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ABSTRACT 

 

 

A DESIGN AND IMPLEMENTATION OF P300 BASED 
BRAIN-COMPUTER INTERFACE 

 

 

Erdoğan, Hasan Balkar 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Nevzat Güneri Gençer  

Coadvisor: Dr. Ali Bülent Uşaklı   

 

 

September 2009, 161 Pages 

 

In this study, a P300 based Brain-Computer Interface (BCI) system design is 

realized by the implementation of the Spelling Paradigm. The main challenge in 

these systems is to improve the speed of the prediction mechanisms by the 

application of different signal processing and pattern classification techniques in 

BCI problems.  

  

The thesis study includes the design and implementation of a 10 channel 

Electroencephalographic (EEG) data acquisition system to be practically used in 

BCI applications. The electrical measurements are realized with active electrodes 

for continuous EEG recording. The data is transferred via USB so that the device 

can be operated by any computer.  

 



 

 v 

Wiener filtering is applied to P300 Speller as a signal enhancement tool for the 

first time in the literature. With this method, the optimum temporal frequency 

bands for user specific P300 responses are determined. The classification of the 

responses is performed by using Support Vector Machines (SVM’s) and Bayesian 

decision. These methods are independently applied to the row-column 

intensification groups of P300 speller to observe the differences in human 

perception to these two visual stimulation types. It is observed from the 

investigated datasets that the prediction accuracies in these two groups are 

different for each subject even for optimum classification parameters. 

Furthermore, in these datasets, the classification accuracy was improved when the 

signals are preprocessed with Wiener filtering. With this method, the test 

characters are predicted with 100% accuracy in 4 trial repetitions in P300 Speller 

dataset of BCI Competition II. Besides, only 8 trials are needed to predict the 

target character with the designed BCI system.  

 

Keywords: Brain Computer Interface (BCI), Spelling Paradigm, P300 Speller, 

Electroencephalography (EEG), Hardware Design, Human Perception to Visual 

Stimulations, Wiener Filtering, Support Vector Machines (SVM). 
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ÖZ 

 

 

P300 TABANLI BEYĐN-BĐLGĐSAYAR ARAYÜZÜNÜN 
TASARIMI VE UYGULAMASI 

 

 

Erdoğan, Hasan Balkar 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Nevzat Güneri Gençer    

Tez Yardımcı Danışmanı: Dr. Ali Bülent Uşaklı 

 

Eylül 2009, 161 sayfa 

 

Bu çalışmada, Heceleme Paradigması uygulaması ile P300 tabanlı bir Beyin-

Bilgisayar Arayüzü (BBA) sisteminin tasarımı gerçekleştirilmi ştir. Bu 

sistemlerdeki temel hedef, BBA problemlerine farklı işaret işleme ve örüntü 

sınıflandırma yöntemleri uygulayarak, problemlerdeki tahmin mekanizmalarının 

hızını arttırmaktır.  

 

Bu tez çalışması, BBA uygulamalarında pratik olarak kullanılmak üzere, 10 

kanallı bir Elektroensefalografik (EEG) veri toplama sistemi tasarımı ve 

kurulumunu içermektedir. Elektriksel ölçümler, süreğen bir EEG kaydı için aktif 

elektrotlar ile gerçekleştirilmektedir. Sayısal veri iletimi, sistemin herhangi bir 

bilgisayarda kontrol edilebilmesi için Evrensel Seri Yol (USB) aracılığıyla 

sağlanmaktadır. 

 



 

 vii  

Wiener süzgeçleme yöntemi, P300 Heceleme Uygulaması’na bir sinyal işleme 

aracı olarak literatürde ilk defa uygulanmıştır. Bu yöntem ile kişiye özel P300 

tepkilerinin algılanması için optimum zamansal frekans bantları belirlenmiştir. 

Tepkilerin sınıflandırılması, Destek Vektör Makineleri (DVM) ve Bayes karar 

yöntemleri kullanılarak gerçekleştirilmi ştir. Bu yöntemler, P300 

Heceleticisi’ndeki satır-sütun yanma gruplarına bağımsız bir şekilde uygulanmış 

ve kişinin bu iki görsel uyarana olan algısı incelenmiştir. Đncelenen P300 

Heceleticisi veri kümelerine göre, sınıflandırıcıların optimum parametrelerle bile 

bu iki gruptaki tahmin başarısının farklı olduğu gözlemlenmiştir. Ayrıca, bu veri 

kümelerinde, işaretler Wiener süzgeçleme yöntemi ile işlendiğinde sınıflandırma 

başarısı artmıştır. Bu yöntem ile 2. BBA Yarışması’ndaki P300 Heceleticisi veri 

kümesindeki test karakterler, 4 tekrar kullanılarak %100 başarıyla tahmin 

edilmiştir. Tasarlanan BBA sistemi ile ise hedef karakterin tahmini sadece 8 

tekrar ile mümkündür. 

 

Anahtar Sözcükler: Beyin Bilgisayar Arayüzü (BBA), Heceleme Uygulaması, 

P300 Heceleticisi, Elektroensefalografi (EEG), Donanım Tasarımı, Đnsanın Görsel 

Uyaranlara Olan Algısı, Wiener Süzgeçleme, Destek Vektör Makinaları (DVM) 
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 CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Interaction with the outside world by means of communication is one of the most 

indispensible gifts of the human being. We all need our hands to control or use 

anything around us, legs to move and other necessary limbs that are crucial for 

continuing our lives. Unfortunately, these abilities can be lost due to possible 

accidents or diseases. As examples, Amyotrophic Lateral Sclerosis (ALS), 

brainstem stroke and multiple sclerosis are some of the diseases in which the 

motor neural pathways are damaged causing people to be locked into their bodies. 

In such a case, the voluntary control is lost fully or partially over the body [1]. 

With full consciousness, the patients suffering from these diseases can not even 

realize a physical movement or communicate with their environment. Therefore, 

it is impossible for these people to live and fulfill their daily needs without 

external help.  

 

Fortunately, with the advancements in technology, researchers have developed 

innovative solutions to facilitate and improve the life quality of these patients. 

Among these, a well known emerging technology and research field is the Brain 

Computer Interface (BCI), in which people are able to communicate with their 

environment and control prosthetic or other external devices by using only their 

brain activity. In a BCI system, the brain activity is translated into simple 

commands using brain activity measurement systems, signal processing methods 

and classification techniques with the help of neurophysiologic experimental 
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paradigms. There are also other human computer interaction systems that rely on 

the movement of healthy limbs (eye-gaze etc.) as the controller of basic actions 

and these systems are still more efficient than currently existing BCI systems. 

However, for patients suffering from degenerative diseases like ALS, BCI is 

considered as the only way of communication with the outside world.   

 

Over the last two decades, there have been numerous studies performed on BCI. 

Researchers proposed various methodologies, extended the application fields of 

BCI and investigated the physiological nature of the experimental paradigms [1]. 

However, the main challenge in BCI is to improve the usability and practicality of 

these systems. Thus, researchers put most of their effort on developing new 

algorithms to improve the speed and accuracy of the prediction mechanisms in 

BCI applications. Due to the nature of existing BCI’s, the applications are 

considered as pattern recognition problems and variety of signal processing, 

feature extraction and pattern classification techniques are being experimented in 

these systems [2]. Moreover, despite the technological developments, current BCI 

systems are only usable in the laboratory environment.  Current studies aim to 

improve these systems by building intelligent house systems in order for BCI to 

be available for daily use according to the needs of the patients [11 – 15].  

 

1.1 Scope of the Thesis 

This thesis is restricted to one of the applications of BCI which is known as the 

Spelling Paradigm (also known as the P300 Speller). First introduced by Farwell 

and Donchin in 1988 [3], Spelling Paradigm enables paralyzed people to express 

their thoughts and feelings by spelling the words on a computer screen (see 

chapter 3 for a detailed description of the paradigm and previous studies). In this 

application, it is aimed to predict the characters that the subject thinks of by 

presenting some visual stimuli to the subject. In order to accomplish this task, the 

brain activity is acquired by using biopotential measurement devices (usually via 

Electroencephalography - EEG) and further analyzed with advanced signal 
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processing and classification methods. Like in all other BCI applications, the 

main challenge here is to improve the accuracy and the speed of the prediction 

mechanisms so that the subject can express his thoughts in a fluent manner. 

 

In this thesis, it is intended to develop a P300 based BCI by realizing the spelling 

application which can also be used in out-of-laboratory environments. The thesis 

includes the design of a portable 10 channel EEG data acquisition system, the 

development of signal processing methods and application of machine learning 

techniques on this paradigm.  

 

1.2 Focus and Contributions of the Thesis 

The thesis focuses on some key points that are believed to be open for progress in 

this application. These are stated as follows: 

 

• Investigation of the human perception to row and column intensifications:   

Existing P300 Speller systems employ row and column intensification 

principle for increasing the speed of the application (see Chapter 3). In the 

studies performed for this application, the responses for both row and column 

stimuli are treated in the same preprocessing and classification scheme [4-10]. 

However, no study has been performed on the application of signal processing 

and classification methods separately on these two intensification types. In 

this thesis, it is aimed to investigate the difference in human perception to row 

and column intensifications in P300 Speller according to the differences in 

classification accuracy. 

 

• Investigation of optimal frequency bands for the P300 Speller: 

The EEG signals acquired for this application are usually filtered with a 

preprocessing stage. The signal processing methods applied for this study are 

mainly simple filtering techniques. In this thesis study, the optimal temporal 
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frequency bands for user specific P300 responses will be investigated by the 

application of Wiener filtering in this problem.  

 

• Estimation of probability densities in binary classification between trials: 

The determination of the focused character in Spelling Paradigm is performed 

by using repetitive trials and ensemble averaging in order to reduce the errors 

in prediction. Unlike the common approach of assigning classification score 

between trials [4], the class conditional probability density of the predicted 

characters is estimated by using the Maximum Likelihood Estimation and the 

target character is predicted with Bayesian decision techniques. 

  

• Experimenting Active Electrodes in EEG measurements: 

Existing BCI systems use commercial EEG devices in which the electrodes 

are usually made up of ring shaped silver chloride (AgCl) leads. These 

electrodes are passive conductive elements and the quality of their material 

highly affects the performance of the measuring system. Moreover, employing 

these in EEG measurements requires a preparation stage in which the 

electrodes are covered with a conductive paste. This paste usually dries out in 

a 2-3 hours of time which makes the passive electrodes unsuitable for 

continuous EEG recording in BCI applications. In this thesis work, a design of 

active electrodes for EEG measurements is performed to improve the quality 

of the recorded EEG signals, eliminate the preparation stage required in their 

passive counterparts and therefore realize a continuous EEG measurement in 

BCI applications.  

 

• EEG cap design: 

Commercial EEG systems also provide electrode caps to attach the conductive 

leads to the scalp of the subject. These EEG caps are usually made of elastic 

silk material which can be easily stretched and fit to the subject’s head. 

However, it is hard to attach the designed active electrodes on these caps. In 

addition, some modifications are possible that can theoretically improve the 
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quality of the measurements in the system. Therefore, in this thesis, a shielded 

EEG cap design is performed which allows easy placement of the active 

electrodes on the scalp while reducing the electrical noise in the 

measurements.  

 

1.3 Outline of the Thesis 

The thesis is composed of two introductory parts discussing the current BCI 

systems and spelling application and three main chapters including the 

methodologies performed for P300 Speller in this study. 

 

The Brain-Computer Interface systems are introduced in chapter 2. The brain 

activity measurement techniques, neurophysiologic phenomenon underlying the 

principle of these systems and some BCI applications are briefly explained in this 

chapter. 

 

In chapter 3, the application of P300 Speller is presented. The experimental setup 

and the review of the methodologies in the literature are provided discussing the 

complexity of the approaches and success of these in literature. 

 

The approach of Wiener filtering is discussed in chapter 4. The derivations in 

Wiener filtering model and the application procedures related to P300 Speller are 

explained.  

 

In chapter 5, the classification methods used in this study are explained. The 

basics of the algorithms are discussed providing correlations to the P300 Speller.  

 

Chapter 6 is reserved for the description of the Electroencephalographic data 

acquisition system designed in this study. In this chapter, the parts of the designed 

system are explained briefly. 
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Chapter 7 provides the results of the proposed methodologies on one of the 

Spelling Paradigm datasets in the literature and on two P300 Speller 

experimentations performed in this study.  

 

Finally in chapter 8, all of the work performed during this study is summarized. 

General observations are outlined with a discussion part. The advantages of the 

methods suggested in the thesis are stated and concluding remarks are given on 

the experimental results. The future studies are presented by discussing the 

possible modifications and improvements to implement a compact BCI system. 
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 CHAPTER 2 

 

 

BRAIN COMPUTER INTERFACES 

 

 

 

In chapter 1, a brief introduction is given on Brain-Computer Interface (BCI) 

technology. A formal definition of a BCI is given in [44] as a system that does not 

depend on normal neural or muscular peripheral pathways of the brain. This 

definition discriminates BCI from other Human-Machine Interaction (also called 

Human-Machine Interface – HMI, Human-Computer Interface - HCI) systems 

which rely on the movement of some healthy limbs of the body as discussed 

previously. A BCI system interprets the brain activity as simple commands and 

transforms these into prescribed actions within its applications (for the control of 

a wheelchair as an example). Furthermore, the BCI technology is not restricted 

only to the activity of the brain. The research topics also include the neural 

prosthesis in which the damaged neurons can be replaced with artificial ones or 

unhealthy limbs are assisted by prosthetic devices [45].  

 

In this chapter, it is aimed to provide the necessary information related to the 

underlying principles of BCI, approaches in detecting the brain activity and the 

applications of BCI in real life. The chapter is concluded with a comparison of 

existing BCI systems providing the efficiency and usability of these in real world 

applications. The reader can find detailed information about existing BCI systems 

in [1] and [46]. 
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2.1 Framework of a BCI system 

The functional model usually employed in many BCI systems is demonstrated in 

Figure 2-1.  

 

 

 
Figure 2-1 : Functional Model of a BCI System. The signals are obtained by a signal 
acquisition system, processed by signal enhancement methods and classified in a specific BCI 
application. 

 

 

First stage of this framework is the signal acquisition phase in which the brain 

activity is extracted by a biosignal measurement device. Electroencephalography 

(EEG), Magnetoencephalography (MEG), Functional Magnetic Resonance 

Imaging (fMRI) and Near Infrared Spectroscopy (NIRS) are some biosignal 

measurement systems which are briefly discussed in the scope of BCI in section 

2.2. At this stage, the brain signals are usually enhanced with an amplification 

system and digitized to be further processed on a computer. 

 

The data extracted within the acquisition block is the raw data and might contain 

redundant information for the BCI application. For this purpose, the signals are 
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digitally filtered in the preprocessing stage. In this block, the unnecessary 

information is eliminated by data selection (e.g. channel selection in EEG) and 

several other operations (noise reduction, downsampling etc.) are performed to 

improve the signal quality.  

 

The feature extraction is the stage in which the most relevant information for 

classifying the EEG patterns is investigated. Depending on the complexity of the 

BCI application, the feature extraction is performed either manually or with the 

application of optimization algorithms (see section 5.2.3). The aim of this stage is 

to improve the classification performance of the BCI system and it is usually 

performed together with the classification stage. Therefore, it can also be 

considered as a preprocessing or classification method. However, it is usual to 

express this stage in a separate block indicating the connection with the 

preprocessing and classification phases.  

 

The features extracted from the feature extraction block are classified in the 

classification stage in order to decide which action should be taken. This block is 

the main part of the system in which pattern recognition algorithms are used to 

learn and model the input-output relationship of the BCI application. The 

performance of a BCI system usually depends on the accuracy of the employed 

classifiers. 

 

Some BCI applications require feedback mechanisms in which some visual or 

auditory signals are presented to the subject indicating the decision taken by the 

classifier. The subject may need to manipulate his/her actions in performing the 

mental tasks according to the given feedback in order to present accurate signals 

for that application. Therefore, a feedback block may be realized with a graphical 

user interface on the computer screen in a BCI application.  

 

There are also other blocks like the external device in which the control of a 

wheelchair or a prosthetic arm can be realized. These are secondary mechanisms 
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which may be integrated in the feedback stage. The presented building blocks in 

Figure 2-1 are considered as the main identifiers of a BCI system and used by 

many BCI researchers [14], [46], [47].  

 

2.2 Measuring the Brain Activity 

Depending on the purpose, there are several methods to measure the brain 

activity. These are mainly electrical, magnetic or hemodynamic activity 

measurements which are discussed briefly in the following subsections. A review 

of these methods in BCI can be found in [63]. 

 

2.2.1 Electromagnetic Activity of the Brain 

2.2.1.1 Electroencephalography 

Electroencephalography (EEG) is one of the methods to measure the electrical 

activity of the brain. The name was given after a German scientist named Hans 

Berger who announced the first EEG recording in 1924 [74]. It is used widely in 

clinical applications and preferred by many BCI communities as the EEG 

instrumentation is relatively cheaper and portable. Furthermore, the application 

procedure of EEG takes comparably less amount of time which makes it easy to 

operate for BCI applications in any environment.  
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      (a)          (b) 

Figure 2-2 : Instrumentation used in EEG systems. The measurement system consists of a 
number of electrodes, a biopotential amplifier and recording/monitoring devices [49], [48]. 

 

 

The electrical activity of the brain is measured with silver or silver chloride 

electrodes (Ag/AgCl) which are located on the scalp of the subject according to 

the standard 10-20 system [43], [41] (see Figure 6-4). An elastic cap (electrode 

cap) is used to attach the electrodes on the scalp (Figure 2-2).  

 

The maximum amplitude of the measured electrical signals in EEG is on the order 

of several hundred microvolts (see also chapter 6). As the signals are have very 

low amplitudes, they are highly affected by disturbances (changes in contact 

impedance, power line noise, ocular and muscular artifacts etc.). To overcome 

this problem, several operations are applied either mechanically (using a 

conductive paste), electronically (analog filtering) or mathematically (digital 

signal processing). To improve the contact impedance between the skin and the 

electrodes, the electrodes are usually covered with conductive gel. This requires a 

preparation time depending on the number of electrodes employed. Furthermore, 

one can also employ the active electrodes instead of passive Ag/AgCl leads which 

will eliminate the need for preparation before the operation.  
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2.2.1.2 Electrocorticogram and Cortical Microelectrodes 

Electrocorticogram (ECoG) is an invasive method in which the electrical signals 

of the brain are measured under the skull, from the surface of the cortex (Figure 

2-3).  

