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ABSTRACT 

KALMAN FILTER BASED FUSION OF CAMERA AND INERTIAL SENSOR 
MEASUREMENTS FOR BODY STATE ESTIMATION 

 
Aslan Aydemir,Gökçen 

M.S., Department of Electrical and Electronics Engineering 

Supervisor : Assist. Prof. Dr. Afşar Saranlı 

 

September 2009, 111 pages 

The focus of the present thesis is on the joint use of cameras and inertial sensors, a 

recent area of active research. Within our scope, the performance of body state 

estimation is investigated with isolated inertial sensors, isolated cameras and finally 

with a fusion of two types of sensors within a Kalman Filtering framework. The 

study consists of both simulation and real hardware experiments. The body state 

estimation problem is restricted to a single axis rotation where we estimate turn angle 

and turn rate. This experimental setup provides a simple but effective means of 

assessing the benefits of the fusion process. Additionally, a sensitivity analysis is 

carried out in our simulation experiments to explore the sensitivity of the estimation 

performance to varying levels of calibration errors. It is shown by experiments that 

state estimation is more robust to calibration errors when the sensors are used jointly. 

For the fusion of sensors, the Indirect Kalman Filter is considered as well as the 

Direct Form Kalman Filter. This comparative study allows us to assess the 

contribution of an accurate system dynamical model to the final state estimates. 

Our simulation and real hardware experiments effectively show that the fusion of the 

sensors eliminate the unbounded error growth characteristic of inertial sensors while 

final state estimation outperforms the use of cameras alone. Overall we can 
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demonstrate that the Kalman based fusion result in bounded error, high performance 

estimation of body state. The results are promising and suggest that these benefits 

can be extended to body state estimation for multiple degrees of freedom. 

Keywords: IMU, Body State Estimation, Camera Calibration, IMU Calibration, 

Sensor Fusion, Kalman Filter 
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ÖZ 

KALMAN FİLTRE İLE TÜMLEŞTİRİLEN ATALETSEL ÖLÇER VE KAMERA 

ÖLÇÜMLERİNDEN GÖVDE DURUM KESTİRİMİ  

 
 

Aslan Aydemir, Gökçen 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi : Yrd. Doç. Dr. Afşar Saranlı 

 

Eylül 2009, 111 sayfa 

Ataletsel ölçer ve kamera ölçümlerinin durum kestirimi amacı ile tümleştirilmesi son 

yıllarda aktif bir araştırma alanı haline gelmiştir. Bu tez çalışmasında tek başına 

ataletsel ölçerlerin, tek başına kameraların ve iki tür ölçerin bir arada kullanılmasının 

gövde durum kestirimi başarımına etkisi incelenmiştir. Ölçerler Kalman Filtre yapısı 

kullanılarak tümleştirilmiş, bilgisayar ortamında benzetimler ve laboratuar ortamında 

deneyler gerçekleştirilmiştir. Tek eksen etrafında dairesel hareket ile sınırlanan 

deneylerde dönme açısı ve dönme hızı tahmin edilmektedir. Kısıtlı tutulan hareket bu 

iki ölçerin tümleştirilmesinin kazandırdıkları konusunda açık bir değerlendirme 

ortamı sağlamaktadır. Çalışmada aynı zamanda kalibrasyon hatalarının kestirim 

başarımına etkisi benzetim ortamında incelenerek bir hassasiyet analizi yapılmıştır. 

İki ölçerin bir arada kullanılmasının hatalara karşı gürbüzlüğü arttırdığı gözlenmiştir. 

Tümleştirme Doğrudan Kalman Filtresi ile yapıldığı gibi Dolaylı Kalman Filtresi ile 

de gerçekleştirilmiştir. Böylece hassas bir dinamik sistem modelinin elde olmasının 

durum kestirimine etkisi değerlendirilmiştir. 

Ataletsel ölçerlerden kaynaklanan hata artışının ölçerlerin bir arada kullanılması ile 

giderildiği ve bu tümleştirmenin tek başına kamera ile durum kestiriminden de daha 
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iyi sonuç verdiği benzetimlerde ve donanım ile yapılan deneylerde gözlenmiştir. 

Ataletsel ölçerler ve kameraların bir arada kullanılmasının zamanla artan hataları 

engellediği ve durum kestirimi hassasiyetini arttırdığı görülmektedir. Sonuçlar bu iki 

ölçerin bir arada kullanılmasının çok serbestlik dereceli sistemlerde de başarı 

olabileceğini düşündürmektedir. 

Anahtar Kelimeler: Ataletsel Ölçer Birimi, Kamera Kalibrasyonu, Ataletsel Ölçer 

Birimi Kalibrasyonu, Ölçer Tümleştirmesi, Kalman Filtre 
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CHAPTER 1  

INTRODUCTION 

Navigation is formally defined as the process of directing a vehicle in order to reach 

the intended destination [1]. Several techniques have been used throughout history 

including the well-known north following by using a compass and observing the 

North Star (for northern hemisphere). Although they are still used, these techniques 

have largely been replaced by the use of electronic sensors for most applications. 

It is possible to navigate with the assistance of sensors such as inertial sensors, 

radars, odometers and satellite global position systems as well as electronic 

information sources such as digital maps and sky atlases. Which particular sensor 

and data is suitable largely depends on the specific platform and application. 

However, the development of inertial sensors made them indispensable for the 

navigation of mobile platforms. They are reliable sensors in the sense that they 

cannot be affected from outside with natural and man-made disturbance sources. 

Whether the platform is a ship, an airplane, a land vehicle or a person, the output of 

inertial sensors is determined by the motion of the body through Newton’s Laws of 

Motion and planetary physics. 

Inertial sensors consist of accelerometers and gyroscopes which measure the body 

acceleration and the angular turn rate respectively along their corresponding axes of 

measurement. A complete 6 degree-of-freedom (DOF) measurement set-up is 

obtained by combining 3 orthogonal accelerometers with 3 orthogonal gyroscopes in 

a package called the Inertial Measurement Unit (IMU). The outputs of the inertial 

sensor can be used to measure a number of physical variables associated with the 
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motion of the moving platform. In particular, with the knowledge of initial position, 

velocity and orientation, these three variables (also known as the navigation 

variables) can be tracked by integrating the output of the IMU at each time step. This 

procedure is called dead-reckoning (DR). As new manufacturing technologies for 

these sensors such as Micro Electro-Mechanical Systems (MEMS) technology result 

in the price drop for these sensors, the application areas are rapidly growing and the 

sensors are becoming of interest for a wider range of applications including for 

example many non-military applications. Examples include automotive applications 

for collision detection and advanced tire slip and sliding control[2]; mobile robotics 

including automated ground vehicles [3],[4],[5],[6], aerial vehicles [7],[8] and even 

consumer electronics for personal applications [9]. 

However, the use of inertial sensors suffers from bias errors which accumulate in 

time through the calculation of output variables. One idea from the literature is the 

use of multiple sensors with possibly complementing characteristics to obtain a 

fusion performance that is better than any individual sensor. To overcome the 

accumulation of errors with inertial sensors, inertial sensors are mostly used in 

combination with Global Positioning Systems (GPS) since GPS supplies error 

bounded (absolute) measurements. However, GPS data has low accuracy. Other 

problems include the much smaller sampling rate of the GPS data as compared with 

an IMU as well as the fact that GPS beacon signals originate outside of the moving 

platform and hence prone to service failure or external disturbances, intentional or 

otherwise. 

Research on using visual sensors instead as complementary devices to IMUs and 

Inertial Navigation Systems (INS) has been increasing since the beginnings of 2000s. 

Given a fixed visual landmark, Cameras can provide bounded error (absolute) 

measurements of certain motion variables as opposed to IMUs. For example, a stereo 

camera pair can provide bounded error position information with respect to a known 

landmark by triangulation. Known spatial relationships between multiple visual 
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landmarks can be used even by a single camera to provide similar position 

information. Yet, the raw camera output is a two dimensional image array which 

requires intensive processing time and the camera sampling rate (e.g. 30 frames per 

second) is therefore much smaller than that of an IMU (often several samples per 

second).   

However, even with these limitations, a camera can complement an IMU in such a 

way that the fusion of the two sensors can outperform both the IMU alone as well as 

the camera alone. The focus of this thesis is to make and investigate this claim by 

providing simulation based as well as hardware based experiments conducted in a 

controlled experimental setup.  

1.1 Previous Work  

The idea of combining visual and inertial sensors materialized in late 1990’s and has 

been developing since then. There are examples of the combined usage of IMU and a 

camera in the literature. This combination has been used for navigation [10], object 

shape recovery [11],[12] and augmented reality applications[13],[14]. A solid 

understanding of the characteristics and calibration of inertial sensors and cameras as 

well as of the processing steps for the sensor data is an important task on the way to 

successful sensor fusion. Inertial sensor basics and strapdown inertial navigation 

systems are described in detail by Titterton and Weston [15]. Information about 

MEMS technology and MEMS inertial measurement is included in this second 

edition of the book. Inertial navigation system aiding including GPS, radars, 

barometers, terrain maps are explained describing the system integration 

methodology and application areas. The book considers only the military 

applications of visual aiding. Continuous Visual Navigation (CVN) is explained 

which compares extracted linear features from aerial images of the terrain with the 

database images. 
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Trucco and Verri [16] provide a good reference text for understanding the basics and 

the key points of vision topics including 3D camera geometry. Cameras are mostly 

represented with a pinhole camera model which simplifies the camera lens to its ideal 

behavior. Camera calibration is necessary to relate information obtained from the 

image plane pixels to objects in the real world. There has been extensive research 

carried out on camera calibration techniques most of which are developed by the 

computer vision (CV) community. The most well-known techniques for single and 

multiple camera calibration were presented by Tsai [16], Heikkilä and Silven [18] 

and Zhang [19]. 

The method by Tsai assumes that some of the parameters are known initially. These 

include parameters supplied by the manufacturer of the camera. The center of 

projection which is assumed to be in the middle of the image is not estimated by this 

algorithm. A set of linear equations are solved which are formed by using the radial 

alignment constraint using a 3D or 2D calibration grid.  

Heikkilä & Silven present a four step camera calibration technique by first 

introducing a closed-form solution using a direct linear transform (DLT) which 

assumes a simpler pinhole camera model to initialize the camera parameters.  At the 

second step, a non-linear estimation process is carried out by employing Levenberg-

Marquardt algorithm where distortion parameters are included in the camera model. 

The next two steps handle the problems of image correction and problems caused by 

illumination. The final estimated parameters include radial and decentering distortion 

as well as the main outputs which are the internal and external calibration 

parameters. 

Zhang uses the snapshots of a checkerboard pattern taken at different orientations 

where the corners are extracted to compute projective transformations. Closed form 

solution is computed analytically which is followed by a non-linear refinement based 
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on maximum likelihood. The model used in Zhang’s method contains radial 

distortion terms up to fifth order. 

Camera calibration extensively studied with many more techniques presented in the 

literature. These are out of the scope of this thesis and here, we make use of the 

camera calibration toolbox developed by Jean-Yves Bouguet at the Vision 

Laboratory of California Institute of Technology [20] for internal and external 

calibration. The model employed in this toolbox is similar to the model used by 

Heikkilä & Silven mentioned in previous paragraphs. The process is described in 

Section 2.2.3. 

Calibration between inertial measurement units and cameras is composed of 

determining the relative geometrical layout of the IMU axes set and the camera 

image plane. This is also an active research area. IMUs and cameras were first used 

together on aerial applications hence calibration methods using aerial images were 

developed for this purpose. This method is still active as new research is being 

carried out [21]. In this particular method, the geometric relationship between the 

IMU and camera is extracted considering the IMU measurements and aerial images 

of a land piece marked in squares. However, this method is expensive, time 

consuming and is not feasible for cameras with smaller field of view. Research on 

joint camera-IMU calibration yielded two different methods which are accepted by 

the robotics community. Lobo studied finding the orientation between the IMU axes 

and camera axes by observing a perfectly vertical black and white checkerboard 

pattern [22], [23]. Images and accelerometer readings are collected for several 

positions of IMU-camera assembly with the assumption that gyroscope axes are 

aligned with accelerometer axes or that any misalignment has been previously 

corrected. Parallel checkerboard lines are no more parallel in the image and they 

intersect somewhere in or outside the image. The intersection point is called the 

vanishing point and the normal to the plane defined by the converging lines is a 

direction of the gravity vector. Making a comparison between the components of the 
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gravitational acceleration on each accelerometer axis, Euler angles between the IMU 

and the camera are calculated. A toolbox InerVis [24]  written for MATLAB to 

perform these steps. This toolbox is also compatible with the Camera Calibration 

Toolbox for computing camera internal calibration parameters. 

