
 i

INTERACTIVE EDITING OF COMPLEX TERRAINS ON PARALLEL

GRAPHICS ARCHITECTURES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

UFUK GÜN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

SEPTEMBER 2009

 ii

Approval of the thesis:

INTERACTIVE EDITING OF COMPLEX TERRAINS ON PARALLEL

GRAPHICS ARCHITECTURES

submitted by UFUK GÜN in partial fulfillment of the requirements for the degree

of Master of Sciences in Computer Engineering Department, Middle East

Technical University by,

Prof. Dr. Canan Özgen _____________________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Müslüm Bozyiğit _____________________

Head of Department, Computer Engineering

Assoc. Prof. Dr. Veysi İşler _____________________

Supervisor, Computer Engineering Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Halit Oğuztüzün _____________________

Computer Engineering Dept., METU

Assoc. Prof. Dr. Veysi İşler _____________________

Computer Engineering Dept., METU

Assist. Prof. Dr. Tolga Çapın _____________________

Computer Engineering Dept., METU

Assoc. Prof. Dr. Tolga Can _____________________

Computer Engineering Dept., METU

Mehmet Fatih Uluat (M.S.) _____________________

Software Engineer, Simsoft Bilgisayar Teknolojileri Ltd. Şti.

Date: 11.09.2009

 iii

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last name : Ufuk Gün

Signature

:

 iv

ABSTRACT

INTERACTIVE EDITING OF COMPLEX TERRAINS ON PARALLEL

GRAPHICS ARCHITECTURES

Gün, Ufuk

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Veysi İşler

September 2009, 88 pages

Rendering large terrains on large screens at interactive frame rates is a challenging

area of computer graphics. In the last decade, real-time terrain rendering on large

screens played a significant role in various simulations and virtual reality systems.

To fulfill the demand of these systems, two software tools are developed. The first

tool is a Terrain Editor that creates and manipulates large terrains. The second is a

Multi-Display Viewer that displays the created terrains on multiple screens. Since

the typical large terrains consist of many polygons, graphics boards might have

difficulties in rendering the terrain at interactive frame rates. The common

solution to this problem is to use terrain simplification without losing image

quality. To this purpose, in this study, a paged level of detail mechanism that

works with multiple threads is developed and integrated on multiple screen

display systems to increase the performance of the high resolution systems.

Keywords: Parallel Rendering, Terrain Editing, Paged Level of Detail

 v

ÖZ

KARMAŞIK ARAZİLERİN PARALEL GÖRSELLEME MİMARİSİYLE

DÜZENLENMESİ

Gün, Ufuk

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Veysi İşler

Eylül 2009, 88 sayfa

Yüksek çözünürlüklü ekranlarda büyük arazileri yüksek çerçeve sayısında

görselleştirmek bilgisayar grafiğinin zor konularından biridir. Son yıllarda, bu

konu birçok simülasyon ve sanal gerçeklik sistemlerinin ihtiyacı haline gelmiştir.

Bu talebi karşılamak için iki önemli uygulama geliştirilmiştir. Bunlardan ilki arazi

yaratan ve şekillendiren Arazi Editörü, ikincisi ise bu arazileri çoklu ekranlarda

görselleştiren Çoklu-Ekran Görselleştiricisidir. Böyle büyük araziler çok fazla

çokgenden oluştuğu için, grafik kartları bu tür gerçek zamanlı çerçeve oranında

görsellemekte sıkıntı yaşar. Bu sorunun genel çözümü arazinin görüntü kalitesinde

kayıp yaşanmadan arazi üzerindeki dokuların ve üçgenlerin basitleştirilmesidir.

Bu amaçla, bu çalışmada, arazileri parçalara ayıran ve bu parçaları farklı detay

seviyelerinde görselleştiren bir mekanizma geliştirilmiştir. Daha sonra bu

mekanizma çoklu ekranlı sistemle birleştirilerek yüksek çözünürlüklü hale

getirilmiştir.

Anahtar Kelimeler: Paralel Görselleştirme, Arazi Editörü, Detay Çözünürlüğü

 vi

To My Family and My Fiancé

 vii

ACKNOWLEDGMENTS

The author wishes to gratefully thank his supervisor Assoc. Prof. Dr. Veysi İşler

for his invaluable guidance, advice and encouragements for this research.

The technical assistance of Ph. D. student Mehmet Fatih Uluat is acknowledged.

This study is performed as a part of a professional project carried by a team of

Simsoft Bilgisayar Teknolojileri Ltd. Şti. where the author was one of the team

members. The author would like to thank management of Simsoft to provide the

opportunity to take part in this project. The tools and techniques developed during

this study are proprietary of Simsoft.

The author would also like to thank his managers at Simsoft, Mrs. Gökçe

Yıldırım, Mr. İsmail Bıkmaz, Mr. Selman Duatepe and Mr. Cemal Koplay for

their comments and all kinds of support.

The author would like to thank TÜBİTAK for its financial support.

Finally, the author wishes to express his special thanks to his family and his

fiancée for their patience, support and motivation.

 viii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ...v

ACKNOWLEDGMENTS ... vii

TABLE OF CONTENTS ... viii

LIST OF TABLES ... xi

LIST OF FIGURES ... xii

LIST OF ABBREVIATIONS ... xvii

CHAPTERS ...1

1. INTRODUCTION ... 1

2. A SURVEY OF TERRAIN EDITORS ... 4

2.1 FreeWorld3D .. 4

2.2 EarthSculptor .. 6

2.3 PnP TerrainCreator ... 8

2.4 Artifex Terra 3D ... 9

2.5 Creator Terrain Studio .. 11

2.6 Comparison ... 13

3. TERRAIN RENDERING .. 14

3.1 Irregular Meshes ... 14

3.2 Bin-tree Hierarchies .. 15

3.3 Bin-tree Regions ... 16

3.4 Tiled Blocks .. 18

3.5 Triangle Strip preserving LOD (T-Strip LOD) 19

4. PARALLEL RENDERING ... 21

4.1 Sort-First ... 21

4.2 Sort-Last .. 23

4.3 Sort-Middle ... 23

4.4 The comparison of sorting methods .. 24

4.5 Parallel Rendering APIs .. 24

4.5.1 WireGL .. 24

 ix

4.5.2 Chromium .. 25

4.5.3 OpenGL Multipipe SDK (MPK) 25

4.5.4 Equalizer .. 27

4.5.4.1 Interface .. 28

4.5.4.2 Application.. 29

4.5.4.3 Rendering Client ... 31

4.5.4.4 Equalizer Server .. 31

4.5.5 Summary .. 32

5. AN ADVANCED TERRAIN EDITOR WITH MULTI-SCREEN

VIEWER .. 33

5.1 The Terrain Editor ... 33

5.1.1 Terrain Editing ... 34

5.1.1.1 Possible Implementation Schemes.............................. 35

5.1.1.1.1. Sending Height Data as Texture to the Shaders 35

5.1.1.1.2. Changing the primitive set of data 37

5.1.1.1.3. Editing vertices using vertex buffer object 38

5.1.1.2 Terrain Editing using Paging 39

5.1.2 Terrain Texturing ... 42

5.1.2.1 Texture Painting .. 49

5.1.2.2 Slope Based Texturing .. 54

5.1.2.3 Procedural Texturing .. 57

5.1.2.4 Texturing with Satellite Image 58

5.1.2.5 Lightmap Texturing .. 59

5.1.2.6 Other Colorings... 63

5.1.3 Coloring by Height .. 63

5.1.4 Terrain Grids .. 64

5.1.5 Contour Lines .. 65

5.1.6 Editing Circle ... 66

5.1.7 Editing Square .. 67

5.2 The Terrain Viewer with Multi-Screen Support 68

5.2.1 Paged Terrain LOD .. 69

 x

5.2.1.1 Simplification Algorithm .. 70

5.2.1.2 Tiled Block Methods .. 72

5.2.1.2.1. Paged Tiled Blocks .. 72

5.2.1.2.2. Merged Paged Tiled Blocks 72

5.2.1.3 Threaded Loading Simplified Pages 73

5.2.2 Parallel Rendering .. 79

6. DISCUSSION AND CONCLUSION ... 82

6.1 Achievements .. 82

6.2 The limitations of Current Work ... 84

6.3 Future Work .. 84

REFERENCES ...86

 xi

LIST OF TABLES

TABLES

Table 1 The feature table of editors ... 13

Table 2 Height values and correspondent color values .. 64

Table 3 A performance comparison table of with LOD and without LOD

algorithms .. 78

 xii

LIST OF FIGURES

FIGURES

Figure 1 Screenshot of FreeWorld 3D. Final view of the terrain can be seen on the

left side of the figure. .. 5

Figure 2 Screenshot of FreeWorld 3D in wireframe mode. Closer regions on the

terrain are represented with more triangles than the farther regions of the

terrain. ... 5

Figure 3 Screenshot of Earth Sculpture in solid view. Created terrain can be seen

on the larger window. Editor widgets are placed on the right side of the

window. ... 6

Figure 4 Screenshot of Earth Sculpture in wireframe view. Closer regions are

rendered with more triangles and farther regions are rendered with fewer

triangles. .. 7

Figure 5 A screenshot of PnP Terrain Creator. The final view of the terrain is

shown on the left side and the editing brushes are shown on the right side. ... 9

Figure 6 A screenshot of Artifex Terra 3D ... 10

Figure 7 A screenshot of Artifex Terra 3D in wireframe mode. High detailed

regions are represented with more triangles. ... 11

Figure 8 A large terrain created with Creator Terrain Studio. 12

Figure 9 A screen shot of the tool with multiple views.. 12

Figure 10 An example output of irregular mesh algorithm. High detailed regions

are represented with more triangles than low detailed regions. 15

Figure 11 An example output of Bin-tree Hierarchies Algorithm. Smaller triangles

represent more detailed regions. .. 16

Figure 12 An example output of Bin-tree Regions Algorithm. High detailed

regions are represented with more triangles than low detailed regions. 17

 xiii

Figure 13 An example output of Tiled Blocks algorithm [7]. Closer regions are

represented with more triangles and farther regions are represented with

fewer triangles. .. 18

Figure 14 The subdivision of Lines (top) as Triangle Strips (bottom) [17] 20

Figure 15 An example view of T-Strip LOD Algorithm [17]. The number of

triangles decreases since the distance to camera increases. 20

Figure 16 A sample structure of sort-first [12]. The viewports of the scene are

calculated on render nodes and merged on control node. 21

Figure 17 Another sample structure of sort-first [11]. Control node synchronizes

the output of render nodes. .. 22

Figure 18 A sample structure of sort-last [12]. Render nodes which are placed on

the left side of figure calculates different objects and control node which is

on the right merges the results. .. 23

Figure 19 The diagram of system architecture [84] ... 25

Figure 20 The illustration of the basic principle of any parallel rendering

application [83] ... 27

Figure 21 The simplified execution flow of an equalizer application [83] 30

Figure 22 A screen shot of the terrain editor. A palette of the tool is placed on the

right side, and the scene view is placed on the left side. 34

Figure 23 Sample height fields. Lighter pixels represent higher regions and darker

pixels represent lower regions. .. 37

Figure 24 A terrain geometry that is composed of quads 37

Figure 25 Using VBO [22] ... 39

Figure 26 A sample diagram of 6x6 terrain pages and 3x3 editing window. Red

square represents active tile, orange squares represent neighbor tiles and

green squares represent the tiles which are not displayed. 40

Figure 27 A sample diagram of 6x6 terrain pages and 2x2 editing window. When

active tile moves to a corner of terrain, the number of neighbor tiles

decreases. ... 41

 xiv

Figure 28 Common regions on editing window moves. The region which is

outlined with bold line is not deleted. It is used for the next editing window.

