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ABSTRACT 

 

 

INVESTIGATION OF MUSIC ALGORITHM BASED AND WD-PCA 

METHOD BASED ELECTROMAGNETIC TARGET CLASSIFICATION 

TECHNIQUES FOR THEIR NOISE PERFORMANCES 

 

Ergin, Emre 

M.S., Department of Electrical and Electronics Engineering 

 Supervisor :Prof. Dr. Gönül Turhan Sayan 

 

October 2009, 125 pages 

 

 

Multiple Signal Classification (MUSIC) Algorithm based and Wigner 

Distribution-Principal Component Analysis (WD-PCA) based classification 

techniques are very recently suggested resonance region approaches for 

electromagnetic target classification. In this thesis, performances of these 

two techniques will be compared concerning their robustness for noise and 

their capacity to handle large number of candidate targets. In this context, 

classifier design simulations will be demonstrated for target libraries 

containing conducting and dielectric spheres and for dielectric coated 

conducting spheres. Small scale aircraft targets modeled by thin conducting 

wires will also be used in classifier design demonstrations. 

 

Keywords: Electromagnetic target classification, MUSIC algorithm, Wigner-

Ville distribution, principal component analysis, feature extraction. 
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ÖZ 

 

 

MUSIC ALGORİTMASINA VE WD-PCA METODUNA DAYALI 

ELEKTROMANYETİK HEDEF SINIFLANDIRMA TEKNİKLERİNİN 

GÜRÜLTÜ PERFORMANSLARININ İNCELENMESİ 

 

Ergin, Emre 

Y. Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi  : Prof. Dr. Gönül Turhan Sayan 

 

Ekim 2009, 125 sayfa 

 

Çoklu İşaret Sınıflandırma (MUSIC) Algoritması ve Wigner Dağılımı-Esas 

Bileşenler Analizi (WD-PCA) metodlarına dayalı sınıflandırma teknikleri, 

resonans bölgesinde son zamanlarda önerilmiş elektromanyetik hedef 

sınıflandırma yaklaşımlarıdır. Bu tezde, bu iki farklı tekniğin gürültüye 

dayanıklılık ve çok sayıda aday hedefi ayırdedebilme konusundaki 

performansları karşılaştırılacaktır. Bu bağlamda gerçekleştirilecek olan 

sınıflandırıcı tasarım benzetimlerinde iletken ve yalıtkan küreler ile yalıtkan 

kaplı iletken küreleri içeren hedef kümeleri kullanılacaktır. İnce iletken tellerle 

modellenmiş küçük ölçekli bir uçak hedef kümesi için de sınıflandırıcı tasarım 

benzetimleri yapılacaktır. 

 

Anahtar sözcükler: Elektromanyetik hedef sınıflandırma, MUSIC algoritması, 

Wigner-Ville dağılımı, esas bileşenler analizi, öznitelik 

çıkarımı. 
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CHAPTER 1 

1. INTRODUCTION 

 

 

 

Recognition of targets from their electromagnetic scattered signals is a 

complicated problem as such data are highly frequency, aspect and 

polarization dependent. These dependencies make classification of targets 

almost impossible without using an effective feature extraction process that 

would provide aspect and polarization independent target features. Also, the 

extracted features must be highly sensitive to geometrical and material 

properties such as size, shape and electrical parameters (permittivity, 

permeability, conductivity) of individual targets to discriminate similar objects 

from each other.  Another complication in target recognition is the 

unavoidable presence of noise contaminating the scattered signals and 

causing additional ambiguity to this challenging problem. Therefore, feature 

extraction techniques used in electromagnetic target classifier design must 

be tested for robustness under practically low signal-to-noise ratio (SNR) 

conditions.  

 

There are various techniques suggested for target classification in the area of 

electromagnetic target recognition. Most of these techniques are based on 

the use of natural resonance concept within the framework of linear system 

modeling. Possibility of representing a finite size electromagnetic scatterer by 

a linear time-invariant system model was first suggested by Kennaugh and 
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Cosgriff  [1] in 1958 and studied further by Kennaugh and Moffatt [2] in 1965. 

Their work implied that poles of the system function of a given target could be 

used to describe the natural component of the target response. Marin 

investigated the natural mode representation of transient scattering from 

rotationally symmetric bodies in his 1974 paper [3]. Later, in mid 1970s, 

Baum formalized the Singularity Expansion Method (SEM) to establish a 

mathematical expression for the natural response of a target in terms of 

target poles and the associated residue functions [4]. The residues of this 

expansion are known to be strong functions of aspect and polarization while 

the poles are invariant with respect to such excitation and observation 

conditions. The SEM is meaningful in the resonance region with the condition 

that the ratio between a target’s largest line-of-sight dimension and the 

wavelength of operation remains roughly in the range from 0.1 to 10. In other 

words, the wavelength of electromagnetic excitation needs to be comparable 

to the overall size of the scattering object. Therefore, the target recognition 

methods inspired by the SEM during the last three decades are essentially 

resonance region methods.  

 

Most of the target recognition techniques in resonance region utilize system 

poles of targets either directly or indirectly because the complete set of 

system poles identifies a given scattering object uniquely in an aspect and 

polarization invariant manner. In the direct approach, a subset of target poles 

which are excited over the bandwidth of operation can be extracted as 

features from late-time scattered signals of a given target as demonstrated in 

references [5, 6] but this process is known to be quite vulnerable to the SNR 

level. Therefore, extraction of alternative target feature sets which are less 

sensitive to noise while still being related to a subset of the complex natural 

resonance (CNR) frequencies (i.e. system poles) of the target  turns out to be 

an indirect but  more feasible approach in classifier design.  Introduction of 

the K-pulse concept by Kennaugh in 1981 [7] to be used for target 
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recognition was a very significant and novel attempt in this direction. As 

defined by Kennaugh, the time-limited K-pulse signal of a target was nothing 

but an aspect and polarization invariant target feature such that the Laplace 

spectrum zeros of this feature signal were the same as the target’s system 

poles. Inspired by Kennaugh’s K-pulse idea and by Baum’s SEM, various 

target recognition schemes have been suggested in the resonance region 

literature in 1980s such as the K-pulse based methods [8-11] and E-pulse 

based methods [12-13]. Most of the electromagnetic target recognition 

studies published in 1990s and 2000s combined the natural resonance 

based target recognition approach with advanced pattern recognition and 

signal processing techniques such as time-frequency representations [14-

18], neural networks [19-21, 24], global optimization techniques [22-23] and 

statistical techniques [18, 24-26]. 

 

The main objective of this thesis is to investigate the target discrimination 

performances of two recently suggested electromagnetic classification 

techniques which are the Multiple Signal Classification (MUSIC) algorithm 

based technique introduced very recently by Secmen and Turhan-Sayan in 

2008 [25-26] and the Wigner Distribution-Principal Component Analysis (WD-

PCA) based technique introduced for the first time by Turhan-Sayan in 2005 

[18]. Both of these resonance region techniques make use of the natural 

resonance mechanism for feature extraction from a properly selected late-

time portion of scattered electromagnetic signals at multiple aspects. The 

extracted target features are indirectly related to target poles in both 

techniques. In this thesis, these two target classification techniques will be 

compared regarding their robustness under excessive noise and their 

capacity to discriminate highly similar objects as the number of library targets 

gets larger. For this purpose, various classifiers will be designed for separate 

libraries of conducting spheres, dielectric spheres and dielectric coated 

conducting spheres. Another classifier will also be designed for a mixed 
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target library containing a large number of spheres from all these three 

subclasses. Scattered signal databases at various SNR levels will be used to 

design and test target classifiers realized by both classifier design techniques 

(the MUSIC based technique and the WD-PCA technique) to evaluate and 

compare their noise performances. Similar classifier design simulations will 

also be done for a target library containing small scale aircraft targets 

modeled by thin perfectly conducting wires for further performance analysis. 

Advantages of using slightly or moderately noisy scattered data in classifier 

design phase will also be demonstrated for both techniques. 

 

The organization of the rest of the thesis is as follows: 

 

Chapter 2 gives the theory and design steps of the MUSIC algorithm based 

and the WD-PCA based electromagnetic target recognition techniques 

together with their feature extraction methods. 

 

Chapter 3 presents the classifier design simulations by both techniques for 

various target libraries composed of only spherical objects. Classifiers 

designed under difference noise conditions will be tested at various SNR 

levels to evaluate and to compare the noise performances of the MUSIC 

algorithm based and WD-PCA based classifier design techniques.  

 

Classifier design simulations realized for small-scale aircraft models will be 

presented in Chapter 4. Noise performances of both the MUSIC algorithm 

based design technique and the WD-PCA based design technique will be 

evaluated and compared using scattered data of different SNR levels both in 

the classifier design phase and in the test phase.  

 

Finally, the concluding remarks and suggestions for future study will be 

outlined in Chapter 5. 
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There is also an Appendix containing a sample MATLAB code written for 

real-time decision testing as a part of the MUSIC algorithm based classifier 

design. 
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CHAPTER II 

2. THEORETICAL BACKGROUND 

 

 

 

In this chapter, theoretical background and basic design steps for the MUSIC 

algorithm based and the WD-PCA based electromagnetic classifier design 

techniques are outlined. 

  

2.1. MUSIC Algorithm Based Classifier Design Technique 

 

As mentioned in the Introduction section, one of the electromagnetic target 

recognition methods investigated in this thesis is based on the use of MUSIC 

algorithm together with the utilization of natural resonance mechanism to 

extract target features over a sufficiently late-time interval of the target’s 

scattered response. In general, the MUSIC algorithm is used to extract the 

parameters of damped sinusoidal signal components of a given transient 

signal in the presence of additive Gaussian noise. It is widely used in the 

areas of biomedical, telecommunication, signal processing and 

electromagnetics in applications such as the estimation of direction-of-arrival 

due to its high resolution [27-29]. In this thesis, the MUSIC algorithm is used 

to extract a target feature called Music Spectrum Matrix (MSM) from the late-

time portion of a given scattered response at a given aspect. The MSM 

features extracted for a given target at several reference aspects are finally 
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superposed to obtain a single target feature called Fused Music Spectrum 

Matrix (FMSM) to characterize the target in the classifier’s feature database. 

 

2.1.1. Target Feature Extraction Using the MUSIC 

Algorithm 

 

The MUSIC algorithm is a parametric method for spectral estimation based 

on the fact that the sinusoidal signal components and the additive Gaussian 

noise component of a given signal are uncorrelated.  is the superposition 

of (L/2) cosine signals sampled at N discrete time points and corrupted by an 

additive Gaussian noise signal . The resulting noisy signal  can be 

expressed as 

 

   (2.1.a)  

 

The same signal can also be expressed in terms of complex exponentials as 

 

     (2.1.b) 

 

where   and  

 

The noise-free signal component  expressed in Equation (2.1) can be 

interpreted as the natural response of an electromagnetic scatterer over a 

chosen late-time interval, sampled at N discrete time points. The system 

function of this scatterer has L/2 pairs of system poles  excited 

over the bandwith of the scattered signals. In other words, a given target of 

concern is represented by a linear, time invariant, causal system and the 
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natural part of its scattered response  is expanded according to the SEM 

in Equation 2.1 at an arbitrary aspect . 

For an integer m  that satisfies the condition NmL , we can form the 

vector )(ny of length m  as 

 

 (2.2) 

 

where the symbol T stands for the transpose operation.  

 

As the signal and noise components of  in Equation (2.1) are 

uncorrelated, the correlation matrix  can be expressed as 

 

 

 

(2.3) 

 

where  is the expected value operator, the superscript  stands for the 

complex conjugate transpose,  is the variance of Gaussian noise and   is 

the unit matrix. The matrix , defined in Equation (2.4), is a Vandermonde 

matrix whose dimensions and rank are  and , respectively and the 

matrix ,  which is defined in Equation (2.5), is an  matrix with rank L. 

 

 (2.4) 

 

with  being the complex frequency where . 
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(2.5) 

 

In Equation (2.5), elements of the matrix  are zero except for the diagonal 

elements since 

 

 
(2.6) 

 

In Equation (2.5) and (2.6), the phases of ic ’s are assumed to be random 

phases having uniform distribution in the interval [-π, π]. 

 

Let m21  be the eigenvalues of the correlation matrix IR , 

ordered from the largest to the lowest, and let L21 eeeS   be the subset 

of orthonormal eigenvectors associated with the first L eigenvalues 

L21  . Also, let m1L e....eG  be the set of orthonormal 

eigenvectors associated with the remaining eigenvalues m1L  . For 

m >L, the matrix 
HACA  is singular; it has a rank equal to L. So, 

HACA  has L 

strictly positive eigenvalues while the remaining Lm  eigenvalues are all 

being equal to zero. Hence, the eigenvalues of IR  for mLi ,,1  should 

be equal to 2 . Therefore, we can write 

 

         (2.7.a) 
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Also, by multiplying both sides of equation 2.3 by the matrix G from right, one 

can get 

          (2.7.b) 

 

These last two expressions imply that 

           (2.7.c) 

 

In this equation, AC  should be nonzero because this matrix has full column 

rank. Since the null space dimension of AC  is equal to zero, 0GAH
 

should follow.  In other words, m
Liie

1
 span both range space of G and null 

space of 
HA . Then, the true complex frequency values, L

iis 1
, which means 

the target poles, are the only solutions of the equation 

 

)(0)()( LmanyforsaGGsa HH
 (2.8) 

 

The values of m  and L are important parameters in classifier design using 

the MUSIC algorithm. The parameter m  may be chosen as large as possible 

for good resolution, but not too close to N, to still allow a reliable estimation of 

the covariance matrix. In some applications, the largest possible value that 

may be selected for m  may also be limited by computational complexity 

considerations [30]. However, it is usually advised to choose 2/Nm   to 

obtain the best performance [31]. Another important design parameter is L 

which should be an even number by definition such that half of which 

denotes the number of estimated damped sinusoidal signals in the reference 

data. Based on past experience with the MUSIC algorithm [26], L can be 

chosen as 2/m . The overestimation of L does not cause a serious problem 

but reduces the accuracy rate of the classifier very slightly. However, the 
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underestimation of this parameter may cause serious deterioration in the 

classifier performance. 

 

The “MUSIC spectrum function” can be defined as 

 

)()(

1
)(

saGGsa
sP

HH
 (2.9) 

 

where js  is the complex frequency. It can be seen from the equation 

(2.8) that the function )(sP  has peak values in the spectrum at  values. 

The discretized and normalized version of )(sP  can be used to construct the 

normalized MUSIC Spectrum Matrix (MSM)  with elements 

 

)v,u(P

)v,u(P
)v,u(P

unnorm

unnorm
 (2.10) 

 

where 

)j(aGG)j(a

1
)v,u(P

vu
H

vu
Hunnorm  (2.11) 

and 

 

2k

1v

1k

1u

2
unnormunnorm ))v,u(P()v,u(P  

(2.12) 

 

with 1k,,1u   and 2k,,1v   being the row and column indices of the 

MUSIC spectrum matrix. An MSM is an aspect dependent target feature 

matrix and gives us a natural‑resonance related power distribution map of a 

given target over the complex frequency plane.  

iss
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To extract MSM features from a given scattered natural response , the 

vector  is constructed first using Equation (2.2). Then, the correlation 

matrix for this   is computed as shown below 

 

N

mn

Hnyny
N

IR )()(
1~

 (2.13) 

 

where N is the total number of time samples of  and m=N/2 for best 

noise performance. Afterwards, the eigenvalues and the eigenvectors of the 

correlation matrix  are computed to construct the matrix . Then, the 

associated MSM feature is computed using equations (2.4) and (2.9) through 

(2.12) for the provided scattered target signal. 