 

 

 

          (a)                (b) 

Figure 2-3 : (a) Electrodes used in an ECoG system. (b) The electrodes are placed on the 
cortex surface with a surgical operation [53]. 

 

 

The electrodes are usually made up of a conductive biocompatible needle or a 

grid of needles and are implemented on the cortex surface with a surgical 

operation. The electrical measurements are performed with the same amplification 

procedure as in EEG. However, the skull is a low conductive material and in 

ECoG, it is penetrated by the implementation of the electrodes [27]. Therefore, 

the signals are less affected by conductivity of the skull as compared to EEG and 

the measured signals are on the order of millivolts [42]. As it provides higher 

ranges of amplitude, the signals recorded by ECoG contain less ocular or 

muscular artifacts which makes it a suitable alternative to EEG in BCI 

applications [50], [51], [52].  

 

Cortical microelectrodes are similar to ECoG in which the electrical activity of 

the brain is measured inside the cortex (Figure 2-4).  
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          (a)     (b) 

Figure 2-4 : Microarray electrode for cortical electrical measurements. The electrodes are 
developed with VLSI technology and can be assisted with additive electronic components 
[53]. 

 

 

The electrodes used to measure the electrical signals are developed with the VLSI 

technology and the signal quality is improved by integrating analog circuits in 

their design. As the electrical signals are recorded inside the cortex, it is possible 

to detect the activity of a single neuron with high spatial resolution and excellent 

signal-to-noise ratio (SNR) [27].  

 

Despite the advantages of ECoG and cortical microelectrodes, there are also 

several handicaps of these systems such as they need a surgical operation before 

use. The possibility of infection and incompatibility between the brain cells and 

the electrodes are the major risks in these systems. Therefore, these methods are 

only applicable on unhealthy subjects when necessary or on animal subjects. The 

reader can find detailed information on these systems in [54].  
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2.2.1.3 Magnetoencephalography 

Magnetoencephalography (MEG) is a method to noninvasively measure the 

magnetic field strength generated by the flow of electrical currents through the 

pyramidal neurons in the cortex. The signals are measured with superconducting 

quantum interference devices (SQUID) which are extremely sensitive to the 

changes in the magnetic field [55]. The use of MEG in BCI is limited in a few 

studies [56], [57]. It is reported that this method can also be used in BCI 

applications when considered in communication speed [27]. However, as the 

instrumentation in MEG systems are relatively larger in size, unportable and more 

expensive as compared to EEG, it is usually not preferred for real world 

applications of BCI.  

 

 

 
Figure 2-5 : The picture of a Magnetoencephalographm. Due to the size of the 
instrumentation, MEG systems are impractical in BCI applications for daily use [58]. 
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2.2.2 Hemodynamic Activity of the Brain 

2.2.2.1 Functional Magnetic Resonance Imaging 

Functional Magnetic Resonance Imaging (fMRI) is a method used to measure the 

amount of oxygen in the blood flowing through the brain. When the neurons are 

active, the consumption of oxygen increases in these cells. Therefore, this gives 

an idea about the neural activity in different regions of the brain. The spatial 

resolution in this technique is comparably higher than that of others. In fact, the 

neural activity can be detected not only from the cortex but also any other regions 

of the brain. On the other hand, the fMRI systems have a poor temporal 

resolution; the response of hemodynamic activity is extracted within a few 

seconds [27]. In addition, the equipments in these systems are larger in size and 

much more expensive. Therefore, it is nearly impossible to employ fMRI in BCI 

applications for daily use. Nevertheless, researchers investigated fMRI to observe 

the hemodynamic activity in BCI applications [59], [60], [61].  

 

2.2.2.2 Near Infrared Spectroscopy 

Similar to fMRI, Near Infrared Spectroscopy (NIRS) is used to measure the 

hemodynamic activity of the brain. The principle of this technique is to detect the 

amount of blood oxygen in the brain from the reflection of the emitted infrared 

light. As the hemodynamic activity is measured, the temporal resolution is poor in 

NIRS systems, which makes the method impractical for BCI applications. 

However, few BCI studies were performed with NIRS which basically investigate 

the suitability of this brain activity measuring method in BCI applications [27], 

[62].  

 

 

 

 



 

 
 
16 

2.3 Neurophysiologic Background of BCI 

There are various implementations of BCI, relying on different physiological 

activities related to human brain. Basically, there are three main approaches 

employed in existing BCI systems. The first approach is based on the responses of 

the subject to some external stimuli which are known as Event Related Potentials. 

In the second approach, the subject regulates the brain activity by concentrating 

on specific mental tasks. Slow Cortical Potentials (SCP) is the final method which 

is based on the slow potential shifts in the brain observed according to the mental 

state of the subject. Here, only the first two approaches will be briefly described 

as the method of SCP is not of interest in current BCI studies.  

 

2.3.1 Event Related Potentials 

Event Related Potentials are specific patterns occurring after or during the 

presentation of an auditory or visual stimulus. These include the P300 patterns 

and Steady State Visual Evoked Potentials (SSVEP).  

 

2.3.1.1 P300 Signals 

P300 is a peaking signal pattern which occurs after the presentation of a rare 

audio/visual event [3], [16] (Figure 2-6). It is observed nearly 300ms after the 

stimulus onset which gives the name to the signal pattern. Such a phenomenon 

occurs when the subject is asked to focus attention on a specific stimulus (also 

named as the target or odd-ball) which is rarely encountered among a large 

number of other irrelevant stimuli (non-target). Furthermore, the evoked P300 

response is more distinctive when the occurrence of the event is random. The idea 

is first investigated in BCI in [3] with a spelling application which is explained in 

chapter 3 in detail.  
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Figure 2-6 : A typical P300 signal. A rising pattern occurs nearly 300ms after the 
presentation of the target stimulus. The data used to represent the pattern is obtained from 
[18]. 

 

 

2.3.1.2 Steady State Visual Evoked Potentials 

Steady State Visual Evoked Potentials (SSVEP) are oscillating signal patterns 

elicited in the brain according to the frequency of the presented periodic visual 

stimulation. These signals are more distinctive in occipital regions of the brain 

which is believed to be related to visual activities. SSVEP is employed in BCI 

applications by the presentation of several flickering light sources with different 

frequencies [64], [65], [66]. In such a paradigm, the focused light elicits a signal 

pattern of the same frequency or harmonics with that of the source (Figure 2-7). 

Therefore, an SSVEP based BCI system can be realized by the detection of the 

focused light sources from these signal patterns. As an example, a wheelchair can 

be controlled by using only four light sources to perform a movement on the main 

directions.  
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Figure 2-7 : Amplitude spectra of SSVEPs induced by two flickering light sources; 6.83Hz 
(thick) and 7.03-Hz (thin) [64]. 

 

 

2.3.2 Event Related Oscillatory Activity of the Brain 

In general, the brain signals are represented with oscillating patterns categorized 

in specific frequency bands which are shown in Table 2-1. The amplitude of the 

signals (or the energy) changes over time according to the mental activities 

performed by the subject. For example, the amplitude of the µ -rhythm decreases 

when the subject is concentrated on a specific task (imagination of movement 

[67], [68], calculation, imagination of a rotating an object [69]) and the oscillating 

activity in the α  band increases when the subject is in relaxed state. Furthermore, 

the energy change in these frequency bands may not be the same in every region 

of the brain. For example, the imagination of the right hand movement reduces 

the amplitude of the µ -rhythm over the sensorimotor cortex of the left 

hemisphere (Figure 2-8). In BCI applications, synchronization and 

desynchronization of these rhythms (Event Related Synchronization/ 

Desynchronization – ERS/ERD) are used to determine the mental state of the 

subject by analyzing the energy changes over the sensorimotor cortex [67], [70]. 

However, these systems require a long training period for the subject to obtain a 
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successful performance. The subject is required to learn to regulate his brain 

activity with feedback mechanisms in these training sessions. 

 

 

 
Figure 2-8 : ERD/ERS activity during the right hand movement in ongoing EEG. After the 
cue, the activity of alpha band increases over the right posterior region more than the left 
hemisphere [67]. 
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Table 2-1: Oscillatory EEG wave patterns and their frequency ranges [74]. 

Wave Frequency 

Range 

Characteristics 

delta - δ  0 – 4 Hz • slow wave sleep for adults 

• seen in babies 

theta - θ  4 – 7 Hz • seen in young children 

• drowsiness or arousal in older children and adults 

• idling, meditation 

alpha -α  8 – 12 Hz • relaxed/reflecting 

• occurs usually when closing the eyes 

beta - β  12 – 30 Hz • alert state, working 

• active, busy or anxious thinking, active 

concentration 

gamma - γ  30 – 100 Hz • alert state, working 

• seen when a certain cognitive or motor functions is 

employed 

mu - µ  ~10Hz • alpha range activity indicating the imagination of 

movement when it is attenuated. 
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2.4 Applications and Potential Users of BCI 

Depending on the purpose, a BCI system can find many different application 

fields (bioengineering, military, gaming industry etc.). As its primary objective, a 

BCI can be used to assist a disabled person by providing a control on an external 

device so that he/she can realize specific actions like movement via wheelchair, 

control of a prosthetic arm and house control systems or communication with 

other people. Potential users of BCI can vary from healthy subjects to severely 

disabled ones like ALS patients.  

 

Table 2-2: Potential Users of BCI in the world [42]. 

Type of the Disease Number of Patients 

Amyotrophic Lateral Sclerosis (ALS) 400,000/3,000,000 

Multiple Sclerosis 2,000,000 

Muscular Dystrophy 1,000,000 

Brainstem Stroke 10,000,000 

Cerebral Palsy 16,000,000 

Spinal Cord Injury 5,000,000 

Postpolio Syndrome 7,000,000 

Guillain-Barre Syndrome 70,000 

Other types of Stroke 60,000,000 

 

 

A BCI system can also be used in rehabilitation of these patients by encouraging 

and motivating them to life with virtual reality and gaming applications [72], [73].  

Although these applications do not provide primary needs of the subjects, they 

improve the life quality of these patients in psychological point of view. 
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      (a)      (b) 

Figure 2-9 : Control of external devices by BCI. (a) the wheelchair application [75], (b) 
prosthetic robot arm [76]. 
 

 

  

      (a)      (b) 

Figure 2-10: Virtual gaming examples: (a) Hand ball, (b) Use the Force [73]. Patients can be 
rehabilitated psychologically by games and therefore they can be more motivated to life. 
 

 

  
Figure 2-11: Home control applications with Virtual Reality [42].  
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2.5 Conclusion 

As existing BCI systems are compared to each other, all approaches explained in 

section 2.3 have similar performances in prediction accuracy and speed in most of 

the subjects. Each approach has a different advantage regarding the 

implementation of the applications or time required to operate the BCI. For 

example, it is difficult and impractical to control a wheelchair with a P300 based 

BCI; an ERD/ERS or SSVEP based BCI can provide a faster control on a 

wheelchair or prosthetic hand application. However, P300 based BCI’s do not 

require subject training as in the case of motor imagery BCI systems. The training 

time required in motor imagery BCI’s can be as long as 6 months to successfully 

operate the system [42].  

 

The major drawback of P300 and SSVEP based BCI’s is that a visual stimulation 

is needed to operate these systems. When considered in that point of view, 

ERD/ERS based BCI systems have the advantage of operation without external 

stimulation. On the other hand, it is usually harder to detect the ERD/ERS activity 

than P300 responses. Furthermore, P300 based systems provide higher degrees of 

freedom in the applications. That is, with SSVEP or motor imagery BCI, it is 

impractical to implement an application that includes 36 or more different 

possibilities (the spelling application or smart home control). Regarding all these 

points, one can decide on the type of the BCI in order to implement a specific 

paradigm. Therefore, the main consideration here is to determine the feasibility of 

the approaches on the BCI application that is to be implemented.  
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 CHAPTER 3 

 

 

SPELLING PARADIGM 

 

 

 

Although chapter 1 provided an introductory description of the P300 Speller, 

here, it is aimed to explain this BCI application within a separate chapter. The 

chapter starts with a detailed explanation of the experimental setup and then 

continues with a brief review of the previous studies performed on this title. 

Finally, a concluding section is provided at the end of the chapter discussing the 

accuracy and complexity of reviewed methodologies. 

 

3.1 Experimental Setup 

In the experimental paradigm proposed by Farwell and Donchin [3], a 6 by 6 

matrix of alphanumeric characters is presented to the subject on a computer 

screen (see Figure 3-1 for a spelling matrix example). The rows and columns of 

this matrix are sequentially intensified in a random order with a predefined 

duration and interstimulus interval (the duration between two consecutive 

intensifications). The subject is asked to focus attention on a specific character 

and is assumed to count the number of intensifications whenever the row or 

column containing the focused character is flashed. The focused characters here 

will be named as the target characters and consequently, the row and column 

intensifications containing the target character will be referred as the target 

intensifications throughout the thesis. 
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Figure 3-1: P300 Speller Matrix used in the datasets in [18] and [20]. 

 

 

The row and column intensifications in fact constitute the visual stimulations in 

this paradigm. Moreover, there are few target stimulations as compared to the 

non-target ones. For example, for a 6 by 6 matrix of characters, there is only one 

target row intensification and one column intensification since the target character 

is in the intersection of these two stimuli. The other five rows and five columns 

constitute the non-target intensifications and the responses of the subject to these 

stimulations are supposed to be different than that of the target ones. The 

underlying principle of the spelling application is that the subject produces 

specific responses to the target intensifications as they occur less than the non-

target ones. The target stimulations are expected to evoke the so called P300 

potential which is described in section 2.3.1.1.  
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The very aim of this application is to predict the target character such that the 

subject expresses his/her thoughts fluently by spelling the words on the screen. In 

order to accomplish this task, the algorithms try to determine the stimulations that 

evoked the P300 responses (i.e. the target responses) and therefore predict the 

character that the subject focused. However, usually it is difficult to make this 

prediction in one trial which corresponds to the duration that all the rows and 

columns of the matrix are intensified only once. The reason is that the measured 

EEG signals are highly affected by noise and this makes it impossible to 

distinguish the target responses from the non-target ones within a single trial. 

Therefore, several trials are performed for the same target character in order to 

decrease the error in prediction.  

 

Employment of trial repetition comes with the main disadvantage of duration of 

prediction. That is, the more trial repetition, the longer it takes to predict the target 

character which makes it unsuitable for the subject to fluently express his or her 

thoughts. As an example, for the dataset of [18] experimented in this study, the 

trial duration corresponds to 4.5 seconds. Using at least 5 trial repetitions for 

guessing the character takes 22.5 seconds which takes a few minutes to complete 

a 5-10 letter word1. Therefore, the challenge in this application is also to decrease 

the time for prediction of the target characters (use less number of trial repetitions 

to predict) and thus improve the usability of the system. 

 

 

 

 

                                                 
1 The spelling of a character in the paradigm actually depends on many factors which are 
explained in the results chapter. One can decrease the timing parameters which can affect the 
speed of the prediction mechanism. However, the consideration stated here is to minimize the 
number of trial repetitions which is the main factor assessing the speed of the system. 
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3.2 Preceding the Analysis 

The common procedure before designing a classification model for the P300 

Speller is to follow a few steps to extract the relevant information from the 

provided training dataset. This involves the selection of a set of EEG channels 

that are likely to exhibit the presence of a P300 response, extraction of EEG time 

segments of predefined length after the stimulus onset from these channels and 

the combination of stimulus code and the class label information with the 

extracted EEG segments. After that, one usually applies low-pass or band-pass 

filtering for better signal to noise ratio (SNR) and may employ downsampling 

operation to reduce the dimensionalty of the signal. 

 

3.3 Review of the Methodologies 

As mentioned before, in BCI studies, the researchers focused mainly on the 

application of different classification and signal enhancement methods in existing 

BCI problems. Here, the methodologies will be briefly reviewed for P300 Speller 

in terms of classification and signal processing aspects. Detailed review for the 

classification problem in BCI applications can be found in [9] and [2]. 

 

3.3.1 Review of Studies in Machine Learning 

Earlier studies in P300 Speller approached the pattern classification problem in 

unsupervised aspects like the application of peak picking algorithms and decision 

principle according to area of the EEG segment in the time domain [3], [8].  In 

their pioneering work, Farwell and Donchin investigated four different 

classification methodologies for categorizing the target and non-target responses 

[3]. They have compared Stepwise Discriminant Analysis (SWDA), peak 

detection, classification according to the area of the responses and covariance 

methods for the P300 Speller. However, with the advances in technology and 

increase in computation power, the application of supervised classification 
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techniques became more popular in which the algorithms are developed on a 

training dataset.  

 

Kaper et al. investigated the application of Support Vector Machines (SVM’s) 

with Gaussian kernel transformation on the paradigm and obtained successful 

results while using only a few number of EEG channels [4]. They have been 

elected as one of the winners in BCI Competition II [17], [18] due to the success 

and the simplicity of the method they have proposed. SVM has also been applied 

in numerous studies for the classification of P300 responses [6], [21], [22] and in 

other BCI applications [23], [24], [25]. In their work, Rakotomamonjy et al. 

trained several SVM’s on different partitions of the training dataset while 

recursively selecting the optimal subset of EEG channels as features [6]. They 

won the BCI Competition III [19], [20] with the highest prediction accuracy on 

the test set in P300 Speller. 

 

Linear Discriminant Analysis (LDA) or more specifically Fisher’s LDA has been 

investigated for P300 speller by Bostanov [7] in which the aim is to separate the 

data by constructing a hyperplane between the classes. The classification method 

has shown a relatively well performance for the P300 speller dataset in BCI 

Competition II and elected as one of the winning methods in this contest.  

 

In order to predict the target character in Spelling Paradigm, additional decision 

methodology is needed after the application of the discriminative classifiers. This 

procedure can be simply the scoring of the classifier output [4] or a more 

probabilistic approach in which the classification is performed regarding the 

distribution of the discriminative classifier outcome. Guan et al. conducted 

research on the statistical modeling of P300 responses by analyzing the stimulus 

output distribution of the main classifier [26]. They proposed probabilistic 

methods for the multi-trial EEG signals and employed assumed distributions for 

the discriminative classifier output (mainly Gaussian) in prediction of the target 

character. Hoffman [27] studied the Bayesian algorithms in his doctoral thesis 
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work providing a well understanding of the applied procedure. He applied the 

evidence framework for Bayesian regression in P300 speller [29] and proposed a 

combined discriminative method named as Bayesian Discriminant Analysis 

(BDA) for this problem [28]. Moreover, Lin and Zhang investigated the 

classification problem in P300 Speller regarding the perceptual characteristics of 

the paradigm [21]. They approached the problem in three category classification 

task considering also the intensifications adjacent to target stimuli. In their study, 

the accuracy of the prediction was reported to be improved when the probabilistic 

model included the confusion of the subject due to these nearby target 

intensifications. 

