

USING SOCIAL GRAPHS IN ONE-CLASS COLLABORATIVE FILTERING PROBLEM

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

HAMZA KAYA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

SEPTEMBER 2009

Approval of the thesis:

USING SOCIAL GRAPHS IN ONE-CLASS COLLABORATIVE FILTERING PROBLEM

submitted by HAMZA KAYA in partial fulfillment of the requirements for the degree of
Master of Science in Computer Engineering Department, Middle East Technical Uni-
versity by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Miislim Bozyigit
Head of Department, Computer Engineering

Assoc. Prof. Dr. Ferda Nur Alpaslan
Supervisor, Computer Engineering

Examining Committee Members:

Assoc. Prof. Dr. Nihan Kesim Cicekli
Computer Engineering, METU

Assoc. Prof. Dr. Ferda Nur Alpaslan
Computer Engineering, METU

Assist. Prof. Dr. Tolga Can
Computer Engineering, METU

Dr. Aysenur Birtiirk
Computer Engineering, METU

Dr. Orkunt Sabuncu
ORBIM Information Technologies

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: HAMZA KAYA

Signature

ii

ABSTRACT

USING SOCIAL GRAPHS IN ONE-CLASS COLLABORATIVE FILTERING PROBLEM

Kaya, Hamza
M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Ferda Nur Alpaslan

September 2009, 94 pages

One-class collaborative filtering is a special type of collaborative filtering methods that aims
to deal with datasets that lack counter-examples. In this work, we introduced social networks
as a new data source to the one-class collaborative filtering (OCCF) methods and sought
ways to benefit from them when dealing with OCCF problems. We divided our research
into two parts. In the first part, we proposed different weighting schemes based on social
graphs for some well known OCCF algorithms. One of the weighting schemes we proposed
outperformed our baselines for some of the datasets we used. In the second part, we focused
on the dataset differences in order to find out why our algorithm performed better on some
of the datasets. We compared social graphs with the graphs of users and their neighbors
generated by the k-NN algorithm. Our research showed that social graphs generated from a
specialized domain better improves the recommendation performance than the social graphs

generated from a more generic domain.

Keywords: One-Class Collaborative Filtering, Recommendation Systems, Social Graphs

v

0z

TEK SINIF KOLEKTIF FILTRELEME PROBLEMINDE SOSYAL CIZGELERIN
KULLANIMLARI

Kaya, Hamza
Yiiksek Lisans, Bilgisayar Miihendisligi Boliimii
Tez Yoneticisi : Dog¢. Dr. Ferda Nur Alpaslan

Eyliil 2009, 94 sayfa

Tek sinif kolektif filtreleme, kolektif filtrelemenin karsit 6rneklerin olmadig: veri kiimeleri ile
ugragsmay1 hedefleyen 6zel bir durumudur. Bu caligmada, sosyal ¢izgeleri var olan tek sinif
kolektif filtreleme yontemlerine yeni bir veri kaynag tiirii olarak sunarak onlardan yararlan-
manin yollarm aradik. Iki boliime ayirdigimz ¢alismamizin ilk kisminda bazi popiiler tek
sinif kolektif filtreleme algoritmalar: igin sosyal ¢izgeleri esas alan agirliklandirma semalar:
olusturduk. Bu semalardan birinin baz1 test veri kiimeleri i¢in referanslarimizdan daha iyi
sonuc verdigini gozlemledik. Arastirmamizin ikinci kisminda veri kiimelerini inceleyerek
neden daha iyi sonu¢ aldifimizi bulmaya caligtik. Kullanicilarin ve k-NN algoritmasi ile
irettigimiz komgularinin olusturdugu ¢izgeleri kullandigimiz sosyal ¢izgeler ile karsilagtirdik.
Bu kisimdaki ¢aligmalarimiz bizi 6zellesmis alanlardan olusturulan sosyal ¢izgelerin nispe-
ten daha genel alanlardan olusturulan sosyal cizgelere gore Oneri basarisin1 daha arttirdigi

sonucuna ulastirdi.

Anahtar Kelimeler: Tek Sinif Kolektif Filtreleme, Oneri Sistemleri, Sosyal Cizgeler

To My Parents

vi

ACKNOWLEDGMENTS

I would like to thank to my supervisor Assoc. Prof. Dr. Ferda Nur Alpaslan for her guidance,
advice and criticism throughout the research. I also want to thank to the other committee

members for their comments and suggestions.

I would like to express my deepest gratitude to Ceren Ozakinci, who encouraged and sup-

ported me in this study.
I would also like to thank to Volkan Cetin for donating a 42" HDTV to support my research.

Thanks are also to all of my friends for their direct or indirect help.

vii

TABLE OF CONTENTS

ABSTRACT . . . o o e e e e e
OZ . .
DEDICATON o e
ACKNOWLEDGMENTS o o oo e e s s,
TABLE OF CONTENTS o oo e e e,
LISTOF TABLES o o s,
LISTOFFIGURES o o o s s,
CHAPTERS

1 INTRODUCTION o oo s s s,
1.1 RESEARCH MOTIVATION it
1.2 ORGANIZATION OF THE THESIS
2 BACKGROUND AND RELATEDWORK
2.1 RECOMMENDATION SYSTEMS i ..
2.1.1 OVERVIEW st
2.1.2 COLLABORATIVE FILTERING

2.1.3 COMMON PROBLEMS FACED IN RECOMMENDA-
TIONSYSTEMS o o oo e,
2.2 ONE-CLASS CLASSIFICATION v ..
2.2.1 OVERVIEW s
222 ONE-CLASS COLLABORATIVE FILTERING
2.3 SOCIAL GRAPHS s,
3 A NEW DATASET FOR OCCF PROBLEM: SOCIAL GRAPHS
3.1 AIM AND METHODOLOGY oo i i
3.2 DATASET SELECTION i,

33 ALGORITHMS o o o
3.3.1 K-NEARESTNEIGHBOUR
332 SINGULAR VALUE DECOMPOSITION
333 WEIGHTED ALTERNATING LEAST SQUARES
34 EVALUATION e
34.1 EXPERIMENT MEASUREMENT
342 RESULTS OF KNN-BASED ALGORITHMS
34.2.1 IMPACT OF PRE-PROCESSING
3422 IMPACT OF WEIGHTING SCHEMES
343 RESULTS OF SINGULAR VALUE DECOMPOSITION .
344 RESULTS OF wALS-BASED ALGORITHMS
3441 wALS-BASEo
3442 wALS-SG-D1
3443 wALS-SG-D2o
3.5 CONCLUSION e

4 DOMAIN SPECIFIC VS. GENERIC SOCIAL GRAPHS

4.1 PROBLEM DEFINITION AND METHODOLOGY

42 DATASETS o o

4.3 EVALUATION o ...

4.4 CONCLUSION e e

5 CONCLUSION e

REFERENCES e
APPENDICES

A DATASET HISTOGRAMS o

Al PART-I DATASET HISTOGRAMS

A2 PART-II DATASET HISTOGRAMS

B EVALUATION RESULTS

B.1 RESULTS OF KNN-BASED ALGORITHMS
B.1.1 IMPACT OF PRE-PROCESSING
B.1.2 IMPACT OF WEIGHTING SCHEMES

X

RESULTS OF SINGULAR VALUE DECOMPOSITION 88

RESULTS OF wALS BASED ALGORITHMS 90
B.3.1 wALS-BASE 90
B.3.2 wALS-SG-D1. 92
B.3.3 wWALS-SG-D2 94

LIST OF TABLES

TABLES

Table 2.1 A sample rating matrix to be used by a movie recommender system. Each
user may give ratings 1 to 5 to movies, where a 5 indicates that the user loves that

movie. Missing entries are denoted withadash (-).
Table 2.2 Popular datasets that have been used by researchers.

Table 2.3 A sample dataset for a service that needs to use one-class collaborative fil-
tering. A 1 in the dataset means that user has bookmarked the given web site. On
the other hand, a dash (-) indicates that user has not bookmarked the web site,
which means that either the user did not liked the website (negative example) or

the user was not aware of that web site (actual missing data).

Table 3.1 Properties of training datasets crawled from Del.icio.us.
Table 3.2 Properties of social graphs crawled from Del.icio.us.
Table 3.3 Properties of testdatasets.,
Table 3.4 Properties of pre-processed training datasets.

Table 3.5 Hypothetical taste matrix of users and movies for an example movie recom-

mender setup. Each feature can take a value in the range [0,5].
Table 3.6 Weighting schemes used for wALS in[36].
Table 3.7 Algorithms and their abbreviations used in the first part of our research.
Table 3.8 Results of knn-base algorithm for blog-programming-java dataset.

Table 3.9 Results of k-NN based algorithms for pre-processed and original datasets

generated using blog, programming and java tags.

Table 3.10 Results of all algorithms for pre-processed and original datasets generated

using blog, programming and javatags.

X1

Table 4.1 Properties of training datasets used in second part. 59
Table 4.2 Properties of social graphs used in second part. 59

Table 4.3 Similarities between collaborative graphs and social graphs computed ac-

cording to Equation (4.2). 60

Table 4.4 Similarities between collaborative graphs and social graphs computed ac-

cording to Equation (4.3). 61

Xii

LIST OF FIGURES

FIGURES

Figure 2.1 A two-class classifier applied to a dataset containing instances belong to
two different classes. Each instance in dataset is represented by two features,
named f1 and f2. The classifier is denoted by the solid line. The outlier (o) is

misclassified as a (+) by theclassifier. 12

Figure 2.2 A one-class classifier applied to the same dataset used in Figure 2.1. The
one-class classifier is denoted with dashes. One-class classifier effectively sepa-

rates the outlier from the genuine objects. 13

Figure 3.1 Histogram of pre-processed and original training dataset created with blog
tag. Columns represent the number of users that bookmarked a URL. Horizontal

lines represent the average bookmark count. 20

Figure 3.2 Histogram of social graph dataset created with blog tag. Columns represent

the number of friends ofauser., 21

Figure 3.3 Histogram of test dataset created with blog tag. Columns represent the
number of users that bookmarked a URL. On average we selected 5 test cases for

each URL. e 23

Figure 3.4 knn-base results for pre-processed and original datasets created using blog,

programming and java tags. P-PPV stands for the PPV value of pre-processed

Figure 3.5 knn-sg-pred results for blog-programming-java dataset for different A values. 39
Figure 3.6 A detailed view of Figure 3.5 for PPV € [0.45,0.65] 40

Figure 3.7 knn-sg-pred results for pre-processed blog-programming-java dataset for

different A values. 41

Figure 3.8 A detailed view of Figure 3.7 42

Figure 3.9 knn-sg-neigh results for blog-programming-java dataset for different A values.

Figure 3.10 A detailed view of Figure 3.9

Figure 3.11 knn-sg-neigh results for pre-processed blog-programming-java dataset for

different A values.

Figure 3.12 svd results for blog-programming-java dataset for different r values. r is

the number of the features used in calculations.

Figure 3.13 svd results for pre-processed blog-programming-java dataset for different

r values. P-PPV represents the results of pre-processed dataset.

Figure 3.14 wals-base results for pre-processed and original blog-programming-java
datasets for different r values. r is the number of features used and P-PPV is the

results of pre-processed dataset. L.

Figure 3.15 wals-sg-dl results for pre-processed and original blog-programming-java
datasets for different » values. r is the number of features used and P-PPV is the

results of pre-processed dataset.

Figure 3.16 wals-sg-d2 results for pre-processed and original blog-programming-java
datasets for different » values. r is the number of features used and P-PPV is the

results of pre-processed dataset.

Figure A.1 Pre-processed and original photography training dataset histograms.
Figure A.2 photography social graph histogram.
Figure A.3 photography test dataset histogram.

Figure A.4 Pre-processed and original blog-programming-java training dataset his-

TOGIAMS. . . . o v v v i e e e e e e e e e
Figure A.5 blog-programming-java social graph histogram.
Figure A.6 blog-programming-java test dataset histogram.

Figure A.7 Pre-processed and original blog-programming-python training dataset his-

TOZIaAMS. . . . ¢ o vt ot e e e e e e e
Figure A.8 blog-programming-python social graph histogram.
Figure A.9 blog-programming-python test dataset histogram.

Figure A.10Pre-processed and original photography-camera-canon training dataset his-

17074 1 o 413

X1V

43

44

45

47

48

49

50

51

69

70

70

71

71

72

72

73

73

74

Figure A.11photography-camera-canon social graph histogram.

Figure A.12Pre-processed and original photography-camera-nikon training dataset his-

TOGIAMS. . . . o o vt i e e e e e e e e e e
Figure A.13photography-camera-nikon social graph histogram.
Figure A.14Pre-processed and original blog-programming training dataset histograms.

Figure A.15blog-programming social graph histogram.

Figure A.16Pre-processed and original photography-camera training dataset histograms.

Figure A.17photography-camera social graph histogram.

Figure B.1 knn-base results for blog-programming-python dataset and pre-processed

blog-programming-python dataset.
Figure B.2 knn-base results for blog dataset and pre-processed blog dataset.

Figure B.3 knn-base results for photography dataset and pre-processed photography

dataset.
Figure B.4 knn-sg-pred results for blog-programming-python dataset.
Figure B.5 knn-sg-pred results for pre-processed blog-programming-python dataset.
Figure B.6 knn-sg-pred results for blog dataset.
Figure B.7 knn-sg-pred results for pre-processed blog dataset.
Figure B.8 knn-sg-pred results for photography dataset.
Figure B.9 knn-sg-pred results for pre-processed photography dataset.
Figure B.10knn-sg-neigh results for blog-programming-python dataset.
Figure B.11 knn-sg-neigh results for pre-processed blog-programming-python dataset. .
Figure B.12knn-sg-neigh results for blog dataset.
Figure B.13knn-sg-neigh results for pre-processed blog dataset.
Figure B.14 knn-sg-neigh results for photography dataset.

Figure B.15knn-sg-neigh results for pre-processed photography dataset.

Figure B.16svd results for original and pre-processed blog-programming-python dataset.

Figure B.17svd results for original and pre-processed blog dataset.

Figure B.18svd results for original and pre-processed photography dataset.

XV

75

76

76

77

77

78

79

80

80

81

82

82

83

83

84

84

85

85

86

86

87

88

89

89

Figure B.19wals-base results for original and pre-processed blog-programming-python

dataset.o e
Figure B.20wals-base results for original and pre-processed blog dataset.
Figure B.21 wals-base results for original and pre-processed photography dataset. . . .

Figure B.22wals-sg-d1 results for original and pre-processed blog-programming-python

dataset. e
Figure B.23wals-sg-dl results for original and pre-processed blog dataset.
Figure B.24wals-sg-dl results for original and pre-processed photography dataset. . . .

Figure B.25wals-sg-d2 results for original and pre-processed blog-programming-python

Figure B.26 wals-sg-d2 results for original and pre-processed blog dataset.

Figure B.27wals-sg-d2 results for original and pre-processed photography dataset. . . .

Xvi

CHAPTER 1

INTRODUCTION

1.1 RESEARCH MOTIVATION

As the World Wide Web evolves, the amount of information available to the users becomes
nearly impossible to manage. The information overload problem was foreseen by Peter J.
Denning in early 1980’s. In the ACM President’s Letter titled Electronic Junk [10], Denning
argued that, at some time, increasing use of electronic mail will overwhelm users. This argu-
ment made in 1982 when Internet was a small child. During this time WWW turned to be a
huge collection of web sites covering a wide range of areas including social networks, news
achieves, movie databases as well as the preferred way of global communication. Obviously,

information overload problem addressed by Denning is becoming more critical day by day.

Prior to Web 2.0, user collaboration and contribution was at minimum level. Major collection
of web sites were used to contain static information related to a specific topic. Search engines,
which are the first attempts to remedy information overload problem, were successful at some
degree. With introduction of Web 2.0 concept, people started to blog about their lives, upload
images and videos, share their thoughts, create interest groups, follow their friends’ activities
on the Internet. In other words, Web 2.0 brought a brand new conception to the web. WWW,
with its new face, is growing much faster than anytime before and people become much more
impatient about reaching the piece of information they want. With ease of communication,
users tend to locate what they are looking for directly with the help of their friends rather than

old-fashioned keyword-based search engines.

