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ABSTRACT 

 

DESIGN AND PERFORMANCE OF 
CAPACITY APPROACHING IRREGULAR LOW-

DENSITY PARITY-CHECK CODES 
 

 

Bardak, Erinç Deniz 

M. Sc., Department of Electrical and Electronics Engineering 

                   Supervisor: Assoc. Prof. Dr. Melek Diker Yücel 

September 2009, 112 pages 

 

In this thesis, design details of binary irregular Low-Density Parity-Check (LDPC) 

codes are investigated. We especially focus on the trade-off between the average 

variable node degree, wa, and the number of length-6 cycles of an irregular code. We 

observe that the performance of the irregular code improves with increasing wa up to 

a critical value, but deteriorates for larger wa because of the exponential increase in 

the number of length-6 cycles. We have designed an irregular code of length 16,000 

bits with average variable node degree wa=3.8, that we call ‘2/3/13’ since it has some 

variable nodes of degree 2 and 13 in addition to the majority of degree-3 nodes. The 

observed performance is found to be very close to that of the capacity approaching 

commercial codes. Time spent for decoding 50,000 codewords of length 1800 at 

Eb/No=1.6 dB for an irregular 2/3/13 code is measured to be 19% less than that of the 

regular (3, 6) code, mainly because of the smaller number of decoding failures.  

Keywords: Irregular LDPC Codes, Length-6 Cycles. 
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ÖZ 

 

KAPASĐTEYE YAKLAŞAN DÜZENSĐZ DÜŞÜK 
YOĞUNLUKLU EŞLĐK SAĞLAMASI KODLARININ 

TASARIM VE PERFORMANSI 
 

 

Bardak, Erinç Deniz 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

                      Tez Yöneticisi: Doç. Dr. Melek Diker Yücel 

Eylül 2009, 112 sayfa 

 

Bu tezde, ikili düzensiz Düşük-Yoğunluklu Eşlik-Sağlaması (DYES) kodlarının 

tasarım ayrıntıları incelenmektedir. Özellikle odaklandığımız konu, düzensiz 

ortalama değişken düğümü derecesi, wa, ile 6 uzunluğundaki döngüler arasındaki 

ödünleşimdir. Bir kodun başarımının, wa değeri kritik bir değere kadar arttırıldıkça 

düzeldiği fakat daha büyük wa  değerleri için 6 uzunluğundaki döngülerin sayısındaki 

üssel artış nedeniyle kötüye gittiği gözlenmektedir. Tasarladığımız 16,000 ikil 

uzunluğunda, değişken düğümlerinin çoğunluğunun derecesi 3, kalanı da 2 ve 13 

olduğu için 2/3/13 diye adlandırdığımız, ortalama değişken düğüm derecesi wa=3.8 

olan düzensiz kodun başarımı, kapasiteye yaklaşan ticari kodlarınkine çok yakındır. 

Eb/No=1.6 dB değerinde 50,000 kod sözcüğünü çözümlediğimiz 1800 uzunluğundaki 

kodlardan, düzensiz 2/3/13 kod için gereken zamanın, görece az sayıdaki çözümleme 

hatası nedeniyle, düzenli (3,6) koda göre %19 daha kısa olduğu görülmüştür.  

Anahtar Sözcükler: Düzensiz DYES Kodları, 6 Uzunluğundaki Döngüler. 
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CHAPTER 1 
 

 

1               INTRODUCTION   

 

 
In digital communication systems, the main goal is to achieve errorless 

communication between two points. When data is transmitted over an imperfect and 

noisy communication channel, there is some probability that the received message 

will not be identical to the transmitted message. To overcome the effect of noise and 

reduce the error probability at the receiver, one can improve the physical 

characteristics of the communication channel by using more reliable components or 

higher transmission power. One can also use error control coding to detect and 

correct the errors introduced by the channel.  

In 1948, Shannon published his seminal paper [Shannon-1948] on the limits of 

reliable transmission of data over unreliable channels, which established the roots of 

information theory. Given a communication channel, Shannon proved that there 

exists a parameter, called the capacity of the channel, such that reliable transmission 

is possible for rates arbitrarily close to the capacity and not possible above it. The 

researchers, who try to achieve communication rates close to the channel capacity, 

discovered the first examples of error control codes, which in turn started the 

development of coding theory. 

Coding theory is concerned with the design of powerful error control codes, and 

practical encoding and decoding systems. A powerful code is expected to detect and 

correct as many errors at the receiver side as possible. First known error control 

codes, which were capable of correcting single bit errors in each data block, were 

introduced to the literature by Richard W. Hamming in 1950 [Hamming-1950]. 

Afterwards, different codes such as the convolutional codes [Elias-1955], and other 

block codes like the BCH codes [Bose-Chaudhuri-1960], Reed-Solomon (RS) 
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codes [Reed-Solomon-1960], Kerdock codes [Kerdock-1972], Goethals Codes 

[Goethals-1974], and Goppa Codes [Goppa-1982] were found. In 1993, turbo 

codes, which were the first practical codes to closely approach the Shannon limit, 

were invented [Berrou-Glavieux-Thitimajshima-1993]. 

All block codes mentioned above other than Kerdock codes and Goethals codes are 

linear. Low-Density Parity-Check (LDPC) codes, which we are interested in this 

work,  are also linear block codes which were invented by Gallager in 1962 

[Gallager-1962]. 

 

1.1 Definition and History of LDPC Codes 

LPDC codes are linear block codes which are defined by low density parity-check 

matrices. Let H  be a binary ( ) nkn ×−  matrix with ( )kn −  linearly independent 

rows. A linear block code C  is defined as the set of vectors ( )nccc ,,1 K=  such that 

0=TcH . The matrix H  is called a parity-check matrix for the code. The code C  

defined by the parity-check matrix H  is said to be an LDPC code if H  is sparse 

[Gallager-1962], i.e., has small number of nonzero elements. The sparsity of the 

parity-check matrix is the key property that allows algorithmic efficiency of LDPC 

codes. 

Tanner graphs (or bipartite graphs), which are proposed to the literature by Michael 

Tanner in [Tanner-1981], are used to visualize the parity-check matrices of LDPC 

codes. In a Tanner graph, each column of the parity-check matrix is called a variable 

node and each row is called a check node. The variable nodes are connected to the 

check nodes with edges, which are drawn according to the positions of the nonzero 

elements in the parity check matrix. 

There are mainly two kinds of LDPC codes; the regular and irregular ones. A regular 

LDPC code has a parity-check matrix H, in which every column has the same weight 
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vw  and every row has the same weight cw . On the other hand, the columns and rows 

of the parity-check matrix of an irregular LDPC code do not have uniform weight 

distribution. In the literature, irregular LDPC codes have been shown to outperform 

the regular ones. 

The performance of an LDPC code is affected also by another important parameter, 

called the cycle. In a Tanner graph, a cycle is defined as the series of connected edges 

that starts from and ends at the same variable node. The length of a cycle is defined 

as the number of edges that it contains. Small cycles, such as length-4 and length-6, 

deteriorate the performance of a code.  

The most widely used algorithms for decoding LDPC codes are message passing 

algorithms, which are also known as iterative algorithms. These algorithms are 

called iterative since messages are passed from variable nodes to check nodes, and 

from check nodes to variable nodes at each round of the algorithm. The sparsity 

property of LDPC codes lowers the complexity of the operations done in each 

iteration and makes the iterative algorithms suitable for decoding of LDPC codes. 

LDPC codes were invented by Robert Gallager in 1962 [Gallager-1962]. Due to the 

requirement of high complexity computations, LDPC codes had been ignored for a 

long time. Also at that time Reed-Solomon and convolutional codes were considered 

to be perfectly suitable for error control coding, which was another reason for LDPC 

codes to be neglected. 

36 years after from its invention, the studies done by MacKay and Neil attracted the 

attention of the communication society on LDPC codes again. In 1996, MacKay and 

Neil [MacKay-Neal-1996] showed that optimally decoded LDPC codes can reach 

information rates within 1 dB to the Shannon limit. MacKay and Neil's codes were 

regular LDPC codes. In 1998, Luby et al. [Luby-Mitzenmacher-Shokrollahi-

Spielman-1998] proposed irregular LDPC code structures whose performances are 

better than the regular ones. In 2001, an analytical way of designing irregular LDPC 
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codes, called density evolution, was developed by Richardson et al. [Richardson-

Shokrollahi-Urbanke-2001] to construct irregular LDPC codes which outperform 

the regular ones and even turbo codes. Again in 2001, the best known LDPC code 

was proposed by Chung et al.  [Chung-Forney-Shokrollahi-Urbanke-2001]. The 

code they proposed was an irregular LDPC code of rate ½, codeword length 710 , and 

of performance only 0.0045 dB away from the Shannon limit. 

All codes mentioned above are binary codes. There also exist non-binary LDPC 

codes introduced to the literature [Davey-MacKay-1998], [Davey-1999]. Figure  1.1, 

which is given in [MacKay-2005], is a very good visualization to compare the 

binary and non-binary regular and irregular LDPC codes with each other and also 

with other outstanding error correcting codes such as turbo codes. 

 

 

Figure  1.1 Comparison of regular binary Gallager codes with irregular codes, codes over 

GF(q), and other outstanding codes of rate 1/4. 

 
 
 

In Figure  1.1, Irreg GF(8) is an irregular LDPC code over GF(8),with codeword 

length of 48,000 bits given in [Davey-1999]; Turbo is a JPL turbo code with  

codeword length of 65,536 bits given in [MacKay-2005]; Reg GF(16) is a regular 

LDPC code over GF(16) with codeword length of 24,448 bits given in [Davey-
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MacKay-1998]; Irreg GF(2) is an irregular binary LDPC code with codeword length 

of 16,000 bits given in [Davey-1999]; Luby is an irregular binary LDPC code with 

codeword length of 64,000 bits given in [Luby-Mitzenmacher-Shokrollahi-

Spielman-1998]; Galileo is a JPL turbo code used in the space-craft Galileo, given in 

[Swanson-1988]; Reg GF(2) is a regular binary LDPC code with codeword length of 

40,000 bits given in [MacKay-1999]. 

Today, LDPC codes became one of the most important error correcting codes used in 

several areas of communication. LDPC codes are the main codes used in very 

important standards such as: 

•  IEEE WIMAX (Worldwide Inter-operability for Microwave Access) 802.16e 

 Standard 

•  Digital Video Broadcasting – Satellite - Second Generation (DVB-S2) 

•  10GBase-T Ethernet Standard 

•  ITU-T  G.hn/G.9960 Standard for networking over power lines, phone lines 

 and coaxial cable 

• China National Standard for Digital Terrestrial TV Broadcasting standard 

 

1.2 Aim and Organization of the Thesis 

The aim of this thesis is the investigation of the performance of irregular LDPC 

codes with different variable node degree distribution polynomials. We design 

regular and irregular codes and analyze the circumstances under which the 

performance of the codes improve or deteriorate. Specifically, we study the effects of 

the average variable node degree and the number of length-6 cycles parameters on 

the performance of the codes, and try to reveal the trade-off between these two 

parameters. 
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In Chapter 2, we review the literature on Low-Density Parity-Check (LDPC) codes 

after discussing the preliminaries of linear block codes and LDPC codes. We discuss 

the regular and irregular code construction methods that are used in our work. 

Finally, we explain the decoding algorithms that we employ to decode the LDPC 

codes that we generate and use in the simulations. 

In Chapter 3, we investigate the performances of the regular codes with variable 

node degree vw =3 and the irregular codes generated by MacKay and Neil’s methods. 

After verifying the correctness of the software that we develop for simulations, we 

find the distribution of block errors in terms of wrongly decoded codewords and 

decoding failures of the belief propagation decoding algorithm. We examine the 

conditions that lead to wrong codewords and comment on the choice of the 

maximum number of iterations to be used. We then study the performances of many 

irregular LDPC codes that have different variable node degree distribution 

polynomials. Properly designing these polynomials, we generate irregular codes with 

desired properties. Using the generated codes, we investigate the effects of the 

average variable node degree and the number of length-6 cycles on the performance. 

Then, we design an irregular code of length 16,000 bits and compare its performance 

with a capacity approaching commercial code which is used in DVB-S2 standard. 

We also measure the decoding times needed for some irregular and regular codes to 

understand the effect of average variable node degree on the decoding times.  

 

In Chapter 4, we summarize our work and give suggestions for further studies. 
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CHAPTER 2 
 

 

2 LOW DENSITY PARITY CHECK CODES 

 

 
In this chapter, we review the literature on Low-Density Parity-Check (LDPC) codes 

after discussing the preliminaries on linear block codes. Section 2.1 covers the 

overview of linear block codes and LDPC codes. In Section 2.2, we give the Regular 

Code Construction, Irregular 2A Code Construction and Irregular Pseudo-Random 

Code Construction methods of MacKay and Neil that we have used in his work. In 

Section 2.3, we discuss the encoding methods of LDPC codes. Finally, in Section 

2.4, we give the details of the log-likelihood and the likelihood decoding algorithms 

utilized in our simulations. 

 

2.1 Overview of Linear Block Codes and LDPC Codes 

LDPC codes are linear block codes that have parity-check matrices in which the 

number of the nonzero elements is much less than the number of zero’s. Before 

giving detailed information about LDPC codes, it will be better to briefly discuss the 

main properties of linear block codes.  

An (n, k) block code is a rule of converting a sequence of source symbols of length k 

into a sequence of n, where n > k. The linear (n, k) code over GF(q) is a subspace C 

of the vector space GF(q)n . The elements of C are n-dimensional vectors, called the 

codewords. Let the source message ( )110 ,...,, −= kmmmm  be an arbitrary vector in 

GF(q)k. By the linear transformation  

 
,... 111100
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one can generate all kq  codewords ( )110 ,...,, −= ncccc  in C, provided that the nk ×   

matrix G is of rank k. Then, G is called the generator matrix of the code; because it 

has k linearly independent row vectors ig  spanning the subspace C.   

 


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






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



=
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1

0

...

kg

g

g

G  ( 2.2) 

An (n, k) linear block code has the ( ) nkn ×−  parity-check matrix H, whose rows are 

orthogonal to the rows of G, hence  

 ( ).0 knk

THG −×=×  ( 2.3) 

Therefore, the codeword ( )110 ,...,, −= ncccc  generated by (2.1) satisfies  

 .0=× THc  ( 2.4) 

The generator matrix of a linear block code in systematic form can be expressed as 
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1
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



=

−  

( 2.5) 

where kI  is the kk ×  identity matrix and P is a )( knk −×  matrix. The 

corresponding parity-check matrix in systematic form can be found using (2.3) as 

 H = [PT  
In-k].  ( 2.6) 

An important parameter of a block code is its rate k/n, that is the number of 

information symbols divided by the number of codeword symbols. Consider a parity-
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check matrix, H of an LDPC code whose size is nm× . If there are m parity check 

symbols, k=n−m; so the code rate can also be expressed as  

 
.1

n

m

n

mn

n

k
Rate −=−==  ( 2.7) 

Rate of a code plays an important role in its error correction performance. When the 

rate is increased, the fraction, m/n, of the parity-check symbols is decreased in a 

codeword. In this case, more information is sent with less number of parity-check 

symbols. This may sound good since the speed of information transmission 

increases. However, the error correction capability of the code is obviously hurt since 

less number of parity-check equations exist to be used to correct the erroneous 

symbols. This explains the trade-off between information density and the error 

correction capability of the code. Therefore, the rate of a code is crucial and should 

be chosen according to the characteristics of the communication channel. 

After this brief review of linear block codes, we can now give some information 

about low-density parity-check codes. A low-density parity-check (LDPC) code is a 

linear block code that has a parity-check matrix, H, every row and column of which 

is `sparse' [Gallager-1962]. As emphasized by the word ‘sparse’, an LDPC code 

contains very small number of nonzero elements in the parity-check matrix H as 

compared to its size.  

