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Computer Engineering Dept., METU

Dr. Çağatay Ündeğer
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ABSTRACT

MULTI-RESOLUTION VISUALIZATION OF LARGE SCALE PROTEIN NETWORKS
ENRICHED WITH GENE ONTOLOGY ANNOTATIONS

Yaşar, Sevgi

M.S., Department of Computer Engineering

Supervisor : Asst. Prof. Dr. Tolga Can

September 2009, 34 pages

Genome scale protein-protein interactions (PPIs) are interpreted as networks or graphs with

thousands of nodes from the perspective of computer science. PPI networks represent various

types of possible interactions among proteins or genes of a genome. PPI data is vital in

protein function prediction since functions of the cells are performed by groups of proteins

interacting with each other and main complexes of the cell are made of proteins interacting

with each other.

Recent increase in protein interaction prediction techniques have made great amount of protein-

protein interaction data available for genomes. As a consequence, a systematic visualization

and analysis technique has become crucial.

To the best of our knowledge, no PPI visualization tool consider multi-resolution viewing of

PPI network. In this thesis, we implemented a new approach for PPI network visualization

which supports multi-resolution viewing of compound graphs. We construct compound nodes

and label them by using gene set enrichment methods based on Gene Ontology annotations.

This thesis further suggests new methods for PPI network visualization.
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ÖZ

GEN ONTOLOJİ AÇIKLAMALI BÜYÜK ÖLÇEKLİ PROTEİN AĞLARININ
ÇOK-ÇÖZÜNÜRLÜKLÜ GÖRSELLEŞTİRİLMESİ

Yaşar, Sevgi

Yüksek Lisans, Bilgisayar Mühendislig̃i Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Tolga Can

Eylül 2009, 34 sayfa

Bilgisayar bilimi gözüyle baktıg̃ımızda, genom bazındaki protein etkileşim ag̃ları binlerce

düg̃ümden oluşan ag̃ ya da çizgelerdir. Protein-protein etkileşim ag̃ları bir genomun pro-

teinleri ya da genleri arasındaki pek çok etkileşimi ifade etmektedir. Hücresel işlevlerin

etkileşen proteinler tarafından yerine getirilmesi ve hücredeki temel yapıların etkileşen pro-

teinler tarafından oluşturulması nedeni ile proteinlerin işlevlerinin öngörülmesinde protein

etkileşim verisi hayati önem taşımaktadır.

Protein etkileşim öngörü ve analiz tekniklerindeki yakın dönemdeki artış genomlar için pek

çok miktarda protein-protein etkileşim verisinin elde edilmesini sag̃ladı. Bu da protein etkileşim

ag̃ları için sistematik bir görselleştirme ve analiz teknig̃ini kritik düzeye getirdi.

Bildig̃imiz kadarıyla, protein-protein etkileşimlerini görselleştiren araçlar, protein etkileşimlerinin

çok çözünürlüklü görselleştirilmesini dikkate almamaktadırlar. Tezimizde, protein-protein

etkileşim ag̃larını bileşik çizgeleri destekleyerek çok çözünürlüklü görselleştiren yeni bir

yaklaşım gerçekleştirdik. Yaklaşımımız bileşik düzeneg̃e sahip çizgelerin gen ontolojisi açıklama

analizi ile çok çözünürlüklü gösterimini desteklemektedir. Tezimizde protein-protein etkileşim

ag̃larının görselleştirilmesine yönelik yeni yöntemleri öneriyoruz.
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Müge Çavdaroğlu, İrem Afşar and Burak Ateş for their endless support.

ix



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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CHAPTER 1

INTRODUCTION

Since main functions in a cell are preformed by proteins interacting with each other, protein-

protein interaction data is an essential data for protein function prediction. Protein-protein

interaction data can represent different types of interactions such as metabolic events, protein-

protein/protein-nucleotide interactions, regulatory relationships or signaling pathways.

Genome scale protein-protein interaction data are large scale graphs/networks having thou-

sands of nodes representing genes or proteins. Still, currently existing protein interaction data

is incomplete. As stated by Hart et al. [8], the estimated number of interactions for a full yeast

genome network is 37,800-75,500, whereas interactions found so far are less than 20,000. For

human genome the estimated number of interactions is 154,000-369,000. Presentation of such

a great scale of network is a challenge.

One aim of protein-protein interaction network visualization tools is to provide an insight

to researchers to analyze a given genome’s protein-protein interaction network for various

interpretation purposes. There exist many PPI visualization tools, most of which initially

provides a crowded view of a given PPI network.

Another aim is to combine different types of biological data while presenting the network

data. So the aim of PPI network visualization tools is not only viewing a given network,

but also presenting a view that includes some solid data obtained from domain specific data

analysis, too. For example; some tools provide subcellular localization information such as

[3], whereas some others use gene expression data [5, 16].

In this thesis, we introduce a new visualization approach providing compound graph archi-

tecture, and making use of gene set enrichment analysis. The aim of this thesis to provide a
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layered (by making use of Markov Clustering) high performance viewing of protein interac-

tion networks and support making use of Gene Ontology annotations and gene set enrichment

during PPI visualization.

1.1 Related Work

1.1.1 Protein-Protein Interaction Visualization Tools

Genome wide protein-protein interaction networks are considered as very large graphs. Tools

for visualization of regular graphs lack both performance and biological information for pre-

senting PPI networks. As a consequence PPI visualization requires dedicated tools for pre-

sentation.

