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Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Müslim Bozyiğit
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ABSTRACT

A MONOLITHIC APPROACH TO AUTOMATED COMPOSITION OF SEMANTIC WEB

SERVICES WITH THE EVENT CALCULUS

Okutan, Çağla

M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Nihan Kesim Çiçekli

September 2009, 70 pages

In this thesis, a web service composition and execution framework is presented for semanti-

cally annotated web services. A monolithic approach to automated web service composition

and execution problem is chosen, which provides some benefits by separating the composi-

tion and execution phases. An AI planning method using a logical formalism called Event

Calculus is chosen for the composition phase. This formalism allows one to generate a nar-

rative of actions and temporal orderings using abductive planning techniques given a goal.

Functional properties of services, namely input/output/precondition/effects(IOPE) are taken

into consideration in the composition phase and non-functional properties, namely quality of

service (QoS) parameters are used in selecting the most appropriate solution to be executed.

The repository of OWL-S semantic Web services are translated to Event Calculus axioms and

the resulting plans found by the Abductive Event Calculus Planner are converted to graphs.

These graphs can be sorted according to a score calculated using the defined quality of service

parameters of the atomic services in the composition to determine the optimal solution. The

selected graph is converted to an OWL-S file which is executed consequently.
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ÖZ

ANLAMSAL WEB SERVİS BİLEŞİMİ BELİRLEME İŞLEMİNİN EVENT CALCULUS

KULLANILARAK TEKİL BİR YÖNTEMLE OTOMATİKLEŞTİRİLMESİ

Okutan, Çağla

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Assoc. Prof. Dr. Nihan Kesim Çiçekli

Eylül 2009, 70 sayfa

Bu tezde, anlamsal örün servisleri için bir birleşim ve yürütme sistemi sunulmuştur. Birleşim

ve yürütme işlevlerini ayırmasıyla bir takım yararlar sağlayan tekil bir yöntem izlenmiştir.

Mantıksal bir sistem sunan Event Calculus kullanılarak birleşim problemi yapay zeka plan-

lama problemine çevrilmiştir. Bu mantıksal sistem, bir hedef için, açıklama bulmaya yönelik

teknikler kullanılarak, olay ve zaman sıralamalarından oluşan planlar üretilmesini mümkün

kılmaktadır. Fonksiyonel servis özellikleri yani girdi/çıktı/önkoşul/sonuç’lar birleşim aşama-

sında, fonksiyonel olmayan servis özellikleri yani servis kalite parametreleri ise yürütülecek

en uygun birleşimi seçme aşamasında kullanılır. OWL-S havuzunda bulunan örün servis-

leri Event Calculus aksiyomlarına çevrilir ve Abductive Event Calculus Planner’ın bulduğu

sonuçlar grafiklere dönüştürülür. Bu grafikler, birleşimlerdeki servislere ait tanımlanmış servis

kalite parametreleri kullanılarak hesaplanan bir puana göre sıralanabilir. Seçilen grafik daha

sonra yürütülecek olan OWL-S dosyasına çevrilir.
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CHAPTER 1

INTRODUCTION

Web services are pivotal point in developing applications on today’s web since they allow fast

delivering of new software. The traditional programming is often done in an ad hoc manner

and quite often the reusability is restricted. Web services on the other hand give an extensive

opportunity for software integration and reusability. Current standards for Web services are

WSDL, SOAP, BPEL and UDDI. WSDL is an XML-based document that describes a Web

service, how to access the service by specifying the location of the service and the operations

the service exposes. SOAP is an XML-based protocol for service messaging. BPEL is a stan-

dard for defining Web service interactions and composition flows. UDDI is an XML-based

registry which makes services discoverable over Internet. Apart from presenting low-level

agreements between Web services and providing a distributed environment, these standards

require a lot of human effort to create and manage end-to-end service interactions. In such a

dynamic world, where services are created, updated, deleted on the fly, these industry stan-

dards are far from being sufficient.

Academia solution for giving Web services a meaning, so that besides humans, software

agents can also benefit from, is by means of semantic web issues, that is annotating Web

services with OWL-S which is an ontology built on top of Web Ontology Language(OWL).

This method presents a way for giving an abstract representation of Web services which can

be characterized with functional properties like input/output/precondition/effect(IOPE) and

also some non-functional properties such as availability, execution duration, reliability which

are called Quality of Service(QoS) parameters also.

Using AI planning techniques for Web service composition problem is a long study in academia.

The composition problem is transferred into a planning problem by translating Web service
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capabilities defined in ontologies and searched for solutions for the problem by using goal-

oriented inferencing techniques from planning. AI planning methods are mainly concerned

with the functional properties, IOPEs of services to express in planning domain. Operations of

the planning domain (actions or events) become operations of the composition domain (Web

services). Inputs and outputs of a Web service become knowledge precondition and knowl-

edge effects respectively. Also preconditions and effects of Web services are transferred to

preconditions and effects of actions in planning domain. The composition problem is mainly

to reach the goal state from the initial state. The literature includes many research on applying

AI planning techniques to Web service composition domain [1, 2, 3, 4, 5, 6, 7, 8, 9]. These

proposals mostly come up with an abstract composition that needs further manual intervention

for actually creating the deployable and executable service.

The need for a tool for Web service composition seems to increase in great amounts. Today

there are many Web services that are ready to be discovered and used on their own. For il-

lustrating a simple scenario, a person needs the information about the price of this book by

starting from a book name. There are services where one can find the actual book information

with the ISBN number, author name and publisher information where book name is known

and one can find the price of the book where ISBN number is known. Given a fixed set of

Web services, using only WSDL descriptions to compose these two services would comprise

of manually analyzing the services and seeing if they suit the purpose. With ontologies de-

fined for Web services and a composition tool in hand, the composition problem reduces to

determining the known inputs and wanted outputs. The automation of creating a business

process functionality based on requirements from user, developing executable workflows and

deploying them on an execution environment become possible.

Planning with AI techniques focuses on capability matching: the matching between IOPE

of advertised services and IOPE of requester services. In complex problems, or in cases

where some properties of Web services become important to the user, a selection mechanism

is needed to find the optimal plan. For this purpose QoS parameters are used. There are

many algorithms in the literature that try to choose the best composition plan by optimizing

the calculated score for each service based on QoS parameters[10, 11, 12, 13, 14, 15, 16, 4].

This approach gives the user more control on selecting the most appropriate plan especially if

the plan is composed of many services, and there are alternative services that have the same

capability matching but different quality values.
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This thesis aims to propose a framework which binds semantically-annotated Web service

components together and delivers the required function given user’s specifications for a new

service. The work of [1] is extended to handle execution of the generated composed plan and

to sort plans for best plan selection. OWL-S is used for semantically describing Web services.

The AI planning technique involves the use of Event Calculus (EC), a logical framework for

expressing actions and their effects. What Event Calculus does in Shanahan’s[17] words is:

“The event calculus is a logical mechanism that infers what’s true when given what happens

when and what actions do. The what happens when part is a narrative of events, and the what

actions do part describes the effects of actions.”. Using the axioms of the defined formalism,

what happens when part is tried to be inferred by using Abductive Event Calculus Planner[18].

Event Calculus provides the necessary platform for encoding the Web service composition

problem as an AI planning problem. It has representational efficiency, with capability of rep-

resenting concurrent actions, actions with indirect and non-deterministic effects, compound

actions and continuous change. It provides an abstractness and does not require domain

knowledge specific to any kind of problem. Also with Event Calculus, it is possible to express

the goals as complex expressions.

IOPEs extracted from OWL-S descriptions of Web services are transformed to the planner’s

domain and using the axioms of event calculus, the planner returns a narrative of actions

as plans which are possibly total or partial order. The output of the generated solution is

transformed into a graph object, which is in the first place visually presented to the user. The

framework allows the user to sort the generated graphs according to some aggregation value

calculated based on QoS parameters. The selected graph object is parsed and transformed

into a new OWL-S service which has the functionality determined by the user at initial step.

The file is executed by the user specified input values using the execution engine, and results

are displayed to the user. The OWL-S services used by the planner is a fixed set contained in

a repository. That is, Web service discovery problem is out of the scope of this thesis.

The organization of the work is as follows: In the subsequent chapter, background information

and a survey of existing literature on AI planning techniques on Web service composition

problem are presented. In Chapter 3, the general architecture of the proposed framework is

presented. In Chapter 4, the details of using QoS parameters in plan selection phase and

how preconditions and effects are handled in both planing and execution phases are given.

3



Chapter 5 illustrates the use of the system with a case scenario by giving details about the

implementation. Chapter 6 concludes with some evaluation together with pointing future

extensions to the proposed system.
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CHAPTER 2

BACKGROUND INFORMATION AND RELATED WORK

This chapter aims for representing background information on Web services and related tech-

nologies, Event Calculus formalism, how abductive planning is done with Event Calculus, and

current studies related to Web service composition problem. The basic concepts, thoroughly

used terminologies and definitions are given.

2.1 Background Information on Web Services

2.1.1 Web Services

Components are the building blocks of an application environment in traditional program-

ming. Much like Web services are components of a service-oriented architecture which have

numerous of unique characteristics. The complete autonomic behavior of a Web service from

another is one such quality and provides loosely coupling in-between. Each service is re-

sponsible for its own domain and implementing a set of business functions. The isolated

environments are bound by a common agreement to a standard communications framework.

Each service independently has the right to decide its own programming logic, platform and

technology. By encapsulating the function definition, by loosely coupling and having a con-

tract, web services provide the general structure for interoperability. The communication

protocols provide the chance of requesters and providers to be in distributed environments.

Web services must conform to some standards. Fig 2.1 shows the relationship between these

standards.

WSDL In order to be discovered and interfaced with other services, a web service has to be

5



Figure 2.1: Relationships between standards

defined in a consistent manner. The Web Services Definition Language[19] is a World

Wide Web Consortium (W3C) specification providing the language for description of

Web service definitions. WSDL enables communication between the integration layers

by defining endpoint descriptions.

SOAP The messaging between Web service peers in a distributed environment is standard-

ized by Simple Object Access Protocol [20]. The exchanged XML-based information

structure is defined with this standard.

UDDI A requester web service requires discovery of the needed provider service. A central

directory that hosts service descriptions is needed. The Universal Description, Discov-

ery, and Integration[21] specification is the global registry which provides a standard-

ized way of publishing and discovering of Web services along the Web.

These standards are basic building blocks for Web service framework but richer semantic

specifications of Web services are needed to enhance the power of the framework as discussed

in the following section.

6



2.1.1.1 Web Services Composition Problem

Web service composition problem may be expressed as selecting and combining Web ser-

vices to achieve a user’s goal. It is far beyond the human capability to make the composition

manually in the current evolving Web where any time a new service is created and disappears.

For automating Web service composition problem, it is required to express all the informa-

tion in an unambiguous computer interpretable form. The current industrial standards which

are mentioned before do not handle Web service preconditions and (conditional) effects nor

provides an unambiguous way of mapping inputs and outputs. In addition to mapping in-

put/output/precondition/effect (IOPEs), composition problem involves selecting the best Web

service among alternatives by the use of properties, capabilities and functioning of a Web

service. The use of semantic web features becomes important in order to satisfy these re-

quirements. Web service composition problem can be both seen as a synthesis and as an AI

planning problem. In the former approach, an abstract workflow is executed based on user

constraints. In the latter approach, the domain descriptions are transformed to planning do-

main and a planner is used for generating the plan using the goal description. Both approaches

are further investigated in Section 2.4.

Web service composition is a research topic which contains many challenges and discussions.

These can be listed as nondeterministic behavior of web services that causes failures during

execution like unavailability of a registered service and network failures, partial observability,

scalability and handling of services which have effects changing the world state. Nevertheless,

a semantic approach combined with AI planning techniques seems to have a solution to the

problems that current standards are not capable of solving.

2.1.2 OWL-S

Manually programming and designing Web services is a tedious and costly job in the cur-

rent evolving Web. A huge time is elapsed while searching the right service, adapting com-

ponents between incompatible ones. Web Services Choreography Description Language

(WS-CDL) proposed by W3C is aimed at solving the problem of collaboration regardless

of the supporting platforms on each side. Business Process Execution Language for Web Ser-

vices(BPEL4WS) [22] is another language specification for formal specification of business

7



processes and business interaction protocols. But these specifications also are harder to deal

with and do not provide enough abstraction and comfort. Semantic Web technologies will

contribute to Web service frameworks as well. With richer semantics it is possible to [23, 24]:

• automate service selection, composition, verification and invocation

• automate translation of message content between services

• handle service monitoring and recovery from failure in a more comprehensive manner

• reduce manual configuration and programming efforts.

