that in the

previous section, we assume the underlying communication structure described byG = (V,E)

in Figure 3.1a together with the link capacities, costs and observation likelihoods.

For the case, altough the marginal densities of observations yield closed form expressions, i.e.

p(y j) =

∫ ∞

−∞
p(x j)p(y j|x j)dx j

=

∫ ∞

−∞
S L1(σ2

j)N(0, σ2
n j

)dx j

= 0.1410
√
πe−y j+1/4

(

e2y j + 1 − Φ
(

y j + 1/2
)

e2y j + Φ
(

y j − 1/2
))

(3.59)

for j = 1, 2, 3, 4 where Φ is the error function, it is not easy to sample from this density since

it does not yield a distribution function in closed form. However, considering the mixture

approximation
∑

x
(m)
j
∈S x j

p(y j|x(m)

j
) ≈ p(y j) where S x j

= {x(1)

j
, x

(2)

j
, ..., x

(M)

j
}, it is possible to

draw samples from approximately p(y j) by sampling from p(y j|x(m)

j
) for m = 1, 2, ..., M until

the density mixes.

We generate 3000 samples from the prior marginals, i.e. S x j
= {x(1)

j
, x

(2)

j
, ..., x

(M)

j
} where

x
(m)

j
∼ p(x j) for j = 1, 2, 3, 4 and M = 3000, together with 45000 samples from the mixture

density, i.e. S y j
= {y(1)

j
, y

(2)

j
, ..., y

(P)

j
} where y

(p)

j
∼ p(y j) for j = 1, 2, 3, 4 and P = 45000.

The histograms of the sample sets S x j
s and S y j

s together with the corresponding values of the

marginal densities are presented in Figure 3.3.

We run Algorithm 4 for different choices of λ and 10 different sample sets each. The results

are presented in Figure 3.4 in which for each value of λ an ellipsoid is fit to the performance

points achieved for the sample sets using the algorithm in [108]. The upper and lower bounds

are the mean squared error corresponding to the myopic and centralized rules respectively.

Another intricacy is that the evaluation of the myopic and centralized MMSE rules as well as

the corresponding MSE computations require numerical approximations for which we utilize

Monte Carlo methods as well.

We observe that the variance of the approximation error is higher than that for the Gaussian

case. This is in accordance with the expectation that heavy tailed distributions require utiliza-

tion of larger sample sets. The framework we propose produces distributed solutions within a

reasonable deviation in the problem settings which do not lead straightforward solutions even

in the centralized case.
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Figure 3.3: (a) Histogram and values of the corresponding marginal density (red dots) for

S x1
(upper-left), S x2

(upper-right), S x3
(lower-left) and S x4

(lower-right), each constituted of

3000 samples. (b) Histogram and values of the corresponding marginal density (red dots) for

S y1
(upper-left), S y2

(upper-right), S y3
(lower-left) and S y4

(lower-right), each constituted of

45000 samples, reveal that the generation scheme exhibits an appropiate mixing.
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Figure 3.4: Approximate performance points corresponding to the strategies achieved us-

ing Algorithm 4 in the heavy tailed prior case. The results for the 10 sample sets for

λ = 0, 0.05, ..., 0.35 are displayed. For each value of λ an ellipsoid is fit to the performance

points for the sample sets.
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3.6 Discussion

One of the main benefits of the framework we have introduced is that the strategy optimiza-

tion is carried out in a manner exhibiting scalability in the number of nodes. In addition,

the message passing structure of the original framework is maintained and since the particle

representations involve samples from the marginals the sample sets can easily be generated.

Hence, Algorithm 4 can be applied for problems involving a large number of variables and

platforms. In addition, the estimation task is distributed through random variable-node asso-

ciations and the nodes responsible for inference is a design choice. Therefore, while some

nodes perform estimation, it is possible to select the remaining as fusion nodes providing

information to the estimators.

In addition, the original discussion for decentralized detection over directed acyclic networks

involves a channel model and considers unreliable communications as well [27]. Altough

we proceed the discussion under error-free links assumption, the approximation framework

we provide inherently integrates with the channel models associated with the directed acyclic

graph.

Besides large network problems, another scenario that involves a directed structure is target

tracking presented in Section 1.1.4. Multiple sensors receive measurements due to a target

and at the final stage, the position of the target is subject to estimation. For the case, all

the observations are induced by a common random variable (target position) and estimation

is carried out by the node which is predicted to be closer to the target considering the track

information. Therefore, a directed topology in which there is only one childless node that is

selected to perform the estimation whereas the remaining contributes with messages yields a

communication constrained target localization scheme (Figure 1.7). Specifically, it is reason-

able to assume that in the network self-configuration stage, all nodes are equipped with the

coverage information which renders a Voronoi tesellation. Then, for each patch, it is possible

to solve the communication constrained problem under a uniform prior assumption. During

tracking, the network switches its mode in accordance with the prediction of the target loca-

tion and runs the corresponding strategy over the corresponding network. In order to fuse the

prediction density with the estimation rule which is designed under a uniform prior assump-

tion, it is possible to utilize Kernel methods. The benefit of providing estimation strategies

through the framework we have introduced is that, equipped with a set of strategies achiev-
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ing varying estimation accuracy and communication cost enables an energy-aware operation

through sensor management schemes. In this particular scenario, the localization accuracy

can be traded off for operational lifetime.
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CHAPTER 4

DECENTRALIZED ESTIMATION NETWORKS

CONSTRAINED BY UNDIRECTED GRAPHS

In this chapter, we discuss decentralized estimation networks with an underlying communi-

cation structure that admits an undirected graph model. Unlike the directed case in which

the communication links are uni-directional rendering a directed acyclic topology, we are

concerned with bidirectional links that allow transmissions among neighboring platforms.

Such a model might be regarder to be a better match for the ad-hoc nature of wireless sensor

networks considering that the underlying communications often utilize 1-hop transmissions

(Section 1.1.1).

However, it is not straightforward to achieve a causal online processing that stops in finite

steps under such a model. We consider the class of decentralized detection strategies over

undirected graphs summarized in Section 2.7.2. The online processing presented in Sec-

tion 2.7.2.1 is considered in [26] and further developed in [28] in the context of detection.

For the estimation problem, we adopt this approach in which local rules performing in two

stages are employed and an N dimensional random vector is of concern which takes values

from a denumarable set X. In the first stage, based on its observation each node evaluates

its communication rule and outputs messages to neighbors. After collecting all the incoming

messages from neighbors, each node proceeds with the second stage and based on its ob-

servation as well as the incoming messages from the neighbors evaluates its estimation rule.

Such an online processing scheme prevents any deadlock and yields a tractable optimization

scheme under a team theoretic treatment.

We note that, the local structure of networks constrained by directed graphs outputs the esti-

mation together with the outgoing messages in single step, in general, based on the incoming
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messages and the observation. The causal online scheme exhibiting no deadlock is guaranteed

by the acyclic nature. For the case, the information flow renders nodes with more ancestors

in a more convenient state from the viewpoint of estimation accuracy. The two stage local

rules under an undirected graph underlines the nodes with more neighbors. However, the in-

formation horizon is limited with the neighbors in contrast to the directed case in which the

incoming messages are due to the set of all ancestors.

Feedback schemes are more commonly considered for the detection problem (see e.g. [109])

rather than in a static estimation setting and with an emphasis on messages from finite sets. In

[96], under a star topology, after collecting the incoming messages from the peripheral nodes,

a fusion center makes a decision on which partition the variable of concern takes values and

provides a feedback accordingly. This scheme is iterated until the interval of uncertainity is

narrow enough. However, the variable representing the decision on the partition selection

does not provide conditional independence for the observations and the fusion of messages

are carried out using Monte Carlo approximations.

We are concerned with extending the topology as well as introducing the cost of commu-

nications within the problem setting. We introduce a similar framework that is provided in

Chapter 3 noting that under reasonable assumptions, the analysis for the optimality condi-

tions under a directed network applies to the unwrapped counterpart of the undirected graph.

In Section 4.1 we overview the information structure exhibited under the two stage rules

over an undirected graph. In Section 4.2 we present a detailed discussion on the estimation

counterpart of the results summarized in Section 2.7.2.2. Then, similar to the Monte Carlo

framework provided over directed graph, we introduce particle representations and approxi-

mate computational schemes for optimizing two stage local rules over undirected graphs such

that a Bayesian cost composed of both penalty for estimation errors and cost of communi-

cations is decreased in Section 4.3. Then we provide applications on example scenarios and

conclude.

4.1 Online Processing Modelled With Undirected Graphs

Consider the online processing regarding two stage decentralized strategies over undirected

graphs presented in Section 2.7.2.1. Summarizing here for convenience; a set of platforms are
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represented with the index set V = {1, ...,N}, and with each j ∈ V a random variable X j is

associated that takes values from the set X j which, unlike the detection case, is denumerable.

X = (X1, ..., XN) is the random field of concern where a realization x satisfies x ∈ X with

X = X1 × ... × XN . Given a set of edges E ⊂ V ×V, the graph G = (V,E) is an undirected

graph if it holds that (i, j) ∈ E implies ( j, i) ∈ E. Given G, each edge (i, j) ∈ E corresponds to

a communication link of capacity log2(
∣

∣

∣Ui→ j

∣

∣

∣− 1) bits such thatUi→ j is the set of admissible

symbols with the symbol 0 ∈ Ui→ j indicating no transmission.