 

 

2.1.2.  Design Steps of the MUSIC Algorithm Based 

Classifier  

 

An electromagnetic classifier will be designed for TK targets using scattered 

target responses at AK  different aspect angles. These design aspects will be 

referred as reference aspects from now on. The common time span of the 

scattered signals is divided into certain overlapping subintervals. The MUSIC 

spectrum matrices (MSMs) are constructed over each subinterval for each 

target at each reference aspect angle by using the procedure outlined in 

section 2.1.1. Afterwards, the MSMs which belong to a given target at 

different reference aspects but over the same late-time subinterval are 

superposed and then normalized as shown in Equation 2.14 to form the 
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fused MUSIC spectrum matrix (FMSM) for the purpose of enhancing the 

captured pole information and reducing the aspect dependency.  

                  (2.14) 

where 

 

Here, iFMSM   refers to the FMSM of the ith target and j,iP   refers to the 

MSM of target i   at the reference aspect j . 

 

This process is repeated for each late-time subinterval to be used next to 

determine the optimal time interval of classifier design. 

 

One of the most critical steps of the classifier design is the selection of a 

proper late-time design interval. All FMSMs and the individual MSMs 

computed for all targets at all reference aspect angles over all designated 

subintervals are used at this design step. Over the optimal late-time interval, 

summation of correlation coefficients between the MSMs and their matched 

FMSMs should be maximum. Also, summation of correlation coefficients 

between the MSMs and the mismatched FMSMs should be minimum. In 

other words, for each library target the MSMs constructed over the optimal 

late-time interval should be highly correlated only to the FMSM of this target. 

Selection of the optimal late-time interval for classification can be determined 

as follows [26]: 

 

P,..,1p)p(r)p(rifpintervaltimelateOptimalIndex total
*

total
*

 

where P is the number of candidate subintervals and 
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           (2.15) 

 

with 

 

and 

 

 

 

After the optimal late-time interval is selected, the feature database of the 

classifier is formed as the collection of Fused MSM (FMSM) features 

computed over this late-time interval for each library target. The optimal 

design interval may shift depending upon the SNR level of the scattered data 

used in classifier design. 

 

2.2. WD-PCA Based Classifier Design Technique 

 

As mentioned in the Introduction section, WD-PCA Based Classifier Design 

method is the second method to be investigated in this study. This method 

makes use of a well known time-frequency representation, the Wigner 

distribution (WD), and the principle component analysis (PCA) technique for 

feature extraction and for feature fusion as to be outlined in the next 

subsection. 
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2.2.1.  Target Feature Extraction Using Wigner Distribution 

 

In the first step of the WD-PCA based classifier design, the Wigner-Ville 

distribution (WD) is computed for each transient design signal belonging to 

each library target at each reference aspect. The total energy of each given 

scattered signal is normalized to unity at the beginning of the feature 

extraction process for gain invariant classification. The Wigner-Ville 

distribution is a real-valued, quadratic time–frequency representation 

preserving time shifts and frequency shifts of the signal and its output 

represents an approximate energy density function over the joint time-

frequency plane. The auto-WD of a given time domain signal )(tx is 

expressed as: 

 

detxtxftW fj

x

2)
2

(*)
2

(),(                                           (2.16) 

 

where the superscript (*) shows complex conjugation. WD satisfies marginal 

properties 

 
f

xx txtpdfftW
2

)()(),(                                          (2.17)

t

xx fXfPdtftW
2

)()(),(                                                   (2.18) 

 

 

where )(tp x  is the instantaneous power and )( fPx  is the spectral energy 

density of the signal. Also, X(f) is the Fourier transform of the signal x(t). The 

WD output does not give an exact time-frequency energy density function 

defined at every point in the time-frequency plane. As explained by the 

uncertainty principle, it is not possible to have infinite resolution in both time 

and frequency simultaneously [33]. Accordingly, the WD outputs contain very 
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strong and highly oscillatory interference terms that may seriously deteriorate 

the identification capability of the classifier. Due to these oscillatory 

interference terms, the WD outputs may have negative values which cannot 

be interpreted as energy density terms. Therefore, these non-physical 

negative values in the WD output matrix are simply replaced by zeros to 

obtain a modified WD output as 

 

2

)),((),(
),(

~ ftWabsftW
ftW xx

x                                             (2.19) 

 

as suggested in [17]. 

 

The modified auto WD output is further processed to obtain a partitioned 

energy density vector which is indirectly related to target poles. In obtaining 

this target feature for a given target at a given aspect, the total time span T0 

of the scattered target signal is divided into Q time bands (each having equal 

lengths of T0/Q seconds) as the first step. The amount of signal energy 

contained in the time band q at a sample frequency mf  is given [18] as 

 

dtftWfE
q

q
mxmq

)1(
),()(   for q=1,2,3,......Q        (2.20) 

 

where 0T /Q , m =1,2,....,N/2  and )/()1( 0Tmfm . 

 

As all the scattered signals )(tx  are real-valued, the WD output matrix has 

even symmetry with respect to frequency. Therefore, it is enough to process 

only half of the WD output matrix for non-zero frequency samples, i.e. for 

m=1,2,…,N/2. 

 

Then, the spectral energy density vector for the interval q is given as: 
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)([ 1fEE qq
  )( 2fEq ....... )( 2Nq fE ]            (2.21) 

 

Because there are Q non-overlapping time bands altogether, the partitioned 

energy density vector E  is formed as 

 

1[EE   2E ..............
QE ]              (2.22) 

 

having the length of (N/2) x Q. 

If we choose two successive time bands (q and q+1) for feature vector 

construction to include  and , the resulting energy feature vector 

contains information also about the real parts of the natural resonance 

frequencies. So, the classifier performance can be enhanced significantly as 

discussed in [18]. The resulting 2-band aspect dependent feature vectors are 

called Late-Time Feature Vectors (LTFV). As mentioned before, one of the 

most important steps of the classifier design is the selection of the optimal 

late-time interval for classification design. In other words, we need to 

determine the late-time interval index q* which corresponds to the 

combination of two successive time bands (q and q+1). The value of q* can 

be determined by maximizing the Correct Classification Factor (CCF) given in 

Equation (2.23) for a pre-selected Q value [18]. The value of the parameters 

Q and q* of classifier design are decided by using scattered data only at the 

reference aspects.  
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11
*)(             (2.23) 

 

where Mtar is the number of targets and K is the number of reference aspects, 

matched

jir ,
 is the correlation coefficient between any two LTFVs which belong to 
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the same target at different aspects,  mismatched

jir ,
 is the correlation coefficient 

between any two LTFVs which belong to different targets. The index q* is 

chosen from the possible values q*=1,2,…,Q-1. Then, the LTFVs are 

constructed over the optimum late time interval associated with the time band 

indices q and (q+1) for all library targets. 

 

2.2.2.  Feature Fusion Using the PCA Technique 

 

As the last step of the WD-PCA classifier design, we use principal 

component analysis (PCA) to perform multiple aspect feature fusion. In this 

way, we can reduce aspect dependency of the resulting target features. 

Principal component analysis (PCA), which was first introduced by Pearson 

in 1901 [34], is used to identify common patterns in a given data set. This 

method is useful to analyze and compress different sets of data to highlight 

their similarities in general. 

 

In the WD-PCA target classifier design method, a single characteristic feature 

vector, which can effectively represent the target over a broad range of 

aspects, is obtained by principal component analysis (PCA) as introduced by 

Turhan-Sayan in [18]. This single characteristic feature vector is called Fused 

Feature Vector (FFV) and the feature database of the classifier contains 

FFVs of all library targets. Later, during the real-time classification phase, the 

LTFV extracted from a received test signal over the optimal design interval is 

compared with the FFVs of this feature database. The target is identified 

based on the highest correlation coefficient computed.  

 

PCA-based multi-aspect feature fusion technique is described as follows:  

A feature matrix F of size K x N is constructed first for each library target. 

Rows of this matrix contain the LTFV of a given library target computed at K 
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different reference aspects. N is the length of each LTFV as discussed in 

section 2.2.1. Transpose of this feature matrix F is given in Equation (2.24). 

 

TT eF 1[    
Te2 .............. ]T

Ke                            (2.24) 

 

The covariance matrix FS of the feature matrix F is a symmetric positive-

definite matrix of size K x K given as    
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where its off-diagonal entries  denote covariance between feature 

vectors ie  and 
je and the diagonal entries 2

is  represent the variance of 

feature vectors ie . We can write the correlation coefficient ri,j between the 

feature vectors ie  and 
je  as 

            (2.26) 

  

The covariance matrix FS can be transformed into a diagonal matrix  

using a similarity transformation as the covariance matrix is symmetric and 

positive-definite. 
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where U is the modal matrix in the form   
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1[uU   2u .......... ]Ku                                                     (2.28) 

 

with iu ’s being the normalized eigenvectors corresponding to eigenvalues of 

the covariance matrix FS . The eigenvalues i are solved from 

 

0)det( ISF                                                             (2.29) 

 

In equation (2.29), I is the identity matrix of size K x K. Then, i  

(eigenvalues) are ordered from the largest to the smallest such that 

K...21  . The corresponding eigenvectors it  are solved from; 

 

0][ iiF tIS        i =1, 2,.....K                                    (2.30) 

 

Afterwards, these orthogonal eigenvectors are normalized to obtain the 

orthonormal eigenvectors,  

i

i

T

ii

i
i

t

t

tt

t
u                                                                (2.31) 

to construct the matrix U that is used to transform the correlated feature 

vectors  into a set of uncorrelated vectors,  by 
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where NI  is a unity row vector (an all-ones row vector) of length N and the 

resulting matrix Z has a size of K x N which is the same as the size of feature 
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matrix F. iz ’s will be called the principal components (PCs) of feature matrix 

F. These iz   vectors (PCs) have zero-mean, and variance i . This process 

must be repeated for all library targets. It can be shown that for each target 

the first principal component has the highest correlations with the original 

late-time feature vectors (LTFVs) extracted for that target since 1  has the 

highest percentage in the summation of i  for i=1,2,.....,K as shown in 

reference [18]. If this percentage is large enough, we may neglect the other 

principal components and use the first principal component as the fused 

feature vector (FFV) of the given target by itself. Otherwise, the other 

principal components can be linearly combined to construct the FFV of the 

target by proper weighting factors ( i ) as described in Equations (2.33) and 

(2.34) below; 

 

i

K

i

i zFFV
1

                (2.33) 

 

where    

 

            (2.34) 
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CHAPTER III 

 

 

3. CLASSIFIER DESIGN APPLICATIONS AND RESULTS 

FOR SPHERICAL TARGETS 

 

 

 

In this chapter, classifier design simulations and the associated performance 

results will be reported for various spherical target libraries. These libraries 

will contain perfectly conducting spheres of different sizes, dielectric spheres 

of exactly the same size but of slightly different permittivity values and 

dielectric coated perfectly conducting spheres of exactly the same external 

size but of different coating permittivity values and of different size for the 

inner conducting sphere. Moreover, a mixed target library which includes 

perfectly conducting spheres, dielectric spheres and also dielectric coated 

perfectly conducting spheres will be used for classifier design simulations.  

Both design techniques, the MUSIC algorithm based design technique and 

the WD-PCA based design technique, will be used to design classifiers for 

each specific target library. These classifiers will be tested extensively at 

various SNR levels to evaluate the robustness of these two different target 

classifier design techniques against noise in a comparative manner. 

 

3.1  Description of Scattered Data Used in Classifier Design 
and Testing 

 

In this chapter, all of our library targets are spheres. The impulse responses 

of these spherical targets are analytically synthesized in response to a plane 
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wave excitation that is linearly polarized in x-direction and propagates in z-

direction as shown in Figure 3.1. The far field scattered responses are 

computed at the Φ= π / 2 plane for different values of the angle θ in the 

frequency domain over a bandwidth from zero to 19.1 GHz with frequency 

steps of Δf= for 37.3 MHz (i.e. at 512 frequency sample points) by using the 

analytical solutions provided in the reference [32]. These computations are 

performed at 12 different values of the bistatic aspect angle θb where θb = 

180º – θ. The angle θ assumes the values θ = 15º, 30º, 45º, 60º, 75º, 90º, 

105º, 120º, 135º, 150º, 165º and 179º. The corresponding time domain 

responses of spherical targets are computed by using the Inverse Fast 

Fourier Transformation (IFFT) of the windowed frequency-domain data with 

1024 sample points over a total time span of  = 26.81 nanoseconds. In 

simulations, five reference aspects are used for classifier design purposes. 

These reference aspects are chosen to be θ = 15º, 45º, 90º, 135º, 179º. In 

other words, the feature database of each classifier is constructed using 

scattered data at only these reference aspects. The rest of the data at other 

aspects are used for performance testing only. 



 24 

 

Figure 3.1 Problem geometry used to synthesize electromagnetic signals 

scattered from spherical targets. 

 

3.2 Classifier Design for Perfectly Conducting Spheres 

 

In this chapter, we will use a total of nine perfectly conducting spheres 

named as Tcon1, Tcon2, Tcon3, Tcon4, Tcon5, Tcon6, Tcon7, Tcon8 and 

Tcon9 having different radii of 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5 and 12 cm, 

respectively. Three different target libraries of conducting spheres called 

CLCON1, CLCON2 and CLCON3 containing three, five and nine targets, 

respectively, are constructed as shown in Table 3.1. Among these, the target 

library CLCON2 has been used to analyze and compare the noise 

performances of two different electromagnetic target classification 

techniques.  
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Table 3.1 Target library descriptions for perfectly conducting spheres 

 

Target Library Targets 

CLCON1 Tcon1(r=8 cm), Tcon5(r=10 cm), Tcon9(r=12 cm) 

CLCON2 Tcon1(r=8 cm), Tcon3(r=9 cm), Tcon5(r=10 cm), 

Tcon7(r=11 cm), Tcon9(r=12 cm) 

CLCON3 Tcon1(r=8 cm), Tcon2(r=8.5 cm), Tcon3(r=9 cm), 

Tcon4(r=9.5 cm), Tcon5(r=10 cm), Tcon6(r=10.5 cm), 

Tcon7(r=11 cm), Tcon8(r=11.5 cm), Tcon9(r=12 cm) 

 

3.2.1 Classifier Design Simulations for Conducting Spheres 
Using the MUSIC Algorithm Based Method  

 

In this section, MUSIC algorithm based classifiers are designed for target 

libraries CLCON1, CLCON2 and CLCON3 using noise-free reference data 

and also another classifier is designed for the target library CLCON2 using a 

slightly noisy reference data set at 20 dB SNR level.  