 

3.3.2 Studies on Signal Enhancement and Feature Extraction 

The preprocessing algorithms for improving the EEG signal quality play an 

important role in accurate prediction of the target character in Spelling Paradigm 

as well as the classification methods applied this context. Especially, the feature 

extraction methods reduce the complexity of the problem by optimizing the 

computational effort needed for the classifiers. These methods can be as simple as 

usual low-pass or band-pass filtering or more complicated procedures which 

require a solution of an optimization problem.  

 

The method of Principle Component Analysis (PCA) has been applied in [5], [30] 

to reduce the dimensionality of the data extracted from the selected EEG 

channels. The idea in PCA is to determine the maximum eigenvalues which elicit 

the principle components of the signal. In other words, PCA removes the 

relatively irrelevant parts of the data while retaining the most powerful 

components of the signal. This provides the dimensionality reduction of the 

feature vector which usually improves the performance of the employed classifier.  

 

Another signal processing technique called the Independent Component Analysis 

(ICA) has been investigated in numerous studies in BCI [8], [9], [31]. Being one 
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of the blind source separation algorithms, ICA has been widely employed for 

removing the desired signal from the background noise. For the case of Spelling 

Paradigm, the signals other than P300 responses are considered as the background 

noise. ICA was successfully verified by Xu et al. [8] in BCI Competition II and 

was elected as one of the winning algorithms in the P300 Speller problem.  

 

The t-statistics has been investigated for feature extraction purposes in the studies 

performed by Bostanov [7] and Hu et al. [30]. In his work, Bostanov applied t-

Value Scalogram together with Continuous Wavelet Transform (t-CWT) to 

automatically select the features according to student’s t-test. In [30] the features 

are detected according to t-weight method in the training phase after the 

application of PCA. Both methods have shown successful performance in the 

P300 speller dataset of BCI Competition III. 

 

3.4 Conclusion 

There are numerous other studies related to the application of similar feature 

extraction and classification techniques in BCI applications described here. One 

can find a detailed comparison of these in [2] and [9]. As the performance of the 

system highly depends on the employed classification algorithms, it is reasonable 

to consider the most successful approach in the problem. In order to complete the 

objective of the thesis, it is also important that the considered methodology is easy 

to implement. Therefore, due to its success in BCI competition datasets, SVM is 

selected as a primary classification tool in this study [77]. Furthermore, the 

feature extraction techniques described in the review are not employed in this 

study as the performance of the P300 Speller is more than satisfactory when using 

only SVM for a fixed number of EEG channels [4]. Instead, the effect of Wiener 

filtering on the classifier performance is to be investigated in this thesis. 
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 CHAPTER 4 

 

 

WIENER FILTERING 

 

 

 

As it constitutes the major subject in this thesis in terms of signal enhancement, 

the method of Wiener filtering and its application to the P300 Speller are 

explained in this chapter. The chapter begins with a description of the Wiener 

model, and continues with the derivations required to design the optimal Wiener 

filter. Finally, the Wiener approach on the spelling application is given at the end 

of the chapter, explaining the application procedure for this problem.  

 

4.1 Introduction 

In many practical applications, it is of interest to reconstruct a signal from noisy 

observations. However, it may be impossible to achieve this task with simple, 

classical filtering techniques. In such cases, it is necessary to take the statistics 

into account and apply more complex signal processing methods. Wiener filtering 

is a statistical signal processing technique, in which, it is aimed to construct a 

filter to estimate the desired signal from noisy observations [32]. It is a kind of 

optimal filtering in the sense that it minimizes the error in the estimation of the 

desired signal [33].  

 

Depending on purpose, Wiener filter can be applied to numerous signal 

processing problems. For example, in the simple filtering case, the aim is to 

estimate the desired signal by designing a causal filter. There is also a noncausal 
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filter type which is usually used in image processing, in smoothing or unblurring 

the images distorted by noise. Prediction is another important application of 

Wiener filtering where the filter produces the future values of the observation 

using its past values [32].  

 

4.2 Wiener Filter Model 

In the framework of Wiener filtering, the following discrete time model will be 

assumed which is valid for many practical applications.  

 

 

 
Figure 4-1: The Discrete Time Model of a Practical Application. G(z): The transfer function 
of the process in z-domain. d(n), x(n) and v(n) represent the desired signal, noisy 
observations and the additive noise respectively. 

 

 

Here, )(zG  is the transfer function of a system (in z-domain) which can be 

realized as a recording device or a communication system. Since )(zG  is a known 

system function, it can be considered as a unity or an identity transfer function to 

simplify the formulations. Assuming 1)( =zG ,  

 

)()()( nvndnx +=              (4.1) 

 

where  

)(nx  : The observations in the system, 

)(nd  : The desired signal, 

)(nv   : The noise present in the observations. 
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The starting assumption is that the desired signal )(nd  and the observations )(nx  

are jointly wide sense stationary processes (WSS) with known 

autocorrelations, )(krx , )(krd  and crosscorrelation )(krdx . The goal is to design a 

linear, shift-invariant filter )(nw  that would produce the minimum square error 

(mse) estimate of the desired signal from the observations, considering the 

statistics of each signal [32].  

 

The squared error to be minimized is defined as: 

 

})({
2

neE=ξ                   (4.2) 

 

where 

 

)(ˆ)()( ndndne −= .             (4.3) 

 

Here, )(ˆ nd  represents the estimated signal and )(ne  is the difference between the 

desired signal and the estimated signal, i.e. the error. The model is illustrated in 

Figure 4-2. 

 

 

 
Figure 4-2: Wiener filter model, W(z): Wiener filter to be constructed. The observations are 
filtered with the estimated Wiener filter which minimizes the difference between the desired 

signal )(nd   and the filter output )(ˆ nd . 
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Depending on the requirements in the filter design, Wiener filter takes different 

forms considering the finite-infinite impulse response (FIR or IIR) and causality 

in the filter: causal-FIR, noncausal-FIR, causal-IIR and noncausal-IIR Wiener 

filter. Here, the noncausal and IIR form of the Wiener filter will be investigated in 

the explanation framework of [32]. The formulations derived for the noncausal 

IIR Wiener filter are also valid for other types. Detailed explanation and 

derivations can be found in [32] and [33] for each type of design. 

 

4.3 Noncausal IIR Wiener Filter Design 

The noncausal IIR form of the Wiener filter can be represented in the z-domain 

as: 

 

 ∑
∞=

−∞=

−=
n

n

nznwzW )()(              (4.4) 

 

The estimate of the desired signal in Figure 4-2 is the convolution of )(nx and 

)(nw , 
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l

lnxlwnxnwnd )()()()()(ˆ                 (4.5) 

 

In order to find the filter coefficients optimally in the mean square sense (mse), 

the derivative of the squared error defined in (4.2) with respect to )(* nw  or )(nw  

should be equal to zero for all samples of the filter [32]. Thus, 
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Combining (4.3) with (4.5), )(ne  can be rewritten as 

 

∑
∞

−∞=

−−=
l

lnxlwndne )()()()(                (4.7) 

 

Then the partial derivative expression in (4.6) reduces to 
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             (4.8) 

 

Substituting the derivative expression in (4.6) with the result found in (4.8), 

 

 { } 0)()( =−∗ knxneE    ∞<<∞− k          (4.9) 

 

Equation (4.9) is referred as the orthogonality principle or the projection theorem 

[32] which implies that all of the samples of the observation are orthogonal to the 

error in estimation of the desired signal. Thus, if )(ne  in (4.7) is substituted in 

(4.9), we obtain  

 

 { } { } 0)()()()()( =−−−− ∑
∞

−∞=

∗∗

l

knxlnxElwknxndE        (4.10) 

 

Since it is assumed that )(nx  and )(nd  are jointly WSS processes, the 

expectation expressions in (4.10) are equal to the cross-correlation of )(nx  with 

)(nd  and autocorrelation of )(nx  respectively. Therefore, equation (4.10) can be 

rewritten as 
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Equation (4.11) is known as the Wiener-Hopf equation for the noncausal IIR 

Wiener filter. It differs from the FIR case by the limits of the summation and the 

range for k  for which the equation should hold [32]. Unlike the FIR Wiener filter, 

the solution for )(kw  can not be found directly from (4.11), since there are 

infinite number of equations with infinite number of unknowns in the IIR case. 

However, if the equation is turned into a convolution expression between )(kw  

and )(krx ,  finding a solution for )(kw  will be much easier: 

 

 )()()( krkwkr xdx ∗=            (4.12) 

 

If the Fourier transform is applied to (4.12), the variables can be expressed in the 

frequency domain as 

 

)()()( jwWjwPjwP xdx =               (4.13) 

 

Thus, the frequency response of the noncausal IIR Wiener filter is 

 

 
)(

)(
)(

jwP

jwP
jwW

x

dx=            (4.14) 

 

where )( jwPdx  is the cross-power spectral density of the desired and observation 

signals and )( jwPx  is the power spectral density (psd) of the observation signal. 

According to equation (4.14), the optimum Wiener filter depends only on )( jwPx  

and )( jwPdx . Thus, when these are calculated, the design of the Wiener filter will 

be complete.  

 

Here, it can be assumed that )(nd  and )(nv  are statistically independent 

processes and also )(nv  is a zero mean random process. Usually, independence is 

a reasonable assumption in practical applications since the desired signal may not 
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necessarily be related to the noise. Therefore, from the independence assumption 

it can be inferred that they are also uncorrelated. Then, if we would like to express 

the autocorrelation of )(nx , 
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Since )(nd  and )(nv  are uncorrelated, their cross-correlation )(krdv  or )(krvd  

reduces to zero. Therefore, 

 

 )()()( krkrkr vdx +=            (4.16) 

 

and the power spectral density of )(nx becomes 

 

 )()()( jwPjwPjwP vdx +=           (4.17) 

 

When we consider the cross-correlation between )(nx  and )(nd , it can be found 

that 

 

 

{ }
{ } { }

)(
0

)()()()(

)()()(

kr

knvndEkndndE

knxndEkr

d

dx

=
=

−+−=

−=
∗∗

∗

44 344 21
       (4.18) 

 

Thus,  

 

 )()( jwPjwP ddx =            (4.19) 
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which is valid under the assumption that )(nv  is zero mean and )(nd  and )(nv  

are uncorrelated WSS random processes. This assumption is important especially 

for the optimality of the Wiener filter. When one of the signals is found to be non-

stationary, the use of linear, shift invariant Wiener filter will not be optimum [32]. 

Moreover, if the noise signal has non-zero mean, then a few more terms will be 

added to the cross-power spectral density, which will certainly affect the 

frequency characteristics of the Wiener filter when ignored. Then, the IIR Wiener 

filter takes the final form: 
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To construct the Wiener filter in a specific application, one can choose any 

equality expression in (4.20), considering to the computational difficulty in 

evaluation of these parameters.  

 

After finding the optimum Wiener filter, we can now evaluate the mean square 

error in the estimation of the desired signal. 
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If )(nw  is the solution of Wiener-Hopf equations in (4.11) satisfying the 

minimum mean squared error, then due to the orthogonality principle defined in 

(4.9), the last expectation term in the summation drops to zero. Therefore, 
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Evaluation of the minimum mean squared error in (4.22) requires a lot of 

computation due to infinite samples in the summation. However, if Parseval’s 

theorem is applied to the summation in (4.22) calculations will become much 

easier in the frequency domain. 
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From the same reasoning, we can also express )0(dr  as, 
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Therefore, the minimized mean square error becomes, 
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4.4 Application of Wiener Filtering in P300 Speller 

As discussed in chapter 3, the identification of P300 patterns from EEG is the 

main goal in Spelling Paradigm. In this subchapter, the Wiener filtering approach 

for the signal enhancement problem will be investigated in this context. Here, we 

will treat the problem as in the following: we will construct a Wiener model for 

target signals, i.e. the class of P300 patterns, and another one for non-target 

signals. Then, we will combine these two systems and construct a single model 

that will enhance the target signals while suppressing the non-target ones. 

 

To begin with, the model in Figure 4-1 is assumed for the signal acquisition phase 

of the P300 speller, where )(nx  represents the recorded EEG data. As defined 

before, )(nd and )(nv  are the desired and the noise signals, respectively. 

However, the desired signal here will be either the target signal, or the non-target 

signal waveform depending on the system of concern. For the sake of simplicity 

and clarity, we will consider the target signal system first and then continue with 

the non-target one. The EEG data used for demonstrating the target and non-target 

signals is from the dataset IIb of BCI Competition 2003 [18].  

 

As averaging-between-trials is a common approach in classification in this 

problem, it is natural to obtain the main target response or P300 response by 

averaging all signals belonging to the target class. By averaging all target signals 

in the dataset, we in fact, obtain the least square solution for P300 pattern 

measured from related EEG channels. This is a well known technique for 

reducing the noise present in the measurements. 

 

Therefore, when the ensemble averaging is performed between the observations, 

we obtain the target responses as given in Figure 4-3. 
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Figure 4-3: Averaged target responses from 10 EEG channels. The signals averaged over 
parietal and central locations exhibit the presence of P300 activity. The data of [18] is used 
for the demonstration of the P300 signals. 
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To construct the Wiener model, we will consider the P300 response as the desired 

signal )(nd . Despite the fact that )(nd  has a stochastic behavior in Wiener 

model, the P300 signal discussed here is somewhat a deterministic signal. In order 

to take the P300 response as the desired signal, a more statistical model should be 

included in the P300 response. 

 

Therefore, we can model the P300 signal as a random process as follows: 

 

∑ +=
i

iiiett nwAnx )sin()(arg φ   ki ,.....,1,0=       (4.26) 

 

Here, the P300 signal is expressed as a sum of sinusoids, where iA  and iw  

represent the amplitude and a set of frequencies comprising the P300 signal 

respectively. iφ ’s are the phase parameters which, in fact, add a randomness 

property in the P300 signal; they form a set of random variables letting the signal 

be a random process. The latency of the P300 signal mainly depends on iφ ’s and 

this latency varies according to the perception of the subject which actually is the 

random phenomenon in this problem. It can be assumed here that iφ ’s are 

independent and have uniform distributions with means 
iφµ ’s. Expressing the 

desired signal as in (4.26) with these assumptions also satisfies the requirements 

for )(nd  being a wide sense stationary (WSS) process (Appendix A).  

 

The noise in the EEG measurements is known to be mainly due to the power 

network in the environment. However, there are also other sources of noise like 

electromagnetic noise caused by other devices, the motion of the subject during 

the EEG recordings; or even the brain signals for other activities like body 

regulation, heart beat etc. can also be considered as a noise affecting the EEG 

recordings in this scheme. Therefore, we will consider the noise as a random 

process, independent of the target and non-target responses.   
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One should note that, the Wiener filter model is applied to random processes 

satisfying at least the second statistics or wide sense stationarity. For those 

processes, there are some operations and valid assumptions such as ergodicity, 

which combines the time course of the signal and ensemble distribution of the 

random processes [32]. For example, calculation of the autocorrelation or mean of 

a WSS process is possible using a single example from a set of observations. 

Therefore, the Wiener model can be constructed using only one example of the 

observation signal and the desired signal. However, as will be discussed here, we 

will follow an alternative way in designing the optimal Wiener filter considering 

all the samples of the observation signal in the dataset to be used. 

 

As all the WSS requirements for the Wiener filter model are satisfied, we can 

continue with the construction of the filter. According to (4.20), the optimal 

Wiener filter has the form, 
)()(

)(

)(

)(

)(

)(
)(

jwPjwP

jwP

jwP

jwP

jwP

jwP
jwW

vd

d

x

d

x

dx

+
=== . 

 

Due to its simplicity in evaluation, we will use the second form in (4.20), where 

the filter depends only on the power spectral densities of the desired and 

observation signals. As we have only one desired signal which is the averaged 

target response in Figure 4-3, and it is assumed to be a WSS process from (4.26), 

it is easy to obtain the autocorrelation and power spectral density from its time 

course. For the observation signal )(nx , however, we have many examples 

regarding the subject response to target row or column intensifications in the 

paradigm. This leads an ambiguity since one can calculate the power spectral 

density of the observation signal using any of the samples in the dataset. Here, we 

employ the following estimation in order to evaluate the autocorrelation and 

hence the power spectral density of the observation signal )(nx : 

 

N

jwPjwPjwP
jwP Nxxx

x

)(..........)()(
)( ,2,1, +++

=          (4.27) 
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where N  and )(, jwP ix  represent the number of target observations and power 

spectral density estimate of the i-th observation respectively. 

 

By performing the approximation in (4.27), we in fact average the spectral power 

information regarding all the samples in the dataset and hence obtain an averaged 

psd of the observation signal. So, the whole operation in designing the Wiener 

filter can be summarized as follows: 

 

Method 1: Estimation of the Wiener filter      

 

• Approximate the noise free desired signal )(nd  by ensemble averaging 

the observations from the same class 

• Calculate the autocorrelation and obtain the psd of the desired signal 

)( jwPd  by evaluating the Fourier transform of the autocorrelation 

• Estimate the average power spectral density of the observations by first 

computing the psd of each observation and then averaging all computed 

psd’s. 
N

jwPjwPjwP
jwP Nxxx

x

)(..........)()(
)( ,2,1, +++

=  

• Obtain the optimal Wiener filter from 
)(

)(
)(

jwP

jwP
jwW

x

d=  

 

 

Up to now, we have discussed the implementation of Wiener filter for the target 

response class which can be represented as )(target jwW . One can also apply the 

same modality to the system of non-target responses where the desired signal is 

the response to the non-target row or column intensifications. For this case, the 

desired signal obtained by averaging all non-target observations for the employed 

EEG channels is given in Figure 4-4. 