There exist many tools for PPI network visualization specialized on different purposes as re-

viewed by Suderman et al. [21]. The main issue to be considered is to present information

with combination of analysis of related domain specific information in an explanatory, un-

derstandable, interactive manner with relatively high performance. Most widely used PPI

visualization tools are as follows: Cytoscape [3, 9, 19, 20], Pathway Studio [16], VisANT

[10], PATIKA [5], Arena3D [7]. Suderman et al. [21] in their study review the features

possessed by existing visualization tools, and features for next generation visualization tools.

Those features can be summarized as follows: network layout profiles, integration of analysis

data into visualization, integration with external data resources, user inputs, and integration

of third party software.

Among the PPI visualization tools, Cytoscape [20] is a powerful tool, allowing external devel-

opers to implement plugins having various features that would still use Cytoscape application

on the background to work on [3, 9, 19]. For example, MiSink [19] plugin provides interfaces

to well-known databases for retrieval of biological information. Cytoscape also presents a

user friendly user interface, various layout formats, with capability to import a variety of

interaction files. Cytoscape has several layout formats such as circular, force-directed, etc.

Although stated layout formats present nice view for smaller networks such as pathways, it

is difficult to interpret the provided view for large scale networks. Figure 1.1 and Figure 1.2

show overall and a zoomed portion view of yeast PPI network of 4932 nodes and 17491 edges

on force directed and circular layout in Cytoscape. Orange colored portions indicate proteins,

2



Figure 1.1: Complete and zoomed views of yeast PPI network with Cytoscape Force Directed
Layout

whereas dark blue colored regions indicate interactions of the network.

Cytoscape also supports layout profiles of JGraph, however it takes at least 20 minutes to view

a protein network of 4932 nodes and 17491 edges with those layouts on a hardware with Intel

Core Duo CPU of 1.80 Ghz, and 2GBs of RAM.

Cerabral [3] plugin developed using Cytoscape API for plugin interface, working with base

Cytoscape application provides layout of proteins relative to their localization in the cell by

making use of subcellurlar localization annotations. However, as mentioned in [3], it takes

4.5 seconds to visualize a graph with 57 nodes and 74 edges, and 204 seconds to visualize

706 nodes and 1269 edges using Cerebral.

3



Figure 1.2: Complete and zoomed views of yeast PPI network with Cytoscape Inverted Self-
Organizing Map Layout
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VisAnt [10], another application for visualization and analysis of biomolecular interactions,

can be used in three ways: as an online java applet1, as a java web application2, or as an

offline client-side local application connected to main VisAnt server for data syncronization.

VisANT provides annotations for large range of data sets by being integrated with standard

databases such as GenBank, KEGG [16], and SwissProt. Being syncronized with databases,

VisANT provides a query interface for variety of poteins and pathways. It provides a user

friendly interface with an interactive environment. VisANT introduces the meta-node con-

cept, by which a user can group a set of selected nodes and view it as a single meta-node. Var-

ious functionalities such as gene set enrichment with Gene Ontology annotations are provided

for meta-data nodes. However since it is left to the user to select the nodes to be grouped, for

large scale networks this approach does not seem to be feasible. Figure 1.3 depicts overall

and zoomed views of yeast PPI network of 4932 nodes and 17491 edges on circular layout

after approximately ten minutes of relaxing operation (a VisAnt functionality).

Pathway Studio [16], a windows desktop application commercially licensed to Ariadne Ge-

nomics Inc., is another application for visuzalition of mainly biological networks. It is capable

of importing data of well known databases such as DIP [26], BIND [2] and KEGG [17]. It

provides force-directed layout as automatic layout profile, as well as enabling user to interact

and modify presentation of nodes; both in shape and location. However all these features

are provided for biological pathways with gene expression data interpretation, large scale PPI

network visualization is not the main concern.

PATIKA [5], standing for ”Pathway Analysis Tools for Integration and Knowledge Acquisi-

tion”, another web application for visualization of biological networks, like Pathway Studio,

aims to visualize and analyze molecular pathways using gene expression data.

1.1.2 Using Clustering for Protein Functional Module Detection

Using graph clustering algorithms to detect functional modules of an organism has become a

popular interest in bioinformatics. There have been studies on matching clusters obtained by

a clustering algorithm to known functional modules. Aim of these studies is to find functional

process or module of an unknown gene/protein by using general tendency of the genes in a

1 http://en.wikipedia.org/wiki/Java applet, Last accessed 01 Sep 2009
2 http://java.sun.com/docs/books/tutorial/deployment/webstart/index.html, Last accessed 01 Sep 2009
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Figure 1.3: Complete and zoomed views of yeast PPI network with VisAnt Circular Layout
relaxed approximately for ten minutes
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cluster.

Zhang et al. [28] apply clique percolation algorithm to detect the dense clusters of a given

protein-protein interaction network. Their main approach in detecting functional modules is

to correlate each detected cluster to a specific well known functional module of an organism.

There have been many studies using Markov Clustering (MCL) for PPI networks [6, 25].

Enright et al [6] uses MCL algorithm with modification so as to take preprocessed sequence

similarity (based on BLAST) between each proteins in consideration while running Markov

Clustering on a given PPI network. Vlasblom et al. [25], however, compares MCL with

Affinity Propagation (AP) on PPI networks and they conclude that MCL procedure is signif-

icantly more tolerant to noise and behaves more robustly then AP especially for unweighted

networks.