Other than the need of locating information, in which case user knows what he/she is looking

for, users are looking for services that can filter and recommend pieces of information that

they are even not aware of it but probably be interested in. Early examples of these services
includes news, movie, and music recommenders. The need for these kind of services also
extended with Web 2.0. Bookmark filters, friend activity filters and even friend filters can be
examples of new services. With introduction of Web 3.0 or Semantic Web information filtering

and need of such new services are going to be even more crucial.

Although information filtering is not a new research area and there are already several good
approaches that attack information overload problem, existing approaches need to be revised
and new methodologies have to be proposed as the WWW evolves. In this work we focus
specifically on one-class collaborative filtering problem and look ways of using social net-
work data which has a rising trend in current web. We believe that social networks will gain

even more importance with their use in information filtering applications.

1.2 ORGANIZATION OF THE THESIS

This thesis is organized as follows: Chapter 2 is intended to give some background informa-
tion about the recommender systems while pointing out previous works related to the rec-
ommender systems. Particularly, we give a formal definition of recommendation problem,
discuss existing approaches with paying special attention to collaborative filtering and one-

class classification. Finally, we close this chapter with a brief introduction to social graphs.

In Chapter 3, we give details of the first phase of our research. We present the aim of our
research and the methodology that we followed. After giving details of the algorithms we had

used, we discuss the empirical results we had obtained.

Chapter 4 covers the second phase of our research. We start our discussion by giving the
problem definition and our methodology. After that, we present the datasets we had used and

give the results of the experiments we had conducted.

Finally, Chapter 5 draw some conclusions forwarding the future developments of the work we

presented.

CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 RECOMMENDATION SYSTEMS

2.1.1 OVERVIEW

Personal experience is the most valuable information when we have to make choices. How-
ever, most of the time, we need to look for other people’s experiences that we trust due to
lack of personal experience on alternatives [41]. Recommendation systems simply try to
model this process. Recommendation systems can be viewed as specialized applications of
information filtering which aims to provide a much smaller and manageable subset of a large
collection of items that probably users will be interested in. Amazon’s Item-to-item recom-
mender [25], Netflix’s Cinematch DVD recommender [32], Last.fm’s music recommender

[22] are well-known examples of recommendation systems.

Formally, recommendation systems try to maximize a utility function L that measures how
related a given item is to a given user. Let U be the set of all users, and Y be set of all items.

For a given user u € U and given item y € Y, L can be defined as:

L:UXY > S 2.1

where S is the subset of Y that contains relevant items for u. In most cases S desired to be a
list which is ordered by relevance to the user’s preferences. Recommendation problem turns
to be a problem looking for valid subsets of Y for each user that maximizes users utility for

each element in the set:

VueU Vy €Y,y = argmax L(u, y) (2.2)
yeyY

Due to the information overload problem mentioned in previous chapter, it is mostly impossi-
ble for users to inspect all the items in set Y. Thus they rely on other people’s experiences, or
utilities, with at least a subset of Y. Recommendation systems automate this process and try

to fulfill the need of searching for people that experienced some items.

Recommendation systems make the use of user inputs in order to define utility of an item to
a user. As stated by [44], user inputs can be, but not limited to, user’s previous purchase data,
user’s ratings to a given item or user’s comments for that item. The most common user input
used by current recommender systems is user ratings. Ratings can explicitly be expressed
by the user as in the Netflix’s recommendation system. However, in most cases it is much
more easier to obtain implicit ratings as click or not-click, bookmark or not-bookmark [36].
In fact, as stated in [20], if a user is asked to provide ratings for the recommendation system,
he/she would get a bad impression of the system and even may decline to use it. Either way,
recommendation systems end up with a rating matrix containing known utilities of items to
users and expected to fill missing entries of that matrix. A sample rating matrix is presented

in Table 2.1.

Table 2.1: A sample rating matrix to be used by a movie recommender system. Each user
may give ratings 1 to 5 to movies, where a 5 indicates that the user loves that movie. Missing
entries are denoted with a dash (-).

Usual Suspects | Once | Hero | Bridget Jones’s Diary | Love Actually
User 1 5 - - 1 2
User 2 - - 2 5 5
User 3 - - 4 1 -
User 4 3 3 - - -

Recommendation systems have been classified into three categories in literature [1]:

o Content-based recommendation systems: Recommendation system tries to find similar
items to the ones that is known that given user was interested in. Item descriptions, user

comments and other contents that describe items are used during similarity calculations.
e Collaborative filtering: Recommendation system tries to find users with similar taste.

4

o Hybrid methods: These systems are simply combine content-based methods with col-

laborative filtering methods.

Content-based recommendation systems and hybrid methods are beyond the scope of our
work, thus we are going to give an introductory information only about systems that uses
collaborative filtering. [2] and [6] discuss content-based recommendation systems and hybrid
methods respectively. These two papers might be a good starting point for the interested

readers. Also [29, 15, 37] focuses on content-based recommendation systems.

2.1.2 COLLABORATIVE FILTERING

In [17], author defines collaborative filtering as:

“Collaborative filtering aims at learning predictive models of user prefer-
ences, interests or behavior from community data, that is, a database of available

user preferences.”

So collaborative filtering can be viewed as a recommendation technology that aims to learn
user’s tastes based on community’s previous actions. Of course community covers the user,
thus collaborative filtering makes use of user’s previous actions as well. The main assumption

of collaborative filtering is that those who agreed in the past tend to agree again in the future.

We can define collaborative filtering by using the same formal notation that we used to de-
fine the recommendation problem. Collaborative filtering uses other user’s utility functions

L(u’, y) to predict the value of utility of a user L(u, y):

L(uy,), L(uz, y), ... L(up, ¥y) = L(u, y), whereu; € M(u) 2.3)

So L(u,y) is a combination of several other user’s utility functions. This is the collaboration
part of the collaborative filtering. Note that a new function M is introduced in Equation (2.3).
M is the filtering part of the collaborative filtering. It is simply responsible for selecting a
high quality subset of all users. With the term high quality we refer that u relies on the tastes

of users selected by M.

Several recommendation systems that are using collaborative filtering as a basis can be found
in both the academia and the industry. Arguably, the most known and successful collabora-
tive filtering application in industry is Amazon’s Item-to-item recommender [25], which tries
to find similar items in its inventory by comparing all items based on the users purchased
them. Other than Amazon’s recommender, several collaborative filtering methods had been
proposed to Netflix Prize [32, 33]. Also Google News is known to be using collaborative
filtering to recommend news articles to its users [7]. Although no details have been pub-
lished officially, it is known that several Web 2.0 companies like Del.icio.us [9], Yelp [51]
and Last.fm [22] are also using collaborative filtering based systems at least as a part of their
services. In academia, Tapestry [14] is one of the first systems developed that uses collabo-
rative filtering. Tapestry was not an automated system. Particularly, it expected each user to
identify like-minded users manually [1]. Also, GroupLens [40] and PHOAKS [48] are well
known collaborative filtering applications. [44] gives a good overview of some well known

collaborative filtering recommendation systems that are being used in e-commerce field.

In [5], authors grouped collaborative filtering algorithms into two distinct groups: memory-

based and model-based approaches.

Memory-based algorithms use users’ previous ratings to make new predictions. In a typical
memory-based algorithm, an unknown rating of an item given by a user is simply aggregation
of the ratings given by other users to that item. Most of the time each user is assigned a weight
which affects the strength of that user in final rating calculation. Given a system with m users
and n items, let R be the rating matrix and R(i, j) denote the rating of item j given by user i.

Then, rating calculation of memory-based algorithms can be generalized as:

RG,j) =) R(a,)W(i,a) (2.4)

i+a
Where W is the m X m weight matrix that contains user similarities. W(i, j) = 1 means user
i and user j has very similar (if not identical) tastes while W(i, j) = 0 denotes that user i and

user j has nothing in common.

In order to understand the idea behind memory-based algorithms, K-Nearest-Neighbour (k-
NN) is a good starting point. k-NN is a simple yet effective memory-based collaborative

filtering algorithm. The algorithm first looks for K similar users for each user. After that, cal-

culates missing entries of matrix R depending on ratings of these K users. In k-NN algorithm,
for a given user i, other than the corresponding entries of K neighbours selected, all entries of

W; are equals to zero. W can be defined as follows:

sim(k, i), ifkek
W(k, i) = 2.5)

0, ifk¢ K

Several methods have been proposed for computing the similarity function sim(k, i). Minkowski

Distance, Pearson Correlation and Cosine Similarity are the most popular ones.

Minkowski Distance is known as the standard metric in geometrical problems. In memory-
based algorithms, a special case of Minkowski Distance is highly used which is also known as

Euclidean Distance. Euclidean Distance is obtained when p = 2 for the following equation:

n 1/p
dy = (Z i — y#’] (2.6)

i=1

[16] defines Pearson correlation as “the measure of the extend to which there is a linear

relationship between two variables”.

Pearson correlation can be computed as shown in Equation (2.7):

_1 - Xi—pc\ (Yi— 1y
=iy &

i=1

When computing Cosine similarity between two users, we treat user ratings as one-dimensional
vectors. Cosine similarity of two rating vectors is accepted as the similarity between two

users. Cosine similarity can be computed as in Equation (2.8):

2> 2

X-y
141 11511

sim(x, y) = cos(X,y) = (2.8)
Although metrics given above are three most popular metrics used in many previous works,
another similarity metric is worth to be mentioned. As can be seen in later chapters, due to the
problem definition of our work, Jaccard similarity is more suitable than Pearson correlation

or Cosine similarity. The important part is that Jaccard similarity can be used with binary

rating vectors. Jaccard coefficient is known to measure the ratio of the number of shared at-
tributes of two rating vectors to the number possessed by both vectors [18]. Jaccard similarity

is given as in Equation (2.9).

|A N B|
J(A,B) = 2.9
(A, B) AU B (2.9)
while Jaccard distance is defined as in Equation (2.10):
|AUB|-|ANB|
Js(A,B)=1-J(A,B) = 2.10
s(A, B) (A, B) AU Bl (2.10)

A detailed discussion on similarity metrics can be found in [18].

Note that up to this point we have always talked about user-to-user similarities. However,
without any modification, same memory-based algorithms can be used to find item-to-item
similarities. In fact that is what Amazon did in its item-to-item recommender [25]. Item-to-
item recommendation systems may overcome some of the issues with collaborative filtering
approaches that we are going to talk in next section. [42] analyzes different item-based rec-

ommendation algorithms.

Unlike memory-based algorithms, model-based collaborative filtering algorithms uses the rat-
ing database to learn a model after which it uses this model to make predictions. Model-based
algorithms uses the learned model to predict the ratings on unseen items [7]. In [5], authors
provide one of the earliest examples of model-based approach. Authors propose two different
approaches: Cluster Models and Bayesian Network Model. Most of the recent work captures
multiple interests of users by classifying them into multiple clusters or classes [7]. Other
than the methods proposed in [5], [7] uses Probabilistic Latent Semantic Indexing (PLSI) and

MinHash, [43] uses Latent Semantic Indexing (LSI) and [4] uses Latent Dirichlet Allocation.

In this work we mainly used memory-based collaborative filtering algorithms, thus we are not

going into details of model-based approaches.

Regardless of the recommendation technique choice, all recommendation systems face some

issues. We are going to talk about these issues in next section.

2.1.3 COMMON PROBLEMS FACED IN RECOMMENDATION SYSTEMS

Other than some scientific applications, it is hard to find multipurpose recommendation sys-
tems, especially as a working product. Prediction methods and learning algorithms used in
recommendation systems are highly customized to the service that is using the recommenda-
tion system [38]. This is due to the nature of datasets available. In fact, performance of the
algorithms presented in this research area are highly dependent on the dataset it is dealing
with. Although there is no generic system, all the systems developed faces a set of common
problems: Data sparsity, new items added to the system, new users added to the system, and

computational resource requirements.

Data sparsity is arguably the most problematic issue for all recommender systems. Usually,
the number of ratings available to the system is very small compared to the number of ratings
that the system is expected to predict [1]. In fact, data sparsity is the key point that raises the
recommendation problem itself. If we knew all the ratings then there would be no need to
compute missing ratings. Due to data sparsity, it becomes very hard for a recommendation
system to mimic users’ tastes. Some popular datasets that have been used by researchers are

listed in Table 2.2. Unfortunately, most of the time, real world datasets are even more sparse.

Table 2.2: Popular datasets that have been used by researchers.

Dataset User Cnt. | Item Cnt. | Rating Cnt. Density
MovieLens 943 1,682 100,000 0.06
Book-Crossing | 278,858 271,379 1,149,780 | 1.51 x 107>
Jester Jokes 73,496 100 4,100,000 0.56
EachMovie 72,916 1,628 2,811,983 0.02
Netflix 480,189 17,770 100,480,507 0.01

New items added to the system and new users added to the system problems are very similar.
In order the recommendation systems to make good predictions about users’ tastes, it has to
know something about them. For instance, k-NN algorithm has no chance to find the neigh-
bours of a new user unless he/she rates some items. Same problem exists for new items as
well. Item similarity will simply fail, if no one has rated that item. Especially recommenda-
tion systems designed for industry need to handle these problems with care since there will

always be new comers to the system and system has to make good predictions to achieve user

satisfaction. New items and new users problems can be faced on an ongoing system. A very
similar problem, named cold start, exists for all systems that are running for the first time
since initially system will have no ratings at all. [45], [39] and [52] presents ways to attack

these problems.

Computational resource requirements of recommendation systems can be very critical. These
requirements become crucial especially for systems that are expected to make recommen-
dations in a specific time frame. A typical recommendation cycle can be divided into two
distinct phases: Training phase and prediction phase. During the training phase, system com-
pletes intermediate computations like finding user neighbours, item clusters, etc. Later in
prediction phase, system makes use of these intermediate data to complete actual predictions.
Prediction phase is where end-users faces the outcomes of the recommender. The required
run time of these two phases highly depends on the domain of the service. For example, a
service that recommends movies to users can extend the training phase at will. In fact, most
of such systems completes training phase offline. However, it is desirable for the system to
make predictions in real time. End-user will not wait long for the system to recommend some
movies to him/her. For an e-commerce service in which several new items added to the in-
ventory and several expires at any time, it is important that the recommender system adjust
accordingly since these modifications of the inventory will invalidate the training data set,
thus training phase. Otherwise, inevitably, system may recommend expired items or never
recommend newly added items. Recomputing the training phase is the trivial solution to this
problem, if only it were a cheap operation. In a real-world service where the recommender
is expected to make recommendations out of millions of items to millions of users, repeating
the training phase is simply not affordable. For the basic nearest neighbour algorithm, system
has to recompute user-to-user similarities each time a new user added to the database. Al-
though the problems mentioned above are common among all recommendation approaches,
memory-based techniques suffer more. Several techniques have been proposed to overcome
this issue. Google News recommendation system tries to parallelize existing methods using
their large-scale data processing paradigm MapReduce [8, 7]. In [53], authors propose in-
stance selection techniques to reduce the training set size, thus make it more manageable.
[42] and [25], focuses on item similarities instead of user similarities where number of users

exceeds number of items.

10

2.2 ONE-CLASS CLASSIFICATION

2.2.1 OVERVIEW

Supervised learning aims to build a model of the distribution of class labels [21]. The main
difference between supervised learning and unsupervised learning is that in supervised learn-
ing instances in a dataset are given with known labels. Thus, the learned function or model
is expected to classify a newly seen instance into known labels (or classes). In other words,
assigning a new object to one of the classes that are already known is the classification task

[47].

In the existence of multiple classes, the classification task is named as multi-class classifi-
cation in literature. A multi-class classification problem can be split into several two-class
classification problems [11]. In a two-class classification task, a new object can be labeled as
a member of either one class or the other. It is not possible for an object to be neither in the
first class nor the second class. As the author of [47] pointed out, objects to be classified can
be scattered all around the feature space, but one can expect that objects belong to same class
will be located near to each other and form a cluster. Thus a normal two-class classifier can
separate these clusters. However, in case of the existence of an outlier, the classifier will sim-
ply mis-classify it. This situation can be seen in Figure 2.1 where objects of the two classes
are denoted with a (*) and (+) respectively. The outlier object (0) which is not a (+) is mis-
classified by the two-class classifier. This example brings a new problem: outlier detection. If
we were to detect outliers prior to the classification than the trained classifier would perform

much better.

Outlier detection is actually another classification problem. In this problem, classifier is ex-
pected to classify an object either as a genuine object or an outlier object [47]. The main
concern of this classifier is that whether an object is genuine or not. The actual class of the
outlier object does not matter. Outlier detection is also known as one-class classification in
literature which is the main focus of our work. A one-class classifier that would find out the

outliers for the example given in Figure 2.1 is shown in Figure 2.2.

