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ABSTRACT

A DESIGN AND IMPLEMENTATION OF P300 BASED
BRAIN-COMPUTER INTERFACE

Erdo an, Hasan Balkar
M.S., Department of Electrical and Electronics Eegiring
Supervisor: Prof. Dr. Nevzat Guneri Gencer
Coadvisor: Dr. Ali Bulent Uakl

September 2009, 161 Pages

In this study, a P300 based Brain-Computer Interfd®Cl) system design is
realized by the implementation of the Spelling Baya. The main challenge in
these systems is to improve the speed of the pi@dienechanisms by the
application of different signal processing and @atclassification techniques in
BCI problems.

The thesis study includes the design and implertientaof a 10 channel

Electroencephalographic (EEG) data acquisitionesysio be practically used in
BCI applications. The electrical measurements @atized with active electrodes
for continuous EEG recording. The data is transféria USB so that the device

can be operated by any computer.



Wiener filtering is applied to P300 Speller as gnal enhancement tool for the
first time in the literature. With this method, tlptimum temporal frequency
bands for user specific P300 responses are detedmirhe classification of the
responses is performed by using Support Vector Mash(SVM’s) and Bayesian
decision. These methods are independently appliedthe row-column

intensification groups of P300 speller to obserte differences in human
perception to these two visual stimulation types.isl observed from the

investigated datasets that the prediction accwsatiethese two groups are
different for each subject even for optimum clasation parameters.

Furthermore, in these datasets, the classificateanracy was improved when the
signals are preprocessed with Wiener filtering. WNthis method, the test
characters are predicted with 100% accuracy imadl repetitions in P300 Speller
dataset of BCI Competition Il. Besides, only 8 Igiare needed to predict the

target character with the designed BCI system.

Keywords: Brain Computer Interface (BCI), Spelling ParadigA800 Speller,
Electroencephalography (EEG), Hardware Design, Huierception to Visual
Stimulations, Wiener Filtering, Support Vector Maws (SVM).
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P300 TABANLI BEY N-B LG SAYAR ARAYUZUNUN
TASARIMI VE UYGULAMASI

Erdo an, Hasan Balkar
Yiksek Lisans, Elektrik-Elektronik MihendisliBolimii
Tez Yoneticisi: Prof. Dr. Nevzat Guneri Gencer

Tez Yard mc Danman : Dr. Ali Bulent Uakl

Eylul 2009, 161 sayfa

Bu cal mada, Heceleme Paradigmas uygulamas ile P30(ltaba Beyin-
Bilgisayar Arayuzi (BBA) sisteminin tasarm  gerlekirilmi tir. Bu
sistemlerdeki temel hedef, BBA problemlerine farklaret ileme ve orinti
s n fland rma yontemleri uygulayarak, problemlend&hmin mekanizmalar n n

hzn artt rmaktr.

Bu tez cal mas, BBA uygulamalar nda pratik olarak kullan Iméikere, 10
kanall bir Elektroensefalografik (EEG) veri toplamsistemi tasarm ve
kurulumunu icermektedir. Elektriksel dlgimler, siga bir EEG kayd icin aktif
elektrotlar ile gercekldiriimektedir. Say sal veri iletimi, sistemin herg bir
bilgisayarda kontrol edilebilmesi icin Evrensel iSafol (USB) aracl yla

sa lanmaktad r.

Vi



Wiener suzgecleme yontemi, P300 Heceleme Uygulanaabir sinyal ileme
arac olarak literatirde ilk defa uygulantr. Bu yontem ile kiiye 6zel P300
tepkilerinin alg lanmas icin optimum zamansal ek bantlar belirlenmiir.
Tepkilerin s n fland riImas, Destek Vektor Makieel (DVM) ve Bayes karar
yontemleri kullan larak  gerceklgrilmi tir. Bu  yontemler, P300
Heceleticisi'ndeki sat r-stitun yanma gruplar na bes z bir ekilde uygulanm
ve kiinin bu iki gorsel uyarana olan algs incelentini ncelenen P300
Heceleticisi veri kiimelerine gore, s nfland r ¢ tmoptimum parametrelerle bile
bu iki gruptaki tahmin bar s n n farkl olduu goézlemlenmitir. Ayr ca, bu veri
kimelerinde, iaretler Wiener stizgecleme yontemi ileendi inde s n fland rma
baars artm tr. Bu yontem ile 2. BBA Yarmas 'ndaki P300 Heceleticisi veri
kimesindeki test karakterler, 4 tekrar kullan laré&100 baaryla tahmin
edilmi tir. Tasarlanan BBA sistemi ile ise hedef karaktetahmini sadece 8

tekrar ile mimkinddr.

Anahtar Sozcukler: Beyin Bilgisayar Arayuziu (BBA), Heceleme Uygulamas
P300 Heceleticisi, Elektroensefalografi (EEG), DomaTasar m ,nsan n Gorsel

Uyaranlara Olan Alg s , Wiener Suizgec¢leme, Destekt®r Makinalar (DVM)
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CHAPTER 1

INTRODUCTION

Interaction with the outside world by means of camnimation is one of the most
indispensible gifts of the human being. We all need hands to control or use
anything around us, legs to move and other necedisals that are crucial for
continuing our lives. Unfortunately, these abiktiean be lost due to possible
accidents or diseases. As examples, AmyotrophierabtSclerosis (ALS),
brainstem stroke and multiple sclerosis are soméefdiseases in which the
motor neural pathways are damaged causing peopke limcked into their bodies.
In such a case, the voluntary control is lost fudtypartially over the body [1].
With full consciousness, the patients sufferingrfrthese diseases can not even
realize a physical movement or communicate withr ttevironment. Therefore,
it is impossible for these people to live and tultheir daily needs without
external help.

Fortunately, with the advancements in technologgearchers have developed
innovative solutions to facilitate and improve tife quality of these patients.
Among these, a well known emerging technology asgarch field is the Brain
Computer Interface (BCI), in which people are atdecommunicate with their
environment and control prosthetic or other extedswices by using only their
brain activity. In a BCI system, the brain activity translated into simple
commands using brain activity measurement systsigsal processing methods

and classification techniques with the help of oethwysiologic experimental



paradigms. There are also other human computerastien systems that rely on
the movement of healthy limbs (eye-gaze etc.) asctintroller of basic actions
and these systems are still more efficient thameadily existing BCI systems.
However, for patients suffering from degenerativsedses like ALS, BCI is
considered as the only way of communication withdhtside world.

Over the last two decades, there have been numstodies performed on BCI.
Researchers proposed various methodologies, extahdeapplication fields of
BCI and investigated the physiological nature @& é&xperimental paradigms [1].
However, the main challenge in BCI is to improve tisability and practicality of
these systems. Thus, researchers put most of ¢fiieirt on developing new
algorithms to improve the speed and accuracy ofptieeliction mechanisms in
BCIl applications. Due to the nature of existing BClthe applications are
considered as pattern recognition problems andetyamf signal processing,
feature extraction and pattern classification tégqpines are being experimented in
these systems [2]. Moreover, despite the technoddgievelopments, current BCI
systems are only usable in the laboratory enviraimeCurrent studies aim to
improve these systems by building intelligent hosiggtems in order for BCI to

be available for daily use according to the neddeepatients [11 — 15].

1.1 Scope of the Thesis

This thesis is restricted to one of the applicatioh BCI which is known as the
Spelling Paradigm (also known as the P300 Speker3t introduced by Farwell

and Donchin in 1988 [3], Spelling Paradigm enalplesalyzed people to express
their thoughts and feelings by spelling the woras @ computer screen (see
chapter 3 for a detailed description of the panawdand previous studies). In this
application, it is aimed to predict the characttirat the subject thinks of by
presenting some visual stimuli to the subject.ritheo to accomplish this task, the
brain activity is acquired by using biopotentialaserement devices (usually via
Electroencephalography - EEG) and further analymeth advanced signal
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processing and classification methods. Like inaaler BCI applications, the
main challenge here is to improve the accuracythedspeed of the prediction

mechanisms so that the subject can express higtitoin a fluent manner.

In this thesis, it is intended to develop a P308edaBCI by realizing the spelling
application which can also be used in out-of-labmsaenvironments. The thesis
includes the design of a portable 10 channel EEta daquisition system, the
development of signal processing methods and aijgit of machine learning

techniques on this paradigm.

1.2 Focus and Contributions of the Thesis

The thesis focuses on some key points that arevaelito be open for progress in

this application. These are stated as follows:

Investigation of the human perception to row anliicm intensifications:
Existing P300 Speller systems employ row and columtensification
principle for increasing the speed of the applaat(see Chapter 3). In the
studies performed for this application, the respsrfer both row and column
stimuli are treated in the same preprocessing Essiication scheme [4-10].
However, no study has been performed on the apiglicaf signal processing
and classification methods separately on theseittemsification types. In
this thesis, it is aimed to investigate the differ@ in human perception to row
and column intensifications in P300 Speller acaaydio the differences in

classification accuracy.

Investigation of optimal frequency bands for th®®3peller:
The EEG signals acquired for this application aseally filtered with a
preprocessing stage. The signal processing metqmulged for this study are

mainly simple filtering techniques. In this thesisidy, the optimal temporal



frequency bands for user specific P300 responskd&investigated by the

application of Wiener filtering in this problem.

Estimation of probability densities in binary cld&sation between trials:

The determination of the focused character in 8geParadigm is performed
by using repetitive trials and ensemble averagngrder to reduce the errors
in prediction. Unlike the common approach of assigrclassification score

between trials [4], the class conditional prob#pillensity of the predicted

characters is estimated by using the Maximum Liked Estimation and the

target character is predicted with Bayesian decigschniques.

Experimenting Active Electrodes in EEG measurements

Existing BCI systems use commercial EEG devicewhich the electrodes
are usually made up of ring shaped silver chloridgCl) leads. These
electrodes are passive conductive elements anduakty of their material
highly affects the performance of the measuringesys Moreover, employing
these in EEG measurements requires a preparateige sh which the
electrodes are covered with a conductive pastes péste usually dries out in
a 2-3 hours of time which makes the passive eldegounsuitable for
continuous EEG recording in BCI applications. listimesis work, a design of
active electrodes for EEG measurements is perfotmeachprove the quality
of the recorded EEG signals, eliminate the preparaitage required in their
passive counterparts and therefore realize a aomig EEG measurement in

BCI applications.

EEG cap design:

Commercial EEG systems also provide electrode waptach the conductive
leads to the scalp of the subject. These EEG aapesaially made of elastic
silk material which can be easily stretched andtditthe subject’'s head.
However, it is hard to attach the designed actleetedes on these caps. In

addition, some modifications are possible that tteoretically improve the
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guality of the measurements in the system. Thegefarthis thesis, a shielded
EEG cap design is performed which allows easy pia&re of the active
electrodes on the scalp while reducing the elaitriooise in the

measurements.

1.3 Outline of the Thesis

The thesis is composed of two introductory partscussing the current BCI
systems and spelling application and three mainptehs including the
methodologies performed for P300 Speller in thislgt

The Brain-Computer Interface systems are introducedhapter 2. The brain
activity measurement techniques, neurophysiologienpmenon underlying the
principle of these systems and some BCI applicateme briefly explained in this

chapter.

In chapter 3, the application of P300 Speller sspnted. The experimental setup
and the review of the methodologies in the liter@tare provided discussing the

complexity of the approaches and success of tinelgenature.

The approach of Wiener filtering is discussed impter 4. The derivations in
Wiener filtering model and the application procesturelated to P300 Speller are

explained.

In chapter 5, the classification methods used ia #tudy are explained. The
basics of the algorithms are discussed providingetations to the P300 Speller.

Chapter 6 is reserved for the description of thecttbencephalographic data
acquisition system designed in this study. In thiapter, the parts of the designed
system are explained briefly.



Chapter 7 provides the results of the proposed odelbgies on one of the
Spelling Paradigm datasets in the literature and tawo P300 Speller

experimentations performed in this study.

Finally in chapter 8, all of the work performed thgy this study is summarized.
General observations are outlined with a discuspam. The advantages of the
methods suggested in the thesis are stated andudowyremarks are given on
the experimental results. The future studies aesented by discussing the

possible modifications and improvements to implen@aecompact BCI system.



CHAPTER 2

BRAIN COMPUTER INTERFACES

In chapter 1, a brief introduction is given on Br&omputer Interface (BCI)
technology. A formal definition of a BCI is given j44] as a system that does not
depend on normal neural or muscular peripheralvwegh of the brain. This
definition discriminates BCI from other Human-Maweéilnteraction (also called
Human-Machine Interface — HMI, Human-Computer If#tee - HCI) systems
which rely on the movement of some healthy limbsthd body as discussed
previously. A BCI system interprets the brain atgias simple commands and
transforms these into prescribed actions withiragplications (for the control of
a wheelchair as an example). Furthermore, the BEinology is not restricted
only to the activity of the brain. The researchigspalso include the neural
prosthesis in which the damaged neurons can baaeglwith artificial ones or
unhealthy limbs are assisted by prosthetic deJi®ls

In this chapter, it is aimed to provide the necassaformation related to the
underlying principles of BCI, approaches in detggtthe brain activity and the
applications of BCI in real life. The chapter isnctuded with a comparison of
existing BCI systems providing the efficiency arghbility of these in real world
applications. The reader can find detailed inforaratibout existing BCI systems
in [1] and [46].



2.1 Framework of a BCI system

The functional model usually employed in many B@dtems is demonstrated in

Figure 2-1.
Signal Acquisition Signal Processing
Amulifier AD .| Data Digital .| Feafure Feature
AP Comversion Extraction Filtering Extractionn| |Classificaion
. Andio / Visual
- Feedback
-

Figure 2-1 : Functional Model of a BCI System. Thesignals are obtained by a signal
acquisition system, processed by signal enhancemenethods and classified in a specific BCI
application.

First stage of this framework is the signal acqusi phase in which the brain
activity is extracted by a biosignal measuremeniade Electroencephalography
(EEG), Magnetoencephalography (MEG), Functional Mdig Resonance
Imaging (fMRI) and Near Infrared Spectroscopy (NJR&e some biosignal
measurement systems which are briefly discusseldeirscope of BCI in section
2.2. At this stage, the brain signals are usuaflija@ced with an amplification

system and digitized to be further processed amapater.

The data extracted within the acquisition blockhis raw data and might contain

redundant information for the BCI application. Rbis purpose, the signals are



digitally filtered in the preprocessing stage. Imst block, the unnecessary
information is eliminated by data selection (e.garmnel selection in EEG) and
several other operations (noise reduction, downsagetc.) are performed to

improve the signal quality.

The feature extraction is the stage in which thestmrelevant information for
classifying the EEG patterns is investigated. Delpgnon the complexity of the
BCI application, the feature extraction is perfodrether manually or with the
application of optimization algorithms (see secttB.3). The aim of this stage is
to improve the classification performance of thel Bgstem and it is usually
performed together with the classification stagder€fore, it can also be
considered as a preprocessing or classificatiorhodetHowever, it is usual to
express this stage in a separate block indicathgy ¢onnection with the

preprocessing and classification phases.

The features extracted from the feature extracbtwctk are classified in the
classification stage in order to decide which atsbould be taken. This block is
the main part of the system in which pattern redagnalgorithms are used to
learn and model the input-output relationship oé tBCl application. The

performance of a BCI system usually depends omtlveracy of the employed

classifiers.

Some BCI applications require feedback mechanismahich some visual or
auditory signals are presented to the subject atitig the decision taken by the
classifier. The subject may need to manipulatehbrsactions in performing the
mental tasks according to the given feedback irrotd present accurate signals
for that application. Therefore, a feedback blockyrbe realized with a graphical

user interface on the computer screen in a BClicgpmin.

There are also other blocks like the external dewc which the control of a

wheelchair or a prosthetic arm can be realizedsé@lae secondary mechanisms



which may be integrated in the feedback stage.presented building blocks in
Figure 2-1 are considered as the main identifiéra 8Cl system and used by
many BCI researchers [14], [46], [47].

2.2 Measuring the Brain Activity

Depending on the purpose, there are several mettmdseasure the brain
activity. These are mainly electrical, magnetic bemodynamic activity
measurements which are discussed briefly in tHevimhg subsections. A review
of these methods in BCI can be found in [63].

2.2.1 Electromagnetic Activity of the Brain

2.2.1.1Electroencephalography

Electroencephalography (EEG) is one of the methodsieasure the electrical
activity of the brain. The name was given after er@an scientist named Hans
Berger who announced the first EEG recording ind12]. It is used widely in
clinical applications and preferred by many BCI coumities as the EEG
instrumentation is relatively cheaper and portaBleithermore, the application
procedure of EEG takes comparably less amountrd tvhich makes it easy to

operate for BCI applications in any environment.
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Figure 2-2 : Instrumentation used in EEG systems. e measurement system consists of a
number of electrodes, a biopotential amplifier andecording/monitoring devices [49], [48].

The electrical activity of the brain is measuredhwsilver or silver chloride
electrodes (Ag/AgCl) which are located on the sa#lphe subject according to
the standard 10-20 system [43], [41] (see Figurh.6An elastic cap (electrode
cap) is used to attach the electrodes on the §eajpre 2-2).