Let une( j) , {ui→ j|i ∈ ne( j)} denote the incoming messages to node j from neighbor nodes

ne( j), which takes values from Une( j) = Une1
j
→ j × ... × UneD

j
→ j. Here ne( j) = {ne1

j
, ...,neD

j
}.

The outgoing messages from node j to neighbor nodes ne( j) is given by u j , {u j→i|i ∈ ne( j)}

and takes values from U j which can be defined similarly with that for Une( j). The overall

communication load is u , {ui→ j|(i, j) ∈ E} and takes values fromU = U1 × ... ×UN .

A causal online processing of measurements {y j| j ∈ V} ∈ Y where Y = Y1 × ... × YN

takes place when each j ∈ V, first performs its local communication rule µ j : Y j → U j

based on only y j , and as soon as une( j) are collected, proceeds with the local estimation rule

ν j : Y j ×Une( j) → X j.

Let γ j = (µ j, ν j) and γ = (γ1, ..., γN) denote the local rule of node j and the strategy of the

network respectively. Let M j and N j denote the set of all possible communication and es-

timation rules respectively local to node j. Then, Γ j = M j × N j for γ j ∈ Γ j and the set of

possible strategies given G is ΓG = Γ1 × ... × ΓN .

Consider the random vector X that takes values from a denumerable set X and we assume

that Assumption 1-3 and 5 given in Section 2.7.1 hold. Let ΓG denote the set of all strategies

that are composed of two stage local rules G. The expected cost J(γ) = E{c(u, x̂, x); γ} given

γ ∈ ΓG is then

J(γ) = E{cd(x, x̂) + λcc(u, x); γ}

= Jd(γ) + λJc(γ)

where the underlying distribution is rewritten here for convenience;

p(u, x, x̂; γ) =

∫

y∈Y

dy p(u, x̂|x, y; γ)p(x, y)
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with the conditional imposed by the two-stage local rules over the undirected structure as

p(u, x̂|x, y; γ) =
∏

j∈V
p(u j, x̂ j|y j, une( j); γ j)

=
∏

j∈V
p(u j|y j; µ j)p(x̂ j|y j, u j, une( j); ν j)

=
∏

j∈V
p(u j|y j; µ j)p(x̂ j|y j, une( j); ν j) (4.1)

The last step above is under Assumption 1 and 5 with µ j ∈ M j denoting the stage-one com-

munication rule and ν j ∈ N j denoting the stage-two estimation rule local to node j. It follows

that, the local rules and the conditional densities determine each other with

p(u j|y j; µ j) = δu j,µ j(y j) (4.2)

and

p(x̂ j|y j, une( j); ν j) = δ(x̂ j − ν j(y j, uπ( j))) (4.3)

where δi, j and δ(.) are the Kronecker’ s and Dirac’ s delta respectively.

Therefore, for any two-stage strategy over an undirected graph G, i.e. γ ∈ ΓG, there cor-

responds an expected cost J(γ) = Jd(γ) + λJc(γ) where Jd(γ) and Jc(γ) are penalties for

estimation errors and communication load respectively. J(γ) is computed by substituting

the distributions above in Eq.(4.1) and unlike the detection case, integrations over X appear

regarding the random variables X and X̂. Similarly the problem definition (P1) given by

Expression ( 2.22) is valid under the interpretation that the constraints of the feasible set de-

scribe the set of decentralized estimation strategies comprised of two stage local rules over an

undirected graph.

4.2 Team Theoretic Solution Under Undirected Graph Constraints

The online processing modelled with an undirected graph exhibits a deadlock-free online pro-

cessing that terminates in a finite number of steps through two stage local rules. In addition,

scalability in the number of variables is provided if Assumptions 1 and 5 hold. The corre-

sponding strategy space together with the Bayesian framework enables the utilization of the

communication constrained problem definition (P1).

Considering the spaces of strategies that are comprised of two stage local rules over an undi-

rected graph, finding the global solution to the constrained problem (P1) exhibit similar diffi-
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culties as we have indicated in Chapter 3. Rather than the global best strategy, we consider a

solution that satisfies the equilibrium conditions given in Section2.7.1.2.

The information structure of the directed case yield the conditions given by Proposition 3.3.1

provided that Assumption 1 holds which specializes to Proposition 3.3.2 if additionally As-

sumptions 1-4 are satisfied. On the other hand, considering decentralized strategies con-

strained by an undirected graph, Proposition 3.3.1 applies to the unwrapped directed coun-

terpart under Assumption 1 and 5 [28]. Provided that Assumption 2 and 3 hold in addition,

Proposition 3.3.2 applies to the unwrapped directed counterpart and the following holds.

Proposition 4.2.1 Under Assumptions 1-3 and 5, J(γ) = Jd(γ) + λJc(γ) holds and given a

person by person optimal strategy γ∗ = (γ∗
1
, ...γ∗

N
) constituted of two stage local rules over an

undirected graph and fixing all local rules other than the jth, the jth optimal rule reduces to

local stage one communication rule given by

µ∗j(y j) = arg min
u j∈U j

∫

X j

dx j p(x j)p(y j|x j)[λcc
j(u j, x j) +C∗j(u j, x j)] (4.4)

for all y j ∈ Y j with nonzero probability and stage two estimation rule given by

ν∗j(y j, une( j)) = arg min
x̂ j∈X j

∫

X j

dx j p(x j)p(Y j|x j)P
∗
j(une( j)|x j)c

d
j (x̂ j, x j) (4.5)

for all y j ∈ Y j and for all une( j) ∈ Une( j) with nonzero probability.

The incoming message likelihood is given by

P∗j(une( j)|x j) =

∫

Xne( j)

dxne( j) p(xne( j)|x j)
∏

i∈ne( j)

P∗i→ j(ui→ j|xi) (4.6)

with terms regarding influence of i ∈ ne( j) on j given by

P∗i→ j(ui→ j|xi) =
∑

ui\ui→ j

p(ui|xi; µ
∗
i ) (4.7)

for all ui→ j ∈ Ui→ j where

p(ui|xi; µ
∗
i ) =

∫

Yi

dyi p(yi|xi)p(ui|yi; µ
∗
i ) (4.8)

In addition for all u j ∈ U j

C∗j(u j, x j) =
∑

i∈ne( j)

C∗i→ j(u j→i, x j) (4.9)
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holds with terms regarding the influence of j on i ∈ ne( j) given by

C∗i→ j(u j→i, x j) =

∫

Xne(i)\ j

dxne(i)\ j

∫

Xi

dxi p(xne(i)\ j, xi|x j)

∑

une(i)\ j

∏

j ′∈ne(i)\ j

P∗j ′→i(u j ′→i|x j ′)I
∗
i (une(i), xi; γ

∗
i ) (4.10)

such that

I∗i (une(i), xi; ν
∗
i ) =

∫

Yi

dyi

∫

Xi

dx̂i cd
i (x̂i, xi)p(x̂i|yi, une(i); ν

∗
i )p(yi|xi) (4.11)

Proof. Apply Proposition 3.3.2 on the unwrapped directed couterpart of the undirected graph

G together with the two stage local rules and under Assumption 5. �

The proposition above is an adoptation of Proposition 2.7.3 which considers decentralized de-

tection networks constrained by undirected graphs. Given a person-by-person optimal strat-

egy, we obtain communication and estimation rules local to node j in a variational form, based

on the rules local to the remaining nodes. Considering P∗
i→ j

(ui→ j|xi) for i ∈ ne( j), P∗
j
(une( j)|x j)

is the likelihood of x j given une(i). Eq.s(4.9)-(4.11) reveal that C∗
j
(u j, x j) is the total expected

cost induced on the neighbors by u j, i.e. E{cd(x̂ne( j), xne( j)) + λcc(une( j),xne( j)
)|u j, x j}. Hence,

we conclude that the jth optimal communication rule selects the message that results with

a minimum contribution to the overall cost and also noting that p(x j)p(y j|x j)P(une( j)|x j) ∝

p(x j|y j, une( j)) holds under Assumptions 1-3 and 5, the optimal estimation rule selects x̂ j that

yields minimum expected penalty given y j and une( j).

Similar to the specification of Algorithm 3 by asserting Proposition 2.7.3 in Algorithm 1, it

is possible to treat the right hand sides of Eq.s(4.6)-(4.11) as operators valid for any given set

of local rules γ\ j ∈ ΓG\ j
, not necessarily optimal and employ them in Algorithm 3. Doing that,

it is possible to employ the iterative scheme that starting with an initial decentralized strategy

comprised of two stage local rules over an undirected graph converges to a person by person

optimal one in the context of decentralized estimation.

Finally, the objective value at the lth step is easily found to be

J(γl) =
∑

i∈V
Gd

i (νl
i) + λ

∑

i∈V
Gc

i (µl
i) (4.12)

where

Gd
i (νl

i) =
∑

une(i)

∫

Xi

dxi p(xi)P
l+1
i (une(i)|xi)Ii(une(i), xi; ν

l
i) (4.13)
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and

Gc
i (µl

i) =
∑

ui

∫

Xi

dxic
c
i (ui, xi)p(xi)p(ui|xi; µ

l
i) (4.14)

in terms of the expressions discussed above.

