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ABSTRACT 

 

 

 

SENSITIVITY ANALYSIS USING FINITE DIFFERENCE 

AND ANALYTICAL JACOBIANS 

 

 

Ezerta, Ahmet Alper 

 M.S, Department of Aerospace Engineering 

   Supervisor : Assoc. Prof. Sinan Eyi 

        September 2009, 150 pages 

 

 

 

 

The Flux Jacobian matrices, the elements of which are the derivatives of the flux vectors 

with respect to the flow variables, are needed to be evaluated in implicit flow solutions 

and in analytical sensitivity analyzing methods. The main motivation behind this thesis 

study is to explore the accuracy of the numerically evaluated flux Jacobian matrices and 

the effects of the errors in those matrices on the convergence of the flow solver, on the 

accuracy of the sensitivities and on the performance of the design optimization cycle.  To 

perform these objectives a flow solver, which uses exact Newton’s method with direct 

sparse matrix solution technique, is developed for the Euler flow equations. Flux 

Jacobian is evaluated both numerically and analytically for different upwind flux 
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discretization schemes with second order MUSCL face interpolation. Numerical flux 

Jacobian matrices that are derived with wide range of finite difference perturbation 

magnitudes were compared with analytically derived ones and the optimum perturbation 

magnitude, which minimizes the error in the numerical evaluation, is searched. The 

factors that impede the accuracy are analyzed and a simple formulation for optimum 

perturbation magnitude is derived. The sensitivity derivatives are evaluated by direct-

differentiation method with discrete approach. The reuse of the LU factors of the flux 

Jacobian that are evaluated in the flow solution enabled efficient sensitivity analysis. The 

sensitivities calculated by the analytical Jacobian are compared with the ones that are 

calculated by numerically evaluated Jacobian matrices. Both internal and external flow 

problems with varying flow speeds, varying grid types and sizes are solved with different 

discretization schemes. In these problems, when the optimum perturbation magnitude is 

used for numerical Jacobian evaluation, the errors in Jacobian matrix and the sensitivities 

are minimized. Finally, the effect of the accuracy of the sensitivities on the design 

optimization cycle is analyzed for an inverse airfoil design performed with least squares 

minimization. 

 

 

Keywords: CFD, Newton’s method, Flux Jacobian, Sensitivity Analysis, Inverse Design 

Optimization 
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SONLU FARKLAR VE ANALTK JACOBANLAR 

KULLANARAK DUYARLILIK ANALZ 
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Yüksek Lisans, Havacılık ve Uzay Mühendislii Bölümü 

Tez Yöneticisi: Doç. Dr. Sinan Eyi 

Eylül 2009, 150 sayfa 

 
 

 

 

Elemanları akı vektörlerinin akı deikenlerine göre türevleri olan akı Jacobian 

matrisinin hesaplanması, akıın kapalı çözümünde ve analitik duyarlılık analizinde 

gereklidir. Bu çalımadaki ana hedefler: sayısal Jacobian matrisinin doruluunu 

aratırmak ve Jacobian matrisindeki hatanın, akı çözücüsünün yakınsamasına, duyarlılık 

analizinin doruluuna ve tasarım en iyiletirilmesi döngüsünün verimliliine olan 

etkilerini aratırmaktır. Bu amaçlar dorultusunda Euler akı denklemleri için, Newton 

metoduna dayalı akı çözücü, seyrek matris çözücü kullanarak gelitirilmitir. Akı 

Jacobian matrisi farklı akı bölme teknikleri ve yüksek dereceli ayrıtırmalar için sayısal 

ve analitik yöntemlerle hesaplanmıtır. Farklı sonlu farklar deitirme miktarlarıyla 

hesaplanan sayısal Jacobian matrisleri analitik Jacabian ile kıyaslanmı, sayısal Jacobian 
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matrisindeki hatayı en aza indirgeyen en iyi deitirme miktarı aratırılmıtır.   Sayısal 

Jacobianın doruluunu düüren etkenler analiz edilmi ve en iyi deitirme miktarı için 

basit bir formül türetilmitir. Duyarlılık türevleri, ayrık yaklaımla direkt-türev yöntemi 

kullanarak hesaplanmıtır. Akı çözümünde elde edilen LU çarpanlarının yeniden 

kullanımıyla duyarlılık analizinin verimlilii arttırılmıtır.  Sayısal Jacobian kullanarak 

hesaplanan duyarlılık türevleri analitik Jacobian ile hesaplanan türevlerle kıyaslanmıtır. 

ç ve dı akı problemleri; çeitli akı hızları için, farklı çözüm aı biçimleri ve 

boyutlarıyla, farklı ayrıım emaları kullanarak çözülmütür.  Bu problemlerin 

çözümünde sayısal Jacobian en iyi deitirme miktarıyla hesaplandıında, sayısal 

Jacobian matrisindeki ve duyarlılık analizindeki hata miktarı en küçük deerlere 

dümütür. Son olarak, duyarlılık türevlerinin tasarım en iyiletirme döngüsüne olan 

etkisini incelemek maksadıyla en küçük kareler yöntemiyle tersine kanat profili tasarımı 

gerçekletirilmitir. 

  

Anahtar Kelimeler: Hesaplamalı Akıkanlar Dinamii, Newton metodu, Akı Jacobianı, 

Duyarlılık Analizi, Tersine Tasarım En iyiletirmesi 
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

Temporal discretization techniques have always been one of the most popular research 

areas in Computational Fluid Dynamics (CFD) since the choice of the discretization 

methodology directly affects the cost and efficiency of the flow analysis. Three decades 

ago explicit schemes were the main alternatives due to the limitations on computational 

speeds and memory but by the beginning of the nineties the usage of implicit methods 

became common with the developments in computational science. Explicit schemes are 

easy to program with simple algorithms however they lack of stability. On the other hand 

the implicit schemes provide more stability. Today CFD has much wider range of 

application area than that is intended earlier. Most of the recent design tools are CFD 

based and they are coupling the solution of multidiscipline problems in a single analysis. 

In a design process, multiple flow solutions may be needed therefore the efficiency of the 

flow solver becomes a greater concern. Although the usage of explicit multigrid schemes 

can still be more favorable in some class of unsteady problems, today implicit methods 

based on Newton’s method have taken the dominant role in the flow analysis. 

 

Newton’s method is a well-known implicit method and has been used extensively for 

finding the root of the non-linear system of equations. In a steady-state flow solution, the 

objective is to evaluate the flow variables that result in zero flux residuals. Hence 

Newton’s root finding technique for the nonlinear systems can be applied to the steady 

state flow solutions. Newton’s method is a powerful method due to the quadratic 

convergence rate it provides. However, for this superior convergence performance, the 

exact linearization of the residuals is needed. The linearization of the residuals requires 

the calculation of flux Jacobian matrices, which compose of the derivatives of the flux 

vectors with respect to the flow variables. The evaluation, factorization and the storage 
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of the Jacobian matrix are the main concerns in the solution with Newton’s method. For 

example, in three-dimensional problems that require large number of grid points, the size 

of the Jacobian matrix can be enormous and large computer memory may be needed. The 

techniques used to deal with these concerns directly influence the efficiency and the 

accuracy of the Newton’s method. 

 

The cost of the Newton’s method in solution of the large linear system of the flow 

equations prevented it from being a widespread technique although; they were robust and 

providing quadratic convergence. Moreover the promising results obtained with quasi 

Newton methods encouraged the researchers to completely leave the direct solution 

method. By the end of the 90’s almost all the research on the implicit techniques were 

shifted into quasi Newton’s methods since the exact Newton’s method was extremely 

expensive with available computer technology level. Quasi Newton methods perform the 

solution of the large linear systems iteratively at each Newton’s step. The quasi Newton 

methods which has approximations only in solutions of linear system is called 

approximate-Newton methods whereas the methods which also use simplified Jacobian 

with approximate linearization is called in-exact Newton methods. With the 

simplifications made in quasi Newton’s method the demand on CPU can be much 

smaller but the penalty will be the drop down to linear convergence rate from quadratic 

rate. Moreover there is a need on preconditioner, which is derived from simplified 

Jacobian, and it can be crucial on the performances of the iterative solution of the linear 

system. 

 

In last decade there was intensive research in applied mathematics focusing on 

development of efficient algorithms to solve large sparse systems. The motivation of 

developing faster solver with smaller memory demand resulted with various sparse 

matrix solvers. UMFPACK, WMSP, MUMPS and PARDISO are the some of the solvers 

that can perform effectively with various types of sparse matrices. The combination of 

advances in hardware and algorithms makes it possible to solve those sparse linear 

systems quickly and easily that might have been considered too large until recently. 

Hence the usage of direct methods in flow solution can regain attention in next decade 

although they have not been used since early 90’s. 
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The common point in the  Newton’s method base flow solution techniques is the need of 

flux Jacobian evaluation whether the method is exact or quasi. Although the Jacobian 

matrix is not even constructed in some quasi Newton methods such as Jacobian free 

GMRES, the elements of the Jacobian is still needed to calculate matrix-vector products. 

The accuracy of the Jacobian is important since the accuracy may determine the 

exactness of the linearization. It will be possible to obtain better convergence rates with 

more accurate Jacobian. One of the main objectives of this study is to analyze the effects 

of the accuracy of the numerical Jacobian on the convergence of the Newton method. In 

order to eliminate the effects of the approximation made in Jacobian, an exact Newton 

method is used. 

 

There are mainly two alternatives for calculating the Jacobian matrix: analytical and 

numerical methods. Analytical evaluation is more accurate but differentiating by hand or 

using symbolic manipulators needs effort and it is time consuming. Moreover for each 

different flux discretization scheme, Jacobian derivation procedure needs to be re-

performed. Numerical Jacobian can be evaluated easily by finite differencing the residual 

vector. Although this method is simple and independent from the complexity of the flux 

scheme, numerical evaluation has a lack of accuracy. Errors in the numerical Jacobian 

calculations, which strongly depend on the finite difference perturbation magnitude, may 

hamper the convergence of Newton’s method. The error is large for both small and large 

perturbation magnitudes. In small magnitudes of perturbation, condition error is 

dominant whereas truncation error becomes dominant in large magnitudes. In order to 

evaluate the most accurate numerical Jacobian, the optimum perturbation magnitude 

should be used.  

 

Gradient-based optimization algorithms are very popular techniques used in the 

aerodynamic design. Although there are more robust alternatives such as genetic 

algorithms they are still chosen by many researchers since they are much faster. The 

efficiency and the accuracy of the design optimization with gradient-based methods 

mainly depend on the performances of the solution methods used for flow and sensitivity 

analyses. The derivatives of design objective function with respect to design variables 

are called sensitivities. The reliability of design results depends on the ability to 

accurately calculate the flow and sensitivity variables. In a design process, multiple flow 
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and sensitivity evaluations may be required; therefore, the efficient methods for flow and 

sensitivity analyses may improve the performance of the design optimization.  

 

In early design applications, sensitivities were evaluated by brute-force method, which 

was based on finite differencing. Although the brute-force method was easy to 

implement it suffers from accuracy due to errors rising from finite differencing. 