 



 

 
 
45 

0 200 400 600 800
-50

0

50

100
Averaged non-target response, Channel C3

time (ms)

A
-D

 C
on

ve
rs

io
n 

V
al

ue

0 200 400 600 800
-100

-50

0

50

100
Averaged non-target response, Channel Cz

time (ms)

A
-D

 C
on

ve
rs

io
n 

V
al

ue
0 200 400 600 800

-50

0

50

100
Averaged non-target response, Channel C4

time (ms)

A
-D

 C
on

ve
rs

io
n 

V
al

ue

0 200 400 600 800
-200

-150

-100

-50
Averaged non-target response, Channel Fz

time (ms)

A
-D

 C
on

ve
rs

io
n 

V
al

ue

0 200 400 600 800
-150

-100

-50

0

50
Averaged non-target response, Channel P3

time (ms)

A
-D

 C
on

ve
rs

io
n 

V
al

ue

0 200 400 600 800
-150

-100

-50

0
Averaged non-target response, Channel Pz

time (ms)

A
-D

 C
on

ve
rs

io
n 

V
al

ue

0 200 400 600 800
-150

-100

-50

0

50
Averaged non-target response, Channel P4

time (ms)

A
-D

 C
on

ve
rs

io
n 

V
al

ue

0 200 400 600 800
-200

-100

0

100
Averaged non-target response, Channel PO7

time (ms)

A
-D

 C
on

ve
rs

io
n 

V
al

ue

0 200 400 600 800
-800

-750

-700

-650

-600
Averaged non-target response, Channel PO8

time (ms)

A
-D

 C
on

ve
rs

io
n 

V
al

ue

0 200 400 600 800
-150

-100

-50

0

50
Averaged non-target response, Channel Oz

time (ms)

A
-D

 C
on

ve
rs

io
n 

V
al

ue

 
Figure 4-4: Averaged non-target responses from 10 EEG channels. The data of [18] is used 
to demonstrate the non-target responses. 
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Similar to equation (4.26), the averaged non-target signal is modeled as: 

 

∑ +=−
i

iii nwBnx )sin()(targetnon φ   1,.....,1,0 −= pi      (4.27) 

 

which in this case depends only on p  frequency components. Performing the 

same operations described in Method 1, we obtain the Wiener filter for the non-

target system which can be represented as )(targetnon jwW − . 

 

After all, it is desired to identify the target responses. Therefore, we will define 

the final form of the filter as: 

 

 ( ))(1)()( targetnontargetfinal jwWjwWjwW −−=         (4.28) 

 

Constructing the final filter as in (4.28) will enhance the target signals while 

suppressing the non-target ones.  

 

When the behavior of the noise signal is considered, it is observed to be Gaussian 

distributed in this model. As an example, the histogram plots of the noise signal 

for the target column and non-target row groups (at random samples of time index 

n ) are given in Figure 4-5 and Figure 4-6 respectively. From these figures, it is 

clear that )(nv ’s are zero-mean random processes2. This is a trivial result since 

the desired signals are obtained by ensemble averaging the observations. 

Therefore, subtracting the desired signal from the observations to obtain the noise 

will definitely give us a zero mean signal. 

 

                                                 
2 As there are two examples (target column and non-target row groups) given to illustrate the 
distribution of the noise signal, and therefore two separate Wiener filter models, it is more 
accurate to refer the noise signal separately for each group.  
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Figure 4-5 : Marginal distribution of the noise signal )(nv  at random time indices for the 

target column group. Each sample of )(nv  is Gaussian like distributed with means equal to 
zero. 
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Figure 4-6 : Marginal distribution of the noise signal )(nv  at random time indices for the 

non-target row group. Each sample of )(nv  is Gaussian like distributed with means equal to 
zero. 
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Another observation regarding the noise signal is that the correlation coefficients 

of the noise signal are very small for two far samples of the signal (e.g. )(kv  and 

)100( +kv ) which indicates that the noise signal in this dataset according to the 

described model is uncorrelated. The correlation coefficient increases as the 

samples get close to each other (for example )(kv  and )1( +kv  are highly 

correlated). However, it is impractical to show this observation with an illustrative 

tool. From these observations, it can be assumed that the noise signal is an 

independent random process as it is Gaussian distributed and also uncorrelated. 

Furthermore, it is observed to be zero mean. Therefore, it is natural to assume 

)(nv  as a white noise, which satisfies the requirements to be a wide sense 

stationary process. This suggests that the Wiener filtering model is well suited for 

this application. 

 

To visualize the effect of Wiener filtering on the raw EEG data, two samples are 

randomly selected from the dataset (one from the target and one from the non-

target group). These are filtered with the estimated Wiener filters and the outputs 

of these are shown in Figure 4-7 and Figure 4-8. The signals used in these figures 

are obtained from the Spelling Paradigm dataset of BCI Competition II [18]. 
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Figure 4-7: The effect of Wiener filtering on a randomly selected target response.  (a) Raw 
target signal, (b) Processed target signal with the estimated Wiener Filter. 

 

 

 



 

 
 
51 

0 100 200 300 400 500 600 700 800

-500

0

500

1000

time (ms)

A
m

pl
itu

de
 (

A
-D

 C
on

ve
rs

io
n 

va
lu

e)
Raw EEG signal (channel Cz)

 

(a) 

0 100 200 300 400 500 600 700 800

-200

-100

0

100

200

time (ms)

A
m

pl
itu

de
 (

A
-D

 C
on

ve
rs

io
n 

va
lu

e)

Wiener processed EEG signal (channel Cz)

 

(b) 

 

Figure 4-8: The effect of Wiener filtering on a randomly selected non-target response. (a) 
Raw non-target signal, (b) Processed non-target signal with the estimated Wiener Filter. 

 
 

 
One can note that the amplitude of the Wiener processed target response in Figure 

4-7 is comparably higher than that of Figure 4-8; the amplitude of the non-target 

signal has been considerably suppressed by the filter (consider the scale of the 

unfiltered signals). Moreover, the peaking time of each signal is preserved after 

the filtering operation which is also important in detection of P300 responses 

regarding the latency of these signals.  
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 CHAPTER 5 

 

 

CLASSIFICATION IN SPELLING PARADIGM 

 

 

 

5.1 Introduction 

The purpose of the BCI applications is to map the neurophysiologic signals to 

basic actions, like going on a specific direction in the cursor movement 

application. This mapping is performed with machine learning algorithms in 

which one or more classification methods are employed to form a classification 

model. The approaches in the classification methods can either be parametric or 

non-parametric depending on the information supplied by the problem. However, 

the common approach in BCI problems is to train the learning algorithm first 

within a training phase in which the subject is asked, for example in Spelling 

Paradigm, to focus on a character that is known by the algorithm. This is a 

supervised learning methodology that constitutes a major topic in pattern 

recognition. 

 

In this chapter, the Spelling Paradigm will be considered in the classification 

point of view. First, a short explanation will be given on supervised learning 

describing the basic concepts about supervised classification. Then, the 

classification methods used in this study will be described in detail. Correlations 

and reference to the problem will also be given during the explanation of the 

concepts. 
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5.1.1 Classification Problem in Spelling Paradigm 

As discussed in Chapter 3, the prediction of the target character in P300 Speller 

requires the determination of the target row and column intensifications. To 

visualize the problem in the classification aspect, there are 12 classes for a 6x6 

speller matrix (6 row and 6 column intensification classes). However, one can use 

the intuitive idea that there are two independent groups, namely the row and 

column groups as the target character should be at the intersection of only one 

row and one column. Hence, there are 6 classes in each separate classification 

group.  

 

Here, the problem may seem to be a 6 class classification task at first for each 

group. However, since the aim is to classify the stimulations as target or non-

target, the task is realized as a binary classification problem. The presence of one 

target element out of six elements in a trial is just a constraint or a priori 

information supplied by the problem.  

 

As discussed in chapter 2, the population of the non-target class should be higher 

than that of the target one in order to present a well behaved P300 pattern. If this 

case is considered in Bayesian classification point of view (see section 5.4.1), the 

probability of each stimulus to be the target character is 1/6.  When one applies 

the Bayes decision rule for this problem, all new coming test samples will be 

assigned to the non-target class which provides a classification accuracy of 5/6 for 

each of the row and column groups. However, in this problem, the employed 

classification methods should determine at least one stimulus as from the target 

class for each trial. Therefore, the classification of these classes is usually 

performed using supervised learning techniques which will be discussed in the 

next section. 
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5.2 Supervised Learning 

Most of the classification algorithms deal with a group of data that has some 

information about the dataset. In other words, the class label information is given 

within the dataset for training the classifier. This type of classification belongs to 

supervised learning, in which a supervisor instructs the classifier during the 

construction of the classification model. Linear Discriminant Functions (LDF), 

Support Vector Machines (SVM’s) and Neural Networks (NN) are some well-

known examples of supervised learning and commonly used in many 

classification problems.  

 

In the supervised learning approach, there are pairs of examples in the given 

training dataset which can be mathematically expressed as 

( ) ( ) ( ){ }NN yxyxyxD ,,,.........,,, 2211= . Here, Nxxx ...,,........., 21  are the 

observations and Nyyy ...,,........., 21  are the class labels of the observations. The 

observations can be any vector, whose elements are selected from a set of features 

(section 5.2.3). But for practical considerations, we usually have real valued 

observations and it is easy to assume MRXx =∈ . Also, one can choose any type 

of representation for the class labels. For simplicity, they are usually represented 

as real numbers, that is RYy =∈ . Therefore, in supervised learning, the aim is to 

find the transformation between the feature space X  and the class label space Y , 

i.e.  YXf →: . If the class space has a finite number of elements, i.e. 

}...,,.........2,1{ Ly∈  then the problem is considered as a classification task. On the 

other hand, if there are infinite classes, then the case becomes a regression 

problem. For the case of Spelling Paradigm, it is a binary classification problem 

in which the classes are the target and nontarget classes. For clarity and 

conformity with the literature, these classes are represented as }1,1{ +−=Y  where 

the negativity represents the nontarget case. 
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For such a problem, additional parameters underlying the classification rule can 

also be given such as the probabilistic distribution, or the form of the density 

function of the classes. When this is the case, the transformation of the 

observations to the class labels takes the form of ),( θxfy = . Whether these are 

provided or not, one can estimate the parameters or unknown densities of the class 

conditional probabilities by employing parametric or nonparametric estimation 

techniques. However, these will not be explained in this context. The reader can 

find detailed information about the estimation in supervised learning in [34].  

 

5.2.1 Linear Discriminant Functions 

A type of supervised learning called Linear Discriminant Functions (LDF) will be 

considered as a motivation to Support Vector Machine (SVM) which is used as 

the main classification method in Spelling Paradigm [77]. The importance of LDF 

is that they form the base of many discriminative classification methods and 

constitute a major subject in classification literature. It is a non-parametric 

supervised learning in which the form of the discriminating function is known or 

assumed instead of the probabilistic distribution of the classes. The form of the 

discriminating function may not essentially be linear in the feature vector; 

however, linearity brings additional properties that provide some advantages in 

analytical point of view [34]. Also, being easier to implement, LDF provide a well 

understandability of the discriminant classification with a simple model.  

 

It is easy to demonstrate LDF in a two class case where the classes are also 

linearly separable as shown in Figure 5-1. The aim in LDF is to construct a 

hyperplane, or mathematically, to find the parameters defining the hyperplane that 

separates two classes by using the samples in the training dataset.  

 

So, a linear discriminant function can be expressed in terms of the feature vector 

x  as 

 



 

 
 
56 

0)( wxwxf t +=              (5.1) 

 

 

 
Figure 5-1: Visualization of a linear discriminant function for a 2-class separable problem.  
 

 

where w  and 0w  represent the weight and bias vectors respectively. Here, the 

classification of a new sample can be simply done according to the sign of the 

discriminant function f . That is if 0)( <xf  then the sample belongs to the 

triangle class and if 0)( >xf  then the sample is from the circle class. The 

boundary 0)( =xf  representing the separating hyperplane 1h , can be left 

undefined in terms of classification since the sample on the hyperplane can be 

from each class with the same probability.  

 

Beside the sign of the discriminant function f , one can also consider the value 

)(xf  on the sample x . The value of the discriminant function  provides a 
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measure of distance between the sample and the separating hyperplane. This can 

be seen if one uses the following expression for x : 

 

 { w

w
d

x
xwx

p

t +=              (5.2) 

 

where px  and d  represent the projection of the sample x  on the hyperplane 1h  

and distance of the sample to the hyperplane respectively. This distance is 

illustrated in Figure 5-2. 

 

 

 
Figure 5-2: Relation between the function value of the sample x and its distance to the 
discriminating hyperplane.  
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Without going into detail, the distance d  gives an idea of the probability value of 

the sample being in that halfspace. Although this is not always true, the larger 

value of d can be assumed to be the higher probability of right decision. 

 

5.2.2 Error and Risk in Classification  

Due to the stochastic nature of the problems, the error or the misclassification of 

samples is inevitable in pattern recognition. In fact, the principle of the 

classification methods is to minimize the error in classification or the risk in the 

decision. In this section, it is aimed to describe these concepts which are 

mentioned throughout following sections of this chapter. The explanations will be 

restricted to the binary classification problem which is the case in Spelling 

Paradigm. The reader can find detailed explanation for multiclass case in [34], 

and [35]. 

 

To begin with the error in classification, consider the Bayesian case where the 

decision is made according to the class conditional probabilities (discussed in 

section 5.4.1). That is, classify x  as 1C  if )()( 21 xCPxCP >  or vice versa. In this 

case, one can not think of the error itself only, but the average probability of error 

which can be expressed as: 

 

),(),()( 2112 CRxPCRxPeP ∈+∈=           (5.3) 

 

where 1R  and 2R  represent the halfspaces separated by the decision surface. 

Applying the Bayes Theorem on (5.3) yields: 

 

 
∫∫ +=

∈+∈=

12

)()()()(

)()()()()(

2211

221112

RR

dxCPCxpdxCPCxp

CPCRxPCPCRxPeP
         (5.4) 
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which is also known as expected error or error rate and it is minimized by the 

Bayes decision rule stated above [34], [35]. 

 

Beside the average probability of error, one can also consider the risk in taking 

the decision in the problem. For example, in the P300 Speller case the risk of 

deciding the sample as target can be higher than the risk of deciding the sample as 

nontarget. Therefore, the risk or expected loss for taking an action iα  can be 

defined in a two class problem as follows: 

 

 ∑ ∫
=

=
2

1

)()()(
j R

ijii dxCxpCxR
j

αλα            (5.5) 

 

In this scope, a loss function (.)λ  is introduced in the problem which is usually 

defined for two class case as: 

 

 2,1,
,1

,0
),( =





≠
=

= ji
ji

ji
C jiαλ          (5.6) 

 

In this loss function, the cost of wrong decision in each class is equal. However, 

one can also define the loss function according to the nature of the classification 

problem. When defined as in this case, one can show that overall expected loss or 

risk becomes identical to the average probability of error defined in (5.4). 
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However, the conditional probability densities are not always known in 

supervised learning methods like discriminant functions or SVM. The only 

information provided in supervised learning is a training dataset which includes 
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the class labels. Therefore, the evaluation and minimization of the risk is not 

possible by using the expressions above. Instead, one can employ empirical risk 

minimization to construct the discrimination function by using the training 

samples in the given dataset. The empirical risk in supervised learning is defined 

as follows: 

 

 [ ] ( )∑
=

=
N

j
jjemp xfy

N
fR

1

)(,
1 λ             (5.8) 

 

And the optimum discriminant function is the one which minimizes the empirical 

risk. 

 

 [ ]






=
∈

fRxf emp
Hf n

minarg)(ˆ             (5.9) 

 

where nH  is the function space of interest. 

 

One should note that the empirical risk makes sense only if it is equal to the 

expected risk if the number of elements in the training set goes to infinity. That is, 

 

 [ ] RfRemp
N

=
∞→

lim            (5.10) 

 

When this is not true, one can encounter some problems which will be mentioned 

in the next section. 

 

5.2.3 Feature Space  

The data given for training and testing the classifier are usually gathered from a 

recording device and contain raw data information. However, one can use some of 

the elements for classification instead of all from the supplied information. The 
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information extracted from the input space is called the feature space and usually 

represented with a transformation vector (Figure 5-3).  

 

 

 
Figure 5-3 : Transformation between input, feature and output spaces. The feature space is 
constructed by performing preprocessing methods (G(X)) on the input space. Classification 
methods are applied on the feature space. 
 

 

Although the data is processed with some signal processing techniques, it may not 

always be easy for the classification algorithm to distinguish the classes using the 

coarse information. The reason for this is usually related to the dimensionality of 

the feature space which is a well known problem in the classification literature. If 

the number of samples in the dataset is small as compared to the dimension of the 

feature space, the classifier suffers from the problem of overfitting which is a 

result of a large difference between the empirical risk and the expected risk 

defined in the previous section [27]. One can think of increasing the number of 

samples in the dataset as a solution to this problem. However, this can lead to a 

worse situation which is known as the curse of dimensionality. This problem 

arises from the statistical dependence of the features. The probability of error in 

the classification reduces as the independence between the features increases [34]. 
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But when the features are statistically dependent, the classification performance is 

limited and can not be improved by adding new features.  

 

A solution to this problem is to use other properties of the data by applying 

feature selection. For example, in a BCI problem, the band power of the EEG 

signal or coefficients of the autoregressive parameters might contain more useful 

information for the classifier than the signal itself in a mu-rhythm based BCI. As 

stated in chapter 3, there are also feature extraction algorithms that automatically 

select the elements for the feature space which improve the classification 

performance. However, in this study, due to the computational simplicity and 

conformity with the literature, the features are selected manually without any 

feature extraction method. As in [4], we have used the EEG time segments of 600 

or 800 ms duration after the stimulus onset from the electrode locations Fz, Cz, 

Pz, Oz, C3, C4, P3, P4, PO7 and PO8 (Figure 7-3 (a)) and set the Wiener filtered 

signals as our feature vector. The dimension of the feature vector varies according 

to the sampling rate of the EEG recording device. For illustration purposes, the 

Wiener filtered EEG signals are concetanated by channel to form the feature 

vector as seen in Figure 5-4.  
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Figure 5-4 : Formation of the vector for the feature space as a concatenation of time 
segments from 10 EEG channels 
 

 

5.3 Support Vector Machines 

Support Vector Machine (SVM) is a supervised machine learning algorithm 

whose foundations have been developed by Vapnik [36], [37], [39]. Showing 

much similarity with the LDF, SVM provides better generalization than most of 

the discriminant methods due to the structural risk minimization it employs. SVM 

has also been successfully applied in numerous BCI applications [4], [6], [2] and 

excellent classification performances are reported in these studies. As it is 

preferred as the main classifier in this study, the basic concepts of SVM will be 

explained briefly in this section. A more detailed explanation and discussion on 

SVM can be found in [36], [38] and [39].  