 ... 42

Figure 29 Alpha map texture. Each color represents one texture. 44

Figure 30 Tile Textures (Grass, sand and water textures from left to right) 44

Figure 31 Result View (Red parts are covered with grass, green parts are covered

with sand and blue parts are covered with water textures.) 44

Figure 32 The algorithm which calculates the mixture of three textures by alpha

map texture in fragment program .. 45

Figure 33 Terrain surface before base texture which is placed on the left and after

base texture which is placed on the right. There is no tiling effect after using

base texture. ... 46

Figure 34 Base Texture. A satellite image of Ankara is chosen for base texture in

this example. .. 46

Figure 35 The mixture of base texture and tiled textures in fragment program 47

Figure 36 Base Texture with intensity value 1.0. Base texture is seen but tile

textures are not seen. ... 47

Figure 37 Base Texture with intensity value 0.5. The mixture of tiled textures and

base texture is seen. ... 48

Figure 38- Base Texture with intensity value 0.0. Tiled textures are seen but base

texture is not seen. ... 48

Figure 39 Texture painting with radius = 50 ... 49

Figure 40- Texture painting with radius = 100 ... 50

Figure 41- Texture painting with strength = 0.5 ... 50

Figure 42- Texture painting with strength = 100 .. 51

Figure 43- Texture painting with noise = %0 ... 51

Figure 44- Texture painting with noise = %100 ... 52

Figure 45 Terrain Before Painted. There are only grids on terrain. 53

Figure 46 Terrain After Painted. There are textures and grids on terrain. 53

Figure 47 Tiled Textures ... 53

Figure 48 Alpha map texture .. 54

 xv

Figure 49 Base Texture ... 54

Figure 50 The formula for the calculating slope of vertices on vertex program .. 55

Figure 51 The calculation of intensity of slope texture on fragment program 55

Figure 52 Terrain without slope texturing ... 56

Figure 53 Terrain after appliying slope texturing. Terrain pixels which has slope

close to 1 are textured with soil texture. .. 56

Figure 54 Terrain before applying height texturing ... 58

Figure 55 Terrain after applying height texturing. From lower to higher terrain is

textured with grass, sand and snow textures. .. 58

Figure 56 Sample Texturing with Satellite Image.. 59

Figure 57 Lightmap Image. White Parts represents illuminated parts and black

parts represent dark parts. .. 60

Figure 58 Screenshot from day time .. 61

Figure 59 Screenshot from sunset .. 61

Figure 60 Screenshot from night time .. 62

Figure 61 The lightmap calculation in fragment program 62

Figure 62 Terrain before elevation texturing ... 63

Figure 63 Terrain after elevation texturing. Each height is represented with

different color. ... 64

Figure 64 A screenshot of a grid (Each line has 8m distance.) 65

Figure 65 A screenshot of contour lines (Each contour line has 10m distance.) . 66

Figure 66 Editing Circle (Radius = 50m) ... 66

Figure 67 Editing Square (Length = 100) .. 67

Figure 68 A photo of the multi-screen system with three monitors 69

Figure 69 A top view of a regular grid (on the left) and its simplified version (on

the right) [24]. The simplified version has fewer triangles. 71

Figure 70 A top view of a regular grid (on the left) and the simplified version (on

the right) [25]. The simplified version has fewer triangles. 71

Figure 71 Pseudo code of thread usage on changing the resolution of terrains 74

Figure 72 The diagram shows how the elimination is done. Blue dots represents,

remaining vertices. Orange dots are discarding vertices. 74

 xvi

Figure 73 Terrain page without LOD ... 75

Figure 74 Terrain Pages with LOD = 1 (on the left) and LOD = 2 (on the right). If

LOD increases, the resolution decreases. .. 75

Figure 75 Terrain Geometry without LOD. All the polygons are in the same size.

 ... 76

Figure 76 Terrain Geometry with LOD. Farther regions are represented with

fewer polygons and closer regions are represented with more polygons. 76

Figure 77 Terrain texture and geometry without LOD .. 77

Figure 78 Terrain texture and geometry with LOD ... 78

Figure 79 The performance graph with LOD and without LOD algorithms. The

performance of algorithms which use LOD are higher than the algorithms

without LOD. .. 79

 xvii

LIST OF ABBREVIATIONS

Abbreviation or Symbol Text

ALU Arithmetic and Logic Unit

CG Computer Graphics

CPU Central Processing Unit

GIS Geographical Information System

GPU Graphics Processing Unit

IP Internet Protocol

LOD Level of Detail

OpenGL Open Graphics Library

OSG Open Scene Graph

PC Personal Computer

TCP Transmission Control Protocol

VBO Vertex Buffer Object

 1

CHAPTER 1

CHAPTERS

1. INTRODUCTION

In the last decade, real-time terrain rendering has played a significant role in

various areas such as Geographical Information Systems (GIS), military, flight

and driving simulations, computer games, computer animation and virtual reality.

Achieving high frame rates is essential for these kinds of applications to be

effective. Rendering large terrains on large screens at interactive frame rates is a

challenging area of computer graphics. Both creating large terrains and rendering

these terrains on large screens are individually demanding processes. These large

terrains might be built using a real world data or a generic height map. A generic

height map can be created by either using a terrain generation algorithm or a tool

which provides user instruments to manipulate terrains.

A terrain editor should include features like height field editing, texture painting

and object placing, such as roads, rivers, lakes or vegetation. Generally height

fields are manipulated with brushes, for instances raise, lower, smooth or flatten.

Calculating the new height values and rendering the results at interactive frame

rates is a challenging issue. To this purpose, the Vertex Buffer Object (VBO) is

used in order to render and edit terrain which increases the frame rates. VBO is a

feature that allows the tool to store the vertex data in application

memory [22]. Another important feature that is expected from a terrain editor is

texture painting which is implemented by the mixture of alpha maps, tile, base and

slope textures. Alpha maps display the placement of tile textures and the base

texture is used in order to decrease the repeating effect of this tiling. Base texture

is also used to roughly describe the shape of terrain. Slope textures are used in

regions where the slope is close to 1. Some other texturing and coloring

mechanisms are also developed and mentioned in Chapter 2.

 2

Sometimes the size of the terrain data might be larger than the main memory can

store. One possible solution to this case is paging the terrain where the entire

terrain data is divided into pages and the pages are loaded into memory as they are

needed. This approach is employed in this study. Blocks are paged in full

resolution while they are in editing window which represents the enabled editing

area, but the other blocks which lay outside the editing window are not rendered.

Loading and unloading new pages is triggered by the moving of this editing

window.

In this study, a multi-screen terrain viewer which displays the results of the terrain

editor is also developed. Multiple screens can be achieved by the organization of

different computers or different graphics boards on a single computer. The

number of screens, CPUs and GPUs are configured prior to start of application. In

this project, increase in display resolution is achieved with the help of multiple

screens. This feature can also be used in cubic display systems like domes or

caves to increase the realism. A dome is defined in dictionaries as a structural

element of architecture that resembles the hollow upper half of a sphere. In dome

systems, a display system projects the scene to the walls of this dome. A person

who stands in the center of this dome feels as if he is standing in a real world.

Similarly, a cave system which is a cube with 6 surfaces gives a realistic view as

domes.

During the development of the terrain viewer, a paged level of detail mechanism

is designed and implemented. Terrain tiles are paged in and out in threads that

calculate the new resolution of terrains and create them in different levels of

detail. The level of detail of pages is applied not only on mesh geometry, but also

on textures of terrains. The significant impact of performance can be seen in the

Chapter 4.

The following parts contain chapter that give more detailed information about this

study. The relevant literature of the terrain editor is discussed in Chapter 2.

Chapter 3 introduces the algorithms of terrain rendering. Parallel rendering

 3

algorithms and APIs are discussed in Chapter 4 and the thesis continues with

Chapter 5 which explains how the terrain editor and the multi-screen viewer are

developed. The summary and the suggestions for further works are presented in

Chapter 6.

 4

CHAPTER 2

2. A SURVEY OF TERRAIN EDITORS

There are numerous COTS (Commercial, Off the Shelf) terrain editors which

manipulate terrain geometry, paint with textures and place objects on terrains.

Each editor uses different techniques to render terrain geometry. Below, several

terrain editors and their features are discussed and compared with respect to each

other.

2.1 FreeWorld3D

FreeWorld3D is an interactive 3D terrain editor that uses OpenGL. It is mostly

designed for beginners or independent game developers. It can produce whole 3d

terrain with the environment on it [15]. Screen shots of the application can be seen

from Figure 1 and Figure 2. Features of FreeWorld3D can be summarized as

below:

 Mesh Editing

o Massive Terrain Creation

o Raise, Lower, Smooth, Flatten Tools

o Circle and Square Tool Shapes

o Automatic Terrain Generation

 Terrain Painting

o Paint terrain with textures

o Paint terrain by slope

o Paint terrain by height

 Object Placement

 Road Editing

 Vegetation Painting

 5

 Water Editing

Figure 1 Screenshot of FreeWorld 3D. Final view of the terrain can be seen on the left side of

the figure.

Figure 2 Screenshot of FreeWorld 3D in wireframe mode. Closer regions on the terrain are

represented with more triangles than the farther regions of the terrain.

FreeWorld3D uses “Tiled Blocks” algorithm [Section 3.4] to render the terrain.

 6

As you can see from Figure 2, closer parts of the terrain are rendered fine and

farther parts of the terrain rendered coarse.

2.2 EarthSculptor

EarthSculptor is a real-time terrain editor and texturing tool for rapid development

of 3D landscapes, multimedia and game development. EarthSculptor is developed

in OpenGL for Windows, using a T-Strip LOD algorithm. T-Strip LOD algorithm

renders large terrains efficiently and it enables geo-morphing, decals, fast collision

detection and lighting [18] [17]. Screen shot from EarthSculptor are shown in

Figure 3 and Figure 4. Its features can be summarized as below:

 Enables terrain tiles.

 Terrain Editing

o Raise, lower, level, grab, smooth, erode, push and ramp

 Terrain Texturing

 Plug-in system

Figure 3 Screenshot of Earth Sculpture in solid view. Created terrain can be seen on the

larger window. Editor widgets are placed on the right side of the window.

 7

Figure 4 Screenshot of Earth Sculpture in wireframe view. Closer regions are rendered with

more triangles and farther regions are rendered with fewer triangles.

The most important advantage of T-Strip LOD algorithm which is used in this tool

is that there is no popping during walkthrough. In the other LOD techniques,

when the camera moves, vertices are changing by the sampled height field. That

makes popping effects on level changes.