3.2.1.1 Classifier design with noise-free reference data 

 

In the MUSIC algorithm based target classifier design method, firstly the total 

time span of scattered signals is divided into sixteen overlapping subintervals 

of length N=128. For each subinterval, the MUSIC spectrum matrices 

(MSMs) are computed at each different reference aspect angle θ = 15º, 45º, 

90º, 135º, 179º. Then, these MSMs are superposed for each given target to 

obtain the fused MUSIC spectrum matrices (FMSMs) over each subinterval 

to determine the optimal late-time interval for classifier design.  
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While searching for the optimal late-time interval, the  values are 

computed for each subinterval using Equation (2.15). In other words, over the 

optimal late-time interval, summation of correlation coefficients between 

MSMs and their matched FMSM must be maximum and also summation of 

correlation coefficients between MSMs and mismatched FMSMs must be 

minimum. In this subsection, design parameters of the MUSIC algorithm are 

chosen to be N= 128, m= 64 and L= 32. The  values computed for each 

time subinterval during the classifier designs using noise-free reference data 

for target libraries CLCON2 and CLCON3 are shown in Figure 3.2. 

  

(a)                                                         (b) 
Figure 3.2 The  values computed for the classifier designs for target 

libraries CLCON2 (a) and CLCON3 (b) in the noise free case.  

 

The Correct classification factor (CCF) given by the  value is a statistical 

measure providing a good overall idea about the choice of design interval. 

However, we may still need fine tuning in individual design cases especially 

when there are several late-time intervals with very similarly high  

values. Therefore, manual tests may also be useful to obtain the optimum 

late-time interval. For CLCON2 and CLCON3 target libraries (in noise-free 

design) the optimum late time interval is selected as the seventh time band 

which corresponds to [5.5, 8.8] nsec. Also, for the classifier for target library 

CLCON1 using noise-free data, the optimum late-time interval is obtained to 

be [4.8, 8.1] nsec. CCF values in the earlier time intervals are seen to be very 
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small in Figure 3.2 since these intervals contain forced scattered response 

components in addition to the superposition of damped sinusoidal natural 

response components. The presence of highly aspect dependent early-time 

scattered response components in data obviously causes deterioration in the 

aspect invariance and hence in the correct classification rate of the classifier. 

As we move into later time intervals, these forced response components 

vanish so we can obtain higher CCF values.  

 

When we decide on the optimal design interval, the feature database 

composed of target FMSMs is also ready to make performance tests. As an 

example, in Figure 3.3 below, the MSM map of an unknown test signal 

(actually, the signal belongs to the conducting sphere Tcon5 (r=10 cm) at 

θ=30 degrees) is given together with all FMSMs maps belonging to three 

library targets of the CLCON1 library in the noise free case. The matched 

correlation coefficient between the MSM of this test target and the FMSM of 

Tcon5 is computed to be 0.5614 while the mismatched correlation 

coefficients turned out to be 0.0749 and 0.0862 for the library targets 

Tcon1(r=8 cm) and Tcon9(r=12 cm), respectively. Therefore, the test target is 

classified to be the sphere Tcon5(r=10 cm) with a very large safety margin.  

Accordingly, Figure 3.3 (b) and Figure 3.3 (d) are very similar to each other, 

as expected.  
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                                                 (c)  

 

                                                  (d) 

Figure 3.3 (a)-(c) The FMSM features of the perfectly conducting spheres 

with 8 cm, 10 cm and 12 cm radii of the CLCON1 library in the noise free 

case.  (d) the MSM map of the test signal (belonging to the conducting 

sphere with radius of 10 cm at θ=30 degree aspect angle). 
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In the next example, correlation coefficients between the FMSMs of library 

targets (Tcon1, Tcon3, Tcon5, Tcon7 and Tcon9) and the MSMs of all 

available test signals are computed for the classifier designed for the library 

CLCON2 in noise free case. The results are plotted in Figure 3.4. In this 

figure, the first 12 indices refer to the test data belonging to the target 

Tcon1(r=8 cm) at 12 different aspect angles in the order θ = 15º, 30º, 45º, 

60º, 75º, 90º, 105º, 120º, 135º, 150º, 165º and 179º. The next 12 indices from 

13 to 24 belong to the second target Tcon3(r=9 cm) at the same aspects, 

and so on. For example, the blue curve gives us the correlation coefficients 

between the FMSM of the first library target (Tcon1) and the MSMs of all 

sixty test signals belonging to five library targets at 12 aspects. Here, first 12 

data points on the blue curve show the matched correlation coefficients for 

the target Tcon1(r=8 cm). We can see in the Figure 3.4 that this classifier 

makes only one mistake in classification at index 47 which corresponds to 

the test of Tcon7(r=11 cm) at 165 degree aspect angle. The MSM feature 

extracted from this test signal over the optimal late-time interval [5.5, 8.8] 

nsec has the highest correlation with the FMSM of Tcon9. Therefore, this test 

target is incorrectly identified to be the sphere Tcon9 (r=12 cm) instead of 

Tcon7 (r=11 cm). The resulting correct classification rate (called also as 

accuracy rate) of this classifier (designed with the MUSIC algorithm based 

method at noise-free case) is computed to be 98.3% for 59 correct decision 

out of 60 tests. 

 

Next, this classifier is tested at the SNR levels of 40 dB, 20 dB, 15 dB, 10 dB 

and 5 dB. Unfortunately, the accuracy rate of the classifier is found to drop 

sharply below 50% even at a very high SNR level of 40 dB. Accuracy rate 

was slightly above 20% at SNR=20 dB. These results are plotted in Figure 

3.15 of section 3.2.3. 
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Figure 3.4 Correlation coefficients between the FMSMs of library targets and 

the MSMs of a total of 60 available test signals for the classifier designed for 

the target library CLCON2 in noise free case using the MUSIC based 

technique. 

3.2.1.2 Classifier design with noisy reference data 

 

In this subsection, a MUSIC algorithm based classifier is designed for the 

target library CLCON2 using a set of slightly noisy reference data at 20 dB 

SNR level. Again, the common time span of these noisy signals is divided 

into sixteen overlapping subintervals. Then, we create MSMs for each library 

target at all reference aspects over each subinterval. Afterwards, these 

MSMs are superposed for each given target to obtain the fused MUSIC 

spectrum matrices (FMSMs) of that target over all subintervals. To choose 

the optimum late time interval, again we compute  values for each 

subinterval and plot them as shown in Figure 3.5. 
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Figure 3.5 The   values computed for the classifier design for the library 

CLCON2 at 20 dB SNR level using the MUSIC based technique. 
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designed by using noise free reference data for the same target library, we 

selected [5.5, 8.8] nsec as the optimum late time design interval as 

mentioned in the subsection 3.2.1.1. Now, in this noisy case, we have to 

choose an earlier time band for design because perfectly conducting spheres 

are very low-Q targets with quickly decaying response signals. For such 

targets, the effective SNR of late-time scattered signals may become very 

low as the amplitudes of damped sinusoidal signals attenuate to very small 

values. As an example to this fact, two example test signals which are 

scattered responses of the target Tcon3(r=9) at θ=30 degrees aspect angle 

at SNR = 10 dB (blue line) and scattered response of the same target at the 

same aspect at noise free case (red line) are plotted in Figure 3.6 below. 
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Figure 3.6 Scattered response of the target Tcon3(r=9) at 30 degrees aspect 

angle at SNR = 10 dB (blue line) and at noise free (red line) case. 
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shown in that figure. 
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                                                        (c) 
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                                                      (e) 

 

                                                     (f) 

Figure 3.7 (a)-(e) The FMSM features of the perfectly conducting spheres 

with 8 cm, 9 cm, 10 cm, 11 cm and 12 cm radii at 20 dB SNR level for the 

classifier designed for the target library CLCON2 at 20 dB SNR level (f) the 

MSM map of the test signal (belonging to the conducting sphere with radius 

of 8 cm at 90 degree aspect angle at 10 dB SNR level)  
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3.2.2 Classifier Design Simulations for Conducting Spheres 
Using the WD-PCA Based Method 

 

In this section, WD-PCA method based classifiers are designed for the target 

library CLCON2, firstly using noise-free reference data and then using slightly 

noisy reference data at 20 dB SNR level. Earlier, such target classifiers were 

designed by M. Ayar [35] for the target libraries CLCON1 and CLCON3 using 

noise free reference data. So, we will not repeat the same classifier designs 

but use his results for comparisons.  

 

3.2.2.1 Classifier design with noise-free reference data 

 

In this section, we design a classifier with noise-free reference signals for the 

target library CLCON2 using the WD-PCA based design technique. The 

resulting classifier is tested at various SNR levels of 40 dB, 20 dB, 15 dB, 10 

dB and 5 dB in addition to the infinite SNR level. 

  

As the first step of the classifier design, we compute the auto-WD matrix Wx 

of the discrete scattered signals x(t) with N=1024 sample points for all five 

reference aspects of all targets. Some contour plots of the auto-WD matrices 

for the target Tcon5 at 60º, 105º and 165º degrees aspect angles are given in 

Figure 3.8 as an example to show the behavior of these time-frequency 

domain images. Afterwards, energy density vectors are computed as 

described in Section 2.2.1 over Q=32 non-overlapping late-time intervals. 

Then, an optimal late-time interval for the classifier design is determined to 

construct the Late Time Features Vectors (LTFVs) for each library target at 

each reference aspect. 
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                                                     (a) 

 

                                                   (b) 

 

                                                  (c) 

 

Figure 3.8 Contour plots of modified auto-Wigner distributions for the target 

Tcon5 at (a) 60º, (b) 105º, (c) 165º aspect angles. 
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The optimal late-time interval is determined by the help of Correct 

Classification Factor (CCF) which is computed over each the late-time 

interval q*. To obtain high CCF values, the first normalized summation in 

Equation 3.1 should be much larger than the second one for a satisfactory 

target classification performance. In other words the factor CCF must be as 

large as possible to satisfy our design objectives.  
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Figure 3.9 CCF plotted against q* to determine the optimal late-time design 

interval for the target set CLCON2 by using noise-free reference data  
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The CCF versus q* results for q*=1,…,31 are computed for the present 

design simulation and plotted in Figure 3.9. The values of CCF has a 

maximum at q* = 10 time window for noise-free reference data. So, we obtain 

the successive pair of bands with q=9 and q=10 as the optimum late-time 

design interval which is chosen to be [6.70, 8.38] ns for this noise-free 

classifier design.  

 

Then, over this optimum late-time window, the late-time feature vectors 

(LTFV) are extracted for all targets at all aspect angles. LTFVs of the target 

Tcon1(r=8 cm), at the reference aspect angles θ = 15º, 45º, 90º, 135º, 179º  

for the noise free case are plotted in Figure 3.10 as an example. 

 

Figure 3.10 LTFVs of target Tcon1(r=8 cm) at the reference aspect angles 

θ = 15º, 45º, 90º, 135º, 179º  for noise-free case 
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For each target, the principal component analysis (PCA) is applied to fuse 

associated LTFVs. The Fused Feature Vectors (FFVs) are constructed for 

each target and they are plotted in Figure 3.11 for noise-free design. These 

five fused feature vectors form the feature database of the designed 

classifier. 

 

Next, the LTFVs of all test data are compared to FFVs of library targets to 

determine the correct classification rate of the resulting classifier. 100 percent 

accuracy is obtained against noise free test data as shown in Figure 3.15 of 

section 3.2.3. However, the accuracy rate shows a rapid decrease when the 

classifier is tested against noisy data even for the SNR level of 40 dB. In 

other words, both the MUSIC based classifier and the WD-PCA based 

classifier perform almost perfectly in noise-free testing but perform very 

poorly under noisy test conditions. 

 

Figure 3.11 FFVs of all targets for CLCON2 at noise-free case 
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3.2.2.2 Classifier design with noisy reference data 

 

In this section, we design another classifier for the target library CLCON2 

using the WD-PCA based method, but this time, using reference data at 20 

dB SNR level. All the design steps are the same as those outlined in section 

3.2.2.1. Therefore, we are not repeating those here. The optimal late-time 

design interval for this simulation in decided based on the CCF plot given in 

Figure 3.12. This plot is constructed after computing the Wigner distribution 

matrices and the energy density vectors of library target responses at all 

reference aspects over 31 different late-time intervals. 

 

Figure 3.12 CCF plotted against q* to determine the optimal late-time design 

interval for the target set of CLCON2 by using noisy reference data with 20dB 

SNR level.  
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As mentioned before, perfectly conducting spheres are very low-Q targets 

and at very late time intervals, the signal decreases sharply and hence the 

effective SNR becomes very low. So we have to select earlier late-time 

bands whenever possible. For this 20 dB SNR level design, we choose the 

late-time bands q=6 and q=7 as the optimum late time interval after fine 

tuning. The optimal design interval turns out to be [4.19, 5.86] nsec. 

 

As an example, the late-time feature vectors (LTFV) of the target 

Tcon5(r=10) extracted at the reference aspect angles θ = 15º, 45º, 90º, 135º, 

179º  with 20 dB SNR level over the selected optimum late-time interval are 

plotted in Figure 3.13.  

 

 

 

Figure 3.13 LTFVs of target Tcon5(r=10) at the reference aspect angles θ = 

15º, 45º, 90º, 135º, 179º  for 20 dB SNR level 

0 100 200 300 400 500 600 700 800 900 1000
0

5

x 10
-3

0 100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

0 100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

L
a

te
 T

im
e

 F
e

a
tu

re
s
 V

e
c
to

rs

0 100 200 300 400 500 600 700 800 900 1000
0

0.02

0.04

0 100 200 300 400 500 600 700 800 900 1000
0

0.02

0.04

Index of Features Samples

15 degree

45 degree

90 degree

135 degree

179 degree



 44 

 

For each target, the principal component analysis is applied to obtain its FFV 

from aspect dependent LTFVs. The eigenvalues obtained during the PCA 

process are listed in Table 3.2 for each library target. The resulting Fused 

Feature Vectors (FFVs) are plotted in Figure 3.14. 

 

It can be seen in Table 3.2 that, for all targets, the largest eigenvalue (λ1) is 

much larger than the other eigenvalues λ2 through λ5. Hence, the leading 

principal component z1 is very dominant and can be used by itself as the 

FFV of the associated target as discussed in [18].  

Table 3.2 Eigenvalues computed during the PCA process while designing the 

WD-PCA based classifier for the target library CLCON2 at 20 dB SNR level. 

 

 Tcon1(r=8) Tcon3(r=9) Tcon5(r=10) Tcon7(r=11) Tcon9(r=12) 

λ1    0.2366e-4    0.4295e-4     0.4984e-4     0.5295e-4     0.5821e-4 

λ2    0.0145e-4    0.0214e-4     0.0230e-4     0.0269e-4     0.0309e-4 

λ3    0.0061e-4    0.0082e-4     0.0100e-4     0.0114e-4     0.0100e-4 

λ4    0.0045e-4    0.0034e-4     0.0032e-4     0.0043e-4     0.0036e-4 

λ5    0.0024e-4    0.0029e-4     0.0029e-4     0.0027e-4     0.0023e-4 
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Figure 3.14 FFVs of all targets at 20 dB SNR level 

 

After this classifier is designed as outlined so far, it is tested against the 
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SNR levels of infinity (noise-free case), 40 dB, 20 dB, 15 dB, 10 dB and 5 dB. 

The correct classification factor values are computed and seen to be 

decreasing from 80% to 60% as SNR decreases from infinity to 5 dB. 

