

DESIGN AND PERFORMANCE OF CAPACITY APPROACHING IRREGULAR
LOW-DENSITY PARITY-CHECK CODES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ERĐNÇ DENĐZ BARDAK

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2009

Approval of the thesis:

DESIGN AND PERFORMANCE OF CAPACITY
APPROACHING IRREGULAR LOW-DENSITY PARITY-CHECK CODES

submitted by ERĐNÇ DENĐZ BARDAK in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Electronics Engineering
Department, Middle East Technical University by,

Prof. Dr. Canan Özgen

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Đsmet Erkmen

Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Melek Diker Yücel

Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Yalçın Tanık

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Melek Diker Yücel

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Ali Özgür Yılmaz

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Elif Uysal Bıyıkoğlu

Electrical and Electronics Engineering Dept., METU

Sıdıka Bengür, M.Sc.

Manager of HC-PTSMM, ASELSAN Inc.

Date: September 10, 2009

iii

PLAGIARISM

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

Name, Surname: Erinç Deniz Bardak

Signature :

iv

ABSTRACT

DESIGN AND PERFORMANCE OF
CAPACITY APPROACHING IRREGULAR LOW-

DENSITY PARITY-CHECK CODES

Bardak, Erinç Deniz

M. Sc., Department of Electrical and Electronics Engineering

 Supervisor: Assoc. Prof. Dr. Melek Diker Yücel

September 2009, 112 pages

In this thesis, design details of binary irregular Low-Density Parity-Check (LDPC)

codes are investigated. We especially focus on the trade-off between the average

variable node degree, wa, and the number of length-6 cycles of an irregular code. We

observe that the performance of the irregular code improves with increasing wa up to

a critical value, but deteriorates for larger wa because of the exponential increase in

the number of length-6 cycles. We have designed an irregular code of length 16,000

bits with average variable node degree wa=3.8, that we call ‘2/3/13’ since it has some

variable nodes of degree 2 and 13 in addition to the majority of degree-3 nodes. The

observed performance is found to be very close to that of the capacity approaching

commercial codes. Time spent for decoding 50,000 codewords of length 1800 at

Eb/No=1.6 dB for an irregular 2/3/13 code is measured to be 19% less than that of the

regular (3, 6) code, mainly because of the smaller number of decoding failures.

Keywords: Irregular LDPC Codes, Length-6 Cycles.

v

ÖZ

KAPASĐTEYE YAKLAŞAN DÜZENSĐZ DÜŞÜK
YOĞUNLUKLU EŞLĐK SAĞLAMASI KODLARININ

TASARIM VE PERFORMANSI

Bardak, Erinç Deniz

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

 Tez Yöneticisi: Doç. Dr. Melek Diker Yücel

Eylül 2009, 112 sayfa

Bu tezde, ikili düzensiz Düşük-Yoğunluklu Eşlik-Sağlaması (DYES) kodlarının

tasarım ayrıntıları incelenmektedir. Özellikle odaklandığımız konu, düzensiz

ortalama değişken düğümü derecesi, wa, ile 6 uzunluğundaki döngüler arasındaki

ödünleşimdir. Bir kodun başarımının, wa değeri kritik bir değere kadar arttırıldıkça

düzeldiği fakat daha büyük wa değerleri için 6 uzunluğundaki döngülerin sayısındaki

üssel artış nedeniyle kötüye gittiği gözlenmektedir. Tasarladığımız 16,000 ikil

uzunluğunda, değişken düğümlerinin çoğunluğunun derecesi 3, kalanı da 2 ve 13

olduğu için 2/3/13 diye adlandırdığımız, ortalama değişken düğüm derecesi wa=3.8

olan düzensiz kodun başarımı, kapasiteye yaklaşan ticari kodlarınkine çok yakındır.

Eb/No=1.6 dB değerinde 50,000 kod sözcüğünü çözümlediğimiz 1800 uzunluğundaki

kodlardan, düzensiz 2/3/13 kod için gereken zamanın, görece az sayıdaki çözümleme

hatası nedeniyle, düzenli (3,6) koda göre %19 daha kısa olduğu görülmüştür.

Anahtar Sözcükler: Düzensiz DYES Kodları, 6 Uzunluğundaki Döngüler.

vi

To My Family and My Fiancée

vii

ACKNOWLEDGEMENTS

I would like to thank my supervisor Assoc. Prof. Dr. Melek Diker Yücel for her

motivating ideas and valuable guidance.

I would also like to thank to Hande, my fiancée, for giving me all the inspiration I

need and for being “the one” for me.

I also wish to thank my mother Sema and my sister Işıl for giving me the

encouragement and all kinds of support during my whole work.

I would also like to thank to Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

(TÜBĐTAK) for their contribution to my Master of Science education with the

scholarship.

Finally, I would like to thank my company ASELSAN for the support during this

thesis work.

viii

TABLE OF CONTENTS

ABSTRACT.. iv

ÖZ ..v

ACKNOWLEDGEMENTS ...vii

TABLE OF CONTENTS..viii

LIST OF TABLES ... x

LIST OF FIGURES ...xii

LIST OF ABBREVIATIONS.. xvi

CHAPTERS

1 INTRODUCTION ... 1

1.1 Definition and History of LDPC Codes ... 2

1.2 Aim and Organization of the Thesis .. 5

2 LOW DENSITY PARITY CHECK CODES .. 7

2.1 Overview of Linear Block Codes and LDPC Codes.................................... 7

2.2 MacKay & Neil Construction Methods for LDPC Codes 14

2.2.1 Regular LDPC Code Construction... 14

2.2.2 Irregular LDPC Code Construction by 2A Method 15

2.2.3 Irregular LDPC Code Construction by Pseudo-Random Method 17

2.3 Encoding of LDPC Codes.. 17

2.4 Decoding of LDPC Codes by Belief Propagation Algorithm.................... 19

ix

3 SIMULATION RESULTS... 27

3.1 Experimental Preliminaries and Software Control 29

3.1.1 Decoder Comparison.. 29

3.1.2 Effect of Codeword Length on the BER Performance....................... 32

3.2 Wrong Codewords at the Decoder Output ... 33

3.3 Irregular 2A Codes... 40

3.4 Effect of 2/3/4 Irregularity ... 53

3.5 Effect of 1/3/5 Irregularity ... 57

3.6 High Degree Variable Nodes Connected to 9 or 19 Check Equations 60

3.6.1 Effect of the Average Variable Node Degree 62

3.6.2 Effect of the Number of Length-6 Cycles.. 66

3.7 Joint Effect of Average Variable Node Degree and Length-6 Cycles 68

3.7.1 Codes with High Degree Variable Nodes of Degree 9 69

3.7.2 Extension to High Variable Node Degrees of 11 and 13 77

3.7.3 Some Codes with Fixed Number of Length-6 Cycles 87

3.8 Codes with Very Long Codeword Lengths.. 90

3.9 Decoding Times for Regular and Irregular LDPC Codes.......................... 90

3.10 Random Distribution of Check Node Degrees... 90

3.11 Summary .. 99

4 CONCLUSIONS.. 103

REFERENCES... 107

APPENDICES

A. LDPC CODE CONSTRUCTION SOFTWARES ..111

x

LIST OF TABLES

TABLES

Table 3.1 Time consumptions of log-likelihood and likelihood decoders................. 31

Table 3.2 Distribution of 20 block errors (between decoding failures and wrong

 codewords) for rate 1/2 codes of different lengths, when the maximum

 number of iterations is set to 50. .. 36

Table 3.3 Distribution of 20 block errors (between decoding failures and wrong

 codewords), when maximum number of iterations is set to 20................ 37

Table 3.4 Number of erroneous bits of blocks, which are decided as failure or

 wrong decision at the decoder, before and after they are decoded. 39

Table 3.5 Variable node degree distributions of the irregular 2A matrices that we

 have constructed for codeword lengths of 576 and 896.......................... 41

Table 3.6 Total number of length-6 cycles for (1200, 600) regular and irregular

 codes constructed by the 2A method .. 48

Table 3.7 Total number of length-6 cycles for (1200, 600) regular and irregular

 codes constructed by the 2A method .. 50

Table 3.8 Variable node degree distributions of the 2/3/4 irregular matrices............ 53

Table 3.9 Variable node degree distributions of the 1/3/5 irregular matrices............ 58

Table 3.10 Simulation results for the irregular codes given in Table 3.9 59

Table 3.11 Variable node degree distributions and the number of high weight

 columns of 2/3/9 and 2/3/19 irregular codes of rate ½ and length 1800,

 with average variable node degrees of 3.2, 3.4 and 3.6 63

Table 3.12 Number of length-6 cycles of some 2/3/9 and 2/3/19 codes of rate ½

 and length 1800.. 67

xi

Table 3.13 Variable node degree distributions and the number of high weight

 columns of the 2/3/9 and 2/3/19 irregular codes of rate ½ and length

 1800, with average variable node degrees of 3.8, 4, 4.2 and 4.4 69

Table 3.14 Number of length-6 cycles of the 2/3/9 codes of rate ½ and length

 1800, with average variable node degrees from 3.2 to 4.4 72

Table 3.15 Variable node degree distributions and the number of high weight

 columns of of the 2/3/11 and 2/3/13 irregular codes of rate ½ and length

 1800.. 78

Table 3.16 Parameters of the new codes obtained from the 2/3/9 irregular codes of

 rate ½ and length 1800, having the number of length-6 cycles around

 2000... 88

Table 3.17 Simulation results for the decoding times of sample regular and irregular

 codes.. 92

Table 3.18 Number of rows at each weight for 600×1200 parity-check matrices of

 2A irregular codes, where wa shows the average column weight. 95

Table 3.19 Number of rows at each weight for 288×576 parity-check matrices of the

 2/3/4 irregular codes.. 96

Table 3.20 Number of rows at each weight for 288×576 parity-check matrices of the

 1/3/5 irregular codes.. 98

xii

LIST OF FIGURES

FIGURES

Figure 1.1 Comparison of regular binary Gallager codes with irregular codes, codes

 over GF(q), and other outstanding codes of rate 1/4................................. 4

Figure 2.1 The parity-check matrix of a (8, 4) code and the corresponding Tanner

 graph... 10

Figure 2.2 A sample parity-check matrix for a (6, 3) code and its Tanner graph. The

 cycle of length-4 is shown as bold entries in the matrix and bold edges in

 the graph.. 13

Figure 2.3 A part of the bi-partite graph of an irregular LDPC code which is

 constructed randomly... 16

Figure 2.4 Illustration of likelihood and log-likelihood decoding algorithms 26

Figure 3.1 Performance comparison of log-likelihood and likelihood decoders for a

 regular (576, 288) low-density parity-check code 30

Figure 3.2 Performance comparison of log-likelihood and likelihood decoders for a

 regular (896, 448) low-density parity-check code 30

Figure 3.3 Performance comparison of log-likelihood and likelihood decoders for

 regular (896, 448) and (896, 224) codes taken from [Uzunoğlu-2007] . 32

Figure 3.4 Performance comparison of (576, 288), (896, 448), (1200, 600), (2100,

 1050), (1800, 900) and (2700, 1350) regular (3, 6) codes 33

Figure 3.5 Performance comparison of (576, 288) regular and irregular 2A codes,

 where wa denotes the average variable node degree of the code............. 42

Figure 3.6 Performance comparison of (576, 288) regular and irregular 2A codes,

 where wa denotes the average variable node degree of the code............. 43

Figure 3.7 Performance comparison of (896, 448) regular and irregular 2A codes,

 where wa denotes the average variable node degree of the code............ 44

xiii

Figure 3.8 Performance comparison of (1200, 600) regular and irregular 2A codes,

 with the average variable node degrees wa = 3 and wa = 2.95,

 respectively. .. 45

Figure 3.9 Performance comparison of (1500, 750) regular and irregular 2A codes,

 with the average variable node degrees wa = 3 and wa = 2.95,

 respectively. .. 45

Figure 3.10 Performance comparison of (1800, 900) regular and irregular 2A codes,

 with the average variable node degrees wa = 3 and wa = 2.95,

 respectively. .. 46

Figure 3.11 Performance comparison of (2100, 1050) regular and irregular 2A

 codes, with the average variable node degrees wa = 3 and wa = 2.95,

 respectively. ... 46

Figure 3.12 Performance comparison of (2700, 1350) regular and irregular 2A

 codes, with the average variable node degrees wa = 3 and wa = 2.95,

 respectively. ... 47

Figure 3.13 Performance comparison of (3600, 1350) regular and irregular 2A

 codes, with the average variable node degrees wa = 3 and wa = 2.95,

 respectively. ... 47

Figure 3.14 Performances of matrix-5 and matrix-6 of Table 3.7 51

Figure 3.15 Performances of matrix-1 and matrix-10 of Table 3.7 51

Figure 3.16 Performances of matrix-1 and matrix-10 of Table 3.7 52

Figure 3.17 Performance comparison of (576, 288) codes defined in Table 3.8....... 54

Figure 3.18 Performance comparison of (896, 488) codes defined in Table 3.8....... 54

Figure 3.19 Performance comparison of (576, 288) codes defined in Table 3.8 with

 a second seed for random noise generation ... 55

Figure 3.20 Performance comparison of (576, 288) codes defined in Table 3.8 with

 a third seed for random noise generation .. 55

Figure 3.21 Performance comparison of (896, 488) codes defined in Table 3.8 with

 a second seed for random noise generation .. 56

xiv

Figure 3.22 Performance comparison of (896, 488) codes defined in Table 3.8 with a

 third seed for random noise generation.. 56

Figure 3.23 Performances of the 1/3/5 codes defined in Table 3.9............................ 60

Figure 3.24 Generic structure of the pseudo-random irregular matrices of this

 work ... 62

Figure 3.25 Performances of the codes described in Table 3.11 63

Figure 3.26 Performances of many codes with the parameters described in Table

 3.11... 65

Figure 3.27 Performances of 2/3/9 irregular codes that have average variable degrees

 from 3.2 to 4.4.. 70

Figure 3.28 Performances of the irregular codes with weight-9 columns. The codes

 whose performances are getting better with increasing average variable

 node degree are shown in (a), and the codes whose performances are

 getting worse are shown in (b). ... 71

Figure 3.29 Total number of length-6 cycles after the generation of each column

 of the parity-check matrix for the codes defined in Table 3.14. The

 vertical axis is given in: (a) logarithmic scale, (b) linear

 scale... 74

Figure 3.30 Number of length-6 cycles introduced by each column of the parity

 check matrix of the code 9-4.4.. 76

Figure 3.31 Last part of the graph given in Figure 3.29 (b)....................................... 76

Figure 3.32 Performances of the 2/3/11 irregular codes. The codes whose

 performances are getting better with increasing average variable node

 degree are shown in (a), and the codes whose performances are getting

 worse are shown in (b). ... 79

Figure 3.33 Performances of the 2/3/13 irregular codes. The codes whose

 performances are getting better with increasing average variable node

 degree are shown in (a), and the codes whose performances are

 getting worse are shown in (b). .. 80

xv

Figure 3.34 The change in the total number of length-6 cycles for the 2/3/11

 irregular codes in Table 3.15 versus each new generated column.

 Vertical axis is given in: (a) logarithmic scale (b) linear scale. 82

Figure 3.35 Last part of the graph given in Figure 3.32 (b)....................................... 82

Figure 3.36 The change in the total number of length-6 cycles for the 2/3/13

 irregular codes in Table 3.15 versus each new generated column.

 Vertical axis is given in: (a) logarithmic scale (b) linear scale. 84

Figure 3.37 Last part of the graph given in Figure 3.36 (b)....................................... 84

Figure 3.38 Number of length-6 cycles versus average variable node degree, wa, of

 2/3/9, 23/11 and 2/3/13 codes. .. 86

Figure 3.39 Performances of the codes given in Table 3.16...................................... 89

Figure 3.40 Performances of a regular code and an irregular 2/3/13 code of

 codeword length 16000 together with the performance of a regular

 code of codeword length 64800 used in DVB-S2 standard 90

Figure 3.41 Iteration histograms for the regular and irregular codes......................... 93

Figure 3.42 Check node degree distributions given in each row of Table 3.18......... 95

Figure 3.43 Check node degree distributions given in each row of Table 3.19......... 97

Figure 3.44 Check node degree distributions given in each row of Table 3.20........ 98

xvi

LIST OF ABBREVIATIONS

APP A Posteriori Probability

AWGN Additive White Gaussian Noise

BCH Bose and Ray-Chaudhuri

BER Bit Error Ratio

BPSK Binary Phase-Shift Keying

DVB-S2 Second Generation Satellite Digital Video

GF Galois Field

ITU-T International Telecommunications Union-

 Telecommunications Standardization Sector

JPL Jet Propulsion Laboratory

LDPC Low Density Parity Check

LL Log Likelihood

RS Reed-Solomon

RU Richardson-Urbanke

SNR Signal to Noise Ratio

WIMAX Worldwide Interoperability for Microwave Access

10GBase-T 10-Gigabit Ethernet over Twisted-Pair Cabling

1

CHAPTER 1

1 INTRODUCTION

In digital communication systems, the main goal is to achieve errorless

communication between two points. When data is transmitted over an imperfect and

noisy communication channel, there is some probability that the received message

will not be identical to the transmitted message. To overcome the effect of noise and

reduce the error probability at the receiver, one can improve the physical

characteristics of the communication channel by using more reliable components or

higher transmission power. One can also use error control coding to detect and

correct the errors introduced by the channel.

In 1948, Shannon published his seminal paper [Shannon-1948] on the limits of

reliable transmission of data over unreliable channels, which established the roots of

information theory. Given a communication channel, Shannon proved that there

exists a parameter, called the capacity of the channel, such that reliable transmission

is possible for rates arbitrarily close to the capacity and not possible above it. The

researchers, who try to achieve communication rates close to the channel capacity,

discovered the first examples of error control codes, which in turn started the

development of coding theory.

Coding theory is concerned with the design of powerful error control codes, and

practical encoding and decoding systems. A powerful code is expected to detect and

correct as many errors at the receiver side as possible. First known error control

codes, which were capable of correcting single bit errors in each data block, were

introduced to the literature by Richard W. Hamming in 1950 [Hamming-1950].

Afterwards, different codes such as the convolutional codes [Elias-1955], and other

block codes like the BCH codes [Bose-Chaudhuri-1960], Reed-Solomon (RS)

2

codes [Reed-Solomon-1960], Kerdock codes [Kerdock-1972], Goethals Codes

[Goethals-1974], and Goppa Codes [Goppa-1982] were found. In 1993, turbo

codes, which were the first practical codes to closely approach the Shannon limit,

were invented [Berrou-Glavieux-Thitimajshima-1993].