Adopting the information structure proposed for decentralized detection networks constrained

by undirected topologies for estimation, we have extended the canonical decentralized esti-

mation schemes in a number of aspects. First of all, the framework we utilize provides results

for any undirected graph, including the loopy ones, and hence extends the canonical star-

topology setting. A collaborative processing is provided through associating random variable

with platforms, which can be done in an arbitrary fashion, in principle. In addition, the online

processing scheme we consider better matches the ad-hoc nature of the underlying network

with bandwidth limited channels. Moreover, a penalty term due to the transmissions is in-

troduced into the problem setting which reveals the tradeoff between the estimation accuracy

and cost of communications.

4.3 Monte Carlo Approximations for Undirected Communication Constraints

In the detection setting, the setX from which the random variable of concern takes values from

is of finite cardinality and there exists a mapping between the space of (person-by-person op-

timal) local rules and a finite dimensional Euclidean space. One appeal of Algorithm 3 in this

context is that it is often the case that the steps of the algorithm involves no numerical ap-

proximations1. However, unlike the detection case, the person by person optimal rules given

by Eqs.(4.4) and (4.5) do not yield any finite parameterization. In addition, it is not possible

to carry out the steps of Algorithm 3 involving operators implied by Proposition 4.2.1 ex-

actly, in general. We similarly resort particle representations and approximate computational

schemes through Monte Carlo methods regarding Algorithm 3 (Section 2.7.2.2) in view of

Proposition 4.2.1.

We proceed with progressive approximations and achieve an iterative procedure that requires

sample sets generated only from the marginal distributions, i.e.

S x j
, {x(1)

j
, x

(2)

j
, ..., x

(M)

j
} such that x

(m)

j
∼ p(x j) for m = 1, 2, ..., M j (4.15)

1 An example in which some approximations would be useful arise when the observation likelihoods are

non-parametric distributions such that p(u j|x j; µ j) =
∫

µ−1
j

(u j)
dy j p(y j|x j) can not be explicitly found.
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and

S y j
, {y(1)

j
, y

(2)

j
, ..., y

(P)

j
} such that y

(p)

j
∼ p(y j) for p = 1, 2, ..., P j (4.16)

for j ∈ V. We assume that M j = M and P j = P for all j ∈ for brevity, altough this condition

is not required, in general.

Each node j ∈ V starts with the knowledge of p(xne( j), x j) and p(y j|x j) together with an ini-

tial local rule γ0
j
∈ ΓG

j
. In the resulting network, the platforms perform computations which

correspond to approximations to person-by-person optimal rules preserving the scalability of

online processing in the dimensionality of X. In addition, the resulting Monte Carlo opti-

mization scheme scales with both the sample sizes and the number of nodes. The message

passing structure in the Update step of Algorithm 3 together with the amenability for network

self-organization is also preserved.

4.3.1 Approximating the Person-by-Person Optimal Local Rules

Consider the sufficent condition of person-by-person optimality condition for the jth local

rule which is given in Proposition 4.2.1. Suppose that all the integrands are known over their

domains, i.e. for all x j ∈ X j, C∗
j
(u j, x j) and P∗

j
(une( j)|x j) are known for all u j ∈ U j and

une( j) ∈ Une( j) respectively. It is not possible to evaluate the local rules exactly for general C∗
j

and P∗
j
.

We apply the conventional Monte Carlo method to the integrals appearing in the variational

form of the communication and estimation rules in Eq.s (4.4) and (4.5) respectively. Given

the usual sample set S x j
as defined in Eq.(4.15) and considering Eq.(4.4) the Monte Carlo

method yields

µ̃∗j(y j) = arg min
u j∈U j

∑

x j∈S x j

p(y j|x j)[λcc
j(u j, x j) +C∗j(u j, x j)] (4.17)

as an approximation to the stage one communication rule such that for all y j ∈ Y j with non-

zero probability, i.e. µ̃∗
j
(y j) ≈ µ∗j(y j).

Considering the local estimation rule given by Eq.(4.5) the Monte Carlo method yields

ν̃∗j(y j, une( j)) = arg min
x̂ j∈X j

∑

x j∈S x j

p(y j|x j)P
∗
j(une( j)|x j)c

d
j (x̂ j, x j) (4.18)

for all y j ∈ Y j and une( j) ∈ Une( j) with non-zero probability such that ν̃∗
j
(y j, une( j)) ≈ ν∗j(y j, une( j)).
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It is reasonable to assume that we are able to evaluate at x
(m)

j
∈ S x j

; p(y j|x(m)

j
) for all

y j ∈ Y j, cc
j
(u j, x

(m)

j
) for all u j ∈ U j and cd

j
(x̂ j, x

(m)

j
) for all x̂ j ∈ X j. The requirement regard-

ing the incoming message likelihood and conditional expected cost is reduced to evaluating

P∗
j
(une( j)|x(m)

j
) and C∗

j
(u j, x

(m)

j
) for all x

(m)

j
∈ S x j

and for u j ∈ U j and une( j) ∈ Une( j) respec-

tively. Provided that they are known for the required values of their arguments, Eq.s(4.17)

and (4.18) are 1-step approximations to the communication and estimation rules local to node

j which can be denoted by µ̃∗
j

1
(y j) ≈ µ∗j(y j) and ν̃∗

j

1
(y j, une( j)) ≈ ν∗j(y j, une( j)) respectively.

Example 4.3.1 Consider the squared error penalty for the estimation error, i.e. cd
j
(x̂ j, x j) =

(x̂ j − x j)
2. Then the approximate person-by-person optimal estimation rule yields a closed

form solution, i.e.

ν̃∗
j

1
(y j, une( j)) =

M
∑

m=1

x
(m)

j
p(y j|x(m)

j
)P∗

j
(une( j)|x(m)

j
)

M
∑

m=1

p(y j|x(m)

j
)P∗

j
(une( j)|x(m)

j
)

4.3.2 Approximating the Incoming Message Likelihood and the Conditional Expected

Cost

The 1-step approximations to the communication and estimation rules local to node j re-

quires the evaluation of C∗
j
(u j, x j) and P∗

j
(une( j)|x j) at a finite discretization of their domains.

However, the right hand sides of Eq.s(4.9) and (4.6) render it not possible, in general (con-

sider, for example, arbitrary choices of γ\ j ∈ ΓGj ). For convenience, suppose that i ∈ ne( j),

C∗
i→ j

(u j→i, x j) is known at for all u j→i ∈ U j→i and x j = x
(m)

j
where x

(m)

j
∈ S x j

. Then using

Eq.(4.9), C∗
j

can be exactly evaluated at the required points.

However, the integral in the right hand side of Eq.(4.6) still necessitates an approximation

for the evaluation of P∗
j

at a single point of its domain. Suppose that for all i ∈ ne( j),

P∗
i→ j

(ui→ j, xi)
M
m=1

is known for all ui→ j ∈ Ui→ j and at xi = x
(m)

i
where x

(m)

i
∈ S xi

. Let us

costruct a new sample set whose mth element is the vector obtained by concatenating mth el-

ements from S xi
for all i ∈ ne( j), i.e. S ne( j) , {x(m)

ne( j)
|x(m)

ne( j)
= (x

(m)

i
)i∈ne( j)}. Note that S ne( j) is

constructed by the usual sample sets of the neighboring nodes and x
(m)

ne( j)
∼∏

i∈ne( j) p(xi). Then

an Importance Sampling approximation to P∗
j
(une( j)|x(m)

j
) is possible utilizing the importance
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sampling density
∏

i∈ne( j) p(xi) with the importance weights

ω
(m)(m′)
j

=
p(x

(m′)
ne( j)
|x(m)

j
)

∏

i∈ne( j)

p(x
(m′)
i

)

as

P̃∗
j
(une( j)|x(m)

j
) =

1

M
∑

m′=1

ω
(m)(m′)
j

M
∑

m′=1

ω
(m)(m′)
j

∏

i∈ne( j)

P∗i→ j(ui→ j|x(m′)
i

) (4.19)

such that P̃∗
j
(une( j)|x(m)

j
) ≈ P∗

j
(une( j)|x(m)

j
) for all une( j) ∈ Une( j) and for all x

(m)

j
∈ S x j

.

After replacing P∗
j

with P̃∗
j

in Eq.(4.18), we obtain a further step approximation (2-steps ap-

proximation) for the person-by-person optimal estimation rule local to node j, i.e.

ν̃∗
j

2
(y j, une( j)) ≈ ν̃∗j

1
(y j, une( j)) ≈ ν∗j(y j, une( j))

for all y j ∈ Y j and une( j) ∈ Une( j) with non-zero probability provided that the node-to-node

likelihood terms P∗
i→ j

for all i ∈ ne( j) are known at the required points of its domain.

The assumption that the node-to-node conditional cost terms C∗
i→ j

are known at the required

points yield exact evaluation of C∗
j

and introduce no further approximation for the communi-

cation rule local to node j at this step.