In T-Strip LOD, vertices are being changed by the interpolated height field. This

method gives an impression that the terrain level of detail changes very smooth

but the process needed for this algorithm at behind is too much. The interpolated

height of all vertices on the scene is calculated on every frame.

This algorithm provides very smooth transitions on the visualization of different

level of details when there is only one page. When there is more than one page,

the cracks occur and the management of the algorithm becomes very difficult.

 8

2.3 PnP TerrainCreator

PnP TerrainCreator is a real-time interactive terrain editor. This tool enables users

to change height maps with some filters, paint surface textures and paint

vegetation on terrains.

The rendering algorithm of this tool is not good enough for large terrains. There is

no LOD method or optimization in PnP TerrainCreator. It uses pure OpenGL in

order to render scene.

The most important advantage of this tool is plug-in architecture. Users can easily

add their prebuilt plug-in to the application and use it on the system. This plug-in

can be an object editor, vegetation painter or something else. This property makes

this tool very adaptable for future needs. A screen shot of the application is shown

in Figure 5. The features of PnP TerrainCreator are as follows: [19]

 Interactive Heightmap Editing

o Randomizing, smoothing, raise, lower, flatten

o It also enables users to integrate their own manipulation brushes.

o Both 2D and 3D editing

 Surface Texturing

 Seas and Oceans

 Static Objects

 Terrain Vegetation

 Environmental Sounds

 9

Figure 5 A screenshot of PnP Terrain Creator. The final view of the terrain is shown on the

left side and the editing brushes are shown on the right side.

2.4 Artifex Terra 3D

Artifex Terra 3D is a Heightmap based real-time terrain editor and texture

painter.[20] This terrain editor is an Ogre based application where Ogre is an open

source graphics engine. A screen shot of the application is shown in Figure 6.

Artifex Terra 3D uses Bin-tree Hierarchies LOD technique in order to render

terrain which can be seen from Figure 7. It uses fewer triangles for plane parts and

more triangles for the detailed parts. Its features can be summarized as below:

 Terrain editing

o Lower, Raise, Blur, Flat, Blur, Boil, Plane.

 Texture painting with some tools and filters

o Paint, Erase, Darken, Brighten, Blur, Sharpen, Contrast, Noise

o Gaussian Blur, Dilate, Edge, Erode, Repair, Unsharp Mask,

Sharpen, Noise, Clear

 Paged and animated grass support.

 10

 Object placement

 Environment settings

 Water Editor

Figure 6 A screenshot of Artifex Terra 3D

 11

Figure 7 A screenshot of Artifex Terra 3D in wireframe mode. High detailed regions are

represented with more triangles.

2.5 Creator Terrain Studio

Creator Terrain Studio is generated by a company named MultiGen-Paradigm. It

can create complex terrains and environments as in Figure 8. A screen shot of the

application on run time is shown in Figure 9. The features of Creator Terrain

Studio can be summarized as below:

 Terrain editing

 Texture painting with some tools and filters

 Object placer

 Environment settings

 GIS integration

 12

Figure 8 A large terrain created with Creator Terrain Studio.

Figure 9 A screen shot of the tool with multiple views.

 13

2.6 Comparison

A feature table of editors is given in the Table 1. Terrain editors are given in the

first column and the capabilities of the features on the right columns. Mostly

terrain editors render terrains with LOD. Paging mechanism can be seen in some

editors, but GIS integration and large-area rendering is very rare. Parallel

rendering is never used before in any terrain editors.

Terrain Editor LOD Paging GIS

Integration

Parallel

Rendering

Large-

area

Terrain

FreeWorld3D yes no no no no

EarthSculptor yes no no no

PnP TerrainCreator yes yes no no no

Artifex Terra 3D yes no no no no

Creator Terrain

Studio

yes yes yes no yes

Table 1 The feature table of editors

Please notice that the most of these editors have limited resolutions in order to edit

terrain. These editors have mostly focused on small terrains. Since this study

focuses on large terrains, the algorithms they used will not work to our case. To

this purpose, new rendering and LOD mechanisms should be developed to

improve the performance of rendering large terrains.

The current editors mostly do not have GIS integration. Nowadays, since working

on real data is demanded by simulation systems, importance of GIS systems is

increased. GIS integration is planned for the application which is developed in this

study.

There is no parallel rendering architecture in the current editors which can be seen

from the Table 1. That means these editors have a limited screen resolution on

rendering terrain or limited terrain complexity. In this study, a parallel rendering

mechanism has been developed to render terrain on multiple screens to increase

the display resolutions.

 14

CHAPTER 3

3. TERRAIN RENDERING

A terrain is usually represented as a height map as we assumed in this thesis. A

height map which is sampled from terrain data should be converted to polygons

prior to being fed into graphics hardware. Mostly, this process is composed of the

triangulation of every three points on the height data. In large terrains, there are so

many triangles that a hardware cannot handle directly in order to achieve enough

frame rates to render. Increasing resolution causes an observable decrease on

performance.

The common approach in order to increase the rendering performance is

decreasing the number of polygons on terrain surface. In the following sections,

we present a survey of the terrain rendering methods which aim the minimization

of number of polygons without losing image quality.

3.1 Irregular Meshes

Irregular meshes method is also known as triangulated irregular networks which

provide the best approximation for the triangulation of terrain surface. This

method represents the surface by triangles which are different size and shapes

[10]. In Figure 10, it is seen that high detailed surfaces are represented with many

small triangles and relatively low detailed surfaces are represented with large

triangles.

 15

Figure 10 An example output of irregular mesh algorithm. High detailed regions are

represented with more triangles than low detailed regions.

This technique uses too much CPU and memory to model the new mesh [10].

Moreover, irregular structure makes geometry caching difficult. Since modern

rendering systems are so integrated with GPU, this algorithm of terrain-rendering

is not suitable anymore [10].

3.2 Bin-tree Hierarchies

This hierarchical terrain-rendering algorithm recursively subdivides the height

map into right triangles resulting in a hierarchy. Each triangle can be split into two

right-isosceles triangles of half the size, by dividing along a line from the apex to

the midpoint of the hypotenuse. The inverse of this process is called merging. This

binary tree stored in memory. These triangles in the tree are split or merged by

their need in the priority queue. In Figure 11, many triangles which are divided

into two pieces can be seen easily. In highly detailed regions of the terrain, these

triangles are divided much more recursively relative to the flat regions of the

terrain.

One advantage of this method is that it allows adaptive refinement. Terrain

regions can be represented with more or fewer triangles when needed and this can

be done so fast as the viewpoint moves. This method has also very accurate

approximations of the terrain with fewer triangles. Additionally, it is very easy to

 16

traverse. It is also beneficial for view-frustum and occlusion culling. If a parent

triangle is out of the frustum then all children will not be visible.

On the other hand, hierarchical techniques have some disadvantages. The

calculation of the detail requires CPU computation and significant amount of

memory to track the current state of triangulation. Reducing the number of

triangles is not the best approach on modern graphics boards. It should be aimed

to maximize the number of triangles that send to GPU in order to render terrain.

Since the triangulation is not uniform, it is difficult to form triangle strips.

An example output of Bin-tree Hierarchies algorithm is shown in Figure 11.

Figure 11 An example output of Bin-tree Hierarchies Algorithm. Smaller triangles represent

more detailed regions.

3.3 Bin-tree Regions

Bin-tree regions are based on refinement operations on large regions associated

with a bin-tree structure.[8] After the triangulation of precomputed regions, they

are uploaded to the buffers of video memory [9] [7]. In order to avoid cracks,

some approximation techniques are applied to smooth the terrain.

An example output of Bin-tree Regions is shown in Figure 12.

 17

Figure 12 An example output of Bin-tree Regions Algorithm. High detailed regions are

represented with more triangles than low detailed regions.

 18

3.4 Tiled Blocks

Rendering terrain with tiled blocks aims to render square patches. Each square

patch has different resolution. The resolution of the surfaces decreases by the

distance to the viewer increases. Terrain data is stored in a set of uniform 2D

grids. Around the viewer, there are nested grids. Grid resolutions differ by a factor

of two at each refinement transition. The final structure of the terrain can be

Figure 13. The closer regions are rendered at higher resolution with respect to

farther regions.

Figure 13 An example output of Tiled Blocks algorithm [7]. Closer regions are represented

with more triangles and farther regions are represented with fewer triangles.

The grid structure has many advantages comparing to irregular mesh techniques.

The most important advantage is that the data structure of the method is very

simple. It also provides a steady rendering rate, even if viewpoint moves. Visual

transitions are smoother and the compression is much more efficient [10].

This method focuses on performing as much operations as on the GPU than on the

CPU. Since the modern GPUs can calculate most of the operations better than

CPUs, it is suitable for GPU rendering.

 19

The main challenge in this approach is rendering block boundaries seamlessly

among blocks. Since every block has different resolution, there is a probability

that some cracks occur along the block borders [7].

3.5 Triangle Strip preserving LOD (T-Strip LOD)

T-Strip LOD is a method that preserves the height map as a series of triangle

strips [17]. Generally the other LOD techniques subdivide the triangles of mesh to

get more detail in the closest mesh to the viewer and less detail for farther away.

(See Figure 14) In T-Strip, instead of using the subdivision of triangles, it is using

the subdivision of lines. Retaining the geometric structure of terrain makes it

faster to draw the triangles as a triangle strip. A triangle strip is a geometric

structure that renders triangles whose vertices follow a path which make a series

of triangles [16].

This algorithm recursively splits a line segment into 2 equally sized smaller line

segments. It starts from the largest blocks size which is entire terrain and it goes

down to the smallest block size. Every split reduces the block size by half. It is

similar to the algorithm in quad trees but there is a difference. In quad tree

splitting is done on 4 quads and here splitting is done one a horizontal line

segment. This recursive step is applied until LOD has been satisfied. Individual

lines make a continuing path of triangles which form a triangle strip adding an

extra performance on rendering [17].

 20

Figure 14 The subdivision of Lines (top) as Triangle Strips (bottom) [17]

Figure 15 An example view of T-Strip LOD Algorithm [17]. The number of triangles

decreases since the distance to camera increases.

For each line segment, the algorithm decides whether the line will fully split, not

split or partially split but the split remains contiguous [17].

 21

CHAPTER 4

4. PARALLEL RENDERING

Parallel rendering is a method used to improve performance of the CG (Computer

Graphics) software. When high-quality images with high frame rates are required

or when the scene is complex, importance of rendering process increases. To

achieve necessary level of performance, parallel computing techniques are used.

There are several approaches for parallel rendering, namely “sort-first”, “sort-

middle” and “sort-last” by considering the distribution time of data.

4.1 Sort-First

Methods based on Sort-First rendering divides the screen into tiles and every tile

is rendered on a different node [11]. In this algorithm, a full graphics pipeline

assigned for each tile. Since sort-first methods provide linear speed up on

rendering performance, it is the best way of increasing the image resolution.

Figure 16 A sample structure of sort-first [12]. The viewports of the scene are calculated on

render nodes and merged on control node.

 22

An example of sort-first method is shown in Figure 16. It is also known as image

decomposition mode. Each rendering machine calculates the pixels of a part that it

is in charge and the final machine composes the outputs of each rendering

machines [12].