 

3.2.3 Discussion of Classifier Performance Results for 
Conducting Spheres 

 

In this subsection, we will compare the performances of target classifiers 

designed for various target libraries of conducting spheres using noise-free 

and slightly noisy data (at 20 dB SNR) by means of the MUSIC algorithm 
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0 100 200 300 400 500 600 700 800 900 1000

0

0.02

0.04

0 100 200 300 400 500 600 700 800 900 1000

0

0.02

0.04

0 100 200 300 400 500 600 700 800 900 1000
0

0.02
0.04

F
e

a
tu

re
 V

e
c
to

rs

0 100 200 300 400 500 600 700 800 900 1000
0

0.02
0.04

0 100 200 300 400 500 600 700 800 900 1000
0

0.02

0.04

Index of Feature Samples

FFV of Tcon1

FFV of Tcon3

FFV of Tcon5

FFV of Tcon7

FFV of Tcon9



 46 

conclusions drawn from the classifier performance results presented so far in 

section 3.2: 

 

The first conclusion is related to the capability of classifiers to discriminate 

large number of library targets. The correct decision rates of classifiers, 

which are designed by both methods using noise free reference data but 

tested at different SNR levels, for three different target libraries CLCON1, 

CLCON2 and CLCON3 are listed in Table 3.3. It is concluded based on this 

table that both classifier design techniques produce very high (close to 

100%) accuracy rates in the noise-free design/noise-free test case as we 

increase the number of perfectly conducting spheres in the target library from 

3 to 5 then to 9. The other and the more important conclusion to be drawn is 

that the classifiers designed for conducting spheres by both methods using 

noise-free reference data badly fail in tests performed by noisy test data even 

if the noise is very slight. Their accuracy rates sharply drop from perfect or 

almost 100% accuracy levels to unacceptably low levels of 40% or below as 

shown in Figure 3.15. This behavior of the classifiers can be explained by the 

fact that perfectly conducting spheres are extremely low-Q targets whose 

natural response signals decay at a very fast rate in late-time region. In other 

words, the effective SNR level of a given test signal over the optimal late-time 

interval is much smaller than its overall SNR level. For example, the noisy 

test signal belonging to the conducting sphere of radius 12 cm (i.e. the target 

Tcon9) at 165 degrees of aspect and at 10 dB overall SNR level actually has 

an effective SNR level of -22.7 dB over a late-time interval of [6.70, 8.38] 

nsec. Obviously, a target classifier that performs perfectly under noise-free 

conditions but fails in the presence of even a slightly amount of noise is not a 

useful one. Alternatively, the design of classifiers may be realized by slightly 

noisy reference data instead of using perfectly noise free data. As shown in 

Figure 3.15, the MUSIC algorithm based and WD-PCA based classifiers 

designed for the target library CLCON2 by using slightly noisy data with 20 
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dB SNR level perform much better when they are tested against noisy data. 

The accuracy rate of the MUSIC based classifier changes from 80% to 50% 

as the overall SNR level of the test signals drops from infinity to 5 dB. The 

accuracy rate of the WD-PCA based classifier is even better, which changes 

from 80% to 60% as SNR decreases from infinity to 5 dB. These classifiers 

cannot reach very high accuracy rates close to 100% under noisy testing 

conditions, the best they can do is about 80%. However, their accuracy rates 

do not drop to unacceptably low levels such as 20% but stay at acceptable, 

useful accuracy levels especially for SNR levels at and above 15 dB. As 

emphasized before, poor noise performance of late-time classifier design 

techniques should be expected for perfectly conducting spherical targets due 

to very low-Q nature of these targets.  

 

As mentioned before, results of the WD-PCA classifiers for the target libraries 

CLCON1 and CLCON3 using noise free design are taken from M. Ayar thesis 

[35] for comparisons. 

Table 3.3 Correct Decision Rates of MUSIC algorithm based and the WD-

PCA based classifiers for target libraries CLCON1, CLCON2 and CLCON3 

for the noise-free design/noise-free test case.  

 

Target Library 
CLCON1           

(3 targets) 

CLCON2             

(5 targets) 

CLCON3          

(9 targets) 

MUSIC method 100 98,3 98,1 

WD/PCA method   100 100 97 
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Figure 3.15 Correct classification rates (in percentage) of perfectly 

conducting sphere classifiers designed for the target library CLCON2 using 

either noise-free data or 20 dB SNR data. 

 

3.3 Classifier Design for Dielectric Spheres 

 

In this chapter, we have eight dielectric spheres named as Tdie1, Tdie2, 

Tdie3, Tdie4, Tdie5, Tdie6, Tdie7 and Tdie8 having same radii but slightly 

different permittivity values ε =3, 3.5, 4, 4.5, 5, 5.5, 6 and 7, respectively. Two 

different target libraries of dielectric spheres called CLDIE1 and CLDIE2 are 

shown in Table 3.4. The target library CLDIE1 is used in this section to 

compare the noise performances of two different electromagnetic target 

classification techniques.  

Table 3.4 Target library descriptions for dielectric spheres. 

 

Target Library Targets 

CLDIE1 Tdie1(ε =3), Tdie3(ε=4), Tdie5(ε=5), Tdie7(ε=6). 

CLDIE2 Tdie1(ε=3), Tdie2(ε=3.5), Tdie3(ε=4), Tdie4(ε=4.5), 

Tdie5(ε=5), Tdie6(ε=5.5), Tdie7(ε=6), Tdie8(ε=7). 
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3.3.1 Classifier Design Simulations for Dielectric Spheres 
Using the MUSIC Algorithm Based Method 

 

 

In this section, MUSIC algorithm based classifiers are designed for target 

libraries CLDIE1 and CLDIE2 using noise-free reference data and also 

another classifier is designed for the target library CLDIE1 using a slightly 

noisy reference data set at 20 dB SNR level.  

 

 

3.3.1.1 Classifier design with noise-free reference data 

 

As the first step of classifier design, we divide the total time span of noise-

free scattered signals into eight overlapping subintervals of length N=256. 

The other design parameters of the MUSIC algorithm based classifiers for 

target libraries CLDIE1 and CLDIE2 are chosen as m= 128 and L= 64. Using 

the same design steps reported in section (3.2.1.1), we search for the optimal 

late-time interval by the help of the  values. The  values computed 

for each time subinterval during the classifier design for target library CLDIE2 

are plotted in Figure 3.16. The maximum value of this bar chart is observed 

for the seventh late-time index corresponding to the subinterval [15.4, 22.1] 

nsec. When the same procedure is repeated for the target library CLDIE1, 

the optimum late-time interval is found to be [18.2, 24.9] nsec for classifier 

design using noise-free reference data. 
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Figure 3.16 The  values computed during the classifier design for the 

target library CLDIE2 in the noise-free case.  

 

The FMSMs maps belonging to each of four targets of CLDIE1 library are 

given in Figure 3.17 together with the MSM map of an unknown test signal 

which actually belongs to the target under noise-free conditions Tdie1 at θ= 
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                                                     (d) 

 

                                                    (e) 

 

Figure 3.17 (a)-(d) The FMSM features of the dielectric spheres Tdie1, Tdie3, 

Tdie5 and Tdie7 of the CLDIE1 library in the noise free case (e) the MSM 

map of the noise-free test signal belonging to target Tdie1 at θ = 45 degree 

aspect angle. 
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coefficients are plotted in Figure 3.18 for a total of 48 test signals. The index 

of test data is defined in exactly the same way as it was defined for Figure 

3.4 earlier. We can see in Figure 3.18 that the classifier CLDIE1 makes four 

mistakes of decision out of 48 trials in this noise-free design/noise-free test 

case. Therefore, correct classification rate of this MUSIC algorithm based 

classifier in noise-free case is computed to be 91.2%. Incorrect decisions are 

basically made while discriminating the targets Tdie5 and Tdie7 with relative 

permittivity values of 5 and 6, respectively.  

 

This classifier is also tested at the SNR levels of 20 dB, 15 dB, 10 dB and 5 

dB. Unfortunately, the accuracy rate of the classifier drops to 35% at the SNR 

level of 5 dB. These results are given in Table 3.6 of section 3.3.3. 

 

Figure 3.18 Correlation coefficients between the FMSMs of library targets 

and the MSMs of all available test signals are given for the MUSIC based 

classifier which is designed for the target library CLDIE1 in the noise-free 

design/noise-free test case. 
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3.3.1.2 Classifier design with noisy reference data 

 

In this subsection, a MUSIC algorithm based classifier is designed for the 

target library CLDIE1 using a set of slightly noisy reference data at 20 dB 

SNR level. Using the same procedure described in section 3.2.1 with design 

parameters N= 256, m= 128 and L= 64, we have determined the optimal late-

time interval [14.0, 20.7] nsec for this classifier design using noisy reference 

data at 20 dB SNR level. As expected, this late-time interval is earlier than 

the optimum late-time interval used for the noise-free classifier design for the 

same target library. As an example of the noisy scattered signals used in the 

design, scattered response of the target Tdie3 (ε=4), at θ=75 degrees with 20 

dB SNR level is plotted in Figure 3.19. 

 

Figure 3.19 Scattered response of the target Tdie3 (ε=4), at θ=75 degrees 

aspect angle with SNR = 20 dB SNR level. 
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5dB, 10dB, 15dB, 20dB and infinity. Results are given in Table 3.6 of section 

3.3.3. The SNR dependent accuracy rates of this classifier is observed to be 

decaying from 86% to near 50% as the overall SNR level decreases from 20 

dB to 5 dB as indicated in this table. Accuracy rate is computed to be 79% 

when this classifier is tested by noise-free test data. Obviously, this means a 

degradation of classifier performance at noise-free tests. But, on the other 

hand, performance of the classifier becomes much better at noisy tests. For 

example, the accuracy rate is increased from 56% to 81% for performance 

tests at 15 dB SNR level as a result of designing the classifier by using noisy 

data at 20 dB SNR instead of using noise-free reference data. 

 

3.3.2 Classifier Design Simulations for Dielectric Spheres 
Using the WD-PCA Based Method 

 

In this subsection, WD-PCA method based classifiers are designed for the 

target library CLDIE1, firstly using noise-free reference data and then using 

slightly noisy reference data at 20 dB SNR level. Earlier, a target classifier 

was designed for the target library CLDIE2 by M. Ayar [35] using noise free 

reference data. So, we will not repeat the same classifier design but use his 

results for comparisons whenever needed.  

 

3.3.2.1 Classifier design with noise-free reference data 

 

In this section, we design a classifier using noise free reference signals for 

the target library CLDIE1 using the WD-PCA based design technique. The 

resulting classifier is tested at various SNR levels of 20 dB, 15 dB, 10 dB and 

5 dB in addition to infinite SNR level. 
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As the first step of classifier design, we compute the auto-WD matrices of the 

scattered signals at reference aspects with N=1024 sample points in time. 

Some contour plots of the resulting auto-WD matrices for the target Tdie5 at 

θ=90º and θ=135º degrees aspect angles are given below in Figure 3.20.  

 

 

 

                                                         (a) 

 

                                                          (b) 

Figure 3.20 Contour plots of modified auto-Wigner distributions for the target 

Tdie5 at (a) θ=90º, (b) θ=135º aspect angles. 
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Afterwards, energy density vectors are computed as described in Section 

2.2.1 over Q=16 non-overlapping late-time intervals. Then using these 

vectors, an optimal late-time interval is determined to construct Late Time 

Features Vectors (LTFVs) by the help of CCF values. In Figure 3.21, CCF 

values are plotted against q* for the target set CLDIE1 by using noise-free 

reference data. It can be seen in this figure that the values of CCF has a 

maximum at q* = 12, so we choose the combination of time bands q=11 and 

q=12 as the optimum late-time interval for this WD-PCA based classifier 

design. This late-time interval corresponds to [16.8, 20.1] nsec in the noise-

free design case. The resulting classifier produces a correct decision rate of 

100% for testing SNR levels as low as 15 dB, given 90% accuracy for 10 dB 

SNR level and finally its accuracy drops to 69% at 5 dB SNR. These values 

are tabulated in Table 3.6. 

 

 

Figure 3.21 CCF values plotted against q* to determine the optimal late-time 

design interval for the target library CLDIE1 by using noise-free reference 

data. 
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3.3.2.2 Classifier design with noisy reference data 

 

In this section, another classifier is designed for the same target library 

CLDIE1 using the WD-PCA based method, but this time, using reference 

data at 20 dB SNR level. Also in this classifier, same design steps which are 

outlined in section 3.2.2.1, are performed. CCF values are plotted in Figure 

3.22 against q* to determine the optimal late-time design interval. 

 

 

Figure 3.22 CCF values plotted against q* to determine the optimal late-time 

design interval for the target set of CLDIE1 by using slightly noisy reference 

data at 20dB SNR level. 
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90º, 135º, 179º  for 20 dB SNR level (extracted over this optimum late time 

interval) are plotted in Figure 3.23. 

 

 

 

Figure 3.23 LTFVs of target Tdie3(ε=4) at the reference aspect angles θ = 

15º, 45º, 90º, 135º, 179º  for 20 dB SNR level 
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0 100 200 300 400 500 600 700 800 900 1000

1
2
3

x 10
-4

0 100 200 300 400 500 600 700 800 900 1000
0

0.5
1

1.5
x 10

-3

0 100 200 300 400 500 600 700 800 900 1000
0

5
x 10

-3

L
a

te
 T

im
e

 F
e

a
tu

re
 V

e
c
to

rs

0 100 200 300 400 500 600 700 800 900 1000
0

5
x 10

-3

0 100 200 300 400 500 600 700 800 900 1000
0
1
2
3

x 10
-3

Index of Feature Samples

15 degree

45 degree

90 degree

135 degree

179 degree



 60 

Table 3.5 Eigenvalues computed during the PCA process while designing the 

WD-PCA based classifier for the target library CLDIE1 at 20 dB SNR level. 

 

 Tdie1(ε=3) Tdie3(ε=4) Tdie5(ε=5) Tdie7(ε=6) 

λ1 2,0267e-7 5,3629e-7 1,5129e-6 2,6976e-6 

λ2 2,3183e-8 6,1180e-8 2,9106e-7 4,1227e-7 

λ3 1,4627e-8 4,6943e-8 7,9363e-8 1,3631e-7 

λ4 6,8581e-10 3,4675e-9 1,3265e-8 2,3260e-8 

λ5 1,8017e-10 5,9578e-10 2,4507e-9 2,0492e-9 

 

 

 

Figure 3.24 FFVs of all targets for the classifier designed at 20 dB using 

target library CLDIE1 and a LTFV of the test signal belonging to the target 

Tdie1 (ε=3) at θ=105 aspect angle at 20dB SNR level. 
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Finally, this classifier is tested against all available test data at the SNR 

levels of infinity, 20 dB, 15 dB, 10 dB, 5 dB. The correct classification rate 

turns out to be perfect (100%) for SNR levels as low as 15 dB, it is 92% at 10 

dB and decreases to 71% 5 dB SNR level. 

 

3.3.3 Discussion of Classifier Performance Results for 
Dielectric Spheres 

 

In this subsection, usefulness of target classifiers designed to discriminate 

dielectric spheres by the MUSIC algorithm based technique and by the WD-

PCA based technique will be compared. Our comparisons will be based on 

the contents of Table 3.6 and Table 3.7. 

 

First of all, in noise-free design case, performance of the WD-PCA based 

classifier is highly superior to the performance of the MUSIC based classifier. 

As the SNR level of test signals is reduced from infinity to 5 dB, accuracy rate 

of the WD-PCA based classifier drops from 100% to 69% while the accuracy 

rate of the MUSIC based classifier decreases from 92% to 35%. 