The maximum amplitude of the measured electricalads in EEG is on the order
of several hundred microvolts (see also chapteA8)the signals are have very
low amplitudes, they are highly affected by disamtes (changes in contact
impedance, power line noise, ocular and musculdfaets etc.). To overcome
this problem, several operations are applied eitherchanically (using a
conductive paste), electronically (analog filtejingr mathematically (digital
signal processing). To improve the contact impeddmtween the skin and the
electrodes, the electrodes are usually coveredamitiductive gel. This requires a
preparation time depending on the number of eldes@mployed. Furthermore,
one can also employ the active electrodes instepdssive Ag/AgCl leads which
will eliminate the need for preparation before tiperation.
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2.2.1.2Electrocorticogram and Cortical Microelectrodes

Electrocorticogram (ECoG) is an invasive methodavhiich the electrical signals
of the brain are measured under the skull, fromstiméace of the cortex (Figure
2-3).
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Figure 2-3 : (a) Electrodes used in an ECoG systenth) The electrodes are placed on the
cortex surface with a surgical operation [53].

The electrodes are usually made up of a conduttiweompatible needle or a
grid of needles and are implemented on the cortextace with a surgical
operation. The electrical measurements are perimih the same amplification
procedure as in EEG. However, the skull is a lowdtmtive material and in
ECoG, it is penetrated by the implementation of elextrodes [27]. Therefore,
the signals are less affected by conductivity ef $kull as compared to EEG and
the measured signals are on the order of millivl®. As it provides higher
ranges of amplitude, the signals recorded by ECoGtain less ocular or
muscular artifacts which makes it a suitable aliBwe to EEG in BCI
applications [50], [51], [52].

Cortical microelectrodes are similar to ECoG in ethihe electrical activity of

the brain is measured inside the cortex (Figurg. 2-4
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Figure 2-4 : Microarray electrode for cortical eledrical measurements. The electrodes are
developed with VLSI technology and can be assistedith additive electronic components
[53].

The electrodes used to measure the electricallsigna developed with the VLSI
technology and the signal quality is improved btegmating analog circuits in
their design. As the electrical signals are recdrdside the cortex, it is possible
to detect the activity of a single neuron with hgpatial resolution and excellent

signal-to-noise ratio (SNR) [27].

Despite the advantages of ECoG and cortical mieoheldes, there are also
several handicaps of these systems such as thdyangsergical operation before
use. The possibility of infection and incompatifyilbetween the brain cells and
the electrodes are the major risks in these syst&€hevefore, these methods are
only applicable on unhealthy subjects when necgssaon animal subjects. The

reader can find detailed information on these systm [54].
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2.2.1.3Magnetoencephalography

Magnetoencephalography (MEG) is a method to nomsinedy measure the
magnetic field strength generated by the flow @c#lcal currents through the
pyramidal neurons in the cortex. The signals arasmesd with superconducting
guantum interference devices (SQUID) which are eswmély sensitive to the
changes in the magnetic field [55]. The use of MIBACI is limited in a few
studies [56], [57]. It is reported that this methodn also be used in BCI
applications when considered in communication sp@fd. However, as the
instrumentation in MEG systems are relatively langesize, unportable and more
expensive as compared to EEG, it is usually nofepred for real world
applications of BCI.

Figure 2-5 : The picture of a Magnetoencephalograph. Due to the size of the
instrumentation, MEG systems are impractical in BClapplications for daily use [58].
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2.2.2 Hemodynamic Activity of the Brain

2.2.2.1Functional Magnetic Resonance Imaging

Functional Magnetic Resonance Imaging (fMRI) isetmod used to measure the
amount of oxygen in the blood flowing through thaib. When the neurons are
active, the consumption of oxygen increases inettoedls. Therefore, this gives
an idea about the neural activity in different ce@ of the brain. The spatial
resolution in this technique is comparably higheant that of others. In fact, the
neural activity can be detected not only from theex but also any other regions
of the brain. On the other hand, the fMRI systenaweha poor temporal
resolution; the response of hemodynamic activityeidracted within a few
seconds [27]. In addition, the equipments in trestems are larger in size and
much more expensive. Therefore, it is nearly imgdsdo employ fMRI in BCI
applications for daily use. Nevertheless, reseasciiwestigated fMRI to observe

the hemodynamic activity in BCI applications [580], [61].

2.2.2.2Near Infrared Spectroscopy

Similar to fMRI, Near Infrared Spectroscopy (NIRE) used to measure the
hemodynamic activity of the brain. The principletiis technique is to detect the
amount of blood oxygen in the brain from the reflat of the emitted infrared
light. As the hemodynamic activity is measured,tédraporal resolution is poor in
NIRS systems, which makes the method impractical B&l applications.
However, few BCI studies were performed with NIRBieh basically investigate
the suitability of this brain activity measuring tined in BCI applications [27],
[62].
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2.3 Neurophysiologic Background of BCI

There are various implementations of BCI, relying different physiological
activities related to human brain. Basically, thame three main approaches
employed in existing BCI systems. The first applosdased on the responses of
the subject to some external stimuli which are km@as Event Related Potentials.
In the second approach, the subject regulatesrdia Bbctivity by concentrating
on specific mental tasks. Slow Cortical Potent{&&P) is the final method which
is based on the slow potential shifts in the bobeerved according to the mental
state of the subject. Here, only the first two apgghes will be briefly described

as the method of SCP is not of interest in curB£i studies.

2.3.1 Event Related Potentials

Event Related Potentials are specific patterns roogu after or during the
presentation of an auditory or visual stimulus. Séhénclude the P300 patterns
and Steady State Visual Evoked Potentials (SSVEP).

2.3.1.1P300 Signals

P300 is a peaking signal pattern which occurs dfter presentation of a rare
audio/visual event [3], [16] (Figure 2-6). It is s#yved nearly 300ms after the
stimulus onset which gives the name to the siga#iem. Such a phenomenon
occurs when the subject is asked to focus atterdiom specific stimulus (also
named as the target or odd-ball) which is rarelgoentered among a large
number of other irrelevant stimuli (non-target).riRermore, the evoked P300
response is more distinctive when the occurrendcbeoévent is random. The idea
is first investigated in BCI in [3] with a spellirggpplication which is explained in
chapter 3 in detail.
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Figure 2-6 : A typical P300 signal. A rising patten occurs nearly 300ms after the
presentation of the target stimulus. The data usetb represent the pattern is obtained from
[18].

2.3.1.2Steady State Visual Evoked Potentials

Steady State Visual Evoked Potentials (SSVEP) ap#llating signal patterns
elicited in the brain according to the frequencytlté presented periodic visual
stimulation. These signals are more distinctiveoagipital regions of the brain
which is believed to be related to visual actigti&SVEP is employed in BCI
applications by the presentation of several fliokgdight sources with different
frequencies [64], [65], [66]. In such a paradighe focused light elicits a signal
pattern of the same frequency or harmonics with ¢fidhe source (Figure 2-7).
Therefore, an SSVEP based BCI system can be rdahygehe detection of the
focused light sources from these signal patterssaiexample, a wheelchair can
be controlled by using only four light sources &fprm a movement on the main

directions.
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Figure 2-7 : Amplitude spectra of SSVEPs induced bywo flickering light sources; 6.83Hz
(thick) and 7.03-Hz (thin) [64].

2.3.2 Event Related Oscillatory Activity of the Brain

In general, the brain signals are represented egthllating patterns categorized
in specific frequency bands which are shown in &dbll. The amplitude of the
signals (or the energy) changes over time accordinghe mental activities
performed by the subject. For example, the ampditoidthe 77 -rhythm decreases
when the subject is concentrated on a specific (askgination of movement
[67], [68], calculation, imagination of a rotatiag object [69]) and the oscillating
activity in thea band increases when the subject is in relaxed. dtatthermore,
the energy change in these frequency bands malyentite same in every region
of the brain. For example, the imagination of tightr hand movement reduces

the amplitude of thesn-rhythm over the sensorimotor cortex of the left

hemisphere (Figure 2-8). In BCIl applications, syoaoization and
desynchronization of these rhythms (Event Relategnc&onization/
Desynchronization — ERS/ERD) are used to deterrtiieemental state of the
subject by analyzing the energy changes over thgsosenotor cortex [67], [70].

However, these systems require a long trainingogefor the subject to obtain a
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successful performance. The subject is requireteaon to regulate his brain

activity with feedback mechanisms in these trairsagsions.
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Figure 2-8 : ERD/ERS activity during the right hand movement in ongoing EEG. After the
cue, the activity of alpha band increases over thaght posterior region more than the left
hemisphere [67].
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Table 2-1: Oscillatory EEG wave patterns and theifrequency ranges [74].

Wave Frequency | Characteristics
Range

delta-a 0-4Hz slow wave sleep for adults
seen in babies

theta -g 4-7Hz seen in young children
drowsiness or arousal in older children and adults
idling, meditation

alpha a 8-12Hz relaxed/reflecting
occurs usually when closing the eyes

beta - b 12 — 30 Hz alert state, working
active, busy or anxious thinking, actiye
concentration

gamma -g | 30— 100 Hz alert state, working
seen when a certain cognitive or motor functions is
employed

mu - 7 ~10Hz alpha range activity indicating the imagination | of

movement when it is attenuated.
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2.4 Applications and Potential Users of BCI

Depending on the purpose, a BCI system can findynaaffierent application
fields (bioengineering, military, gaming industrig.¢. As its primary objective, a
BCI can be used to assist a disabled person bydangva control on an external
device so that he/she can realize specific acti@esmovement via wheelchair,
control of a prosthetic arm and house control sgst®r communication with
other people. Potential users of BCI can vary fiosalthy subjects to severely

disabled ones like ALS patients.

Table 2-2: Potential Users of BCI in the world [42]

Type of the Disease Number of Patients
Amyotrophic Lateral Sclerosis (ALS) 400,000/3,0@mm0
Multiple Sclerosis 2,000,000
Muscular Dystrophy 1,000,000
Brainstem Stroke 10,000,000
Cerebral Palsy 16,000,000
Spinal Cord Injury 5,000,000
Postpolio Syndrome 7,000,000
Guillain-Barre Syndrome 70,000
Other types of Stroke 60,000,000

A BCI system can also be used in rehabilitatiothesSe patients by encouraging
and motivating them to life with virtual reality dgaming applications [72], [73].
Although these applications do not provide primageds of the subjects, they
improve the life quality of these patients in psylcigical point of view.
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Figure 2-9 : Control of external devices by BCI. (athe wheelchair application [75], (b)
prosthetic robot arm [76].

(@) (b)

Figure 2-10: Virtual gaming examples: (a) Hand ball (b) Use the Force [73]. Patients can be
rehabilitated psychologically by games and therefa they can be more motivated to life.

Figure 2-11: Home control applications with Virtual Reality [42].
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2.5 Conclusion

As existing BCI systems are compared to each o#leapproaches explained in
section 2.3 have similar performances in prediciocuracy and speed in most of
the subjects. Each approach has a different adyanteegarding the
implementation of the applications or time requirted operate the BCI. For
example, it is difficult and impractical to contralwheelchair with a P300 based
BCIl; an ERD/ERS or SSVEP based BCI can provide stefacontrol on a
wheelchair or prosthetic hand application. Howe\rR300 based BCl's do not
require subject training as in the case of motagery BCI systems. The training
time required in motor imagery BCI’'s can be as lasgs months to successfully

operate the system [42].

The major drawback of P300 and SSVEP based BCltlsaisa visual stimulation
is needed to operate these systems. When considerdtht point of view,
ERD/ERS based BCI systems have the advantage oatapewithout external
stimulation. On the other hand, it is usually hartdedetect the ERD/ERS activity
than P300 responses. Furthermore, P300 based sygtemde higher degrees of
freedom in the applications. That is, with SSVEPnwtor imagery BCI, it is
impractical to implement an application that in@dad36 or more different
possibilities (the spelling application or smartfecontrol). Regarding all these
points, one can decide on the type of the BCI heptto implement a specific
paradigm. Therefore, the main consideration hete determine the feasibility of

the approaches on the BCI application that is toripgemented.
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CHAPTER 3

SPELLING PARADIGM

Although chapter 1 provided an introductory dedarip of the P300 Speller,
here, it is aimed to explain this BCI applicatioithin a separate chapter. The
chapter starts with a detailed explanation of tkpeemental setup and then
continues with a brief review of the previous sasdiperformed on this title.
Finally, a concluding section is provided at thel @f the chapter discussing the

accuracy and complexity of reviewed methodologies.

3.1 Experimental Setup

In the experimental paradigm proposed by Farwell Bonchin [3], a 6 by 6
matrix of alphanumeric characters is presentedht dubject on a computer
screen (see Figure 3-1 for a spelling matrix examprhe rows and columns of
this matrix are sequentially intensified in a ramd@rder with a predefined
duration and interstimulus interval (the duratioetieen two consecutive
intensifications). The subject is asked to focusrdton on a specific character
and is assumed to count the number of intensiinatiwvhenever the row or
column containing the focused character is flasiée: focused characters here
will be named as théarget charactersand consequently, the row and column
intensifications containing the target charactell we referred as thearget
intensificationghroughout the thesis.
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Figure 3-1: P300 Speller Matrix used in the datasstin [18] and [20].

The row and column intensifications in fact congétthe visual stimulations in
this paradigm. Moreover, there are few target ditmns as compared to the
non-target ones. For example, for a 6 by 6 matfrigharacters, there is only one
target row intensification and one column intemsifion since the target character
is in the intersection of these two stimuli. Thaetfive rows and five columns
constitute the non-target intensifications andrésponses of the subject to these
stimulations are supposed to be different than tifathe target ones. The
underlying principle of the spelling application ikat the subject produces
specific responses to the target intensificationghay occur less than the non-
target ones. The target stimulations are expeaiedvbke the so called P300

potential which is described in section 2.3.1.1.
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The very aim of this application is to predict ttaeget character such that the
subject expresses his/her thoughts fluently bylisgethe words on the screen. In
order to accomplish this task, the algorithms ¢argétermine the stimulations that
evoked the P300 responses (i.e. the target respoasd therefore predict the
character that the subject focused. However, usutals difficult to make this
prediction in one trial which corresponds to theation that all the rows and
columns of the matrix are intensified only onceeTkason is that the measured
EEG signals are highly affected by noise and thiskes it impossible to
distinguish the target responses from the non-tanges within a single trial.
Therefore, several trials are performed for the esaanget character in order to

decrease the error in prediction.

Employment of trial repetition comes with the maisadvantage of duration of
prediction. That is, the more trial repetition, thager it takes to predict the target
character which makes it unsuitable for the subjedtuently express his or her
thoughts. As an example, for the dataset of [1®jeexnented in this study, the
trial duration corresponds to 4.5 seconds. Usindeast 5 trial repetitions for

guessing the character takes 22.5 seconds whiels takew minutes to complete
a 5-10 letter worl Therefore, the challenge in this applicationl$®do decrease

the time for prediction of the target characterse(less number of trial repetitions
to predict) and thus improve the usability of tigstem.

! The spelling of a character in the paradigm abtudepends on many factors which are
explained in the results chapter. One can decrdasdiming parameters which can affect the
speed of the prediction mechanism. However, thesidenation stated here is to minimize the
number of trial repetitions which is the main fachdgsessing the speed of the system.
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3.2 Preceding the Analysis

The common procedure before designing a classditatnodel for the P300
Speller is to follow a few steps to extract theevaint information from the
provided training dataset. This involves the sébecbf a set of EEG channels
that are likely to exhibit the presence of a P3$ponse, extraction of EEG time
segments of predefined length after the stimulusebfrom these channels and
the combination of stimulus code and the class|lab®rmation with the
extracted EEG segments. After that, one usuallfiegppow-pass or band-pass
filtering for better signal to noise ratio (SNR)damay employ downsampling

operation to reduce the dimensionalty of the signal

3.3 Review of the Methodologies

As mentioned before, in BCI studies, the reseasctiecused mainly on the
application of different classification and sigeamhancement methods in existing
BCI problems. Here, the methodologies will be yieéviewed for P300 Speller
in terms of classification and signal processingeats. Detailed review for the

classification problem in BCI applications can barid in [9] and [2].

3.3.1 Review of Studies in Machine Learning

Earlier studies in P300 Speller approached theepattlassification problem in
unsupervised aspects like the application of peeking algorithms and decision
principle according to area of the EEG segmenthettime domain [3], [8]. In
their pioneering work, Farwell and Donchin inveatgd four different
classification methodologies for categorizing thegét and non-target responses
[3]. They have compared Stepwise Discriminant Asigly(SWDA), peak
detection, classification according to the areah& responses and covariance
methods for the P300 Speller. However, with theaades in technology and
increase in computation power, the application opesvised classification

27



techniques became more popular in which the alyost are developed on a

training dataset.

Kaper et al investigated the application of Support Vectorchiaes (SVM's)
with Gaussian kernel transformation on the paradagmd obtained successful
results while using only a few number of EEG chdmrjé]. They have been
elected as one of the winners in BCl CompetitiofiL7], [18] due to the success
and the simplicity of the method they have propo$@dM has also been applied
in numerous studies for the classification of PB&ponses [6], [21], [22] and in
other BCI applications [23], [24], [25]. In theirork, Rakotomamonjyet al.
trained several SVM’s on different partitions ofethraining dataset while
recursively selecting the optimal subset of EEGndets as features [6]. They
won the BCI Competition 11l [19], [20] with the higst prediction accuracy on
the test set in P300 Speller.

Linear Discriminant Analysis (LDA) or more specdity Fisher's LDA has been
investigated for P300 speller by Bostanov [7] inichhthe aim is to separate the
data by constructing a hyperplane between theeada3se classification method
has shown a relatively well performance for the PP3peller dataset in BCI

Competition 1l and elected as one of the winninghmds in this contest.

