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ABSTRACT 

 

 

COMPUTATION OF RADAR CROSS SECTIONS OF 
COMPLEX TARGETS BY SHOOTING AND BOUNCING 

RAY METHOD 
 

 
Özgün, Salim 

M.Sc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Mustafa Kuzuoğlu    

 

 

August 2009, 66 Pages 

 

 
In this study, a MATLAB® code based on the Shooting and Bouncing Ray (SBR) 

algorithm is developed to compute the Radar Cross Section (RCS) of complex 

targets. SBR is based on ray tracing and combine Geometric Optics (GO) and 

Physical Optics (PO) approaches to compute the RCS of arbitrary scatterers. The 

presented algorithm is examined in two parts; the first part addresses a new 

aperture selection strategy named as “conformal aperture”, which is proposed and 

formulated to increase the performance of the code outside the specular regions, 

and the second part is devoted to testing the multiple scattering and shadowing 

performance of the code. The conformal aperture approach consists of a 

configuration that gathers all rays bouncing back from the target, and calculates 

their contribution to RCS. Multiple scattering capability of the algorithm is 

verified and tested over simple shapes. Ray tracing part of the code is also used as 



 v

a shadowing algorithm. In the first instance, simple shapes like sphere, plate, 

cylinder and polyhedron are used to model simple targets. With primitive shapes, 

complex targets can be modeled up to some degree. Later, patch representation is 

used to model complex targets accurately. In order to test the whole code over 

complex targets, a Computer Aided Design (CAD) format known as Stereo 

Lithography (STL) mesh is used. Targets that are composed in CAD tools are 

imported in STL mesh format and handled in the code. Different sweep 

geometries are defined to compute the RCS of targets with respect to aspect 

angles. Complex targets are selected according to their RCS characteristics to test 

the code further. In addition to these, results are compared with PO, Method of 

Moments (MoM) and Multilevel Fast Multipole Method (MLFMM) results 

obtained from the FEKO software. These comparisons enabled us to improve the 

code as possible as it is.   

 

Keywords: Shooting and Bouncing Ray (SBR) Method, Radar Cross Section 

(RCS), Conformal Aperture, FEKO 

 

 

 

 

 

 

 

 

 

 



 vi

 

 

ÖZ 

 
 
 

KARMAŞIK HEDEFLERİN RADAR KESİT ALANININ 

SEKEN IŞIN YÖNTEMİYLE HESAPLANMASI 

 

 
Özgün, Salim 

Yüksek Lisans, Elektrik-Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Mustafa Kuzuoğlu    

 

 

Ağustos 2009, 66 sayfa 

 

 
 
Bu çalışmada cisimlerin Radar Kesit Alanının (RKA) hesaplanması için Seken 

Işın Yöntemi (SIY) algoritması kullanılarak MATLAB® tabanlı bir kod 

geliştirilmiştir. SIY rastgele seçilmiş hedeflerin RKA değerini hesaplamak için 

Geometrik Optik (GO) ve Fiziksel Optik (FO) yöntemlerini beraber kullanan ışın 

takibine dayalı bir algoritmadır. Sunulan algoritma iki bölümde incelenmiştir; ilk 

bölümde doğrudan yansıma dışında kalan bölgelerde kodun performansını 

artırmak için yeni bir yöntem olan “uyumlu açıklık” önerilmiş ve formüle edilmiş, 

ikinci bölümde ise algoritmanın çoklu yansımaları hesaplama ve gölgeleme 

performansı test edilmiştir. ”Uyumlu açıklık”  yöntemi ile hedeften geri seken 
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tüm ışınlar toplanıp RKA’ ya katkıları hesaplanmıştır. Algoritmanın çoklu 

yansıma kabiliyeti sadece basit şekiller üzerinde test edilmiştir. Kodun ışın takibi 

bölümü aynı zamanda gölgeleme algoritması olarak kullanılmıştır. İlk aşamada 

basit hedefleri modellemek için küre, plaka, silindir ve polihedron gibi basit 

şekiller kullanılmıştır. Ancak basit şekiller ile karmaşık hedefler bir dereceye 

kadar modellenebilmektedir. Daha sonraki aşamalarda karmaşık şekillerin daha 

iyi modellenebilmesi için üçgen parçalar kullanılmıştır. Kodu karmaşık hedefler 

üzerinde test etmek için Bilgisayar Destekli Tasarım (BDT) formatı olan STL ağ 

yapısı kullanılmıştır. BDT ortamında modellenen hedefler STL ağ formatında 

koda taşınmış ve işlem yapılmıştır. Cisimlerin RKA değerlerini bakış açısına göre 

hesaplayabilmek için farklı döndürme geometrileri kullanılmıştır. Seçilen 

karmaşık hedeflerde RKA karakteristiklerinin farklı olması göz önünde 

bulundurulmuştur. Bu çalışmalara ek olarak koddan elde edilen sonuçlar,  FEKO 

yazılımından elde edilen FO, MoM ve MLFMM sonuçları ile karşılaştırılmıştır. 

Bu karşılaştırma, kodu mümkün olduğunca geliştirme imkânını bize sunmuştur. 

 

Anahtar Sözcükler: Seken Işın Yöntemi (SIY), Radar Kesit Alanı (RKA), Uyumlu 

Açıklık, FEKO 
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 CHAPTER 1 

 

 

INTRODUCTION 

 
 
 
 
 
 
 
During the second half of th19 century, James Clerk Maxwell completed the 

classical theory of electromagnetism, synthesizing all the previous knowledge 

developed by prominent physicists and mathematicians such as Coulomb, 

Ampere, Oersted, Faraday and Hertz. His famous equations, known as “Maxwell 

Equations”, have been widely used until the present time by physicists and 

engineers in numerous applications. A major application area of Maxwell’s 

equations is scattering of electromagnetic waves by obstacles. This topic gained a 

lot of importance after the development of radar systems during World War II. In 

radar applications, the electromagnetic power intercepted by a target is modeled 

via a hypothetical area known as Radar Cross Section (RCS). The power 

intercepted by the object is calculated as the product of RCS and the power 

density at the target location. As a result, calculation of the RCS of targets is one 

of the important aspects of radar engineering.  

 

The RCS of an object is closely related of the constitutive parameters 

(permittivity, permeability and conductivity) and the geometry (or shape). In 

designing targets almost invisible to radars (i.e. stealth targets), it is the parameter 

that should be minimized. In early 1970s, stealth technology has become popular, 

with a lot of emphasis placed on reduction of the RCS of targets. Even though the 

modern view of stealth design is to achieve an optimum balance between RCS 
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reduction, incorporation of Electromagnetic Warfare (EW) and operational 

performance; RCS reduction is still the most important aspect of stealth 

technology. Modern radars are not only capable of detecting low RCS targets, but 

they can examine and classify targets according to their scattering characteristics. 

The main task of RCS design engineer is to introduce stealth targets effectively 

invisible to these powerful modern radars. At this point, developers of stealth 

targets use extensively the tools of Computational Electromagnetics (CEM) to 

simulate the scattering of electromagnetic waves by targets with complex 

geometry and/or electrical parameters. 

