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ABSTRACT

COMPUTATION OF RADAR CROSS SECTIONS OF
COMPLEX TARGETS BY SHOOTING AND BOUNCING
RAY METHOD

Ozgiin, Salim
M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Mustafa Kuzuoglu

August 2009, 66 Pages

In this study, a MATLAB® code based on the Shooting and Bouncing Ray (SBR)
algorithm is developed to compute the Radar Cross Section (RCS) of complex
targets. SBR is based on ray tracing and combine Geometric Optics (GO) and
Physical Optics (PO) approaches to compute the RCS of arbitrary scatterers. The
presented algorithm is examined in two parts; the first part addresses a new
aperture selection strategy named as “conformal aperture”, which is proposed and
formulated to increase the performance of the code outside the specular regions,
and the second part is devoted to testing the multiple scattering and shadowing
performance of the code. The conformal aperture approach consists of a
configuration that gathers all rays bouncing back from the target, and calculates
their contribution to RCS. Multiple scattering capability of the algorithm is

verified and tested over simple shapes. Ray tracing part of the code is also used as

v



a shadowing algorithm. In the first instance, simple shapes like sphere, plate,
cylinder and polyhedron are used to model simple targets. With primitive shapes,
complex targets can be modeled up to some degree. Later, patch representation is
used to model complex targets accurately. In order to test the whole code over
complex targets, a Computer Aided Design (CAD) format known as Stereo
Lithography (STL) mesh is used. Targets that are composed in CAD tools are
imported in STL mesh format and handled in the code. Different sweep
geometries are defined to compute the RCS of targets with respect to aspect
angles. Complex targets are selected according to their RCS characteristics to test
the code further. In addition to these, results are compared with PO, Method of
Moments (MoM) and Multilevel Fast Multipole Method (MLFMM) results
obtained from the FEKO software. These comparisons enabled us to improve the

code as possible as it is.

Keywords: Shooting and Bouncing Ray (SBR) Method, Radar Cross Section
(RCS), Conformal Aperture, FEKO
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KARMASIK HEDEFLERIN RADAR KESIT ALANININ
SEKEN ISIN YONTEMIYLE HESAPLANMASI

Ozgiin, Salim
Yiiksek Lisans, Elektrik-Elektronik Miihendisligi Bolimii

Tez Yoneticisi: Prof. Dr. Mustafa Kuzuoglu

Agustos 2009, 66 sayfa

Bu calismada cisimlerin Radar Kesit Alaninin (RKA) hesaplanmasi i¢in Seken
Isin Yontemi (SIY) algoritmasi kullanilarak MATLAB® tabanli bir kod
gelistirilmistir. SIY rastgele secilmis hedeflerin RKA degerini hesaplamak igin
Geometrik Optik (GO) ve Fiziksel Optik (FO) yontemlerini beraber kullanan 151n
takibine dayal1 bir algoritmadir. Sunulan algoritma iki béliimde incelenmistir; ilk
boliimde dogrudan yansima disinda kalan bdolgelerde kodun performansini
artirmak i¢in yeni bir yontem olan “uyumlu agiklik” 6nerilmis ve formiile edilmis,
ikinci boliimde ise algoritmanin c¢oklu yansimalari hesaplama ve golgeleme

performansi test edilmistir. “Uyumlu agiklik” yoOntemi ile hedeften geri seken
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tim 1smlar toplanip RKA’ ya katkilar1 hesaplanmistir. Algoritmanin ¢oklu
yansima kabiliyeti sadece basit sekiller lizerinde test edilmistir. Kodun 1s1n takibi
béliimii ayn1 zamanda gdlgeleme algoritmasi olarak kullamlmustir. Ik asamada
basit hedefleri modellemek i¢in kiire, plaka, silindir ve polihedron gibi basit
sekiller kullanilmistir. Ancak basit sekiller ile karmasik hedefler bir dereceye
kadar modellenebilmektedir. Daha sonraki asamalarda karmasik sekillerin daha
iyl modellenebilmesi i¢in iiggen pargalar kullanilmistir. Kodu karmasik hedefler
izerinde test etmek icin Bilgisayar Destekli Tasarim (BDT) formati olan STL ag
yapist kullanilmigtir. BDT ortaminda modellenen hedefler STL ag formatinda
koda tasinmis ve islem yapilmistir. Cisimlerin RKA degerlerini bakis agisina gore
hesaplayabilmek icin farkli dondiirme geometrileri kullanilmistir. Segilen
karmasik hedeflerde RKA karakteristiklerinin farkli olmasi gz Oniinde
bulundurulmustur. Bu ¢alismalara ek olarak koddan elde edilen sonuglar, FEKO
yazilimindan elde edilen FO, MoM ve MLFMM sonuglar ile karsilagtirilmastir.

Bu karsilastirma, kodu miimkiin oldugunca gelistirme imkanini bize sunmustur.

Anahtar Sozciikler: Seken Isin Yontemi (SIY), Radar Kesit Alant (RKA), Uyumlu
Aciklik, FEKO
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CHAPTER 1

INTRODUCTION

During the second half of 19" century, James Clerk Maxwell completed the
classical theory of electromagnetism, synthesizing all the previous knowledge
developed by prominent physicists and mathematicians such as Coulomb,
Ampere, Oersted, Faraday and Hertz. His famous equations, known as “Maxwell
Equations”, have been widely used until the present time by physicists and
engineers in numerous applications. A major application area of Maxwell’s
equations is scattering of electromagnetic waves by obstacles. This topic gained a
lot of importance after the development of radar systems during World War II. In
radar applications, the electromagnetic power intercepted by a target is modeled
via a hypothetical area known as Radar Cross Section (RCS). The power
intercepted by the object is calculated as the product of RCS and the power
density at the target location. As a result, calculation of the RCS of targets is one

of the important aspects of radar engineering.

The RCS of an object is closely related of the constitutive parameters
(permittivity, permeability and conductivity) and the geometry (or shape). In
designing targets almost invisible to radars (i.e. stealth targets), it is the parameter
that should be minimized. In early 1970s, stealth technology has become popular,
with a lot of emphasis placed on reduction of the RCS of targets. Even though the

modern view of stealth design is to achieve an optimum balance between RCS



reduction, incorporation of Electromagnetic Warfare (EW) and operational
performance; RCS reduction is still the most important aspect of stealth
technology. Modern radars are not only capable of detecting low RCS targets, but
they can examine and classify targets according to their scattering characteristics.
The main task of RCS design engineer is to introduce stealth targets effectively
invisible to these powerful modern radars. At this point, developers of stealth
targets use extensively the tools of Computational Electromagnetics (CEM) to
simulate the scattering of electromagnetic waves by targets with complex

geometry and/or electrical parameters.

The methods of CEM are based on the numerical approximation of Maxwell’s
Equations for modeling the interaction of electromagnetic fields with objects.
During the last few decades this area has become crucial for stealth engineering.
The same methods are also used extensively in antenna design and placement,
radome design, electromagnetic compatibility (EMC) analysis, RF component
design and bio-electromagnetics problems. Many computational electromagnetics
methods have been developed and implemented to solve different kinds of
problems. Basically, these methods can be classified into two groups, namely as

full-wave and approximate solution techniques.