Figure 17 Another sample structure of sort-first [11]. Control node synchronizes the output

of render nodes.

Sort-First methods can also be applied as in Figure 17. Every node renders

different part of the final view in the screen space and displays it on the monitor.

As you can see, in sort-first method rendering nodes does not only send final

image to controller machine in order to render scene as in Figure 16 but also

display partial scene on its own monitors as in Figure 17.

 23

4.2 Sort-Last

Sort-Last is also called as database decomposition method [12]. It decomposes

the scene elements across all rendering units and merges partially rendered frames

on final view [11] (See Figure 18). Every unit has its own private frame buffer and

these frame buffers recompose on viewer machine. Sort-Last method is well

suited for the applications whose scene data contains a large number of polygons

[12].

Even if this method scales the rendering very well, the recomposition process is

very expensive since there is a large amount of pixels. For each pixel, there should

be a calculation for depth analysis of objects.

Figure 18 A sample structure of sort-last [12]. Render nodes which are placed on the left side

of figure calculates different objects and control node which is on the right merges the

results.

4.3 Sort-Middle

Sort-Middle rendering distributes triangles among geometry units arbitrarily, and

then sends the transformed triangles to the renderers depending on a screen

position [11]. It is a hybrid model of Sort-First and Sort-Last methods.

 24

4.4 The comparison of sorting methods

Sort-First methods are mainly used in order to increase the screen resolution or

displaying larger areas of the scene at the same time. Sort-Last methods are

chosen when there is a performance demand on a single monitor. Since the

objective of this study is displaying scene on multiple monitors, methods of sort-

first approach are used.

In the following sections, some detail is given on major parallel rendering APIs.

4.5 Parallel Rendering APIs

4.5.1 WireGL

It is the first sort-first parallel rendering system for a PC cluster which is

developed in Stanford University [21]. WireGL uses standard client/server model.

Clients provide graphics source and servers get the commands from network and

render them. WireGL helps graphics developers to make applications in parallel

mode. Figure 19 is the diagram that shows how WireGL system works.

 25

Figure 19 The diagram of system architecture [87]

4.5.2 Chromium

Chromium is derived from the project WireGL and it is also developed by

Stanford University. Chromium is an interactive rendering system on the clusters

of workstations. Various parallel rendering algorithms like sort-first and sort-last

can be implemented with Chromium. It also allows filtering and the manipulation

of OpenGL command streams for non-invasive rendering algorithms [4] [5].

4.5.3 OpenGL Multipipe SDK (MPK)

OpenGL Multipipe SDK is an API for OpenGL that is designed to help

developers meet the demand of immersive environments [13]. This product makes

the application scalable by additional pipes and other scalable graphics hardware

[14].

OpenGL Multipipe SDK provides these features [13]:

 26

 Run-time configurability: The application can be run in one window on a

single workstation or run on multiple pipes on a scalable machine.

 Run-time scalability: Rendering can be done on distributed machines.

 Scalable graphics hardware support is integrated.

 Stereo and Immersive Environments support is integrated.

 27

4.5.4 Equalizer

Equalizer is a toolkit for scalable parallel rendering based on OpenGL which

provides an API to develop scalable graphics applications for wide range of

systems [1]. It enables applications to use multiple graphics boards, processors or

computers to scale rendering performace, visual quality and display size.

Chromium and Equalizer solve a similar problem by enabling applications to use

multiple GPU’s but their characteristics and use cases are quite different.

Equalizer is much more scalable, flexible and compatible with less

implementation overhead [1][2].

Figure 20 The illustration of the basic principle of any parallel rendering application [86]

Figure 20 illustrates the basic principle of any parallel rendering application. The

typical OpenGL based application has an event loop which redraws the scene,

updates data in order of received events, and then redraws the new frame. A

parallel rendering application uses the same model but it seperates the rendering

 28

code from main event loop. The rendering code is executed in parallel on different

resources. Equalizer follows this model which makes the application development

as easy as possible [6].

Since Equalizar is found to be more capable and advantougous with respect to the

other APIs, we give much more detail on equalizer by dercribing its interface. At

the following parts the system architecture is presented in headings “Interface”,

“Application” “Rendering Client” and “Equalizer Server”.

4.5.4.1 Interface

Equalizer is a parallel rendering framework using a similar underlying concept as

OpenGL Multipipe SDK (MPK) but there are some architectural improvements

compared to MPK.

Equalizer provides a framework to facilitate the development of distributed and

non-distributed parallel rendering applications. Programming interface is based on

a set of C++ classes, modeled closely to the hierarchical resource description used

by the server. The application subclasses these objects and overrides C++ task

method, similar to C callbacks. Framework calls these methods in parallel,

depending on a current configuration [4].

Unlike MPK, an Equalizer application does not select the rendering configuration

itself. System-wide configuration server selects rendering clients by the guideline

of user. Rendering clients provided by the application are launched and controlled

by the server.

On a higher level, Equalizer uses a client-server approach built on a peer-to-peer

network layer. It uses TCP/IP sockets in order to message or transmit the result

images.

 29

4.5.4.2 Application

The application in Equalizer does not execute any rendering but triggers the

rendering loop only. The application process may host one or more rendering

clients. If a configuration has no additional nodes besides the application node, all

application code is executed in the same process without any network data

distribution [4].

The application provides a rendering client during the initialization of the server.

The rendering client is mostly the same executable as the application. This client

is deployed on all nodes specified in the configuration by the server. The main

rendering loop is simple:

 The application requests a new frame to be rendered.

 Synchronizes on the completion of a frame

 Process events from rendering clients.

Figure 21 shows the simplified execution model of an Equalizer application.

 30

Figure 21 The simplified execution flow of an equalizer application [86]

 31

4.5.4.3 Rendering Client

Every Equalizer application has a rendering client which can be the same

executable as the application itself. Since rendering client does not have main

loop, it is controlled by the Equalizer framework. A rendering client consists of

the following threads:

 1 x main thread

 1 x network receive thread

 1 x pipe thread for each pipe to execute rendering tasks.

On client library the main loop is implemented, which receives network events

and process them. The network data contains rendering tasks parameters

computed by the server. Rendering client sets up the scene by these tasks.

Event handling is implemented by listening asynchronously for events from all

windows. Every window gets the correct event. Events can be processed by the

window or converted into the configuration event in order to send to the

application node [4].

4.5.4.4 Equalizer Server

The Equalizer server receives requests from all applications on the system and

serves these requests using the application’s specific configuration. It launches

rendering clients on the nodes, determines the rendering tasks for a frame and

synchronizes the completion of frames.

The server and the configuration are not application specific; these can be used in

other applications [4].

Each configuration consists of two parts.

 The hierarchical resource description derived from a logical and

physical environment of the application.

 32

 The compound tree, which declares how the recourses are used in

order to render.

The hierarchy is as follows:

[Nodes] > [Pipes] > [Windows] > [Channels]

Node: Represents a process. A node has pipes.

Pipe: Graphics boards in a machine. All pipes are executed in a separate thread. A

pipe has windows.

Window: an OpenGL on-screen or off-screen drawable. All windows of a pipe

share display lists and other OpenGL display objects. A window has channels.

Channel: Represents an OpenGL viewport in a window.

4.5.5 Summary

The parallel rendering approach is used in this study to display the output of the

terrain rendering tool on multiple screens. The rendering detail and rendered area

is increased by increasing the number of screens. After the survey of parallel

rendering APIs, it is decided to use Equalizer for the synchronization of frames.

Allowing the configuration of the number of monitors and GPUs dynamically is a

great advantage of Equalizer on being elected as a frame synchronizer. The

previous parallel rendering architectures are very complex to configure and

manage except Equalizer which is described in 0. The other architectures work

with pure OpenGL and they are not suitable for the system configuration changes.

Equalizer has dynamically configurable architecture that works with many

configurations like multi-pipe or multi-cpu. The only disadvantage for our case is

that it works just with pure OpenGL. There should be a work to integrate this

architecture with a scene graph mechanism. Scene graph mechanisms bring many

advantages like culling or any other performance upgrades with it.

 33

CHAPTER 5

5. AN ADVANCED TERRAIN EDITOR WITH MULTI-

SCREEN VIEWER

The major objective of this study is to develop a terrain editor tool with multi-

screen support. In this chapter, the implementation of the terrain editor tool and

multi-screen terrain viewer are discussed. The terrain editor tool creates,

manipulates and saves terrain and the multi-screen terrain viewer receives the

results of the terrain viewer then displays them on multiple monitors.

5.1 The Terrain Editor

A real-time interactive terrain editor which has several features in order to create

and render terrain data is implemented. The terrain editor enables user to create a

new terrain, modify and paint it. Users can create terrains either from scratch or

from GIS data. The terrain editor is a GIS integrated tool. Algorithms that are

mentioned in Chapter 2 are used here for all terrain editing and texturing

processes.

Additionally users have the ability to place objects on terrain. These objects can

be buildings, vehicles or vegetations. The terrain editor can also build roads, rivers

and lakes interactively. Whatever user adds on 3D scene is also added to GIS. A

screen shot of the application is shown in Figure 22.

 34

Figure 22 A screen shot of the terrain editor. A palette of the tool is placed on the right side,

and the scene view is placed on the left side.

For future use, a plug-in mechanism that gives the application dynamism for

scalability in its features has been created. Tool presents interfaces to plug-in to

manage the 3D scene and GIS data.

The most of the features, such as placing objects or modifying terrain are also

designed in the plug-in mechanism and given by default.

5.1.1 Terrain Editing

Terrain editing is the manipulation of terrain mesh which is controlled by the user

of the application. There are several brushes which change the shape of a terrain

or paint it. The most well known brushes are:

 Raise: Raises the vertices on the terrain mesh in a selected area.

 Lower: Lowers the vertices on the terrain mesh in a selected area.

 35

 Flatten: Makes all vertices to the same level in a selected area.

 Smoothen: Makes the mesh in a selected area smoother.

 Add Noise: Adds random values to the z values of vertices on a mesh in a

selected area.

 Paint Color: Paints a selected color on a selected area of terrain.

 Paint Texture: Paints a selected texture on a selected area of terrain.

There are several parameters that change the effects of brushes, such as radius,

strength or noise. The effects of these brushes mostly change by the distance to

the center point of the selected area.

At the implemented system, a plug-in mechanism is developed that enables any

developer to create and add a new brush to the application. The application

presents numerous services and interface to these services for the manipulation of

terrains. These interfaces are implemented by plug-ins in order to use the services

of this tool.

5.1.1.1 Possible Implementation Schemes

Several ways have been tried to edit terrain. These were:

 Sending height data as texture to the shaders

 Changing the primitive set data

 Editing vertices using the vertex buffer object

5.1.1.1.1. Sending Height Data as Texture to the Shaders

Sending height data as texture to the shaders is a simple method to apply in order

to edit and render terrain. The height and the normal data are converted to textures

and then sent to the shaders. Normal data is the vector that is perpendicular to

surface at that vertex. In the shaders, the values of the height texture are used as

the offset of the z value of vertices. Similarly, normal texture values are used as

the normal values of vertices. In the editing process, it is planned that when the

 36

user click on 3D scene for the modifications of the terrain, the color values of the

textures is edited in the background. For each click on the terrain, the tool

calculates height and normal values. Then these values will be set to the height

and normal textures. After each process, changed textures will be sent to the

shaders as whole and the results will be viewed interactively. Even if the idea is so

simple, it does not work in reasonable frame times. It has been seen that sending

the height and normal textures after every editing process is not an efficient way

of editing. It becomes very inefficient especially when the editing of very little

area of the terrain. The tool makes calculations about whole terrain heights and

normals and sends two large textures even for a little change of the height data.