There are mainly two kinds of LDPC codes; the regular and irregular ones. A regular 

LDPC code has a parity-check matrix H, in which every column of H has the same 

weight vw  and every row has the same weight cw . On the other hand, the columns 

and rows of the parity-check matrix of an irregular LDPC code do not have uniform 

weight distribution. 

Tanner graphs (or bipartite graphs), which are proposed to the literature by Michael 

Tanner in [Tanner-1981], are used to visualize the parity-check matrices of LDPC 

codes. In a Tanner graph, each column of the parity-check matrix is called a variable 
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node and each row is called a check node. The variable nodes are connected to the 

check nodes with edges, which are drawn according to the positions of the nonzero 

elements in the parity check matrix. The parity check matrix of a linear block code 

and its corresponding Tanner graph is illustrated in Figure  2.1: 

 

Figure  2.1 The parity-check matrix of a (8, 4) code and the corresponding Tanner graph 

 
 
 
Each edge in a Tanner graph corresponds to a nonzero entry in the parity-check 

matrix H. Therefore, in terms of edges, the weight of a column (row) is the number 

of edges emanating from the corresponding variable (check) node. The number of 

nonzero elements in a column (row) is said to be the degree of that variable (check) 

node. 

One way to express the weight distributions of variable and check nodes is to use 

degree distribution polynomials. The variable node degree distribution polynomial of 

an LDPC code is of the form 

 ( ) 1

1

−

=
∑= i
d

i

ixx
v

λλ  ( 2.8) 

and the check node degree distribution polynomial is of the form 

H = 

Variable Nodes 
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=

−=
cd

j

i

j xx ρρ
 

( 2.9) 

In these equations iλ  is the fraction of edges emanating from the variable nodes of 

degree i, and jρ  is the fraction of edges emanating from the check nodes of degree j. 

In other words, iλ  is the number of variable nodes of degree i divided by the total 

number of the variable nodes, and jρ  is the number of check nodes of degree j 

divided by the total number of the check nodes. dv and dc are the maximum variable 

and check node degrees, respectively. Since iλ s and jρ s denote the fraction of 

variable and check node degrees, they must sum up to one. Hence,  

 
∑

=

=
vd

j

j

1

1λ  

 
.1

1
∑

=

=
cd

j

jρ  

( 2.10) 

The main properties of an LDPC code can be understood by looking at its degree 

distribution polynomials. For an irregular LDPC code, the degrees of variable and 

check nodes may differ from each other. In this case there exists more than one 

coefficient iλ  (or jρ ) in the variable (or check node) degree distribution 

polynomials of the code. The variable and check node degree distribution 

polynomials of the irregular LDPC code in Figure  2.1 are 

 ( ) ,
3

1

8

6

8

1 20 xxxx ++=λ
 

( ) .
4

1

4

2

4

1 432 xxxx ++=ρ
.
 ( 2.11) 

As can be seen, the given LDPC code has an irregular degree structure for both of its 

variable and check nodes: 81  of the variable nodes have degree 1, 86  of them have 

degree 2, and 81  of them have degree 3. The check node degree distribution of this 



 
 

12 

code is also irregular: 41  of the check nodes have degree 3, 42  of them have 

degree 4, and 41  them have degree 5.   

A regular LDPC code has all variable node degrees equal to some constant vw , and 

all check node degrees equal to some constant cw . Therefore, there exist only one 

coefficient 
vwλ  in the variable node degree distribution polynomial, and one 

coefficient 
cwρ  in the check node degree distribution equation of the code. 

Considering (2.2) it is not difficult to see that both 
vwλ  and 

cwρ  are equal to 1. As an 

example, the degree distribution polynomials of a regular LDPC code with 3=vw  

and 6=cw  are  

 ( ) ,2xx =λ  ( ) .5xx =ρ  ( 2.12) 

One can now define the rate of an LDPC code in terms of the coefficients iλ  and 

jρ . Consider an LDPC code with variable node degree distribution polynomial 

( ) 1

1

−

=
∑= i
d

i

ixx
v

λλ , and check node degree distribution polynomial ( ) 1

1

−

=
∑= i
d

j

jxx
c

ρρ .  

Let E be the total number of edges in the Tanner graph of this code. Then the number 

of variable nodes which have degree i can be expressed as 
i

E iλ
.  Hence, the total 

number of variable nodes is ∑
=

vd

i

i

i

E

1

λ
. Similarly the total number of check nodes is 

∑
=

dc

j

j

j

E

1

ρ
. Therefore we can rewrite the rate of this code in terms of the coefficients 

iλ  and jρ as follows: 
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  ( 2.13) 

We have mentioned earlier in this chapter that the rate of an LDPC code is crucial in 

the error correcting capability of the code. The performance of an LDPC code is 

affected also by another important parameter, called the cycle. In a Tanner graph, a 

cycle is defined as the series of connected edges that starts from and ends at the same 

variable node. The length of a cycle is defined as the number of edges that it 

contains. As an example, consider the parity-check matrix H, and its Tanner graph 

given in Figure  2.2. H has one cycle of length 4 created by its bold entries and the 

bold edges in the Tanner graph are the ones that form the cycle. 

 

Figure  2.2 A sample parity-check matrix for a (6, 3) code and its Tanner graph. The cycle of 

length-4 is shown as bold entries in the matrix and bold edges in the graph  

 

In a Tanner graph there may be several cycles of different length. Obviously, the 

minimum length that a cycle can have is four. Especially the length-4 cycles, 

deteriorate the decoding performance of LDPC codes; therefore, to avoid cycles of 

length-4 is one of the most important things to take into account in the construction 

of an LDPC code. Cycles with lengths greater than four also decrease the 

  Variable Nodes 

Check Nodes 

v1 v2 v3 v4 v5 v6 

c1 c2 c3 

H = 
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performance of LDPC codes; however, their effect is not as significant as the length-

4 ones. 

The smallest cycle length in the Tanner graph is called the girth of the code. LDPC 

codes with larger girth values have been shown to result in better error correcting 

performance. 

2.2 MacKay & Neil Construction Methods for LDPC Codes 

There are a great number of different LDPC code construction methods in the 

literature such as quasi-cyclic construction [Tanner-2004], [Moura-2005], pseudo-

random construction [Moinian-2006], [Bonello-2008], combinatorial approach 

[Krishnan-2007], [Johnson-2008], and finite geometry techniques [Kou-2000], 

[Aly-2008]. In this section we will explain MacKay & Neil’s techniques that we 

have used for constructing regular and irregular LDPC codes.  

2.2.1 Regular LDPC Code Construction 

In this work, we have used the MacKay and Neal’s Method for regular LDPC code 

construction [MacKay-Neal-1996]. In this algorithm, construction of an nm×  

parity-check matrix starts with forming the leftmost column of the matrix. At first 

step, desired number of vw  1’s are placed randomly in the first column. After that, 

the remaining columns are formed one-by-one from left to right. In the construction 

of these remaining columns, two things are taken into account. Any column which 

will be added should not have more than one overlap between any of the present 

columns in order to avoid length-4 cycles. The second thing to be considered when 

adding a new column is that, the positions of the 1’s of the column should be selected 

from the rows with weights smaller than the desired row weight cw . By this 

construction method, the parity check matrix of an nm× regular LDPC code that is 

free from length-4 cycles can be obtained.  
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We have implemented a software which is capable of generating regular parity-check 

matrices of any length and any rate using McKay and Neil’s method. In this work, all 

the regular matrices we have used are constructed using this software. The software 

we implemented for regular matrix generation is explained in Appendix A. 

2.2.2 Irregular LDPC Code Construction by 2A Method 

The 2A method of constructing irregular LDPC codes was introduced to the 

literature by MacKay and Neal [MacKay-Neal-1996]. The method has the following 

rules for constructing the parity-check matrix:  

• In the parity-check matrix of the code whose size is nm× , up to m/2 of the 

columns are designated ‘weight-2 columns’, and these are constructed such 

that there is zero overlap between any pair of columns.  

• The remaining columns are made at random with weight-3, with the weight 

per row as uniform as possible, and overlap between any two columns of the 

entire parity-check matrix no greater than 1. 

As can be understood from the above rules for construction, the parity-check matrix 

generated by this method has some of its variable nodes with degree 2, and some of 

them with degree 3. Therefore, the variable node degree distribution of such a matrix 

can be written in generic form which is given in equation (2.14). 

 ( ) 2
32 xxx λλλ +=   

 132 =+ λλ   
( 2.14) 

The irregular codes generated by this method look very similar to regular codes. The 

only difference of these irregular codes is that they have some of their columns with 

weight-2 instead of weight-3. In the related paper of MacKay [MacKay-1999], it is 

said that the weight-2 columns are introduced to the parity-check matrix because 
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they “guessed” that these columns may lead the code to a better performance than the 

regular ones.  

 The part of the matrix with weight-2 columns has the important property that there 

exist zero overlap between any pair of the columns. This property is quite essential to 

avoid cycles of any length which may be caused by the weight-2 columns. For a 

moment let us ignore this property and see what may happen. Let us consider the 

below figure which is a part of the bipartite graph of an LDPC code which is 

constructed randomly: 

 

 

Figure  2.3 A part of the bi-partite graph of an irregular LDPC code  

which is constructed randomly 

 
 
 
In Figure  2.3, it can be easily seen that the edges emanating from the variable nodes 

xv , yv  and zv  result in a cycle of length-6 which distorts the performance of the 

code. However, if the actual proposed property of the 2A method was preserved, 

there would be no chance to have any cycles generated by the degree-2 variable 

nodes.  
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The performance of the irregular codes generated by the 2A method will be 

investigated in detail in Section 3.3. 

2.2.3  Irregular LDPC Code Construction by Pseudo-Random Method 

This method works similar to the regular matrix construction method. However, in 

this case all the columns do not have the same weight. The degrees of the variable 

nodes are defined by the degree distribution polynomial of the code and there is more 

than one degree value that a variable node can have.  

In this method, as in the regular case, the columns of the irregular matrix are 

constructed from left to right. The weights of the columns and number of columns 

with each column weight are defined by the variable node degree distribution 

polynomial. Starting from the leftmost column, first the columns with the smallest 

weight are constructed, then the columns with next greater degree are constructed 

and this process continues until all columns with each weight are constructed. All of 

the columns are constructed such that the overlap between any two columns of the 

matrix is not greater than one in order to avoid length-4 cycles. 

In this work we have generated many different irregular parity-check matrices with 

different lengths and different variable node degree distributions using these 

methods. The performances of the irregular LDPC codes are analyzed in detail and 

compared with the regular ones in the following chapters. 

2.3 Encoding of LDPC Codes 

Consider an LDPC code defined by the parity-check matrix H. As we have discussed 

in Section 2.1, a codeword c of this code is generated by Gmc = , where m is the 

source message and G is the generator matrix. In this codeword generation process, 

which is called encoding, the main point is to have low encoding complexity. The 

parity-check matrix H is a sparse matrix. However, the generator matrix G, is not a 
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sparse matrix; hence, the encoding time by Gmc =  is proportional to n2, where n is 

the codeword length. 

To reduce the encoding complexity, Richardson and Urbanke proposed a method 

where the parity-check matrix H is directly used to encode codewords [Richardson-

Urbanke-2001]. In this method, which is called the RU algorithm, the parity-check 

matrix is transformed into an approximate lower-triangular form, by performing 

basic row and column operations only. The approximate lower-triangular form for an 

nm×  parity-check matrix is shown in Figure  2.4. 

 

Figure  2.4 Example of a parity-check matrix in approximate lower triangular form 
 
 
 
Suppose that m  is a vector of message block. According to the RU algorithm, the 

codeword after decoding is ( )21 ,, ppmc =  where 1p  and 2p  are the parity parts. It is 

shown that ( ) TsCAETp +−−= −− 11
1 φ  and ( )TTT

BpAsTp 1
1

2 +−= − , where 

DBET +−= −1φ . The encoding complexity of the algorithm is then shown to be 

proportional to 2gn + . Therefore, when n >> g, the encoding complexity is 

proportional to n.  
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The RU method works on the given parity-check matrices. In the literature, there are 

other methods that use the idea of spending effort on the construction the LDPC 

codes in order to have low encoding complexities. In [Mackay-Wilson-Davey-1999] 

and [Xia-He-Xu-Cai-2008], design methods of LDPC codes are given such that the 

encoding complexities of the codes are proportional to n. 

2.4 Decoding of LDPC Codes by Belief Propagation Algorithm 

The most widely used algorithms for decoding LDPC codes are message passing 

algorithms which are also known as iterative algorithms. These algorithms are called 

iterative since messages are passed from variable nodes to check nodes, and from 

check nodes to variable nodes at each round of the algorithm. The messages from 

message nodes to check nodes are computed based on the observed value of the 

message node and some of the messages passed from the neighbouring check nodes 

to that message node [Shokrollahi-2003]. In this section we will investigate the most 

commonly used decoding algorithm called the belief propagation algorithm.  

Belief propagation algorithm is a message passing algorithm, in which the messages 

passed between variable and check nodes at each round of the algorithm are random 

variables. In this algorithm, the calculations of these random variables are done 

separately assuming that they are statistically independent. This assumption would 

be true for a code, which contains no cycles of any length. Almost every LDPC code 

contains cycles. However, this algorithm works quite well for decoding LDPC codes 

whose cycles are long enough [Shokrollahi-2003]. 

In our study, we have implemented the log-likelihood belief propagation decoding 

and the likelihood belief propagation decoding. These two techniques are quite 

similar to each other as explained below.  
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Likelihood Decoding 

In likelihood decoding, the messages passed between variable and check nodes are 

the likelihood values of these bits. The algorithm is composed of 4 steps.  

First Step: Initialization 

At the first step of decoding, the only messages to be sent are the messages from 

variable nodes to check nodes which are calculated using the observed values of 

these bits. This observed information for each bit is used to calculate the likelihood 

ratio of each bit. 

 

i

i

initialii
p

p
PQ

−
==
1

,   ( 2.15) 

In (2.15), ip  is the probability that the bit ic  of the received codeword 

[ ]ncccc ...21=  is 1. iQ  is the initial value for the message that is sent from the 

thi variable node to its related check nodes. In an algorithmic manner, we will call the 

message sent from thi  variable node to the thj  variable node iji pL =, , and the initial 

value of  iji QL =, . 

Second Step: Check Node Response 

In this step, check nodes calculate their response messages ( )0,ijR  and ( )1,ijR  to be 

sent to the variable nodes. 

 ( )jiij ycPR 0, ==   

 ( )jiij ycPR 1, ==
  

( 2.16) 
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Here, ( )ji ycP 0=  and ( )ji ycP 1=  are the probabilities that the bit ic  is 0 or 1 given 

the conditional event jy  that the thj  parity-check equation is satisfied. 

To be able to compute ( )ji ycP 0=  and ( )ji ycP 1= , we will use an expression 

which is proved by Gallager in his work [Gallager-1963]. Gallager showed that the 

probability ( )ji ycP 0=  that the thj  parity-check equation is satisfied if the bit ic  is 

equal to 0 can be expressed as 

 ( ) ∏
≠∈

−+==
iiBi

iji

j

pycP
','

),21(
2

1

2

1
0 '   ( 2.17) 

where jB  is the set of bits included in the thj  parity-check equation and ip  is the 

probability that the bit ic  is equal to 1. 

Then, the probability ( )ji ycP 1=  that the thj  parity-check equation is satisfied if the 

bit ic  is equal to 1 is 

 ( ) ( ) .)21(
2

1

2

1
011

','

'∏
≠∈

−−==−==
iiBi

ijiji

j

pycPycP   ( 2.18) 

Therefore, ( )0,ijR  and ( )1,ijR  can be calculated as the following. 

 ( ) ( )∏
≠∈

−+=
iiBi

iij

j

pR
','

', 21
2

1

2

1
0   

 ( ) ( )∏
≠∈

−−=
iiBi

iij

j

pR
','

', 21
2

1

2

1
1   

( 2.19) 

where jB  is the set of bits included in the thj  parity-check equation. 
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The ijR ,  values are then sent from each check node to the variable nodes that are 

connected to it, and the algorithm continues with the third step. 