Full-wave methods have been developed for the numerical discretization and
approximation of equations deduced from Maxwell’s equations. The Method of
Moments (MoM), Finite Difference Time Domain (FDTD) method and Finite
Element Method (FEM) are the most commonly-used full-wave methods. These
methods are sometimes named as low frequency methods because of the
requirement of high computer resources at high frequencies. In recent years, some
new full-wave based methods have been introduced in order to solve electrically
large problems. For example, the Multilevel Fast Multi Pole Method (MLFMM)
is a method that uses the formulation of MoM. Its main difference from the MoM
is that it groups the basis functions and calculates the interaction between these

groups. Through this modification, this approach can handle electrically large



problems such as dielectric structures with memory and run-time requirements

formidable even for today’s super computers.

Approximate solutions are implemented basically to handle electrically large
problems. Since these methods are effective at high frequencies, they are also
known as high frequency solution techniques. Basic high frequency techniques
are Physical Optics (PO), Geometric Optics (GO), Physical Theory of Diffraction
(PTD), Geometric Theory of Diffraction (GTD) and Uniform Theory of
Diffraction (UTD). PO and GO can give good solutions in specular regions but
for complex structures their results are not very reliable. Utilization of GTD and
PTD can improve the results of PO and GO in regions where diffracted rays
dominate. In stealth designs, since specular reflections are avoided, calculation of
the RCS must take into consideration the effect of diffraction and multiple
reflections. Contribution of diffraction can be calculated with PTD. In recent
years a new method, namely the Shooting and Bouncing Ray (SBR) method is
implemented to solve the effects of multiple scattering. SBR is a method that uses
a combination of the GO and PO techniques. It is a ray tracing technique suitable

to use in stealth design applications.

1.1 Literature Review

Multiple Scattering plays an important role in RCS calculation. Cavity structures
(such as jet-engine inlets) are the regions where multiple scattering phenomenon
occurs. Since such structures contribute extensively to RCS, the analysis of this
problem has been an important topic in RCS literature. Traditionally, RCS of
cavity structures were calculated by model analysis or full wave methods. For
complex structures, model analysis was not adequate, and full wave methods were
not capable of solving electrically large problems. In 1987, SBR was
implemented for the first time by Chou et al. [1] in a project work supported by
NASA. In this method, rays are launched towards the cavity and traced inside

with GO rules. Material properties of the cavity walls are taken into account and



rays are captured in the cavity opening in order to calculate the far field values.

Later, Ling et al. presented this work as an article in [2].

SBR has been developed originally for cavity structures, but Baldauf et al.
modified this technique for open scatterers [3]. In cavity structures, rays that leave
the cavity are captured in the cavity opening. However for open scatterers the
final integration aperture is not easy to choose. In [3], an aperture that coincides
with the scatterer itself is suggested. With this aperture choice, the solution is
identical to the conventional PO solution, except that multiple scattering effects of
the rays are also modeled. In this work, formulation is based on Huygens’

Principle.

In 2005, to extend the capability of SBR for the simulation of scattering from
diffusive and grating structures, Diffusive Ray Algorithm is introduced by
Galloway et al. [4]. This algorithm reduces to the basic SBR formulation for
targets constructed as a superposition of flat plates, but for curved structures a
single ray tube that reflects from a curved part will generate a family of other ray

tubes [4].

1.2 Overview of the Thesis

In this thesis, a basic SBR code is developed in MATLAB. Numerical results
taken from the code are compared with the results obtained from FEKO software.
FEKO is an electromagnetic (EM) analysis software which includes both full-
wave and approximate solution methods and which has the capability to solve a
wide range of electromagnetic problems [5]. For simple targets results are
obtained from FEKO’s MoM and PO solvers. For electrically large problems
results are obtained from MLFMM solver in a redhat based super computer with

18GB RAM.



SBR code is tested over simple targets like plate, dihedral and cube for monostatic
and bistatic RCS calculations, for a range of frequencies. To test the SBR code for
target in which multiple scattering phenomena is effective, a dihedral was used.
Clearly, scattering from targets like dihedral and trihedral is dominated by

multiple bounces and therefore composes a good test environment for SBR [3].

The code is implemented for open scatterers where the aperture chosen for final
aperture integration becomes crucial. If the electromagnetic field values on the
exit aperture were known exactly, regardless of the chosen exit aperture, exact far
field result can be obtained [3]. Plane aperture and conformal aperture (coinciding
with the scatterer itself) are implemented for final aperture integration. Results are

critically evaluated to choose the best exit aperture to achieve accurate results.

Both for simple and complex targets, geometries are specified in STL mesh
format. In STL mesh format, targets are constructed from triangular patches.
Corner points and normal vectors of triangular patches are specified in this
format. RCS is typically presented in plots of RCS values versus aspect angle.
Aspect angle is the angle of target with respect to radar position. Different sweep
configurations are implemented in the SBR code. For some cases, the target and
receiver are fixed and the transmitter is rotated, for some cases the transmitter and

receiver are fixed, and the target is rotated.

1.3 Outline of the Thesis

The thesis is organized in three main chapters. In Chapter 2 formulation of basic
SBR algorithm is discussed. The code is tested over simple test targets like plate,
cube, polyhedron and dihedral. Final aperture integration part of the code is
discussed in detail and a new approach is developed in Chapter 2. Also,

shadowing and multiple scattering are studied in this chapter.



In Chapter 3, application of SBR to complex targets is discussed. Methods of
constructing a CAD model are studied. The chapter continues with the sweep
definition. RCS of complex targets like ship, aircraft and tank are simulated in

this part as well. Results are compared with FEKO results.

The thesis is summarized in Chapter 4. Advantages and disadvantages of the
method are discussed. Concluding remarks are made on numerical results. The
Chapter terminates with a summary of possible future work where possible

modifications/enhancements of the algorithm are discussed.



CHAPTER 2

SHOOTING AND BOUNCING RAY METHOD

In this chapter, the Shooting and Bouncing Ray (SBR) method is discussed. It
should be mentioned that the presented algorithm is a ray-based technique which
can compute the RCS of electrically large, arbitrarily-shaped Perfect Electric
Conductor (PEC) targets. Basically, the algorithm consists of ray tracing,

amplitude tracking and final aperture integration parts.

The main blocks of the algorithm are discussed in Section 2.1. In Section 2.3,
final aperture integration part of the algorithm is studied in details. Essentially, the
algorithm is used to calculate the RCS of open scatterers. So, it is not convenient
to perform the ray-tube integration over a common exit plane aperture [6]. SBR
algorithm is powerful to calculate multiple scattering effects. In Section 2.4 this
attribute of the algorithm is tested over problems dominated by multiple bounce
effects. In Section 2.2 numerical results of SBR code are compared with the

results of FEKO software. The last section is devoted to the shadowing effect.



2.1 Formulation of the Shooting and Bouncing Ray
Method

Shooting and Bouncing Rays (SBR) method is based on ray tracing. The problem
is to determine the scattered field from an open scatterer. Basically, rays that
simulate the incident plane wave are shot into the target, traced on the target and
finally gathered in an exit aperture. Electric field is traced within the rays with
Geometric Optic (GO) rules. The algorithm will be discussed in three main parts:
1) ray tracing 2) amplitude tracking and 3) physical optics approximation in exit

aperture.

SBR uses both GO and PO rules. Referring to Figure 2.1 consider an arbitrary -

shaped PEC object and an incident plane wave.