The other disadvantage is depth of image. Since the color values are between 0

and 255 in an image it becomes impossible to send float values in a gray-scale

image. Sample height fields can be seen in Figure 23. Black regions represent zero

height and white regions represent the higher parts of terrain. Sending a colorful

image increases the calculation both on CPU and GPU. Using a colorful image for

the height information also causes a heavy data to transfer information to the

shaders for each modification. The final disadvantage that is realized after the

implementation is the culling problem. Since the vertex positions are modified on

GPU, culling mechanism cannot understand whether that pixel is inside the view

frustum or not. Culling mechanism works on CPU and it is applied before

rendering process. Changing the vertex position after culling process gives

contradictory results. So we have not chosen this approach.

 37

Figure 23 Sample height fields. Lighter pixels represent higher regions and darker pixels

represent lower regions.

5.1.1.1.2. Changing the primitive set of data

Terrain geometries are composed of vertices of quads as in Figure 24. There are n-

by-n vertices regularly spread on the scene and they are indexed in order to create

a mesh of terrain with quads. On terrain creation, vertex and normal array and

their indices are created. Then this geometry is created by adding a primitive set

which draws these arrays of data. In editing process, it is planned to change the

value of the vertex array. After each terrain manipulation process, vertex indices

are calculated and then z values of these vertex data are changed but this change

does not affect the mesh geometry on the scene. This geometry should be

recompiled in order to see the effects of changes.

Figure 24 A terrain geometry that is composed of quads

http://images.google.com.tr/imgres?imgurl=http://www.jeangeffroy.com/wp-content/uploads/2007/06/heightmap.jpg&imgrefurl=http://gearsforums.epicgames.com/showthread.php?t=601682&usg=__A8MIRfSZZl-83oCQ-suyC9inxO4=&h=675&w=675&sz=28&hl=tr&start=1&um=1&tbnid=EkwW3g5cMD078M:&tbnh=138&tbnw=138&prev=/images?q=heightmap&hl=tr&sa=G&um=1

 38

After each modification, a flag of dirty display list has to be changed to true. This

flag forces a recompile on next draw of any OpenGL display list associated with

this geometry set when it is true. It means that after each modification, all terrain

meshes will be created again. So this method also works slowly for interactive

editing. After each editing process, the user should wait for a while even if

changed area is so small.

5.1.1.1.3. Editing vertices using vertex buffer object

In the previous methods there is a big disadvantage of inefficient way of changing

height data. Even for a little change of height data, all the terrain is calculated

again or whole terrain data is sent to the shaders. That makes the user to wait for a

while after each process.

This method uses vertex buffer object. A vertex buffer object is a feature that

allows the tool to store the vertex data in the application memory [22]. Normally

vertices are stored in GPU and they are not accessible from an application. VBO

gives freedom to change the data of vertices on the application side. The structure

of vertex buffer object is explained in Figure 25. This method enables accessing

and changing the vertex data. On creation of terrain mesh, vertex data is buffered

on CPU. After editing, the z value of vertex is changed [22].

To use this algorithm, the developer should change the flag to use display lists to

false. Normally geometries are rendered by the display lists whose vertex values

are static. Since the aim is editing of terrain geometry, the vertex values should

not be static and they should be checked for each frame on editing.

The tool sets the values of changed vertices and after changing the height values,

it calculates the normal values of changed parts. Since both the vertices and

normals are mapped on memory, it is easy to set new values. Since this method

does not change unnecessary vertices on editing, it works more efficiently then

previous methods.

 39

Figure 25 Using VBO [22]

5.1.1.2 Terrain Editing using Paging

Since the objective is to render very large terrains, paging method is preferred in

this study. Paging is useful especially when there are many terrain tiles. For

optimization, there is no need to render tiles which are far from the camera. Only

tiles which are close to the camera will be rendered. In some paging methods, tiles

which are far from the camera are rendered with low resolution.

In this editor, it is assumed that there is an editing window that stores 3-by-3 tiles.

User can only edit the selected tile and its neighbors. This editing window can be

seen from Figure 26. In this figure, red tile represents the selected tile and orange

tiles represent neighbor tiles. Green tiles are not displayed. If the user wants to

edit somewhere different from selected tile, he should change the desired tile as

selected. If a selected tile changes, the tool automatically saves old terrain tiles

and loads new selected terrain tile and its neighbors from the disk.

 40

Figure 26 A sample diagram of 6x6 terrain pages and 3x3 editing window. Red square

represents active tile, orange squares represent neighbor tiles and green squares represent

the tiles which are not displayed.

On editing, a new height field is created that is composed of editable tiles. If the

selected tile is not on the border of whole terrain, it is 3-by-3 terrain tiles. If

somehow, the selected tile is on the border, it may be 2-by-3 or 3-by-2. If it on the

corner of whole terrain it is 2-by-2 as in Figure 27.

 41

Figure 27 A sample diagram of 6x6 terrain pages and 2x2 editing window. When active tile

moves to a corner of terrain, the number of neighbor tiles decreases.

On every change of active tile, a new height field is generated by the composition

of this selected tile and its neighbors. Terrain tiles are created with this height

field and the offsets of tiles on that height field. When the user edits terrain, the

tool changes the height field on the background. After changing the height fields,

the tool sends signals to the terrains to update their geometry by the new height

values. If these changed parts are inside the boundary of that page, vertex buffer

for height and normal values are updated. Using common height field has

advantages on the border of terrain tiles and calculations related to neighbor

vertex.

On changing selected tile, the tool does so many read processes from the disk. It is

thought that there can be an optimization on loading tiles. If the new editing

window and the old editing window have common terrain tiles, then there is no

need to read data from disk for these common terrain tiles. One example of this

case is shown in Figure 28. In this example center point moves to right and there

are three common pages. The height maps of those common parts have taken from

the old part and placed to the new editing window with an offset. Only the parts

 42

that are not rendered on the old window are loaded from the disk. It decreases

memory access. Since the most of the time, reading data from a disk is the bottle

neck of real time systems, the performance is increased after this optimization.

Figure 28 Common regions on editing window moves. The region which is outlined with

bold line is not deleted. It is used for the next editing window.

One another optimization is that the terrain tiles are not saved, if the height field is

not edited. On save process, the change of height field is checked. When a height

field is loaded, a flag that shows if editing has done is set to false and this flag is

changed to true if there is any editing process. On save process, this flag is

controlled and related to the status of this flag terrain height field is saved to the

disk. Similar to this process, terrain alpha maps that store texture which should be

tiled, is written to disk, if it is changed.

5.1.2 Terrain Texturing

For terrain texturing, using very large texture is not efficient over the whole

terrain. If you consider that a terrain tile is about 1024 meters x 1024 meters and

each terrain has 256x256 texture resolution per meter
2
, then there should be a

texture which has a size 262144 x 262144. This is a very large image to load and

save. It is so hard to store both in the disk and the memory of the GPU.

 43

Instead of using that texture, a small texture can be used to tile to the all terrain.

The problem here is that the same texture will be repeated on the whole terrain

and there will not be any other textures on that terrain.

To handle all these problems, alpha maps are used in order to show the placement

of tiling textures. Alpha maps have the same resolution as the height field of

terrain tiles so one pixel corresponds to one meter square. And each one meter

square area is textured with an image file that has at least 256x256 resolutions.

In alpha maps, red, green and blue channels of images are used in order to texture

terrain. Red intensity shows the intensity of the first texture, similarly green shows

the second and blue shows the third texture intensity. To increase the number of

textures that are tiled on terrain, the number of alpha maps should be incremented.

By default there are 3 alpha maps in the tool. Since each alpha map contains 3

textures, there will be 9 textures on the terrain. It is a satisfactory number of alpha

maps and textures for a terrain editor. Since our texturing architecture is scalable,

it is easy to increment the number of textures in future if demanded.

These three alpha map textures and the tile textures corresponding to channel of

these alpha map textures are blended in shaders. An example of alpha maps is

shown in Figure 29. In Figure 30, there are textures that correspond to red, green

and blue channels of alpha maps. Result view is shown in Figure 31. Grass texture

is tiled as “A” as the red parts in alpha maps. Similarly sand texture is tiled as the

green parts in alpha maps which have the shape of “B”. Finally blue parts which

have a “C” shape in alpha map is tiled with water textures. The mixture algorithm

can be seen in Figure 32.

 44

Figure 29 Alpha map texture. Each color represents one texture.

Figure 30 Tile Textures (Grass, sand and water textures from left to right)

Figure 31 Result View (Red parts are covered with grass, green parts are covered with sand

and blue parts are covered with water textures.)

 45

Figure 32 The algorithm which calculates the mixture of three textures by alpha map texture

in fragment program

Even if alpha maps are used for texture painting, there is still some repeating

texturing on terrain tiles. These repeating textures can be seen from Figure 33 on

the left side. If a region of one channel spreads on a large area, the texture is

repeated on that region. To minimize this effect, a base texture is used. It mostly

gives random noises on tiled textures so that repeated texture tiling will not be

recognized by human eye. The results of this base texture can be seen in Figure 33

on the right picture. Instead of using a random image for base texture, a terrain

related image that roughly shows the shape of terrain gives better results. A

sample base texture is shown in Figure 34.

varying vec2 texCoord;

varying vec2 texCoordAlpha;

vec4 mixTextures(

in sampler2D textureR,

in sampler2D textureG,

in sampler2D textureB,

in sampler2D alphaMap)

{

 vec4 textureColorR = texture2D(textureR, texCoordAlpha);

 vec4 textureColorG = texture2D(textureG, texCoordAlpha);

 vec4 textureColorB = texture2D(textureB, texCoordAlpha);

 vec4 alphaColor = texture2D(alphaMap, texCoord);

 return (alphaColor.b * (textureColorB - 1) + 1) *

 (alphaColor.g * (textureColorG - 1) + 1) *

 (alphaColor.r * (textureColorR - 1) + 1);

}

 46

Figure 33 Terrain surface before base texture which is placed on the left and after base

texture which is placed on the right. There is no tiling effect after using base texture.

Figure 34 Base Texture. A satellite image of Ankara is chosen for base texture in this

example.