A more recent study on the same subject addresses the Error State Kalman Filter 

under the Extended Kalman Filtering frame-work. Error State EKF estimates the 

error on the tracked variables instead of the variables themselves. The proposed 

algorithm is an extension to 6 DOF body state error estimation using inertial and 

visual sensor measurements. The translation vector and rotation matrix between the 

coordinate systems of the sensors are added to the state variables resulting in an 

augmented state vector. This augmented state vector is then estimated by observing a 

checkerboard pattern. It is shown that the state vector converges to the true state and 

calibration while the covariance matrix indicates decreasing estimation variance [25].  

This work is important in the sense that calibration and state estimation are combined 

in one filter without the need for an accurate model of platform dynamics. This is an 

advantage of the Error State Extended Kalman Filter. This method was studied by 

Roumeliotis et.al with a simplified 2D example [26]. 

J.Blomster also studied with Extended Kalman Filter for combining camera and 

gyroscope measurements for orientation estimation [27]. Rotation is estimated based 

on the lines in the image which are extracted with Canny edge detector. Klein and 

Drummond also use edge detectors in their algorithm for visual tracking [28]. Motion 

blurs caused by fast motion are also estimated and corrected in this tightly-integrated 

algorithm (Figure 1).  
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Figure 1 – Tightly integrated sensor fusion strategy of Klein&Drummond [28]. 

 

Finally, Strelow prefers using an Iterated Extended Kalman Filter structure for 

combining inertial and visual measurements in his PhD dissertation thesis [29]. This 

study includes a comprehensive survey on motion estimation and robust visual 

tracking. Strelow also discusses the short-term and long-term effects of sensor errors 

to estimation performance.  

1.2 Scope and Contribution 

This thesis study is intended to develop an algorithm to combine the measurements 

of inertial and visual sensors for body state estimation. The main motivation of this 

research is to acquire the background knowledge of this attractive subject and 

implement a general fusion algorithm that is tested in a simplified system with the 

help of simulation and real hardware experiments. Although the experiments are 

carried out with a single degree-of-freedom (rotational motion) system, we believe 

this simplified setup preserves the general characteristics of the problem while 
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making its mathematical and experimental study much more accessible. We believe 

the conclusions of the thesis can be readily extended to six degree-of-freedom case.  

The main objective of this study is achieved by implementing an Extended Kalman 

Filter considering the dynamical model of moving body (a motion controlled rate-

table) which is a part of the real experimental set-up. Body state estimation was 

carried out by using sensors individually and jointly within the considered fusion 

framework. The thesis results experimentally demonstrate that using sensors jointly 

yields a more robust and better performing body state estimator. This conclusion, 

which is first suggested by simulation experiments, is then later verified with real 

hardware experiments.  

Another contribution of the thesis is a comparison of the performance of Indirect 

Kalman Filter with a Direct Extended Kalman Filter on the same problem. Indirect 

(or Error State) Kalman Filters have also been extensively studied in the literature 

within the navigation systems research community and represent a different approach 

to the body state estimation problem. The mathematical formulations for both 

approaches were considered in some text books with the statement of advantages and 

disadvantages for each. However in this work we present a comparison considering 

the experimental results. Since the Indirect Kalman Filter does not use moving body 

dynamic model, this comparison in which the Direct form outperforms the Indirect 

form, illustrates the gains in estimation performance by the use of an accurate system 

dynamic model. Other advantages and disadvantages are also discussed. Finally, the 

thesis contributes by a simulation experimental sensitivity analysis with respect to 

system calibration parameters where the performance of the Extended Kalman Filter 

is studied under controlled disturbances to the calibration parameters.  
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1.3 Outline of the Thesis 

We have begun in this chapter by presenting information on recent research on 

inertial sensor - camera fusion and joint IMU-camera calibration as well as the scope 

and contribution of the study. Chapter 2 contains background on sensor technology, 

sensor models, sensor calibration techniques and procedures in particular for IMUs 

and Cameras. Kalman Filtering framework is reviewed in Chapter 3 focusing on 

Kalman, Extended Kalman and Indirect (Error State) Kalman Filters.  The State-

space formulation of the dynamical system which is our moving platform is 

presented in Chapter 4 where we also define the various coordinate systems that are 

used in modeling and calibration of the system. The thesis continues then by 

presenting first the simulation experiments in Chapter 5 and then the real hardware 

experiments in Chapter 6, covering both methodology and experimental results. The 

comparison of Kalman, Extended Kalman and Indirect (Error State) Kalman 

performances are also presented within the scope of these chapters. Finally Chapter 7 

summarizes our conclusions for the thesis and discusses possible future directions. 
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CHAPTER 2  

BACKGROUND ON SENSORS AND CALIBRATION 

We begin in this Chapter by presenting characteristics and mathematical models as 

well as the calibration procedures of the two sensor types that we consider for the 

thesis: the IMU and the Camera. These steps are indispensable and integral part of 

the work that is presented in the thesis and hence merits attention. We begin by 

considering IMUs, and then we move on to cameras. 

2.1 Inertial Sensors 

IMUs are combination sensors which can measure translational (accelerometers) and 

rotational motion (rate gyroscopes) that a moving sensor body experiences. This is 

done by means of different technological approaches that are outlined briefly. 

2.1.1  Inertial Sensor Technology 

Current IMU technology offers the user to make a choice between different types of 

sensors depending on the application. It is possible to find pendulous, vibrating or 

MEMS (Micro Electro- Mechanical Systems) accelerometers but we are not 

interested in accelerometers for this particular work. 

The first gyroscope is a mechanical one consisting of a spinning wheel or rotor. In 

case of rotation, the gimbals turn but the rotor points the same direction despite this 

rotation due to the principle of preservation of angular momentum. Gimbaled 
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mechanical gyroscopes are still in use and they provide accurate information with 

today’s metal treatment technology. However, this technology is expensive and 

mechanical gyroscopes are large in size. As a result, small, light weight and less 

expensive sensors are in use in many inertial navigation systems (INS). In addition, 

these systems do not suffer from mechanical complexities. The sensor unit is rigidly 

attached to the rotating body which is called a strapdown system experiencing the 

same motion with the body. 

In modern systems, several types of gyroscopes are employed: 

• Vibratory gyroscopes 
• Nuclear magnetic resonance(NMR) gyroscopes 
• Electrostatic gyroscopes(ESG) 
• Ring laser gyroscopes(RLG) 
• Fiber optic gyroscopes(FOG) 
• MEMS gyroscopes 

The usage of RLG’s and FOG’s are wide spread, especially in military applications 

considering their accuracy. MEMS sensors can be preferable considering their 

extremely small size, economic power consumption and their cheap price if the 

accuracy expectation is low. Because, they are still not accurate enough and they are 

sensitive to noise. But every day new MEMS IMUs are introduced to the market with 

lower noise levels. 

The drawbacks of using strapdown IMUs are that they require computational 

complexity and they suffer from errors growing with time. The error sources will be 

mentioned in next section. 

2.1.2 Inertial Measurement Unit Errors 

Both accelerometers and gyroscopes suffer from measurement errors. It is critical to 

know the behavior of a sensor to make meaningful use of the sensor measurements. 
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Characterizing sensor errors is also an essential task for simulating sensor 

measurements. Sensor errors are collectively represented by a mathematical model 

which is also used for calibrating the sensor. This model is often utilized in 

navigation algorithms to obtain accurate estimates of final variables of interest such 

as body velocity, position and Euler angles. These variables are often called the 

navigation outputs.  

Main types of error are similar for accelerometers and gyroscopes. Fixed bias error 

is observed in many sensors as well as accelerometers and gyroscopes. It is defined 

as the sensor output even in the absence of an applied physical input. This term is 

called drift or g-independent bias in the case of gyroscopes. Scale factor error is the 

ratio of output change to the input change causing that output. Misalignments in 

orthogonality between the axis of sensor triads cause cross-coupling errors. In 

addition, gyroscopes experience g-dependent bias errors which are proportional to 

the applied acceleration. Apart from the mentioned error sources, mathematical 

sensor models might be extended with higher order terms [15]. However, they are 

out of the scope of this thesis.  

Equations (1) and (2) characterize the error models for the accelerometer and the 

gyroscope triads where δf and δω stand for the accelerometer and gyroscope 

measurement errors respectively.    
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Here, αx, αy, αz represent the actual accelerations and ωx, ωy, ωz represent the angular 

rates that are applied on each axis. BA and BG are 3x1 vectors consisting of the bias 

elements on each axis. SA and SG are diagonal 3x3 matrices whose elements 

represent the scale factor for each axis. There may be scalar terms if all axes have 

identical scale factors. MA and MG are the orthogonality matrices composed of cross 

coupling error coefficients. Matrix Bg contains the g-dependent bias coefficients for 

the gyros. Finally, wA and wG are the noise terms which are usually assumed white 

Gaussian[30]. The sensor measurements can be represented with the summation of 

the actual accelerations/angular rates with the sensor errors δf and δω. It may be 

useful to state that the sensor errors are modeled in terms of the true accelerations 

and angular rates since this formulation is useful in Kalman Filtering framework 

especially for Indirect Kalman Filter applications. 

 

The general error models given above are also valid for the considered MEMS IMU. 

Indeed, MA and MG matrices play a more important role since the raw measurements 

do not represent an orthogonal right handed coordinate system. To obtain such 

measurements, the raw data should be multiplied with these matrices.    

Static (no-motion) and quasi-static (step motion) experiments are conducted for the 

characterization of our sensor. During static tests, data is collected while the sensor is 

at rest at various configurations. The aim is to calculate some of the calibration 

parameters. The procedures and results of these tests are given separately for 

accelerometers and gyroscopes in the following sections. 

2.1.3 IMU Calibration 

In this work MicroStrain 3DM-GX1 MEMS IMU is   package is subjected to several 

tests in order to determine the calibration parameters mentioned in section 2.1.2. 
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3DM-GX1 contains 3 MEMS accelerometers, 3 MEMS gyroscopes and 3 

magnetometers. Magnetometers measure the body axis components of the Earth’s 

magnetic field, however, in the present study, magnetic field measurements are not 

used. The sensor assembly is capable of communication via RS232 serial port. The 

user may write a program to get the sensor outputs or may use the graphical user 

interface of the sensor. It is possible to request raw sensor measurements as well as 

the sensor outputs converted to physical units with internal calibration routines. A 

microprocessor is present inside the sensor package to supply stabilized Euler angles 

by running integration algorithms. However, in order to have complete control on 

sensor measurements, raw measurements are collected from the IMU in this study. 

The calibration parameters are determined throughout the following tests and the raw 

measurements are converted to physical units [31].  

2.1.3.1 Accelerometer Characterization 

• Multi-Position Static Tests 

Multi-position static tests are done with the purpose of determining the static bias, 

scale factor and scale factor non-linearity. Accelerometers are mounted on an index 

table (Figure 2) capable of measurable (manual) axis rotation with a resolution of 1 

degree. The table is rotated so that the measured gravitational acceleration is known 

due to a known angle with the absolute vertical and will vary between 1g and -1g. 

Two controlled rotary axes of the table apply this gravitational acceleration variation 

to the y-axis and z-axis of the sensor case respectively. Hence, we can measure the 

decomposition of the gravitational acceleration vector along the corresponding 

sensor measurement channels. The step size for the test is determined to be 30º 

resulting in 12 measurement positions for a 360 degree full turn. Approximately 60 

seconds (about 6000 samples) data is recorded for each step to compensate for 
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random noise. We observe a sinusoidal pattern as expected due to the trigonometric 

functions involved in this decomposition. 

• Bias calculation 

Raw sensor outputs collected from raw channels C1 and C2 of 3DM-GX1 are given 

in Figure 3. Raw data is the raw voltage output coding form the sensor A/D converter 

where 0 represents 0 volts and 65535 represent 5 volts. Again note that raw channels 

are not necessarily orthogonal to each other.  However for this particular sensor, C1, 

C2 and C3 mostly correspond to the z, y and x-axis on the orthogonal case frame. 

The raw sensor outputs (Figure 3) are compared with the sensor input (determined by 

the index table setting) and scaled to physical units after calculating bias and scale 

factor values.  

 

Figure 2- Index table with 3DM-GX1 shown on top (330 degrees orientation around 
the sensor y-axis) 

Raw data recorded at each step is noisy as shown in Figure 3. Mean value of each 

step is calculated before calculating the bias value. The mean value of the new 

stepwise waveform should be zero. Hence, the mean value of the stepwise waveform 

for a particular channel corresponds to the bias value of that channel. Bias values 
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channel C1, C2 and C3 are obtained as 32846.3, 32627.7 and 32989 respectively 

which match exactly with the manufacturer provided calibration sheet values.  
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Figure 3- C1 and C2 raw outputs. The figure x-axis corresponds to readings from the 
sensor and since the index table rotation is done manually approximately every 60 

seconds, each level is not exactly of equal duration. 