Figure 2.1 SBR, incident rays and exit aperture

The incident plane wave is represented by a dense grid of rays. A ray is defined

by an origin, P = (Xp, yp,zp) and a direction vector D = (S S,,S ) The equation

x> y>9z

for the ray is;

I(t)=P+tD,t >0 (2.1)

where,



S, =—sind, cosg, 2.2)

S, =—sing, sing, 2.3)

y

S, =—cosb, 2.4

z

6. and ¢ are angles that denote the direction of incidence.

The defined rays are shot into the PEC object. Let’s z= f(X,y) be the equation
of the surface of the scatterer. The intersection points of rays and the surface are
found by solving equations of the surface and rays simultaneously. For example,
if the object is a plate (i.e. the surface is a plane) we can find the intersection point
as follows; a plane can be defined by a normal vector N and a point on the plane

Q. A point P is on the plate if:

N(P-Q)=0 (2.5)

By combining the equations of plane and ray together we end up with the

following equation:

Nx(P+tD-Q)=0 (2.6)
where
N(Q-P)
e — 2.7
' N xD 2.7)

For simple shapes like plate, sphere or cylinder a single implicit equation is
enough to define the shape of the surface. For complex targets, a superposition of
triangular patches can be used to approximate the geometry. In this case
intersecting a ray with a triangle is more complicated than simple shapes.

Basically, ray triangle intersection can be accomplished in two steps;

10



e Intersecting the ray and the plane of the triangle,

e Checking whether the intersection point is inside or outside the triangle.
Ray-plane intersection is already discussed in equations (2.5), (2.6) and (2.7).
After finding the intersection point, we must decide whether the point is inside or

outside the triangle. A triangle is defined with three vertices p0, pl and p2. The

normal vector of the triangle (n) is defined via the right hand rule.

Figure 2.2 Triangle defined with right hand rule

fi=(pl—-p0)x(p2 - p0) (2.8)

A triangle is the intersection of three half spaces as in Figure 2.3. Each edge of the
triangle lies on a line and a point is inside the triangle if it is on the correct side of

each one of the three lines [9].

11



Figure 2.3 A triangle constructed from three half spaces

Using this definition, a point is inside the triangle if it is on the left side of each
edge. Via the cross product, it can be decided whether a point x is on the left or

right of the edges with the following equations;

((p1=p0)x(x—p0))-A>0 2.9)
((p2—-phx(x—=pl)-A>0 (2.10)
((p0—p2)x(x—p2)-H=>0 (2.11)

Next, the reflected ray is determined by using the rules of Snell’s law [2];
1) Reflected ray must lie in the plane of incidence

2) The angle of reflection must be equal to the angle of incidence

12



Local Coordinate
System

-

Global Coordinate
System

Figure 2.4 Reflection of a ray

Referring to Figure 2.4 the reflected ray can be determined according to Snell’s

law. A unit vector is defined as

M = (ray, x N)/sin 6, (2.12)

where ray; is the incident ray and N is the reflection normal. Note that m is

perpendicular to the plane of incidence. Referring to Figure 2.4, define the local

coordinates
y, =M (2.13)
z, =-N (2.14)
X, =—(hx N) (2.15)

In spherical coordinates rayr can be determined as follows

13



ray, =(r,0,9) (2.16)

r=1, 6=—(z/2-6,), ¢=0 (2.17)

Next, (X;,Y,,z,) coordinates of rayr in the local coordinate system can be

calculated by spherical to Cartesian coordinate transformation. As a final step

local to global coordinate transformation is achieved as below;

(2.18)

>

Il
o o ~
o = o
—_ o o

XM X2 x0)
C=lyi %2 %06 (2.19)
Lz 72,2 7,3)

B=A.C"' (2.20)
(Xg7yg7zg):B.(leylﬁzl) (2'21)

where, B is the transformation matrix. By using the reflected ray as a new incident

ray this procedure is applied until the ray ends to bounce in the geometry.

In ray paths the field amplitude is also traced. In Geometrical Optics, the
amplitude, phase and polarization of electric field can be updated with the

following equation.

E(X,.\»Yi»2,) = (DF). [ E(X,,y,,2,)e (2.22)

Where ¢ =K,[(X., —X)>+ (Y, = ¥;)* +(2,,, —2;,)*]"* and DF, is the divergence
factor which calculates the spreading of ray tubes. DF is applicable for curved

surfaces and for planar surfaces takes the value of 1. I is the planar reflection
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coefficient. For PECs, planar reflection coefficient can be applied with the

equation (2.23).

E, =(-E,)+ (2(Ax E,) x A) (2.23)

The scattered far field can be computed by applying the basic physical optics

approximation in the aperture where exit rays are gathered. The magnetic current

sheet M, over the aperture is;

M, =2E(X,y,2)xf, (2.24)

where, N, is aperture normal.

From this magnetic current sheet, the scattered field can be calculated. The
scattered far field is the sum of contributions from individual ray tubes. The

contribution of a ray tube is calculated as;

Es =& r [0, A, +4 A1 (2.25)
and,

M, =[Ey,0 + Ey,$1x22 (2.26)
where,

¢? =cosfcosgX + cosOsin gy —sin 6Z (2.27)

0 = —sin X+ cosgy (2.28)

—

M, =2E,[sin(#)¥ + cos(@)X] + 2E,, [ cos(&) cos(4) Y + cos(O) sin(#)X] (2.29)
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_ Jko jk.r
A _E” M e %" dxdy (2.30)
Ag = %“‘Z“A dXdye jko (ux+uy) [EX coS ¢i + Ey sin ¢i ] (231)

k jKo (ux+u :
A, =12—;jj2A dxdye s .[(~E, sing, +E, cosg, )cosd, 1 (2.32)

U=sing, cosg, (2.33)

V=sing, sing, (2.34)

For the bistatic case, #' and ¢' values in equations (2.31), (2.32), (2.33) and

(2.34) are replaced with observation angles.

Since the outgoing rays are not uniform, the integrations cannot be evaluated
easily [2]. At this point, shooting and bouncing ray method has a way out. A small
ray tube is shot into the geometry. The ray tube bounces on the geometry and
comes to the aperture finally. Then the scattered field is calculated from this ray
tube. Enough ray tubes are shot into the geometry to model the incident plane

wave. The total scattered field is the sum of all contributions from the ray tubes.

Aperture

i/

Ray tube

Figure 2.5 Ray tube
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Assume that the incident ray tube has an area of (AX,Ay,). The central ray with

direction vector (s S,,S ) hits the aperture. The ray tube will have an area of

x22y2Yz
(AX,Ay,) on the aperture and the field within the existing ray tube can be

approximated as

E (%) _ E (X Y1) o Hals, 06045, (-3 (2.35)
E,(Y)| |E,j(X,Y))

This means that the amplitude of the field is same on the ray tube and across the
ray tube there is a linear phase variation [2]. If the size of existing ray tube is too

large, the approximation will not be valid. With equations below;

Ag _ Jzko Zﬁdxdye jko(uX+Vy)e—jko[5x(X_Xi)+5y(y—Yi)]

7T ray
tube

'[Ex(xi:yi)cos¢i +Ey(Xisyi)Sin¢i] (2.36)

A = J_k()z dexdye jko(UX‘FVy)e*J-ko[sx(X*Xi)JrSy()’*Yi)]
Yoo 4
I ray
tube

[(=E, (%, y;)sing' +E, (X, y;)cos¢')cos '] (2.37)

Since E,(X;,y;) and E (X;,Y;) are independent of integral variables they can be

taken out of the integral;

A =0 S TE (0054 +E v sing]
T

'ejkﬂ(sxXi+Syyi)(AXiAyi)li (2.38)
k . i i
A, =£—;Z[(—EX(Xi y)sing' +E, (X, ¥,)cosg')cos ]
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L@ MR (A Ay I 2.39)

where

J.J. dXdye ikol(u=s,)x+(v=sy)y] (2.40)

ray
tube

.
" (AxAy;)

The integral in equation (2.40) is the phase factor in standard physical optics
theory [3]. Sometimes it is called shape function and it is the Fourier Transform

of the ray tube shape.