Semantic Web services, describe the concepts in the services’ domains by the help of ontolo-

gies, some characteristics of services like control and data flow and service’s relationships to

the domain ontologies by the help of IOPEs. Currently popular semantic Web service specifi-

cations are Web Service Modeling Ontology (WSMO)[25] and OWL-S[26]. Literature survey

shows that OWL-S is used more widely in web service composition with AI planning. So in

this thesis, OWL-S definitions of services are used.

Formal definition of OWL-S is given in [26] as “OWL-S is an ontology, within the OWL-

based framework of the Semantic Web, for describing Semantic Web Services. It will en-

able users and software agents to automatically discover, invoke, compose, and monitor Web

resources offering services, under specified constraints.” Description of a service is mainly

defining the profile, process model and grounding parts of the service each of which is ex-

plained below:

profile This part is used to describe what the service does. A profile provides a general

description of a Web service, and includes functional properties (IOPEs) and nonfunc-

tional properties like category, quality rating and additional service parameters. This

is the part mainly used for human reading and web service discovery. The functional

properties may be a subset of the ones explained in process model. Figure 2.2 shows

a profile for a book finder service describing that the the service has an input parame-

ter named BookName, an output of parameter named Book and a precondition named

AlphanumericCheck:

process model This part is responsible for describing how a service performs its tasks. It

includes information about inputs, outputs and under which conditions the outputs will

8



<profile:Profile rdf:ID="BookFinderProfile">

<service:presentedBy rdf:resource="#BookFinderService"/>

<profile:serviceName xml:lang="en">Book Finder</profile:serviceName>

<profile:textDescription xml:lang="en">This service returns the

information of a book whose title best matches the given string.

</profile:textDescription>

<profile:hasInput rdf:resource="#BookName"/>

<profile:hasOutput rdf:resource="#Book"/>

<profile:hasPrecondition rdf:resource="#AlphanumericCheck"/>

</profile:Profile>

Figure 2.2: Book Finder Service Profile

occur, preconditions which are circumstances that must hold before a service can be

used, and results which are changes the service has caused. There are three types of

processes: composite, atomic, and simple processes. Composite processes are formed

by simpler component processes that are bound to each other by data bindings which

provide data flow among each other and control construct that provides the control flow.

Atomic processes present directly invokable functional property. Simple processes are

abstract process descriptions which are not invokable but may relate to other composite

or atomic processes. The control constructs of OWL-S are Sequence, Split, Split + Join,

Choice, Unordered, Condition, If-Then-Else, Iterate, Repeat-While, and Repeat-Until.

In Figure 2.3, the mentioned properties and their relationships within each other can be

seen.

Figure 2.3: OWL-S Process Model
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Preconditions and effects are specified as logical formulas and OWL-S does not dictate

any language for expressing them. Semantic Web Rule Language (SWRL)[27], Re-

source Description Framework (RDF)[28], Knowledge Interchange Format (KIF)[29]

and Planning Domain Definition Language (PDDL)[30] are alternative languages. Among

them SWRL is the mostly used one. SWRL is “based on a combination of the OWL DL

and OWL Lite sublanguages of the OWL Web Ontology Language with the Unary/Binary

Datalog RuleML sublanguages of the Rule Markup Language.” as stated in [27]. Pre-

conditions and effects are expressed by the Expression property of process. An example

process precondition can be seen in Figure 2.4:

<process:AtomicProcess rdf:ID="BabelFishTranslatorProcess">

...

<process:hasPrecondition rdf:resource="#SupportedLanguagePair"/>

</process:AtomicProcess>

<expr:SWRL-Condition rdf:ID="SupportedLanguagePair">

<rdfs:label>canBeTranslatedTo(InputLanguage, OutputLanguage)</rdfs:label>

<expr:expressionLanguage rdf:resource="&expr;#SWRL"/>

<expr:expressionObject>

<swrl:AtomList>

<rdf:first>

<swrl:IndividualPropertyAtom>

<swrl:propertyPredicate rdf:resource="#canBeTranslatedTo"/>

<swrl:argument1 rdf:resource="#InputLanguage"/>

<swrl:argument2 rdf:resource="#OutputLanguage"/>

</swrl:IndividualPropertyAtom>

</rdf:first>

<rdf:rest rdf:resource="&rdf;#nil"/>

</swrl:AtomList>

</expr:expressionObject>

</expr:SWRL-Condition>

Figure 2.4: A Process Precondition Expressed With SWRL

grounding Grounding part is what makes an abstract specification to a concrete one by spec-

ifying the mapping of inputs and outputs of atomic processes to the actual invokable

services. Details regarding protocol and message formats, serialization, transport, and

addressing are handled in this part. OWL-S allows for different types of groundings to

be used, but the mostly used one is WSDL grounding, which allows any Web service

with a WSDL definition to be marked up as a semantic Web service. The mapping

is done if the input/output is directly replaceable to WSDL counterparts or by XSLT-
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transformations specified by xsltTransformation property. An example transformation

for the book finder service output are shown in Figure 2.5 and Figure 2.6:

<grounding:wsdlOutput>

<grounding:WsdlOutputMessageMap>

<grounding:owlsParameter rdf:resource="#Book"/>

<grounding:wsdlMessagePart>&groundingWSDL;#bookInfo

</grounding:wsdlMessagePart>

<grounding:xsltTransformationString>

<![CDATA[<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<xsl:variable name="X1" select="bookInfo/bookName"/>

<xsl:variable name="X2" select="bookInfo/isbn"/>

<xsl:variable name="X3" select="bookInfo/publishYear"/>

<rdf:RDF xmlns:rdf=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:concepts="http://localhost:8080/ESODENEME_ATLAS_WEB

/owl/Book.owl#">

<xsl:if test="not(bookInfo=’’)">

<concepts:Book>

<concepts:bookName

rdf:datatype="http://www.w3.org/2001/

XMLSchema#string">

<xsl:value-of select="$X1"/>

</concepts:bookName>

<concepts:ISBN

rdf:datatype="http://www.w3.org/2001/

XMLSchema#string">

<xsl:value-of select="$X2"/>

</concepts:ISBN>

<concepts:publishYear

rdf:datatype="http://www.w3.org/2001/

XMLSchema#date">

<xsl:value-of select="$X3"/>

</concepts:publishYear>

</concepts:Book>

</xsl:if>

</rdf:RDF>

</xsl:template>

</xsl:stylesheet>

]]>

</grounding:xsltTransformationString>

</grounding:WsdlOutputMessageMap>

</grounding:wsdlOutput>

Figure 2.5: XSLT Transformation for OWL-S Output Parameter: Book
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The OWL-S output paramater Book is composed of bookName, ISBN and publishYear

properties. The corresponding WSDL complex type elements can be seen in Figure 2.6

for bookInfo.

<types>

<xs:schema targetNamespace=’http://localhost/bookfinder’ version=’1.0’

xmlns:xs=’http://www.w3.org/2001/XMLSchema’>

<xs:complexType name=’bookInfo’>

<xs:sequence>

<xs:element minOccurs=’0’ name=’bookName’ type=’xs:string’/>

<xs:element minOccurs=’0’ name=’isbn’ type=’xs:string’/>

<xs:element minOccurs=’0’ name=’publishYear’ type=’xs:dateTime’/>

</xs:sequence>

</xs:complexType>

</xs:schema>

</types>

<message name=’BookFinder_GetBookInfoResponse’>

<part name=’bookInfo’ type=’tns:bookInfo’></part>

</message>

Figure 2.6: WSDL Definition of the Output

2.2 Event Calculus Formalism

Event Calculus is a temporal formalism designed to model and reason about scenarios de-

scribed as a set of events whose occurrences have the effect of starting or terminating the

validity of determined properties of the world (called the fluents)[31]. Event Calculus was

first proposed by Kowalski and Sergot[32], the one that will be used in this thesis will be the

one defined by Shanahan[17]. Event Calculus is based on first-order predicate calculus, and

is capable of representing actions with indirect effects, actions with non-deterministic effects,

compound actions, concurrent actions, and continuous change[17].

The basic ontology of the event calculus includes actions or events, fluents and time points. A

fluent is a proposition whose value is changeable over time. Event Calculus has the following

definitions and axioms:

12



Table 2.1: Event Calculus Ontology and Definitions

Formula Meaning

Initiates(a, B, t) Fluent B holds after action a at time t

Terminates(a, B, t) Fluent B does not hold after action a at time t

Releases(a, B, t) Fluent B is not subject to the common sense

law of inertia after action a at time t

InitiallyP(B) Fluent B holds from time 0

InitiallyN(B) Fluent B does not hold from time 0

Happens(a, t1, t2) Action a starts at time t1 and ends at time t2

HoldsAt(B, t) Fluent B holds at time t

Clipped(t1, B, t2) Fluent B is terminated between times t1 and t2

Declipped(t1, B, t2) Fluent B is initiated between times t1 and t2

Event Calculus axioms are listed below:

HoldsAt(f, t)← InitiallyP (f) ∧ ¬Clipped(0, f, t) (2.1)

HoldsAt(f, t3)← Happens(a, t1, t2) ∧ Initiates(a, f, t1) (2.2)

∧ t2 < t3 ∧ ¬Clipped(t1, f, t3)

Clipped(t1, f, t4)↔ ∃a, t1, t2 [Happens(a, t2, t3)∧ (2.3)

t1 < t2 ∧ t2 < t4 ∧ [Terminates(a, f, t2) ∨Releases(a, f, t2)]]

¬HoldsAt(f, t)← InitiallyN(f) ∧ ¬Declipped(0, f, t) (2.4)

¬HoldsAt(f, t)← Happens(a, t1, t2)∧ (2.5)

Terminates(a, f, t1) ∧ t2 < t3 ∧ ¬Declipped(t1, f, t3)

Declipped(t1, f, t4)↔ ∃a, t2, t3 [Happens(a, t2, t3)∧ (2.6)

t1 < t3 ∧ t2 < t4 ∧ [Initiates(a, f, t2) ∨Releases(a, f, t2)]]

Happens(a, t1, t2)→ t1 ≤ t2 (2.7)

The only way the value of a fluent change is by an initiation or a termination action occur-

rence, as these axioms demonstrate. These axioms provide to query for a fluent’s truth value

given the initial conditions and the effect expressing Initiates and Terminates axioms. The

following section gives more details about the decision mechanism of planning with Event

Calculus.

13



2.3 Abductive Planning with Event Calculus Planner

Deduction and abduction are two ways of reasoning for plan generation using Event Calculus.

Kave Eshghi was the first author who showed the basis of using abduction to solve Event

Calculus planning problems[33]. Shanahan has further worked on the problem and analyzed

how abduction leads to getting explanations for a planning problem in Event Calculus[34].

Shanahan has written a prolog planner[35] using meta-level clauses expressing the axioms of

EC[18]. For instance for EC Axiom 2.2, the following meta-level clause is written:

demo([holds at(F, T3)|Gs1]) : −

axiom(initiates(A, F, T1), Gs2), axiom(happens(A, T1, T2), Gs3),

axiom(before(T2, T3), []), demo([not clipped(T1, F, T3)]),

append(Gs3, Gs2, Gs4), append(Gs4, Gs1, Gs5), demo(Gs5).

The solution to the planning problem involves of expressing the domain in Event Calculus

definitions stated above and then running the planner to generate the plans. Initiates, Ter-

minates, Happens and other predicates will be expressed as axiom predicates of the form

axiom(a, R) where R is a list of prolog literals [b, c, ..., n]. The formula axiom(a, R) holds

if there is a clause of the following form:

a : −b, c, ...., n

The plan will consist Happens formulas and temporal orderings listed as predicates before(t1,

t2). Let the goal formula be represented with γ. Given below is the representation of the

planning problem in Event Calculus notation where a conjunction
∑

of Initiates, Terminates

and Releases formula describing the effects of actions, a conjunction δ of InitiallyP, InitiallyN,

Happens and temporal ordering formula for describing a narrative of actions and events, and

a conjunction Ω of uniqueness-of-names axioms for actions and fluents:

CIRC[
∑

; Initiates, Terminates, Releases] ∧ CIRC[δ; Happens] ∧ EC ∧ Ω |= γ where

EC encapsulates Event Calculus axioms as stated before. Circumscription is applied to the

Initiates, Terminates, Releases and Happens formulas. Applying circumscription to Initiates,

Terminates and Releases formulas causes actions to have no unexpected events. Applying

circumscription to Happens formulas causes no unexpected event occurrences.

Abductive Event Calculus Planner has the following form of queries:
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“abdemo(Goals, Residue)” where “Goals” is a list of atoms (goals). “Residue” is a pair of

lists of atoms [RH,RB], where RH contains happens facts and RB contains temporal ordering

facts. The residue keeps track of the needed explanations (the happens facts and temporal

ordering facts) for abducibles. An abducible is a predicate for which we are trying to find

an explanation for. To illustrate the abduction mechanism of the planner, Shanahan gives a

simple Blocks World example[34]. Temporal ordering expressions for actions are represented

by E for the sake of brevity, instead of representing them with happens(E, T1, T2) expressions.