Moreover the requirement of multiple flow solution for each design variables makes this 

method expensive and impractical. The major advance in aerodynamic design 

optimization area was the introduction of the analytical methods, which provides 

accurate evaluation of sensitivities in an efficient manner. In analytical methods, 

sensitivities are calculated by differentiating the governing equations with respect to the 

design variables.  There are two approaches in analytical evaluation. In the first that is 

called discrete approach, the discretized flow equations are differentiated. Continuum 

approach is the second one in which the differentiation is performed prior to 

discretization. Both approaches is subdivided into the direct-differentiation and adjoint 

methods. In direct differentiation method, the discretized residual equations are 

differentiated with respect to design variables, and the resulting equations are solved for 

flow variable sensitivities. In adjoint method, the discretized residual equations are 

introduced as constraint functions, and the system of equations is solved for adjoint 

variables. In the design problems where the number of system responses of interest is 

larger than the number of design variables the direct-differentiation method is favorable 

in terms of computational work. Otherwise the adjoint method is more advantageous 

since the solution for adjoint variable is independent from the number of design 

variables. 

 

In implicit methods, analytical sensitivity calculations require the construction of 

Jacobian matrix and the solution of linear systems.  Therefore, using Newton’s method 

for flow analysis is especially profitable since the Jacobian matrix which is constructed 

for flow analyses can also be used for sensitivity analyses and the same solution scheme 

can be used for the flow and sensitivity equations. Resulting from this behavior, the most 

of the researchers who were dealing with Newton’s method for flow solution are also 

interested in the aerodynamic design optimization today. However, there is not much 

research on sensitivity analysis with the direct flow solver although it has some 
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significant benefits. Most of the today’s direct sparse solvers stores the LU factors and 

allows the reuse of them with different right-hand side vectors. Hence sensitivities can be 

calculated very efficiently by using the LU decomposed Jacobian matrix with different 

right hand side vectors for various design variables. 

    

In the solution of flow equations with Newton’s method the flux Jacobian is used as a 

driver to the iterative procedure. Even tough the accuracy of flux Jacobian affects the 

convergence behavior of Newton’s method; it does not affect the accuracy of converged 

solution. However, in calculation of flow variable sensitivities with analytical methods, 

the flux Jacobian is the part of linear systems of sensitivity equations. Therefore the 

accuracy of the sensitivities strongly depends on the accuracy of the flux Jacobian. 

1.2 Objectives 

This thesis study has multiple objectives. One of the objectives is to examine the 

applicability of the exact Newton’s method with the recent direct sparse matrix solvers. 

UMFPACK multi-frontal solver is used in the study. Another objective is to analyze the 

errors involved in numerical Jacobian calculations. The entries of the numerically 

evaluated Jacobian are compared with the ones correspond to analytically evaluated 

Jacobian. The other objective is to evaluate the optimum finite difference perturbation 

magnitude that minimizes the error in numerical Jacobian evaluation. The effects of the 

perturbation magnitude on the accuracy of numerical Jacobian are studied. The other 

objective of this thesis study is to analyze the effect of the accuracy of the numerically 

evaluated flux Jacobian on the convergence of the flow solver, on the accuracy of the 

sensitivities and on the performance of the design optimization cycle.  

1.3 Literature Survey 

In early nineties with the improvements in computational science the interest in implicit 

methods and coupling of implicit flow solutions with the design optimization were born. 



 

 

 

6 

The most promising technique among the implicit techniques was the Newton’s method 

with its appealing quadratic convergence performance. Moreover the usage of Newton’s 

method was bringing great flexibility for coupling the equations of multidisciplinary 

problems and also sensitivity analysis could be performed very efficiently with usage of 

Newton’s method. 

  

 One of the first implementations of Newton’s algorithms for flow solutions was 

performed by Wigton [1]. In his study Newton’s method was applied for transonic flow 

solution over multielement airfoils since he faced with convergence problems with the 

conventional techniques. Wigton used symbolic derivation tool for the evaluation of flux 

Jacobian matrices. In the solution of large linear sparse system he described the nested 

dissection node reordering technique, which provided efficient results, and this method is 

still forming the basis for the some of modern sparse matrix solvers.  

 

Bender and Khosla [2] dealt with the initial conditions of Newton’s method, which 

directly affect the convergence behavior. They suggested variational time step method 

and modified Newton scheme to reduce the sensitivity of Newton iterations to initial 

condition of the Jacobian matrix.  

 

In 1989 Venkatakrishnan [3] published his research on Newton solution of inviscid and 

viscous problems. His detailed research guided most of the post researches on Newton’s 

method. Compared to Wigton’s study, he used improved sparse matrix solution 

technique with diagonal term addition to increase the stability of the scheme. 

Venkatakrishnan’s work showed that Newton’s method was robust with quadratic 

convergence rate. However, he stated that the Newton’s method was impractical due to 

its large memory demand as the size of the problem increases for the application such as 

three-dimensional solutions. This problem firstly stated by Venkatakrishnan and in the 

following years researchers directed into quasi Newton methods, which were cheaper to 

use with the convergence rate reduction penalty. 

 

After the Venkatakrishan’s study, there are a few researches performed with exact 

Newton’s method. Van Dam et al.[4] used direct solution technique for separating 

viscous flows. Orkwis [5] developed a Newton’s method to solve flow around 
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axisymetric/planar geometries [6] with inviscid and laminar/turbulent flow equations [7]. 

In those studies, 2nd order Roe discretization scheme whose corresponding Jacobian 

matrix is hard to derive was used. Orkwis implemented MACSYMA symbolic 

differentiation package into his code for analytical evaluation of Jacobian. He reported 

that the outputs of the symbolic manipulation system should be simplified with care to 

prevent round-off errors. Orkwis [8] compared the performances of the exact and quasi 

Newton methods in his later work and showed that quasi Newton methods are much 

more efficient in terms of CPU time spent although their convergence rate was linear 

compared to exact method which has quadratic convergence. Moreover in his following 

work with Kim [9], Orkwis analyzed the feasibility of using modified Newton methods 

with frozen Jacobian.  

 

Whitfield and Taylor [10] are among the first researchers who use numerically evaluated 

flux Jacobian in Newton’s method solver. They solved 3-D incompressible and 

compressible flows with high order ROE discretization. Vanden [11], [12] presented 3-D 

flow solutions with direct and iterative methods and showed that the iterative ones 

outperformed in terms of time required for solution. Vanden and Orkwis [13] compared 

the performances of numerical and analytical Jacobian matrices in exact Newton method 

solution. Analytical Jacobian was derived by MACSYMA as it was done in earlier 

research of Orkwis and the numerical Jacobian matrices are evaluated by finite 

differencing. That study showed that the convergence performance of the numerical and 

analytical Jacobian matrices were almost identical. Authors stated that for simple linear 

systems analytical evaluation can be favorable whereas for the linearization of complex 

schemes numerical evaluation will be the best choice.  

 

 

In quasi Newton’s method, approximation is made on the solution of large linear system 

arising from Newton’s formulation. Moreover The Jacobian matrix can also be 

simplified. Hence the range of options available in the quasi Newton’s method is very 

wide depending on the choice of iterative procedure, choice of the preconditioning 

technique and the way of simplifying the Jacobian matrix. Hence there are great varieties 

of publications in the literature relevant to quasi Newton’s methods. The most popular 

class of techniques is the Newton-Krylov methods with GMRES [14] iterative solver. 
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Venkatakrishnan [15], Mavriplis [16] and Rogers [17] used approximate Newton’s 

method by applying GMRES with first orderly approximated Jacobian. Forstyh and 

Jiang [18] compared the quasi Newton methods and presented the outcomes of the 

simplifications made on the Jacobian. They showed that an inexact Newton method, 

which uses same order of discretization in the residual and the Jacobian, is more 

effective than approximate methods although the required preconditioner is more 

expensive to store. Brown and Saad [19] introduced matrix free GMRES method. The 

method proposed by them does not require the storage of the Jacobian matrix hence it 

permits the true linearization of the residuals without storage limit. However, the 

requirement on Jacobian factorization cannot be avoided totally since it is needed by the 

defined ILU preconditioner. Nielsen [20] and Barth [21] used first order Jacobian in their 

preconditioner for their matrix free GMRES solvers. Although the studies mentioned in 

this paragraph are associated with quasi Newton methods and they are not directly 

related to the objective of this thesis, they present valuable information on the 

importance of the accuracy of linearization of the residual vector. 

 

In the recent decade there were almost no research using direct solution for Newton’s 

method in CFD area. It was shown that that direct solution was unaffordably expensive 

in terms of required time and memory. Due to this fact today quasi Newton methods are 

the common ones that the researchers are focusing on. However in last decade the 

applied mathematicians have introduced new sparse matrix solvers with advanced 

algorithms. By the end of nineties Davis [22] introduced his multifrontal sparse matrix 

solver UMFPACK. Amestoy and Duff [23] introduced MUMPS for distributed memory 

parallel machines. These two were widely used in various research areas till the 

introduction of the WSMP and PARDISO developed by Gupta [24] and Schenk [25], 

respectively. In their publications, Gupta and Schenk reported that WSMP and 

PARDISO outperform the other solvers in the solutions of systems with variety of sparse 

matrix patterns. There is an intense research going on for upgrading the available sparse 

matrix solvers and those studies with recent results are promising that direct solution of 

Newton’s method may regain attention in next decade. 

 

Eyi and Onur [26] used UMFPACK for the exact Newton solution of Euler equations for 

a supersonic flow problem on a ramp geometry. In their research the analytical Jacobian 
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is derived from first order Steger-Warming fluxes and compared with the numerically 

evaluated Jacobian. Recently Gelfgat [27] argued the benefits of using direct solution 

algorithms in terms of stability and he utilized the MUMPS for the sparse matrix 

inversion in his study. T’ien and Raju [28] demonstrated the performance of multifrontal 

solvers for combustion problems. They used UMFPACK to solve the fully coupled linear 

system and showed that use of direct solvers can significantly reduce the computational 

time (subject to its memory limitations). They also discussed the feasibility of using 

multifrontal solvers for three-dimensional problems.  

 

In early design optimization practices, the finite difference method had been widely used 

for the evaluation of the sensitivities because of its simplicity.  However that kind of 

approach is not only expensive but it is also erroneous. Hence in early nineties some 

research focused on the analytical calculation of the sensitivities. Analytical sensitivity 

evaluation was firstly developed by researchers dealing with structural design 

optimization. The studies presented in [29-32] are well known references in this area. 