All block codes mentioned above other than Kerdock codes and Goethals codes are

linear. Low-Density Parity-Check (LDPC) codes, which we are interested in this

work, are also linear block codes which were invented by Gallager in 1962

[Gallager-1962].

1.1 Definition and History of LDPC Codes

LPDC codes are linear block codes which are defined by low density parity-check

matrices. Let H be a binary () nkn ×− matrix with ()kn − linearly independent

rows. A linear block code C is defined as the set of vectors ()nccc ,,1 K= such that

0=TcH . The matrix H is called a parity-check matrix for the code. The code C

defined by the parity-check matrix H is said to be an LDPC code if H is sparse

[Gallager-1962], i.e., has small number of nonzero elements. The sparsity of the

parity-check matrix is the key property that allows algorithmic efficiency of LDPC

codes.

Tanner graphs (or bipartite graphs), which are proposed to the literature by Michael

Tanner in [Tanner-1981], are used to visualize the parity-check matrices of LDPC

codes. In a Tanner graph, each column of the parity-check matrix is called a variable

node and each row is called a check node. The variable nodes are connected to the

check nodes with edges, which are drawn according to the positions of the nonzero

elements in the parity check matrix.

There are mainly two kinds of LDPC codes; the regular and irregular ones. A regular

LDPC code has a parity-check matrix H, in which every column has the same weight

3

vw and every row has the same weight cw . On the other hand, the columns and rows

of the parity-check matrix of an irregular LDPC code do not have uniform weight

distribution. In the literature, irregular LDPC codes have been shown to outperform

the regular ones.

The performance of an LDPC code is affected also by another important parameter,

called the cycle. In a Tanner graph, a cycle is defined as the series of connected edges

that starts from and ends at the same variable node. The length of a cycle is defined

as the number of edges that it contains. Small cycles, such as length-4 and length-6,

deteriorate the performance of a code.

The most widely used algorithms for decoding LDPC codes are message passing

algorithms, which are also known as iterative algorithms. These algorithms are

called iterative since messages are passed from variable nodes to check nodes, and

from check nodes to variable nodes at each round of the algorithm. The sparsity

property of LDPC codes lowers the complexity of the operations done in each

iteration and makes the iterative algorithms suitable for decoding of LDPC codes.

LDPC codes were invented by Robert Gallager in 1962 [Gallager-1962]. Due to the

requirement of high complexity computations, LDPC codes had been ignored for a

long time. Also at that time Reed-Solomon and convolutional codes were considered

to be perfectly suitable for error control coding, which was another reason for LDPC

codes to be neglected.

36 years after from its invention, the studies done by MacKay and Neil attracted the

attention of the communication society on LDPC codes again. In 1996, MacKay and

Neil [MacKay-Neal-1996] showed that optimally decoded LDPC codes can reach

information rates within 1 dB to the Shannon limit. MacKay and Neil's codes were

regular LDPC codes. In 1998, Luby et al. [Luby-Mitzenmacher-Shokrollahi-

Spielman-1998] proposed irregular LDPC code structures whose performances are

better than the regular ones. In 2001, an analytical way of designing irregular LDPC

4

codes, called density evolution, was developed by Richardson et al. [Richardson-

Shokrollahi-Urbanke-2001] to construct irregular LDPC codes which outperform

the regular ones and even turbo codes. Again in 2001, the best known LDPC code

was proposed by Chung et al. [Chung-Forney-Shokrollahi-Urbanke-2001]. The

code they proposed was an irregular LDPC code of rate ½, codeword length 710 , and

of performance only 0.0045 dB away from the Shannon limit.

All codes mentioned above are binary codes. There also exist non-binary LDPC

codes introduced to the literature [Davey-MacKay-1998], [Davey-1999]. Figure 1.1,

which is given in [MacKay-2005], is a very good visualization to compare the

binary and non-binary regular and irregular LDPC codes with each other and also

with other outstanding error correcting codes such as turbo codes.

Figure 1.1 Comparison of regular binary Gallager codes with irregular codes, codes over

GF(q), and other outstanding codes of rate 1/4.

In Figure 1.1, Irreg GF(8) is an irregular LDPC code over GF(8),with codeword

length of 48,000 bits given in [Davey-1999]; Turbo is a JPL turbo code with

codeword length of 65,536 bits given in [MacKay-2005]; Reg GF(16) is a regular

LDPC code over GF(16) with codeword length of 24,448 bits given in [Davey-

5

MacKay-1998]; Irreg GF(2) is an irregular binary LDPC code with codeword length

of 16,000 bits given in [Davey-1999]; Luby is an irregular binary LDPC code with

codeword length of 64,000 bits given in [Luby-Mitzenmacher-Shokrollahi-

Spielman-1998]; Galileo is a JPL turbo code used in the space-craft Galileo, given in

[Swanson-1988]; Reg GF(2) is a regular binary LDPC code with codeword length of

40,000 bits given in [MacKay-1999].

Today, LDPC codes became one of the most important error correcting codes used in

several areas of communication. LDPC codes are the main codes used in very

important standards such as:

• IEEE WIMAX (Worldwide Inter-operability for Microwave Access) 802.16e

 Standard

• Digital Video Broadcasting – Satellite - Second Generation (DVB-S2)

• 10GBase-T Ethernet Standard

• ITU-T G.hn/G.9960 Standard for networking over power lines, phone lines

 and coaxial cable

• China National Standard for Digital Terrestrial TV Broadcasting standard

1.2 Aim and Organization of the Thesis

The aim of this thesis is the investigation of the performance of irregular LDPC

codes with different variable node degree distribution polynomials. We design

regular and irregular codes and analyze the circumstances under which the

performance of the codes improve or deteriorate. Specifically, we study the effects of

the average variable node degree and the number of length-6 cycles parameters on

the performance of the codes, and try to reveal the trade-off between these two

parameters.

6

In Chapter 2, we review the literature on Low-Density Parity-Check (LDPC) codes

after discussing the preliminaries of linear block codes and LDPC codes. We discuss

the regular and irregular code construction methods that are used in our work.

Finally, we explain the decoding algorithms that we employ to decode the LDPC

codes that we generate and use in the simulations.

In Chapter 3, we investigate the performances of the regular codes with variable

node degree vw =3 and the irregular codes generated by MacKay and Neil’s methods.

After verifying the correctness of the software that we develop for simulations, we

find the distribution of block errors in terms of wrongly decoded codewords and

decoding failures of the belief propagation decoding algorithm. We examine the

conditions that lead to wrong codewords and comment on the choice of the

maximum number of iterations to be used. We then study the performances of many

irregular LDPC codes that have different variable node degree distribution

polynomials. Properly designing these polynomials, we generate irregular codes with

desired properties. Using the generated codes, we investigate the effects of the

average variable node degree and the number of length-6 cycles on the performance.

Then, we design an irregular code of length 16,000 bits and compare its performance

with a capacity approaching commercial code which is used in DVB-S2 standard.

We also measure the decoding times needed for some irregular and regular codes to

understand the effect of average variable node degree on the decoding times.

In Chapter 4, we summarize our work and give suggestions for further studies.

7

CHAPTER 2

2 LOW DENSITY PARITY CHECK CODES

In this chapter, we review the literature on Low-Density Parity-Check (LDPC) codes

after discussing the preliminaries on linear block codes. Section 2.1 covers the

overview of linear block codes and LDPC codes. In Section 2.2, we give the Regular

Code Construction, Irregular 2A Code Construction and Irregular Pseudo-Random

Code Construction methods of MacKay and Neil that we have used in his work. In

Section 2.3, we discuss the encoding methods of LDPC codes. Finally, in Section

2.4, we give the details of the log-likelihood and the likelihood decoding algorithms

utilized in our simulations.

2.1 Overview of Linear Block Codes and LDPC Codes

LDPC codes are linear block codes that have parity-check matrices in which the

number of the nonzero elements is much less than the number of zero’s. Before

giving detailed information about LDPC codes, it will be better to briefly discuss the

main properties of linear block codes.

An (n, k) block code is a rule of converting a sequence of source symbols of length k

into a sequence of n, where n > k. The linear (n, k) code over GF(q) is a subspace C

of the vector space GF(q)n . The elements of C are n-dimensional vectors, called the

codewords. Let the source message ()110 ,...,, −= kmmmm be an arbitrary vector in

GF(q)k. By the linear transformation

,... 111100

1

0
−−

−

=

+++=== ∑ kki

k

i

i gmgmgmgmGmc (2.1)

8

one can generate all kq codewords ()110 ,...,, −= ncccc in C, provided that the nk ×

matrix G is of rank k. Then, G is called the generator matrix of the code; because it

has k linearly independent row vectors ig spanning the subspace C.





















=

−1

1

0

...

kg

g

g

G (2.2)

An (n, k) linear block code has the () nkn ×− parity-check matrix H, whose rows are

orthogonal to the rows of G, hence

 ().0 knk

THG −×=× (2.3)

Therefore, the codeword ()110 ,...,, −= ncccc generated by (2.1) satisfies

 .0=× THc (2.4)

The generator matrix of a linear block code in systematic form can be expressed as

[],
...

1

1

0

PI

g

g

g

G k

k

=





















=

−

(2.5)

where kI is the kk × identity matrix and P is a)(knk −× matrix. The

corresponding parity-check matrix in systematic form can be found using (2.3) as

 H = [PT
In-k]. (2.6)

An important parameter of a block code is its rate k/n, that is the number of

information symbols divided by the number of codeword symbols. Consider a parity-

9

check matrix, H of an LDPC code whose size is nm× . If there are m parity check

symbols, k=n−m; so the code rate can also be expressed as

.1

n

m

n

mn

n

k
Rate −=−== (2.7)

Rate of a code plays an important role in its error correction performance. When the

rate is increased, the fraction, m/n, of the parity-check symbols is decreased in a

codeword. In this case, more information is sent with less number of parity-check

symbols. This may sound good since the speed of information transmission

increases. However, the error correction capability of the code is obviously hurt since

less number of parity-check equations exist to be used to correct the erroneous

symbols. This explains the trade-off between information density and the error

correction capability of the code. Therefore, the rate of a code is crucial and should

be chosen according to the characteristics of the communication channel.

After this brief review of linear block codes, we can now give some information

about low-density parity-check codes. A low-density parity-check (LDPC) code is a

linear block code that has a parity-check matrix, H, every row and column of which

is `sparse' [Gallager-1962]. As emphasized by the word ‘sparse’, an LDPC code

contains very small number of nonzero elements in the parity-check matrix H as

compared to its size.

There are mainly two kinds of LDPC codes; the regular and irregular ones. A regular

LDPC code has a parity-check matrix H, in which every column of H has the same

weight vw and every row has the same weight cw . On the other hand, the columns

and rows of the parity-check matrix of an irregular LDPC code do not have uniform

weight distribution.

Tanner graphs (or bipartite graphs), which are proposed to the literature by Michael

Tanner in [Tanner-1981], are used to visualize the parity-check matrices of LDPC

codes. In a Tanner graph, each column of the parity-check matrix is called a variable

10

node and each row is called a check node. The variable nodes are connected to the

check nodes with edges, which are drawn according to the positions of the nonzero

elements in the parity check matrix. The parity check matrix of a linear block code

and its corresponding Tanner graph is illustrated in Figure 2.1:

Figure 2.1 The parity-check matrix of a (8, 4) code and the corresponding Tanner graph

Each edge in a Tanner graph corresponds to a nonzero entry in the parity-check

matrix H. Therefore, in terms of edges, the weight of a column (row) is the number

of edges emanating from the corresponding variable (check) node. The number of

nonzero elements in a column (row) is said to be the degree of that variable (check)

node.

One way to express the weight distributions of variable and check nodes is to use

degree distribution polynomials. The variable node degree distribution polynomial of

an LDPC code is of the form

 () 1

1

−

=
∑= i
d

i

ixx
v

λλ (2.8)

and the check node degree distribution polynomial is of the form

H =

Variable Nodes

Check Nodes



















01010110

01001001

10111010

10010101

11

 () .
1

1∑
=

−=
cd

j

i

j xx ρρ

(2.9)

In these equations iλ is the fraction of edges emanating from the variable nodes of

degree i, and jρ is the fraction of edges emanating from the check nodes of degree j.

In other words, iλ is the number of variable nodes of degree i divided by the total

number of the variable nodes, and jρ is the number of check nodes of degree j

divided by the total number of the check nodes. dv and dc are the maximum variable

and check node degrees, respectively. Since iλ s and jρ s denote the fraction of

variable and check node degrees, they must sum up to one. Hence,

∑

=

=
vd

j

j

1

1λ

.1

1
∑

=

=
cd

j

jρ

(2.10)

The main properties of an LDPC code can be understood by looking at its degree

distribution polynomials. For an irregular LDPC code, the degrees of variable and

check nodes may differ from each other. In this case there exists more than one

coefficient iλ (or jρ) in the variable (or check node) degree distribution

polynomials of the code. The variable and check node degree distribution

polynomials of the irregular LDPC code in Figure 2.1 are

 () ,
3

1

8

6

8

1 20 xxxx ++=λ

() .
4

1

4

2

4

1 432 xxxx ++=ρ
.
 (2.11)

As can be seen, the given LDPC code has an irregular degree structure for both of its

variable and check nodes: 81 of the variable nodes have degree 1, 86 of them have

degree 2, and 81 of them have degree 3. The check node degree distribution of this

12

code is also irregular: 41 of the check nodes have degree 3, 42 of them have

degree 4, and 41 them have degree 5.

A regular LDPC code has all variable node degrees equal to some constant vw , and

all check node degrees equal to some constant cw . Therefore, there exist only one

coefficient
vwλ in the variable node degree distribution polynomial, and one

coefficient
cwρ in the check node degree distribution equation of the code.

Considering (2.2) it is not difficult to see that both
vwλ and

cwρ are equal to 1. As an

example, the degree distribution polynomials of a regular LDPC code with 3=vw

and 6=cw are

 () ,2xx =λ () .5xx =ρ (2.12)

One can now define the rate of an LDPC code in terms of the coefficients iλ and

jρ . Consider an LDPC code with variable node degree distribution polynomial

() 1

1

−

=
∑= i
d

i

ixx
v

λλ , and check node degree distribution polynomial () 1

1

−

=
∑= i
d

j

jxx
c

ρρ .

Let E be the total number of edges in the Tanner graph of this code. Then the number

of variable nodes which have degree i can be expressed as
i

E iλ
. Hence, the total

number of variable nodes is ∑
=

vd

i

i

i

E

1

λ
. Similarly the total number of check nodes is

∑
=

dc

j

j

j

E

1

ρ
. Therefore we can rewrite the rate of this code in terms of the coefficients

iλ and jρ as follows:

13

∑

∑

∑

∑

=

=

=

= −=−=−=
dc

j

j

d

i

i

dc

j

j

d

i

i

j

i

j

E

i

E

n

m
Rate

vv

1

1

1

1 111 ρ

λ

ρ

λ

 (2.13)

We have mentioned earlier in this chapter that the rate of an LDPC code is crucial in

the error correcting capability of the code. The performance of an LDPC code is

affected also by another important parameter, called the cycle. In a Tanner graph, a

cycle is defined as the series of connected edges that starts from and ends at the same

variable node. The length of a cycle is defined as the number of edges that it

contains. As an example, consider the parity-check matrix H, and its Tanner graph

given in Figure 2.2. H has one cycle of length 4 created by its bold entries and the

bold edges in the Tanner graph are the ones that form the cycle.

Figure 2.2 A sample parity-check matrix for a (6, 3) code and its Tanner graph. The cycle of

length-4 is shown as bold entries in the matrix and bold edges in the graph

In a Tanner graph there may be several cycles of different length. Obviously, the

minimum length that a cycle can have is four. Especially the length-4 cycles,

deteriorate the decoding performance of LDPC codes; therefore, to avoid cycles of

length-4 is one of the most important things to take into account in the construction

of an LDPC code. Cycles with lengths greater than four also decrease the

 Variable Nodes

Check Nodes

v1 v2 v3 v4 v5 v6

c1 c2 c3

H =

14

performance of LDPC codes; however, their effect is not as significant as the length-

4 ones.

The smallest cycle length in the Tanner graph is called the girth of the code. LDPC

codes with larger girth values have been shown to result in better error correcting

performance.

2.2 MacKay & Neil Construction Methods for LDPC Codes

There are a great number of different LDPC code construction methods in the

literature such as quasi-cyclic construction [Tanner-2004], [Moura-2005], pseudo-

random construction [Moinian-2006], [Bonello-2008], combinatorial approach

[Krishnan-2007], [Johnson-2008], and finite geometry techniques [Kou-2000],

[Aly-2008]. In this section we will explain MacKay & Neil’s techniques that we

have used for constructing regular and irregular LDPC codes.

2.2.1 Regular LDPC Code Construction

In this work, we have used the MacKay and Neal’s Method for regular LDPC code

construction [MacKay-Neal-1996]. In this algorithm, construction of an nm×

parity-check matrix starts with forming the leftmost column of the matrix. At first

step, desired number of vw 1’s are placed randomly in the first column. After that,

the remaining columns are formed one-by-one from left to right. In the construction

of these remaining columns, two things are taken into account. Any column which

will be added should not have more than one overlap between any of the present

columns in order to avoid length-4 cycles. The second thing to be considered when

adding a new column is that, the positions of the 1’s of the column should be selected

from the rows with weights smaller than the desired row weight cw . By this

construction method, the parity check matrix of an nm× regular LDPC code that is

free from length-4 cycles can be obtained.

15

We have implemented a software which is capable of generating regular parity-check

matrices of any length and any rate using McKay and Neil’s method. In this work, all

the regular matrices we have used are constructed using this software. The software

we implemented for regular matrix generation is explained in Appendix A.

2.2.2 Irregular LDPC Code Construction by 2A Method

The 2A method of constructing irregular LDPC codes was introduced to the

literature by MacKay and Neal [MacKay-Neal-1996]. The method has the following

rules for constructing the parity-check matrix:

• In the parity-check matrix of the code whose size is nm× , up to m/2 of the

columns are designated ‘weight-2 columns’, and these are constructed such

that there is zero overlap between any pair of columns.

• The remaining columns are made at random with weight-3, with the weight

per row as uniform as possible, and overlap between any two columns of the

entire parity-check matrix no greater than 1.

As can be understood from the above rules for construction, the parity-check matrix

generated by this method has some of its variable nodes with degree 2, and some of

them with degree 3. Therefore, the variable node degree distribution of such a matrix

can be written in generic form which is given in equation (2.14).