• Scale factor calculation 

Scale factor calculation is one of the main steps to obtain the physical quantities form 

the raw sensor outputs. The known input and the recorded sensor output are 

compared after the raw sensor data is compensated for the bias value. The ratio of the 

bias compensated output and the input is the scale factor. The input and the 

calibrated output of the sensor for Ch.1 are shown in Figure 4 below. The mean 

values of 12 data sets are computed and compared with inputs at 12 different 

positions. 
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Figure 4 - Relationship between Channel C1 input and the calibrated output. 

• Scale factor nonlinearity 

Scale factor is calculated as the ratio of input to sensor output as explained in 

previous paragraph. Scale factor may have slightly different values when the 

accelerometer is subject to clockwise and anti-clockwise rotation in the gravity 

plane. This nonlinearity is not observed of the accelerometers in use.  

• Cross-coupling coefficients 

Misalignment between the triaxial sensor configuration can be found by solving 

Eqn(3) after collecting data from the sensor at different axes orientations. Scale 

factor for each sensor is calculated in previous section after levelling the sensors to 

elliminate the cross-coupling effect. For calculation of this effect, the IMU case is 

mounted such that true accelerometers [αx , αy , αz] will be [1g,0g,0g], [0g,1g,0g] and 

[0g,0g,1g]. Scale factor coefficients, bias coefficients and the actual accelerations 

and acceleration measurements for each orientation are known. Having only the 
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misalignment coefficients unknown, misalignment coefficients are obtained by 

solving Eqn.(3).  
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• Single Position Static Tests 

Data from stationary accelerometers are collected for several hours to observe the 

statistical properties, i.e. mean and standard deviation of the sensor random noise on 

the outputs and effect of internal temperature change on the sensor outputs.  

• Analyzing Thermal Characteristics 

The performance of MEMS sensors with changing temperature has been studied and 

it is claimed that a warm-up period is needed for the output to stabilize [30]. In 

standard IMU calibration, thermal tests are carried out in thermal chambers with 

carefully controlled internal temperature. Since we did not have this capability, a 

warm-up test in ambient temperature (25ºC) is conducted. The internal temperature 

of 3DM-GX1 is observed for 6 hours including its warm-up period where sensor 

internal temperature increases from ambient to operating value (Figure 5). Data from 

accelerometers and internal thermometer is collected. Contrary to the observation in 

[30], no change is observed in output mean values for this sensor (Figure 6). Sensor 

output data is shown with the moving averaged filter output. Although not specified 

by the manufacturer, there may be a temperature compensation algorithm within the 

sensor processor.  Therefore, a thermal error model within this range of temperatures 

(22ºC to 38ºC) is not recommended. Note however that the there may still be a 
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temperature dependence when the sensor is subjected to higher temperatures. 

However that the there may still be a temperature dependence when the sensor is 

subjected to higher temperatures. 

 

Figure 5- Internal temperature profile (ºC) for 6 hours of  
MicroStrain 3DM-GX1. 
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Figure 6- Accelerometer thermal test data. Outputs are  
recorded for 6 hours. Data after filtering with a moving average filter is shown in red.  
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• Noise Characteristics 

Ideally, due to the gravitational acceleration, constant outputs are to be observed on 

all output channels. (Note from the above model that no single channel output may 

necessarily coincide exclusively with the gravitational axis). In practice, a noisy 

characteristic is observed as expected. The standard deviation of the noisy 

measurements determines the characteristics of white Gaussian noise, Aw . After the 

raw measurements are converted to physical units, standard deviation of Aw is found 

to be  0.0024g, 0.0026g and 0.0031g for x,y and z axis respectively.  

• Bias instability 

A simple measure of bias is the average of the long term sensor data. Bias stability is 

an important parameter in the calibration and performance classification of 

accelerometers and represents the changes in bias with time. Allan-variance (AVAR) 

method [33] developed for analyzing the instability of GPS clock measurements is 

also used for inertial sensor bias instability calculations traditionally. AVAR is based 

on analyzing the expected value of the data by partitioning the data sequence into 

bins with gradually increasing number of samples by considering an averaging time 

parameterτ . Allan Variance expression is given in(4).   

 ( )
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Collected data is divided into bins of averaging time τ  and the data in each bin is 

averaged where iy( )τ  represents the average of bin i and n is the total number of 

bins. Allan Deviation, ( )σ τ is the square root of Allan Variance. Allan Deviation 

graph for z-axis accelerometer is plotted in Figure 7 as a function of averaging time 

τ . The minimum point on the graph is considered to be the best possible bias 

instability.  
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Figure 7- The Allan-Variance curve for the static bias for the z-axis. 

Bias instability indicates the change in fixed bias value. Instead of using a fixed bias 

assumption for sensors, bias value is estimated by assuming fluctuations on the order 

of calculated bias instability around the fixed bias value  For the considered IMU 

accelerometers, a bias stability of 130µg, 100µg and 43µg are obtained for 

orthogonalized x, y and z axes respectively. 

Gyroscope Tests 

• Rate Transfer Tests 

The purpose of rate transfer tests is to analyze the characteristics of the scale factor, 

i.e., to analyse the relationship between the change in the input turn rate and the 

sensor output data as a controlled stepping motion is applied to the sensor. This is 

realized on a rotating table called the rate table [34]. The rate table receives angular 

acceleration, angular velocity and angular position commands from RS232 port 

through its graphical interface. 
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Figure 8 – MicroStrain 3DM-GX1 mounted on IMAR Rate Table with a mechanical 
interface. 
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Figure 9- Gyroscope C1 raw output data as response to a stepwise constant turn rate 
on the rate table 

3DM-GX1 is placed on the rate table via a mechanical interface as shown in Figure 

8. The rotation rate of the rate table is increased in a stepwise manner starting from 

zero and varying between desired maximum and minimum rates [15] as illustrated in 

Figure 9. Step size and maximum rate are chosen to be 20º/sec and 80º/sec 

respectively. Gyroscope data is recorded at each step and the output is compared 
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with the input to obtain the scale factor and bias value as well as to observe any 

existing nonlinearity.  

 

• Drift calculation 

Gyroscope drift calculation is similar to accelerometer bias calculation. The stepwise 

rate test output is averaged and numerical drift values for channels C1, C2 and C3 

are obtained to be 31385, 31190 and 33618 respectively.  

 

• Scale factor and scale factor nonlinearity 

Scale factor of each channel is calculated by finding the ratio of the drift-

compensated output to the angular rate input. With the aim of observing the 

nonlinearity on the scale factor, the input-output relationship is analyzed for 

clockwise and anti-clockwise rotation. Note that the input-output relationship is 

linear and there is no hysteresis effect (Figure 10). This indicates that the scale factor 

is a constant and does not depend on the direction of rotation. 
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Figure 10 – Drift compensated gyroscope output versus the controlled input turn-
rate. The linear relation is represented by a scale factor. The slope of the curve is 
constant for clockwise and counter-clockwise rotation indicating the absence of 

scale-factor nonlinearity. 
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Figure 11- Channel 1 input and calibrated output. Rotation rate varies between 
+80º/sec and -80º/sec with 20º/sec steps. 
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After obtaining drift and scale factor values, raw measurements were converted to 

physical units. In Figure 11, , the plots of input and output rates are drawn with 

respect to rotation rate step number and given together in units of degrees/second in 

y axis. Note that, the mean value of each noisy data set for each step is used in this 

figure. 

• Multi Position Dynamic Test 

Gyroscope bias coefficients and misalignment errors can be determined through multi 

position dynamical tests. For accelerometers, we use the gravity as the reference input 

and calculate the model coefficients by comparing the input with the output. In the 

case of gyroscopes, it is possible to obtain the model parameters by rotating IMU with 

known angular input rate. The orientation of the IMU is changed to change the 

gyroscope measuring the rotation. Collecting test data with different orientations, 

Eqn.(5) is solved and the coefficients are determined. 
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�

�

�

(5) 

Traditionally, the above coefficients are calculated by taking the earth rotation rate as 

the reference input and collecting gyroscope data when the sensor is stationary[15]. 

However, this procedure requires precisely positioning the sensor assembly 

measurement axes with the north-east-down frame [15]. It is necessary to determine 

the north before collecting data. This method is still widely used in tactical or 

navigation grade IMU’s where the sensors are more sensitive. On the other hand, the 

higher noise of MEMS IMUs could overshadow the earth rotation rate components on 

the axis. For this reason, the abovementioned technique is proposed, with an input 

overcoming the earth rotation rate.   
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• Single Position Static Test 

3DM-GX1 is capable of supplying accelerometer and gyroscope data concurrently. 

During the single position static tests described previously for accelerometers, 

outputs of all sensors are captured. Noise and thermal characteristics of the 

gyroscopes are examined.  

 

• Thermal Characteristics 

Gyroscope measurements are collected for 6 hours as in the case of accelerometers. 

Sensor output data is shown with the moving averaged filter output. Temperature 

dependence has not been observed in the output data (Figure 12 - Gyroscope thermal 

test data. Outputs are recorded for 6 hours.). Therefore, a thermal error model within 

this range of temperatures (22ºC to 38ºC) is not recommended. 
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Figure 12 - Gyroscope thermal test data. Outputs are recorded for 6 hours. Data after 

filtering with a moving average filter is shown in red. 



  
27 

Allan Deviation 

• Noise Characteristics 

The standard deviation of the long term gyroscope data characterizes the white 

Gaussian noises,
Bw  which are found to be around 0.012 rad/sec all axes. The 

minimum point on the Allan Variance curve is a measure of the drift instability as in 

the case of accelerometers. Drift instability is calculated to be around 0.2 mrad/sec 

for all gyroscopes. Allan Variance curve for x-axis gyroscope is given in Figure 13. 

Allan STD DEV

τ
    1    10   100  1000 10000   1E5

σ(τ)
0.001

 

Figure 13 – Allan-Variance curve for gyroscope of x-axis. 

2.2 Camera Technology 

We now turn our attention to the second type of sensor considered for body-state 

estimation: the camera. The camera sensor work with the following basic principle: 

When the camera is pointed to a physical object, an image of this object is formed on 

a photographic film or an image capture device by means of rays reflected from the 

object passing through the aperture of the camera lens. The CCD or CMOS 
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electronic imaging arrays have replaced photographic films with the development of 

digital technology. Digital images are stored as number arrays where numbers 

represent the intensity of light exposed on the sensor array.  

Cameras are usually classified according to the imaging media, imaging sensor, lens 

type and frame rate. The quality of the image depends on the properties of the 

mentioned classifiers including the distortion effect. The accuracy of position 

estimation from cameras is related to the quality of the images. In this study, a low-

quality webcam is used for sensor fusion. The image array is a CMOS sensor with 

640 pixel by 480 pixel image size. The mathematical camera model and calibration 

procedure explained in this section.   

2.2.1 Perspective Camera Model 

Mathematical camera models represent the mapping of 3D coordinates of a point in 

the scene to its 2D projection in the image plane. The most common model is a first 

order approximation of the projection and is called the perspective camera model. 

The perspective camera model assumes that the camera is an ideal pinhole camera 

(Figure 14-(a)) where the light coming from the 3D point in the scene passes from an 

infinitesimal hole and leaves a mark on the image plane which creates the 2D 

projection coordinate on the image plane [16]. The image plane is the image sensor 

for the case of real cameras. The infinitesimal hole is called the center of projection 

which is assumed to be the lens center in most of the cameras. This is also the origin 

of the 3D orthogonal camera coordinate system. The optical axis of the camera 

points the viewing direction. The z-axis of the camera coordinate system is assumed 

to coincide with the optical axis of the camera.  



  
29 

  

Figure 14 - (a) Pinhole camera model diagram [40] (b) Side view of the camera 
coordinates showing geometrical relations between the 3D and 2D point coordinates. 

 

The 2D projection of the point is derived by using the similarity of triangles in Figure 

14-(b). Here, f is the focal point of the camera. The projection of point P having 3D 

camera frame coordinates c c c

P P P
X Y Z   on the image plane is given by 

 ( , ) ( , )
c c

P P

c c

P P

X Y
u v f f

Z Z
=  (6) 

where u and v represent the components of the image coordinate frame(i-frame) with 

origin on the center of the image plane, i.e. the center of projection. However, we 

will be dealing with pixel coordinates (p-frame) since the digital output of the 

camera is represented by pixel values. Hence, the 2D projection of point P should be 

  

 0 0 0 0( , ) ( , ) ( , )
c c

p p

pixel pixel c c

p p

x y
x y u u v v f u f v

z z
= + + = + +  (7) 

in p frame , 0 0( , )u v being the position of center of projection. The coordinate systems 

that we involve in camera model are visualized in Figure 15. 
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Figure 15 – Camera, image and pixel coordinate frames. 