The works presented by Frank and Shubin [33] and later by Narducci et al.[34] are the 

some of the earliest applications of analytical sensitivity evaluation in fluid flow 

problems. Rizk [35] published his approach on the simultaneous iterative solutions of 

flow and design variables. Verhoff and Stookesberry [36] developed an analytical 

sensitivity calculation for two dimensional Euler equations. Most of the analytical 

sensitivity evaluation studies were performed by discrete approach which differentiates 

the discretized flow governing equations to evaluate sensitivities with respect to the 

design variables. El-banna and Carlson [37] used a discrete method to obtain sensitivities 

from transonic small disturbance equations. Baysal et al.[38] applied the discrete 

approach to the two dimensional Euler equations. Korivi et al.[39] used an incremental 

strategy for calculating discrete sensitivities using  the thin-layer Navier-Stokes 

equations. Jameson [40] introduced and the concept of adjoint method by the usage of 

control theory for the optimum aerodynamic design.  Following the work of Jameson lots 

of studies performing the aerodynamic design optimization by adjoint method are 

published. A broad review of sensitivity analysis and shape optimization can be found in 

[41].  
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The AGARD report [42] presents many good examples of inverse design optimization 

applications. Sobieczky [43] published a detailed survey on the methods used in inverse 

design optimization. Giles and Drela [44] developed an inverse design method based on 

Euler flow coupled with boundary-layer equations. Malone and Narramore [45] and 

Brickelbaw [46] published inverse design applications performed with Navier-Stoke’s 

equations. Zingg and Nemec [47],[48] published aerodynamic design applications for 

airfoils performed with the usage of Newton Krylov approach in flow solutions. Zingg 

and Leung [49] presented the efficiency gained in design optimization of a wing by the 

usage of Newton-Krylov approach. Eyi and Lee [50] performed the accuracy study on 

the inverse design performed by finite difference sensitivities and Eyi [51] investigated 

the effects of accuracy of finite difference sensitivities on the efficiency of the airfoil 

design. 

1.4 Outline   

Chapter 2 introduces the basic theory of the Euler flow equations. The spatial 

discretization used in the study is explained in detail by the presentation of the 

formulations used for upwinding schemes and face reconstruction. The ways of Jacobian 

matrix evaluations are introduced.  

 

Chapter 3 mainly presents the tactics that are followed in the construction of Newton’s 

method. The way of the implementation of boundary and initial conditions are given. 

Results of the flow solutions performed for the commonly used test cases are presented. 

Plots which present, the mach contours and the pressure coefficient variation on the 

geometry are given and compared with reference results. The convergence histories of 

the solutions performed by the analytically evaluated Jacobian are given. The reaction of 

the convergence histories to the initial conditioning of the Jacobian and to the 

deactivation of the limiters in the smooth flow regions, are analyzed. 

 

Chapter 4 presents the detailed error analysis performed for the numerical Jacobian. The 

source of the errors in the numerical Jacobian is presented. The derivation of the simple 

formulation, which estimates the optimum finite difference perturbation magnitude and 
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magnitude of the resulting minim relative error, is given. The variation of the optimum 

values by the change of different factors such as flow regime, grid resolution, order of 

discretization etc. is analyzed. The effect of the accuracy of the numerical Jacobian on 

the convergence of the flow solution is analyzed and the variation of the CPU time spent 

is tabulated. 

 

In Chapter 5 the objective was to analyze the effect of the accuracy of the numerically 

evaluated Jacobian on the sensitivity analysis. Both of the numerical and analytical 

Jacobian matrices are utilized in the sensitivity analysis which is performed by the direct 

differentiation method. The error plots are given to compare the flow sensitivities 

calculated by the numerical Jacobian matrices with the one calculated by analytical 

Jacobian.   

 

Chapter 6 presents the inverse design applied on the airfoil geometry. The sensitivity 

analysis performed in Chapter5 is used to evaluate the required pressure gradients by the 

optimization algorithm. The effect of the geometry parameterization on the efficiency of 

the design is presented by the given results that are calculated using the variety of shape 

functions. Finally the effect of the finite differencing used in the numerical Jacobian 

evaluation on the efficiency of the aerodynamic design optimization cycle is presented. 
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CHAPTER 2  

FLOW MODEL 

2.1  Introduction 

The solution of complex flow physics problems requires advanced flow models with 

advanced spatial and time discretization techniques. The cost of the analysis amplifies 

with the increase in the level of complexity of the scheme that is used. Moreover 

accurate solution for complex flow problems generally demands on advanced 

computational meshing strategies and highly resolved grids. In this thesis study for the 

time discretization implicit direct solution technique, which was shown to be 

computationally expensive by the previous research in literature, is used. Direct solution 

technique requires the flux Jacobian matrix and as the size of the Jacobian enlarges the 

requirement on both of the memory and solution time will magnify. The number of flow 

equations solved and the grid size mainly defines the size of the Jacobian. To prohibit 

further increase in computational cost of the analysis, relatively simpler flow problems 

that are modeled with two dimensional Euler flow equations are solved. Usage of 

inexpensive flow model brought the opportunity for examining the effects of several 

dependents through the study. Different upwind spatial discretization schemes with 

varying flux limiters are used for subsonic, transonic and supersonic flows on grids with 

varying sizes.    

 

The finite volume method with the Steger-Warming [52], Van Leer [53], AUSM [54] 

and Roe [55] upwind schemes is used for discretization of the Euler equations.  The 

second order accurate face reconstruction of the flow variables are performed by 

MUSCL [56] interpolation with the utilization of Van Albada’s [57] and 

Venkatakrishnan’s [58] continuous limiters. The structured mesh topology is used for 

both external and internal flow applications at subsonic, transonic and supersonic free-
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stream conditions. The usage of structured mesh enabled the simple storage for the 

elements of the Jacobian matrix and resulted with favorable matrix bandwidth 

 

Besides preventing the high analysis cost, the additional motivation for using Euler flow 

equations is enabling the analytic hand derivation of flux Jacobian. Therefore it is 

prevented to use schemes that include discontinuous algebraic expressions, such as those 

appearing in limiter functions and turbulence models. Although Euler equations are 

simpler flow model compare to Navier-Stokes equations with turbulence modeling, Euler 

equations still capable of capturing many high level flow phenomena such as rotational 

flow and embedded shock waves in transonic flows.  

2.2 Governing Equations 

The conservation laws of mass, momentum and energy for an arbitrary control volume 

can be presented by Navier Stokes equations as below:  

 ( ) ( ). 0dV dS dS
t Ω ∂Ω ∂Ω

∂ + − =
∂   c Vw F .n F n      (2.1) 

In Equation 2.1 the bold characters w, F and VF denotes vector of conservative flow field 

variables, and convective and dissipative fluxes vectors respectively. In steady flow 

problems, flow variables inside the control volume do not change with time, hence the 

first term in Equation 2.1 drops. Moreover in Euler flow modeling, the fluid is assumed 

to be inviscid and there will be no dissipative flux terms. Therefore, for steady-state 

Euler equations can be simplified as follow: 

 ( ). 0dS
∂Ω

= cF n     (2.2) 

The elements of convective flux vector F , which is a function of conservative flow 

variables w , is given in Equation 2.3  



 

 

 

14 

 x

y

tt

 U
u uU p
v vU p

( e p)Ue

η
η

ρ

   
   +   = =
   +
   +  

cw F      (2.3) 

In Equation 2.3  is density, u and v are components of velocity vector, p is pressure, et is 

total energy per unit volume and U is the contravariant velocity aligned in the direction 

of unit normal vector of the face. 

 x yu vη η= +U    (2.4) 

where xη and yη  are the components of the unit normal vector. 

 

The system of equations is closed with the introduction of the ideal gas relation for the 

pressure. 

 2 21( 1) ( )
2tp e u vγ ρ  = − − +  

 (2.5) 

Today the most common way of the numerical solution of the flow governing equations 

is the technique called method of lines [59]. This method introduces the separate 

discretization in space and in time. In its application, firstly the control volumes are 

constructed by the proper meshing strategy. Secondly the flux integrals and the spatial 

derivatives are calculated from the initial conditions. Finally the resulting solution is 

advanced in time. The solution obtained in last step will be used in the second step to 

evaluate new fluxes and finally last step will be re-utilized for the updated variables. By 

this way an iterative procedure will be driven to perform the flow analysis. 

2.3 Spatial Discretization 

Euler flow equations are discretized by finite volume method by dividing the flow 

domain into quadrilateral cells. The flow variables are stored at cell centers and for flux 



 

 

 

15 

calculation interpolation to the cell faces is applied. The integral formulation given in 

Equation 2.2 can be written for a mesh cell as :  

 ( )
#

1
. 0

face

n=

= cF dS    (2.6) 

The storage of the data corresponding to a structured mesh is simple. Data can be stored 

according to directions in which cells are aligned. This will be essentially useful in 

attaining high order discretization accuracy and in ordering the elements of Jacobian 

matrix. The high order accuracy in spatial discretization can be achieved by the 

assumption of the varying flow variables in grid cells. Therefore, the gradients of the 

flow variables are required for the application of high order face interpolation. In 

structured meshes, these gradients can be evaluated with simple algorithms by using 

neighboring cells aligned along a continuous mesh lines. The demonstration for the cells 

and their indices used in this study is given below. 

 

 
Figure 2.1 Grid cell indices 

The results of the vector product of the fluxes with faces normal vectors, which are 

aligned in i and j directions are called as F and G fluxes, respectively. Using these 

definitions Equation 2.6 can be re written as:  
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 ( ) ( )1/2, 1/2, , 1/2 , 1/2 0i j i j i j i jF F G G+ − + −− + − =     (2.7) 

The indices ½ denotes the cell interfaces and it is assumed that the variables are constant 

along the interface. In structured mesh, a typical control volume is given below with the 

flux and node indices. 

 
Figure 2.2 Control volume formed by the mesh and the flux vectors 

In finite volume method, the spatial discretization of the fluxes can be performed in two 

ways. First alternative is the central schemes. Central schemes are simple and based on 

averaging the conservative flow variables to the left and to the right in order to evaluate 

the flux. Although central schemes are simple to implement, they necessitate the usage of 

artificial dissipation since they cannot recognize and suppress an odd-even decoupling of 

the solution [60]. Second alternative for the spatial discretization is the usage of upwind 

schemes which are developed basing on convective physics of the Euler equations. 

Upwind schemes are capable of capturing the discontinuities such as shocks precisely. 

However, strong discontinuities cause oscillations in the solutions performed with high 

order spatial accuracy and to prevent it usage of limiter functions may be required. 

Limiter functions switch the high order spatial discretization to first order discretization 

near the discontinuities. 
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2.3.1 Upwinding Schemes 

Upwinding schemes are basically decomposed into two groups: 

Flux Vector Splitting schemes 

Flux Difference Splitting Schemes 

2.3.1.1 Flux Vector Splitting Schemes 

The flux vector splitting is based on the fact that convective fluxes are homogenous 

function of degree one in conservative flow variables.  

 ∂ =
∂

c
c c

FF = w J w
w

  (2.8) 

where, cJ  is the Jacobian matrix evaluated by convective fluxes. 

 

The special property given in Equation 2.8 forms the basis for all the flux vector splitting 

type methods. The splitting can be performed in terms of the wave speeds [52], in terms 

of Mach number [53] or alternatively in terms of both of Mach number and pressure after 

decomposing the flux vector as convective and pressure parts[54].  