In order to take advantage of this method for each ray tube, four rays around a

central ray are shot into the geometry.

Figure 2.6 Shape of exit ray tube

The position vectors of rays are denoted by y, =X, X+V,y, n=1273,4. Fourier

transform can be evaluated as described in [2], [7]. Simpler proof of this method

based on Stokes’ theorem can also be considered in [10].
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I, = S(p,q)/S(0,0) (2.41)

where,

" e Kot = X0V = Yo) = Vs = Yo) X = X01)
S , — jwey, n+l n n n-1 n+l n n n-1 (2.42)
(p q) ;e [(Xn - Xn—l)p +(yn - yn—l)q][(xnﬂ _Xn)p +(yn+l - yn)q]

S(an) :|(X1y2 _X2y1)+(X2Y3 _X3y2)+(X3y4 —x4y3)+(x4y1 _X1y4)|/2 (2°43)

p=Kk,(u-s,) (2.44)
q=Kk,(v-s,) (2.45)
W= pX+qy (2.46)

As a final step, RCS can be calculated as in equations (2.47) and (2.48).

RCS = 47z'|A6,|2 (Vertical polarization) (2.47)
2
RCS =47 |A,|

(Horizontal polarization) (2.48)

2.2 Numerical Results for Simple Targets

In this section, RCS values of some simple targets are compared with Method of
Moments (MoM) and Physical Optics (PO) results. FEKO, a software product for
the simulation of electromagnetic fields, is used to obtain MoM and PO results.
Different solution techniques implemented within FEKO make it applicable for a
wide range of problems [5]. The targets of interest are a plate, a cube and a flare-
like shape. Generally, monostatic RCS of targets were calculated for vertical
polarization. Targets are swept in & angle. FEKO software runs on computers;
Computer 1; Intel (R) Core 2 Duo CPU, E4500@2.20GHz

3.25GB RAM
Computer 2; (Dual) AMD Opteron ™ Processor 248

14.926 GB RAM
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Computer 2 is used for electrically large problems. Even with computer 2 some
problems cannot be solved with MoM. Multilevel Fast Multipole Method
(MLFMM) which is a fast alternative formulation of the MoM is applicable to
much larger structures than the MoM [5]. MLFMM makes it possible to obtain
full-wave solutions for electrically large structures [5]. With this method and
computer 2, a military aircraft at 2.5GHz or a ship at 400MHz can be handled. In
order to solve the same problems with MoM, we need 30TByte memory

approximately.

Different sweep geometries are used to calculate the RCS values of simple PEC
obstacles. In the plate geometry, plane wave (provided by the transmitter) is swept
around the target in 0 angle and plate is kept fixed in origin. For cube and flare
like shape, transmitter and exit aperture (in the direction of the receiver) are kept
fixed and the target is rotated in Yy axis. Both approaches can be used to calculate

the monostatic RCS.

The plate geometry is formulated in the problem directly by using its equation.
The cube and flare like geometry are created from triangle patches that are big
enough to permit to construct these shapes. The number of the triangular patches
is kept minimal to decrease the runtime since the SBR code generated in
MATLAB does not include a special algorithm that speeds up the ray-triangle
intersection test. Ray-triangle intersection is tested with brute force methods,

which implies that runtime increases dramatically with the number of patches.

The first simulation was conducted on a perfect electric conductor (PEC) flat plate
as illustrated in Figure 2.7. In this simulation both monostatic and bistatic RCS of
a square PEC plate with side length of 0.25 meters were computed and compared

with MoM and PO results taken from FEKO.
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The plate was illuminated from ¢=0° and 6 =0"and its monostatic RCS was

computed with respect to frequency from 2GHz to 6GHz as shown in Figure 2.7.
The result of the SBR is compared with the MoM and given in Figure 2.8.

*Monostatic RCS of square plate
*Polanzation=vertical
*Frequency=2GHzto 6GHz
sMaximum dimnension=0.25m

Figure 2.7 Simulation setup for monostatic RCS of PEC plate

Rays are shot towards the plate with A/10 density, where A is wave length. For
each ray, four rays neighboring the central ray are shot to build up a ray tube.
Since specular reflections are dominant, the results of SBR solution and MoM are

perfectly matched.
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Monostatic RCS of a PEC plate with respect to frequency
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) : : : : : |
2 2.5 3 3.5 4 4.5 5 5.5 6

frequency [GHz]

Figure 2.8 Comparison of MoM and SBR results for 9 polarized monostatic RCS of PEC
plate with respect to frequency

For bistatic case, the plate is illuminated from ¢ =0 and € =—-10"and its bistatic

RCS is computed at ¢ =0" and € =10 with respect to frequency from 2GHz to
6GHz as shown in Figure 2.9. The result of the SBR was compared with the MoM

and given in Figure 2.10.
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*Bistatic RCS of square plate X
vPalarzation=vertical
*Frequency=2GHzto 6GHz
shiaimum dimension=0.25m

Figure 2.9 Simulation setup for bistatic RCS of PEC plate

As a result for flat surfaces in specular regions the results are matching with MoM

results perfectly for both monostatic and bistatic cases.

Bistatic RCS of a PEC plate with respect to frequency
14
\ \ \ \

[
o

\
120 *

RCS [dBm?]
[ee]

777777 FEKO,MoM
— SBR

1
2 2.5 3 35 4 4.5 5 5.5 6
frequency [GHz]

Figure 2.10 Comparison of MoM and SBR results for 0 polarized bistatic RCS of PEC
plate with respect to frequency
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In the following example, the plate is illuminated at ¢=0" from 6 =-60"to

60 =60" and its monostatic RCS is computed Figure 2.11. The result of the SBR
was compared with the MoM in Figure 2.12 and with PO in Figure 2.13.