This ideal camera model is converted to a more realistic model by employing terms 

for non-ideal characteristics of a camera. These include the effective pixel size 

xs and ys , and image plane orientation represented by the skew factor. The 

aforementioned attributes are collected in a matrix form symbolized by intK which is 

multiplied with the position vector of the observed 3D point.  

 int

_ 0

0 0

0 0 1

x

y

s f skew factor u

s f v

 
 =  
  

K  (8)

  

 ( , )p p intx y = cK P  (9) 

Additionally, non-linear image distortion model can be utilized to express the non-

ideal lens properties. In more recent works, a distortion model is also suggested by 

introducing non-linear coefficients to the camera model. 
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2.2.2 Camera Calibration 

Camera calibration can be defined as the determination of internal and external 

parameters of a camera. By internal calibration, we refer to the determination of 

pinhole camera model parameters, i.e.  intK explained in 2.2.1. intK defines the 

relationship between the c frame and  p frame. However, point P is represented in g 

frame since it is not possible to measure the distance from the center of the camera to 

the point P. Hence, we should know the transformation between the c frame and g 

frame which is called the external projection. Determination of the position of 

camera in g frame and the rotation between the frames are calculated via external 

calibration. These are represented by respectively. The equation to calculate the c-

frame coordinates of point P is given in Eqn.(10). 

 

c g

p p

c g

p ext p

c g

p p

X X

Y Y

Z Z

   
   

= +   
   
   

R t  (10) 

The relationship given in equation (10) can be represented with a single matrix 

multiplication by combining t and extR  in a 3x4 matrix [ ]|extR t  and multiplying the 

resultant with employing homogeneous coordinates, a 4x1 vector. Homogeneous 

coordinates are formed with augmenting “1” at the end of the coordinate vector.   

 [ ]int |

1

g

p

p g

p

p ext g

p

X
mx

Y
my

Z
m

 
   
   =   
    

  

K R t  (11) 

The calculated pixel coordinate vector from Eqn.(11) is weighted by a factor of m 

which is the 3rd component. By dividing the first two components of the vector, pixel 

coordinates are obtained.  
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The camera calibration algorithm and procedure is explained in section 2.2.3. 

2.2.3 Camera Calibration Procedure 

Intrinsic and extrinsic parameters of the camera are obtained by utilizing the Camera 

Calibration Toolbox for MATLAB developed at vision laboratory of CalTech [19]. 

The camera model is a pinhole camera model with radial and tangential parameters. 

Distortion model is not utilized in the initialization step. The main internal 

parameters are estimated using images of a planar checkerboard pattern (Figure 16). 

This pattern provides a number of points for minimization of the re-projection error.  

Calibration images

 

Figure 16 – Checkerboard pattern images used for intrinsic calibration 
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The corners in the image are extracted and reprojection error is minimized by 

gradient-descent algorithm to find the internal camera. The parameters are supplied 

with the uncertainties. The average pixel error is also calculated. One of the images 

with the extracted and projected corners and the distribution of reprojection pixel 

error are shown in Figure 17. 

 

 

 

Figure 17-Extracted (α) and reprojected (b) image points for calibration of the 
webcam. Reprojection error is given in pixels. The average pixel error is 0.4 pixels in 

x-direction and 0.6 pixels in y-direction. 

 

Internal camera parameters for Apache webcam are obtained as follows: 

Focal Length:          fc = [776.60959   778.43741 ] ± [ 3.41506   3.47197 ] 

Principal point:       cc = [333.94725   217.49120 ] ± [ 3.59244   3.46439 ] 

Skew:             alpha_c = [0.00000 ] ± [ 0.00000  ]   =>  

( )b( )a
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Distortion:               kc = [-0.16135   0.02013   -0.00327   -0.00284]  

± [0.01628 0.07772   0.00089   0.00089] 

Pixel error:           err = [0.36118   0.41118] 

The unit for the internal parameter values is “one pixel length”, i.e. focal length is 

equal to the length of 776.6 pixels. The average pixel error is obtained to be 0.3 

pixels for x-axis and 0.6 pixels for y-axis. Apart from the main internal parameters; 

focal length, center pixel (principal point) and the skew coefficient, the distortion 

parameters are also calculated. However distortion model is highly non-linear. The 

toolbox has a function to un-distort the taken images according to the obtained 

distortion parameters. To exclude the distortion model, we use the undistorted 

images in algorithm.  

The external camera parameters of the webcam are calculated at in the experimental 

setup. The corner of the checkerboard pattern is marked as the origin of the global 

coordinate frame. The rotation and translation matrices are obtained as follows: 

Translation vector: Tc_ext = [-139.026981   -85.305398   360.320151] 

Rotation matrix:    Rc_ext = [0.012290   0.996590   -0.081590 

                                 0.999901   0.011692   -0.007805 

                                 -0.006824   -0.081678   -0.996635] 

The internal and external parameters will be utilized in joint calibration of IMU and 

camera which is explained in the next section.  
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2.3 Joint Calibration of IMU and Camera 

We have mentioned earlier that IMU-Camera calibration is an active research area. 

Recently two methods come forward: vanishing point approach and Kalman Filter 

approach. In this study we preferred vanishing point approach since the parameter 

estimation covariance is shown to be smaller than that of Kalman Filter calibration 

methods. The algorithm developer J.Lobo has presented a number of papers on 

vanishing point approach [22],[23]and presented an open source code for 

MATLAB[24]. This toolbox is compatible with the Camera Calibration Toolbox and 

uses the internal and external camera parameters obtained.  

The parallel lines in a real scene intersect at a finite point in images. The intersection 

point is called the vanishing points. In the 2D projection of a planar grid such as a 

checkerboard pattern, there are two intersection points created by the parallels and 

they define a plane. The normal of this plane is called the vanishing line. When a 

vertical pattern is observed by the camera, the vanishing line provides a reference for 

the vertical.  

Assuming that the IMU and the camera are rigidly attached to each other, we can 

obtain several measurements for vertical reference from both sensors. Using the 

vanishing lines and the effect of gravitational acceleration, it is possible to estimate 

the angular rotation between the sensor pair. 

The translation between the camera and the IMU is inconsiderable for the 

experiments considered in this study. The angular velocity does not change weather 

it is measured form the center of the camera, center of rotation or any other place on 

the rotating plane. Hence we will not deal with the translation between the sensor 

pair.  
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The rotation between the sensors is calculated in a quaternion form in the mentioned 

toolbox. The uncertainty in the quaternion estimate is also calculated. The quaternion 

matrix is converted to rotation matrix with the relation given in Eqn. (13).  

 1 2 3 4q q q i q j q k= + + +  (12) 

 
( ) ( )

( ) ( )
( ) ( )

2 2 2 2

2 2 2 2

2 2 2 2

2 q2q3 q1q4 , 2 q1q3 q2q4 ;

2 q1q4 q2q3 2 q3q4 q1q2

2 q2q4 q1q3  2 q1q2 q3

1 2 3 4

1 2 3 4

1q4 2 3 4

q q q q

q q q q

q q q q

+ − −

− + −

 − +
 

= + − 
 − − ++ −

C  (13) 

The quaternion vector and the associated direction cosine matrix are given in 

equations (14) and (15).  

  

5  0 999911  6 022641x10   0 0133002 0.000185. . .−= − − −q i j k  (14) 

 

 -0.999605     0.009422   -0.026476

 =   0.008682     0.999572     0.027935

  0.026728     0.027694    -0.999259

 
 
 
  

c

bC  (15) 

The outputs of camera calibration and joint IMU-camera calibration provide us the 

transformation matrices between the camera-global ( g

cC ) and camera-IMU frames 

( c

bC ). The transformation between the IMU and global frame is calculated by the 

multiplication of these matrices (Eqn.(16)). 

 =g g c
b c bC C C  (16) 

 

Global coordinate frame, camera coordinate frame and body coordinate frame are 

demonstrated in Figure 18 using the calibration parameters obtained.  
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Figure 18 – Demonstration of coordinate frame locations and orientations with the 
calibration parameters obtained. 
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CHAPTER 3  

KALMAN FILTERING FRAMEWORK FOR STATE ESTIMATION 

Having reviewed the sensors taking part in our work, we now focus on the 

mathematical mechanism that we have elected to use for the fusion of these sensors. 

This chapter briefly reviews the basics of the Kalman Filter, the Extended Kalman 

Filter and the Indirect (Error State) Kalman Filter for state estimation applications. 

Later in Chapter 4, the dynamical system model of our moving platform will be 

developed in accordance with the framework presented in this chapter. 

3.1 The Kalman Filter 

The Kalman Filter (KF) is the optimal minimum mean square error state estimator 

for linear dynamic systems driven by white Gaussian noise. Kalman Filter is also 

considered to be the best linear state estimator (or in the sense of Minimum Mean 

Square Error) for linear dynamical systems driven by non-Gaussian random variables 

[39]. 

KF recursively estimates the state of a dynamic system based on a sequence of noisy 

measurements and starting from an initial condition which is also assumed to be a 

random variable. The linear dynamic system is modeled as a Markov Process which 

presumes that the current state depends only on the previous state of the dynamic 

system. 

The discrete-time state space representation of the next true state x(k+1) of the 

dynamic system  evolving from the previous state x(k) is given in Eqn.(17) where 



  
39 

F(k) is the state transition matrix, G(k) is the control-input matrix, u(k) is the input 

and w(k) is the additive white Gaussian process noise with zero mean and covariance 

matrix Q(k)(Eqn.(19)). 

  

 ( 1) ( ) ( ) ( )x k x k u k w k+ = + +F(k) G(k)  (17) 

Measurement at time k is given by the model in Eqn(18) H(k) being the observation 

model and v(k), the measurement noise with zero mean and covariance R(k )(Eqn(19)

). Apart from their Gaussian properties, process noise and measurement noise are 

also assumed to be mutually independent.   

 ( ) ( ) ( )z k x k v k= +H(k)  (18) 

 ( )w k ~ (0, ( ))N Q k , ( )v k ~ (0, ( ))N R k  (19) 

State estimation is conducted considering the state space representation of the 

dynamic system in a two phase cycle with the details explained below [39]. 

 (1) First phase is the state and measurement prediction (time update) phase where a 

priori state estimate is  

 ˆ ˆ( 1| ) ( | ) ( )x k k x k k u k+ = +F(k) G(k)  (20) 

given the previous measurements and the state space model of the system which can 

be whether time-dependent of time independent. The initial state estimate is given by 

 0 ˆ[ (0) | ] (0 | 0)E x Z x=  (21)  

The state prediction covariance is the covariance of the predicted state (Eqn. (22)) 

given the previous measurements kZ  and updated at each time step according to 
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Eqn(23) with the initial covariance matrix P(0|0) which is assumed to be known 

initially. 

 ˆcov[ ( 1| ) | ]kx k k Z= +P(k +1 | k)  (22) 

 T= +P(k +1 | k) F(k)P(k | k)F(k) Q(k)  (23) 

 0cov[ (0) | ] (0 | 0)x Z P=  (24) 

  

(2) In second phase, state update (measurement update) or a posteriori state estimate 

is calculated considering the difference between the actual measurement ( )z k  and 

the measurement prediction ˆ( )z k given in (25). The difference is called the 

innovation or the residual (Eqn(26)) and has covariance ( )S k  given in Eqn (27).  

 ˆˆ( 1| ) ( 1| )z k k x k k+ = +H(k +1)  (25) 

 ˆ( 1) ( 1) ( 1| )y k z k z k k+ = + − +�  (26) 

 T= +S(k +1 | k) H(k)P(k +1 | k)H(k) R(k)  (27) 

 = T -1K(k +1) P(k +1 | k)H(k +1) S(k +1)  (28) 

Finally, the state estimate and the state covariance are updated according to equations 

(29) and (30) where ( )K k is the weighting matrix (Eqn (28) ). 

 ˆ ˆ( 1| 1) ( 1| ) ( 1)x k k x k k y k+ + = + + +K(k +1) �  (29) 

TP(k +1 | k +1) = P(k +1 | k) - K(k +1)S(k +1)K(k +1)  (30) 
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3.2 Extended Kalman Filter 

It has been mentioned that Kalman Filter is the optimal state estimator for linear 

systems with driven by white Gaussian noise. In real life conditions it is usually non-

trivial to represent systems and/or measurements by linear models. Extended Kalman 

Filter (EKF) is developed as an extension to systems that can be modeled by a non-

linear but differentiable state transition function ( , ( ), ( ))f k x k u k and observation 

function ( , ( ))h k x k .  Process and observation noises are still modeled as Gaussian 

random variables with the statistical properties given by Eqn.(19) in Section 3.1.  