Previously, we stated that one-class classifiers look whether an object is genuine or not. If we

11

f2

f1

\j

Figure 2.1: A two-class classifier applied to a dataset containing instances belong to two
different classes. Each instance in dataset is represented by two features, named f1 and f2.
The classifier is denoted by the solid line. The outlier (o) is misclassified as a (+) by the
classifier.

think of being genuine and not being genuine as two classes, then one-class classification
problem turns into a two-class classification problem, in which we try to label an object
either as genuine or not genuine. However, there is an important difference between one-
class and two-class classifiers which makes one-class classification problem harder and more
interesting: Unlike two-class classification problems, we have examples of only one class
in one-class classification problem. Thus we have a set of instances that we know they are
genuine and based of these instances we try to learn a model which can recognize genuine

objects.

Several methods have been proposed to solve one-class classification problem. One popular
approach is to use One-class Support Vector Machines (SVM). In [46], authors propose to
extend SVM methodology to handle one-class case. [26] applied this method to document
classification problem. In [3] authors used density estimation techniques. Authors of [50]
used an EM-like algorithm. A detailed list of previous works and analysis of approaches can

be found in [47].

12

f1

\j

Figure 2.2: A one-class classifier applied to the same dataset used in Figure 2.1. The one-class
classifier is denoted with dashes. One-class classifier effectively separates the outlier from the
genuine objects.

2.2.2 ONE-CLASS COLLABORATIVE FILTERING

In previous section, we discussed recommendation systems that uses collaborative filtering.
We divided collaborative filtering algorithms into two sets based on the approach they use.
However, we did not make any distinction depending on the dataset available. In fact, most of
previous research on collaborative filtering also did not make any distinction, depending on

the assumption that both positive and negative examples exist in dataset.

For instance, in a movie recommendation service, if service lets users give explicit ratings
from 1 to 5, then the recommendation problem can be seen as finding a 5-class classifier for
each user. By applying the learned model to existing items, system can obtain the unknown
ratings for a user. Most of the proposed methods assumes that training dataset contains at

least one instance for each of the five classes.

Now, let us consider another recommendation service. This service lets its users to save their
bookmarks on it. Also, depending on user’s bookmarks, service makes recommendations to
the user. In this case, the dataset available to the recommendation system is all bookmarks of

all users. A possible portion of the actual dataset is given in Table 2.3. If a user bookmarked a

13

web site, we can conclude that user liked that web site, thus we put a 1 into the corresponding
cell. However, if user did not bookmark a web site, either the user viewed that web site
and did not find it bookmark-worthy or the user has not viewed the web site yet. User even
may not be aware of the existence of such a web site. In other words, there is no way for the
recommendation system to make distinction between the negative and missing positive entries
in the dataset. After all, as can be seen in Table 2.3, dataset in such a system will consist of

only positive (1’s) and missing (dashes) entries.

Table 2.3: A sample dataset for a service that needs to use one-class collaborative filtering.
A 1 in the dataset means that user has bookmarked the given web site. On the other hand, a
dash (-) indicates that user has not bookmarked the web site, which means that either the user
did not liked the website (negative example) or the user was not aware of that web site (actual
missing data).

Google.com | Twitter.com | Yahoo.com | Microsoft.com | Facebook.com
User 1 1 - 1 1 -
User 2 - - - - 1
User 3 - 1 - - 1
User 4 1 1 - - 1
User 5 - - - 1 1

It is obvious that such a bookmarking service will face a one-class classification problem
during the recommendation step. However, as authors of [36] stated, one-class collaborative
filtering differs from one-class classification in that one-class collaborative filtering explores

several concepts collaboratively while one-class classification aims to learn a single concept.

The key difference between traditional collaborative filtering and one-class collaborative fil-
tering methods is that later one has only positive examples in training set [36]. However, tra-
ditional collaborative filtering methods can be used to attack one-class collaborative filtering
problems. By interpreting missing data as negative examples one can obtain a dataset in which
instances belongs to two classes. In fact, this approach already have been used by authors of
[7]. Of course this approach will be biased as it will mark some positive examples as negative.
In [27], authors focus on the issue of modeling rating distribution of missing data. Although
authors worked on multi-class problems, their work can be used in one-class collaborative
filtering problems as well. [36] discuss several strategies to distinguish negative examples out
of missing data. In their work, authors experimentally compared several approaches including

all missing data as negative, no missing data as negative and some weighting schemes to tag

14

an instance as negative. They had proposed a new method named Weighted Alternating Least

Squares which is based on Weighted Low-Rank Approximations discussed in [31].

2.3 SOCIAL GRAPHS

In graph theory, a graph is a combination of a set of points (or nodes) and a set of lines
(or edges) that connects pairs of points. A social graph or social network is a graph where
each node represents a person and each edge represents the connection between two people.
Similar to usual graphs, social graphs can be either directed or undirected. While friendship
between two people can be represented by an undirected social graph, fan relationships have
to be represented by a directed social graph since one does not necessarily be a fan of his/her
fans. Depending on the relationship used as edges, several different types of social networks

can be built like friendship, mutual support, cooperation, and similarity [35].

From now on, unless explicitly stated, a social graph will be considered to be undirected for

the sake of simplicity. However, all the ideas can easily be applied to directed social graphs.

With no doubt, social graphs store a highly valuable implicit information: the trust among
people. If a node (a person) is connected with another node than we can conclude that these
people trust each other on the relationship emphasized by the edges of that graph. Especially
in domain specific social graphs trust may replace the neighbours of a user that a recommender
system thinks that have similar tastes with that user. For example, a list of trusted friends of
a math professor drawn from his friendship social graph will not be so useful for a recom-
mendation system that aims to recommend research papers to the professor. On the contrary,
a social graph of colleagues would be extraordinarily helpful in making such recommenda-
tions. Actually, this simple example points out one common property of social graphs and
recommendation systems: collaboration. Collaborative filtering recommendation systems is
known to be a strong type of recommendation systems that tries to make recommendations
based the collaboration among its users. By nature, collaboration is the main flavor of a social
graph. Every day we ask for our friends’ ideas and give advices on movies, songs, restaurants,

brands, etc. and let the collaboration flow over the edges of our social graph.

Although it is rather a new topic, social graphs have already been analyzed vastly. However,

with the advances in web itself, there is still much work to do to fully understand social graphs.

15

ReferralWeb is one of the earliest systems that combines social networks and collaborative
filtering [19]. Unlike most of recommender systems, ReferralWeb does not expect its users
to create their profiles. It builds those profiles using public documents found on the web.
Similarly, it does not expect its users to create a social network. Instead, ReferralWeb attempts
to uncover existing social graphs [19]. Authors of [30] used trust in recommender systems.
Their method looks for similar agents to make recommendations. Also [34] and [13] discusses
using trust in recommender systems. Other than these papers, [28], [24] and [35] are some

research papers worth to mention.

In conclusion, we believe that people have a default trust to their friends’ tastes, which col-
laborative filtering algorithms try to reveal. Thus, having a list of trusted people in hand,
collaborative filtering methods can be improved. In fact, this is what we are going to do in
the first part of our research by specially focusing on one-class collaborative filtering prob-
lem. To the best of our knowledge [36] is the most recent paper that deals with our problem.
In literature, several researchers had applied traditional collaborative filtering methods to at-
tack one-class collaborative filtering problems by assuming all missing instances as negative.
However, it is obvious that such problems needs special treatment. As authors of [36] argued,
observing all missing entries as negative would be highly biased. In [36], authors named
these kind of problems as ”One-Class Collaborative Filtering” problems and, unlike previous
researchers, proposed specialized methods for this problem set. In the first part of our re-
search, we followed the same path as the authors of [36] and proposed specialized methods
to one-class collaborative filtering problem with the help of social graphs. We believe that
in a perfect recommendation world, a social graph would be the same of a neighbour graph
created by a collaborative filtering recommender system. In the second part of our research
we focused on this issue. To explore the resemblance of social graphs and neighbour graphs,
we applied one-class collaborative filtering methods to generate neighbour graphs. In litera-
ture, [23] is the only work we know that explores the properties of a neighbour graph created
by a recommender system. However, [23] only inspects the neighbour graphs. They did not
focused on the resemblance of that graph with an actual relation graph. By comparing the
social graphs and neighbour graphs, we found that social graphs created from a specialized
domain better resembles to their neighbour graphs than the social graphs created from a more

generic domain.

16

CHAPTER 3

A NEW DATASET FOR OCCF PROBLEM: SOCIAL GRAPHS

In this chapter, we are going to give details of the first part of our research. For this part, we
modified some popular memory-based collaborative filtering algorithms, that have been pro-
posed to solve one-class collaborative filtering problem, in order to take advantage of social
graph data. We empirically compared recommendation performances of new algorithms with

their original forms.

In the first section we are going to state the aim of this research and the methodologies we
followed. In second section, we are going to give details of the datasets that we had used.
Third section will cover the details of algorithmic modifications. In this section we are going
to inspect each algorithm we used separately. Finally, we will close this chapter by going over

the evaluation methods we used and results we obtained.

3.1 AIM AND METHODOLOGY

For almost all of the collaborative filtering methods, a very sparse rating matrix is provided
and it is expected to make accurate predictions based on this matrix. Some of them look for
implicit features while others look for collaboration patterns. However, all meet at the same
point: if training set had a higher quality, we could provide more accurate predictions. In one-
class collaborative filtering applications, dataset becomes even more problematic since it only
contains positive examples. In this part of our research, we introduced social graphs as a new
data source for classical approaches and we looked for ways to make this data useful. Using
social graph data with accordance to training dataset, we believe that one-class collaborative

filtering methods can perform better.

17

Basically, we had used social graphs in two different ways: pre-processing the training dataset
and generating weighting schemes for algorithms. Also for the k-NN algorithm we used
social graphs in a trivial way by selecting neighbours of users directly from the social map.
Pre-processing the training dataset is explained in next section while weighting schemes are

going to be explained in Section 3.3.

3.2 DATASET SELECTION

Like other data mining fields, recommendation systems also have standard datasets which
are being used by researchers to compare performance of their methods. There are several
datasets, some of which are listed in Table 2.2. Unfortunately, in our research we were unable
to use any of these standard datasets since none of them contains social relationships between
its users. To test the effect of using social data we needed a dataset that contains ratings as
well as user relations. Similar to the authors of [36], we chose Del.icio.us [9] as our base data

source.

Del.icio.us is a famous bookmarking service, where users can save their bookmarks, write a
short description about them and tag them. Also users can build networks by making friends
or be fan of other users. Although, Del.icio.us officially provides an API, due to its restrictions
we manually crawled it. Starting from a base tag, our crawler initially fetches all URLs labeled
with that tag. After all URLs are retrieved, for each URL, crawler starts to fetch a list of users
that bookmarked it and for each user, crawler fetches friends of that user. Finally, we pre-
process the datasets obtained to remove users that had not bookmarked any URL and URLs
that had not been bookmarked by any user. This procedure results in a m X n rating matrix R
and a m X m adjacency matrix G where m is the user count and # is the URL count. Entries of

R is defined as in Equation 3.1.

o 1, if URL j has been bookmarked by user i
R@, j) = (3.1
0, if URL j has not been bookmarked by user i

Similarly, entries of G is defined as in Equation 3.2.

18

o 1, ifuseriis afriend of user j
GG, j)) = 3.2)

0, ifuseriisnot a friend of user j

For the first part of our research, we have created four different datasets. For two of them,
we had used bookmarks labeled with more than one tag. Dataset properties are listed in
Table 3.1. The idea behind selecting bookmarks labeled with more than one tag is that those
URLSs are from a more specific domain. For example, a dataset consists of URLs tagged
with blog, programming, and JavaScript is definitely more focused than a dataset consists
of URLs tagged only with blog. In the former case we know that the user is related with
JavaScript programming and we can simply assume that same user will also be interested in
Python programming rather than cooking. However, in the later case, we cannot make such

an assumption. Users are equally likely to be interested in Python programming, cooking or

politics.
Table 3.1: Properties of training datasets crawled from Del.icio.us.
Tags Used User Cnt. | URL Cnt. | Bookmark Cnt. | Density
blog 27,142 1,296 59,888 0.0017
photography 31,085 1,273 71,910 0.0018
blog, programming, java 23,955 1,084 60,869 0.0023
blog, programming, python 14,140 929 39,579 0.0030

As can be seen in Table 3.1, datasets generated are highly sparse, which is an expected result.
Due to the nature of one-class collaborative filtering problems, datasets contain only positive
examples. One other expected property of our datasets is that most of the URLs had been
bookmarked only a couple of times, while a small set of URLs had been bookmarked by
hundreds of users. This issue is perfectly visualized by dataset histograms. Figure 3.1 shows
a histogram of the dataset created using blog tag. Histograms of other training datasets can

be found in Appendix A.1.

Del.icio.us is one of the best options to create a dataset that suits one-class collaborative
filtering problem with social graphs. However, Del.icio.us mainly focuses on bookmarking
URLSs, it does not encourage its users to socialize. That is why the social graphs we had

created for each dataset is even more sparse than the training datasets. The properties of

19

350

300

250

200

Bookmark Count

150

100

— Pre-processed - Original

Figure 3.1: Histogram of pre-processed and original training dataset created with blog tag.
Columns represent the number of users that bookmarked a URL. Horizontal lines represent

the average bookmark count.

social graphs are listed in Table 3.2, while histogram of the social graph created using the
blog tag is shown in Figure 3.2. To increase the visual quality of histogram, we truncated top-

50 users. If we were to add those users as well, the graph would be much more left-skewed.

URLs

For histograms of other social graphs refer to Appendix A.1.

Table 3.2: Properties of social graphs crawled from Del.icio.us.

Tags Used User Cnt. | Edge Cnt. | Density
blog 27,142 71,110 0.000096
photography 31,085 87,046 0.000090
blog, programming, java 23,955 77,016 0.000134
blog, programming, python 14,140 47,090 0.000235

In order to find out how algorithms perform, we created a test set for each of training datasets.
Under normal circumstances, standard test set selection methodologies could have been used.

However, due to high sparsity rates, we had forced to use a custom selection technique. Nor-

20

—Friend Cnt.

Friend Count

Users

Figure 3.2: Histogram of social graph dataset created with blog tag. Columns represent the
number of friends of a user.

mally, in K-fold cross validation method, one is expected to partition the training dataset into
K subsamples which are generally drawn in random order. During our first attempts, we had
noticed that random picks from training dataset would lead us to a training set which con-
tains several ghost users that have not bookmarked any web sites. Thus we implemented a
simple logic that selects less test cases from users that have less bookmarks which drastically
decreased number of ghost users. We had selected five test sets for each dataset. During
our tests, we noticed that all test cases more or less perform same. Thus we discarded the
test results of other four sets and focused on a single test set for each dataset for the sake of
simplicity. Similar to the previous datasets, properties of test sets are given in Table 3.3 and

histogram of blog dataset is given in Figure 3.3. Appendix A.1 contains rest of histograms.

Table 3.1 summarizes the level of sparsity problem that we faced. Having a denser dataset
could help us to make better recommendations, however we have no complaints about this is-
sue since sparsity problem is one of the main reasons that we need a recommendation system.

To remedy the sparsity problem, at least to some degree, we pre-processed training datasets

21

Table 3.3: Properties of test datasets.

Tags Used User Cnt. | URL Cnt. | Test Case Cnt.
blog 27,142 1,296 5,695
photography 31,085 1,273 7,155
blog, programming, java 23,955 1,084 6,826
blog, programming, python 14,140 929 4,997

to populate them with the help of social graphs. Simply using a user’s friends as neighbours,
we followed a k-NN-like approach to populate the rating matrices. This approach differs from
k-NN in two main aspects: neighbour selection method and prediction confidence level. Un-
like the k-NN algorithm, we accepted positive ratings that we are highly confident about. As
we are going to explain in the next section, weighted average of neighbours’ ratings is used
as predicted rating in k-NN. If we were to use the same prediction schema, we would result in
a highly degenerated dataset. We used the confidence level to maintain the trade-off between
a degenerated dataset and a denser one. We had chosen the confidence levels empirically.
The resulted datasets are shown in Table 3.4. Figure 3.1 shows the histogram of the newly

generated training dataset for blog tag as well as original blog training dataset.