In order to predict the target character in Spgllaradigm, additional decision
methodology is needed after the application ofdiseriminative classifiers. This
procedure can be simply the scoring of the classifiutput [4] or a more

probabilistic approach in which the classificatien performed regarding the
distribution of the discriminative classifier oumne. Guanet al. conducted

research on the statistical modeling of P300 resg®iy analyzing the stimulus
output distribution of the main classifier [26]. @h proposed probabilistic
methods for the multi-trial EEG signals and emptbgssumed distributions for
the discriminative classifier output (mainly Gaasgiin prediction of the target

character. Hoffman [27] studied the Bayesian atgors in his doctoral thesis
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work providing a well understanding of the appligacedure. He applied the
evidence framework for Bayesian regression in Pg@ler [29] and proposed a
combined discriminative method named as Bayesiascribninant Analysis
(BDA) for this problem [28]. Moreover, Lin and Zhgninvestigated the
classification problem in P300 Speller regarding gerceptual characteristics of
the paradigm [21]. They approached the problenhige category classification
task considering also the intensifications adjateriarget stimuli. In their study,
the accuracy of the prediction was reported tonfygroved when the probabilistic
model included the confusion of the subject due these nearby target

intensifications.

3.3.2 Studies on Signal Enhancement and Feature Extractio

The preprocessing algorithms for improving the EE@nal quality play an
important role in accurate prediction of the targearacter in Spelling Paradigm
as well as the classification methods applied tbistext. Especially, the feature
extraction methods reduce the complexity of theblgnm by optimizing the
computational effort needed for the classifierse§¢methods can be as simple as
usual low-pass or band-pass filtering or more cacaf@d procedures which

require a solution of an optimization problem.

The method of Principle Component Analysis (PCA9 haen applied in [5], [30]
to reduce the dimensionality of the data extrackedn the selected EEG
channels. The idea in PCA is to determine the mawineigenvalues which elicit
the principle components of the signal. In otherrdsp PCA removes the
relatively irrelevant parts of the data while ratag the most powerful
components of the signal. This provides the dinmraity reduction of the

feature vector which usually improves the perforogaof the employed classifier.

Another signal processing technique called the peddent Component Analysis

(ICA) has been investigated in numerous studieBGh [8], [9], [31]. Being one
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of the blind source separation algorithms, ICA bagn widely employed for
removing the desired signal from the backgroundeoi-or the case of Spelling
Paradigm, the signals other than P300 response®ase&ered as the background
noise. ICA was successfully verified by > al. [8] in BCl Competition 1l and
was elected as one of the winning algorithms inRB80 Speller problem.

The t-statistics has been investigated for featdteaction purposes in the studies
performed by Bostanov [7] and Hat al [30]. In his work, Bostanov applied t-
Value Scalogram together with Continuous Wavelean§form (t-CWT) to
automatically select the features according toesttid t-test. In [30] the features
are detected according to t-weight method in thenimg phase after the
application of PCA. Both methods have shown sudokegrformance in the

P300 speller dataset of BCI Competition IIl.

3.4 Conclusion

There are numerous other studies related to th&cappn of similar feature
extraction and classification techniques in BCllmapions described here. One
can find a detailed comparison of these in [2] fjdAs the performance of the
system highly depends on the employed classifinaigorithms, it is reasonable
to consider the most successful approach in thielgma In order to complete the
objective of the thesis, it is also important ttiet considered methodology is easy
to implement. Therefore, due to its success in B@hpetition datasets, SVM is
selected as a primary classification tool in thigdg [77]. Furthermore, the
feature extraction techniques described in theewevare not employed in this
study as the performance of the P300 Speller i®rti@n satisfactory when using
only SVM for a fixed number of EEG channels [4]stiead, the effect of Wiener

filtering on the classifier performance is to bedstigated in this thesis.
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CHAPTER 4

WIENER FILTERING

As it constitutes the major subject in this thesiserms of signal enhancement,
the method of Wiener filtering and its applicatiom the P300 Speller are
explained in this chapter. The chapter begins \itlescription of the Wiener
model, and continues with the derivations requiedesign the optimal Wiener
filter. Finally, the Wiener approach on the spejlapplication is given at the end

of the chapter, explaining the application proceduor this problem.

4.1 Introduction

In many practical applications, it is of interestreconstruct a signal from noisy
observations. However, it may be impossible to eahithis task with simple,
classical filtering techniques. In such casess ih@cessary to take the statistics
into account and apply more complex signal proogssiethods. Wiener filtering
is a statistical signal processing technique, inctyhit is aimed to construct a
filter to estimate the desired signal from noisy@tvations [32]. It is a kind of
optimal filtering in the sense that it minimizee tarror in the estimation of the
desired signal [33].

Depending on purpose, Wiener filter can be applited numerous signal
processing problems. For example, in the simpkeriig case, the aim is to

estimate the desired signal by designing a cailgal. fThere is also a noncausal
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filter type which is usually used in image procagsiin smoothing or unblurring
the images distorted by noise. Prediction is amothmportant application of
Wiener filtering where the filter produces the fi@gwalues of the observation

using its past values [32].

4.2 Wiener Filter Model

In the framework of Wiener filtering, the followingdiscrete time model will be

assumed which is valid for many practical applmadi

dn) — G(z) x(n)

vin)
Figure 4-1: The Discrete Time Model of a PracticaRpplication. G(z): The transfer function

of the process in z-domain. d(n), x(n) and v(n) rapsent the desired signal, noisy
observations and the additive noise respectively.

Here, G(2) is the transfer function of a system (in z-domawt)ich can be
realized as a recording device or a communicatystem. SinceG(z )s a known

system function, it can be considered as a unignoidentity transfer function to

simplify the formulations. AssuminG(z) = ,1

x(n) =d(n) +v(n) 4.1

where

x(n) : The observations in the system,
d(n) : The desired signal,

v(n) : The noise present in the observations.
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The starting assumption is that the desired sigrifa) and the observationg(n )
are jointly wide sense stationary processes (WSS)th wknown

autocorrelations, (k ) r, (k) and crosscorrelation, (k .)l'he goal is to design a
linear, shift-invariant filterw(n )that would produce the minimum square error

(mse) estimate of the desired signal from the olasiens, considering the

statistics of each signal [32].
The squared error to be minimized is defined as:

x = E{|e(n)[} (4.2)
where

e(n) =d(n) - d(n). (4.3)
Here, &(n) represents the estimated signal &l is dhe difference between the

desired signal and the estimated signal, i.e. thar.eThe model is illustrated in
Figure 4-2.

d(n)

%(n)

— W(z)

eln)

Figure 4-2: Wiener filter model, W(z): Wiener filter to be constructed. The observations are
filtered with the estimated Wiener filter which minimizes the difference between the desired

signal d(n) and the filter output &(n) :
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Depending on the requirements in the filter des\yigner filter takes different
forms considering the finite-infinite impulse regge (FIR or IIR) and causality
in the filter: causal-FIR, noncausal-FIR, caus&-&nd noncausal-lIR Wiener
filter. Here, the noncausal and IIR form of the Waefilter will be investigated in
the explanation framework of [32]. The formulatioterived for the noncausal
IR Wiener filter are also valid for other types.efailed explanation and
derivations can be found in [32] and [33] for e&gbe of design.

4.3 Noncausal IIR Wiener Filter Design

The noncausal IIR form of the Wiener filter canrepresented in the z-domain

as:

w@ =" wnz (4.4

n=-¥

The estimate of the desired signal in Figure 4-#hés convolution ofx(n) and

w(n),

d(n) = w(n)* x(n) = ' w(x(n- 1) (4.5)

1=-¥

In order to find the filter coefficients optimalip the mean square sense (mse),
the derivative of the squared error defined inY4vRh respect tow (n )or w(n)

should be equal to zero for all samples of therfi|B2]. Thus,

fix 9 .
= E
00" {eme ()} o
_ Te'(n) _ ] '
=E e(n)'nw*(k) 0 ¥ <k<¥
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Combining (4.3) with (4.5)e(n) can be rewritten as

¥

e(n)=d(n)-  w()x(n-1) 4.7)

=¥

Then the partial derivative expression in (4.6)ue to

Te' (n) _
w (k)

-X (n- k) (4.8)

Substituting the derivative expression in (4.6)witie result found in (4.8),
E{e(n)x" (n- k)}=0 S¥ <Kk<¥ (4.9)

Equation (4.9) is referred as the orthogonality@ple or the projection theorem
[32] which implies that all of the samples of tHeservation are orthogonal to the

error in estimation of the desired signal. Thuse(if) in (4.7) is substituted in

(4.9), we obtain

E{d(mx’ (n- k) - ' w()E x(n- 1)x' (n- k) =0 (4.10)

Since it is assumed thak(n @and d(n) are jointly WSS processes, the
expectation expressions in (4.10) are equal toctbes-correlation of(n )with
d(n) and autocorrelation ok(n pdespectively. Therefore, equation (4.10) can be

rewritten as

r (K) = ' w(hr, (k- 1) ¥ <k<¥ (4.11)

1=-¥
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Equation (4.11) is known as the Wiener-Hopf equmatior the noncausal IIR
Wiener filter. It differs from the FIR case by thmits of the summation and the
range fork for which the equation should hold [32]. UnlikeetRIR Wiener filter,

the solution forw(k) can not be found directly from (4.11), since there

infinite number of equations with infinite numbefr unknowns in the IIR case.

However, if the equation is turned into a convantexpression betweew(k )

andr (k), finding a solution fow(k )will be much easier:

Fo (K) = w(k) *r, (k) (4.12)

If the Fourier transform is applied to (4.12), thegiables can be expressed in the

frequency domain as

Pax (IW) = P, (jW)W(jw) (4.13)

Thus, the frequency response of the noncausal lEO®Y filter is

de( JW)

WOW =5 )

(4.14)
where P, (jw ) is the cross-power spectral density of the desarati observation
signals andP, (jw )is the power spectral density (psd) of the obsemasignal.
According to equation (4.14), the optimum Wienéefidepends only o, (jw )
and P, (jw ). Thus, when these are calculated, the designeoWiener filter will

be complete.

Here, it can be assumed that(n and v(n) are statistically independent
processes and alsgn i9 a zero mean random process. Usually, indepeeden

a reasonable assumption in practical applicatioreghe desired signal may not
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necessarily be related to the noise. Therefore fitee independence assumption
it can be inferred that they are also uncorrelatéen, if we would like to express

the autocorrelation ok(n) ,

r (k) = E{x(n)x" (n- k)}
= E{(d(n)+v(n))(d*(n- k)+v'(n- k)}
=E{d(md* (n- K} +Ev(v' (n- k) +Ed(n)v'(n- k)}  (4.15)
+E{v(md" (n- k)}
=1y (k) +1,(K) + 1y, (K) + 1,4 (k)

Since d(n ) and v(n) are uncorrelated, their cross-correlatigp(k or) r 4 (k)

reduces to zero. Therefore,

r, (k) =r, (k) +r, (K) (4.16)
and the power spectral density x(ihn becomes

P (iw) = Ry (jw) + R, (jw) (4.17)

When we consider the cross-correlation betwggn and d(n), it can be found

that
o (K) = E{d(n)x" (n- K)}
=E{d(n)d’ (n- K} +E d(n)v' (n- K)} (4.18)
=0
=1, (k)
Thus,
Pax (IW) = Py (jw) (4.19)
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which is valid under the assumption thgh) is zero mean and(n &ndv(n)

are uncorrelated WSS random processes. This assunipimportant especially
for the optimality of the Wiener filter. When ongétbe signals is found to be non-
stationary, the use of linear, shift invariant W&efilter will not be optimum [32].
Moreover, if the noise signal has non-zero meaer) th few more terms will be
added to the cross-power spectral density, which w©artainly affect the
frequency characteristics of the Wiener filter whgmored. Then, the IIR Wiener
filter takes the final form:

Po(iw) _ P(iw) _ R (lw)

WOW =5 Gw) "R Gw) ~ B Gw) + B, (W)

(4.20)

To construct the Wiener filter in a specific apption, one can choose any
equality expression in (4.20), considering to themputational difficulty in

evaluation of these parameters.

After finding the optimum Wiener filter, we can nawvaluate the mean square

error in the estimation of the desired signal.

x=E{lemf} =€ en) den)- ~wi)x(n- 1)
) = (4.21)

w'(1) B enx’(n- 1}

= E{e(n)d* (n)} -
[ -0

If w(n) is the solution of Wiener-Hopf equations in (4.14atisfying the

minimum mean squared error, then due to the ortmalgy principle defined in

(4.9), the last expectation term in the summatiapsl to zero. Therefore,
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X = E{emd” (m} = E{(d(m) - d(m)a* ()}
“E dn)-  wi)x(n-1) d’(n)

1=-¥

= E{d(n)d’ ()} - ' w()E x(n- 1)d’ ()}

= .
) N0

¥

=1, @-  wi)r; ()

(4.22)

Evaluation of the minimum mean squared error i2Z%.requires a lot of

computation due to infinite samples in the summmatidowever, if Parseval’s

theorem is applied to the summation in (4.22) datcans will become much

easier in the frequency domain.

p

1 R
Xin =14 (0) - 5 W(]W)de(jw)dw

min
-p

From the same reasoning, we can also express as(0)

1”7 .
rs (0) " Ry (jw)dw

-p

Therefore, the minimized mean square error becomes,

o = (B i) - WP ()
p X

min
-p
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4.4 Application of Wiener Filtering in P300 Speller

As discussed in chapter 3, the identification oD®patterns from EEG is the
main goal in Spelling Paradigm. In this subchaptes, Wiener filtering approach
for the signal enhancement problem will be inveggd in this context. Here, we
will treat the problem as in the following: we wdbnstruct a Wiener model for
target signals, i.e. the class of P300 patternd, amother one for non-target
signals. Then, we will combine these two systent @nstruct a single model

that will enhance the target signals while suppngsthe non-target ones.

To begin with, the model in Figure 4-1 is assun@dtie signal acquisition phase

of the P300 speller, wherg(n) represents the recorded EEG data. As defined
before, d(n )and v(n) are the desired and the noise signals, respegtivel

However, the desired signal here will be eithertdrget signal, or the non-target
signal waveform depending on the system of condéon.the sake of simplicity

and clarity, we will consider the target signaltsys first and then continue with
the non-target one. The EEG data used for demaingfthe target and non-target
signals is from the dataset llb of BClI CompetitRH03 [18].

As averaging-between-trials is a common approackclassification in this
problem, it is natural to obtain the main targetpanse or P300 response by
averaging all signals belonging to the target cl8gsaveraging all target signals
in the dataset, we in fact, obtain the least squmation for P300 pattern
measured from related EEG channels. This is a wedwn technique for

reducing the noise present in the measurements.

Therefore, when the ensemble averaging is perforpeddeen the observations,

we obtain the target responses as given in Figide 4
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Figure 4-3: Averaged target responses from 10 EEGhannels. The signals averaged over
parietal and central locations exhibit the presencef P300 activity. The data of [18] is used
for the demonstration of the P300 signals.
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To construct the Wiener model, we will consider B8)0 response as the desired
signal d(n). Despite the fact thatl(n has a stochastic behavior in Wiener
model, the P300 signal discussed here is somewdieteaministic signal. In order
to take the P300 response as the desired signadra statistical model should be
included in the P300 response.

Therefore, we can model the P300 signal as a raiqptooess as follows:

X arget (N) = | A sinwn+7,) i=0L.....k (4.26)

Here, the P300 signal is expressed as a sum ofads) whereA and w

represent the amplitude and a set of frequenciespasing the P300 signal

respectively.f,’s are the phase parameters which, in fact, addndomness

property in the P300 signal; they form a set odan variables letting the signal

be a random process. The latency of the P300 sigaaidly depends otf,’s and

this latency varies according to the perceptiothefsubject which actually is the

random phenomenon in this problem. It can be asduhee thatf,’'s are
independent and have uniform distributions with nsean 's. Expressing the

desired signal as in (4.26) with these assumptats satisfies the requirements

for d(n) being a wide sense stationary (WSS) process (APpeY).

The noise in the EEG measurements is known to helyndue to the power
network in the environment. However, there are aig®r sources of noise like
electromagnetic noise caused by other devicesmibigon of the subject during
the EEG recordings; or even the brain signals fibreio activities like body
regulation, heart beat etc. can also be considased noise affecting the EEG
recordings in this scheme. Therefore, we will cdasithe noise as a random

process, independent of the target and non-taegpbnses.
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One should note that, the Wiener filter model ipliegal to random processes
satisfying at least the second statistics or widase stationarity. For those
processes, there are some operations and validnpens such as ergodicity,
which combines the time course of the signal arskeble distribution of the

random processes [32]. For example, calculaticdh@fiutocorrelation or mean of
a WSS process is possible using a single exampha & set of observations.
Therefore, the Wiener model can be constructedgusily one example of the
observation signal and the desired signal. Howeagwyill be discussed here, we
will follow an alternative way in designing the opal Wiener filter considering

all the samples of the observation signal in thaskt to be used.

As all the WSS requirements for the Wiener filteodel are satisfied, we can
continue with the construction of the filter. Acdorg to (4.20), the optimal

P(W) _R(W __ R(wW
(W) P(w) P, (W) +R(jw)

Wiener filter has the formV(jw) =

Due to its simplicity in evaluation, we will useetlsecond form in (4.20), where
the filter depends only on the power spectral dmssiof the desired and
observation signals. As we have only one desirgdasiwhich is the averaged
target response in Figure 4-3, and it is assuméx ta WSS process from (4.26),
it is easy to obtain the autocorrelation and poggactral density from its time
course. For the observation signa{n), however, we have many examples
regarding the subject response to target row ouncol intensifications in the
paradigm. This leads an ambiguity since one caoukse the power spectral
density of the observation signal using any ofgamples in the dataset. Here, we
employ the following estimation in order to evakiahe autocorrelation and

hence the power spectral density of the observaigmal x(n ):

P.(jw) +P,(jw) +.......... + P,y (jw)
N

P, (jw) = (4.27)
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where N and P,;(jw) represent the number of target observations ameipo

spectral density estimate of the i-th observatespectively.