 

The methods of CEM are based on the numerical approximation of Maxwell’s 

Equations for modeling the interaction of electromagnetic fields with objects. 

During the last few decades this area has become crucial for stealth engineering. 

The same methods are also used extensively in antenna design and placement, 

radome design, electromagnetic compatibility (EMC) analysis, RF component 

design and bio-electromagnetics problems. Many computational electromagnetics 

methods have been developed and implemented to solve different kinds of 

problems. Basically, these methods can be classified into two groups, namely as 

full-wave and approximate solution techniques. 

 

Full-wave methods have been developed for the numerical discretization and 

approximation of equations deduced from Maxwell’s equations. The Method of 

Moments (MoM), Finite Difference Time Domain (FDTD) method and Finite 

Element Method (FEM) are the most commonly-used full-wave methods. These 

methods are sometimes named as low frequency methods because of the 

requirement of high computer resources at high frequencies. In recent years, some 

new full-wave based methods have been introduced in order to solve electrically 

large problems. For example, the Multilevel Fast Multi Pole Method (MLFMM) 

is a method that uses the formulation of MoM. Its main difference from the MoM 

is that it groups the basis functions and calculates the interaction between these 

groups. Through this modification, this approach can handle electrically large 
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problems such as dielectric structures with memory and run-time requirements 

formidable even for today’s super computers.  

 

Approximate solutions are implemented basically to handle electrically large 

problems. Since these methods are effective at high frequencies, they are also 

known as high frequency solution techniques. Basic high frequency techniques 

are Physical Optics (PO), Geometric Optics (GO), Physical Theory of Diffraction 

(PTD), Geometric Theory of Diffraction (GTD) and Uniform Theory of 

Diffraction (UTD). PO and GO can give good solutions in specular regions but 

for complex structures their results are not very reliable. Utilization of GTD and 

PTD can improve the results of PO and GO in regions where diffracted rays 

dominate. In stealth designs, since specular reflections are avoided, calculation of 

the RCS must take into consideration the effect of diffraction and multiple 

reflections. Contribution of diffraction can be calculated with PTD. In recent 

years a new method, namely the Shooting and Bouncing Ray (SBR) method is 

implemented to solve the effects of multiple scattering. SBR is a method that uses 

a combination of the GO and PO techniques. It is a ray tracing technique suitable 

to use in stealth design applications. 

 

1.1 Literature Review 

Multiple Scattering plays an important role in RCS calculation. Cavity structures 

(such as jet-engine inlets) are the regions where multiple scattering phenomenon 

occurs.  Since such structures contribute extensively to RCS, the analysis of this 

problem has been an important topic in RCS literature. Traditionally, RCS of 

cavity structures were calculated by model analysis or full wave methods. For 

complex structures, model analysis was not adequate, and full wave methods were 

not capable of solving electrically large problems. In 1987, SBR was 

implemented for the first time by Chou et al. [1] in a project work supported by 

NASA. In this method, rays are launched towards the cavity and traced inside 

with GO rules. Material properties of the cavity walls are taken into account and 
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rays are captured in the cavity opening in order to calculate the far field values. 

Later, Ling et al. presented this work as an article in [2]. 

 

SBR has been developed originally for cavity structures, but Baldauf et al. 

modified this technique for open scatterers [3]. In cavity structures, rays that leave 

the cavity are captured in the cavity opening. However for open scatterers the 

final integration aperture is not easy to choose. In [3], an aperture that coincides 

with the scatterer itself is suggested. With this aperture choice, the solution is 

identical to the conventional PO solution, except that multiple scattering effects of 

the rays are also modeled. In this work, formulation is based on Huygens’ 

Principle. 

 

In 2005, to extend the capability of SBR for the simulation of scattering from 

diffusive and grating structures, Diffusive Ray Algorithm is introduced by 

Galloway et al. [4]. This algorithm reduces to the basic SBR formulation for 

targets constructed as a superposition of flat plates, but for curved structures a 

single ray tube that reflects from a curved part will generate a family of other ray 

tubes [4]. 

  

1.2 Overview of the Thesis 

In this thesis, a basic SBR code is developed in MATLAB. Numerical results 

taken from the code are compared with the results obtained from FEKO software.  

FEKO is an electromagnetic (EM) analysis software which includes both full-

wave and approximate solution methods and which has the capability to solve a 

wide range of electromagnetic problems [5]. For simple targets results are 

obtained from FEKO’s MoM and PO solvers. For electrically large problems 

results are obtained from MLFMM solver in a redhat based super computer with 

18GB RAM.  
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SBR code is tested over simple targets like plate, dihedral and cube for monostatic 

and bistatic RCS calculations, for a range of frequencies. To test the SBR code for 

target in which multiple scattering phenomena is effective, a dihedral was used. 

Clearly, scattering from targets like dihedral and trihedral is dominated by 

multiple bounces and therefore composes a good test environment for SBR [3].  

 

The code is implemented for open scatterers where the aperture chosen for final 

aperture integration becomes crucial. If the electromagnetic field values on the 

exit aperture were known exactly, regardless of the chosen exit aperture, exact far 

field result can be obtained [3]. Plane aperture and conformal aperture (coinciding 

with the scatterer itself) are implemented for final aperture integration. Results are 

critically evaluated to choose the best exit aperture to achieve accurate results. 

 

Both for simple and complex targets, geometries are specified in STL mesh 

format. In STL mesh format, targets are constructed from triangular patches. 

Corner points and normal vectors of triangular patches are specified in this 

format. RCS is typically presented in plots of RCS values versus aspect angle. 

Aspect angle is the angle of target with respect to radar position. Different sweep 

configurations are implemented in the SBR code. For some cases, the target and 

receiver are fixed and the transmitter is rotated, for some cases the transmitter and 

receiver are fixed, and the target is rotated.  

 

1.3 Outline of the Thesis 

The thesis is organized in three main chapters. In Chapter 2 formulation of basic 

SBR algorithm is discussed. The code is tested over simple test targets like plate, 

cube, polyhedron and dihedral. Final aperture integration part of the code is 

discussed in detail and a new approach is developed in Chapter 2. Also, 

shadowing and multiple scattering are studied in this chapter. 
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In Chapter 3, application of SBR to complex targets is discussed. Methods of 

constructing a CAD model are studied. The chapter continues with the sweep 

definition. RCS of complex targets like ship, aircraft and tank are simulated in 

this part as well. Results are compared with FEKO results. 

 

The thesis is summarized in Chapter 4. Advantages and disadvantages of the 

method are discussed. Concluding remarks are made on numerical results. The 

Chapter terminates with a summary of possible future work where possible 

modifications/enhancements of the algorithm are discussed. 
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 CHAPTER 2 

 

SHOOTING AND BOUNCING RAY METHOD  

 

 

 
In this chapter, the Shooting and Bouncing Ray (SBR) method is discussed. It 

should be mentioned that the presented algorithm is a ray-based technique which 

can compute the RCS of electrically large, arbitrarily-shaped Perfect Electric 

Conductor (PEC) targets. Basically, the algorithm consists of ray tracing, 

amplitude tracking and final aperture integration parts. 