Table 3.4: Properties of pre-processed training datasets.

Tags Used User Cnt. | URL Cnt. | Bookmark Cnt. | Density
blog 27,142 1,296 73,191 0.0020
photography 31,085 1,273 88,953 0.0022
blog, programming, java 23,955 1,084 90,513 0.0035
blog, programming, python 14,140 929 69,082 0.0053

3.3 ALGORITHMS

There are several algorithms proposed in academia to solve the collaborative filtering problem.
We had chosen three popular algorithms to focus our research on the value of social graphs
for one-class collaborative filtering problem rather than on algorithmic details. Choosing well
studied algorithms also makes us feel confident with the robustness of the algorithms and the
results they produce. In fact, several algorithms that have been proposed perform well on a

specific dataset while hardly tolerable to any dataset changes.

22

— Bookmark Cnt.

Bookmark Count

___‘—|

URLs

Figure 3.3: Histogram of test dataset created with blog tag. Columns represent the number of
users that bookmarked a URL. On average we selected 5 test cases for each URL.

Although we chose popular algorithms, our results are mostly not comparable to previous
research since we were unable to use a standard dataset. However, the behavior of algorithms
(convergence rates, running times, memory consumption, etc.) were as expected in our test

runs.

This section covers the details of the standard algorithms we had used and the modifica-
tions we made to them. We start our discussion with a de facto memory-based algorithm:
k-Nearest Neighbour. In the second part, we will be talking about Singular Value Decom-
position, which is a method that is highly popular nowadays. Finally, we are going to talk
about Weighted Alternating Least Squares algorithm, a variation of Low Rank Approximation

algorithm, proposed by the authors of [36].

3.3.1 K-NEAREST NEIGHBOUR

With no doubt, k-Nearest Neighbour algorithm is the most known algorithm in machine learn-

ing field. This algorithm is simple to implement and produce acceptable results for different

23

datasets. Basically, k-NN searches for & most similar users to each user, which are called
neighbours of users. After finding neighbours for all users, algorithm makes predictions for
a user based on that user’s neighbours’ ratings. The process of selecting neighbours is shown

in Algorithm 1.

Algorithm 1 Neigbour selection process of k-NN algorithm.
Require: Neigbour number k, user list U, user rating vector set V

Ensure: User neighbour vector set N
for user u; in U do
Initialize priority queue Q;
Vi « V[u;]
for user u; in U do
if u; # u; then
Vi« V[ujl
s « similarity(¥;, V)
enqueue(Q;, uj,)
end if
end for
Nlu;] « dequeue(Q;, k)

end for

Similarity metric selection is the critical part of Algorithm 1. We already discussed several
popular similarity metrics in Section 2.1.2. As we stated, Pearson Correlation and Cosine
Similarity have been preferred by most of the previous researchers. However, we believe that
Jaccard Similarity is more suitable to one-class collaborative filtering applications since we
are dealing with binary rating vectors. Thus, we had used Jaccard Similarity as defined in

Equation (2.9) in the similarity procedure called in Algorithm 1.

Neighbour selection can be seen as the training phase of k-NN algorithm. Training phase can
be extended to cover prediction calculations if the algorithm is expected to find predictions
for all possible user-item pairs. However, generally prediction step is done in testing phase
in which the algorithm is expected to calculate predictions only for test cases. The basic
approach to make predictions is to equally value the ideas of neighbours. In other words, the
final rating is the average rating of all neighbours. For the one class collaborative filtering

problem, predicted rating of user u to item i can be formulated as in Equation (3.3).

24

2, 0(n, Q)
p(u, Ny, i) = GNT (3.3)

where N, is precomputed list of neighbours of user u. 6(n, i) is equal to 1 if user n rated item

i and is equal to O otherwise.

Another common approach for making predictions using k-NN algorithm is that each neigh-
bour is assigned a weight which is most of the time the similarity between the user and that

neighbour. In that way, final rating can be computed as in Equation (3.4).

S Rn,)W,)
nen,
N, i) = 3.4
PN D) = e o) G

Wi wo

where R is the training dataset matrix and W is a square matrix that stores the weights (i.e.

similarities) of users.

Note that Equation (3.4) will always produce a positive real number as the predicted rating.
If we were expected to find an integer rating between 1 and 5, then we would simply round
the final result. However, if we had only two possible ratings, 1 and O, then rounding would
be highly biased. In fact, in our tests, this prediction schema produced very poor results. To
overcome this problem, we used a normalized form of weighting which is shown in Equation
(3.5). This equation simply uses the average weights of positive ratings and average weights

of negative ratings to compute the predicted rating.

S S OWaLm) (% (1= o0m)Wm)
N nen, _ nen,
S | ey > (1= on.9))

neny, nenNy,

Until now we only talked about standard k-NN algorithm which is expected to run on a dataset
that contains positive examples as well as negative examples. Obviously, this is not our case.
In order to make classical k-NN algorithm function as expected, we marked all missing entries
as negative which is an assumption made by many researchers [36]. Although this assumption
is biased and will lead us in some false negatives, the overall effect of it will be minor since
most of the people are expected to be interested in only a small set of items. In fact, this is the

main cause of data sparsity.

25

We had run k-NN algorithm with some small modifications as explained above to constitute a
base for other modifications we made using social graphs. The results of our experiments are

given in Section 3.4.2.

Before modifying the k-NN algorithm further, we ran an algorithm which is a trivial combi-
nation of k-NN and social graphs. This algorithm basically operates as k-NN, other than its
neighbour selection process. We directly used users’ friends as neighbours and used all other
k-NN steps as they are. Due to sparsity of social graph we did not limit neighbour count, in
other words, we did not use a k value. However, for denser social graphs, usage of an appro-
priate k value should be considered. The results of these experiments also can be found in

Section 3.4.2.

As we already stated, in this part of our research, we only focused on using social graphs
in creating different weighting schemes. For k-NN algorithm, we had used social graphs in
two different ways. First modification is done in the neighbour selection phase while second

modification is in the prediction phase.

Referring to Algorithm 1, in neighbour selection phase actual decision depends on the value
returned by similarity procedure call. By modifying this procedure we have the opportunity
to alter the neighbour selection process. We added a new term to similarity equation to favor
a user’s friends during selection phase. The final similarity equation is given by Equation
(3.6). In this equation, r,, is the rating vector of user u; and J(7,, ?u_/.) is the Jaccard similarity
between users u; and u;. n(u;, u;) is an indicator function where its value is 1 if #; and u; are

friends.

similarity (u;, u;) = A J(7y;, 7y;) + (1 =) n(u;, u;), where 0 < A < 1 3.6)

By deploying a new variable A into the similarity calculation, we linearly combined the Jac-
card similarity with the data we took from social graphs. In this equation, n will always result
in either O or 1. Since Jaccard similarity between two vectors is always in the range [0, 1], by
forcing the A to be in the range [0, 1] also, we ensure that the new similarity value is normal-
ized. This is an important property since, depending on the A value, the similarity results can

be highly skewed in favor of one side.

Note that A value controls the balance between favoring social and collaborative aspects. At

26

first glance, equally favoring both sides seems to be reasonable. However, due to the high
sparsity rates of social graphs we had used, we noticed that favoring the social graphs led us

to poor results.

n(u;, u;) only checks whether there is a direct connection between u; and u; in social graph.
That is, we are looking for only depth one relationships. The idea given by Equation (3.6) can
be extended to use also depth two relationships (friend of a friend). One possible formulation
can be as given by Equation (3.7). We put experiments on this equation on our feature work

list.

similarity(u;, u;) = (1-A- %) J(Fyp) + An(uis uj) + 220 (u;, uj),where 0 <1<1 (3.7)

We made a similar use of social graphs in prediction phase. In Equation (3.5), we checked
whether the average weight of positive ratings is greater than the average weight of negative
ratings. In our original k-NN implementation, we had used user similarities as weights. By
replacing this weighting schema with the one we used in Equation (3.6), we obtained the

Equation (3.10).

2 0(n, i) J (7,) + (1 =) (u, n))

— nen,

Wpos = S 00 (3-8)
nen,

> (1 =6(n, D) J(7y, 7y) + (1 = D) n(u, n))

— _ nen, (3 9)

s % (1 6(n.1) '
neny,

pu, Ny, i) = |_Wpos - Wneg-| (3.10)

Of course, Equation (3.10) can be extended to use depth two relationships as well. However,

we left this as future work, as well.

During our experiments we strictly separated two modifications in order to observe the effects
of each modification clearly. For this part, we ran four versions of k-NN: original k-NN, k-NN
with neighbours taken from social graph, k-NN with weighted neigbour selection and k-NN

with weighted predictions. Results of our experiments are listed in Section 3.4.2.

27

3.3.2 SINGULAR VALUE DECOMPOSITION

Singular Value Decomposition is a powerful factorization method used in linear algebra. Al-
though many application areas of SVD can be found in academia, our main concern is its uses
in information retrieval and collaborative filtering fields. In information retrieval it is mostly
mentioned with Latent Semantic Indexing. Also its uses in Principal Component Analysis are
worth to mention. [49] has a good discussion on SVD and PCA. Especially in collaborative
filtering area, it gains attention due to Netflix Prize [32, 33]. Several SVD-based methods
have been proposed to Netflix, including [54]. What makes SVD so popular is that it can find
concepts while reducing dimensionality. In other words, you have to deal with a much smaller

rating matrix.

Before diving into the formal definition of SVD and its application in collaborative filtering,
let us stop for a moment and analyze a hypothetical movie recommendation system which
defines all the movies in its database with a set of predefined features. The feature set F for

this system is given as follows:

fi — genre: “crime”,
f» — genre: “comedy”,
f3 — director : “Quentin Tarantino”,

fa — director : “Stanley Kubrick”

This system also gets feedbacks from its users in order to model their tastes. Depending
on these features and their relations to users and movies, our hypothetical system aims to
recommend some worth-to-see movies to its users. Table 3.5 represents a snapshot of our

system’s database.

By combining feature set F with the data given in Table 3.5, our system can find out the
relation between users and movies. Simply calculating the dot products of feature vectors of
every user and every movie in its database, it can figure out the set of movies of interest for

each user. A simple calculation is given as follows:

28

Table 3.5: Hypothetical taste matrix of users and movies for an example movie recommender
setup. Each feature can take a value in the range [0, 5].

] Users / Movies \ fi \ f> \ f3 \ f4 ‘
User 1 4 12141
User 2 115121]0
User 3 4 111315
Reservoir Dogs 5111510
Monty Python and the Holy Grail | 0 | 5 | 0 | O
The Shining 0]0|0]S5

—

Fuser, = {fi=4=2,=4fs=1}
Frp = (A=5hH=1/=5f=0
Fupn = 1fi=0,=5/=0,f=0}
Fuer, - Frp = (4x35)+2x1)+4x5)+(1x0)

= 42

Fuserl'ﬁMpHG = @Ax0+@2x5+@x0)+(1x0)
= 10

As above calculation states, user; will most probably prefer Reservoir Dogs rather than Monty

Python and the Holy Grail.

Unlike the k-NN algorithm explained in Section 3.3.1, our system makes the use of features
to predict ratings. Probably, this system will remain hypothetical for the rest of the time since
it depends on a predefined feature set and explicitly ask its users to rate the importance of
each feature to them. Fortunately, SVD can be used to draw out these features that are hidden
in the rating matrix R. Better yet, it can reveal the relation of users / movies to features

automatically.

Although, SVD is an exact decomposition method, it can be used to approximate a matrix by

two rank r matrices [54]. Formally SVD is defined as in Equation (3.11).

R = UZV", where R € R, U € ™™ ¥ € RV € R (.11

where X is a diagonal matrix which holds the singular values of this decomposition and its

values are assumed to be in decreasing order.

29

Using Equation (3.11), R can be constructed exactly. However, in most cases it is enough to
find an approximation of R. This procedure is known as Compact SVD in literature. Compact

SVD is formally defined as in Equation (3.12).

R = U.Z, V!, where R € /™", U, € ™", X, € R, V, € R™" (3.12)

By choosing r < n in Equation (3.12), we can get a good approximation R of actual matrix R
much efficiently. To get this approximation programatically, we only need to store two much
smaller matrices Uy and VI as well as a vector I, that contains top r singular values of actual

decomposition.

In collaborative filtering perspective, after decomposing a large rating matrix R, we can get
an acceptable approximation of ratings by truncating U, V and X. Diagonal entries of X can
be seen as the implicit features that are hidden in training set R. Each positive singular value
denotes the strength of that feature. U stores the relations of users to the features and similarly
VT stores the relations of items to the features. By using only the top r features in compact

SVD, we make use of only strong features and eliminate useless features in computations.

SVD seems a good solution to recommendation problem since it can highly reduce the com-
putational requirements of such systems. In fact, computational requirements are as important
as prediction performance in real-world recommendation systems since a perfect prediction

will not make any sense if it cannot be found in a reasonable time.

There is one big obstacle in front of SVD approach that we have not yet discussed. Up to now,
we focused on finding a good approximation of R by decomposing it and truncating resulting
matrices. What we will obtain afterwards is that a good approximation of training set R which
we know that most of its entries is missing. If even R were perfect, it would not be that easy
to decompose such a huge matrix. The solution of this issue is a well known method called
Expectation Maximization. Using this method, we try to fit matrices U, and V} in order to
minimize the error in Frobenius form which is given in Equation (3.13). In fact this is the

solution of author of [12] to Netflix Prize problem.

2
IR-UTE V) = > (Ri = u,io-,vrj) (3.13)

ij r

30

In [12], author proposed to find the ratings as in the Equation (3.14), where L'ZlT and V; are user

and item feature vectors respectively.

Ry=il -7 (3.14)

Starting from randomly filled two feature matrices U, and V., training phase of SVD is given

by the author of [12] with the following equations:

€ = Rij_Rij (3.15)
wy =, +1(e;vj — Aul,) (3.16)
Vip = V;-r + T(Gijul‘r - /lV}r) (3.17)

where € is the error rate, 7 is the learning rate, A is the regularization rate and ’ and V' are
the user and item features of previous iteration respectively. In Equation (3.16) and Equation
(3.17), we cross train feature vectors. To overcome the overfitting issue, author of [12] pro-
posed a regularization term A. Note that, in each iteration we add previously computed feature

values as well, which makes the training phase an iterative process.

In our research, we had not modified SVD, instead we used it as a reference point for the
methods explained in Section 3.3.1 and Section 3.3.3. SVD has been proven to be a successful
method in collaborative filtering area, however, we were unable to find any track record of a
related work which applied SVD to a one-class collaborative filtering problem other than
[36]. Thus, we wanted to observe how SVD will perform on a one-class collaborative filtering

problem like ours.

Similar to Section 3.3.1, we made the assumption that all the missing data is negative, which
results in a rating matrix R such that R;; € {0, 1}. Fortunately, the matrix R we obtained for
each dataset we used were small enough to be decomposed by a linear algebra toolbox. After
calculating exact U, V and X matrices, we truncated them to use their top r features. Using
these truncated matrices we recalculated the rating matrix R and made predictions based on

this matrix. Empirical results of this section can be found in Section 3.4.3.

31

3.3.3 WEIGHTED ALTERNATING LEAST SQUARES

Weighted Alternating Least Squares (wALS) is the method proposed in [36]. Authors proposed
wALS directly to the one-class collaborative filtering problem. In fact, this paper is the only
one we could find that propose a specialized solution to the one-class collaborative filtering
problem. wALS is based on the Weighted Low-Rank Approximation (wLRA) method proposed
in [31]. Both wALS and wLRA methods introduce a new matrix W which stores weights.
Weight of a rating can be seen as the confidence level of us about that rating, which means that
if a rating has a high weight, then we are highly confident that this rating is correct. Although,
accommodating a weight matrix is the common idea of wALS and wLRA, the weight matrices
used is the main distinguishing point between two algorithms. In [31], authors proposed a
naive weighting scheme where observed ratings had a weight of “1” while missing entries
had a weight of “0”. As authors of [36] discussed, this is an extreme weighting scheme in
which negative missing entries and positive missing entries are not separable. Instead, they
proposed some dynamic weighting schemes which constitutes the “alternating” part of their

algorithm.