*IMonastatc RCS of square plate
*Polanzation=vertical
*Frequency=fGHz

*Maximum dimension=0.25m

Figure 2.11 Simulation setup for monostatic RCS of PEC plate
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Monostatic RCS of PEC Plate
15

===SBR
= FEKO, MoM

0F-------—---------

RCS [dBm?&

-
-

Theta [degrees]

Figure 2.12 Comparison of MoM and SBR results for 86 polarized monostatic RCS of PEC
plate

The results are perfectly matching with MoM near specular region. Results are
not agreeing at angles where diffraction effects are dominant. SBR code is unable
to model diffraction. When we compare the results with PO code in FEKO we can
see that the results are in good agreement, since PO is also unable to take

diffraction into account.
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Monostatic RCS of PEC plate
20

0 --------

_3017 --\J -

/7] g -----F-

Theta [degrees]

Figure 2.13 Comparison of PO and SBR results for 0 polarized monostatic RCS of PEC
plate

In the other case the plate is illuminated from ¢=0" and € =0"and its bistatic

RCS is computed at ¢ =0" from € =-90"to & =90° as in Figure 2.14. The result

of the SBR was compared with the MoM and given in Figure 2.15.
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+Bistatic RCS of square plate
*Polanzation=vertical
*Frequency=6GHz
sMaximur dimension=0.25m

Figure 2.14 Simulation setup for bistatic RCS of PEC plate

The results are harmonious with MoM near specular regions. In rear sides where
diffraction contribution is important, the results are not matching well with the

MoM results.
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Bistatic RCS of PEC plate
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Figure 2.15 Comparison of MoM and SBR results for 66 polarized bistatic RCS of PEC
plate

Finally, for the plate case, bistatic RCS is computed with respect to frequency.
The plate is illuminated from ¢=0" and@d=0", RCS values are computed at
¢=0" and =15 with respect to frequency from 2GHz to 6GHz as shown in

Figure 2.16. The result of the SBR was compared with the MoM and given in
Figure 2.17.

28



Bistatic RCS of square plate
*Polanzaton=vertical
*Frequency=2GHZ to 6GHz
*kiaximum dimension=0.25m

Figure 2.16 Simulation setup for bistatic RCS of PEC plate

Out of the specular region where diffraction mechanism is effective, again the
results are not in agreement with MoM results. Hence, it can be concluded that by
correctly modeling the diffraction effects, more accurate results can be obtained

out of specular regions.
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Bistatic RCS of PEC plate
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Figure 2.17 Comparison of MoM and SBR results for £€ polarized bistatic RCS of PEC
plate with respect to frequency

The second example was conducted on a flare like object shown in Figure 2.18.
The object is represented by 20 triangle patches. Maximum length of the object is
0.5 meter. The monostatic RCS is calculated at ¢ =0" from d=0"to d =180" for
vertical polarization at 6GHz. For each monostatic RCS value 72000 rays are
traced with A/10 density. Results are compared with the PO solution in Figure

2.19.
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“y,

*Monostatic RCS of flare-likeshape " X %,
*Polanzatton=vertica &

sFrequency=6GHz
siamimum dimension=0.5m

Figure 2.18 Simulation setup for monostatic RCS of PEC flare-like shape

For the angle ranges 15° <8<50°, 80° <8<90° and 120° <@ <160°, the RCS
values are not matching with PO results. This discrepancy between the results is
due to the shape of the aperture over which the rays are collected. At these angles,
some of the rays bouncing from the geometry cannot be gathered at the planar exit
aperture. After a detailed analysis, it is seen that the aperture shape must be
modified in order to obtain correct results. Alternative solution suggestions and
formulations related to this point are considered in Section 2.3. In this section, it
will be shown that conformal apertures that encompass the scatterer are effective
in collecting rays in a proper fashion. Although this point will be fully clarified in
the next section, corrected results obtained by a conformal aperture are
represented in Figure 2.20. With this new formulation that will be presented in

Section 2.3, results agree very well with the PO solution.

31



Monostatic RCS of PEC flare-like shape

20 \ \ \ \ \ \ \
| | | | | | | ===SBR
S B A
| | | | | | | |
0k - - - - - [ [ [P & W [ i e 1 Lo
| | | | ) | | |
| | | | | | |
| | | | | | |
| | | | | | |
o | | | | | | | |
SR S (I A Wl ¥ e IO R,
ERENN 1 1 ‘ 11 1 1 1
£ \ | | \||‘| . :l | | |
'ccﬂslo ,,,,, o ___ ____ y_ _ _ _ 11 [ /A P R _|
‘U—‘)' | | WV g v \ | h
3] ! AT ;'G:.' ; 5 AWAY i
@ 1Y : NN
| | | | \| "= i A
Ko | | | XN Il
2 WY B A g THA B
1 it [ | | | . i figl !
b ] I
i h | I I I o Y EH | AR
|ll RRAY B | | | | ""I' |ll:=l
g I I | | | |
—30****}:’\14"“”\ ””” T T T (it Bt B 'r:: - -
[ | | | | | | |
Y \::lll I I I I I I
| | | | | | | I
\', | | | | | | |
40 L | | | | | | |
0 20 40 60 80 100 120 140 160 180
Theta [degrees]

Figure 2.19 Comparison of PO and SBR results for 0 polarized monostatic RCS of PEC
flare-like shape for planar aperture case

Results in Figure 2.20 show that SBR algorithm gives the same results as PO
solution. Additionally, ray tracing capability of the code handles the multiple

scattering and shadowing problems.
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Monostatic RCS of PEC flare-like shape
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Figure 2.20 Comparison of PO and SBR results for 0 polarized monostatic RCS of PEC
flare-like shape for conformal aperture case

The third example was conducted on an arbitrary prism shown in Figure 2.21. The

shape is composed of 14 triangular patches. The maximum length of the shape is
0.35 meters. Monostatic RCS is calculated at ¢ =0" from €=0"to 6 =360" for

vertical polarizations at SGHz. The results are compared with PO and MoM

results.
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*Monostatic RCS of arbitrary polyhedron X
sPalanzation=vertical |
*Frequency=5GHz
sMaxzimum dimension=0.35m

APty om0

Figure 2.21 Simulation setup for monostatic RCS of PEC arbitrary polyhedron
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Figure 2.22 Comparison of PO and SBR results for 6 polarized monostatic RCS of PEC
arbitrary polyhedron
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In Figure 2.22, it is seen that the results are close to the PO solution except for

angles from € =60° up tod =130°. The problem at these angles can be revealed
when the geometry is investigated more closely in Figure 2.24. At problematic
aspect angles, rays that are shot towards the geometry are intersecting with four
points located on the surface. The naive ray tracing algorithm of the code is
unable to handle such situations, where the object is concave and a ray may
intersect with several points on the surface. In section 2.5, it is explained how the
algorithm is overviewed to overcome this problem. SBR is a ray tracing method
and naturally ray tracing algorithms may correctly handle the shadowing problem.
Although the modifications introduced in the code are explained in Section 2.5,

the correct results obtained after these amendments are shown in Figure 2.23.

Monostatic RCS of arbitrary polyhedron
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Figure 2.23 Comparison of PO and SBR results for 6 polarized monostatic RCS of PEC
arbitrary polyhedron after correction on shadowing algorithm

After these modifications on the code, the results agreed with the PO solution

except at angles190° < @ < 230°. At these angles, multiple scattering is dominant.
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For this example, multiple scattering is not implemented in the code. The results
are also compared with the MoM results. In Figure 2.25, multiple scattering
effects can be seen in MoM results in an obvious fashion. Multiple scattering

effects will be implemented in Section 2.4.