 

Secondly, use of slightly noisy reference data in classifier design improves 

the performances of both classifier design techniques. While the 

improvement is slight in the WD-PCA classifier, a large improvement is 

observed in the performance of the MUSIC algorithm based classifier. 

However, despite this prominent improvement in the MUSIC based 

technique, performance of the WD-PCA based classifier still looks much 

better, by about 20% difference in correct decision rates. In both noise-free 

design and noisy design, the resulting WD-PCA based classifiers give 100% 

accuracy at overall SNR levels as low as 15 dB. This rate stays around 90% 

at 10 dB testing SNR and finally drops to about 70% at the very noisy case of 

5 dB SNR. Also, performance of the WD-PCA classifier does not get worse 
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when it is designed at 20 dB SNR level but tested with noise-free data. 

Performance of the MUSIC based classifier, however, is badly affected under 

the same conditions. Accuracy rate of the MUSIC based algorithm drops 

from 92% to 79% at noise-free testing depending upon the SNR level used in 

the design phase.  

 

Also, we can compare the usefulness of MUSIC based and WD-PCA based 

classifier design techniques regarding the number of library targets that they 

can handle. Based on the accuracy rates tabulated in Table 3.7, it can be 

concluded that the WD-PCA based classifiers designed for the target libraries 

CLDIE1 and CLDIE2 with 4 and 8 dielectric spheres, respectively, have 

about 10% better accuracy as compared to the MUSIC based classifiers at 

this noise-free design/noise-free test case. 

 

Table 3.6 Correct Decision Rates of the classifier designed for the target 

library CLDIE1 using either noise-free data or 20 dB data.  

 

SNR Levels 5dB 10dB 15dB 20dB Noise Free 

MUSIC method 

(20dB Ref) 
51 69 81 86 79 

WD/PCA method   

(20dB Ref) 
71 92 100 100 100 

MUSIC method 

(N. Free Ref) 
35 43 56 82 92 

WD/PCA method   

 (N. Free Ref) 
69 90 100 100 100 
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Table 3.7 Correct Decision Rates of MUSIC algorithm based and WD-PCA 

based classifiers for target libraries CLDIE1 and CLDIE2 for the noise-free 

design/noise-free test case.  

 

Target Library 
CLDIE1 

  (4 targets) 

CLDIE2                   

(8 targets) 

MUSIC method 92 89 

WD/PCA method   100 100 

 

3.4 Classifier Design for Dielectric Coated Conducting 
Spheres 

 

In this chapter, we will present design simulations and the results of 

performance tests for classifiers which have dielectric coated conducting 

spheres as their library targets. These spheres have exactly the same 

external size but different values of coating permittivities and different sizes 

for the inner conducting spheres. All dielectric coated conducting spheres 

has the same outer radii of r=10 cm. Physical properties of 15 different 

targets Tcoa1 through Tcoa15 are described in Table 3.8. Also, five different 

target libraries of dielectric coated conducting spheres called CLCOA1, 

CLCOA2, CLCOA3, CLCOA4 and CLCOA5 are defined in this table. In this 

section, classifiers are designed with noise-free reference data for all these 

target libraries and they are tested under noise-free conditions. Also, four 

different classifiers will be designed the for target library CLCOA3 to compare 

the noise performances of MUSIC based and WD-PCA based 

electromagnetic target classifier design techniques. 
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Table 3.8 Descriptions of 15 different targets and 5 different target libraries of 

dielectric coated conducting spheres. In this table, rin  is the radius of inner 

conducting sphere in cm and ε is the relative permittivity of the dielectric 

coating. All targets have the same outer radius of 10 cm. 

 

Target Library Targets 

CLCOA1 Tcoa1(rin=2 ε =3), Tcoa4(rin=4 ε =3), Tcoa7(rin=7 ε =3), 

Tcoa10(rin=8 ε =3), Tcoa13(rin=9ε =3). 

CLCOA2 Tcoa1(rin=2 ε =5), Tcoa4(rin=4 ε =5), Tcoa7(rin=7 ε =5), 

Tcoa10(rin=8 ε =5), Tcoa13(rin=9ε =5). 

CLCOA3 Tcoa1(rin=2 ε =7), Tcoa4(rin=4 ε =7), Tcoa7(rin=7 ε =7), 

Tcoa10(rin=8 ε =7), Tcoa13(rin=9ε =7). 

CLCOA4 Tcoa1(rin=2 ε =3), Tcoa2(rin=2 ε =5), Tcoa3(rin=2 ε =7), 

Tcoa4(rin=4 ε =3), Tcoa5(rin=4 ε =5), Tcoa6(rin=4 ε =7),  

CLCOA5 Tcoa7(rin=7 ε =3), Tcoa8(rin=7 ε =5), Tcoa9(rin=7 ε =7), 

Tcoa10(rin=8 ε =3), Tcoa11(rin=8 ε =5), Tcoa12(rin=8 ε 

=7), Tcoa13(rin=9ε =3), Tcoa14(rin=9 ε =5), Tcoa15(rin=9 

ε =7). 

 

 

3.4.1 Classifier Design Simulations for Dielectric Coated 
Conducting Spheres Using the MUSIC Algorithm Based 
Method 

 

In this section, MUSIC algorithm based classifiers are designed for target 

libraries CLCOA1, CLCOA2, CLCOA3, CLCOA4 and CLCOA5 using noise-

free reference data and also another classifier is designed for the target 

library CLCOA3 using a slightly noisy reference data set at 20 dB SNR level. 
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3.4.1.1 Classifier design with noise-free reference data 

 

All the design steps used in this simulation are the same as those outlined in 

section 3.2.1.1. The design parameters of the MUSIC algorithm based 

classifiers for all target libraries are chosen as N= 128, m= 64 and L= 32. 

Using these design parameters and noise-free reference data for design, the 

optimum late-time design intervals for the target libraries CLCOA1, CLCOA2, 

CLCOA3, CLCOA4 and CLCOA5 are obtained as [16.8, 20.1] nsec, [16.8, 

20.1] nsec, [14.2, 17.6] nsec, [19.2, 22.6] nsec and [16.8, 20.1] nsec, 

respectively.  As an example, the  values computed for each time 

subinterval for the target library CLCOA5 are shown in Figure 3.25. It can be 

seen in this figure that  has a maximum at q=11. So, we choose the 

corresponding time band [16.8, 20.1] nsec as the optimum late time interval 

for classifier design for the library CLCOA5. 

 

Figure 3.25 The  values computed for the classifier designs for target 

libraries CLCOA5 in the noise free case.  
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After choosing the optimum late-time interval for a given target library, the 

feature database is formed by the FMSM features of each target in that 

library. Then, correlation coefficients between the FMSMs of all library targets 

and the MSMs of all available test signals are computed to obtain the 

accuracy rate of that specific classifier. These steps are repeated for each 

target library shown in Table 3.8 to compare the noise-free design/noise-free 

test simulations. As an example, a plot of matched and mismatched 

correlation coefficients for the CLCOA3 classifier is plotted in Figure 3.26 for 

60 test signals. It can be seen in this figure that MUSIC algorithm based 

classifier for the target set CLCOA3 makes only two mistakes. Therefore, 

correct classification rate of this classifier with MUSIC algorithm method at 

noise-free design/noise-free test case is equal to 96.7%. Both of these 

mistakes are related to the discrimination of the target Tcoa4 only. Also, 

based on Figure 3.26, we can say that discrimination of dielectric coated 

conducting spheres becomes easier as the radius of inner conducting sphere 

gets larger. 

 

This classifier designed for the target set CLCOA3 (using noise-free 

reference data) is also tested at the SNR levels of 20 dB, 15 dB, 10 dB and 5 

dB. Unfortunately, the accuracy rate of the classifier drops under 30% as the 

SNR level of test signals decreases to 5 dB. Correct classification rate of this 

classifier at various SNR levels are given in Table 3.10 and Table 3.11 in 

section 3.4.3. 



 67 

 

Figure 3.26 Correlation coefficients computed between the FMSMs of all 

library targets and the MSMs of all test signals for the classifier designed for 

the library CLCOA3 in noise-free design/noise-free test case. 
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optimal late-time design interval shifts to earlier times when we use noisy 

reference data instead of noise-free reference data for design. These time 

shifts becomes more pronounced when the targets are low-Q structures such 

as conducting spheres or coated conducting spheres with large inner 

conducting parts. As example to the scattered signal database of the 

CLCOA3 library, the scattered response of the target Tcoa7 at θ=60 degrees 

aspect angle with 20 dB SNR level is plotted in Figure 3.27. 

 

 

 

Figure 3.27 Scattered response of the target Tcoa7 observed at θ=60 

degrees aspect angle at 20 dB SNR level. 

 

 

FMSMs for each target of this CLCOA3 library are computed over the optimal 

late-time interval [6.7, 10.0] nsec and stored in the feature database of the 

resulting classifier. The FMSMs of library targets and the MSM feature of a 

0 5 10 15 20 25
-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Time (ns)

S
c
a

tt
e

re
d

 R
e

s
p

o
n

s
e



 69 

test signal (which belongs to Tcoa10 at θ=135º at 20 dB SNR level) are 

shown in Figure 3.28. It can be seen in this figure that MSM map of the target 

Tcoa10 (shown in Figure 3.28 (f)) is highly correlated with its matched FMSM 

feature(shown in Figure 3.28 (d)),  as expected. The accuracy rate computed 

for this classifier is observed to be decreasing form %82 to %60 as the SNR 

level of test signals decreases from 20 dB to 5 dB. Therefore, we can 

conclude that noise performance of the MUSIC algorithm based technique 

has been highly improved by using slightly noisy data at 20 dB SNR level in 

the classifier design process. 
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                                                     (c) 

 

                                                     (d) 

 

                                                    (e) 

Frequency (GHz)

S
ig

m
a 

(G
N

ep
er

/s
)

FMSM of Tcoa 7

 

 

0 1 2 3 4 5 6 7 8

-3

-2.5

-2

-1.5

-1

-0.5

0

-35

-30

-25

-20

-15

-10
dB

Frequency (GHz)

S
ig

m
a 

(G
N

ep
er

/s
)

FMSM of Tcoa 10

 

 

0 1 2 3 4 5 6 7 8

-3

-2.5

-2

-1.5

-1

-0.5

0

-35

-30

-25

-20

-15

-10
dB

FMSM of Tcoa 13

Frequency (GHz)

S
ig

m
a 

(G
N

ep
er

/s
)

 

 

0 1 2 3 4 5 6 7 8

-3

-2.5

-2

-1.5

-1

-0.5

0

-30

-25

-20

-15

-10
dB



 71 

 

                                                      (f) 

 

Figure 3.28 (a)-(e) The FMSM features of the dielectric coated conducting 

spheres Tcoa1, Tcoa4, Tcoa7, Tcoa10 and Tcoa13 for the classifier 

designed for the target library CLCOA3 at 20 dB SNR level, (f) the MSM 

feature of a test signal (belonging to the target Tcoa10 at θ=135 degree 

aspect angle at 20 dB SNR level)  

 

3.4.2 Classifier Design Simulations for dielectric Coated 
Conducting Spheres Using the WD-PCA Based Method 

 

In this section, WD-PCA method based classifiers are designed for the target 

library CLCOA3, firstly using noise-free reference data and then using slightly 

noisy reference data at 20 dB SNR level. Earlier, WD-PCA based target 

classifiers were designed for all the target libraries shown in Table 3.8 by M. 

Ayar [35] using noise-free reference data. So, we will not repeat the same 

classifier designs for the target libraries CLCOA1, CLCAO2, CLCOA4 and 

CLCOA5 (i.e. except the CLCOA3 library) but use his results for comparisons 

whenever needed.   
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3.4.2.1 Classifier design with noise-free reference data 

 

In this section, we design a WD-PCA based classifier using noise-free 

reference signals for the target library CLCOA3 and test the resulting 

classifier at SNR levels of 20 dB, 15 dB, 10 dB, 5 dB and also at infinite SNR 

level.  

 

The first step of the design was again the computation of the auto-WD matrix 

of the reference scattered signals at N=1024 sample points. Contour plots of 

the modified auto-WD matrices obtained for the target Tcoa7 at θ=45º, 105º 

and 179º degrees are given below in Figure 3.29. 

 

 

                                                             (a) 

 

                                                             (b) 

Time Index

Fr
eq

ue
nc

y I
nd

ex

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

500

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Time Index

Fr
eq

ue
nc

y I
nd

ex

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

500

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45



 73 

 

                                                          (c) 

Figure 3.29 Contour plots of modified auto-Wigner distributions for target 

responses belonging to Tcoa7 at aspect angles (a) θ=45º (b) θ=105º and (c) 

θ=179º. 

 

Afterwards, energy density vectors are computed as described in Section 

2.2.1 using these auto-Wigner distributions over Q=16 non-overlapping late-

time intervals. Then using these vectors, an optimal late-time interval is 

determined. For this purpose, the CCF values are plotted against q* for q*= 

1,2,…,Q-1 for the target library CLCOA3 in this case of noise-free classifier 

design. By the help of manual fine tuning tests in addition to the computed 

CCF values, we choose the time bands q=11 and q=12 to construct the 

optimum late-time interval in this design. The resulting optimal late-time 

design interval corresponds to [16.8, 20.1] nsec. 
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Figure 3.30 CCF values plotted against the late-time index q* to determine 

the optimal late-time design interval for target library CLCOA3 in the case of 

noise-free classifier design. 

 

3.4.2.2 Classifier design with noisy reference data 

 

In this section, another classifier is designed for the same target library 

CLCOA3 using the WD-PCA based method, but this time, using noisy 

reference data at 20 dB SNR level. Also for this classifier the Q value is 

selected to be 16. Then, CCF values are plotted in Figure 3.31and are used 

to determine the optimal late-time design interval which turns out to be [16.8, 

20.1] nsec spanning the late-time intervals with indices q=11 and q=12. 
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Figure 3.31 CCF values plotted against the late-time index q* to determine 

the optimal late-time design interval for target library CLCOA3 in the case of 

classifier design using noisy reference data at 20 dB SNR level. 

 

As an example, extracted late-time feature vectors (LTFV) of the target 

Tcoa7, at the reference aspect angles θ = 15º, 45º, 90º, 135º, 179º  at 20 dB 

SNR level over this optimum late time window are plotted in Figure 3.32. 

 

Figure 3.32 LTFVs of target Tcoa7 at the reference aspects θ = 15º, 45º, 90º, 

135º, 179º  for 20 dB SNR level. 
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For each target, the principal component analysis is applied to obtain its FFV 

from aspect dependent LTFVs at reference aspect angles. The eigenvalues 

obtained during the PCA process are listed in Table 3.9 for each library 

target. As seen in this table the largest eigenvalue (λ1) is much more 

dominant than the others. Therefore, the leading principal component z1 can 

be used as the FFV of the associated target as mentioned before.  

 

Table 3.9 Eigenvalues computed during the PCA process while designing the 

WD-PCA based classifier for the target library CLCOA3 at 20 dB SNR level. 