The intensity of the base texture is also adjustable. This intensity value varies

from 0 to 1. When it is 0, non-painted parts are displayed as white and painted

parts are displayed as its own texture as in Figure 38. If the value is 1, the tiled

texture is not recognizable. Whole terrain is rendered with the base texture as in

Figure 36. The algorithm of the base texture is given at Figure 35 below:

 47

Figure 35 The mixture of base texture and tiled textures in fragment program

Figure 36 Base Texture with intensity value 1.0. Base texture is seen but tile textures are not

seen.

vec4 baseColor = texture2D(baseTexture, texCoord);

vec4 c1 = mixTextures(texture1, texture2, texture3, alphaMap1);

vec4 c2 = mixTextures(texture4, texture5, texture6, alphaMap2);

vec4 c3 = mixTextures(texture7, texture8, texture9, alphaMap3);

vec4 color = c1 * c2 * c3;

gl_FragColor = (color * (1.0 - baseTextureIntensity) +

 (baseColor * baseTextureIntensity));

 48

Figure 37 Base Texture with intensity value 0.5. The mixture of tiled textures and base

texture is seen.

Figure 38- Base Texture with intensity value 0.0. Tiled textures are seen but base texture is

not seen.

 49

5.1.2.1 Texture Painting

On texture painting, textures are selected by the user. Since there are three alpha

map textures, it is allowed to select maximum nine textures in order to paint

terrain. The user may not select exactly nine textures. Nine is just the maximum

number of textures to paint. On painting, user selects the active texture to paint

and the parameters of the painting brush. These parameters are radius, strength

and noise.

Radius represents the affected area of the brush from the center of the clicked

point. Painting brush can also be square or circle. The change of radius is shown

in Figure 39 and Figure 40.

Figure 39 Texture painting with radius = 50

 50

Figure 40- Texture painting with radius = 100

Strength represents the intensity of painted texture. It varies between 0 and 1. If it

is a small number, user has to click too much to paint that area full of that texture

as in Figure 41. If this value is one, whole selected area is directly painted with

that texture as in Figure 42.

Figure 41- Texture painting with strength = 0.5

 51

Figure 42- Texture painting with strength = 100

Noise value determines whether the user paints scattered or not. This value is

between 0 and 1. 0 means there is no scattering and 1 means totally scattered on

that area. The effect of noise is shown in Figure 43 and Figure 44.

Figure 43- Texture painting with noise = %0

 52

Figure 44- Texture painting with noise = %100

After selecting the texture and the parameters, user clicks on the terrain. With the

real point on terrain and radius values, new pixel values are calculated. Affected

terrains modify their alpha maps with these parameters. Each terrain tile manages

its own alpha maps and sends new textures to shaders. This process is performed

without decreasing the frame rates. Figure 45 and Figure 46 show the result of

painting. In this painting process, images in Figure 47 are used for tiling textures,

Figure 48 is used for alpha map and Figure 49 is used for base texture.

 53

Figure 45 Terrain Before Painted. There are only grids on terrain.

Figure 46 Terrain After Painted. There are textures and grids on terrain.

Figure 47 Tiled Textures

 54

Figure 48 Alpha map texture

Figure 49 Base Texture

5.1.2.2 Slope Based Texturing

Slope based texturing is used on terrain regions where slope is close to 1

Generally rock or soil textures are used on those areas to display a realistic view.

The slope is calculated by the normal value of vertices. z value of normal gives the

slope value of this triangle. The calculation of aim is shown in Figure 50. Slope

texture intensity increases by the value of normal on that pixel.

 55

Figure 50 The formula for the calculating slope of vertices on vertex program

Figure 51 The calculation of intensity of slope texture on fragment program

As it is seen from the calculations in Figure 51, pixel color is changing according

to slope texture value when the slope increases. If slope is 0, then pixel remains its

own color. The results of slope texturing are shown in Figure 52 and Figure 53.

//#fragment program

uniform sampler2D slopeTexture;

varying float slope;

varying vec2 texCoordAlpha;

void calculateSlopTexturing(inout vec4 pixelColor)

{

 vec4 slopeColor = texture2D(slopeTexture, texCoordAlpha);

 slope = clamp(slope, 0.0, 1.0);

 pixelColor = (1 - slope) * slopeColor + slope * pixelColor;

}

//#vertex program

uniform float size;

varying float slope;

varying vec2 texCoord;

varying vec2 texCoordAlpha;

//Since the values about geometry are sent to the vertex

shader, slope value is calculated in vertex program.

void main()

{

...

vec2 relatedCoord = gl_Vertex.xy - origin.xy;

texCoord.xy = relatedCoord / size;

texCoordAlpha = relatedCoord;

slope = gl_Normal.z; //z value of normal

...

}

 56

Figure 52 Terrain without slope texturing

Figure 53 Terrain after appliying slope texturing. Terrain pixels which has slope close to 1

are textured with soil texture.

 57

5.1.2.3 Procedural Texturing

In many terrain editors there is an automated texture of nature. In nature textures

generally change with height. It starts with sea level which is blue, then vegetation

comes which is green, and then sand comes which is brown and the most of the

time there is a snow on the top of the mountains. The order may change to the

regions or there are more levels in some regions in real life.

For that case, a plug-in which paints terrain automatically by height is

implemented. Textures and height values correspond to these textures are selected.

With these values, a new texture is generated on terrain with a single click. The

results of the procedural textures are shown in Figure 54 and Figure 55.

To realize this idea, architecture is implemented on shader. Selected textures and

their heights sent to the shader and the texture is calculated by the z value of

vertex on rendering process. It is a fast way to implement, but the problem is that

this painting process is not dynamic enough. Since terrain is rendered on shaders

by checking just the z values of vertices, it is not possible to paint texture after this

process. The user is forced to choose an option like either a terrain is textured with

height values or terrain is textured manually by user.

This problem is solved by calculating height textures on CPU side. Height map

values are processed and an alpha map texture is processed by the height textures

and correspondent height values. This process takes a little time but it provides

dynamism for the following parts of editing. After setting height textures, painting

is still allowed, because this texturing mechanism is based on alpha map texturing.

There is no need extra saving of the height values of height textures anymore by

this method. Height textures are saved with the alpha maps.

 58

Figure 54 Terrain before applying height texturing

Figure 55 Terrain after applying height texturing. From lower to higher terrain is textured

with grass, sand and snow textures.

5.1.2.4 Texturing with Satellite Image

Satellite images are taken photos from the satellites. If there is a real height data of

the terrain, it is possible to use the photo of this place which is taken by a satellite

instead of painting this area. It gives more realistic view on that terrain. An

example of terrain which is tiled with a satellite texture is shown in Figure 56. A

 59

satellite texture and the borders of this image are selected to apply on terrain. This

process implemented on GPU side. Shaders take these textures and parameters to

render that scene. Texturing with satellite image is applied after coloring with

alpha map textures and slope texturing. Since satellite image has to override other

paintings, this should come last.

Figure 56 Sample Texturing with Satellite Image

5.1.2.5 Lightmap Texturing

A light calculation is sometimes very expensive process especially if there are

more than 8 lights on the scene. Some algorithms are developed to solve this

problem but the most suitable one for terrain is using a pre-calculated lightmap.

Every light on a terrain is preprocessed and calculated. The results of these

calculations are written on a lightmap that shows where should be illuminated and

how much it should illuminated as in Figure 57. The created alpha map resolution

is same as the size of terrain grid. It can be increased but this resolution gives

satisfactory results.

 60

Figure 57 Lightmap Image. White Parts represents illuminated parts and black parts

represent dark parts.

Lightmap process is implemented on GPU side. Lightmap texture is sent to the

shaders that calculate lighting. Real light value and pre-calculated light value are

added. The illuminations of lights which come from small light sources may not

be recognized by human eyes. If pre-calculated light is directly added to real light

value, the illuminations of these small light sources become recognizable.

Actually it is an illusion of human eye. The pupil of eye expands in darkness and

shrinks under light. Since it shrinks in daylight, the illuminations of small light

sources are not recognized by us. To give this effect, light values that come from

lightmap texture are decreased on day light and increased on night. A soft

transition is implemented for the lightmap of day and night which can be seen in

Figure 58, Figure 59 and Figure 60. The lightmap calculation is shown in Figure

61.

 61

Figure 58 Screenshot from day time

Figure 59 Screenshot from sunset

 62

Figure 60 Screenshot from night time

Figure 61 The lightmap calculation in fragment program

//#lightmap shader

uniform sampler2D lightmapTexture;

varying vec2 texCoord;

//real light value calculated in vertex program

varying float lightAmount;

void calculateLightmap(inout vec4 pixelColor)

{

 vec4 lightColor = texture2D(lightmapTexture, texCoord);

 float lmIntensity = 1 - gl_LightSource[0].diffuse.g / 3;

 vec4 color = (lightAmount * pixelColor);

 color = clamp(color, 0.0, 1.0);

 pixelColor = (lightColor * pixelColor) * lmIntensity + color;

}

 63

5.1.2.6 Other Colorings

In this part, the processes which are not for a realistic rendering of terrain are

discussed. These processes help user to edit and analyze the terrain geometry. The

information is mostly given by coloring some regions of the terrain.

5.1.3 Coloring by Height

Coloring by height looks like a geographical map. User can decide any color for

any height. Since there will not be any painting after that process, it is

implemented in GPU side. These values are sent to the shaders. After sending

these values, it is directly displayed on the screen without any latency. Original

terrain is shown in Figure 62 and the terrain after the coloring by height process is

shown in Figure 63. Coloring is done by the values in Table 2.

This process is so similar to texturing by height, but the only difference is that it is

applied on GPU. This coloring is not only for realistic viewing but also for

understanding height values.

Figure 62 Terrain before elevation texturing

 64

Figure 63 Terrain after elevation texturing. Each height is represented with different color.

Height Values Colors Values (Red, Green, Blue) Color

0 0, 0, 255

33 85, 170, 255

66 85, 255, 0

99 255, 170, 0

132 85, 0, 0

200 255, 170, 127

Table 2 Height values and correspondent color values

5.1.4 Terrain Grids

Measuring is always done by referencing of a constant field. If the terrain

information is not known before, the size of terrain cannot be realized. 256m x

256m terrain, looking from 1000m distance has the same look 1024m x 1024m

terrain looking from 4000m distance. In real life there are always references, such

as buildings, trees, plants or any other surface texture. In computer graphics there

is always a limit of the resolution.

 65

Terrain grid is implemented in order to help users to understand terrain size or the

distance between two points. Lines are drawn in horizontal and vertical with a

constant space as in Figure 64. This process is also implemented in GPU side. To

draw lines, it is checking x and y values of vertices. After all painting process it

shows terrain grids.

Figure 64 A screenshot of a grid (Each line has 8m distance.)

5.1.5 Contour Lines

In cartography, contour line is the connection of points which have the same

height from the sea level. It also helps user to understand the level of terrain as in

Figure 65. This process is also implemented on GPU. To draw contour lines, it is

checking the z values of vertices and the distance of each contour line.

 66

Figure 65 A screenshot of contour lines (Each contour line has 10m distance.)

5.1.6 Editing Circle

In the most of the editing process, users need to know where they are editing and

how much area this process will affect. To accomplish this need, an editing circle

is used (See Figure 66). This layer is implemented in GPU side. Tool sends radius

and mouse pick coordinate to shaders and after all painting process, shaders

render that circle to show editing area.

Figure 66 Editing Circle (Radius = 50m)

 67

5.1.7 Editing Square

Similar to editing circle, an editing square is implemented. Everything is the same

but the shape (See Figure 67).