By performing the approximation in (4.27), we ictfaverage the spectral power
information regarding all the samples in the datase hence obtain an averaged
psd of the observation signal. So, the whole opmran designing the Wiener

filter can be summarized as follows:

Method 1: Estimation of the Wiener filter

Approximate the noise free desired sigr{h) by ensemble averaging
the observations from the same class
Calculate the autocorrelation and obtain the psdhef desired signal

P, (jw) by evaluating the Fourier transform of the autoslation

Estimate the average power spectral density ofotyservations by first
computing the psd of each observation and thenagireg all computed

P.(jw) + P, (jw) +.......... + P,y (jw)
N

psd’s. P, (jw) =

Py (jw)

Obtain the optimal Wiener filter froW ( jw) = -
P, (jw)

Up to now, we have discussed the implementatiowigner filter for the target

response class which can be representedas,(jw . Ong can also apply the
same modality to the system of non-target respowbese the desired signal is
the response to the non-target row or column infieasons. For this case, the
desired signal obtained by averaging all non-taofpservations for the employed

EEG channels is given in Figure 4-4.
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Figure 4-4: Averaged non-target responses from 10HEG channels. The data of [18] is used
to demonstrate the non-target responses.
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Similar to equation (4.26), the averaged non-tasggtal is modeled as:

xnon_target(n) = B sinwn+7,) i=0L.....,p-1 (4.27)

which in this case depends only gmn frequency components. Performing the
same operations described in Method 1, we obtarWlener filter for the non-

target system which can be representedgs ., ,..(JW) -

After all, it is desired to identify the target pesmises. Therefore, we will define
the final form of the filter as:

vainal ( JW) = Vvtarget( JW) (1 - Wnon— target( JW)) (428)

Constructing the final filter as in (4.28) will esfice the target signals while
suppressing the non-target ones.

When the behavior of the noise signal is considatas observed to be Gaussian
distributed in this model. As an example, the lgston plots of the noise signal
for the target column and non-target row groupsgatiom samples of time index
n) are given in Figure 4-5 and Figure 4-6 respebtivierom these figures, it is
clear thatv(n )s are zero-mean random proce$sdis is a trivial result since
the desired signals are obtained by ensemble awgraipe observations.
Therefore, subtracting the desired signal fromadbhgervations to obtain the noise

will definitely give us a zero mean signal.

2 As there are two examples (target column and moget row groups) given to illustrate the
distribution of the noise signal, and therefore tegparate Wiener filter models, it is more
accurate to refer the noise signal separatelydoh group.
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Figure 4-5 : Marginal distribution of the noise sighal V(Nn) at random time indices for the
target column group. Each sample ofv(n) is Gaussian like distributed with means equal to

Zero.
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Figure 4-6 : Marginal distribution of the noise sigial V(Nn) at random time indices for the

non-target row group. Each sample ofv(n) is Gaussian like distributed with means equal to
zero.
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Another observation regarding the noise signahat the correlation coefficients

of the noise signal are very small for two far seeapf the signal (e.gv(k) and
v(k +100) ) which indicates that the noise signal in thisadat according to the

described model is uncorrelated. The correlatiopffament increases as the

samples get close to each other (for examyfle anyl v(k + 1) are highly

correlated). However, it is impractical to showstbbservation with an illustrative
tool. From these observations, it can be assumat ttte noise signal is an
independent random process as it is Gaussianhbdis#gd and also uncorrelated.
Furthermore, it is observed to be zero mean. Thezeft is natural to assume
v(n) as a white noise, which satisfies the requiremeéotde a wide sense
stationary process. This suggests that the Wielteririg model is well suited for

this application.

To visualize the effect of Wiener filtering on theew EEG data, two samples are
randomly selected from the dataset (one from thgetaand one from the non-
target group). These are filtered with the estimiddéener filters and the outputs
of these are shown in Figure 4-7 and Figure 4-& gdignals used in these figures
are obtained from the Spelling Paradigm datasBQifCompetition Il [18].
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Figure 4-7: The effect of Wiener filtering on a ramomly selected target response. (a) Raw
target signal, (b) Processed target signal with thestimated Wiener Filter.
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One can note that the amplitude of the Wiener m®se target response in Figure
4-7 is comparably higher than that of Figure 4k& amplitude of the non-target
signal has been considerably suppressed by tlee (dbnsider the scale of the
unfiltered signals). Moreover, the peaking timeeath signal is preserved after

the filtering operation which is also important agetection of P300 responses

regarding the latency of these signals.
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CHAPTER 5

CLASSIFICATION IN SPELLING PARADIGM

5.1 Introduction

The purpose of the BCI applications is to map tearaphysiologic signals to
basic actions, like going on a specific directiom the cursor movement
application. This mapping is performed with machiearning algorithms in
which one or more classification methods are engdolp form a classification
model. The approaches in the classification metloaaseither be parametric or
non-parametric depending on the information sugpb the problem. However,
the common approach in BCI problems is to train lg@ning algorithm first
within a training phase in which the subject is eakkfor example in Spelling
Paradigm, to focus on a character that is knownthgy algorithm. This is a
supervised learning methodology that constitutesnaor topic in pattern

recognition.

In this chapter, the Spelling Paradigm will be e¢dased in the classification
point of view. First, a short explanation will béven on supervised learning
describing the basic concepts about supervisedsifitagion. Then, the
classification methods used in this study will esatibed in detail. Correlations
and reference to the problem will also be givenirduthe explanation of the

concepts.
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5.1.1 Classification Problem in Spelling Paradigm

As discussed in Chapter 3, the prediction of tligetacharacter in P300 Speller
requires the determination of the target row antlroa intensifications. To
visualize the problem in the classification aspéutre are 12 classes for a 6x6
speller matrix (6 row and 6 column intensificatidasses). However, one can use
the intuitive idea that there are two independawtugs, namely the row and
column groups as the target character should likeaintersection of only one

row and one column. Hence, there are 6 classesdh separate classification

group.

Here, the problem may seem to be a 6 class cleasiin task at first for each
group. However, since the aim is to classify thenskations as target or non-
target, the task is realized as a binary classifingoroblem. The presence of one
target element out of six elements in a trial istja constraint or a priori

information supplied by the problem.

As discussed in chapter 2, the population of the-taoget class should be higher
than that of the target one in order to presenek behaved P300 pattern. If this
case is considered in Bayesian classification pafiview (see section 5.4.1), the
probability of each stimulus to be the target cbtais 1/6. When one applies
the Bayes decision rule for this problem, all neswyning test samples will be
assigned to the non-target class which providdéassification accuracy of 5/6 for
each of the row and column groups. However, in grisblem, the employed
classification methods should determine at least stimulus as from the target
class for each trial. Therefore, the classificatiohnthese classes is usually
performed using supervised learning techniques lwhidl be discussed in the

next section.
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5.2 Supervised Learning

Most of the classification algorithms deal with eogp of data that has some
information about the dataset. In other words,dlass label information is given
within the dataset for training the classifier. §ype of classification belongs to
supervised learning, in which a supervisor insguttie classifier during the
construction of the classification model. Linears@iminant Functions (LDF),
Support Vector Machines (SVM’s) and Neural Netwo(kBN) are some well-
known examples of supervised learning and commounbed in many

classification problems.

In the supervised learning approach, there ares pEirexamples in the given

training dataset which can be mathematically exm@és as

D ={(x, ¥, (X, ¥y )ooreieen (X, Y )} Here, X, Xp,oceee... X, are the
observations and/;, Y, ,........... .Yy are the class labels of the observations. The
observations can be any vector, whose elemente#eted from a set of features
(section 5.2.3). But for practical consideratiomge usually have real valued
observations and it is easy to assuxieX = R" . Also, one can choose any type
of representation for the class labels. For sintglithey are usually represented
as real numbers, that igl Y = R. Therefore, in supervised learning, the aim is to
find the transformation between tfeaturespace X and theclass labelspaceyY

ie. f:X®Y. If the class space has a finite number of elésene.

vyl {12, ,L} then the problem is considered adassification taskOn the
other hand, if there are infinite classes, then ¢hse becomes egegression
problem For the case of Spelling Paradigm, it is a binadagsification problem

in which the classes are the target and nontartgdses. For clarity and
conformity with the literature, these classes amesented a¥ ={- L+ I1Where

the negativity represents the nontarget case.
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For such a problem, additional parameters undeglyire classification rule can
also be given such as the probabilistic distribytior the form of the density
function of the classes. When this is the case, tthasformation of the

observations to the class labels takes the formy aff (x,q9) . Whether these are

provided or not, one can estimate the parametenalarown densities of the class
conditional probabilities by employing parametric monparametric estimation
techniques. However, these will not be explainethia context. The reader can

find detailed information about the estimation upsrvised learning in [34].

5.2.1 Linear Discriminant Functions

A type of supervised learning called Linear Disénant Functions (LDF) will be
considered as a motivation to Support Vector Mael{BVM) which is used as
the main classification method in Spelling Parad[@@. The importance of LDF
is that they form the base of many discriminatiVassification methods and
constitute a major subject in classification litara. It is a non-parametric
supervised learning in which the form of the disgnating function is known or
assumed instead of the probabilistic distributidrine classes. The form of the
discriminating function may not essentially be &énein the feature vector;
however, linearity brings additional propertiesttpaovide some advantages in
analytical point of view [34]. Also, being easierimplement, LDF provide a well

understandability of the discriminant classificatwith a simple model.

It is easy to demonstrate LDF in a two class caber& the classes are also
linearly separable as shown in Figure 5-1. The minL.DF is to construct a
hyperplane, or mathematically, to find the paramsetkefining the hyperplane that

separates two classes by using the samples inaiheny dataset.

So, a linear discriminant function can be expressddrms of the feature vector

X as
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f(X) =wx+w, (5.1)

class - ®

class - /A

Y

Figure 5-1: Visualization of a linear discriminantfunction for a 2-class separable problem.

where w and w, represent the weight and bias vectors respectivétye, the

classification of a new sample can be simply docep@ling to the sign of the

discriminant function f . That is if f(x) <0 then the sample belongs to the
triangle class and iff (x) > Qhen the sample is from the circle class. The
boundary f(x) = O representing the separating hyperplahg can be left

undefined in terms of classification since the siengn the hyperplane can be

from each class with the same probability.

Beside the sign of the discriminant functidn, one can also consider the value

f(x) on the samplex. The value of the discriminant function providas
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measure of distance between the sample and theaiagahyperplane. This can

be seen if one uses the following expressionxfor

x=wx+d- (5.2)
x, W

where x, and d represent the projection of the sampleon the hyperplandy

and distance of the sample to the hyperplane réspbc This distance is

illustrated in Figure 5-2.

Figure 5-2: Relation between the function value ofhe samplex and its distance to the
discriminating hyperplane.
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Without going into detail, the distanak gives an idea of the probability value of
the sample being in that halfspace. Although thisiot always true, the larger

value ofd can be assumed to be the higher probability ot wigicision.

5.2.2 Error and Risk in Classification

Due to the stochastic nature of the problems, thar er the misclassification of
samples is inevitable in pattern recognition. Irctfathe principle of the

classification methods is to minimize the errorclassification or the risk in the
decision. In this section, it is aimed to describese concepts which are
mentioned throughout following sections of this gies. The explanations will be
restricted to the binary classification problem ethiis the case in Spelling
Paradigm. The reader can find detailed explandommulticlass case in [34],

and [35].

To begin with the error in classification, considee Bayesian case where the

decision is made according to the class conditiganababilities (discussed in

section 5.4.1). That is, classify asC, if P(C,|x) > P(C,|x) or vice versa. In this

case, one can not think of the error itself onlyt, the average probability of error

which can be expressed as:
P(e) =P(xI R,,C)+P(xI R,C,) (5.3)

where R, and R, represent the halfspaces separated by the deasidace.

Applying the Bayes Theorem on (5.3) yields:

P(e) =P(x1 R,|C,)P(C,))+P(xI RJC,)P(C,)

= p(XC)P(Cdx+ p(XC,)P(C,)dx
R R

(5.4)
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which is also known as expected error or error eaté it is minimized by the

Bayes decision rule stated above [34], [35].

Beside the average probability of error, one ca@o abnsider the risk in taking
the decision in the problem. For example, in th@@P3peller case the risk of
deciding the sample as target can be higher trengk of deciding the sample as

nontarget. Therefore, the risk or expected lossté&mng an actiona, can be

defined in a two class problem as follows:

R@[¥=/(@[C;) P(HC)dx (5.5)

i
i

In this scope, a loss functioh(.) is introduced in the problem which is usually

defined for two class case as:

0,
(a.c)= "

In this loss function, the cost of wrong decisioreiach class is equal. However,
one can also define the loss function accordinth¢onature of the classification
problem. When defined as in this case, one can shawoverall expected loss or

risk becomes identical to the average probabilitgroor defined in (5.4).

R= i R(a;|x)P(C;)
=1 (5.7)

= p(XCy)P(C,)dx+ p(XC,)P(C,)dx
R R

However, the conditional probability densities am@t always known in
supervised learning methods like discriminant fiomd or SVM. The only

information provided in supervised learning is a@rting dataset which includes
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the class labels. Therefore, the evaluation andnmmation of the risk is not
possible by using the expressions above. Instaas,can employ empirical risk
minimization to construct the discrimination furmcti by using the training
samples in the given dataset. The empirical risgkupervised learning is defined

as follows:

Red 1= 10y, 1(x) 58)

=1

And the optimum discriminant function is the oneieghminimizes the empirical

risk.
f(x) =arg min Rempl ] (5.9)

where H , is the function space of interest.

One should note that the empirical risk makes semdg if it is equal to the

expected risk if the number of elements in thentrey set goes to infinity. That is,

lim R,.,.[ f]=R (5.10)

N® ¥

When this is not true, one can encounter some @nabwhich will be mentioned

in the next section.

5.2.3 Feature Space

The data given for training and testing the classiére usually gathered from a
recording device and contain raw data informatidonever, one can use some of

the elements for classification instead of all frtime supplied information. The
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information extracted from the input space is chilee feature space and usually

represented with a transformation vector (Figu).5-

- ¥
G S—=>X F X—>Y
Feature
Extraction Classification
Input Feature Output
Apae Space Space

Figure 5-3 : Transformation between input, featureand output spaces. The feature space is
constructed by performing preprocessing methodsG(X)) on the input space. Classification
methods are applied on the feature space.

Although the data is processed with some signalgssing techniques, it may not
always be easy for the classification algorithndigtinguish the classes using the
coarse information. The reason for this is usualgted to the dimensionality of
the feature space which is a well known problerthenclassification literature. If
the number of samples in the dataset is small agpaced to the dimension of the
feature space, the classifier suffers from the lgrabof overfitting which is a
result of a large difference between the empiriisk and the expected risk
defined in the previous section [27]. One can thohkncreasing the number of
samples in the dataset as a solution to this pmobléowever, this can lead to a
worse situation which is known as the curse of dismanality. This problem
arises from the statistical dependence of the featurhe probability of error in

the classification reduces as the independenceeketihe features increases [34].
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But when the features are statistically dependbetclassification performance is

limited and can not be improved by adding new fiesstu

A solution to this problem is to use other prom=tof the data by applying
feature selection. For example, in a BCI problene band power of the EEG
signal or coefficients of the autoregressive patamemight contain more useful
information for the classifier than the signal itse a mu-rhythm based BCI. As
stated in chapter 3, there are also feature eidraatgorithms that automatically
select the elements for the feature space whichrovep the classification

performance. However, in this study, due to the matational simplicity and

conformity with the literature, the features ardested manually without any
feature extraction method. As in [4], we have ubedEEG time segments of 600
or 800 ms duration after the stimulus onset from efectrode locations Fz, Cz,
Pz, Oz, C3, C4, P3, P4, PO7 and POS8 (Figure 7)3afa) set the Wiener filtered
signals as our feature vector. The dimension oféhture vector varies according
to the sampling rate of the EEG recording deviaa. ifustration purposes, the
Wiener filtered EEG signals are concetanated bynmélato form the feature

vector as seen in Figure 5-4.
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Figure 5-4 : Formation of the vector for the featue space as a concatenation of time
segments from 10 EEG channels

5.3 Support Vector Machines

Support Vector Machine (SVM) is a supervised magehiearning algorithm
whose foundations have been developed by Vapnik [3&], [39]. Showing
much similarity with the LDF, SVM provides betteergeralization than most of
the discriminant methods due to the structural mskimization it employs. SVM
has also been successfully applied in numerousap@lications [4], [6], [2] and
excellent classification performances are reporitedthese studies. As it is
preferred as the main classifier in this study, lthsic concepts of SVM will be
explained briefly in this section. A more detailexplanation and discussion on
SVM can be found in [36], [38] and [39].

5.3.1 Support Vector Classification

To begin with the formulation of the classificatigmoblem, consider the two

class case described in section 5.2.1, where thef sgamples are to be separated
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by a discriminating function. For such a problemeaan find infinitely many

separating hyperplanes hence functions, as caedreis Figure 5-5.

class - ®

class - A\ h “h

Figure 5-5 : Several solutions of the discriminatig function for a linearly separable 2
category classification problem. The solution foundy SVM (represented with h) is the one
that maximizes the margin between the samples (supp vectors) and the hyperplane.

However, among these hyperplanes, there is onlytloaeseparates the classes
with the maximum margin. That is, SVM tries to fitlte separating hyperplane
which maximizes the distance between the hyperphadethe nearest samples in
each class. This idea intuitively provides optirtyain the sense that it increases
generalization capabilities [2], [38]. The optimuseparating hyperplane is

illustrated in Figure 5-6.
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class-®

class - A

Y

Figure 5-6: Optimum Separating Hyperplane (OSH) ofSVM for a two class case. The closest
samples to OSH from each class are called the suppwectors.