The domain independent axioms to be used are the following:

holds at(P, T )← happens(E) ∧ E < T ∧ initiates(E, P ) ∧ not clipped(E, P, T )

(2.8)

clipped(E, P, T )← happens(E′) ∧ terminates(E′, P ) ∧ not T ≤ E′ ∧ not E′ ≤ E

(2.9)

The domain dependent axioms are the followings:

initiates(E, on(X, Y ))← act(E, move(X, Y )) (2.10)

initiates(E, clear(Z))← act(E, move(X, Y )) ∧ holds at(on(X, Z), time(E))

∧ Z 6= Y (2.11)

terminates(E, clear(Y ))← act(E, move(X, Y )) (2.12)

terminates(E, on(X, Z))← act(E, move(X, Y )) ∧ Z 6= Y (2.13)

Figure 2.7 shows the search space for query holds at(on(a, x), t0). Abduction generates the

residue D′ = {happens(e1), act(e1, move(a, x)), e1 < t0}.

A second example shows how the planner tries to use already existing event (e1) in the residue

but fails at later steps and generates a second branch that uses a newly generated event. This

time t0 < t1 ∧ t1 < t2 are given and we want an explanation for holds at(on(a, x), t0) ∧

holds at(on(a, x), t2) ∧ holds at(clear(x), t1). Notice that the first goal already generated

the search space in 2.7 so, in Figure 2.8 the other portion of the search space is presented for

that purpose. This illustrates the use of checking of negated facts in case at some step during

abduction, they are found to be provable.
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Figure 2.7: Search Space

for Blocks World problem -

I Figure 2.8: Search Space for Blocks World problem - II

2.4 Current Studies on Web Service Composition

The literature presents several approaches to web service composition and execution problem.

To clarify the differences between these approaches, [36] proposes four categories for the

problem of web service composition and execution (WSCE). This separation is based on the

following properties of WSCE characteristics:

• the separability of composition and execution phases

• taking place of composition during design or run-time

• planning or template based composition

• the kind of information used in composition like service types, service instances pub-

lished/deployed, or service templates

Authors of [36] based on the above properties, stated the following approaches where Table

2.2 shows the relation of these properties with the approaches:

Interleaved Composition and Execution In this approach, the execution takes place during
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Table 2.2: Properties of WSCE approaches

Criteria Interleaved Monolithic Staged Template-based

Separable? No Yes Yes Yes

When Online Offline Offline Online/Offline

How Search Search Search Template

What Information Deployed Instances Advertised Instances Advertised Type Templates/ policies

& Instances Advertised Types & Instances

planning. This way it is possible to dynamically query the environment, rather than to

account for all possible world states during planning.

Monolithic Composition and Execution With this approach, specifications are turned into a

composite executable workflow which is determined by the planning routine. Run-time

aspects of services are not captured, the planning phase only accounts for advertised

service properties (IOPE’s). After the planning phase several plans may be generated

from which ‘the best’ solution is selected according to some ranking.

Staged Composition and Execution There are two phases in this approach which are log-

ical composition and physical composition. This approach distinguishes the service

types and instances, which means logical composition makes use of service types

whereas physical composition makes use of actual executable services. Ranking of

abstract workflows is also possible with this approach. By introducing an abstract level

of composition and service types, this approach makes some kind of filtering on the

data set, that is only services of the given service types are considered in the discovery

part. Also if there are several services found for replacing a service type in the abstact

plan, then a choice decision is made according to some ranking of the actual services.

Template-based Composition and Execution This approach makes use of templates and

instantiates them to get an executable workflow. This approach does not compose the

workflow automatically as the other approaches do.

The most common web service composition approach in literature is the monolithic approach

as will be seen later in this section. Interleaved approach is superior to the others in adapting

to the actual environment. With this approach, if a new service is available and/or a service

is unavailable the adaptation can be done at the execution time. With other approaches on the

other hand, there must be a feedback from the execution to the planning phase. On the other

hand, with monolithic or staged composition techniques, it is possible to order the generated
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plans according to non-functional requirements or use other ranking techniques. Also with

staged and monolithic approaches the failures can be handled at the early stages of the com-

position by some verification and refinement procedures. In interleaved approach resolving

a failure requires a rollback of the executed services. In this thesis, monolithic approach is

chosen.

2.4.1 AI Planning Techniques Applied to Web Services Composition Problem

The literature on web service composition using AI planning mainly focuses on the following

techniques[37, 38, 39, 40]:

Hierarchical Task Network Planning HTN planning[41] is based on decomposing a task

into subtasks which are atomic operations that are executed directly[38].

Situation Calculus Being a formalism for reasoning in dynamic environments, Situation

Calculus defines world states with concepts like actions, situations and fluents[39].

PDDL The Planning Domain Definition Language [30] is a standard language for most of

the AI planners in the literature. It was developed to serve as a standard domain and

problem specification language[38]. Since it is used in the initiation of DAML-S, the

transformation between them is straightforward.

Rule-based Planning This approach handles composition problem by introducing some com-

posibility rules that are based on syntactic and semantic properties of Web services. The

plan is generated given the user specifications for inputs and outputs, and based on the

rules defined in the system.

Graph Based Planning This planning technique uses a graph which is expanded to reach all

goal states by time steps and then after the graph is created, it searches for a solution

which may be a partial order plan as well [42].

Addressing most encountered AI planning techniques applied to web services composition

problem, the following section discusses the overview of some of the systems proposed.
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2.4.2 Overview of Proposals

Golog is a programming language built on top of Situation Calculus. In [2] the authors pro-

pose a software agent, that given a user specified generic workflow and constraints, it is able

to execute the workflow with the proper Web services. This agent can be presented as an

example of Template-based Composition and Execution approach. In this thesis however, a

generic workflow is not used, the composition phase generates the workflow.

An example of Staged Composition and Execution is IBM’s work, named Synthy, presented

in [3]. Figure 2.9 shows the general architecture of the system. They have proposed to extend

OWL-S ontology by adding an upper ontology which provides ServiceType class hierarchy in

addition to the Service hierarchy. An abstract workflow is generated according to these ser-

vice types and with physical composition the actual replacements of the services are realized.

These replacements are done according to non-functional requirements. In logical compo-

sition phase Planner4j is used for planning. The planner is a contingency planner which

generates plans according to the the user inputs. The format of the output of physical com-

position is BPEL which is taken by the execution infrastructure as input. A kind of filtering

mechanism is applied to eliminate the service types irrelevant to the goal. The matching of

service types with instances is done by using Web Services Matchmaking Engine(WSME)

[43] which matches a query record (for each service type in the composed workflow) with

an advertisement record (for a web service instance). It is stated that the produced final exe-

cutable flow needs human review as a last step for checking of data-flow. The idea of using

functional requirements for planning phase and non-functional requirements in plan selection

phase is similar to the one presented in this thesis. Inputs and outputs are used in instance

selection in physical composition whereas this thesis make Abductive Event Calculus Planner

use inputs and outputs of services. They are part of the semantic definition of a web service

which composibility depends on.

Authors of [4] have proposed a web service composition tool that uses a hybrid planner named

Xplan that combines a graph-plan based planner and an HTN planning component. OWL-S

service descriptions are transformed to PDDL which are used by Xplan to plan a service

composition that satisfies a given goal. The plan is outformatted as a graph. They have

developed an event mechanism to simulate the world changing events in order to allow the

planner to replan according to the fired events. The events are fired by the user control and
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Figure 2.9: Synthy

they are again defined in a file by the user. The output graph needs human interpretation for

deciding the plan structure, if it is split/split+join/etc. since the planner only produces ordered

sequential plans. In this thesis, however it is also possible to generate partial-order plans. Also

the graph is not further processed to make an executable and deployable web service. In our

system, the output OWL-S file can directly be executed with user given values for inputs. An

earlier version of their tool also uses optimization techniques based on QoS parameters [44].

A similar approach is taken in this thesis also.

[5] is an Interleaved Composition and Execution example that uses HTN planning for service

composition. They transform OWL-S service descriptions to SHOP2 [45] domain which is

an HTN planner that uses domain specific knowledge base of methods to generate a partially

ordered set of subtasks decomposition. The architecture offered can be seen in Figure 2.10.

Since the planner interleaves planning and execution, only information-gathering services are

allowed. Generated SHOP2 plan is converted to an OWL-S service which can be executed.

But since SHOP2 does not allow concurrent processes, the output plan cannot contain split

or split-join constructs of OWL-S. Due to the interleaving approach, the preconditions and

effects of web services can be integrated to the environment in planning phase providing the

knowledge of the current state of the world. In our work, preconditions and effects of web

services are both used in planning and execution phase, but during planning evaluation of

preconditions does not take place.

[6] proposes a DAML-S virtual machine which is a framework for discovery and execution

of web services. Discovery and Execution are part of their infrastructure but they state that

planning is the responsibility of individual agents not the infrastructure. They present a web

service composition experiment using their framework but there are issues considering lack

of support for failure management and recovery of DAML-S in interleaved approach and how

preconditions and effects are reflected to planning environment.
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Figure 2.10: SHOP2 Planning Architecture

A Monolithic Composition and Execution approach deals with the nondeterministic behavior

of Web services, partial observability and complex goals. Authors of [7] propose an automatic

web service composition in which OWL-S process models are changed into State Transition

Systems together with the composition goal. An abstract workflow is generated in their plan-

ner’s language. This plan is transformed later to an executable BPEL4WS process. Their

system supports constructs of sequence, conditions and iterations. Our system takes non-

deterministic behavior of web services into account by QoS modelling and in the selection

phase. Partial observability and complex goals are not considered in our system.

Another Monolithic Composition and Execution approach that uses rule-based planing tech-

nique is presented in [8]. They propose ontology-based framework for the automatic compo-

sition of Web services. They define composibility rules for comparing syntactic and semantic

features of web services to see if they are interoperable. Totally distinct from WSMO or

OWL-S, they introduced their Service ontology and composibility rules on the properties of

this ontology. WSDL descriptions are annotated with this ontology manually. Then using the

defined rules a matchmaking algorithm finds several composite plans from which a plan is

selected after applying QoS parameters ranking. By introducing their own ontology they state

that they increased the matching of web service capabilities with features like category, pur-

pose, parameters’ data types, units, and business roles. The output plan can be converted to

WSFL[46], XLANG[47] and BPEL4WS[48]. In this thesis, we use OWL-S for semantically
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describing Web services, since it has become widely used standart, which reduces the burden

of annotating Web services using another ontology.

[9], proposes a tool for converting semantically annotated WSDL definitions to PDDL domain

and uses an appropriate PDDL planner to generate the plan given the user’s goal. The planning

and execution is again interleaved, for which the failure conditions are delegated to the calling

software. An API is presented for expressing complex goals.

2.5 Use of Event Calculus for Semantic Web Service Composition

Event Calculus is used in web service coordination[49, 50], workflow composition based

execution[51, 52], workflow generation by planning[1, 53]. With the concurrent actions

mechanism, expressivity of action’s dependency of preconditions and effects with initiates

and terminates axioms and compound actions, Event Calculus framework is very suitable for

the solution of web service composition problem. On the other hand, literature mainly have

emphasis on use of Event Calculus for web service composibility and verification.

In [49], authors present a framework for verifying properties and detection of inconsistencies

both between and within the web services. They propose the use of Event Calculus for dis-

covering two Web services that have no knowledge of one another by using some contract

specified as requirements in Event Calculus formalism.

[50] also have a similar approach with [49], Event Calculus is used in providing the contract

between the components of composite service and between user and service requirements.

They adopted a design-time consistency check beetween components rather than run-time

during the composition process. They state that the testing on Event Calculus models are

done in early phases of policy development to avoid inconsistency from lack of constraints

or too strong constraints. With use of fluents like permitted, obliged and invoke they have

modelled contract interactions between services. But automatic web service composition is

again out of consideration, they make use of Event Calculus on workflow composition.

A wrapper for Event Calculus is designed in [53] which is called Workflow Specification

Language (WSL). The OWL-S semantic web service definitions are transformed together

with the user goal to WSL, and by subdividing the goal and using Event Calculus axioms,
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workflow is generated. Although the paper gives the architecture and an overview, it lacks

details of how Event Calculus axioms are used in resolution while transforming the goals into

subgoals.

A workflow based approach is presented in [51], where OWL-S process model is transformed

into Event Calculus axioms and generating the user query results in the execution of the plan

found by Abductive Event Calculus Planner.

Fully automating the web service composition problem is the main concern in [1], which

this thesis is based on and extends the previous work. The approach presented in [1] uses

the approach of interleaving planning and execution. OWL-S atomic process models are

transformed to Event Calculus axioms. Given the user inputs, outputs and output constraints

the execution plan returned by the planner is presented as a graph.
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CHAPTER 3

WSCE FRAMEWORK USING THE ABDUCTIVE EVENT

CALCULUS PLANNER

In this chapter, general architecture of the proposed WSCE framework is presented. The

differences of the framework from the previous work of Kuban[1] is explained in the next

section and the proposed framework’s workflow steps are discussed in successive sections.