 

5.3.1 Support Vector Classification 

To begin with the formulation of the classification problem, consider the two 

class case described in section 5.2.1, where the set of examples are to be separated 



 

 
 
64 

by a discriminating function. For such a problem, one can find infinitely many 

separating hyperplanes hence functions, as can be seen in Figure 5-5. 

 

 

 
Figure 5-5 : Several solutions of the discriminating function for a linearly separable 2 
category classification problem. The solution found by SVM (represented with h0) is the one 
that maximizes the margin between the samples (support vectors) and the hyperplane.  

 

 

However, among these hyperplanes, there is only one that separates the classes 

with the maximum margin. That is, SVM tries to find the separating hyperplane 

which maximizes the distance between the hyperplane and the nearest samples in 

each class. This idea intuitively provides optimality in the sense that it increases 

generalization capabilities [2], [38]. The optimum separating hyperplane is 

illustrated in Figure 5-6.  

 



 

 
 
65 

 
Figure 5-6: Optimum Separating Hyperplane (OSH) of SVM for a two class case. The closest 
samples to OSH from each class are called the support vectors. 
 

 

The nearest elements to the hyperplane lying on 1H  and 2H  in Figure 5-6 are 

called the support vectors which give the name to the method. The solution 

procedure of the optimum separating hyperplane (OSH) reveals these elements 

and once these are found the classification in the test phase is done by using the 

support vectors.  

 

The OSH for the linearly separable case can be mathematically represented with a 

line as: 

 

 0=+ bxwt             (5.11) 

 

where the bias vector for the OSH is represented with b  for conformity with the 

literature [38].  
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The solution for OSH requires the solution of an optimization problem where the 

goal is to maximize the margin γ . Here, if one sets the class labels as { }1,1−=y , 

then 1)( ≥+ bxwy i
t

i  becomes a constraint of this optimization problem. This 

constraint comes from the restriction that  

 

 1)(min =+ bxw i
t

i
           (5.12) 

 

which simplifies the formulations in the problem. With these constraints one can 

show that the margin γ  is related to the weight vector w  with: 

 

w

2=γ             (5.13) 

 

Therefore, maximizing the margin γ  is equivalent to minimizing the norm of the 

weight vector. So the quadratic support vector optimization problem is formulated 

as follows: 
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       (5.14) 

 

where N  is the number of elements in the training set. 

 

SVM can find the optimum solution for the separating hyperplane from (5.14) 

only if the classes are linearly separable. However, this is not usually the case. In 

real problems the data is inseparable even with the feature extraction methods and 

higher dimension mappings which will be discussed in the later sections of this 

chapter. To overcome this problem, (5.14) is modified by introducing a penalty 

function and positive slack variables into the optimization problem [39], [38]: 
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where iξ ’s are the slack variables and C  is the regularization parameter. This 

modification provides a more flexible situation which is named as the “soft-

margin” SVM optimization problem [4]. The iξ  parameters moderate the 

constraints by allowing violations and provide the penalty together with the 

regularization parameter in the cost function.  

 

The solution for the optimum separating hyperplane is simplified when the cost 

function in (5.15) is expressed in the Lagrangian dual form: 
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       (5.16) 

 

This formulation provides an advantage that one does not deal with the slack 

variables inside the cost function. One should also note that the solution is found 

in terms of the Lagrange multipliers ia  for all the training points ix  and the non-

zero solutions for ia ’s represent the coefficients of the support vectors. Therefore, 

the solution for the weight vector w  of the OSH is found from: 

 

 ∑=
sN

i
iii xyaw             (5.17) 

 

where ix ’s and sN  represent the support vectors and the number of the support 

vectors respectively.  
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The solution for the threshold or the bias term b  can be found from the Karush-

Kuhn-Tucker (KKT) conditions for the primal Lagrangian form which states 

 

( )[ ] ibwxya t
iii ∀=−+ ,01         (5.18) 

 

Expression (5.18) is, in fact, a simplified case of the real KKT conditions. The 

slack variables iξ ’s are removed here by using the fact that Cai <<0 . This 

constraint implies that 0=iξ  when the Lagrange multipliers are in this range. 

Therefore, from (5.18) one can use all the training points to compute the bias term 

b  for which Cai <<0  is satisfied. As there are at most N  equations in (5.18) 

one may find N  different solutions for b  and the common approach is to average 

all these solutions to compute the bias vector [38]. 

 

5.3.2 Prediction in SVM 

When the parameters defining the OSH are found, the class labels of the new 

coming vectors are determined by evaluating the sign of the function defined in 

(5.19).  

 

 bxwxf t +=)(            (5.19) 

  

 

The function is expressed in terms of the support vectors if the equation (5.19) is 

combined with (5.17) as: 
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The sign of the function value indicates the side of the OSH on which the vector 

lies and the absolute value of the function gives the idea of distance of the vector 

to the hyperplane. In other words, the higher the absolute value of the function, 

the higher the probability of the vector being in that halfspace.  

 

5.3.3 Kernel Functions  

Up to here, SVM is discussed in the linear functions of the data, i.e. the 

discriminating function used in classification is a linear transformation of the 

feature vector to the output space. The Kernel operator used in the above SVM 

discussions is the usual dot product of the two vectors. However, one can also 

employ other transformations to generalize the SVM to the nonlinear case. The 

idea is to map the vectors into a higher dimensional space which provides some 

advantages in cases where the data is linearly inseparable [38].  So, one can 

express the Kernel operation as an inner product in the feature space as: 

 

 )(),(),( jiji xxxxK ΦΦ=           (5.21) 

 

where the operation .,.  represents the inner product and the function (.)Φ  

provides the nonlinearity in the transformation of the feature vector. Therefore, 

the inner product in SVM discriminant function can be replaced by the 

generalized Kernel operator defined in (5.21). 

 

 ( )∑ +=
sN

i
iii bxxKayxf ,)(           (5.22) 

 

Some examples of the nonlinear Kernel functions used in SVM are defined in the 

following: 
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• Polynomial Kernel:  

 

d

jiji xxxxK ,),( =           (5.23) 

or               

( )d

jiji xxxxK 1,),( +=          (5.24) 

 

• Gaussian Radial Basis Function:  
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• Exponential Radial Basis Function: 
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• Dirichlet Kernel: 
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• Sigmoid Function: 

 

( )δκ −= jiji xxxxK .tanh),(               (5.28) 

 

Among these kernel operators, the Gaussian Radial Basis Function (Gaussian 

RBF) is reported to provide excellent results in the classification and 

generalization performance of SVM as compared to other functions [40], [38]. 
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The variance expression 2σ  in Gaussian RBF provides an additional control 

parameter that leads to a more suitable decision boundary for many classification 

problems. Also in BCI studies, the Gaussian RBF is preferred in SVM due to its 

success in classification [4], [2]. 

 

5.3.4 Normalization  

Normalization is a data processing technique used in statistics, signal processing 

and machine learning applications. It is used to standardize the magnitude or 

decrease the variance of the elements in the set of interest. For classification point 

of view, the samples in a training set usually exhibit a large variance. It is 

sometimes necessary for removing the extremity of the samples and increasing 

the correlations between the samples from the same class when training the 

classifier.  

 

There are several techniques for data normalization. The simplest one is to 

normalize the length or the magnitude of the vector; that is the normalized sample 

is equal to the unit vector pointing in the direction of the input sample. 

 

 
x

x
x =)

            (5.29) 

 

The norm operation in (5.29) is the 2L  norm which corresponds to the linear 

scaling of the input vector with its magnitude. There are also other normalization 

options like scaling the input vector with the difference between the maximum 

and minimum of the input vector: 

  

 
)min()max(

)min(

xx

xx
x

−
−=)

           (5.30) 

 



 

 
 
72 

In (5.30), the input vector is linearly scaled to the interval [ ]1,0 . This range can be 

modified according to the requirements of the classifier (if exists any) as: 
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)min()max(
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−=         (5.31) 

 

Up to here, the normalization is explained by using only the properties of a single 

sample in the dataset. However, one can also employ ensemble normalization 

which is performed over the whole dataset. In this approach, the statistical 

properties of the dataset such as the means or the variances of the features are 

used to scale the samples. A well known type of ensemble normalization is the 

Gaussian normalization in which all the features are normalized with according to 

a normal distribution ( )σµ,N . 
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xx
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            (5.32) 

 

where xµ  and 2
xσ  represent the mean and variance vectors of the features 

respectively. 

 

5.3.5 Cross-Validation  

Cross-validation is a testing method in supervised learning used for assessing the 

generalization performance of a classification model. The idea is to divide the 

training set into small partitions and use only one partition to train the classifier. 

The remaining subsets (validation set) are left to test the classifier where the result 

of classification could be justified. The cross-validation is performed by rotating 

the subsets used for training and the result of the prediction accuracy over the 

validation set is averaged for all combinations. Application of this technique 

allows the modification of the parameters that are used to construct the classifier 

and thus provides a generalization procedure for the classifier. 
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Two types of the cross-validation are commonly used in measuring the accuracy 

of the classification model which are the random sub-sampling and κ - fold cross-

validation methods. In random sub-sampling cross-validation, the training set is 

randomly partitioned into training and validation sets and the classification model 

is tested on the validation set for each partitioning operation.  The averaging is 

performed over the partitions to determine the average accuracy of the model. On 

the other hand, the κ - fold cross-validation divides the training set into κ  

subsets. The classifier is trained on 1−κ  of these subsets and then tested on the 

remaining subset. This operation is then repeated for κ  times until all the subsets 

are used as a validation set for the classifier. The κ  classification accuracy results 

obtained from the validation sets are then averaged to asses the overall 

performance of the classifier. In this study, the κ -fold cross-validation method is 

preferred for the comparison of the classifier performance with the results given 

in [4]. It is used to determine the optimal control parameters which are the 

regularization parameter in the penalty function of SVM defined in (5.15) and 

variance parameter of the Gaussian RBF kernel in (5.25). 

 

5.4 Unsupervised Learning 

The supervised learning techniques like SVM employ only the data to construct 

the classification model and the additional information supplied by the problem is 

not used in these methods. As described in section 5.1.1, for the case of Spelling 

Paradigm, the information given by the problem is that there exists only one target 

class in each of the row and column groups for a single trial. Discriminant 

classification, on the other hand, can decide as if there are multiple target classes 

in each group which is not true for the Spelling Paradigm case. For example, the 

classifier can predict two or more rows from the same trial as the target class or 

all columns as the nontarget class. To overcome this problem, unsupervised 

learning techniques are involved by using the probabilistic information supplied 

by the problem. Therefore, in this section, the Bayesian classification together 
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with the Maximum Likelihood Estimation (MLE) will be explained as the 

unsupervised learning technique in Spelling Paradigm.  

 

5.4.1 Bayesian Classification  

The Bayesian classification is the simplest machine learning technique that 

employs the a posteriori probabilities of the observations in the decision. It is used 

in both supervised and unsupervised learning depending on the information 

provided by the problem. In this section, Bayesian decision is explained for 

unsupervised learning in which only the state conditional probability density of 

the observations and the a priori probabilities of the classes are known. 

 

To begin with the Bayes decision theory, classification for an observation x  is 

done according to the Bayes Rule which is defined as: 

 

 ( ) ( ) ( )
)(xp

CPCxp
xCP

jj

j =           (5.33) 

 

Here, ( )xCP j  represents the a posteriori probability of x  for the class jC . In 

other words, it is the probability of an observation belonging to that class. It can 

be interpreted for the Spelling Paradigm case as the true probability of a row or 

column being from the target or non-target class once it is observed. Moreover, 

( )jCxp  is the class-conditional probability density of x  for the j -th class which 

represents the distribution of x  when the j -th class is observed. This can be 

interpreted as the probability of a row or column once it is decided (by the SVM 

classifier) as from the target or nontarget class. 

 

If the case is restricted to the two class case, one can express the probability 

density of x  in (5.33) as: 
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=
=           (5.34) 

  

The Bayesian decision is performed according to the intuitive idea that if 

( ) ( )xCPxCP ij >  then the observation x  belongs to the j -th class and this 

minimizes the risk in classification as discussed in section 5.2.2. Once the class-

conditional densities are known, the Bayesian classification can be applied for 

prediction of the observations using the rule defined in (5.33). If the probability 

densities are unknown or depend on some parameters, then parameter estimation 

techniques can be applied to determine the distribution of the class-conditional 

probabilities. A common parameter estimation technique, known as the Maximum 

Likelihood Estimation (MLE) will be the topic of the next section. 

 

5.4.2 Maximum Likelihood Estimation  

Maximum Likelihood Estimation (MLE) is used in cases where the conditional 

probability density function is unknown, but the form of the function is known. 

The conditional probability in this case depends on some parameters 

( )Nθθθθ ,....,, 21=  such as mean or variance of the distribution, and these 

parameters can be estimated using the MLE method. For the case of Spelling 

Paradigm, the unknown parameter θ  will represent the trial dependency of the 

target class prediction. Here, the MLE is discussed on the estimation of the 

conditional probability density ( )jCxp  required in the Bayesian classifier.  

 

To begin with, the dependence of the class-conditional probability density 

( )jCxp  to the unknown parameter θ  can be expressed in a joint density as 

( )θ,jCxp . For our case, ( )θ,jCxp  represents the class-conditional probability 

density for each trial repetition. Since the form of ( )θ,jCxp  is known (it can be 
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observed from each trial), the best estimate of the class-conditional density 

( )jCxp  is obtained by averaging3 ( )θ,jCxp  over θ  [34]: 

 

 ( ) ( )∫= ", θθ dCxpCxp jj           (5.35) 

 

The expression (5.35) in fact, provides the MLE of the class-conditional density 

provided by the SVM outputs for the spelled character. Kaper et al. considered 

this case as the scoring of the row and column intensifications regarding the SVM 

outputs [4] but did not formulate the problem in a probabilistic methodology.  

 

At this point, one can think of a better estimation of ( )jCxp  for a real world 

problem in P300 Speller. For example, consider the case that the subject wants to 

stop the spelling application and rest for a moment. In other words, he/she refuses 

to spell a character. In this case, a stopping criteria should be introduced into the 

problem. Therefore, one can modify the decision rule in prediction as follows: 

 

 

 

 

 

 

 

 

 

 

 

                                                 
3 The expression ( )Xp θ   in [34] has been omitted here as it is obvious that it is equal to 1 for the 

P300 Speller (There is always a trial for any observation). However, for an online system in which 
the subject may not always desire to perform spelling, the form of the conditional density 

( )Xp θ  should be considered.  
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Method 2: Decision Rule in Prediction of a Character     

 
X = [0 0 0 0 0 0];    % Decision vector for a row or column group, assign 0 for all intensifications 
X_svm = [0 0 0 0 0 0]; % The number of occurences of each stimuli predicted by SVM as from the 
target class 
t_s = 0;      % Total number of stimuli predicted by SVM as from the target class  
 
for  t = 1 to n          % For a predefined number of trial repetitions to be employed 

      for  s = 1 to 6     % For all stimuli of interest in a group  

             if f(s) > 0      %if the stimulus is predicted as from the target class by SVM 
          X(s) = X(s) + f(s)    % add the probability of prediction 

           X_svm(s) = X_svm(s) + 1;  % increment the number of occurence 
                      t_s = t_s + 1; 
    end if 
      end for 
end for 
X = (X) .* (X_svm) / t_s;  %Multiply two probability distributions to obtain the realistic probability 
density 
Decided stimulus = argmax(X);  
 

 

The proposed decision mechanism is meaningful only when the single 

observation prediction accuracy of the discriminative classifier (SVM for our 

case) is satisfactory. For example, consider the case when the SVM could not 

predict any stimulus as from the target class in n trial repetitions. This will force 

the system in not taking an action to predict the character. Using this decision 

method will prevent false prediction of the character when the subject does not 

focus on any character. If the character prediction rule of [4] was employed, the 

stimulus with the maximum SVM score among n trials would be selected as the 

target stimulus even if it was not predicted as a target class by the SVM. 

Therefore, the decision rule in [4] is reasonable only when it is known that the 

subject is focused on a character. However, as it is impossible to know the state of 

the subject, it is practical to employ the prediction mechanism described in 

Method 2 for real world applications of P300 based BCI systems.   
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 CHAPTER 6 

 

 

THE DESIGN OF ELECTROENCEPHALOGRAPHIC 

DATA ACQUISITION SYSTEM FOR BCI 

APPLICATIONS 

 

 

 

6.1 Introduction 

Beside the signal processing techniques and classification methods, the 

mechanisms in measurement of the brain activity and decision in experimental 

paradigms are of quite importance. The quality of the signal detecting and 

recording devices considerably affect the performance of the BCI algorithms. As 

mentioned in Chapter 2, BCI systems usually use electroencephalogram to 

measure the brain activity due to its portability and practicality. In this chapter, 

we will present a prototype design of an EEG system to be used BCI applications. 

The design of the system mainly covers the design of an EEG amplifier, the data 

acquisition hardware, electrode and EEG cap designs and the software controller 

design for BCI experiments. Here, in this chapter, the designed system is 

explained briefly. Detailed information (system diagrams, performance tests etc.) 

can be found in the technical documentation of the EEG system [82]. 
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6.1.1 EEG Design Requirements 

• EEG systems are used in medical applications. They should first satisfy some 

safety requirements in order not to harm the subject. Therefore, electrical 

safety should be of primary consideration; isolations from the power network 

should be implemented properly. 

• As stated in Chapter 2, the amplitude of EEG signals is on the order of several 

microvolts (~ Vµ100 ). Therefore, the system should be capable of sensing the 

signals in this range. The gain of the amplifier system and the resolution of the 

analog to digital conversion should be taken into account. 

• Since the signal amplitudes are very low, EEG systems are usually affected 

from noise, especially from the noise of the power network and the digital 

circuitry. The filters should reduce the noisy effects of the signals that are not 

related to EEG. The analog and digital grounds should be isolated properly. 

• EEG signals cover a small frequency range in BCI applications. The system 

should sense the electrical activity of the brain for frequencies lower than 

40Hz. 

• Sampling rate should be high enough considering the EEG frequency range 

(Table 2-1).  

• For the P300 based BCI applications like Spelling Paradigm, the system 

should support recording the epoch information synchronously with the 

signal. 