Ray

Ray geometry
intersaction 1

Ray geom=try
intersaction 2

- Raygeomatry
intersection 3

Ray geometry
intarsection +

Figure 2.24 Shadowing effect
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Monostatic RCS of arbitrary polyhedron
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Figure 2.25 Comparison of PO, MoM and SBR results for 86 polarized monostatic RCS of
PEC arbitrary polyhedron

The fourth example was conducted on an arbitrary polyhedron shown in Figure

2.26. The shape is composed of 8 triangular patches. The maximum length of the

shape is 0.3 meters. The monostatic RCS is calculated at ¢ =0° from € =0"to

6 =180° for vertical polarizations at SGHz. The results are compared with PO
and MoM results.
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*Monostatic RCS of arbitrary polyhedron

*Polanzaton=vertical
*Frequency=6GHz

£
7
2
g
&
e~
g
=
g
d
z
< Emw
>

ST nnma e s T

Figure 2.26 Simulation setup for monostatic RCS of PEC arbitrary polyhedron
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Figure 2.27 Comparison of PO and SBR results for 6 polarized monostatic RCS of PEC

arbitrary polyhedron
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The results agree very well with the PO solution for this arbitrary polyhedron. The
main reason for this conclusion is the convex shape of the object that avoids all

the difficulties encountered in the previous example.

2.3 SBR Final Integration Aperture

The Shooting and Bouncing Ray method has been first applied on cavity
structures like a jet inlet or an aircraft cabin [2], where open mouth of the cavity
has been chosen as the final integration aperture. However, for open scatterers
there are several options for the choice of an aperture choose. If the exit aperture
is chosen as planar, this choice gives good results in specular regions. A planar
aperture cannot be adequate for gathering the exit rays for some problems.
Basically, the problem can be investigated by using the cube geometry shown in
Figure 2.28. With a planar exit aperture, it is not possible to collect outgoing rays
at angles close to 45 degrees. By fixing the transmitter (plane wave) and exit
aperture (receiver) and rotating the geometry, the monostatic RCS of the cube can

be calculated as shown in Figure 2.29.
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Outgoing
ray tube

Incident
ray tube

Figure 2.28 Planar exit aperture approach

At angles0” <8 <30°, 60° <#<120° and 150° <@ <180° the results are in
good agreement with both MoM and PO results. On the other hand, at angles

between 30° <@ <60° and 120° <@ <150° the field values are well below those
obtained by MoM and PO. At 45° SBR code yields — oo value. If the MoM and
PO results are evaluated together, the difference between them in these
problematic angles is not much. So, it can be stated that the problem is not due to
the absence of diffraction effect in the code. At angles near 45° the rays bouncing
from cube cannot be gathered at the planar aperture. This leads us to state that
contribution of rays at these angles are greater than diffraction effects, and their
contribution to the RCS value must be taken into account. To overcome this

problem, a new exit aperture is recommended and formulated.
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Monostatic RCS of PEC cube
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Figure 2.29 Monostatic RCS of PEC cube with planar exit aperture approach

A conformal exit aperture as shown in Figure 2.30 can be the best choice to gather
the exit rays. In conformal exit aperture, all outgoing rays are gathered and their
contributions to overall RCS value can be calculated. Basically, the conformal
exit aperture is a replica of the geometry of the surface itself. This guaranties that
all rays bouncing from the geometry can be evaluated for their contribution to

RCS.

Formulation of a conformal exit aperture is more complicated than a planar exit
aperture formulation [8]. In order to simplify the resulting equations, for each
element (planar part) of the conformal exit aperture, a local coordinate system

(X,,Y,,Z,) shall be defined as shown in Figure 2.30. The local coordinates are

defined using the following equations;

2 =N (2.49)
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N is the normal of the triangular patch with which the rays intersect. To define a
local coordinate system, local z coordinate is projected into global X, y plane

according to the following equation;
u=z,-(z, -a,)a, (2.50)

Then, to find the global-to-local transformation matrix, rotation angles ¢ and &

are calculated by means of equations (2.51) and (2.52).

¢=cos™ (a, -ul/|ul) (2.51)

6 =cos™'(a, - N1/|NJ) (2.52)

The global-to-local transformation matrix can be defined through the

multiplication of rotation matrices.

cos(¢) —sin(¢) O cos(f) 0 sin(@)
T =|sin(¢) cos(p) O[x| O 1 0 (2.53)
0 0 1 —sin(d) 0 cos(0)

After defining the local coordinate system values in equation (2.42) and (2.43),
are transformed into local coordinate system. Then, the incident field given in the
global coordinate system is transformed into the local coordinate system as
follows:

Ei(Xlaylazl):Ei(xgaygazg)'-r (2'54)

Finally, ¢ and € parameters in equation (2.51) and (2.52) are used in equations

(2.31) and (2.32).

42



Cutgoing
ray tube

Plane
Wave
Incident
ray tube

Coincide
with
Scatterer

Figure 2.30 Conformal exit aperture approach

With aperture modification, at angles between 30° <@ < 60°and 120° < 8 <150°
the calculated values agree well with MoM and PO results as shown in Figure

2.31.
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Figure 2.31 Monostatic RCS results with conformal exit aperture approach

2.4 SBR Multiple Scattering Capability

In the SBR code, rays must be allowed to bounce within the geometry until they
exit. The structure of the algorithm allows us to compute multiple scattering
effects without a limit unless we have extremely long runtimes. With non-convex
targets that have concave surfaces such as cavities and corners, numerical results
of PO deviate from our simulation results. Targets like dihedral and trihedral are

appropriate to test the code for multiple scattering capabilities.

A PEC dihedral shown in Figure 2.32 will be a good test object for SBR code.

Clearly, scattering from a dihedral is dominated with multiple scattering effects.
As shown in Figure 2.32 a dihedral is illuminated from € =—-60° to 8 = 60" and

its monostatic RCS was computed with respect to € at 6GHz.
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sIMonostatic RCS of dihedra
*Polanization=vertical
sFrequency=6GHz
*Maximum dimenston=0. lm

Figure 2.32 Simulation setup for monostatic RCS of PEC dihedral

In Figure 2.33 results are obtained with and without considering the multiple
scattering effects. Clearly, the RCS values for a problem where multiple
scattering is dominant are not matching with MoM results when multiple

scattering is not modeled in the code.

The SBR RCS values are in good agreement with the MoM results when multiple

scattering mechanism is implemented in the code.
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Monostatc RCS of PEC dihedral

Figure 2.33 Comparison of PO, MoM and SBR results for 86 polarized monostatic RCS of
PEC dihedral

2.5 Shadowing

For a specific aspect angle, the incident electromagnetic wave illuminates some
parts of the target and the rest of the target will stay in dark. In addition, some
parts of the target can be shadowed by other parts of the target itself. Especially,
concave and separated parts of targets cause shadowing. For example, wings of
airplanes induce shadowing from certain aspect angles over the body of the
aircrafts. Many algorithms are developed to solve this problem for the PO

approach.

Naturally, SBR is using the ray tracing method, which handles the shadowing

effect in a natural way. Basically, if a ray intersects with a part of the target for
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the first time, this part will be the illuminated part and the rest will stay in the

shadow region.

Figure 2.34 Shadowing problem

In Figure 2.34, triangle 9 is shadowed by triangle 15. The ray intersects first
triangle 15 which is taken as the illuminated part. As a summary, ray tracing is
itself a natural shadowing algorithm. Ray tracing is implemented to find the ray-
triangle intersection points, and the primary intersection part is taken as the

illuminated part, and the rest are assumed to lie in shadow.
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CHAPTER 3

APPLICATION OF SBR TO COMPLEX TARGETS

In the previous chapter, the SBR code is tested by using simple PEC objects.
However, realistic targets possess much more complex geometries with several
scattering mechanisms. The interactions between parts of complex geometries
will affect dramatically the RCS values. At this point the SBR code, with its
multiple scattering capability, will be superior to other ray based RCS prediction
tools. The RCS prediction code developed in the previous chapter will be applied
to complex targets in this chapter, in order to evaluate the performance of the

method for realistic cases.