 ( 1) ( , ( ), ( )) ( )x k f k x k u k w k+ = +  (31) 

 ( ) ( , ( )) ( )z k h k x k v k= +  (32) 

  

The dynamic system equations demonstrated in equations (31) and (32) and  are used 

to estimate and update the a priori state estimate (eqn. (33)) and measurement 

estimate (eqn.(34)).  

 ˆ ˆ( 1| ) ( , ( | ), ( )) ( )x k k f k x k k u k w k+ = +  (33) 

 ˆˆ( 1| ) ( , ( 1| )) ( )z k k h k x k k v k+ = + +  (34)

  

The Jacobian of the state transition function f and observation function h are used 

calculated at each step since the covariance cannot be calculated explicitly form the 

functions f and h.  Hence state transition matrix and the observation matrix becomes  
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ˆ ( 1| 1), ( )x k u

k

k k

f

x − −

∂
=

∂
F  (35) 

 
ˆ ( | 1)x k k

h

x −

∂
=

∂
kH  (36) 

by linearizing f  at the state estimate and h at the state prediction. 

EKF is the non-optimal state estimator due to the fact that the Jacobians of the state 

transition and observation functions are utilized instead of the original functions. 

Any modeling or initial state estimate error   may cause the EKF to diverge. 

Nevertheless, EKF can practically yield satisfactory results and hence is widely 

accepted for body state estimation applications. 

3.3 Indirect (Error State) Kalman Filter 

Using Kalman Filters for body state estimation require modeling of the dynamical 

system which can be very complicated. There may be high number of states and the 

model has to be updated whenever a change occurs in the platform. In addition, if the 

system is highly non-linear Extended Kalman Filter may diverge. Indirect Kalman 

Filter structure estimates the error in the navigation variables using the difference 

between the calculated navigation variables by integration and the aiding sensor [41]. 

Inertial navigation equations are updated outside the filter and dynamical modeling is 

not required. The block diagram of the Direct Kalman Filter and indirect Kalman 

Filter for sensor fusion is demonstrated in Figure 16 and Figure 20 respectively. 
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Figure 19 – Kalman Filter structure for sensor fusion 

 

Figure 20 – Indirect Kalman Filter structure for body state estimation using inertial 
sensors and cameras. 

 

State space equations of indirect Kalman Filter are formed by expressing the change 

of errors with respect to time. In equation(37), x̂ is the estimate of the variable of 
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interest, x is the true value of the variable and xδ is the error in the estimate. The 

error propagates in time according to equation(38). Kalman Filter state update and 

time update stages are processes with the measurement residual (Eqn.(39)) where x�  

is the measured quantity corrupted by white Gaussian noise with variance R. The 

measurement equation is expressed in matrix form in Equation(40). The state vector 

is corrected by weighing the measurement residual with Kalman Gain, K 

(Equation(41)). 

 x̂ = x + xδ  (37) 

 ( 1) ( )x k x k vδ δ+ = +eF  (38) 

 ˆz x x= − �  (39) 

 z x wδ= +H  (40) 

 ˆ ˆx x z= − K  (41) 

In our case, the angular position is calculated using the current gyroscope output and 

then corrected by the angular position error estimate. The differential equation for 

angular position error is found by subtracting those equations. The actual angular 

position differential equation and angular position calculated from the sensor outputs 

are given in Eqn.(42) and Eqn.(43) respectively. The differential equation for angular 

position error is found by subtracting those equations (Eqn.(44)). 

 
true trueθ ω=�  (42) 

 inertial gyroθ ω=�  (43) 

 
    

true gyroδθ ω ω

δθ δω

= −

=

�

�

 (44) 
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The error on angular velocity measurement is given by the gyroscope error equation 

presented in Section 2.1.2, which is added to the error state vector. The camera 

measurements are nonlinear hence the Jacobian of the measurement equations is 

calculated (Eqn.(45)).  

 
ˆ ( | 1)x k k

h

x −

∂
=

∂
kJ  (45) 

The measurement equation becomes: 

 zδ δ= J x  (46) 

The error estimates are subtracted from the calculated variables to get the corrected 

body state estimates (Eqn.(47)). 

 ( 1) ( 1)k kθ θ δθ+ = + −  (47) 
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CHAPTER 4    

PROBLEM FORMULATION 

We have covered the background on sensors and the fusion framework. In the 

present chapter, we attempt to formulate the particular problem that we are interested 

in, namely estimating the state of a moving platform by joint means of an IMU 

sensor and a camera sensor. This consists of two main steps: The derivation of 

moving platform state-space dynamic model and the derivation of the sensor 

measurement model. Collectively, these set of equations will form system and 

measurement model for the Kalman Filter. 

4.1 Coordinate Systems  

Study of moving bodies in space required careful definition of a number of 

coordinate systems to mathematically represent the state. We proceed as follows:  

Global coordinate system (g frame): Can be any stationary 3D coordinate system 

defined in the scene. In this work, the origin of the stationary g-frame is chosen to be 

the center of the rate table for simulations. As illustrated in Figure 21, the Xg and Yg 

axis are aligned with the rate table plane and Zg axis is pointing up from the table 

plane completing the right handed coordinate system.  
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Figure 21 – Coordinate system definitions 

 

Body coordinate frame (b frame): 3D coordinate system fixed to the moving body. 

The moving body in this thesis is the inertial measurement unit. Hence Xb, Yb and Zb 

are defined on the IMU case where x-axis points forward, y-axis points right and z-

axis points out of the body, in the gravity direction.  

Tangential coordinate frame (t frame): Rotating 3D coordinate frame defined for 

IMU measurement simulations. Yt is defined to be always tangential to rotation arc 

and Zt points out of the table plane as shown in Figure 21. 

Camera coordinate frame (c frame): 3D coordinate system fixed to the camera 

center. The origin of the c frame and the b frame are assumed to be coincident. The 

z-axis of the c frame is aligned with the optical axes of the camera.  

Pixel coordinates (p frame): 2D coordinate system defined on the image with the 

origin on the top left corner of the image plane.   
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Figure 22 – Camera and pixel coordinate systems 

 

Each sensor takes the measurements according to its own coordinate system. 

However it is necessary to perform calculations on a common frame. A vector in a 

particular coordinate system can be represented in another system by means of 

coordinate transformations. There are some methods to achieve this conversion such 

as using direction cosines, quaternions and exponential coordinates which involve 

the angle relations between the coordinate axes of the systems. These relations are 

calculated through the calibration process which we are explained in detail in section 

2.2.3.  

In this study, we use direction cosine matrices to express the translation between the 

coordinate systems. Direction cosine matrices are related with Euler Angles which 

describe the orientation of a coordinate frame relative to another coordinate frame. 

This orientation is represented by three rotations, one rotation per axis. ϕ , θ  and 
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φ are the rotations around the first, second and third axes respectively. Equation (48) 

demonstrates the formation of a direction cosine matrix from some general 

coordinate system a to another general coordinate system b. The transpose of the 

matrix is equal to the opposite transformation. 

  

1 0 0 cos 0 sin

0 cos sin 0 1 0

0 sin cos si

cos sin 0

sin cos 0

0 0n 0 os 1c

b

aC

θ θ

φ φ

φ φ θ

ϕ

ϕ

θ

ϕ

ϕ

     
     = −     
     −     

−

 (48)  

 

4.2 State Space Formulation of the Moving System   

Kalman Filter formulation requires the dynamical system and the measurements to 

be modeled. Our moving system is a rate table which will provide the system matrix. 

The measurements are obtained from the gyroscope and camera measurements. The 

camera measurements are non-linear. The equations and the linearization procedure 

is explained in this section.  

4.2.1 System dynamic equations  

The input and the output of the rate table is the angular velocity Motion control is 

through cascaded velocity and current loops which have a PI controller structure. The 

velocity loop is responsible for generating the current necessary for the needed 

torque [45]. The motor model is the conventional DC motor model [46]. The velocity 

loop, current loop and the motor model parameters are supplied by the manufacturer. 
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Figure 23- Block Diagram of Rate Table Model with an angular velocity reference 
input and the angular velocity output 

 

The states of the state space formulation of the block diagram given in Figure 23 are 

the angular velocity output, the integral of the difference between angular velocity 

output and the commanded angular velocity input, and the integral of the current 

(eqn.(50)).   

 
( ) ( ) ( )

( ) ( )
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 ( ) ( )
T

in
x t w iω ω = − ∫ ∫  (50) 

We use the observable form of the system matrix A and angular position is added to 

the states. The continuous time state transition matrix and the control input matrix 

are given by equations (51) and (52) respectively. 
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The Kalman Filter is to be implemented in discrete time making it necessary to find 

the discrete time representation of the system (Eqn.(53)).  The continuous time 

expressions are converted to their discrete time equivalents with the sampling time 

dt. In this study, sampling time is chosen to be 0.01 seconds, in consistent with IMU 

sampling intervals.  

 
( 1) ( ) ( )

( 1) ( 1)
inx k x k w k

y k x k

+ = +

+ = +

F G

H
 (53) 

 exp( )dt= ×F A  (54) 

 ( )
t t

t
e d

τ τ
+∆

= ×∫
AG B  (55) 

The initial state estimate covariance 0 0P( | )  is the zero for all states for simulations 

since the initial state is known perfectly. For the real case, initial velocity estimate is 

known to be zero, perfectly for the angular velocity since the system is at rest 

initially. On the other hand, the initial position estimate in hardware experiments is 

known to the extent of the uncertainties of calibration procedure, which obtained to 

be 0.5 degrees (0.01 rad). P is updated at each time step according to (23). 

 

0 0 0 0

0 0 0 0
0 0

0 0 0 0

0 0 0 0.01

 
 
 =
 
 
 

P( | )  (56) 

The process noise covariance matrix Q(k) is determined considering the rate table 

output velocity and position noise characteristics for both simulation and hardware 

esperiments. The noise angular position output is observed to be 0.001rad.  
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 ( ) ( )T
E v k v k =  Q(k)  (57) 

4.2.2 Measurement Equations  

In this section, we will explain the measurement equations used for the body state 

estimation strategies: gyroscope only, camera only and the two sensors together.  

4.2.2.1 Measurement Equations for KF-G 

The gyroscope measures the angular velocity which is nothing but the first state of 

our state space formulation. The only important thing is to express the angular 

velocity vector in global coordinates. We should multiply the gyroscope 

measurement with the coordinate transformation matrix relating the body coordinates 

with the global coordinates.   

 g

m b gyroCω ω=  (58) 

The coordinate transformation matrix change in time since the body is moving. They 

are updated using the latest state estimate at each step with the expression given in 

equation(59) 

 ( )g g

b b bC new C= Ω  (59) 

 Hence, the measurement equation of the KF-G is Eqn.(60), H being the 

measurement matrix. The Kalman Filter update rate is equal to the IMU sampling 

rate which is 100Hz. 

 
[ ]
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y k x k

H
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=

H
 (60) 
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 The measurement covariance value is set using the standard deviation of gyroscope 

measurements during calibration tests.  

2

( ) ( )

       

T

gyro

E w k w k

σ

 =  

 =  

R(k)

R(k)
 (61) 

 

4.2.2.2 Measurement Equations for KF-C 

The 2D projection of point P in the scene is fed to KF-C as measurements. The 3D 

global coordinates of the point of interest is projected on the image plane with 

equation (11) explained in section 2.2.1. This measurement is non-linear hence we 

should calculate the Jacobian of the measurement function. At every time step, the 

measurement estimation is calculated with equation (62) where the measurement 

matrix H is equal to the Jacobian of the measurement function.  

 ( ) ( ( ), ( )) ky k h x k u k v= +  (62) 
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H J(h)

J
 (63) 

The derivative of the measurement is zero with respect to all variables except for the 

angular position. Angular position of the camera is acting on the coordinate 

transformation matrix and the position of the camera coordinates with respect to the 

global coordinates. This step is handled MATLAB hence is not included here. 
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The measurement covariance matrix is set considering the typical pixel error value 

for cameras. For real experiments, this value is equal to the average pixel error 

calculated in internal calibration procedure (Eqn.(64)).  

 
2

2
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0
cam

cam

σ

σ

 
=  
 

R(k)  (64) 

The Kalman Filter update rate is equal to the camera sampling rate which is 30 

frames/sec. 