• Regarding the previous studies performed on spelling paradigm, there should 

be at least 10 channels in the system [4]. 

• The system should be implemented with minimum number of hardware 

components. 
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6.2 System Specifications 

The system design is performed according to the needs listed in the previous 

section. Basically, the system is designed satisfying the following specifications: 

 

• The analog amplifier circuitry will be supplied by standard batteries in order 

to reduce the effect of noise caused by the mains supply. Also, the batteries 

are preferred due to electrical safety issues. 

• Active electrodes will be used in the system. 

• The amplifier system will be AC-coupled in order to eliminate the DC offsets. 

• EEG measurements will be monopolar. 

• The isolation between the analog and digital circuitries will be performed with 

analog isolators. 

• ADC resolution is chosen as 12 bits.  

• The digital data will be transferred to PC via USB. 
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6.3 Analog Hardware 

The analog hardware is composed of an active electrode stage and an amplifier 

circuitry which mainly includes instrumentation amplifiers, filters and isolator 

components inside. These will be explained in detail in the following subsections. 

The circuit diagrams of the system can be found in Appendix B. 

 

6.3.1 Active Electrodes 

Instead of simple passive ring electrodes, in this design, the use of active 

electrodes is preferred due to their practicality. When using the passive electrodes 

in EEG, a preparation stage is needed in which the electrodes have to be covered 

with a conductive gel. This is a time consuming procedure especially when the 

number of the electrodes is high. Moreover, the conductive paste usually dries out 

after 2-3 hours of use and additional pasting is needed in order to continue to EEG 

recording. Active electrodes eliminate the need for pasting and thus can be used 

for the measurements much longer than the passive ones. 

 

As EEG signals are very low amplitude signals, they are more prone to noise. 

Also, for the passive electrodes, it is difficult to match the contact impedance 

between the scalp and the electrode leads for all channels. This results in the 

amplification of the displacement currents in the preamplifier stage [83]. The 

active electrodes are usually used as voltage follower devices to improve the 

signal strength at the scalp by increasing the current driving capability of the 

signal. There are also studies on the design of active electrodes with gain. 

However, it is difficult to overcome the problem of DC offsets in EEG. Therefore, 

in this study, it is preferred to use active electrodes as simple voltage buffering 

elements. Additionally, a first order high pass filter with a low cutoff frequency is 

used to remove the DC component in the signal in order not to saturate the 

preamplifier. Figure 6-1 shows the simulations on frequency characteristics of the 

designed active electrodes.  
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(a) 
 

 
(b) 

 
Figure 6-1 : Frequency characteristics of the designed active electrodes. a) Magnitude 
response (in dB), b) Phase response (in degrees)  
 

 

6.3.2 Preamplifier 

Since the amplitude of the signal to be measured is considerably low, special type 

of amplifiers are preferred in EEG systems. These are called instrumentation 

amplifiers (IA) and have a high common mode rejection ratio (CMRR) property 

in their design, providing a less noise affected signal in the amplification. There 

are usually two stages in the structure of IA. The first stage is the buffering stage 

where the signal is electrically isolated from the signal source and common mode 

voltage is reduced. In the second stage, there exists a difference amplifier in 

which the difference between two isolated signals is amplified [83].  
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Since instrumentation amplifier includes at least three operational amplifiers (op-

amp) in its design, it occupies a larger size compared to other components in the 

circuits. However, there are also commercial instrumentation amplifiers that 

provide all the components in an instrumentation amplifier in a single package. 

These packages have comparatively smaller size and provide the gain adjustment 

with a single external resistor.  

 

In this design, the commercial instrumentation amplifier package, LT1167 of 

Linear Technologies is used at the preamplifier stage which was also employed in 

the design of the 256 channel EEG system in [78]. For the elimination of high 

frequency signals, first order low pass filters are added to the inputs. Moreover, a 

high pass filter is used for AC coupling at the output of the amplifier. 

 

6.3.3 Active Filters 

Noise is the major problem in biopotential measurement devices. Especially, the 

noise caused by the power network affects these devices by imposing a common 

mode signal on the inputs of the amplifier blocks. Therefore, the need for filter 

use is inevitable in these systems.  

 

In BCI applications, the algorithms use the frequency band between 0.1Hz and 

45Hz. Signals out of this range should be removed by including either analog or 

digital filters in the design. Also, application of filters can solve possible aliasing 

problems in digitizing circuitry. Therefore, in this design, two active filters are 

used in the EEG amplifier circuitry: the first one is a band-stop filter to remove 

the effect of noise caused by the mains supply and the second one is a third order 

low pass Bessel filter with cutoff frequency 40Hz. The choice of Bessel filter is 

due to the flat group delay response in the pass band. The magnitude and phase 

response plots of these filters are given Figure 6-2 and Figure 6-3. 
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(a) 
 

 
(b) 

 
Figure 6-2 : Frequency characteristics of the employed active 50Hz band-stop filter. a) 
Magnitude response (in dB), b) Phase response (in degrees) 
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(a) 
 

 
(b) 

 
Figure 6-3 : Frequency characteristics of the designed 3rd order active 40Hz low-pass filter. 
a) Magnitude response (in dB), b) Phase response (in degrees)  

 

 

6.4 Digital Hardware 

In order to perform digital signal processing, the amplified EEG signals should be 

discretized and transmitted to a computer. Usually, the digitization of the signal is 

done via commercial analog to digital converters (ADC’s) or using data 

acquisition cards which are more expensive than the ADC’s. When ADC is used 

in the design, a microcontroller is needed for transferring the digitized signal to 

the computer. The transfer can be done either with serial or parallel 

communication depending on the hardware the microcontroller and computer 

both support.  
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For today’s computers, Universal Serial Bus (USB) is the most common and 

maybe the only communication platform due to its speed in transfer. And with the 

development in technology, low cost microcontrollers with USB hardware are 

available in the market which makes it easy to implement a USB communication 

with the computer.   

 

As stated in the introduction section in this chapter, it is aimed to design the EEG 

hardware as minimum number of components as possible. Therefore, the digital 

hardware is composed of PIC18F4553, a compact microcontroller with a high 

ADC resolution and Full Speed (FS) USB hardware [79]. The hardware 

schematics of the digital circuitry can be found in Appendix B. 

 

6.5 Isolation 

Isolation in medical systems is necessary for two reasons. The most important one 

is that the electrical equipment can harm the subject when the isolation is poor. 

Possible leakage currents can flow through subject’s body which can lead to 

permanent disorders or even to deaths. In order to protect the subject from these 

problems, subject has to be electrically isolated from the environment properly. 

This can be performed by using isolated supplies like batteries or isolation 

transformers for the analog amplifier which can decrease the risk of electrical 

shock [83]. Moreover, the amplifier circuitry should be isolated from digital the 

circuitry and the recording system due to possible reverse currents coming from 

the computer side which can also harm the subject. In this design, standard 

batteries are used in the analog circuitry for providing the supply isolation. 

 

Isolation is also important for removing the effects of the noise caused by power 

network, electrical equipments and high speed electronic devices like computers. 

So, the analog and digital circuits should be electrically separated from those 

devices by employing proper signal isolation in the system. Moreover, the ADC’s 

used in these systems are usually affected from the signal oscillations in the 
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analog circuitry. This is mainly caused by the ground nodes the analog and digital 

circuits are referenced and when they are implemented as the same node, the 

ADC’s usually can not convert the signals accurately. Therefore, the analog and 

digital grounds should also be isolated.  

 

The signal isolation can be done with galvanic isolators, analog and digital 

optocouplers, transformers or the isolation amplifiers in the circuit. In this design, 

the amplified EEG signals are isolated from the digital circuitry with analog 

optocouplers [80]. The reason for using optocouplers is that they occupy less 

space in the circuit and cost less as compared with other isolator types. Moreover, 

as the microcontroller used in this design has built-in USB device hardware, the 

isolation can not be done digitally. Therefore, the analog optocoupling is 

preferred and this provides an advantage of ground isolation between the analog 

and digital circuits which results in better digitization of the signal at the ADC 

stage. 

  

6.6 EEG Cap Design 

In commercial EEG systems, the electrodes are placed on an elastic head cap 

according to the 10-20 electrode placement system [41], [43]. These caps are 

suitable only for passive ring electrodes in which the electrodes are covered with 

a conductive gel. Figure 6-5 shows a commercial EEG cap produced by 

Neuroscan. 
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Figure 6-4 : International 10 – 20 Electrode Placement System. The naming comes from the 
percentage ratio of the distance between two consecutive electrodes according to the distance 
between Inion and Nasion points of the human scalp [41]. 
 

 

 
Figure 6-5: 19 Channel EEG cap produced by Compumedics Neuroscan [81]. 
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However, when active electrodes are to be used in the system, the electrodes may 

not be easily attached to the scalp due to their size and weight of the material in 

the electrodes. For this reason, a cap design is performed for active electrodes in 

which the placement of the electrodes is easy and the effect of common mode 

noise is theoretically reduced (Figure 6-6).  

 

 

 
Figure 6-6 : The effect of the designed EEG cap on reducing the common mode voltage 
induced on the body. The common mode voltage with respect to the amplifier ground is 
decreased as the distance between the amplifier ground and the electrode leads is small. 
Furthermore, the leakage currents are more likely to flow through the cap instead of the 
body with this configuration.  

 

 

The designed EEG cap in Figure 6-7 is composed of three layers. The outer layer 

is a Teflon material for holding and fixing the active electrodes on the scalp. In 

the middle layer, there is a thin aluminum film which is used for a conductive 

path to the analog ground. This film acts as a protective layer for the displacement 

currents which can generate a common mode voltage in the preamplifier stage. 

The inner layer is a soft tissue made up of Styrofoam which provides a soft 

contact between the cap and the subject. 10 active electrodes are located on the 
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cap according to 10-20 electrode placement system [41],[43] as shown in Figure 

6-7.  

 

 

 

(a) 

 

(b) 

Figure 6-7 : Pictures of the designed EEG cap. The active electrodes can easily be placed 
onto the scalp of the subject.  
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6.7 Experiment Controller and EEG Interface Design 

Monitoring and recording of the EEG signals are performed by a computer 

program which acts usually as the main controller in these systems. Therefore, in 

the last part of the EEG design, the computer program of the system will be 

explained.  

 

The system flowchart of the computer software is given in Figure 6-8. It is 

composed of several small software blocks that control the EEG signal 

acquisition, recording, monitoring and experimenting BCI applications.  

 

 

 
Figure 6-8: The flowchart of the controller software. MCU stands for the microcontroller 
unit which is the PIC18F4553 device [79]. 

 

 

These operations are managed in separate threads in order not to interfere with 

each other and affect the flow of the overall system. The threads are created by 

using multimedia timers which provide the highest resolution (1ms) for event 

scheduling in programs. Being available in most of the computers, multimedia 

timers can be managed in all Windows based operating systems. As it provides a 

high resolution and priority for timing, the sampling of the analog EEG signals, 
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monitoring and recording of the data and the intensification timing in spelling 

paradigm are all done with the multimedia timer instances.  

 

The program is prepared in Visual Studio .NET 2005 which provides a useful 

framework for computer applications based on object oriented programming 

(OOP). It is controlled with a friendly graphical user interface allowing the EEG 

operator to manage the EEG sessions easily.  
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Figure 6-9 : Signal monitoring interface of the designed system. It is operated with the P300 Speller user interface. 
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Figure 6-10 : Graphical user interface prepared for the P300 Speller. 
 

 

 

 

 



 

 
 
95 

 CHAPTER 7 

 

 

RESULTS 

 

 

 

As stated in the introduction chapter, the Spelling Application is investigated in 

several aspects which can mainly be summarized as the application type of 

classification methods [77] (the analysis of classification performance by 

separating the observations of row and column intensifications), the comparison 

of Wiener filtering with standard filtering techniques and the effect of probability 

estimation method by application of Maximum Likelihood Estimation in the 

prediction mechanism of the target character. These aspects will be addressed in 

this result chapter by performing the analysis case by case on several Spelling 

Paradigm datasets.  

 

In this study, the methodologies are tested on one of the BCI competition datasets 

(the P300 Speller dataset of BCI Contest II [18]). An experimental dataset is 

obtained for the spelling application at Dokuz Eylül University, in a shielded EEG 

laboratory environment. Furthermore, a successful experimentation is performed 

with the designed hardware at the Brain Research Laboratory of Electrical and 

Electronics Department of Middle East Technical University. The results of the 

presented methods will be provided after giving a brief explanation of each 

dataset.  
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7.1 Results on the BCI Competition II: Dataset IIb 

The P300 Speller datasets for BCI Competition II and III are provided by 

Wadsworth BCI [14], in which the measurements are obtained with the BCI2000 

system [15]. The datasets are publicly available at [18] and [20]. Here in this 

thesis, only the results for the dataset of BCI Competition II [18] are presented 

since the implemented methodologies could not be properly integrated to the 

dataset of BCI Competition III due to the size of the provided dataset in this 

contest and memory requirements of the employed methodologies.  

 

In these experiments, the spelling matrix consists of 36 characters which are 

distributed on 6 rows and 6 columns of the matrix (Figure 3-1). The 

intensification procedure for each spelled character is performed by flashing a 

row or column for 100ms and after that showing a blank screen (no intensified 

rows and columns) for 75ms. Therefore, a single intensification lasts for 175ms 

(5.7Hz) and as there are 6 row and 6 column intensifications, one trial of 

intensification is completed after 2.1 seconds (175ms x 12 intensifications). After 

each trial, a blank screen is presented for 2.5 seconds to inform the subject that 

the trial is completed and the next trial is coming up. The intensification 

procedure is repeated for 15 trials so that the whole procedure takes nearly 69 

seconds to complete the spelling session of a single character ((2.1s of trial 

duration+ 2.5s blank screen time) x 15 trials). 

 

In both datasets, the EEG signals are digitized at a sampling rate of 240Hz and in 

the dataset of BCI contest III only, the signals are band-pass filtered by hardware 

with cut-off frequencies 0.1Hz and 60Hz. The information provided in these 

datasets consists of the raw EEG data measured from 64 channels (Figure 7-1), 

the codes of the intensification (Figure 7-2) and the target characters that are 

spelled during those sessions.  
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Figure 7-1 : The EEG channels used in the measurements in P300 Speller datasets of [18] 

and [20].  
 

 

 
Figure 7-2 : Epoch information in [18] and [20]. The row and column intensifications are 
epoched with the ongoing EEG during the paradigm according to the demonstrated 
encoding scheme.  
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The P300 Speller dataset of BCI Contest II [18] includes three spelling sessions 

from one subject; two for training and one for testing the algorithms prepared for 

this problem. Each session is composed of several runs in which the 3-5 letter 

words are spelled4. The contents of these sessions are provided in Table 7-1 and 

Table 7-2. 

 

Table 7-1: Contents of the Training Sessions in Spelling Paradigm Dataset of BCI Contest II 

 Session 1 Session 2 

Runs 1 2 3 4 5 1 2 3 4 5 6 

Words CAT DOG FISH WATER BOWL HAT HAT GLOVE SHOES FISH RAT 

 

 

Table 7-2: Contents of the Test Session in Spelling Paradigm Dataset of BCI Contest II 

 Session 3 

Runs 1 2 3 4 5 6 7 8 

Words FOOD MOOT HAM PIE CAKE TUNA ZYGOT 4567 

 

 

As stated in chapter 3, the basis of this study relies on the success of the algorithm 

proposed by Kaper et al [4]. In their work, they have employed Support Vector 

Machines (SVM) [77] with a feature set configuration consisting of 10 EEG 

channels (Figure 7-3 (a)). Moreover, commercial P300 Speller systems employ 

even less number of electrode configuration in their methods [42] (Figure 7-3 

(b)). Therefore, in this thesis, after the presentation of each stimulus, the EEG 

time segments of 600ms duration from the channels in Figure 7-3 (a) are 

extracted. As in [4], a long feature vector consisting of 1440 elements (600ms x 

240Hz x 10 channels / 1000) is constructed to compare the methodologies 

presented. Since it is only possible to perform offline analysis on the dataset, the 

                                                 
4 The data of the 6th run of Session 2 is somehow corrupted; it contains some bugs related to the 
recording process. Therefore, it is excluded in forming the classification model and hence in 
providing the results here. 
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results here will be provided with cross-validation accuracy on the training set and 

prediction accuracy on both training and test sets. 

 

 

 

        (a)         (b) 

Figure 7-3: The electrode configurations used in existing P300 Speller Systems [42]. 

 

7.1.1 Separation of Row and Column Intensifications 

In Kaper’s study [4], using a single SVM classifier, the classification results for 

the test set in Table 7-2 are reported as 100% accuracy for all characters after 5 

repetitions. Here, the same methodology is applied but in this case also the 

responses to row and column intensifications are treated separately. As the 

method of band-pass filtering has not been given in [4], a Butterworth filter of 

order 10 with cutoff frequencies 0.5Hz and 30Hz is applied to produce the results. 

The results for the 5 – fold cross validation values on the training set is given in 

Table 7-3 (C=20.007, 359.27=σ  for all). 
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Table 7-3: The 5 - fold Cross Validation Values on the Training Set 

No Row and Column Separation (reported by Kaper) 84.5% 

No Row and Column Separation (observed) 78.1197% 

Rows 74.7009% With Row and Column Separation 

Columns 82.6496% 

 

 

The difference between the observed and reported values on cross validation 

ratios might arise from several factors. As there are 1:5 ratio on the number of 

target and non-target observations, one should perform a selection from the non-

target observations to train the classifier so that the number of samples from each 

class is the same. Otherwise, the classifier would naturally decide that all new 

coming samples belong to the class with highest probability of occurrence (which 

is the non-target class). Therefore, the group selected to train the classifier may 

not be the same as in [4], as the selection procedure is random. However, in order 

to preserve the consistency in presenting the results here, the selected training 

group is fixed for all simulations of the methodologies in each investigated 

dataset. 

 

Another factor possibly affecting the difference in cross-validation results might 

be the application of normalization. Kaper implemented simple scaling (explained 

in section 5.3.4) on the filtered observations, that is, the samples are scaled to the 

interval of [-1,1]. However, this normalization may lead to improper adjustment 

of the data for our case. The reason is that, the non-target signals, in general, have 

lower amplitude as compared to the target signals. When simple scaling is 

applied, it is highly probable that a non-target signal resembles to a target one. 