 

The main blocks of the algorithm are discussed in Section 2.1. In Section 2.3, 

final aperture integration part of the algorithm is studied in details. Essentially, the 

algorithm is used to calculate the RCS of open scatterers. So, it is not convenient 

to perform the ray-tube integration over a common exit plane aperture [6]. SBR 

algorithm is powerful to calculate multiple scattering effects. In Section 2.4 this 

attribute of the algorithm is tested over problems dominated by multiple bounce 

effects. In Section 2.2 numerical results of SBR code are compared with the 

results of FEKO software. The last section is devoted to the shadowing effect. 
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2.1 Formulation of the Shooting and Bouncing Ray 

Method 

Shooting and Bouncing Rays (SBR) method is based on ray tracing. The problem 

is to determine the scattered field from an open scatterer. Basically, rays that 

simulate the incident plane wave are shot into the target, traced on the target and 

finally gathered in an exit aperture. Electric field is traced within the rays with 

Geometric Optic (GO) rules. The algorithm will be discussed in three main parts: 

1) ray tracing 2) amplitude tracking and 3) physical optics approximation in exit 

aperture. 

 

SBR uses both GO and PO rules. Referring to Figure 2.1 consider an arbitrary -

shaped PEC object and an incident plane wave.  
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Figure 2.1 SBR, incident rays and exit aperture 

 
 

 

The incident plane wave is represented by a dense grid of rays. A ray is defined 

by an origin, ( )ppp zyxP ,,=  and a direction vector ( )zyx sssD ,,= . The equation 

for the ray is; 

 

0,)( ≥+= tDtPtI
r

               (2.1) 
 
 

where, 



 
 
10

iixs φθ cossin−=        (2.2) 

iiys φθ sinsin−=         (2.3) 

izs θcos−=         (2.4) 

           
            

iθ  and  iφ  are angles that denote the direction of incidence.  

 

The defined rays are shot into the PEC object. Let’s ),( yxfz =  be the equation 

of the surface of the scatterer. The intersection points of rays and the surface are 

found by solving equations of the surface and rays simultaneously. For example, 

if the object is a plate (i.e. the surface is a plane) we can find the intersection point 

as follows; a plane can be defined by a normal vector N and a point on the plane 

Q. A point P is on the plate if: 

 

( ) 0=−QPN
r

        (2.5) 
 
By combining the equations of plane and ray together we end up with the 

following equation: 

 
 

( ) 0=−+× QDtPN
rr

       (2.6) 
 
where 
 
 

DN
PQNt rr

r

×
−

=
)(         (2.7) 

 

For simple shapes like plate, sphere or cylinder a single implicit equation is 

enough to define the shape of the surface. For complex targets, a superposition of 

triangular patches can be used to approximate the geometry. In this case 

intersecting a ray with a triangle is more complicated than simple shapes. 

Basically, ray triangle intersection can be accomplished in two steps; 
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• Intersecting the ray and the plane of the triangle, 

• Checking whether the intersection point is inside or outside the triangle.  

 

Ray-plane intersection is already discussed in equations (2.5), (2.6) and (2.7). 

After finding the intersection point, we must decide whether the point is inside or 

outside the triangle. A triangle is defined with three vertices p0, p1 and p2. The 

normal vector of the triangle (n) is defined via the right hand rule.  

 

 

p2-p0

p2

p1-p0

p1

p0

n

 
Figure 2.2 Triangle defined with right hand rule 

 
 
 
 

)02()01(ˆ ppppn −×−=       (2.8) 

 

A triangle is the intersection of three half spaces as in Figure 2.3. Each edge of the 

triangle lies on a line and a point is inside the triangle if it is on the correct side of 

each one of the three lines [9]. 
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Figure 2.3 A triangle constructed from three half spaces 

 

 

 

Using this definition, a point is inside the triangle if it is on the left side of each 

edge. Via the cross product, it can be decided whether a point x is on the left or 

right of the edges with the following equations; 

 

0ˆ))0()01(( ≥⋅−×− npxpp       (2.9) 

0ˆ))1()12(( ≥⋅−×− npxpp       (2.10) 

0ˆ))2()20(( ≥⋅−×− npxpp       (2.11) 

 

 

Next, the reflected ray is determined by using the rules of Snell’s law [2]; 

1) Reflected ray must lie in the plane of incidence 

2) The angle of reflection must be equal to the angle of incidence 
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î
î

N

l̂z

l̂x

l̂y

rayi

rayr

ĝx
ĝy

ĝz

Global Coordinate 
System

Local Coordinate 
System

 
Figure 2.4 Reflection of a ray  

 
 
 

Referring to Figure 2.4 the reflected ray can be determined according to Snell’s 

law. A unit vector is defined as 

 

ii Nraym θsin/)(ˆ
r

×=        (2.12) 

 

where rayi is the incident ray and N is the reflection normal. Note that m is 

perpendicular to the plane of incidence. Referring to Figure 2.4, define the local 

coordinates 

 

myl ˆ=          (2.13) 

Nzl

r
−=          (2.14) 

)ˆ( Nmxl

r
×−=         (2.15) 

 

In spherical coordinates rayr can be determined as follows 
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),,( φθrrayr =         (2.16) 

1=r  ,   )ˆ2/( iθπθ −−= ,  0=φ      (2.17) 

 

Next, ),,( lll zyx  coordinates of rayr in the local coordinate system can be 

calculated by spherical to Cartesian coordinate transformation. As a final step 

local to global coordinate transformation is achieved as below; 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
010
001

A         (2.18)  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

)3()2()1(
)3()2()1(
)3()2()1(

lll

lll

lll

zzz
yyy
xxx

C       (2.19)  

1−⋅= CAB         (2.20) 

),,(),,( lllggg zyxBzyx ⋅=       (2.21)  

 

where, B is the transformation matrix. By using the reflected ray as a new incident 

ray this procedure is applied until the ray ends to bounce in the geometry. 

 

In ray paths the field amplitude is also traced. In Geometrical Optics, the 

amplitude, phase and polarization of electric field can be updated with the 

following equation. 

 
φj

iiiiiiii ezyxEDFzyxE −
+++ Γ= ).,,(..)(),,( 111

rr
    (2.22) 

 

Where  2/12
1

2
1

2
10 ])()()[( iiiiii zzyyxxk −+−+−= +++φ  and iDF  is the divergence 

factor which calculates the spreading of ray tubes. DF is applicable for curved 

surfaces and for planar surfaces takes the value of 1. iΓ  is the planar reflection 
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coefficient. For PECs, planar reflection coefficient can be applied with the 

equation (2.23). 

 

)ˆ)ˆ(2()( nEnEE iir ××+−=
rr

      (2.23) 
 
 
The scattered far field can be computed by applying the basic physical optics 

approximation in the aperture where exit rays are gathered. The magnetic current 

sheet sM
r

 over the aperture is; 

 

as nzyxEM ˆ),,(2 ×=
rr

        (2.24)    
 
 
where, anr is aperture normal. 
 
