

THE EFFECT OF SOFTWARE DESIGN PATTERNS ON
OBJECT-ORIENTED SOFTWARE QUALITY AND MAINTAINABILITY

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

TUNA TÜRK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2009

ii

Approval of the thesis:

THE EFFECT OF SOFTWARE DESIGN PATTERNS ON OBJECT-
ORIENTED SOFTWARE QUALITY AND MAINTAINABILITY

submitted by TUNA TÜRK in partial fulfillment of the requirements for the degree
of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Canan Özgen ______________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Đsmet Erkmen ______________
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Semih Bilgen
Supervisor, Electrical and Electronics Engineering Dept., METU _____________

Examining Committee Members:

Asst. Prof. Dr. Cüneyt Bazlamaçcı ____________________
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Semih Bilgen ____________________
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Uğur Halıcı ____________________
Electrical and Electronics Engineering Dept., METU

Asst. Prof. Dr. Aysu Betin Can ____________________
Information Systems Dept., METU

(M. Sc.) Selma Dökmen ____________________
Lead Design Engineer, ASELSAN

Date: 10.09.2009

iii

I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully cited
and referenced all material and results that are not original to this work.

Name, Last name : Tuna Türk

Signature :

iv

ABSTRACT

THE EFFECT OF SOFTWARE DESIGN PATTERNS ON

OBJECT-ORIENTED SOFTWARE QUALITY AND

MAINTAINABILITY

Türk, Tuna

M. Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Semih Bilgen

September 2009, 68 pages

This study investigates the connection between design patterns, object

oriented (OO) quality metrics and software maintainability. The literature on

OO metrics, design patterns and software maintainability are reviewed, the

relation between OO metrics and software maintainability is investigated,

and then, in terms of obtained maintainability indicator metrics, the

maintainability change of an application due to usage of design patterns is

observed.

Keywords: Design Patterns, OO Metrics, Software Maintainability

v

ÖZ

TASARIM KALIPLARININ NESNE TABANLI YAZILIM KALĐTESĐNE

VE YAZILIM BAKIM YAPILABĐLĐRLĐĞĐNE ETKĐSĐ

Türk, Tuna

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Semih Bilgen

Eylül 2009, 68 sayfa

Bu tez çalışması tasarım kalıpları, nesne tabanlı metrikler ve yazılım bakım

yapılabilirliği arasındaki ilişkiyi incelemektedir. Tasarım kalıpları, nesne

tabanlı metrikler ve yazılım bakım yapılabilirliği ile ilgili literatür incelenmiş,

nesne tabanlı metrikler ve yazılım bakım yapılabilirliği arasındaki ilişki

araştırılmış ve daha sonra elde edilen bakım yapılabilirlik belirteci metrikler

cinsinden bir uygulamanın tasarım kalıbı kullanımı ile bakım

yapılabilirliğinin değişimi gözlemlenmiştir.

Anahtar Kelimeler: Tasarım kalıpları, nesne tabanlı metrikler ve yazılım

bakım yapılabilirliği

vi

to

My Grandfather,

My Family

and

Kubilay

vii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Prof. Dr. Semih Bilgen for his

guidance, advice, understanding and supervision throughout the

development of this thesis study.

I am grateful to ASELSAN Inc. for the resources and facilities that I utilize

throughout the study. I also want to thank my colleagues at ASELSAN Inc.

for their valuable support.

I appreciate the love, caring and support of my parents Ayşe, Orhan, and my

brother, Cihan. Nothing compares finding them next to me whenever I need.

I also thank to my extended family members Cavidan, Ebru and Selin for

their understanding and companion. I am proud of being a member of such a

family.

Lastly, I would not have been able to complete this work without sensible

encouragements, precious support and endless love of Kubilay. Meeting him

has been the best thing of my life.

viii

TABLE OF CONTENTS

ABSTRACT... iv

ÖZ ... v

ACKNOWLEDGEMENTS...vii

LIST OF FIGURES..x

LIST OF TABLES.. xi

LIST OF ABBREVIATIONS ... xii

CHAPTERS

1. INTRODUCTION ... 1

2. LITERATURE REVIEW... 4

2.1. OBJECT ORIENTED CONCEPTS ...4

2.2. SOFTWARE QUALITY ...6

2.3. METRICS FOR MAINTAINABILITY ...10

2.3.1. CLASS LEVEL METRICS..14

2.3.1.1. Weighted Methods Per Class (WMC)..14

2.3.1.2. Depth of Inheritance Tree (DIT)...15

2.3.1.3. Number of Children (NOC) ...16

2.3.1.4. Coupling Between Objects (CBO)..17

2.3.1.5. Response For a Class (RFC) ...18

2.3.1.6. Lack of Cohesion in Methods (LCOM)...19

2.3.2. APPLICATION LEVEL METRICS ..20

2.3.2.1. Method Hiding Factor (MHF) & Attribute Hiding Factor (AHF)20

2.3.2.2. Method Inheritance Factor (MIF) & Attribute Inheritance Factor (AIF)........22

2.3.2.3. Coupling Factor (COF) ..23

2.3.2.4. Polymorphism Factor (POF) ..24

2.3.3. METRIC vs MAINTAINABILITY OVERVIEW...25

2.4. SOFTWARE DESIGN PATTERNS ..26

2.4.1. WHAT IS DESIGN PATTERN? ...27

2.4.2. LIST OF SOME DESIGN PATTERNS...28

2.4.2.1. Reactor Pattern [12] ...28

2.4.2.2. Accepter Connector Pattern [12]..30

ix

2.4.2.3. Forwarder Receiver Pattern [14] ..31

2.4.2.4. Smart Pointer Pattern [13] ..33

2.4.2.5. Command Processor Pattern [14] ..34

3. EXPERIMENTAL WORK ... 36

3.1. DESCRIPTION OF THE SOFTWARE...37

3.2. EXPERIMENTAL METHODOLOGY ...38

3.3. TOOLS THAT ARE USED DURING THE PROCESS...40

3.4. EXPERIMENTAL PROCESS ..40

3.4.1. PHASE 0..40

3.4.2. PHASE 1..43

3.4.3. PHASE 2..46

3.4.4. PHASE 3..48

3.4.5. PHASE 4..51

3.4.6. DISCUSSION..53

4. DISCUSSION AND CONCLUSIONS... 62

REFERENCES...65

x

LIST OF FIGURES

FIGURES

Figure 1 Reactor Pattern Class Diagram [12] .. 29

Figure 3 Acceptor Connector Pattern Class Relations [12] 30

Figure 4 Sequence Diagram for Accepting Case [12]... 31

Figure 5 Forwarder Receiver Pattern Class Diagram [14]................................. 32

Figure 6 Sequence Diagram for Forwarder Receiver Pattern [14] 32

Figure 7 Smart Pointer Pattern Class Diagram [13] ... 33

Figure 8 Command Processor Pattern Class Diagram [14]............................... 34

Figure 9 - Command Processor Pattern Sequence Diagram [14] 35

Figure 11 Interface and Communication Layer in Routing Software 1 44

Figure 12 Interface and Communication Layer in Routing Software 3 49

Figure 13 Change in WMC Metric throughout the Phases 53

Figure 14 Change in DIT Metric throughout the Phases................................... 54

Figure 15 Change in NOC Metric throughout the Phases 55

Figure 16 Change in CBO Metric throughout the Phases 55

Figure 17 Change in RFC Metric throughout the Phases 56

Figure 18 Change in LCOM Metric throughout the Phases 56

Figure 19 Application Level Metrics for All Phases... 57

Figure 20 Visualization of Correlation of All Metrics.. 61

xi

LIST OF TABLES

TABLES

Table 1 ISO 9126-1 Quality Model Characteristics and Sub-Characteristics 7

Table 2 OO Metrics versus Maintainability... 25

Table 3 Application Level Metric Measurements for Phase 0 42

Table 4 Class Level Metric Measurements for Phase 0...................................... 43

Table 5 Application Level Metric Measurements for Phase 1 45

Table 6 Class Level Metric Measurements for Phase 1...................................... 45

Table 7 Application Level Metric Measurements for Phase 2 47

Table 8 Class Level Metric Measurements for Phase 2...................................... 47

Table 9 Application Level Metric Measurements for Phase 3 50

Table 10 Class Level Metric Measurements for Phase 3.................................... 50

Table 11 Application Level Metric Measurements for Phase 4 52

Table 12 Class Level Metric Measurements for Phase 4.................................... 52

Table 13 Correlation Matrix for Application Level Metrics.............................. 58

Table 14 Correlation Matrix for Class Level Metrics’ Mean Values 59

Table 15 Correlation Matrix for Class Level Metrics’ STD Values................... 59

Table 16 Correlation Matrix for Class and Application Level Metrics............ 60

xii

LIST OF ABBREVIATIONS

AHF : Attribute Hiding Factor

AIF : Attribute Inheritance Factor

CBO : Coupling Between Objects

COF : Coupling Factor

DIT : Depth of Inheritance Tree

FCM : Factor Criteria Metric

GOF : Gang of Four

IEEE : Institute of Electrical and Electronics Engineering

ISO : International Organization for Standardization

LCOM : Lack of Cohesion in Methods

MHF : Method Hiding Factor

MIF : Method Inheritance Factor

MOOD : Metrics for Object-Oriented Design

NOC : Number of Children

OO : Object-Oriented

POF : Polymorphism Factor

RFC : Response for a Class

UML : Unified Modeling Language

WMC : Weighted Methods per Class

1

CHAPTER 1

INTRODUCTION

The main goal of software engineering is to produce better software with

high quality. However, control of quality is impossible unless it becomes

quantifiable. Thus, fitting the software quality on a measurable basis is an

important work on which many studies have been performed but is yet an

open ended subject.