Third Step: Codeword Test 

This step is the decision step of the algorithm. The check node responses together 

with the initially observed information are used to decide whether the bit ic  is a 1 or 

0. For each bit i  the following calculations are done. 

 ( ) ( ) ( )∏
∈

−=
iAj

ijijii RpkD
'

,', 010   ( 2.20) 

In the equations, the set iA  is the set of check nodes that are connected to the 

variable node i , and the constants jik ,  are chosen such that  ( ) ( ) 010 =+ ii DD . These 

( )0iD  and ( )1iD  values are then used in the inequalities given below to decide 

whether the bit ic  is a 1 or 0. Let the decided sequence be [ ]110 ... −= nmmmm . 

 ( ) ( )


 ≤

=
else

DD
m

ii

i
,0

10,1
  ( 2.21) 

If the vector m  is a valid codeword, that is to say 0=THm , the algorithm 

successfully terminates here, and outputs m  as the decoded codeword. If m  is not a 

valid codeword, the algorithm continues with the fourth step. 

Fourth Step: Variable Node Response 

In this step, the first thing to be done is to increase the iteration number by one and 

check if the maximum number of iterations, say maxI , has been reached. If maxI  has 

been reached, the algorithm terminates with failure and outputs the last decided value 

of m .  
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If maxI  has not been reached yet, variable node responses are calculated using 

equation (2.22), and these responses are sent form each variable node to the related 

check nodes. 

 ( ) ( ) ( )∏
≠∈

−=
jjAj

ijijiji
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RplL
','

,',, 010   

 ( ) ( )∏
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ijijiji

i
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','

,',, 11   
( 2.22) 

such that the constants jil ,  are chosen to satisfy ( ) ( ) .110 ,, =+ jiji LL  

After the responses are sent to the variable nodes, the algorithm continues with the 

second step. 

Log-likelihood Decoding 

This type of decoding is similar to the likelihood decoding. However, in this case, the 

messages sent between variable nodes and check nodes are the log-likelihood ratios, 

not the likelihood values, of these bits. The steps of log-likelihood decoding are same 

as the likelihood decoding. In this section, we will mention the similarities and 

differences of log-likelihood decoding compared to likelihood decoding and modify 

the equations of likelihood decoding in order to suit the log-likelihood decoding. 

First Step: Initialization  

At this step, the messages to be sent from variable nodes to check nodes are 

calculated using the following equation. 
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Similar to the likelihood decoding, we will call the message sent from thi  variable 

node to the thj  variable node 






 −=
pi

p
L i

ji

1
ln, , and the initial value of  iji QL =, . 

Second Step: Check Node Response 

In this step, the check node responses are calculated using the following equation.  
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Similar to likelihood decoding, ( )ji ycP 0=  and ( )ji ycP 1=  are computed using 

(2.17) and (2.18). Therefore, ijR ,  can be expressed as 
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At this point the following identity of tangent hyperbolic and natural logarithm 

functions will be used. 
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Also note that 
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Then, ijR ,  can be calculated as 
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Third Step: Codeword Test 

Similar to likelihood decoding, this step is the decision step. In this step, firstly the 

following calculation is done. 

 ∑
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After this calculation, the decision for each bit is done using the following equation. 
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If the decided vector m  is a valid codeword, the algorithm stops here. Else, the 

algorithm continues with the fourth step. 

Fourth Step: Variable Node Response 

In this step, similar to likelihood decoding, iteration number is increased and checked 

whether it has reached the value Imax. If so, the algorithm terminates with failure and 

the last decided codeword is outputted. If not, the variable node responses are 

calculated using the following equation. 

 ∑
≠∈

+=
jjAj

ijiji

i

RQL
','

,',  ( 2.31) 



 
 

26 

The responses of the variable nodes calculated using (2.31) are then sent to the check 

nodes and the algorithm continues with the second step. 

The steps of both likelihood decoding and log-likelihood decoding algorithms are 

illustrated in Figure  2.5. 

 

Figure  2.5 Illustration of likelihood and log-likelihood decoding algorithms 
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CHAPTER 3 
 

 

3 SIMULATION RESULTS 

 

 
In this chapter, we mainly investigate the performance of regular and irregular LDPC 

codes. Irregular LDPC codes with different variable node degree distribution 

polynomials are generated and their bit error ratio (BER) versus input bit energy 

divided by noise spectral density of the channel (Eb/N0) performance is compared 

with that of the regular codes.  

Section 3.1 is intended as a preliminary related to the understanding of the 

fundamental concepts about LDPC codes and to the control of our implementation. 

In Section 3.2, we examine two different types of errors made by the decoder; 

failures and wrong decisions. We show that decoding failures are much more likely, 

i.e., the decoder algorithm reaches to the end of iterations without deciding on any 

codeword but still correcting some erroneous bits. The frequency of wrong decisions, 

i.e., decisions on a wrong codeword different from the sent one is extremely small 

and approaches to 0 for sufficiently long codes. 

In the remaining sections, irregular LDPC codes are constructed using either of the 

MacKay’s construction methods discussed in Section 2.2. The codes generated by 

the 2A method are examined in Section 3.3 for various values of the average variable 

node degree. Two different types of irregularities, having variable node degrees of 

either 2/3/4 or 1/3/5 generated by pseudo-random construction, are investigated in 

Sections 3.4 and 3.5, respectively. The effects of these kinds of irregularities on the 

performance of irregular LDPC codes are discussed. 

In Sections 3.6 and 3.7, we consider codes with variable node degrees 2/3/i, where 

the highest degree i is chosen from the set {9, 11, 13, 19}. We have specifically 
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studied the trade-off between the average variable node degree and the number of 

length-6 cycles in detail.  

In Section 3.8, we design a 2/3/13 irregular code of length 16,000 bits and compare 

its performance with a commercially used LDPC code of length 64,800 bits. Then, in 

Section 3.9, we analyze the decoding times of some regular and irregular codes. We 

investigate the effect of the average variable node degree on the decoding time of the 

codes. 

Section 3.10 deals with the check node degree distributions of the generated LDPC 

codes, which occur randomly as a result of the construction algorithm. Section 3.11 

is a summary of the work done.  

The properties of the codes, the communication channel, and the decoder that are 

used in the simulations are as described below. 

• Code Properties: In each simulation, we use a randomly generated regular or 

irregular LDPC code of specific length (576≤n≤1800), and of rate ½ 

according to one of the construction methods described in Section 2.2. 

• Communication Channel Properties: We use additive white Gaussian noise 

(AWGN) channel with Binary Phase Shift Keying (BPSK) modulation in our 

simulations. Each bit of a codeword to be sent is first modulated with BPSK, 

then a random noise sample of given power is added.  

• Decoder Properties: We use the log-likelihood decoding algorithm with the 

maximum number of iterations, maxI , chosen as 50. So, if the decoder cannot 

decide on a valid codeword, it yields the vector that it arrives at the 50th 

iteration as the decoder output. 

In the simulations, for each Eb/N0 value, we count the block errors, almost all of 

which are shown in Section 3.2 to occur as a result of decoding failures. The 

simulation is stopped when 20 block errors are counted. Then we calculate the Bit 
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Error Ratio (BER) value for this level of Eb/N0, and present the results in BER versus 

Eb/N0 value curves. 

We have used MATLAB as software development tool. In our work, we have done 

many simulations all of which take long time. In order to shorten the time needed to 

complete the simulations, we have worked on optimizing our decoder software and 

also run our simulations in more than 4 computers in parallel. In Section 3.1, the 

performances of two different decoders, namely log-likelihood and likelihood 

decoders are compared. The time consumption of the log-likelihood decoder that we 

worked on optimizing its software is less than that of the likelihood decoder. 

Therefore, we may say that our optimization wok on the decoder software has been 

useful. 

3.1 Experimental Preliminaries and Software Control 

In this section, we investigate the preliminaries related to the understanding of the 

fundamental concepts about LDPC codes and control the correctness of our 

implementation.  Firstly, we compare the performance of two different decoders, log-

likelihood and likelihood decoder. Then, we review the effect of the codeword length 

of an LDPC code on its performance. 

3.1.1   Decoder Comparison 

In Section 2.4, we have described two types of decoding algorithms called likelihood 

and log-likelihood decoding. Although the performance of the two algorithms is 

expected to be the same, in [Uzunoğlu-2007] the simulation results of these two 

decoders were found to be not exactly the same. This is why we start by comparing 

the performance of these decoders. 

We have done decoding simulations of different length codes using both of the 

decoders and obtained the graphs shown in Figure 3.1 for n=576 and in Figure 3.2 

for n=896. It is seen that both of the decoders yield exactly the same results, which is 
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not surprising. The only difference that we have observed is the time consumption of 

the two decoding softwares. 

 

Figure  3.1 Performance comparison of log-likelihood and likelihood decoders for a regular 

(576, 288) low-density parity-check code 

 

Figure  3.2 Performance comparison of log-likelihood and likelihood decoders for a regular 

(896, 448) low-density parity-check code 
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The time spent for the simulations of (576, 288) and (896,448) codes with log-

likelihood and likelihood decoders are given in Table 3.1. 

 
 

Table  3.1 Time consumptions of log-likelihood and likelihood decoders 
 

LDPC 
Code 

Time Spent with  
log-likelihood decoder 

Time Spent with 
likelihood decoder 

 (576, 288)  402.297 seconds  460.703 seconds 

 (896, 448)  2933.02 seconds  3452.86 seconds 

 
 
 
As can be seen from Table 3.1, our software for the likelihood decoder spends 

approximately 15% more time than the log-likelihood decoder. This is an 

optimization issue to be studied on the implementation of the decoder software. We 

did not work on this optimization since both decoders give out the same results. 

Instead, we decided to use the log-likelihood decoder in the rest of our simulations. 

In [Uzunoğlu-2007] the simulation results of these two decoders were not exactly 

the same, the log-likelihood decoder consistently performing slightly worse than the 

likelihood decoder. One possible reason for this erroneous result may be the 

cumulative effect of the rounding errors in the software written for the log-likelihood 

decoder. A related graph taken from [Uzunoğlu-2007] is given in Figure  3.3, where 

the abbreviation of “LL Decoders” stands for the log-likelihood decoder, and “APP 

Decoder” stands for the likelihood decoder. 
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Figure  3.3 Performance comparison of log-likelihood and likelihood decoders for regular 
(896, 448) and (896, 224) codes taken from [Uzunoğlu-2007] 

 
 
 

3.1.2 Effect of Codeword Length on the BER Performance 

In the literature of LDPC codes, it is a well-known fact that the performances of 

LDPC codes with long codeword lengths are better than those of the shorter length 

codes. In this section, we observe the amount of performance improvement brought 

by an increase in the length from 576 to 2700 bits, for rate ½ codes.  

In the simulations, we randomly generate regular (3, 6) LDPC codes, i.e., the 

variable node degree vw = 3 and the check node degree cw =6. A sample graph 

containing the BER performances of rate ½ and regular (3, 6) LDPC codes with 

different codeword lengths is given in Figure  3.4. 
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Figure  3.4 Performance comparison of (576, 288), (896, 448), (1200, 600), (2100, 1050), 
(1800, 900) and (2700, 1350) regular (3, 6) codes 

 
 
 
When the graph is examined, it is observed that if the worst performing (576, 288) 

code is compared with others at the BER of 10−2, (2700, 1350) code is 0.45 dB 

better, and (1200, 600) code is 0.3 dB better. The performance gain of (2700, 1350) 

code over (1200, 600) code is around 0.25 dB at the BER of 10−3. It seems that 

doubling the codeword length results in a performance gain like 0.2-0.3 dB for 

BER’s around 10−2 or 10−3.  

 

3.2 Wrong Codewords at the Decoder Output 

In this section, we analyze the codewords at the output of the decoder in terms of 

their relation between the input codewords. We first give the definitions of different 

situations that we may face at the decoder output and then we investigate the 

conditions which lead to these different situations.  
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When a received sequence enters our decoder, we may have three different cases at 

the output of the decoder. These cases are: 

1) Success: 

The situation that we call “Success” occurs when the output of the decoder is exactly 

the same as the initially sent codeword. This means that our decoder has successfully 

decoded the noisy input and obtained the transmitted codeword without any error. 

2) Failure: 

The situation that we call “Failure” occurs when the decoder is not able to find a 

valid codeword for the related parity check matrix. In this case the maximum number 

of iterations for the decoding algorithm is reached and the output has erroneous bits 

as compared to the initially sent codeword. 

3) Wrong Codeword: 

The situation that we call “Wrong Codeword” occurs when the output of the decoder 

is a valid codeword for the related parity check matrix, but it is different from the 

transmitted codeword. In this case the decoding process ends up with an error vector 

equal to the difference between the transmitted and wrongly decoded codewords. 

We have made simulations on various codes with different code lengths to 

investigate when we get wrong codewords at the output of the decoder. We have 

used codes with codeword lengths of 50, 100, 200, 400, 600, 800, and 1000 bits. All 

of the codes are regular with rate ½, variable node degree 3 and check node degree 6; 

i.e., regular (3, 6) codes. Random noise samples for each level of SNR in the set 

{0.5, 1, 1.5, 2, 2.5, 3} dB are calculated and added to the sent codeword. The 

maximum number of iterations Imax is set to 50, so that the log-likelihood decoder 

either finds a codeword (either correct or wrong) in less than 50 iterations or it fails 

at the 50th iteration and yields an erroneous word. We have sent a thousand 
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codewords for each SNR level. The simulation is stopped either when 20 codeword 

errors for each SNR level is reached or all the thousand codewords are sent. 

 The error distribution results of three simulations, each one using a different seed for 

generating the random noise samples, are given in Table 3.2 where “S” (success) 

refers to the number of codewords decoded successfully, “F” (failure) refers to the 

number of decoding failures (which output encoded words with bit errors), and “W” 

(wrong codeword) refers to the number of valid codewords, which are different from 

the sent codeword.  
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Table  3.2 Distribution of 20 block errors (between decoding failures and wrong codewords) for rate 1/2 codes of different lengths, when  

the maximum number of iterations is set to 50.

Codeword 
Length  50 100 200 400 600 800 1000 
  1

st
 Simulation 

SNR  S F W S F W S F W S F W S F W S F W S F W 

0.5 dB 9 18 2 8 19 1 8 20 0 1 20 0 1 20 0 0 20 0 0 20 0 

1 dB 18 20 0 21 19 1 14 20 0 11 20 0 6 20 0 12 20 0 10 20 0 

1.5 dB 42 19 1 39 19 1 52 20 0 36 20 0 39 20 0 45 20 0 66 20 0 

2 dB 123 19 1 88 19 1 79 20 0 255 20 0 393 20 0 981 19 0 984 16 0 

2.5 dB 156 18 2 278 17 3 301 19 1 991 9 0 995 5 0 1000 0 0 1000 0 0 

3 dB 195 20 0 627 18 2 991 9 0 999 1 0 999 1 0 1000 0 0 1000 0 0 

  2
nd
 Simulation 

SNR  S F W S F W S F W S F W S F W S F W S F W 

0.5 dB 18 20 0 19 20 0 8 20 0 3 20 0 3 20 0 0 20 0 0 20 0 

1 dB 15 17 3 12 19 1 7 20 0 10 20 0 15 20 0 14 20 0 16 20 0 

1.5 dB 21 20 0 33 18 2 46 20 0 31 20 0 34 20 0 69 20 0 83 20 0 

2 dB 106 18 2 79 20 0 162 20 0 150 20 0 420 20 0 649 20 0 984 16 0 

2.5 dB 195 18 2 323 18 2 282 20 0 986 14 0 996 4 0 998 2 0 1000 0 0 

3 dB 132 19 1 654 19 1 984 16 0 1000 0 0 1000 0 0 998 1 0 1000 0 0 

  3
rd
 Simulation 

SNR  S F W S F W S F W S F W S F W S F W S F W 

0.5 dB 16 20 0 11 19 1 5 20 0 2 20 0 1 20 0 1 20 0 0 20 0 

1 dB 17 20 0 17 20 0 14 20 0 12 20 0 5 20 0 22 20 0 3 20 0 

1.5 dB 46 20 0 63 18 2 29 20 0 59 20 0 54 20 0 50 20 0 74 20 0 

2 dB 124 19 1 130 20 0 94 20 0 191 20 0 241 20 0 544 20 0 983 17 0 

2.5 dB 226 16 4 263 20 0 301 20 0 984 16 0 997 3 0 999 1 0 999 1 0 

3 dB 170 20 0 590 20 0 987 13 0 998 2 0 1000 0 0 1000 0 0 1000 0 0 

36 
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When Table 3.2 is investigated, it is seen that for codeword lengths of 50 and 100 

bits, the decoder may output wrong codewords. However, for codeword lengths 

greater than 200 bits, we never face any wrong codewords; i.e., all of the bit errors 

occur as a result of decoding failures. Our simulations show that when the codeword 

length is large enough and the maximum number of iterations is chosen suitably, 

there is no wrong codeword at the decoder output. In LDPC coding, codeword 

lengths are chosen very long for excellent performance, they are practically on the 

order of thousands of bits; so all the bit errors are the result of decoding failures 

arrived at the pre-specified maximum number of iterations. 