3.1 General Framework

In a previous work[1], an interleaved approach to WSCE problem was introduced and dis-

cussed. The purpose of the system was to generate compositions directed by user specified

inputs, outputs and output constraints using OWL-S descriptions translated into meta-level

axioms to be used with Abductive Event Calculus Planner. The planning domain is restricted

to the ontologies described in the registry. Using these ontologies, and inputs and outputs with

their values entered by the user, the system is able to present alternative execution paths, as

output graphs. Due to the interleaving of planning and execution, all of the presented graphs

are actually executed.

Service execution is simulated, there are no calls to actual running services. So OWL-S

descriptions are only used for their process model part to get IOPEs, grounding part is not

used.

Figure 3.1 shows two execution plans for the same user query. During the planner search-

ing phase for the abducibles, simulated actual service calls are made and the variables are

unified with the actual values returned by these services. This is due to the fact that during
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Figure 3.1: Output Execution Plans

transformation of a service to EC axioms, the following kinds of axioms are formed:

axiom(happens(pServiceName(Input, Output), T1, TN),

[jpl_pServiceName(Input, Output) ]).

This compound axiom defines a precondition for pServiceName to actually take place, or

happen. The precondition jpl pServiceName(Input, Output) is the call to the actual ser-

vice where possibly Output variable is bound to some value. Figure 3.2 shows how the actual

service call is handled in prolog.

jpl_pServiceName(Input, Output) :-

jpl_new(’tr.com.edu.metu.wsc.atlas.main.WebServiceInvocation’, [], WSI),

jpl_list_to_array([Input], InputArray),

jpl_call(WSI,invokeService,[’pServiceName’,InputArray],OutputArray),

statements related to conversion for the output of the Java call to prolog

true.

Figure 3.2: JPL Usage for Actual Service Call

The interface beetween Java and Prolog is handled by JPL which is an API specialized for

this purpose.

The work contains also handling of service preconditions and user supplied output constraints.

Preconditions that are expressed as SWRL conditions in OWL-S service descriptions, are

expressed as another precondition like the service call method:

axiom(happens(

pCalculateNumberOfDays (StartDate, FinishDate, NumberOfDays), T1, TN),
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[

jpl pCalculateNumberOfDaysPrecondition(’StartDate’, ’FinishDate’),

jpl pCalculateNumberOfDays(StartDate, FinishDate, NumberOfDays)

])

Here jpl pCalculateNumberOfDaysPrecondition call is added before pCalculateNumberOf-

Days action to satisfy before the action actually happens. jpl pCalculateNumberOfDaysPre-

condition calls a method by using JPL. The precondition is evaluated before the actual service

call and if it fails, then the service call is not executed.

Output constraints are represented in a similar way to preconditions except that the call to

constraint check is done after the service call since outputs are needed to be unified before the

check. Both preconditions and constraints support the set of SWRL builtins for comparisons.

Populating the actual values to be used for variables by this way yields interleaving of execu-

tion and planning. On the other hand this approach has some weaknesses. Direct mapping of

complex objects of Java to Prolog is not possible and this may cause problems with composi-

tion of services that uses Ontology classes as inputs and outputs rather than simple datatypes.

Composition going on-the-fly may prevent user’s control on the generated plan. Our method

is based on composition of Web services only on their parameter types, not their substituted

values. So the calls to actual services in Prolog part has been removed. The output of com-

position phase is a graph and for the selected plan(s), the OWL-S service description file is

generated. The selected service then will be executed with input values taken from the user.

This approach is clearly a monolithic approach.

Having an abstract plan before execution gives the user more control on it, like editing if

needed and being able to sort the plans according to some ranking algorithm. In this thesis a

ranking algorithm based on a set of QoS parameters are used. Details about the usage of QoS

parameters are presented in Chapter 4. Although current OWL-S does not specify a standard

verification techniques, having the composed plan as an OWL-S file makes it possible for the

user to do any verification or refinement.

Because the execution is simulated in [1], the system may not be called a WSCE. In this

thesis, we aim to extend the system to a framework from the user specified inputs and outputs

to the execution of WSDL-defined web services using the composite process of the output

OWL-S file. For this purpose, the output graph generated is further parsed to generate the
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control constructs of OWL-S composite process.

This thesis has a different approach in using preconditions. The precondition evaluations

cannot take place during the planning phase, since this approach is monolithic. So the pre-

conditions are used in the planning phase for constructing relations between processes whose

effect is a precondition to another process. The use of preconditions in this thesis is explained

in Chapter 4.

Also this thesis deals with the subClassOf property of OWL ontologies, and tries to generate

plans taking into account of the class hierarchy.

Web service discovery problem is out of the scope of this thesis. As in [1], a repository of

OWL-S services, some of which are adapted from [54], will be used.

Figure3.3 shows the general architecture of the proposed system. The workflow consists of

the following steps:

• Converting OWL-S descriptions and user inputs and outputs to Event Calculus axioms

• Converting the Abductive Event Calculus Planner’s results to graphs

• Converting the selected graphs to OWL-S service files

• Executing the selected OWL-S service composition.

The following sections give further details of these steps.

3.2 Representing Web Services in EC Domain

The translation of the domain to EC axioms is done similar to [1]. Web services are trans-

formed to executable actions, and service inputs and outputs become action’s parameters. A

translation for Book Finder service, whose profile is shown in Figure 3.4 and the translation

to prolog is given in Figure 3.5.

Actual datatype properties of inputs and outputs are considered. So rdf:ID properties of

inputs and outputs are not considered. This requires a global ontology to be used by the

services. This service is actually defining its inputs and outputs in terms of Book.owl on-

tology. BookName input of the process is actually referencing a datatype in the referenced
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Figure 3.3: Framework

<profile:Profile rdf:ID="BookFinderProfile">

<service:presentedBy rdf:resource="#BookFinderService"/>

<profile:serviceName xml:lang="en">Book Finder</profile:serviceName>

<profile:textDescription xml:lang="en">This service returns the

information of a book whose title best matches the given string.

</profile:textDescription>

<profile:hasInput rdf:resource="#BookName"/>

<profile:hasOutput rdf:resource="#Book"/>

<profile:hasPrecondition rdf:resource="#AlphanumericCheck"/>

</profile:Profile>

Figure 3.4: Book Finder Service Profile

ontology which can be seen in the parameterType property of the input which is defined as

&book; #bookName. Figure 3.6 shows how the definitions of inputs and outputs refer to the

OWL class and datatype properties of Book.owl ontology.
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executable(pBookFinderProfile(BookName, Book)).

axiom(initiates(pBookFinderProfile(BookName, Book), known(book, Book), T) ,

[

holds_at(known(bookName, BookName), T), holds_at(alphaNumeric(BookName), T)

]).

Figure 3.5: Translation for Book Finder Service

...

<process:Input rdf:ID="BookName">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&book;#bookName</process:parameterType>

<rdfs:label>Book Name</rdfs:label>

</process:Input>

..

<process:Output rdf:ID="Book">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&book;#Book</process:parameterType>

<rdfs:label>Book Info</rdfs:label>

</process:Output>

...

Figure 3.6: Referring to Book Ontology for Describing Input and Output for Book Finder

Service

Book ontology defines the needed datatype and object properties for the ontology classes. A

section of the ontology related to the Book Finder service is shown in Figure 3.7.

<owl:Class rdf:ID="Book" />

...

<owl:DatatypeProperty rdf:ID="bookName">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string" />

<rdfs:domain rdf:resource="#Book" />

</owl:DatatypeProperty>

Figure 3.7: A Section from Book Ontology

This way of using semantically annotated parameter types provides the capability of matching

inputs and outputs of Web services without considering syntactic property names. known

is used for the Abductive Event Calculus Planner to find composable services. known on

inputs and outputs of services can be thought as knowledge preconditions and effects to derive

compositions. It’s used as an abducible with the help of holds at and is put to the residue to

find an explanation by the planner. During translation for each input of the service a holds at
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abducible clause is added as a condition. For each output of the service an initiates axiom is

added as previously shown.

There are actually two ways for an input of a service to be known. One is by the help of

a service initiating thereby giving an explanation for the abducible, or by initial conditions.

Initially the user specified inputs are assumed to be known, which implies that the user will

give the necessary values for these inputs at the execution step. The selection of the inputs

are made from the parsed ontologies in the repository. The initial conditions are expressed as

axioms like the following:

axiom( initially(known(bookName, bookName)), [] ).

The planner by using the specified initial condition axioms, tries to generate happens formulas

trying to reach the goals. Goal clauses are derived from the user specified outputs which are

chosen from the ontology hierarchy list like the inputs. The goals are expressed as a list of

holds at formulas having known fluents. For example if the user has specified DollarPrice

and TLPrice as outputs then the following query is formed and queried in Prolog environment:

abdemo([holds_at(known(tLPrice,TLPrice), t),

holds_at(known(dollarPrice,DollarPrice), t)],

R).

While the planner is trying to resolve the goals one by one, the first parameter of the known

fluent takes the role of parameter type, and the second parameter of the known fluent takes

the role of the variable. So the planner finds composable services according to the parameter

types. The variables that are unified are used in the graph generation phase.

The subclass hierarchy of ontologies are converted to axioms like the following:

axiom(holds_at(known(price, TLPrice),T),

[holds_at(known(tLPrice, TLPrice),T)]).

axiom(holds_at(known(price, DollarPrice),T),

[holds_at(known(dollarPrice, DollarPrice),T)]).

This way, we are able to express that if we know TLPrice is of type tLPrice then we know

that it is of type price also. The same holds for DollarPrice type, too. The planner will use

these axioms in order to derive an explanation like holds at(price, Price).
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3.3 Generating the Output Graph from the Results of the Planner

The planner populates the results in the given residue of the query. Considering the following

query:

abdemo([holds_at(known(tLPrice,TLPrice), t),

holds_at(known(dollarPrice,DollarPrice), t)],

R).

R is bound to a list of happens and before predicates which constitutes a partial order plan for

the problem. The first plan generated by the planner for this query is:

R = [[happens(pBookNameValidatorProfile(bookName,_),t4),

happens(pBookFinderProfile(bookName,A),t3),

happens(pBNPriceProfile(A,DollarPrice),t2),

happens(pPriceConverterProfile(DollarPrice,TLPrice),t1)],

[before(t4,t),before(t4,t1),before(t4,t2),before(t4,t3),

before(t3,t),before(t3,t1),before(t3,t2),before(t2,t),

before(t2,t1),before(t1,t)]]

By using the prolog’s backtracking mechanism it is possible to generate other plans as well.

The generated plan is further parsed to determine the vertices and the edges of the graph.

The temporal orderings and the identical variable names are used to connect the vertices.

Figure 3.8 illustrates an example sequential graph generation. The generation of partial

order graphs that includes concurrent happens predicates are also possible with the temporal

orderings found by the planner.

3.4 Generating OWL-S File from the Generated Graph

After the plan is transformed as a Graph object, it is converted to an OWL-S file that has

a Composite Process formed by parsing the generated plan graph. Generating an OWL-S

file from a pre-defined graph has been worked on [55, 5] and converting a UML or UML-

based diagrams to OWL-S service descriptions has been worked on [56, 57]. In [55], the

OWL-S graph is extracted from a directed acyclic graph. They have presented their algorithm

to automatically generate the OWL-S description of the composite service given an input
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Figure 3.8: Graph Generation

solution graph similar to our case. The algorithm handles the generation of sequence, split-

join and if-then-else control constructs. Also in [5], the generated output plan is converted

to OWL-S service description. Generated OWL-S composite process cannot include split or

split-join control constructs since the planner does not allow concurrency. Both in [56, 57]

a model-driven approach for specifying semantic web service compositions through the use

of a UML class and activity diagrams are presented. The aim is automatic construction of

OWL-S specifications from UML diagrams. The input to conversion is a user-defined UML

diagram, the OWL-S specification is not constructed from scratch hence there is no automatic

composition of Web services.

Our conversion algorithm is presented in Figure 3.9 in pseudocode. The algorithm generates

composite services having sequence, split and split-join control constructs. This allows so-

lutions for most typical service composition problems including concurrently running atomic

process as well. if-then-else control construct cannot be handled since the planner only re-

turns a sequence of happens predicates and temporal orderings but no information related to

conditions that can be used in service composition.