In the International Standard ISO/IEC 9126-1[1], a software quality model

is established based on the Factor-Criteria-Metrics (FCM) Quality Model

[2]. According to the standard, quality is affected by factors and factors are

assessed via criteria. The main factors determining software quality are

given as functionality, reliability, usability, efficiency, maintainability and

portability. In the standard, mapping of these factors to criteria is

described clearly but still it is ambiguous which criterion is mapped with

which metrics. The factors defined are dependent on hardware used,

technology involved, design of software, etc. The most design-dependent

factor among all is maintainability. This makes this factor one of the

favorites since most of the metrics are also design-dependent.

Establishing the bridge between software maintainability and the metrics

derived from source code is among the most desirable accomplishments in

software quality analysis domain. There are many software maintainability

2

prediction models published in literature ([3],[4],[5]) that suggest a way to

establish the relation between metrics and software maintainability.

When it comes to designing software, the most popular design technique is

OO design. OO programming approach is more maintainable than the

procedural ones [6] and it introduces the object concept as well as features

like inheritance, encapsulation and polymorphism [7]. OO design increases

modularity compared to functional design. Modularity increases

understandability thus maintaining the code becomes easier [8]. As OO

paradigm has introduced new concepts and features, new metrics like

MOOD [9] for measuring inheritance, polymorphism, coupling and data

hiding and Chidamber and Kemerer metrics [7] for class level code

measurement has been developed.

There is accumulated experience on OO design. One concept that has

helped this accumulation is the design pattern which provides reusable

solutions for common OO problems [8]. Using design patterns will result

in a better design with properly used OO concepts even for a novice

developer because they carry the experience of previous developers. In

addition to that, each design pattern addresses a problem-solution pair and

even if the problem is very complex, what the pattern addresses is simply

expressed with the name of the pattern. Thus design patterns constitute a

language between designers to express problem solution pairs [11].

The objective of this study is, first, to investigate the relation between OO

metrics and software maintainability, and then, in terms of the obtained

maintainability indicator metrics, to observe the maintainability change of

an application due to the usage of design patterns.

Within the scope of this thesis, an application that has common

functionalities with real life software used in ASELSAN Inc. is developed.

Five design patterns from the sources [12], [13], and [14] are applied to this

3

software. Before and during the application of these design patterns OO

metrics are measured. These metrics are examined and a discussion is held

about how the software design patterns affected the maintainability of the

software. Lastly, from these metrics results, correlation is observed by

calculating correlation matrices.

The remainder of the thesis is organized as follows:

In Chapter 2, concepts of OO software analysis and design are reviewed. A

brief literature survey on software quality, maintainability, OO metrics and

their relation to maintainability is presented. Software design patterns that

are used in the experimental study are listed and explained.

In Chapter 3, the experimental work is described. Used software

functionality, the application procedure of design patterns and collected

metrics are presented. Maintainability of the software is evaluated in terms

of the collected metrics. In the last part of this thesis, considering all metric

results, correlation between the used metrics is observed.

In Chapter 4, the work done in the thesis is summarized and obtained

results are reviewed. The achievements are compared with previous works

and probable future studies are suggested.

4

CHAPTER 2

LITERATURE REVIEW

This chapter presents an overview of the basic concepts that lie beneath the

experimental work. OO design concepts, software quality, metrics for

maintainability and software design patterns are described in their own

section within this chapter.

2.1. OBJECT ORIENTED CONCEPTS

OO programming uses objects and their interactions to build software. An

object can be simply defined as an entity that has mainly two parts, namely

data (state) and functionality (behavior). Data is stored within objects and

it is accessed by means of functionality that the object has. By this way,

each object in the software has its own data. In [8], this definition is told to

reflect just the implementation level description of object. At conceptual

level an object is a set of responsibilities like functioning properly and

knowing its type and state [8].

Class is a first level abstraction of set of objects with common

responsibilities [7]. An object is an instance of a class and class defines the

type of the object.

5

OO design has some key concepts that are addressed in this thesis. They

are encapsulation, inheritance, polymorphism and coupling.

Encapsulation refers to hiding the implementation details of a class. By

using encapsulation, a data item or the working principles within a class

cannot be reached directly [7]. This introduces the differentiation of the

user and the developer of the class. For the developer side, encapsulation

gives the easiness of changing data or inner principles of the class without

modifying the interface, as well as the classes that use this class’s services.

On the user side, encapsulation provides simplicity since the user deals

only with the services provided by the class. So, as long as the services

provided by the class are defined clearly, encapsulation also offers fault

reduction in software with multiple developers. This benefit of

encapsulation is given with the OO principle called “Encapsulate what

varies” in [15].

Inheritance is the way to derive new classes by using the base properties of

a pre-defined class and it is a way of defining higher levels of abstractions

[7]. In the concept of inheritance, there are mainly two classes, base class

(also called ancestor class) and the derived class. Inheritance provides

diversity by which the derived class inherits the properties of the base class

while implementing new features.

Polymorphism stands for the change in the behavior under the same

interface. In other words, polymorphism allows different objects to

respond in its own way to the same method [7].

Coupling is defined as the dependency of a program module on other

modules. In [16] coupling is referred as “a count of the number of non-

inheritance related couples with other classes”. However, in [10],

inheritance also treated as a coupling relation.

6

2.2. SOFTWARE QUALITY

One of the most important tasks of the software engineering is to assure

the quality of the software. Throughout the software life cycle, as the

product emerges, quality must be taken into account and empirical data

about quality must be collected in each phase of the software development

process to feed the next phase. However, “quality”, from the nature of the

word, is not countable thus measuring quality and collecting empirical

data on quality of software is not very straightforward.

Throughout the software development process some quality characteristics

of software become essential. In the literature there are many of these

characteristics and they are associated with some measurable metrics.

Software quality models are established to determine characteristics that

affect quality, to form a set of metrics that measure these characteristics, to

collect data that will help to evaluate the quality of software. One of the

established quality models is the ISO/IEC 9126-1 [1] quality model. This

model is an international standard based on the works of McCall (1977),

Boehm (1978) and others [17].

ISO/IEC 9126-1 quality model provides six main software characteristics

(also referred as factors) and some sub-characteristics (also referred as

criteria) of these characteristics (Table 1).

7

Table 1 ISO 9126-1 Quality Model Characteristics and Sub-Characteristics

Characteristics Sub-characteristics

Functionality Suitability, Accuracy, Interoperability, Security

Reliability Maturity, Fault tolerance, Recoverability

Usability Understandability, Learnability, Operability,

Attractiveness

Efficiency Time behavior, Resource utilisation

Maintainability Analyzability, Changeability, Stability, Testability

Portability Adaptability, Installability, Coexistence,

Replaceability

According to ISO 9126-1, Functionality is the software’s capability of

performing important functions. It has four sub-characteristics.

1. Suitability is the software’s capability of beyond being functional

also performing appropriate functions.

2. Accuracy is the software’s performance of functioning in a right way

and with the right output.

3. Interoperability of the software indicates how well it communicates

with its environment.

4. Security is the closeness of the software functions to the unwanted

outside users.

Functionality and its sub-characters are omitted in this thesis since the

focus is on the changes done in the source code without changing the

functionality of the software.

8

Reliability, according to [18], is the ability of software to perform its

required functions under stated conditions for a specified period of time. It

has three sub-characteristics:

1. Maturity is the length of the time between failures.

2. Fault tolerance is the ability of software to continue to its normal

operation under the existence of faults in the system.

3. Recoverability is the capability of the software to bring itself back to

its normal operation after a failure.

Usability is the easiness for the users of software to learn, understand, and

use its functions. It has four sub-characteristics:

1. Understandability is the degree of which the purpose of the

software is clear to the evaluator.

2. Learnability is the degree of easiness of learning functions and

usage of the software.

3. Operability is the degree of easiness of operating the system in right

way.

4. Attractiveness is the ability of the software product to attract user’s

attention.

Maintainability, also referred as supportability, is the convenience about

finding bugs in the software and fixing them or modifying the software for

expanding its features or to adopt it to a new environment. It has four sub-

characteristics.

1. Analyzability is the ability to find the reasons of the failures.

2. Changeability is the easiness of doing changes within the software.

3. Stability is the scarceness of risk of failures after a change in the

software.

4. Testability is the verifiability of the new changes in the software.

9

Efficiency, also referred as performance, is the effective use of system

resources, such as time and storage, to fulfill a task.

1. Time behavior covers the response and processing time and

throughput rates of the software when a specific task is being

completed.

2. Resource utilization is the usage of the CPU and memory

appropriately when the software performs its functions.

Portability refers to how well the software can adapt to changes in its

environment.

1. Adaptability is the degree of the system satisfying different system

constraints and user needs.

2. Installability characterizes the effort needed to port the software to

its usage environment.

3. Coexistence is the ability of the software to operate in an

environment with other software.

4. Replaceability is the easiness of exchanging given software within

specified environment.

It is very important to place these characteristics on to a measurable basis

in order to improve the software in term of these characteristics. Software

quality metrics are proposed to form this basis.

According to the ISO 9126-1 Quality Model, metrics to be used are not

explicitly defined, rather left to the user to be defined. In [19] which is a

continuation of the standard ISO/IEC 9126-1 and as of yet not an

international standard but a prospective one, some quality metrics are

presented for use in the quality assurance of software. Since these metrics

do not measure directly the change in quality due to change in source code

and since this thesis will focus on the changes in software due to applying

10

design patterns, they are omitted and more suitable metrics from the

literature are used.

The quality characteristics mentioned in ISO 9126-1 Quality Model may

gain different levels of importance according to different domains. Indeed

developing software whilst keeping the above characteristics at a high

level is a hard job. A good design approach will be to determine which

characteristics are more important for domain in use and to continue with

a goal of keeping that attributes at a high level.