Therefore, in this study, Gaussian normalization is preferred as it preserves the 

shape of the observed signals better. Furthermore, it is also applied in the method 

of Rakotomamonjy [6] in which the data is normalized according to the statistical 

properties of the observations.  
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As stated at the beginning of this section, the filter type has not been explained 

clearly in [4]. The difference in the cross-validation values might also be caused 

by this reasoning. Rakotomamonjy [6] applied an 8th order band-pass Chebyshev 

Type 1 filter with cutoff frequencies 0.1Hz and 10Hz in their study for BCI 

contest III. Both of these filter types are compared with the proposed Wiener 

filtering in the following sections.  

 

The 5-fold cross-validation values in Table 7-3 indicate that the rows and column 

observation groups may not always be classified with the same accuracy. The 

reason for this might be that the subject may exhibit different responses to row 

and column intensifications. As the subject’s perception to row and column 

flashings may differ, they should be treated and trained in separate classifiers to 

increase the level of commonness and homogeneity in the training model. 

Therefore, the 5-fold cross-validation is performed on row and column groups 

independently and optimum parameters (the regularization parameter C  in SVM 

and the variance parameter σ in Gaussian RBF) providing the maximum cross 

validation ratio are found (76.9231% for rows and 84.2735% for columns) for 

each of them as 100=rC , 120=rσ  and 40=cC , 60=cσ  (see Table 7-4 below 

for the comparison). 

 

7.1.2 The Effect of Wiener Filtering 

As discussed in chapter 3, the optimum frequency bands for P300 speller are 

determined by estimating a Wiener filter for all EEG channels of interest. The 

Wiener filters are produced by estimating a 10th order linear phase FIR 

implementation for the frequencies found by the analysis of the spectral powers.  
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Figure 7-4 : Estimated Wiener filters for the predetermined 10 EEG channels. Wiener filter 
estimates are shown in red and blue for the row and column groups, respectively. In some 
channels the filter estimates for both groups overlap (Cz, P3 and PO8). 
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As one can observe from Figure 7-4, the frequency band for the target signals 

actually covers a narrower range for this dataset. When the classifier is trained 

with the same parameters (Table 7-4) on the training set, the 5-fold cross 

validation values have increased on both row and column groups.  

 

Table 7-4: Maximum 5 - fold cross - validation values found on the training set 

100=rC , 120=rσ  40=cC , 60=cσ  Rows Columns 

10th order Butterworth -  0.5Hz-30Hz 

filtered training set 
76.9231% 84.2735% 

10th order Wiener filtered training set 77.9487% 86.5812% 

 

 

The target character prediction accuracy results of Wiener and Butterworth 

preprocessing on the training and test sets are presented in Figure 7-5 and Figure 

7-6. 
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Figure 7-5: Prediction accuracy of the target characters on the training set (39 characters). 
Solid: preprocessed with 10th order Butterworth filter. Dotted: preprocessed with 10th order 
FIR Wiener filter. 
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Figure 7-6: Prediction accuracy of the target characters on the test set (31 characters). Solid: 
preprocessed with 10th order Butterworth filter. Dotted: preprocessed with 10th order FIR 
Wiener filter. 
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From Figure 7-6, it is clear that preprocessing with Wiener filtering has better 

classification performance on the test set as compared to Butterworth filtering. 

Even using 2 trials of repetitions, prediction with Wiener filtering is over 80% for 

31 characters. Furthermore, according to Kaper’s results, the accuracy of 

prediction is below 80% within 2 repetitions and equal to 100% only after 5 trials 

(Figure 7-7). Filtering with Wiener approach has increased the prediction 

accuracy to 100% with only 4 trial repetitions. 
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Figure 7-7 : Target character prediction accuracy on the test set reported by Kaper [4]. 

 

 

7.1.3 Prediction with MLE of SVM outputs 

One can note from Figure 7-5 that the prediction accuracy with Wiener filtering 

on the training set shows some inconsistency with the increasing number of trial 

repetitions; between 10th and 13th repetitions, a single character is false 
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predicted. This is a common error in the prediction mechanism which could also 

happen in the Butterworth case. The reason is that the results here are presented 

with the common P300 Speller methodology of scoring the output of the SVM 

classifier [4] (see section 5.4.2). In this technique, the SVM output giving the 

maximum value among the 6 samples in a trial can be considered as from the 

target class even if it is predicted as a non-target observation by SVM. Therefore, 

if one also uses the information provided by SVM (the samples predicted as target 

by SVM), the class-conditional density of target prediction is better estimated 

(explained in section 5.4.2). This prediction approach provides a threshold 

mechanism which prevents the persistent classification of the target character in a 

real world application case. The results on the training and test sets with ML 

prediction of the SVM outputs are given in Figure 7-8 and Figure 7-9. 
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Figure 7-8 : Prediction accuracy of realistic MLE of SVM outputs on the training set (39 
characters). Solid: preprocessed with 10th order Butterworth filter. Dotted: preprocessed 
with 10th order FIR Wiener filter. 
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Figure 7-9 : Prediction accuracy of realistic MLE of SVM outputs on the test set (31 
characters). Solid: preprocessed with 10th order Butterworth filter. Dotted: preprocessed 
with 10th order FIR Wiener filter. 
 

 

In this case, the results for both filter types became nearly similar. However, in 

order to prevent the false and continuous prediction in Spelling Paradigm one 

should include the target class output information supplied by the main classifier 

which is the SVM in our case. On the other hand, with these results also, Wiener 

filtering is more preferable as it provides higher prediction accuracy on the test set 

in less number of trial repetitions. 
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7.2 Results on Experimental Datasets 

7.2.1 P300 Speller Experiment at 9 Eylül University 

In order to obtain a practical dataset for this study, first, the experimental setup of 

the P300 speller has been implemented and realized in the shielded EEG rooms of 

Brain Dynamic Research Laboratories of 9 Eylül University.  

 

 

   

 
Figure 7-10 : Pictures from the P300 Speller experiment at 9 Eylül University 
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The instrument used to measure the electrical activity of the brain is a 64 channel 

EEG device of Neuroscan Systems which provides 1 kHz sampling of EEG 

signals with active noise cancellation. The intensification algorithms for the 

Spelling Paradigm experimental interface are integrated with the epoching 

mechanism of the EEG system. 

 

The experiment is performed on a healthy subject of age 24 (Figure 7-10) who did 

not have any experience on evoked potential experiments. She is asked to stay 

relaxed on a comfortable chair in front of a monitor on which the 6x6 spelling 

matrix is presented. All operations are managed within the control room and in 

case of a fatigue or any other problems related to the subject, she is monitored on 

one of the screens in the control room.  

 

In this experiment, the spelling application is performed for 35 characters in one 

session which lasted about 2 hours. The procedure for spelling each character is 

explained as follows: 

 

• The subject is asked to focus on the predetermined characters on the 6x6 

spelling matrix which are explained to the subject outside of the shielded 

room via microphone. She is supposed to realize and silently count the 

number of target row and column intensifications.  

• As in the case of BCI Competition datasets, 15 trial repetitions are used in 

spelling each character. For each trial, the intensifications are block 

randomized for 6 rows and 6 columns.  

• Since the subject had no experience on Spelling Paradigm, in order to 

provide easy realization of the intensifications, the flashing duration is set 

to 270ms (170ms on, 100ms off).  The blank period between the trials is 

kept at 2.5 seconds. 
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The characters spelled during the experiment are given in Table 7-5. The first 15 

characters are used to construct the classification model and the remaining 20 

characters are reserved for offline prediction.  

 

Table 7-5: The characters spelled in the experimentation performed at 9 Eylül University 
Training Set 

 (15 characters) 

Test Set  

(20 characters) 

Spelled words HECE BALKAR UGRAS  BERNA URUN EKIM DEVRIM 7 

 
 

 

As stated at the beginning of this section, the sampling rate of the recording EEG 

system is 1 kHz which is nearly 4 times higher than that of the BCI contest 

datasets. This results in a much longer feature vector, some of which, in fact, may 

be redundant for classifying the target responses. Regarding the presented results 

on the dataset of BCI Competitions II, the optimal frequency bands for detecting 

the P300 responses lie mainly below 20Hz. Therefore, it is also possible to apply 

downsampling to the EEG signals which is also employed in [6]. By this way, the 

construction of the Wiener filter and SVM classification model will be much 

faster as the computational power decreases with less number of feature samples. 

Here, the results will be presented on downsampled data while investigating the 

effects of Wiener and other filtering methodologies. 

 

For the first case where the data is downsampled to 100Hz by taking the average 

of blocks of consecutive 10 samples, the vector of interest is constructed with 600 

ms long EEG segments from the predetermined 10 channels in Figure 7-3. 

Therefore, the input space consists of 600 elements (600ms x 100Hz / 1000Hz x 

10 channels). The Wiener filters estimated from the downsampled raw EEG data 

for each channel are shown in Figure 7-11. 
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Figure 7-11 : Estimated Wiener filters for the predetermined 10 EEG channels (using 
downsampled raw EEG data). The estimates are shown in red for row, and blue for the 
column groups. 
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The results for 5-fold cross-validation accuracy on the training set are given in 

Table 7-6. 

 

Table 7-6: The 5 - fold Cross Validation Values of SVM on the Training Set, preprocessed 
with investigated filtering techniques 

007.20== cr CC ,  359.27== cr σσ  Rows Columns 

10th order Butterworth -  0.5Hz-30Hz 77.6786% 82.1429% 

8th order Butterworth -  0.5Hz-30Hz 79.2411% 84.1518% 

10th order Chebyshev I -  0.1Hz-10Hz 82.5893% 89.2857% 

8th order Chebyshev I -  0.1Hz-10Hz 85.0446% 87.0536% 

Estimated Wiener filter 84.8214% 87.7232% 

 

 

One can note from Table 7-6 that the cross-validation accuracy is higher in low 

frequency band-pass filtered cases which are the 10th and 8th order Chebychev and 

Wiener filters (see Figure 7-11 for the frequency range of the estimated filters). 

When the prediction accuracy is calculated over the training and test sets as in 

Figure 7-12, Figure 7-13, Figure 7-14, Figure 7-15 and Figure 7-16, Chebyshev 

filters are observed to be more successful than other filtering schemes.  
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Figure 7-12 : Prediction accuracy of realistic MLE of SVM outputs. Preprocessed with 10th 
order Butterworth filter. Solid: training set (15 characters). Dotted: test set (20 characters) 
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Figure 7-13 : Prediction accuracy of realistic MLE of SVM outputs. Preprocessed with 8th 
order Butterworth filter.  Solid: training set (15 characters). Dotted: test set (20 characters) 
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Figure 7-14 : Prediction accuracy of realistic MLE of SVM outputs. Preprocessed with 10th 
order Chebyshev Type I filter. Solid: training set (15 characters). Dotted: test set (20 
characters). 
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Figure 7-15 : Prediction accuracy of realistic MLE of SVM outputs. Preprocessed with 8th 
order Chebyshev Type I filter. Solid: training set (15 characters). Dotted: test set (20 
characters). 
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Figure 7-16 : Prediction accuracy of realistic MLE of SVM outputs. Preprocessed with 10th 
order Wiener filter. Solid: training set (15 characters). Dotted: test set (20 characters). 

 

 

However, one should note that the evaluation of the prediction accuracy is 

performed for the parameters given in the literature [4]. When the case is 

investigated for the optimum regularization and variance parameters (C  and σ ) 

providing the highest cross-validation values (Table 7-7), filtering with Wiener 

approach becomes as successful as the Chebyshev case (Figure 7-17, Figure 7-18, 

Figure 7-19, Figure 7-20 and Figure 7-21). 

 

Table 7-7: The 5 - fold Cross Validation Values of SVM on the Training Set for optimum 
parameters, preprocessed with investigated filtering techniques 

120,100,100,80 ==== crcr CC σσ  Rows Columns 

10th order Butterworth -  0.5Hz-30Hz 81.0268% 82.3661% 

8th order Butterworth -  0.5Hz-30Hz 81.4732% 84.5982% 

10th order Chebyshev I -  0.1Hz-10Hz 87.0536% 89.2857% 

8th order Chebyshev I -  0.1Hz-10Hz 83.7054% 85.9375% 

10th order Wiener filter 84.8214% 88.8393% 
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Figure 7-17 : Prediction accuracy of realistic MLE of SVM outputs. Preprocessed with 10th 
order Butterworth filter, trained with optimum para meters in Table 7-7. Solid: training set 
(15 characters). Dotted: test set (20 characters). 
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Figure 7-18 : Prediction accuracy of realistic MLE of SVM outputs. Preprocessed with 8th 
order Butterworth filter, trained with optimum para meters in Table 7-7. Solid: training set 
(15 characters). Dotted: test set (20 characters). 



 

 
 
117 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

70

80

90

100

Number of trial repetitions

P
re

di
ct

io
n 

ac
cu

ra
cy

 (%
)

Prediction Accuracy on the Training and Test Character sets
for the 10th order Chebyshev Type I filter

 

 

Training Set
Test Set

 
Figure 7-19 : Prediction accuracy of realistic MLE of SVM outputs. Preprocessed with 10th 
order Chebychev Type I filter, trained with optimum parameters in Table 7-7. Solid: 
training set (15 characters). Dotted: test set (20 characters) 
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Figure 7-20 : Prediction accuracy of realistic MLE of SVM outputs. Preprocessed with 8th 
order Chebychev Type I filter, trained with optimum parameters in Table 7-7. Solid: 
training set (15 characters). Dotted: test set (20 characters) 
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Figure 7-21 : Prediction accuracy of realistic MLE of SVM outputs. Preprocessed with 10th 
order Wiener filter, trained with optimum parameter s in Table 7-7. Solid: training set (15 
characters). Dotted: test set (20 characters). 
 

 

From Table 7-7, the 5-fold cross-validation accuracy has increased for all filtering 

schemes (especially for the Chebyshev cases). In this case however, the prediction 

performance with Chebyshev filtering has decreased to 8 trial repetitions for 

100% accuracy in the test set (Figure 7-19 and Figure 7-20). On the other hand, 

the accuracy with the Wiener filtering technique has increased to 6 trial 

repetitions for perfect prediction and became comparable with the result in the 

previous case of Chebyshev. However, it should be underlined here that, the 

Wiener filter estimation is performed on the raw EEG data. That is, the noisy 

frequency components in the unfiltered signal might affect the estimation 

procedure involved in Wiener filter model. The performance of the approach can 

be further increased with low-pass filtering the EEG signals first (like an 

equiripple filter between 0-50Hz) and then estimating the Wiener filter. The final 

forms of the estimated Wiener filters for the low-pass filtered case are given in 

Figure 7-22. 
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Figure 7-22 : Estimated Wiener filters for the predetermined 10 EEG channels (estimated 
from the downsampled, 50Hz low-pass filtered EEG data). The estimates are shown in red 
for row, and blue for the column groups. 
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The cross-validation and prediction accuracy results for this case are given in 

Table 7-8, Figure 7-23 and Figure 7-24. 

 

Table 7-8: The 5 - fold Cross Validation Values of SVM on the lowpass + Wiener 
preprocessed Training Set, (1) with the parameters in the literature and (2) optimum 

parameters searched using the dataset. 
 Rows Columns 

(1) 007.20== cr CC , 359.27== cr σσ  82.5893% 89.0625% 

(2) 120,100,100,80 ==== crcr CC σσ  83.0357% 89.7321% 
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Figure 7-23 : Prediction accuracy of realistic MLE of SVM outputs. Preprocessed with 50Hz 
low pass + 10th order Wiener filter, trained with the parameters of Table 7-8 (1). Solid: 
training set (15 characters), Dotted: test set (20 characters). 
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Figure 7-24 : Prediction accuracy of realistic MLE of SVM outputs. Preprocessed with 50Hz 
low pass + 10th order Wiener filter, trained with the parameters in Table 7-8 (2). Solid: 
training set (15 characters). Dotted: test set (20 characters). 
 
 

As can be seen from Figure 7-24, the prediction accuracy on the test set has 

increased to 100% using only 5 trial repetitions which gives an idea of increase in 

the accuracy of Wiener filter estimation with prefiltering. It is also surprising that 

the presented model has also shown 100% prediction accuracy in a single trial on 

the training set. This result, in general, implies that the classification model is not 

so accurate and has suffered from overfitting (see section 5.2.3). However, as it 

can be observed from the results on the test set, this is not the case and Wiener 

filter approach outperformes among the discussed preprocessing methods in terms 

of the improvement of prediction accuracy. 
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7.2.2 Experimentation with the Designed Hardware 

In the final section of this chapter, the results obtained from the Spelling 

experiment with the designed EEG system are presented. The experiment is 

conducted on a single subject with the conditions and procedure stated below:  

 

• The measurement environment had no electrical shielding. Two 

continuously running PC clusters of 8 computers each were working 

nearby the recording room. 

• The experiment was conducted in a dark environment. 

• The subject was asked to sit relaxed on a standard chair without arms. 

• A 7x7 spelling matrix composed of Turkish letters and other alphanumeric 

characters were presented to the subject (Figure 7-26). 

• The EEG signals were measured using the designed active electrodes 

located on the predetermined positions on the scalp (Figure 7-3). The 

ground and the active reference electrodes are positioned on FPz and right 

ear respectively. 

• For each spelled character, the recording of EEG signals was started after 

a 10 seconds of preparation time. During this interval, the subject got 

ready for the intensification sequences. 

• The intensifications were randomized in blocks of 14 for 7 rows and 7 

columns. The interstimulus interval was set to 250ms in which a row or 

column was flashed on for 150ms and then flashed off for 100ms. 

• A total of 15 trial repetitions were employed for all the characters in the 

spelling session. The break time between the trials was adjusted to 1 

second. Therefore, the spelling run for each character lasted about 77.5 

seconds (10 seconds preparation time + (14 intensifications x 250 ms + 

1000 ms break) x 15 repetitions).  

• As the experiment employed 14 different intensifications and 15 trial 

repetitions for each character, a spelling run consists of 210 observations 

out of which there are 30 target and 180 non-target observations (2 targets 



 

 
 
123 

in a single trial x 15 repetitions and 12 non-targets in a single trial x 15 

repetitions). 

• The EEG signals were digitized at a sampling rate of 1 kHz and recorded 

in separate files for each spelled character. 

• The experiment was offline performed for spelling of 20 characters which 

are distributed to the training and test sets as in Table 7-9. 