From this magnetic current sheet, the scattered field can be calculated. The 

scattered far field is the sum of contributions from individual ray tubes. The 

contribution of a ray tube is calculated as; 

 

]ˆˆ[
0

φθ φθ AA
r

eE ii

rjk
s +=

−r
      (2.25)    

 
and, 
 

zEEM s ˆ2]ˆˆ[ 00 ×+= φθ φθ

r
      (2.26)    

 
where, 
 

zyx ))))
θφθφθφ sinsincoscoscos −+=      (2.27)    

yx )))
φφθ cossin +−=        (2.28)    

]ˆ)sin()cos(ˆ)cos()cos([2]ˆ)cos(ˆ)[sin(2 00 xyExyEM s φθφθφφ φθ +−++=
r

 (2.29)    
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dxdyeMjkA rjk
s∫∫= .0

4π
      (2.30)    

]sincos[
2

)(0 0
iyix

uyuxjk EEdxdye
jk

A
A

φφ
πθ +⋅

∑
= ∫∫ +   (2.31)    

]cos)cossin[(
2

)(0 0
iiyix

uyuxjk EEdxdye
jk

A
A

θφφ
πφ +−⋅

∑
= ∫∫ +  (2.32)   

iiu φθ cossin=        (2.33)    

iiv φθ sinsin=        (2.34)    

 

For the bistatic case, iθ  and  iφ  values in equations (2.31), (2.32), (2.33) and 

(2.34) are replaced with observation angles.   

 
Since the outgoing rays are not uniform, the integrations cannot be evaluated 

easily [2]. At this point, shooting and bouncing ray method has a way out. A small 

ray tube is shot into the geometry. The ray tube bounces on the geometry and 

comes to the aperture finally. Then the scattered field is calculated from this ray 

tube. Enough ray tubes are shot into the geometry to model the incident plane 

wave. The total scattered field is the sum of all contributions from the ray tubes.   

 

 

x̂

ŷ

ẑ

Aperture

Ray tube

 
Figure 2.5 Ray tube   
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Assume that the incident ray tube has an area of )( 00 yx ΔΔ .  The central ray with 

direction vector ( )zyx sss ,,  hits the aperture. The ray tube will have an area of 

)( ss yx ΔΔ  on the aperture and the field within the existing ray tube can be 

approximated as  

 
)]()([0

),(
),(

),(
),(

iyix yysxxsjk

iiy

iix

y

x e
yxE
yxE

yxE
yxE −+−−

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
    (2.35)    

 
 

This means that the amplitude of the field is same on the ray tube and across the 

ray tube there is a linear phase variation [2]. If the size of existing ray tube is too 

large, the approximation will not be valid. With equations below; 

 

∑ ∫∫ −+−−+=
i

tube
ray

yysxxsjkvyuxjk iyixedxdye
jk

A )]()([)(0 00

2πθ      

]sin),(cos),([ i
iiy

i
iix yxEyxE φφ +⋅   (2.36)    

 

∑ ∫∫ −+−−+=
i

tube
ray

yysxxsjkvyuxjk iyixedxdye
jk

A )]()([)(0 00

2πφ  

]cos)cos),(sin),([( ii
iiy

i
iix yxEyxE θφφ +−⋅   (2.37) 

 

Since ),( iix yxE  and ),( iiy yxE  are independent of integral variables they can be 

taken out of the integral; 

 

∑ +=
i

i
iiy

i
iix yxEyxE

jk
A ]sin),(cos)([

2
0 φφ
πθ  

 
iii

ysxsjk Iyxe iyix )()(0 ΔΔ⋅ +   (2.38) 
 
 

∑ +−=
i

i
i

iiy
i

iix yxEyxE
jk

A ]cos)cos),(sin)([(
2

0 θφφ
πφ
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iii
ysxsjk Iyxe iyix )()(0 ΔΔ⋅ +   (2.39) 

 

where 

 

∫∫ −+−

ΔΔ
=

tube
ray

ysvxsujk

ii
i

yxdxdye
yx

I ])()[(0

)(
1     (2.40) 

 

The integral in equation (2.40) is the phase factor in standard physical optics 

theory [3]. Sometimes it is called shape function and it is the Fourier Transform 

of the ray tube shape. 

 

In order to take advantage of this method for each ray tube, four rays around a 

central ray are shot into the geometry.  

 

 

 
Figure 2.6 Shape of exit ray tube 

 
 
 
The position vectors of rays are denoted by yyxx nnn ˆˆˆ +=γ

r , 4,3,2,1=n . Fourier 

transform can be evaluated as described in [2], [7]. Simpler proof of this method 

based on Stokes’ theorem can also be considered in [10]. 
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)0,0(/),( SqpSIi =        (2.41) 
 
 

where, 

 

∑
= ++−−

−+−+•

−+−−+−
−−−−−

=
4

1 1111

1111

])()][()()[(
))(())((),(

n nnnnnnnn

nnnnnnnnjw

qyypxxqyypxx
xxyyyyxxeqpS nγ  (2.42) 

2/)()()()()0,0( 4114344323321221 yxyxyxyxyxyxyxyxS −+−+−+−=  (2.43) 

)(0 xsukp −=         (2.44) 

)(0 ysvkq −=         (2.45) 

yqxpw ˆˆ +=
r         (2.46) 

 

As a final step, RCS can be calculated as in equations (2.47) and (2.48). 

 
24 θπ ARCS ⋅=    (Vertical polarization)    (2.47) 

2
4 φπ ARCS ⋅=   (Horizontal polarization)    (2.48) 

 

2.2 Numerical Results for Simple Targets 

In this section, RCS values of some simple targets are compared with Method of 

Moments (MoM) and Physical Optics (PO) results. FEKO, a software product for 

the simulation of electromagnetic fields, is used to obtain MoM and PO results. 

Different solution techniques implemented within FEKO make it applicable for a 

wide range of problems [5]. The targets of interest are a plate, a cube and a flare- 

like shape. Generally, monostatic RCS of targets were calculated for vertical 

polarization. Targets are swept in θ  angle.  FEKO software runs on computers; 

Computer 1; Intel (R) Core 2 Duo CPU, E4500@2.20GHz 

                       3.25GB RAM 

Computer 2; (Dual) AMD Opteron ™ Processor 248 

                       14.926 GB RAM 
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Computer 2 is used for electrically large problems. Even with computer 2 some 

problems cannot be solved with MoM. Multilevel Fast Multipole Method 

(MLFMM) which is a fast alternative formulation of the MoM is applicable to 

much larger structures than the MoM [5]. MLFMM makes it possible to obtain 

full-wave solutions for electrically large structures [5]. With this method and 

computer 2, a military aircraft at 2.5GHz or a ship at 400MHz can be handled.  In 

order to solve the same problems with MoM, we need 30TByte memory 

approximately.  

 

Different sweep geometries are used to calculate the RCS values of simple PEC 

obstacles. In the plate geometry, plane wave (provided by the transmitter) is swept 

around the target in θ angle and plate is kept fixed in origin. For cube and flare 

like shape, transmitter and exit aperture (in the direction of the receiver) are kept 

fixed and the target is rotated in y axis. Both approaches can be used to calculate 

the monostatic RCS. 