 () 2
32 xxx λλλ +=

 132 =+ λλ
(2.14)

The irregular codes generated by this method look very similar to regular codes. The

only difference of these irregular codes is that they have some of their columns with

weight-2 instead of weight-3. In the related paper of MacKay [MacKay-1999], it is

said that the weight-2 columns are introduced to the parity-check matrix because

16

they “guessed” that these columns may lead the code to a better performance than the

regular ones.

 The part of the matrix with weight-2 columns has the important property that there

exist zero overlap between any pair of the columns. This property is quite essential to

avoid cycles of any length which may be caused by the weight-2 columns. For a

moment let us ignore this property and see what may happen. Let us consider the

below figure which is a part of the bipartite graph of an LDPC code which is

constructed randomly:

Figure 2.3 A part of the bi-partite graph of an irregular LDPC code

which is constructed randomly

In Figure 2.3, it can be easily seen that the edges emanating from the variable nodes

xv , yv and zv result in a cycle of length-6 which distorts the performance of the

code. However, if the actual proposed property of the 2A method was preserved,

there would be no chance to have any cycles generated by the degree-2 variable

nodes.

Vx

Vy

Vz
Cx

Cy

Cz

Check
Nodes

Variable
 Nodes

17

The performance of the irregular codes generated by the 2A method will be

investigated in detail in Section 3.3.

2.2.3 Irregular LDPC Code Construction by Pseudo-Random Method

This method works similar to the regular matrix construction method. However, in

this case all the columns do not have the same weight. The degrees of the variable

nodes are defined by the degree distribution polynomial of the code and there is more

than one degree value that a variable node can have.

In this method, as in the regular case, the columns of the irregular matrix are

constructed from left to right. The weights of the columns and number of columns

with each column weight are defined by the variable node degree distribution

polynomial. Starting from the leftmost column, first the columns with the smallest

weight are constructed, then the columns with next greater degree are constructed

and this process continues until all columns with each weight are constructed. All of

the columns are constructed such that the overlap between any two columns of the

matrix is not greater than one in order to avoid length-4 cycles.

In this work we have generated many different irregular parity-check matrices with

different lengths and different variable node degree distributions using these

methods. The performances of the irregular LDPC codes are analyzed in detail and

compared with the regular ones in the following chapters.

2.3 Encoding of LDPC Codes

Consider an LDPC code defined by the parity-check matrix H. As we have discussed

in Section 2.1, a codeword c of this code is generated by Gmc = , where m is the

source message and G is the generator matrix. In this codeword generation process,

which is called encoding, the main point is to have low encoding complexity. The

parity-check matrix H is a sparse matrix. However, the generator matrix G, is not a

18

sparse matrix; hence, the encoding time by Gmc = is proportional to n2, where n is

the codeword length.

To reduce the encoding complexity, Richardson and Urbanke proposed a method

where the parity-check matrix H is directly used to encode codewords [Richardson-

Urbanke-2001]. In this method, which is called the RU algorithm, the parity-check

matrix is transformed into an approximate lower-triangular form, by performing

basic row and column operations only. The approximate lower-triangular form for an

nm× parity-check matrix is shown in Figure 2.4.

Figure 2.4 Example of a parity-check matrix in approximate lower triangular form

Suppose that m is a vector of message block. According to the RU algorithm, the

codeword after decoding is ()21 ,, ppmc = where 1p and 2p are the parity parts. It is

shown that () TsCAETp +−−= −− 11
1 φ and ()TTT

BpAsTp 1
1

2 +−= − , where

DBET +−= −1φ . The encoding complexity of the algorithm is then shown to be

proportional to 2gn + . Therefore, when n >> g, the encoding complexity is

proportional to n.

19

The RU method works on the given parity-check matrices. In the literature, there are

other methods that use the idea of spending effort on the construction the LDPC

codes in order to have low encoding complexities. In [Mackay-Wilson-Davey-1999]

and [Xia-He-Xu-Cai-2008], design methods of LDPC codes are given such that the

encoding complexities of the codes are proportional to n.

2.4 Decoding of LDPC Codes by Belief Propagation Algorithm

The most widely used algorithms for decoding LDPC codes are message passing

algorithms which are also known as iterative algorithms. These algorithms are called

iterative since messages are passed from variable nodes to check nodes, and from

check nodes to variable nodes at each round of the algorithm. The messages from

message nodes to check nodes are computed based on the observed value of the

message node and some of the messages passed from the neighbouring check nodes

to that message node [Shokrollahi-2003]. In this section we will investigate the most

commonly used decoding algorithm called the belief propagation algorithm.

Belief propagation algorithm is a message passing algorithm, in which the messages

passed between variable and check nodes at each round of the algorithm are random

variables. In this algorithm, the calculations of these random variables are done

separately assuming that they are statistically independent. This assumption would

be true for a code, which contains no cycles of any length. Almost every LDPC code

contains cycles. However, this algorithm works quite well for decoding LDPC codes

whose cycles are long enough [Shokrollahi-2003].

In our study, we have implemented the log-likelihood belief propagation decoding

and the likelihood belief propagation decoding. These two techniques are quite

similar to each other as explained below.

20

Likelihood Decoding

In likelihood decoding, the messages passed between variable and check nodes are

the likelihood values of these bits. The algorithm is composed of 4 steps.

First Step: Initialization

At the first step of decoding, the only messages to be sent are the messages from

variable nodes to check nodes which are calculated using the observed values of

these bits. This observed information for each bit is used to calculate the likelihood

ratio of each bit.

i

i

initialii
p

p
PQ

−
==
1

, (2.15)

In (2.15), ip is the probability that the bit ic of the received codeword

[]ncccc ...21= is 1. iQ is the initial value for the message that is sent from the

thi variable node to its related check nodes. In an algorithmic manner, we will call the

message sent from thi variable node to the thj variable node iji pL =, , and the initial

value of iji QL =, .

Second Step: Check Node Response

In this step, check nodes calculate their response messages ()0,ijR and ()1,ijR to be

sent to the variable nodes.

 ()jiij ycPR 0, ==

 ()jiij ycPR 1, ==

(2.16)

21

Here, ()ji ycP 0= and ()ji ycP 1= are the probabilities that the bit ic is 0 or 1 given

the conditional event jy that the thj parity-check equation is satisfied.

To be able to compute ()ji ycP 0= and ()ji ycP 1= , we will use an expression

which is proved by Gallager in his work [Gallager-1963]. Gallager showed that the

probability ()ji ycP 0= that the thj parity-check equation is satisfied if the bit ic is

equal to 0 can be expressed as

 () ∏
≠∈

−+==
iiBi

iji

j

pycP
','

),21(
2

1

2

1
0 ' (2.17)

where jB is the set of bits included in the thj parity-check equation and ip is the

probability that the bit ic is equal to 1.

Then, the probability ()ji ycP 1= that the thj parity-check equation is satisfied if the

bit ic is equal to 1 is

 () () .)21(
2

1

2

1
011

','

'∏
≠∈

−−==−==
iiBi

ijiji

j

pycPycP (2.18)

Therefore, ()0,ijR and ()1,ijR can be calculated as the following.

 () ()∏
≠∈

−+=
iiBi

iij

j

pR
','

', 21
2

1

2

1
0

 () ()∏
≠∈

−−=
iiBi

iij

j

pR
','

', 21
2

1

2

1
1

(2.19)

where jB is the set of bits included in the thj parity-check equation.

22

The ijR , values are then sent from each check node to the variable nodes that are

connected to it, and the algorithm continues with the third step.

Third Step: Codeword Test

This step is the decision step of the algorithm. The check node responses together

with the initially observed information are used to decide whether the bit ic is a 1 or

0. For each bit i the following calculations are done.

 () () ()∏
∈

−=
iAj

ijijii RpkD
'

,', 010 (2.20)

In the equations, the set iA is the set of check nodes that are connected to the

variable node i , and the constants jik , are chosen such that () () 010 =+ ii DD . These

()0iD and ()1iD values are then used in the inequalities given below to decide

whether the bit ic is a 1 or 0. Let the decided sequence be []110 ... −= nmmmm .

 () ()


 ≤

=
else

DD
m

ii

i
,0

10,1
 (2.21)

If the vector m is a valid codeword, that is to say 0=THm , the algorithm

successfully terminates here, and outputs m as the decoded codeword. If m is not a

valid codeword, the algorithm continues with the fourth step.

Fourth Step: Variable Node Response

In this step, the first thing to be done is to increase the iteration number by one and

check if the maximum number of iterations, say maxI , has been reached. If maxI has

been reached, the algorithm terminates with failure and outputs the last decided value

of m .

23

If maxI has not been reached yet, variable node responses are calculated using

equation (2.22), and these responses are sent form each variable node to the related

check nodes.

 () () ()∏
≠∈

−=
jjAj

ijijiji

i

RplL
','

,',, 010

 () ()∏
≠∈

=
jjAj

ijijiji

i

RplL
','

,',, 11
(2.22)

such that the constants jil , are chosen to satisfy () () .110 ,, =+ jiji LL

After the responses are sent to the variable nodes, the algorithm continues with the

second step.

Log-likelihood Decoding

This type of decoding is similar to the likelihood decoding. However, in this case, the

messages sent between variable nodes and check nodes are the log-likelihood ratios,

not the likelihood values, of these bits. The steps of log-likelihood decoding are same

as the likelihood decoding. In this section, we will mention the similarities and

differences of log-likelihood decoding compared to likelihood decoding and modify

the equations of likelihood decoding in order to suit the log-likelihood decoding.

First Step: Initialization

At this step, the messages to be sent from variable nodes to check nodes are

calculated using the following equation.

 () 






 −
==

i

i

initialii
p

p
PLLRQ

1
ln,

(2.23)

24

Similar to the likelihood decoding, we will call the message sent from thi variable

node to the thj variable node 






 −=
pi

p
L i

ji

1
ln, , and the initial value of iji QL =, .

Second Step: Check Node Response

In this step, the check node responses are calculated using the following equation.

 ()
() 














=

=
=

ji

ji

ij
ycP

ycP
R

1

0
ln, (2.24)

Similar to likelihood decoding, ()ji ycP 0= and ()ji ycP 1= are computed using

(2.17) and (2.18). Therefore, ijR , can be expressed as

.
)21(

2

1

2

1

)21(
2

1

2

1

ln
)1(

)0(
ln

','

','

,

'

'





















−−

−+
=















=

=
=

∏

∏

≠∈

≠∈

iiBi
i

iiBi
i

jiij

ji

ij

j

j

p

p

ycP

ycP
R (2.25)

At this point the following identity of tangent hyperbolic and natural logarithm

functions will be used.

x

x

x

x

x

x

x

x

x

ee

ee

x

x

x

x

x

x

x

x

x

x

21

1

1

1

1
1

ln
2

1
tanh

1
ln

2

11
ln

2

1

1
ln

2

11
ln

2

1

−=

−
+−

−
−−

=

+

−=














 −







 −







 −








 −−






 −

 (2.26)

Also note that

.

1
ln, 







 −
=

i

i

ji
p

p
L (2.27)

25

Then, ijR , can be calculated as

 ()

() .

2

2tanh
tanh1

2

2tanh
tanh1

ln

','

,'

','

,'

,





























−









+

=

∏

∏

≠∈

≠∈

iiBi

ji

iiBi

ji

ij

j

j

L

L

R (2.28)

Third Step: Codeword Test

Similar to likelihood decoding, this step is the decision step. In this step, firstly the

following calculation is done.

 ∑
∈

+=
iAj

ijii RQL , (2.29)

After this calculation, the decision for each bit is done using the following equation.





>
≤

=
0,0

0,1

i

i

i
L

L
m (2.30)

If the decided vector m is a valid codeword, the algorithm stops here. Else, the

algorithm continues with the fourth step.

Fourth Step: Variable Node Response

In this step, similar to likelihood decoding, iteration number is increased and checked

whether it has reached the value Imax. If so, the algorithm terminates with failure and

the last decided codeword is outputted. If not, the variable node responses are

calculated using the following equation.

 ∑
≠∈

+=
jjAj

ijiji

i

RQL
','

,', (2.31)

26

The responses of the variable nodes calculated using (2.31) are then sent to the check

nodes and the algorithm continues with the second step.

The steps of both likelihood decoding and log-likelihood decoding algorithms are

illustrated in Figure 2.5.

Figure 2.5 Illustration of likelihood and log-likelihood decoding algorithms

. . .

.

. . .

ith variable
node

Q i

Q i
Q i

. . .

.

. . .

. . .

.

. . .

Li,j

Rj,i

Rj,i

Rj,i

jth check
node

ith variable
node

jth check
node

ith variable
node

jth check
node

Step-1

Initialization

Step-2

Check Node Response

Step-4

Variable Node Response

Step-3

Decision

Success Failure

valid
codeword

invalid
codeword &

Imax not reached

Li,j

Li,j

invalid
codeword &
Imax reached

27

CHAPTER 3

3 SIMULATION RESULTS

In this chapter, we mainly investigate the performance of regular and irregular LDPC

codes. Irregular LDPC codes with different variable node degree distribution

polynomials are generated and their bit error ratio (BER) versus input bit energy

divided by noise spectral density of the channel (Eb/N0) performance is compared

with that of the regular codes.

Section 3.1 is intended as a preliminary related to the understanding of the

fundamental concepts about LDPC codes and to the control of our implementation.

In Section 3.2, we examine two different types of errors made by the decoder;

failures and wrong decisions. We show that decoding failures are much more likely,

i.e., the decoder algorithm reaches to the end of iterations without deciding on any

codeword but still correcting some erroneous bits. The frequency of wrong decisions,

i.e., decisions on a wrong codeword different from the sent one is extremely small

and approaches to 0 for sufficiently long codes.

In the remaining sections, irregular LDPC codes are constructed using either of the

MacKay’s construction methods discussed in Section 2.2. The codes generated by

the 2A method are examined in Section 3.3 for various values of the average variable

node degree. Two different types of irregularities, having variable node degrees of

either 2/3/4 or 1/3/5 generated by pseudo-random construction, are investigated in

Sections 3.4 and 3.5, respectively. The effects of these kinds of irregularities on the

performance of irregular LDPC codes are discussed.

In Sections 3.6 and 3.7, we consider codes with variable node degrees 2/3/i, where

the highest degree i is chosen from the set {9, 11, 13, 19}. We have specifically

28

studied the trade-off between the average variable node degree and the number of

length-6 cycles in detail.

In Section 3.8, we design a 2/3/13 irregular code of length 16,000 bits and compare

its performance with a commercially used LDPC code of length 64,800 bits. Then, in

Section 3.9, we analyze the decoding times of some regular and irregular codes. We

investigate the effect of the average variable node degree on the decoding time of the

codes.

Section 3.10 deals with the check node degree distributions of the generated LDPC

codes, which occur randomly as a result of the construction algorithm. Section 3.11

is a summary of the work done.

The properties of the codes, the communication channel, and the decoder that are

used in the simulations are as described below.

• Code Properties: In each simulation, we use a randomly generated regular or

irregular LDPC code of specific length (576≤n≤1800), and of rate ½

according to one of the construction methods described in Section 2.2.

• Communication Channel Properties: We use additive white Gaussian noise

(AWGN) channel with Binary Phase Shift Keying (BPSK) modulation in our

simulations. Each bit of a codeword to be sent is first modulated with BPSK,

then a random noise sample of given power is added.

• Decoder Properties: We use the log-likelihood decoding algorithm with the

maximum number of iterations, maxI , chosen as 50. So, if the decoder cannot

decide on a valid codeword, it yields the vector that it arrives at the 50th

iteration as the decoder output.

In the simulations, for each Eb/N0 value, we count the block errors, almost all of

which are shown in Section 3.2 to occur as a result of decoding failures. The

simulation is stopped when 20 block errors are counted. Then we calculate the Bit

29

Error Ratio (BER) value for this level of Eb/N0, and present the results in BER versus

Eb/N0 value curves.

We have used MATLAB as software development tool. In our work, we have done

many simulations all of which take long time. In order to shorten the time needed to

complete the simulations, we have worked on optimizing our decoder software and

also run our simulations in more than 4 computers in parallel. In Section 3.1, the

performances of two different decoders, namely log-likelihood and likelihood

decoders are compared. The time consumption of the log-likelihood decoder that we

worked on optimizing its software is less than that of the likelihood decoder.

Therefore, we may say that our optimization wok on the decoder software has been

useful.

3.1 Experimental Preliminaries and Software Control

In this section, we investigate the preliminaries related to the understanding of the

fundamental concepts about LDPC codes and control the correctness of our

implementation. Firstly, we compare the performance of two different decoders, log-

likelihood and likelihood decoder. Then, we review the effect of the codeword length

of an LDPC code on its performance.

3.1.1 Decoder Comparison

In Section 2.4, we have described two types of decoding algorithms called likelihood

and log-likelihood decoding. Although the performance of the two algorithms is

expected to be the same, in [Uzunoğlu-2007] the simulation results of these two

decoders were found to be not exactly the same. This is why we start by comparing

the performance of these decoders.

We have done decoding simulations of different length codes using both of the

decoders and obtained the graphs shown in Figure 3.1 for n=576 and in Figure 3.2

for n=896. It is seen that both of the decoders yield exactly the same results, which is

30

not surprising. The only difference that we have observed is the time consumption of

the two decoding softwares.

Figure 3.1 Performance comparison of log-likelihood and likelihood decoders for a regular

(576, 288) low-density parity-check code

Figure 3.2 Performance comparison of log-likelihood and likelihood decoders for a regular

(896, 448) low-density parity-check code

31

The time spent for the simulations of (576, 288) and (896,448) codes with log-

likelihood and likelihood decoders are given in Table 3.1.

Table 3.1 Time consumptions of log-likelihood and likelihood decoders

LDPC
Code

Time Spent with
log-likelihood decoder

Time Spent with
likelihood decoder

 (576, 288) 402.297 seconds 460.703 seconds

 (896, 448) 2933.02 seconds 3452.86 seconds

As can be seen from Table 3.1, our software for the likelihood decoder spends

approximately 15% more time than the log-likelihood decoder. This is an

optimization issue to be studied on the implementation of the decoder software. We

did not work on this optimization since both decoders give out the same results.

Instead, we decided to use the log-likelihood decoder in the rest of our simulations.

In [Uzunoğlu-2007] the simulation results of these two decoders were not exactly

the same, the log-likelihood decoder consistently performing slightly worse than the

likelihood decoder. One possible reason for this erroneous result may be the

cumulative effect of the rounding errors in the software written for the log-likelihood

decoder. A related graph taken from [Uzunoğlu-2007] is given in Figure 3.3, where

the abbreviation of “LL Decoders” stands for the log-likelihood decoder, and “APP

Decoder” stands for the likelihood decoder.