The nearest elements to the hyperplane lyingHgnand H, in Figure 5-6 are

called the support vectors which give the nameh® method. The solution
procedure of the optimum separating hyperplane (O@keals these elements
and once these are found the classification inébephase is done by using the

support vectors.

The OSH for the linearly separable case can beenahcally represented with a

line as:

wx+b=0 (5.11)

where the bias vector for the OSH is represented ifor conformity with the

literature [38].
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The solution for OSH requires the solution of atirazation problem where the
goal is to maximize the margig. Here, if one sets the class Iabelsy%{- 1,]}
then y, (w'x +b)3 1 becomes a constraint of this optimization probl&rhis

constraint comes from the restriction that
minj(w'x, +b) =1 (5.12)
1

which simplifies the formulations in the problemitiWthese constraints one can

show that the margig is related to the weight vector with:

(5.13)

_2
7]

Therefore, maximizing the margig is equivalent to minimizing the norm of the

weight vector. So the quadratic support vectormjzation problem is formulated

as follows:

L 1, 2
minimize E”Wﬂ (5.14)
st. y,(W'x +b)3 1 i=12,........ N

where N is the number of elements in the training set.

SVM can find the optimum solution for the separgtimyperplane from (5.14)
only if the classes are linearly separable. Howetves is not usually the case. In
real problems the data is inseparable even witlighteire extraction methods and
higher dimension mappings which will be discussedhie later sections of this
chapter. To overcome this problem, (5.14) is medifby introducing a penalty

function and positive slack variables into the oytiation problem [39], [38]:
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minimize %”wﬂz ic X,

st. y,(W'x +b)3 1- x i=12,........ N (5.15)
x>0 "

where x;’s are the slack variables ar@ is the regularization parameter. This

modification provides a more flexible situation wihiis named as the “soft-

margin” SVM optimization problem [4]. Thex, parameters moderate the

constraints by allowing violations and provide tphenalty together with the

regularization parameter in the cost function.

The solution for the optimum separating hyperpleansimplified when the cost

function in (5.15) is expressed in the Lagrangiaal dorm:

- 1
maximize L, ° ai-a aayyxx

st. Ofa £C (5.16)
ay, =0

This formulation provides an advantage that onesdoat deal with the slack
variables inside the cost function. One should alst@ that the solution is found

in terms of the Lagrange multipliees for all the training points, and the non-
zero solutions fom,’'s represent the coefficients of the support vextdherefore,

the solution for the weight vectav of the OSH is found from:

N

w= a Yy X (5.17)

where x.’'s and N, represent the support vectors and the numbereo§tipport

vectors respectively.
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The solution for the threshold or the bias tdontan be found from the Karush-

Kuhn-Tucker (KKT) conditions for the primal Lagraag form which states
a |y (xw+b)- 1 =0, " (5.18)

Expression (5.18) is, in fact, a simplified casetltd real KKT conditions. The
slack variablesx,’s are removed here by using the fact tllat a, <C. This
constraint implies that, = Q@vhen the Lagrange multipliers are in this range.

Therefore, from (5.18) one can use all the traiggoots to compute the bias term

b for which 0<a, <C is satisfied. As there are at mdst equations in (5.18)

one may findN different solutions fob and the common approach is to average

all these solutions to compute the bias vector.[38]

5.3.2 Prediction in SVM

When the parameters defining the OSH are foundclass labels of the new
coming vectors are determined by evaluating tha sigthe function defined in
(5.19).

f(x)=w'x+b (5.19)

The function is expressed in terms of the suppectars if the equation (5.19) is
combined with (5.17) as:

Ng
f(x)= yax'x+b (5.20)
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The sign of the function value indicates the sitléhe OSH on which the vector

lies and the absolute value of the function givesitea of distance of the vector
to the hyperplane. In other words, the higher theolute value of the function,

the higher the probability of the vector beinghatthalfspace.

5.3.3 Kernel Functions

Up to here, SVM is discussed in the linear fundioof the data, i.e. the
discriminating function used in classification isliaear transformation of the
feature vector to the output space. The Kernelaipemused in the above SVM
discussions is the usual dot product of the twaorec However, one can also
employ other transformations to generalize the StdéMhe nonlinear case. The
idea is to map the vectors into a higher dimengispace which provides some
advantages in cases where the data is linearlypanable [38]. So, one can
express the Kernel operation as an inner produttarfieature space as:

K(x.%)=(F(x).F(x)) (5.21)

where the operation(.,.> represents the inner product and the functiog)

provides the nonlinearity in the transformationtioé feature vector. Therefore,
the inner product in SVM discriminant function cde replaced by the

generalized Kernel operator defined in (5.21).

NS
f= yaK(xx)+b (5.22)
Some examples of the nonlinear Kernel functionsluseSVM are defined in the

following:
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Polynomial Kernel:

K(%,X;) :<xi ,xj>d (5.23)
or

d
K(x,%;) = (<xI X > +1) (5.24)
Gaussian Radial Basis Function:

2
sl

K(x,x)=e 2’ (5.25)

Exponential Radial Basis Function:

-]

K(x,x;)=e 2% (5.26)

Dirichlet Kernel:

sin N+; (x, - xj)
K(x,x;)= (5.27)

v X - X

2sin

Sigmoid Function:

K(x,x,) = tanhlkx x; - d) (5.28)

1777

Among these kernel operators, the Gaussian RadialsBFunction (Gaussian
RBF) is reported to provide excellent results ine tlelassification and

generalization performance of SVM as compared terofunctions [40], [38].
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The variance expressios” in Gaussian RBF provides an additional control
parameter that leads to a more suitable decisiondary for many classification
problems. Also in BCI studies, the Gaussian RBpré&ferred in SVM due to its

success in classification [4], [2].

5.3.4 Normalization

Normalization is a data processing technique usestatistics, signal processing
and machine learning applications. It is used andardize the magnitude or
decrease the variance of the elements in the setesést. For classification point
of view, the samples in a training set usually bitha large variance. It is
sometimes necessary for removing the extremityhefdamples and increasing
the correlations between the samples from the selass when training the
classifier.

There are several techniques for data normalizatidre simplest one is to
normalize the length or the magnitude of the vedtat is the normalized sample

is equal to the unit vector pointing in the direatiof the input sample.

X

4

« = (5.29)

The norm operation in (5.29) is the, norm which corresponds to the linear
scaling of the input vector with its magnitude. fiehare also other normalization
options like scaling the input vector with the difnce between the maximum

and minimum of the input vector:

X - min(x)

- : (5.30)
max(X) - min(x)
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In (5.30), the input vector is linearly scaled hleinterval[o,l]. This range can be

modified according to the requirements of the dfeesqif exists any) as:

_ max(x) - min(x) (

max) - min(g ¢~ nE9)+ minG (5.31)

Up to here, the normalization is explained by usinty the properties of a single
sample in the dataset. However, one can also emgriggmble normalization
which is performed over the whole dataset. In thapproach, the statistical
properties of the dataset such as the means orvattences of the features are
used to scale the samples. A well known type okeride normalization is the

Gaussian normalization in which all the featuresrasrmalized with according to

a normal distributiolN (/5 ).

x =X (5.32)

where 7 and 5§ represent the mean and variance vectors of therésa

respectively.

5.3.5 Cross-Validation

Cross-validation is a testing method in supervisagning used for assessing the
generalization performance of a classification nhode idea is to divide the
training set into small partitions and use only @agtition to train the classifier.
The remaining subsets (validation set) are lefesb the classifier where the result
of classification could be justified. The crossidation is performed by rotating
the subsets used for training and the result ofptteeliction accuracy over the
validation set is averaged for all combinations.pkgation of this technique
allows the modification of the parameters thatw@sed to construct the classifier

and thus provides a generalization procedure fclassifier.

72



Two types of the cross-validation are commonly usetheasuring the accuracy
of the classification model which are the randoiin-sampling andk - fold cross-
validation methods. In random sub-sampling crodgkation, the training set is
randomly partitioned into training and validaticgtsand the classification model
is tested on the validation set for each partitignoperation. The averaging is
performed over the partitions to determine the ageraccuracy of the model. On
the other hand, thec- fold cross-validation divides the training setoink
subsets. The classifier is trained #n 1 of these subsets and then tested on the
remaining subset. This operation is then repeaied ftimes until all the subsets
are used as a validation set for the classifiee Klclassification accuracy results
obtained from the validation sets are then averaggedasses the overall
performance of the classifier. In this study, theold cross-validation method is
preferred for the comparison of the classifier perfance with the results given
in [4]. It is used to determine the optimal contmdrameters which are the
regularization parameter in the penalty functionSafM defined in (5.15) and

variance parameter of the Gaussian RBF kernel.#5{5

5.4 Unsupervised Learning

The supervised learning techniques like SVM empoly the data to construct
the classification model and the additional infotima supplied by the problem is
not used in these methods. As described in sebtibAd, for the case of Spelling
Paradigm, the information given by the problemhit there exists only one target
class in each of the row and column groups for raylsi trial. Discriminant
classification, on the other hand, can decide #seife are multiple target classes
in each group which is not true for the Spellingaélegm case. For example, the
classifier can predict two or more rows from thenearial as the target class or
all columns as the nontarget class. To overcome phoblem, unsupervised
learning techniques are involved by using the podissic information supplied

by the problem. Therefore, in this section, the é&gn classification together
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with the Maximum Likelihood Estimation (MLE) will o explained as the

unsupervised learning technique in Spelling Paradig

5.4.1 Bayesian Classification

The Bayesian classification is the simplest machearning technique that
employs the a posteriori probabilities of the olsagons in the decision. It is used
in both supervised and unsupervised learning depgndn the information

provided by the problem. In this section, Bayesthtision is explained for
unsupervised learning in which only the state coowal probability density of

the observations and the a priori probabilitiethef classes are known.

To begin with the Bayes decision theory, classificafor an observatiorx is

done according to the Bayes Rule which is defireed a

_plde, Jplc))
Plc,|x) —pT (5.33)

Here, P(Cj|x) represents the a posteriori probability ffor the classC; . In

other words, it is the probability of an observatimelonging to that class. It can
be interpreted for the Spelling Paradigm case adrtie probability of a row or

column being from the target or non-target classeoih is observed. Moreover,

p(x‘Cj) is the class-conditional probability density »ffor the j -th class which

represents the distribution of when the j-th class is observed. This can be

interpreted as the probability of a row or colummte@ it is decided (by the SVM
classifier) as from the target or nontarget class.

If the case is restricted to the two class case, @an express the probability

density ofx in (5.33) as:
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9= e pee) (5.34

The Bayesian decision is performed according to ititaitive idea that if
P(Cj|x)> P(Ci|x) then the observatiorx belongs to thej-th class and this
minimizes the risk in classification as discussedection 5.2.2. Once the class-
conditional densities are known, the Bayesian dlaason can be applied for
prediction of the observations using the rule definn (5.33). If the probability
densities are unknown or depend on some paramdéters parameter estimation
techniques can be applied to determine the digtobwf the class-conditional
probabilities. A common parameter estimation teghej known as the Maximum
Likelihood Estimation (MLE) will be the topic of ¢hnext section.

5.4.2 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is used in cas&here the conditional
probability density function is unknown, but therfoof the function is known.
The conditional probability in this case depends eome parameters

q=(ql,q2,....,qN) such as mean or variance of the distribution, #mese

parameters can be estimated using the MLE methodiHe case of Spelling
Paradigm, the unknown parametgrwill represent the trial dependency of the

target class prediction. Here, the MLE is discuseaedthe estimation of the

conditional probability densit)p(xicj) required in the Bayesian classifier.

To begin with, the dependence of the class-conditigprobability density

p(x‘Cj) to the unknown parametey can be expressed in a joint density as
p(><1Cj ,q). For our case,p(x‘Cj ,q) represents the class-conditional probability

density for each trial repetition. Since the forfn p{x‘Ci ,q) is known (it can be
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observed from each trial), the best estimate of ¢lass-conditional density

p(x‘Cj) is obtained by averagiisigo(x‘Cj ,q) over g [34]:

pléc, )= plxc, q)ag (5.35)

The expression (5.35) in fact, provides the MLEBh# class-conditional density
provided by the SVM outputs for the spelled chaacKaperet al. considered
this case as the scoring of the row and colummsifieations regarding the SVM
outputs [4] but did not formulate the problem iprababilistic methodology.

At this point, one can think of a better estimatmih p(x‘Cj) for a real world

problem in P300 Speller. For example, considerctse that the subject wants to
stop the spelling application and rest for a momkenother words, he/she refuses
to spell a character. In this case, a stoppingriaitshould be introduced into the

problem. Therefore, one can modify the decisior milprediction as follows:

®The expressiorp( X) in [34] has been omitted here as it is obvioad ihis equal to 1 for the

P300 Speller (There is always a trial for any owsgéon). However, for an online system in which
the subject may not always desire to perform smpgllithe form of the conditional density

p(qIX) should be considered.
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Method 2: Decision Rule in Prediction of a Characte

X=[00000O0j; % Decision vector for a row or column group, as€idor all intensifications

X_svm = [0 0 0 0 0 0]% The number of occurences of each stimuli predibte SVM as from the
target class

t s= 0; % Total number of stimuli predicted by SVM as fréime target class
fort=1ton % For a predefined number of trial repetitions ¢oelnployed
fors=1to 6 % For all stimuli of interest in a group
if f(s) >0 %if the stimulus is predicted as from the targasslby SVM

X(s) = X(s) + f(S) % add the probability of prediction

X_svm(s) = X_svm(s) + B} increment the number of occurence

ts=t s+1;

end if
end for

end for
X = (X) .* (X_svm) / t_S; %Multiply two probability distributions to obtaié realistic probability
density
Decided stimulus = argmax(X);

The proposed decision mechanism is meaningful onlyen the single
observation prediction accuracy of the discrimwvatclassifier (SVM for our
case) is satisfactory. For example, consider tlse eghen the SVM could not
predict any stimulus as from the target clasa tnal repetitions. This will force
the system in not taking an action to predict tharacter. Using this decision
method will prevent false prediction of the chaeacvhen the subject does not
focus on any character. If the character predictide of [4] was employed, the
stimulus with the maximum SVM score amomgrials would be selected as the
target stimulus even if it was not predicted asasgdt class by the SVM.
Therefore, the decision rule in [4] is reasonabiéy avhen it is known that the
subject is focused on a character. However, asifpossible to know the state of
the subject, it is practical to employ the predictimechanism described in
Method 2 for real world applications of P300 baB&tl systems.
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CHAPTER 6

THE DESIGN OF ELECTROENCEPHALOGRAPHIC
DATAACQUISITION SYSTEM FOR BCI
APPLICATIONS

6.1 Introduction

Beside the signal processing techniqgues and dlzsssin methods, the
mechanisms in measurement of the brain activity @acsion in experimental
paradigms are of quite importance. The quality lné signal detecting and
recording devices considerably affect the perforreanf the BCI algorithms. As
mentioned in Chapter 2, BCI systems usually usetrelencephalogram to
measure the brain activity due to its portabilibdgpracticality. In this chapter,
we will present a prototype design of an EEG sydieime used BCI applications.
The design of the system mainly covers the desiggmndEEG amplifier, the data
acquisition hardware, electrode and EEG cap desigdsthe software controller
design for BCI experiments. Here, in this chaptdwe designed system is
explained briefly. Detailed information (system ghams, performance tests etc.)

can be found in the technical documentation oB&& system [82].
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6.1.1 EEG Design Requirements

EEG systems are used in medical applications. Bhewld first satisfy some
safety requirements in order not to harm the subjEberefore, electrical

safety should be of primary consideration; isolatidrom the power network
should be implemented properly.

As stated in Chapter 2, the amplitude of EEG sgsabn the order of several

microvolts (<100nV ). Therefore, the system should be capablendisg the

signals in this range. The gain of the amplifiesteyn and the resolution of the
analog to digital conversion should be taken irtcoant.

Since the signal amplitudes are very low, EEG systare usually affected
from noise, especially from the noise of the powetwork and the digital
circuitry. The filters should reduce the noisy efteof the signals that are not
related to EEG. The analog and digital grounds khioe isolated properly.
EEG signals cover a small frequency range in BQlliegations. The system
should sense the electrical activity of the brain frequencies lower than
40Hz.

Sampling rate should be high enough consideringelB& frequency range
(Table 2-1).

For the P300 based BCI applications like Spelliryadigm, the system
should support recording the epoch information bByowously with the
signal.

Regarding the previous studies performed on sgeparadigm, there should
be at least 10 channels in the system [4].

The system should be implemented with minimum numtfe hardware

components.
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6.2 System Specifications

The system design is performed according to thalsdisted in the previous

section. Basically, the system is designed satigfthe following specifications:

The analog amplifier circuitry will be supplied lsyandard batteries in order
to reduce the effect of noise caused by the maipplg. Also, the batteries
are preferred due to electrical safety issues.

Active electrodes will be used in the system.

The amplifier system will be AC-coupled in orderelaminate the DC offsets.
EEG measurements will be monopolar.

The isolation between the analog and digital ctres will be performed with
analog isolators.

ADC resolution is chosen as 12 bits.

The digital data will be transferred to PC via USB.
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6.3 Analog Hardware

The analog hardware is composed of an active elbetstage and an amplifier
circuitry which mainly includes instrumentation difiprs, filters and isolator
components inside. These will be explained in tietahe following subsections.

The circuit diagrams of the system can be founfigpendix B.