In our simulations, targets are modeled using large triangular patches. In order to
calculate the monostatic RCS of a target from different aspect angles, two
different methods are used. In the first method, the target kept fixed and the ray

window in Figure 3.1 is rotated. This method is applied to simple shapes.
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Ray Window

Figure 3.1 Target and Ray Window Geometry

In the second method, which is used for complex targets, the target is rotated.

3.1 Target Modeling

By using a superposition of simple primitive objects like prisms, spheres or
cylinders, complex targets can be modeled. However, such models may suffer
from precision. Surface patch representations will yield accurate target models.
Triangular patches are very flexible for modeling targets effectively. However, if
our geometric model has a large number of patches, the ray-triangle intersection
algorithm will be the main contributor to runtime. By using brute force search
techniques it is not possible to solve high frequency problems in reasonable times.
In our examples, we construct geometries by using large triangular patches shown

in Figure 3.3. The geometries are constructed in a Computer Aided Design (CAD)
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modeling tool. The geometry is imported in STL mesh format shown in Figure

3.2 and used in SBR MATLAB code.

[P f117.sH - Not Defteri

Dosya Dizen Bigim Gorinim Yardim

SOLID produced by MSC.Patran 2005 r2 on 26-Feb-09 08:53:51
FACET NORMAL ©6.142893E-001 -7.B890787E-001 -1.866110E-003
OUTER LOOP
VERTEX 7.800690E+001 0.000000E4+000 1.053840E+001
VERTEX 6.792670E+001 -1.534940E+001 0. 000000E+000C
VERTEX 1.000000E+002 0.000000E4+000 0. 000000E+000C
ENDLOOP
ENDFACET
FACET NORMAL 6.552771E-001 -6.112804E-001 -4.437884E-001
OUTER LOOP
VERTEX 6.7926700e+01 1.5349400e+01 0.0000000e+00
VERTEX 7.8006900e+01 O.0000000e+00 1.0538400e+01
VERTEX 1.0000000e+02 0.0000000e+00 0.0000000e+00
ENDLOOP
ENDFACET
FACET NORMAL 6.09276BE-001 -2.452974E-001 -7.540630E-001
QUTER LOOP
VERTEX 6.7926700e+01 -1.5349400e+01 0.0000000e+00
VERTEX 6.7926700e+01 1.5349400e+01 0.0000000e+00
VERTEX 1.0000000e+02 0.0000000e+00 0.0000000e+00
EMDLOOP

VERTEX -2.4055000e+00 -1.8900300e+01 0.0000000e+00
ENDLOOP
ENDFACET
ENDSOLID MSC.Patran STL translator version 2001-03-03

Figure 3.2 STL mesh structure

Although complex targets are considered in this section, we start with a simple
case to remember the essential points in RCS calculations. For a single triangular
patch shown in Figure 3.3, the monostatic RCS value is calculated. In the specular
region SBR results agree very well with MoM results. Outside the specular
region, where diffraction is effective, SBR results are deviating from MoM
results. Since our complex targets are all composed of triangular patches, it can be
claimed that those patches contributing to specular reflection will dominate. In the
absence of such patches, SBR and MoM will not match, due to the dominant

diffraction effects. In the following examples, three different complex targets are
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simulated; first a tank model which is modeled by 132 triangular patches, second
a simple ship model constructed from 28 triangular patches and last a stealth

aircraft design constructed from 20 triangular patches, which is more like an F-

117 aircraft.

Figure 3.3 Simulation setup for monostatic RCS of PEC triangular patch

Monostatic RCS of PEC triangle

RCS[dBmY

Theta[degrees]

Figure 3.4 Comparison of MoM and SBR results for 86 polarized monostatic RCS of PEC
triangle
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3.2 Target Rotation

For the visualization of RCS variation, we obtain plots of RCS versus aspect
angles. Aspect angle is the orientation of target relative to the source position
which is a ray window. In order to calculate the RCS as a function of aspect
angle, the target is rotated. In order to rotate the target in three dimensions, three

basic rotation matrices are used;

10 0
R,(@)=|0 cos(ar) —sin(x) 3.1

10 sin(a) cos(a) |

[ cos(e) 0 sin(a)]
R,()=| 0 0 (3.2)

| —sin(a) 0 cos(a) |

f—

cos(ax) —sin(ex) O
R,(a)=|sin(a) cos(ax) O 3.3)
0 0 1

Each of these matrices rotates a target in counterclockwise direction around a
fixed coordinate axis, by an angle ofr . Rotation direction is determined by the
right-hand rules. Other rotation matrices are derived from these three basic
matrices.

In our simulations, for rotating a target that is in STL mesh format, all vertices of
triangular patches are rotated about the orthogonal axes of the global coordinate

system. Simple rotation geometry is illustrated in Figure 3.5.
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Figure 3.5 Fixed rotation around Y axis

3.3 Numerical Results

The first simulation is conducted on a simple tank model which has a length of 1
m and a height of 0.5 m. Monostatic RCS values are calculated at angles from
0 =0 to d=180" at 6GHz. The results obtained from SBR MATLAB code are
compared with those obtained from the FEKO software. In these simulations, two
computers are used;
Computer 1; Intel (R) Core 2 Duo CPU, E4500@2.20GHz

3.25GB RAM
Computer 2; (Dual) AMD Opteron ™ Processor 248

14.926 GB RAM
The tank is modeled in CADFEKO, which is the modeling tool of FEKO
software, and exported in STL mesh format. The model consists of 132 triangular

patches.
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sionostatic RCS of tankmodel
+Polanzation=vertical

*Frequency=6GHz

I aiumum dimension=1m

Figure 3.6 Tank model constructed from 132 triangular patches

Y

Table 3-1 Computation times for tank model simulation

Time/Sample Total Time | RAM
Sample Computer
Seconds Hours MB
SBR, MATLAB | 1181 181 594 | - 1
PO, FEKO 0.19 181 0.01 13 1
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Monostatic RCS of tank model
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Figure 3.7 Comparison of PO and SBR results for 0 polarized monostatic RCS of PEC
tank model

The results of FEKO (PO) and MATLAB (SBR) match closely as shown in
Figure 3.7. Although the model contains only a moderate number of patches, the
runtime is very long due to the lack of a fast ray-triangle intersection algorithm.
With brute-force ray-triangle intersection test, it takes 20 minutes to calculate the

monostatic for a single aspect angle.