32

Figure 3.3 Performance comparison of log-likelihood and likelihood decoders for regular
(896, 448) and (896, 224) codes taken from [Uzunoğlu-2007]

3.1.2 Effect of Codeword Length on the BER Performance

In the literature of LDPC codes, it is a well-known fact that the performances of

LDPC codes with long codeword lengths are better than those of the shorter length

codes. In this section, we observe the amount of performance improvement brought

by an increase in the length from 576 to 2700 bits, for rate ½ codes.

In the simulations, we randomly generate regular (3, 6) LDPC codes, i.e., the

variable node degree vw = 3 and the check node degree cw =6. A sample graph

containing the BER performances of rate ½ and regular (3, 6) LDPC codes with

different codeword lengths is given in Figure 3.4.

33

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
10

-5

10
-4

10
-3

10
-2

10
-1

Eb/No (dB)

B
E
R

(576, 288)

(896, 448)

(1200, 600)

(1500, 750)

(1800, 900)

(2100, 1050)

(2700, 1350)

Figure 3.4 Performance comparison of (576, 288), (896, 448), (1200, 600), (2100, 1050),
(1800, 900) and (2700, 1350) regular (3, 6) codes

When the graph is examined, it is observed that if the worst performing (576, 288)

code is compared with others at the BER of 10−2, (2700, 1350) code is 0.45 dB

better, and (1200, 600) code is 0.3 dB better. The performance gain of (2700, 1350)

code over (1200, 600) code is around 0.25 dB at the BER of 10−3. It seems that

doubling the codeword length results in a performance gain like 0.2-0.3 dB for

BER’s around 10−2 or 10−3.

3.2 Wrong Codewords at the Decoder Output

In this section, we analyze the codewords at the output of the decoder in terms of

their relation between the input codewords. We first give the definitions of different

situations that we may face at the decoder output and then we investigate the

conditions which lead to these different situations.

34

When a received sequence enters our decoder, we may have three different cases at

the output of the decoder. These cases are:

1) Success:

The situation that we call “Success” occurs when the output of the decoder is exactly

the same as the initially sent codeword. This means that our decoder has successfully

decoded the noisy input and obtained the transmitted codeword without any error.

2) Failure:

The situation that we call “Failure” occurs when the decoder is not able to find a

valid codeword for the related parity check matrix. In this case the maximum number

of iterations for the decoding algorithm is reached and the output has erroneous bits

as compared to the initially sent codeword.

3) Wrong Codeword:

The situation that we call “Wrong Codeword” occurs when the output of the decoder

is a valid codeword for the related parity check matrix, but it is different from the

transmitted codeword. In this case the decoding process ends up with an error vector

equal to the difference between the transmitted and wrongly decoded codewords.

We have made simulations on various codes with different code lengths to

investigate when we get wrong codewords at the output of the decoder. We have

used codes with codeword lengths of 50, 100, 200, 400, 600, 800, and 1000 bits. All

of the codes are regular with rate ½, variable node degree 3 and check node degree 6;

i.e., regular (3, 6) codes. Random noise samples for each level of SNR in the set

{0.5, 1, 1.5, 2, 2.5, 3} dB are calculated and added to the sent codeword. The

maximum number of iterations Imax is set to 50, so that the log-likelihood decoder

either finds a codeword (either correct or wrong) in less than 50 iterations or it fails

at the 50th iteration and yields an erroneous word. We have sent a thousand

35

codewords for each SNR level. The simulation is stopped either when 20 codeword

errors for each SNR level is reached or all the thousand codewords are sent.

 The error distribution results of three simulations, each one using a different seed for

generating the random noise samples, are given in Table 3.2 where “S” (success)

refers to the number of codewords decoded successfully, “F” (failure) refers to the

number of decoding failures (which output encoded words with bit errors), and “W”

(wrong codeword) refers to the number of valid codewords, which are different from

the sent codeword.

36

Table 3.2 Distribution of 20 block errors (between decoding failures and wrong codewords) for rate 1/2 codes of different lengths, when

the maximum number of iterations is set to 50.

Codeword
Length 50 100 200 400 600 800 1000
 1

st
 Simulation

SNR S F W S F W S F W S F W S F W S F W S F W

0.5 dB 9 18 2 8 19 1 8 20 0 1 20 0 1 20 0 0 20 0 0 20 0

1 dB 18 20 0 21 19 1 14 20 0 11 20 0 6 20 0 12 20 0 10 20 0

1.5 dB 42 19 1 39 19 1 52 20 0 36 20 0 39 20 0 45 20 0 66 20 0

2 dB 123 19 1 88 19 1 79 20 0 255 20 0 393 20 0 981 19 0 984 16 0

2.5 dB 156 18 2 278 17 3 301 19 1 991 9 0 995 5 0 1000 0 0 1000 0 0

3 dB 195 20 0 627 18 2 991 9 0 999 1 0 999 1 0 1000 0 0 1000 0 0

 2
nd
 Simulation

SNR S F W S F W S F W S F W S F W S F W S F W

0.5 dB 18 20 0 19 20 0 8 20 0 3 20 0 3 20 0 0 20 0 0 20 0

1 dB 15 17 3 12 19 1 7 20 0 10 20 0 15 20 0 14 20 0 16 20 0

1.5 dB 21 20 0 33 18 2 46 20 0 31 20 0 34 20 0 69 20 0 83 20 0

2 dB 106 18 2 79 20 0 162 20 0 150 20 0 420 20 0 649 20 0 984 16 0

2.5 dB 195 18 2 323 18 2 282 20 0 986 14 0 996 4 0 998 2 0 1000 0 0

3 dB 132 19 1 654 19 1 984 16 0 1000 0 0 1000 0 0 998 1 0 1000 0 0

 3
rd
 Simulation

SNR S F W S F W S F W S F W S F W S F W S F W

0.5 dB 16 20 0 11 19 1 5 20 0 2 20 0 1 20 0 1 20 0 0 20 0

1 dB 17 20 0 17 20 0 14 20 0 12 20 0 5 20 0 22 20 0 3 20 0

1.5 dB 46 20 0 63 18 2 29 20 0 59 20 0 54 20 0 50 20 0 74 20 0

2 dB 124 19 1 130 20 0 94 20 0 191 20 0 241 20 0 544 20 0 983 17 0

2.5 dB 226 16 4 263 20 0 301 20 0 984 16 0 997 3 0 999 1 0 999 1 0

3 dB 170 20 0 590 20 0 987 13 0 998 2 0 1000 0 0 1000 0 0 1000 0 0

36

37

When Table 3.2 is investigated, it is seen that for codeword lengths of 50 and 100

bits, the decoder may output wrong codewords. However, for codeword lengths

greater than 200 bits, we never face any wrong codewords; i.e., all of the bit errors

occur as a result of decoding failures. Our simulations show that when the codeword

length is large enough and the maximum number of iterations is chosen suitably,

there is no wrong codeword at the decoder output. In LDPC coding, codeword

lengths are chosen very long for excellent performance, they are practically on the

order of thousands of bits; so all the bit errors are the result of decoding failures

arrived at the pre-specified maximum number of iterations.

In Table 3.2, the wrong codewords appear at the decoder output only for block

lengths shorter than 200. We suspect that this may be the result of the maximum

allowed number of iterations, Imax = 50, which is relatively high as compared to the

codeword length. In order to investigate the effect of this parameter on the number of

wrong codewords, we have made a similar simulation setting the maximum number

of iterations to 20, for codeword lengths of 50, 100 and 200. (see Table 3.3)

Table 3.3 Distribution of 20 block errors (between decoding failures and wrong codewords),
when maximum number of iterations is set to 20.

Codeword Length 50 100 200
 1

st
 Simulation

SNR S F W S F W S F W

0.5 dB 13 20 0 5 20 0 2 20 0

1 dB 20 19 1 14 20 0 10 20 0

1.5 dB 45 17 3 27 18 2 40 20 0

2 dB 110 19 1 127 20 0 98 20 0

2.5 dB 135 18 2 127 20 0 241 20 0

3 dB 173 16 4 559 20 0 993 7 0

 2
nd
 Simulation

SNR S F W S F W S F W

0.5 dB 15 18 2 4 20 0 1 20 0

1 dB 39 20 0 13 20 0 9 20 0

1.5 dB 37 20 0 30 19 1 42 20 0

2 dB 53 19 1 120 19 0 72 20 0

2.5 dB 190 19 1 165 20 0 381 20 0

3 dB 407 18 2 488 18 2 724 20 0

38

Table 3.3 (cont’d)

Codeword Length 50 100 200
 3

rd
 Simulation

SNR S F W S F W S F W

0.5 dB 18 19 1 3 20 0 6 20 0

1 dB 18 20 0 16 19 1 15 20 0

1.5 dB 37 17 3 42 20 0 24 20 0

2 dB 91 20 0 86 19 1 63 20 0

2.5 dB 175 17 3 155 20 0 315 20 0

3 dB 423 19 1 423 18 2 986 14 0

Table 3.3 shows that the number of wrong codewords obtained at the output of the

decoder considerably reduces while Imax is decreased from 50 to 20. This is also not a

surprising result since decoding failures are more likely to occur when the algorithm

is allowed to perform less number of iterations. On the other hand, setting Imax equal

to 20 seems to be large enough for successful decoding of the transmitted codewords

for the codes of length shorter than 200.

After these observations, we wanted to compare the erroneously decoded vectors,

i.e., failures and wrong codewords, with the initial received vectors. In other words,

when a received vector is decoded to be a failure or wrong codeword at the decoder

output, we compared the bit errors of the received words before decoding with those

of the words after decoding.

We have used a rate ½ regular (3, 6) code with codeword length 50. Again, random

noise samples for each level of SNR in the set {0.5, 1, 1.5, 2, 2.5, 3} dB is added to

the sent codewords. This time, instead of 20 block errors, we stopped our simulations

when 200 block errors are counted for each SNR level. Table 3.4 shows the total

number of erroneous bits of the actual received words and that of the words which

are decided as failure or wrong decision at the decoder output.

39

Table 3.4 The number of erroneous bits of blocks, which are decided as failure or

wrong decision at the decoder, before and after they are decoded.

Failures=193 Wrong Codewords=7

Before
Decoding

After
Decoding

Before
Decoding

After
Decoding

0.5 dB 1604 1334 68 72

Failures=182 Wrong Codewords=18

Before
Decoding

After
Decoding

Before
Decoding

After
Decoding

1 dB 1511 1239 133 127

Failures=183 Wrong Codewords=17

Before
Decoding

After
Decoding

Before
Decoding

After
Decoding

1.5 dB 1452 1170 123 125

Failures=172 Wrong Codewords=28

Before
Decoding

After
Decoding

Before
Decoding

After
Decoding

2 dB 1299 1052 185 193

Failures=168 Wrong Codewords=32

Before
Decoding

After
Decoding

Before
Decoding

After
Decoding

2.5 dB 1207 1037 207 221

Failures=166 Wrong Codewords=34

Before
Decoding

After
Decoding

Before
Decoding

After
Decoding

3 dB 1146 1084 196 242

When Table 3.4 is inspected, it can be seen that the number of bit errors introduced

by the communication channel is always reduced whenever there is a decoding

failure. However, for the case of wrong codewords, the number of erroneous bits is

either very close to the initial value or more than that.

In the last simulations, we collected all the wrong codewords and seen that the

number of 1’s of the codeword with minimum weight is 5. Considering that all-zero

word is a codeword for all block codes, one can say that the minimum distance

mind of this code is smaller than or equal to 5. The smallness of mind =5 value with

respect to 20 iterations is the main reason to have more wrong codewords at the

decoder output, as compared to higher length codes that have higher mind values.

40

To sum up all the observations of this section, while decoding in 50 iterations, we

have detected wrongly decoded codewords at the decoder output only for codeword

length shorter than 200 bits. If the maximum number of iterations is reduced to 20,

wrongly decoded codewords disappear for length-200 codes and can only be seen for

codes of length smaller than 100 bits. So, as a handy rule of thumb, we can say that

wrong codewords do not occur if the maximum number of iterations parameter of the

decoding algorithm is less than one tenth of the block length. Useful LDPC codes are

chosen very long for excellent performance, which guarantees not having any

wrongly decoded codeword at the decoder output. So, practically all decoding errors

come from decoding failures.

Moreover, whenever a decoding failure occurs, i.e., a legitimate codeword cannot be

arrived at the decoder output, the number of bit errors seems to be reduced slightly at

the end of the maximum number of iterations of the message passing decoding

algorithm.

3.3 Irregular 2A Codes

In Section 2.2.2, we have described the 2A method of MacKay and Neil. In this

section, we investigate the BER performances of the LDPC codes with variable node

degrees varying between 2.75 and 3 are found by simulations. The LDPC codes we

use in this section are constructed using our software for constructing irregular 2A

codes, which is explained in Appendix A.

Using our software, we have generated different length irregular LDPC codes. For

each codeword length, five different irregular matrices with different average

variable node degree values are constructed. The performances of these irregular

codes and a regular code with the same length are compared.

The variable node degree distributions of the irregular 2A matrices that we have

constructed for each codeword length are given in Table 3.5.

41

Table 3.5 The variable node degree distributions of the irregular 2A matrices that we have

constructed for codeword lengths of 576 and 896

Matrix Number Average Variable Node

Degree wa

Variable Node Degree

Distribution

1 2.75 () 2
1 75.025.0 xxx +=λ

2 2.80 () 2
2 8.02.0 xxx +=λ

3 2.85 () 2
3 85.015.0 xxx +=λ

4 2.90 () 2
4 9.01.0 xxx +=λ

5 2.95 () 2
5 95.005.0 xxx +=λ

The reason of constructing five different irregular matrices for each codeword length

is to see the effect of the number of weight-2 columns in the parity-check matrix. By

this way, one can observe the performance of different irregular 2A matrices with

different average variable degrees.

In the simulations, we have first used parity check matrices of size 288×576; i.e., the

codeword length is 576 and the code rate is ½ . The simulation results for the five

(n, k)=(576, 288) irregular codes with different average variable node degrees,

Av{ vw }= wa, close to 3; along with the performance of a (576, 288) regular (3, 6)

(i.e., (vw , cw)=(3, 6)) code are given in Figure 3.5.

42

Figure 3.5 Performance comparison of (576, 288) regular and irregular 2A codes, where wa

denotes the average variable node degree of the code.

We should note here that the check node degrees of the 2A matrices are kept as

uniform as possible as it is mentioned in [MacKay-Neil-1996]. For a code with

average variable node degree aw , we have tried to make the degrees of the check

nodes close to the average check node degree value which is aa ww
m

n
2= . In

Appendix B, check node degree distribution of sample irregular 2A codes are

visualized.

When Figure 3.5 is investigated, it is seen that all irregular 2A codes having wa

values close to 3, and the regular (3, 6) code have similar performances.

Nevertheless, the irregular code with average node degree 2.90 seems to have the

best performance. To compare this irregular code with the regular one only these two

performance curves are given in Figure 3.6.

43

Figure 3.6 Performance comparison of (576, 288) regular and irregular 2A codes, where wa

denotes the average variable node degree of the code.

Figure 3.6 shows that for rate ½ codes of length 588, the irregular 2A code with

average variable node degree 2.90 has slightly better performance than that of the

regular one with variable node degree 3. This result led us to simulate longer length

2A codes in order to see whether the irregularity of this type always improves the

performance of the code.

Secondly we have simulated the performance of (896, 448) regular and irregular

codes with average variable node degrees around 3 and obtained Figure 3.7.

44

Figure 3.7 Performance comparison of (896, 448) regular and irregular 2A codes, where wa

denotes the average variable node degree of the code.

For codeword length of 896 bits, again we could not observe a noticeable

improvement in the performance of the code. After these observations, we have

decided to further increase the codeword length and see the effect of it on the

performance of the code. We have simulated codes with codeword lengths 1200,

1500, 1800, 2100, 2700 and 3600 bits. The simulation results for all of these

different codeword length codes are given in Figure 3.8 to Figure 3.13. In the graphs,

we included only the best performance irregular code together with the regular code

in order to see the difference clearly.

45

Figure 3.8 Performance comparison of (1200, 600) regular and irregular 2A codes, with the

average variable node degrees wa = 3 and wa = 2.95, respectively.

Figure 3.9 Performance comparison of (1500, 750) regular and irregular 2A codes, with the

average variable node degrees wa = 3 and wa = 2.95, respectively.

46

Figure 3.10 Performance comparison of (1800, 900) regular and irregular 2A codes, with the

average variable node degrees wa = 3 and wa = 2.95, respectively.

Figure 3.11 Performance comparison of (2100, 1050) regular and irregular 2A codes, with

the average variable node degrees wa = 3 and wa = 2.95, respectively.

47

Figure 3.12 Performance comparison of (2700, 1350) regular and irregular 2A codes, with

the average variable node degrees wa = 3 and wa = 2.95, respectively.

Figure 3.13 Performance comparison of (3600, 1350) regular and irregular 2A codes, with

the average variable node degrees wa = 3 and wa = 2.95, respectively.

48

When we examine Figures 3.8 to 3.13, we see that the codes with average variable

node degree of 2.95 have always slightly better performance than regular ones. At

first sight, the reason for this is not very clear. Also, in [MacKay-Neal-1996], the

authors do not give a lucid reason for using weight-2 columns in their design.

The codes with average variable node degree of 2.95 have almost regular structures,

where 95 % of the columns are weight-3 and 5 % are weight-2. Therefore, it does not

make much sense to claim that the irregularity of the code is the reason for the better

performance. After some thinking, we conjecture that one possible reason for the

better performance of the codes with average variable node degree of 2.95 may be

their local girth distribution. In Section 2.2.2, we have discussed that the non-

overlapping property of the degree-2 columns decreases the number of length-6

cycles. Therefore, the irregular codes constructed with the 2A method have less

number of length-6 cycles as compared to regular (3, 6) code. In Table 3.6, we

present the total number of length-6 cycles for the (1200, 600) regular (3, 6) codes

and (1200, 600) irregular codes that we construct by the 2A method.

Table 3.6 Total number of length-6 cycles for (1200, 600) regular and irregular codes

constructed by the 2A method

Matrix

Number

Average Variable

Node degree

Variable Node Degree

Distribution

Total Number of

Length-6 Cycles

1 2.75 () 2
1 75.025.0 xxx +=λ 128

2 2.80 () 2
2 8.02.0 xxx +=λ 135

3 2.85 () 2
3 85.015.0 xxx +=λ 149

4 2.90 () 2
4 9.01.0 xxx +=λ 165

5 2.95 () 2
5 95.005.0 xxx +=λ 184

6 3 () 2
6 xx =λ 203

49

In Table 3.6, it is seen that the regular code has the largest number of length-6 cycles,

which decreases with decreasing average variable node degree of the code.