6.3.1 Active Electrodes

Instead of simple passive ring electrodes, in tesign, the use of active
electrodes is preferred due to their practicalityhen using the passive electrodes
in EEG, a preparation stage is needed in whictelbetrodes have to be covered
with a conductive gel. This is a time consumingcedure especially when the
number of the electrodes is high. Moreover, thedaotive paste usually dries out
after 2-3 hours of use and additional pasting eded in order to continue to EEG
recording. Active electrodes eliminate the needpfsting and thus can be used

for the measurements much longer than the pasee® 0

As EEG signals are very low amplitude signals, they more prone to noise.
Also, for the passive electrodes, it is difficuit match the contact impedance
between the scalp and the electrode leads forhahmels. This results in the
amplification of the displacement currents in thegmplifier stage [83]. The
active electrodes are usually used as voltage wellodevices to improve the
signal strength at the scalp by increasing theeodirdriving capability of the
signal. There are also studies on the design afeaclectrodes with gain.
However, it is difficult to overcome the problemBE€ offsets in EEG. Therefore,
in this study, it is preferred to use active eledés as simple voltage buffering
elements. Additionally, a first order high passgefilwith a low cutoff frequency is
used to remove the DC component in the signal geronot to saturate the
preamplifier. Figure 6-1 shows the simulations @géiency characteristics of the

designed active electrodes.
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Figure 6-1 : Frequency characteristics of the desiggd active electrodes. a) Magnitude
response (in dB), b) Phase response (in degrees)
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6.3.2 Preamplifier

Since the amplitude of the signal to be measurednsiderably low, special type
of amplifiers are preferred in EEG systems. These aalled instrumentation
amplifiers (IA) and have a high common mode regttiatio (CMRR) property
in their design, providing a less noise affecteghal in the amplification. There
are usually two stages in the structure of IA. Tils stage is the buffering stage
where the signal is electrically isolated from #hgnal source and common mode
voltage is reduced. In the second stage, therdseaidifference amplifier in

which the difference between two isolated signalsmplified [83].
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Since instrumentation amplifier includes at le&séé operational amplifiers (op-
amp) in its design, it occupies a larger size caegbao other components in the
circuits. However, there are also commercial imagntation amplifiers that
provide all the components in an instrumentatiorplérar in a single package.
These packages have comparatively smaller sizepawide the gain adjustment

with a single external resistor.

In this design, the commercial instrumentation afiepl package, LT1167 of
Linear Technologies is used at the preamplifiegestahich was also employed in
the design of the 256 channel EEG system in [78}.tRe elimination of high
frequency signals, first order low pass filters adeled to the inputs. Moreover, a

high pass filter is used for AC coupling at thepuitof the amplifier.

6.3.3 Active Filters

Noise is the major problem in biopotential measwehdevices. Especially, the
noise caused by the power network affects thesgekeby imposing a common
mode signal on the inputs of the amplifier blockeerefore, the need for filter
use is inevitable in these systems.

In BCI applications, the algorithms use the frequyeband between 0.1Hz and
45Hz. Signals out of this range should be removwettluding either analog or

digital filters in the design. Also, application fiters can solve possible aliasing
problems in digitizing circuitry. Therefore, in ghdesign, two active filters are
used in the EEG amplifier circuitry: the first orsea band-stop filter to remove
the effect of noise caused by the mains supplythedecond one is a third order
low pass Bessel filter with cutoff frequency 40Hhe choice of Bessel filter is

due to the flat group delay response in the pasd.bEhe magnitude and phase

response plots of these filters are given Figugeaid Figure 6-3.
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Figure 6-2 : Frequency characteristics of the empled active 50Hz band-stop filter. a)
Magnitude response (in dB), b) Phase response (iegrees)
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Figure 6-3 : Frequency characteristics of the desiged 3° order active 40Hz low-pass filter.
a) Magnitude response (in dB), b) Phase responsa @egrees)

6.4 Digital Hardware

In order to perform digital signal processing, #meplified EEG signals should be
discretized and transmitted to a computer. Usutiily digitization of the signal is
done via commercial analog to digital convertersD(As) or using data
acquisition cards which are more expensive thamAD€’s. When ADC is used
in the design, a microcontroller is needed for gfarring the digitized signal to
the computer. The transfer can be done either veénial or parallel
communication depending on the hardware the microoler and computer
both support.
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For today’'s computers, Universal Serial Bus (US8)he most common and
maybe the only communication platform due to itsegpin transfer. And with the
development in technology, low cost microcontralevith USB hardware are
available in the market which makes it easy to anm@nt a USB communication

with the computer.

As stated in the introduction section in this cleapit is aimed to design the EEG
hardware as minimum number of components as pessiblerefore, the digital
hardware is composed of PIC18F4553, a compact ooatooller with a high
ADC resolution and Full Speed (FS) USB hardware].[7Bhe hardware

schematics of the digital circuitry can be foundippendix B.

6.5 Isolation

Isolation in medical systems is necessary for teasons. The most important one
is that the electrical equipment can harm the subjden the isolation is poor.
Possible leakage currents can flow through sulgelsdy which can lead to
permanent disorders or even to deaths. In orderdtect the subject from these
problems, subject has to be electrically isolatednfthe environment properly.
This can be performed by using isolated supplige Ibatteries or isolation
transformers for the analog amplifier which canrdase the risk of electrical
shock [83]. Moreover, the amplifier circuitry shdube isolated from digital the
circuitry and the recording system due to possiblerse currents coming from
the computer side which can also harm the subjecthis design, standard

batteries are used in the analog circuitry for mog the supply isolation.

Isolation is also important for removing the effeof the noise caused by power
network, electrical equipments and high speed mepitt devices like computers.
So, the analog and digital circuits should be elegity separated from those
devices by employing proper signal isolation in $ggtem. Moreover, the ADC'’s

used in these systems are usually affected fromsitpeal oscillations in the
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analog circuitry. This is mainly caused by the grduwodes the analog and digital
circuits are referenced and when they are impleateas the same node, the
ADC'’s usually can not convert the signals accuyat€herefore, the analog and

digital grounds should also be isolated.

The signal isolation can be done with galvanic asmils, analog and digital
optocouplers, transformers or the isolation amgifiin the circuit. In this design,
the amplified EEG signals are isolated from theitdigcircuitry with analog

optocouplers [80]. The reason for using optocowpisrthat they occupy less
space in the circuit and cost less as comparedatlitdér isolator types. Moreover,
as the microcontroller used in this design hastimiUSB device hardware, the
isolation can not be done digitally. Therefore, thAealog optocoupling is
preferred and this provides an advantage of grosmidtion between the analog
and digital circuits which results in better digdtion of the signal at the ADC

stage.

6.6 EEG Cap Design

In commercial EEG systems, the electrodes are glacean elastic head cap
according to the 10-20 electrode placement sysiehh [43]. These caps are
suitable only for passive ring electrodes in whilcl electrodes are covered with
a conductive gel. Figure 6-5 shows a commercial E€p produced by

Neuroscan.
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Figure 6-4 : International 10 — 20 Electrode Placesnt System. The naming comes from the
percentage ratio of the distance between two consgive electrodes according to the distance
between Inion and Nasion points of the human scalgd1].

Figure 6-5: 19 Channel EEG cap produced by Compumeck Neuroscan [81].
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However, when active electrodes are to be useldersystem, the electrodes may
not be easily attached to the scalp due to thee and weight of the material in
the electrodes. For this reason, a cap designrierpeed for active electrodes in
which the placement of the electrodes is easy hadeffect of common mode

noise is theoretically reduced (Figure 6-6).
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Figure 6-6 : The effect of the designed EEG cap oreducing the common mode voltage
induced on the body. The common mode voltage withespect to the amplifier ground is
decreased as the distance between the amplifier gnod and the electrode leads is small.
Furthermore, the leakage currents are more likely ¢ flow through the cap instead of the
body with this configuration.
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Earth ground

The designed EEG cap in Figure 6-7 is composetrettlayers. The outer layer
is a Teflon material for holding and fixing the iaet electrodes on the scalp. In
the middle layer, there is a thin aluminum film wniis used for a conductive
path to the analog ground. This film acts as aqutote layer for the displacement
currents which can generate a common mode voltagke preamplifier stage.
The inner layer is a soft tissue made up of Styofowhich provides a soft
contact between the cap and the subject. 10 aetectrodes are located on the
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cap according to 10-20 electrode placement systdij[43] as shown in Figure
6-7.

(b)

Figure 6-7 : Pictures of the designed EEG cap. Thactive electrodes can easily be placed
onto the scalp of the subject.
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6.7 Experiment Controller and EEG Interface Design

Monitoring and recording of the EEG signals arefqrened by a computer
program which acts usually as the main controhethese systems. Therefore, in
the last part of the EEG design, the computer pmogof the system will be

explained.
The system flowchart of the computer software igegiin Figure 6-8. It is

composed of several small software blocks that robnthe EEG signal
acquisition, recording, monitoring and experimegtB8CI| applications.

Experimental Main _ .
Paradigm " Controller —FRaw EEG Data MCL

Epoched Data

EEG
Hardware

L 4

Text File

Figure 6-8: The flowchart of the controller software. MCU stands for the microcontroller
unit which is the PIC18F4553 device [79].

These operations are managed in separate threamtslén not to interfere with
each other and affect the flow of the overall syst&dhe threads are created by
using multimedia timers which provide the highessalution (1ms) for event
scheduling in programs. Being available in mosth&#f computers, multimedia
timers can be managed in all Windows based operaystems. As it provides a
high resolution and priority for timing, the sammgi of the analog EEG signals,
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monitoring and recording of the data and the infeagion timing in spelling

paradigm are all done with the multimedia timetanses.

The program is prepared in Visual Studio .NET 20@d%ch provides a useful
framework for computer applications based on obmiented programming
(OOP). It is controlled with a friendly graphicaser interface allowing the EEG

operator to manage the EEG sessions easily.
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Figure 6-9 : Signal monitoring interface of the deigned system. It is operated with the P300 Spellerser interface.




P300 Speller

Figure 6-10 : Graphical user interface prepared forthe P300 Speller.
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CHAPTER 7

RESULTS

As stated in the introduction chapter, the Spellplication is investigated in
several aspects which can mainly be summarizedhasapplication type of
classification methods [77] (the analysis of clasation performance by
separating the observations of row and column sitieations), the comparison
of Wiener filtering with standard filtering technigs and the effect of probability
estimation method by application of Maximum Likeldd Estimation in the
prediction mechanism of the target character. Tlaspects will be addressed in
this result chapter by performing the analysis dagease on several Spelling

Paradigm datasets.

In this study, the methodologies are tested onafrtiee BCI competition datasets
(the P300 Speller dataset of BCI Contest Il [1&h experimental dataset is
obtained for the spelling application at Dokuz Eiiversity, in a shielded EEG
laboratory environment. Furthermore, a successfpeementation is performed
with the designed hardware at the Brain Researdioratory of Electrical and
Electronics Department of Middle East Technical uénsity. The results of the
presented methods will be provided after giving reefbexplanation of each

dataset.
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7.1 Results on the BCI Competition II: Dataset Ilb

The P300 Speller datasets for BCI Competition I di are provided by
Wadsworth BCI [14], in which the measurements daioed with the BCI2000
system [15]. The datasets are publicly availabl¢18t and [20]. Here in this
thesis, only the results for the dataset of BCI @etition Il [18] are presented
since the implemented methodologies could not lmpegrty integrated to the
dataset of BClI Competition Il due to the size bé tprovided dataset in this

contest and memory requirements of the employetiodetogies.

In these experiments, the spelling matrix const§t36 characters which are
distributed on 6 rows and 6 columns of the matrkiggre 3-1). The

intensification procedure for each spelled charagteperformed by flashing a
row or column for 100ms and after that showing anklscreen (no intensified
rows and columns) for 75ms. Therefore, a singlensification lasts for 175ms
(5.7Hz) and as there are 6 row and 6 column infieatibns, one trial of

intensification is completed after 2.1 seconds (AF% 12 intensifications). After
each trial, a blank screen is presented for 2.6reécto inform the subject that
the trial is completed and the next trial is coming. The intensification

procedure is repeated for 15 trials so that thelsvippocedure takes nearly 69
seconds to complete the spelling session of a esinghracter ((2.1s of trial
duration+ 2.5s blank screen time) x 15 trials).

In both datasets, the EEG signals are digitizead sstmpling rate of 240Hz and in
the dataset of BCI contest Ill only, the signaks band-pass filtered by hardware
with cut-off frequencies 0.1Hz and 60Hz. The infatian provided in these
datasets consists of the raw EEG data measured @doohannels (Figure 7-1),
the codes of the intensification (Figure 7-2) ahd target characters that are

spelled during those sessions.
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Figure 7-1 : The EEG channels used in the measuremis in P300 Speller datasets of [18]
and [20].

1 2 3 4 5 6
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1M0M-S T U V W X
"M=Y Z 1 2 3 4

12-5 6 7 8 9 0

Figure 7-2 : Epoch information in [18] and [20]. The row and column intensifications are
epoched with the ongoing EEG during the paradigm amrding to the demonstrated
encoding scheme.
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The P300 Speller dataset of BCI Contest Il [18]udes three spelling sessions
from one subject; two for training and one for il@gtthe algorithms prepared for
this problem. Each session is composed of sevara m which the 3-5 letter
words are spelléd The contents of these sessions are provided e T&1 and
Table 7-2.

Table 7-1: Contents of the Training Sessions in Sjieg Paradigm Dataset of BCI Contest I

Session 1 Session 2

Runs | 1 2 3 4 5 1 2 3 4 5 6

Words | CAT | DOG | FISH| WATER| BOWL| HAT| HAT| GLOVE| SHOES FISKH RAT

Table 7-2: Contents of the Test Session in SpelliiRaradigm Dataset of BCI Contest Il

Session 3

Runs 1 2 3 4 5 6 7 8

Words FOOD MOOT HAM PIE CAKE TUNA ZYGOT 4567

As stated in chapter 3, the basis of this studgseain the success of the algorithm
proposed by Kapeet al [4]. In their work, they have employed Support ¥ec
Machines (SVM) [77] with a feature set configuratioconsisting of 10 EEG
channels (Figure 7-3 (a)). Moreover, commercial ®P3peller systems employ
even less number of electrode configuration inrtiheethods [42] (Figure 7-3
(b)). Therefore, in this thesis, after the presgomaof each stimulus, the EEG
time segments of 600ms duration from the channeld=igure 7-3 (a) are
extracted. As in [4], a long feature vector comsgiof 1440 elements (600ms X
240Hz x 10 channels / 1000) is constructed to coenghe methodologies
presented. Since it is only possible to perforniire#fanalysis on the dataset, the

* The data of the 6th run of Session 2 is somehavupted; it contains some bugs related to the
recording process. Therefore, it is excluded imiog the classification model and hence in
providing the results here.
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results here will be provided with cross-validatemturacy on the training set and

prediction accuracy on both training and test sets.
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Figure 7-3: The electrode configurations used in ésting P300 Speller Systems [42].

7.1.1 Separation of Row and Column Intensifications

In Kaper’s study [4], using a single SVM classifidte classification results for
the test set in Table 7-2 are reported as 100%racgdor all characters after 5
repetitions. Here, the same methodology is apphietl in this case also the
responses to row and column intensifications aeat&d separately. As the
method of band-pass filtering has not been givefjna Butterworth filter of
order 10 with cutoff frequencies 0.5Hz and 30Hapsglied to produce the results.
The results for the 5 — fold cross validation valwa the training set is given in
Table 7-3 (C=20.007s = 27.359 for all).
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Table 7-3: The 5 - fold Cross Validation Values othe Training Set

No Row and Column Separation (reported by Kaper) 5%4

No Row and Column Separation (observed) 78.1197%

With Row and Column Separation Rows | 74.7009%
Columns| 82.6496%

The difference between the observed and reportétkseon cross validation
ratios might arise from several factors. As theme &5 ratio on the number of
target and non-target observations, one shouldperé selection from the non-
target observations to train the classifier so thathnumber of samples from each
class is the same. Otherwise, the classifier waaldirally decide that all new
coming samples belong to the class with highedbadibity of occurrence (which
is the non-target class). Therefore, the groupctedeto train the classifier may
not be the same as in [4], as the selection praeeduandom. However, in order
to preserve the consistency in presenting the tesdre, the selected training
group is fixed for all simulations of the methodgiles in each investigated
dataset.

Another factor possibly affecting the differencecimoss-validation results might
be the application of normalization. Kaper implemeeinsimple scaling (explained
in section 5.3.4) on the filtered observationst thathe samples are scaled to the
interval of [-1,1]. However, this normalization mégad to improper adjustment
of the data for our case. The reason is that, dmetarget signals, in general, have
lower amplitude as compared to the target signdlben simple scaling is
applied, it is highly probable that a non-targeai resembles to a target one.
Therefore, in this study, Gaussian normalizatiomprisferred as it preserves the
shape of the observed signals better. Furthernitagealso applied in the method
of Rakotomamonjy [6] in which the data is normatizecording to the statistical

properties of the observations.
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As stated at the beginning of this section, theerfitype has not been explained
clearly in [4]. The difference in the cross-valigat values might also be caused
by this reasoning. Rakotomamonjy [6] applied an@tier band-pass Chebyshev
Type 1 filter with cutoff frequencies 0.1Hz and Ikh their study for BCI

contest Ill. Both of these filter types are complawth the proposed Wiener

filtering in the following sections.