4.2.2.3 Measurement Equations for KF-GC 

The measurement matrix for the fusion case is also non-linear since cameras are 

included in the system. The measurement statement of the gyroscope is just 

concatenated to the Jacobian matrix. The Kalman Filter is updated whenever a 

measurement is ready, i.e. when a measurement is received from the IMU, and/or the 

camera. 
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The measurement covariance matrix is formed form the camera pixel error and 

gyroscope outputs standard deviation values. R is a 3x3 matrix with sensor error 

covariances on the diagonals (Eqn.(66)). 
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4.2.2.4 Outlier Rejection 

An outlier is defined as an observation lying at an abnormal distance from other 

values of a random sequence [47]. The measurements collected from the sensors 

include randomly distributed errors. A measurement may have very noisy 

measurements at random time instants, which are not likely to belong to the set of 

other measurements. To negate such measurements, a “circle of confidence” is 

defined and the outliers are rejected. The distance measure is chose to be the 

Mahalanobis Distance (MD). This distance measure takes the difference between the 

measurement and the estimated measurement, i.e. the innovation, and the innovation 

covariance into consideration (Eqn.(67)). 

 ( ) ( )2 1ˆ ˆ
T

k k k kMD z z z z
−= − −S  (67) 

MD is calculated for every measurement. The measurements with Mahalanobis 

Distance under the threshold are processed by the algorithm. 

The following two chapters will now present first our simulation based experimental 

setup and results, followed by the real hardware setup and results.  
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CHAPTER 5  

SIMULATION EXPERIMENTS  

The simulations were intended to first test the feasibility of the basic principles of 

camera-IMU sensor fusion. They were conducted first and successful results during 

simulation experiments provided an opportunity to test these principles on an actual 

hardware setup. Also, simulations render the study more accessible since they can be 

comparatively easy to replicate. The simulation environment also provided us a 

controlled environment to perform sensitivity experiments. 

5.1 Simulation Set-up 

Since the aim was ultimately to verify simulation results by real hardware 

experiments, the simulation set-up is modelled with consideration of the hardware 

experimental set-up. We have deliberately chosen a simple, single DOF motion 

which can be feasibly realized in hardware. In our set-up, the camera - IMU pair is 

rotating on a single axis, rotating rate-table whose mathematical model is known. 

The sensor outputs are simulated using the set-up geometry and the sensor models. A 

top-view drawing of the rate table is shown in Figure 24. 
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Figure 24 – Rate table top view demonstrated with global, body and tangential 
coordinate systems 

 

The sensor data are generated with the assumption that the transformation matrices 

between the coordinate systems are perfectly known. But the sensor fusion 

algorithms are run such that we know the calibration parameters with some error. .  

Data generation and the description of the simulations are given in proceeding 

sections. 
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5.2 IMU Data Generation 

Inertial measurement unit data is simulated building the system dynamic model and 

IMU error model on Simulink platform. We illustrate the high level block diagram of 

the model in Figure 25 and give the details in the following paragraphs. 

We have derived the state space model of the rate table in Section 4.2.1 which is 

represented by the “rate table dynamics” block in Figure 25. Rate table reference 

input w_in is fed to this block to obtain the response of the table, w. 

 

Figure 25 – Simulink model for IMU and camera measurement simulation. The 
reference input is fed to the rate table model. Actual accelerations,veleocities and 
positions are calculated. Using coordinate transformations and sensor models, 
realistic data is obtained.   

Before moving on to the next block in the model, we will find it useful to remember 

the relationship between the angular velocity, tangential velocity, tangential 

acceleration and centripetal acceleration: 

  

 
tangential tV V rw= =  (68) 
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tangential t

dw
a a r

dt
= =  (69) 

 2
centripetal ca a w r= =  (70) 

where r is the radius of the rotation arc and w is the rotational velocity experienced 

by the body. “motion” block of the Simulink model is responsible for calculating the 

outputs of equations (68),(69) and (70) which are fed to the “coordinate 

transformations” block. The definition of the t-frame and the b-frame were given in 

Section 4.1. The origin of the b-frame (Xb, Yb, Zb) is coincident with the origin of the 

t frame but there is a rotational transformation between the two frames represented 

by the 3x3 rotation matrix b

tC .  Both coordinate systems rotate with the rate table 

and the rotation matrix b

tC  is constant. According to this definition, it is observed 

that the tangential velocity Vt and tangential acceleration at are always in +Yt 

direction and the centripetal acceleration ac is always in –Xt direction. By using this 

information and the associated rotation matrices between these coordinate systems, 

we can compute the accelerations and the rotational velocity experienced by the 

IMU, given the actual motion of the rate table. Therefore, we can generate the IMU 

measurements by first defining an angular velocity reference input profile for the rate 

table and then using the dynamic model of the rate table to compute the predicted 

motion of the table. This motion is then converted to the IMU measurements as given 

by equations (71),(72) and (73), Vbody, abody, wbody being the velocity, acceleration and 

rotational velocity experienced by the body, represented in body coordinates. 
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Data generated by the method explained above represent the exact motion 

parameters. However, inertial measurement units are subject to severeal errors such 

as bias, non-orthogonality of axes and random noise by nature. In order to generate a 

realistic simulation data, these error terms need to be added to idealized IMU 

measurements which were generated by predicted table motion and geometric 

calibration alone. Adding the IMU errors modelled by equations Section 2.1.2 to the 

exact motion variables, we get the final realistic IMU measurements.(eqns(74),(75)). 

The error parameters thruoughout this thesis are chosen to be consistent with the 

calibration parameters of the MicroStrain 3DM-GX1 IMU unless otherwise stated. 

  

 exactf f fδ= +  (74) 

 exactω ω δω= +  (75) 

5.3 Camera Data Generation 

Camera measurements are obtained by calculating the pixel coordinates of a feature 

point in the scene utilizing the projective camera model. intK being the internal  

camera matrix, extR being the rotation of external matrix between the camera and the 



  
61 

global frame, and tc being the position of camera in global frame, pixel coordinates 

of the feature point P(Xp, Yp, Zp) is given by equation (11). 

 [ ]int |
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p
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p

y ext c

p

X
mp

Y
mp t

Z
m

 
   
   =   
    

  

K R        (11) 

The position of the camera is calculated at each step considering the error free 

dynamical model. At each step, the projection of the feature point on the image plane 

is calculated and stored in a 2xn dimensional array for future use. The average pixel 

error value is added as noise to simulated pixel measurements. 

5.4 Simulations 

This section intends to present the results of the simulation experiments carried out 

on the simulation environment created in MATLAB with the abovementioned data 

and the examined fusion algorithm.  It is useful to remember the algorithms are 

named after the sensors used. These are Kalman Filter-Gyroscope (KF-G), Extended 

Kalman Filter KF-Camera (KF-C) and Extended Kalman Filter KF – Gyro and 

Camera (KF-GC). True states are also calculated using error-free sensor outputs and 

exact geometric calibration parameters for each experiment since they are vital for 

comparisons of the errors. Note that this is only possible in a simulation 

environment.  

 

Root Mean Square (RMS) error is chosen as the performance criteria and calculated 

with the expression in Equation(76). RMS error is calculated after m number of runs 

of the algorithm since the noises are modelled as random variables.   
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e
m

−
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∑

 (76) 

Here, x̂ is the estimated state and true
x is the true state of the system.Normalized root 

mean square estimation error can also be used as performance criteria (Eqn(77)). In 

some cases the RMS error might seem to have small values where the value of the 

state has small values itself.  Also comparison of filter performance under several 

test scenarios having different ranges of observation data requires formalization for 

proper performance evaluation.  When the observed test values collected for 

comparison have different ranges, using NRMS is better than using RMS. However 

in this study, the operating ranges for the tests are similar. Furthermore, we compare 

the performances of the three algorithms for each test separately. Hence we use state 

estimation RMS error as the performance criteria. 

 rms

max min

e
NRMS

x x
=

−
 (77) 

 

We attempt to present each experiment together with its objective, results and main 

observations. 

5.4.1 Experiment 1: Comparison of Gyroscope Output Integration and 

Kalman Filter 

The first simulation experiment aims to picture the superiority of estimating angular 

position via Kalman Filter as compared to calculating it directly via simple 

integration form gyroscope measurements, which will be referred as Direct 

Integration (DI). DI yields increasing unbounded errors. We want to show that the 
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increase in estimation error will decrease by means of using a Kalman Filter. For this 

experiment, the system is simulated such that it experiences a constant angular 

velocity of 20degrees/sec for 60 seconds. Angular velocity profile input and the error 

free angular velocity output are given in Figure 26.  

Generated gyroscope outputs are fed to the Kalman Filter as measurements and 

Kalman Filter is updated whenever a measurement is ready. The initial angular 

velocity and angular position are set to be both zero since the system is at rest at theta 

= 0 position when the input is applied. The state covariance matrix is initialized 

considering how well we know the initial conditions. Angular velocity is perfectly 

known at zero, however initial position is known on the order of external calibration 

error. For the real case, initial position covariance may be non-zero since it may not 

be measured.   

 [ ]ˆ(0 | 0) 0 0 0 0
T

x =  (78) 

 [ ](0 | 0) 0 0 0 initP δθ=  (79) 
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Figure 26 – Angular velocity input supplied to the dynamic system model and the 
true angular position of the system for 60 seconds 

 

KF-G and GOI performances are tested with three different gyroscopes having 

different random walk coefficients. These coefficients are chosen around a realistic 

model constructed employing the parameters of 3DM-GX1 IMU. Gyroscope model 

containing MicroStrain’s parameters is named as g2 and has a random walk 

coefficient of 0.012rad/√sec. Other two gyroscopes are chosen to have random walk 

coefficients 0.1 and 10 times that of g2 (Table 1). 
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Table 1 – Gyroscope models’ random walk coefficients giving a clue that g1 is better 

than g2, and g2 is better than g3. 

random walk 

coefficient 

Gyroscope Model 

1 g1 

Gyroscope Model 

2 g2 

Gyroscope Model 

3  g3 

rw 0.0012 0.012 0.12 

 

Unbounded RMS error is demonstrated in Figure 27 for KF-G and GOI. From Figure 

27-(a) and (b), it can be deducted that RMS error increases with increasing random 

walk coefficient for both algorithms. However, the advantage of using a Kalman 

Filter can be observed by comparing the y-axes values in the graphs. Final RMS 

values after 50 Monte-Carlo runs of 60 seconds, are gathered in Table 2. 
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Figure 27 – RMS error of angular position under two techniques using three different 
gyroscopes. (a)Kalman Filter KF-G yields 0.013 radian RMS error with the worst 

gyro (g3).  (b) Direct calculation of angular position from the output of the gyroscope 
yields an RMS error of 0.025radians with the best gyro (g1) which is worst than KF-

G/g3.  (c) comparatively illustrates the error of KF-G and DI for (g2). 
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Table 2- Final RMS values of angular position error for KF-G and DI after 60 
seconds. 

 KF-G DI 

g1/drift = 0.0012 0.000193 2.8 

MicroStrain 3DM-GX1 

g2/drift = 0.012 

0.0018 0.24 

g3/drift = 0.12 0.013 0.025 

5.4.2 Experiment 2: Comparison of KF-G, KF-C and KF-GC, Constant 

Angular Velocity 

This experiment aims to support the main proposed idea of this thesis. Using a 

simplified set-up, we will compare the root mean square (RMS) estimation error 

obtained by using gyroscopes, cameras and the joint sensor configuration under 

nominal error characteristics. A constant angular velocity of 20 degrees per second 

(0.3491 rad/sec) is provided as the input to the dynamic system model for 60 seconds 

as in the case of Experiment 1. The angular velocity input and the true angular 

position are shown in Figure 26. 

5.4.2.1 State estimation with gyroscope measurements: KF-G 

In this experiment, we utilize the gyroscope data simulated in consistence with the 

specifications of MicroStrain 3DM-GX1 IMU with. Kalman Filter noise covariance 

value is determined according to this model.  
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Figure 28 – (a) Angular velocity ω estimated using only gyroscope measurements in 
blue, with the gyroscope measurements in green and the true ω in red. (b) Detail of 

angular velocity estimation. Note that the estimation noise is about 100 times smaller 
than the measurement noise. 

 

Linear Kalman filter structure explained in section 3.1 is utilized for this experiment. 

Gyroscope data is supplied at a 100Hz rate and the filter is updated when a new 

measurement is ready. In Figure 28 , angular velocity estimate for a single run is 

shown with measured and true angular velocity. Estimation noise standard deviation 

is 100 times smaller than the measurement noise. RMS error of estimated angular 

position was given in Figure 27-(a) in 5.4.1 Experiment 1.  