Maintainability, being the characteristic that is most dependent on the

design of the software, will be considered within the scope of this thesis to

see how it is affected by the application of design patterns. It is important

to note here that ISO 9126-1 Quality Model is referenced here to see the

important quality characteristics of software as a whole. However, it is not

the only reference used in this thesis. In particular, maintainability of

software is an attribute which is affected by the other sub-characteristics

like fault-proneness and understandability. Even if they are categorized

under different characteristics, for the sake of covering the meaning of

maintainability in a more general way, we refer to these sub-

characteristics as indicators for maintainability.

In the following sections, OO metrics which are chosen within the scope of

this study are explained in detail. The literature that has investigated their

relation to maintainability is reviewed.

2.3. METRICS FOR MAINTAINABILITY

In software engineering, reducing the cost and effort needed to complete a

software product is as important as developing a software product

11

meeting its functional requirements. That is why maintainability of the

software is an important concept in software engineering. Highly

maintainable software is;

• open to changes which means effort to adopt the software for new

environments and to add new features is less;

• stable and close to faults which means as the code is changed the

risk of failure is not increased;

• analyzable and testable which means it is easy to understand, debug

the code and find bugs [17].

Software with such qualities can be upgraded and maintained, adapted

(in)to new software projects easily and lastly new developers can be easily

included to the software project and different developers can reuse code in

their projects easily.

Therefore, maintainability is very important; however, it is not easy to

develop highly maintainable software. Since it is hard to find directly

coupled, well validated and code driven metrics measuring maintainability

and to obtain a tool or methodology giving direct clues of increasing

maintainability. There are many practices and investigations in the

literature ([20], [3], [4], [5]) but still it is difficult to find a direct measure of

maintainability.

In this part of the thesis, some widely used OO metrics are given with their

definitions and their effect on maintainability is discussed. Throughout

these discussions, clues relating the metrics to maintainability directly or

indirectly, by first focusing on effects to testability, analyzability,

changeability, understandability, stability and fault proneness, are

investigated.

12

There are many OO metrics but the prominent ones among them were

listed by Chidamber and Kemerer in 1994 [10]. They are:

• Weighted Methods Per Class (WMC)

• Depth of Inheritance Tree (DIT)

• Number of Children (NOC)

• Coupling Between Objects (CBO)

• Response For a Class (RFC)

• Lack of Cohesion in Methods (LCOM)

These metrics, except the last one, has been examined in detail with regard

to fault proneness by Aydınöz in [21]. He has discussed the relation of

these metrics to fault proneness by referencing to the literature. His

conclusions are referenced in the individual metric sections.

The other remaining metric, LCOM, measures how much a class is far from

being cohesive. Cohesiveness increases the analyzability and testability of

the class and therefore, software. And since fault-proneness is closely

related with the stability of the software these metrics are worth looking at

closely and individually in terms of maintainability.

Other relevant and important OO metrics are six MOOD (Metrics for

Object-Oriented Design) which are established by Abreu and Melo [9].

They are:

• Method Hiding Factor (MHF)

• Attribute Hiding Factor (AHF)

• Method Inheritance Factor (MIF)

• Attribute Inheritance Factor (AIF)

• Coupling Factor (COF)

• Polymorphism Factor (POF)

13

These metrics aim to measure goodness of the overall OO design in terms

of encapsulation, inheritance, polymorphism and coupling.

Encapsulation effects analyzability by hiding complexity behind simple

interfaces and stability by decreasing fault proneness by forbidding access

to class from outside.

As the use of Inheritance increases in a design, it will result in wider and

deeper inheritance trees, which are clues of complex design. So using

inheritance excessively in design will decrease analyzability of the

software. Also, since inherited classes may inherit methods or attributes or

may override methods of its base classes, it is difficult to understand the

exact behavior of the class with a glance to class only.

In [22] Coupling, also referred as the message-passing, is said to be indirectly

related with the complexity, lack of encapsulation, lack of reuse potential,

lack of understandability, lack of maintainability.

Polymorphism, being another OO concept addressed by the MOOD metrics,

is expected to decrease the traceability of the software since polymorphic

functions bring ambiguity. Excessive use of polymorphism will decrease

analyzability and understandability of the software. In [22] first and

second of the MOOD metrics are proposed to measure encapsulation, third

and fourth are proposed to measure inheritance, fifth is proposed to

measure coupling and sixth is proposed to measure polymorphism.

Therefore, AHF, COF and POF can be concluded to be closely related with

maintainability or its sub-characters due to effects of coupling,

polymorphism and encapsulation to maintainability. When it comes to

other MOOD metrics, in [23] MIF and AIF metrics are criticized to lack

measuring inheritance and MHF metric lacks covering encapsulation

paradigm. So these metrics’ relation to maintainability needs more support

rather than OO paradigm.

14

The discussion about these metrics is given in detail under the individual

metric captions in the continuing part of this chapter. They are also

grouped into two parts according to their scope, i.e. class and application

level metrics.

2.3.1. CLASS LEVEL METRICS

This kind of metrics’ scope is limited with the class only. They are useful

when the parts of the software are to be compared within an application.

So modules with low metric values or high metric values can be detected.

However, when different applications are to be compared in terms of these

metrics, an overall metric result is needed since the classes in applications

are not the same and cannot be compared individually. In that case mean

values of the metrics over classes in the application can be considered. This

is the common way usually encountered in data mining works like [4].

2.3.1.1. WEIGHTED METHODS PER CLASS (WMC)

Definition: [10]

Given a class C,

WMC(C) =c1+c2+...+cn,

where ci is the complexity of Mi which is a method of C and i is from 0 to n,

n being number of methods of C.

In [10], the method to calculate complexity of the methods is left to the

concept in use. It is very common to choose it as the McCabe’s Cyclomatic

Complexity (CC). CC is defined as the maximum number of linearly

independent execution paths in a program [24]. It is calculated as

cyclomatic number of a program control graph; where cyclomatic number

15

of a graph G is defined as V(G)= e-n+2p; where e is the number of edges, n

is the number of nodes and p is the connected components in G. To obtain

the control graph of a program e is calculated as the number of branches, n

is taken as the number of code blocks and p as connected program

segments.

It is a very widely used complexity measure [25]. In this thesis CC is also

chosen to calculate WMC values of the classes.

Interpretation:

Complexity is an indicator of the effort used for developing and to

understand a code segment. Complexity is a good indicator of fault prone

software. Fault prone software is not stable. WMC is the OO version of the

complexity. High values of this metric means a class with many complex

methods. Therefore, this metric can be chosen to be an indicator of

maintainability since it affects fault proneness, stability and

understandability. In [26], WMC is found to be correlated with the effort

needed to test that class. Since testability being a sub-character of

maintainability, we can conclude that as WMC of a class increases

maintainability of that class decreases. WMC has already used in some

maintainability prediction models like MARS [5] and TreeNet [4].

2.3.1.2. DEPTH OF INHERITANCE TREE (DIT)

Definition: [10]

Depth of inheritance tree for a class C is defined as DIT of C, which is the

maximum length from C to the ancestor classes of C.

16

Interpretation:

Longer trees decrease understandability of the code since as the number of

ancestor classes increases for a class, the number of inherited functions

increases and considering dynamic binding it is very hard to understand

the run time behavior of an object of that class because when a method of it

is called method can show its own behavior or its ancestors behavior. In

[10], it is mentioned that higher DIT increases the number of methods that

a class will likely to inherit making it hard to predict the behavior of the

class and also it increases design complexity. Former statement supports

that higher DIT decreases understandability and latter indicates that

higher DIT increases fault proneness therefore, maintainability. Also in

[27], DIT is showed to be a very strong indicator of fault proneness

through experiments. In [26], it is observed that DIT is not correlated with

the unit testing effort of a class but it is pointed that if the testing approach

requires testing of all inherited methods DIT will likely correlate with the

testability of the class. With these clues we can conclude that DIT is

indicator of maintainability but not a strong one like WMC.

2.3.1.3. NUMBER OF CHILDREN (NOC)

Definition: [10]

Number of children of a class C is defined as the number of first level

subclasses of C.

Interpretation:

Both DIT and NOC are inheritance metrics. In [26], case studies showed

that NOC is uncorrelated with the effort needed for testing the class

however, a class with high NOC will be likely to inherit its errors to child

classes, and must be thoroughly tested. On the other hand, since higher

17

NOC is an indicator of more inherited methods, testing cases used for the

parent methods will be reused in child methods which points decrease in

the testing effort. Experiments done in [27] shows that as NOC increases

the fault proneness decreases, it is probably because as the children class

number increases the attention cared for the base class increases since

many classes depend on it, however, Briand at. al. conclude that NOC does

not have a strong impact on fault-proneness. Looking from the testing and

fault proneness side of maintainability NOC seems to have low indication

of maintainability. On the other hand, Kemerer et. al. in [10] state that high

values of this metric point to the likelihood of improper abstraction which

leads to misunderstandings about the design. This can be considered as a

negative impact on understandability and analyzability of the software.

These discussions show that NOC is not a strong indicator of

maintainability. It is included in our testing suite to evaluate its indication

experimentally.

2.3.1.4. COUPLING BETWEEN OBJECTS (CBO)

Definition: [10]

CBO for class C stands for the number of other classes that C is coupled. A

class is coupled to another if one uses other’s methods, attributes or one is

inherited from the other.

Interpretation:

There are two types of coupling, internal and external. Internal coupling of

a class C (fan-out of C) stands for how much C uses other classes’ services.

On the other hand external coupling of C (fan-in of C) show how much C’s

services are used by other classes. In [27], it is showed that internal

coupling increases fault proneness of class. It is expected since a class

highly coupled to other classes will be unaware of the changes done to

18

other classes and this may cause the class to function wrongly or errors to

be carried to the class. However, external coupling does not increase fault-

proneness of the class itself since how much a class is used by others does

not affect the class but external coupling means internal coupling for other

classes and high external coupling increases overall coupling in software.