Like SVD, wALS is also based on matrix decomposition. The ultimate goal of wALS is to find
a matrix R € 99" such that R = UVT where U € 5" and V € 9™, R is expected to

minimize the error in Frobenius form as given by Equation (3.18).

e=|R-UV'2 (3.18)

wALS is an improved version of wLRA. Both methods try to solve the optimization problem

argmin L(R), where L(R) is defined with Equation (3.19).
R

_ - \2
L(R) 2 Wij (Rij - Rij)

Y (3.19)
L(U,V)

S Wi (R - UVT)
ij

To overcome the overfitting issue of wLRA, authors of [36] proposed a regularization term to

Equation (3.19) which is shown in Equation (3.20).

LU, V) = [Z W, (Rij - UiVj-T)Z] ; /l(llUl-H% + ||vj||i) (3.20)
7

32

Mathematical details of wALS method can be found in [36]. Also [31] includes a detailed
discussion on wLRA. In our research, we had used the exact implementation of wALS as given
in [36]. The main difference between our work and [36] is the weighting schemes we had

used. In fact, this point is the main difference between wALS and wLRA.

As we stated in the beginning of this section, wLRA uses a naive weighting scheme. wALS
had been proposed to reduce the side effects of this naive approach. In [36], authors assigned
a “1” to weight matrix cell W;; if only they had high confidence on the observed example. In
other words W;; would be “1” if and only if R;; = 1. This approach is the same in wLRA. For
non-positive entries of R, authors proposed to lower the weights. They had set W;; € [0, 1]
where R;; = 0. They had listed three different weighting schemes in order to fill actual W;;
values when R;; = 0. These schemes are given in Table 3.6. The first scheme assigns a
constant weight to all missing ratings. The second scheme is user-oriented. Authors of [36]
explained this scheme as follows:

“... if a user has more positive examples, it is more likely that she does not
like the other items, that is, the missing data for this user is negative with higher

probability.”

Last scheme is item-oriented which points that if an item has less positive ratings than proba-

bly missing entries will be negative.

Table 3.6: Weighting schemes used for wALS in [36].

Rj=1 R;j=0
Uniform Wii=1 Wij=¢6
User-Oriented | W;; = 1 Wij o< 3 Rij
Item-Oriented | W;j =1 | W;j cm — Y R;;

In our research, we used social graphs to fill the weight matrix W in order to exploit the frust
between users and their friends. Similar to previous works, we assigned a “1” to the ratings
that we are confident with. For all other ratings, we checked the ratings given to the same item
by users’ friends. This scheme posits that if a URL is bookmarked by user’s all friends than
that user will also be interested in that URL. Similarly, if a URL is not bookmarked by user’s

any friends than algorithm should block that URL to appear in recommendations. These are

33

two extreme cases where all friends of a user are same-minded. For other middle cases, we
assigned a weight proportional to the majority’s thought. The weighting scheme we had used

is given as in Equation (3.21).

1, ifR;;j=1
Wija, =4 ¥ s 3.21)
neN; , lf RU — 0

where N; is the friend list of user i, and d(n, j) is an indicator function where its value is 1 if
user n has bookmarked URL j. Note that W;; will always be in the range [0, 1] so we do not

need any normalizations.

Equation (3.21) uses only depth I relationships. We can easily extend it to make use of depth

2 connections. Depth 2 weights can be computed as given by Equation (3.22).

ZN k Nzk k)
neN; keN, Nk+i
Wiia, = S (3.22)

neN; ke N, Nk#i

A linear combination of Equation (3.21) and Equation (3.22) would result in the desired

weighting scheme. Final weighting scheme is given in Equation (3.23).

W, = (3.23)
/lWi,j,dl + (1 - /l)Wi,j,dza if Rij =0

Using the wALS implementation given in [36] with weighting schemes defined in Equation
(3.21) and Equation (3.23), we compared results with other implementations given in previous

sections. Details of experimental results are given in Section 3.4.4.

3.4 EVALUATION

In previous sections of this chapter, we gave details of our research in which we seek ways to
use social graph data to improve performance of some well-known collaborative filtering al-
gorithms when applied to one-class collaborative filtering problem. As stated in Section 2.2.2,

one-class collaborative filtering problems are harder to solve than multi-class recommenders

34

since datasets that require one-class collaborative filtering solutions contain only positive ex-
amples. With the absence of counter-examples it is hard to train algorithms. For our case,
the dataset problem was even drastic. Even though we spent special effort on building high
quality datasets, results were not as appealing as we expected. Our datasets listed in Table 3.1

are much more sparse than the ones listed in Table 2.2.

Unlike other recommendation methods, collaborative filtering relies on the implicit social re-
lations. If people were not tend to agree in the future if they had agreed in the past, there would
be no such notion like collaborative filtering. That is why we thought that social graphs may
contain some valuable information that we can use to improve the recommendation perfor-
mances. Unluckily enough, the first thing we had noticed at the beginning of our research is
that if the system’s main focus is not to lead people to socialize, then the social graph obtained
from such a system will be even more sparse than the rating dataset. Table 3.2 summarizes

this issue.

With a set of very sparse training datasets (Table 3.1) and a set of even more sparse social
graph datasets (Table 3.2) we implemented two different groups of collaborative filtering al-
gorithms. The first group was k-NN based, while the second group was based on Weighted
Alternating Least Squares method. Table 3.7 lists all the algorithms we had used along with

the abbreviations that we will use through this section.

Table 3.7: Algorithms and their abbreviations used in the first part of our research.

Abbreviation | Algorithm

knn-base Basic k-NN

knn-sg k-NN with neighbours selected from social graph
knn-sg-neigh | k-NN - Social graph used in neighbour selection phase
knn-sg-pred k-NN - Social graph used in prediction phase

svd SVD with exact decomposition using a third party software
wals-base wALS implementation as in [36]

wals-sg-d1 Weight matrix filled using level one connections of social graphs
wals-sg-d2 Weight matrix filled using level one and level two connections

We had conducted two experiments for each algorithm: one with original training dataset and
one with pre-processed training dataset. In the next section we are going to talk on measure-

ment methods we had used and later on we are going to give the results of our experiments.

35

3.4.1 EXPERIMENT MEASUREMENT

In order to measure the performance of our algorithms, we used a method similar to standard
K-Fold Cross Validation. The main difference between our method and cross validation is
that we implemented a basic logic into the test case selection phase. Normally, in cross
validation, validation datasets are randomly split into training and test datasets with a 80/20
ratio. After our initial attempts, we noticed that random selection had led us to a training
dataset in which many users had no bookmarks. By selecting more test cases from users that
have more bookmarks, we were able to create a more unified test dataset. Although, we had
created and used 5 training/test dataset pairs for each validation dataset, we are going to list
results of one training/test dataset pair for each validation dataset since the results of different
dataset pairs were consistent with each other. Some properties of created test datasets are

listed in Table 3.3.

In collaborative filtering applications, Root Mean Squared Error (RMSE) is a commonly used
error measure. RMSE is the aggregation of residuals, which are simply the difference between

the predicted value and actual values. RMSE can formally be defined as in Equation (3.24).

RMSE = (3.24)

In one-class collaborative filtering problems, final values obtained would be either a “1” or a
“0”. During prediction phase, any value between the range (0, 1) are rounded. The effect of
a predicted rating of 0.6 would be same as the effect of a predicted rating of 0.99. Thus we
believe that RMSE does not perfectly fit in one-class collaborative filtering case. That is why

we seek for another performance measure.

Note that, similar to training datasets that we had used, our test datasets were also contained
only positive test cases. So we could not find out the number of false negative and true
negative examples after any experiment. That is why we chose Positive Predictive Value
(PPV) as our primary performance metric. Predictive Value is a measure commonly used by
clinicians to interpret diagnostic test results. PPV indicates the probability of a patient to
actually have a condition if he/she has a positive test result. For our case, PPV indicated that

whether the user will really be interested in a URL if we recommend that URL to her/him.

36

PPV can be calculated as in Equation (3.25).

number of true positives
PPV =

3.25
number of true positives + number of false positives (3-25)

3.4.2 RESULTS OF KNN-BASED ALGORITHMS

In this part, we are going to discuss the results of k-NN based algorithms. First, we will
discuss the effect of pre-processing. Later, we will go over the effect of different weighting

schemes.

34.2.1 IMPACT OF PRE-PROCESSING

As stated in Section 3.2, we used social graphs to pre-process training datasets. Specifi-
cally, we had used knn-sg algorithm to populate training dataset. To measure the effect of
pre-processing correctly we only applied knn-base algorithm on both original datasets and
populated datasets. We had not used knn-sg, knn-sg-pred or knn-sg-neigh since we already
used social graphs in pre-processing phase. We believe that re-using social graphs would

mislead us. The results for blog-programming-java dataset is given in Figure 3.4.

Although PPV has a rapid growth rate for small k values in pre-processed dataset, final results
was very similar. knn-base converged to the same PPV value at approximately the same k
value for both the pre-processed and original dataset. Table 3.8 summarizes the performance
of knn-base for blog-programming-java dataset. For our case, we can conclude that pre-
processing the dataset did not help us to improve knn-base. Results of other datasets can be

found in Appendix B.1.1.

Table 3.8: Results of knn-base algorithm for blog-programming-java dataset.

Convergence k value | Best PPV
blog-programming-java 305 ~0.62
pre-prop. blog-programming-java 340 ~0.62

37

8PPV --P-PPV

PPV

K - number of neighbours

Figure 3.4: knn-base results for pre-processed and original datasets created using blog, pro-
gramming and java tags. P-PPV stands for the PPV value of pre-processed dataset.

3.4.2.2 IMPACT OF WEIGHTING SCHEMES

In order to measure the impact of different weighting schemes we had tested knn-sg-pred and

knn-sg-neigh algorithms as well as knn-base algorithm on our datasets.

knn-sg-pred algorithm blends the similarity metric used for knn-base with a neighborhood
weight obtained from social graph. This process is formally given by Equation (3.10). Note
that the A variable in Equation (3.10) is the blending factor. In other words, A indicates at
which rate we blended Jaccard similarity with neighborhood similarity. Choosing 4 = 1 will
result in totally discarding neighborhood weights, while choosing 4 = 0 will totally discard
the effect of similarity metric we used. We tested knn-sg-pred algorithm for different k values
and A choices. Results of blog-programming-java dataset is given in Figure 3.5 while Figure

3.6 gives a more detailed view of results for PPV values in the range of [0.45, 0.65].

Figure 3.5 clearly shows that for small A values knn-sg-pred performs worse than knn-base.

38

WA=00 A=02 VA=04 4A=06 +=A=08 <+A=1.0

PPV

K - number of neighbours

Figure 3.5: knn-sg-pred results for blog-programming-java dataset for different A values.

Mixing similarity metric with neighborhood weights in favor of social maps produced worst
results, while two extreme cases performed better (where 4 = 1 and A = 0). For all datasets
we tested, 4 = 0.8 outperformed rest of the A choices. However, the overall performance gain
was too small which made us think that it is not worth to modify the knn-base. Modification
requires handling the social graph data as well, which is usually a matrix larger than rating

matrix. Results of knn-sg-pred over other datasets is given in Appendix B.1.2.

We also tested knn-sg-pred on pre-processed datasets. Generally speaking, pre-processing did
not affect the performance of knn-sg-pred. As can be seen from Figure 3.7, results are pretty
similar to results of original dataset. The only difference is that PPV growth rate is higher
for smaller k values for pre-processed dataset. In fact, this is the same result we obtained
from the tests we discussed in Section 3.4.2.1. Figure 3.8 shows a detailed view of knn-sg-
pred algorithm’s behavior on pre-processed dataset. Results of other datasets are listed in

Appendix B.1.2.

Second weighting scheme we had used was knn-sg-neigh, which follows a similar approach

39

WA=00 A=02 VA=04 4A=06 +=A=08 <+A=1.0

PPV

K - number of neighbours

Figure 3.6: A detailed view of Figure 3.5 for PPV € [0.45,0.65]

as knn-sg-pred. Unlike knn-sg-pred, knn-sg-neigh uses the blending during the neighbour
selection phase. This algorithm blends neighborhood weight with Jaccard similarity at a rate
of 1 (Equation (3.6)). We had run knn-sg-neigh on all of our datasets as well as their pre-
processed versions. The results of this algorithm for blog-programming-java dataset is given

in Figure 3.9. And a closer view is given in Figure 3.10.

In our experiments, knn-sg-neigh produced interesting results. Unlike previous experiments,
for A = 1, algorithm performed worst. Although, 4 = 0 outperformed A = 1, it was not the
winning A choice either. For this dataset, 4 = 0.6 seems to outperform rest. This situation can
be seen in Figure 3.10. Also the best PPV value obtained from A = 0.6 is 0.68 while this value
decreases to 0.62 for 4 = 1 which is the performance of knn-base. For blog-programming-

Jjava dataset, knn-sg-neigh algorithm improved PPV value of knn-base by almost 10%.

Another important note on knn-sg-neigh experiments is that, the algorithm’s behavior changed
based on dataset choice. With blog-programming-python dataset, best PPV value improved
by 6.5% (Figure B.10), while with blog (Figure B.12) and photography (Figure B.14) datasets

40

WA=00 A=02 VA=04 4A=06 +=A=08 <+A=1.0

PPV

K - number of neighbours

Figure 3.7: knn-sg-pred results for pre-processed blog-programming-java dataset for different
A values.

almost no improvement observed. Also for these two datasets, the best A choice seems to be
A = 0.8. We believe that, this is due to the internal dynamics of a social environment. In a
system like Del.icio.us, a social graph formed around a single tag represents loose connections
between its users. However, a graph created from several tags (i.e. blog, programming,
Jjava) represents tight connections. In other words, the more tags users provided for their
bookmarks, the deeper knowledge we obtain from that social graph. In fact, this issue is the

main focus of second part of our research that we are going to discuss in next chapter.

Results of knn-sg-neigh algorithm for other datasets can be found in Appendix B.1.2.

knn-sg-neigh performed better than knn-base and knn-sg-pred for blog-programming-python
and blog-programming-java datasets. For these two datasets 4 = 0.6 seems to be the best
choice for knn-sg-neigh. However, for other datasets 4 = 0.8 and A = 1 produced best results.

In fact, these A choices are the best ones for other algorithms as well.

Accommodating social graphs into the neighbour selection phase seems reasonable only if the

41

WA=00 A=02 VA=04 4A=06 +=A=08 <+A=1.0

PPV

K - number of neighbours

Figure 3.8: A detailed view of Figure 3.7

social graph is strong enough. Otherwise, the social graph itself may not be as powerful as
to change the results. This idea is supported by the results of knn-sg-neigh algorithm applied
to pre-processed dataset. We had pre-processed datasets using the knn-sg algorithm by which
datasets are populated according to their social graphs. After this phase, we again used social
graphs to select neighbours. So running knn-sg-neigh on a pre-processed dataset means that
we had used social graphs twice. Doubling the use of social graphs can be thought as doubling
the effect of social graphs. With double effect of social graphs, we were able to change the
results. knn-sg-neigh algorithm’s results on pre-processed blog-programming-java dataset is
given in Figure 3.11. Unlike the results given in Figure 3.10, the PPV values for experiments
A # 1 are very close to each other. Results are similar for other datasets as well. However, we
cannot conclude that using pre-processed datasets always produce better results. As can be
seen from the results, the overall effect of pre-processing is minimal. It did not help improving

the PPV value, but made the algorithm provide closer results for 4 # 1.

Table 3.9 summarizes the results of all k-NN based algorithms for blog-programming-java

dataset. knn-sg-neigh seems to outperform rest of the algorithms. And best results obtained by

42

WA=00 A=02 VA=04 4A=06 +=A=08 <+A=1.0

PPV

K - number of neighbours

Figure 3.9: knn-sg-neigh results for blog-programming-java dataset for different A values.

merging the usual similarities used in knn-base (1 = 1) and similarities used in knn-sg (4 = 0).
Also knn-sg-neigh produced best results on blog-programming-java and blog-programming-
python datasets when compared to other datasets. This is due to the fact that these datasets are
more domain specific and less sparse. Although pre-processing the dataset slightly improved
results for blog-programming-java dataset, it was not that helpful for other datasets. We
believe that pre-processing would help in increasing PPV values if social graphs were less
sparse. Generally, in one-class collaborative filtering problems training datasets are much
more sparse than other collaborative filtering problems. Also missing counter examples makes
it even harder to predict ratings. A dense social graph would be of great use to overcome these
issues. Unfortunately, for our case, social graphs were even more sparse than training datasets,

so they were not so helpful.