The 5-fold cross-validation values in Table 7-3iaatke that the rows and column
observation groups may not always be classifiedh whie same accuracy. The
reason for this might be that the subject may ekldifferent responses to row
and column intensifications. As the subject's pptican to row and column
flashings may differ, they should be treated amthé&d in separate classifiers to
increase the level of commonness and homogeneityhén training model.
Therefore, the 5-fold cross-validation is perfornm@d row and column groups
independently and optimum parameters (the regaléoiz parameteC in SVM
and the variance parametsrin Gaussian RBF) providing the maximum cross
validation ratio are found (76.9231% for rows armd2335% for columns) for
each of them a€, =100, s, =120 andC_ = 40 s, = 60 (see Table 7-4 below

for the comparison).

7.1.2 The Effect of Wiener Filtering

As discussed in chapter 3, the optimum frequenaydbdor P300 speller are
determined by estimating a Wiener filter for all @EEhannels of interest. The
Wiener filters are produced by estimating a 1Othieorlinear phase FIR

implementation for the frequencies found by theysis of the spectral powers.
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As one can observe from Figure 7-4, the frequerarydbfor the target signals
actually covers a narrower range for this datad#éten the classifier is trained
with the same parameters (Table 7-4) on the trgirset, the 5-fold cross

validation values have increased on both row atahoo groups.

Table 7-4: Maximum 5 - fold cross - validation vales found on the training set

C, =100, s, =120 C, =40, s, =60 Rows Columns

10" order Butterworth -  0.5Hz-30Hz
filtered training set

76.9231% 84.2735%

10™ order Wiener filtered training set 77.9487% 86 BA1

The target character prediction accuracy resultsWeéner and Butterworth
preprocessing on the training and test sets asepted in Figure 7-5 and Figure
7-6.
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Prediction Accuracy on the Training Character Set
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Figure 7-6: Prediction accuracy of the target charaters on the test set (31 characters). Solid:
preprocessed with 18 order Butterworth filter. Dotted: preprocessed with 10" order FIR

Wiener filter.



From Figure 7-6, it is clear that preprocessinghwi¥iener filtering has better
classification performance on the test set as comapto Butterworth filtering.
Even using 2 trials of repetitions, prediction wwhener filtering is over 80% for
31 characters. Furthermore, according to Kapersultg the accuracy of
prediction is below 80% within 2 repetitions andiakgto 100% only after 5 trials
(Figure 7-7). Filtering with Wiener approach hasreased the prediction

accuracy to 100% with only 4 trial repetitions.

Prediction Accuracy on Test characters in Kaper's study
100

90

80

F( ) e e e e T

e et L S et S B it

40

Prediction accuracy (%)

30

20

10

| | |
| | |
| | |
| ! |
| | |
| | |
| | |
| [ [
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
| | | |
| | | |
| | | |
S0F---7-~-9-~"~—" -~ -"7--—7---- | e I -
| | | |
| | | |
| | | |
| I |
| | |
| | |
| | |
| t I
| | |
| | |
| | |
| k |
| | |
| | |
| | |
| I |
| | |
| | |
| | |
1 1 1

umber of trial repetitions

Figure 7-7 : Target character prediction accuracy a the test set reported by Kaper [4].

7.1.3 Prediction with MLE of SVM outputs

One can note from Figure 7-5 that the predictiocueacy with Wiener filtering
on the training set shows some inconsistency viaghimcreasing number of trial
repetitions; between 10th and 13th repetitions, irgles character is false
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predicted. This is a common error in the predictioechanism which could also
happen in the Butterworth case. The reason isthieatesults here are presented
with the common P300 Speller methodology of scotimg output of the SVM
classifier [4] (see section 5.4.2). In this techugigthe SVM output giving the
maximum value among the 6 samples in a trial cacdrsidered as from the
target class even if it is predicted as a non-tanbservation by SVM. Therefore,
if one also uses the information provided by SVNe(samples predicted as target
by SVM), the class-conditional density of targeeqiction is better estimated
(explained in section 5.4.2). This prediction agmto provides a threshold
mechanism which prevents the persistent clasdticatf the target character in a
real world application case. The results on thénitng and test sets with ML

prediction of the SVM outputs are given in Figur8 @nd Figure 7-9.
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Figure 7-8 : Prediction accuracy of realistic MLE d SVM outputs on the training set (39

characters). Solid: preprocessed with 10 order Butterworth filter. Dotted: preprocessed
with 10" order FIR Wiener filter.
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In this case, the results for both filter typesdrae nearly similar. However, in
order to prevent the false and continuous prediciio Spelling Paradigm one
should include the target class output informasapplied by the main classifier
which is the SVM in our case. On the other handhwhese results also, Wiener
filtering is more preferable as it provides higpeediction accuracy on the test set

in less number of trial repetitions.
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7.2 Results on Experimental Datasets

7.2.1 P300 Speller Experiment at 9 Eylul University

In order to obtain a practical dataset for thiglgidirst, the experimental setup of
the P300 speller has been implemented and reahzbe shielded EEG rooms of
Brain Dynamic Research Laboratories of 9 Eyliul @nsity.

1Z0LE 0D 2

Figure 7-10 : Pictures from the P300 Speller expement at 9 Eylul University
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The instrument used to measure the electrical igctv the brain is a 64 channel
EEG device of Neuroscan Systems which provides ¥ khimpling of EEG
signals with active noise cancellation. The intBoaiion algorithms for the
Spelling Paradigm experimental interface are irgtgt with the epoching

mechanism of the EEG system.

The experiment is performed on a healthy subjeeigef24 (Figure 7-10) who did
not have any experience on evoked potential exgerisn She is asked to stay
relaxed on a comfortable chair in front of a monibm which the 6x6 spelling
matrix is presented. All operations are managethiwithe control room and in
case of a fatigue or any other problems relatatiécsubject, she is monitored on

one of the screens in the control room.

In this experiment, the spelling application isfpened for 35 characters in one
session which lasted about 2 hours. The procedurspielling each character is

explained as follows:

The subject is asked to focus on the predeternthadacters on the 6x6
spelling matrix which are explained to the subjeatside of the shielded
room via microphone. She is supposed to realize sledtly count the

number of target row and column intensifications.

As in the case of BClI Competition datasets, 19 tepetitions are used in
spelling each character. For each trial, the infieatons are block

randomized for 6 rows and 6 columns.

Since the subject had no experience on Spellingdign, in order to

provide easy realization of the intensificatiorige flashing duration is set
to 270ms (170ms on, 100ms off). The blank perietiveen the trials is

kept at 2.5 seconds.
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The characters spelled during the experiment arengn Table 7-5. The first 15
characters are used to construct the classificatiodel and the remaining 20

characters are reserved for offline prediction.

Table 7-5: The characters spelled in the experimeation performed at 9 Eylul University

Training Set Test Set
(15 characters) (20 characters)
Spelled words HECE BALKAR UGRAS | BERNA URUN EKIM DEVRIM 7

As stated at the beginning of this section, thepdeng rate of the recording EEG
system is 1 kHz which is nearly 4 times higher thhat of the BCI contest
datasets. This results in a much longer featuréovesome of which, in fact, may
be redundant for classifying the target resporRegarding the presented results
on the dataset of BClI Competitions Il, the optirfftajuency bands for detecting
the P300 responses lie mainly below 20Hz. Thereibis also possible to apply
downsampling to the EEG signals which is also eygaan [6]. By this way, the
construction of the Wiener filter and SVM classfion model will be much
faster as the computational power decreases wsthriamber of feature samples.
Here, the results will be presented on downsamgétd while investigating the

effects of Wiener and other filtering methodologies

For the first case where the data is downsampled@iiz by taking the average
of blocks of consecutive 10 samples, the vectanteirest is constructed with 600
ms long EEG segments from the predetermined 10 netann Figure 7-3.

Therefore, the input space consists of 600 elem@&dBms x 100Hz / 1000Hz x
10 channels). The Wiener filters estimated fromdbensampled raw EEG data

for each channel are shown in Figure 7-11.
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Figure 7-11 : Estimated Wiener filters for the precktermined 10 EEG channels (using
downsampled raw EEG data). The estimates are showin red for row, and blue for the
column groups.
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The results for 5-fold cross-validation accuracytba training set are given in
Table 7-6.

Table 7-6: The 5 - fold Cross Validation Values c6VM on the Training Set, preprocessed
with investigated filtering techniques

C, =C, =20007, s, =s,=27.359 Rows Columns

10" order Butterworth - 0.5Hz-30Hz 77.6786% 82.1429%
8" order Butterworth - 0.5Hz-30Hz 79.2411% 84.1518%
10" order Chebyshev | - 0.1Hz-10Hz 82.5893% 89.2857%
8" order Chebyshev | - 0.1Hz-10Hz 85.0446% 87.0536%
Estimated Wiener filter 84.8214% 87.7232%

One can note from Table 7-6 that the cross-vabdagiccuracy is higher in low
frequency band-pass filtered cases which are tfeatfl 8 order Chebychev and
Wiener filters (see Figure 7-11 for the frequenagige of the estimated filters).
When the prediction accuracy is calculated overtthming and test sets as in
Figure 7-12, Figure 7-13, Figure 7-14, Figure 7atfl Figure 7-16, Chebyshev
filters are observed to be more successful thaer dillkering schemes.
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Prediction Accuracy on the Training and Test Character sets

for the 10th order Butterworth filter
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Figure 7-13 : Prediction accuracy of realistic MLE of SVM outputs. Preprocessed with 8
order Butterworth filter. Solid: training set (15 characters). Dotted: test set (20 characters)
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Figure 7-15 : Prediction accuracy of realistic MLE of SVM outputs. Preprocessed with 8
order Chebyshev Type | filter. Solid: training set (15 characters). Dotted: test set (20

characters).
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Figure 7-16 : Prediction accuracy of realistic MLEof SVM outputs. Preprocessed with 10
order Wiener filter. Solid: training set (15 charaders). Dotted: test set (20 characters).

However, one should note that the evaluation of phediction accuracy is
performed for the parameters given in the litemat{#]. When the case is
investigated for the optimum regularization andiarace parametersd and s )
providing the highest cross-validation values (€abi7), filtering with Wiener
approach becomes as successful as the Chebyslee{Fease 7-17, Figure 7-18,
Figure 7-19, Figure 7-20 and Figure 7-21).

Table 7-7: The 5 - fold Cross Validation Values o6VM on the Training Set for optimum
parameters, preprocessed with investigated filterig technigues

C, =80 C, =100 s, =100 s =120 Rows Columns

10" order Butterworth - 0.5Hz-30Hz 81.0268% 82.3661%
8" order Butterworth - 0.5Hz-30Hz 81.4732% 84.5982%
10" order Chebyshev | - 0.1Hz-10Hz 87.0536% 89.2857%
8" order Chebyshev | - 0.1Hz-10Hz 83.7054% 85.9375%
10" order Wiener filter 84.8214% 88.8393%
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Figure 7-18 : Prediction accuracy of realistic MLE of SVM outputs. Preprocessed with 8
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order Butterworth filter, trained with optimum para meters in Table 7-7. Solid: training set

(15 characters). Dotted: test set (20 characters).
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Figure 7-20 : Prediction accuracy of realistic MLE of SVM outputs. Preprocessed with 8

order Chebychev Type | filter, trained with optimum parameters in Table 7-7. Solid:

training set (15 characters). Dotted: test set (26haracters)
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Figure 7-21 : Prediction accuracy of realistic MLEof SVM outputs. Preprocessed with 10
order Wiener filter, trained with optimum parameter s in Table 7-7. Solid: training set (15
characters). Dotted: test set (20 characters).

From Table 7-7, the 5-fold cross-validation accyiraas increased for all filtering
schemes (especially for the Chebyshev cases)idrtdise however, the prediction
performance with Chebyshev filtering has decrease® trial repetitions for
100% accuracy in the test set (Figure 7-19 andr€igds20). On the other hand,
the accuracy with the Wiener filtering techniques himcreased to 6 trial
repetitions for perfect prediction and became caaiga with the result in the
previous case of Chebyshev. However, it should heedined here that, the
Wiener filter estimation is performed on the raw(&HBata. That is, the noisy
frequency components in the unfiltered signal miglitect the estimation
procedure involved in Wiener filter model. The penhance of the approach can
be further increased with low-pass filtering the GEEsignals first (like an
equiripple filter between 0-50Hz) and then estimgtihe Wiener filter. The final
forms of the estimated Wiener filters for the loasp filtered case are given in
Figure 7-22.
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Figure 7-22 : Estimated Wiener filters for the precetermined 10 EEG channels (estimated
from the downsampled, 50Hz low-pass filtered EEG da). The estimates are shown in red

for row, and blue for the column groups.
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The cross-validation and prediction accuracy restdt this case are given in
Table 7-8, Figure 7-23 and Figure 7-24.

Table 7-8: The 5 - fold Cross Validation Values o6VM on the lowpass + Wiener
preprocessed Training Set, (1) with the parameterim the literature and (2) optimum
parameters searched using the dataset.

Rows Columns

1) C, =C,.=20007,s, =s,=27.339 82.5893% 89.0625%

2 C =80 C,=10Q s, =100 s, =120 83.0357% 89.7321%

Prediction Accuracy on the Training and Test Character sets
using 50Hz lowpass filter and 10th order FIR Wiener estimates
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Figure 7-23 : Prediction accuracy of realistic MLEof SVM outputs. Preprocessed with 50Hz
low pass + 18 order Wiener filter, trained with the parameters of Table 7-8 (1). Solid:
training set (15 characters), Dotted: test set (2€haracters).
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Figure 7-24 : Prediction accuracy of realistic MLEof SVM outputs. Preprocessed with 50Hz
low pass + 18 order Wiener filter, trained with the parameters in Table 7-8 (2). Solid:
training set (15 characters). Dotted: test set (2€haracters).

As can be seen from Figure 7-24, the predictiorumy on the test set has
increased to 100% using only 5 trial repetitionsalttgives an idea of increase in
the accuracy of Wiener filter estimation with pitefiing. It is also surprising that

the presented model has also shown 100% prediatioaracy in a single trial on

the training set. This result, in general, implieat the classification model is not
so accurate and has suffered from overfitting @astion 5.2.3). However, as it
can be observed from the results on the testlsstjg not the case and Wiener
filter approach outperformes among the discussepdrpcessing methods in terms
of the improvement of prediction accuracy.
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7.2.2 Experimentation with the Designed Hardware

In the final section of this chapter, the resultstamed from the Spelling
experiment with the designed EEG system are prederithe experiment is

conducted on a single subject with the conditiar grocedure stated below:

The measurement environment had no electrical dihgel Two
continuously running PC clusters of 8 computersheaere working
nearby the recording room.

The experiment was conducted in a dark environment.

The subject was asked to sit relaxed on a staratheid without arms.

A 7x7 spelling matrix composed of Turkish lettenslather alphanumeric
characters were presented to the subject (Fig@®).7-

The EEG signals were measured using the designiak aslectrodes
located on the predetermined positions on the s(figure 7-3). The
ground and the active reference electrodes ar¢iqnosil on FPz and right
ear respectively.

For each spelled character, the recording of EEGats was started after
a 10 seconds of preparation time. During this wakrthe subject got
ready for the intensification sequences.

The intensifications were randomized in blocks dfftar 7 rows and 7
columns. The interstimulus interval was set to 280mwhich a row or
column was flashed on for 150ms and then flashefbof00ms.

A total of 15 trial repetitions were employed fdl the characters in the
spelling session. The break time between the tumads adjusted to 1
second. Therefore, the spelling run for each chardasted about 77.5
seconds (10 seconds preparation time + (14 inteagsdns x 250 ms +
1000 ms break) x 15 repetitions).

As the experiment employed 14 different intenstfmas and 15 trial
repetitions for each character, a spelling run s&of 210 observations

out of which there are 30 target and 180 non-tanbservations (2 targets
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in a single trial x 15 repetitions and 12 non-tésge a single trial x 15
repetitions).

The EEG signals were digitized at a sampling r&té kHz and recorded
in separate files for each spelled character.

The experiment was offline performed for spellifd26 characters which

are distributed to the training and test sets dsable 7-9.

ARCCDEF
sknrigx

Figure 7-25 : Pictures from the experiment on P30@&peller conducted in Brain Research
Laboratory of Electrical and Electronics Eng. Dept, METU
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Figure 7-26 : The spelling matrix and stimulus code used in the experimentation performed

with the designed hardware.

Table 7-9: The characters spelled in the experimeation conducted with the designed

hardware

Training Set (9 characters)

Test Set (11 chargcters

Spelled words

BERNAZ29BA

BFKRTL7UHP3

7.2.2.1Results on the EEG measurements

For visualization of the recorded target and naogdaresponses, the averaged
EEG signals from each class are shown in Figur& &l Figure 7-28. From

these figures, it is clear that the developed El&esn accurately measured the

target P300 and non-target responses during theriexgnt.
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Figure 7-27 : Averaged target responses measured tihe P300 Speller experiment conducted

with the designed hardware.
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Figure 7-28 : Averaged non-target responses measurein the P300 Speller experiment
conducted with the designed hardware
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7.2.2.20ffline Analysis Procedure

The steps followed in preprocessing and classifinaif these datasets is

summarized below:

Preprocessing
Single trial extraction:EEG time segments of 600ms length, 100ms after the

presentation of visual stimuli are extracted.

Filtering: Although the EEG hardware employs active analogltstaop and low-
pass filters in its design, the extracted time sagshare digitally filtered with an

equiripple low pass filter with a cutoff frequenaf/50Hz.

Decimation:In order to reduce the dimensionality of the inpp&ce, the filtered
time segments are downsampled to 100Hz by takiegatrerage of every 10
consecutive samples. Therefore, the number of sameples for each channel has

been reduced to 60.

Wiener filter estimationThe decimated observations are separated into now a

column groups and for each group the Wiener fétgmmation is performed.