So both coupling types affect fault-proneness of software. CBO, containing

both of these couplings, is a predictor of fault proneness therefore,

maintainability. High CBO signals poor and complex design, decreases

modularity and reuse, complicate testing of the class and as a result

decreases understandability and testability. So, CBO constitutes a measure

for maintainability.

2.3.1.5. RESPONSE FOR A CLASS (RFC)

Definition: [10]

RFC of a class C is the cardinality of the set of methods that belong to C or

is invoked by methods of C.

Interpretation:

RFC is another measure of internal coupling since it contains the number

of methods that the class is coupled to. In [27], internal coupling is found to

be the strong indicator of the class fault proneness. According to

Chidamber and Kemerer [10], RFC indicates the complexity of a class and

gives a measure of testing time. In [26], this statement is supported by

experimental data since when a class is needed to be (unit) tested, tester

has to cope with the initialization of the instances of classes whose

methods are invoked by the class. To conclude, RFC affects the

understandability, fault proneness and testability against maintainability.

Therefore, as RFC increases, maintainability decreases.

19

2.3.1.6. LACK OF COHESION IN METHODS (LCOM)

Definition: [10]

Degree of similarity of two methods M1 and M2 of Ci is given by the

number of common instance variables they use. Let P be the set of pairs of

methods with degree of similarity zero and Q be the set of pairs of

methods in C with degree of similarity being positive. Then LCOM of C is

defined as:



 >

=
otherwise 0

|Q| |P| if |Q| - |P|
LCOM

Interpretation:

LCOM for a class being positive means methods of that class form disjoint

sets of methods that are working on disjoint sets of attributes. Then this

means as the LCOM increases number of uncorrelated services in the class

increases. As an OO principle this type of classes should be divided

according to the independent jobs they contain. Kemerer et. al. [10]

proposed that high values of LCOM signal complexity and therefore, error

proneness. However, in [27], Briend et. al. experimented that LCOM has no

significant effect on error-proneness. In [26], two case studies showed

different results; in one LCOM values increased with testability metrics

whereas in the other decreased. It can be concluded that LCOM is

uncorrelated with the maintainability of the software under these

discussions. It is included in the metric suite to experimentally evaluate its

level of meaningfulness.

20

2.3.2. APPLICATION LEVEL METRICS

Application level metrics give an overall result for an application. If partial

results are to be measured the application code should be divided before

measurement and separate metric results should be calculated. By this way

modules inside an application can be compared. In this thesis, since

comparison of applications is considered these metrics will be used as they

are.

2.3.2.1. METHOD HIDING FACTOR (MHF) & ATTRIBUTE HIDING

FACTOR (AHF)

Definition: [9]

Let C1, C2, …, CTC be the ordered set of classes in an application with TC

being the total number of classes and let Md(C) represent the number of

methods in class C. Also let Mmi be the mth method in the ordered set of

methods of Ci.

∑
∑ ∑

=

= =
−

=
TC

i id

TC

i

CM

m mi

CM

MV
MHF

id

1

1

)(

1

)(

))(1(
 where:

1

),(_
)(

1

−
=
∑ =

TC

CMvisibleis
MV

TC

j jmi

mi where:



 ∧≠

=
otherwise 0

 callmay j iff 1
),(_

mij

jmi

MCi
CMvisibleis

21

Interpretation:

MHF metric measures how much invisible the methods of an application

are to the classes of the application and AHF metric measures the same

thing for attributes in the application. Both of these metrics are not class

level but application level metrics, giving an overall value for all methods

or all attributes of all classes in the application. In [9], these metrics are

given as the predictor of encapsulation, however, as criticized in [23],

encapsulation is not a concept of data-privacy only but also concept of unity

and this metric indeed does not measure the unity of a class. Since data-

privacy is what these metrics measure only, it is good to focus on the clues

that data-privacy reveal about maintainability.

Keeping data and behavior private decreases the access to them from

everywhere in the design. This can be thought as a sanction to keep the

coupling low. On the other hand less the visor of an attribute or method

less the modifier of the data kept in the design and easier to keep track of

the changes done to the data. This is good for understandability and

traceability of code. From these it can be concluded that data privacy,

therefore, MHF and AHF are in favor of maintainability. However, there

are not enough experiments supporting this idea except the one Abreu et.

al. constructed in [9]. In the case study to investigate the effect of MOOD

metrics to maintainability and reliability, it is observed that increase in

MHF results in decrease in defect density and effort to fix defects.

However, in that study, AHF did not show a significant correlation with

maintainability, contrary to what was expected.

As result, the correlation of these metrics with maintainability should be

experimented more. In this study these metrics are not used as

maintainability predictors but kept in measurement suite.

22

2.3.2.2. METHOD INHERITANCE FACTOR (MIF) & ATTRIBUTE

INHERITANCE FACTOR (AIF)

Definition: [9]

Let C1, C2, …, CTC be the ordered set of classes in an application with TC

being the total number of classes.

∑
∑

=

==
TC

i ia

TC

i ii

CM

CM
MIF

1

1

)(

)(
 where:

Ma(Ci)=Md(Ci)+Mi(Ci) and

Md(Ci) = the number of methods declared in Ci,

Ma(Ci) = the number of methods that can be invoked in association with Ci

Mi(Ci) = the number of methods inherited (and not overridden) in Ci.

∑
∑

=

==
TC

i ia

TC

i ii

CA

CA
AIF

1

1

)(

)(
 where:

Aa(Ci)=Ad(Ci)+Ai(Ci) and the definition of Ad(Ci), Aa(Ci) and Ai(Ci) are same

as Md(Ci), Ma(Ci) and Mi(Ci) respectively, except they apply to attributes

instead of methods.

Interpretation:

These metrics measure inherited methods/attributes ratio to the all

methods/attributes in the application. They are aimed to measure

inheritance. However, in [23], it is criticized that MIF counts overridden

methods as non inherited but overridden methods may also use their

super classes’ methods which means indeed they are not overriding but

reusing their super classes’ methods which is another way of inheriting.

MIF metric can be enhanced to capture this property but here it is used as

it is, keeping this point in mind.

23

Maintainability critique of these metrics is based on the research by Abreu

et. al. In [9], MIF is found to be correlated with defect density and rework

needed where AIF is found to be moderately correlated with these

properties. According to these results MIF and AIF seem to increase with

increasing maintainability. However, it should be noted that authors point

that in these works proper amount of inheritance is used. In case of

excessive use of inheritance, maintainability will start to deviate since the

code will be hard to understand and test due to complex structure

inheritance introduces as discussed earlier in DIT metric. Since big

inheritance trees will lead to excessive use of inherited methods and

attributes in the code, high values of DIT and CBO may increase AIF and

MIF.

As a result, these two metrics are not used in the experiments as

maintainability predictors since results do not show strong correlation

with maintainability.

2.3.2.3. COUPLING FACTOR (COF)

Definition: [9]

Let C1, C2, …, CTC be the ordered set of classes in an application with TC

being the total number of classes.

TCTC

CCclientis
COF

TC

i

TC

j ji

−
=
∑ ∑= =

2

1 1
),(_

 where:



 ≠∧⇒

=
otherwise 0

CCCC iff 1
CClientc_is

scsc

sc),(

where Cc⇒Cs means Cc (a client class) has a non-inheritance relationship

with Cs (a supplier class).

24

Interpretation:

This metric measures the amount of coupling between classes in an

application. This metric and CBO are strongly related metrics except that

CBO includes inheritance relations and measures coupling for a class only.

The discussion about coupling and maintainability and CBO metric is valid

for this metric as well. In [9], experiments showed that this metric is highly

negatively correlated with defect density and failure density. So it can be

easily concluded that COF has negative correlation with maintainability of

the software.

2.3.2.4. POLYMORPHISM FACTOR (POF)

Definition: [9]

Let C1, C2, …, CTC be the ordered set of classes in an application with TC

being the total number of classes.

[]∑
∑

=

==
TC

i iin

TC

i io

CDCCM

CM
POF

1

1

)(×)(

)(

where)()()(ioind CMCMCM
i

+= and

Mn(Ci) = the number of new methods,

Mo(Ci) = the number of overriding methods,

Md(Ci) = the number of declared methods,

DC(Ci) = the descendants count.

Interpretation:

This metric is defined as the ratio of the methods inherited from base

classes but overridden to all methods taken from base classes not

necessarily overridden or inherited. In [23], this metric is found to be

25

correlated with maintainability predictor metrics like failure density and

rework effort. But as in the case of MIF and AIF, for high values of the

metric maintainability will start to decrease. So it can be concluded that for

low value of POF as POF increases maintainability of the software

increases.

2.3.3. METRIC vs MAINTAINABILITY OVERVIEW

Table 2 OO Metrics versus Maintainability

Metric Maintainability

WMC �

DIT �

NOC �

CBO �

RFC �

LCOM �

MHF �

AHF �

MIF � �

AIF �

COF �

POF ��

The meanings of symbols used in Table 2 is provided below:

� : maintainability decreases with the increasing metric value

� : maintainability increases with the increasing metric value

� : maintainability and metric seems uncorrelated according to the survey

� � : for low values of metric maintainability increases with the increasing metric value,
but for high values maintainability decreases with the increasing metric value

26

In previous section, each metric is reviewed in terms of its effect on

maintainability. In Table 2 the results of this investigation is summarized.

2.4. SOFTWARE DESIGN PATTERNS

In this section, interpretation of software design patterns will be given and

some design patterns ([12], [13], [14]), which are considered to be

applicable for the experimental phase of this thesis, will be examined and

discussed in detail.

Software design patterns are one of the most important and appealing

topics of the part of the software engineering interested in problem solving

discipline in OO design. As in the other disciplines of engineering, it is

important to construct a common vocabulary for expressing the concepts

in software engineering too. OO design problems being the concept of

software engineering under discussion; software design patterns can be

thought of as the vocabulary for expressing the problem solution pairs.