1.1.3 Gene Ontology for gene set enrichment on PPI networks

Gene set enrichment with Gene Ontology annotations is a recent study of bioinformatics. The

main process is detecting the most significant Gene Ontology term for a given set of genes.

There have been different approaches for determination of the most significant GO annotation

[1, 14]. During our study we used the topGO method of Alexa et al. [1] for finding most

significant Gene Ontology term for a cluster. Using Gene Ontology annotation for clusters

of protein interaction networks is a recent study. Marco et al [15] recently focused on cor-

relation of interactome hierarchy with Gene Ontology hierarchy. For their study, they used

the UV cluster algorithm to construct clusters as a hierarchically organized tree for Saccha-

romyces cerevisiae(yeast) interactome. They check whether there would be a cluster such that

it includes all proteins of a parent GO term (nine parent GO terms are used for that study).

Rate of positive detected enrichments: number proteins having their enriched GO terms as

the same as their actual GO term is on the average 80.1% (62-96%). Marco et al [15] ad-

ditionally state GO coverage (extent a given GO term is detected in the interactome) on the

average as 51.2% (34-67%), having the highest coverage at Biological Process Gene Ontolgy.

The results studies of Marco et al [15] show that GO and PPI network hierarchy are similar

for global structure of PPI networks. We expect usage of GO annotations for clusters to be

valuable information for PPI network presentation.

7



1.2 Contributions

Our contributions in this thesis can be listed as follows:

1. By providing multi-resolution (compound) structure, we aim to provide an organized

view to the end user. Unlike the related studies, this approach provides much less

crowded view to the end user. Another contribution coming along with this is per-

formance. Most related studies suffer from preparation of a layout for a large-scale

network, for not much organized layout profiles, it does not take much time. However

even for a little bit sophisticated layout profiles, it takes hours to present a given clus-

ter. By providing an initial organized view with much less nodes and edges we present

a layout for a given graph immediately. Afterwards, with the mlti-resolution feature,

having a layout for more detailed views is still time efficient.

2. Our approach makes it easier for the end user to make use of provided biological infor-

mation. Although many related works provide even more biological information to the

end user, presenting this information in a crowded view makes it difficult for the end

user to interpret the information. With GO term annotations for clusters of each layer,

an initial biological foreknowledge is provided for structuring of given PPI network.

With this information user can decide on the region of interest to focus on.

3. Our approach provides a test platform for biological network clustering approaches.

There has been studies on checking compatibility of PPI network clustering approaches

with the nature of PPI networks. Clustering results of related studies can be loaded to

our proposed tool and their compatibility with GO annotations can be investigated.

1.3 Thesis Outline

This thesis is organized as follows: In Chapter 2, necessary background information to un-

derstand the problem and the problem domain is provided. In Chapter 3, general solution

approach is explained by first giving a brief overview about the general architecture of pro-

posed system and consequently describing each component of the system seperately in detail.

In Chapter 4 experimental results of the proposed solution and related discussions are given.

Finally, in Chapter 5 thesis is concluded with a brief summay and suggested future works.
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CHAPTER 2

BACKGROUND

2.1 Proteins

Proteins are one type of the basic organic compounds of the cell which play significant roles

in characterization and functionality of the cell. Proteins are basically linear forms of amino

acids joined by peptide bonds.

The main reason behind significance of proteins is their constructions going back to DNA. The

coding part of a gene on DNA is transcribed to its complementary RNA (mRNA), and using

genetic codes on mRNA, Ribosome forms peptide bonds between amino acids at translation.

During or after its synthesis, a protein starts to fold into its shape.

2.2 Protein-protein interaction networks

Protein-protein interaction plays significant roles in understanding functionality of a protein.

Protein interaction networks are graphs in which nodes represent proteins and edges represent

either physical or computationally computed interactions between proteins.

Protein interactions can represent not only physical interaction of proteins to form large com-

plexes but also cell signaling pathways. Protein interactions can be obtained by various meth-

ods as also listed in [12, 22].

There are various protein-protein interaction databases at which protein interaction data of

the organisms that are most widely used for bioinformatics experiments are readily available.

Some of them can be listed as:

9



• DIP1, Database of Interacting Proteins [26], combines data from various sources, pro-

vides protein interaction data that is both manually (by expert curators) and automati-

cally (by computational approaches) curated.

• MIPS2, Mammalian Protein-Protein Interaction Database [18], provides collection of

manually curated high-quality PPI data collected from the scientific literature by expert

curators. This database includes only data from individually performed experiments

since they usually provide the most reliable evidence for physical interactions.

• BioGRID3, The Biological General Repository for Interaction Datasets, provides col-

lections of protein and genetic interactions from major model organism species derived

from both high-throughput studies and conventional focused studies.

• BIND4, Biomolecular Interaction Network Database [2], includes not only interactions

among proteins but also interactions betweens proteins and RNA, DNA, and small

molecules.

2.3 Clustering

Clustering is one of the fundemantal unsupervised learning problems, dealing with determi-

nation of intrinsic groups of given unlabeled data. For a given data composed of objects to be

clustered, a cluster is a set of objects which are more similar to each other than the objects in

another cluster in some kind of distance measurement sense. This distance measurement may

be one of the common measurements such as Euclidean distance (2.1a), Manhattan distance

(2.1b), or another user defined distance metric.