If we consider only from the cycle point of view, we expect that the code with less

number of length-6 cycles has the best performance. However, there exists a trade-

off between the number of length-6 cycles and the average node degree of a code. As

the average variable node degree increases, each variable of the codeword is checked

by larger number of equations, which in turn improves the performance. On the other

hand, an increase in the average variable node degree also increases the 1’s of the

parity check matrix, hence the number of cycles, which degrades performance by

thwarting the correct decision process with repeated use of some variable bits in the

same check equations. For instance, a cycle of length 6 involves 3 variables, say V1,

V2, V3, used in 3 different check equations, C1, C2 and C3 in different pairs; say (V2,

V3) in the check equation C1, (V1, V3) in C2, and (V1, V2) in C3 (see Figure 2.3). So, if

all the variables V1, V2, V3, were decoded incorrectly, the three check equations C1,

C2 and C3 would all be satisfied and those three bit errors would be undetectable.

In order to see the effect of the number of length-6 cycles more closely, we have

generated many LDPC codes with identical parameters and investigated their

performances. From the parity-check matrices that we have generated, we have

selected five different (1200, 600) regular codes (with variable node degree 3), and

five different (1200, 600) irregular codes with average variable node degree of 2.95.

The total numbers of length-6 cycles for all of these regular and irregular matrices

are given in Table 3.7.

50

Table 3.7 Total number of length-6 cycles for (1200, 600) regular and irregular codes

constructed by the 2A method

Matrix

Number

Average Variable

Node Degree

Variable Node Degree

Distribution

Total Number of

Length-6 cycles

1 3 () 2
1 xx =λ 203

2 3 () 2
2 xx =λ 181

3 3 () 2
3 xx =λ 171

4 3 () 2
4 xx =λ 157

5 3 () 2
5 xx =λ 151

6 2.95 () 2
6 95.005.0 xxx +=λ 174

7 2.95 () 2
7 95.005.0 xxx +=λ 172

8 2.95 () 2
8 95.005.0 xxx +=λ 167

9 2.95 () 2
9 95.005.0 xxx +=λ 149

10 2.95 () 2
10 95.005.0 xxx +=λ 139

From the parity-check matrices given in Table 3.7, we have firstly selected and

simulated the performance of the regular matrix with the lowest number of length-6

cycles, which is matrix-5, and the performance of the irregular matrix with the

highest number of length-6 cycles, which is matrix-6. In Figure 3.14 that shows the

results of the simulations, we see that the regular code, which has less number of

length-6 cycles than the irregular one, has better performance.

51

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
10

-4

10
-3

10
-2

10
-1

Eb/No (dB)

B
E
R

(1200, 600) Irregular with girth-6 number=174

(1200, 600) Regular with girth-6 number=151

Figure 3.14 Performances of matrix-5 and matrix-6 of Table 3.7

As the second example, we have compared the regular matrix with the highest

number of length-6 cycles (matrix-1), and the irregular matrix with the lowest

number of length-6 cycles (matrix-10). The performances of these codes are given in

Figure 3.15. In this case, the irregular matrix, which has less number of length-6

cycles than the regular one, has better performance than the regular one.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
10

-4

10
-3

10
-2

10
-1

Eb/No (dB)

B
E
R

(1200, 600) Regular with girth-6 number=203

(1200, 600) Irregular with girth-6 number=139

Figure 3.15 Performances of matrix-1 and matrix-10 of Table 3.7

52

Finally, we have simulated the performances of the regular and irregular LDPC

codes having the same number of length-6 cycles, namely, matrix-3 & matrix-7 of

Table 3.7. In Figure 3.16 that presents the results, one can observe that the

performance of the regular matrix is slightly better than the irregular one.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
10

-4

10
-3

10
-2

10
-1

Eb/No (dB)

B
E
R

(1200, 600) Irregular with girth-6 number=172

(1200, 600) Regular with girth-6 number=171

Figure 3.16 Performances of matrix-1 and matrix-10 of Table 3.7

Considering all the cases that we have investigated, and comparing the (3, 6) regular

codes with the irregular 2A codes of average variable node degree 2.95, we can say

that the codes with less number of length-6 cycles have always better performances.

The number of 1’s in the parity check matrix of an irregular 2A code is smaller than

the number of 1’s in the parity-check matrix of a regular code. Therefore, it is a great

probability that a randomly chosen irregular 2A code has less number of length-6

cycles than a regular code. Because of this fact, the irregular 2A codes of average

variable node degree 2.95, which is almost equal to 3, have better performances than

the regular codes for most of the time.

53

3.4 Effect of 2/3/4 Irregularity

In this section, we investigate the effect of adding a slight pseudo-random

irregularity to regular (3, 6) codes. Instead of a parity check matrix with all the

variable nodes of degree-3, we randomly generate some columns with degree-2 and

some with degree-4. The number of columns of degree-2 is kept equal to the number

of columns of degree-4 in order to have average variable node degree equal to 3. To

construct the matrices, we use our software for constructing pseudo-random irregular

LDPC code generation, which is explained in Appendix A.

The variable node degree distribution polynomials of the constructed irregular

matrices are given in Table 3.8. As these 4 different polynomials indicate, the

percentage of the weight-2 and weight-4 columns are chosen as 5%, 10%, 20% and

33% respectively. All the remaining columns in the parity check matrices are of

weight 3. We name all these codes as 2/3/4 codes and corresponding irregularity as

2/3/4 irregularity.

Table 3.8 The variable node degree distributions of the 2/3/4 irregular matrices

Percentage of Degree-2 and

Degree-4 Variable Nodes

Variable Node Degree

Distribution

5 % () 32
1 05.09.005.0 xxxx ++=λ

10 % () 32
2 1.08.01.0 xxxx ++=λ

20 % () 32
3 2.06.02.0 xxxx ++=λ

33 % () 32
4 33.034.033.0 xxxx ++=λ

In AWGN channel, we have simulated the BER performances of the codes defined

by the pseudo-randomly generated parity check matrices. We have used rate ½ codes

54

at two different lengths, to generate (576, 288) and (896, 448) codes. In Figure 3.17

and Figure 3.18, the BER versus SNR curves of the irregular codes and that of the

regular code are given for codeword lengths of 576 and 896 respectively.

1 1.5 2 2.5
10

-4

10
-3

10
-2

10
-1

Eb/No (dB)

B
E
R

(576,288) 33%

(576,288) 20%

(576,288) 5%

(576,288) Regular

(576,288) 10%

Figure 3.17 Performance comparison of (576, 288) codes defined in Table 3.8

1 1.5 2 2.5
10

-5

10
-4

10
-3

10
-2

10
-1

B
E
R

Eb/No (dB)

(896,448) 33%

(896,448) 10%

(896,448) 20

(896,448) Regular

(896,448) 5%

Figure 3.18 Performance comparison of (896, 488) codes defined in Table 3.8

55

Figures 3.17 and 3.18 do not offer a clear idea about the effect of adding this slight

irregularity to the regular codes. In order to see whether there exists a repeatable

difference, we have done two more simulations for each of the codes. In these new

simulations, the are different random noise generation seeds from the first simulations.

The results are given in Figures 3.19, 3.20, 3.21 and 3.22.

1 1.5 2 2.5
10

-4

10
-3

10
-2

10
-1

Eb/No (dB)

B
E
R

(576,288) 20%

(576,288) 10%

(576,288) 5%

(576,288) 33%

(576,288) Regular

Figure 3.19 Performance comparison of (576, 288) codes defined in Table 3.8 with a

second seed for random noise generation

1 1.5 2 2.5
10

-4

10
-3

10
-2

10
-1

Eb/No (dB)

B
E
R

(576,288) 10%

(288,576) Regular

(576,288) 20%

(576,288) 33%

(576,288) 5%

Figure 3.20 Performance comparison of (576, 288) codes defined in Table 3.8 with

a third seed for random noise generation

56

1 1.5 2 2.5
10

-5

10
-4

10
-3

10
-2

10
-1

Eb/No (dB)

B
E
R

(896,448) 33%

(896,448) 20%

(896,448) 10%

(896,448) 5%

(896,448) Regular

Figure 3.21 Performance comparison of (896, 488) codes defined in Table 3.8 with

a second seed for random noise generation

1 1.5 2 2.5
10

-5

10
-4

10
-3

10
-2

10
-1

Eb/No (dB)

B
E
R

(896,448) 33%

(896,448) 10%

(896,448) Regular

(896,448) 20%

(896,448) 5%

Figure 3.22 Performance comparison of (896, 488) codes defined in Table 3.8 with

a third seed for random noise generation

57

When all simulations results are investigated, we can say that for a given codeword

length, all codes have nearly the same BER performance. Because, the code that has

the best performance changes when noise generation seeds are changed. This change

cannot be the result of the different number of length-6 cycles mentioned in the

previous section, since in three different simulations that use different noise seeds,

the codes of Table 3.8 and the regular (3, 6) code are kept as the same as before, i.e.,

they are not regenerated.

Therefore we conclude that, the irregular codes of type 2/3/4 have almost the same

BER performance as a regular (3, 6) code of the same length. In the following

sections we will simulate the effect of different kinds of irregularity on the BER

performance of the codes.

3.5 Effect of 1/3/5 Irregularity

In this section, we investigate another irregular structure for MacKay and Neil’s

pseudo-randomly generated LDPC codes. In the parity-check matrix of the irregular

code, some variable nodes will have degree-1, some of them will have degree-3 and

some of them will have degree-5. In order to have the average degree equal to 3, we

will make the number of degree-1 variable nodes equal to that of the degree-5

variable nodes. To construct the matrices, we use our software for constructing

pseudo-random irregular LDPC code generation, which is explained in Appendix A.

To see the effect of the mentioned degree distribution on the performance of LDPC

codes and compare with the regular (3, 6) code, we have made simulations with four

different irregular codes. The variable node degree distribution polynomials of these

codes are given in Table 3.9, where the percentages of variable nodes with degrees

1&5 are chosen as 5, 10, 20 and 33 percent respectively. We name all these codes as

1/3/5 codes and corresponding irregularity as 1/3/5 irregularity.

58

Table 3.9 The variable node degree distributions of the 1/3/5 irregular matrices

Parity-Check

Matrix

Percentage of

Degree-1 and

Degree-5 Variable

Nodes

Variable Node

Degree Distribution

H576_5 5 % () 420
1 05.09.005.0 xxxx ++=λ

H576_10 10 % () 420
2 1.08.01.0 xxxx ++=λ

H576_20 20 % () 420
3 2.06.02.0 xxxx ++=λ

H576_33 33 % () 420
4 33.034.033.0 xxxx ++=λ

In our simulations we have only used 576 as the codeword length. Because, the

simulations for the codes with given degree distributions indicated an interesting

result. We have monitored that, it is so likely to have wrong decisions at the output

of the decoder.

After realizing that these codes having 1/3/5 irregularity are not successful examples

of the LDPC code design, we have run some simulations so as to present the results

given in Table 3.10, where “S” (success) refers to the number of codewords decoded

successfully by the decoder, “F” (failure) refers to the number of cases that the

decoder fails and yields blocks with errors and “W” (wrong codeword) refers to the

number of codewords that are wrongly decoded. The matrices H576_5, H576_10,

H576_20, H576_33 refer to the parity-check matrices of the (576, 288) irregular

codes that have the degree distributions given in Table 3.9.

59

Table 3.10 Simulation results for the irregular codes given in Table 3.9

Parity-Check

Matrix
H576_5 H576_10 H576_20 H576_33

 First Simulation

SNR S F W S F W S F W S F W

1 dB 11 19 1 18 20 0 13 14 6 1 8 12

1.5 dB 79 20 0 100 20 0 36 11 9 4 0 20

2 dB 482 17 3 429 8 12 73 2 18 9 0 20

2.5 dB 2107 8 12 1338 3 17 191 0 20 12 0 20

 Second Simulation

SNR S F W S F W S F W S F W

1 dB 22 20 0 36 18 2 19 12 8 2 9 11

1.5 dB 64 19 1 115 19 1 38 3 17 7 1 19

2 dB 244 13 7 397 12 8 76 3 17 12 1 19

2.5 dB 2484 7 13 1172 3 17 136 1 19 15 0 20

 Third Simulation

SNR S F W S F W S F W S F W

1 dB 17 18 2 23 20 0 19 17 3 2 10 10

1.5 dB 66 18 2 106 17 3 53 7 13 10 5 15

2 dB 260 16 4 412 10 10 123 2 18 11 1 19

2.5 dB 1967 6 14 889 0 20 185 0 20 12 0 20

Investigation of Table 3.10 deepens the discussion given in Section 3.2 about the

distribution of wrong decisions versus decoding failures in 20 block errors made by

the decoder, by adding a new dimension: if the LDPC code (say, its variable node

degree distribution polynomial) is not chosen suitably, belief propagation algorithm

of the LDPC decoder is more likely to give wrong decisions rather than decoding

failures, especially at low noise levels. We see that the number of wrong decisions at

the output of the decoder is higher for the parity-check matrices with more number of

variable nodes of degree-1 and degree-5. Actually, this issue is related with the

variable nodes of degree-1 in these matrices. In a Tanner graph, a degree-1 variable

node is connected to a single check node and receives information only from this

single node. This fact increases the probability for a degree-1 variable node, to be

misguided by the wrong information coming from the check node that it is connected

to. Therefore, one should avoid variable nodes of degree-1 in LDPC code design.

60

In order to see the effect of the wrong codewords on the performances of the codes,

we have simulated the performances of the codes defined in Table 3.9. Figure 3.23

shows the results of the simulations.

Figure 3.23 Performances of the 1/3/5 codes defined in Table 3.9

In Figure 3.23, we see that performances of the codes with more number of degree-1

nodes are worse than the codes with less number of degree-1 nodes. We can say that

the wrong decisions which are led by the degree-1 nodes distort the performance of

the codes. The performance loss occurring for the codes with more number of

degree-1 nodes is an obvious reason to avoid degree-1 nodes in LDPC code design.

3.6 High Degree Variable Nodes Connected to 9 or 19 Check

Equations

In the previous sections, we have seen that the performances of irregular codes,

which have average variable node degrees around 3, are not noticeably better than

1 1.5 2 2.5
10

-4

10
-3

10
-2

10
-1

Eb/No (dB)

B
E
R

(576,288) %33

(576,288) %20

(576,288) %10

(576,288) %5

(576, 288) Regular

61

the regular codes. Because of this fact, we have decided to increase the average

variable node degree wa of the constructed irregular codes by adding more high-

weight columns to the parity-check matrix.

The experiments we have done in previous sections also showed that having weight-

2 columns are helpful to improve the performance of the codes since they lower the

number of length-6 cycles. Considering this fact, we have decided to have some

weight-2 columns in our irregular parity-check matrices together with weight-3 and

higher-weight columns. Particularly, we have compared the performances of 2/3/9

irregular and 2/3/19 irregular codes.

We have constructed irregular LDPC codes with rate 21 and codeword length 1800.

In the parity-check matrices of the irregular codes, a fixed 20% of the columns are

chosen of weight-2. The remaining columns are composed of weight-3 and higher-

weight columns in such a way that the average variable node degree of the parity-

check matrix is equal to some specific value. This specific value, which is greater

than 3, is adjusted by changing the numbers of the weight-3 and higher-weight

columns. In some of the parity-check matrices, we have used weight-9 columns and

in some of them we have used weight-19 columns. In Figure 3.24, the generic

structure for the irregular matrices is given.

62

Figure 3.24 The generic structure of the pseudo-random irregular matrices of this work

3.6.1 Effect of the Average Variable Node Degree

We have constructed the irregular codes given in Table 3.11, which shows the

variable node degree distributions, average variable node degrees, and the number of

higher weight columns. We name each code with 2/3/9 irregularity as 9-3.2, 9-3.4 or

9-3.6 and each code with 2/3/19 irregularity as 19-3.2, 19-3.4 or 19-3.6; where the

first number indicates the highest variable node degree and the second number shows

the average variable node degree. We have simulated the performance of these codes

in AWGN and obtained Figure 3.25, which also includes the performance of a

regular (3, 6) code for comparison.

In Figure 3.25, we see that the irregular code with the best performance is the Code

19-3.6 and the one with the worst performance is 19-3.2. However, all the irregular

codes have better performances than the regular one.

63

Table 3.11 The variable node degree distributions and the number of high weight columns of

2/3/9 and 2/3/19 irregular codes of rate ½ and length 1800, with average variable node

degrees of 3.2, 3.4 and 3.6

Code

Abbreviation

Variable Node Degree Distribution

Polynomial ()xλ .

Average

Variable

Node

Degree wa

Number of

High

Weight

Columns

9-3.2 821 067.0733.02.0 xxx ++ 3.2 120

9-3.4 821 1.07.02.0 xxx ++ 3.4 180

9-3.6 821 13.067.02.0 xxx ++ 3.6 240

19-3.2 1821 025.0775.02.0 xxx ++ 3.2 45

 19-3.4 1821 038.0762.02.0 xxx ++ 3.4 68

19-3.6 1821 05.075.02.0 xxx ++ 3.6 90

Figure 3.25 Performances of the codes described in Table 3.11

64

Looking at Figure 3.25, we can say that the performance of the irregular codes gets

better when their average variable node degrees are increased. This actually makes

sense because the codes with greater average variable node degrees have greater

number of high weight columns. These variable nodes defined by these high weight

columns are decoded correctly with high probability and the correct information

coming from these nodes helps the decoding of the other variable nodes which have

lower degrees.

At this point, it will be quite helpful to investigate the results of these simulations in

three different cases, where the average node degrees are 3.2, 3.4 and 3.6.

Case 1: Average Variable Node Degree is 3.2

In this case, the code 9-3.2 with weight-9 columns has a better performance than

Code 19-3.2 with weight-19 columns. Code 19-3.2 has 45 weight-19 columns,

whereas Code 9-3.2 has 120 weight-9 columns.

Case 2: Average Variable Node Degree is 3.4

In this case, as opposed to Case 1, Code 19-3.4 with weight-19 columns has a better

performance than Code 9-3.4 with weight -9 columns. Code 19-3.4 has 68 weight-19

columns, whereas Code 9-3.4 has 180 weight-9 columns.

Case 3: Average Variable Node Degree is 3.6

In this case, similar to Case 2, the code with weight-19 columns has a better

performance than the code with weight -9 columns. Code 19-3.6 has 90 weight-19

columns, whereas Code 9-3.6 has 240 weight-9 columns.

In all three cases, since the average node degree is kept constant, the number of

weight-9 columns is greater than the number of weight-19 columns. In Case 1, this

difference makes the performance of the matrix with weight-9 columns better.