In Table 3.2, the wrong codewords appear at the decoder output only for block 

lengths shorter than 200. We suspect that this may be the result of the maximum 

allowed number of iterations, Imax = 50, which is relatively high as compared to the 

codeword length. In order to investigate the effect of this parameter on the number of 

wrong codewords, we have made a similar simulation setting the maximum number 

of iterations to 20, for codeword lengths of 50, 100 and 200. (see Table 3.3) 

 

Table  3.3 Distribution of 20 block errors (between decoding failures and wrong codewords), 
when maximum number of iterations is set to 20. 

 

Codeword Length  50 100 200 
  1

st
 Simulation 

SNR  S F W S F W S F W 

0.5 dB 13 20 0 5 20 0 2 20 0 

1 dB 20 19 1 14 20 0 10 20 0 

1.5 dB 45 17 3 27 18 2 40 20 0 

2 dB 110 19 1 127 20  0 98 20 0 

2.5 dB 135 18 2 127 20 0 241 20 0 

3 dB 173 16 4 559 20 0 993 7 0 

  2
nd
 Simulation 

SNR  S F W S F W S F W 

0.5 dB 15 18 2 4 20 0 1 20 0 

1 dB 39 20 0 13 20 0 9 20 0 

1.5 dB 37 20 0 30 19 1 42 20 0 

2 dB 53 19 1 120 19 0 72 20 0 

2.5 dB 190 19 1 165 20 0 381 20 0 

3 dB 407 18 2 488 18 2 724 20 0 
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Table 3.3 (cont’d) 

Codeword Length  50 100 200 
  3

rd
 Simulation 

SNR  S F W S F W S F W 

0.5 dB 18 19 1 3 20 0 6 20 0 

1 dB 18 20 0 16 19 1 15 20 0 

1.5 dB 37 17 3 42 20 0 24 20 0 

2 dB 91 20 0 86 19 1 63 20 0 

2.5 dB 175 17 3 155 20  0 315 20 0 

3 dB 423 19 1 423 18 2 986 14 0 

 
 
 
Table 3.3 shows that the number of wrong codewords obtained at the output of the 

decoder considerably reduces while Imax is decreased from 50 to 20. This is also not a 

surprising result since decoding failures are more likely to occur when the algorithm 

is allowed to perform less number of iterations. On the other hand, setting Imax equal 

to 20 seems to be large enough for successful decoding of the transmitted codewords 

for the codes of length shorter than 200. 

After these observations, we wanted to compare the erroneously decoded vectors, 

i.e., failures and wrong codewords, with the initial received vectors. In other words, 

when a received vector is decoded to be a failure or wrong codeword at the decoder 

output, we compared the bit errors of the received words before decoding with those 

of the words after decoding. 

We have used a rate ½ regular (3, 6) code with codeword length 50. Again, random 

noise samples for each level of SNR in the set {0.5, 1, 1.5, 2, 2.5, 3} dB is added to 

the sent codewords. This time, instead of 20 block errors, we stopped our simulations 

when 200 block errors are counted for each SNR level. Table  3.4 shows the total 

number of erroneous bits of the actual received words and that of the words which 

are decided as failure or wrong decision at the decoder output.  

 



39 
 

Table  3.4 The number of erroneous bits of blocks, which are decided as failure or 

wrong decision at the decoder, before and after they are decoded. 

 
Failures=193 Wrong Codewords=7 

Before 
Decoding 

After 
Decoding 

Before 
Decoding 

After 
Decoding 

0.5 dB 1604 1334 68 72 

Failures=182 Wrong Codewords=18 

Before 
Decoding 

After 
Decoding 

Before 
Decoding 

After 
Decoding 

1 dB 1511 1239 133 127 

Failures=183 Wrong Codewords=17 

Before 
Decoding 

After 
Decoding 

Before 
Decoding 

After 
Decoding 

1.5 dB 1452 1170 123 125 

Failures=172 Wrong Codewords=28 

Before 
Decoding 

After 
Decoding 

Before 
Decoding 

After 
Decoding 

2 dB 1299 1052 185 193 

Failures=168 Wrong Codewords=32 

Before 
Decoding 

After 
Decoding 

Before 
Decoding 

After 
Decoding 

2.5 dB 1207 1037 207 221 

Failures=166 Wrong Codewords=34 

Before 
Decoding 

After 
Decoding 

Before 
Decoding 

After 
Decoding 

3 dB 1146 1084 196 242 

 
 
 
When Table  3.4 is inspected, it can be seen that the number of bit errors introduced 

by the communication channel is always reduced whenever there is a decoding 

failure. However, for the case of wrong codewords, the number of erroneous bits is 

either very close to the initial value or more than that.  

In the last simulations, we collected all the wrong codewords and seen that the 

number of  1’s of the codeword with minimum weight is 5. Considering that all-zero 

word is a codeword for all block codes, one can say that the minimum distance 

mind of this code is smaller than or equal to 5. The smallness of mind =5 value with 

respect to 20 iterations is the main reason to have more wrong codewords at the 

decoder output, as compared to higher length codes that have higher mind  values. 
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To sum up all the observations of this section, while decoding in 50 iterations, we 

have detected wrongly decoded codewords at the decoder output only for codeword 

length shorter than 200 bits. If the maximum number of iterations is reduced to 20, 

wrongly decoded codewords disappear for length-200 codes and can only be seen for 

codes of length smaller than 100 bits. So, as a handy rule of thumb, we can say that 

wrong codewords do not occur if the maximum number of iterations parameter of the 

decoding algorithm is less than one tenth of the block length. Useful LDPC codes are 

chosen very long for excellent performance, which guarantees not having any 

wrongly decoded codeword at the decoder output. So, practically all decoding errors 

come from decoding failures.  

Moreover, whenever a decoding failure occurs, i.e., a legitimate codeword cannot be 

arrived at the decoder output, the number of bit errors seems to be reduced slightly at 

the end of the maximum number of iterations of the message passing decoding 

algorithm. 

3.3 Irregular 2A Codes 

In Section 2.2.2, we have described the 2A method of MacKay and Neil. In this 

section, we investigate the BER performances of the LDPC codes with variable node 

degrees varying between 2.75 and 3 are found by simulations. The LDPC codes we 

use in this section are constructed using our software for constructing irregular 2A 

codes, which is explained in Appendix A. 

Using our software, we have generated different length irregular LDPC codes. For 

each codeword length, five different irregular matrices with different average 

variable node degree values are constructed. The performances of these irregular 

codes and a regular code with the same length are compared.  

The variable node degree distributions of the irregular 2A matrices that we have 

constructed for each codeword length are given in Table  3.5. 
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Table  3.5 The variable node degree distributions of the irregular 2A matrices that we have 

constructed for codeword lengths of 576 and 896  

Matrix Number Average Variable Node 

Degree wa 

Variable Node Degree 

Distribution 

1 2.75 ( ) 2
1 75.025.0 xxx +=λ   

2 2.80 ( ) 2
2 8.02.0 xxx +=λ  

3 2.85 ( ) 2
3 85.015.0 xxx +=λ  

4 2.90 ( ) 2
4 9.01.0 xxx +=λ  

5 2.95 ( ) 2
5 95.005.0 xxx +=λ  

 
 
 
The reason of constructing five different irregular matrices for each codeword length 

is to see the effect of the number of weight-2 columns in the parity-check matrix. By 

this way, one can observe the performance of different irregular 2A matrices with 

different average variable degrees. 

In the simulations, we have first used parity check matrices of size 288×576; i.e., the 

codeword length is 576 and the code rate is ½ . The simulation results for the five   

(n, k)=(576, 288) irregular codes with different average variable node degrees, 

Av{ vw }= wa, close to 3; along with the performance of a (576, 288) regular (3, 6) 

(i.e., ( vw , cw )=(3, 6)) code are given in Figure  3.5. 
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Figure  3.5 Performance comparison of (576, 288) regular and irregular 2A codes, where wa 

denotes the average variable node degree of the code.  

 
 
 
We should note here that the check node degrees of the 2A matrices are kept as 

uniform as possible as it is mentioned in [MacKay-Neil-1996]. For a code with 

average variable node degree aw , we have tried to make the degrees of the check 

nodes close to the average check node degree value which is aa ww
m

n
2= . In 

Appendix B, check node degree distribution of sample irregular 2A codes are 

visualized. 

When Figure  3.5 is investigated, it is seen that all irregular 2A codes having wa 

values close to 3, and the regular (3, 6) code have similar performances. 

Nevertheless, the irregular code with average node degree 2.90 seems to have the 

best performance. To compare this irregular code with the regular one only these two 

performance curves are given in Figure  3.6. 
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Figure  3.6 Performance comparison of (576, 288) regular and irregular 2A codes, where wa 

denotes the average variable node degree of the code.  

 
 
 
Figure  3.6 shows that for rate ½ codes of length 588, the irregular 2A code with 

average variable node degree 2.90 has slightly better performance than that of the 

regular one with variable node degree 3. This result led us to simulate longer length 

2A codes in order to see whether the irregularity of this type always improves the 

performance of the code.  

Secondly we have simulated the performance of (896, 448) regular and irregular 

codes with average variable node degrees around 3 and obtained Figure  3.7. 
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Figure  3.7  Performance comparison of (896, 448) regular and irregular 2A codes, where wa 

denotes the average variable node degree of the code.  

 
 
 
For codeword length of 896 bits, again we could not observe a noticeable 

improvement in the performance of the code. After these observations, we have 

decided to further increase the codeword length and see the effect of it on the 

performance of the code. We have simulated codes with codeword lengths 1200, 

1500, 1800, 2100, 2700 and 3600 bits. The simulation results for all of these 

different codeword length codes are given in Figure  3.8 to Figure  3.13. In the graphs, 

we included only the best performance irregular code together with the regular code 

in order to see the difference clearly. 
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Figure  3.8 Performance comparison of (1200, 600) regular and irregular 2A codes, with the 

average variable node degrees wa = 3 and wa = 2.95, respectively.  

 

 

Figure  3.9 Performance comparison of (1500, 750) regular and irregular 2A codes, with the 

average variable node degrees wa = 3 and wa = 2.95, respectively.  
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Figure  3.10 Performance comparison of (1800, 900) regular and irregular 2A codes, with the 

average variable node degrees wa = 3 and wa = 2.95, respectively.  

 
 

 

Figure  3.11 Performance comparison of (2100, 1050) regular and irregular 2A codes, with 

the average variable node degrees wa = 3 and wa = 2.95, respectively.  
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Figure  3.12 Performance comparison of (2700, 1350) regular and irregular 2A codes, with 

the average variable node degrees wa = 3 and wa = 2.95, respectively.  

 
 

 

Figure  3.13 Performance comparison of (3600, 1350) regular and irregular 2A codes, with 

the average variable node degrees wa = 3 and wa = 2.95, respectively.  
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When we examine Figures 3.8 to 3.13, we see that the codes with average variable 

node degree of 2.95 have always slightly better performance than regular ones. At 

first sight, the reason for this is not very clear. Also, in [MacKay-Neal-1996], the 

authors do not give a lucid reason for using weight-2 columns in their design. 

The codes with average variable node degree of 2.95 have almost regular structures, 

where 95 % of the columns are weight-3 and 5 % are weight-2. Therefore, it does not 

make much sense to claim that the irregularity of the code is the reason for the better 

performance. After some thinking, we conjecture that one possible reason for the 

better performance of the codes with average variable node degree of 2.95 may be 

their local girth distribution. In Section 2.2.2, we have discussed that the non-

overlapping property of the degree-2 columns decreases the number of length-6 

cycles. Therefore, the irregular codes constructed with the 2A method have less 

number of length-6 cycles as compared to regular (3, 6) code. In Table  3.6, we 

present the total number of length-6 cycles for the (1200, 600) regular (3, 6) codes 

and (1200, 600) irregular codes that we construct by the 2A method. 

 

Table  3.6 Total number of length-6 cycles for (1200, 600) regular and irregular codes 

constructed by the 2A method 

 
Matrix 

Number 

Average Variable 

Node degree 

Variable Node Degree 

Distribution 

Total Number of 

Length-6 Cycles 

1 2.75 ( ) 2
1 75.025.0 xxx +=λ   128 

2 2.80 ( ) 2
2 8.02.0 xxx +=λ  135 

3 2.85 ( ) 2
3 85.015.0 xxx +=λ  149 

4 2.90 ( ) 2
4 9.01.0 xxx +=λ  165 

5 2.95 ( ) 2
5 95.005.0 xxx +=λ  184 

6 3 ( ) 2
6 xx =λ  203 
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In Table  3.6, it is seen that the regular code has the largest number of length-6 cycles, 

which decreases with decreasing average variable node degree of the code.  

If we consider only from the cycle point of view, we expect that the code with less 

number of length-6 cycles has the best performance. However, there exists a trade-

off between the number of length-6 cycles and the average node degree of a code. As 

the average variable node degree increases, each variable of the codeword is checked 

by larger number of equations, which in turn improves the performance. On the other 

hand, an increase in the average variable node degree also increases the 1’s of the 

parity check matrix, hence the number of cycles, which degrades performance by 

thwarting the correct decision process with repeated use of some variable bits in the 

same check equations. For instance, a cycle of length 6 involves 3 variables, say V1, 

V2, V3, used in 3 different check equations, C1, C2 and C3 in different pairs; say (V2, 

V3) in the check equation C1, (V1, V3) in C2, and (V1, V2) in C3 (see Figure  2.3). So, if 

all the variables V1, V2, V3, were decoded incorrectly, the three check equations C1, 

C2 and C3 would all be satisfied and those three bit errors would be undetectable.  

In order to see the effect of the number of length-6 cycles more closely, we have 

generated many LDPC codes with identical parameters and investigated their 

performances. From the parity-check matrices that we have generated, we have 

selected five different (1200, 600) regular codes (with variable node degree 3), and 

five different (1200, 600) irregular codes with average variable node degree of 2.95. 