 

The plate geometry is formulated in the problem directly by using its equation. 

The cube and flare like geometry are created from triangle patches that are big 

enough to permit to construct these shapes. The number of the triangular patches 

is kept minimal to decrease the runtime since the SBR code generated in 

MATLAB does not include a special algorithm that speeds up the ray-triangle 

intersection test. Ray-triangle intersection is tested with brute force methods, 

which implies that runtime increases dramatically with the number of patches. 

 

The first simulation was conducted on a perfect electric conductor (PEC) flat plate 

as illustrated in Figure 2.7. In this simulation both monostatic and bistatic RCS of 

a square PEC plate with side length of 0.25 meters were computed and compared 

with MoM and PO results taken from FEKO. 
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The plate was illuminated from o0=φ  and o0=θ and its monostatic RCS was 

computed with respect to frequency from 2GHz to 6GHz as shown in Figure 2.7. 

The result of the SBR is compared with the MoM and given in Figure 2.8. 

 

 

 

 
Figure 2.7  Simulation setup for monostatic RCS of PEC plate 

 
 
 

Rays are shot towards the plate with λ/10 density, where λ is wave length. For 

each ray, four rays neighboring the central ray are shot to build up a ray tube. 

Since specular reflections are dominant, the results of SBR solution and MoM are 

perfectly matched.  
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Figure 2.8  Comparison of MoM and SBR results for θθ  polarized monostatic RCS of PEC 

plate with respect to frequency 
 
 
 

For bistatic case, the plate is illuminated from o0=φ  and o10−=θ and its bistatic 

RCS is computed at o0=φ  and o10=θ  with respect to frequency from 2GHz to 

6GHz as shown in Figure 2.9. The result of the SBR was compared with the MoM 

and given in Figure 2.10. 
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Figure 2.9 Simulation setup for bistatic RCS of PEC plate 

 
 
 
As a result for flat surfaces in specular regions the results are matching with MoM 

results perfectly for both monostatic and bistatic cases.  
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Figure 2.10 Comparison of MoM and SBR results for θθ  polarized bistatic RCS of PEC 
plate with respect to frequency 
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In the following example, the plate is illuminated at o0=φ  from o60−=θ to 

o60=θ  and its monostatic RCS is computed Figure 2.11. The result of the SBR 

was compared with the MoM in Figure 2.12 and with PO in Figure 2.13. 

 

 

 
Figure 2.11 Simulation setup for monostatic RCS of PEC plate 
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Figure 2.12 Comparison of MoM and SBR results for θθ  polarized monostatic RCS of PEC 

plate  
 
 

 

The results are perfectly matching with MoM near specular region. Results are 

not agreeing at angles where diffraction effects are dominant. SBR code is unable 

to model diffraction. When we compare the results with PO code in FEKO we can 

see that the results are in good agreement, since PO is also unable to take 

diffraction into account. 
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Figure 2.13 Comparison of PO and SBR results for θθ  polarized monostatic RCS of PEC 

plate 
 
 
 
In the other case the plate is illuminated from o0=φ  and o0=θ and its bistatic 

RCS is computed at o0=φ  from o90−=θ to o90=θ  as in Figure 2.14. The result 

of the SBR was compared with the MoM and given in Figure 2.15. 
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Figure 2.14 Simulation setup for bistatic RCS of PEC plate 

 

 

 

The results are harmonious with MoM near specular regions. In rear sides where 

diffraction contribution is important, the results are not matching well with the 

MoM results. 
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Figure 2.15 Comparison of MoM and SBR results for θθ  polarized bistatic RCS of PEC 

plate  
 
 
 
Finally, for the plate case, bistatic RCS is computed with respect to frequency. 

The plate is illuminated from o0=φ  and o0=θ , RCS values are computed at 
o0=φ  and o15=θ  with respect to frequency from 2GHz to 6GHz as shown in 

Figure 2.16. The result of the SBR was compared with the MoM and given in 

Figure 2.17. 
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Figure 2.16 Simulation setup for bistatic RCS of PEC plate 

 
 

 

Out of the specular region where diffraction mechanism is effective, again the 

results are not in agreement with MoM results. Hence, it can be concluded that by 

correctly modeling the diffraction effects, more accurate results can be obtained 

out of specular regions. 
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Figure 2.17 Comparison of MoM and SBR results for θθ  polarized bistatic RCS of PEC 

plate with respect to frequency 
 
 
 
 
The second example was conducted on a flare like object shown in Figure 2.18. 

The object is represented by 20 triangle patches. Maximum length of the object is 

0.5 meter. The monostatic RCS is calculated at o0=φ  from o0=θ to o180=θ  for 

vertical polarization at 6GHz. For each monostatic RCS value 72000 rays are 

traced with λ/10 density. Results are compared with the PO solution in Figure 

2.19. 
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Figure 2.18 Simulation setup for monostatic RCS of PEC flare-like shape 

 
 
 
For the angle ranges  00 5015 <<θ , 00 9080 <<θ  and 00 160120 <<θ , the RCS 

values are not matching with PO results. This discrepancy between the results is 

due to the shape of the aperture over which the rays are collected. At these angles, 

some of the rays bouncing from the geometry cannot be gathered at the planar exit 

aperture. After a detailed analysis, it is seen that the aperture shape must be 

modified in order to obtain correct results. Alternative solution suggestions and 

formulations related to this point are considered in Section 2.3. In this section, it 

will be shown that conformal apertures that encompass the scatterer are effective 

in collecting rays in a proper fashion. Although this point will be fully clarified in 

the next section, corrected results obtained by a conformal aperture are 

represented in Figure 2.20. With this new formulation that will be presented in 

Section 2.3, results agree very well with the PO solution. 
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Figure 2.19 Comparison of PO and SBR results for θθ  polarized monostatic RCS of PEC 

flare-like shape for planar aperture case 
 
 
 
Results in Figure 2.20 show that SBR algorithm gives the same results as PO 

solution. Additionally, ray tracing capability of the code handles the multiple 

scattering and shadowing problems. 
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Figure 2.20  Comparison of PO and SBR results for θθ  polarized monostatic RCS of PEC 

flare-like shape for conformal aperture case 
 

 

 

The third example was conducted on an arbitrary prism shown in Figure 2.21. The 

shape is composed of 14 triangular patches. The maximum length of the shape is 

0.35 meters. Monostatic RCS is calculated at o0=φ  from o0=θ to o360=θ  for 

vertical polarizations at 5GHz. The results are compared with PO and MoM 

results.  
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Figure 2.21 Simulation setup for monostatic RCS of PEC arbitrary polyhedron 
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Figure 2.22 Comparison of PO and SBR results for θθ  polarized monostatic RCS of PEC 

arbitrary polyhedron  
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In Figure 2.22, it is seen that the results are close to the PO solution except for 

angles from o60=θ  up to o130=θ . The problem at these angles can be revealed 

when the geometry is investigated more closely in Figure 2.24. At problematic 

aspect angles, rays that are shot towards the geometry are intersecting with four 

points located on the surface. The naive ray tracing algorithm of the code is 

unable to handle such situations, where the object is concave and a ray may 

intersect with several points on the surface. In section 2.5, it is explained how the 

algorithm is overviewed to overcome this problem. SBR is a ray tracing method 

and naturally ray tracing algorithms may correctly handle the shadowing problem. 