The algorithm comprises both recursion and iteration. Considering a helper vertex at the

initial level which has the starting process vertices as children, the algorithm first checks

the size of the children. If there is only one child, then a sequence construct is created and

the flow goes through this vertex by creating a sequence construct using composeProcess
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composeProcess(sequence, child, joinVertex):Sequence

{
if joinVertex is null or child is different from joinVertex

{
Create a perform for child vertex

Add perform to sequence

composeChildren(sequence, joinVertex, process child list of child)

return sequence;

}
return null;

}
composeChildren(sequence, joinVertex, vertices):void

{
if(vertices contains only one child)

{
composeProcess(sequence, onlyChild, joinVertex);

}if(vertices contains more than one child)

{
joinedChildVertices: map of join vertices to a set of their joined

vertices

joinedChildVertices = getJoinedChildrenVertices(vertices)

setOfAllJoinedChildVertices : set of all joined vertices

joinedSeqs : list of all joined sequence branches

for each key:vertex in joinedChildVertices

{
Add all joined vertices of vertex to

setOfAllJoinedChildVertices

Create new Sequence:seq

SplitJoin : splitJoin =

createSplitJoin(joined vertices for vertex,

vertex)

Add splitJoin control construct to seq;

Create new Sequence: afterJoinSeq

composeProcess(afterJoinSeq, vertex, null);

Add afterJoinSeq control construct to seq;

Add seq to joinedSeqs;

}
if vertices contains any split vertex

{
Create new Split : split

for each v in vertices

{
Add all Sequence constructs in joinedSeqs to split

if v is not in setOfAllJoinedChildVertices

{
Create new Sequence : seq

Add composeProcess(seq, v, null)

control construct to split

}
}
Add split control construct to sequence

}
else if there are no other split vertex

{
Add all Sequence constructs in joinedSeqs to sequence

}
}

}

Figure 3.9: The Algorithm for Constructing OWL-S Composite Service From Generated

Graph
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createSplitJoin(joinedVertices, joinVertex):SplitJoin

{
Create new SplitJoin : splitJoin

for each vertex in joinedVertices

{
Create new Sequence : sequence

Add composeProcess(sequence, vertex, joinVertex)

control construct to splitJoin

}
return splitJoin;

}

getJoinedChildrenVertices(vertices):Map

{
joinedChildrenVertices = map of join vertices to a set of their joined

vertices

For each tuple v1, v2 that has a join Vertex:v

{
Add (v, [v1, v2]) to joinedChildrenVertices

}
return joinedChildrenVertices;

}

Figure 3.9: The Algorithm for Constructing OWL-S Composite Service From Generated

Graph (Cont.)

method. If there are more than one child, then for any children that are combined with a join

vertex in the graph, a map is constructed by giving the joint vertex as key. For each such

combined vertices a split-join construct is created. These split-join constructs are later added

to a sequence construct combined with the sequence created for the part after the join vertex.

These and the created sequence control constructs for all other (non joint) vertices are added

to the newly created split control construct. The joinVertex argument is populated through the

calls, to make sure that the algorithm stops generating the current construct when that vertex

is reached, since the subsequent sequence control construct after the join vertex is handled

where the split-join construct is created.

So at the end of the composition process a new service definition is created. The new service

definition has inputs and outputs that the user has specified, and has composite process whose

atomic processes are readily executable.

3.5 Execution of the Generated OWL-S File

The execution step consists no more than the user specifying values for the service inputs.

The results for the outputs and the monitoring of the actual service calls (SOAP messages

exchanged, information about service call flow ...) can be seen.
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The services used to test the system are modified to make them work properly with the created

and deployed web services on the server. This process requires writing XSLT transformation

scripts for changing message parts from OWL-S to WSDL and vice versa manually. The

output generated on the screen is just what is represented in this transformation. For example

let us assume our composite service has a DollarPrice output. The result returned from the

actual service finding DollarPrice is converted to an OWL ontology instance by the XSLT

transformation shown in Figure 3.10.

<grounding:xsltTransformationString>

<![CDATA[

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<xsl:variable name="X1" select="dollarPrice/price"/>

<xsl:variable name="X2" select="dollarPrice/scale"/>

<xsl:variable name="X3" select="dollarPrice/currency"/>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:concepts="http://localhost:8080/ESODENEME_ATLAS_WEB/owl/Price.owl#">

<xsl:if test="not(dollarPrice=’’)">

<concepts:DollarPrice>

<concepts:amount rdf:datatype="http://www.w3.org/2001/

XMLSchema#double">

<xsl:value-of select="$X1"/>

</concepts:amount>

<concepts:scale rdf:datatype="http://www.w3.org/2001/

XMLSchema#int">

<xsl:value-of select="$X2"/>

</concepts:scale>

<concepts:currency rdf:datatype="http://www.w3.org/2001/

XMLSchema#string">

<xsl:value-of select="$X3"/>

</concepts:currency>

</concepts:DollarPrice>

</xsl:if>

</rdf:RDF>

</xsl:template>

</xsl:stylesheet>

]]>

</grounding:xsltTransformationString>

Figure 3.10: XSLT transformation for DollarPrice

For example if currency attribute was not provided in the translation, then it would not be

possible to see the value of currency in the results. The XSLT transformations may become

an important challenge in annotating the current WSDL services to work with Semantic Web

domain.
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CHAPTER 4

QoS PARAMETERS, PRECONDITIONS AND EFFECTS

The usual input/output/precondition/effect(IOPE)s based on user’s requirements are called

the functional requirements of a service. Beside the IOPEs, the composition problem also

comprises of selecting the best services among alternatives. Many services are introduced and

used by e-commerce and Web service applications, which provide overlapping or identical

functionality. The most appropriate combination is done by choosing from those services

according to some non-functional requirements which are distinct for the alternatives, namely

quality of service(QoS). With QoS as an optimization technique, it is possible to integrate the

dynamic behavior of the Web that comprises of a large and constantly changing number of

service providers. There are many studies on analyzing the use of QoS-based composition

techniques, which will be discussed in the next section. In the second section of this chapter,

the use of QoS for this thesis is explained. The last section introduces the use of preconditions

and effects during the planning phase with Abductive Event Calculus Planner, an extension

to work in [1].

4.1 QoS-based Composition Techniques

There are different approaches to QoS-Based composition techniques to the Web service com-

position problem some of which are using linear integer programming, genetic algorithms and

local(task-level) selection of services modelling. In [10], the authors propose a QoS Model

that is based on atomic task QoS attributes to compute the quality of service for workflows.

Their work includes monitoring atomic tasks for re-computing QoS estimates. They have

modelled time, cost and reliability aspects. Their algorithm reduces the workflow until one

task remains which represents the QoS for the entire workflow. They have integrated their
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model to their workflow system. [11] proposes that a QoS modelling should not treat QoS

values as deterministic, rather due to the uncertainty of WS characteristics, it should have a

random attitude. They present QoS aggregation techniques according to the structure of the

workflow as in [10]. Cost, time, availability and reputation aspects of QoS are modelled in

[12]. Rather than giving weight to each of these aspects, they have used genetic algorithms to

treat the problem as a multiobjective optimization problem. In [13], two proposals to selecting

web service according to QoS parameters are presented. One is task-level selection in which

the selection is done at the last possible moment without considering the overall composition.

The other uses integer programming technique which supports not generating all the possible

execution plans to compare their overall scores. [14] defines a QoS ontology using WSMO for

annotating service descriptions with QoS. Using their defined quality attributes, which consti-

tutes a rich set such as accuracy, security, reputation, execution time, exception handling, they

have proposed their selection model with an optimum normalization algorithm. [15] proposes

an extensible QoS model that supports both generic (like execution duration) and business

related quality criteria (like transaction). They collect service quality information from both

active execution monitoring and user’s feedback. [16] proposes two methods for matching

service requests of users with services based on a QoS metric. One is using matchmaking,

which will be also the base for this thesis and the other is using a genetic algorithm. The first

version of OWLS-XPlan[4] provides an option to do post optimization for the generated plan,

using a pre-defined set of QoS parameters which are: execution duration, price, reliability and

availability. These most common parameters are selected for QoS modelling for this thesis as

well. The equivalent services are placed in a file with their rankings for QoS parameters, and

using an integer programming technique the best service is replaced in the composition plan.

4.2 QoS-based Modeling in Our Framework

In our framework, the plans generated by the planner, can be sorted according to some ag-

gregation function’s return value. The aggregation function and the algorithm is based on the

work presented by [16] and [11]. The QoS attributes used for the calculations are execution

duration, price, reliability and availability. They are expressed for each service in the repos-

itory in a written file. OWL-S standard does not have built-in properties for service quality.

Using serviceParameter attribute of profile it is manually possible to add these parameters.
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Most of the literature focus on extending OWL-S ontology to handle the QoS representation

problem in a more organized way. On this thesis however the approach of [4] is taken and

the parameters and corresponding values are written in a flat file. This is sufficient for the

scope of this thesis since we want to show how QoS parameters help in selecting the best

composition plan before the execution step.

The attributes and meanings are presented below:

execution duration is the total time of message transformation and request processing.

price is the fee that a service requester has to pay for invoking a web service.

reliability is the probability that a request is correctly responded to for a specified time in-

terval. Reliability is a general measure of service quality and is related to hardware

and software configurations of services, the number of failures per day/week/... and the

network connections between requesters and providers.

availability is the probability that the service is accessible.

For each solution plan, QoS match score is aggregated from the involving atomic services. A

match score is calculated for the composition using matchmaking algorithm presented in [16].

The algorithm is concerned with matching service requests with services based on a range of

QoS attributes. In this algorithm each service has a fixed value, Si, for each attribute i, on the

other hand each service request has a range, [RLi, RUi] , for each attribute i. Match value for

an attribute i is calculated by the following formula:

MVi =







0 for RUi < Si or RLi > Si;

ωi ×
(

RUi−Si

RUi−RLi

)

for RLi ≤ Si ≤ RUi.
(4.1)

Here,

RUi : represents the service request’s upper value for attribute i;

RLi : is the service request’s lower value for attribute i;

Si : represents the service’s value for attribute i;

ωi : is the weight value for attribute i.
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The aggregated value of the composite plan is calculated based on the work of [11]. For

each atomic Web service a, four QoS metrics, execution duration, price, reliability and avail-

ability are denoted by D(a), P (a), R(a) and A(a) respectively. A composition construct is

denoted by w and involves several of such atomic web services. The QoS values of w, de-

noted as D(w), P (w), R(w) and A(w) can be computed from those of its constituent atomic

web services. Exceptions are not considered in this approach. Below are the definitions of

aggregation functions for control constructs: sequence, split and split-join.

sequence: w consisting of a sequence of web services: (a1; a2; ... ; an)

execution duration: The execution duration of w is the sum of the execution durations of its

constituent web services:

D(w) =
n

∑

i=1

D(ai)

price: The price of w is the sum of the prices of its constituent web services:

P (w) =
n

∑

i=1

P (ai)

reliability: The reliability of w is the product of the reliabilities of its constituent web services:

R(w) =
n

∏

i=1

R(ai)

availability: The availability of w is the product of the availabilities of its constituent web

services:

A(w) =

n
∏

i=1

A(ai)

parallel split/split-join: w consisting of multiple concurrent web services: (a1; a2; ... ; an)

execution duration: The execution duration of w is the maximum execution duration of its

constituent web services:

D(w) = Max{T (ai)}

price, reliability and availability are calculated in a similar way to sequence control construct.

The overall match score for a matching is the sum of all aggregated match values divided by

the number of QoS attributes:

MS =

∑

n

i=1
MVi

n
(4.2)

The lower and upper bounds of each attribute is specified by the user before the sorting oper-

ation. Also weights are assigned to each of the attribute again by the user. When the sorting
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operation begins, a match score is calculated using the match values that are calculated ag-

gregating QoS values of services in composition by using Formula 4.2.

4.3 Precondition and Effect Handling

Kuban’s work in [1] handles precondition evaluation and does not include handling of events.

The service descriptions having preconditions expressed in SWRL are parsed and added as a

precondition before the actual service call for the happens compound event that is declared

for the service description.

In this thesis, preconditions and effects are used in both planning phase and execution phase.

Currently, OWL-S does not declare standard process modeling language for specifying Web

service preconditions and effects. Therefore the most commonly used SWRL language is used

for this purpose. In [5], SHOP2 statements are directly used for expressing preconditions. In

[4], PDDL is used for expressing preconditions and effects, through a language they defined as

PDDXML to simplify parsing and reading PDDL descriptions. In our case, the preconditions

and effects are represented by prolog predicates and SWRL expressions. In the planning

phase, the prolog expression is used, while in the execution phase the SWRL expression

is used by the execution engine. Figure 4.1 illustrates an example precondition and effect

relationship:

Figure 4.1: Precondition-Effect Relationship Between Sample OWL-S Services

Figure 4.2 shows BookNameValidator service profile. The effect of this service is represented

by a Result property of the process. The result depends on the truth value of the service output,

namely ValidationResult.
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<profile:Profile rdf:ID="BookNameValidatorProfile">

<service:presentedBy rdf:resource="#BookNameValidatorService"/>

<profile:serviceName xml:lang="en">Book Name Validator</profile:serviceName>

<profile:textDescription xml:lang="en">This

service returns true if the given bookName is alphaNumeric

or contains chars ’ ’, ’_’.</profile:textDescription>

<profile:hasInput rdf:resource="#BookName"/>

<profile:hasOutput rdf:resource="#ValidationResult"/>

<profile:hasResult rdf:resource="#Result"/>

<profile:hasLocal rdf:resource="#True"/>

</profile:Profile>

...