The total numbers of length-6 cycles for all of these regular and irregular matrices 

are given in Table  3.7. 
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Table  3.7 Total number of length-6 cycles for (1200, 600) regular and irregular codes 

constructed by the 2A method 

 
Matrix 

Number 

Average Variable 

Node Degree 

Variable Node Degree 

Distribution 

Total Number of 

Length-6 cycles 

1 3 ( ) 2
1 xx =λ  203 

2 3 ( ) 2
2 xx =λ  181 

3 3 ( ) 2
3 xx =λ  171  

4 3 ( ) 2
4 xx =λ  157  

5 3 ( ) 2
5 xx =λ  151  

6 2.95 ( ) 2
6 95.005.0 xxx +=λ  174  

7 2.95 ( ) 2
7 95.005.0 xxx +=λ  172  

8 2.95 ( ) 2
8 95.005.0 xxx +=λ  167  

9 2.95 ( ) 2
9 95.005.0 xxx +=λ  149  

10 2.95 ( ) 2
10 95.005.0 xxx +=λ  139  

 
 
 
From the parity-check matrices given in Table  3.7, we have firstly selected and 

simulated the performance of the regular matrix with the lowest number of length-6 

cycles, which is matrix-5, and the performance of the irregular matrix with the 

highest number of length-6 cycles, which is matrix-6. In Figure  3.14 that shows the 

results of the simulations, we see that the regular code, which has less number of 

length-6 cycles than the irregular one, has better performance. 
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(1200, 600) Irregular with girth-6 number=174

(1200, 600) Regular with girth-6 number=151

 

Figure  3.14 Performances of matrix-5 and matrix-6 of Table  3.7 

 
 

As the second example, we have compared the regular matrix with the highest 

number of length-6 cycles (matrix-1), and the irregular matrix with the lowest 

number of length-6 cycles (matrix-10). The performances of these codes are given in 

Figure  3.15. In this case, the irregular matrix, which has less number of length-6 

cycles than the regular one, has better performance than the regular one.  
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(1200, 600) Regular with girth-6 number=203
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Figure  3.15 Performances of matrix-1 and matrix-10 of Table  3.7 
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Finally, we have simulated the performances of the regular and irregular LDPC 

codes having the same number of length-6 cycles, namely, matrix-3 & matrix-7 of 

Table  3.7. In Figure  3.16 that presents the results, one can observe that the 

performance of the regular matrix is slightly better than the irregular one.  
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(1200, 600) Irregular with girth-6 number=172

(1200, 600) Regular with girth-6 number=171

 

Figure  3.16 Performances of matrix-1 and matrix-10 of Table  3.7 
 
 
 
Considering all the cases that we have investigated, and comparing the (3, 6) regular 

codes with the irregular 2A codes of average variable node degree 2.95, we can say 

that the codes with less number of length-6 cycles have always better performances. 

The number of 1’s in the parity check matrix of an irregular 2A code is smaller than 

the number of 1’s in the parity-check matrix of a regular code. Therefore, it is a great 

probability that a randomly chosen irregular 2A code has less number of length-6 

cycles than a regular code. Because of this fact, the irregular 2A codes of average 

variable node degree 2.95, which is almost equal to 3, have better performances than 

the regular codes for most of the time. 
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3.4  Effect of 2/3/4 Irregularity 

In this section, we investigate the effect of adding a slight pseudo-random 

irregularity to regular (3, 6) codes. Instead of a parity check matrix with all the 

variable nodes of degree-3, we randomly generate some columns with degree-2 and 

some with degree-4. The number of columns of degree-2 is kept equal to the number 

of columns of degree-4 in order to have average variable node degree equal to 3. To 

construct the matrices, we use our software for constructing pseudo-random irregular 

LDPC code generation, which is explained in Appendix A. 

 

The variable node degree distribution polynomials of the constructed irregular 

matrices are given in Table  3.8. As these 4 different polynomials indicate, the 

percentage of the weight-2 and weight-4 columns are chosen as 5%, 10%, 20% and 

33% respectively. All the remaining columns in the parity check matrices are of 

weight 3. We name all these codes as 2/3/4 codes and corresponding irregularity as 

2/3/4 irregularity. 

 

 

Table  3.8 The variable node degree distributions of the 2/3/4 irregular matrices 

Percentage of Degree-2 and 

Degree-4 Variable Nodes 

Variable Node Degree 

Distribution 

5 % ( ) 32
1 05.09.005.0 xxxx ++=λ   

10 % ( ) 32
2 1.08.01.0 xxxx ++=λ  

20 % ( ) 32
3 2.06.02.0 xxxx ++=λ  

33 % ( ) 32
4 33.034.033.0 xxxx ++=λ  

 
 
 
In AWGN channel, we have simulated the BER performances of the codes defined 

by the pseudo-randomly generated parity check matrices. We have used rate ½ codes 
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at two different lengths, to generate (576, 288) and (896, 448) codes. In Figure  3.17 

and Figure  3.18, the BER versus SNR curves of the irregular codes and that of the 

regular code are given for codeword lengths of 576 and 896 respectively. 

 

1 1.5 2 2.5
10

-4

10
-3

10
-2

10
-1

Eb/No (dB)

B
E
R

 

 

(576,288) 33%

(576,288) 20%

(576,288)  5%

(576,288) Regular

(576,288) 10%

  

Figure  3.17 Performance comparison of (576, 288) codes defined in Table  3.8 
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Figure  3.18 Performance comparison of (896, 488) codes defined in Table  3.8 
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Figures 3.17 and 3.18 do not offer a clear idea about the effect of adding this slight 

irregularity to the regular codes. In order to see whether there exists a repeatable 

difference, we have done two more simulations for each of the codes. In these new 

simulations, the are different random noise generation seeds from the first simulations. 

The results are given in Figures 3.19, 3.20, 3.21 and 3.22. 
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Figure  3.19  Performance comparison of (576, 288) codes defined in Table 3.8 with  a 

second seed for random noise generation 
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Figure  3.20 Performance comparison of (576, 288) codes defined in Table  3.8 with  

a third seed for random noise generation 
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Figure  3.21 Performance comparison of (896, 488) codes defined in Table 3.8 with  

a second seed for random noise generation 

 
 
 

1 1.5 2 2.5
10

-5

10
-4

10
-3

10
-2

10
-1

Eb/No (dB)

B
E
R

 

 

(896,448) 33%

(896,448) 10%

(896,448) Regular

(896,448) 20%

(896,448)  5%

  
 

Figure  3.22 Performance comparison of (896, 488) codes defined in Table  3.8 with 

a third seed for random noise generation 
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When all simulations results are investigated, we can say that for a given codeword 

length, all codes have nearly the same BER performance. Because, the code that has 

the best performance changes when noise generation seeds are changed. This change 

cannot be the result of the different number of length-6 cycles mentioned in the 

previous section, since in three different simulations that use different noise seeds, 

the codes of Table  3.8 and the regular (3, 6) code are kept as the same as before, i.e., 

they are not regenerated. 

 

Therefore we conclude that, the irregular codes of type 2/3/4 have almost the same 

BER performance as a regular (3, 6) code of the same length. In the following 

sections we will simulate the effect of different kinds of irregularity on the BER 

performance of the codes. 

 

3.5 Effect of 1/3/5 Irregularity 

In this section, we investigate another irregular structure for MacKay and Neil’s 

pseudo-randomly generated LDPC codes. In the parity-check matrix of the irregular 

code, some variable nodes will have degree-1, some of them will have degree-3 and 

some of them will have degree-5. In order to have the average degree equal to 3, we 

will make the number of degree-1 variable nodes equal to that of the degree-5 

variable nodes. To construct the matrices, we use our software for constructing 

pseudo-random irregular LDPC code generation, which is explained in Appendix A. 

 

To see the effect of the mentioned degree distribution on the performance of LDPC 

codes and compare with the regular (3, 6) code, we have made simulations with four 

different irregular codes. The variable node degree distribution polynomials of these 

codes are given in Table  3.9, where the percentages of variable nodes with degrees 

1&5 are chosen as 5, 10, 20 and 33 percent respectively. We name all these codes as 

1/3/5 codes and corresponding irregularity as 1/3/5 irregularity. 

 



58 
 

 

Table  3.9 The variable node degree distributions of the 1/3/5 irregular matrices 

Parity-Check 

Matrix 

Percentage of 

Degree-1 and 

Degree-5 Variable 

Nodes 

Variable Node 

Degree Distribution 

H576_5 5 % ( ) 420
1 05.09.005.0 xxxx ++=λ  

H576_10 10 % ( ) 420
2 1.08.01.0 xxxx ++=λ  

H576_20 20 % ( ) 420
3 2.06.02.0 xxxx ++=λ  

H576_33 33 % ( ) 420
4 33.034.033.0 xxxx ++=λ  

 
 
 
In our simulations we have only used 576 as the codeword length. Because, the 

simulations for the codes with given degree distributions indicated an interesting 

result. We have monitored that, it is so likely to have wrong decisions at the output 

of the decoder.  

 

After realizing that these codes having 1/3/5 irregularity are not successful examples 

of the LDPC code design, we have run some simulations so as to present the results 

given in Table  3.10, where “S” (success) refers to the number of codewords decoded 

successfully by the decoder, “F” (failure) refers to the number of cases that the 

decoder fails and yields blocks with errors and “W” (wrong codeword) refers to the 

number of codewords that are wrongly decoded. The matrices H576_5, H576_10, 

H576_20, H576_33 refer to the parity-check matrices of the (576, 288) irregular 

codes that have the degree distributions given in Table  3.9. 
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Table  3.10 Simulation results for the irregular codes given in Table 3.9 

Parity-Check 

Matrix 
H576_5 H576_10 H576_20 H576_33 

  First Simulation 

SNR  S F W S F W S F W S F W 

1 dB 11 19 1 18 20 0 13 14 6 1 8 12 

1.5 dB 79 20 0 100 20 0 36 11 9 4 0 20 

2 dB 482 17 3 429 8 12 73 2 18 9 0 20 

2.5 dB 2107 8 12 1338 3 17 191 0 20 12 0 20 

  Second Simulation 

SNR  S F W S F W S F W S F W 

1 dB 22 20 0 36 18 2 19 12 8 2 9 11 

1.5 dB 64 19 1 115 19 1 38 3 17 7 1 19 

2 dB 244 13 7 397 12 8 76 3 17 12 1 19 

2.5 dB 2484 7 13 1172 3 17 136 1 19 15 0 20 

  Third Simulation 

SNR  S F W S F W S F W S F W 

1 dB 17 18 2 23 20 0 19 17 3 2 10 10 

1.5 dB 66 18 2 106 17 3 53 7 13 10 5 15 

2 dB 260 16 4 412 10 10 123 2 18 11 1 19 

2.5 dB 1967 6 14 889 0 20 185 0 20 12 0 20 

 
 
 
Investigation of Table  3.10 deepens the discussion given in Section 3.2 about the 

distribution of wrong decisions versus decoding failures in 20 block errors made by 

the decoder, by adding a new dimension: if the LDPC code (say, its variable node 

degree distribution polynomial) is not chosen suitably, belief propagation algorithm 

of the LDPC decoder is more likely to give wrong decisions rather than decoding 

failures, especially at low noise levels. We see that the number of wrong decisions at 

the output of the decoder is higher for the parity-check matrices with more number of 

variable nodes of degree-1 and degree-5. Actually, this issue is related with the 

variable nodes of degree-1 in these matrices. In a Tanner graph, a degree-1 variable 

node is connected to a single check node and receives information only from this 

single node. This fact increases the probability for a degree-1 variable node, to be 

misguided by the wrong information coming from the check node that it is connected 

to. Therefore, one should avoid variable nodes of degree-1 in LDPC code design. 
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In order to see the effect of the wrong codewords on the performances of the codes, 

we have simulated the performances of the codes defined in Table  3.9. Figure  3.23 

shows the results of the simulations.  

 

 

 

Figure  3.23 Performances of the 1/3/5 codes defined in Table  3.9 
 
 
 
In Figure  3.23, we see that performances of the codes with more number of degree-1 

nodes are worse than the codes with less number of degree-1 nodes. We can say that 

the wrong decisions which are led by the degree-1 nodes distort the performance of 

the codes. The performance loss occurring for the codes with more number of 

degree-1 nodes is an obvious reason to avoid degree-1 nodes in LDPC code design. 

 

3.6  High Degree Variable Nodes Connected to 9 or 19 Check 

Equations 

In the previous sections, we have seen that the performances of irregular codes, 

which have average variable node degrees around 3, are not noticeably better than 
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the regular codes. Because of this fact, we have decided to increase the average 

variable node degree wa of the constructed irregular codes by adding more high-

weight columns to the parity-check matrix.  

The experiments we have done in previous sections also showed that having weight-

2 columns are helpful to improve the performance of the codes since they lower the 

number of length-6 cycles. Considering this fact, we have decided to have some 

weight-2 columns in our irregular parity-check matrices together with weight-3 and 

higher-weight columns. Particularly, we have compared the performances of 2/3/9 

irregular and 2/3/19 irregular codes. 

We have constructed irregular LDPC codes with rate 21  and codeword length 1800. 

In the parity-check matrices of the irregular codes, a fixed 20% of the columns are 

chosen of weight-2. The remaining columns are composed of weight-3 and higher-

weight columns in such a way that the average variable node degree of the parity-

check matrix is equal to some specific value. This specific value, which is greater 

than 3, is adjusted by changing the numbers of the weight-3 and higher-weight 

columns. In some of the parity-check matrices, we have used weight-9 columns and 

in some of them we have used weight-19 columns. In Figure  3.24, the generic 

structure for the irregular matrices is given.  
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Figure  3.24 The generic structure of the pseudo-random irregular matrices of this work 

 

3.6.1 Effect of the Average Variable Node Degree  

We have constructed the irregular codes given in Table  3.11, which shows the 

variable node degree distributions, average variable node degrees, and the number of 

higher weight columns. We name each code with 2/3/9 irregularity as 9-3.2, 9-3.4 or 

9-3.6 and each code with 2/3/19 irregularity as 19-3.2, 19-3.4 or 19-3.6; where the 

first number indicates the highest variable node degree and the second number shows 

the average variable node degree. We have simulated the performance of these codes 

in AWGN and obtained Figure  3.25, which also includes the performance of a 

regular (3, 6) code for comparison. 

In Figure  3.25, we see that the irregular code with the best performance is the Code 

19-3.6 and the one with the worst performance is 19-3.2. However, all the irregular 

codes have better performances than the regular one. 
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Table  3.11 The variable node degree distributions and the number of high weight columns of 

2/3/9 and 2/3/19 irregular codes of rate ½ and length 1800, with average variable node 

degrees of 3.2, 3.4 and 3.6 

Code  

Abbreviation 

Variable Node Degree Distribution 

Polynomial ( )xλ . 

Average 

Variable 

Node 

Degree wa 

Number of 

High 

Weight 

Columns  

9-3.2 821 067.0733.02.0 xxx ++  3.2 120 

9-3.4 821 1.07.02.0 xxx ++  3.4 180 

9-3.6 821 13.067.02.0 xxx ++  3.6 240 

19-3.2 1821 025.0775.02.0 xxx ++  3.2 45 

 19-3.4 1821 038.0762.02.0 xxx ++  3.4 68 

19-3.6 1821 05.075.02.0 xxx ++  3.6 90 

 
 
 

 

Figure  3.25 Performances of the codes described in Table  3.11 
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Looking at Figure  3.25, we can say that the performance of the irregular codes gets 

better when their average variable node degrees are increased. This actually makes 

sense because the codes with greater average variable node degrees have greater 

number of high weight columns. These variable nodes defined by these high weight 

columns are decoded correctly with high probability and the correct information 

coming from these nodes helps the decoding of the other variable nodes which have 

lower degrees. 

At this point, it will be quite helpful to investigate the results of these simulations in 

three different cases, where the average node degrees are 3.2, 3.4 and 3.6. 

Case 1: Average Variable Node Degree is 3.2 

In this case, the code 9-3.2 with weight-9 columns has a better performance than 

Code 19-3.2 with weight-19 columns. Code 19-3.2 has 45 weight-19 columns, 

whereas Code 9-3.2 has 120 weight-9 columns.   

Case 2: Average Variable Node Degree is 3.4 

In this case, as opposed to Case 1, Code 19-3.4 with weight-19 columns has a better 

performance than Code 9-3.4 with weight -9 columns. Code 19-3.4 has 68 weight-19 

columns, whereas Code 9-3.4 has 180 weight-9 columns. 

Case 3: Average Variable Node Degree is 3.6 

In this case, similar to Case 2, the code with weight-19 columns has a better 

performance than the code with weight -9 columns. Code 19-3.6 has 90 weight-19 

columns, whereas Code 9-3.6 has 240 weight-9 columns. 