Although the modifications introduced in the code are explained in Section 2.5, 

the correct results obtained after these amendments are shown in Figure 2.23. 
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Figure 2.23 Comparison of PO and SBR results for θθ  polarized monostatic RCS of PEC 

arbitrary polyhedron after correction on shadowing algorithm 
 
 
 
After these modifications on the code, the results agreed with the PO solution 

except at angles o2301900 <<θ . At these angles, multiple scattering is dominant. 
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For this example, multiple scattering is not implemented in the code. The results 

are also compared with the MoM results. In Figure 2.25, multiple scattering 

effects can be seen in MoM results in an obvious fashion. Multiple scattering 

effects will be implemented in Section 2.4.  

 

 

 
Figure 2.24 Shadowing effect 
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Figure 2.25 Comparison of PO, MoM and SBR results for θθ  polarized monostatic RCS of 

PEC arbitrary polyhedron 
 

 

 

The fourth example was conducted on an arbitrary polyhedron shown in Figure 

2.26. The shape is composed of 8 triangular patches. The maximum length of the 

shape is 0.3 meters. The monostatic RCS is calculated at o0=φ  from o0=θ to 
o180=θ  for vertical polarizations at 5GHz. The results are compared with PO 

and MoM results.  
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Figure 2.26 Simulation setup for monostatic RCS of PEC arbitrary polyhedron 
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Figure 2.27 Comparison of PO and SBR results for θθ  polarized monostatic RCS of PEC 

arbitrary polyhedron 
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The results agree very well with the PO solution for this arbitrary polyhedron. The 

main reason for this conclusion is the convex shape of the object that avoids all 

the difficulties encountered in the previous example. 

 

2.3 SBR Final Integration Aperture  

The Shooting and Bouncing Ray method has been first applied on cavity 

structures like a jet inlet or an aircraft cabin [2], where open mouth of the cavity 

has been chosen as the final integration aperture. However, for open scatterers 

there are several options for the choice of an aperture choose. If the exit aperture 

is chosen as planar, this choice gives good results in specular regions. A planar 

aperture cannot be adequate for gathering the exit rays for some problems. 

Basically, the problem can be investigated by using the cube geometry shown in 

Figure 2.28. With a planar exit aperture, it is not possible to collect outgoing rays 

at angles close to 45 degrees. By fixing the transmitter (plane wave) and exit 

aperture (receiver) and rotating the geometry, the monostatic RCS of the cube can 

be calculated as shown in Figure 2.29.  
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Figure 2.28  Planar exit aperture approach 

 
 

 
At angles 00 300 <<θ , 00 12060 <<θ  and 00 180150 <<θ  the results are in 

good agreement with both MoM and PO results. On the other hand, at angles 

between 00 6030 <<θ  and 00 150120 <<θ  the field values are well below those 

obtained by MoM and PO. At 45º  SBR code yields ∞−  value. If the MoM and 

PO results are evaluated together, the difference between them in these 

problematic angles is not much. So, it can be stated that the problem is not due to 

the absence of diffraction effect in the code. At angles near 45º the rays bouncing 

from cube cannot be gathered at the planar aperture. This leads us to state that 

contribution of rays at these angles are greater than diffraction effects, and their 

contribution to the RCS value must be taken into account. To overcome this 

problem, a new exit aperture is recommended and formulated. 
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Figure 2.29 Monostatic RCS of PEC cube with planar exit aperture approach 

 
 
 
A conformal exit aperture as shown in Figure 2.30 can be the best choice to gather 

the exit rays. In conformal exit aperture, all outgoing rays are gathered and their 

contributions to overall RCS value can be calculated. Basically, the conformal 

exit aperture is a replica of the geometry of the surface itself. This guaranties that 

all rays bouncing from the geometry can be evaluated for their contribution to 

RCS. 

 

Formulation of a conformal exit aperture is more complicated than a planar exit 

aperture formulation [8]. In order to simplify the resulting equations, for each 

element (planar part) of the conformal exit aperture, a local coordinate system 

),,( lll zyx  shall be defined as shown in Figure 2.30. The local coordinates are 

defined using the following equations; 

 

Nzl =           (2.49) 
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N is the normal of the triangular patch with which the rays intersect. To define a 

local coordinate system, local z coordinate is projected into global x, y plane 

according to the following equation; 

 

zzll aazzu ))( ⋅−=        (2.50) 

 

Then, to find the global-to-local transformation matrix, rotation angles φ  and θ  

are calculated by means of equations (2.51) and (2.52). 

 

)/](cos 1 uuax ⋅= −φ        (2.51) 

)/](cos 1 NNaz ⋅= −θ        (2.52) 

 

The global-to-local transformation matrix can be defined through the 

multiplication of rotation matrices. 
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θθ
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φφ

T    (2.53) 

 

After defining the local coordinate system values in equation (2.42) and (2.43), 

are transformed into local coordinate system. Then, the incident field given in the 

global coordinate system is transformed into the local coordinate system as 

follows: 

 

 TzyxEzyxE ggg
i

lll
i ⋅= ),,(),,(      (2.54) 

 

Finally, φ  and θ  parameters in equation (2.51) and (2.52) are used in equations 

(2.31) and (2.32).  
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Figure 2.30  Conformal exit aperture approach 

 
 
 
With aperture modification, at angles between o60300 <<θ and o1501200 <<θ  

the calculated values agree well with MoM and PO results as shown in Figure 

2.31.   
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Figure 2.31 Monostatic RCS results with conformal exit aperture approach 

 
 
 
 

2.4 SBR Multiple Scattering Capability 

In the SBR code, rays must be allowed to bounce within the geometry until they 

exit. The structure of the algorithm allows us to compute multiple scattering 

effects without a limit unless we have extremely long runtimes. With non-convex 

targets that have concave surfaces such as cavities and corners, numerical results 

of PO deviate from our simulation results. Targets like dihedral and trihedral are 

appropriate to test the code for multiple scattering capabilities.  
 

A PEC dihedral shown in Figure 2.32 will be a good test object for SBR code. 

Clearly, scattering from a dihedral is dominated with multiple scattering effects. 

As shown in Figure 2.32 a dihedral is illuminated from o60−=θ  to o60=θ and 

its monostatic RCS was computed with respect to θ  at 6GHz.  
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Figure 2.32 Simulation setup for monostatic RCS of PEC dihedral 

 

 

 

In Figure 2.33 results are obtained with and without considering the multiple 

scattering effects. Clearly, the RCS values for a problem where multiple 

scattering is dominant are not matching with MoM results when multiple 

scattering is not modeled in the code.  