 

 Tcoa1 Tcoa4 Tcoa7 Tcoa10 Tcoa13 

λ1 1,5300e-6 3,0928e-6 2,1287e-6 7,9718e-7 4,1854e-7 

λ2 2,8152e-7 5,8487e-7 1,7918e-7 2,3495e-8 1,3869e-8 

λ3 1,4049e-7 1,6614e-7 6,3879e-8 8,8712e-9 4,7901e-9 

λ4 7,2332e-8 9,6526e-8 4,3588e-8 3,4737e-9 1,5289e-9 

λ5 6,9499e-9 1,3903e-8 5,6950e-9 1,8870e-9 9,2848e-10 

 

 

The resulting Fused Feature Vectors (FFVs) of the target library CLCOA3 

and LTFV of a test signal which belongs to the target Tcoa7 at θ=165 degree 

aspect angle at 20dB SNR level, are given altogether in Figure 3.33. It can 

be seen in this figure that LTFV of the test target Tcoa7 is more closely 

correlated to its matched FFV, as expected. 
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Figure 3.33 FFVs of all targets from the classifier designed at 20 dB using 

target library CLCOA3 and LTFV of the test target Tcoa7 at θ=165 degree 

aspect angle at 20dB SNR level. 

 

Finally, this classifier is tested against all available test data at the SNR 

levels of infinity, 20 dB, 15 dB, 10 dB, 5 dB with accuracy rates changing 

from 98% to 75%. The results are given in the next section altogether. 

 

3.4.3 Discussion of Classifier Performance Results for 
Dielectric Coated Conducting Spheres 

 

In this section, performance results of all target classifiers designed for 

dielectric coated conducting spheres are discussed.  
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In general, we can see in Table 3.10 that the WD-PCA based classifiers 

display much better accuracy than the MUSIC algorithm based classifiers in 

both cases of design with noise-free reference data and design with slightly 

noisy reference data at 20 dB. Noise performances of both methods, 

especially the MUSIC algorithm based method, can be improved when the 

classifiers are designed using a slightly noisy set of reference data. General 

tendency of the accuracy rates listed in Table 3.10 looks very similar to the 

one displayed in Table 3.6 of section 3.3.3. Therefore, the conclusions drawn 

for the noise performance of the MUSIC based and the WD-PCA based 

classifiers in discriminating dielectric spheres are also valid in the case of 

classifying the dielectric coated conducting spheres.  

 

Table 3.10 Correct Decision Rates of CLCOA3 target library using either 

noise-free data or 20 dB data. 

 

SNR Levels 5dB 10dB 15dB 20dB Noise Free 

MUSIC method 

(20dB Ref) 
60 69 77 82 75 

WD/PCA method 

(20dB Ref) 
75 85 93 95 98 

MUSIC method 

(N. Free Ref) 
27 40 57 72 97 

WD/PCA method 

 (N. Free Ref) 
73 82 95 95 98 
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Correct decision rates of classifiers designed for the target libraries CLCOA1, 

CLCOA2, CLCOA3, CLCOA4 and CLCOA5 by using both the MUSIC based 

and the WD-PCA based design techniques are listed in Table 3.11 for the 

noise-free design/noise-free test case. Based on these test results, it can be 

concluded that better accuracy rates are obtained for larger relative 

permittivity (Ɛ) values used for coating. When this Ɛ value gets smaller, 

discrimination of dielectric coated conducting spheres becomes more difficult 

where the targets are different from each other only in terms of their inner 

radii. Moreover, most of the wrong decisions made by the classifiers for 

target libraries CLCOA1, CLCOA2 and CLCOA3 happen for targets with 

smaller inner radii (r=2 and r=4). We can also confirm these conclusions by 

comparing the accuracy rate results of the classifiers for target libraries 

CLCOA4 and CLCOA5. In other words, recognition of targets with smaller 

radius of conducting inner sphere is much more difficult than the recognition 

of dielectric coated conducting spheres with larger  parameters. The WD-

PCA based classifier looks more successful than the MUSIC based classifier 

in this challenging case. The results tabulated in Table 3.11 are not 

conclusive to make a decision about the usefulness of each design method 

when the number of targets gets larger. 

 

As mentioned before, results of the WD-PCA classifiers for the target libraries 

CLCOA1, CLCOA2, CLCOA4 and CLCOA5 using noise free design are 

taken from M. Ayar thesis [35] for comparisons. 
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Table 3.11 Correct Decision Rates of MUSIC algorithm based and WD-PCA 

based classifiers for various target libraries in the noise-free design/noise-

free test case.  

 

Target Library 

CLCOA1 

Ɛ=3 

r=2,4,7,8,9 

(5 targets) 

CLCOA2 

Ɛ=5  

r=2,4,7,8,9 

(5 targets) 

CLCOA3 

Ɛ=7  

r=2,4,7,8,9 

(5 targets) 

CLCOA4 

Ɛ=3,5,7 

r=2,4 

(6 targets) 

CLCOA5 

Ɛ=3,5,7 

r=7,8,9 

(9 targets) 

MUSIC based 

classifier 
70 85 97 

69 91 

WD/PCA based 

classifier [35]   
65 92 98 

77 86 

 

 

3.5 Classifier Design for a Mixed Spherical Target Library 

 

In this section, the MUSIC based and WD-PCA based classifiers are 

designed for a target library which includes a total of 27 targets; three 

dielectric spheres, nine conducting spheres and fifteen dielectric coated 

conducting spheres as described in Table 3.12.  
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Table 3.12 Description of targets for the library CLMIX. 

 

Target Library Targets 

CLMIX Tdie1(ε=3), Tdie5(ε=5), Tdie8(ε=7),                      

Tcon1(r=8cm), Tcon2(r=8.5cm), Tcon3(r=9cm), 

Tcon4(r=9.5cm), Tcon5(r=10cm), Tcon6(r=10.5cm), 

Tcon7(r=11cm), Tcon8(r=11.5cm), Tcon9(r=12cm), 

Tcoa1(rin=2cm ε=3), Tcoa2(rin=2cm ε=5), Tcoa3(rin=2cm 

ε=7), Tcoa4(rin=4cm ε=3), Tcoa5(rin=4cm ε=5), 

Tcoa6(rin=4cm ε=7), Tcoa7(rin=7cm ε=3), Tcoa8(rin=7cm 

ε=5), Tcoa9(rin=7cm ε=7), Tcoa10(rin=8cm ε=3), 

Tcoa11(rin=8cm ε=5), Tcoa12(rin=8cm ε=7), Tcoa13(rin=9cm 

ε=3), Tcoa14(rin=9cm ε=5), Tcoa15(rin=9cm ε =7). 

 

 

As mentioned earlier, conducting sphere is a very low-Q target whose natural 

response decays very quickly with time because of very high real parts of 

system poles. Therefore, the maximum normalized energy level of unity is 

attained at much earlier times for a conducting sphere as compared to a 

dielectric sphere or a dielectric coated conducting sphere of the similar 

overall size as shown in Figure 3.34. We can easily discriminate conducting 

spheres within such a mixed target library by using this fact, especially in 

noise-free tests. 

 

The cumulative normalized energy curve )(te  associated with a scattered 

signal x(t) is defined as  

 

dxte
t

x
0

2
)()(        (3.2) 

where 
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2/1

0

2
)(

)(
)(

dx

tx
tx       (3.3) 

 

is the normalized scattered signal in time domain.  
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                                                            (b) 

 

                                                          (c) 

Figure 3.34 Scattered responses and their cumulative normalized energy 

curves for (a) Conducting sphere Tcon3 at 120º (b) Dielectric coated 

conducting sphere Tcoa5 at 120º (c) Dielectric sphere Tdie5 at 120º 
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To discriminate conducting spheres from the rest, we can determine a 

threshold value for the time index such that the normalized energy curves of 

conducting sphere targets of the library reaches to, let say 99% percent, of 

their maximum value (unity) before that critical time instant. In the 

classification simulations of this section, the threshold time index is chosen to 

be 400 out of 1024 time samples. If a given scattered test signal attains the 

99.9 percent of its maximum normalized energy level before that threshold 

time index we can say with confidence that this scattered signal belongs to a 

conducting sphere. For classifying conducting spheres, we use a classifier 

which is the same as the classifier designed for the CLCON3 target library. 

For the other targets, a new classifier whose target library includes 3 

dielectric spheres and 15 dielectric coated spheres (a total of 18 targets) is 

designed. In Figure 3.35, the CCF values are plotted against q* for this target 

set by using noise-free reference data. We choose the combination of time 

bands q=11 and q=12 as the optimum late-time interval for this WD-PCA 

based classifier design and also for WD-PCA based classifier design using 

noisy reference data. This late-time interval corresponds to [16.8, 20.1] nsec. 

We choose the optimum late-time intervals correspond to [14.3, 17.6] nsec, 

[8.6, 11.9] nsec in MUSIC algorithm based classifier design using noise-free 

reference data and using noisy reference data, respectively.  
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Figure 3.35 CCF values plotted against q* to determine the optimal late-time 

design interval for the target library CLMIX (excluding the perfectly 

conducting spheres) by using noise-free reference data 

 

The accuracy rate of the resulting MUSIC based classifier for this CLMIX 

library is found to be 78% when the classifier is tested against noise-free 

data. The MATLAB code written to classify a given “unknown test signal” as 

one of the candidate targets is given in the Appendix. Out of 324 test cases 

(for 27 targets and 12 aspects we have 27x12=324 test signals), six of them 

are randomly chosen and the associated test results are given in Figure 3.36. 

The target indices shown in this figure refer to dielectric spheres and 

dielectric coated spheres (as the conducting spheres are discriminated at the 

beginning) of the CLMIX library. Target indices 1 through 18 correspond to 
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(a)                                                               (b) 

  

(c)                                                              (d) 
 

  

(e)                                                              (f) 
 
 

Figure 3.36 Classification Results for some randomly selected test signals 

when using the MUSIC algorithm based classifier in the noise-free 

design/noise-free test case (a) Tcoa3(rin=2cm ε=7) at 135º (b) 
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Tcoa15(rin=9cm ε=7) at 150º (c) Tcoa1(rin=2cm ε=3) at 150º (d) 

Tcoa5(rin=4cm ε=5) at 45º (e) Tdie1(ε=3) at 90º (f) Tdie8(ε=7) at 15º 

 

In part (a) of this figure, we see the classification result of the target 

Tcoa3(rin=2 ε=7) at 135º aspect angle. We expect to see the highest 

correlation coefficient at the sixth target index. However, classifier makes a 

mistake and choose the target Tdie8(ε=7) which has the same permittivity 

value as the test target Tcoa3. Here, the correlation coefficient of the tested 

MSM and FMSM of Tdie8 is 0.5853, the correlation coefficient of this MSM 

and the FMSM of the target Tcoa3 is 0.5439. Other correlation coefficients 

are very small in this simulation example as shown in figure (a).  

It can be seen in part (b) that classifier makes correct decision with very large 

safety margin for the target Tcoa15(rin=9 ε=7) at 150º aspect angle. 

In part (c), for the test of target Tcoa1(rin=2 ε=3) at 150º aspect angle, the 

correlation coefficients between the tested MSM and the FMSMs of the target 

Tdie1(ε=3), the target Tcoa1(rin=2 ε=3) and the target Tcoa4(rin=4 ε=3) are 

0.4208, 0.4206 and 0.4461, respectively.  The classifier makes another 

mistake and chooses the target Tcoa4(rin=4 ε=3) which is very similar to the 

test target Tcoa1 indeed. 

It can be seen in the figure (d) that classifier makes correct decision for the 

target Tcoa5(rin=4 ε=5) at 45º aspect angle. The target Tcoa2(rin=2 ε=5) has 

the second highest correlation coefficient, as expected. 

Another mistake can be seen in the figure (e) for the target Tdie1(ε=3) at 90º 

aspect angle. The correlation coefficients computed between the tested MSM 

and the FMSMs of the targets Tdie1, Tcoa1 and Tcoa4 (which have same ε 

value) are equal to 0.4966, 0.4967 and 0.4705, respectively. These values 

are very close to each other, as expected, leading to classification error. 

Finally, the classifier confuses the target Tdie8(ε=7) at 15º aspect angle with 

the target Tcoa3(rin=2 ε=7). Again these targets have the same ε value. 
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3.5.1 Discussion of Classifier Performance Results for the 
Mixed Target Library 

 

The correct classification rates (in percentage) of the classifiers designed by 

both methods (MUSIC based and WD-PCA based), are given in Table 3.13 

for CLMIX target library (27 targets). As it can be concluded from these 

results, both methods lead to classifiers with very similar accuracy values in 

the noise-free design/noise-free test case. 

 

Table 3.13 Correct Decision Rates of CLMIX target library for noise-free case 

 

 

 

 

 

 

 

Unfortunately, the cumulative normalized energy curves become useless to 

discriminate conducting spheres when the test data are noisy. Therefore, we 

could not make tests on the CLMIX target set with noisy data. However, we 

make such tests on a subgroup of the CLMIX library by excluding the 

conducting spheres. The results of these tests are presented in Table 3.14 

below. We can see in this table that the WD/PCA based classifier shows a 

better performance as the SNR level of the test data decreases. However, 

these classifiers (both designed by noise-free reference data) are not good 

enough for successful target discrimination under noisy test conditions. As it 

was demonstrated in sections 3.2, 3.3 and 3.4 earlier, slightly noisy reference 

data must be used in the design of MUSIC based classifier for this subgroup 

of the CLMIX target library to increase the accuracy rates to acceptable 

levels. 

Target Library CLMIX (27 targets) 

MUSIC method 78 

WD/PCA method   76 
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Table 3.14 Correct Decision Rates of CLMIX target library using 20 dB 

reference data. 

 

Target Library 

CLMIX 

(18 targets) 

20dB 

CLMIX 

(18 targets) 

10dB 

MUSIC method (20db Ref) 52 26 

WD/PCA method (20db Ref) 56 40 

MUSIC method (N. Free Ref) 31 15 

WD/PCA method  (N. Free Ref) 61 45 
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CHAPTER IV 

 

 

4. CLASSIFIER DESIGN APPLICATIONS AND 

RESULTS FOR SMALL-SCALE AIRCRAFT TARGETS 

 

 

 

In this chapter, classifier design applications and their results will be reported 

for a target library which consists of five small-scale aircraft. The small scale 

target dimensions are obtained using a factor of 100 and the resulting wire 

lengths for body, wing and tail are given in Table 4.1 for each target. These 

aircraft targets are modeled by perfectly conducting, straight, thin wires with 

length to radius ratio of 2000 for all wire structures. 

 

Table 4.1 The dimensions of the small-scale aircraft targets in the target 

library used in Chapter 4. 

 

Substructures 
Target 1 

(Airbus) 

Target 2 

(Boeing 747) 

Target 3 

(Caravelle) 

Target 4     

(P-7) 

Target 5    

(Tu 154) 

Body length (m) 0.5408 0.7066 0.3200 0.3435 0.4790 

Wing length (m) 0.4484 0.5964 0.3440 0.3250 0.3755 

Tail length (m) 0.1626 0.2217 0.1092 0.1573 0.1340 
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4.1 Description of Scattered Data Used in Classifier Design 
and Testing 

 

The scattered responses of aircraft targets were obtained by using a 

simulation program FEKO, as described in [36] by Mehmet Okan Ersoy. This 

program is based on the Method of Moments (MoM). 