The second example is conducted on a simple ship model with length 1 m and
height 0.5 m. Monostatic RCS values are calculated at angles from 6 =0 to

0 =180" at 6GHz. The ship is modeled in CADFEKO, modeling tool of FEKO
software, and exported in STL mesh format. The model consists of 28 triangular
patches. In this example, the solution is obtained by using a planar exit aperture.
Although we have mentioned that the conformal aperture approach yields
optimum results, this example shows that the planar exit aperture choice can give
good results for targets whose scattering characteristics are dominated with

specular regions.
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*Monostatic RCS of ship model
*Polanzation=vertical
sFrequency=6GHz
*Maximum dimension=1m

Figure 3.8 Monostatic RCS of ship model

Table 3-2 Computation times for ship model simulation

Time/Sample Total Time RAM
Sample Computer
Seconds Hours MB
SBR, Matlab 551 151 232 | e 1
PO, FEKO 0.25 181 0.012 13 1
MLFMM, FEKO | 2880 31 249 875 2
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Monostatic RCS of ship model
25

T
===SBR
= FEKO, PO

Ly g _4_____ il
0 ® FEKO, MLFMM

10 - - 4- -

T

| |
| |
| |
| |
| |

’5----F-v+-—--- - - - - - — = I — — K- -

| |
| |
| |
| |
| |
| |

& A o
E L - e [ Y/
=1 e I 1f \t
* \,“ | If s
O S~ TR A Y |
x W oV, el )
| ¥ 1° + |,M | |
SRR B Y A A
I :' N (TR A I I
A5 - - - - - e BT e o - 1] i == === —=--A
| d nv I I
| ! ] | |
} - - | |
20 - - - - - -5 -r---- Y-
I ' ! I I
| ! | |
Y| A \77771 -4 ____ [ R | N et
| LI | |
I I i I I
30 I I \ \ \
0 20 40 60 80 100

Theta [degrees]

Figure 3.9 Comparison of PO, MLFMM and SBR results for ¢ polarized monostatic RCS
of PEC ship model

The results obtained from FEKO (PO and MLFMM) and SBR agree well in
specular regions. Due to the fact that specular scattering is dominant in this model

the results match closely with those obtained by FEKO (MLFMM) in the wide

spectrum from 6 =0° tod =180°.

The third simulation is conducted on a stealth aircraft design [11], which is 1 m
long and has a 1 m wing span. The monostatic RCS values are calculated at
angles from 8=30" to d=150" at 6GHz. The results obtained from the SBR
MATLAB code are compared with the results of the FEKO software.
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*Monostatic RCS of F-117air
*Polanzation=vertical
*Frequency=6GHz
*Maximum dimension=1m

craft

Figure 3.10 F-117 model

Table 3-3 Computation times for F-117 model simulation

Time/Sample Total Time RAM
Sample Computer
Seconds Hours MB
SBR, MATLAB | 276 121 927 | - 1
PO, FEKO 0.78 121 0.026 20 1
MLFMM, FEKO | 2484 121 83.49 875 2
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Monostatic RCS of F-117 model aircraft

Theta [degrees]

Figure 3.11 Comparison of PO and SBR results for &6 polarized monostatic RCS of PEC

F-117 model

The results of PO and SBR agreed for the angles between 0° < 8 <120° as shown

in Figure 3.11. For the angles120° < @ <150°, the results are not consistent.

Monostatic RCS of F-117 model aircraft

[;wap] soy

Theta [degrees]

Figure 3.12 Comparison of MoM and SBR results for 0 polarized monostatic RCS of PEC

F-117 model
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When the results are compared with those obtained by the MLFMM code, it is
clear that the results do not match closely. The main reason of this inconsistency
is the diffraction weighted structure of the geometry. Since the geometry is a
stealth aircraft, specular reflections are avoided for all angles. Also, the SBR code
does not include a multiple scattering capability for complex targets. This is the

second reason for the inconsistency between the results of SBR and MLFMM.
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CHAPTER 4

CONCLUSIONS

4.1 Summary of the Thesis

A MATLAB code based on SBR is implemented to compute the RCS of complex
targets. Results are compared with both full-wave and high frequency methods of
FEKO software. Basically, SBR is a high frequency method that combines the
advantages of Geometric Optics (GO) and Physical Optics (PO) approaches.

In SBR, rays that simulate the incident plane wave are shot towards the target,
bounce back and forth between the facets modeling the PEC object surface and
finally are captured in an exit aperture. The phase and amplitude of the electrical
field is propagated along the rays with the GO rules. In an exit aperture outgoing
rays are captured and the field can be determined. With the PO approximation a
current sheet is determined in the aperture. Integration in this aperture is not easy
to carry out. Instead of this, a small ray tube is shot towards the geometry and the
scattered field is computed by taking into account its size and shape. With a
sufficient number of ray tubes that models the incident field shot into the

geometry, the RCS is calculated.

SBR was implemented for the first time to solve cavity problems, in which the
exit aperture is the mouth of the cavity, which guarantees that all the outgoing

rays are captured there. In this thesis, the method is implemented for open
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scatterers where the exit aperture selection is critical. A new exit aperture
configuration named as “conformal aperture” is proposed and the results of this
configuration are compared with those obtained via the common aperture

selections. With this aperture configuration, the results matched the PO results.

The results obtained from the MATLAB code match closely with PO and MoM
results near specular regions. Out of the specular regions, the results do not match
due to the fact that diffraction effects are not modeled in the code. Basically,
SBR is a multiple scattering algorithm. This capability of the code is investigated
and verified. Also, it is a ray tracing approach which handles the shadowing

problem easily.

Some complex target models are generated in CADFEKO tool and imported to
SBR code in STL mesh format. For the ray-triangle intersection test, brute-force
methods are used which turned out to be the main reason for the excessively long
run-times. This difficulty led us to consider targets modeled with a moderate

number of patches.

The code is developed in MATLAB 2007b version. There is no need a special
MATLAB toolbox to implement this algorithm.

4.2 Advantages and Disadvantages of SBR

RCS prediction tools are generally used to design stealth structures. In stealth
designs usually specular reflections, that contribute a lot to the RCS, are tried to
be avoided. Therefore, for such applications it becomes crucial to predict multiple
scattering and/or diffraction effects. SBR is a code that handles multiple scattering
up to any arbitrary order. With the help of diffraction codes like Physical Theory
of Diffraction (PTD) or Geometric Theory of Diffraction (GTD), this algorithm

can be useful for simulations that are utilized in stealth design. Also, SBR can
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handle shadowing problem automatically with the help of its ray tracing

capability.

Since SBR is a ray tracing based approach, it is not efficient unless a fast ray-
triangle intersection algorithm is used. With brute force methods in ray-triangle
intersection, it is not feasible to handle realistic problems modeled by a large

number of facets.

4.3 Future Work

In this work, a computational electromagnetics code is created by using the SBR
algorithm in MATLAB. It is stated that for open scatterers the exit aperture
selection is critical. A conformal exit aperture algorithm is developed and applied
over complex targets. The code is tested for its multiple scattering capabilities.
For future work, the code can be modified and expanded to handle dielectric
structures and coatings. Also, with brute-force ray-triangle intersection test, the
code is not efficient with regard to runtime. With a fast ray-triangle intersection
algorithm, like mailbox or kd-tree, the code can be efficiently used for more

realistic targets.

The SBR algorithm cannot handle diffraction effects. So, by including a routine
that handles diffraction effects (i.e. a code based on Physical Theory of
Diffraction (PTD) or Geometric Theory of Diffraction (GTD)), the code can be
used in stealth design applications. Another application may be the generation of

Inverse Synthetic Aperture Radar (ISAR) images with the help of SBR code.

A computational electromagnetic tool that only calculates the RCS of realistic
targets is not suficient to achieve stealth design. By visualization tools like ISAR
imaging or range profiling, scattering centers on a target can be detected. It is
possible to create the ISAR image of a target from monostatic or bistatic RCS

data of the SBR code. This will be the post processing stage of the SBR code and
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may help us to find and/or annihilate scattering centers of objects in stealth

applications.
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