Deuc(xi, x j) =

√√ n∑
k=1

(
xik − x jk

)2
where xi = (xi1, xi2, ..., xin) (2.1a)

Dmhtn(xi, x j) =

n∑
k=1

∣∣∣xik − x jk
∣∣∣ where xi = (xi1, xi2, ..., xin) (2.1b)

Clusters does not necessarily represent different classes of given data that are very distinct

from each other, but also can represent large units of given data; a cluster being represen-
1 http://dip.doe-mbi.ucla.edu, , Last accessed 01 Sep 2009
2 http://mips.gsf.de/proj/ppi, Last accessed 01 Sep 2009
3 http://www.thebiogrid.org/, Last accessed 01 Sep 2009
4 http://www.bind.ca, , Last accessed 01 Sep 2009
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tative of other clusters of the given data. Clustering approaches can be classified as follows:

hierarhical clustering (such as Single-Link Agglomerative Hierarchical Clustering), and parti-

tional clustering (such as K-means Clustering, Expectation-Maximiation and DBSCAN)[13]

.

2.4 Gene Ontology (GO)

Aim of an ontology is to define common concepts and their relations with each other for

certain domains. The Gene Ontology Consortium was formed to develop shared, structured

vocabularies adequate for the annotation of molecular characteristics across organisms [4].

Gene Ontology defines biological vocabularies to annotate genes and gene products. Gene

ontology also defines relationship of terms with each other.

Gene Ontology Consortium defines three ontologies: Molecular function (MF), Biological

Process (BP) and Cellular Component (CC) ontologies. ”Molecular Function” ontology de-

fines the biochemical responsibility of a gene/gene product, such that some proteins are spe-

cialized to be enzymes. For example: GO term for ’carbonate dehydratase’ is ’GO:0004089’.

”Biological Process” ontology defines the biological process or the biological pathway the

gene/gene product involved. For example: GO term for ’signal transduction’ is ’GO:0007165’.

”Cellular Component” ontology defines the cellular location at which the gene/gene product

is active at. It basically defines localization information for the given gene product, example:

GO Term for ’Golgi apparatus’ is ’GO:0005794’.

Gene Ontologies are structured as directed acyclic graphs (DAGs) having nodes as GO terms;

each term can have one or more parent terms. Figure 2.1 displays a sample Cellular Complex

ontology graph5 queried for Golgi apparatus of yeast, Saccharomyces cerevisiae.

2.5 Gene set enrichment with GO ontology

Microarray experiments provide list of genes which are differently expressed (having statis-

tical score over a threshold) at a cell. In order to interpret the obtained differently expressed

genes and understand their functionality, supportive data like biological process or molecu-

5 http://www.yeastrc.org/pdr/viewGONode.do?acc=GO:0005794, , Last accessed 01 Sep 2009
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Figure 2.1: Sample GO hierarchy for for Golgi Apparatus

lar function of the set of genes is sufficient. There have been studies on making gene set

enrichment wit GO terms [1, 14]. In our study, we decided to use the approach of [1] for

determination of significant GO terms.

2.6 Statictical Tests for Significance Calculations

In order to determine the general behavior or general structure of a set of genes, significant

properties of the given set shall be determined. Therefore, many gene set enrichment analy-

sis methods are based on statistical test functions for determination of statistically significant

properties of a given set. topGO package has support three types of statistical tests for sig-

nificance alaysis: Fisher’s exact test, Kolmogorov Smirnov test, and Student-t test. Student’s

t-test, one of the statistical significance tests, proposes consideration of differences between

the means of two groups relative to their scores’ variance. KS test is mainly used to estimate

a minimum distance for probability distribution of a sample with a reference probability dis-

tribution or to estimate the minumum distance for two samples. Fisher’s exact test is based

on binary relationships between samples. [1] focuses on Fisher’s exact test for significance
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analysis in their study. Therefore, we also decided to use Fisher’s exact test during our tests.

2.6.1 Fischer’s Exact Test

Fisher’s exact test is a statistical significance test used for analysis of categorized samples in

small sizes. Fisher’s exact test is based on a contingency table representing the binary re-

lationship between variables. Table 2.1 depict a sample contingeny table for two categories

having two samples s.t. A1, A2 representing samples for category A and B1 and B2 repre-

senting samples for category B. For example, assume that the collected data is for a set of

people, s.t. category A representing people being either male (A1) or female (A2); category

B representing people either owning a house (B1), or renting a house (B2).

Table 2.1: Sample contingency table for Fisher’s test

B1 B2 Total
A1 a b a+b
A2 c d c+d

Total a+c b+d n

Probability values indicated at contingency tables are assumed to be obtained by hypergeo-

metric distribution6. Equation 2.2 shows the probability of obtaining a particular arrangement

for association of a class with the another one. For example, probability of having people

owning a house are distributed evenly among males and females.

p =

(
a + b

a

)(
c + d

c

)/( n
a + c

)
=

(a + b)!(c + d)!(a + c)!(b + d)!
n!a!b!c!d!

(2.2)

2.7 R

R [11] is a programming language which is widely used for statistical software development

and analysis. Development of R is highly influenced by two languages S, which is also a sta-

tistical programming language and Scheme. The main idea behind R development is having

an interface and syntax like S, but having implementation and semantics of Scheme beneath.

6 A discrete probability distribution that describes the number of successes in a sequence of n draws from a
finite population without replacement

13



Since bioinformatics requires processing of great amount of data, statistical computing be-

comes inevitable, and consequently that makes R popular in bioinformatics. R is available

as Free Software under the terms of the Free Software Foundation’s GNU General Public

License in source code form7.