However, when the average node degree is increased as in Cases 2 and 3, the codes

65

with weight-19 columns have better performances than the codes with weight-9

columns, because the variables connected to 19 check equations improve the

decoding performance more effectively than the variables checked by 9 equations.

However, we may say that this is possible when the number of such variables (or

weight-19 columns in the parity-check matrix) exceeds some threshold value.

After observing this data, we have constructed different matrices with the same

parameters given in Table 3.11, to see whether the results of Figure 3.25 are

repeatable. The resulting graph containing four different matrices for each parameter

set are given in Figure 3.26.

Figure 3.26 Performances of many codes with the parameters described in Table 3.11

The results in Figure 3.26 are very similar to the results in Figure 3.24, which

confirms repeatability. The performances of different codes with the same

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

Eb/No (dB)

B
E
R

66

parameters vary by small amounts. For example, at the BER value of 310− , the

performances of the 19-3.2 codes vary by approximately 0.1 dB. This variation in

performance may be due to the number of length-6 cycles contained in these codes.

To see whether this deduction is true, we have counted the number of length-6 cycles

for all the codes in Figure 3.26 and presented the results in the following section.

3.6.2 Effect of the Number of Length-6 Cycles

In order to have better perception about the effect of the number of length-6 cycles,

say N6, on the code performance, we have counted the number of length-6 cycles for

the 24 different codes, whose performances are given in Figure 3.26. Those pseudo-

randomly generated codes possess either of the 6 groups of parameters given in

Table 3.11 (namely the groups 9-3.2, 9-3.4, 9-3.6 with 2/3/9 irregularity and groups

19-3.2, 19-3.4, 19-3.6 with 2/3/19 irregularity). Since we have constructed 4 codes

for each group of Table 3.11, there are 24 different codes and 24 different values for

the number of length-6 cycles.

Table 3.12 shows the total number of length-6 cycles for all the 24 codes in Figure

 3.26. Eb/No values required for a specific BER value (of
4102 −×) are also included

in ascending order for each group of code parameters, so that the performance within

the group is ranked in descending order in Table 3.12.

67

Table 3.12 The number of length-6 cycles of some 2/3/9 and 2/3/19 codes of rate ½ and

length 1800

Code

Abbreviation

Eb/No for a BER

of 4102 −×

Number of Length-6 Cycles

N6

1.85 952

1.86 987

1.87 975
9-3.2

1.89 1049

1.90 2216

1.92 2363

1.95 2558
19-3.2

1.97 2570

1.82 1911

1.83 1922

1.84 1954
9-3.4

1.87 1978

1.73 4976

1.76 5151

1.80 5274
19-3.4

1.81 5259

1.83 3254

1.84 3293

1.84 3341
9-3.6

1.87 3389

1.70 9159

1.72 9565

1.75 9894
19-3.6

1.76 9930

68

In Table 3.12, it is observed that within the set of codes with the same parameters,

increasing number of length-6 cycles leads to worse performance for almost all

cases. For instance, among the codes that has weight-19 columns and average

variable node degree 3.6, the worst performance code has 9159 length-6 cycles,

whereas the best performance code has 9930 length-6 cycles. This difference leads to

an improvement of 0.06 dB in the Eb/No value for the BER level of
4102 −× . There

also exist some exceptions; for example, in the set of 19-3.2 codes, the code with 987

many length-6 cycles has a better performance than the code with 975 many length-6

cycles. However, the number of length-6 cycles for these two codes are very close,

and such a slight difference is not repeatable when the random noise samples are

initiated by a different seed.

From Table 3.12, we can also see that, for a given average variable node degree wa,

the 2/3/19 codes (that have degree-19 variable nodes) have much more length-6

cycles than the 2/3/9 codes (that have degree-9 variable nodes). For variable node

degrees of 3.4 and 3.6, even though the 2/3/19 codes have more length-6 cycles, they

have better performances than the 2/3/9 codes. This is a normal result since the

number of length-6 cycles is obviously not a primary comparison element for codes

with different parameters.

3.7 Joint Effect of Average Variable Node Degree and Length-6

Cycles

After observing the performances of codes with average variable node degrees 3.2,

3.4 and 3.6, we have decided to investigate the joint effect of the average variable

node degree (wa) and the number of length-6 cycles (N6), on some codes that have

greater average variable node degree values. We have generated (1800, 900)

irregular codes with column weight distributions of 2/3/9, 2/3/11 and 2/3/13. We

have kept the ratio of weight-2 columns as 20% but adjusted the average variable

69

node degree between 3.2 and 4.4 by changing the ratio of high-weight columns to

weight-3 columns.

3.7.1 Codes with High Degree Variable Nodes of Degree 9

For this experiment, we have first used irregular codes that have degree-9 variable

nodes as high degree nodes. Table 3.13 shows the variable node degree distribution

polynomials and the number of high weight columns of these irregular matrices.

Table 3.13 Variable node degree distributions and the number of high weight columns of the

2/3/9 and 2/3/19 irregular codes of rate ½ and length 1800, with average variable node

degrees of 3.8, 4, 4.2 and 4.4

Code

Abbreviation

Variable Node Degree

Distribution Polynomial ()xλ

Average

Variable

Node

Degree wa

Number of

Weight-9

Columns

9-3.8 821 167.0633.02.0 xxx ++ 3.8 300

9-4 821 2.06.02.0 xxx ++ 4 360

9-4.2 821 233.0567.02.0 xxx ++ 4.2 420

9-4.4 821 267.0533.02.0 xxx ++ 4.4 480

In Figure 3.27, the performances of these codes together with the previously

generated codes with average variable node degree values 3.2, 3.4 and 3.6 are given.

70

1 1.1 1.2 1.3 1.4 1.5 1.6
10

-4

10
-3

10
-2

10
-1

Eb/No (dB)

B
E
R

9-4.4

9-4.2

9-4

9-3.2

9-3.8

9-3.6

9-3.4

Figure 3.27 Performances of 2/3/9 irregular codes that have average variable degrees

from 3.2 to 4.4

From Figure 3.27, we see that the performances of the irregular codes are getting

better up to the average variable node degree of 3.6. After this point, the

performances of the codes start to get worse. Here, it will be better to see the

performances of these codes in two separate graphs. The first graph, given in Figure

 3.28 (a), includes the codes whose performances are getting better with increasing

average variable node degree, and the second graph, given in Figure 3.28 (b),

includes the codes whose performances are getting worse with increasing average

variable node degree.

71

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
10

-4

10
-3

10
-2

10
-1

Eb/No (dB)

B
E
R

Regular

9-3.2

9-3.6

9-3.4

(a)

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
10

-4

10
-3

10
-2

10
-1

Eb/No (dB)

B
E
R

9-4.4

9-4.2

9-4

9-3.8

9-3.6

9-3.4

(b)

Figure 3.28 Performances of the irregular codes with weight-9 columns. The codes whose

performances are getting better with increasing average variable node degree are shown in

(a), and the codes whose performances are getting worse are shown in (b).

72

Figure 3.28 (a) shows the performances of the irregular codes with average variable

node degrees of 3.2 and 3.4 together with the performance of a regular code of the

same codeword length. One can see that increasing the average variable node degree

from 3.2 to 3.4 improves the decoding performance of these codes. We should also

note that the irregular codes have better performances than the regular one. However,

in Figure 3.28 (b), where the average variable node degrees range from 3.4 to 4.4, we

see that the performance gets worse with increasing average variable node degree.

When the total number of high weight columns in an irregular matrix is increased,

one expects to have a better performance. However, we have seen in this example

that as the number of high-weight columns is increasing, the performance becomes

worse beyond some threshold value of the average node degree. The most important

reason behind this fact may be the number of length-6 cycles contained in the code.

In order to have a clear idea, we have counted the number of length-6 cycles of these

codes. Table 3.14 shows the number of length-6 cycles together with other necessary

information.

Table 3.14 Number of length-6 cycles of the 2/3/9 codes of rate ½ and length 1800, with

average variable node degrees from 3.2 to 4.4

Code

Abbreviation

Average

Variable

Node Degree

Number of

Weight-9

Columns

Eb/No for a

BER of

3105 −×

Total

Number of

Length-6

Cycles, N6

9-3.2 3.2 120 1.50 975

9-3.4 3.4 180 1.43 1922

9-3.6 3.6 240 1.45 3293

9-3.8 3.8 300 1.46 4784

9-4 4 360 1.55 7164

9-4.2 4.2 420 1.59 10117

9-4.4 4.4 480 1.66 13755

73

Unsurprisingly, the number of length-6 cycles increases with increasing number of

weight-9 columns. However, an increase in the number of length-6 cycles up to

1922, which is observed for 180 many weight-9 columns, seems acceptable; since it

does not deteriorate the performance. When the number of weight-9 columns is

further increased to 240 and 300 the total number of length-6 cycles becomes 3293

and 4784, and the performance of the codes becomes slightly worse than the

previous cases. After this point adding new weight-9 columns leads to huge rises in

the number of length-6 cycles (Increasing the number of weight-9 columns from 300

to 360 makes the number of length-6 cycles 71264, from 360 to 420 makes it 10117,

and from 420 to 480 makes it 13755).

In the parity-check matrix construction method that we use, columns of the matrix

are formed one-by-one from left to right. Each new column introduces new length-6

cycles to the matrix that are added to the total number of length-6 cycles. Motivated

by this, we have counted the length-6 cycles introduced by each column for the

matrices given in Table 3.14 and obtained the graph given in Figure 3.29, where the

vertical axes in parts (a) and (b) show the number of length-6 cycles in logarithmic

and linear scales respectively. The horizontal axis shows the column number. For a

specific column x, the value shown on the vertical axis is the cumulative number of

length-6 cycles after the generation of column x, starting from the first column.

When x is the last column, the value shown on the vertical axis corresponds to the

overall number of length-6 cycles for the generated code.

74

(a)

(b)

Figure 3.29 The total number of length-6 cycles after the generation of each column of the

parity-check matrix for the codes defined in Table 3.14. The vertical axis is given in:

(a) logarithmic scale, (b) linear scale.

75

The number of length-6 cycles for all the matrices is zero up to the 600th column.

This is an expected result since the first 20 % of the columns are weight-2 columns

which have no overlap between each other. We have shown previously in this work

that zero-overlap weight-2 columns do not cause any length-6 cycles. After the last

weight-2 column, following columns are of weight-3. These weight-3 columns

slightly increase the number of length-6 cycles. However, length-6 cycles start to

increase in considerable amounts at the starting point of the construction of weight-9

columns.

In Figure 3.29 (a), these starting points for the weight-9 columns are seen very

clearly. For example, for the matrix with average variable node degree of 4.4, the

number of length-6 cycles starts to increase rapidly near the 1321st column which is

the first weight-9 column.

The important point here is that, the increase in the number of length-6 cycles

accelerates when more and more weight-9 columns are added. In other words, a

weight-9 column causes more and more length-6 cycles as the number of previously

added weight-9 columns increases. This situation is seen clearly in Figure 3.30,

where the horizontal axis again shows the column number, but the vertical axis

shows the number of length-6 cycles caused by each individual column instead of the

cumulative value. It is observed from Figure 3.30 that the number of length-6 cycles

introduced by a column increases with the column number. More specifically, the

number of length-6 cycles caused by each new weight-9 column increases almost

exponentially. Actually, this is the reason of rapid increase in the total number of

length-6 cycles as we observed in Figure 3.29. If we zoom the last part of the graph

given in Figure 3.29 (b), we clearly see the exponential increase in the number of

length-6 cycles in Figure 3.31, as the number of weight-9 columns is increased.

76

Figure 3.30 The number of length-6 cycles introduced by each column of the parity-check

matrix of the code 9-4.4.

1350 1400 1450 1500 1550 1600 1650 1700 1750 1800

2000

4000

6000

8000

10000

12000

Column Number

T
o
ta
l
N
u
m
b
e
r
o
f
L
e
n
g
th
-6
 C
y
c
le
s

9 - 4.4

9 - 4.2

9 - 4.0

9 - 3.8

9 - 3.6

9 - 3.4

9 - 3.4

Figure 3.31 Last part of the graph given in Figure 3.29 (b)

77

When Figure 3.31 is more closely investigated, one sees that as the average variable

node degree is increased from 3.2 to 3.4, the numbers of length-6 cycles for the

matrices are fairly close to each other. However, as the increase in the average

variable node degree is continued from 3.6 to 4.4, the difference between the

numbers of the length-6 cycles of the generated codes gets larger.

Beyond the average node degree value of 3.4, the performances of the irregular codes

become worse as the number of weight-9 columns is increased. As we said earlier,

the weight-9 columns that are expected to improve the performance start to lead to

worse performance because of the huge increase in the number of length-6 cycles.

Below the average variable node degree of 3.4, the decoding performance

improvement supplied by the weight-9 columns suppresses the effect of length-6

cycles. However, above this average degree, the number of length-6 cycles increases

so much that the improvement supplied by the weight-9 columns can not cancel the

effect of the length-6 cycles.

3.7.2 Extension to High Variable Node Degrees of 11 and 13

In order to see whether this situation is a general case, we have repeated the same

experiments for other irregular LDPC codes which have weight-11 and weight-13

columns. Table 3.15 shows the properties of the new irregular codes that we have

generated.

78

Table 3.15 Variable node degree distributions and the number of high weight columns of of

the 2/3/11 and 2/3/13 irregular codes of rate ½ and length 1800

Code

Abbreviation

Variable Node Degree Distribution

Polynomial ()xλ

Average

Variable

Node Degree

Number of

High Weight

Columns

11-3.6 1021 1.07.02.0 xxx ++ 3.6 180

11-3.8 1021 125.0675.02.0 xxx ++ 3.8 225

11-4 1021 15.065.02.0 xxx ++ 4.0 270

11-4.2 1021 175.0625.02.0 xxx ++ 4.2 315

11-4.4 1021 2.06.02.0 xxx ++ 4.4 360

13-3.6 1221 08.072.02.0 xxx ++ 3.6 144

13-3.8 1221 1.07.02.0 xxx ++ 3.8 180

13-4.0 1221 12.068.02.0 xxx ++ 4.0 216

13-4.2 1221 14.066.02.0 xxx ++ 4.2 252

13-4.4 1221 16.064.02.0 xxx ++ 4.4 288

After constructing the matrices given in Table 3.15, we have simulated their

performances. Figure 3.32 and Figure 3.33 show the results of the simulations for the

codes with irregularities 2/3/11 and 2/3/13, respectively.

In Figure 3.32, where the performances of 2/3/11 irregular codes with different

average variable node degrees wa are shown, we see that in the range from 3.2 to 3.6,

increasing wa improves the performance. However, if wa further increases from 3.6 to

4.4, the performances of the codes get worse because of the rapidly increasing

number of length-6 cycles.

79

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
10

-4

10
-3

10
-2

10
-1

Eb/No (dB)

B
E
R

Regular

11 - 3.2

11 - 3.4

11 - 3.6

(a)

(b)

Figure 3.32 Performances of the 2/3/11 irregular codes. The codes whose performances are

getting better with increasing average variable node degree are shown in (a), and the codes

whose performances are getting worse are shown in (b).

80

(a)

(b)

Figure 3.33 Performances of the 2/3/13 irregular codes. The codes whose performances are

getting better with increasing average variable node degree are shown in (a), and the codes

whose performances are getting worse are shown in (b).

81

In Figure 3.33, where the performances of the 2/3/13 irregular codes are shown, we

see that in the range from 3.2 to 3.8, increasing the average variable node degree wa

improves the performance. However, for wa growing between 3.8 and 4.4, the

performances of the codes get worse because of the rapidly increasing number of

length-6 cycles.

These results are quite similar to the case of 2/3/9 irregular codes. In order to

compare the rate of increase of length-6 cycles with the previous case, we have

counted the number of length-6 cycles at each step of column construction for these

new codes. The analyses results for 2/3/11 irregular codes are given in Figure 3.34

and Figure 3.35.

400 600 800 1000 1200 1400 1600 1800
10

0

10
1

10
2

10
3

10
4

10
5

Column Number

T
o
ta
l
N
u
m
b
e
r
o
f
L
e
n
g
th
-6
 C
y
c
le
s

11 - 4.4

11 - 4.2

11 - 4.0

11 - 3.8

11 - 3.6

11 - 3.4

11 - 3.2

(a)

82

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Column Number

T
o
ta
l
N
u
m
b
e
r
o
f
L
e
n
g
th
-6
 C
y
c
le
s

11 - 4.4

11 - 4.2

11 - 4.0

11 - 3.8

11 - 3.6

11 - 3.4

11 - 3.2

(b)

Figure 3.34 The change in the total number of length-6 cycles for the 2/3/11 irregular codes

in Table 3.15 versus each new generated column. Vertical axis is given in:

(a) logarithmic scale (b) linear scale.

Figure 3.35 Last part of the graph given in Figure 3.34 (b).

1400 1450 1500 1550 1600 1650 1700 1750 1800
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

T
o
ta
l
N
u
m
b
e
r
o
f
L
e
n
g
th
-6
 C
y
c
le
s

11 - 4.4

11 - 4.2

11 - 4.0

11 - 3.8

11 - 3.6

11 - 3.4

11 - 3.2

83

In Figure 3.35, we see that the numbers of length-6 cycles of the 2/3/11 irregular

codes with average variable node degree wa ≤ 3.6, are fairly close to each other.

However, for the 2/3/11 irregular codes with wa larger than 3.6, the total number of

length-6 grows very hastily. This rapid increase in the number of length-6 cycles

again suppresses the performance improvement supplied by the weight-11 columns

and distorts the performance of the codes as shown in Figure 3.32 (b).

Finally, the number of length-6 cycles for the 2/3/13 irregular codes are given in

Figure 3.36 and Figure 3.37 for different values of wa between 3.2 and 4.4.

(a)

400 600 800 1000 1200 1400 1600 1800
10

0

10
1

10
2

10
3

10
4

10
5

Column Number

T
o
ta
l
N
u
m
b
e
r
o
f
L
e
n
g
th
-6
 C
y
c
le
s

84

(b)

Figure 3.36 The change in the total number of length-6 cycles for the 2/3/13 irregular codes

in Table 3.15 versus each new generated column. Vertical axis is given in:

(a) logarithmic scale (b) linear scale.

Figure 3.37 Last part of the graph given in Figure 3.36 (b).