5.4.2.2 State estimation with camera measurements: KF-C 

In KF-C, we only feed camera measurements of a single point in the scene to the 

EKF model explained in 3.2. Camera measurements are taken 25frames/second and 

the filter is updated with each measurement. A pinhole model has a focal length of 

20 mm and 512x512 pixels size. Ideally, internal and external calibration is perfectly 

known, however it is not realistic. For this experiment, the camera is assumed to 

( )b( )a
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have reasonable calibration errors and pixel noise, which are likely to be obtained 

from the calibration algorithm used for this thesis. We assume an error of 0.45 

degree standard deviation for all Euler angles between the coordinate frames which 

we represent by σφ. All errors sum up to σtotal, total standard deviation calculated 

from the difference of pixel coordinates obtained from the ideal camera model and 

the erroneous camera model given in Table 3. σtotal, which is visualized Figure 29 

for x and y directions, is utilized in measurement covariance matrix, R.  

 

Table 3 – Nominal standard deviations on camera calibration variables. 

σf σu0,σv0 σskew pixel noise σφ σtotal 

1mm 1 pixel 0.001 1 pixel 0.008rad 1.7 pixels 
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Figure 29 – Total pixel measurement error for x and y directions. 
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Figure 30-Angular position, θ, estimation RMS error using only camera 
measurements. Note that the RMS error is bounded. 



  
71 

The RMS error plot obtained after 50 Monte-Carlo runs show that, Extended Kalman 

Filter reaches to a steady state RMS value of 0.021 radians (Figure 30). This result 

meets our expectations of a bounded error on angular position estimate.   

5.4.2.3 State estimation with joint sensor measurements: KF-GC 

The aim of KF-GC of Experiment 2 is to summarize the main idea of this thesis. 

Both gyroscope and camera measurements are fed to Extended Kalman Filter 

structure and the RMS error of angular position estimation is observed. For this 

experiment, sensors with nominal error characteristics are used as explained in 

previous sub-sections 5.4.2.2and 0. 
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Figure 31 – RMS error of KF-C and KF-GC under nominal sensor and calibration 
characteristics. Note that, usage of joint sensors results in an advance in the 

performance. 
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It is obvious from Figure 31 that joint usage of gyroscopes and cameras provide a 

better performance than the sensors individually. The unbounded error growth of 

gyroscope is eliminated while the estimation accuracy is increased as compared to 

the camera alone.  

 

5.4.3 Experiment 3: Sensitivity analysis for calibration errors 

The purpose of this experiment is to analyze the performance of KF-C and KF-GC 

under changing calibration errors. Standard deviation of focal length, center pixel, 

skew coefficient and external calibration angles are varied in equal percentage steps, 

up and down for all variables individually. Nominal standard deviation of calibration 

variables used for simulations are given in Table 4.Table 5, Table 6, Table 7 and 

Table 8 shows the RMS errors for indicated standard deviations respectively, after 

rotating for 60 seconds under constant angular velocity. Columns marked with red 

indicate the nominal standard deviation. 

Table 4 – Nominal calibration error standard deviations assumed for simulations 

 σf σ(u0,v0) σskew Σφ 

nominal 

value 

1 mm 1 pixel 0.0010 0.008 rad 
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Table 5 – RMS error of estimated angular position for options 2 and 3 under 
changing focal length calibration error. All other calibration errors are kept constant 

with previously assumed nominal values. 

θ(RMS) 
σf = 

0.5mm 

σf = 

0.75mm 
σf  = 1mm 

σf = 

1.25mm 

σf  = 

1.5mm 

KF-C 0.02058 0.02113 0.02120 0.02218 0.02304 

KF-G 0.01470 0.01416 0.01623 0.01658 0.01750 

 

Table 6– RMS error of estimated angular position for options 2 and 3 under changing 
image center calibration error. All other calibration errors are kept constant with 

previously assumed nominal values. 

θ(RMS) 
σ(u0,v0) = 

0.5px 

σ(u0,v0) = 

0.75px 

σ(u0,v0) = 

1px 

σ(u0,v0) = 

1.25px 

σ(u0,v0) = 

1.5px 

KF-C 0.01920 0.020205 0.02120 0.02199 0.02220 

KF-G 0.01564 0.01601 0.01623 0.01632 0.01670 
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Table 7- RMS error of estimated angular position for options 2 and 3 under changing 
skew factor calibration error. All other calibration errors are kept constant with 

previously assumed nominal values.  

θ(RMS) 
σ(u0,v0)   

= 0.0015 

σskew  = 

0.00125 

σskew  = 

0.0010 

σskew  = 

0.00075 

σskew  = 

0.0005 

KF-C 0.0200 0.0202 0.02120 0.02245  0.02387 

KF-G 0.01386  0.01533 0.01623 0.01637 0.0174 

 

Table 8- RMS error of estimated angular position for options 2 and 3 under changing 
external calibration error. All other calibration errors are kept constant with 

previously assumed nominal values. 

θ(RMS) 
σφ     

0.012rad 

σφ 

=0.010rad 

σφ 

=0.008rad 
σφ =0.006 σφ =0.004 

KF-C 0.02007  0.02097 0.02120 0.0239 0.02437 

KF-G 0.01499  0.0158 0.01623 0.01649 0.01653 

 

By considering the numerical values on the rows of the tables, it can be inferred that 

with increasing error, final RMS error of angular estimate also increases for both 

options. Secondly, considering columns of the tables, KF-GC performs better than 

KF-C for any error scheme. In Figure 32, these results are visualized. Part (a) 

demonstrates the performances of KF-C and KF-GC together while results of KF-GC 

can be seen in detail in (b).  It is obvious from Figure 32-(a) that the fusion of camera 

and gyroscope measurements perform better for all considered conditions of 
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calibration errors. Apart from the individual comparison of performances, we can see 

that the slopes of the lines connecting final RMS error values are smaller for KF-GC. 

One can infer that KF-GC is more robust to increasing calibration errors. The main 

proposal of this thesis was to overcome the individual drawbacks of cameras and 

gyroscopes, which we showed with the previous experiment. Additionally, by means 

of this sensitivity analysis we show that KF-GC performs better and is more robust to 

calibration errors for all conditions considered for this thesis. This is one of the main 

contributions of this study. 
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Figure 32-Angular position estimation performance (RMS error) versus percent 
change in nominal standard deviation of camera calibration variables.(a) 

demonstrates performances for KF-C and KF-GC together. In (b), performance of 
KF-GC can be seen in detail. 
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5.4.4 Experiment 4: Comparison of KF-G, KF-C and KF-GC, Ramp Angular 

Velocity 

In this experiment, the angular position is a ramp function with an angular 

acceleration of 0.0175 rad/sec2 (1 deg/sec). The angular velocity and position profile 

is shown in Figure 33. The performances of KF-G, KF-C and KF-GC are compared 

in this section. This experiment aims to observe the performance of the algorithm 

under ramp input. 
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Figure 33 – Angular velocity and position profiles for experiment 4. 

5.4.4.1 State estimation with gyroscope measurements: KF-G 

State estimation of KF-G with ramp angular input yielded the expected result of 

unbounded error growth. The RMS error increase is given in Figure 34. Note that the 

error value at second 60 is slightly larger than that of KF-G with constant angular 

velocity input. 
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Figure 34 – KF-G angular position RMS error increases with time. The angular 
velocity input is a ramp function. 

5.4.4.2 State estimation with camera measurements: KF-C and KF-GC 

Angular position estimation error for KF-C and KF-GC under ramp angular velocity 

input is shown in Figure 35 comparatively. Final RMS error of KF-C is 0.019 rad 

where this value reduces to 0.016 radians for KF-GC. The fusion of the sensors 

provides the expected improvement on the RMS error.   
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Figure 35 – KF-C and KF-GC angular position RMS error graphics. Fusion of the 
sensors introduces an improvement to estimation error. 

 

5.4.5 Experiment 5: Comparison of KF-G, KF-C and KF-GC, Arbitrary 

Angular Velocity 

In this experiment, the performance of KF-G, KF-C and KF-CG are evaluated under 

a varying angular velocity input profile with the plot given in Figure 36. The profile 

includes accelerated regions as well as constant angular velocity. The angular 

position estimation errors for all KF filter options are presented in this section.  



  
79 

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

time(sec)

Angular Velocity Input

ω
in

 (
ra

d
/s

e
c
)

0 10 20 30 40 50 60
0

5

10

15

20

25

30

time(sec)

True Angular Position (rad)

θ
tr

u
e
 (

ra
d
)

 

Figure 36 – Angular velocity input profile for Experiment 5 and the associated True 
Angular Position 

 

Position estimation error for KF-G is unboundedly growing as Figure 37 

demonstrates. The final value of the error after 60 second is 0.00185 radians which 

corresponds to 0.1 degrees.  KF-C with arbitrary angular input has finite error 

characteristics while we can observe some fluctuations on the error signal. The RMS 

value at 60th second is around 0.0023 radians. Introducing the sensor pair to the 

system, KF-GC provides better estimation performance, with final simulated value of 

0.016 radians. The unbounded error is eliminated.  
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Figure 37 – Angular position RMS error of KF-G for Experiment 5 
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Figure 38- Angular position RMS error of KF-C and KF-GC for Experiment 5. 
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5.4.6 Experiment 5: Long term comparison of KF-G, KF-C, KF-GC 

The aim of this experiment is to observe the behaviors of the proposed algorithms in 

short time and long time. The experiment lasts for 200 seconds for a constant angular 

velocity input.  

It has been shown that the angular position estimation error for KF-G grows 

exponentially with time. Although unbounded, the short term performance of KF-G 

is better than the both camera alone and the fusion of the two sensors.  In Figure 39, 

the estimation performances of three sensor configurations are demonstrated 

together. We can observe that till 100th second, KF-G performs better than the fusion 

of the sensors and till 123rd second, it performs better than the camera alone. We can 

deduce that the estimation with gyroscope only is more accurate in short time but the 

stable estimation error of KF-C and KF-GC are more reliable when the run time is 

longer.  
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Figure 39 – Comparison of KF-G, KF-C and KF-GC angular position RMS error for 
duration of 200 seconds. Note that the short-term performance of KF-G is better than 
KF-C and KF-GC. KF-GC outperforms KF-G after 100 seconds and KF-C 
outperforms KF-G after 123 seconds. 

5.4.7 Experiment 6: Comparison of KF and IKF 

We have mentioned that angular position integration is running outside the Indirect 

Kalman Filter structure. The camera measurements are used to correct the integration 

outputs. In this simulation experiment we compare the performance of KF-GC and 

IKF.  
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Figure 40- KF-G and IKF angular position estimation RMS error comparison.  

The error characteristics of the algorithms are presented in Figure 40. The unbounded 

error caused by integration is avoided. However, the error level is above the error 

level obtained by KF-G.  The inclusion of the accurate dynamical model of the 

system in KF-GC algorithm provides a better body state estimation error. This result 

is discussed in section 5.5  

5.5 Simulation Results: Discussion 

In this section, the performance of the proposed fusion approach is observed in a 

simulation environment under predefined experimental conditions and realistic error 

assumptions. The Root Mean Square (RMS) value of state estimation error is 

considered as the performance criteria. Experiments are carried out under constant, 

ramp and arbitrary angular velocity inputs and perfectly known initial state 

assumption.  
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Initially, the effect of using a Kalman Filter structure to estimate angular velocity and 

angular position is compared with the Direct Integration approach, where angular 

position is calculated by direct integration of gyroscope measurements. The RMS 

performance measure on angular velocity estimate improves significantly, but the 

unbounded increase in angular position estimate cannot be eliminated. However the 

increase in error is smaller than direct integration which enables us to the system for 

a slightly longer time.  

Estimating with camera-based KF-C structure is considered as the second step for 

our simulations. The estimation error is bounded since the position measurement 

based on a fixed landmark is absolute. However for short time, the RMS error of KF-

G is still smaller. 

The fusion of the sensors eliminate unbounded error characteristic of gyroscopes 

while improving the performance of stand-alone camera based KF-C. For any 

angular position input, whether it is constant, ramp or an arbitrary input, the ordering 

of the performance does not change. 

The sensitivity analysis shows that the fusion of the sensors introduces robustness to 

calibration errors. The estimation performance of KF-GC is better than that of KF-C 

for any of the considered calibration error value. Moreover, the slope of performance 

with respect to parameter variations is reduced with the fusion, indicating a 

improving robustness to parameter variations.  

The need for an accurate dynamic system model is eliminated in the case of Indirect 

Kalman Filter. However, the angular velocity estimate is directly obtained from the 

gyroscope measurements and the noise level is equal to that of the gyroscope, 

namely higher than the Direct Kalman Filter case. Also the angular position 

estimation error is lower when the system dynamical equations are included in the 

system with the Direct Kalman Filter Approach. Although it has higher performance, 

direct filtering requires dynamical system modelling which can be complicated in 
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many real systems. With lower number of states, run time of IKF is smaller. This 

may be the main reason IKF is preferred in Inertial Navigation Systems (INS). 