 

The backscattered responses of the aircraft targets are obtained for Φ-

polarized uniform plane wave at a fixed elevation of Θ= 60 degrees over the 

frequency band from 4 MHz to 1024 MHz with frequency steps of 4 MHz at 

12 different aspect angles Φ = 5, 10, 15, 22.5, 30, 37.5, 45, 52.5, 60, 67.5, 75 

and 82.5 degrees. Five of them which are equal to Φ = 5, 15, 30, 45 and 75 

degrees, are chosen as the reference aspect angles to construct the feature 

database of the classifiers using noise free reference data and also using 

noisy data at 10 dB SNR level. The common time span of all scattered 

responses is 250 nanoseconds with 512 time samples.  

 

As an example, the generated backscattered time domain signal for the 

target Boeing 747 at 15 degrees aspect angle is given in the noise-free case 

in Figure 4.1. Also in Figure 4.2 below, problem geometry used to synthesize 

the electromagnetic signals scatted from small-scale aircraft targets is 

described. 
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Figure 4.1 Scattered response of the target Boeing 747  at 15 degree aspect 

angle in the noise free case. 
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4.2 Classifier Design Simulations for Small-Scale Aircraft 
Using the MUSIC Algorithm Based Method 

 

In this section, two MUSIC algorithm based classifiers are designed for the 

target library of small-scale aircraft using noise-free reference data and also 

using noisy reference data set at 10 dB SNR level. 

4.2.1 Classifier design with noise-free reference data 

 

First of all, in this MUSIC algorithm based target classifier, the scattered 

signal is divided into eight overlapping subintervals. For each subinterval, the 

MUSIC spectrum matrices (MSMs) are computed at each different reference 

aspect angle of Φ = 5, 15, 30, 45 and 75 degrees. Then, these MSMs are 

superposed for each given target to obtain the fused MUSIC spectrum 

matrices (FMSMs) over each subinterval. Using these FMSMs and MSMs, 

 values are computed for each subinterval. These  values (based 

on noise-free reference data) are shown in Figure 4.3. The design 

parameters of this MUSIC algorithm based classifier are chosen to be N= 64, 

m= 32 and L= 16.  

 

Figure 4.3 The  values computed for the classifier design for the aircraft 

target library in the noise-free case.  
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It can be seen in this figure that the MUSIC algorithm based classifier design 

using noise free reference data has a maximum  value at the second 

subinterval which is the optimal late-time design interval for this classifier. 

This chosen time interval corresponds to [16, 48] nsec. 

 

After determining the optimum late-time interval for design,  we construct the 

feature database of the classifier as being composed of target FMSMs as 

described earlier. All FMSMs computed over the optimal late-time interval 

using noise-free reference data are given in Figure 4.4 together with a MSM 

feature of a test signal which actually belongs to the target 1 (Airbus) at 45 

degree backscattered aspect angle at 20 dB SNR level. 

 

 

                                           (a) 

 

FMSM of Aircraft 1

Frequency (MHz)

S
ig

m
a

 (
M

N
e

p
e

r/
s
)

 

 

0 100 200 300 400 500 600

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

-65

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10
dB



 95 

 

                                            (b) 
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                                             (d) 
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                                            (f) 

Figure 4.4 (a)-(e) The FMSM features of the aircraft targets Airbus, Boeing, 

Caravelle, P-7, Tu 154 in the noise free design case and (f) the MSM feature 

of the test signal belonging to target Airbus at 45 degree aspect angle at 20 

dB SNR level. 

 

Finally, performance tests are done with the whole available data set at SNR 

levels of 20 dB, 15 dB, 10 dB, 5 dB, 0 dB and -5 dB. All these results are 

given and discussed in section 4.4. Correlation coefficients between the 

FMSMs of this MUSIC algorithm based classifier and the MSMs of all 

available test signals at 20 dB SNR level are plotted in Figure 4.5. It can be 

seen in this figure that this classifier, makes only one mistake at the target 

index 11, which is the Airbus target at 75 degree aspect angle, while testing 

scattered signal at 20 dB SNR level. We can say that Caravelle, P-7 and Tu 

154 are the aircraft targets which can be discriminated with much larger 

safety margins. The accuracy of the classifier is computed to be 98%. 
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Figure 4.5 Correlation coefficients between the FMSMs of aircraft library 

targets and the MSMs of all available test signals at 20 dB SNR level. (The 

classifier is designed using noise-free reference data.) 

 

4.2.2 Classifier design with noisy reference data 

 

In this subsection, a MUSIC algorithm based classifier is designed for the 

same target library with noisy reference data at 10 dB SNR level, using the 

same procedures in section 4.2.1 with the same design parameters N= 64, 

m= 32 and L= 16. 

 

The optimum late-time interval of design is selected by the help of  
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the [16, 48] nsec time interval as the optimal design interval for this classifier 

when noisy reference data at 10 dB SNR level are used. It can be concluded 

from Figures 4.3 and 4.6 that   values get smaller in the later time 

intervals for the 10 dB SNR level design because the effective SNR levels of 

reference signals become lower with increasing time. 

 

 

Figure 4.6 The  values computed for the classifier design for the aircraft 

target library using noisy reference data with 10 dB SNR level.  

 

After forming the classifier’s feature database by using FMSMs computed 

over the time interval [16, 48] nsec, the correct classification rates of this 

classifier are computed against test data at various SNR levels (-5 dB, 0 dB, 

5dB, 10dB, 15dB and 20dB). Nearly perfect accuracy rates are observed also 

at SNR levels as low as 5 dB as shown in Table 4.2 of section 4.3. The 

lowest accuracy rate obtained at -5 dB SNR level is increased from 66% to 

87% by training the classifier at 10 dB SNR level instead of training it by 

noise-free reference data.    
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4.3 Classifier Design Simulations for Small-Scale Aircraft 
Using the WD-PCA Based Method 

 

In this section, WD-PCA method based classifiers are designed for the same 

aircraft target library firstly using noise-free reference data and then using 

noisy reference data at 10 dB SNR level.  

 

4.3.1 Classifier design with noise-free reference data 

 

In this subsection, we design a classifier using noise free reference signals 

for the aircraft target library using the WD-PCA based design technique and 

this classifier is tested at various SNR levels of 20 dB, 15 dB, 10 dB, 5 dB, 0 

dB and -5 dB.  

 

As a first step of the WD-PCA based design technique, we compute the auto-

WD matrix Wx of the reference scattered signals which are sampled at 512 

time points. Some contour plots of the auto-WD matrices for the response 

signal of the Airbus at 10 and 75 degrees backscattered aspect angles are 

given below in Figure 4.7 in the noise-free case. 
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                                                            (b) 

 

Figure 4.7 Contour plots of modified auto-Wigner distributions for the target 

Airbus at (a) 10º and (b) 75º backscattered aspect angles. 

 

Afterwards, energy density vectors are computed as described earlier over 

Q=16 non-overlapping late-time intervals. Then, by the help of these energy 

density vectors, we choose the time bands q=2 and q=3, as the optimum 

late-time interval which corresponds to [15.6, 46.9] nsec. In Figure 4.8, the 

computed CCF values are plotted against q* for this classifier design. 
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Figure 4.8 CCF values plotted against the late-time index q* to determine the 

optimal late-time design interval for the aircraft library using noise-free 

reference data.  

 

Features Vectors (FFVs) of all aircraft targets extracted for noise free design 

and a test target’s LTFV (in noise-free case) are given altogether in Figure 

4.9. 
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Figure 4.9 The FFVs of library targets for noise-free design and the LTFV of 

target 1 (Airbus) at the aspect angle 10º in the noise-free case. 

 

 

Finally, this classifier is tested over this optimal late time interval at the SNR 

levels of -5 dB, 0 dB, 5 dB, 10 dB, 15 dB and 20 dB. The accuracy rate of the 

classifier is found to decrease from 98% to 82% as the SNR levels of the test 

signals decrease from 20 dB to -5 dB. 

 

4.3.2 Classifier design with noisy reference data 

 

In this section, another classifier is designed for the aircraft target library 

using the WD-PCA based method, but this time, using noisy reference data 

at 10 dB SNR level. Following the previously described design steps with 

Q=16 time intervals, the optimal late-time interval of design is determined to 

be [15.6, 46.9] nsec using the CCF values obtained for noisy reference signal 

at 10 dB. The CCF versus q* barplot is given in Figure 4.10 where the plot 

has its maximum for q*=2. 
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Figure 4.10 The CCF values plotted against the late-time index q* to 

determine the optimal late-time design interval for the aircraft library using 

noisy reference data at 10 dB SNR level.  

 

Constructed Fused Features Vectors (FFVs) of all five aircraft targets for this 

noisy classifier design and a test target’s LTFV at 10dB SNR level are shown 

together in Figure 4.11. FFV of Target 4 and LTFV of the test target look 

highly correlated with each other as expected because this LTFV feature 

actually belongs to aircraft P-7 (target 4) at 60 degrees aspect.  
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Figure 4.11 FFVs of all targets at 10 dB SNR level and LTFVs of target 4 (P-

7) at the aspect angle 60º at 10dB SNR level. 

 

Finally, the performance tests of this classifier are made using test signals at 

SNR levels -5 dB, 0 dB, 5 dB, 10 dB, 15 dB and 20 dB. The perfect accuracy 

rate of 100% is obtained at overall SNR levels as low as 10 dB. The lowest 

accuracy rate of 88% occurred at a very low SNR level of -5 dB. 
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4.4 Discussion of Classifier Performance Results for Small-
Scale Aircraft Targets  

 

The accuracy rates obtained for all four aircraft classifiers (designed for the 

same target library of five small scale aircraft) of this chapter are computed at 

various testing SNR levels as shown in Table 4.2. 

 

We can draw the following conclusions based on the information provided by 

this table. First of all, when the classifiers are designed with noise-free 

reference data, the WD-PCA based classifier displays a much better 

performance for testing SNR levels lower than 15 dB. For example, the 

accuracy rate of the MUSIC based classifier is only 66% at SNR=-5dB while 

the WD-PCA based classifier has 88% accuracy at the same noise level. 

However, when the classifiers are designed by using noisy reference data at 

10 dB SNR level, performance of the MUSIC based classifier is improved 

drastically. As a result, for designs with noisy signals, usefulness of both 

classifier design techniques become quite similar to each other. The second 

conclusion is that higher rates can be obtained for classifiers designed for the 

aircraft library as compared to the case of spherical targets. This observation 

can be explained by the fact that aircraft targets modeled by thin conducting 

wires are high-Q targets with natural scattered responses having enough 

signal energy at late times. Consequently, the classifiers designed to 

discriminate aircraft targets have much better noise performances as 

compared to those classifiers designed for spherical targets. 
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Table 4.2 Correct classification rates (in percentage) of all four classifiers 

designed for the target library of small-scale aircraft targets 

 

 

  

SNR Levels 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB 

MUSIC method 

(10dB Ref) 
100 100 100 97 93 87 

WD-PCA 

method 

(10dB Ref) 

100 100 100 98 93 88 

MUSIC method  

(N. Free Ref) 
98 94 89 80 75 66 

WD/PCA 

method  

 (N. Free Ref) 

98 95 95 95 95 82 



 108 

 

CHAPTER V 

 

5. CONCLUSION 

 

 

 

This thesis work has been focused in designing and testing two recently 

proposed electromagnetic target classifier design techniques, the MUSIC 

algorithm based technique and the WD-PCA based technique, to compare 

their noise performances and their capability to handle large number of 

targets. Target libraries used in design and test simulations have included a 

variety of classes such as perfectly conducting spheres (example to a class 

of very low-Q targets), dielectric spheres (example to penetrable targets), 

dielectric coated conducting spheres (example to targets made of different 

materials) and small-scaled aircraft modeled by perfectly conducting thin 

wires (example to relatively high-Q conducting targets with complicated 

geometries). The MUSIC algorithm based and WD-PCA based target 

classification techniques are both resonance region techniques, which need 

extraction of target features from late-time transient scattered data. For such 

classifiers, effective SNR levels of design and test data over the chosen late-

time design intervals are usually much lower than the overall SNR levels of 

these signals.  Therefore, investigation of the noise performances of these 

two target classification techniques deserves special attention especially in 

the case of low-Q targets. In this thesis, for each chosen target class, several 

classifiers are designed by using both design techniques first by using noise-

free design data, then by using noisy design data. The simulated classifiers 

are extensively tested at various overall SNR levels changing from infinity 

(the noise-free case) to very low levels such as 0 dB or -5 dB. General trends 
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observed in classifier performances may show variations from one target 

class to another as summarized below: 

 

I. Comparison of the performances of the MUSIC algorithm based and 

the WD-PCA based classifier design techniques to handle large number of 

targets 

 

• First of all, MUSIC based and WD-PCA based classifiers are designed 

using noise-free reference data for three different libraries of perfectly 

conducting spheres. The target libraries named CLCON1, CLCON2 and 

CLCON3 have 3, 5 and 9 conducting spheres, respectively. The smallest of 

these spheres has a radius of 8 cm and the largest sphere has a radius of 12 

cm. The first target library CLCON1 contains 3 spheres with radii of 8, 10 and 

12 cm. The second one, CLCON2, has 5 spheres with radii of 8, 9, 10, 11 

and 12 cm. Finally, the third library CLCON3 has 9 spheres with radii of 8, 

8.5, 9, 9.5, 10, 10.5, 11, 11.5 and 12 cm. Obviously, this last library is the 

most challenging one not only because it contains a larger number targets 

but also because these perfectly conducting spheres have very similar sizes.  

Accuracy rates (i.e., correct classification rates) of the MUSIC based and 

WD-PCA based classifiers designed for each one of these three libraries are 

computed and compared under the noise-free design/noise-free test case 

and they are found to be very close to each other.  As shown in Table 3.3, 

both classifier design techniques lead to classifiers with 100 percent 

accuracy for the CLCON1 library. The accuracy rates attained by the MUSIC 

based classifiers drop to 98 percent for the CLCON2 and CLCON3 libraries 

while the WD-PCA based classifiers display 100 percent accuracy for the 

CLCON2 library and 97 percent accuracy for the CLCON3 library. In 

conclusion, both techniques look equally successful as the complexity of the 

target libraries increases. Even for the most challenging library of 9 targets, 
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accuracy rates reached by both classifier design techniques for the class of 

perfectly conducting spheres turns out to be almost perfect.  

 

• Similar effects of library complexity are also investigated for the target 

class of lossless dielectric spheres using two different libraries, the CLDIE1 

library of 4 targets (same size spheres with relative permittivity values of 3, 4, 

5 and 6) and the CLDIE2 library of 8 targets (same size spheres of relative 

permittivity values of 3, 3.5, 4, 4.5, 5, 5.5, 6 and 7). Under the noise-free 

design/noise-free test conditions, the MUSIC based classifiers reach the 

accuracy levels of 92 percent for the CLDIE1 library and 89 percent for the 

more challenging CLDIE2 library. The WD-PCA based classifiers, however, 

reach the perfect 100 percent accuracy for both libraries. Therefore, the WD-

PCA based classifier design technique is shown to be more successful (by 

about 10 percent accuracy difference) in discriminating these dielectric 

objects in noise free conditions. 

 

• In the case of dielectric coated conducting spheres, five different 

target libraries (CLCOA1, CLCOA2, CLCOA3, CLCOA4 and CLCOA5) are 

used in classifier design and test simulations. Depending upon the size of the 

inner conducting spheres, behaviors of coated conductors may converge to 

either those of the conducting spheres or to those of the dielectric spheres. 