In conclusion, social graphs may help us improve the performance of k-NN algorithm when
applied to one-class collaborative filtering problems. However, the performance gain highly
depend on the quality of social graph itself. knn-sg-neigh algorithm, which makes use of

social graphs during the neighbour selection phase, may be preferred over the classical knn-

43

WA=00 A=02 VA=04 4A=06 +=A=08 <+A=1.0

PPV

K - number of neighbours

Figure 3.10: A detailed view of Figure 3.9

base algorithm in one-class collaborative filtering problems.

3.4.3 RESULTS OF SINGULAR VALUE DECOMPOSITION

In this section, we are going to discuss the results of SVD algorithm on our datasets. These
results will form a baseline for the next section in which we will discuss the results of wALS

algorithm.

We had tested the SVD algorithm on four datasets as well as their pre-processed versions.
The important variable that may change the results of SVD is the number of features used in
calculations. Figure 3.12 shows the outcomes of SVD algorithm for different feature counts

for the blog-programming-java dataset.

PPV values of our test runs first increased and then decreased as we increased the number
of features. This behavior is consistent with the results obtained by authors of [12] and [36].

In [12], optimal feature count is said to be around 40, while in [36], 10 seems to be the

44

WA=00 A=02 VA=04 4A=06 +=A=08 <+A=1.0

0.71

0.7
0.69
0.68
0.67
0.66
0.65
0.64
0.63
0.62
0.61

06
0.59
0.58
0.57
0.56
0.55
0.54
0.53
0.52
0.51

05
0.49
0.48
0.47
0.46
0.45
0.44
043
0.42
0.41

04

PPV

K - number of neighbours

Figure 3.11: knn-sg-neigh results for pre-processed blog-programming-java dataset for dif-
ferent A values.

optimal feature count. For our case, as can be seen from Figure 3.12, 12 is the optimal feature
count. Even with the optimal feature count, svd seems to perform worse than any k-NN based
algorithm. Best PPV value obtained from svd for blog-programming-java dataset was 0.57
which is 16% worse than the PPV value obtained from knn-sg-neigh. svd algorithm produced
similar results for other datasets as well. Results of all other datasets are listed in Appendix

B.2.

As can be seen in Figure 3.13, svd produced slightly better results for pre-processed dataset.
Note that, the best PPV value obtained for pre-processed dataset is at r = 24, while it was
at r = 12 for original dataset. Also decay rate is smaller in pre-processed dataset. Putting
it all together, we can say that pre-processing the datasets did not have a great impact on

performance of svd algorithm.

svd, without any modifications, seems not to perform as good as knn-sg-neigh. However,

results were legitimate when compared to the results of [36] and [12].

45

Table 3.9: Results of k-NN based algorithms for pre-processed and original datasets generated
using blog, programming and java tags.

blog-programming-java | Pre-processed blog-programming-java

Best PPV Best 4 Best PPV Best 4
knn-base ~0.62 1.0 ~0.62 1.0
knn-sg ~ 0.65 0.0 ~ 0.67 0.0
knn-sg-pred ~0.63 0.8 ~0.66 1.0 and 0.8
knn-sg-neigh ~ 0.68 0.6 ~0.70 0.6

3.4.4 RESULTS OF wALS-BASED ALGORITHMS

This section covers the results of the final group of experiments we had conducted.

We had tested the wALS algorithm with the modifications explained in Section 3.3.3 over
four datasets. In [36], authors proposed three different weighting schemes for wALS: uniform,
user oriented and item oriented. Their test results had shown that user oriented scheme out-
performed other schemes. Thus, we had chosen user oriented scheme as a baseline for our
weighting schemes. We proposed two different weighting schemes for wALS. First one fills
out the weight matrix of wALS using the first level connections of the social graph while the
second one uses second level connections as well as the first level connections. The details of

these weighting schemes can be found in Section 3.3.3.

To measure the impact of pre-processing, we used pre-processed datasets as well. Thus, we

conducted a total of 24 experiments using three weighting schemes over eight datasets.

We divided this section into three parts and for each part we are going to discuss the results of
a different weighting scheme. For each weighting scheme, we will be looking for the impact
of pre-processing and impact of the number of features used during training. wals-base is the
first scheme we are going to talk about. Later on we are going to give results of wals-sg-d1

and complete this section with results of wals-sg-d2.

3.4.4.1 wALS-BASE

Figure 3.14 shows the behavior of wals-base algorithm when applied to blog-programming-

Jjava dataset. As can be seen from the figure, PPV values obtained increased as we increased

46

- PPV

PPV

r - number of features used

Figure 3.12: svd results for blog-programming-java dataset for different r values. r is the
number of the features used in calculations.

the number of features we had used. However, after r = 12, PPV values tend to converge.
Unlike the svd algorithm discussed in Section 3.4.3, PPV values did not decreased as we

increased number of features. So wals-base produced quite stable results.

The best PPV value obtained was 0.58 which is slightly better than best PPV value of svd.

Best PPV value obtained at r = 14 which is around the optimal feature count of svd.

Pre-processing the dataset did not help much for blog-programming-java dataset. Figure 3.14

clearly shows that P-PPV values are very close to PPV values.

Other datasets produced similar results. Although, they converged at different r values, best
PPV values were always slightly better than svd. However, for none of them, PPV values

reached the ones obtained from k-NN based algorithms.

Our wals-base results were parallel to the ones provided by authors of [36]. The main differ-
ence between our results and results of [36] is that their results outperformed svd. This was

most probably due to the different datasets we had used. Generally speaking, our wals-base

47

& P-PPV PPV

PPV

r - number of features used

Figure 3.13: svd results for pre-processed blog-programming-java dataset for different r val-
ues. P-PPV represents the results of pre-processed dataset.

weighting scheme produced consistent results but the overall performance was not as good as

knn-base or knn-sg-neigh. Appendix B.3 lists results of wals-base for other datasets.

3.4.4.2 wALS-SG-D1

wals-sg-d1 algorithm uses a weight matrix filled according to Equation (3.21). This is the
first weighting scheme that uses social graphs. Results of this weighting scheme on blog-
programming-java dataset is shown in Figure 3.15. wals-sg-dl produced comparable results
to knn-base. Best PPV value produced is 0.61, which is obtained at » = 28. Although, best

value reached is at » = 28, PPV values for r > 18 are pretty close.

The red line in Figure 3.15 represents the results obtained from the pre-processed blog-
programming-java dataset. Similar to wals-base, pre-processing slightly increased the per-
formance. Also the best PPV value is reached at r = 18, thus we can conclude that pre-

processing the dataset quickens the convergence. In fact, this is supported with the test results

48

8PPV ~-P-PPV

PPV

r - number of features used

Figure 3.14: wals-base results for pre-processed and original blog-programming-java datasets
for different r values. r is the number of features used and P-PPV is the results of pre-
processed dataset.

of other datasets as well.

Although, wals-sg-dl performed much better than svd and wals-base, it was not able to out-
perform knn-sg-neigh algorithm. wals-sg-dl results for other datasets can be found in Ap-

pendix B.3.

3.4.4.3 wALS-SG-D2

wals-sg-d2 is the second weighting scheme that we consider using social graphs. Unlike
our previous uses of social graphs, in this weighting scheme we also consider second level
connections. By employing second level connections we were able to create a denser social
graph (of course with different edge weights). Using the linear combination offered by Equa-
tion (3.23), we obtained the results for blog-programming-java dataset as shown in Figure
3.16. We chose A to be 0.6 for our experiments. Note that this A value has nothing to do with

the A value introduced in Section 3.4.2.

49

& PPV --P-PPV

PPV

r - number of features used

Figure 3.15: wals-sg-dl results for pre-processed and original blog-programming-java
datasets for different r values. r is the number of features used and P-PPV is the results
of pre-processed dataset.

wals-sg-d2 seems to be more successful than all wALS based weighting schemes as well as
the svd algorithm. At r = 20, its PPV value reached to 0.63 which outperforms knn-base,
knn-sg-pred and svd algorithms. Also for pre-processed dataset, wals-sg-d2 produced a PPV
value of 0.64 which is again comparable to results of other algorithms except knn-sg-neigh.
wals-sg-d2 brought the most significant improvement out to the blog-programming-python
dataset. This could be due to the sparsity rate of social graph of this dataset. According to
Table 3.2, blog-programming-python has the highest density value for its social graph. Results

of wals-sg-d2 for other datasets are listed in Appendix B.3.

Obviously, considering depth-2 connections had a positive impact on test results. How-
ever, this impact was not intense when compared to results of knn-sg-neigh over the blog-
programming-java and blog-programming-python datasets. Although, we do not have enough
evidence to assure, in a real world system, one should consider using or at least testing depth-2

connections. We believe that for denser social graphs wals-sg-d2 would perform better.

50

8PPV ~-P-PPV

PPV

r - number of features used

Figure 3.16: wals-sg-d2 results for pre-processed and original blog-programming-java
datasets for different r values. r is the number of features used and P-PPV is the results
of pre-processed dataset.

3.5 CONCLUSION

In this chapter, we gave the details of the first part of our research. Most of the previous work
focused on multi-class collaborative filtering problems and proposed methods accordingly.
In fact, in some of them, researchers had used datasets that perfectly fit to the one-class
collaborative filtering problems. With paying special attention to the properties of the datasets,
we believe that traditional algorithms can perform better in one-class collaborative filtering

problems.

One-class collaborative filtering problems came with two main obstacles: missing counter
examples and excessive sparsity of the datasets. Unfortunately, these obstacles are extra and
added to other obstacles of the multi-class collaborative filtering problems. To remedy these
issues at least to some degree, we proposed the use of social graphs. The notion of collabo-
ration involves in social graphs inherently. Thus they are perfect data sources that we might

exploit in order to help standard methods to solve one-class collaborative filtering problems.

51

This constituted the heart of our research.

To begin with, we used social graphs to pre-process the datasets to see whether we could
overcome the sparsity problem. By applying a k-NN like algorithm that uses social graphs to
our datasets, we managed to populate training datasets. For blog-programming-java dataset
we increased the number of positive examples by 22.2% and increased density rate from

0.0017 to 0.0020.

Without the counter examples, standard collaborative filtering methods would result in bad
performance if not totally failed. One way of using standard methods in one-class collab-
orative filtering problems is to assume that all missing entries are counter examples which
involves a high bias. To overcome this problem weighting mechanisms had been proposed.
By assigning a weight value in the range [0, 1] to each instance in a dataset, we define con-
fidence levels for that instances. For observed examples, we assigned a 1 which implies that
we are pretty confident about that rating. For missing counter examples we defined weighting
schemes based on social graphs that weights higher if a URL is highly rated by connections
of the social map. These weighting schemes are based on the idea that “if your friends liked

a URL probably you will like that as well”.

Table 3.10: Results of all algorithms for pre-processed and original datasets generated using
blog, programming and java tags.

blog-programming-java | Pre-processed blog-programming-java
knn-base ~ 0.62 ~0.62
knn-sg ~ 0.65 ~ 0.67
knn-sg-pred ~ 0.63 ~ 0.66
knn-sg-neigh ~ 0.68 ~0.70
svd 0.57 0.59
wals-base 0.58 0.59
wals-sg-d1 0.61 0.62
wals-sg-d2 0.63 0.64

Table 3.10 lists results of all methods we used for blog-programming-java dataset. Also
second column lists the results for pre-processed version of blog-programming-java dataset.
knn-base, svd and wals-base methods were our baselines. Among all methods we had used,
knn-sg-neigh and wals-sg-d2 were the most successful ones. Although results of knn-sg-

neigh were not consistent among all datasets, the results generated were quite good. In fact,

52

for blog-programming-java dataset, it offered about 10% improvement over knn-base method.
knn-sg-neigh produced good results also for blog-programming-python dataset, which made
us think that this algorithm works well on domain specific datasets and social graphs. To find
out whether actually this is the case, we conducted a series of experiments which constitutes
second part of our research given in next chapter. wals-sg-d2 did not performed as good as
knn-sg-neigh for blog-programming-java dataset. However, its results were consistent among

all datasets and all results outperformed our baselines.

As can be seen from Table 3.10, pre-processing the datasets had a small impact on perfor-
mance of algorithms. Pre-processing helps us to reduce the sparsity rates but have no effect
on the missing counter-example issue which is the primary problem with one-class collabo-
rative filtering algorithms. Using social graphs in pre-processing phase increased PPV values
slightly. Improvement was promising, thus it should be considered to use social graphs in

pre-processing. However, there is no guarantee on good results.

Despite being out of the scope of our research, we would like to spent some words on the
computational resource requirements of the methods we had used. One, if not the only, good
point with one-class collaborative filtering methods is that the dataset of concern is binary.
In other words, the huge rating matrix can be stored in bit matrices which drastically lowers
the memory requirements. k-NN is known to be a high memory intensive algorithm. For
knn-base algorithm we did not face any memory problems. Also the similarity metric we had
used was consist of Boolean operations over bit vectors. Thus they required much less CPU
clocks than usual similarity metrics used in other collaborative filtering problems. However,
employing a weight matrix that consists of double precision numbers changed this situation.
Even for small datasets that we had used, we needed to rethink the structure of our algorithms
in order to made them run on a modest PC with 2 gigabytes of RAM. For svd and wALS based
methods, memory problems were at critical levels. These methods required to store weight
matrices as well as two large double precision matrices that stores the feature vectors. For
svd method, we needed to decompose training matrices of approximately 30K X 1K, which
was quite a challenge. For larger matrices this method is definitely not an option. wALS
based methods are highly CPU intensive since they require several matrix operations. For all
methods, parallelized versions have to be considered in real world systems. Especially, for a
system that is required to make online predictions computational requirements become more

important. At this point social graphs can be very handy. A system that uses only friends of

53

users as their neighbours can make predictions on the fly. And the only data structure that has
to be stored in memory is an adjacency matrix representing the social graph. Although we did
not do any optimization, for real world applications, algorithm’s that use social graphs can be

highly optimized in terms of memory requirements.

Another point that we want to go over is the depth of connections to be used during calcula-
tions. For all but the wals-sg-d2 algorithm, we used only depth-1 connections, which are the
direct links between a user and his/her friends. However, depth-2 or even depth-3 connections
can be helpful as well, since there will be much more connections in depth-2 and even more
in depth-3. In fact, in wals-sg-d2 experiments, we were able to get better PPV values than
wals-sg-d1 which uses only depth-1 connections. Note that, in wals-sg-d2, we used a linear
combination of depth-1 and depth-2 connections in which we put more emphasis on depth-1
connections. Similarly, one could employ depth-3 connections as well with an even lower
emphasis. However, we should be aware not to overuse connections. This may lead us to a
point where the emphasis of depth-1 connections diminished. Depth-1 connections are the

most valuable connections to us and we should never let them loose their importance.

To sum up, we can conclude that social graphs will be helpful for one-class collaborative filter-
ing problems at least for some types of datasets. Also due to the structure of the social graphs,

some optimizations may be done in order to reduce memory requirements of algorithms.

54

CHAPTER 4

DOMAIN SPECIFIC VS. GENERIC SOCIAL GRAPHS

In the first part of our research, we tried to benefit from social maps in order to increase the
performances of standard collaborative filtering algorithms when applied to one-class collab-
orative filtering problems. Specifically, we had modified k-NN and wALS algorithms such that
we introduced new weighting schemes based on social graphs. We also used social graphs
to pre-process training datasets to remedy the sparsity problems we faced. In spite of the
fact that social graphs were not as fruitful as we expected to one-class collaborative filtering

problem, our research revealed some interesting points about them.

As we discussed in Section 3.4.2.2, knn-sg-neigh algorithm outperformed the rest of the al-
gorithms when we provided a more domain specific dataset to it. For our case, the more
the tags used to create a dataset are, the more the domain specific that dataset is. For in-
stance, a dataset created using the URLs bookmarked with blog, programming, and java tags
is more domain specific than a dataset created using the URLs bookmarked with only blog
tag. We believe that knn-sg-neigh performed better for blog-programming-java and blog-
programming-python datasets since these two datasets are more domain specific, thus the
connections between their social graphs more resembles to the connections between their

collaborative graphs.

In the second part of our research, we focused on this issue and tried to figure out which types
of social graphs could be used by knn-sg-neigh algorithm for one-class collaborative filtering

problems.

First of all, we are going to give a problem definition for this part of our research and discuss
our methodology. Later, we are going to cover the datasets we had used in our experiments.