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

1.5

2

2.5

3
x 10

4

Column Number

T
o
ta
l
N
u
m
b
e
r
o
f
L
e
n
g
th
-6
 C
y
c
le
s

85

Similar to the previous cases, we observe that the rapid increase in the number of

length-6 cycles seems to start at some value of wa, which is around 3.8 for 2/3/13

irregular codes. This explains the performance curves in Figure 3.33, where we

identify that the performance improves as wa grows between 3.2 and 3.8, but further

increase of wa from 3.8 to 4.4 deteriorates the performance. This situation is again

similar to the codes with 2/3/9 and 2/3/11 irregularities. However, the critical point

for the average variable node degree wa seems to be around 3.4 for the 2/3/9 codes,

3.6 for the 2/3/11 codes and 3.8 for the 2/3/13 codes. This is understandable, since

compared to the weight-9 columns, less number of weight-11 columns are needed to

achieve a given value of the average variable node degree, wa. Similarly, less number

of weight-13 columns are needed to achieve a given wa compared to the weight-9

and weight-11 columns. When small number of high weight columns is added to a

matrix, the number of length-6 cycles that it introduces to the code is also small.

Therefore, it is a normal result for the codes with weight-13 columns to start losing

performance at a wa value greater than that of the codes with weight-11, and for the

codes with weight-11 columns to start losing performance at a wa value greater than

that of the codes with weight-9. Figure 3.38, we sketch the total number of length-6

cycles versus the average variable node degree, wa, for the mentioned three codes,

having the irregularities of 2/3/9, 2/3/11 and 2/3/13.

86

3.2 3.4 3.6 3.8 4 4.2 4.4
0

0.5

1

1.5

2

2.5

x 10
4

Average variable node degree,

N
u
m
b
e
r
o
f
le
n
g
th
-6
 c
y
c
le
s

Codes with degree-13 variable nodes

Codes with degree-11 variable nodes

Codes with degree-9 variable nodes

w
a

Figure 3.38 Number of length-6 cycles versus average variable node degree, wa, of 2/3/9,
23/11 and 2/3/13 codes.

To sum up the results we have obtained in this section, we can say that adding high

weight columns improves the performance of the LDPC codes up to some point but

distorts the performance thereafter, because of the huge increases in the number of

length-6 cycles that start to occur. That rapid increase of length-6 cycles suppresses

and begins to cancel the decoding improvement brought by the high weight columns

of the parity-check matrix.

87

3.7.3 Some Codes with Fixed Number of Length-6 Cycles

In this section, we investigate the performance of some codes with different but close

codeword lengths n and average variable node degrees wa; but the same number of

length-6 cycles. In order to generate such codes, we have used Figure 3.29 (b), where

the distributions of the number of length-6 cycles of different 2/3/9 codes are given.

For the parent codes 9-4.4, 9-4.2, 9-4, 9-3.8, 9-3.6 and 9-3.4 with wa’s ranging from

3.4 to 4.4 (see Table 3.14), we have noted the number of columns value, say C9-4.4,

C9-4.2, C9-4, C9-3.8, C9-3.6, C9-3.4, where the number of length-6 cycles is around 2000.

Using this information, we have obtained some new codes whose parity-check

matrices are formed by the first C[code abbreviation] columns of the parity-check matrices

of the original codes. (For example, the first C9-4.4=1531 columns of the parity-check

matrix of the parent 9-4.4 code form the parity-check matrix of a new code of length

1531.) The new codes, which contain nearly the same number of length-6 cycles,

have codeword lengths ranging from 1531 to 1800 and wa’s between 3.4 and 3.59.

Since the number of check nodes remain the same as that of the parent code, the rate

k/n of each code is also different but close to 0.5. The parameters of the new codes

are given in Table 3.16.

88

Table 3.16 Parameters of the new codes obtained from the 2/3/9 irregular codes of rate ½

and length 1800, having the number of length-6 cycles around 2000

Abbreviation

Used for the

New Code

and Its

Parent Code

Average

Variable

Node Degree

wa & Rate

k/n for the

New Code

Size of the New

Parity-Check

Matrix

Variable Node

Degree Distribution

Polynomial ()xλ for the

New Code

Total

Number of

Length-6

Cycles N6

 9-3.4
& 9-3.4

3.40 & 0.5 1800900×
()18004.39 =−C

82 1.07.02.0 xxx ++ 1922

 9-3.44
& 9-3.6

3.44 & 0.48 1747900×
()17476.39 =−C

82 109.0686.0205.0 xxx ++ 2006

 9-3.48
& 9-3.8

3.48 & 0.47 1695900×

()16958.39 =−C

82 116.0673.0211.0 xxx ++ 1998

 9-3.51
& 9-4.0

3.51 & 0.45 1638900×

()16380.49 =−C

82 123.0658.0219.0 xxx ++ 1993

 9-3.54
& 9-4.2

3.54 & 0.43 1583900×

()15832.49 =−C

82 130.0645.0225.0 xxx ++ 1997

 9-3.59
& 9-4.4

3.59 & 0.41 1531900×

()15314.49 =−C

82 141.0625.0234.0 xxx ++ 2007

As can be seen from Table 3.16, the codes with smaller codeword lengths and rates

have greater wa’s. We have shown in Section 3.1.2 that increasing codeword length

makes the performance of a code better. However, we have also shown in Section 3.3

that increasing the average variable node degree with fixed number of length-6

cycles also increases the performance. In Figure 3.39, we present the performances

of the codes given in Table 3.16.

89

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
10

-4

10
-3

10
-2

10
-1

Eb/No (dB)

B
E
R

9-3.59

9-3.54

9-3.4

9-3.48

9-3.44

9-3.51

Figure 3.39 Performances of the codes given in Table 3.16.

It is observed that all the codes have nearly the same performance. This may be

considered as an expected result. Because, as the codeword length decreases from

1800 to 1531, the performance of the code gets worse; however, the average variable

node degree increases from 3.4 to 3.59 (and the rate decreases from 0.5 to 0.41) in

parallel, which in turn improves the performance. Combining these effects, it is not

surprising to see that the performance of a code with longer codeword length n and

lower wa, can be very similar to the performance of a code with shorter codeword

length and greater wa, whenever their number of length-6 cycles are comparable. In

Figure 3.39, one can examine the canceling effects of the codeword length n and the

average variable node degree wa.

90

3.8 Codes with Very Long Codeword Lengths

In this section, we investigate the performances of codes with very long codeword

lengths and compare them with some commercially used LDPC codes. We have

selected 16000 bits as the codeword length and constructed a regular (3, 6) code and

an irregular 2/3/13 code with average variable node degree wa=3.8, which was found

to be the optimum for the 2/3/13 codes. Figure 3.40 shows the performances of these

two codes together with the performance of a regular (64800, 32400) code which is

used in DVB-S2 standard.

Figure 3.40 Performances of a regular code and an irregular 2/3/13 code of codeword length

16000 together with the performance of a regular code of codeword length 64800 used in

DVB-S2 standard

In Figure 3.40, we see that the code with codeword length of 64800 has the best

performance. This is normal since there is a great difference in the codeword lengths

64800 and 16000, which is the dominant factor in determining the performance in

this case. However, we also see that irregular 2/3/13 code has a performance

0 0.2 0.4 0.6 0.8 1 1.2 1.4
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No

B
E
R

(16000,8000) Regular

(16000,8000) 13-3.8

(64800,32400) DVB-S2

91

improvement of nearly 0.35 dB at the BER level of 10-3 compared to the regular code

of the same codeword length.

Considering these, we can say that, for very long codeword lengths, our irregular

code design leads quite an improvement in the performance. This performance

improvement helps to approach the performances of commercially used LDPC

codes.

3.9 Decoding Times for Regular and Irregular LDPC Codes

At each iteration of decoding, calculations are done according to the distribution of

the 1’s in the parity-check matrix. In this work, we have shown that the irregular

codes with average variable node degrees greater than 3 (wa > 3) have better

performances than the regular (3, 6) codes. However, greater wa means that there

exist more 1’s in the parity-check matrix, which implies that more calculations are

done at each iteration. In this section, we investigate the decoding times needed for

the regular and irregular codes that we have designed and used in this work.

In order to compare the decoding times needed for regular and irregular LDPC

codes, we have done decoding simulations for four different LDPC codes of

codeword length 1800 and rate ½. We have used a regular code, an irregular 2/3/11

code with wa=3.6, an irregular 2/3/13 code with wa=3.8 and an irregular 2/3/19 code

with wa=4. For each of the three irregular codes, we have kept the ratio of degree-2

nodes as 20%, and the relative distribution of degree-3 and higher degree nodes are

adjusted according to the specific wa value. In the simulations, we have sent 50000

words at the Eb/No value of 1.6 dB. The value of Imax is set to 50. The results of the

simulations are given in Table 3.17.

92

Table 3.17 Simulation results for the decoding times of sample regular and irregular codes

Code
Abbreviation

Number
of

Successes

Number
of

Failures

Total
Number

of
Iterations

Average
Time

Spent for
one

Iteration
(seconds)

Total
Decoding

Time
(hours)

Total
Decoding

Time
Relative

to
Regular

Regular 46173 3827 900513 0.0391 9.7765 100%

11-3.6 49273 727 726086 0.0413 8.3225 85%

13-3.8 49588 412 683642 0.0419 7.9630 81%

19-4 49817 183 627862 0.0427 7.4493 76%

In Table 3.17, we see that the average time spent for each iteration increases with

increasing average variable node degree. This can be considered as a normal result

since more calculations are done at each step for the codes with greater wa’s.

However, we also see that, with increasing wa, the number of successes increases,

whereas total decoding time and total number of iterations decreases.

In [MacKay-2005], decoding time for an LDPC is code is said to be proportional to

the number of operations done at each iteration. Simply, we may think each iteration

as two steps. At first step, the variable nodes send information to the check nodes and

at the second step the check nodes send information back to the variable nodes. For a

code of length n and rate R, the first step includes aw
R

×1
 operations per variable

node, so nw
R

a ××1
 operations in total and the second step includes aw operations

per check node so)1(Rnwa −×× operations in total. Therefore, at each decoding

iteration, awn
R

RR ××−+ 21
 operations are done. In our case, the code length and

the rate are constant. Hence, one may expect that the average time spent for one

iteration is proportional to wa. In Table 3.17, we see that average time spent for one

iteration is 0.0391 for the regular code for which wa =3. If we consider the 2/3/13

code with wa =3.8 (abbreviated as 13-3.8), we expect that the average time spent for

93

one iteration is =× 0391.0
3

8.3
0.0495. However, in Table 3.17, we see that this value

is actually 0.0419. This may be as a result of our implementation details. In our

implementation of the decoding algorithm, many operations are done at a time using

array structures. When the number of operations increases, the size of the array that

contains these operations gets larger. Because of that, the time spent for a specific

number of operations is not directly proportional to the number of equations but

slightly less than that.

As can be seen from the number of successes and failures, the code with the best

performance among the codes given in Table 3.17 is the 2/3/19 code with wa=4.

Although the average time spent for each iteration is the greatest for this code, total

decoding time is the smallest. Figure 3.41, which shows the iteration histograms for

the codes, will be helpful to understand the reason for this.

0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Iteration Number

N
u
m
b
e
r
o
f
S
u
c
c
e
s
s
e
s

19-4.0

13-3.8

11-3.6

Regular

Figure 3.41 Iteration histograms for the regular and irregular codes

In Figure 3.41, we see that that a success is more likely to occur at the 11th or 12th

iteration. As Imax is set to 50, all decoding failures occur at the 50
th iteration. Since

94

the total number of successes is the greatest and the number of failures is the smallest

for the 2/3/19 code, it is quite normal that the total number iterations and the total

decoding time for this code is the smallest.

Considering all the results, we can say that the average time spent for each iteration

is greater for the codes with greater wa’s. However, as these codes with greater wa’s

are designed to have better performances, the total number of iterations to decode

same number of words and the total decoding times are smaller for these codes.

3.10 Random Distribution of Check Node Degrees

As a final consideration, we will discuss the check node degree distributions of the

irregular codes that we generate for this work. Random construction algorithms we

have used, do not pay any attention to the check node degrees. Instead, they take the

required values of n, k and the given variable node degree polynomial ()xλ as input

and arrive at random number of variables entering each parity-check equation. So,

the check node degrees are established randomly as a result of the 2A or pseudo-

random construction algorithm. In this section, we explore the check node degree

distributions for some of the generated codes. As representatives of three different

groups, we choose i) five 2A codes of length 1200, ii) four 2/3/4 codes of length 576,

and iii) four 1/3/5 codes of length 576. In each case, we construct the codes

according to the desired variable node degree distribution polynomials, count the

frequency of resulting check node degrees and compare the check node degree

distributions within the group.

i) Irregular 2A Codes

Table 3.18 shows the number of check nodes at each degree (i.e., the number of rows

at each weight) for different codes with irregular 2A matrices of codeword length

1200 and average variable node degrees wa (i.e., the column weights), from 2.95 to

2.75.

95

The check node degree distributions given in Table 3.18 are sketched in Figure 3.42.

Notice that although the check node degrees are distributed randomly, their average

value (see the last column) is equal to 2wa , because the parity-check matrix is of size

600×1200.

Table 3.18 Number of rows at each weight for 600×1200 parity-check matrices of 2A

irregular codes, where wa shows the average column weight.

 Row Weight
Average

Row Weight

wa 2 3 4 5 6 7

2.95 - - 12 114 396 78 5.9

2.90 2 8 45 118 307 120 5.8
2.85 5 11 57 142 256 129 5.7
2.80 5 27 61 155 214 138 5.6
2.75 6 29 78 154 212 121 5.5

2 3 4 5 6 7
0

50

100

150

200

250

300

350

400

450

Row Weight

N
u
m
b
e
r
o
f
R
o
w
s

 =2.95

 =2.90

 =2.85

 =2.80

 =2.75w
a

w
a

w
a

w
a

w
a

Figure 3.42 Check node degree distributions given in each row of Table 3.18.

96

In Figure 3.42, it can be seen that the check node degrees of the codes are

concentrated around the degree value of 6, which shows that the check node degree

distributions of the matrices are nearly uniform. For codes with decreasing wa, the

number of nodes with degree 6 decreases because of the decreasing number of 1’s in

the parity-check matrices.

ii) Irregular 2/3/4 Codes

Table 3.19 shows the number of check nodes at each degree (i.e., the number of rows

at each weight) for different codes with irregular 2/3/4 matrices of codeword length

576 and average variable node degrees percentages of the degree-2 and degree-4

variable nodes of the code. The check node degree distributions given in Table 3.18

are sketched in Figure 3.43.

Table 3.19 Number of rows at each weight for 288×576 parity-check matrices of the 2/3/4

irregular codes

Percentage of Degree-2 and
Degree-4 Variable Nodes Row Weight

Average
Row Weight

 3 4 5 6 7

5 % 2 2 11 250 23 6.0069

10 % 2 5 10 244 27 6.0035

20 % 2 5 9 245 27 6.0069

33 % 1 4 13 244 26 6.0069

97

3 4 5 6 7
0

50

100

150

200

250

300

Row Weight

N
u
m
b
e
r
o
f
R
o
w
s

(576, 288) 5%

(576, 288) 10%

(576, 288) 20%

(576, 288) 33%

Figure 3.43 Check node degree distributions given in each row of Table 3.19.

In Figure 3.43, it can be seen that the check node degrees of the codes are again

concentrated around the degree value of 6, which shows that the check node degree

distributions of the matrices are nearly uniform. All of the codes have almost the

same check node degree distribution since they have the same number of 1’s in their

parity-check matrices. Since the average variable node degree wa is 3 for all the

codes of this group, average check node degree is very close to 6.

iii) Irregular 1/3/5 Codes

Table 3.20 shows the number of check nodes at each degree (i.e., the number of rows

at each weight) for different codes with irregular 1/3/5 matrices of codeword length

576 and average variable node degrees percentages of the degree-1 and degree-5

variable nodes of the code. The check node degree distributions given in Table 3.20

are sketched in Figure 3.44.

98

Table 3.20 Number of rows at each weight for 288×576 parity-check matrices of the 1/3/5

irregular codes

Percentage of Degree-1 and
Degree-5 Variable Nodes Row Weight

Average
Row Weight

 3 4 5 6 7

5 % 1 5 10 245 27 6.0139

10 % 1 2 15 246 24 6.0069

20 % 2 2 13 244 27 6.0139

33 % 2 3 12 243 28 6.0139

3 4 5 6 7
0

50

100

150

200

250

300

Row Weight

N
u
m
b
e
r
o
f
R
o
w
s

(576, 288) 5%

(576, 288) 10%

(576, 288) 20%

(576, 288) 33%

Figure 3.44 Check node degree distributions given in each row of Table 3.20.

In Figure 3.44, it can be seen that the check node degrees of the codes are

concentrated around the degree value of 6, which shows that the check node degree

distributions of the matrices are nearly uniform. All of the codes have almost the

same check node degree distribution since they have same number of 1’s in their

parity-check matrices. It is also interesting to observe that both of the 2/3/4 and 1/3/5

pseudo-randomly constructed codes have more impulse-like distribution for the

check node degrees as compared to the 2A construction.

99

3.11 Summary

Through simulations performed in this work on the performance of LDPC codes, the

conditions that lead to “wrong codewords” at the output of the message-passing

decoder are investigated in Section 3.2. When the “maximum number of iterations”

parameter Imax of the decoder is set to 50, all errors contributing to the output BER

come from the decoding failures for the codes with length n larger than 200, and

there is no wrongly decoded codeword at all. On the other hand, when n< 200, one

may have a few wrong codewords at the decoder output. For short code lengths such

as 50 or 100, the probability of having wrong codewords decreases if Imax, which is

initially chosen as 50, is set to a smaller value, like 20. Since mind values of short

codes are quite small (say as small as 5 for a regular (3, 6) code of length 50), the

decoding algorithm may possibly force itself to decide on a wrong codeword in 20

iterations which is quite large as compared to mind ; and this probability is even

higher when Imax is set to 50. However; in real cases, where the code length n and

minimum distance mind are much larger than the maximum number of iterations

parameter of the decoding algorithm, Imax, the probability of a wrongly decoded

codeword approaches to 0.

In Section 3.3, we have compared the performances of the (1200, 600) irregular 2A

codes which have average variable node degree values slightly less than 3 with that

of the regular (3, 6) code. We have seen the surprising result that the irregular codes

with the variable node degree distribution polynomial () 2
5 95.005.0 xxx +=λ

(hence

the average variable node degree wa=2.95) have slightly better performance than the

regular codes with the variable node degree distribution polynomial () ,2xx =λ

(hence the variable node degree 3). In order to explain this observation, we have

counted the number of length-6 cycles (N6) of several codes. We have seen that the

codes with wa = 2.95 have in general less N6 than that of the regular (3, 6) code. In

order to be sure that this is the reason for better performance, we have generated

many different irregular codes with wa = 2.95, and many different regular codes of

100

variable node degree 3. Comparing the performance of all these codes, we have

found that the code with less N6, has always better performance. Since there are less

number of 1’s in the parity-check matrix of an irregular code with wa = 2.95, it is a

greater probability that the irregular code has less N6 than that of a regular (3,6) code.