This vocabulary constructs a common language within software engineers,

allowing them to carry their experience to a cumulative platform and to

find solutions from this platform for problems they encounter.

Origins of the concept of software design pattern go back to 1967 but it has

become popular with the publication of the book Design Patterns:

Elements of Reusable Object-Oriented Software [15] whose the authors

have been known as Gang of Four (GoF). And the patterns presented in the

book are usually referred as GoF Patterns.

27

2.4.1. WHAT IS DESIGN PATTERN?

In [11], a definition for design pattern is given as:

Design Pattern is a named nugget of instructive information that captures the

essential structure and insight of a successful family of proven solutions to a

recurring problem that arises within a certain context and system of forces.

By this definition, the emphasis is drawn onto name, recurring problem in a

context and proven solutions which are three main parts of a design pattern.

A design pattern should have a name in order it to have its place in the

software vocabulary. By this name, the problem solution pair it addresses

will be clear. A design pattern should always point to a well proven

solution, stating it clearly, for a common problem in a specific domain so

that one having the same problem in the same context can easily adopt the

solution the pattern addresses to its own context.

Patterns provide reuse of experience rather than reuse of code. They do not

provide a solution for a whole application or subsystem, so they are not

plug & play tools, where you can place in your code and obtain a working

application; indeed it is very unlikely to be able to compile them alone.

However, they pass the knowledge of developers that previously used

them successfully to the new ones; they provide clear understanding of

their design.

Design patterns are themselves presented in patterns which show a way of

documenting a design pattern. It may slightly extend but a general pattern

of design patterns will contain these essential elements [11]: Name,

Problem, Context, Forces, Solution, Examples, Resulting Context,

Rationale, Related Patterns, and Known Uses. Being a different example,

GOF used these elements of patterns in their book: Pattern and

Classification, Intent, Also Known As, Motivation, Applicability, Structure,

28

Participants, Collaborations, Consequences, Implementation, Sample

Code, Known Uses and Related Patterns.

2.4.2. LIST OF SOME DESIGN PATTERNS

In this section, list of software design patterns which are used in Chapter 3

of this thesis will be given along with their description.

2.4.2.1. REACTOR PATTERN [12]

This pattern, also known as Dispatcher or Notifier, provides event-driven

applications to demultiplex and dispatch service requests that are

delivered from one or more clients in one place. This means each client’s

event handling are not done separately but done all in one place i.e. in

Reactor Pattern. This pattern applies to applications that deals with

multiple events simultaneously but consumes them synchronously and

serially. A classical way would be having multiple tasks that will wait for

the events to occur for each client. By reactor pattern a task will wait for

any kind of event by the select facility of the operating system and send

these events to the related concrete event handlers.

In Figure 1, the class diagram for Reactor Pattern is given and in Figure 2,

the sequence diagram for the pattern is given. Whenever a file descriptor is

created by the program it is registered to the Reactor and Reactor keeps a

map of these file descriptors by the Handle object, coupled with a concrete

Event Handler object. Reactor’s handle_events method is called periodically

in a loop by the main program. This methods checks if an event like read,

write, accept exists in the handles and dispatches the event to the Event

Handler coupled with the corresponding handle. Event Handler’s

handle_event method is a factory method (method that is overridden for the

child classes and gains different behavior for each child, which is a direct

29

use of polymorphism concept). By this way each concrete Event Handler

handles the event in their own way.

Figure 1 Reactor Pattern Class Diagram [12]

Figure 2 Reactor Pattern Sequence Diagram [12]

30

2.4.2.2. ACCEPTER CONNECTOR PATTERN [12]

Usually if two programs are communicating, one side is passive i.e. waits

for connection, the other side is active i.e. initiates the connection.

Whenever they establish connection they start to receive and forward data.

This pattern separates the concept of establishing connection and handling

other events than initializing connection.

In [14], this pattern is advised to be used with Reactor Pattern. So the class

diagram given in Figure 3 is adapted to a case where these two patterns are

implemented together. In Figure 4 the sequence diagram is given for a

server side of the communication which listens to connections and accepts

the arriving ones.

Figure 3 Acceptor Connector Pattern Class Relations [12]

31

Figure 4 Sequence Diagram for Accepting Case [12]

2.4.2.3. FORWARDER RECEIVER PATTERN [14]

This pattern is applied to peer to peer systems and it provides decoupling

of the communication details from peers. A Forwarder class for sending

messages and a Receiver class for taking messages will hide and handle the

communication details and protocols from their peer classes.

In Figure 5, the class diagram for the pattern is given by showing the both

sides of the communication ends, and in Figure 6 the sequence diagram is

given to show the run time characteristics.

32

Figure 5 Forwarder Receiver Pattern Class Diagram [14]

Figure 6 Sequence Diagram for Forwarder Receiver Pattern [14]

33

2.4.2.4. SMART POINTER PATTERN [13]

This pattern aims to overcome the deficiency of C++ language about

pointers that is the unintentional pointer dereferencing. This mistake can

cause the software to crash and sometimes it is very hard to debug these

kinds of mistakes. Smart Pointer Pattern approaches the pointer as an

object and adds to it the intelligence of holding the reference count to the

object it points to. As the number of references vanishes the pointer itself

destroys the object it points to so that there is no memory leak.

This pattern reminds Proxy pattern, a GoF Pattern since the Smart Pointer

acts as a proxy for the real pointer. But the structure of the pattern is

different which can be seen in Figure 7. This pattern wraps the pointer by a

template class.

Figure 7 Smart Pointer Pattern Class Diagram [13]

34

2.4.2.5. COMMAND PROCESSOR PATTERN [14]

This pattern is for event driven applications where a request comes to the

system and an action is performed according to the request. This pattern

separates the request and the action. It has the ability of storing state and

returning to the last state by undoing last action taken.

This pattern is slightly modified version of Command Pattern in GoF. The

class diagram for the pattern is given in Figure 8 and in Figure 9 sequence

diagram is given showing how a command object is created due to request

in the system and how the request is handled.

Figure 8 Command Processor Pattern Class Diagram [14]

35

Figure 9 - Command Processor Pattern Sequence Diagram [14]

36

CHAPTER 3

EXPERIMENTAL WORK

By connecting the information pieces given in Chapter 2 the following

question may arise:

“How will applying given design patterns affect maintainability of an

application?”

It is this chapter along with the next where an element of the solution set

lies. Finding even a good approximated answer to this question will need

much more measurements on as many different cases like the one in this

chapter. So changing the question a little bit, what this thesis will reveal the

answer for will be clear.

 “How will applying given design patterns affect the given maintainability

metrics of the given application?”

In this chapter, the description and the use of software which lacks the

design patterns given in Chapter 2 but is suitable for application of each of

them will be given. The tools used for measuring and developing the

software will be explained. The methodology of applying design patterns

and taking measurements will be stated. Then the measures of metrics for

the software and new versions of the software obtained by application of a

design pattern will be given. The design patterns will be applied in a

cumulative way to the software. So the whole process can be thought of

37

refactoring of the software by the given design patterns and collecting the

metric results at each refactoring step. Lastly, from obtained metric data

correlation matrices will be calculated and the relation between metrics

will be discussed.

3.1. DESCRIPTION of THE SOFTWARE

The application used in this thesis will be named as Routing Software. As

the Routing Software is developed with application of new design

patterns, a numeric suffix will be appended, like Routing Software 3, to

indicate the version.

The very first version of the Routing Software is a simplified version of

real life embedded software. Its main job is to communicate with other

software over TCP/IP sockets. There are four other applications that this

software communicates and the software routes predefined messages from

one to another. The other applications that this software communicates are

called peers throughout this thesis. Peers can connect to or accept

connections from Routing Software. As soon as they establish connection

they start sending messages to the other three peers.

The reason for choosing such functionality, i.e. routing, is that it is very

common to have software that has to communicate with another module.

For a system, as the number of applications that have to communicate with

each other increases, the complexity of the design increases. So a solution

will be the addition of new software that will communicate with each

module and carry their messages to each other. This kind of software can

be enriched by adding new functionalities. But the common functionality

will be routing. So, Routing Software is developed with the aim of

isolating this functionality.

38

3.2. EXPERIMENTAL METHODOLOGY

The practical work done for this thesis can be investigated under three

main parts. The first part consists of obtaining the Routing Software and

the peers that would be used in the experimental process. Second part is

the application of the design patterns to Routing Software and taking

measurements. Third part is examining the data obtained in the previous

part.

In the first part, the applications that are developed in ASELSAN INC. and

that have the functionality of communicating with other software units are

examined. Then, the most common design to implement the

communication of these applications is detected. With this design,

Routing Software is developed isolating the functionality of

communication. Since this software will need other software, i.e. peers, for

communicating, an application simulating four different peers that will

establish communication with Routing Software is developed. Routing

Software is tested to be able to establish connections with four peers and

route the defined messages among these peers. This version of the

software is labeled Routing Software 0 and the metrics values that are

obtained by this version are called Phase 0 results. The twelve metrics that

are used in this process and whose detailed definitions can be found in

Chapter 2, are:

• Weighted Methods per Class (WMC)

• Depth of Inheritance Tree (DIT)

• Number of Children (NOC)

• Coupling Between Objects (CBO)

• Response For a Class (RFC)

• Lack of Cohesion in Methods (LCOM)

39

• Method Hiding Factor (MHF)

• Attribute Hiding Factor (AHF)

• Method Inheritance Factor (MIF)

• Attribute Inheritance Factor (AIF)

• Coupling Factor (COF)

• Polymorphism Factor (POF)

The second part of the experimental process is divided into four phases. In

each phase one or more design patterns are applied to Routing Software

and metric values are taken for each version. The phases and applied

design patterns are as follow:

• Phase 1: Accepter Connector Pattern and Reactor Pattern

• Phase 2: Smart Pointer Pattern

• Phase 3: Forwarder Receiver Pattern

• Phase 4: Command Processor Pattern

The metric values obtained for each phase is compared with the results of

the previous phase and a discussion is held about how application of the

pattern affected the maintainability of the software. In this discussion,

increase in WMC, DIT, CBO, RFC and COF metrics will be considered to

imply decrease in maintainability; increase in MHF will be considered to

imply increase in maintainability. NOC, LCOM, AIF, MIF and AHF

metrics will not be taken into account for maintainability predictions. And

lastly increase in POF metric will be considered as increase in

maintainability only if it has significantly low values. This method relies

upon the discussions held in Chapter 2, and Table 2 serves as summary for

this discussion.