4.3.3 Approximating the Node-to-Node Terms

Two-steps approximated communication and estimation rules local to node j are based on the

assumption that the node-to-node likelihood term P∗
i→ j

(ui→ j, xi) for all neighbor nodes i ∈

ne( j) are known for all ui→ j ∈ Ui→ j and at the points from the usual sample sets, i.e. xi = x
(m)

i

where x
(m)

i
∈ S xi

, together with the node-to-node conditional cost term C∗
i→ j

(u j→i, x j) is known

at for all u j→i ∈ U j→i and at x j = x
(m)

j
where x

(m)

j
∈ S x j

. A further step is possible through

replacing the node-to-note terms with their approximate values.

Consider Eq.(4.7) and note that P∗
i→ j

is a marginalization of p(ui|xi; µ
∗
i
) given by Eq.(4.8).

Proposition 4.2.1 assumes that all the rules local to nodes other than j are known and fixed at

the optimum including that µi = µ
∗
i

for all i ∈ ne( j). Also considering Eq.(4.2), it is possible

to apply the method of Importance Sampling for the evaluation of p(ui|xi; µ
∗
i
) for all ui ∈ Ui

and at xi = x
(m)

i
for x

(m)

i
∈ S xi

through the imortance sampling density p(yi) and utilizing the
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sample set S yi
together with the importance weights given by

ω
(m)(p)

i
=

p(y
(p)

i
|x(m)

i
)

p(y
(p)

i
)

and obtain

p̃(ui|x(m)

i
; µ∗i ) =

1
∑P

p=1 ω
(m)(p)

i

P
∑

p=1

ω
(m)(p)

i
δ

ui,µ
∗
i
(y

(p)

i
)

for all ui ∈ Ui and for all x
(m)

i
∈ S xi

. In other words p̃(ui|x(m)

i
; µ∗

i
) ≈ p(ui|x(m)

i
; µ∗

i
) and after

replacing the later with the former in Eq.s(4.7) we achieve P̃∗
i→ j

(ui→ j|x(m)

i
) ≈ P∗

i→ j
(ui→ j|x(m)

i
).

Similarly, replacing the later with the former in Eq.(4.19) a futher approximation is obtained

to the 2-steps approximated rule. Let us denote the 3-steps approximated estimation rule by

ν̃∗
j

3
(y j, une( j)), then ν̃∗

j

3
(y j, une( j)) ≈ ν̃∗j

2
(y j, une( j)) ≈ ν̃∗j

1
(y j, une( j)) ≈ ν∗j(y j, une( j)) holds.

Next, we consider evaluating the remaining node-to-node term at the required points of

its domain utilizing Eq.s(4.10) and (4.11). Consider C∗
i→ j

and suppose that for i ∈ ne( j)

I∗
i
(une(i), xi; ν

∗
i
) is known for all une(i) ∈ Une(i) and xi ∈ Xi (Proposition 4.2.1 states that γ∗\ j

is determined ). We also assume that for all j ′ ∈ ne(i)\ j, P∗
j ′→i

(u j ′→i|x j ′) is known for all

u j ′→i ∈ U j ′→i and x j ′ ∈ X j ′ . However, the right hand side of Eq.s(4.10) still does not yield a

solution that can be practically carried out in general and we resort to Monte Carlo methods

in order to approximately evaluate C∗
i→ j

at the required points of its domain.

Let us construct a new sample set by concatenating the mth samples of the usual sample sets

of neighbors of i other than j, i.e. S x j ′ for j ′ ∈ ne(i)\ j given by

S xne(i)\ j
, {x(m)

ne(i)\ j
|x(m)

ne(i)\ j
= (x

(m)

j ′ ) j ′∈ne(i)\ j}

We apply the same procedure with S xi
and S xne(i)\ j

yielding S xi∪ne(i)\ j
= {x(m)

i∪ne(i)\ j
} and observe

that x
(m)

i∪ne(i)\ j
∼ p(xi)

∏

j′∈ne(i)\ j p(x j′) for all x
(m)

i∪ne(i)\ j
∈ S xi∪ne(i)\ j

. Then, it is possible to utilize

this sample set for an Importance Sampling approximation implying the importance density

p(xi)
∏

j′∈ne(i)\ j p(x j′) together with the importance weights

ω
(m)(m′)
i

=
p(x

(m′)
ne(i)\ j

, x
(m′)
i
|x(m)

j
)

p(x
(m′)
i

)
∏

j′∈ne(i)\ j

p(x
(m′)
j′ )

and obtain

C̃∗i→ j(u j→i, x
(m)

j
) =

∑

une(i)\ j

1
∑M

m′=1 ω
(m)(m′)
i

M
∑

m′=1

ω
(m)(m′)
i

×

∏

j′∈ne(i)\ j

P∗j′→i(u j′→i|x(m′)
j′ )I∗i (une(i), x

(m′)
i

; ν∗i ) (4.20)
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Replacing C∗
i→ j

with C̃∗
i→ j

in the one step approximated local communication rule local to

node j given by Eq.(4.17), we obtain µ̃∗
j

2
such that µ̃∗

j

2
(y j) ≈ µ̃∗

j

1
(y j) for all y j ∈ Y j with

non-zero probability.

We have proposed an approximation for node-to-node likelihood terms. Finally we handle

the evaluation of I∗
i
(une(i), xi; ν

∗
i
) at all une(i) ∈ Une(i) and xi = x

(m)

i
for all x

(m)

i
∈ S xi

required

in Eq.(4.20). Note that substituting Eq.(4.3) in Eq.(4.11) yields

I∗i (une(i), xi; ν
∗
i ) =

∫

Yi

dyic
d
i (ν∗i (yi, une(i)), xi)p(yi|xi)

for which the utilization of the sample set S yi
implies an Importance Sampling approximation

using the importance density p(yi) together with the importance weights

ω
(m)(p)

i
=

p(y
(p)

i
|x(m)

i
)

p(y
(p)

i
)

given by

Ĩ∗i (une(i), x
(m)

i
; ν∗i ) =

1

P
∑

p=1

ω
(m)(p)

i

P
∑

p=1

ω
(m)(p)

i
cd

i (ν∗i (y
(p)

i
, une(i)), x

(m)

i
)

for all une(i) ∈ Une(i) and x
(m)

i
∈ S xi

such that Ĩ∗
i
(une(i), x

(m)

i
; ν∗

i
) ≈ I∗

i
(une(i), x

(m)

i
; ν∗

i
). Replacing

I∗
i

with Ĩ∗
i

in Eq.(4.20) and Eq.(4.17), we obtain µ̃∗
j

3
such that µ̃∗

j

3
(y j) ≈ µ̃∗j

2
(y j) ≈ µ̃∗j

1
(y j) for

all y j ∈ Y j with non-zero probability.

4.3.4 Monte Carlo Optimization of Decentralized Estimation Networks Under Undi-

rected Topologies

We have employed an information structure due to a two stage strategy over an undirected

graph and, similar to the discussion in Chapter 3 for decentralized estimation networks con-

strained by directed acyclic graphs, provided a Monte Carlo framework presented in Sec-

tion 4.3.1-4.3.3. Given a person-by-person optimal strategy γ∗ ∈ ΓG and keeping all the local

rules other than the fixed at the optimal points, i.e. γ\ j = γ
∗
\ j

, the proposed framework outputs

an approximation to the jth person-by-person optimal rule (regarding Proposition 4.2.1), i.e.

γ̃∗
j
= (µ̃∗

j

3
(y j), ν̃

∗
j

3
(y j, une( j))) such that µ̃∗

j

3
(y j) ≈ µ∗

j
(y j) and ν̃∗

j

3
(y j, une( j)) ≈ ν∗

j
(y j, une( j)) for

all y j ∈ Y j and une( j) ∈ Une( j) with nonzero probability.

It is possible to utilize the approximations for all local rules, i.e. γ∗
j

for all j ∈ V, and the

node-to-node terms would require the usual sample sets utilized for 1-step approximation to

109



the local rules. In addition, the particle representations and approximate computations are

valid for any set of two-stage local rules over an undirected graph, including those in an

“approximating” form. Let us summarize the Monte Carlo framework with

α̃ j(S x j
) = r̃ j(C̃ne( j)→ j)

β̃ j(S x j
, x̂ j) = q̃ j(P̃ j(S x j

))

P̃ j(S x j
) = f̃ j(P̃ne( j)→ j)

P̃ j→ne( j) = g̃ j(α̃ j(S x j
)

C̃ j→ne( j) = h̃ j(β̃ j(S x j
, x̂ j), P̃ne( j)→ j)

where

α̃ j(S x j
) = {(λcc

j(u j, x j) +
∑

i∈ne( j)

C̃i→ j(u j→i, x j), u j, x j)|u j ∈ U j, x j ∈ S x j
}

C̃ne( j)→ j = {C̃i→ j(S x j
)|i ∈ ne( j)}

C̃i→ j(S x j
) = {(C̃i→ j(u j→i, x j), u j→i, x j)|u j→i ∈ U j→i, x j ∈ S x j

}

P̃ j(S x j
) = {(P̃ j(une( j), x j, une( j), x j)|une( j) ∈ Une( j), x j ∈ S x j

}

P̃ne( j)→ j = {P̃i→ j(S xi
)|i ∈ j}

P̃i→ j(S xi
) = {(Pi→ j(ui→ j, xi), ui→ j, xi)|ui→ j ∈ Ui→ j, xi ∈ Xi}

P̃ j→ne( j) = {P̃ j→i(S x j
)|i ∈ ne( j)}

C̃ j→ne( j) = {C̃ j→i(S xi
)|i ∈ ne( j)}

The Monte Carlo optimization scheme which is obtained through employing the framework

in the Update step of Algorithm 3 is given by Algorithm 5. Finally, the objective value

corresponding a strategy γ ∈ ΓG, i.e. J(γ) = Jd(γ) + λJc(γ) given by Eq.s(4.12)-(4.14), can

be computed approximately by

J̃(γ̃l) =
∑

i∈V
G̃d

i (ν̃l
i) + λ

∑

i∈V
G̃c

i (µ̃l
i) (4.21)

where

G̃d
i (ν̃l

i) =
∑

une(i),m

P̃l+1
i (une(i)|x(m)

i
)Ĩl

i(une(i), x
(m)

i
; ν̃l

i) (4.22)

and

G̃c
i (µ̃l

i) =
∑

ui,m

cc
i (ui, x

(m)

i
)p(ui|x(m)

i
; µ̃l

i) (4.23)
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Algorithm 5 Iterations converging to an approximate person-by-person optimal decentralized

two-stage strategy for estimation over an undirected graph G.