Therefore, for the tested libraries, performance tests of the MUSIC based 

and the WD-PCA based classifiers are not found to be conclusive to compare 

them on the basis of their capacity to handle large-size target libraries. For 

some of these libraries, the MUSIC based classifier performs better. For 

some others, the WD-PCA based classifier looks more successful. For the 

library CLCOA3 (contains 5 targets all having the same outer radius, the 

same relative refractive index of 7 in the dielectric coating but different inner 

radii of 2, 4, 7, 8 and 9 cm for the conducting sphere part) for instance, both 
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classifier design techniques are found to be equally useful with accuracy 

rates around 97-98 percent in the noise-free design/noise-free test case. 

 

• In the meantime, there are two important observations which are 

made based on the content of Table 3.11 for the classification of dielectric 

coated conducting spheres: Firstly, classification of coated conducting 

spheres becomes easier for larger values of the refractive index of coating. 

According to the results tabulated on the first three columns of this table, the 

accuracy rates of MUSIC based and WD-PCA based classifiers decreases 

from 97-98 percent level to 65-70 percent level as relative permittivity 

decreases from 7 to 3. Secondly, for the same relative permittivity variations, 

the coated spheres with larger inner conducting parts can be discriminated 

more easily. Based upon the last two columns of Table 3.11, for example, the 

targets of the library CLCOA5 with inner radii of 7, 8 and 9 cm can be 

classified by accuracy rates of 91 percent and 86 percent using the MUSIC 

based classifier and the WD-PCA based classifier, respectively. In these 

noise-free design/noise-free test simulations, the CLCOA5 library has 9 

targets with coatings at relative permittivity values of 3, 5 and 7 for each inner 

radius value. When the similar classifier design and test simulations are 

performed for the library CLCOA4 (that has 6 targets at relative permittivity 

values of 3, 5 and 7 at each inner radius value of 2 cm and 4 cm), the 

accuracy rates of the MUSIC based and WD-PCA based classifiers 

drastically drop to 67 percent and 77 percent, respectively. 

 

• Finally, for a mixed target library CLMIX (containing 9 conducting 

spheres, 3 dielectric spheres and 15 dielectric coated conducting spheres), 

the noise-free design/noise-free test simulations are performed. For this 

large-size library with 27 targets, the MUSIC based classifier displayed 78 

percent accuracy while the accuracy rate of the WD-PCA based classifier is 

found to be 76 percent. In other words, performances of both classifier 
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design techniques (regarding their library sizes) are found very similar for this 

specific mixed library. 

 

 

II. Comparison of the noise performances of the MUSIC algorithm based 

and the WD-PCA based classifier design techniques  

 

To compare the noise performances of these two classifier design 

techniques, one target library is chosen for each target class and two 

different classifiers are designed for the selected library by using each design 

technique based on noise-free reference data. Then, performances of 

resulting classifiers are evaluated by test data at various SNR levels 

decreasing from infinity (the noise-free test data case) to low SNR levels 

around zero decibels. Next, two more classifiers are designed for the same 

target library, but this time, using noisy reference data at a given moderate 

SNR level. Again, performances of resulting noisy classifiers are evaluated 

by test data at various SNR levels.  Results of all these classifier design and 

test simulations for different target classes can be summarized as follows: 

 

• The target library CLCON2 (containing five conducting spheres of radii 

8, 9, 10, 11 and 12 cm) is selected for the class of conducting spheres. A 

total of four classifiers are designed for this library first by using noise-free 

reference data and then using noisy (at SNR=20 dB) reference data by each 

classifier design technique. The accuracy rates obtained for these four 

classifiers when they are tested at various testing SNR levels are plotted in 

Figure 3.15. It is seen that classifiers designed by both methods using noise-

free reference data fail badly when they are tested by noisy data. When the 

classifiers are designed by slightly noisy data of 20 dB SNR level, their low 

SNR performance are improved in a noticeable way, although their accuracy 

against noise-free test signals decreases from 98 percent (for MUSIC based 
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classifier) or 100 percent (for WD-PCA based classifier) level to about 80 

percent level. The WD-PCA based classifier displays higher accuracy (for 

example, 60 percent accuracy versus 50 percent accuracy at the testing SNR 

of 5 dB) at very low SNR tests. 

 

• The target library CLDIE1 (containing four lossless dielectric spheres 

of the same size, r = 10 cm, but with relative permittivity values of 3, 4, 5 and 

6) is selected for the class of dielectric spheres. Again four classifiers are 

designed and tested for this library as described above. Based on the 

accuracy results tabulated in Table 3.6, performances of the classifiers 

designed by both methods using noise-free reference data are found poor 

when they are tested at low SNR levels. The accuracy rate of the MUSIC 

based classifier changes from 92 percent to 35 percent as the testing SNR 

drops from infinity to 5 dB level. The WD-PCA based classifier shows a much 

better performance as its accuracy rate drops from 100 percent to 69 percent 

under the same conditions. Use of noisy reference data at 20 dB SNR levels 

helps improving the performance of the MUSIC classifier. Although its 

accuracy reduces to 79 percent in noise-free testing, its low SNR testing 

performance is raised to 51 percent accuracy at 5 dB SNR level. However, 

despite this improvement, the WD-PCA classifier performs still much better 

(by about 20 percent difference in accuracy at almost all testing SNR levels) 

than the MUSIC based classifier.  

 

• The target library CLCOA3 (containing five dielectric coated 

conducting spheres all having the same  relative permittivity value of 7 with 

internal radii of 2, 4, 7, 8 and 9 cm) is selected for the class of dielectric 

coated conducting spheres. Again, four classifiers are designed and tested 

for this library as described earlier. General tendency of the accuracy rates 

tabulated in Table 3.10 looks very similar to the one displayed in Table 3.6 

for the dielectric sphere library CLDIE1. The WD-PCA based classifier 
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performs much better (by about 15-20 percent accuracy difference) than the 

MUSIC based classifier for the selected coated conductor library. 

 

• A reduced CLMIX library (containing 3 dielectric spheres and 15 

dielectric coated conducting spheres after excluding the perfectly conducting 

spheres of the original CLMIX library) of 18 targets is used to design 

classifiers by both design techniques. When the classifiers are designed by 

noise-free reference data, accuracy rate of the MUSIC classifier is found to 

be 78 percent at noise-free testing, 31 percent at 20 dB SNR and 15 percent 

at 10 dB SNR. The accuracy rate of the WD-PCA classifier drops less 

severely as the testing SNR decreases; it becomes 76 percent at noise-free 

testing, 61 percent at 20 dB and 45 percent at 10 dB testing. In other words, 

the noise performance of WD-PCA classifier is much better (by about 30 

percent difference in accuracy rates) than the MUSIC based classifier in 

noise-free design/noisy testing, but in general none of the classifiers can 

achieve high enough accuracy rates at low testing SNR levels.  Designing 

the classifiers using noisy data at 20 dB helps improving the performance of 

the MUSIC based classifier slightly but not sufficiently as shown in Table 

3.14. 

 

•  Finally, an aircraft library (containing five small scale aircraft targets 

which are modeled by thin conducting wires) is used to design a total of four 

classifiers by each method first using noise-free design data then by using 

noisy data at SNR = 10 dB. Based on the accuracy rates listed in Table 4.2,  

when the classifiers are designed by noise-free reference data, the WD-PCA 

based classifier performed much better (up to 20 percent accuracy 

difference) than the MUSIC based classifier at testing SNR levels below 15 

dB. When the classifiers are designed by using noisy reference data at 10 dB 

SNR, however, performances of both classifiers (especially that of the 
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MUSIC based classifier) are improved and become about the same at all 

testing SNR levels. 

 

In summary, noise performances of the WD-PCA based classifiers are found 

distinctively better than that of the MUSIC based classifiers in noise-free 

design/noisy testing cases. Designing classifiers using slightly or moderately 

noisy data helps improving the noise performance of classifiers, especially in 

the case of MUSIC algorithm based design technique. However, despite this 

improvement, performance of the MUSIC based classifiers either barely 

catches the performance of the WD-PCA classifiers or remains 10 to 20 

percent behind it in terms of accuracy rates.  The WD-PCA based design 

technique is preferable as its accuracy rate is not very sensitive to the SNR 

level of the design data except for the case of very low-Q library targets such 

as perfectly conducting spheres. The WD-PCA based classifiers perform 

better also in handling libraries with large number of targets in the case of 

dielectric sphere class. Performances of the WD-PCA based and MUSIC 

algorithm based classifiers are about the same for other target classes.  

 

As a future work, these two target classification techniques can be 

investigated for the target classes of lossy dielectrics and inhomogeneous 

dielectrics of varying geometries.   
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APPENDIX 

 

A SAMPLE PROGRAM CODE WRITTEN IN MATLAB FOR 

RANDOM TESTING ON CLMIX TARGET SET WITH MUSIC 

METHOD 

 

 

 

% An example test code for target library CLMIX 

clear 

load hdis10_7_15.dat; %loading the time domain response 

% Test target is Tdie8(e=7) at 15 degree 

testdata=hdis10_7_15; 

ENE=[testdata 

    ]; 

ENER=ENE'; 

tresh=input('Enter treshold value near to 1   = '); 

% tresh=0.9999; 

for en=1:1; 

    yy=ENER(:,en); 

    NNN=length(yy); 

    ysq=yy.*yy; 

    sume=sum(ysq); 

    yn=yy/sqrt(sume);     

    normen(1)=yn(1)^2; 

    for i=2:NNN 

        normen(i)=normen(i-1)+yn(i)^2; 

    end; 
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    for zz=1:1024; 

        if normen(1,zz)>tresh; 

            if normen(1,(zz-1))<tresh; 

                zb=zz; 

         %the first point where enegy is over tresh  

                energydata(1,en)=zb; 

            end; 

        end; 

    end; 

end; 

 

if energydata>400     

% test target is not a conducting sphere 

load REFmix_nfree_nfreeRef 

 

GG=0;R=0; corrcoef3=0; 

    for uo=1:1 

        xnorm(uo,:)=testdata(uo,:); 

    end 

 

        for kk=1:1 

            y=real(xnorm(kk,113+(qstar-1)*72:240+(qstar-1)*72)); 

            y=y(:); 

            N=length(y);                       % data length 

            R=zeros(m,m); 

            for i = m : N, 

                R=R+y(i:-1:i-m+1)*y(i:-1:i-m+1)'/N; 

            End 

% get the eigendecomposition of R; use svd because it sorts eigenvalues 

            [U,D,V]=svd(R); 
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            G=U(:,n+1:m); 

            GG = G*G'; % find the coefficients of the polynomial 

            for u=1:151 

                for v=1:437 

                    alpha(u)=-(u-1)*0.0006; 

                    w(v)=(v-1)*pi/436; 

                    s(u,v)=-alpha(u)+j*w(v); 

                    a=exp(s(u,v)*(0:m-1)); 

                    a=a./norm(a); 

                    T(u,v,kk)=abs(1./(a*GG*a')); 

                end 

            end 

        end 

        for kk=1:1 

            T(:,:,kk)=T(:,:,kk)./norm(T(:,:,kk),'fro');  

%construct MSMs of test signal 

        end 

          

%correlation coefficients between FMSMs and MSMs 

        corrcoef3(1,1)=sum(sum(T(:,:,1).*T_2(:,:,qstar)));  

        corrcoef3(1,2)=sum(sum(T(:,:,1).*T_3(:,:,qstar)));  

        corrcoef3(1,3)=sum(sum(T(:,:,1).*T_4(:,:,qstar)));  

        corrcoef3(1,4)=sum(sum(T(:,:,1).*T_5(:,:,qstar)));  

        corrcoef3(1,5)=sum(sum(T(:,:,1).*T_6(:,:,qstar)));  

        corrcoef3(1,6)=sum(sum(T(:,:,1).*T_7(:,:,qstar)));  

        corrcoef3(1,7)=sum(sum(T(:,:,1).*T_8(:,:,qstar)));  

        corrcoef3(1,8)=sum(sum(T(:,:,1).*T_9(:,:,qstar)));  

        corrcoef3(1,9)=sum(sum(T(:,:,1).*T_10(:,:,qstar)));  

        corrcoef3(1,10)=sum(sum(T(:,:,1).*T_11(:,:,qstar)));  

        corrcoef3(1,11)=sum(sum(T(:,:,1).*T_12(:,:,qstar)));  
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        corrcoef3(1,12)=sum(sum(T(:,:,1).*T_13(:,:,qstar)));  

        corrcoef3(1,13)=sum(sum(T(:,:,1).*T_14(:,:,qstar)));  

        corrcoef3(1,14)=sum(sum(T(:,:,1).*T_15(:,:,qstar)));  

        corrcoef3(1,15)=sum(sum(T(:,:,1).*T_16(:,:,qstar)));  

        corrcoef3(1,16)=sum(sum(T(:,:,1).*T_17(:,:,qstar)));  

        corrcoef3(1,17)=sum(sum(T(:,:,1).*T_18(:,:,qstar)));  

        corrcoef3(1,18)=sum(sum(T(:,:,1).*T_19(:,:,qstar))); 

         

        [ymax,II]=max(corrcoef3(1,:)); 

        

       II 

       bar(corrcoef3)       

else 

 % test target is a conducting sphere 

load Music_con3  

%loading the database of CLCON3 target sets 

GG=0;R=0; corrcoef3=0; 

    for uo=1:1 

        xnorm(uo,:)=testdata(uo,:); 

    end 

 

        for kk=1:1 

            y=real(xnorm(kk,17+(qstar-1)*32:144+(qstar-1)*32)); 

            y=y(:); 

            N=length(y);                       % data length 

            R=zeros(m,m); 

            for i = m : N, 

                R=R+y(i:-1:i-m+1)*y(i:-1:i-m+1)'/N; 

            end 

            [U,D,V]=svd(R); 
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            G=U(:,n+1:m); 

            GG = G*G'; 

            for u=1:151 

                for v=1:437 

                    alpha(u)=-(u-1)*0.0006; 

                    w(v)=(v-1)*pi/436; 

                    s(u,v)=-alpha(u)+j*w(v); 

                    a=exp(s(u,v)*(0:m-1)); 

                    a=a./norm(a); 

                    T(u,v,kk)=abs(1./(a*GG*a')); 

                end 

            end 

        end 

        for kk=1:1 

            T(:,:,kk)=T(:,:,kk)./norm(T(:,:,kk),'fro'); 

        end 

        corrcoef3(1,1)=sum(sum(T(:,:,1).*T_2(:,:,qstar)));  

        corrcoef3(1,2)=sum(sum(T(:,:,1).*T_3(:,:,qstar)));  

        corrcoef3(1,3)=sum(sum(T(:,:,1).*T_4(:,:,qstar)));  

        corrcoef3(1,4)=sum(sum(T(:,:,1).*T_5(:,:,qstar)));  

        corrcoef3(1,5)=sum(sum(T(:,:,1).*T_6(:,:,qstar)));  

        corrcoef3(1,6)=sum(sum(T(:,:,1).*T_7(:,:,qstar)));  

        corrcoef3(1,7)=sum(sum(T(:,:,1).*T_8(:,:,qstar)));  

        corrcoef3(1,8)=sum(sum(T(:,:,1).*T_9(:,:,qstar)));  

        corrcoef3(1,9)=sum(sum(T(:,:,1).*T_10(:,:,qstar))); 

         

       [ymax,II]=max(corrcoef3(1,:));        

       II 

       bar(corrcoef3) 

end 