<process:Result rdf:ID="Result">

<process:inCondition>

<expr:SWRL-Condition>

<expr:expressionLanguage

rdf:resource="http://www.daml.org/services/owl-s/1.1/generic/

Expression.owl#SWRL" />

<expr:expressionObject>

<swrl:AtomList>

<rdf:first>

<swrl:BuiltinAtom>

<swrl:builtin rdf:resource="&swrlb;#equal"/>

<swrl:arguments>

<rdf:List>

<rdf:first rdf:resource="#ValidationResult"/>

<rdf:rest>

<rdf:List>

<rdf:first rdf:resource="#True"/>

<rdf:rest rdf:resource="&rdf;#nil"/>

</rdf:List>

</rdf:rest>

</rdf:List>

</swrl:arguments>

</swrl:BuiltinAtom>

</rdf:first>

<rdf:rest rdf:resource=

"http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>

</swrl:AtomList>

</expr:expressionObject>

</expr:SWRL-Condition>

</process:inCondition>

<process:hasEffect rdf:resource="#AlphanumericCheck"/>

</process:Result>

Figure 4.2: BookNameValidator Service Effect Definition
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If ValidationResult is true then the effect, which is represented by the hasEffect property of

Result, is added to the knowledgebase. This is because inCondition property of Result is

defined as an equivalence between the local variable True and the output ValidationResult.

The modification of the knowledgebase occurs in the execution phase. During planning, the

fluent defined in AlphanumericCheck is used, which is shown in Figure 4.3.

<expr:SWRL-Condition rdf:ID="AlphanumericCheck">

<rdfs:label>alphaNumeric(BookName)</rdfs:label>

<expr:expressionLanguage

rdf:resource="http://www.daml.org/services/owl-s/1.1/generic/

Expression.owl#SWRL" />

<expr:expressionObject>

<swrl:AtomList>

<rdf:first>

<swrl:IndividualPropertyAtom>

<swrl:propertyPredicate rdf:resource="&book;#alphaNumeric" />

<swrl:argument1 rdf:resource="#BookName" />

<swrl:argument2 rdf:resource="&xsd;#boolean" />

</swrl:IndividualPropertyAtom>

</rdf:first>

<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil" />

</swrl:AtomList>

</expr:expressionObject>

</expr:SWRL-Condition>

Figure 4.3: AlphanumericCheck Condition

The condition has both a textual representation which is represented by the label property and

a SWRL presentation which is represented by the expressionObject property. label property

is used for defining the prolog predicate to be used in OWL-S service description translations

to planner domain. expressionObject could also be used by parsing the atom list, but to ease

the job and also to have a nicer representation this approach is chosen. The translation of the

effect to prolog is done as shown below:

axiom(initiates(pBookNameValidatorProfile(BookName, _),

alphaNumeric(BookName), T) ,

[holds_at(known(bookName, BookName), T) ]).

Figure 4.4 shows how the BookFinder service declares AlphanumericCheck as its precondi-

tion with hasPrecondition property.
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profile:Profile rdf:ID="BookFinderProfile">

<service:presentedBy rdf:resource="#BookFinderService"/>

<profile:serviceName xml:lang="en">Book Finder</profile:serviceName>

<profile:textDescription xml:lang="en">This service returns the information

of a book whose title best matches the given string.<

/profile:textDescription>

<profile:hasInput rdf:resource="#BookName"/>

<profile:hasOutput rdf:resource="#Book"/>

<profile:hasPrecondition rdf:resource="#AlphanumericCheck"/>

</profile:Profile>

Figure 4.4: AlphanumericCheck Defined as Precondition to BookFinderService

Translation of the precondition to prolog is done like the following:

axiom(initiates(pBookFinderProfile(BookName, Book), known(book, Book), T) ,

[holds_at(known(bookName, BookName), T),

holds_at(alphaNumeric(BookName), T) ] ).

The precondition is translated like an input for the service, but not using the known predicate,

rather using the label property of the SWRL-Condition. Translating an effect of a service

is also not much different from an output. In the planning phase we do not know if the

effect must actually occur. But having an axiom like this provides service composibility. The

planner now is able to generate a plan where BookNameValidator service happens before

BookFinder service, which at the end turns to a CompositeProcess having these two services

in a sequence control construct.

Thus it is possible to do planing by taking preconditions and effects into consideration. This

approach provides a way to use predicates involving inputs of the service for preconditions

and involving both inputs and outputs of the service for effects. During the execution phase,

the variables are replaced with the actual values. Precondition evaluation and applying effects

require reasoning about the state of the world. If a service has a precondition, the knowl-

edgebase is queried for the formed assertion. If a service has a result as a consequence of

some condition, the effect is added to the knowledgebase as an assertion. This is provided
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by the execution engine used, which is a part of OWL-S API[58] where more information

about it will be given in Chapter 5. The execution engine works with an OWL reasoner based

on OWL-DL to store the world state, answer the planner’s queries regarding the evaluation

of preconditions and update the state for the effects of services. More about the use of the

reasoner used in execution engine can be found in [59].
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CHAPTER 5

IMPLEMENTATION DETAILS AND CASE STUDY

This chapter gives the details of the proposed WSCE with Abductive Event Calculus Planner

framework by explaining the used technologies in the first section and a case study which

makes it possible to see the mentioned concepts in the implementation.

5.1 Used Technologies and Data Set Preparation

The framework is implemented as a web-based application. Eclipse IDE for Java EE De-

velopers is used for development which provides support for creating Java EE and Web ap-

plications. The technology used in client side is JSF (Java Server Faces). JBoss RichFaces

component library is used for the user-interface design. SWI-Prolog is used for the prolog

execution environment. JPL library is used for providing the connection between prolog ex-

ecution environment and JVM. For the application server JBoss is chosen. This tool also

ease the job of creating running web services. It is only needed to code the web service

like coding in a Java Project, and put necessary annotations. OWL-S API is used in a large

amount through various phases. The service descriptions in the repository are parsed, the

output OWL-S service description is created and executed through this API. Another open

source API used in the implementation is Java Universal Network/Graph Framework(JUNG)

which is used for generating the graph object of the found plans and also visualization of the

plans.

For data set, OWL-S descriptions in [54] are used, and more service descriptions are added

for demonstrating the split and split-join control constructs. Web service implementations are

coded in Java as Dynamic Web Project and deployed to JBoss. The implementation bean for
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the service is annotated with JAX-WS annotations and deployed to the server. The server au-

tomatically generates and publishes necessary contract files like wsdl for client usage. Figure

5.1 is an implementation for BNPrice service:

@WebService(name = "BNPrice", targetNamespace = "http://localhost/bnprice")

@SOAPBinding(style = SOAPBinding.Style.RPC)

public class BNPrice {

@WebMethod

public @WebResult(targetNamespace = "http://localhost/bnprice",

name = "dollarPrice")

DollarPrice getPrice(

@WebParam(targetNamespace = "http://localhost/bnprice",

name = "bookInfo")

BookInfo bookInfo) {

if (bookInfo.getBookName().equals(

"Teach Yourself Programming in Ten Years")) {

System.out.println("bnprice : 23.4");

return new DollarPrice(23.4, 2, "DollarPrice");

} else if (bookInfo.getBookName().equals("Object-Oriented Programming")) {

System.out.println("bnprice : 78.4");

return new DollarPrice(78.4, 2, "DollarPrice");

} else {

System.out.println("bnprice : null");

return null;

}

}

}

Figure 5.1: BNPrice Service Implementation

After deployment to the JBoss application server, the wsdl for the service can be seen from

the address: http://localhost:8080/jbossws/services. The OWL-S grounding

for BNPrice is managed accordingly in order to use this service. Chapter 3 shows how this

mapping is done. Table 5.1 shows the services in the repository with their IOPEs.

Table 5.1: Services in Repository with IOPEs

Service Name Input(s) Output(s) Precondition(s) Effect(s)

BNPriceService Book DollarPrice

BNPriceYTLService Book TLPrice

PriceConverter DollarPrice TLPrice

FindCheaperPriceService DollarPrice, TLPrice Price

BookFinderService BookName Book alphaNumeric(BookName)

BookNameValidatorService BookName boolean alphaNumeric(BookName)
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5.2 Case Study

In this case study, it is demonstrated how the WSCE framework is used in an end-to-end

service composition problem. The problem is to find the price of a book whose name is

known by the user. The application is started by entering the address to a web browser. OWL-

S services together with the Ontology definitions are loaded from the repository and ontology

hierarchy is presented to the user as a tree structure as shown in Figure 5.2.

Figure 5.2: Input & Output Selection Phase

On the tree, the ontology classes are shown in yellow, the object properties of classes are

shown with blue and datatype properties are shown in green. The subclass hierarchy can also

be seen from the tree. The user puts the known knowledge in the Inputs section by drag and

drop, likewise the requested data is put to Outputs section.

When the user clicks on the run button, the translated domain knowledge is written to a file

named dynamic-prolog.pl. Main axioms added to the domain are listed as follows:

• For each output and/or effect of a web service, an axiom is added for initiating an output

to be known, or for initiating an effect.

• For each subclass hierarchy of the ontology, an axiom is added to make the planner to

search also for subclass type variables while searching for superclass typed variables.

• For each input type given, an initial condition axiom is added to domain knowledge.

Apart from these three groups of axioms, there are facts for the services parsed in order to be
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able to add them to the residue as happens actions such as the following:

executable(pBNPriceProfile(Book, DollarPrice)).

For this problem the query for which the planner will find explanations for is:

abdemo([holds_at(known(tLPrice,TLPrice), t),

holds_at(known(dollarPrice,DollarPrice), t)],

R).

This query along with dynamic-prolog.pl and the planner are consulted to a prolog session

through the call made via JPL. The solutions returned by the planner are parsed to generate

the graph object for each plan. For this problem, the following is the first solution generated

by the planner.

R = [[happens(pBookNameValidatorProfile(bookName,_),t4),

happens(pBookFinderProfile(bookName,A),t3),

happens(pBNPriceProfile(A,DollarPrice),t2),

happens(pPriceConverterProfile(DollarPrice,TLPrice),t1)],

[before(t4,t),before(t4,t1),before(t4,t2),before(t4,t3),

before(t3,t),before(t3,t1),before(t3,t2),before(t2,t),

before(t2,t1),before(t1,t)]]

The order of axioms placed in dynamic-prolog.pl file also determines the order of the plans

returned by the planner. For this example, there are two solutions to get TLPrice to be known.

One is by PriceConverterProfile and the other one is by BNPriceYTLProfile. While con-

structing dynamic-prolog.pl file, the transformation for PriceConverter service is written

first, which is the reason the planner generates the first solution using PriceConverter service.

The generated graphs are shown with a layout based on Fruchterman-Reingold algorithm

whose implementation is provided by the JUNG API. The graphs are shown to the user in

the order returned by the planner. Figure 5.3 shows the generated graphs for this example.

The graph generation algorithm first adds the vertices to the graph which are inputs, outputs

and services. Then using the temporal orderings and the bindings of inputs and outputs of the

services, the edges are added to the graph. The edges are formed according to an input-output

binding or to a precondition-effect relationship between two services.
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Figure 5.3: Visual Presentations of the Generated Graphs

The user can generate OWL-S descriptions of the composite plans she wants by clicking

the boxes near each plan. The system generates OWL-S service descriptions for the graphs

selected. The files created are listed on the next page as Figure 5.4 demonstrates.

OWL-S API is used to generate a new service. For each service added to the composition, a

perform is created by adjusting the inputs and outputs of the atomic process with appropriate

bindings. An example perform created for process BNPriceProcess can be seen in Figure 5.5.
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Figure 5.4: Generated OWL-S Files

<process:Perform rdf:nodeID="A1">

<process:process rdf:resource="http://localhost:8080/ESODENEME_ATLAS_WEB/

services/BNPrice.owl#BNPriceProcess"/>

<process:hasDataFrom>

<process:InputBinding>

<process:toParam rdf:resource="http://localhost:8080/ESODENEME_ATLAS_WEB/

services/BNPrice.owl#BookInfo"/>

<process:valueSource>

<process:ValueOf>

<process:fromProcess>

<process:Perform rdf:nodeID="A0"/>

</process:fromProcess>

<process:theVar rdf:resource=

"http://localhost:8080/ESODENEME_ATLAS_WEB/

services/BookFinder.owl#Book"/>

</process:ValueOf>

</process:valueSource>

</process:InputBinding>

</process:hasDataFrom>

</process:Perform>

Figure 5.5: Created Perform for BNPriceProcess

In OWL-S, a composite process can be considered as a tree whose nonterminal nodes are

labeled with control constructs. Control constructs have children specified using compo-

nents. The leaves of the tree are invocations of other processes that are indicated as instances

of class perform[26]. The created perform for BNPriceProcess determines that the invoca-

tion of this process needs a binding for its input BNPrice.owl#BookInfo from output Book-

Finder.owl#Book. For the first generated graph, a sequence control construct is created which

includes the performs of the following processes: BookNameValidatorProcess, BookFinder-

Process, BNPriceProcess and PriceConverterProcess. The full version of the OWL-S file

created for the first graph can be seen in Appendix A.