 

  

  
 
Figure 7-25 : Pictures from the experiment on P300 Speller conducted in Brain Research 
Laboratory of Electrical and Electronics Eng. Dept., METU 
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Figure 7-26 : The spelling matrix and stimulus codes used in the experimentation performed 
with the designed hardware. 
 

 

Table 7-9: The characters spelled in the experimentation conducted with the designed 
hardware 

Training Set (9 characters) Test Set (11 characters) 

Spelled words BERNA29BA BFKRTL7ÜHP3 

 

 

7.2.2.1 Results on the EEG measurements 

For visualization of the recorded target and non-target responses, the averaged 

EEG signals from each class are shown in Figure 7-27 and Figure 7-28. From 

these figures, it is clear that the developed EEG system accurately measured the 

target P300 and non-target responses during the experiment. 
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Figure 7-27 : Averaged target responses measured in the P300 Speller experiment conducted 
with the designed hardware. 
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Figure 7-28 : Averaged non-target responses measured in the P300 Speller experiment 
conducted with the designed hardware 
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7.2.2.2 Offline Analysis Procedure 

The steps followed in preprocessing and classification of these datasets is 

summarized below: 

 

Preprocessing 

Single trial extraction: EEG time segments of 600ms length, 100ms after the 

presentation of visual stimuli are extracted. 

 

Filtering: Although the EEG hardware employs active analog band-stop and low-

pass filters in its design, the extracted time segments are digitally filtered with an 

equiripple low pass filter with a cutoff frequency of 50Hz.  

 

Decimation: In order to reduce the dimensionality of the input space, the filtered 

time segments are downsampled to 100Hz by taking the average of every 10 

consecutive samples. Therefore, the number of time samples for each channel has 

been reduced to 60. 

 

Wiener filter estimation: The decimated observations are separated into row and 

column groups and for each group the Wiener filter estimation is performed.  

 

Construction of the feature vector: All Wiener filtered EEG segments are 

concatenated by channel for each observation and a long feature vector is 

constructed with 600 elements (60 samples x 10 channels). 

 

Training 

Grouping row and column observations: The preprocessed observations are 

separated into row and column groups and for each group the data is divided into 

target and non-target classes. 

 

Selection of observations: From each trial, 1 target and 1 non-target observation is 

selected to construct the SVM classifier for each group. 
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Search of parameters: For maximum cross-validation accuracy on the training 

set, the regularization parameter C  and the variance parameter σ  are searched 

for both groups between the interval [10, 200] with increments of 5. This is a time 

consuming procedure and once the optimum values are found these parameters 

are kept as constants for the SVM classifiers.  

 

7.2.2.3 Results of the Proposed Methodologies 

The estimated Wiener Filters are shown in Figure 7-29. One can note that the 

optimum frequency bands for the row and column groups can show difference in 

some of the EEG channels. 
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Figure 7-29 : Estimated Wiener filters for the predetermined 10 EEG channels on the 
experiment data performed with the designed hardware. The filters are estimated from the 
downsampled, 50Hz low-pass filtered EEG data and are shown in red for row, blue for the 
column groups. 
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The maximum cross-validation accuracies are obtained as 87.037% and 

85.1852% for the row and column groups on the training set using the optimum 

values 60=rC , 100=cC  and 90=rσ , 120=cσ  for the searched parameters. 

The prediction accuracies on the training and test sets are shown in Figure 7-30. 
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Figure 7-30 : Prediction accuracy of realistic MLE of SVM outputs on the experiment data. 
Preprocessed with 50Hz low pass + 10th order Wiener filter, trained with the optimal 
parameters. Solid: training set (9 characters). Dotted: test set (11 characters) 

 

 

Here, one should remember that the test set is composed of 11 characters. 

Therefore, only one character has been false predicted after 8 trial repetitions. 

This can be seen on the predicted characters in Table 7-10 more clearly.  
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Table 7-10: Predicted characters in the test set with respect to the trial repetition number 

Trials Predicted Characters 

1 ĞKKR6G,T9ÖI 

2 BFPMTL7Ü8PÇ 

3 BFRRTG7Ü8PD 

4 FFRRTG7Ü8PD 

5 FEKRT!7ÜHPD 

6 BEKRTG7ÜHPD 

7 B,KRTG7ÜHPD 

8 BFKRTL7ÜHPD 

9 BFKRTL7ÜHPD 

10 BFKRTL7ÜHPD 

11 BFKRTL7ÜHPD 

12 BFKRTL7ÜHPD 

13 BFKRTL7ÜHPD 

14 BFKRTL7ÜHP3 

15 BFKRTL7ÜHPD 

 

 

The only misclassified character in Table 7-10 after 8 trials (omitting the 

exception in the 14th repetition) is the last one in which the subject informed that 

she was not well concentrated on the character in the spelling session due to the 

headache she suffered from. Omitting this case, the methodologies predicted the 

characters with 100% accuracy using only 8 trials. 
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 CHAPTER 8 

 

 

CONCLUSION 

 

 

 

In this thesis, the implementation of the P300 Speller system is performed by the 

development of a P300 based BCI system. Several experiments are conducted 

with the designed system in which the measurements are realized with the active 

electrodes. Convincing performance is obtained in these experiments as the 

system was able to measure the P300 patterns required for the spelling 

application. 

 

Wiener filtering, a statistical signal processing technique, is employed as a signal 

enhancement method on the P300 speller for the first time in the literature. The 

optimum frequency bands for P300 detection is investigated by estimating the 

Wiener filters for the target and non-target observations. It is applied to several 

P300 Speller datasets and observed to be more successful than the other filtering 

techniques in terms of target character prediction accuracy. Furthermore, the rows 

and columns of the spelling matrix are treated in separate groups in order to 

investigate the difference in classification accuracies between these two 

intensification types. In the P300 Speller dataset of BCI Competition II, the target 

characters in the test set are predicted with 100% accuracy within 4 trials which is 

higher than that of the prediction results of competition winners. On the other 

hand, the prediction of the target characters with the designed system is 

performed after 8 trials in order to obtain a perfect accuracy for all characters. 

 



 

 
 
133 

8.1 General Observations and Discussion 

Several results are deducted from the observations on the investigated Spelling 

Paradigm datasets. The first and maybe the most important observation is that the 

brain responses to row and column intensifications are not classified with equal 

accuracy. One can see from the cross-validation results that, (although treated in 

the same way) the row groups usually have lower classification accuracy than the 

column group for equal regularization and variance parameters (see section 7.1.1). 

Even for the optimal values of the cross-validation results, the row group is 

observed to be more misclassified than the column one. Although not presented 

here, the single vector classification results were also higher for the column group 

for each of the observed training and test sets. To give an example, in the 

experimental study with the designed system, the misclassified character was 

lying on the same column with the predicted character after 8 repetitions. The 

column prediction was correct, but not the row. Therefore, it can be inferred that 

the human perception to the row and column intensifications can be different for 

each subject in terms of the brain’s responses which is an open research topic for 

the neurophysiologists and psychologists interested in BCI. Furthermore, in order 

to satisfy a successful classification scheme, these intensification groups should 

be trained and classified separately on two classification modalities.  

 

Another important deduction is that the optimum frequency band for P300 

detection is in fact narrower than the normal EEG frequency range (0-45Hz). The 

unnecessary frequency components outside this range can be eliminated for better 

classification results. Whether the filtering technique is performed with Wiener 

approach or not, filtering the out-of-range components considerably increases the 

performance of the classification. Filtering with Wiener approach only provides 

the frequency information that is optimal in detection of the measured signal.  

 

Furthermore, one should note that the application of Wiener filtering on the P300 

Speller problem is only meaningful with the assumptions described in chapter 4. 
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The stationarity of the signal patterns are of special importance in this 

methodology. Unlike the common sense that the EEG measurements are non-

stationary signals [2], in this study, they are treated as stationary by employing a 

WSS model of the P300 pattern and the noise signals. This modality is proven to 

be valid for the P300 detection problem in Spelling Paradigm as the results show 

that the filtering with the Wiener approach yielded the best classification 

performance in SVM among the other preprocessing techniques (see sections 

7.1.2 and 7.2.1). Furthermore, the presented approach is performed by the 

estimation of the Wiener filters from the raw EEG data. It can be further 

improved by estimating these after prefiltering the raw EEG signal first, with a 

low-pass filtering method as described in section 7.2.1. 

 

The performance of the classification depends on many parameters like the 

selection of the training group, the type of normalization and the separation of the 

row and column intensification groups. The cross-validation results, hence the 

accuracy of the trained models is considerably affected by the samples selected to 

train the classifiers. In order to perform a rational comparison between the 

preprocessing and other methods, it is highly necessary to use the same group in 

training the classifiers for all investigated filtering cases. Otherwise, the 

performance of the classification method could vary (even for the same method) 

in the second run of the algorithm.  

 

In addition, the results presented in this thesis are obtained by performing a 

Gaussian normalization on the datasets. The preprocessing methodologies in the 

literature could have higher performance in here if they were investigated for all 

normalization types discussed in section 5.3.4. However, the results for these 

cases are believed to be variable on every P300 Speller dataset as the feature 

patterns concerned here are more likely to be random signals. The shape and 

amplitude of these signals might not be as well preserved as the Gaussian 

normalization when compared to other normalization types. A deeper study is 

needed to validate this assumption though.  
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Another important factor is that the classification results might not show the same 

behaviour among the preprocessing techniques. That is, the parameters which are 

optimal for one technique may not be as much optimal as the other one. 

Therefore, they should be investigated for the cases in which they exhibit the 

maximum cross validation accuracy on the training set. However, fortunately in 

the presented results, all preprocessing techniques exhibited nearly the same 

behavior in classification accuracies (except the Chebyshev case in section 7.2.1). 

 

Finally, it should be underlined here that the performance of the overall system is 

more dependent on the employed discriminative classification method. In most 

cases, the target characters can be predicted by using a powerful classifier 

exhibiting a 100% accuracy (may be at the 15th trial repetition) without any 

preprocessing method. Therefore, the main success of this system is determined 

by the SVM classifier [77]. Other methodologies can only serve slight 

improvements in speed of the system as compared among each other.  

 

8.2 Advantages of the Developed System and Methods 

The proposed methodologies provide several advantages for the spelling 

application in terms of practicality in the EEG measurements and preprocessing 

mechanisms. The active electrodes employed in the system eliminate the need for 

skin preparation stage applied in the passive counterpart. Using active electrodes 

provides longer EEG measurements, thus improves the usability of a BCI system. 

On the other hand, filtering with the Wiener approach increases the classification 

accuracy as it offers the optimal frequency bands for P300 detection. Since it is 

performed on a dataset with only class label information, it automatically 

determines the frequencies comprising the user specific target signals which can 

also be considered as a feature extraction methodology in this scheme. Therefore, 

one can apply the Wiener filtering on similar binary classification models even if 

there is no prior information on how to filter the data. 
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The decision mechanism for an online P300 speller can be improved by the 

methodology proposed in section 5.4.2. The off states of the subject can be 

determined by this method so that the BCI system becomes more practical as it 

does not need a continuous response from the subject.  

 

8.3 Future Work 

The thesis can be further improved with the future studies on the following topics: 

 

• The developed system for the moment is applicable for only offline 

measurements and analysis. The controlling mechanisms should be 

upgraded to realize an online P300 based BCI system. Furthermore, the 

system and the methods are only tested on a single healthy subject. More 

experimentation should be performed with the designed hardware and the 

presented methodologies on other healthy or disabled subjects. 

 

• The only BCI application investigated in this thesis is the P300 Speller.  

However, one can increase the number of application types in this systems 

by implementation other BCI applications based on P300 detection. This 

is a simple task since the hardware supports all the mechanisms required 

for a P300 based BCI system. A slight modification on the presented 

methodologies may be required depending on the specific BCI application 

to be implemented. 

 

• Currently, the active electrodes and the EEG cap can not be properly 

operated on every subject due to the fixed size of the cap. The placement 

of the electrodes can be disturbing for the subject as the material used in 

the electrodes for contacting the scalp is sharp in order to reach the scalp 

through hair. The materials used in their design should be improved to be 

easily and confortably used by everybody. The hardware can be improved 
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by using surface mount devices in construction of the circuits so that they 

are much smaller in size. By this way, the whole system can be attached 

on the EEG cap.  

 

• As well as the P300 based BCI applications, other paradigms can be 

implemented within the system. After all, a complete BCI system can be 

realized by including the wheelchair application, P300 Speller and other 

assistive BCI systems in a compact framework as shown in Figure 8-1.  

 

 

     
Figure 8-1: A compact BCI system for the disabled. In the future work, different BCI 
paradigms can be implemented on a single hardware system in which the basic needs of the 
patients are satisfied. 
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APPENDIX A 

 

 

PROOF OF WIDE SENSE STATIONARITY OF A 

SINUSOIDAL RANDOM PROCESS 

 

 

A random process ( )nx  is said to be a wide-sense stationary process if the 

following conditions are satisfied [32]: 

 

1. The mean of the process ( )nxµ  is a constant. 

2. The autocorrelation ( )21,nnRx  is a function of ( )21 nn − . 

 

Consider the random process given by 

 

( ) ii njw

i
ieAnx ϕ+∑=                  (B.1) 

 

where iA ’s and iw ’s are deterministic (amplitude and frequency) parameters 

defining the sinusoid. Here, the phase parameters iϕ ’s are random variables 

whose distribution is assumed to be uniform between 0  and π2 . That is, 
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Proof of Condition 1 
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It can be seen that the mean of the random process is constant. Therefore, the first 

condition for WSS is satisfied. 

 

Proof of Condition 2 
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Here, it can be assumed that iϕ ’s are independent random variables so that their 

joint probability density can be represented as a product of their marginal 

densities: 
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One can note from the above expression that the integral of the cross-

multiplication of exponential terms yields to 0 unless ki ≠ . That is, 
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Therefore, 
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which is a function of )( 21 nn − . Therefore, ( )nx  is WSS process as it also 

satisfies the second condition.  
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APPENDIX B 

 

 

EEG HARDWARE SCHEMATICS 

 

 

The circuit diagram of the designed active electrode is shown in Figure B - 1. It is 

composed of two voltage buffers and a first order high-pass filter with cutoff 

frequency of 0.1Hz.  

 

 

 
Figure B - 1: Circuit diagram of the active electrode 

 

 

 
Figure B - 2: The pictures of the active electrodes. The electrode with the ring shaped 
contact is used for reference and attached to the right ear. 
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The EEG signals are amplified differentially with the preamplification stage in 

which the differential gain is adjusted to 50. The output signal is filtered to 

remove the DC offsets. The circuit diagram of the preamplifier circuitry is given 

in Figure B - 3. 

 

 

 
Figure B - 3: The preamplifier circuitry in the EEG amplifier. 
 

 

Two active filters are used in the analog circuitry. The amplified signal is first 

filtered with a band-stop filter with frequency of 50Hz to remove the effect of the 

power line noise and after the notch filter, the signal is processed with a third 

order low-pass filter to remove the unnecessary components in the EEG 

frequency range. For this purpose, the cut-off frequency of the low-pass filter is 

set to 40Hz. The filter is designed according to Bessel filter specifications to 

obtain a flat group delay for all frequencies in the range. The circuit diagrams of 

the filter circuits are given in Figure B - 4 and Figure B - 5. 
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Figure B - 4: Active 50Hz notch filter. It is used to remove the effect of the power line noise. 

 

 

  
Figure B - 5: 3rd order Bessel low-pass filter with 40Hz cut-off frequency. 
 

 

The whole schematics of the designed EEG amplifier is shown in Figure B - 6. 
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Figure B - 6: The circuit diagram of the designed EEG amplifier. 
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Figure B - 7: Pictures of the printed EEG amplifier. The system is supplied by two batteries. 
These supplies are regulated with a power circuitry included in the black box shown in the 
picture. 
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The schematics of the digital hardware is shown in Figure B - 8. 

 

 

 
Figure B - 8: The circuit used in the digital hardware. The circuit is mainly composed of a 
compact microcontroller, PIC18F4553, which is used to perform A/D conversion and USB 
transfer. 
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Figure B - 9: Pictures of the digitizing system. The analog signals are digitized by A/D 
conversion and sent to the computer via USB. 
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Figure B - 10: Pictures from the experiments performed with the designed EEG system. 

 

 

B.1 Performance Tests 

Several tests are performed to measure the performance of the designed 

amplification system. Here, basic tests will be presented such as Magnitude 

Response, Common Mode Rejection Ratio (CMRR), test signal outputs and 

outputs from ongoing EEG signals. One can find detailed information on these 

and other specifications in the technical documentation of the designed system 

[82]. 

 

The differential mode gain with respect to frequency is given in Figure B - 11. 

 



 

 
 
158 

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Frequency (Hz)

V
ou

t di
ff

 /
 V

in
di

ff

Differential Mode Gain (Adiff) vs Frequency

 
Figure B - 11 Magnitude response of the designed EEG system. The system has maximum 
gain between 1 and 10 Hz. 

 

 

As can be seen in Figure B - 11, the system has a non linear differential gain for 

the frequency range. It has the minimum gain near 50Hz in order to reduce the 

effect of power line noise. The CMRR of the system with respect to frequency is 

demonstrated in Figure B - 12. 
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Figure B - 12: Common Mode Rejection Ratio (CMRR) of the designed EEG amplifier. The 
system exhibits rejection of the common mode signal higher than 80dB in the frequency 
range of 0.1-20Hz 

 

 

Several test signals are applied to the designed system, the outputs of which are 

shown in Figure B - 13, Figure B - 14 and Figure B - 15. In all cases, a sinusoidal 

waveform with an amplitude of 100Vµ  (with different frequencies) is given as 

the input to simulate the EEG signal. The outputs for these cases are given in 

terms of A/D conversion results with an offset for each EEG channel to see all 

waveforms in one plot. Note that the amplitude of the output decreases as the 

frequency is increased. This is due to the nonlinear differential gain of the 

amplification system shown in Figure B - 11. 
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Figure B - 13: The output of the EEG system for a 100uV test signal with frequency 5Hz. 
 
 
 

 
Figure B - 14: The output of the EEG system for a 100uV test signal with frequency 10Hz. 
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Figure B - 15: The output of the EEG system for a 100uV test signal with frequency 17Hz.  
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Figure B - 16: Offline visualization of the spontaneous EEG signal recorded by the system 
from 10 channels. The amplitude of the signals is given in terms of the A/D conversion 
results. An artificial offset is given for all channels in order to visualize them in one plot. 