Figure 67 Editing Square (Length = 100)

 68

5.2 The Terrain Viewer with Multi-Screen Support

The terrain viewer is implemented in order to render very large terrains which are

created by the terrain editor tool. The terrain viewer loads the terrain from disk in

pages and calculates a level of detail for each page. These pages are rendered in

different levels of detail according to the distance to viewing camera. Currently

there is no editing feature available on viewer. This tool is mainly designed in

order to view the results of the terrain editor. After creating a terrain with the

editor, the terrain viewer tool is called in order to view all the pages of the terrain.

The viewer reads terrain data in pages and loads to the scene. The whole terrain is

rendered altogether with different levels of detail. The first time that a user is able

to see whole terrain pages together is in that viewer.

When user moves towards terrain, new pages are loaded in threads. The resolution

of pages increases when the distance of camera to the rendered page decreases and

vice versa the low detailed pages are loaded when the camera distance to this page

is increased.

On viewing the terrain, user has also an option to view scene in multi-screen as in

Figure 68. In this example, there are three monitors which are connected to

different graphics cards. The application checks the configuration files to decide

the number of screens, the point of view and the field of view of cameras. All

these values are stored in the configuration files.

 69

Figure 68 A photo of the multi-screen system with three monitors

To increase the performance of the system, the main configuration uses multiple

application nodes. This configuration works better on computers which have

multiple graphics boards. The calculations of vertices and textures are done in

different graphics boards so it gives parallelism in calculations and rendering. By

this way, the screen resolution is incremented with very little loss of fps or no

loss.

This tool can also work on different computers. Suppose there are N computers,

each has M monitors. This tool lets users to view scenes with N x M monitors

which show that our system is scalable on resolution.

In the following sections, the infrastructure of the multi-screen terrain viewer is

explained. Terrain paging with level of detail support is explained in section 5.2.1

and the implementation of parallel rendering is mentioned in section 5.2.2.

5.2.1 Paged Terrain LOD

Since computers have limited resources, rendering very large areas is a very

challenging task. Page mechanisms are created to reduce the load on the

computer. Whole terrain is divided into pages and when these pages are placed in

an order, whole terrain is generated again. The computer does not load whole

 70

pages at the same time, but just loads the pages that are close to the view point.

The number of pages that are loaded is dependent on computer resources, such as

memory, CPU and GPU power. There are two ways of incrementing this number

of loaded pages. The first one is upgrading the computer to a super computer that

has many GPUs and CPUs. The other way of increment is optimizing the scene to

the computer. The most important optimization in rendering is “Level of Detail”.

This LOD mechanism renders terrain surface in details if this place is close to the

view point. Likely the terrain surface is rendered in fewer details if this surface is

far to the viewing camera. The surface area that is rendered at one view is

incremented by paging and LOD mechanisms.

To this purpose, several ways are implemented and tested to combine “Paging”

and “Level of Detail”.

These are:

 Simplification Algorithm

 Tiled Block Methods

o Paged Tile Blocks

o Merged Paged Tile Blocks

 Threaded Loading Simplified Pages

5.2.1.1 Simplification Algorithm

In this method, a simplification process is applied after the terrain is created.

Simplified terrains are created and saved to disk in several detail levels. These

levels are up to user decision on creation. This simplification process can create

either irregular or regular grids. These simplified terrains are good representations

of real terrains because they are simplified by the elimination of vertices whose

absence does not recognized. Regular grid and its simplified version are shown in

Figure 69 and Figure 70. This algorithm creates a non-regular grid.

 71

Figure 69 A top view of a regular grid (on the left) and its simplified version (on the right)

[24]. The simplified version has fewer triangles.

Figure 70 A top view of a regular grid (on the left) and the simplified version (on the right)

[25]. The simplified version has fewer triangles.

Although this method is good at imitating the real terrain, this algorithm has many

disadvantages. A considerable time is required in order to create the levels of

original terrain. Not only the creation of these low resolution terrains takes long

time, but also the new terrains with low resolutions may take up 3 or 4 times

bigger size on disk than the original ones do. Since the original terrains are regular

meshes, the height values are stored in a float array format in a binary file but the

irregular meshes should be stored as in an array of triangles. Since each element

of vertices has 3 values as x, y, z, the size of new file should be larger than the

original terrain file. The reading process of these large sized terrains is also a big

 72

job for a computer at interactive frame rates. Management and editing these

terrains is hard too. Once you create a terrain, it cannot be modified. If a change is

desired, it has to be built again. So this algorithm is not used.

5.2.1.2 Tiled Block Methods

Tiled Block method is mentioned in the related work part of chapter 2. This

method is mentioned for a single paged terrain in the previous parts. Since our

terrain is paged, this method should be modified to this case.

5.2.1.2.1. Paged Tiled Blocks

In this method, each page is rendered in separate LOD mechanisms. These pages

are placed in the scene with their offset to the reference point. The tool does not

care of relation between pages. In this algorithm whole terrain data is loaded for

each page and vertices are eliminated when a simplification needed related to

distance to the camera. In every frame time, this discarding calculation is done

when the camera moves. Whole terrain page geometry is generated by the camera

distance.

After applied this method to the terrain, it has seen that this algorithm does not

work as fast as it is expected. All terrains become high resolution and frame time

decreases dramatically, when the camera is close to the center of pages. Large

cracks between terrain pages are also occurred on rendering terrain. Then it is

decided not to use this method because of these large cracks and low frame rates.

5.2.1.2.2. Merged Paged Tiled Blocks

Merged paged tiled blocks method is similar to the Paged Tiled Blocks but the

difference is pages are merged. Before applying tiled blocks algorithm, whole

terrain pages are merged in order to obtain one page. Whole height map and

textures are merged at the beginning of the application. Then the whole terrain is

rendered in tiled blocks algorithm. Since whole terrain is merged, there are no

 73

cracks on this algorithm but it did not suit the soul of paging mechanism. There is

no paging on rendering in this algorithm. Paging is just used to store the terrain.

As a result this method is not used because it needs very long preprocess and it

has not satisfied expected frame rates.

5.2.1.3 Threaded Loading Simplified Pages

In the previous methods, there has not been dynamism on loading pages and on

rendering, frame rates were unsatisfactory. The method for this program has to

dynamically load terrain pages when needed and remove pages which are not

close to the camera. Frame rates should not be affected when loading terrains. To

this purpose, a thread mechanism that loads terrain pages without decreasing

frame rates is developed.

Another difference in this algorithm is whole page is rendered in one level of

detail. In previous methods, pages were simplified partially related to their

distance to the camera. In this method, every page decides if the level of detail

should change and loads new level in thread when needed. When thread finishes

loading new level, old terrain page is removed from the scene and new level is

added to scene. Pseudo code of this process is shown in Figure 71. This process

causes very fast frame rates that a human eye cannot recognize.

• Send the camera position to pages

• Each page creates a thread that calculates new

resolution

– If the resolution should be increased

• Read data from disk

– If the resolution should be decreased

• Simplify the old page

– If new resolution is changed

• Generate a new terrain

• If the new terrain is generated

– Load the new terrain

 74

Figure 71 Pseudo code of thread usage on changing the resolution of terrains

This method is faster than the simplification algorithm in the previous parts

because there is no calculation. The algorithm reduces the resolution by half by

discarding the half of vertices as Figure 72. It discards vertex rows and columns

regularly by one skipping. The original terrain page is shown in Figure 73 and low

resolution versions are in Figure 74.

Figure 72 The diagram shows how the elimination is done. Blue dots represents, remaining

vertices. Orange dots are discarding vertices.

 75

Figure 73 Terrain page without LOD

Figure 74 Terrain Pages with LOD = 1 (on the left) and LOD = 2 (on the right). If LOD

increases, the resolution decreases.

The other advantage of this method is; it loads new pages dynamically. In

previous methods, the sizes of terrains are constant. This method brings scalability

on terrain loading. By managing the LOD levels and the computer hardware, it is

 76

easy to see more terrain pages at one frame. It can be optimized to current

computers.

Figure 75 Terrain Geometry without LOD. All the polygons are in the same size.

Figure 76 Terrain Geometry with LOD. Farther regions are represented with fewer

polygons and closer regions are represented with more polygons.

 77

This algorithm solves the performance bottleneck caused by the number of

vertices. Terrains are loaded very coarsely if they are far away from the camera

(See Figure 75 and Figure 76). Even if these terrains are very low polygonal

meshes, they are tiled with full resolution textures. This is our next bottleneck.

To solve this problem, a texture LOD mechanism is applied. If a terrain is further

than a constant distance, tiling textures are changed just with an average color of

that tiling texture and base textures are loaded with low resolution replicas (See

Figure 77 and Figure 78). This method solves the high memory consumption

problem and fastens the loading terrains.

The performance improvement of LOD mechanism can be seen from Table 3 and

Figure 79.

Figure 77 Terrain texture and geometry without LOD

 78

Figure 78 Terrain texture and geometry with LOD

Terrain Size Number of Pages Without LOD (FPS) With LOD (FPS)

1024 x 1024 4 x 4 232 352

2048 x 2048 8 x 8 105 305

4096 x 4096 16 x 16 51 150

6144 x 6144 24 x 24 28 68

6400 x 6400 25 x 25 16 58

6656 x 6656 26 x 26 N/A 57

7168 x 7768 28 x 28 N/A 53

8192 x 8192 32 x 32 N/A 48

Table 3 A performance comparison table of with LOD and without LOD algorithms

(Each page has 256x256 vertices.

N/A areas could not be measured because the tool exits with out of memory error.)

 79

Figure 79 The performance graph with LOD and without LOD algorithms. The

performance of algorithms which use LOD are higher than the algorithms without LOD.

5.2.2 Parallel Rendering

Recently, parallel rendering became an important research area by demanding

high resolution graphics on simulation projects. To supply this demand, a parallel

rendering engine is created.

As in mentioned in chapter one, there are several parallel rendering APIs. After a

long research period and experiments, it is decided to use Equalizer as parallel

rendering API. Equalizer does not fit our system directly, but the architecture of

Equalizer is dynamic for modifications. So it is modified for our system.

Our system is an OpenSceneGraph (OSG) based rendering engine. Pure Equalizer

does not include features of scene graph. It mostly works with pure OpenGL so

the management of the scene is so complex.

0

50

100

150

200

250

300

350

400

16 64 256 576 625 676 784 1024

No LOD

LOD

x axis represents number of pages.
y axis represents frame per second.

 80

The OpenSceneGraph is an open source, cross-platform graphics toolkit in order

to develop graphics applications. It is based on “Scene Graph" architecture,

providing an object oriented framework over the OpenGL. This makes it easier to

implement and optimize low-level graphics calls [26].

The key strengths of OpenSceneGraph are its performance, scalability, portability

and the productivity. [26]

OpenSceneGraph has many performance features, such as view-frustum culling,

occlusion culling, small feature culling, Level of Detail nodes, OpenGL state

sorting, vertex arrays, vertex buffer objects, OpenGL Shader Language and

display lists as part of the core scene graph.

In order to achieve these features, an engine created which has a name Sim3D.

This engine is an OSG based toolkit and it is developed in Simsoft Bilgisayar

Teknolojileri Ltd. Şti.. Sim3D has many libraries, such as animation, audio,

environment, terrain, road, water, effect, vegetation which enable developers to

create a scene easily. Most of the implementations of this study which is about

terrain rendering and editing are integrated with terrain library of Sim3D.