0) (Initiate) l = 0;

Choose γ0 = (γ0
1
, γ0

2
, ..., γ0

N
) such that γ0

j
∈ ΓG

j
for j = 1, 2, ...,N

1) (Update) l = l + 1;

i) for j = 1, 2, ...,N

P̃l
j→ne( j)

= g̃ j(α̃
l−1
j

)

ii) for j = 1, 2, ...,N

P̃l
j
(S x j

) = f j(P̃
l
ne( j)→ j

)

β̃l
j
= q̃ j(P

l
j
) % Update the stage-two rule

C̃l
j→ne( j)

= h̃ j(β̃ j, P̃
l
ne( j)→ j

)

iii) for j = 1, 2, ...,N

α̃l
j
= r̃l

j
(C̃ne( j)→ j) % Update the stage-one rule

2) (Check) If J̃(γ̃l−1) − J̃(γ̃l) < ε STOP, else GO TO 1;

Similar to the discussion presented in Section 3.4.4 for the directed case, in contrary to {J(γl)},

the sequence of approximated objectives, i.e. {J̃(γ̃l)}, is not necessarily non-increasing and

considering the error sequence err[l] = J(γl) − J̃(γ̃l), a more robust termination condition for

the Check step of Algorithm 5, compared to J̃(γ̃l−1) − J̃(γ̃l) < ε can be proposed. Further

investigation of this issue is left out of the scope of the thesis.

4.4 Examples

4.4.1 A Gaussian Example

Consider a decentralized estimation network that performs a two stage strategy over the undi-

rected graph G = ({1, 2, 3, 4}, {(1, 3), (3, 1), (2, 3), (3, 2), (3, 4), (4, 3)}) (Figure 4.1) in which

each edge represents a bidirectional communication link. The set of admissible symbols is

given byUi→ j = {0, 1, 2} for all (i, j) ∈ E.

Similar to the example scenario presented in Section 3.5.1 the estimation task considers the

Gaussian random field X = {X1, X2, X3, X4} Markov with respect to the graph presented in

Figure 3.1b and of identically zero mean vector. The covariance matrix is assumed to be that
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given by Eq.(3.53). X j is associated with the jth platform. Contrary to the directed case,

the online processing starts with each node evaluating its stage-one communication function

on its measurement, i.e. u1→3 = µ1(y1), u2→3 = µ2(y2), (u3→1, u3→2, u3→4) = µ3(y3) and

u4→3 = µ4(y4) simultaneously in a parallel fashion. As soon as all the messages from the

neigbors (or lack thereof) are received, stage two estimation rules are evaluated as x̂1 =

ν1(y1, u3→1),x̂2 = ν2(y2, u2→3), x̂3 = ν3(y3, u1→3, u2→3, u4→3) and x̂4 = ν4(y4, u3→4). Sub-

ject to design is the strategy γ = (γ1, ..., γ4) where γ j = (µ j, ν j).

1
 2


3


4


Illustration of G.

Figure 4.1: Illustration of the undirected graph that the decentralized estimation strategy ren-

ders in the example scenario considered in Section 4.4.1.

The cost functions are selected as in Section 3.5.1 such that Jc is the total expected link

use rate in bits and the estimation error penalty implies that Jd is the total mean squared

error. Similarly, the noise processes {n j} j∈V are additive, mutually independent and zero

mean Gaussian, i.e. n j ∼ N(0, σ2
n) where σ2

n = 0.5, yielding an SNR of 6dB for each sensor.

For each platform j, the initial local estimation rule is the myopic mimimum MSE estimator

which is based only on y j, i.e. ν0
j
(y j, une( j)) =

∫ ∞
−∞ dx j x j p(x j|y j), and the communication rule

is a threshold rule quantizing y j as used in Section 3.5.1.

Considering Algorithm 3 presented in Section 2.7.2.2, the performance points (Jc, Jd) of the

converged strategies vary with λ. For λ ≥ λ∗, the strategy of no transmissions with myopic

estimation rules achieves the minimum cost which is also a person-by-person optimal. Hence,

λ∗ admits the interpretation of being the maximum price per bit that the system affords to

decrease the estimation penalty. We approximate the performance curve of solutions as we

increase λ from 0 which is an approximate quantification for the tradeoff between the cost of

estimation errors and communication.

In Figure 4.2 we present these pairs, i.e. (J̃c, J̃d), for different choices of λ and
∣

∣

∣Ui→ j

∣

∣

∣s. The

upper and lower bounds are mean squared errors (MSEs) corresponding to the myopic rule
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Figure 4.2: Approximated performance points corresponding to the two-stage decentralized

estimation strategies output by Algorithm 5, over the undirected graph G in Figure 4.1 while λ

is increased from 0 with steps of 0.001. The Gaussian scenario enables the exact computation

of the mean squared error achieved by the conventional centralized and myopic MMSE esti-

mators rendering the lower bound (red dashed line) and the upper bound (blue dashed line)

respectively, for the person-by-person optimal strategies. The black and blue dots are the ap-

proximated performance sequences for the 1 bit and 2 bits selective communication schemes

respectively.

and the centralized optimal rule2respectively. (J̃c, J̃d) points for the 1-bit selective communi-

cation scheme reveal that altough the transmission has no cost for λ = 0, the total link use rate

is only slightly higher than 50% of the total 6 bits indicating that the information from receiv-

ing no messages is successfully utilized. Moreover, the MSE performance is closer to that

of the centralized scheme than the myopic scheme. The communication stops for λ∗ ≈ 0.3.

Approximate performance points for 2-bits case present the decrease in MSE for the same

network load as we increase the link capacities for small values of λ which is competetive

with that of the centralized rule.

Comparing the approximated performance points of the directed and undirected strategies

given in Figure 3.2 and 4.2 respectively for 1 bit and 2 bits selective communication schemes,

we observe the benefits of bi-directional communications employed by the strategy over the

undirected graph. For the directed case, nodes 1 and 2 are parentless and hence do not have

means to exploit contributions from other platforms. Specifically all parentless nodes apply

the initial rule, which has been selected as the myopic estimator. Therefore the nodes with

2 For c(x, x̂) = (x − x̂)T (x − x̂), the optimal centralized estimate is the mean vector of p(x1, ..., x4|y1, ..., y4)

which yields a minimum of Jc=3Q bits where Q is the number of bits used to represent y j before transmission.
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more ancestors are more likely to benefit the contribution of other nodes whereas for the

undirected case, the nodes with more neighbors pose advantegous. The price paid is that the

information horizon is limited with the observation of the neighbors whereas the local rules

depend on a two-hop neighborhood due to the two stage mechanism necessary for causality.

4.4.2 A Heavy Tailed Example
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Figure 4.3: Approximated performance points corresponding to the two stage decentralized

strategies achieved using Algorithm 5 in the heavy tailed prior case. The results for the 10

sample sets for λ = 0, 0.05, ..., 0.35 are displayed. For each value of λ an ellipsoid is fit to the

performance points for the sample sets.

In order to present Algorithm 5 in an example involving a heavy tailed non-Gaussian prior dis-

tribution, we consider X = {X1, X2, X3, X4} distributed with a multivariate-symmetric Lapla-

cian density S L4(CX) as considered in Section 3.5.2 for the directed case. The decentralized

estimation strategy is as described for the Gaussian example in the previous section. For dif-

ferent values of λ, specifically 0.05, 0.1, ..., 0.35 the Algorithm is run for 10 different sample

sets S x1
, ..., S x4

and S y1
, ..., S y4

which are also employed for the directed case.

The approximated performance points are presented in Figure 4.3. Similarly, an ellipsoid is

fit to the results for each value of λ. Similar to the Gaussian case, for small values of λ, a

decentralized strategy with a comparable performance to the centralized rule is achieved. The

benefits of the undirected topology is apparent comparing the results with that presented in

Figure 3.4 for the directed case.
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4.5 Discussion

We have adopted a decentralized inference strategy defined over an undirected graph G for

the estimation problem. The local rules constituting the strategy act in two stages to provide a

causal processing scheme as well as a tractable information structure through the unwrapped

directed counterpart of the G. Such an online processing scheme yields an iterative optimiza-

tion procedure which starting from an initial strategy converges to a person-by-person one.