In the third part, considering the results in all phases, a discussion is held

about how the metrics are related with each other.

40

3.3. TOOLS THAT ARE USED DURING THE

PROCESS

For developing Routing Software, Rational Rhapsody [28] is used. The

peer applications are also developed with this tool. The reason for

choosing this tool is that the applications that give the inspiration to

Routing Software are also developed with this tool. So the results obtained

will be more applicable to the existing software.

For taking metric measurements, IBM Rational Logiscope [29] metric

evaluation tool is used. This tool has the ability to measure all the metrics

explained in Chapter 2.

For calculating correlation matrices of metric data, Mathworks Matlab [30]

is used.

3.4. EXPERIMENTAL PROCESS

3.4.1. PHASE 0

In this phase no design pattern is applied but the very first version of the

Routing Software is formed and metric values are obtained for this

version in order to compare it with next phases’ results. Routing Software

is formed by reusing the common parts of the software in ASELSAN Inc.

that has the requirement of communicating with several other applications.

The Routing Software is designed to have a layered structure. Bottom

layer is responsible for establishing the connection over TCP/IP,

transmitting and receiving data to/from socket. So, this layer is called

41

Communication Layer. This layer provides communication with peers

however, does not have any information about peers other than their

physical address. This layer contains socket classes that try to establish

connection with the given physical address and as the connection

established they pend on the socket until data is received from the peer.

Received data is sent to middle layer classes. Whenever the classes in the

middle layer want to send data to other side, they send it to these socket

classes and the raw data is sent over TCP sockets. For each peer in the

system an instance of socket class which is reactive is created so there are

threads as many as peer numbers.

Middle layer is responsible for handling the data specific to peers. This

layer contains classes for each peer. They know about message protocol of

their peer. When data arrives to this layer as a byte array from

Communication Layer these classes know meaning of every byte. So they

convert the received data into specific data classes’ instances. This layer is

called Interface Layer since the layer keeps the peer’s interface details.

Upper layer is called Application Layer. This layer is responsible for what

to do with the data objects i.e. what kind of data is received from peers and

which data will be redirected to which peer. The architecture used in the

application is a sample of Embedded Control Software Architecture, which is

discussed in [31].

In Figure 10, these layers are shown with the units they contain. These

units can be different instances of same class (as in Socket) or group of

some class instances (as in PeerN, it has objects of data classes as well as the

related PeerN object).

42

Figure 10 Layers and Units in Routing Software 0

Table 3 Application Level Metric Measurements for Phase 0

METRIC Value

MHF
0.109898

AHF
0.961353

MIF
0.429612

AIF
0.457831

COF
0.076087

POF
0.216814

43

The statistical data for this version of Routing Software is provided in

Table 3 and Table 4. The total number of classes in this phase is 18.

Table 4 Class Level Metric Measurements for Phase 0

METRIC Min. Value Max. Value Avg. Value

WMC 2 44 17.28

DIT 0 3 1.06

NOC 0 4 0.72

CBO 0 29 10.56

RFC 2 59 22.22

LCOM 0.36 1 0.70

3.4.2. PHASE 1

In this phase two design patterns that go together are applied to the

Routing Software. These patterns are Reactor and Acceptor Connector

design patterns.

In Routing Software 0, number of threads increases with the number of

sockets needed by the software. Increase in the number of threads

introduces the overhead of context switching. The Reactor Design Pattern

overcomes this problem by using select facility of the operating system. By

this way, all socket handlers in the system are controlled from one place,

i.e. in one thread, if there exists an event like arrival of data or connection

request; event is distributed to the responsible objects.

44

On the other hand, in Routing Software 0, there are two kinds of socket

classes; one for client connections and the other for server connections,

these two classes both has the ability of receiving and transmitting data.

Whenever their job of establishing connection is finished, they start to

check on the socket if there is an event of data arrival. So these classes have

two separate concepts establishing connection and data exchange.

Acceptor Connector Design Pattern suggests to separate the data exchange

responsibility to another class so as to increase cohesion.

Figure 11 Interface and Communication Layer in Routing Software 1

These two patterns change the structure of Communication Layer which

can be seen in Figure 11. The statistical data for this version of Routing

Software is provided in Table 5 and Table 6. Results are compared with the

previous phase results and the difference between these values given.

Total number of classes in this phase is increased to 25.

45

Table 5 Application Level Metric Measurements for Phase 1

METRICS Phase 1 Phase 0 Change

MHF
0.165976 0.109898 0.05607

AHF
0.909452 0.961353 -0.05190

MIF
0.339416 0.429612 -0.09020

AIF
0.300000 0.457831 -0.15783

COF
0.0412913 0.076087 -0.03480

POF
0.191304 0.216814 -0.02551

Table 6 Class Level Metric Measurements for Phase 1

Phase 1 Phase 0 METRICS

Min. Max. Avg. Avg.

Change

In Avg.

WMC 0 81 18.28 17.28 1

DIT 0 3 0.84 1.06 -0.22

NOC 0 4 0.64 0.72 -0.08

CBO 0 32 10.16 10.56 -0.4

RFC 2 62 20.96 22.22 -1.26

LCOM 0.36 1 0.68 0.70 -0.02

Results for DIT, CBO, RFC, MHF and COF are in favor of maintainability.

However, WMC and POF showed contradicting behavior. Reactor class in

46

Reactor Design Pattern has a complex structure, since it checks for all the

event handlers in the system periodically and distributes event to the

related classes. Even though, the highest WMC belongs to this class and it

increases the mean WMC, this class is still cohesive and compact in terms

of the job it performs. If the Reactor was excluded, WMC would

significantly decrease. Note that DIT and NOC values decrease in this

phase. This means smaller inheritance trees are formed, because of this use

of polymorphic methods decrease. That is why the POF is decreased.

Since metrics signal in favor of maintainability mostly, it can be concluded

that Reactor Design Pattern leads more maintainable software.

3.4.3. PHASE 2

In this phase Smart Pointer Pattern is applied to Routing Software 1.

This pattern is a light pattern which consists of three template classes, to

hold any kind of object pointers. It is easy to add this pattern to software;

however, using this pattern needs attention. Whenever a pointer to an

object is used it should be given to a Smart Pointer Class and all the

pointers to that object should be made smart in order to avoid erroneous

cases.

In Routing Software 1, data objects created in Interface Layer are passed to

Application layer as pointers. These pointers are made Smart in this phase.

During preceding phases new pointers of object are created as Smart

pointers.

47

Table 7 Application Level Metric Measurements for Phase 2

METRICS Phase 2 Phase 1 Change

MHF
0.187094 0.165976 0.02112

AHF
0.913782 0.909452 0.00433

MIF
0.322357 0.339416 -0.01706

AIF
0.292035 0.3 -0.00797

COF
0.0320513 0.0412913 -0.00924

POF
0.191304 0.191304 0.00000

Table 8 Class Level Metric Measurements for Phase 2

Phase 2 Phase 1
METRICS

Min. Max. Avg. Avg.

Change

In Avg.

WMC 0 81 16.32 18.28 -1.96

DIT 0 3 0.79 0.84 -0.05

NOC 0 4 0.57 0.64 -0.07

CBO 0 32 8.07 10.16 -2.09

RFC 2 62 19.75 20.96 -1.21

LCOM 0.36 1 0.72 0.68 0.04

48

The statistical data for this version of Routing Software is provided in

Table 7 and Table 8. Number of classes in this phase has increased to 28

since this pattern contains three additional classes.

These classes are small and introduce low complexity, inheritance and

coupling to the system. Thus, WMC, DIT, CBO, RFC, MHF and COF metric

values are all in favor of maintainability. Only POF metric remained the

same. It can be concluded that Smart Pointer Design Pattern provides a

more maintainable application. And this improvement is better than the

one The Reactor and the Acceptor Connector Design Pattern provided to

the system.

3.4.4. PHASE 3

In this phase Forwarder Receiver Design Pattern is applied to Routing

Software 2.

Different peers can support different message protocols. This variety

should be handled in Peer classes in Routing Software 2. So if something

about the message protocol of a peer changes, like the place of check sum

bytes or value of header bytes etc. the peer class has to be changed. If the

knowledge of message protocol details is separated from the peer class,

peer will not be influenced from such changes. And if new classes specific

for this job is added, then the resulting system will be more cohesive and

open to changes. Then change in message protocol can be handled even in

run time.

Forwarder Receiver Design Pattern suggests solution to this kind of

problems. It separates communication details from peer classes. So peer

classes deal with only the content of the messages not how it will be sent or

received.

49

In Figure 12, it can be seen how Forwarder Receiver Design Pattern is

applied to Routing Software 2. This pattern changes the structure of

Interface Layer.

Figure 12 Interface and Communication Layer in Routing Software 3

The statistical data for this version of Routing Software is provided in

Table 9 and Table 10. Number of classes in this phase has increased to 33.