Construction of the feature vectoAll Wiener filtered EEG segments are
concatenated by channel for each observation ardn@ feature vector is

constructed with 600 elements (60 samples x 10raan

Training
Grouping row and column observation¥he preprocessed observations are
separated into row and column groups and for eamhpgthe data is divided into

target and non-target classes.

Selection of observationsrom each trial, 1 target and 1 non-target obsienvas
selected to construct the SVM classifier for eacup.
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Search of parameterd=or maximum cross-validation accuracy on the ingin
set, the regularization paramet@r and the variance parameter are searched
for both groups between the interval [10, 200] vittrements of 5. This is a time
consuming procedure and once the optimum valuegoarel these parameters

are kept as constants for the SVM classifiers.

7.2.2.3Results of the Proposed Methodologies

The estimated Wiener Filters are shown in Figui297One can note that the
optimum frequency bands for the row and column gsocan show difference in
some of the EEG channels.
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Figure 7-29 : Estimated Wiener filters for the precetermined 10 EEG channels on the
experiment data performed with the designed hardwag. The filters are estimated from the
downsampled, 50Hz low-pass filtered EEG data and arshown in red for row, blue for the
column groups.
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The maximum cross-validation accuracies are obdlimes 87.037% and
85.1852% for the row and column groups on the iimgirset using the optimum

valuesC, =60, C, =100 and s, =90, s, =120 for the searched parameters.

The prediction accuracies on the training andgetst are shown in Figure 7-30.

Prediction Accuracy on the Training and Test Character sets
using 50Hz lowpass filter and 10th order FIR Wiener estimates
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Figure 7-30 : Prediction accuracy of realistic MLEof SVM outputs on the experiment data.
Preprocessed with 50Hz low pass + {Oorder Wiener filter, trained with the optimal
parameters. Solid: training set (9 characters). Ddéd: test set (11 characters)

Here, one should remember that the test set is @asadpof 11 characters.
Therefore, only one character has been false pestiafter 8 trial repetitions.

This can be seen on the predicted characters ile 7ab0 more clearly.

130



Table 7-10: Predicted characters in the test set Wi respect to the trial repetition number

Trials | Predicted Characters
1 KKR6G,T90I
BFPMTL7USPC
BFRRTG7U8SPD
FFRRTG7USPD
FEKRT!7UHPD
BEKRTG7UHPD
B,KRTG7UHPD
BFKRTL7UHPD
BFKRTL7UHPD
10 | BFKRTL7UHPD
11 | BFKRTL7UHPD
12 | BFKRTL7UHPD
13 | BFKRTL7UHPD
14 | BFKRTL7UHP3
15 | BFKRTL7UHPD

\"ZJ

O 0O N| O g | WO N

The only misclassified character in Table 7-10 rafge trials (omitting the
exception in the 1@ repetition) is the last one in which the subjedoimed that
she was not well concentrated on the characteamnarspelling session due to the
headache she suffered from. Omitting this casenpte#hodologies predicted the

characters with 100% accuracy using only 8 trials.
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CHAPTER 8

CONCLUSION

In this thesis, the implementation of the P300 Bpalystem is performed by the
development of a P300 based BCI system. Severariexpnts are conducted
with the designed system in which the measurenmametsealized with the active
electrodes. Convincing performance is obtained hes¢ experiments as the
system was able to measure the P300 patterns edqdor the spelling

application.

Wiener filtering, a statistical signal processieghnique, is employed as a signal
enhancement method on the P300 speller for thetiime in the literature. The
optimum frequency bands for P300 detection is itigated by estimating the
Wiener filters for the target and non-target obagons. It is applied to several
P300 Speller datasets and observed to be moressfigcthan the other filtering
techniques in terms of target character predictioczuracy. Furthermore, the rows
and columns of the spelling matrix are treated epasate groups in order to
investigate the difference in classification acciea between these two
intensification types. In the P300 Speller datasé8Cl Competition Il, the target
characters in the test set are predicted with 186€aracy within 4 trials which is
higher than that of the prediction results of cotitipen winners. On the other
hand, the prediction of the target characters wihb designed system is
performed after 8 trials in order to obtain a petrfeccuracy for all characters.

132



8.1 General Observations and Discussion

Several results are deducted from the observationthe investigated Spelling
Paradigm datasets. The first and maybe the mogirtant observation is that the
brain responses to row and column intensificatiares not classified with equal
accuracy. One can see from the cross-validationtsethat, (although treated in
the same way) the row groups usually have lowessdiaation accuracy than the
column group for equal regularization and variapaemeters (see section 7.1.1).
Even for the optimal values of the cross-validati@sults, the row group is
observed to be more misclassified than the columen Although not presented
here, the single vector classification results wadse higher for the column group
for each of the observed training and test sets.give an example, in the
experimental study with the designed system, thsclasified character was
lying on the same column with the predicted charaefter 8 repetitions. The
column prediction was correct, but not the row. réf@re, it can be inferred that
the human perception to the row and column interadibns can be different for
each subject in terms of the brain’s responseshwisi@n open research topic for
the neurophysiologists and psychologists interestd®ICI. Furthermore, in order
to satisfy a successful classification scheme,ethetensification groups should

be trained and classified separately on two classibn modalities.

Another important deduction is that the optimumqgérency band for P300
detection is in fact narrower than the normal EE€gdiency range (0-45Hz). The
unnecessary frequency components outside this r@gbe eliminated for better
classification results. Whether the filtering tecjue is performed with Wiener
approach or not, filtering the out-of-range compuseconsiderably increases the
performance of the classification. Filtering withialer approach only provides

the frequency information that is optimal in dei@ctof the measured signal.

Furthermore, one should note that the applicatiowiener filtering on the P300

Speller problem is only meaningful with the assuond described in chapter 4.
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The stationarity of the signal patterns are of seamportance in this
methodology. Unlike the common sense that the EEgasurements are non-
stationary signals [2], in this study, they areategl as stationary by employing a
WSS model of the P300 pattern and the noise sighhls modality is proven to
be valid for the P300 detection problem in Spellfaradigm as the results show
that the filtering with the Wiener approach vyieldége best classification
performance in SVM among the other preprocessichnigues (see sections
7.1.2 and 7.2.1). Furthermore, the presented appros performed by the
estimation of the Wiener filters from the raw EEGtal It can be further
improved by estimating these after prefiltering thev EEG signal first, with a

low-pass filtering method as described in secti@l7

The performance of the classification depends omymgarameters like the
selection of the training group, the type of noration and the separation of the
row and column intensification groups. The croskdation results, hence the
accuracy of the trained models is considerablycsdfi by the samples selected to
train the classifiers. In order to perform a rasibwomparison between the
preprocessing and other methods, it is highly resrgsto use the same group in
training the classifiers for all investigated fiiteg cases. Otherwise, the
performance of the classification method could @wen for the same method)

in the second run of the algorithm.

In addition, the results presented in this theses @btained by performing a
Gaussian normalization on the datasets. The pregsotgy methodologies in the
literature could have higher performance in herthdéy were investigated for all
normalization types discussed in section 5.3.4. éi@n, the results for these
cases are believed to be variable on every P300eBmataset as the feature
patterns concerned here are more likely to be mandgnals. The shape and
amplitude of these signals might not be as wellsgmeed as the Gaussian
normalization when compared to other normalizatigpes. A deeper study is

needed to validate this assumption though.
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Another important factor is that the classificatr@sults might not show the same
behaviour among the preprocessing techniques. i$htte parameters which are
optimal for one technique may not be as much optiag the other one.
Therefore, they should be investigated for the £asewhich they exhibit the
maximum cross validation accuracy on the trainieg Blowever, fortunately in
the presented results, all preprocessing technigubsbited nearly the same

behavior in classification accuracies (except thelfyshev case in section 7.2.1).

Finally, it should be underlined here that the perfance of the overall system is
more dependent on the employed discriminative ifleason method. In most
cases, the target characters can be predicted ing @as powerful classifier
exhibiting a 100% accuracy (may be at thé" ¥Bal repetition) without any
preprocessing method. Therefore, the main sucdegsosystem is determined
by the SVM classifier [77]. Other methodologies canly serve slight

improvements in speed of the system as comparedgeaxch other.

8.2 Advantages of the Developed System and Methods

The proposed methodologies provide several advestamr the spelling
application in terms of practicality in the EEG rmegements and preprocessing
mechanisms. The active electrodes employed inysters eliminate the need for
skin preparation stage applied in the passive ewpatt. Using active electrodes
provides longer EEG measurements, thus improveadakility of a BCI system.
On the other hand, filtering with the Wiener apmtoencreases the classification
accuracy as it offers the optimal frequency bamisP300 detection. Since it is
performed on a dataset with only class label infdrom, it automatically
determines the frequencies comprising the userifgpéarget signals which can
also be considered as a feature extraction metbggah this scheme. Therefore,
one can apply the Wiener filtering on similar biyalassification models even if

there is no prior information on how to filter theta.
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The decision mechanism for an online P300 speléar lse improved by the
methodology proposed in section 5.4.2. The offestatf the subject can be
determined by this method so that the BCI systeooines more practical as it
does not need a continuous response from the subjec

8.3 Future Work

The thesis can be further improved with the fuittalies on the following topics:

The developed system for the moment is applicable ohly offline

measurements and analysis. The controlling medmsnishould be
upgraded to realize an online P300 based BCI syskemthermore, the
system and the methods are only tested on a diegléhy subject. More
experimentation should be performed with the desigmardware and the

presented methodologies on other healthy or didahlbjects.

The only BCI application investigated in this tleeg the P300 Speller.
However, one can increase the number of applicayjoes in this systems
by implementation other BCI applications based 800Pdetection. This
is a simple task since the hardware supports alltkechanisms required
for a P300 based BCI system. A slight modificatimm the presented
methodologies may be required depending on thefgpB€I application
to be implemented.

Currently, the active electrodes and the EEG cap reat be properly

operated on every subject due to the fixed sizén@fcap. The placement
of the electrodes can be disturbing for the subjscthe material used in
the electrodes for contacting the scalp is shamrder to reach the scalp
through hair. The materials used in their desigrukhbe improved to be

easily and confortably used by everybody. The hardvean be improved
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by using surface mount devices in constructiorhefdircuits so that they
are much smaller in size. By this way, the wholsteyn can be attached
on the EEG cap.

As well as the P300 based BCI applications, othemagigms can be
implemented within the system. After all, a com@l&CI| system can be
realized by including the wheelchair applicatiol30B Speller and other

assistive BCI systems in a compact framework as/sho Figure 8-1.

Figure 8-1: A compact BCI system for the disabledin the fture work, different BCI
paradigms can be implemented on a single hardwareystem in which the basic needs of the
patients are satisfied.
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APPENDIX A

PROOF OF WIDE SENSE STATIONARITY OF A
SINUSOIDAL RANDOM PROCESS

A random processx(n) is said to be a wide-sense stationary proces§eif t

following conditions are satisfied [32]:

1. The mean of the procesg (n) is a constant.

2. The autocorrelatiorR (n,,n,) is a function of(n, - n,).
Consider the random process given by

x(n) = AEMT (B.1)

where A’s and w,’s are deterministic (amplitude and frequency) paeters

defining the sinusoid. Here, the phase parameteis are random variables

whose distribution is assumed to be uniform betw@eand2p . That is,

0L/, £2p

f, 00)= (B.2)

O%’|"

elsewhere
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Proof of Condition 1

n,(n) = E{x(n)}
=E A&t

| A E{ei(winv'i)}

+¥
— Aeiwin ej/i f/'i (/ i )d/ , (83)
i -y
2p
. L1 .
— elWin el/i —ds.
A ¥

i 0

R R
= | Ae' % el ‘/’i:O
=0
m(n)=0

It can be seen that the mean of the random presesmstant. Therefore, the first

condition for WSS is satisfied.

Proof of Condition 2

R (n.n,) = E{x(n,)x' (n, )}

= Al et g G

i k

(B.4)

Here, it can be assumed thats are independent random variables so that their

joint probability density can be represented asradyct of their marginal

densities:

o Ued )=, G080 ), () (B.5)
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Rx(nl'n2)=

jlwin, +/ - j(wen,+/ . . . . . (BG)
Aej( ) Ae it fjl(/ 1)f/2(/ 2)---f/N(/ N)d./ L /AN
i k

One can note from the above expression that thegralt of the cross-
multiplication of exponential terms yields to O essi * k. That is,

2,

AAkeJ(vwnﬁ/i)e- i (weno+/) fjl(/-l)___ij (/ . )dj 0 =

0

N 2p

AAkeJ'wifhe' jwyny i ellVi-/ = (B7)
p
=0
Therefore,
. 2p . . . . . .
R.(n.n,)= AteMtem) @) ()t (7 )d/ s df
' Lo (B.8)
= AL emln)
i 2p

which is a function of(n, - n,) . Therefore,x(n) is WSS process as it also
satisfies the second condition.
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APPENDIX B

EEG HARDWARE SCHEMATICS

The circuit diagram of the designed active elearmdshown in Figure B - 1. It is
composed of two voltage buffers and a first ordighhipass filter with cutoff

frequency of 0.1Hz.

Electrode g Uu7Aa
Input

10 ¢ + Output

Figure B - 2: The pictures of the active electrodesThe electrode with the ring shaped
contact is used for reference and attached to theght ear.
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The EEG signals are amplified differentially withet preamplification stage in
which the differential gain is adjusted to 50. Thwetput signal is filtered to
remove the DC offsets. The circuit diagram of tineamplifier circuitry is given

in Figure B - 3.

—33nF

CHANNEL i uz

22kQ : *
|

|
—10pF 1kQ [ 11
100nF

PREAMPLIFIER
" OUTPUT
REFERENCE LT1167CN8
CHANNEL 22k0 =

Il

]
A
E

10MQ

TLOG2CP

|||—

—33nF

Figure B - 3: The preamplifier circuitry in the EEG amplifier.

Two active filters are used in the analog circuiffjne amplified signal is first
filtered with a band-stop filter with frequency ®Hz to remove the effect of the
power line noise and after the notch filter, thgnsl is processed with a third
order low-pass filter to remove the unnecessary pmrants in the EEG
frequency range. For this purpose, the cut-off desgy of the low-pass filter is
set to 40Hz. The filter is designed according tesd& filter specifications to
obtain a flat group delay for all frequencies ie tlange. The circuit diagrams of

the filter circuits are given in Figure B - 4 andjlie B - 5.

151



ANN AN I

Filter 10kQ 10kQ .
Input L =
’ _“ ”_ /I/TL 82CP Output
220nF 220nF

Il Il
LA LL
100nF 100nF
— |

4 99k0O J—l=330nF J—l=230nF

10kQ

TLO82CP

Figure B - 4: Active 50Hz notch filter. It is usedto remove the effect of the power line noise
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Figure B - 5: 39 order Bessel low-pass filter with 40Hz cut-off frquency.

The whole schematics of the designed EEG amplgishown in Figure B - 6.
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Figure B - 6: The circuit diagram of the designed EG amplifier.




Figure B - 7: Pictures of the printed EEG amplifier. The system is supplied by two batteries.
These supplies are regulated with a power circuitryincluded in the black box shown in the
picture.
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The schematics of the digital hardware is showRigure B - 8.
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Figure B - 8: The circuit used in the digital hardware. The circuit is mainly composed of a
compact microcontroller, PIC18F4553, which is usedo perform A/D conversion and USB

transfer.
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Figure B - 9: Pictures of the digitizing system. Th analog signals are digitized by A/D
conversion and sent to the computer via USB.
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Figure B - 10: Pictures from the experiments perfomed with the designed EEG system.

B.1 Performance Tests

Several tests are performed to measure the penfmenaf the designed
amplification system. Here, basic tests will besprdged such as Magnitude
Response, Common Mode Rejection Ratio (CMRR), $&ghal outputs and
outputs from ongoing EEG signals. One can find itletanformation on these
and other specifications in the technical docuntemtaof the designed system
[82].

The differential mode gain with respect to frequerscgiven in Figure B - 11.
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Differential Mode Gain (Adiff) vs Frequency
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Figure B - 11 Magnitude response of the designed EEsystem. The system has maximum
gain between 1 and 10 Hz.

As can be seen in Figure B - 11, the system hamdimear differential gain for
the frequency range. It has the minimum gain n€&iz5in order to reduce the
effect of power line noise. The CMRR of the syst®ith respect to frequency is

demonstrated in Figure B - 12.
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Common Mode Rejection Ratio (CMRR) vs Frequency
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Figure B - 12: Common Mode Rejection Ratio (CMRR) bthe designed EEG amplifier. The
system exhibits rejection of the common mode signdligher than 80dB in the frequency
range of 0.1-20Hz

Several test signals are applied to the designstésy the outputs of which are
shown in Figure B - 13, Figure B - 14 and Figure B5. In all cases, a sinusoidal
waveform with an amplitude of 108/ (with different frequencies) is given as
the input to simulate the EEG signal. The outpotsthese cases are given in
terms of A/D conversion results with an offset &ach EEG channel to see all
waveforms in one plot. Note that the amplitude le¢ putput decreases as the
frequency is increased. This is due to the nonlirdiferential gain of the

amplification system shown in Figure B - 11.
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Figure B - 13: The output of the EEG system for a@0uV test signal with frequency 5Hz.

Figure B - 14: The output of the EEG system for a@0uV test signal with frequency 10Hz.
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Figure B - 15: The output of the EEG system for a@0uV test signal with frequency 17Hz.
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Figure B - 16: Offline visualization of the spontaeous EEG signal recorded by the system
from 10 channels. The amplitude of the signals isiwgen in terms of the A/D conversion
results. An artificial offset is given for all chamels in order to visualize them in one plot.

161