 

Considering the wave splitting procedure, convective flux Jacobian matrix can be 

diagonalized as follows: 

 1=  -
c  J Q Q   (2.9) 

 is the diagonal matrix that includes the eigenvalues of the Jacobian matrix, cJ , and 

Q  is the matrix formed by the corresponding right eigenvectors. Splitting the 

eigenvalues into two in terms of their signs, Jacobian matrix becomes: 

 1 1 1
J J J

+ −= = + = +  - - - + -
c       c cJ Q Q Q Q Q Q J J    (2.10) 

Then the flux vector can be splitted as 

 { }   = + = +   
+ - + -

c c c c c cF = J w J J w F F   (2.11) 
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+
cF  and -

cF  are the subvectors associated with the positive and the negative eigenvalues 

respectively. The +
cF carries information from upstream to downstream. Similarly, -

cF  

carries information from downstream to upstream. The left-side flow variables, Lw  that 

are located in the upstream of the face are used in the computation of the +
cF . 

Consistently the right-side flow variables, Rw  that are located in the downstream of the 

face are used in the computation of the −
cF . Therefore the formulation of the splitted flux 

can be written as:  

 
L

R− −

+ +
c c

c c

F = J w

F = J w
 (2.12) 

Implementing the splitting procedure into the Equation 2.6 and 2.7 upwind discretized 

form of the steady, 2-D Euler equations can be written for a quadrilateral cell as follows: 

 
( )

#

1/2, 1/2, 1/2, 1/2,
1

, 1/2 , 1/2 , 1/2 , 1/2

. ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0

face
L R L R

i j i j i j i j
n

L R L R
i j i j i j i j

F F F F

G G G G

+ − + −
+ + − −

=

+ − + −
+ + − −

   = + − +   

   + − + =   

 dS w w w w

w w w w

cF
 

 (2.13) 

The resulting flux splitting formulation given in Equation 2.13 is derived by the wave 

splitting strategy which was introduced by Steger and Warming. Nevertheless this 

formulation is also valid for any type of flux vector splitting scheme such as Van Leer, 

AUSM or CUSP schemes. This formulation provides simple analytical derivation 

strategy for the flux Jacobian which will be presented in next chapter. In this thesis study 

flux Jacobian corresponding to Steger-Warming, Van-Leer and AUSM flux vector 

splitting schemes are evaluated by both analytical and numerical methods. In solution of 

Newton’s method, numerically and analytically calculated Steger-Warming, Van-Leer 

and AUSM flux Jacobian matrices are used. 

2.3.1.1.a Steger-Warming Scheme 

 The convective fluxes vectors can be evaluated by Steger-Warming scheme as follows: 
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( )
( )( ) ( )
( )( ) ( )

( )( ) ( )

1 2 3

1 2 3 2 3
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2 2
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1 2 3 2 3

2 1

2 1

2 12
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x

c y

u c

F v c

u v cU c

γ λ λ λ

γ λ λ λ λ λ η
ρ

γ λ λ λ λ λ ηγ

λ λγ λ λ λ λ λ
γ

± ± ±

± ± ± ± ±

± ± ± ± ± ±

± ±
± ± ± ± ±

 − + +
 
 − + + + −
 
 = − + + + − 
 

++ − + + + − + − 

 (2.14) 

In Equation 2.14 xη and yη  are the components of the face normal vector. The 

eigenvalues 1λ , 2λ , 3λ and the speed of sound c is defined as: 

 ( ) ( )2 2

1 2 3

11
2

, ,

tc e u v

U U c U c

γ γ

λ λ λ

 = − − + 
 

= = + = −

 (2.15) 

In the calculation of positive signed fluxes, F+; velocities, speed of sound and energy will 

be evaluated from the left state flow variables. Similarly negative signed fluxes are 

calculated from right state variables.  Steger Warming schemes defines the flux splitting 

with splitting the eigenvalues in terms of their signs with below formulation: 

 
2

i i
i

λ λ
λ± ±

=  (2.16) 

The above formulation can cause some problems in the calculation Jacobian matrices at 

stagnation and at sonic points. At these points, the derivatives of flux vector with respect 

to flow variables may be discontinuous. If the proper precautions is not implemented the 

solution will have oscillations around those singularities and there will be large 

differences between the numerically and analytically evaluated Jacobian matrices. 

2.3.1.1.b Van Leer Scheme 

Van Leer proposed a scheme based on Mach number splitting. His scheme does not face 

the problems that occur in the usage of Steger-Warming scheme at sonic and stagnation 

points. In the scheme advection Mach number is defined at the cell face: 

 n L RM M M+ −= +  (2.17) 
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the splitted mach numbers are defined as 

 ( ) ( )2 2

1 0 1
1 11 1 1 1
4 4
0 1 1

L L R

L L L R R L

L R R

M if M if M

M M if M M M if M

if M M if M

+ −

≥ ≥ 
  = + < = − < 
 

≤ − ≤ −  

 (2.18) 

The Mach numbers, ML and MR, are calculated by the contravariant velocities that are 

evaluated with left and right flow variables. 

 ,L R
L R

L R

U UM M
c c

= =  (2.19) 

In the case of subsonic flows where, 1nM < the splitted flux are defined as: 

 

2

2

mass

mass x

c
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energy

f
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F
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f

η
γ

η
γ

±

±

±

±

±

 
 

 − ± +    =
  − ±+  

  
 
 

 (2.20) 

The mass and energy components are defined as: 
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2

2

2 2 2 2
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/

( 1)
4

( 1)
4

( 1) 2
22( 1)
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R
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γ
γ

+

−

± ±

+=

−=

 − ± + − = + −  

 (2.21) 

In the case of supersonic flow, where 1nM > , the fluxes are evaluated as: 

 ,

,

0 1

0 1
c c c n

c c c n

F F F if M

F F F if M

+ −

+ −

= = ≥

= = ≤ −
 (2.22) 
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2.3.1.1.c AUSM scheme 

The Advection Upstream Splitting Method, AUSM, was introduced by Liou and Steffen. 

The splitting is performed similar to Van Leer scheme with the additional splitting for 

the pressure. The AUSM scheme decomposes the flux into two as: the scalar quantities 

part that convected by contravariant velocity and the pressure part that is governed by 

acoustic wave speed.  

 

Mach number splitting is same as the Van Leer scheme and the flux splitting formulation 

is given below: 

 

0 0

0 0

x L x R
c L c R

y L y R

T TL R

c c
p pcu cu

F M F M
cv cvp p
ch ch

ρ ρ
η ηρ ρ

ρ ρη η
ρ ρ

+ −
+ + − −

+ −

      
      
      = + = +      
      
         

 (2.23) 

and pressure is splitted as follows: 

 

( ) ( )

( ) ( )
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L
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= + − <


≤ −

≥
= − − <


≤ −

 (2.24) 

2.3.1.2 Flux Difference Splitting 

2.3.1.2.a Roe Scheme 

Roe solved an approximate Riemann problem by linearizing the Jacobian matrix by the 

constant matrix ARL. The Roe’s averaged Jacobian matrix also satisfies the homogeneity 

property. The flux is splitted into the two parts by left and right state flow variables as 

below: 
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 ( )
c RL

R L L R
c RL

F J

F J F F

=

= − = −

w

w w
 (2.25) 

The Roe’s Jacobian matrix can be diagonalized as: 

 
1

1

RL J

RL J

=

=

-
 

-
 

J Q Q

J Q Q

  

  



 (2.26) 

J
 and Q are the diagonal matrix composed of eigenvalues of the Roe’s Jacobian and 

the corresponding matrix of right eigenvectors respectively. Inserting the Equation 2.26 

into the Equation 2.25: 

 ( ) ( ) ( )1R L R L
c JF F F λ= − = − -

 w w Q Q w w    (2.27) 

Considering the sign of the eigenvalues, the flux vector can take the below form: 

 
( ) ( )
( ) ( )

1

0

1

0

J

J

L R L
c J

R R L
c J

F F

F F

λ

λ

λ

λ
<

>

= + −

= − −





  

  

-
 

-
 

w Q Q w w

w Q Q w w
  (2.28) 

Averaging the two flux vectors given by the Equation 2.28 the final flux vector proposed 

by Roe can be written as:  

 ( ) ( ) ( )11
2

L R R L
c JF F F λ

 
= + − − 

 
 -

 w w Q Q w w     (2.29) 

Roe’s Jacobian matrix and the Roe’s averaged variables are given below: 

 ( )

( ) ( )

2

3
2

0 1 0
3 3 1

2
1

1
2RL RL

RL RL RL

RL
T RL T RL RL

J u u

u
h u h u u

γ γ γ

γ
γ γ
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 
 

− = − − 
 

− 
− + − −  

 (2.30) 
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RL

R R L L
RL

R L

R R L L
T

R L

RL R L

u u
u

h h
h

ρ ρ
ρ ρ

ρ ρ
ρ ρ

ρ ρ ρ

+
=

+

+
=

+

=

 (2.31) 

In this study, flux Jacobian corresponding to Roe’s flux difference splitting schemes is 

evaluated by only numerical methods. In solution of Newton’s method, numerically 

calculated Roe’s flux Jacobian matrices are used. 

2.3.2 High Order Reconstruction 

Flux vector splitting and flux difference splitting schemes which is explained in previous 

section are first order accurate in space due to the assumption of non-varying flow 

variables along the cell: 

 1/2 1/2 1

1/2 1 1/2

,
,

L R
i i i i

L R
i i i i

+ + +

− − −

= =

= =

w w w w
w w w w

 (2.32) 

Higher order accuracy can be achieved by the assumption of varying flow variables in 

each cell. The Monotonic Upstream Centered Scheme, MUSCL, which was introduced 

by Van Leer [56] is a common technique for the interpolation of the cell center flow 

variables to the cell faces as left and right states. The interpolation formula is given 

below: 

 
( )[ ]{ }

( )[ ]{ }

1/2

1/2 1 1

1 (1 ) (1 )
4

1 (1 ) (1 )
4

L
i i i

R
i i i

r

r

φ κ κ

φ κ κ

+

+ + +

= + − ∇ + + Δ

= − + ∇ + − Δ

w w

w w
 (2.33) 

In above equation,Δ and ∇ are the forward and backward operators and the r is the ratio 

of these operators. 
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1 1,i i i i i

i
i

i
r

+ −Δ = − ∇ = −
Δ

=
∇

w w w w
 (2.34) 

In the Equation 2.33, the parameter κ defines the order of the accuracy of the 

interpolation. For κ = -1, purely one sided upwind interpolation; for κ = 0, linear 

interpolation between one upstream and one downstream cell, for κ =1/3 three cells 

interpolation; are obtained with second order accuracy. For κ = 1 the upwind influence is 

lost and face values are calculated by the arithmetic mean of the neighboring cells. 

 

Mechanisms such as shock waves produce large gradients in flow. The large gradients 

can cause significantly diverse left and right interpolated state variables on the same face. 

This diversity is mainly due to the over and undershoots of the interpolation and 

generates oscillations in the solution. Those oscillations can be constrained by reducing 

the slopes that are used in the interpolation. The nonlinear functions that are called 

limiters are used for this purpose. At strong discontinuities where the gradients are large, 

the slopes are reduced to zero by the limiters to switch into the first order discretization. 