 

The SBR RCS values are in good agreement with the MoM results when multiple 

scattering mechanism is implemented in the code.  
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Figure 2.33 Comparison of PO, MoM and SBR results for θθ  polarized monostatic RCS of 

PEC dihedral  
 

 

 

2.5 Shadowing  

 

For a specific aspect angle, the incident electromagnetic wave illuminates some 

parts of the target and the rest of the target will stay in dark. In addition, some 

parts of the target can be shadowed by other parts of the target itself. Especially, 

concave and separated parts of targets cause shadowing. For example, wings of 

airplanes induce shadowing from certain aspect angles over the body of the 

aircrafts. Many algorithms are developed to solve this problem for the PO 

approach. 

 

Naturally, SBR is using the ray tracing method, which handles the shadowing 

effect in a natural way. Basically, if a ray intersects with a part of the target for 
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the first time, this part will be the illuminated part and the rest will stay in the 

shadow region.  

 

 
Figure 2.34  Shadowing problem 

 

 

 

In Figure 2.34, triangle 9 is shadowed by triangle 15. The ray intersects first 

triangle 15 which is taken as the illuminated part. As a summary, ray tracing is 

itself a natural shadowing algorithm. Ray tracing is implemented to find the ray-

triangle intersection points, and the primary intersection part is taken as the 

illuminated part, and the rest are assumed to lie in shadow. 
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 CHAPTER 3 

 

 

APPLICATION OF SBR TO COMPLEX TARGETS 

 
 
 
 
 
In the previous chapter, the SBR code is tested by using simple PEC objects. 

However, realistic targets possess much more complex geometries with several 

scattering mechanisms. The interactions between parts of complex geometries 

will affect dramatically the RCS values. At this point the SBR code, with its 

multiple scattering capability, will be superior to other ray based RCS prediction 

tools. The RCS prediction code developed in the previous chapter will be applied 

to complex targets in this chapter, in order to evaluate the performance of the 

method for realistic cases.  

 

In our simulations, targets are modeled using large triangular patches. In order to 

calculate the monostatic RCS of a target from different aspect angles, two 

different methods are used. In the first method, the target kept fixed and the ray 

window in Figure 3.1 is rotated. This method is applied to simple shapes.  
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Figure 3.1 Target and Ray Window Geometry 

 
 
 
In the second method, which is used for complex targets, the target is rotated.  

 

 

3.1 Target Modeling 

By using a superposition of simple primitive objects like prisms, spheres or 

cylinders, complex targets can be modeled. However, such models may suffer 

from precision. Surface patch representations will yield accurate target models. 

Triangular patches are very flexible for modeling targets effectively. However, if 

our geometric model has a large number of patches, the ray-triangle intersection 

algorithm will be the main contributor to runtime. By using brute force search 

techniques it is not possible to solve high frequency problems in reasonable times.  

In our examples, we construct geometries by using large triangular patches shown 

in Figure 3.3. The geometries are constructed in a Computer Aided Design (CAD) 
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modeling tool. The geometry is imported in STL mesh format shown in Figure 

3.2 and used in SBR MATLAB code.  

 

 

 

 
Figure 3.2 STL mesh structure 

   

 
 
Although complex targets are considered in this section, we start with a simple 

case to remember the essential points in RCS calculations. For a single triangular 

patch shown in Figure 3.3, the monostatic RCS value is calculated. In the specular 

region SBR results agree very well with MoM results. Outside the specular 

region, where diffraction is effective, SBR results are deviating from MoM 

results. Since our complex targets are all composed of triangular patches, it can be 

claimed that those patches contributing to specular reflection will dominate. In the 

absence of such patches, SBR and MoM will not match, due to the dominant 

diffraction effects. In the following examples, three different complex targets are 



 
 
51

simulated; first a tank model which is modeled by 132 triangular patches, second 

a simple ship model constructed from 28 triangular patches and last a stealth 

aircraft design constructed from 20 triangular patches, which is more like an F-

117 aircraft. 

 
Figure 3.3 Simulation setup for monostatic RCS of PEC triangular patch  
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Figure 3.4 Comparison of MoM and SBR results for θθ  polarized monostatic RCS of PEC 

triangle 
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3.2 Target Rotation 

For the visualization of RCS variation, we obtain plots of RCS versus aspect 

angles. Aspect angle is the orientation of target relative to the source position 

which is a ray window. In order to calculate the RCS as a function of aspect 

angle, the target is rotated. In order to rotate the target in three dimensions, three 

basic rotation matrices are used; 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

)cos()sin(0
)sin()cos(0
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αααxR      (3.1) 
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0)sin()cos(
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αα

αzR      (3.3) 

 
 
Each of these matrices rotates a target in counterclockwise direction around a 

fixed coordinate axis, by an angle ofα . Rotation direction is determined by the 

right-hand rules. Other rotation matrices are derived from these three basic 

matrices. 

In our simulations, for rotating a target that is in STL mesh format, all vertices of 

triangular patches are rotated about the orthogonal axes of the global coordinate 

system. Simple rotation geometry is illustrated in Figure 3.5. 
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Figure 3.5  Fixed rotation around Y axis 

 
 
  

3.3 Numerical Results 

The first simulation is conducted on a simple tank model which has a length of 1 

m and a height of 0.5 m. Monostatic RCS values are calculated at angles from 
o0=θ  to o180=θ  at 6GHz. The results obtained from SBR MATLAB code are 

compared with those obtained from the FEKO software. In these simulations, two 

computers are used; 

Computer 1; Intel (R) Core 2 Duo CPU, E4500@2.20GHz 

                       3.25GB RAM 

Computer 2; (Dual) AMD Opteron ™ Processor 248 

                       14.926 GB RAM 

The tank is modeled in CADFEKO, which is the modeling tool of FEKO 

software, and exported in STL mesh format. The model consists of 132 triangular 

patches.  
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Figure 3.6 Tank model constructed from 132 triangular patches 

 
 
 
 
 
 

Table 3-1 Computation times for tank model simulation 
 
 Time/Sample 

Seconds 
Sample

Total Time 

Hours 

RAM 

MB 
Computer

SBR, MATLAB 1181 181 59.4  --------- 1 

PO, FEKO 0.19 181 0.01  13 1 
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Figure 3.7 Comparison of PO and SBR results for θθ  polarized monostatic RCS of PEC 

tank model 
 
 
 
 
The results of FEKO (PO) and MATLAB (SBR) match closely as shown in 

Figure 3.7.  Although the model contains only a moderate number of patches, the 

runtime is very long due to the lack of a fast ray-triangle intersection algorithm. 

With brute-force ray-triangle intersection test, it takes 20 minutes to calculate the 

monostatic for a single aspect angle. 

 

The second example is conducted on a simple ship model with length 1 m and 

height 0.5 m. Monostatic RCS values are calculated at angles from o0=θ  to 
o180=θ  at 6GHz. The ship is modeled in CADFEKO, modeling tool of FEKO 

software, and exported in STL mesh format. The model consists of 28 triangular 

patches. In this example, the solution is obtained by using a planar exit aperture. 