In all three cases, since the average node degree is kept constant, the number of 

weight-9 columns is greater than the number of weight-19 columns. In Case 1, this 

difference makes the performance of the matrix with weight-9 columns better. 

However, when the average node degree is increased as in Cases 2 and 3, the codes 
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with weight-19 columns have better performances than the codes with weight-9 

columns, because the variables connected to 19 check equations improve the 

decoding performance more effectively than the variables checked by 9 equations. 

However, we may say that this is possible when the number of such variables (or 

weight-19 columns in the parity-check matrix) exceeds some threshold value. 

After observing this data, we have constructed different matrices with the same 

parameters given in Table  3.11, to see whether the results of Figure  3.25 are 

repeatable. The resulting graph containing four different matrices for each parameter 

set are given in Figure  3.26. 

 

 

Figure  3.26 Performances of many codes with the parameters described in Table  3.11 
 
 
 
The results in Figure  3.26 are very similar to the results in Figure 3.24, which 
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parameters vary by small amounts. For example, at the BER value of 310− , the 

performances of the 19-3.2 codes vary by approximately 0.1 dB.  This variation in 

performance may be due to the number of length-6 cycles contained in these codes. 

To see whether this deduction is true, we have counted the number of length-6 cycles 

for all the codes in Figure  3.26 and presented the results in the following section. 

3.6.2 Effect of the Number of Length-6 Cycles 

In order to have better perception about the effect of the number of length-6 cycles, 

say N6, on the code performance, we have counted the number of length-6 cycles for 

the 24 different codes, whose performances are given in Figure  3.26. Those pseudo-

randomly generated codes possess either of the 6 groups of parameters given in 

Table  3.11 (namely the groups 9-3.2, 9-3.4, 9-3.6 with 2/3/9 irregularity and groups 

19-3.2, 19-3.4, 19-3.6 with 2/3/19 irregularity). Since we have constructed 4 codes 

for each group of Table  3.11, there are 24 different codes and 24 different values for 

the number of length-6 cycles.  

 

Table  3.12 shows the total number of length-6 cycles for all the 24 codes in Figure 

 3.26. Eb/No values required for a specific BER value (of 
4102 −× ) are also included 

in ascending order for each group of code parameters, so that the performance within 

the group is ranked in descending order in Table  3.12. 
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Table  3.12 The number of length-6 cycles of some 2/3/9 and 2/3/19 codes of rate ½ and 

length 1800  

Code  

Abbreviation 

Eb/No for a BER 

of 4102 −×  

Number of Length-6 Cycles 

N6 

1.85 952 

1.86 987 

1.87 975  
9-3.2 

1.89 1049 

1.90 2216 

1.92 2363 

1.95 2558 
19-3.2 

1.97 2570 

1.82 1911 

1.83 1922 

1.84 1954 
9-3.4 

1.87 1978 

1.73 4976 

1.76 5151 

1.80 5274 
19-3.4 

1.81 5259  

1.83 3254 

1.84 3293 

1.84 3341 
9-3.6 

1.87 3389 

1.70 9159 

1.72 9565 

1.75 9894 
19-3.6 

1.76 9930 
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In Table  3.12, it is observed that within the set of codes with the same parameters, 

increasing number of length-6 cycles leads to worse performance for almost all 

cases. For instance, among the codes that has weight-19 columns and average 

variable node degree 3.6, the worst performance code has 9159 length-6 cycles, 

whereas the best performance code has 9930 length-6 cycles. This difference leads to 

an improvement of 0.06 dB in the Eb/No value for the BER level of 
4102 −× . There 

also exist some exceptions; for example, in the set of 19-3.2 codes, the code with 987 

many length-6 cycles has a better performance than the code with 975 many length-6 

cycles. However, the number of length-6 cycles for these two codes are very close, 

and such a slight difference is not repeatable when the random noise samples are 

initiated by a different seed. 

From Table  3.12, we can also see that, for a given average variable node degree wa, 

the 2/3/19 codes (that have degree-19 variable nodes) have much more length-6 

cycles than the 2/3/9 codes (that have degree-9 variable nodes). For variable node 

degrees of 3.4 and 3.6, even though the 2/3/19 codes have more length-6 cycles, they 

have better performances than the 2/3/9 codes. This is a normal result since the 

number of length-6 cycles is obviously not a primary comparison element for codes 

with different parameters.  

 

3.7 Joint Effect of Average Variable Node Degree and Length-6 

Cycles  

After observing the performances of codes with average variable node degrees 3.2, 

3.4 and 3.6, we have decided to investigate the joint effect of the average variable 

node degree (wa) and the number of length-6 cycles (N6), on some codes that have 

greater average variable node degree values. We have generated (1800, 900) 

irregular codes with column weight distributions of 2/3/9, 2/3/11 and 2/3/13. We 

have kept the ratio of weight-2 columns as 20% but adjusted the average variable 
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node degree between 3.2 and 4.4 by changing the ratio of high-weight columns to 

weight-3 columns.  

3.7.1 Codes with High Degree Variable Nodes of Degree 9 

For this experiment, we have first used irregular codes that have degree-9 variable 

nodes as high degree nodes. Table  3.13 shows the variable node degree distribution 

polynomials and the number of high weight columns of these irregular matrices.  

 
 
 

Table  3.13 Variable node degree distributions and the number of high weight columns of the 

2/3/9 and 2/3/19 irregular codes of rate ½ and length 1800, with average variable node 

degrees of 3.8, 4, 4.2 and 4.4 

Code  

Abbreviation 

Variable Node Degree 

Distribution Polynomial ( )xλ  

Average 

Variable 

Node 

Degree wa 

Number of 

Weight-9 

Columns  

9-3.8 821 167.0633.02.0 xxx ++  3.8 300 

9-4 821 2.06.02.0 xxx ++  4 360 

9-4.2 821 233.0567.02.0 xxx ++  4.2 420 

9-4.4 821 267.0533.02.0 xxx ++  4.4 480 

 
 
 
In Figure  3.27, the performances of these codes together with the previously 

generated codes with average variable node degree values 3.2, 3.4 and 3.6 are given. 
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Figure  3.27 Performances of 2/3/9 irregular codes that have average variable degrees  

from 3.2 to 4.4 

 
 
 
From Figure  3.27, we see that the performances of the irregular codes are getting 

better up to the average variable node degree of 3.6. After this point, the 

performances of the codes start to get worse. Here, it will be better to see the 

performances of these codes in two separate graphs. The first graph, given in Figure 

 3.28 (a), includes the codes whose performances are getting better with increasing 

average variable node degree, and the second graph, given in Figure  3.28 (b), 

includes the codes whose performances are getting worse with increasing average 

variable node degree. 
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(b) 

Figure  3.28 Performances of the irregular codes with weight-9 columns. The codes whose 

performances are getting better with increasing average variable node degree are shown in 

(a), and the codes whose performances are getting worse are shown in (b).  
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Figure  3.28 (a) shows the performances of the irregular codes with average variable 

node degrees of 3.2 and 3.4 together with the performance of a regular code of the 

same codeword length. One can see that increasing the average variable node degree 

from 3.2 to 3.4 improves the decoding performance of these codes. We should also 

note that the irregular codes have better performances than the regular one. However, 

in Figure  3.28 (b), where the average variable node degrees range from 3.4 to 4.4, we 

see that the performance gets worse with increasing average variable node degree. 

When the total number of high weight columns in an irregular matrix is increased, 

one expects to have a better performance. However, we have seen in this example 

that as the number of high-weight columns is increasing, the performance becomes 

worse beyond some threshold value of the average node degree. The most important 

reason behind this fact may be the number of length-6 cycles contained in the code. 

In order to have a clear idea, we have counted the number of length-6 cycles of these 

codes. Table  3.14 shows the number of length-6 cycles together with other necessary 

information. 

Table  3.14 Number of length-6 cycles of the 2/3/9 codes of rate ½ and length 1800, with 

average variable node degrees from 3.2 to 4.4 

Code  

Abbreviation 

Average 

Variable 

Node Degree 

Number of 

Weight-9 

Columns 

Eb/No for a 

BER of 

3105 −×  

Total 

Number of 

Length-6 

Cycles, N6 

9-3.2 3.2 120 1.50 975 

9-3.4 3.4 180 1.43 1922 

9-3.6 3.6 240 1.45 3293 

9-3.8 3.8 300 1.46 4784 

9-4 4 360 1.55 7164 

9-4.2 4.2 420 1.59 10117 

9-4.4 4.4 480 1.66 13755 
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Unsurprisingly, the number of length-6 cycles increases with increasing number of 

weight-9 columns. However, an increase in the number of length-6 cycles up to 

1922, which is observed for 180 many weight-9 columns, seems acceptable; since it 

does not deteriorate the performance. When the number of weight-9 columns is 

further increased to 240 and 300 the total number of length-6 cycles becomes 3293 

and 4784, and the performance of the codes becomes slightly worse than the 

previous cases. After this point adding new weight-9 columns leads to huge rises in 

the number of length-6 cycles (Increasing the number of weight-9 columns from 300 

to 360 makes the number of length-6 cycles 71264, from 360 to 420 makes it 10117, 

and from 420 to 480 makes it 13755).   

In the parity-check matrix construction method that we use, columns of the matrix 

are formed one-by-one from left to right. Each new column introduces new length-6 

cycles to the matrix that are added to the total number of length-6 cycles. Motivated 

by this, we have counted the length-6 cycles introduced by each column for the 

matrices given in Table  3.14 and obtained the graph given in Figure  3.29, where the 

vertical axes in parts (a) and (b) show the number of length-6 cycles in logarithmic 

and linear scales respectively.  The horizontal axis shows the column number. For a 

specific column x, the value shown on the vertical axis is the cumulative number of 

length-6 cycles after the generation of column x, starting from the first column. 

When x is the last column, the value shown on the vertical axis corresponds to the 

overall number of length-6 cycles for the generated code.  
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(a) 
 

 
 

(b) 

Figure  3.29 The total number of length-6 cycles after the generation of each column of the 

parity-check matrix for the codes defined in Table  3.14. The vertical axis is given in:                                                        

(a) logarithmic scale, (b) linear scale. 
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The number of length-6 cycles for all the matrices is zero up to the 600th column. 

This is an expected result since the first 20 % of the columns are weight-2 columns 

which have no overlap between each other. We have shown previously in this work 

that zero-overlap weight-2 columns do not cause any length-6 cycles. After the last 

weight-2 column, following columns are of weight-3. These weight-3 columns 

slightly increase the number of length-6 cycles. However, length-6 cycles start to 

increase in considerable amounts at the starting point of the construction of weight-9 

columns.  

In Figure  3.29 (a), these starting points for the weight-9 columns are seen very 

clearly. For example, for the matrix with average variable node degree of 4.4, the 

number of length-6 cycles starts to increase rapidly near the 1321st column which is 

the first weight-9 column.  

The important point here is that, the increase in the number of length-6 cycles 

accelerates when more and more weight-9 columns are added. In other words, a 

weight-9 column causes more and more length-6 cycles as the number of previously 

added weight-9 columns increases. This situation is seen clearly in Figure  3.30, 

where the horizontal axis again shows the column number, but the vertical axis 

shows the number of length-6 cycles caused by each individual column instead of the 

cumulative value. It is observed from Figure  3.30 that the number of length-6 cycles 

introduced by a column increases with the column number. More specifically, the 

number of length-6 cycles caused by each new weight-9 column increases almost 

exponentially. Actually, this is the reason of rapid increase in the total number of 

length-6 cycles as we observed in Figure  3.29. If we zoom the last part of the graph 

given in Figure  3.29 (b), we clearly see the exponential increase in the number of 

length-6 cycles in Figure  3.31, as the number of weight-9 columns is increased. 
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Figure  3.30 The number of length-6 cycles introduced by each column of the parity-check 

matrix of the code 9-4.4. 
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Figure  3.31 Last part of the graph given in Figure  3.29 (b)  
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When Figure  3.31 is more closely investigated, one sees that as the average variable 

node degree is increased from 3.2 to 3.4, the numbers of length-6 cycles for the 

matrices are fairly close to each other. However, as the increase in the average 

variable node degree is continued from 3.6 to 4.4, the difference between the 

numbers of the length-6 cycles of the generated codes gets larger.  

Beyond the average node degree value of 3.4, the performances of the irregular codes 

become worse as the number of weight-9 columns is increased. As we said earlier, 

the weight-9 columns that are expected to improve the performance start to lead to 

worse performance because of the huge increase in the number of length-6 cycles. 

Below the average variable node degree of 3.4, the decoding performance 

improvement supplied by the weight-9 columns suppresses the effect of length-6 

cycles. However, above this average degree, the number of length-6 cycles increases 

so much that the improvement supplied by the weight-9 columns can not cancel the 

effect of the length-6 cycles.  

3.7.2 Extension to High Variable Node Degrees of 11 and 13 

In order to see whether this situation is a general case, we have repeated the same 

experiments for other irregular LDPC codes which have weight-11 and weight-13 

columns. Table  3.15 shows the properties of the new irregular codes that we have 

generated. 
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Table  3.15 Variable node degree distributions and the number of high weight columns of of 

the 2/3/11 and 2/3/13 irregular codes of rate ½ and length 1800 

Code 

Abbreviation 

Variable Node Degree Distribution 

Polynomial ( )xλ  

Average 

Variable 

Node Degree 

Number of 

High Weight 

Columns 

11-3.6 1021 1.07.02.0 xxx ++  3.6 180 

11-3.8 1021 125.0675.02.0 xxx ++  3.8 225 

11-4 1021 15.065.02.0 xxx ++  4.0 270 

11-4.2 1021 175.0625.02.0 xxx ++  4.2 315 

11-4.4 1021 2.06.02.0 xxx ++  4.4 360 

13-3.6 1221 08.072.02.0 xxx ++  3.6 144 

13-3.8 1221 1.07.02.0 xxx ++  3.8 180 

13-4.0 1221 12.068.02.0 xxx ++  4.0 216 

13-4.2 1221 14.066.02.0 xxx ++  4.2 252 

13-4.4 1221 16.064.02.0 xxx ++  4.4 288 

 
 
 
After constructing the matrices given in Table  3.15, we have simulated their 

performances. Figure  3.32 and Figure  3.33 show the results of the simulations for the 

codes with irregularities 2/3/11 and 2/3/13, respectively. 

In Figure  3.32, where the performances of 2/3/11 irregular codes with different 

average variable node degrees wa are shown, we see that in the range from 3.2 to 3.6, 

increasing wa improves the performance. However, if wa further increases from 3.6 to 

4.4, the performances of the codes get worse because of the rapidly increasing 

number of length-6 cycles. 
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Figure  3.32 Performances of the 2/3/11 irregular codes. The codes whose performances are 

getting better with increasing average variable node degree are shown in (a), and the codes 

whose performances are getting worse are shown in (b).  
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(a) 
 

 

 
 

(b) 

 
Figure  3.33 Performances of the 2/3/13 irregular codes. The codes whose performances are 

getting better with increasing average variable node degree are shown in (a), and the codes 

whose performances are getting worse are shown in (b). 
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In Figure  3.33, where the performances of the 2/3/13 irregular codes are shown, we 

see that in the range from 3.2 to 3.8, increasing the average variable node degree wa 

improves the performance. However, for wa growing between 3.8 and 4.4, the 

performances of the codes get worse because of the rapidly increasing number of 

length-6 cycles. 

These results are quite similar to the case of 2/3/9 irregular codes. In order to 

compare the rate of increase of length-6 cycles with the previous case, we have 

counted the number of length-6 cycles at each step of column construction for these 

new codes. The analyses results for 2/3/11 irregular codes are given in Figure  3.34 

and Figure  3.35. 
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Figure  3.34 The change in the total number of length-6 cycles for the 2/3/11 irregular codes 

in Table  3.15 versus each new generated column. Vertical axis is given in:                           

(a) logarithmic scale (b) linear scale. 

 

Figure  3.35 Last part of the graph given in Figure  3.34 (b).  
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In Figure  3.35, we see that the numbers of length-6 cycles of the 2/3/11 irregular 

codes with average variable node degree wa ≤ 3.6, are fairly close to each other. 