In the MUSCL formulation given in Equation 2.33 limiters are denoted by ( )rφ . The 

limiters are generally functions of the forward and backward difference operators and 

there are various types of limiters in the literature. In this study, the continuous limiter 

functions are used to enable analytical differentiation of the fluxes for the Jacobian 

derivation. The two continuous limiter functions used in this study are given below: 

 

2( ) 12 1
3 1( ) 2 32 2

rr for
r

rr for
r r

φ κ

φ κ

= = −
+

= =
− +

 (2.35) 

The usage of above slope limiters leads to Van Albada limiter for  = 0, and to Hemker- 

Koren limiter for  =1/3. Even though the defined limiters are differentiable, it was 

shown that their utilization results in convergence problems for steady solutions. The 

reason of this problem is explained as the reaction of the limiter functions to even very 

small oscillations in smooth regions of the flow domain which introduce high non-

linearity. Van Albada[57] tuned his limiter for  = 0 case to prevent the activation of the 

limiter in smooth regions by introducing an additional parameter,∈. With this 



 

 

 

25 

modification interpolation formula reduces to unlimited MUSCL formulation in 

smoothly varying regions by deactivation of the limiter. The limiter is activated only at 

high gradient regions to reduce the accuracy of discretization to first order. Similar 

modification is performed for  =1/3 scheme by Venkatakrishnan [58]. The formulation 

of the tuned interpolations is given below: 

   1/2 1/2

1/2 1 1/2

L L
i i i

R R
i i i

δ
δ

+ +

+ + +

= +

= −

w w
w w

 (2.36) 

For  = 0 
2 2

2 2
( ) ( )

2
ia b b a

a b
δ +∈ + +∈
=

+ + ∈
 (2.37) 

For  = 1/3 
2 2

2 2
(2 ) ( 2 )

3
a b b a
a b ab

δ +∈ + + ∈=
+ − + ∈

 (2.38) 

where 
1 1

,
,

L i L i

R i R i

a b
a b+ +

= Δ =∇
=∇ = Δ

 (2.39) 

In above equations, ∈ is a small number which is used to prevent the activation of the 

limiter in the smooth regions of the flow domain. ∈ is defined as 0.008 in Van Albada’s 

work and for the Koren’s limiter,  Venkatakrishnan  defined it as the square root of the 

cell area in 2-D problems. 

2.4 Newton’s Method 

After the spatial discretization is implemented, Euler equations can be written as: 

 ( ) 0=R w  (2.40) 

In above equation, R(w) is the residual vector of  the spatial discretization. Residual is 

non-linear function of conservative flow variables, w.  

 ( ) ( ) ( ).dS dS
∂Ω ∂Ω

= − c VR w F .n F n   (2.41) 
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The system of non-linear equations given in Equation 2.40 is needed to be satisfied. The 

linearization of the ( )R w  in time, for the implicit solution of Equation 2.40 yields: 

 ( ) ( )1
n

n n n∂
∂

+  = + Δ 
 

RR w R w w
w

    (2.42) 

where ∂
∂

R
w

 is the Jacobian matrix. 

Assuming that at the (n+1)th iteration the flow variables exactly satisfies the discretized 

Euler equations, i.e. 1( )n+R w =0,  the Newton’s Method can be derived as follows: 

 ( )
n

n n∂
∂
  Δ = − 
 

R w R w
w

 (2.43) 

In above equation, the increment in flow variable vector is calculated. The new values of 

flow variable vector w at the (n+1)th iteration can be calculated as: 

 1n n n+ = + Δw w w  (2.44) 

The above iterative procedure will be repeated until the residual drops below specified 

tolerance. 

2.4.1 Flux Jacobian 

In the solution of Euler equations with Newton’s method, the evaluation of the flux 

Jacobian matrix is needed. The entries of Jacobian matrix are the derivatives of the 

residual vector with respect to the flow variables vector. In the calculation of these 

derivatives, analytical or numerical derivation methods a can be used, and the resulting 

matrices are called analytical or numerical Jacobian matrices, respectively. 

2.4.1.1 Analytical Jacobian Derivation 

Substituting Equation 2.13 into Equation 2.41, the discretized flux residual can be 

calculated as: 
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w w w w w

w w w w
  (2.45) 

In above formulation, Ri,j, presents the residual of the cell at i and j coordinates. The 

Jacobian matrix contains the derivatives of the residual calculated at each cell with 

respect to the whole flow variables in the discretized domain. Differentiating the residual 

,i jR with respect to a flow variable ,k lw , the residual Jacobian is defined as: 
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,
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∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
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∂ ∂ ∂
1/2

,

R

k lw
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∂

 (2.46) 

where,                        
ˆ ˆ ˆ ˆ, , ,L R L R

G GF FA A B B
+ −+ −

+ − + −∂ ∂∂ ∂= = = =
∂ ∂ ∂ ∂w w w w  (2.47) 

Analytical derivation of Residual Jacobian needs two sets of derivatives. The first set 

composes of the derivatives of splitted fluxes with respect to the interpolated flow 

variables at cell faces, which are 1/ 2, 1/ 2, , 1/ 2 , 1/ 2, , ,i j i j i j i jA A B B± ± ± ±
+ − + − . Due to their 

analytical relations, these derivatives are function of flux schemes but they are 

independent of order of spatial discretization. In this study; Steger-Warming, Van Leer 

and AUSM flux schemes are differentiated to evaluate those derivatives. 

 

The second set consists of the derivatives of interpolated cell face flow variables with 

respect to the main flow variables stored at cell centers. The analytical relation of these 

derivatives varies according to order of spatial discretization but they are independent of 

flux schemes. As shown in Equation 2.32, for the first order discretization, right ( Rw ) 

and left ( Lw ) flow variables are equal to the values at the cell center of the two cells that 

are just located at the right and left of the corresponding cell face. Therefore, in first 

order discretization k and l values in Equation 2.46 changes from i-1 to i+1 and j-1 to 

j+1, respectively. 
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 (2.48) 

Jacobian matrices in first order discretization can be evaluated as:   
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where   
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 (2.50) 

For the second order spatial discretization, the flow variables at the cell faces are 

calculated from the interpolation of flow variables at the center of the 4 neighboring cells 

using MUSCL scheme. Therefore, in second order discretization k and l values in 

Equation 2.46 changes from i-2 to i+2 and j-2 to j+2, respectively. Thanks to the 

continuous limiter functions used, the MUSCL scheme is differentiable of flow 

variables. Hence analytical Jacobian is evaluated without any difficulty for high order 

schemes. 
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Jacobian matrices in second order discretization can be evaluated as: 
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The main advantage of the analytical method is that the residual Jacobian can be 

calculated accurately. The order of error in the analytical method can be as small as the 

round-off error. Although the analytical method requires code development, run time of 

an analytical code is short. However, as the complexity of the discretized residual 

equations increases, the derivation of the analytical Jacobian becomes more complicated 

and time consuming.  

2.4.1.2 Numerical Jacobian Derivation 

Another alternative for Jacobian evaluation is to compute the Jacobian numerically. 

Using a small finite-difference perturbation magnitude,ε the numerical Jacobian can be 

calculated by the forward-difference as follow [61]    
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∂ Δ

= = +
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 (2.56) 

where, mR  is the mth component of the residual vector and the nw  is the nth component of 

the flow variable vector, en , is the nth unit vector. The value of the nth component of the 

unit vector en is one, and all other components are zero. The size of the residual vector is 

defined by mmax, which is equal to 4 times the number of interior cells in 2D flow 

problems. The size of the flow variable vector is larger as much as the summation of the 

number of boundary cells, nbound and interior cells, mmax. In the numerical method, 

Jacobian evaluation does not require the large coding effort as needed in the analytical 

method. The same residual discretization can be used for both the original and perturbed 

flow variables. This reuse of the same code is one of the important advantages of the 

numerical approach. Moreover, for cases in which the analytical derivation is difficult, 

numerical Jacobian can be obtained without any difficulty. 

The inaccuracy and long computation time are the two main disadvantages of the 

numerical Jacobian evaluation. The error in numerical Jacobian is function of the finite-

difference perturbation magnitude. The accuracy of the numerical Jacobian can be 

improved with the usage of an optimum perturbation magnitude that minimizes the total 

error in the finite difference evaluation. The main reason that causes long computation 

time is the necessity of the residual vector calculation with each perturbed flow variable 

in the whole domain. For a given cell, the residual is only a function of flow variables in 

that cell and the neighboring cells according to the discretization used. In order to reduce 

the computation time, the perturbed residual is computed only with flow variables in 

these cells. For first-order discretization, in addition to the cell in which the flow variable 

is perturbed, four neighboring cells are used. Considering four flow variables in each 

cell, 20 perturbed residual vector evaluations are required for the given cell. In second-

order discretization, using eight neighboring cells in addition to the given cell, 36 

perturbed residual vector evaluations are required. Although the speed and the accuracy 

of the analytical method may not be reached, the numerical Jacobian evaluation method 

may become faster and more accurate with some precautions.  
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2.5 Boundary Conditions 

The formulations given in previous sections are valid for the interior flow domain. 

Special treatments are needed for evaluation of the fluxes at the domain boundaries. The 

most common way to impose boundary conditions is adding ghost cells to the exterior of 

the physical domain. In order to enforce the desired boundary conditions appropriate 

flow conditions are specified in the ghost cells. In this thesis study one layer of ghost 

cells are used and the order of spatial discretization is held at first order at the 

boundaries. In this section the theory used for the boundary condition definitions will be 

presented. The technique that is used for the boundary condition implementation is 

detailed in the Chapter-III. 

2.5.1 Far Field Boundary Conditions  

Far field boundary conditions are used for enforcing the flow conditions such as flight 

Mach number or angle of attack to the flow solver. Imposing the free-stream flow 

conditions directly to the ghost cells will not be a proper implementation, since the 

physical domain never extends to the infinity where the free stream flow conditions are 

valid. Therefore, an approach based on the characteristics of the Euler flow equations is 

used to define flow conditions at the far field. The approach is called characteristic based 

boundary conditions. 

 

In 2-D flows, two Riemann invariants, + and − travel with two characteristic waves 

whose velocities are 1 and 2. The definitions of the Riemann invariants and the 

characteristic velocities are given below: 
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2
1
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U c
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In above formulation U is the contravariant velocity normal to the boundary face and c is 

the speed of sound. The remaining two characteristic waves convect the tangential 

velocity, Vt and the entropy, s = γ /P, with the speed U. 

 

The normal velocity and the speed of sound that are going to be imposed at the 

boundaries can be evaluated by the addition and subtraction of the two Riemann 

invariants, respectively.  

 2
1( )

4

boundary

boundary

U

c γ

+ −

+ −

+=

−= −

 

 
 (2.58) 

The propagation directions of the characteristic waves are defined by their velocities. For 

2-D supersonic flows where the flow velocity is greater the speed of sound wave speed 

all four characteristic waves propagates in the same direction with velocities U+c, U-c, 

U and U. If the flow is subsonic the negative Riemann invariant, − , will propagate in 

the opposite direction with respect to other three waves since the sign of its speed is 

negative.    

 

For an inflow with supersonic velocity, all the characteristics will propagate into the flow 

domain from the outside; hence free-stream conditions can be directly imposed to the 

ghost cells. Similarly for an outflow with supersonic velocity all the characteristics will 

propagate from inner flow domain to outside; therefore the flow conditions at the cells 

adjacent to outflow boundaries will be imposed to the ghost cells. 