Moreover, under reasonable conditions, the online processing exhibits scalability in the num-

ber of variables and the optimization procedure admits a message passing interpretation which

also scales with the number of nodes. In the detection case, the expressions involved yields a

reasonable computational burden, whereas for the estimation case they can not be practically

carried out in general. In order to overcome this bottleneck, we have proposed a Monte Carlo

framework including particle representations and approximate computational schemes.

On the other hand, the two stage strategy limits the information horizon of nodes with their

neighbors. It is possible to extend this approach to multiple stages in order to widen the

horizon but even for the detection case, issues regarding mathematical tractability arise and

the iterative scheme requires approximations [28]. On the other hand, the estimation setting

requires approximations inherently in the two-stage setting. For sake of brevity and consider-

ing the computational time required for the iterations, we kept the discussion on multi-stage

strategies out of the scope of the thesis, to the best of the author’ s, the framework we propose

is valid in the multi-stage setting.

Another issue is that both in the directed and the undirected case, the inference task is dis-

tributed among platforms through random variable-node associations. Hence, not every node

necessarily performs inference and a directed architecture in which only the child nodes carry

out this task is possible. Moreover, the advantages of the undirected architectures due to the

bi-directional transmissions they provide are presented. The problem they exhibit is due to

the limited information horizon which is not a dominant factor on graphs with low radius.

Therefore a hybrid network in which a directed strategy that assigns the inference tasks to

the childless nodes and an undirected network that overlays these nodes is useful. A certain

hybrid strategy guarantees that the person-by-person optimal hybrid network is achieved in

terms of the optimal directed networks and the optimal overlay network [29]. The Monte

Carlo framework we provide is valid for such a scheme in the estimation setting.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, motivated by networked sensing, we have studied the decentralized estimation

problem under communication constraints. Networked platforms evaluate local functions,

which constitute the global strategy, in order to estimate the value of a random vector in such

a scenario where it is not feasible to collect observations at a center which is responsible for

performing all the required computations. On the other hand, the so called “in-network” pro-

cessing arises a certain communication load which consumes the major part of the limited

energy budget. One aspect of the problem is to consider the strategy as the global function to

be evaluated and associate its sub-tasks with the platforms such that the arising communica-

tion load is the lowest among a set of possible mappings. The graphical models approach to

decentralized inference can be considering in accordance with such a treatment.

We are interested in design of global functions given the communication structure together

with the cost of the transmissions arising. In particular, the tradeoff between the estimation

accuracy and the communication cost is of concern to us in which schemes enabling gracefull

degredation of the accuracy by decreasing the communication load is appealing. The con-

ventional approach to decentralized estimation can be considered along these lines in which

quantizers and fusion rules are sought while addressing a restricted set of the communication

constraints due to lack of mathematical tracktability and scalability arising otherwise.

We adopt a recent framework for decentralized detection which captures a wide range of

communication constraints and avoid restricting the problem definition. We consider two

classes of decentralized strategies; i) decentralized strategies over directed acyclic graphs and

ii) two-stage strategies over undirected graphs. The second reveals a representation in terms

of the former and it is possible to investigate the hybrid strategies and multi-stage strategies
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(see Chp.4 and 5 of [28]) in a similar fashion, through considering the directed “computation

structure” they imply. Besides the intricacies related with the optimization of a given strat-

egy in order to achieve an acceptable accuracy for a reasonable communication cost, addi-

tional challenges arise in the estimation setting. The expressions involved by the optimization

procedures after a Team Theoretic investigation include integral operators that are impossi-

ble to evaluate exactly in practice, in general. Our contribution is a Monte Carlo framework

that overcomes this difficulty through particle representations and approximate computational

schemes in the same spirit with that of Non-parametric Belief Propagation which has proved

useful for statistical inference under general continuous distributions.

The algorithms we provide has a number of advantages altough being approximate in na-

ture. First of all they enable to introduce the prior information through the the Bayesian

setting involved. Second, the cost of communications is captured within the Bayesian risk

and also reflecting the network constraints to the feasible set, they allow a wide range of

communication constrained problem to be modelled. The original non-approximate schemes

exhibit scalability in the number of variables and platforms under certain assumptions, which

we preserve in the estimation setting through utilizing the Monte Carlo methods adequately.

In addition, samples from only marginal distributions are required, and are generated in a

straightforward manner compared to samples from joint distributions. Moreover, we provide

scalability in the sample set sizes. The framework is not limited with standard distributions

such as Gaussians but can produce results for any set of distributions provided that samples

can be generated from the marginals. Last but not the least, it enables the estimation accuracy

gracefully degrade as the “price” of communication is incereased, also allowing a quantifi-

cation of the tradeoff between the cost of communications and estimation accuracy through

performance points of the converged strategies while the price of communications is varied.

5.1 Future Extensions

There is a number of issues left open throughout the thesis. First, it would be useful to em-

ploy the framework we provide in a number of problem settings and emprically observe the

behaviour of the strategies obtained. One possible class of scenarios involve large networks

since the Monte Carlo optimization schemes exhibit scalability. It is possible to consider the

problem of random field estimation and compare the achieved performances of the result-
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ing strategies with other schemes that can provide benchmarks. Another possible scenario

involves target localization in a tracking scenario explained in Section 3.6. In addition, the

framework can be applied to hybrid network structures and multi-stage strategies over undi-

rected graphs. The later generalizes a finite step loopy messaging scheme and can employ

a feedback mechanism. The fact that the memory requirement grows exponentially renders

exact solutions infeasible even in the detection setting. Investigation of Monte Carlo approx-

imations in this context remains an open issue.

One possible research direction is the regularization of the optimization schemes through

Kernels. Such methods have been employed in the context of particle filtering in order to

reduce the size of the sample sets. A side issue is that, through numerical approximations of

the multi-dimensional error function, it is possible to obtain a different approximation scheme

for the Gaussian case, not involving Monte Carlo methods.

Another aspect left open involves the investigation of error bounds and biases of the resulting

strategies as well as robust termination conditions for the iterations. A starting point might be

considering symmetric distributions together with Geweke’ s conditions on consistent Impor-

tance Sampling approximations.
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APPENDIX A

Decentralized Strategies Under Directed Acyclic Graphs

A.1 Information Structure of Decentralized Strategies Under Directed Acyclic

Graphs

Consider the decentralized inference scheme for which the online processing is modelled

with a directed acyclic graph introduced in [27] summarized in Section 2.7.1.1 and utilized in

Chapter 3. The Bayesian framework which assigns an expected cost J(γ) = E{c(u, x, x̂); γ}for

any given strategy γ ∈ ΓG with the underlying distribution p(u, x, x̂; γ) is contributed by the

strategy by the conditional distribution p(u, x̂|x, y; γ).

We first show that Eq.(2.24) and similarly Eq.(3.2) holds for any strategy under a directed

acyclic graph for which the node labels are in accordance with the forward partial ordering.

Consider p(u, x̂|x, y; γ) and separate the variables output by the local rule of node 1 which is

a parentless node using the Bayes’ rule and obtain

p(u, x̂|x, y; γ) = p(u1, x̂1|u\1, x̂\1, x, y; γ1, γ\1)p(u\1, x̂\1|x, y; γ1, γ\1) (A.1)

The first term in the right hand side reduces to p(u1, x̂1|y1; γ1) since γ1 operates only on

y1 ∈ Y1 and u\1, x̂\1 together with γ\1 has no bearing on the local rule γ1 due to the directed

acyclic structure of G. Considering the second term, if γ1 is determined, then given x, y the

output u1 is known and this term reduces to p(u\1, x̂\1|u1, x, y; γ\1) Suppose that node k is the

first node in the ordering with parents. Then, applying the procedure above until node k we

achieve

p(u, x̂|x, y; γ) = p(u\{1,...,k−1}, x̂\{1,...,k−1}|u{1,...,k−1}, x, y; γ\{1,...,k−1})
k−1
∏

i=1

p(ui, x̂i|yi; γi) (A.2)
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and it is possible to separate the contribution of the rule local to node k from the first term by

p(u\{1,...,k−1}, x̂\{1,...,k−1}|u{1,...,k−1}, x, y; γ\{1,...,k−1}) =

p(uk, x̂k|u\k, x̂\{1,...,k}, x, y, ; γk, γ\{1,...,k})p(u\{1,...,k}, x̂\{1,...,k}|u{1,...,k−1}, x, y; γk, γ\{1,...,k}) (A.3)

Since γk operates only on yk and uπ(k) and uπ(k) ⊆ u\k, the first term in the right hand side

of the above equation reduces to p(uk, x̂k|yk, uπ(k); γk). Considering the second term, since

when y is given and γk is determined uk is known, we obtain u{1,...,k−1} ∪ uk = u{1,...,k} and

hence p(u\{1,...,k}, x̂{1,...,k}|u{1,...,k}, x, y, γ\{1,...,k}). Recursively applying the same procedure to

the second term that we obtain after separating the jth local rule’ s contribution and collecting

the first terms within the multiplication, we end up with Eq.(2.24) which reveals the coupling

of local rules to the global structure.