7 http://www.r-project.org/, Last accessed 01 Sep 2009
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CHAPTER 3

ARHITECTURE AND METHODS

3.1 Overview and General Architecture of the System

The main aim of our approach for visualizing a given protein-protein interaction network is to

obtain different view resolutions for a given network. In order to obtain different resolutions,

we decided to obtain different clusterings for a given data and match them to each layer of

resolution one by one. Another aspect of our solution is to annotate GO terms to clusters of

genes at each layer of resolution. Our solution for such an environment is depicted in Figure

3.1.

In order to obtain different layers of resolutions, we decided to obtain different clusterings

by using the Markov Clustering Algorith (MCL) (see Section 3.4). Gene set enrichment for

clusters of a given layer is obtained using the topGO package (see Section 3.3). PPI Visualizer

mainly integrates already available components in order to visualize a given protein-protein

interaction network.

Figure 3.1: General Architecture of the System
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3.2 Data Selection

Except for the significant GO term determination phase, our approach does not depend on

the type of the organism to be visualized. However, we decided to focus on visualization of

yeast, Saccharomyces cerevisiae, PPI network as a proof of concept study. There are four

large databases having protein-protein interaction data for Saccharomyces cerevisiae, as also

listed in [27]. Among these, we decided to use data from DIP [26] for our tests, since it

includes both experimentally and computationally PPIs.

3.3 Gene Set Enrichment with topGO

For gene set enrichment with GO terms we decided to use the package topGO developed

by Alexia et al. [1]. topGO package is available as Free Software 1. topGO package for

gene enrichment analysis is developed in R language and needs R environment in order to

be used. topGO installation is described in Appendix A.2.1. We integrated R engine to java

platform using JRI (Java R Interface)(described in Appendix A.1) and ran R scripts for gene

set enrichment analysis over JRI interface.

topGO package provides algorithms for finding significant Gene Ontology terms for a given

set of genes. As it is explained in Section 2.4, there are three types of ontologies: Molecular

function (MF), Biological Process (BP) and Cellular Component (CC). topGO package is

capable of finding significant GO terms for each category.

In order to find significant genes for a cluster on a specified Gene Ontology category, statistical

tests for significance (see section 2.6) to be used for gene set enrichment shall be specified.

topGO package provides four statistical tests for GO term annotations: Fisher’s exact test

(Section 2.6.1), Kolmogorov-Smirnov test, t-test, and Goeman’s global test.

After generating a topGOdata instance for a specified Gene Ontolgy category, and specifying

the statistical significance test to be used for annotations, top n GO term annotations for a

given cluster can be obtained. We decided to use Biological Process as the Gene Ontology

category, and Fischer’s exact test as the statistical test for significance during our tests. We

labeled the clusters at each resolution with the most significant GO-term obtained for each

1 http://www.bioconductor.org/packages/2.5/bioc/html/topGO.html, Last accessed 01 Sep 2009
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cluster.

3.4 Markov Clustering (MCL)

Markov Clustering [24] is a clustering algorithm aimed to find natural structure of a given

graph. The idea beneath Markov Clustering is obtaining clusters such that the probability get-

ting to a node in the same clusters with k-length (or k-step) paths is higher than the probability

of getting to a node in a different cluster with k-length path. So, MCL clusters are assumed to

be dense regions, expected to satisfy a random walk from a node in an MCL cluster to end in

the same cluster.

Markov Clustering paradigm found by Stijn van Dongen [24] is based on simulating flow

through a graph, to promote flow where the current is strong, and to demote flow where the

current is weak. The underlying clusters will reveal as the current between clusters would

disappear by the time. In order to simulate the flow, the given graph is transformed into

Markov graph2 and then to Markov Matrix (column stochastic matrix).

Definition 3.4.1 Markov Matrix (Column Stochastic Matrix) M ∈ Rnxn, M ≥ 0, of a given

graph of n nodes is:

Mnxn =



x11 x12 . . . x1n

x21 x22 . . . x1n
...

...
. . .

...

xn1 xn2 . . . xnn


such that,

∀ j ≤ n
n∑

j=1

(
x1 j + x2 j + . . . + xn j

)
= 1 shall be satisfied.

Each column of the stochastic matrix represents probability values for a departing node of

the given graph. Each value on the column corresponds to the probability of flow going

from departing node to other nodes. In case there is no connection between the nodes, the

probability would be zero.

Flow simulation is called Expansion operation of MCL. [23, 24] empowers the paradigm

with another operation called Inflation. MCL process application is alternation of Expansion
2 Markov Graph: graph having total weight of outgoing edges of any node equals to one
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Figure 3.2: MCL Algorithm

and Inflation operations on a given graph. Expansion operation is mathematically taking

square power of the stochastic matrix3. Whereas Inflation operation is mathematically taking

Hadamard-Schur4(element wise multiplication) power of the stochastic matrix, and then in

order to preserve stochastic nature of the matrix, scaling the result using a diagonal matrix.

Definition 3.4.2 For a given network of n elements and its corresponding stochastic matrix

M ∈ Rnxn, M ≥ 0 and inflation parameter r ∈ R, r≥ 1, inflation on elements of M is defines

as follows:

(Γr M)pq = Mr
pq/

n∑
i=0

(
Miq

)r

Since the performed operations are element-wise multiplication and scaling, Γr Inflation op-

erator does not have any effect on dimensions of the given matrix.