 

For the subsonic inflow the three of the characteristics carrying the entropy, tangential 

velocity and the first Riemann invariant, + ,will propagate from free-stream to flow 

domain. The second Riemann invariant, − ,will propagate from the inside of the flow 

domain to free-stream. Conversely for subsonic outflow − will propagate from free-

stream to flow domains while other three waves propagate in to free-stream direction. 

The resulting boundary conditions for subsonic inflow and outflow is given below. 
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Subsonic inflow BC : 
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Subsonic outflow BC: 
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 (2.60) 

Using the definitions given in Equations 2.59 and 2.60 the flow conditions at the farfield 

ghost cells can be imposed as: 
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 (2.61) 

2.5.2 Wall Boundary Conditions 

The solid-wall boundary conditions are applied on the geometry surfaces to impose no 

flow through boundary. That condition is satisfied by the application of the symmetry 

condition on the velocity. The components of the velocity in the wall normal direction 

are set to have equal magnitude of velocities but opposite sign in the ghost and interior 

cells adjacent to wall. The density, tangential component of the velocity and enthalpy is 

directly extrapolated to the ghost cells from the inner domain cells.  

2.5.3 Computational Boundary Conditions  

Computational boundary conditions are required to accommodate the use of 

computational grids. One of the most common computational boundary condition is the 

symmetry condition. This is used when the flow solution will be symmetric, so that only 

half of the flow has to be computed. In symmetry boundary conditions density, tangential 

velocity and enthalpy s directly extrapolated from interior cells to the ghost ones. The 

normal velocity component is extrapolated by the same magnitude but in reverse 

direction.   

 

Wake boundary conditions are required to accommodate a grid of C mesh topology. The 

ghost cells of the lower portion of the wake correspond to interior cells of the upper 

portion. Similarly the ghost cells of the upper portion of the wake correspond to interior 

cells of the lower portion of the wake. All the flow variables are extrapolated directly 

from interior to ghost cell in wake boundary conditions. 
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CHAPTER 3  

FLOW SOLVER 

3.1 Introduction 

In this chapter, the details of the methodology followed in the development of the 

Newton method flow solver are presented. The structure of the flux Jacobian matrix, the 

imposed initial conditions, the assignment of boundary conditions and the technique used 

for the factorization of the large sparse matrix is explained. In order to examine the 

performance of Newton’s method, internal and external flow problems are solved at 

different free-stream conditions. The efficiency of the method is demonstrated by the 

convergence histories and the CPU time spent.  

3.2 Structure of Jacobian Matrix 

The Jacobian matrix is made up by the partial derivatives of residuals of each grid cells 

with respect to the each flow variables in the flow domain. The flux Jacobian is a large 

square matrix with dimensions equal to the total number of flow variables in the system 

but it is highly sparse. Most of the entries of Jacobian are zero, because the residual of a 

cell is only dependent on the flow variables stored in its neighboring cells according to 

order of discretization.  

 

For the solution of 2-D Euler equations, the residual evaluation of a cell requires five-

point stencil when first-order upwind discretization is used. Hence in Jacobian evaluation 

5 point stencil produces a block diagonal matrix made up of five 4x4-blocks. In second-

order discretizations, a nine-point stencil is employed that produces a block diagonal 

matrix made up of nine 4x4-block bands. Thus, all elements of the Jacobian matrix, 

except for these block bands and the boundary entries, are zero. The number of nonzero 
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elements in the Jacobian can be calculated by multiplying number of control volumes 

created by the mesh with the stencil size and the number of elements in the 4x4 blocks. 

 
Figure 3.1 Representation of the first order stencil used in spatial discretization  

Figure 3.1 presents the typical stencil used in the first order spatial discretization. 

 

In the 2-D Euler equations the number of the flow equations and the number of the 

unknown flow conservative flow variables equal to four. Hence the derivatives of the 

four residual vector with respect four flow variables are needed, and those derivatives 

forms the 4x4 blocks. The formulations of the 4x4 blocks on the first and second order 

stencils are given in Equation 3.1 ad 3.2, respectively.  
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Figure 3.2 A Typical structured grid which shows the fill in order of the Jacobian matrix 

If the elements of the Jacobian matrix is entered into the Jacobian by the order given in 

Figure 3.2, the resulting distribution of the 4x4 blocks in the Jacobian matrix can be 

represented as in Equation 3.3 for the first order spatial discretization and as in Figure 

3.3 for the second order discretization.  

 
Figure 3.3 The distribution of the blocks in the Jacobian matrix row for the 2nd order 

discretization  
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  (3.3) 

Equation 3.3 shows the structure of the non-linear system that is solved by 1st order 

Jacobian matrix.  

3.3 Implementation of Boundary Conditions 

In section 2.5 the relations between the ghost cells and interior cells adjacent to 

boundaries were presented. Those relations can be used to impose the boundary 

conditions explicitly by using the flow variables of the previous iterations. In this study, 

boundary conditions are imposed implicitly. The change of the flow variables at the 

ghost cells and the interior cells are solved simultaneously. To perform the implicit 

implementation of the boundary conditions, the linearization of the relations that defines 

the boundary conditions is required. The linearization of the boundary conditions will 

result in a matrix relation as given below: 

 [ ] [ ]GHOST INTERIORA w B wΔ = Δ  (3.4) 
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The evaluation of the above relation is simple for the supersonic inlet and outlet, wall 

and symmetry type boundary conditions. For example, in supersonic inlet boundary 

conditions the relation can be defined simply as: 

   [ ] [ ]1 1GHOST INTERIORw wΔ = Δ  (3.5) 

However for the application of the far-field boundary conditions in the case of subsonic 

flow, the coefficients A and B have to be derived from the linearization of Equation 2.61. 

In the linearization the change of the variables that are interpolated from the free-stream 

will be equated to zero. For example, at subsonic inflow the entropy is interpolated from 

the free-stream and it will not change as the Newton iterations proceeds.  
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To demonstrate the methodology followed in the implicit boundary conditions 

implementation, the linearization of the density term for the subsonic inflow boundary 

condition is formulated in below equations:  
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The boundc will be evaluated from the linearization of the Riemann invariants as 
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where 
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Since +Δ is evaluated from the free stream its change will equal to the zero. Hence 

boundarycΔ can be calculated as 
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Using the interior flow variables, the evaluation of the speed of sound and its 

differentiation can be performed as : 
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Uin is the contravariant velocity normal to the boundary, and it can be calculated from the 

inner cells as: 

 in y x
in in

u vU ρ ρη η
ρ ρ
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 (3.12) 

Finally Uin can be linearized as: 
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Inserting Equations 3.8 to 3.13 into the Equation 3.7 the change of the density at the far-

field ghost cell with respect to change of flow variables at the interior cells can be 

defined as: 
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  (3.14) 

3.4 Implementation of Initial Conditions 

Using the method of lines, the initial solution is required by the spatial discretization for 

the evaluation of the flux integrals. The residuals calculated by initial solution will be 

integrated in time by the temporal discretization scheme, which is Newton method in this 

study. Newton’s method requires a good initial guess for convergence. The common way 

of implementation of initial conditions is usage of the free-stream values for whole 

domain. Although this kind of implementation is very simple, the initial guess it provides 

is poor for most of the flow problems. Hence in order to improve the stability of the 

solution, some modifications are required in initial iterations. Several ideas are available 

to modify the Newton’s method in literature. The most efficient and widely used one is 

the time-like term addition to the diagonal of Jacobian matrix. This approach is based on 

the fact that diagonally dominant matrices are more stable in solutions of nonlinear 

systems. With the implementation of the time like term, the modified Newton’s method 

becomes: 
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For finite t values; Newton’s method becomes inexact, since the left hand side of 

implicit operator of Equation 3.3 is not consistent with exact linearization of the residual. 

As t  , the original Newton’s method can be reconstructed. The modification to 

Newton’s method is performed by addition of small initial value t0 for the first iteration 

and t values for new iterations are calculated using L2-norm of the residuals as: 
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The penalty of the modification mentioned above is the reduction of the convergence 

rate. Pulliam[62] mathematically showed that with the diagonal term addition 

convergence rate is reduced to linear, whereas quadratic convergence rate can be 

obtained as time like term approaches to infinity.  

 

The modification in Newton’s method is required in the early stages of iterations. As the 

iterations proceeds the solution gets more accurate and the diagonal term addition may 

not be needed. Therefore, the withdrawal of the diagonal term from the matrix as it gets 

satisfactorily large will be favorable to get rid of the convergence rate penalty of the 

modification. The proper choice for initial time like term, t0, and its withdrawal value, 

tf will significantly boosts up the convergence performance of the solver. However, the 

right choices for the values of these terms can only be made by trial and error. 

3.5 Solution Method 

The flow solution with Newton method requires the construction and the factorization of 

the Jacobian matrix in order to evaluate the change in the flow variables. The entries of 

this matrix are non-linear function of the changing flow variables, hence at each 

Newton’s iteration the Jacobian matrix has to be reconstructed and solved again. The size 

of this matrix can be very big even for small sized problems. The storage of this matrix 

may be difficult for large sized problems. However, most of the entries of this matrix are 

zero, and sparse matrix solution and storage techniques may be useful in the solution of 

Jacobian matrix. There are different methods to solve sparse matrices. In this study, the 
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Jacobian matrix is solved by using an LU decomposition method. The advantage of this 

method is that the same matrix can be solved for different right-hand-sides very 

efficiently. This property is very useful for sensitivity calculations, because the 

calculation of sensitivities for each design variables require the solution of the same 

Jacobian matrix with different right-hand-sides. 

 

This study proposes the usage of modern multifrontal sparse matrix solvers for the 

reduction of the cost of the factorization. The storage cost of the Jacobian can also be 

reduced by the usage of compressed row storage or compressed column storage formats. 

UMFPACK (Unsymmetric-pattern MultiFrontal PACKage) sparse matrix solver package 

[22] is used in order to solve Jacobian matrix. In this method, the full matrix is converted 

into sparse storage mode and then factorized using a sequence of small dense frontal 

matrices by LU factorization. 

3.6 Solver Performance 

In this section flow solution results calculated by the developed solver are presented. 

Performance of the solver is examined in terms of the accuracy of the solutions and rate 

of the convergence. CPU time spent in the flow solution is given to present the cost of 

the direct solution procedure. 

3.6.1 Verification of Flow Solver 

Commonly used 2-D internal and external flow test cases are used to validate the 

accuracy of the developed flow solver. For internal flow application, flow over circular 

arc geometry, which is also known as Ni bump, is used. The solution domain consists of 

a channel. The width of the channel equals to the length of the circular arc bump. The 

total length of the channel equals to five times of the bump’s length. Results are 

presented for subsonic, transonic, and supersonic flow conditions at zero angle of attack. 

For subsonic and transonic calculations, the thickness-to-chord ratio is 10% and for 
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supersonic flow calculations it is 4%. The solved test cases are summarized in Table 3.1 

below.  