Provided that Assumption 1, i.e. the conditional independence, holds, then the underlying

distribution to the Bayesian framework is obtained by

p(u, x, x̂; γ) =

∫

Y
dy

N
∏

i=1

p(ui, x̂i|yi, uπ(i); γi)

N
∏

k=1

p(yk|x)p(x)

= p(x)

N
∏

i=1

p(ui, x̂i|x, uπ(i); γi) (A.4)

which further implies that

p(u, x̂|x; γ) =

N
∏

i=1

p(ui, x̂i|x, uπ(i); γi) (A.5)

An expression which is commonly encountered is the product of local rules except the jth, i.e.

∏

i, j p(ui, x̂i|x, uπ(i); γi). The conditional distribution that equals to this product is obtained by

dividing both sides of Eq.(A.5) by the contribution of the jth rule. Then we have

∏

i, j

p(ui, x̂i|x, uπ(i); γi) =
p(u, x̂|x; γ)

p(u j, x̂ j|x, uπ( j); γ j)

=
p(u\π( j), x̂|x, uπ( j); γ)p(uπ( j)|x; γ)

p(u j, x̂ j|x, uπ( j); γ j)

= p(u\ j∪π( j), x̂\ j|x, uπ( j), u j, x̂ j; γ)p(uπ( j)|x; γ)

= p(u\ j, x̂\ j|x, u j; γ\ j) (A.6)

for which after applying the chain and Bayes’ rule, we have substituted the conditional inde-

pendence properties uπ( j) ⊥⊥ (u j, x̂ j)|x; γan( j) where an( j) are the set of ancestor nodes of j and

(u\ j, x̂\ j) ⊥⊥ x̂ j|x, u j; γ\ j due to the directed acyclic nature in the last step.
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A.2 Proof of Proposition 3.3.2

We follow similar steps with that for the detection case in [27] whereas in our setting, X takes

values from a denumarable set X and we do not utilize a channel mode, i.e. we assume that

all links are error free.

Consider Eq.s(3.9) and (3.14) together with Eq.(A.6). After substituting the mathematical

expression of the cost locality assumption, i.e. Eq.(2.34), in Eq.(3.14) we obtain

θ∗j(u j, x̂ j, x, uπ( j))

=
∑

i∈V

∑

u\{ j}∪π( j)

∫

X\ j

dx̂\ j c(ui, xi, x̂i)p(u\ j, x̂\ j, x|u j; γ
∗
\ j)

= p(uπ( j)|x; γ∗\ j)p(x)c(u j, x j, x̂ j) +
∑

i∈V\ j

∑

u\{ j}∪π( j)

∫

X\ j

dx̂\ j c(ui, xi, x̂i)p(u\ j, x̂\ j, x|u j; γ
∗
\ j)

and treat the summation over i ∈ V\ j in three groups: de( j) ∈ V\ j denoting the decendants

of node j, π( j) ∈ V\ j denoting the parent of node j and an( j)\π( j) ∈ V\ j denoting the

ancestors of node j that are not its parents. Due to the directed acyclic nature, these sets are

mutually exclusive. Hence

∑

i∈V\ j

∑

u\{ j}∪π( j)

∫

X\ j

dx̂\ j c(ui, xi, x̂i)p(u\ j, x̂\ j, x|u j; γ
∗
\ j)

=
∑

m∈de( j)

∑

u\{ j}∪π( j)

∫

X\ j

dx̂\ j c(um, xm, x̂m)p(u\ j, x̂\ j, x|u j; γ
∗
\ j)

+
∑

k∈π( j)

∑

u\{ j}∪π( j)

∫

X\ j

dx̂\ j c(uk, xk, x̂k)p(u\ j, x̂\ j, x|u j; γ
∗
\ j)

+
∑

n∈an( j)\π( j)

∑

u\{ j}∪π( j)

∫

X\ j

dx̂\ j c(un, xn, x̂n)p(u\ j, x̂\ j, x|u j; γ
∗
\ j)

Consider the first group on the right hand side of the equation above. The following holds

∑

m∈de( j)

∑

u\{ j}∪π( j)

∫

X\ j

dx̂\ j c(um, xm, x̂m)p(u\{ j}∪π( j), x̂\ j|x, u j, uπ( j); γ
∗
\ j)p(uπ( j)|x; γ∗\ j)p(x)

=
∑

m∈de( j)

∑

um

∫

Xm

dx̂m c(um, xm, x̂m)
∑

u\{ j,m}∪π( j)

∫

X\{ j,m}

dx̂\{ j,m} p(u\{ j}∪π( j), x̂\ j|x, u j, uπ( j); γ
∗
\ j)p(uπ( j)|x; γ∗\ j)p(x)

= p(uπ( j)|x; γ∗\ j)p(x)
∑

m∈de( j)

∑

um

∫

Xm

dx̂m c(um, xm, x̂m)p(um, x̂m|x, u j, uπ( j); γ
∗
\ j)

= p(uπ( j)|x; γ∗\ j)p(x)
∑

m∈de( j)

∑

um

∫

Xm

dx̂m c(um, xm, x̂m)p(um, x̂m|x, u j; γ
∗
\ j)
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where we apply the chain rule and rearrange the order of operators except that in the last

step we assert the assumption that G is a polytree when p(um, x̂m|x, u j, uπ( j); γ
∗
\ j

) is reduced to

p(um, x̂m|x, u j; γ
∗
\ j

) for m ∈ de( j). Since the polytree topology implies that there are no paths

from any of the ancestors of node j to any of its decendats that does not pass through j, given

u j and having γ∗\ j
determined, uπ( j) has no bearing on (um, x̂m) where m ∈ de( j) which would

not necessarily be the case if G were not a polytree.

Considering the summation over the second group, similar rearrangements are performed

yielding

∑

k∈π( j)

∑

u\{ j}∪π( j)

∫

X\ j

dx̂\ j c(uk, xk, x̂k)p(u\ j, x̂\ j, x|u j; γ
∗
\ j)

=
∑

k∈π( j)

∫

Xk

dx̂k c(uk, xk, x̂k)p(x)
∑

u\{ j}∪π( j)

∫

X\{ j,k}
dx̂\{ j,k} p(u\ j, x̂\ j|x, u j; γ

∗
\ j)

=
∑

k∈π( j)

∫

Xk

dx̂k c(uk, xk, x̂k)p(x)p(uπ( j), x̂k|x, u j; γ
∗
\ j)

=
∑

k∈π( j)

∫

Xk

dx̂k c(uk, xk, x̂k)p(x)p(uk, x̂k|x, u j, uπ( j)\k; γ∗\ j)p(uπ( j)\k|x, u j; γ
∗
\ j)

=
∑

k∈π( j)

∫

Xk

dx̂k c(uk, xk, x̂k)p(x)p(uk, x̂k|x; γ∗\ j)p(uπ( j)\k|x; γ∗\ j)

= p(x)p(uπ( j)\k|x; γ∗\ j)
∑

k∈π( j)

∫

Xk

dx̂k c(uk, xk, x̂k)p(uk, x̂k|x; γ∗\ j)

where in the first two steps, we rearrange operators and perform marginalization, in the third

step we apply the chain rule. In the fourth step, the u j and uπ( j)\k arguments of the conditional

drops since due to the polytree topology no two parents of node j shares a common ascendant

and these arguments are non-informative for (uk, x̂k) when γ∗
k
∈ γ∗\ j

is determined. Also note

that, at the last step, the terms contain no contribution of (u j, x̂ j) and hence have no bearing

on the optimization regarding the person-by-person optimal rule of node j.

130



A similar treatment of the third group yields

∑

n∈an( j)\π( j)

∑

u\{ j}∪π( j)

∫

X\ j

dx̂\ j c(un, xn, x̂n)p(u\ j, x̂\ j, x|u j; γ
∗
\ j)

=
∑

n∈an( j)\π( j)

∑

un

∫

Xn

dx̂n c(un, xn, x̂n)
∑

u\{ j,n}∪π( j)

∫

X\{ j,n}
dx̂\{ j,n} p(u\ j, x̂\ j, x|u j; γ

∗
\ j)

=
∑

n∈an( j)\π( j)

∑

un

∫

Xn

dx̂n c(un, xn, x̂n)p(x)p(un, x̂n|uπ( j), u j, x; γ∗\ j)p(uπ( j)|u j, x; γ∗\ j)

=
∑

n∈an( j)\π( j)

∑

un

∫

Xn

dx̂n c(un, xn, x̂n)p(x)p(un, x̂n|x; γ∗\ j)p(uπ( j)|x; γ∗\ j)

= p(x)p(uπ( j)|x; γ∗\ j)
∑

n∈an( j)\π( j)

∑

un

∫

Xn

dx̂n c(un, xn, x̂n)p(un, x̂n|x; γ∗\ j)

revealing that it has no contribution on the optimization regarding the person-by-person opti-

mal rule of node j either.

Therefore

θ∗j(u j, x̂ j, x, uπ( j)) ∝

p(x)p(uπ( j)|x; γ∗\ j)



















c(u j, x j, x̂ j) +
∑

m∈de( j)

∑

um

∫

Xm

dx̂m c(um, xm, x̂m)p(um, x̂m|x, u j; γ
∗
\ j)



















holds and under the measurement locality assumption, Eq.(3.14) easily yields

φ∗j(u j, x̂ j, x j, uπ( j)) ∝

p(x j)p(uπ( j)|x j; γ
∗
\ j)



















c(u j, x j, x̂ j) +
∑

m∈de( j)

∑

um

∫

Xm

dx̂m c(um, xm, x̂m)p(um, x̂m|x j, u j; γ
∗
\ j)



















(A.7)

after marginalization.