Finally, we are going to talk on empirical results and close this chapter.

55

4.1 PROBLEM DEFINITION AND METHODOLOGY

The main motivation behind this part of our research is the results of knn-sg-neigh algo-
rithm we had studied in Section 3.3.1. In our experiments, we noticed that knn-sg-neigh
algorithm performed interestingly well for blog-programming-java and blog-programming-
python datasets. In fact, these results were the most successful ones among all other methods
and datasets. In the second part of our research we sought the answer of the following ques-

tion:

For what types of one-class collaborative filtering datasets is it appropriate to

use social graphs in order to improve prediction performances?

As we noted in previous chapter, social graphs includes the notion of collaboration naturally.
In most of the times, we value ideas of our friends rather than ideas of a stranger. If we are
looking for advice in a technical field, then ideas of our colleagues are much more important
to us than ideas of one of our family members. Actually whom to value his/her idea totally
depends on the domain we are seeking an advice for. So for a recommendation system that
is expected to recommend research papers, social graphs of users and their colleagues are
arguable the most important dataset, while a social graph of users and their friends would best

suit a movie recommender.

In the first part of our research, we modified algorithms to use social graphs and measured
their performances over different datasets. To find evidence that supports this idea, we fol-
lowed a reverse path. After k-NN algorithm finishes training, we end up with a set of neigh-
bours for each user. By taking those like-minded neighbours as friends of each user, we obtain
a graph of users which is, indeed, another social graph. From now on we will call this graph

as collaborative graph in order to prevent possible confusions.

We had argued that knn-sg-neigh algorithm was successful on blog-programming-java and
blog-programming-python datasets since the users of those social graphs were belong to more
specific domains. Thus we can expect that social graphs of those datasets resemble the col-
laborative graphs of same datasets. In other words, for any user, list of his/her neighbours

should overlap the list of his/her friends.

56

So for this part of our research, we are aiming to find out how similar the collaborative graphs
and social graphs are for several datasets. A complete analysis of both graphs is out of the
scope of our research. Instead, we focus on the similarities of the nodes and edges connecting

them.

As in the previous chapter, we assume that both the collaborative graphs and the social graphs
are undirected and unweighted. Since we do not consider edge weights, graphs can be rep-
resented with binary adjacency matrices. A valid adjacency matrix should obey the Equation

@.1).

. I, if u; and u; connected
G, j) = 4.1)
0, ifi= joru; and u; not connected

For each dataset, we generated a collaborative graph using knn-base algorithm as explained
in Section 3.3.1. To find how similar two adjacency matrices, we used an intuitive way which

is given by Equation (4.2).

cardinality(S N C)
cardinality(S)

similarity(S, C, k) = 4.2)
where S is the adjacency matrix of social graph, C is the adjacency matrix of collaborative

graph obtained using top k neighbours of each user.

Note that Equation (4.2) uses only depth-1 connections. However, depth-2 connections are
important as well. Thus, for each dataset we looked for similarity of C to the adjacency matrix

that stores second level connections as well.

Equation (4.2) simply calculates number of common terms in user’s neighbour list and user’s
friend list. It does not pay attention to the order of the lists. However, user’s neighbour list is
ordered by the similarity of the user to the neighbour. So a match that occurs at the top of the
list should gain more importance than a match that occurs at the bottom of the list. To catch
up this notion we used a metric called Half Life Utility (HLU). HLU was presented in [5] to be
used as a new evaluation for recommendation systems. HLU depends on the idea that when a
user is presented a ranked list of items, he/she is very unlikely to browse to deeper items. So

the probability of the items to be clicked decays as we go through the list. HLU is given as in

57

Equation (4.3).

2Ry
u
HLU = 100 x S R 4.3)
" u
and R, is defined as in Equation (4.4).
R, = Z 77(“, l/ti) (4 4)
w= 2G-D(B-1) :

u;€N(u)

where N(u) is the neighbour list of user u, 7(u, u;) is an indicator function that is 1 only if user
u and user u; are friends. R, is the utility of user # and R“* is the maximal utility that can be
achieved for user u. In other words, R/"“* is the utility that will be obtained if all friends of
user u were at the top of the neighbour list obtained from knn-base algorithm. £ is the decay

rate proposed in [S]. We used the original value of 5 for £.

Using these two metrics, we conducted experiments on our datasets for both depth-1 and
depth-2 connections. After going over the details of the datasets we used in the next section,

we will be giving results of our experiments in Section 4.3.

4.2 DATASETS

For this part we had created four new datasets and used them with the datasets we created
for the previous part. In the first part of our research, we had used two groups of datasets.
Datasets of the first group was created using the blog and photography tags. Second group
of datasets were created using more tags for each dataset. In the second part of our research,
our main focus was to investigate the properties of domain specific datasets. Thus, we had
created more domain specific datasets as well as some middle state datasets. Specifically,
datasets created were blog-programming, photography-camera, photography-camera-canon
and photography-camera-nikon. Properties of these datasets are given in Table 4.1, while

properties of social maps are given in Table 4.2.

Histograms of these newly added datasets are very similar to the ones used in previous chapter.

These histograms are listed in Appendix A.2.

58

Table 4.1: Properties of training datasets used in second part.

Tags Used User Cnt. | URL Cnt. | Bookmark Cnt. | Density
blog 27,142 1,296 59,888 0.0017
photography 31,085 1,273 71,910 0.0018
blog, programming 31,025 1,332 88,014 0.0021
photography, camera 13,338 995 28,328 0.0025
blog, programming, java 23,955 1,084 60,869 0.0023
blog, programming, python 14,140 929 39,579 0.0030
photography, camera, canon 8,478 735 17,855 0.0029
photography, camera, nikon 6,951 849 14,126 0.0024

Table 4.2: Properties of social graphs used in second part.

Tags Used User Cnt. | Edge Cnt. | Density
blog 27,142 71,110 0.000096
photography 31,085 87,046 0.000090
blog, programming 31,025 91,404 0.000095
photography, camera 11,338 27,294 0.000212
blog, programming, java 23,955 77,016 0.000134
blog, programming, python 14,140 47,090 0.000235
photography, camera, canon 8,478 21,520 0.000299
photography, camera, nikon 6,951 17,692 0.000366

4.3 EVALUATION

in knn-base algorithm.

59

To find out similarities between collaborative graphs and social graphs, we measured adja-
cency matrix similarities and HLU values for all of the datasets given in Table 4.1. Collabora-

tive graphs used in our tests were obtained for the k values that produced highest PPV values

Table 4.3 lists similarities between adjacency matrices of collaborative graphs and social

Table 4.3 can be interpreted as follows: For blog dataset, 10.48% of friends of users were
found to be in the computed collaborative graph. In other words, 10.48% of the nodes of
the social graph of blog dataset were also nodes of corresponding collaborative graph. If

we consider depth-2 connections as well, this rate increases to 11.44% which means that the

Table 4.3: Similarities between collaborative graphs and social graphs computed according to
Equation (4.2).

Dataset Depth-1 Similarity | Depth-2 Similarity | Growth
blog 0.1048 0.1144 9.18%
photography 0.0929 0.0981 5.65%
blog, programming 0.0931 0.0998 7.19%
photography, camera 0.1376 0.1525 10.79%
blog, programming, java 0.1193 0.1464 22.71 %
blog, programming, python 0.1359 0.1594 17.31%
photography, camera, canon 0.1914 0.2195 14.68%
photography, camera, nikon 0.1880 0.2103 11.83%

depth-1 match count improved by 9.18%.

At first glance, the numerical values given in Table 4.3 may not be so informative about the

datasets. However, after a little inspection, we can easily end up with two deductions.

The first deduction is directly about our research problem. We started our discussion in order
to find out whether datasets from specialized domains resemble more to corresponding col-
laborative graphs than datasets from more general domains or not. As can be seen in Table
4.3, photography dataset has a similarity of 9.29%, while dataset photography-camera, which
covers a more specialized domain, has a similarity rate of 13.76%. Moreover, photography-
camera-canon and photography-camera-nikon datasets have similarity rates of 19.14% and
18.80% respectively. Similarity rates of the datasets belong to blog domain comply with this
situation as well. These results directly supports that social graphs of datasets of specialized

domains better resembles to their collaborative graphs.

Second deduction is about the depth of the connections. As can be seen from Table 4.3, all of
the depth-2 graphs have positive growth rates. Although, the magnitude of the growth rates
does not imply any sensible results, the sign of them indicates that when we used depth-2
connections the number of common nodes among collaborative graphs and social graphs of

datasets had increased.

As we already stated, checking only the similarities of adjacency matrices does not put the
importance of match position into account. In all of the k-NN based algorithms we mentioned

in previous chapter, we used the similarity between two users as an indicator of the confidence

60

Table 4.4: Similarities between collaborative graphs and social graphs computed according to
Equation (4.3).

Dataset Depth-1 HLU | Depth-2 HLU | Growth
blog 18.49 19.03 2.93%
photography 16.46 17.00 3.26%
blog, programming 16.58 17.08 2.99%
photography, camera 19.94 20.94 5.02%
blog, programming, java 19.28 20.34 5.48%
blog, programming, python 23.59 24.68 4.64%
photography, camera, canon 26.24 27.22 3.73%
photography, camera, nikon 25.84 26.66 3.19%

of that user about the taste of the other user. Ratings of a neighbour with high similarity has
more effect on the final rating prediction than ratings of a neighbour with less similarity. Thus,
it is important for us to find not only if a friend of a user exists in his/her neighbour list but
also the actual position of that friend in neighbour list. That is why we proposed the HLU
metric. Table 4.4 lists the computed HLU values of all datasets for both depth-1 and depth-
2 connections. A quick overview of Table 4.4 would reveal the resemblance between these
results and the ones given in Table 4.3. HLU results also directly support our argument about
domain specific social graphs. Although, the growth rates are much smaller when compared
to results of Table 4.3, we can conclude that considering depth-2 connections had a positive

impact on our test results.

44 CONCLUSION

As we discussed in previous chapter, in the first part of our research we noticed that knn-
sg-neigh algorithm performed interestingly good on some of our datasets. We decided to go
over this issue with the hope of defining the dataset types on which knn-sg-neigh is expected
to produce acceptable results. By defining such properties of datasets, we would at least
save some time of researchers, which they could spend on solving other recommender system

problems. Or they could pretend to be working on those problems and play Warcraft instead.

We argued that URLs labeled with blog and programming tags address a more specific do-
main than URLSs labeled with only blog tag. Thus, the datasets created with these URLs are

more domain specific. Also we argued that domain specific datasets should contain more

61

collaboration than a dataset from a more general domain. In other words, for a domain spe-
cific dataset, a graph that represents the collaboration flows among users should resemble the
actual social graph obtained from the same dataset. To find evidence for our argument, we
had created collaborative graphs and social graphs for eight datasets and compared them ac-
cording to two different similarity metrics. The results we obtained were highly promising.
Resemblance rates were prominently higher for datasets created from a specific domain which

directly supports our argument.

Also we researched the impact of using deeper levels of connections in social graphs. We had
compared similarities of collaborative graphs and social graphs with only depth-1 connections
and with depth-1 and depth-2 connections. Our experiments had shown that social graphs
with depth-1 and depth-2 connections resembles more than the social graphs with only depth-
1 connections. We did not extend our research to cover deeper levels since this was not the

main focus of our research. However, we saved it as a future work.

In conclusion, this part of our research revealed that domain specific datasets better embod-
ies the notion of collaboration. Thus, they should be expected to outperform more general

datasets in a collaborative filtering environment.

62

CHAPTER 5

CONCLUSION

We started our discussion with the information overload problem. Every passing second, peo-
ple publish new websites, upload their photographs to their favorite services, write reviews
about products or search for something they are interested in. And every passing second,
Internet services become more inadequate to respond the needs of their users. To address
this information overload problem, at least to some degree, major service providers started to
build personalized services that offer customized solutions. These services either explicitly or
implicitly inspects their users’ behaviors and act accordingly. With the increased awareness
of such systems, users started to seek for such services to locate their needs. Recommendation
systems are at the heart of such services. Although, several examples of successful recom-
mendation systems exists, their number is still inadequate to solve the whole information
overload problem. It is obvious that such personalized services and particularly recommen-

dation systems will gain even more importance as the web evolves.

In order the recommendation systems to function correctly, they need to learn users’ tastes.
Obviously, the most direct way to achieve this is to explicitly ask the user for what he/she
likes/dislikes. However, users hardly cooperate in such a situation. Thus, the only option re-
mains is to look for implicit data hidden in user behaviors. This implicit data can be anything
like clicking on a link, time spent on a web page, bookmarking a URL or even highlighting
part of a text. The problem with such a data is that this data is not that informative. In most
of the cases, this data will only reveal that a user is interested in something. It is hardly pos-
sible to find cases where a recommender system able to conclude that a user is not interested
in something. Lack of counter-examples makes such cases a natural candidate for applica-
tions that should use one-class collaborative filtering methods. Being able to deal with cases

that counter-examples does not exists, makes one-class collaborative filtering applications

63

remarkable. One-class collaborative filtering is rather a new field of research. In previous
works, researchers tend to solve one-class collaborative filtering problems with classical col-
laborative filtering approaches. However, it is obvious that one-class collaborative filtering

problems need special attention.

Social networks is one of the trendy topics in current web. And it seems that they will remain
trendy for quite a long time. Apart from being trendy, social networks are good fellows of
collaborative filtering applications since they involve the notion of collaboration naturally.
In our research, we tried to benefit from this implicit collaboration in one-class collaborative

filtering applications.

We had divided our research into two phases. In the first phase, we searched the ways of mak-
ing the use of social networks in classical one-class collaborative filtering algorithms. Specif-
ically, we used social networks to pre-process datasets in order to reduce the sparsity rates and
to create weighting schemes for some well-known algorithms. Our experiments showed that
using social graphs in pre-processing the datasets may not be spectacular. For some of our
datasets, pre-processing slightly increased the prediction performances. In the second part of
this phase, we modified k-NN and wALS algorithms to accommodate social data. knn-sg-pred
and wals-sg-dl algorithms produced comparable results to our baselines. On the other hand,
knn-sg-neigh algorithm produced remarkable results for two of our datasets. Also wals-sg-d2

produced better results than our baselines.

In the second phase of our research, we tried to understand why knn-sg-neigh was successful
for two of our datasets. We also tried to find out why wals-sg-d2 performed better than wals-
sg-dl. After analyzing our test results, we concluded that knn-sg-neigh was successful on
those datasets since they were more domain specific. Also we concluded that using depth-2
connections of a social graph as well as depth-1 connections may help in improving prediction

performances.

Although, there are still too many open issues related to social graphs and one-class collabo-
rative filtering problem, we had to stop our research at some point. We leave further analysis
of social graphs in one-class collaborative filtering applications as future work. Our future
work list includes detailed analysis of collaborative graphs and social graphs, effects of using
deeper levels of connections in social graphs, new weighting schemes based on social graphs

and integrating social graphs to other one-class collaborative filtering algorithms.

64

[1]

[9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems:
A survey of the state-of-the-art and possible extensions. [EEE Trans. on Knowl. and
Data Eng., 17(6):734-749, 2005.

M. Balabanovi¢ and Y. Shoham. Fab: content-based, collaborative recommendation.
Commun. ACM, 40(3):66-72, 1997.

S. Ben-David and M. Lindenbaum. Learning distributions by their density-levels - a
paradigm for learning without a teacher. In EuroCOLT ’95: Proceedings of the Second
European Conference on Computational Learning Theory, pages 53—68, London, UK,
1995. Springer-Verlag.

D. M. Blei, A. Y. Ng, and M. L. Jordan. Latent dirichlet allocation. J. Mach. Learn.
Res., 3:993-1022, 2003.

J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms
for collaborative filtering. pages 43-52. Morgan Kaufmann, 1998.

R. Burke. Hybrid recommender systems: Survey and experiments. User Modeling and
User-Adapted Interaction, 12:331-370(40), November 2002.

A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization: scal-
able online collaborative filtering. In WWW °07: Proceedings of the 16th international
conference on World Wide Web, pages 271-280, New York, NY, USA, 2007. ACM.

J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Commun. ACM, 51(1):107-113, 2008.

Del.icio.us. Del.icio.us. http://delicious.com. Last accessed on August 2009.

P.J. Denning. Acm President’s letter: Electronic Junk. Commun. ACM, 25(3):163-165,
1982.