Table 3.1 Flow problem cases for bump geometry 

 thickness/chord length Inlet Mach number 

Bump case-1 0.1 0.5 

Bump case-2 0.1 0.675 

Bump case-3 0.04 1.4 

 

 

Flow domain is discretized by an H type grid for the solution of flow over bump 

problem. The mesh is constructed with three different level of resolution. The coarsest 

mesh has 33x09 nodes, mid sized one has 65x17 and the finest one has 129x33 nodes. 

The finest grid is presented in the Figure 3.4. Wall boundary conditions are used on the 

bump geometry. The Riemann invariants are used to apply characteristic type boundary 

conditions at the inlet and outlet boundaries. The symmetry boundary conditions are 

applied at the remaining lower and upper boundaries. The mach contour plots evaluated 

from the solutions of those three cases are given in Figure 3.5. The 2nd order AUSM 

scheme with Van Albada limiter is used to generate those results. 

 

In the verification of the results obtained for bump geometry the Mach contour plots 

given in reference [63] is used. In Figures 3.6 to 3.8 the evaluated mach contours are 

presented in the lower part of the figures and the results given by [63] are presented in 

the upper part. Figures 3.6 to 3.8 present subsonic, transonic and supersonic solutions 

respectively. Those figures show that the developed flow solver performs well for 

predicting the flow over bump test case. The evaluated mach contours are in good 

agreement with ones presented in [63] 
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Figure 3.4 Grid used for bump geometry 

 
Figure 3.5 Mach contours of the cases of bump geometry 
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Figure 3.6 Mach contour comparison for flow with 0.5 Mach inlet velocity 

 
Figure 3.7 Mach contour comparison for flow with 0.675 Mach inlet velocity 
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Figure 3.8 Mach contour comparison for flow with 2.0 Mach inlet velocity 

External flow simulations are performed by the airfoil geometries. The test cases are 

chosen from the AGARD Advisory Report AR-211 [64]. The operating conditions and 

the airfoil geometries that are used to generate flow solutions are summarized in Table 

3.2.  

Table 3.2 Flow cases for airfoil geometry 

 Airfoil Angle of attack Free stream Mach number 

case-1 NACA 0012 1o 0.85 

case-2 NACA 0012 7o 1.2 

case-3 RAE 2822 3o 0.75 

 

 

Flow domain is discretized by a C type grid for the solutions of flow over airfoil 

problems. The meshes are constructed with three different level of resolution. The total 

number of nodes in the finest grid is 257x65, and this grid has 160 nodes on the airfoil 

surface. The mid size grid has 120 points on the airfoil geometry and 193x49 overall 
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nodes. The finest one is constructed by 257x65 nodes by placing 160 nodes on the 

airfoil. Wall boundary conditions are applied on the airfoil geometry and the Riemann 

invariants are used to define farfield boundary conditions. The symmetry type boundary 

condition is utilized for the wake cut. 

 

 The mach contours given by Reference [64] for the cases listed in Table 3.2 are 

presented in Figures 3.9, 3.11 and 3.13. The mach contour plots evaluated from the 

solutions of those three cases are given in Figures 3.10, 3.12 and 3.14. The 2nd order 

AUSM scheme with Van Albada limiter is used to generate those plots. Results show 

that, the developed solver generates reliable flow solutions. In all three cases the shock 

capturing performance of the code is well enough that the evaluated location and the 

strength of the shock is in good agreement with the ones given in [64]. 

 

The given evaluated contour plots show that, similar mach contours are evaluated with 

respect to reference [64]. Besides examining the mach contour plots, the evaluated 

pressure coefficient distribution along the chord is compared with the one given in 

reference [64]. The case; flow over NACA 0012 airfoil with 0.85 Mach, 1 degree angle 

of attack is used for that comparison. That comparison is given in Figure 3.15 where the 

evaluated values are represented by lines and the values given in reference [64] is 

represented by symbols. This case is selected deliberately to examine the shock capturing 

performance of the developed solver. Figure 3.15 show that both of the limiters used in 

the study performs pretty well in shock capturing. However the performance of the Van 

Albada’s limiter seems to be slightly better at the region of the lower surface shock in the 

solved case. More precise shock capturing can be performed by using finer meshes or 

using adaptive mesh algorithms, however that kind of application is out of scope of this 

thesis. Moreover the increase in the mesh size will significantly amplify the cost of the 

direct flow solution.  
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Figure 3.9 Mach contours given in AGARD AR-211 for NACA0012, M =0.85, α=1o 

 
Figure 3.10 Mach contours evaluated for NACA0012, M =0.85, α=1o 
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Figure 3.11 Mach contours given in AGARD AR-211 for NACA0012, M =1.2, α=7o 

 
Figure 3.12 Mach contours evaluated for NACA0012, M =1.2, α=7o 
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Figure 3.13 Mach contours given in AGARD AR-211 for RAE2822, M =0.75, α=3o 

 
Figure 3.14 Mach contours evaluated for RAE2822, M =0.75, α=3o 
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Figure 3.15 Comparison of the evaluated Cp with the one given Reference[64] 

3.6.2 Convergence Performance 

In previous section the developed code is shown to be reliable in the solution of 2-D 

Euler flow field equations for all flow regimes. In this chapter the convergence 

performance of the direct solution algorithm is presented and the factors that affect the 

convergence performance is analyzed.  

 

The way of time like term addition to the diagonal of the Jacobian matrix is the most 

critical factor on the convergence of the flow solution with Newton’s method. Actually 

those terms have almost no affect on the rate of the convergence. Newton scheme will 

always have quadratic convergence rate if there is no diagonal term addition and by the 

addition the convergence will reduce to linear rate. The purpose of the diagonal term 

addition was to improve the initial conditioning of the Jacobian and this term should be 

withdrawn as the Jacobian is updated with new solutions.  To be able to have converged 

solution within minimum iterations the proper values must be chosen for the initial and 

the withdrawal values of that diagonal term. However there is no explicit rule for the 

selection of those values and generally good selection can be made by trial error like 

procedure.  
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To illustrate the response of the convergence behavior to diagonal term selection, 

convergence histories obtained by variety of initial and withdrawal diagonal term values 

are presented in Table-3.3. The given results are corresponds the flow solution over 

NACA0012 airfoil with 0.85 Mach freestream velocity. The solutions are performed by 

AUSM scheme and the Van Albada limiter on the grid which is sized by 129x33 nodes  

Table 3.3 Effect of t on convergence, NACA0012 airfoil  

iterations required for convergence 
t0 tf 

2nd order discretization 1st order discretization 

1 3 Factorization is crashed 105 

1 5 867 132 

1 10 1097 265 

1 25 Factorization is crashed 404 

1 100 Factorization is crashed 463 

1 1000 1259 478 

1 106 1267 481 

1 1012 1268 483 

10 100 98 36 

10 75 1230 463 

10 50 Factorization is crashed 6 

100 1000 Factorization is crashed 13 

100 5000 27 14 

150 5000 23 12 

200 2000 19 11 

250 5000 Factorization is crashed 11 

300 5000 20 12 

 

 

The results tabulated above show that there is no explicit rule for the selection of the 

initial and withdrawal values of the diagonally added term. The values presented in the 

Table-3.3 are just given to demonstrate the variation of the required iterations for 

convergence with respect to varying diagonal term addition. The convergence behavior 
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can be significantly different for different flow solution cases although the same initial 

and withdrawal time like term values are used. 

 

The residual histories of the transonic flow solutions for the bump geometry and the 

NACA0012 airfoil are presented in Figure 3.16 and Figure 3.17 respectively. In those 

figures the affect of the flux evaluation method on the convergence performance are 

presented for both of the first and second order spatially accurate solutions. The initial 

and withdrawal values of the diagonally added time like term used in the generation of 

those results are summarized in Table 3.4. In the figures of residual histories it can be 

seen that the residual decreases slightly in the initial iterations where the convergence 

rate is linear due to the added diagonally added time like term. The convergence occurs 

with the rapid decrement of the residual in the last three to five iterations. In both of the 

figures it is shown that, it takes less number of iterations to converge when the accuracy 

of the spatial discretization is first order. It can be also concluded that the all flux vector 

splitting methods have approximately identical effect on the convergence of the 

Newton’s method. 

 

Figure 3.18 shows the effect of the parameter ∈, which is defined in the limiter function , 

on the convergence history of AUSM scheme. In Reference[65] the effects of the limiter 

functions on the convergence was studied. The results show that, ∈ is directly effective 

on the convergence performance of the solver.  Deeper study on the magnitude of the, ∈ 

is presented in Chapter-4. 

Table 3.4  The initial and withdrawal values used for the diagonally added term, 1/t in 
the generation of presented results 

 t0 tf 

1st order spatially accurate solution of flow over bump 3 5 

2nd order spatially accurate solution of flow over bump 50 1000 

1st order spatially accurate solution of flow over airfoil 300 10000 

2nd order spatially accurate solution of flow over airfoil 200 20000 
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Figure 3.16 Convergence history for bump geometry, 65x17 grid, 0.675 inlet Mach 

 
Figure 3.17 Convergence history for NACA0012, 129x33 grid, 0.85 Mach free-stream 

flow with 1o angle of attack 
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Figure 3.18 Variation of the Convergence History with ∈ for Van Albada Limiter 

3.6.3 Cost of the Flow Solution in terms of CPU time 

The variation of the CPU time spent in the flow solution is presented in Figure 3.19. In 

Figure 3.19, the upper left plot presents the CPU time spent in each Newton’s iterations 

for the flux and the residual evaluation. Upper right plot gives the total CPU time spent 

at each iteration.  The lower plot presents the ratio of the time spent in Jacobian 

construction and linear system solution to total time spent in each iterations. 

 

The results presented in Figure 3.19 correspond to flow solution on NACA0012 airfoil 

by using the grid which has 257x65 nodes. That figure shows that the CPU time spent in 

Jacobian construction and solution of the linear system is significantly larger than the 

time spent in flux residual evaluation. In an iteration of Newton’s method, approximately 

99.9 percent of the total CPU time is spent in the construction of the Jacobian matrix and 

the solution of the linear system by sparse matrix solver. For first order discretization 

time spent in solution of linear system and the construction of the Jacobian matrix is 

found to be close. However for 2nd order spatial discretization, time spent by sparse 

matrix solver is significantly larger. In the factorization and solution approximately 4 

times greater CPU time is spent with respect to the construction of analytical Jacobian 

matrix.     
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Figure 3.19 CPU time spent in flow solution by Newton’s method 

Tables 3.5 and 3.6 present the variation in CPU time spent in Newton’s method by the 

change in grid resolution. The averages of the fluctuating values shown in above figures 

are used in those Tables.  Finally the effect of the grid resolution on the ratio of CPU 

time spent in the Jacobian evaluation and factorization to the CPU time spent in flux 

evaluation is presented in Figure 3.20. 
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Table 3.5 Variation of the spent CPU time in an iteration by the grid size (1st order 
discretization) 

NACA0012 

M=0.85 

 = 1o 

1st order 

CPU time spent 

for flux and 

residual 

evaluation 

(seconds) 

Ratio of 

time spent in Jacobian 

construction to time 

spent in flux evaluation 

Ratio of time spent 

by sparse matrix 

solver to time spent 

in flux evaluation 

129x33 nodes 0.0025 2900 2190 

197x49 nodes 0.009 4140 3100 

225x65 nodes 0.011 6110 6270 

256x65 nodes 0.012 6770 9010 

 

Table 3.6 Variation of the spent CPU time in an iteration by the grid size (2nd order 
discretization) 

NACA0012 

M=0.85 

 = 1o 

2nd order 

CPU time spent for 

flux and residual 

evaluation 

(seconds) 

Ratio of 

time spent in Jacobian 

construction to time 

spent in flux evaluation 

Ratio of time spent 

by sparse matrix 

solver to time spent 

in flux evaluation 

129x33 nodes 0.0035 2350 3130 

197x49 nodes 0.012 3135 5950 

225x65 nodes 0.0145 5210 16500 

256x65 nodes 0.016 5750 18200 
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Figure 3.20 Variation in the ratio of the CPU time spent in factorization and 

construction of the Jacobian to time spent in entire iteration 
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CHAPTER 4  

ACCUARCY OF NUMERICAL JACOBIAN 

4.1 Introduction 

The finite difference approach is the most practical alternative for the derivative 

evaluation. It is independent from the complexity of the differentiated function. 