However, for the 2/3/11 irregular codes with wa larger than 3.6, the total number of 

length-6 grows very hastily. This rapid increase in the number of length-6 cycles 

again suppresses the performance improvement supplied by the weight-11 columns 

and distorts the performance of the codes as shown in Figure  3.32 (b). 

Finally, the number of length-6 cycles for the 2/3/13 irregular codes are given in 

Figure  3.36 and Figure  3.37 for different values of wa between 3.2 and 4.4.  
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(b) 

Figure  3.36 The change in the total number of length-6 cycles for the 2/3/13 irregular codes 

in Table  3.15 versus each new generated column. Vertical axis is given in:                            

(a) logarithmic scale (b) linear scale. 

 

Figure  3.37 Last part of the graph given in Figure 3.36 (b).  
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Similar to the previous cases, we observe that the rapid increase in the number of 

length-6 cycles seems to start at some value of wa, which is around 3.8 for 2/3/13 

irregular codes. This explains the performance curves in Figure  3.33, where we 

identify that the performance improves as wa grows between 3.2 and 3.8, but further 

increase of wa from 3.8 to 4.4 deteriorates the performance. This situation is again 

similar to the codes with 2/3/9 and 2/3/11 irregularities. However, the critical point 

for the average variable node degree wa seems to be around 3.4 for the 2/3/9 codes, 

3.6 for the 2/3/11 codes and 3.8 for the 2/3/13 codes. This is understandable, since 

compared to the weight-9 columns, less number of weight-11 columns are needed to 

achieve a given value of the average variable node degree, wa. Similarly, less number 

of weight-13 columns are needed to achieve a given wa compared to the weight-9 

and weight-11 columns. When small number of high weight columns is added to a 

matrix, the number of length-6 cycles that it introduces to the code is also small. 

Therefore, it is a normal result for the codes with weight-13 columns to start losing 

performance at a wa value greater than that of the codes with weight-11, and for the 

codes with weight-11 columns to start losing performance at a wa value greater than 

that of the codes with weight-9. Figure  3.38, we sketch the total number of length-6 

cycles versus the average variable node degree, wa, for the mentioned three codes, 

having the irregularities of 2/3/9, 2/3/11 and 2/3/13. 
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Figure  3.38 Number of length-6 cycles versus average variable node degree, wa, of 2/3/9, 
23/11 and 2/3/13 codes. 

 
 
 
To sum up the results we have obtained in this section, we can say that adding high 

weight columns improves the performance of the LDPC codes up to some point but 

distorts the performance thereafter, because of the huge increases in the number of 

length-6 cycles that start to occur. That rapid increase of length-6 cycles suppresses 

and begins to cancel the decoding improvement brought by the high weight columns 

of the parity-check matrix. 
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3.7.3 Some Codes with Fixed Number of Length-6 Cycles  

In this section, we investigate the performance of some codes with different but close 

codeword lengths n and average variable node degrees wa; but the same number of 

length-6 cycles. In order to generate such codes, we have used Figure  3.29 (b), where 

the distributions of the number of length-6 cycles of different 2/3/9 codes are given. 

For the parent codes 9-4.4, 9-4.2, 9-4, 9-3.8, 9-3.6 and 9-3.4 with wa’s ranging from 

3.4 to 4.4 (see Table  3.14), we have noted the number of columns value, say C9-4.4, 

C9-4.2, C9-4, C9-3.8, C9-3.6, C9-3.4, where the number of length-6 cycles is around 2000. 

Using this information, we have obtained some new codes whose parity-check 

matrices are formed by the first C[code abbreviation] columns of the parity-check matrices 

of the original codes. (For example, the first C9-4.4=1531 columns of the parity-check 

matrix of the parent 9-4.4 code form the parity-check matrix of a new code of length 

1531.) The new codes, which contain nearly the same number of length-6 cycles, 

have codeword lengths ranging from 1531 to 1800 and wa’s between 3.4 and 3.59. 

Since the number of check nodes remain the same as that of the parent code, the rate 

k/n of each code is also different but close to 0.5. The parameters of the new codes 

are given in Table  3.16.  
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Table  3.16 Parameters of the new codes obtained from the 2/3/9 irregular codes of rate ½ 

and length 1800, having the number of length-6 cycles around 2000 

 

Abbreviation 

Used for the  

New Code 

and Its 

Parent Code 

Average 

Variable 

Node Degree 

wa  & Rate 

k/n  for the         

New Code 

Size of the New 

Parity-Check 

Matrix 

Variable Node           

Degree Distribution  

Polynomial ( )xλ  for the 

New Code 

Total 

Number of 

Length-6 

Cycles N6 

    9-3.4          
& 9-3.4 

3.40  &  0.5 1800900×
( )18004.39 =−C  

82 1.07.02.0 xxx ++  1922 

   9-3.44          
& 9-3.6 

3.44  &  0.48 1747900×
( )17476.39 =−C  

82 109.0686.0205.0 xxx ++ 2006 

   9-3.48          
& 9-3.8 

3.48  &  0.47 1695900×  

( )16958.39 =−C  

82 116.0673.0211.0 xxx ++ 1998 

   9-3.51          
& 9-4.0 

3.51  &  0.45 1638900×  

( )16380.49 =−C  

82 123.0658.0219.0 xxx ++ 1993 

   9-3.54          
& 9-4.2 

3.54  &  0.43 1583900×  

( )15832.49 =−C  

82 130.0645.0225.0 xxx ++ 1997 

   9-3.59          
& 9-4.4 

3.59  &  0.41 1531900×  

( )15314.49 =−C  

82 141.0625.0234.0 xxx ++ 2007 

 

As can be seen from Table  3.16, the codes with smaller codeword lengths and rates 

have greater wa’s. We have shown in Section 3.1.2 that increasing codeword length 

makes the performance of a code better. However, we have also shown in Section 3.3 

that increasing the average variable node degree with fixed number of length-6 

cycles also increases the performance. In Figure  3.39, we present the performances 

of the codes given in Table  3.16. 
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Figure  3.39 Performances of the codes given in Table  3.16. 
 
 
 
It is observed that all the codes have nearly the same performance. This may be 

considered as an expected result. Because, as the codeword length decreases from 

1800 to 1531, the performance of the code gets worse; however, the average variable 

node degree increases from 3.4 to 3.59 (and the rate decreases from 0.5 to 0.41) in 

parallel, which in turn improves the performance. Combining these effects, it is not 

surprising to see that the performance of a code with longer codeword length n and 

lower wa, can be very similar to the performance of a code with shorter codeword 

length and greater wa, whenever their number of length-6 cycles are comparable. In 

Figure  3.39, one can examine the canceling effects of the codeword length n and the 

average variable node degree wa. 
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3.8 Codes with Very Long Codeword Lengths 

In this section, we investigate the performances of codes with very long codeword 

lengths and compare them with some commercially used LDPC codes. We have 

selected 16000 bits as the codeword length and constructed a regular (3, 6) code and 

an irregular 2/3/13 code with average variable node degree wa=3.8, which was found 

to be the optimum for the 2/3/13 codes. Figure  3.40 shows the performances of these 

two codes together with the performance of a regular (64800, 32400) code which is 

used in DVB-S2 standard. 

 

Figure  3.40 Performances of a regular code and an irregular 2/3/13 code of codeword length 

16000 together with the performance of a regular code of codeword length 64800 used in 

DVB-S2 standard 

 
 
 
In Figure  3.40, we see that the code with codeword length of 64800 has the best 

performance. This is normal since there is a great difference in the codeword lengths 

64800 and 16000, which is the dominant factor in determining the performance in 

this case. However, we also see that irregular 2/3/13 code has a performance 
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improvement of nearly 0.35 dB at the BER level of 10-3 compared to the regular code 

of the same codeword length.  

Considering these, we can say that, for very long codeword lengths, our irregular 

code design leads quite an improvement in the performance. This performance 

improvement helps to approach the performances of commercially used LDPC 

codes. 

  

3.9 Decoding Times for Regular and Irregular LDPC Codes 

At each iteration of decoding, calculations are done according to the distribution of 

the 1’s in the parity-check matrix. In this work, we have shown that the irregular 

codes with average variable node degrees greater than 3 (wa > 3) have better 

performances than the regular (3, 6) codes. However, greater wa means that there 

exist more 1’s in the parity-check matrix, which implies that more calculations are 

done at each iteration. In this section, we investigate the decoding times needed for 

the regular and irregular codes that we have designed and used in this work. 

In order to compare the decoding times needed for regular and irregular LDPC 

codes, we have done decoding simulations for four different LDPC codes of 

codeword length 1800 and rate ½. We have used a regular code, an irregular 2/3/11 

code with wa=3.6, an irregular 2/3/13 code with wa=3.8 and an irregular 2/3/19 code 

with wa=4. For each of the three irregular codes, we have kept the ratio of degree-2 

nodes as 20%, and the relative distribution of degree-3 and higher degree nodes are 

adjusted according to the specific wa value. In the simulations, we have sent 50000 

words at the Eb/No value of 1.6 dB. The value of Imax is set to 50. The results of the 

simulations are given in Table  3.17.  
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Table  3.17 Simulation results for the decoding times of sample regular and irregular codes 
 

Code 
Abbreviation 

Number  
of 

Successes 

Number 
of 

Failures 

Total 
Number 

of 
Iterations 

Average 
Time 

Spent for 
one 

Iteration 
(seconds) 

Total  
Decoding  

Time 
(hours) 

Total  
Decoding  

Time 
Relative 

to 
Regular 

Regular 46173 3827 900513 0.0391  9.7765  100% 

11-3.6 49273 727 726086 0.0413  8.3225  85% 

13-3.8 49588 412 683642 0.0419  7.9630 81% 

19-4 49817 183 627862 0.0427  7.4493  76% 

 
 
 
In Table  3.17, we see that the average time spent for each iteration increases with 

increasing average variable node degree. This can be considered as a normal result 

since more calculations are done at each step for the codes with greater wa’s. 

However, we also see that, with increasing wa, the number of successes increases, 

whereas total decoding time and total number of iterations decreases. 

In [MacKay-2005], decoding time for an LDPC is code is said to be proportional to 

the number of operations done at each iteration. Simply, we may think each iteration 

as two steps. At first step, the variable nodes send information to the check nodes and 

at the second step the check nodes send information back to the variable nodes. For a 

code of length n and rate R, the first step includes aw
R

×1
  operations per variable 

node, so nw
R

a ××1
 operations in total and the second step includes aw  operations 

per check node so )1( Rnwa −××  operations in total. Therefore, at each decoding 

iteration, awn
R

RR ××−+ 21
 operations are done. In our case, the code length and 

the rate are constant. Hence, one may expect that the average time spent for one 

iteration is proportional to wa. In Table 3.17, we see that average time spent for one 

iteration is 0.0391 for the regular code for which wa =3. If we consider the 2/3/13 

code with wa =3.8 (abbreviated as 13-3.8), we expect that the average time spent for 
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one iteration is =× 0391.0
3

8.3
0.0495. However, in Table 3.17, we see that this value 

is actually 0.0419. This may be as a result of our implementation details. In our 

implementation of the decoding algorithm, many operations are done at a time using 

array structures. When the number of operations increases, the size of the array that 

contains these operations gets larger. Because of that, the time spent for a specific 

number of operations is not directly proportional to the number of equations but 

slightly less than that.  

As can be seen from the number of successes and failures, the code with the best 

performance among the codes given in Table  3.17 is the 2/3/19 code with wa=4. 

Although the average time spent for each iteration is the greatest for this code, total 

decoding time is the smallest. Figure  3.41, which shows the iteration histograms for 

the codes, will be helpful to understand the reason for this. 
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Figure  3.41 Iteration histograms for the regular and irregular codes 
 
 
 
In Figure  3.41, we see that that a success is more likely to occur at the 11th or 12th 

iteration. As Imax is set to 50, all decoding failures occur at the 50
th iteration. Since 
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the total number of successes is the greatest and the number of failures is the smallest 

for the 2/3/19 code, it is quite normal that the total number iterations and the total 

decoding time for this code is the smallest. 

Considering all the results, we can say that the average time spent for each iteration 

is greater for the codes with greater wa’s. However, as these codes with greater wa’s 

are designed to have better performances, the total number of iterations to decode 

same number of words and the total decoding times are smaller for these codes.  

3.10 Random Distribution of Check Node Degrees 

As a final consideration, we will discuss the check node degree distributions of the 

irregular codes that we generate for this work. Random construction algorithms we 

have used, do not pay any attention to the check node degrees. Instead, they take the 

required values of n, k and the given variable node degree polynomial ( )xλ  as input 

and arrive at random number of variables entering each parity-check equation. So, 

the check node degrees are established randomly as a result of the 2A or pseudo-

random construction algorithm. In this section, we explore the check node degree 

distributions for some of the generated codes. As representatives of three different 

groups, we choose i) five 2A codes of length 1200, ii) four 2/3/4 codes of length 576, 

and iii) four 1/3/5 codes of length 576. In each case, we construct the codes 

according to the desired variable node degree distribution polynomials, count the 

frequency of resulting check node degrees and compare the check node degree 

distributions within the group.  

i) Irregular 2A Codes 

Table  3.18 shows the number of check nodes at each degree (i.e., the number of rows 

at each weight) for different codes with irregular 2A matrices of codeword length 

1200 and average variable node degrees wa  (i.e., the column weights), from 2.95 to 

2.75. 
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The check node degree distributions given in Table 3.18 are sketched in Figure 3.42. 

Notice that although the check node degrees are distributed randomly, their average 

value (see the last column) is equal to 2wa , because the parity-check matrix is of size 

600×1200. 

Table  3.18 Number of rows at each weight for 600×1200 parity-check matrices of 2A 

irregular codes, where wa shows the average column weight. 

  Row Weight 
Average 

Row Weight 

wa 2 3 4 5 6 7  

2.95 - - 12 114 396 78 5.9 

2.90 2 8 45 118 307 120 5.8 
2.85 5 11 57 142 256 129 5.7 
2.80 5 27 61 155 214 138 5.6 
2.75 6 29 78 154 212 121 5.5 
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Figure  3.42 Check node degree distributions given in each row of Table 3.18. 
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In Figure 3.42, it can be seen that the check node degrees of the codes are 

concentrated around the degree value of 6, which shows that the check node degree 

distributions of the matrices are nearly uniform. For codes with decreasing wa, the 

number of nodes with degree 6 decreases because of the decreasing number of 1’s in 

the parity-check matrices. 

ii) Irregular 2/3/4 Codes 

Table  3.19 shows the number of check nodes at each degree (i.e., the number of rows 

at each weight) for different codes with irregular 2/3/4 matrices of codeword length 

576 and average variable node degrees percentages of the degree-2 and degree-4 

variable nodes of the code. The check node degree distributions given in Table 3.18  

are sketched in Figure  3.43. 

Table  3.19 Number of rows at each weight for 288×576 parity-check matrices of the 2/3/4 

irregular codes 

Percentage of Degree-2 and 
Degree-4 Variable Nodes  Row Weight 

Average 
Row Weight 

  3 4 5 6 7   

5 % 2 2 11 250 23 6.0069 

10 % 2 5 10 244 27 6.0035 

20 % 2 5 9 245 27 6.0069 

33 % 1 4 13 244 26 6.0069 
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Figure  3.43 Check node degree distributions given in each row of Table  3.19. 

 

In Figure  3.43, it can be seen that the check node degrees of the codes are again 

concentrated around the degree value of 6, which shows that the check node degree 

distributions of the matrices are nearly uniform. All of the codes have almost the 

same check node degree distribution since they have the same number of 1’s in their 

parity-check matrices. Since the average variable node degree wa is 3 for all the 

codes of this group, average check node degree is very close to 6.  