K. Fukunaga. Statistical pattern recognition. pages 33—-60, 1993.

S. Funk. Netflix update: Try this at home.
http://sifter.org/simon/journal/20061211.html. Last accessed on August 2009.

J. Golbeck and J. Hendler. FilmTrust: Movie recommendations using trust in web-
based social networks. In Consumer Communications and Networking Conference,

2006. CCNC 2006. 3rd IEEE, volume 1, pages 282-286, 2006.

D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering to weave
an information tapestry. Commun. ACM, 35(12):61-70, 1992.

65

[15] N. Good, J. B. Schafer, J. A. Konstan, A. Borchers, B. Sarwar, J. Herlocker, and J. Riedl.
Combining collaborative filtering with personal agents for better recommendations. In
AAAI *99/IAAI °99: Proceedings of the sixteenth national conference on Artificial in-
telligence and the eleventh Innovative applications of artificial intelligence conference
innovative applications of artificial intelligence, pages 439-446, Menlo Park, CA, USA,
1999. American Association for Artificial Intelligence.

[16] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collaborative
filtering recommender systems. ACM Trans. Inf. Syst., 22(1):5-53, 2004.

[17] T. Hofmann. Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst.,
22(1):89-115, 2004.

[18] A. S. Joydeep, E. Strehl, J. Ghosh, and R. Mooney. Impact of similarity measures on
web-page clustering. In In Workshop on Artificial Intelligence for Web Search (AAAI
2000, pages 58-64. AAAI 2000.

[19] H. Kautz, B. Selman, and M. Shah. ReferralWeb: Combining social networks and
collaborative filtering. Commun. ACM, 40(3):63-65, March 1997.

[20] D. Kelly and J. Teevan. Implicit feedback for inferring user preference: a bibliography.
SIGIR Forum, 37(2):18-28, 2003.

[21] S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas. Machine Learning: A review of
classification and combining techniques. Artif. Intell. Rev., 26(3):159-190, 2006.

[22] Last.fm. Last.fm Audioscrobbler. http://www.audioscrobbler.net. Last accessed on
August 2009.

[23] N. Lathia, S. Hailes, and L. Capra. kNN CF: A temporal social network. In RecSys '08:
Proceedings of the 2008 ACM conference on Recommender systems, pages 227-234,
New York, NY, USA, 2008. ACM.

[24] K. Lerman. Social networks and social information filtering on digg, Dec 2006.

[25] G. Linden, N. Smith, and J. York. Amazon.com recommendations: Item-to-item collab-
orative filtering. Technical report, Amazon.com, 2003.

[26] L. M. Manevitz and M. Yousef. One-class SVMs for document classification. J. Mach.
Learn. Res., 2:139-154, 2002.

[27] B. M. Marlin, R. S. Zemel, S. Roweis, and M. Slaney. Collaborative filtering and the
missing at random assumption. In proceedings of the 23rd Conference on Uncertainty
in Artificial Intelligence (UAI2007), 2007.

[28] D. W. McDonald. Recommending collaboration with social networks: a comparative
evaluation. In CHI "03: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 593—600, New York, NY, USA, 2003. ACM.

[29] P. Melville, R. J. Mooney, and R. Nagarajan. Content-boosted collaborative filtering
for improved recommendations. In Eighteenth national conference on Artificial intelli-
gence, pages 187-192, Menlo Park, CA, USA, 2002. American Association for Artificial
Intelligence.

66

[30] M. Montaner, B. Lépez, and J. L. de la Rosa. Developing trust in recommender agents.
In AAMAS °02: Proceedings of the first international joint conference on Autonomous
agents and multiagent systems, pages 304—-305, New York, NY, USA, 2002. ACM.

[31] N.S. Nati and T. Jaakkola. Weighted low-rank approximations. In In 20th International
Conference on Machine Learning, pages 720-727. AAAI Press, 2003.

[32] Netflix. Netflix CineMatch. http://www.netflix.com. Last accessed on August 2009.
[33] Netflix. Netflix Prize. http://www.netflixprize.com. Last accessed on August 2009.

[34] J. O’Donovan and B. Smyth. Trust in recommender systems. In IUI ’05: Proceedings
of the 10th international conference on Intelligent user interfaces, pages 167-174, New
York, NY, USA, 2005. ACM.

[35] J. Palau, M. Montaner, B. Lépez, and J. L. De La Rosa. Collaboration analysis in
recommender systems using social networks. Lecture Notes in Computer Science, pages
137-151, 2004.

[36] R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. Lukose, M. Scholz, and Q. Yang. One-class
collaborative filtering. Data Mining, IEEE International Conference on, 0:502-511,
2008.

[37] M. J. Pazzani and D. Billsus. Content-based recommendation systems. Lecture Notes
in Computer Science, pages 325-341, 2007.

[38] C. Rack, S. Arbanowski, and S. Steglich. A generic multipurpose recommender system
for contextual recommendations. In ISADS ’07: Proceedings of the Eighth International
Symposium on Autonomous Decentralized Systems, pages 445—450, Washington, DC,
USA, 2007. IEEE Computer Society.

[39] A.M. Rashid, I. Albert, D. Cosley, S. K. Lam, S. M. McNee, J. A. Konstan, and J. Riedl.
Getting to know you: learning new user preferences in recommender systems. In /U
'02: Proceedings of the 7th international conference on Intelligent user interfaces, pages
127-134, New York, NY, USA, 2002. ACM.

[40] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: an open
architecture for collaborative filtering of netnews. In CSCW ’94: Proceedings of the
1994 ACM conference on Computer supported cooperative work, pages 175-186, New
York, NY, USA, 1994. ACM.

[41] P. Resnick and H. R. Varian. Recommender systems. Commun. ACM, 40(3):56-58,
1997.

[42] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl. Item-based collaborative filtering rec-
ommendation algorithms. In WWW °01: Proceedings of the 10th international confer-
ence on World Wide Web, pages 285-295, New York, NY, USA, 2001. ACM.

[43] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T. Riedl. Application of dimensional-
ity reduction in recommender system - a case study. Technical report, Department of
Computer Science and Engineering, University of Minnesota, 2000.

[44] J. B. Schafer, J. Konstan, and J. Riedi. Recommender systems in e-commerce. In EC
"99: Proceedings of the 1st ACM conference on Electronic commerce, pages 158—166,
New York, NY, USA, 1999. ACM.

67

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

A. L. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock. Methods and metrics for
cold-start recommendations. In SIGIR ’02: Proceedings of the 25th annual interna-
tional ACM SIGIR conference on Research and development in information retrieval,
pages 253-260, New York, NY, USA, 2002. ACM.

B. Scholkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Es-
timating the support of a high-dimensional distribution. Neural Comput., 13(7):1443—
1471, 2001.

D. M. J. Tax. One-class classification; Concept-learning in the absence of counter-
examples. PhD thesis, Delft University of Technology, 2001. ISBN 90-75691-05-x.

L. Terveen, W. Hill, B. Amento, D. McDonald, and J. Creter. PHOAKS: a system for
sharing recommendations. Commun. ACM, 40(3):59-62, 1997.

M. E. Wall, A. Rechtsteiner, and L. M. Rocha. Singular value decomposition and prin-
cipal component analysis, 2003.

G. Ward, T. Hastie, S. Barry, J. Elith, and J. R. Leathwick. Presence-Only Data and the
EM algorithm. Biometrics, 65:554-563(10), June 2009.

Yelp. Yelp. http://www.yelp.com. Last accessed on August 2009.

K. Yu, A. Schwaighofer, V. Tresp, X. Xu, and H. Kriegel. Probabilistic memory-
based collaborative filtering. IEEE Transactions on Knowledge and Data Engineering,
16(1):56-69, 2004.

K. Yu, X. Xu, M. Ester, and H. Kriegel. Selecting relevant instances for efficient and
accurate collaborative filtering. In CIKM ’01: Proceedings of the tenth international
conference on Information and knowledge management, pages 239-246, New York,
NY, USA, 2001. ACM.

Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collaborative
filtering for the netflix prize. In AAIM ’08: Proceedings of the 4th international confer-
ence on Algorithmic Aspects in Information and Management, pages 337-348, Berlin,
Heidelberg, 2008. Springer-Verlag.

68

APPENDIX A

DATASET HISTOGRAMS

A.1 PART-I DATASET HISTOGRAMS

— Pre-processed = Original

400

300

Bookmark Count

200

100

URLs

Figure A.1: Pre-processed and original photography training dataset histograms.

69

— Friend Cnt.

g
[s} 50
o
S
o w0
£
30
20
10
Users
Figure A.2: photography social graph histogram.
— Bookmark Cnt.
40
g
o
(&)
x
T
€
4
8
o

URLs

Figure A.3: photography test dataset histogram.

70

—Pre-processed = Original

1200

1000

Bookmark Count

400

200

URLs

Figure A.4: Pre-processed and original blog-programming-java training dataset histograms.

— Friend Cnt.

Friend Count

Users

Figure A.5: blog-programming-java social graph histogram.

71

— Bookmark Cnt.
120
100
80
g
o
o
x
I 60
£
x
[=}
O
@
40
20
T ———
0
URLs
Figure A.6: blog-programming-java test dataset histogram.
— Pre-processed = Original
1200
1000
800
g
o
o
x
T 600
€
4
o
o
@
400
200
T o——
0
URLs

Figure A.7: Pre-processed and original blog-programming-python training dataset his-
tograms.

72

— Friend Cnt.

Friend Count

Users

Figure A.8: blog-programming-python social graph histogram.

— Bookmark Cnt.
100
90
80
70
g
° 60
(&)
x
T 50
€
4
8 40
m
30
20
10
0 _‘___\—\—
URLs

Figure A.9: blog-programming-python test dataset histogram.

73

A.2 PART-II DATASET HISTOGRAMS

— Bookmark Cnt.

400
350
300
250

200

Bookmark Count

150

100

URLs

Figure A.10: Pre-processed and original photography-camera-canon training dataset his-
tograms.

74

— Friend Cnt.

Friend Count

Users

Figure A.11: photography-camera-canon social graph histogram.

— Bookmark Cnt.

300
250

200

Bookmark Count

100

URLs

Figure A.12: Pre-processed and original photography-camera-nikon training dataset his-
tograms.

75

— Friend Cnt.

Friend Count

Users

Figure A.13: photography-camera-nikon social graph histogram.

— Bookmark Cnt.

350
300
250

200

Bookmark Count

150

URLs

Figure A.14: Pre-processed and original blog-programming training dataset histograms.

76

— Friend Cnt.

g
o

o 40
S
Q
£

30

10

Users
Figure A.15: blog-programming social graph histogram.
— Bookmark Cnt.

200
€

g 150
(&)
X<
[
€
x

8 100
o

50

0

URLs

Figure A.16: Pre-processed and original photography-camera training dataset histograms.

77

Friend Count

—Friend Cnt.

Users

Figure A.17: photography-camera social graph histogram.

78

APPENDIX B

EVALUATION RESULTS

B.1 RESULTS OF KNN-BASED ALGORITHMS

B.1.1 IMPACT OF PRE-PROCESSING

PPV - P-PPV

PPV

K - number of neighbours

Figure B.1: knn-base results for blog-programming-python dataset and pre-processed blog-
programming-python dataset.

79

PPV - P-PPV

PPV

K - number of neighbours

Figure B.2: knn-base results for blog dataset and pre-processed blog dataset.

PPV - P-PPV

PPV

K - number of neighbours

Figure B.3: knn-base results for photography dataset and pre-processed photography dataset.

B.1.2 IMPACT OF WEIGHTING SCHEMES

WA=00 +A=02 VA=04 AA=06 »A=08 <TA=1.0

PPV

K - number of neighbours

Figure B.4: knn-sg-pred results for blog-programming-python dataset.

81

WA=0.0 A=02 VA=04 AA=06 $A=08 <TA=1.0

068
067
0.66
065
064
063
062
061

06
0.59
058
057
056
055
0.54
053
052
051

05
049
048
047
046
045
044
043
042
0.41

04

S

TRy
eV oo A%y

A
Rz

PPV

K - number of neighbours

Figure B.5: knn-sg-pred results for pre-processed blog-programming-python dataset.

WA=00 +A=02 VA=04 &A=0.6 »A=08 <tA=10

PPV

K - number of neighbours

Figure B.6: knn-sg-pred results for blog dataset.

82

PPV

063
062
061

06
0.59
0.58
057
0.56
0.55
0.54
053
0.52
0.51

0.5
0.49
0.48
047
0.46
045
0.44
043
0.42
0.41

04

WA=00 +A=02 VA=04 AA=0.6 »A=08 <TA=1.0

K - number of neighbours

Figure B.7: knn-sg-pred results for pre-processed blog dataset.

PPV

WA=00 +A=02 VA=04 &A=06 +A=08 <+A=1.0

K - number of neighbours

Figure B.8: knn-sg-pred results for photography dataset.

83

WA=00 +A=02 VA=04 AA=0.6 »A=08 <TA=1.0

07
0.69
0.68
067
0.66
0.65
064
063
062
061

06
0.59

057
056
0.55
054
053
052
051

05
049
048
047
0.46
045
044
043
042
041

04

PPV

K - number of neighbours

Figure B.9: knn-sg-pred results for pre-processed photography dataset.

WA=00 +A=02 VA=04 &A=0.6 »A=08 <tA=10

PPV

053
0.52

0.51

05

K - number of neighbours

Figure B.10: knn-sg-neigh results for blog-programming-python dataset.

84

WA=00 +A=02 VA=04 AA=0.6 »A=08 <TA=1.0

068
067
0.66
065
064
063
062
061

06
0.59
058
057
056
055
0.54
053
052
051

05
049
048
047
046
045
044
043
042
041

04

PPV

K - number of neighbours

Figure B.11: knn-sg-neigh results for pre-processed blog-programming-python dataset.

WA=00 +A=02 VA=04 &A=06 +A=08 <+A=1.0

06
0.59

057

PPV

K - number of neighbours

Figure B.12: knn-sg-neigh results for blog dataset.

85

WA=00 +A=02 VA=04 AA=0.6 »A=08 <TA=1.0

PPV

K - number of neighbours

Figure B.13: knn-sg-neigh results for pre-processed blog dataset.

WA=00 +A=02 VA=04 &A=06 +A=08 <+A=1.0

072
0.71

PPV
g

K - number of neighbours

Figure B.14: knn-sg-neigh results for photography dataset.

86

WA=00 +A=02 VA=04 4A=06 +A=08 <+A=1.0

PPV

K - number of neighbours

Figure B.15: knn-sg-neigh results for pre-processed photography dataset.

87

B.2 RESULTS OF SINGULAR VALUE DECOMPOSITION

PPV ~-P-PPV

PPV

r - number of features used

Figure B.16: svd results for original and pre-processed blog-programming-python dataset.

88

PPV - P-PPV

PPV

r - number of features used

Figure B.17: svd results for original and pre-processed blog dataset.

PPV <-P-PPV

PPV

r - number of features used

Figure B.18: svd results for original and pre-processed photography dataset.

89

B.3 RESULTS OF wALS BASED ALGORITHMS

B.3.1 wALS-BASE

PPV <-P-PPV

PPV

r - number of features used

Figure B.19: wals-base results for original and pre-processed blog-programming-python
dataset.

90

PPV ~-P-PPV

PPV

r - number of features used

Figure B.20: wals-base results for original and pre-processed blog dataset.

PPV P-PPV

PPV

r - number of features used

Figure B.21: wals-base results for original and pre-processed photography dataset.

91

B.3.2 wALS-SG-D1

PPV ~-P-PPV

PPV

r - number of features used

Figure B.22: wals-sg-dl results for original and pre-processed blog-programming-python
dataset.

92

PPV ~-P-PPV

PPV

r - number of features used

Figure B.23: wals-sg-dI results for original and pre-processed blog dataset.

PPV P-PPV

PPV

r - number of features used

Figure B.24: wals-sg-dI results for original and pre-processed photography dataset.

93

B.3.3 wALS-SG-D2

PPV ~-P-PPV

PPV

r - number of features used

Figure B.25: wals-sg-d2 results for original and pre-processed blog-programming-python
dataset.

94

PPV ~-P-PPV

PPV

r - number of features used

Figure B.26: wals-sg-d2 results for original and pre-processed blog dataset.

PPV P-PPV

PPV

r - number of features used

Figure B.27: wals-sg-d2 results for original and pre-processed photography dataset.

95