As mathematical structure of the operators also suggest, Expansion operation updates the

probabilities for each node pair, generating flow from one to the other for all connected nodes

of the graph. Expansion tries to maximize k value for random walk from any node of the

given graph. In some sense, Expansion operation resists seperation of clustering. On the

contrary, as mathematical nature of Inflation operation also suggests, Inflation operation by

making entrywise multiplication of probabilities, lowers probabilities of random walks among

clusters. The vital step of MCL process is iterative application of Inflation and Expansion

operations on a given graph, until an equilibrium state is reached. Figure 3.2 summarizes the

MCL algorithm. Iterations reveal underlying natural structuring of the graph.
3 http://en.wikipedia.org/wiki/Matrix multiplication, Last accessed 01 Sep 2009
4 Hadamard-Schur Transform: For A ∈ Rmxn, B ∈ Rmxn then (A.B) ∈ Rmxn where (A.B)i, j = Ai, j.Bi, j
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Figure 3.3: Seperation of graph during MCL iterations, from http://www.micans.org/mcl/

During iterations, the k value, for k-length path among nodes decreases, resulting in intra-

cluster connections between nodes to dissappear over time. Nodes that are densely connected

and the nodes having more inter-connections are expected to preserve their connection longer,

leading to star-like appearance of the clusters. Figure 3.3 depicts process of MCL over itera-

tions, it also confirms star-like structuring of the clusters over the time.

3.4.1 Determination of Clusters to be Used for Resolutions

Enright et al [6] observes for values of r > 1, inflation changes the probabilities of random

walks from a particular node to destination nodes as favoring more probable walks over less

probable ones. For clustering of yeast, Saccharomyces cerevisiae, we observed similar situa-

tion. Figure 3.4 show the cluster count values for r values 0.1 ≤ r < 1.0 and 1.1 ≤ r ≤ 2.0. In

order to determine the clusterings to use for resolutions, we calculated variance for each clus-

tering. Figure 3.5 shows variances for each clustering obtained for r values of 1.1 ≤ r ≤ 2.0.
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Figure 3.4: Inflation vs cluster counts

j

Based on these observations, we decided to use clusterings for r values of 1.1 ≤ r ≤ 2.0 as

resolution layers during visualization.

3.5 PPI Visualizer

Core PPI Visualization module is responsible for integration of submodules such as Markov

Clustering (MCL), R along with topGO, and presentation of the the PPI network with com-

bination of related data from MCL and GO annotations from topGO. Application of MCL

algorithm on a given network is actually a preprocessing stage for PPI visualization. One

of the reason behind the selection of MCL algorithm for clustering is its time performace.

Compared to most well-known clustering algorithms, MCL produces clusters in much less

time. For Inflation = k, 1.1 ≤ k ≤ 2.0, MCL clusters becomes more granular as k increases.

Another reason behind using MCL algorithm for clustering is having clusters of different

granularity per inflation parameter.

In order to construct layers of resolutions, Inflation parameter of MCL is adjusted to obtain

different clusters from the same graph. Even though the nature of MCL process is close

to being nested, MCL clusters obtained with inflation parameter adjustment are not nested.

To obtain a compound graph structure, obtained clusters are converted to layers of a nested
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Figure 3.5: Inflation vs Cluster Counts

hierarchy. Given a graph G, a node n ∈ G, resolutions level, l ∈ Nandl > 0, where l = 0

indicates the given graph), the cluster n belongs to at resolution level l + 1, Cl+1(n)) is the

most common cluster for level l + 1obtained for the elements of the previous level Cl(n).

For that purpose starting from most granular clusters obtained (k values close to 2.0) to more

compact clusters(k values close to 1.0) clusters are organized. By doing this, compound nodes

at each resolution forms compound graphs relative to resolution layer.

Depending on offline or online cluster loading feature, Core PPI visualizer is capable of inte-

grating preprocessing stage with visualization stage. For this purpose, PPI Visualizer gener-

ates seperate threads for each MCL run. Loading clusterings as different files is supported as

well.

After the preprocessing stage, PPI visualizer loads all layers obtained with calls to R-Engine

in parallel giving the upmost level the highest priority. For each cluster, most significant

GO-term depending on the Gene Ontology category (MF, BP, CC) settings is retrieved with

function calls over JRI to R-Engine. As layers are constructed, the view is updated accord-

ingly with Organic layout profile, meanwhile allowing end-user interactions with the graph.

We used yFiles library data structures and API for graph visualization(Section 3.5.1). yFiles’

21



approach for graph visualization is based on the Model-View-Controller paradigm. For graph

layouts, we used layout algorithms of yFiles.

3.5.1 yFiles

yFiles5 is a 2D graph visualization library which provides a very rich application program-

ming interface (API) that handles most functionalities that would be necessary for graph draw-

ing and diagramming.

It is basically composed of three main sub components:

• ”Basic” which serves as the ”backbone” for the main part of the library including the

main structure ”Graph”. It also provides variety of functionalities in addition to various

network and graph algorithms such as search algorithms, hashing functions etc.

• ”Viewer” which provides necessary interfaces for the user interaction related events to

be handled at the core ”Graph” side. It also provides standard graphical user interface

application related API.

• ”Layout” which provides interfaces for well-known basic graph layout algorithms and

their customizations. Layout algorithms provided by this component does not only

include node placement algorithms but also edge routing algorithms.