This is the reason for irregular 2A codes with wa = 2.95 to have better performance in

most of the cases.

In the remaining sections, we have investigated the performance of pseudo-randomly

generated (1800, 900) irregular codes with different variable node degree distribution

polynomials. In Sections 3.4 and 3.5, we have generated irregular codes that have

average variable node degree 3. The 2/3/4 codes, for which the number of variable

nodes of degree-2 is chosen to be equal to number of variable nodes of degree-4 in

order to have wa = 3, are shown to have a performance that is almost the same as that

of the regular codes of the same length. Then, we have used degree-1 and degree-5

variable nodes instead of the degree-2 and degree-4 variable nodes, to generate 1/3/5

irregular codes. We have noticed that there exists an unacceptable number of wrong

codewords at the decoder output, resulting from degree-1 nodes. So we concluded

that degree-1 nodes (meaning variable nodes connected to single check equations)

should never be included in the design of powerful LDPC codes.

We have then generated (1800, 900) irregular codes with average variable node

degrees greater than 3 and investigated their performance in Sections 3.6 and 3.7. In

order to have average variable node degrees greater than 3, we have added high

weight columns to the parity-check matrices to construct 2/3/9, 2/3/11, 2/3/13 and

2/3/19 irregular codes. We have found that the codes with wa greater than 3 have

better performances with increasing wa up to some level; however, further increase in

wa distorts the performance. To explain the reason behind this performance loss, we

have counted the number of length-6 cycles, N6, of the 2/3/9, 2/3/11 and 2/3/13 codes

that are generated. We have observed that up to some value of the average variable

node degree wa, the number of length-6 cycles of the codes remain fairly close to

each other. However, for larger wa, huge increases in the number of length-6 cycles

101

suppress the improving effect of the high degree variable nodes and distorts the code

performance. Therefore, the LDPC code designers should consider the trade-off

between the average variable node degree and the number of length-6 cycles and

explore the optimum value of wa, which may be different for different irregularities.

For the example codes of this work, the best performing 2/3/9 irregular code has the

average variable node degree wa =3.4, the best performing 2/3/11 irregular code has

wa =3.6 and the best performing 2/3/13 irregular code has wa =3.8. This is

understandable, since as compared to the weight-9 columns, less number of weight-

13 columns are needed to reach to wa = 3.8. Because the contribution of less number

of high degree variable nodes to N6 is smaller, the optimum wa for the 2/3/13 codes is

greater than that of the 2/3/9 codes. In Section 3.7.3, some codes with the same N6,

but slightly different values of n and wa are compared and it is seen that their

performances are nearly identical.

Then, in order to see whether our irregular code design method leads to capacity

approaching performances for very long codeword lengths, we have designed a

2/3/13 irregular code of length 16,000 bits with average variable node degree wa=3.8.

We have compared the performance of this code with a commercially used code of

length 64,800 and observed that the performance of our 2/3/13 irregular code is very

close to that of the commercial one.

We have also measured the decoding times for a regular, and 2/3/11, 2/3/13 and

2/3/19 irregular codes of length 1800. We have observed that the average time spent

for one iteration is almost proportional to wa. However, the time spent for decoding

the same number of codewords decreases with increasing average variable node

degree. We have seen that at the time spent for decoding 50,000 codewords at

Eb/No=1.6 dB for the 2/3/13 irregular code with wa=3.8 is 19% less than that of the

regular code. The main reason for this is found to be the smaller number of decoding

failures obtained for the irregular code.

102

As a final consideration, we have discussed the check node degree distributions of

some irregular codes that are used in this work, and shown that the utilized

construction methods create check node degree distributions, which remain close to

uniform, as long as the desired variable node degree distributions fed to the

construction algorithm are close to uniform.

103

CHAPTER 4

CONCLUSIONS

In this work, performances of randomly generated regular and irregular binary LDPC

codes are investigated and the effects which improve or deteriorate the performance

are analyzed. The performance of the codes, all of which are constructed as rate ½

codes that are free from length-4 cycles, are studied using “BER versus SNR” curves

obtained by the belief propagation decoding algorithm that employs the log-

likelihood function.

Using an optimal decoding algorithm, the performance of a regular LDPC would be

better with increasing variable node degree, vw . However, a code with large vw has

a dense Tanner graph in which the belief propagation algorithm makes poor progress.

Therefore, one expects that the optimum vw value is small. In fact, in [MacKay-

2005], it is shown that the optimum value of vw is 3. Considering this fact, we have

constructed all the regular matrices that we have used in this work with 3=vw .

Since the rate of the codes are ½, their check node degrees are 6=cw . The irregular

codes that we generate also have average variable node degrees wa close to 3.

We have observed that, for short codes with small mind values, the decoder seldomly

decides on a wrong codeword, if the number of decoding iterations is sufficiently

larger than mind . So, as a handy rule of thumb, we conjecture that wrong codewords

do not occur if the maximum number of iterations parameter of the decoding

algorithm, Imax, is less than one tenth of the block length. In real cases, where the

code length n and minimum distance mind are much larger than Imax, the probability

of a wrongly decoded codeword approaches to 0. Useful LDPC codes are chosen

104

very long for excellent performance, so practically all decoding errors come from

decoding failures.

We have compared the performances of many regular (3, 6) and irregular 2A codes

defined in [MacKay-Neil-1996] with 95.2=aw . In all cases, we have seen that the

codes with less number of length-6 cycles have better performance, independent of

the regular or irregular structure. As compared to the regular (3, 6) code, there are

less number of 1’s in the parity-check matrix of an irregular code with wa = 2.95;

moreover, degree-2 variable nodes of the irregular 2A codes are designed in such a

way that they do not cause any length-6 cycles. Therefore, it is a greater probability

that the number of length-6 cycles of the irregular 2A code is less than that of a

regular (3, 6) regular code, which is the reason for the better performance of the

irregular code in most cases.

Knowing that the best performance of regular LDPC codes are obtained for 3=vw ,

we have constructed irregular codes that have average variable node degree wa = 3.

In case of the 2/3/4 codes, where the variable nodes are of degrees 2, 3 and 4, we

have seen that the performances of the irregular codes are almost the same as regular

codes. In case of the 1/3/5 codes, we have observed that wrong codewords occur at

the decoder output. We have also noticed that increasing number of degree-1 nodes

increases the number of wrong codewords at the decoder output. Because, degree-1

variable nodes rely only on the information coming from a single check node; and it

is quite probable in the decoding process that they lead to wrong codewords. Since

all 2/3/4 codes have nearly the same BER performance, we conclude that there is no

use in adding degree-4 columns to an irregular 2A code of average node degree 2.95.

One should also avoid variable nodes of degree-1 in LDPC code design.

As we could not obtain a performance improvement for irregular codes with wa = 3,

we decided to increase the value of wa. In the previous parts of this work, we have

shown that carefully designed weight-2 columns of a parity-check matrix lower the

number of length-6 cycles and therefore improve the performance. So, we have

105

included a fixed number of carefully designed weight-2 columns in the parity-check

matrices of the irregular codes and constructed the remaining columns as weight-3

and higher-weight columns in order to have 2/3/i codes (where i=9, 11, 13, 19) with

a desired wa value. For 3>aw , we have seen that increasing wa up to some critical

level improves the performance, but further increase of wa deteriorates the

performance. To explain the reason for this behavior, we have counted the number of

length-6 cycles of the codes and shown that up to that critical value of wa, the

number of length-6 cycles increase slowly with increasing wa. However, for larger

wa, we have noticed an exponential increase in the number of length-6 cycles, which

suppresses the improvement brought by high degree variable nodes. This wa value,

which may be called the optimum average variable node degree, changes with the

weight of the higher weight columns in the parity-check matrix. For the 2/3/9, 2/3/11

and 2/3/13 codes of this work, the optimum wa’s have been shown to be around 3.4,

3.6 and 3.8, respectively. This increase in critical wa is normal, since the 2/3/i code

with larger i requires less number of high-degree columns in the parity-check matrix

to arrive at the same wa , which in turn contributes less to the total number of length-

6 cycles.

It is not right to pay more attention to the number of length-6 cycles than it deserves.

For example, at variable node degrees of 3.4 and 3.6, even though the 2/3/19 codes

have more cycles of length-6, they have better performance than the 2/3/9 codes.

This is normal, since the number of length-6 cycles is not a primary comparison

factor for the codes with different parameters.

In order to see the whether our design methods work well to approach capacity for

very long codeword lengths, we have designed an 2/3/13 irregular code of length

16,000 bits. We have observed that the performance of the 2/3/13 irregular code is

very close to that of a commercial DVB-S2 code of length 64,800.

We have also measured the decoding times for some regular and irregular codes of

codeword length 1800. We have observed that the decoding time per iteration

106

increases with increasing average variable node degree, wa, as expected. However,

we have also seen that the total time spent for a fixed number of codewords is much

less in the case of irregular codes, having high average variable node degrees. For

example, at Eb/No=1.6 dB, 50,000 codewords of 2/3/11 2/3/13 and 2/3/19 irregular

codes having wa values of 3.6, 3.8 and 4 respectively, are decoded in 85%, 81% and

76% of the time required for the regular (3, 6) code. This is mainly because of the

higher number of successes that are arrived at the 11th-12th iterations, and smaller

number of decoding failures that can only be decided upon at the last (i.e., 50th)

iteration of the decoding algorithm.

To sum up, one can improve the performance of an irregular LDPC code by avoiding

weight-1 columns, using a small percentage of carefully designed weight-2 columns

in the parity-check matrix and increasing the average variable node degree up to

some optimum value depending on the structure of the code. The performance of an

irregular code with the optimum average variable node degree may approach the

capacity for very large codeword lengths. Also, we measure the decoding times for

strong irregular codes as much less than that of the regular code with similar

parameters.

Future work may incorporate the design of irregular codes with special variable node

degree polynomials having smaller number of length-6 cycles than those presented in

this work, having much larger average variable node degrees.

107

REFERENCES

• [Aly-2008] S.A. Aly, “A Class of Quantum LDPC Codes Constructed From

Finite Geometries”, IEEE Global Telecommunications Conference, 2008.

• [Bonello-2008] N. Bonello, S. Chen, and L. Hanzo, “Multilevel Structured

Low-Density Parity-Check Codes” IEEE International Conference on

Communications, 2008.

• [Chung-Forney-Shokrollahi-Urbanke-2001] S.-Y. Chung, G. D. Forney

Jr., T. Richardson, and R. Urbanke, “On the design of low-density

paritycheck codes within 0.0045 dB of the Shannon limit,” IEEE

Communications Letter, vol. 5, no. 2, pp. 58–60, Feb. 2001.

• [Chung-Richardson-Urbanke-2001] S. Y. Chung, T. J. Richardson, R. L.

Urbanke, “Analysis of Sum-Product Decoding of Low-Density Parity-Check

Codes Using a Gaussian Approximation”, IEEE Transactions on Information

Theory, Vol. 47, No. 2, February 2001.

• [Davey-1999] M. C. Davey, “Error-correction using Low-Density Parity-

Check Codes.”, Univ. of Cambridge PhD dissertation, 1999.

• [Davey-MacKay-1998] M. C. Davey and D. J. C. MacKay, “Low density

parity check codes over GF(q).”, IEEE Communications Letters 2 (6):

165{167, 1998.

• [Elias-1955] P. Elias, “Coding for Noisy Channels”, The 3rd London

Symposium , pp. 61-76, Sep. 1955.

108

• [Gallager-1962] R. G. Gallager, “Low density parity check codes,” IRE

Trans. Inform. Theory, vol. IT-8, pp. 21–28, Jan. 1962.

• [Gallager-1963] R. G. Gallager. “Low density Parity Check Codes”,

Cambridge, MA: MIT Press, 1963.

• [Goethals-1974] P. Delsarte and J. M. Goethals, Alternating Bilinear Forms

over GF(q), J, Combinatorial Theory, Series A Vol. 19, 26-50, 1975.

• [Goppa-1982] V. D. Goppa “Algebraico-Geometric Codes”, Math. USSR

Izoestiya, vol. 21, pp. 75-91, 1983.

• [Johnson-2008] S.J Johnson, S.R Weller, “Combinatorial Interleavers for

Systematic Regular Repeat-Accumulate Codes”, IEEE Transactions on

Communications, 2008.

• [Kerdock-1972] A. M. Kerdock “A Class of Low-Rate Nonlienar Binary

Codes”, Inform. Control Vol.20, 182-187, 1972.

• [Kou-2000] Y. Kou, S.Lin, M.P.C. Fossorier, “Low density parity check

codes: construction based on finite geometries” IEEE Global

Telecommunications Conference, 2000.

• [Krishnan-2007] K. M. Krishnan, R. Singh, L. S. Chandran, P. Shankar, “A

Combinatorial Family of Near Regular LDPC Codes”, IEEE International

Symposium on Information Theory, 2007.

• [Leiner-2005] B. M. J. Leiner, “ LDPC Codes – A Brief Tutorial”, 2005.

109

• [Luby-Mitzenmacher-Shokrollahi-Spielman-1998] M. Luby, M.

Mitzenmacher, A. Shokrollahi, and D. Spielman, “Analysis of low-density

codes and improved designs using irregular graphs.”, In Proc. 30th Annu.

Sym. Theory of Computing, pages 249–258, 1998

• [MacKay - 2005] D. J. C. MacKay, “Information Theory, Inference, and

Learning Algorithms”, Cambridge University Press, 2003.

• [MacKay-1999] D. J. C. MacKay, “Good Error-Correcting Codes Based on

Very Sparse Matrices”, IEEE Transactions on Information Theory, Vol. 45,

No. 2, March 1999.

• [MacKay-Neal-1996] D. J. C. MacKay and R. M. Neal, “Near Shannon limit

performance of low density parity check codes”, Electronics Letters 1996.

• [Mackay-Wilson-Davey-1999] D. J. C. Mackay, S. T. Wilson, and M. C.

Davey, “Comparison of constructions of irregular Gallager codes”, IEEE

Transactions on Communications, 47(10):1449-1454 October 1999.

• [Moinian-2006] A. Moinian, B. Honary, E. Gabidulin, “Generalized quasi-

cyclic LDPC codes for wireless data transmission”, IET International

Conference on Wireless, Mobile and Multimedia Networks, 2006.

• [Moura-2005] J. Lu, and J. M. F. Moura, “Partition-and-Shift LDPC Codes”,

IEEE Trans. on Magnetics, 2005.

• [Richardson-Shokrollahi-Urbanke-2001] T. J. Richardson, M. A.

Shokrollahi, and R. Urbanke, “Design of capacity approaching irregular low-

density parity check codes”, IEEE Trans. Inform. Theory, vol. 47, no. 2, pp.

619–637, Feb. 2001.

110

• [Richardson-Urbanke-2001] T. J. Richardson and R. Urbanke, “Efficient

Encoding of Low-Density Parity-Check Codes”, IEEE Trans. Inform.

Theory, vol. 47, no. 2, Feb. 2001.

• [Shannon-1948] C. E. Shannon, “A mathematical theory of communication,"

Bell System Technical Journal, vol. 27, pp. 379{423, 1948.

• [Shokrollahi-2003] A. Shokrollahi, “LDPC Codes: An Introduction”, Digital

Fountain, Inc. April 2, 2003.

• [Swanson-1988] L. Swanson, “A new code for Galileo.”, In Proc. 1988 IEEE

International Symposium Info. Theory, pp. 94{95, 1988.

• [Tanner-1981] R. M. Tanner, “A recursive approach to low complexity

codes,” IEEE Trans. Inform. Theory, vol. 27, no. 5, pp. 533–547, Sept. 1981.

• [Tanner-2004] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J.

Costello, “LDPC Block and Convolutional Codes Based on Circulant

Matrices” IEEE Trans. On Info. Theory, 2004.

• [Uzunoğlu-2007] C. Uzunoğlu, “Performance Comparison of Message

Passing Algorithms for Binary and Non-Binary Low Density Parity Check

(LDPC) Codes”, MSc. Thesis in Electrical and Electronics Engineering

Department, METU, 2007.

• [Xia-He-Xu-Cai-2008] D. Xia, H. He, Y. Xu, Y. Cai, “A Novel Construction

Scheme with Linear Encoding Complexity for LDPC Codes”, 4th

International Conference on Wireless Communications, Networking and

Mobile Computing (WiCOM), 2008.

111

 APPENDIX A

LDPC CODE CONSTRUCTION SOFTWARES

Regular Code Construction Software

Our software that constructs regular LDPC codes by the MacKay and Neil’s regular

LDPC code construction method takes the size nm× and the variable node degree

wv as the input parameter, and gives the parity-check matrix H of an regular (wv, wc)

LDPC code of rate m/n at the output. The algorithm of constructing the parity-check

matrix is given below

• Starting from the leftmost column, one-by-one construct weigth-3 columns.

• When constructing a new column, select the positions of the 1’s of the

column from the rows with weights smaller than the desired row weight cw .

• When constructing a new column, make sure that number of overlaps

between any two columns of the entire parity-check matrix no greater than 1.

Irregular 2A LDPC Code Construction Software

Our software that constructs irregular LDPC codes by the 2A method takes the size n

and the average variable node degree aw as the input parameters, and gives the

parity-check matrix H of an irregular LDPC code of rate ½ at the output. The

algorithm of constructing the parity-check matrix is given below

• Using the size of the matrix and the desired average node degree, calculate

the number of weight-2 columns, which cannot exceed n/4 for rate ½ codes.

112

• Construct the weight-2 columns of the parity-check matrix such that there is

zero overlap between any pair of columns

• Make the remaining columns with weight-3, with weight per row as uniform

as possible, and number of overlaps between any two columns of the entire

parity-check matrix no greater than 1.

Pseudo-Random Irregular Code Construction Software

Our software that constructs irregular LDPC codes by MacKay and Neil’s pseudo-

random construction method takes the size n, the average variable node degree aw ,

and the desired variable node degree values as the input parameters, and gives the

parity-check matrix H of an irregular LDPC code of rate ½ at the output. The

algorithm of constructing the parity-check matrix is given below.

• Using the size of the matrix and the desired average node degrees, calculate

the number of columns with each weight.

• Starting from the leftmost column, construct the smallest weight columns

first, then construct the columns with next greater degree and continue this

process until the last column with the greatest weight is constructed.

• When constructing a column, make sure that the number of overlaps between

any two columns of the entire parity-check matrix no greater than 1.