The generated files can be examined with a system editor by clicking the button at the bottom

of the screen. The user is able to select the OWL-S file of her choice and execute it by clicking

the Execute button, which directs to the last page of the WSCE environment from where the

execution is performed. Figure 5.6 shows this page. The user enters values for each input
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in this screen and later when the execute button is clicked, the composite service starts to

run. The Execution Monitoring Logs section shows logging information related to service

execution after the execution completes. From this section it is possible to see the message

exchanges between the services and SOAP messages created during the execution. When the

execution is finished, the output values can be seen in the text area near Outputs section if the

composite service executed successfully.

For the execution of the generated OWL-S file, OWL-S API[58]’s execution engine is used.

This engine allows the execution of all OWL-S control constructs. It permits precondition

checking before performing processes. Monitoring of the process executions can be done

by using the DefaultProcessMonitor class or by defining custom monitoring classes. One

problem of the API is that the split control construct is performed by starting threads in par-

allel and there is no join of the threads. Each thread executes independently. But this caused

some problems when trying to get the output values after executing a composite service that

included a split construct. This is because OWL-S standard defines split control constructs

as: “The components of a Split process are a bag of process components to be executed con-

currently. Split completes as soon as all of its component processes have been scheduled for

execution.”[26]. This behavior is changed in our system by joining the threads like split-join.

Another problem is that it currently does not handle effects. So the execution engine is ex-

tended to handle process effects as well. After executing the atomic process, the effects are

added to the knowledgebase as properties with actual values replaced for the variables. The

effects property can have inputs or outputs as arguments. The effect property is added only

if its inCondition property holds which is checked by an ABox query created and queried on

knowledgebase.

In case the precondition evaluation fails during the execution, it is possible to see the infor-

mation about the failure of which precondition of what process in the text area on the Results

section. Figure 5.7 shows such a case. Here the user enters a non-alpha-numeric characters,

namely a sequence of ‘*’, which fails the inCondition property of BookNameValidatorPro-

cess effect. Since the precondition defined in AlphaNumericCheck of BookFinderProcess is

not satisfied, the service is not able to execute. Definitions of the mentioned precondition and

effect can be found in Section 4.3.
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Figure 5.6: Execution Page

5.2.1 Superclass as Output and QoS Sorting

The user can give the requested output as Price instead of explicitly giving DollarPrice and

TLPrice as outputs. The query in this case is translated as:

abdemo([holds_at(known(price, Price), t)], R).

By looking at Table 5.1, we can see that there is only one service which gives a Price as

output. But the axioms shown in Figure 5.8, which are added to the domain, forces the

planner to generate plans to get explanations for making TLPrice and DollarPrice known.

These explanations are the same ones with the found solutions of the previous example. They

are generated after the plans containing happens actions for FindCheaperPriceProfile. This

is due to the fact that subclass hierarchy axioms are written to dynamic-prolog.pl file lastly.

In this case the planner finds more solution graphs each of which has a join node as the last

vertex. The solution graphs in this case can be seen in Figure B.1.

QoS parameters become important when there are alternative paths to the given outputs and

when some properties of services become important for the user such as cost. In our system,

the QoS parameters are used to score the whole composition, but not to replace a service with

a better quality in place of another.
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Figure 5.7: Precondition Evaluation Failure

axiom(holds_at(known(price, TLPrice),T),

[holds_at(known(tLPrice, TLPrice),T)]).

axiom(holds_at(known(price, DollarPrice),T),

[holds_at(known(dollarPrice, DollarPrice),T)]).

Figure 5.8: Axioms for Deriving TLPrice and DollarPrice as Outputs

The user clicks the button at the buttom of the screen to sort the solution graphs. The values

for QoS parameters are defined in a file. For each service each of the four attributes are given

a value. These values correspond to Si defined in Section 4.2. An example of BNPriceService

entry is shown below:

BNPriceProfile.execution_duration = 30

BNPriceProfile.price = 20

BNPriceProfile.availability = 0.95

BNPriceProfile.reliability = 0.95

The user can adjust the weight of QoS parameters and determine the lower and upper bounds.

These actions are shown in Figure 5.9.

A value between 0 and 100 are assigned to attributes, which is divided by 100 to get the

percentage weight of the parameter. Assigning weights to each attribute gives the user a

chance to determine which attributes are more valueable for them. The percentage of each

attribute corresponds to ωi. The Bounds for QoS Parameters section is the area where RUi
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(a) QoS Weights Adjustment

(b) Bounds for QoS Parameters

Figure 5.9: (a):QoS Weights Adjustment, (b):Bounds for QoS Parameters

and RLi are defined. Here the execution duration unit is in seconds, price unit is in TL,

reliability and availability are expressed as a percentage. The user defines an upper limit for

the execution duration and price, and a lower limit for reliability and availability. This means,

for example for the execution duration that if the upper value is 70 secs, then resulting plans

having execution duration more than 70 secs will get a match value of 0 for this attribute.

Similarly for reliability, if the lower value is 0.7, then resulting plans having reliability less

than 0.7 will get a match value of 0 for this attribute. For attributes with lower limit, the

difference between the lower limit and service’s value must be greater to get a higher match

value, similarly for attributes with upper limit, the difference between the upper limit and

service’s value must be greater to get a higher match value for that attribute.

In Appendix B, Figure B.2 shows the plans after QoS sorting is done. Comparing it with

Figure B.1, it can be seen that more complex plans or plans having more count of processes

are put towards the buttom of the list.

As a second example demonstrating the effect of QoS based sorting, a new alternative service

to BNPriceYTLService, given name YTLBookPriceFinderService is added to the domain. The

QoS values for each attribute of the services are given below:

BNPriceYTLProfile.execution_duration = 3

BNPriceYTLProfile.price = 3

BNPriceYTLProfile.availability = 0.8

BNPriceYTLProfile.reliability = 0.8

YTLBookPriceFinderProfile.execution_duration = 10
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YTLBookPriceFinderProfile.price = 4

YTLBookPriceFinderProfile.availability = 0.9

YTLBookPriceFinderProfile.reliability = 0.9

The input is bookName and the output is TLPrice for this example. One of the of the plans gen-

erated by the planner involves BNPriceYTLService and another involves YTLBookPriceFind-

erService, with the identical execution flow and services other than these services. Figure

5.10 shows the generated plans.

Figure 5.10: Alternative Plans Differing with Only One Service

With these values and the controller values given in Figure 5.9, a match score higher than the

plan including YTLBookPriceFinderService is calculated for the plan including BNPriceYTLSer-

vice.

Match Score for plan involving BNPriceYTLService = 0.19225

Match Score for plan involving YTLBookPriceFinderService = 0.181125

If we adjust the weights as giving value 35 for execution duration and price, giving 80 for

availability and reliability, then the calculated match score for the second plan becomes higher

than the first one, since availability and reliability values for YTLBookPriceFinderService is

higher than BNPriceYTLService:

Match Score for generated plan involving BNPriceYTLService = 0.251605

Match Score for generated plan involving YTLBookPriceFinderService = 0.2673
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CHAPTER 6

CONCLUSION

In this thesis, we propose a Web service composition and execution framework in which

the use of Event Calculus formalism is demonstrated to solve the automated Web service

composition problem. The system adapts a monolithic approach in which there are two phases

namely the composition phase and the execution phase. The composition phase uses the

advertised functionalities of web services but does not take into account the deployment and

runtime aspects of services. The composition phase may produce more than one composition

plan which can be sorted and edited before it is passed to the execution environment.

In the composition phase, the service descriptions which are in the repository and expressed

in OWL-S, are transformed to axioms in Event Calculus domain. The Abductive Event Cal-

culus Planner can then generate the plans given a goal state, using this domain information

in Prolog language. Event calculus is a logical formalism which allows to reason about the

values of fluents by the actions and their effects. With Event Calculus it is possible to ex-

press which fluents hold at what time, which actions occur at what time and the effects of

actions. This formalism is suitable for Web service composition problem as well, by sub-

stituting web services with actions and Web service inputs/outputs with action’s knowledge

preconditions/knowledge effects and web service preconditions and effects by action precon-

ditions and effects. The plans generated may be ordered or partially ordered according to

the given temporal orderings of the actions in the solution plan. OWL-S process model is

used for extracting the semantic information for Web services. The composibility between

web services depend on the parameterType property between their inputs and outputs. The

parameterType can either be a property or an OWL class defined in ontology files. The in-

puts provided by the user are encoded as initial condition axioms and the outputs defined are

encoded as goals. The results of the composition phase are presented to the user as visual
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graphs. These graphs can be sorted according to their defined QoS parameters by using an

aggregation function on atomic services of the composition plan.

In the execution phase, the selected composition graph is transformed to a service description

in OWL-S and passed to the execution engine. The user gives the actual values of the inputs

to actually run the atomic services. Transforming to OWL-S includes the steps for determin-

ing the control flow and data binding by analyzing the graph. Because the planner allows

concurrent actions, the OWL-S composite service may be composed of sequence, split and/or

split-join control constructs. For the data bindings, the labels on edges of the graph are used.

The grounding parts of the services in the repository define XSLT transformation scripts to

exchange data between OWL-S and WSDL parameters for inputs and outputs. Preconditions

and effects are used in defining the control flow in the planning phase. In the execution phase

actual precondition evaluation and effects applying take place which may fail with respect to

the current state of the world.

The execution duration, price, reliability and availability are the chosen QoS parameters for

ranking plans, which are expressed in a configuration file for each service in the repository.

Using these attribute values and the user assigned weights and boundary values for each at-

tribute, a match score is derived for the composition plan according to some formula. The user

is able to sort the composed plans according to the calculated aggregated value and choose an

optimal solution.

This thesis demonstrates that Event Calculus can be used in generating composition plans for

the automated web service composition problem by the implementation of a WSCE frame-

work. The WSCE framework tool, implemented as a proof of concept, is the first tool for

automating the process of Web service composition and executing the composed service, that

makes use of Event Calculus in planning phase. It is shown that the abductive planning tech-

niques that encapsulates Event Calculus and the domain knowledge transformed from OWL-S

process models can be used to generate composition plans. The dynamic behavior of the Web

is integrated to the system easily by using the representational capability of Event Calculus

formalism. This formalism allows modeling of concurrency and temporal ordering between

Web service calls which gives our tool the ability to generate plans in the planning phase to

find solutions to real world problems including concurrent actions.

A monolithic approach to the problem of WSCE is chosen. This brings more resilience to
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failure since it is possible to select an optimal plan after the composition phase. The QoS

parameter values become crucial to select the most appropriate services for that purpose. Also

with this approach the user is given more control on the workflow before it is passed to the

execution environment, which may further help solving inconsistencies before the execution

step.

Web service composition problem is a hot research topic. It holds many challenges like non-

deterministic behavior of web services, scalability and service side effects that cause change

in the world state. Current OWL-S standards do not define a model for error handling and

reporting. In this thesis the output workflow is described as an OWL-S service. This may

cause low failure resolution which can be compensated by selecting an optimized plan with

an adjustment of service QoS parameters like reliability and availability. The challenges in

monitoring executions and dealing with errors are mentioned comprehensively in [60]. In a

future work, the execution engine may be extended to handle these problems.

In this thesis, there is no web service discovery module. A discovery module would make the

system more realistic, where there is a large collection of web services and some techniques

of matchmaking must take place before the problem is handled as a planning problem. This

module may also extend the system to a two-staged approach as in [3], where there is a

logical composition phase in which the service types are used in composition instead of actual

services. In the physical composition phase, the service types are replaced with actual services

according to some ranking function.