Requirements and restrictions for the usage of yFiles can be stated as follows6:

• There must exist a valid instance of type ”Graph” to create any graph elements at all.

• There is no way to create a node or an edge ”outside” a graph.

• All created graph elements instantly belong to a distinct graph.

5 http://www.yworks.com/en/products yfiles about.html, Last accessed 01 Sep 2009
6 http://www.yworks.com/products/yfiles/doc/developers-guide/index.html, Last accessed 01 Sep 2009

22



CHAPTER 4

RESULTS

4.1 Preprocessing Stage

Although it is possible to run MCL and topGO during visualization, in order to make perfor-

mance dedicated to visualization, we obtained MCL clusters and topGO values at the prepro-

cessing phase, and use the results during visualization.

4.1.1 Preparation of Clusters

Table 4.1 lists duration it takes to cluster yeast PPI network data per inflation. As for r > 1,

MCL starts to favor connections departing from a node. For r values converging to 1, inflation

is high, favoring intra-cluster connections, making it difficult for expansion to partition the

given graph. That is why for r values close to 1, it takes more iterations to cluster a given

network and consequently more time.

Table 4.1: MCL Duration (in sec) per inflation

r 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4
t 1155 758 452 244 163 112.5 85 67.5 55.5 45.5 38.5 34 29.5 26.5

4.1.2 GO Term Annotation

As we mentioned at Section 3.3, topGO package runs significant GO-Term analysis for a

given set of genes. Table 4.2 lists the ten most significant genes obtained for the first of

the clusters obtained for inflation r = 1.3. Obtaining significant terms as in Table 4.2 for a
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cluster takes approximately 30 seconds. As Figure 3.4 implies, as the inflation(r) increase

the clusters become more granular, leading to an increase in cluster count per MCL run.

For 1 < r ≤ 2, average value of 550 clusters per MCL run (including stand alone nodes

that do not belong to any cluster). So, it would take approximately 265 hours for topGO to

complete calculation. To overcome this situation, instead of calculating most significant GO

term for all clusters, we decided to discard GO term annotation for small scale clusters. So,

we decided to annotate GO-terms to clusters having sizes greater than a threshold. We labeled

each annotated compound node with the most significant GO term for that cluster (GO.ID of

the first row).

Table 4.2: Top ten significant GO terms for a cluster of 1872 genes

GO.ID Term Annotated Significant Expected pValue
1 GO:0000398 nuclear mRNA splicing, via spliceosome 99 72 30.16 3.0e-18
2 GO:0000377 RNA splicing, via transesterification re... 100 72 30.46 7.6e-18
3 GO:0008380 RNA splicing 134 87 40.82 9.1e-17
4 GO:0000375 RNA splicing, via transesterification re... 105 72 31.99 5.5e-16
5 GO:0051234 establishment of localization 1224 480 372.88 9.4e-14
6 GO:0051179 localization 1293 503 393.90 9.6e-14
7 GO:0006810 transport 1203 468 366.48 1.1e-12
8 GO:0048193 Golgi vesicle transport 183 98 55.75 3.4e-11
9 GO:0006888 ER to Golgi vesicle-mediated transport 88 56 26.81 1.0e-10
10 GO:0016192 vesicle-mediated transport 367 167 111.80 2.6e-10

4.2 Visualization

For visualization of PPI network yeast, we selected clusters for inflation parameters (1.1, 1.3,

1.4, 1.5, 1.6, 1.7, 1.8) to be the resolutions with cluster with r = 1.1 being the upper most, and

cluster with r = 1.8 being the down most resolution layers. Figure 4.1 depicts the most dense

clustered view the yeast PPI network, having actual non-connecting regions differentiated as

clusters.

Going some level deeper, for r = 1.4, we decided to set count limit for clusters such as for

clusters having size less than four nodes are not allowed to be a compound node. Figure 4.2

depicts this scenario, whereas Figure 4.3 presents one by one clustering match with the MCL

results. Looking at these snapshots, we can say MCL results in many small scale clusters.

Even when small sized clusters are unfolded, the network becomes to look more complex

because of the number of small sized clusters. So folding all clusters still seems to give better

results.
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Figure 4.1: Yeast PPI network for r = 1.1

Figure 4.2: Yeast PPI network for r = 1.4 with compound nodes having at least 4 nodes
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Figure 4.3: Yeast PPI network for r = 1.4

Since the compound nodes include subgraph in the inner side, for interesting GO Terms, nav-

igating to inner graph gives better view of the compound node (See Figure 4.4). In order to

observe a compound node’s sub nodes’ interactions with complete graph, unfolding a com-

pound node within the complete is another sufficient functionality for PPI visualization (See

4.5).
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Figure 4.4: Yeast PPI network for r = 1.4 navigation to inner graph

Figure 4.5: Yeast PPI network for r = 1.6 some compound nodes zoomed
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CHAPTER 5

CONCLUSION

In this thesis, we aimed to visualize large scale protein-protein interaction networks. As a re-

sult of the size of the data, any process on a large-scale PPI network suffers from performance.

We proposed a multi-resolution visualization approach, using MCL clustering, to accomplish

an organized view for a given PPI network. This way, instead of dealing with the whole data,

we processed clusters as units of network.

In this study, we concentrated on presenting a top-most view of the network initially, which

gives the user an insight about the organization of the network via GO Terms. This way, un-

like most visualization approaches, we present an initial view to the user, instead of making

the user wait through all process. While the upper layers of the network are presented, pre-

sentation of lower layers are prepared in the backgound, allowing the user to interact with the

network.