In this phase DIT, RFC, MHF and COF showed an improvement in favor of

maintainability. However, CBO and WMC increased. Here, the newly

added classes to the code are coupled with each other and with the peer

classes. This is the reason of the increase in CBO. It is worth to mention

that Forwarder Receiver Classes has a complex structure which yields

increase in the WMC.

50

Table 9 Application Level Metric Measurements for Phase 3

METRICS Phase 3 Phase 2 Change

MHF
0.120718 0.187094 -0.06638

AHF
0.938312 0.913782 0.02453

MIF
0.271513 0.322357 -0.05084

AIF
0.253333 0.292035 -0.03870

COF
0.0318182 0.0320513 -0.00023

POF
0.211207 0.191304 0.01990

Table 10 Class Level Metric Measurements for Phase 3

Phase 3 Phase 2
METRICS

Min. Max. Avg. Avg.

Change

In Avg.

WMC 0 81 17.30 16.32 0.98

DIT 0 3 0.70 0.79 -0.09

NOC 0 4 0.52 0.57 -0.05

CBO 0 35 8.67 8.07 0.6

RFC 2 62 19.70 19.75 -0.05

LCOM 0.29 1 0.71 0.72 -0.01

51

It can be concluded that the Forwarder Receiver Design Pattern yields a

more maintainable code. However, the improvement in this phase is less in

comparison to the phase 2.

3.4.5. PHASE 4

In this phase Command Processor Design Pattern is applied to Routing

Software 3.

This pattern is used in event driven applications. In Routing Software

incoming messages are events that stimulate an action. The action that will

be performed is decided by the SystemController in Application Layer.

Command Processor Design Pattern suggests encapsulating the action into

command objects and leaving the management of these objects to a

separate class, i.e. CommandProcessor Class.

Applying the pattern, whenever a peer class informs the SystemController,

it creates the associated command object and passes it to Command

Processor Class. It executes command and stores it if an undo mechanism

is needed.

The statistical data for this version of Routing Software is provided in

Table 11 and Table 12. Number of classes in this phase has increased to 39.

In this phase all the maintainability predictor metrics showed an

improvement except POF metric. Indeed, in this design pattern

polymorphism is an important concept since all the command classes

inherit from a common command class and override their specific methods

so that Command Processor know each command from the interface of

common command class but when it executes a command they all perform

different tasks. However, the number of overriding methods is less

compared to the inherited methods.

52

Table 11 Application Level Metric Measurements for Phase 4

METRICS Phase 4 Phase 3 Change

MHF
0.12117 0.120718 0.00045

AHF
0.944762 0.938312 0.00645

MIF
0.28961 0.271513 0.01810

AIF
0.267442 0.253333 0.01411

COF
0.0286275 0.0318182 -0.00319

POF
0.192029 0.211207 -0.01918

Table 12 Class Level Metric Measurements for Phase 4

Phase 4 Phase 3
METRICS

Min. Max. Avg. Avg.

Change

In Avg.

WMC 0 81 16.33 17.30 -0.97

DIT 0 3 0.69 0.70 -0.01

NOC 0 4 0.54 0.52 0.02

CBO 0 35 8.15 8.67 -0.52

RFC 2 62 19.13 19.70 -0.57

LCOM 0.29 1 0.69 0.71 -0.02

53

Command Processor Design Pattern reserves a class for each task carried

out as a result of a request. This increases the number of simpler and

cohesive classes, improving mean values for the class metrics. In case of

Routing Software it decreases the complexity of System Controller Class.

This is the reason for the overall improvement in the code.

As a result it can be concluded that the Command Processor Design

Pattern increases the maintainability of the Software.

3.4.6. DISCUSSION

In Figures 13 through 19, changes in metric values throughout the phases

are shown graphically.

0

10

20

30

40

50

60

70

80

90
WMC vs Phases

P
h
a
s
e
0

P
h
a
s
e
1

P
h
a
s
e
2

P
h
a
s
e
3

P
h
a
s
e
4

MEAN

STD

MAX

MIN

Figure 13 Change in WMC Metric throughout the Phases

54

In Figure 13, the mean values for WMC does not have monotone behavior.

Two phases improved this metric, i.e. second and fourth phases.

0

0.5

1

1.5

2

2.5

3
DIT vs Phases

P
h
a
s
e
0

P
h
a
s
e
1

P
h
a
s
e
2

P
h
a
s
e
3

P
h
a
s
e
4

MEAN

STD

MAX

MIN

Figure 14 Change in DIT Metric throughout the Phases

In Figure 14, DIT mean values decreases monotonically. This decrease in

metric is good sign of maintainability.

In Figure 15, NOC value decreases monotonically except the last phase. In

Figure 16, CBO decreases throughout the phases except the third phase.

Decrease in CBO is in favor of maintainability.

55

0

0.5

1

1.5

2

2.5

3

3.5

4
NOC vs Phases

P
h
a
s
e
0

P
h
a
s
e
1

P
h
a
s
e
2

P
h
a
s
e
3

P
h
a
s
e
4

MEAN

STD

MAX

MIN

Figure 15 Change in NOC Metric throughout the Phases

0

5

10

15

20

25

30

35
CBO vs Phases

P
h
a
s
e
0

P
h
a
s
e
1

P
h
a
s
e
2

P
h
a
s
e
3

P
h
a
s
e
4

MEAN

STD

MAX

MIN

Figure 16 Change in CBO Metric throughout the Phases

56

0

10

20

30

40

50

60

70
RFC vs Phases

P
h
a
s
e
0

P
h
a
s
e
1

P
h
a
s
e
2

P
h
a
s
e
3

P
h
a
s
e
4

MEAN

STD

MAX

MIN

Figure 17 Change in RFC Metric throughout the Phases

In Figure 17, the monotonic decrease in RFC mean values can be seen. This

is a sign of increase in maintainability throughout the phases.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
LOCM vs Phases

P
h
a
s
e
0

P
h
a
s
e
1

P
h
a
s
e
2

P
h
a
s
e
3

P
h
a
s
e
4

MEAN

STD

MAX

MIN

Figure 18 Change in LCOM Metric throughout the Phases

57

In Figure 18, LCOM mean values fluctuate. Since LCOM is not in the

maintainability predicting metric set, this behavior does not give a sign

about maintainability.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Application Level Metrics vs Phases

P
h
a
s
e
-0

P
h
a
s
e
-1

P
h
a
s
e
-2

P
h
a
s
e
-3

P
h
a
s
e
-4

AHF

AIF

POF

COF

MHF

MIF

Figure 19 Application Level Metrics for All Phases

In Figure 19, AIF, MIF and COF values are monotonically increases

throughout the phases while the other application level metrics fluctuates.

Behavior of COF and MIF(since it has low values) is a good sign of

maintainability increase. The other application level metrics are not in the

set of maintainability indicator metrics except the POF. POF remains

almost constant in low values.

According to the data obtained in all phases, correlation between these

metrics can be observed. Since there are just five phases it would be

misleading to attempt to derive a conclusion about the correlation of the

58

metrics in general; however, some clues can be obtained about it with a

discussion of the meaning of the metrics.

In Table 13, correlation matrix for application level metrics is shown.

According to this table, MHF and AHF seem negatively strongly

correlated. One reason for this result is the addition of public access

methods to the code for each invisible attribute. So as the AHF increases by

the addition of non-public attributes, MHF will decrease by the addition of

public methods to reach them.

Also, MIF and AIF are strongly correlated metrics, this is due to the fact

that when inheritance relation is established between classes usually both

methods and attributes are used by the ancestor classes.

Table 13 Correlation Matrix for Application Level Metrics

 AHF AIF POF COF MHF MIF

AHF 1 0.55 0.75 0.56 -0.92 0.37

AIF 0.55 1 0.59 0.98 -0.33 0.98

POF 0.75 0.59 1 0.67 -0.72 0.43

COF 0.56 0.98 0.67 1 -0.4 0.95

MHF -0.92 -0.33 -0.72 -0.4 1 -0.15

MIF 0.37 0.98 0.43 0.95 -0.15 1

 bold Absolute value above 0.9

The correlation between MIF and COF and between COF and AIF is hard

to explain. This could be specific to this case and it would not be

appropriate to generalize this behavior.

59

Similar correlation analysis can be made for application level metrics.

According to the class level metrics’ mean values correlation matrix,

shown in Table 14, DIT and NOC metrics are strongly correlated. Partial

reason for this is due to the fact that increase in inheritance tree height also

increases the number of inherited classes. For a parent class in this tree, the

NOC value will increase by one increasing the mean value of NOC.

However, increase in the width of the inheritance tree will increase the

NOC value but will not affect the DIT value.

Table 14 Correlation Matrix for Class Level Metrics’ Mean Values

MEAN WMC DIT NOC CBO RFC LOCM

WMC 1 0.34 0.5 0.81 0.68 -0.17

DIT 0.34 1 0.93 0.82 0.79 0.62

NOC 0.5 0.93 1 0.88 0.92 0.36

CBO 0.81 0.82 0.88 1 0.86 0.22

RFC 0.68 0.79 0.92 0.86 1 0.29

LOCM -0.17 0.62 0.36 0.22 0.29 1

 bold Absolute value above 0.9

Table 15 Correlation Matrix for Class Level Metrics’ STD Values

STD WMC DIT NOC CBO RFC LOCM

WMC 1 -0.83 -0.94 -0.7 -0.73 0.98

DIT -0.83 1 0.78 0.69 0.95 -0.76

NOC -0.94 0.78 1 0.78 0.79 -0.91

CBO -0.7 0.69 0.78 1 0.75 -0.76

RFC -0.73 0.95 0.79 0.75 1 -0.65

LOCM 0.98 -0.76 -0.91 -0.76 -0.65 1

 bold Absolute value above 0.9

60

Another strongly correlated metric pair is RFC and NOC. Their standard

deviation seems also correlated in Table 15. It is hard to explain this

situation with the nature of these two metrics, thus this result cannot be

generalized.