 

iii) Irregular 1/3/5 Codes 

Table  3.20 shows the number of check nodes at each degree (i.e., the number of rows 

at each weight) for different codes with irregular 1/3/5 matrices of codeword length 

576 and average variable node degrees percentages of the degree-1 and degree-5 

variable nodes of the code. The check node degree distributions given in Table  3.20 

are sketched in Figure  3.44. 
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Table  3.20 Number of rows at each weight for 288×576 parity-check matrices of the 1/3/5 

irregular codes 

Percentage of Degree-1 and 
Degree-5 Variable Nodes  Row Weight 

Average 
Row Weight 

  3 4 5 6 7   

5 % 1 5 10 245 27 6.0139 

10 % 1 2 15 246 24 6.0069 

20 % 2 2 13 244 27 6.0139 

33 % 2 3 12 243 28 6.0139 

 

 

3 4 5 6 7
0

50

100

150

200

250

300

Row Weight

N
u
m
b
e
r 
o
f 
R
o
w
s

 

 

(576, 288)  5%

(576, 288) 10%

(576, 288) 20%

(576, 288) 33%

 

Figure  3.44  Check node degree distributions given in each row of Table  3.20. 

 

In Figure  3.44, it can be seen that the check node degrees of the codes are 

concentrated around the degree value of 6, which shows that the check node degree 

distributions of the matrices are nearly uniform. All of the codes have almost the 

same check node degree distribution since they have same number of 1’s in their 

parity-check matrices. It is also interesting to observe that both of the 2/3/4 and 1/3/5 

pseudo-randomly constructed codes have more impulse-like distribution for the 

check node degrees as compared to the 2A construction. 
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3.11  Summary 

Through simulations performed in this work on the performance of LDPC codes, the 

conditions that lead to “wrong codewords” at the output of the message-passing 

decoder are investigated in Section 3.2. When the “maximum number of iterations” 

parameter Imax of the decoder is set to 50, all errors contributing to the output BER 

come from the decoding failures for the codes with length n larger than 200, and 

there is no wrongly decoded codeword at all. On the other hand, when n< 200, one 

may have a few wrong codewords at the decoder output. For short code lengths such 

as 50 or 100, the probability of having wrong codewords decreases if Imax, which is 

initially chosen as 50, is set to a smaller value, like 20. Since mind values of short 

codes are quite small (say as small as 5 for a regular (3, 6) code of length 50), the 

decoding algorithm may possibly force itself to decide on a wrong codeword in 20 

iterations which is quite large as compared to mind ; and this probability is even 

higher when Imax is set to 50. However; in real cases, where the code length n and 

minimum distance mind  are much larger than the maximum number of iterations 

parameter of the decoding algorithm, Imax, the probability of a wrongly decoded 

codeword approaches to 0.  

In Section 3.3, we have compared the performances of the (1200, 600) irregular 2A 

codes which have average variable node degree values slightly less than 3 with that 

of the regular (3, 6) code. We have seen the surprising result that the irregular codes 

with the variable node degree distribution polynomial ( ) 2
5 95.005.0 xxx +=λ

 
(hence 

the average variable node degree wa=2.95) have slightly better performance than the 

regular codes with the variable node degree distribution polynomial ( ) ,2xx =λ   

(hence the variable node degree 3). In order to explain this observation, we have 

counted the number of length-6 cycles (N6) of several codes. We have seen that the 

codes with wa = 2.95 have in general less N6 than that of the regular (3, 6) code. In 

order to be sure that this is the reason for better performance, we have generated 

many different irregular codes with wa = 2.95, and many different regular codes of 
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variable node degree 3. Comparing the performance of all these codes, we have 

found that the code with less N6, has always better performance. Since there are less 

number of 1’s in the parity-check matrix of an irregular code with wa = 2.95, it is a 

greater probability that the irregular code has less N6 than that of a regular (3,6) code. 

This is the reason for irregular 2A codes with wa = 2.95 to have better performance in 

most of the cases. 

In the remaining sections, we have investigated the performance of pseudo-randomly 

generated (1800, 900) irregular codes with different variable node degree distribution 

polynomials. In Sections 3.4 and 3.5, we have generated irregular codes that have 

average variable node degree 3. The 2/3/4 codes, for which the number of variable 

nodes of degree-2 is chosen to be equal to number of variable nodes of degree-4 in 

order to have wa = 3, are shown to have a performance that is almost the same as that 

of the regular codes of the same length. Then, we have used degree-1 and degree-5 

variable nodes instead of the degree-2 and degree-4 variable nodes, to generate 1/3/5 

irregular codes. We have noticed that there exists an unacceptable number of wrong 

codewords at the decoder output, resulting from degree-1 nodes. So we concluded 

that degree-1 nodes (meaning variable nodes connected to single check equations) 

should never be included in the design of powerful LDPC codes.  

We have then generated (1800, 900) irregular codes with average variable node 

degrees greater than 3 and investigated their performance in Sections 3.6 and 3.7. In 

order to have average variable node degrees greater than 3, we have added high 

weight columns to the parity-check matrices to construct 2/3/9, 2/3/11, 2/3/13 and 

2/3/19 irregular codes. We have found that the codes with wa greater than 3 have 

better performances with increasing wa up to some level; however, further increase in 

wa distorts the performance. To explain the reason behind this performance loss, we 

have counted the number of length-6 cycles, N6, of the 2/3/9, 2/3/11 and 2/3/13 codes 

that are generated. We have observed that up to some value of the average variable 

node degree wa, the number of length-6 cycles of the codes remain fairly close to 

each other. However, for larger wa, huge increases in the number of length-6 cycles 
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suppress the improving effect of the high degree variable nodes and distorts the code 

performance. Therefore, the LDPC code designers should consider the trade-off 

between the average variable node degree and the number of length-6 cycles and 

explore the optimum value of wa, which may be different for different irregularities. 

For the example codes of this work, the best performing 2/3/9 irregular code has the 

average variable node degree wa =3.4, the best performing 2/3/11 irregular code has 

wa =3.6 and the best performing 2/3/13 irregular code has wa =3.8. This is 

understandable, since as compared to the weight-9 columns, less number of weight-

13 columns are needed to reach to wa = 3.8. Because the contribution of less number 

of high degree variable nodes to N6 is smaller, the optimum wa for the 2/3/13 codes is 

greater than that of the 2/3/9 codes. In Section 3.7.3, some codes with the same N6, 

but slightly different values of n and wa are compared and it is seen that their 

performances are nearly identical. 

Then, in order to see whether our irregular code design method leads to capacity 

approaching performances for very long codeword lengths, we have designed a 

2/3/13 irregular code of length 16,000 bits with average variable node degree wa=3.8. 

We have compared the performance of this code with a commercially used code of 

length 64,800 and observed that the performance of our 2/3/13 irregular code is very 

close to that of the commercial one.  

We have also measured the decoding times for a regular, and 2/3/11, 2/3/13 and 

2/3/19 irregular codes of length 1800. We have observed that the average time spent 

for one iteration is almost proportional to wa. However, the time spent for decoding 

the same number of codewords decreases with increasing average variable node 

degree. We have seen that at the time spent for decoding 50,000 codewords at 

Eb/No=1.6 dB for the 2/3/13 irregular code with wa=3.8 is 19% less than that of the 

regular code. The main reason for this is found to be the smaller number of decoding 

failures obtained for the irregular code.  
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As a final consideration, we have discussed the check node degree distributions of 

some irregular codes that are used in this work, and shown that the utilized 

construction methods create check node degree distributions, which remain close to 

uniform, as long as the desired variable node degree distributions fed to the 

construction algorithm are close to uniform. 
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CHAPTER 4 
 

 

CONCLUSIONS 

 

 
In this work, performances of randomly generated regular and irregular binary LDPC 

codes are investigated and the effects which improve or deteriorate the performance 

are analyzed. The performance of the codes, all of which are constructed as rate ½ 

codes that are free from length-4 cycles, are studied using “BER versus SNR” curves 

obtained by the belief propagation decoding algorithm that employs the log-

likelihood function. 

Using an optimal decoding algorithm, the performance of a regular LDPC would be 

better with increasing variable node degree, vw . However, a code with large vw   has 

a dense Tanner graph in which the belief propagation algorithm makes poor progress. 

Therefore, one expects that the optimum vw  value is small. In fact, in [MacKay-

2005], it is shown that the optimum value of vw  is 3. Considering this fact, we have 

constructed all the regular matrices that we have used in this work with 3=vw . 

Since the rate of the codes are ½, their check node degrees are 6=cw . The irregular 

codes that we generate also have average variable node degrees wa close to 3. 

We have observed that, for short codes with small mind values, the decoder seldomly 

decides on a wrong codeword, if the number of decoding iterations is sufficiently 

larger than mind . So, as a handy rule of thumb, we conjecture that wrong codewords 

do not occur if the maximum number of iterations parameter of the decoding 

algorithm, Imax,  is less than one tenth of the block length. In real cases, where the 

code length n and minimum distance mind  are much larger than Imax, the probability 

of a wrongly decoded codeword approaches to 0. Useful LDPC codes are chosen 
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very long for excellent performance, so practically all decoding errors come from 

decoding failures. 

We have compared the performances of many regular (3, 6) and irregular 2A codes 

defined in [MacKay-Neil-1996] with 95.2=aw . In all cases, we have seen that the 

codes with less number of length-6 cycles have better performance, independent of 

the regular or irregular structure. As compared to the regular (3, 6) code, there are 

less number of 1’s in the parity-check matrix of an irregular code with wa = 2.95; 

moreover, degree-2 variable nodes of the irregular 2A codes are designed in such a 

way that they do not cause any length-6 cycles. Therefore, it is a greater probability 

that the number of length-6 cycles of the irregular 2A code is less than that of a 

regular (3, 6) regular code, which is the reason for the better performance of the 

irregular code in most cases. 

Knowing that the best performance of regular LDPC codes are obtained for 3=vw , 

we have constructed irregular codes that have average variable node degree wa = 3. 

In case of the 2/3/4 codes, where the variable nodes are of degrees 2, 3 and 4, we 

have seen that the performances of the irregular codes are almost the same as regular 

codes. In case of the 1/3/5 codes, we have observed that wrong codewords occur at 

the decoder output. We have also noticed that increasing number of degree-1 nodes 

increases the number of wrong codewords at the decoder output. Because, degree-1 

variable nodes rely only on the information coming from a single check node; and it 

is quite probable in the decoding process that they lead to wrong codewords. Since 

all 2/3/4 codes have nearly the same BER performance, we conclude that there is no 

use in adding degree-4 columns to an irregular 2A code of average node degree 2.95. 

One should also avoid variable nodes of degree-1 in LDPC code design. 

As we could not obtain a performance improvement for irregular codes with wa = 3, 

we decided to increase the value of wa. In the previous parts of this work, we have 

shown that carefully designed weight-2 columns of a parity-check matrix lower the 

number of length-6 cycles and therefore improve the performance. So, we have 
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included a fixed number of carefully designed weight-2 columns in the parity-check 

matrices of the irregular codes and constructed the remaining columns as weight-3 

and higher-weight columns in order to have 2/3/i codes (where i=9, 11, 13, 19) with 

a desired wa value. For 3>aw , we have seen that increasing wa up to some critical 

level improves the performance, but further increase of wa deteriorates the 

performance. To explain the reason for this behavior, we have counted the number of 

length-6 cycles of the codes and shown that up to that critical value of wa, the 

number of length-6 cycles increase slowly with increasing wa. However, for larger 

wa, we have noticed an exponential increase in the number of length-6 cycles, which 

suppresses the improvement brought by high degree variable nodes. This wa value, 

which may be called the optimum average variable node degree, changes with the 

weight of the higher weight columns in the parity-check matrix. For the 2/3/9, 2/3/11 

and 2/3/13 codes of this work, the optimum wa’s have been shown to be around 3.4, 

3.6 and 3.8, respectively. This increase in critical wa is normal, since the 2/3/i code 

with larger i requires less number of high-degree columns in the parity-check matrix 

to arrive at the same wa , which in turn contributes less to the total number of length-

6 cycles. 

It is not right to pay more attention to the number of length-6 cycles than it deserves. 

For example, at variable node degrees of 3.4 and 3.6, even though the 2/3/19 codes 

have more cycles of length-6, they have better performance than the 2/3/9 codes. 

This is normal, since the number of length-6 cycles is not a primary comparison 

factor for the codes with different parameters. 

In order to see the whether our design methods work well to approach capacity for 

very long codeword lengths, we have designed an 2/3/13 irregular code of length 

16,000 bits. We have observed that the performance of the 2/3/13 irregular code is 

very close to that of a commercial DVB-S2 code of length 64,800.  

We have also measured the decoding times for some regular and irregular codes of 

codeword length 1800. We have observed that the decoding time per iteration 
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increases with increasing average variable node degree, wa, as expected. However, 

we have also seen that the total time spent for a fixed number of codewords is much 

less in the case of irregular codes, having high average variable node degrees. For 

example, at Eb/No=1.6 dB, 50,000 codewords of 2/3/11 2/3/13 and 2/3/19 irregular 

codes having wa values of 3.6, 3.8 and 4 respectively, are decoded in 85%, 81% and 

76% of the time required for the regular (3, 6) code. This is mainly because of the 

higher number of successes that are arrived at the 11th-12th iterations, and smaller 

number of decoding failures that can only be decided upon at the last (i.e., 50th) 

iteration of the decoding algorithm. 

To sum up, one can improve the performance of an irregular LDPC code by avoiding 

weight-1 columns, using a small percentage of carefully designed weight-2 columns 

in the parity-check matrix and increasing the average variable node degree up to 

some optimum value depending on the structure of the code. The performance of an 

irregular code with the optimum average variable node degree may approach the 

capacity for very large codeword lengths. Also, we measure the decoding times for 

strong irregular codes as much less than that of the regular code with similar 

parameters. 

Future work may incorporate the design of irregular codes with special variable node 

degree polynomials having smaller number of length-6 cycles than those presented in 

this work, having much larger average variable node degrees. 
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                        APPENDIX A 
 

 

LDPC CODE CONSTRUCTION SOFTWARES 

 

 

Regular Code Construction Software 

Our software that constructs regular LDPC codes by the MacKay and Neil’s regular 

LDPC code construction method takes the size nm×  and the variable node degree 

wv as the input parameter, and gives the parity-check matrix H of an regular (wv, wc) 

LDPC code of rate m/n at the output. The algorithm of constructing the parity-check 

matrix is given below 

• Starting from the leftmost column, one-by-one construct weigth-3 columns. 

• When constructing a new column, select the positions of the 1’s of the 

column from the rows with weights smaller than the desired row weight cw . 

• When constructing a new column, make sure that number of overlaps 

between any two columns of the entire parity-check matrix no greater than 1. 

 

 

Irregular 2A LDPC Code Construction Software 

Our software that constructs irregular LDPC codes by the 2A method takes the size n 

and the average variable node degree aw  as the input parameters, and gives the 

parity-check matrix H of an irregular LDPC code of rate ½ at the output. The 

algorithm of constructing the parity-check matrix is given below 

• Using the size of the matrix and the desired average node degree, calculate 

the number of weight-2 columns, which cannot exceed n/4 for rate ½ codes. 
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• Construct the weight-2 columns of the parity-check matrix such that there is 

zero overlap between any pair of columns 

• Make the remaining columns with weight-3, with weight per row as uniform 

as possible, and number of overlaps between any two columns of the entire 

parity-check matrix no greater than 1. 

 

 

Pseudo-Random Irregular Code Construction Software 

Our software that constructs irregular LDPC codes by MacKay and Neil’s pseudo-

random construction method takes the size n, the average variable node degree aw , 

and the desired variable node degree values as the input parameters, and gives the 

parity-check matrix H of an irregular LDPC code of rate ½ at the output. The 

algorithm of constructing the parity-check matrix is given below.  

• Using the size of the matrix and the desired average node degrees, calculate 

the number of columns with each weight. 

• Starting from the leftmost column, construct the smallest weight columns 

first, then construct the columns with next greater degree and continue this 

process until the last column with the greatest weight is constructed. 

• When constructing a column, make sure that the number of overlaps between 

any two columns of the entire parity-check matrix no greater than 1.  

 
 
 
 