Now that we have obtained the form in Eq.(3.15) it remains to show that p(uπ( j)|x j; γ
∗
\ j

) is

equal to P∗
j
(uπ( j)|x j) given by the forward likelihood recursion Eq.s(3.16) and (3.17) together

with that the summation over descendants is equal to C∗
j
(u j, x j) given by the induced cost

recursion Eq.s(3.18) and (3.19).

We start with a general term p(uπ( j)|x; γ) determined by the strategy γ and fist note that the

directed acyclic nature together with the online processing in accordance with the forward

ordering, uπ( j) received from parents depend on γan( j) and xan( j) yielding the equivalence

p(uπ( j)|xan( j); γ
∗
an( j)

) ≡ p(uπ( j)|x; γ∗) (Figure A.1). In addition, starting with parentless nodes
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Figure A.1: A polytree from the viewpoint of node j.

for which p(uπ( j)|x; γ∗) = 1 the following recursion holds where we denote by uπ2( j) the set of

incoming messages to parents of node j:

p(uπ( j)|xan( j); γ
∗
an( j)) =

∑

u
π2( j)

∫

Xπ( j)

dx̂π( j) p(uπ2( j), uπ( j), x̂π( j)|xan( j); γ
∗
an( j))

=
∑

u
π2( j)

∫

Xπ( j)

dx̂π( j) p(uπ2( j)|xan( j); γ
∗
an( j))p(uπ( j), x̂π( j)|uπ2( j), xan( j); γ

∗
an( j))

=
∑

u
π2( j)

p(uπ2( j)|xan( j)\π( j); γ
∗
an( j)\π( j))

∏

i∈π( j)

∫

Xi

dx̂i

∑

ui\ui→ j

p(ui, x̂i|xi, uπ(i); γ
∗
i )

(A.8)

In addition, the polytree topology implies that no two parents of node j share a common

ancestor and moreover the sets of ancestors of parents of node j are disjoint. Hence

p(uπ2( j)|xan( j)\π( j); γ
∗
an( j)\π( j)) =

∏

i′∈π( j)

p(uπ(i′)|xan(i′); γ
∗
an(i′))
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and after substituting in Eq.(A.8) we obtain

p(uπ( j)|xan( j); γ
∗
an( j)) =

∑

u
π2( j)

∏

i′∈π( j)

p(uπ(i′)|xan(i′); γ
∗
an(i′))

∏

i∈π( j)

∫

Xi

dx̂i

∑

ui\ui→ j

p(ui, x̂i|xi, uπ(i); γ
∗
i )

=
∑

u
π2( j)

∏

i∈π( j)

p(uπ(i)|xan(i); γ
∗
an(i))

∑

ui\ui→ j

∫

Xi

dx̂i p(ui, x̂i|xi, uπ(i); γ
∗
i )

=
∏

i∈π( j)

∑

uπ(i)

∑

ui\ui→ j

p(uπ(i)|xan(i); γ
∗
an(i))

∫

Xi

dx̂i p(ui, x̂i|xi, uπ(i); γ
∗
i ) (A.9)

Finally, in order to obtain p(uπ( j)|x j; γ
∗
an( j)

) we multiply both sides of the above equation with

p(xan( j)|x j) and marginalize Xan( j), i.e.

p(uπ( j)|x j; γ
∗
an( j)) =

=

∫

Xan( j)

dxan( j) p(xan( j)|x j)
∏

i∈π( j)

∑

uπ(i)

∑

ui\ui→ j

p(uπ(i)|xan(i); γ
∗
an(i))

∫

Xi

dx̂i p(ui, x̂i|xi, uπ(i); γ
∗
i )

=

∫

Xπ( j)

dxπ( j)

∫

Xan( j)\π( j)

dxan( j)\π( j) p(xπ( j)|x j)p(xan( j)\π( j)|xπ( j), x j)
∏

i∈π( j)

p(ui→ j|xi, xan(i); γ
∗
i , γ
∗
an(i))

=

∫

Xπ( j)

dxπ( j) p(xπ( j)|x j)

∫

Xan( j)\π( j)

dxan(i)\π( j)

∏

i′∈π( j)

p(xan(i′)|xπ( j), x j, ...)
∏

i∈π( j)

p(ui→ j, x̂i|xi, xan(i); γ
∗
i , γ
∗
an(i))

=

∫

Xπ( j)

dxπ( j) p(xπ( j)|x j)
∏

i∈π( j)

∫

Xan(i)

dxan(i) p(xan(i)|xi, ...)p(ui→ j|xi, xan(i); γ
∗
i , γ
∗
an(i))

=

∫

Xπ( j)

dxπ( j) p(xπ( j)|x j)
∏

i∈π( j)

p(ui→ j|xi; γ
∗
i , γ
∗
an(i))

=

∫

Xπ( j)

dxπ( j) p(xπ( j)|x j)
∏

i∈π( j)

∑

uπ(i)

∑

ui\ui→ j

p(uπ(i)|xi; γ
∗
an(i))

∫

Xi

dx̂i p(ui, x̂i|xi, uπ(i); γ
∗
i )

which is nothing but Eq.(3.17) substituted in Eq.s(3.16), where P∗
j
(uπ( j)|x j) represents

p(uπ( j)|x j; γ
∗
an( j)

) and P∗
i→ j

(u j→i|xi) is identified as p(ui→ j|xi; γ
∗
i
, γ∗

an(i)
). In the first step above,

we exploit the chain rule and in the next step, we substitute the disjointness of ancestors of

parents of node j due to the polytree topology while factorizing p(xan( j)\π( j)|xπ( j), x j). To show

that the factorization holds, let the parents of node j be π( j) , {i1, ..., iP}. Then applying the

chain rule consecutively we obtain

p(xan( j)\π( j)|xπ( j), x j)

= p(xan(i1)|xπ( j), x j)p(xan( j)\π( j)∪an(i1)|xπ( j), x j, xan(i1))

= p(xan(i1)|xπ( j), x j)p(xan( j)\π( j)∪an(i1)∪an(i2)|xπ( j), x j, xan(i1), xan(i2))p(xan(i2)|xπ( j), x j, xan(i1))

...

= p(xan(i1)|xπ( j), x j)p(xan(i2)|xπ( j), x j, xan(i1))...p(xan(iP)|xπ( j), x j, xan(i1), ..., xan(iP−1))
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Moreover (ui, x̂i) are independent from any fields of X given (Xi, Xan(i)) with γ∗
i

and γ∗
an(i)

determined.

Similar steps show that the cost recursion given by Eq.s(3.18) and (3.19) hold, i.e. Eq.(3.19)

substituted in Eq.s(3.18) is equal to summation over m ∈ de( j) in Eq.(A.7). Consider

∑

m∈de( j)

∑

um

∫

Xm

dx̂m c(um, xm, x̂m)p(um, x̂m|x j, u j; γ
∗
\ j)

=
∑

k∈χ( j)

















∫

Xk

∑

uk

c(uk, xk, x̂k)p(uk, x̂k|x j, u j; γ
∗
\ j) +

∑

m∈de(k)

dx̂m

∑

um

c(um, xm, x̂m)p(um, x̂m|x j, u j; γ
∗
\ j)

















and let the summation over m ∈ de( j) be denoted by C∗
j
(u j, x j). Then the expression above

becomes

C∗j(u j, x j)

=
∑

k∈χ( j)

















∫

Xk

dxk

∑

uk

c(uk, xk, x̂k)p(uk, x̂k|x j, u j; γ
∗
\ j) +

∫

Xk

dxk

∑

uk

C∗k(uk, xk)p(uk, x̂k|x j, u j; γ
∗
\ j)

















=
∑

k∈χ( j)

∫

Xk

dxk

∑

uk

[

c(uk, xk, x̂k) +C∗k(uk, xk)
]

p(uk, x̂k|x j, u j; γ
∗
\ j) (A.10)

where it is possible to extend the distribution p(uk, x̂k|x j, u j; γ
∗
\ j

) such that it is expressed in

terms of the contributions of the rule local to node k, i.e.

p(uk, x̂k|x j, u j; γ
∗
\ j) =

∫

Xπ(k)\ j

dxπ(k)\ j

∫

Xk

dxk

∑

uπ(k)\ j

p(xπ(k)\ j, xk|x j)p(uπ(k)\ j|xπ(k)\ j; γ
∗
\ j)×

p(uk, x̂k|x j, xπ(k)\ j, xk, u j, uπ(k)\ j; γ
∗
\ j)

=

∫

Xπ(k)\ j

dxπ(k)\ j

∫

Xk

dxk

∑

uπ(k)\ j

p(xπ(k)\ j, xk|x j)
∏

m∈π(k)\ j

p(um→k|xm; γ∗m, γ
∗
an(m))p(uk, x̂k|xk, uπ(k); γ

∗
k)

(A.11)

where we identify p(um→k|xm; γ∗m, γ
∗
an(m)

) as P∗
m→k

(um→k|xm) and substituted in Eq.(A.11) and

Eq.(A.10) yields the cost recursion Eq.s(3.18) and (3.19). �
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