Lastly, the correlation matrix for class level and application level metrics

can be seen in Table 16.

Table 16 Correlation Matrix for Class and Application Level Metrics

 Mean Values

 WMC DIT NOC CBO RFC LCOM

MHF -0.01 -0.17 -0.1 -0.25 -0.2 0.2
AHF -0.22 0.37 0.26 0.22 0.3 0.01

MIF 0.27 0.99 0.98 0.79 0.93 -0.02

AIF 0.18 0.97 0.92 0.75 0.9 0.05

COF 0.33 0.97 0.92 0.84 0.95 0

POF 0.19 0.5 0.36 0.46 0.55 0.34

 bold Absolute value above 0.9

From the previous results MIF - AIF and DIT - NOC metric pairs’

correlation is discussed. These four metrics are closely related with the

inheritance concept. DIT and NOC measures the inheritance relation, MIF

and AIF measure the amount of methods and attributes inherited through

this relation. So it makes sense to conclude that these metrics are

correlated.

It is hard to see the reason of high values of COF and DIT, NOC correlation

since COF is related with the non-inheritance coupling. And the result

61

should not be generalized. Similar discussion is valid for the RFC and MIF,

AIF correlation results.

Both RFC and COF are coupling related metrics; RFC measures internal

coupling where COF measures all kinds of coupling. This is the reason of

these metrics correlation result. Another coupling metric is CBO and it is

moderately correlated with RFC and COF metric.

In Figure 20, to summarize the foregoing discussion, the correlation among

all considered metrics is presented visually.

Figure 20 Visualization of Correlation of All Metrics

62

CHAPTER 4

DISCUSSION AND CONCLUSIONS

In this thesis, the relationship between the use of software design patterns

and software maintainability, as measured by MOOD [9] and Chidamber

and Kemerer OO metrics [10] has been investigated. Previous studies

showing the effect of design patterns on maintainability have been

reviewed and the metrics that can be used as maintainability predictors

have been determined. Then an experimental case study has been

constructed to apply software design patterns. For each applied pattern,

OO metric values were calculated. The effect of the applied design patterns

to maintainability has been discussed by investigating the numerical

results of the metrics. Also the correlation between these metrics has been

observed.

In the case study, Routing Software is constructed with the help of

software basis of ASELSAN Inc. Five software design patterns were

applied to the this software. Application of Reactor, Acceptor Connector,

Forwarder Receiver Design Patterns improved most of the maintainability

predicting metrics while Smart Pointer, Command Processor design

patterns improved almost all the maintainability predicting metrics.

Improving maintainability of the code is very important in software

quality assurance, so is its measurement. However, finding direct

indicators for maintainability of the software is very difficult. For this

63

purpose the maintainability history data of a lot of software samples

should be examined. By maintainability history data; effort needed to test,

effort needed to change/add functionality of/to the sample software,

number of bugs found before release, failure density, time needed for a

foreign developer to adopt the software can be considered. With these

data, code metrics obtained from the sample software can be examined and

correlation between these can be found. Then maintainability can be

expressed more accurately by means of software metrics. There are studies

like this in the literature (e.g. [20], [9] and [26]). In this thesis these kinds of

studies have formed the basis of maintainability and metrics relationship.

As a future work such a maintainability predicting suite can be constructed

with a more comprehensive set of maintainability history data over a large

variety of software samples and with a large set of software metrics.

This thesis has some similarities with the previous work ([21]) realized by

B. Aydınöz. He observed the relation between error-proneness and OO

metrics, and then he applied GOF design patterns to different software

samples and examined the change in these metrics so concluded about the

effect of these design patterns to software error-proneness. The present

study differs from [21], in the use of a larger set of metrics, different design

patterns and the different subject of prediction, i.e. maintainability.

Aydınöz’ research about the relation of metrics and error-proneness is

referenced in this work, too, since error-proneness is related to stability of

the software and stability is a factor on maintainability.

As a future work, this study can be improved with investigations of other

quality characteristics like efficiency and reliability. Also the metric set can

be increased with the inclusion of metrics that are not necessarily OO, like

Halstead [32], McCabe [24] and size metrics.

Another aspect of software that may be affected by the use of design

patterns is performance, especially important in the context of real-time

64

embedded systems. Hence, investigation of the effects of design patterns

on real-time performance is definitely another subject that deserves in-

depth study.

65

REFERENCES

[1] International Standard ISO/IEC 9126-1:2001, “Software Engineering -

Product Quality - Part 1: Quality Model”.

[2] McCall, J., Richards, P., Walters, G., “Factors in Software Quality,

Volume I”, NTIS Springfield, 1977.

[3] Tian, Y., Chen, C., Zhang, C., “AODE for Source Code Metrics for

Improved Software Maintainability”, Fourth International Conference on

Semantics, Knowledge and Grid, 2008.

[4] Elish, M. O., Elish, K. O., “Application of TreeNet in Predicting Object-

Oriented Software Maintainability: A Comparative Study”, European

Conference on Software Maintenance and Reengineering, 2009.

[5] Zhou, Y., Leung, H., “Predicting Object-Oriented Software

Maintainability Using Multivariate Adaptive Regression Splines”, Journal

of Systems and Software, 2007.

[6] Henry, S., Humphrey, M., Lewis, J., “Evaluation of the Maintainability

of Object-Oriented Software”, IEEE Region 10 Conference on Computer

and Communication Systems, 1990.

[7] Unhelkar, B., “Practical Object Oriented Design”, Cengage Learning

Australia, 2005.

[8] Shalloway, A., Trott, J., “Design Patterns Explained: A New Perspective

on Object-Oriented Design”, Addison-Wesley, 2002.

66

[9] Abreu, F., Melo, W., “Evaluating the Impact of Object-Oriented Design

on Software Quality”, Proceedings of the 3rd International Software

Metrics Symposium, 1996.

[10] Chidamber, S., Kemerer, C., “A Metrics Suite for Object-Oriented

Design”, IEEE Transactions on Software Engineering, Volume 20, No 6,

June 1994.

[11] “Patterns and Software: Essential Concepts and Terminology”,

http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html,

Access date: 05/08/2009.

[12] Schmidt, D., Stal, M., Rohnert, H., Buschmann, F., “Pattern-Oriented

Software Architecture Volume 2: Patterns for Concurrent and Networked

Objects”, Wiley, 2000.

[13] Douglass, B. P., “Real-Time Design Patterns: Robust Scalable

Architecture for Real-Time Systems”, Addison-Wesley, 2002.

[14] Schmidt, D., Stal, M., Rohnert, H., Buschmann, F., “Pattern-Oriented

Software Architecture Volume 1: A System of Patterns”, Wiley, 1996.

[15] Gamma, E., Helm, R., Johnson, R., Vlissides, J., “Design Patterns:

Elements of Reusable Object-Oriented Software”, Addison-Wesley, 1998.

[16] Mitchell, A., Power, J. F., “Toward a Definition of Run-Time Object-

Oriented Metrics”, 7th ECOOP Workshop on Quantitative Approaches in

Object-Oriented Software Engineering, 2003.

[17] “ISO 9126 Software Quality Characteristics, An Overview of the ISO

9126–1 Software Quality Model Definition“, www.sqa.net/iso9126.html,

Access date: 05/08/2009.

67

[18]ANSI/IEEE, “IEEE standard glossary of software engineering

terminology”, IEEE Std. 729 - 1983, 1983.

[19] International Standard ISO/IEC 9126-3:2003, “Software engineering —

Product quality — Part 3: Internal Metrics”.

[20] Dagpinar, M., Jahnke, J. H., “Predicting Maintainability with Object-

Oriented Metrics”, 10th Working Conference on Reverse Engineering,

2003.

[21] Aydınöz, B., “The Effect of Design Patterns On Object-Oriented

Metrics and Software Error-Proneness”, MS Thesis, EEE Department,

METU, 2006.

[22] Harrison, R., Counsell, S. J., Nithi, R.V., “An Evaluation of the MOOD

Set of Object-Oriented Software Metrics”, IEEE Transactions on Software

Engineering, Volume 24, No 6, June 1998.

[23] Mayer, T., Hall, T., “Measuring OO Systems: A Critical Analysis of the

MOOD Metrics”, Technology of Object-Oriented Languages and Systems,

1999.

[24] McCabe, T. J., “Complexity Measure”, IEEE Transactions on Software

Engineering, Volume 2, No 4, December 1976.

[25] Weyuker, E. J., “Evaluating Software Complexity Measures”, IEEE

Transactions on Software Engineering, Volume 14, No 9, September 1988.

[26] Bruntink, M., Deursen, A., “Predicting Class Testability Using Object-

Oriented Metrics”, Source Code Analysis and Manipulation, Fourth IEEE

International Workshop, 2004.

68

[27] Briand, L., Wuest, J., Daly, J., Porter, V., “Exploring the Relationships

Between Design Measures and Software Quality in Object-Oriented

Systems”, J. Systems and Software, Vol. 51, 2000.

[28] “IBM Software - Rational Rhapsody”, http://www-

01.ibm.com/software/awdtools/rhapsody/, Access date: 05/08/2009.

[29] “Telelogic is now IBM - IBM Rational Logiscope: Software Quality

Assurance, Bug Tracking”,

http://www.telelogic.com/products/logiscope/index.cfm, Access date:

05/08/2009.

[30] “MATLAB - The Language of Technical Computing”,

http://www.mathworks.com/products/matlab/index.html?ref=pfo,

Access date: 05/08/2009.

[31] Gören, H. Ö., Gürler, E., “Elektronik Harp Sistemleri Gömülü Kontrol

Yazilimi Mimarisi”, Ulusal Yazılım Mimarisi Konferansı, P. 20-25, 2006.

[32] Halstead, M. H., “Elements of Software Science”, Elsevier, 1977.