Another advantage of IKF is that navigation equations keep providing outputs even if 

the Kalman Filter block fails to operate. Depending on the demands of the system, 

the suitable algorithm could be chosen considering the advantages and disadvantages 

of each algorithm. 
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CHAPTER 6  

HARDWARE EXPERIMENTS  

Computer simulations are important in the sense that we can test if the proposed 

method yields the expected results in controlled conditions. Also, ground truth is 

readily available in a simulation experiment. However, one should be careful with 

simulation experiments as there may be unexpected/unmodelled influence factors 

that can only be seen by real hardware experiments. Hence these become crucial to 

investigate the performance of the investigated approaches in an imperfect 

environment. With these motivations, we have also considered real hardware 

experiments and the results of these are presented in this chapter. 

6.1 Experiment Set-up 

The experimental set-up consists of a rate table, an IMU, a webcam, 2 laptops and a 

power supply to feed the rate table.  

The IMU used for the experiments is MicroStrain’s 3DM-GX1 which has been 

characterized through several tests. The camera is a commercial webcam by Apache. 

The rate table is a product of IMAR Navigation Company. The rate table is driven by 

a 24 V power supply. The communication is via RS232 serial port and a user 

interface supplied by the manufacturer. However, to fully control the input 

commands timing; we wrote our own scripts which are sent to the table from the 

communication port. A picture of the experimental set-up is illustrated in Figure 41. 
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Figure 41 – Experimental set-up. The sensor pair is seen on the rate table. 

6.2 IMU Data Collection 

The IMU has an RS232 connector for communication and an electricity network 

connection plug to meet the power demand. It is possible to use the graphical user 

interface supplied by the manufacturer or write a program to collect the raw data as 

in the case of this study. The raw data is collected and then converted to physical 

units before running the body state estimation algorithm.  The parameters necessary 

for this operation has been explained in Section 2.1.3. 
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Figure 42 – Inertial measurement unit shown with connection cables. 

6.3 Camera Data Collection 

The camera used in this study is a commercial webcam of Apache. The camera is 

connected to the laptop with a USB port and it draws the necessary power from the 

USB port of the computer. Camera images are 480 pixels by 640 pixels and are 

captured by using the commercial program Apache Video Power with a rate of 30 

frames/sec and stored for processing.  
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Figure 43 – Apache webcam and the USB connector 

IMU and camera are mounted on the rate table via a mechanical interface (Figure 

44). Camera optical axes points upwards. External calibration is performed with the 

calibration rig observed in the scene. After external calibration, a black circular point 

with known coordinates is introduced to the scene with a white background. The 

center of the point is to be used as the measurement from the camera.  
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Figure 44 – IMU and camera are mounted on the rate table with a mechanical 
interface. Camera optical axes points upwards. External calibration is performed with 

the calibration rig seen in picture on the right. 

 

The reason for choosing a circular black point with a white background is to simplify 

the image processing part. The center of the point is our main interest since we want 

to calculate the 2D projection on the image plane. The center of mass of the black 

point is given by equations(80), (81) and(82) after the image frames are binarized. 

The colored image and the binarized image can be seen in Figure 45. The center of 

mass of each image is calculated and stored in an array.  
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Figure 45 – An image of the black point in the scene captured from the camera.  The 
binarized image is displayed on the right. 

6.4 Data Synchronization  

Data is straight forward in simulation since the data is artificial. However, in 

hardware experiments, synchronization is an important issue. Data sampling rates are 

mostly different in sensor fusion applications. The sensors used in this study have 

sampling rates of 100Hz for the gyroscope and 30frames/second for the camera. 

Neither the time stamps of the sensors coincide nor can they be triggered at the same 

time. The start point of the motion can be detected on the outputs of the sensors and 

time stamped as 0. The gyroscopes have their own time tags starting from the 

transferred data frame initially. The same motion is detected in the camera frame. 

Starting from 0, the time stamp of each frame is marked with intervals of 0.033 

seconds. 
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Figure 46 – Gyroscope output and pixel coordinates of the object in the scene. The 
input is constant angular velocity. Data points after collection of experiment data can 

be distinguished. The initial data point is marked.  

 

Camera data points are interpolated using linear interpolation to calculate the pixel 

values at gyroscope sampling times. Finally we have the measurements of both 

sensors at any time stamp. This distinctive motion is used synchronization before 

inputting the actual angular velocity profile. 

6.5 Experiments 

Hardware experiments are classified considering the angular velocity command 

supplied to the rate table. In consistent with the simulation experiments, constant 

angular velocity and ramp angular velocity inputs are applied to the system.  
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6.5.1 Experiment 1: Comparison of KF-G, KF-C, KF-GC, Constant Angular 

Velocity 

This experiment is the hardware equivalent of simulation experiment 1. The input is 

constant angular velocity. The RMS errors of angular position estimations are 

presented. 

6.5.1.1 State estimation with gyroscope measurements 

Data collected from IMU vertical axes gyroscope, is used as measurements to the 

Kalman Filter in this experiment. Angular position estimation RMS error is 

increasing unboundedly as foreseen form the simulation experiment results. 
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Figure 47 – Angular position esitmation RMS error of KF-G with real set-up. Note 
that the error increases with time. DI angular position calculation error is also 

demonstrated.  
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6.5.1.2 State estimation with camera measurements 

Image frames from Apache webcam is collected by a laptop in 25frames/sec.  After 

collection of all frames, the center of mass of the object in the scene is calculated 

offline before running the algorithm. The RMS error in angular velocity reaches to a 

steady state as expected.  
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Figure 48 - Angular position esitmation RMS error with KF-C with real set-up. Note 
that the error is bounded. 

6.5.1.3 State estimation with joint gyroscope and camera measurements 

Both sensor measurements are fed to the Extended Kalman Filter which is updated 

whenever a measurement is ready, whether from the gyroscope or the camera. 

Angular position RMS error reaches to a steady state smaller than KF-C, eliminating 

the unbounded error increase in KF-G. 
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Figure 49 - Angular position esitmation RMS error with KF-CG with real set-up.    
Note that the error is bounded and smaller than the RMS error obtained with KF-C. 
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6.5.2 Experiment 2: Comparison of KF-G, KF-C, KF-GC, Ramp Angular 

Velocity 

The input profile for experiment 2 is ramp angular velocity with angular acceleration 

of 0.05 deg/s2. Gyroscope and camera outputs after data synchronization are given in 

Figure 50 . Camera x-pixel and y-pixel measurements are demonstrated separately. 

We evaluate the DI outputs as well as KF outputs. True and DI angular position 

profiles are displayed on the same graph illustrating the deviation of DI output from 

the true angular position value (Figure 51-(a)). Figure 51-(a) shows the RMS error of 

DI angular position calculation while KF-G estimation is demonstrated in Figure 52. 
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Figure 50 – Synchronized sensor outputs of experiment 2. Gyroscope ramp output, 
camera x-pixel position of point P and camera y-pixel position of point P. 
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Figure 51 – (a) True and DI angular position profile and (b) DI angular position 

error.   
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Figure 52 – KF-G angular position RMS error of experiment 2. 
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For ramp angular velocity input, fusion of sensors develops the estimation 

performance a significant level. Figure 53 clearly illustrates this improvement by 

showing the angular position estimation RMS error on the same graph. 
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Figure 53 – KF-C and KF-GC Angular position RMS error for hardware experiment 

2. 
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6.5.3 Experiment 3: Comparison of KF-G, KF-C, KF-GC, Arbitrary Angular 

Velocity  

In this experiment, we evaluate the performance of the proposed algorithms under 

variable angular velocity input. The gyroscope output collected during the 

experiment is given in Figure 54. 
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Figure 54 – Experiment 3 gyroscope output. 

 

The angular position estimation error of KF-G is given in Figure 55 where the 

unbounded error increase can be observed.  The error level is similar to the error 

level obtained in simulation experiments. We can observe the expected behavior for 

KF-C and KF-GC case where the error graph is provided in Figure 56. The 
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estimation error is bounded and the performance of KF-GC is improved with respect 

to KF-C. 
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Figure 55 – Experiment 3 KF-G angular position RMS error 
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Figure 56 – KF-C and KF-GC angular position estimation RMS error.  

6.6 Experiment Results: Discussion 

Hardware experiments are conducted in laboratory environment in a controlled set-

up which is explained in Section 5.1. The objective of hardware experiments is to see 

if the simulation results can be verified.  

The RMS errors of angular position estimation are calculated for KF-G, KF-C and 

KF-GC under constant, ramp and arbitrary angular velocity excitation. Performance 

development arising form the use of dynamical modelling and an optimal state 

estimator is clearly indicated with the given DI performance in comparison with KF-

G. It is shown that the fusion of the sensors outperform the use of the sensors 

individually. This result is in consistence with the results obtained in simulations.  
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CHAPTER 7  

CONCLUSION 

7.1 Discussion of Results 

In this thesis, we investigated the benefits of fusion of IMU and Camera under the 

Kalman Filtering framework. This has been done comparatively both as simulation 

and real hardware experiments. The calibrations of both sensor types are studied as 

well as the sensor fusion strategies including Direct and Indirect Kalman Filter 

structures. Although still not bounded, the divergent error growth of DI can be 

significantly reduced by single sensor Kalman based estimation (KF-G algorithm). 

This algorithm is not suitable for long term estimation but provides accurate results 

in short time. On the other hand, bounded error can be obtained by direct 

measurement of the camera sensor or by Kalman estimation based on stand-alone 

camera measurements (KF-C algorithm). However, the camera sensor measurements 

are noisy and the sampling rate is much lower than an IMU. Sensor fusion based on 

Direct Extended Kalman Filter (KF-GC algorithm) benefits from an accurate 

dynamical system model and successfully integrates the advantages of each sensor. 

The unbounded error growth of stand-alone IMU based estimation is avoided and 

KF-GC also outperforms KF-C in terms of estimation RMS error. Moreover, the 

output of the sensor fusion has the high sampling rate of the IMU. This result 

remains valid for different angular velocity input profiles. The system is simulated 

for varying calibration errors. It is shown through the sensitivity analysis that KF-GC 

is more robust to calibration errors.  
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We have also compared the angular position estimation performance with the 

Indirect Kalman Filter (IKF) with that of Direct Form KF-GC. The results show that 

the true angular position profile can be tracked with slightly higher but still bounded 

error characteristics. Since IKF formulation does not make use of a dynamic system 

model, it enables the algorithm developer to use the same structure on the platform 

even if the platform dynamical model is unknown or has changed. This may be an 

advantage in some applications and the complexity is reduced by sacrificing the 

accuracy to some extend. It is also possible to obtain position and velocity 

information for a limited time with IKF even if the Kalman Filter block fails to 

operate. Direct form would be a good choice when an accurate the dynamical system 

model is present and the computational capability is high. 

Our promising simulation results are also validated with real hardware experiments 

on a controlled rotation rate-table. It has been shown that the real hardware 

experiments yielded the simulation suggested results, resulting in concrete and 

reliable observations. We can confidently conclude at this point that the fusion of 

low-cost inertial sensors with low cost cameras represent a promising direction to 

design high performance body state estimation mechanisms by exploiting the 

advantages of each particular sensor. We also observe that the Kalman Filtering 

framework is a successful methodology to realize this potential. 

7.2 Future Work 

One of the objectives of this work is was show that a high performance body state 

estimation is possible with the fusion of low-cost off-the-shelf IMUs and Cameras. A 

comparative study can also answer the following question: Can a low-cost IMU - 

camera pair equal or exceed the performance of a high-cost IMU possibly based on a 

different sensing technology?  Mounting a more sophisticated IMU to the proposed 

experimental set-up, the performances of the pair and the single IMU can be easily 
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evaluated. The extension of the proposed algorithm and the experimental set-up to 

higher DOF system is an interesting and promising subject in conjunction with the 

study in this thesis.  

We implemented Direct and Indirect Kalman Filters in this study with linearization 

when necessary (in the form of Extended Kalman Filter) Another interesting 

extension would be a comparative study considering the Unscented Kalman Filters 

and/or Particle Filters which are usually better estimators for non-linear systems. For 

a more complex experimental set-up with a complex dynamical model, the non-

linearities may cause the Taylor Series based direct linearization and hence the 

Extended Kalman Filter to diverge. In this case, Unscented Transform may be a 

better alternative. Particle Filters can handle process and measurement noises which 

are not Gaussian and may also be a feasible possibility for some applications despite 

the high computational load involved This non-Gaussian assumption is mostly more 

realistic since noises of real systems may not be modelled with Gaussian distribution. 

It is important to judge the benefits and the disadvantages considering the expected 

performance and the attributes of the dynamical system.  
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