Although we have mentioned that the conformal aperture approach yields 

optimum results, this example shows that the planar exit aperture choice can give 

good results for targets whose scattering characteristics are dominated with 

specular regions. 
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Figure 3.8 Monostatic RCS of ship model 

 

 

 
Table 3-2 Computation times for ship model simulation 

 
 Time/Sample

Seconds 
Sample

Total Time 

Hours 

RAM 

MB 
Computer

SBR, Matlab 551 151 23.2  --------- 1 

PO, FEKO 0.25 181 0.012  13 1 

MLFMM, FEKO 2880 31 24.9  875 2 
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Figure 3.9 Comparison of PO, MLFMM and SBR results for θθ  polarized monostatic RCS 

of PEC ship model 
 

 

 

The results obtained from FEKO (PO and MLFMM) and SBR agree well in 

specular regions. Due to the fact that specular scattering is dominant in this model 

the results match closely with those obtained by FEKO (MLFMM) in the wide 

spectrum from o0=θ  to o180=θ .  

 
 

The third simulation is conducted on a stealth aircraft design [11], which is 1 m 

long and has a 1 m wing span. The monostatic RCS values are calculated at 

angles from o30=θ  to o150=θ  at 6GHz. The results obtained from the SBR 

MATLAB code are compared with the results of the FEKO software. 
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Figure 3.10 F-117 model 

 
 
 
 

Table 3-3 Computation times for F-117 model simulation 
 
 Time/Sample

Seconds 
Sample

Total Time 

Hours 

RAM 

MB 
Computer

SBR, MATLAB 276 121 9.27  --------- 1 

PO, FEKO 0.78 121 0.026 20 1 

MLFMM, FEKO 2484 121 83.49  875 2 

 
 
 



 
 
59

40 60 80 100 120 140
-60

-50

-40

-30

-20

-10

0

10

Theta [degrees]

R
C

S
 [d

B
m

2 ]

Monostatic RCS of F-117 model aircraft

 

 
SBR
FEKO,PO

 
Figure 3.11 Comparison of PO and SBR results for θθ  polarized monostatic RCS of PEC 

F-117 model 
 
 
 
The results of PO and SBR agreed for the angles between o12000 <<θ as shown 

in Figure 3.11. For the angles o1501200 <<θ , the results are not consistent. 
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Figure 3.12 Comparison of MoM and SBR results for θθ  polarized monostatic RCS of PEC 

F-117 model 
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When the results are compared with those obtained by the MLFMM code, it is 

clear that the results do not match closely. The main reason of this inconsistency 

is the diffraction weighted structure of the geometry. Since the geometry is a 

stealth aircraft, specular reflections are avoided for all angles. Also, the SBR code 

does not include a multiple scattering capability for complex targets. This is the 

second reason for the inconsistency between the results of SBR and MLFMM.  
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 CHAPTER 4 

 

 

CONCLUSIONS 

 

 

 

4.1 Summary of the Thesis 

A MATLAB code based on SBR is implemented to compute the RCS of complex 

targets. Results are compared with both full-wave and high frequency methods of 

FEKO software. Basically, SBR is a high frequency method that combines the 

advantages of Geometric Optics (GO) and Physical Optics (PO) approaches.  

 

In SBR, rays that simulate the incident plane wave are shot towards the target, 

bounce back and forth between the facets modeling the PEC object surface and 

finally are captured in an exit aperture. The phase and amplitude of the electrical 

field is propagated along the rays with the GO rules. In an exit aperture outgoing 

rays are captured and the field can be determined. With the PO approximation a 

current sheet is determined in the aperture. Integration in this aperture is not easy 

to carry out. Instead of this, a small ray tube is shot towards the geometry and  the 

scattered field is computed by taking into account its size and shape. With a 

sufficient number of ray tubes that models the incident field shot into the 

geometry, the RCS is calculated. 

 

SBR was implemented for the first time to solve cavity problems, in which the 

exit aperture is the mouth of the cavity, which guarantees that all the outgoing 

rays are captured there. In this thesis, the method is implemented for open 
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scatterers where the exit aperture selection is critical. A new exit aperture 

configuration named as “conformal aperture” is proposed and the results of this 

configuration are compared with those obtained via the common aperture 

selections. With this aperture configuration, the results matched the PO results. 

 

The results obtained from the MATLAB code match closely with PO and MoM 

results near specular regions. Out of the specular regions, the results do not match 

due to the fact that diffraction effects are not modeled in the code.  Basically, 

SBR is a multiple scattering algorithm.  This capability of the code is investigated 

and verified. Also, it is a ray tracing approach which handles the shadowing 

problem easily.  

 

Some complex target models are generated in CADFEKO tool and imported to 

SBR code in STL mesh format. For the ray-triangle intersection test, brute-force 

methods are used which turned out to be the main reason for the excessively long 

run-times. This difficulty led us to consider targets modeled with a moderate 

number of patches.  

 

The code is developed in MATLAB 2007b version. There is no need a special 

MATLAB toolbox to implement this algorithm. 

 

 

4.2 Advantages and Disadvantages of SBR 

RCS prediction tools are generally used to design stealth structures. In stealth 

designs usually specular reflections, that contribute a lot to the RCS, are tried to 

be avoided. Therefore, for such applications it becomes crucial to predict multiple 

scattering and/or diffraction effects. SBR is a code that handles multiple scattering 

up to any arbitrary order. With the help of diffraction codes like Physical Theory 

of Diffraction (PTD) or Geometric Theory of Diffraction (GTD), this algorithm 

can be useful for simulations that are utilized in stealth design. Also, SBR can 
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handle shadowing problem automatically with the help of its ray tracing 

capability.  

 

Since SBR is a ray tracing based approach, it is not efficient unless a fast ray-

triangle intersection algorithm is used. With brute force methods in ray-triangle 

intersection, it is not feasible to handle realistic problems modeled by a large 

number of facets. 

 

4.3 Future Work 

In this work, a computational electromagnetics code is created by using the SBR 

algorithm in MATLAB. It is stated that for open scatterers the exit aperture 

selection is critical. A conformal exit aperture algorithm is developed and applied 

over complex targets. The code is tested for its multiple scattering capabilities. 

For future work, the code can be modified and expanded to handle dielectric 

structures and coatings. Also, with brute-force ray-triangle intersection test, the 

code is not efficient with regard to runtime. With a fast ray-triangle intersection 

algorithm, like mailbox or kd-tree, the code can be efficiently used for more 

realistic targets.  

 

The SBR algorithm cannot handle diffraction effects. So, by including a routine 

that handles diffraction effects (i.e. a code based on Physical Theory of 

Diffraction (PTD) or Geometric Theory of Diffraction (GTD)), the code can be 

used in stealth design applications. Another application may be the generation of 

Inverse Synthetic Aperture Radar (ISAR) images with the help of SBR code. 

 

A computational electromagnetic tool that only calculates the RCS of realistic 

targets is not suficient to achieve stealth design. By visualization tools like ISAR 

imaging or range profiling, scattering centers on a target can be detected. It is 

possible to create the ISAR image of a target from monostatic or bistatic RCS 

data of the SBR code. This will be the post processing stage of the SBR code and 
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may help us to find and/or annihilate scattering centers of objects in stealth 

applications. 
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