After integrating with the Equalizer, parallel rendering feature is attained. The

application structure that works with the architecture of Equalizer is created. The

Equalizer integration brought the feature of parallel rendering to Sim3D. Scene

can be rendered in multi-pipe or multi-core systems. On this integration process,

some major problems are handled. Such as:

1. Camera orientation problems on multi display scenes. Every camera

displays the same place with the same point of view. A camera rotating

mechanism is created dependent on a configuration file.

2. Keyboard and mouse input problems occurred on multi-screen systems.

Since the main movement or rotation is done on the server side, inputs on the

 81

rendering machines do not work. To handle these problems, a messaging

infrastructure is created to send inputs from rendering clients.

 82

CHAPTER 6

6. DISCUSSION AND CONCLUSION

6.1 Achievements

In this study, there are three important achievements. They are:

 Terrain Editing and Painting

 Terrain Paging and LOD Mechanism

 Multi-Screen Display

Terrain editing and painting can be performed easily and fast. Several algorithms

are implemented and tested and the most suitable methods are chosen to this case.

In editing, the VBO is used in order to change the position of vertices and the

values of normals. In order to paint terrain, a combination of textures and shaders

are used. This method brings fast and easy way of texture painting with very little

memory consumption. After adding a paging mechanism to this editor, the

capability of the terrain editor is increased. Since the terrain pages are loaded

when needed and the old ones are unloaded on editing, the editor can create and

manipulate infinite number of pages at interactive frame rates.

The terrain editor is integrated with GIS. This terrain editor tool can load real

terrain data by the GIS integration. This feature enables to create height maps by

selecting the area on the map. On editing, all the terrain manipulations and the

object placements on the terrains are reflected to GIS data.

Terrain paging and LOD mechanism are implemented for very large terrains.

Terrain paging is both implemented for the terrain editor and the terrain viewer. In

editor, the system enables editing on multiple pages at the same time without

noticed page borders. A LOD mechanism is created for pages in the terrain

 83

viewer. Each page is loaded in different resolution dependent on the distance to

the camera. Since loading process is done in threads, the performance of the

system does not affect on loading. The LOD mechanism is not only for the

geometries, but also for textures. The pages with less detailed geometries use low

resolution textures that the difference cannot be noticeable by a human eye. The

major performance improvement is achieved through LOD mechanism. This

terrain viewer enables to walk around hundreds of kilometers on a terrain with

interactive frame rates. This tool just needs to have the data of that large terrain.

This viewer can be used with either a land vehicle or a plane. Since a land vehicle

moves over the terrain, the resolution of the terrain should be high. The land

vehicle moves slowly enough that the terrain loader can load new pages before

this vehicle arriving next page. A plane moves much faster than a land vehicle.

Normally, it is so fast that a terrain loader cannot catch to load new pages. The

advantage of a plane is that it moves much higher than a vehicle. This situation

brings the advantage of using low resolution pages on the most of the regions of

terrains. Since a plane does not see the terrain in high resolution, terrain loader can

load all low resolution pages without recognized by a human eye. This system can

be used in an image generator system easily.

A major topic of this study is Multi-Screen Display Viewing and Parallel

Rendering of a terrain. With the integration of the Equalizer and

OpenSceneGraph, a system which enables multiple numbers of displays which

have different point of views is created. This enables to display scene in

environments like cave or dome systems. These systems are designed in order to

increase the effect of realistic feel by projecting the scene to the walls of the room

of dome or cave. The user of the system sees the scene wherever he looks in the

room. This achievement can also be used in order to increase the resolution of the

screen. Since the infrastructure enables multiple rendering nodes, the screen

resolution is just dependent on the number of computers and monitors connected

to these computers. There is no terrain viewer which has multiple screens like this

application. After editing the terrain, the application displays whole terrain in

 84

multiple screens with very high resolution and interactive frame rates. The number

of GPU in display system increases the performance of the system.

6.2 The limitations of Current Work

There are some limitations which are not handled by this study. The first one is

the limited number of pages rendered at the same time. Even if the paged LOD

mechanism lets the tool load an infinite number of pages, rendering system have

problems when the number of rendered pages is larger than 1024. The frame rate

decreases dramatically when the number of pages increased too much. It is an

undesirable result of an interactive system.

The second limitation is camera speed. When the camera moves so fast that the

loading mechanism cannot load fast enough, pages are not displayed or they are

displayed with very low resolution.

The third limitation is the area of the terrain. On measuring the total size of the

terrain, the distance between points in the height fields are taken 1m. If the

resolution of a terrain is desired to be increased to 0.5m or 0.25m, the total size of

the terrain will be shrinking with proportion to the new resolution.

6.3 Future Work

In this study, some future works are also emerged. The first one is about handling

pages whose has different resolutions. On terrain editing, the resolution of all

pages are the same. Instead of having a constant resolution, there should be pages

with different resolutions. These resolutions should increase by the demand of

detail on that page. This improves the performance both on editing and on

rendering. It also supplies an effective usage of memory.

The second one is about the cracks between pages. If two neighbor pages have

different resolutions, then the cracks may occur between these two pages. When a

high detailed page represents the same line with 256 values, a low resolution page

 85

may represent the same line with 128 or 64 values. If the values on the high

resolution page do not match with the interpolated values of low resolution page,

cracks occur on that not matching area. Sometimes these cracks could not be very

small and they could be noticeable by a human eye. In order to avoid these cracks,

curtains are added to terrain borders. This method makes these cracks not

noticeable but it is not an efficient way. A crack avoidance mechanism should be

implemented that removes gaps between pages.

The third one is about LOD on editing. A LOD mechanism could be added on

terrain editing and user can see whole terrain while editing. Different from the

terrain viewer, LOD of pages should be changed by the active terrain instead of

camera position. This improves the performance of the terrain editor.

Another future work is about multi-resolution on terrain deformation. Terrain

resolution can be incremented while rendering if a deformation request comes.

This deformation is mostly needed when a vehicle moves on a snowy terrain or an

explosion occurs. These effects are expected to change the shape of terrain. The

resolution of terrain could be changed dynamically and could be edited

interactively. This feature could be useful for the simulation systems.

The last one is about the number of threads on loading pages with LOD. Since this

process is an IO operation there is only one thread in order to load terrains. It may

be dangerous to increment the number of threads since there is only one disk

reader. If two threads try to access the same data on disk, there would be an

exception. In order to handle this problem, there should be many threads that build

terrains but one thread to read data from disk. This improvement would probably

increase the terrain loading performance.

 86

REFERENCES

[1] IEEE Transactions on Visualization and Computer Graphics, vol. 15, no.

3, pp. 436-452, “Equalizer: A Scalable Parallel Rendering Framework” IEEE,

2009.

[2] Equalizer web site, “Chromium vs. Equalizer”,

http://www.equalizergraphics.com/documents/user/crComparison.html, last

accessed 27.06.2009.

[3] Equalizer Technical Report IFI-2007.06, Department of Informatics,

Unviersity of Z¨urich, 2007

[4] Chromium web site, “Chromium”, http://chromium.sourceforge.net, last

accessed 27.06.2009.

[5] Humphreys G, Housten M, Ng R, Frank R, Ahern S, Kirchner P,

Klosowski J, “Chromium: A Stream-Processing Framework for Interactive

Rendering on Clusters”, SIGGRAPH 2002.

[6] Eilemann S, “Equalizer Programming Guide”, SIGGRAPH 2008, Article

45

[7] Losasso F, Hoppe H, “Geometry Clipmaps: Terrain Rendering Using

Nested Regular Grids”, ACM Transactions on Graphics, ACM Press

(Proceedings of SIGGRAPH 2004), Volume 23, 2004-10-13

[8] Levenberg, J. “Fast view-dependent level-of-detail rendering using cached

geometry.”, In Proceedings of the 13th IEEE Visualization 2002 Conference,

Boston, 2002.

[9] Sümengen S, Balcısoy S, “Hava ve Kara Araç Gruplarının Detaylı Arazi

Verisi Üzerinde Gerçek Zamanlı Simülasyonu.”, HITEK, Istanbul, 2004

[10] Asirvatham A, Hoppe H, “Terrain Rendering Using GPU-Based

Geometry Clipmaps”, GPU Gems 2, NVIDIA

[11] Yin P, Jiang X, Shi J, Zhou R, “Multi-screen Tiled Displayed, Parallel

Rendering System for a Large Terrain Dataset”, The International Journal of

Virtual Reality, 2006, 5(4):47-54

 87

[12] ScalableGraphics web site, “Chromium”,

http://www.scalablegraphics.com/index.php?l1=products&l2=dtc2, last accessed

27.06.2009.

[13] OpenGL Multipipe™ SDK , “OpenGL Multipipe™ SDK White Paper” ,

007-4516-002

[14] OpenGL Multipipe™ SDK web site, “SGI – Products: OpenGL Multipipe

SDK Home Page”, http://www.sgi.com/products/software/multipipe/sdk/, last

accessed 04.07.2009.

[15] FreeWorld3D web site, “FreeWorld3D 2.0 – Terrain Editor and World

Editor”, http://freeworld3d.org/features.html, last accessed 06.07.2009.

[16] Marselas, H. “Optimizing Vertex Submission for OpenGL”, Game

Programming Gems, pp. 353-360.

[17] Szoka E. “Triangle Strip preserving LOD (T-Strip LOD)”, Computer

Science 95.495B Honours Project, Carleton University, April 2002

[18] EarthSculptor web site, “EarthSculptor - Technology”,

http://www.earthsculptor.com/technology.htm, last accessed 06.07.2009.

[19] PnP TerrainCreator web site, “PnP Terrain Creator - Home”,

http://www.pnp-terraincreator.com/, last accessed 06.07.2009.

[20] Artifex Terra 3D web site, “Artifex Terra 3D Terrain Editor – Easy and

sophisticated landscape painting and editing”, http://www.artifexterra3d.com, last

accessed 06.07.2009.

[21] G. Humphreys and M. Eldridge. “WireGL: A Scalable Graphics System

for Clusters, In: Computer Graphics Proceedings”, Annual Conference Series,

ACM SIGGRAPH, pp. 129~140, Los Angeles, California, 2001.

[22] Using Vertex Buffer Objects - White Paper, NVIDIA

[23] G. Humphreys and M. Eldridge. “Distributed Rendering for Scalable

Displays”, Proceedings of SC2000, Article no. 30.

[24] P. Heckberd and M.Garland. “Survey of Polygonal Surface Simplification

Algorithms”, Multiresolution Surface Modeling Course, SIGGRAPH „97

[25] Wolfire Blog site, “Wolfire Games Blog”, http://blog.wolfire.com/, last

accessed 15.08.2009.

http://freeworld3d.org/features.html
http://www.earthsculptor.com/technology.htm

 88

[26] OpenSceneGraph website, “About/Introduction - osg”,

http://www.openscenegraph.org/projects/osg/wiki/About/Introduction/, last

accessed 18.08.2009.

http://www.openscenegraph.org/projects/osg/wiki/About/Introduction