As mentioned in Section 4.1, there are many algorithms in QoS-based composition techniques

to Web service composition problem. In this thesis, we took a rather simple approach for QoS

aggregation to select an optimal solution plan for illustrative purposes but there are enormous

efforts also in QoS-based composition techniques. Some other algorithm may be replaced

with the current one for the problem of selecting the optimal solution plan as a future work.
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APPENDIX A

A COMPOSED OWL-S SERVICE

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:process="http://www.daml.org/services/owl-s/1.1/Process.owl#"

xmlns:service="http://www.daml.org/services/owl-s/1.1/Service.owl#"

xmlns:list="http://www.daml.org/services/owl-s/1.1/generic/ObjectList.owl#"

xmlns="/home/cokutan/ceng/tezz/esat/deneme_workspace_23022009/deneme_workspace

/ESODENEME_ATLAS_WEB/WebContent/generatedServices/composedService0_14_10.owl"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:profile="http://www.daml.org/services/owl-s/1.1/Profile.owl#"

xmlns:swrl="http://www.w3.org/2003/11/swrl#"

xmlns:grounding="http://www.daml.org/services/owl-s/1.1/Grounding.owl#"

xmlns:daml="http://www.daml.org/2001/03/daml+oil#"

xmlns:expression="http://www.daml.org/services/owl-s/1.1/generic/Expression.owl#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xml:base="/home/cokutan/ceng/tezz/esat/deneme_workspace_23022009/deneme_workspace/

ESODENEME_ATLAS_WEB/WebContent/generatedServices/composedService0_14_10.owl">

<owl:Ontology rdf:about="/home/cokutan/ceng/tezz/esat/deneme_workspace_23022009/

deneme_workspace/ESODENEME_ATLAS_WEB/WebContent/generatedServices/composedService0_14_10.owl">

<owl:imports rdf:resource="http://localhost:8080/ESODENEME_ATLAS_WEB/owl/Book.owl"/>

<owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.1/Process.owl"/>

<owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.1/Profile.owl"/>

<owl:imports rdf:resource="http://localhost:8080/ESODENEME_ATLAS_WEB/services/

PriceConverter.owl"/>

<owl:imports rdf:resource="http://localhost:8080/ESODENEME_ATLAS_WEB/owl/

Price.owl"/>

<owl:imports rdf:resource="http://localhost:8080/ESODENEME_ATLAS_WEB/services/

BNPrice.owl"/>

<owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.1/Grounding.owl"/>

<owl:imports rdf:resource="http://localhost:8080/ESODENEME_ATLAS_WEB/services/

BookFinder.owl"/>

<owl:imports rdf:resource="http://www.daml.org/services/owl-s/1.1/Service.owl"/>

<owl:imports rdf:resource="http://localhost:8080/ESODENEME_ATLAS_WEB/services/

BookNameValidator.owl"/>

</owl:Ontology>

<service:Service rdf:ID="TestService">

<service:presents>

<profile:Profile rdf:ID="TestProfile"/>

</service:presents>

<service:supports>

<grounding:WsdlGrounding rdf:ID="TestGrounding"/>

</service:supports>

<service:describedBy>

<process:CompositeProcess rdf:ID="TestComposite"/>

</service:describedBy>

</service:Service>

<profile:Profile rdf:about="/home/cokutan/ceng/tezz/esat/deneme_workspace_23022009/

deneme_workspace/ESODENEME_ATLAS_WEB/WebContent/generatedServices/

composedService0_14_10.owl#TestProfile">

<service:presentedBy rdf:resource="/home/cokutan/ceng/tezz/esat/

deneme_workspace_23022009/deneme_workspace/ESODENEME_ATLAS_WEB/WebContent/
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generatedServices/composedService0_14_10.owl#TestService"/>

<profile:hasInput>

<process:Input rdf:ID="bookName">

<rdfs:label>Book Name</rdfs:label>

<process:parameterType rdf:datatype="http://www.w3.org/2001/

XMLSchema#anyURI"

>http://localhost:8080/ESODENEME_ATLAS_WEB/owl/Book.owl#bookName

</process:parameterType>

</process:Input>

</profile:hasInput>

<profile:hasOutput>

<process:Output rdf:ID="DollarPrice">

<rdfs:label>Book Price</rdfs:label>

<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

>http://localhost:8080/ESODENEME_ATLAS_WEB/owl/Price.owl#DollarPrice

</process:parameterType>

</process:Output>

</profile:hasOutput>

<profile:hasOutput>

<process:Output rdf:ID="TLPrice">

<rdfs:label>YTL Price</rdfs:label>

<process:parameterType rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI"

>http://localhost:8080/ESODENEME_ATLAS_WEB/owl/Price.owl#TLPrice

</process:parameterType>

</process:Output>

</profile:hasOutput>

</profile:Profile>

<process:CompositeProcess rdf:about="/home/cokutan/ceng/tezz/esat/

deneme_workspace_23022009/deneme_workspace

/ESODENEME_ATLAS_WEB/WebContent/generatedServices/composedService0_14_10.owl#TestComposite">

<process:composedOf>

<process:Sequence>

<process:components>

<process:ControlConstructList>

<list:first>

<process:Perform>

<process:process rdf:resource="http://localhost:8080/ESODENEME_ATLAS_WEB/services/

BookNameValidator.owl#BookNameValidatorProcess"/>

<process:hasDataFrom>

<process:InputBinding>

<process:toParam rdf:resource="http://localhost:8080/ESODENEME_ATLAS_WEB

/services/BookNameValidator.owl#BookName"/>

<process:valueSource>

<process:ValueOf>

<process:fromProcess rdf:resource="http://www.daml.org/services/

owl-s/1.1/Process.owl#TheParentPerform"/>

<process:theVar rdf:resource="/home/cokutan/ceng/tezz/esat/

deneme_workspace_23022009/deneme_workspace/ESODENEME_ATLAS_WEB/WebContent/generatedServices/

composedService0_14_10.owl#bookName"/>

</process:ValueOf>

</process:valueSource>

</process:InputBinding>

</process:hasDataFrom>

</process:Perform>

</list:first>

<list:rest>

<process:ControlConstructList>

<list:first>

<process:Perform rdf:nodeID="A0"/>

</list:first>

<list:rest>

<process:ControlConstructList>

<list:first>

<process:Perform rdf:nodeID="A1"/>

</list:first>

<list:rest>

<process:ControlConstructList>

<list:first>

<process:Perform rdf:nodeID="A2"/>

</list:first>
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<list:rest rdf:resource="http://www.daml.org/services/owl-s/1.1/generic/

ObjectList.owl#nil"/>

</process:ControlConstructList>

</list:rest>

</process:ControlConstructList>

</list:rest>

</process:ControlConstructList>

</list:rest>

</process:ControlConstructList>

</process:components>

</process:Sequence>

</process:composedOf>

<process:hasInput rdf:resource="/home/cokutan/ceng/tezz/esat/deneme_workspace_23022009/

deneme_workspace/ESODENEME_ATLAS_WEB/WebContent/generatedServices/composedService0_14_10.owl

#bookName"/>

<process:hasOutput rdf:resource="/home/cokutan/ceng/tezz/esat/deneme_workspace_23022009/

deneme_workspace/ESODENEME_ATLAS_WEB/WebContent/generatedServices/composedService0_14_10.owl

#TLPrice"/>

<process:hasOutput rdf:resource="/home/cokutan/ceng/tezz/esat/deneme_workspace_23022009/

deneme_workspace/ESODENEME_ATLAS_WEB/WebContent/generatedServices/composedService0_14_10.owl

#DollarPrice"/>

<process:hasResult>

<process:Result>

<process:withOutput>

<process:OutputBinding>

<process:toParam rdf:resource="/home/cokutan/ceng/tezz/esat/deneme_workspace_23022009/

deneme_workspace/ESODENEME_ATLAS_WEB/WebContent/generatedServices/composedService0_14_10.owl

#TLPrice"/>

<process:valueSource>

<process:ValueOf>

<process:fromProcess>

<process:Perform rdf:nodeID="A2"/>

</process:fromProcess>

<process:theVar rdf:resource="http://localhost:8080/ESODENEME_ATLAS_WEB/services/

PriceConverter.owl#TLPrice"/>

</process:ValueOf>

</process:valueSource>

</process:OutputBinding>

</process:withOutput>

<process:withOutput>

<process:OutputBinding>

<process:toParam rdf:resource="/home/cokutan/ceng/tezz/esat/deneme_workspace_23022009/

deneme_workspace/ESODENEME_ATLAS_WEB/WebContent/generatedServices/composedService0_14_10.owl

#DollarPrice"/>

<process:valueSource>

<process:ValueOf>

<process:fromProcess>

<process:Perform rdf:nodeID="A1"/>

</process:fromProcess>

<process:theVar rdf:resource="http://localhost:8080/ESODENEME_ATLAS_WEB/services/

BNPrice.owl#BookPrice"/>

</process:ValueOf>

</process:valueSource>

</process:OutputBinding>

</process:withOutput>

</process:Result>

</process:hasResult>

<service:describes rdf:resource="/home/cokutan/ceng/tezz/esat/deneme_workspace_23022009/

deneme_workspace/ESODENEME_ATLAS_WEB/WebContent/generatedServices/composedService0_14_10.owl

#TestService"/>

</process:CompositeProcess>

<process:Perform rdf:nodeID="A1">

<process:process rdf:resource="http://localhost:8080/ESODENEME_ATLAS_WEB/services/

BNPrice.owl#BNPriceProcess"/>

<process:hasDataFrom>

<process:InputBinding>

<process:toParam rdf:resource="http://localhost:8080/ESODENEME_ATLAS_WEB/services/

BNPrice.owl#BookInfo"/>

<process:valueSource>

<process:ValueOf>
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<process:fromProcess>

<process:Perform rdf:nodeID="A0"/>

</process:fromProcess>

<process:theVar rdf:resource="http://localhost:8080/ESODENEME_ATLAS_WEB/services/

BookFinder.owl#Book"/>

</process:ValueOf>

</process:valueSource>

</process:InputBinding>

</process:hasDataFrom>

</process:Perform>

<process:Perform rdf:nodeID="A2">

<process:process rdf:resource="http://localhost:8080/ESODENEME_ATLAS_WEB/services/

PriceConverter.owl#PriceConverterProcess"/>

<process:hasDataFrom>

<process:InputBinding>

<process:toParam rdf:resource="http://localhost:8080/ESODENEME_ATLAS_WEB/services/

PriceConverter.owl#DollarPrice"/>

<process:valueSource>

<process:ValueOf>

<process:fromProcess rdf:nodeID="A1"/>

<process:theVar rdf:resource="http://localhost:8080/ESODENEME_ATLAS_WEB/services/

BNPrice.owl#BookPrice"/>

</process:ValueOf>

</process:valueSource>

</process:InputBinding>

</process:hasDataFrom>

</process:Perform>

<process:Perform rdf:nodeID="A0">

<process:process rdf:resource="http://localhost:8080/ESODENEME_ATLAS_WEB/services/

BookFinder.owl#BookFinderProcess"/>

<process:hasDataFrom>

<process:InputBinding>

<process:toParam rdf:resource="http://localhost:8080/ESODENEME_ATLAS_WEB/services/

BookFinder.owl#BookName"/>

<process:valueSource>

<process:ValueOf>

<process:fromProcess rdf:resource="http://www.daml.org/services/owl-s/1.1/

Process.owl#TheParentPerform"/>

<process:theVar rdf:resource="/home/cokutan/ceng/tezz/esat/deneme_workspace_23022009/

deneme_workspace/ESODENEME_ATLAS_WEB/WebContent/generatedServices/composedService0_14_10.owl

#bookName"/>

</process:ValueOf>

</process:valueSource>

</process:InputBinding>

</process:hasDataFrom>

</process:Perform>

<grounding:WsdlGrounding rdf:about="/home/cokutan/ceng/tezz/esat/deneme_workspace_23022009/

deneme_workspace/ESODENEME_ATLAS_WEB/WebContent/generatedServices/composedService0_14_10.owl

#TestGrounding">

<service:supportedBy rdf:resource="/home/cokutan/ceng/tezz/esat/deneme_workspace_23022009/

deneme_workspace/ESODENEME_ATLAS_WEB/WebContent/generatedServices/composedService0_14_10.owl

#TestService"/>

<grounding:hasAtomicProcessGrounding rdf:resource="http://localhost:8080/ESODENEME_ATLAS_WEB

/services/BookNameValidator.owl#BookNameValidatorProcessGrounding"/>

<grounding:hasAtomicProcessGrounding rdf:resource="http://localhost:8080/ESODENEME_ATLAS_WEB

/services/BookFinder.owl#BookFinderProcessGrounding"/>

<grounding:hasAtomicProcessGrounding rdf:resource="http://localhost:8080/ESODENEME_ATLAS_WEB

/services/BNPrice.owl#BNPriceProcessGrounding"/>

<grounding:hasAtomicProcessGrounding rdf:resource="http://localhost:8080/ESODENEME_ATLAS_WEB

/services/PriceConverter.owl#PriceConverterProcessGrounding"/>

</grounding:WsdlGrounding>

</rdf:RDF>
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APPENDIX B

GRAPHS GENERATED FOR PRICE OUTPUT

This section contains two figures that shows the output result graphs before sorting with re-

spect to QoS parameters and after sorting with respect to QoS parameters respectively.
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Figure B.1: Graphs before Sorting wrt QoS
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Figure B.2: Graphs after Sorting wrt QoS
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