Our approach brings two preprocessing stages along with: MCL, and topGO annotations.

Although MCL does not suffer much from time performance (see 4.1), topGO does. Since

MCL clusters have sparse distributions for any scale of clusters, they include too many clusters

having quite few nodes in addition to large scale clusters. In order to prevent a lack of time

performance because of these clusters, we decided to discard significant GO Term calculation

for small scale clusters. However, still an additional mechanism might improve performance

by getting rid of the long time period preprocessing stage.

The initial results show that even the top most view of a given graph is well organized com-

pared to straightforward visualization approaches discussed in section 1.1. MCL results in

too many small scale clusters which still makes network complex than it ought to be, making

it ambigious to differentiate actual large structures inside the graph from small scale ones. In
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order to overcome this problem, we decided to unfold small scale compound nodes, however

this led to a more complex view. We used Organic Layout algorithm provided by yFiles as

default layout profile during tests. Although, most of the time, Organic Layout provides well

organized layout structure, some of the results were still not very well organized.

To conclude, we think that presenting large-scale PPI networks in multi-resolutions not only

improves visualization performance but also clarifies interpretation of a PPI network.

5.1 Future Work

This work can be used in reseach visualizing clusters of PPI networks, as it provides offline

loading of clusters, as well. With the topGO annotations, cluster compatibility with biological

process, or molecular functions can be examined.

This work further can be improved by a mechanism to optimize the number of resolution

layers, and the clusterings to be used at each resolution. Another addition would be allow-

ing end-user to add or remove resolution layers, so as to integrate additional comments on

visualization.

Providing modified layout algorithms which take compound nodes in consideration, during

layout organization may also improve the quality of presentation.

Since this tool is integrated with the R interpreter, additional functionalities can be added via

R scripts, or using additional packages related to Bioinformatics coming along with R.
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APPENDIX A

TOPGO INTEGRATION

A.1 Java R Interface Integration

In order to run R commands over Java, Java R Interface (JRI) needs to be installed and related

necessary configurations should be done. JRI basically load R dynamic library and provides

a Java API to make necessary calls to R engine from java. Having R engine installed on the

system is a prerequisite. R engine installation is available from R project site1. JRI installation

related information is also available at JRI site2.

JRI package can be installed in two ways: either as a subcomponent of rJava package, which

mainly has the complete opposite functionality or as seperate jar files. rJava package provides

interface to R to make Java calls. In case of JRI is meant to be installed with rJava installation:

firstly, rJava package needs to be be downloaded from rJava site 3. It shall be installed to

REngine directory. JRI related files are by default comes to path library/rJava/jri in R Working

Directory. Otherwise, in case only standalone JRI is meant to be installed, JRIEngine.jar,

REngine.jar and JRI.jar needs to be downloaded from JRI project site4 and copied under R

working directory.

In order to run JRI three jar files are necessary JRIEngine.jar, REngine.jar and JRI.jar. First

these jar files shall be added as external library to java project aiming to use Java API calls to

R.

Environment variables of the system shall be updated as follows:

1 http://www.r-project.org/
2 http://www.rforge.net/JRI/files/
3 http://www.rforge.net/rJava/files/
4 http://www.rforge.net/JRI/files/
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1. R HOME must be set to directory of R engine.

2. PATH must include path of R.dll

Check whether JRI is listed in java.library.path if it is not then add it as parameter to JVM as

-Djava.library.path = JRI directory

After completing the necessary steps mentioned above, in order to use JRI interface within

java, importing related packages of JRI will be sufficient.

A.2 ”topGO”

A.2.1 ”topGO” installation to R environment

In order to use topGO package, having R engine installed on the system is prerequisite. topGO

package can directly be installed from project site via R console using the following com-

mands:

> source("http://bioconductor.org/biocLite.R")

> biocLite("topGO")

topGO package can also be installed in java over Java R Interface as follows:

> import org.rosuda.JRI.REXP;

> import org.rosuda.JRI.Rengine;

> Rengine re=new Rengine(args, false, null);

> REXP expr;

> expr = re.eval("source("http://bioconductor.org/biocLite.R")",false);

> expr = re.eval("biocLite("topGO")",false);

A.2.2 ”topGO” functionality

In order to make GO annotations for clusters, R scripts for topGO shall be implemented. If the

given PPI network data does not include orf names of the given interactome, first orf names

shall be loaded via r script:
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> library(topGO)

> #read affy ORF dictionary to convert ORF names to affy names

> orf_affy_table <- read.csv(orfFile, header=T, as.is=T)

> affyList <- orf_affy_table$ID

> names(affyList) <- orf_affy_table$ORF

Then, library for the given interactome shall be installed and then loaded for GO annotations.

For yeast it can be done as follows

> library(topGO)

> # load the affy yeast2.db library

> library(package = "yeast2.db", character.only = TRUE)}

After loading the required library topGOData object instance needs to be created and GO

analysis shall be performed.

> # we can use this list to construct the topGOdata

> GOyeast2 <- new("topGOdata", ontology = "BP", allGenes = geneList,

description = "Cluster 2",\newline

nodeSize = 5, annot = annFUN.db, affyLib = "yeast2.db")\newline

> # perform the GO analysis

> result <- runTest(GOyeast2, "classic", "fisher")

> tableFis <- GenTable(GOyeast2, pValue = result, topNodes = 1, numChar = 40)
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