Moreover, the effort needed to develop a numerical differentiation code is negligible 

with respect to the effort needed for the one that evaluates the derivatives analytically.  

However, the numerical evaluation is inaccurate and the associated error can be 

unacceptably large due to the improper choice of the finite differencing step size.  

 

This chapter mainly focuses on the effect of the finite difference perturbation magnitude 

on the accuracy of numerical flux Jacobian evaluation. First, the sources of the error and 

their dependencies on the perturbation magnitude are given. Next, the study which 

intends to derive the formulation for the optimum perturbation magnitude is presented. 

The optimum perturbation magnitude that minimizes the error in numerical Jacobian is 

also searched by a trial-error like procedure. The variety of perturbation magnitudes are 

used to calculate finite difference derivatives and the resulting Jacobian matrices are 

compared with the analytically evaluated one. The variation of the error in the numerical 

evaluation with respect to perturbation magnitude is plotted to find the optimum 

magnitude that minimizes the error. The change of the error and the optimum 

perturbation magnitude by variety of factors, such as grid size, flow regime, 

discretization technique etc. is examined. The performance of the numerical Jacobian in 

the flow solution is compared with the performance of the analytical Jacobian in terms of 

the CPU time and convergence rate. Finally, the influence of the numerical Jacobian 

error on the convergence of the flow solution is presented. 
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4.2 Error Analysis 

The derivation of numerical Jacobian by forward finite differencing was given in 

previous chapter as: 

 ( )m m m n m

n n

R R R ( e ) R ( )


∂ Δ + −
= =

∂ Δ
w w w

w w
 (4.1) 

In that kind of finite difference approximation of the differentiation, mainly two types of 

errors occur. These are truncation and condition errors [61]. The truncation error occurs 

due to neglected terms in the Taylor’s series and it grows up linearly with the 

perturbation magnitude. The truncation error due to the neglected terms in the Taylor 

series expansion can be written as: 

 
2

2

( )( )
2

m
Trun

n

RE ζ εε ∂
=

∂w
 (4.2) 

where ζ=[ nw  , n ε+w  ]. 

 

 The condition error is caused by inaccuracies in the computed values due to the loss of 

computer precision. As the magnitude of the perturbation gets smaller the accuracy of the 

differentiation degrades and the error grows up due to the decrement in the denominator 

of the Equation 4.1. Because of computational precision, the exact values of the mth 

components of the vector ( )mR w and their computed values ( )mR w  can be different by 

the amount of round-off error, ( )R mE w : 
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m m R

m m R

m
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R R E

R R Eε ε ε
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+ = + + +

w w w

w w w



  (4.3) 

By using the computed function, ( )mR w  Equation 4.1 can be written as: 
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 (4.4) 

where, CE (ε) is the condition error. Considering an error bound 

{ }  max ( ) , ( )R R RE E E ε= +w w , the maximum value of condition error can be 

approximated as: 

 2( ) R
C

EE ε
ε

=  (4.5) 

The main source of the round-off error is the precision lost and it depends on the 

computer processor and compiler. For the computations of normalized variables where 

the magnitude of the computed values are around one, the precision error equals to 

machine epsilon, Mε . A reasonable calculation procedure for Mε  can be given as 

follows: 

 1
2M mε =      such that     1 1Mε+ >  (4.6) 

where, m is the number of possible highest bits in the binary representation of the 

mantissa. 

4.3 Optimal Perturbation Magnitude Analysis 

The total error in numerical Jacobian equals to sum of truncation and condition errors. 

The total error is highly dependent on perturbation magnitude, ε. For the small values of 

perturbation magnitude the condition error is large and it dominates the magnitude of the 

total error. On the other hand as the magnitude of perturbation gets larger, the truncation 

error becomes larger and the condition error becomes negligible. As a result the total 

error grows up both for the increasing and decreasing perturbation magnitudes. Hence, 
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there should be an optimal value for the perturbation magnitude that minimizes the total 

error in numerical Jacobian.  

 

The total error matrix can be defined as the difference between the numerically and 

analytically calculated Jacobian matrices. 

      [ ]
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To minimize the norm values of the total error matrix, each finite difference 

computations can be performed with their own optimum perturbation magnitudes. 

However this kind of approach will be impractical since the calculation procedure for the 

optimum perturbation value for each element would be costly. Alternative way is to find 

a single perturbation magnitude which minimizes the global total error arising from the 

finite differencing of each element. The total error matrix for a single perturbation 

magnitude, ε, can be approximated with the following matrix:  
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Above matrix can also be written as a summation of two matrices 
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where 

 [ ]

2 2 2
1 1 1

2 2 2
1 2

2 2 2
2 2 2

2 2 2
1 1 1

2 2 2

2 2 2
1 2

mmax

secder

mmax mmax mmax

mmax

R R R
w w w

R R R
E w w w

R R R
w w w

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂
 

= ∂ ∂ ∂ 
 
 
 ∂ ∂ ∂
 ∂ ∂ ∂ 





  



 (4.10) 

 [ ]

1,1 1,2 1,

2 ,1 2,2 2

2

mmax

,mmax

mmax,1 mmax, mmax,mmax

R R R

R R R
round

R R R

E E E

E E E
E

E E E

 
 
 ≈  
 
 
 





 


 (4.11) 

The optimum perturbation magnitude can be calculated by minimizing the Frobenius 

norm of the total error matrix with respect to perturbation magnitude, ε. In the Frobenius 

norm, error is represented as the summation of the square of the error at each entry of 

total error matrix. Since the residual vector at a given cell is only function of the flow 

variables of neighboring cells, most of the entries of numerical and analytical Jacobian 

matrices are zero. At these entries error becomes zero. Hence, the error matrices are also 

a sparse.  The total error comes from the differences between the nonzero elements of 

analytical and numerical Jacobian matrices. Neglecting the zero entries of Jacobian 

matrices, the Frobenius norm of the total error matrix can be written in the following 

formulation. This formulation can also be achieved from the least square minimization of 

total error. 
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In the Equation 4.12 the outer summation loop is constructed for the whole domain, 

excluding the ghost boundary cells where the residuals are not computed. The inner loop 

is constructed for the number of cells that are used in the evaluation of flux residuals. 

The number of neighboring cells used in the residual calculation is represented by neigh; 

it has a value of 4 in 1st order discretization and 8 in 2nd order discretization. The 
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minimization of total error is performed by differentiation of the Equation 4.12 with 

respect to perturbation magnitude.  
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The optimum ε which minimizes the total error is found by equating Equation 4.13 to 

zero; 
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The optimum perturbation magnitude can be evaluated as: 
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Using the definition of the Frobenius norm, above equation can be simplified into the 

following form: 
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Substituting the optimum perturbation magnitude given by Equation 4.16 into the 

Equation 4.12 the magnitude of the minimized error is evaluated as follows: 
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The formulations presented by Equation 4.16 and 4.17 well define the way of accurate 

evaluation and the source of the errors in the numerical Jacobian. However those 

formulas are impractical to use for estimating the magnitude of the optimum perturbation 

since calculations of the round-off error and the second derivatives of the flux vectors are 

needed. The second derivatives can be approximated by the utilization of central 

differencing, which requires the proper choice for perturbation magnitude.  The round off 

error in second derivatives can be estimated by proper scaling of the machine epsilon 

value. The multiplication of the machine epsilon value with the cells face size can give a 

reasonable estimate. The round-off error in single precision can also be estimated by 

differencing the residual vectors that are calculated with single and double precisions. 

Although those approximations can be used to evaluate the second derivatives and the 

round-off error, performing such sequence of calculations, just to evaluate the optimum 

perturbation value for numerical Jacobian derivation will be senseless due to its high 

computational cost. Further assumptions are needed on evaluation of those terms to 

obtain a straightforward formula for the estimation of optimum perturbation magnitude 

and the resulting error.  

 

The round-off error in the numerical Jacobian evaluation occurs due to the loss of 

precision in computation of finite difference operations held on flux vectors. Hence the 

norm of the round off error in whole Jacobian matrix can be defined as the multiplication 

of the norm of flux vectors and the machine epsilon: 

 R mE F ε=  (4.18)  

As another approximation, the order of norms of second derivatives, flux Jacobian and 

the flux vectors can be estimated to be equal to each other [66] 
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Introducing the approximations given by Equations 4.18 and 4.19 into the Equation 4.16 

the optimum perturbation magnitude can be estimated as: 
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Following the same assumptions the magnitude of the minimum relative error resulted 

from usage of optimum perturbation magnitude can be estimated as: 
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The formulas given in Equations 4.20 and 4.21 present that, both of the optimum 

perturbation magnitude and the resulting minimum error can be estimated nearly as 

square root of the machine epsilon. These formulas propose that, the number of correct 

digits in numerically evaluated Jacobian element will approximately equal to the half 

number of correct digits in the flux vector if the optimum perturbation magnitude is used. 

 

The formulas presented in Equations 4.20 and 4.21 are derived with some 

approximations and they do not present the exact values for optimum perturbation and 

the resulting minimum error. However they are simple compared to Equations 4.16 and 

4.17. Machine epsilon can be determined easily by the simple formulation given in 4.6, 

hence the Equations 4.20 and 4.21 are handy to use. 
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The computational analyses are performed by using the Linux workstations of the 

METU Aerospace Engineering Department. The machine epsilon Mε  values of the 

compiler-computer configuration are calculated by Equation 4.6. Values are found as 
71.19 10Mε

−≅ × for single precision, and 162.2 10Mε
−≅ × for double precision. 

4.4 Accuracy Analysis 

Numerical Jacobian matrices are calculated for a wide range of perturbation magnitudes 

and the deviation between the numerical and analytical Jacobian matrices is defined as 

error. Since the error itself is also a matrix, error in Jacobian is represented by matrix 

norm definitions. The L1, L induced matrix norms and Frobenius entry-wise matrix 

norm are used through the study, and their definitions are given below: 
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The change of the norm values of the error in Jacobian matrix with respect to 

perturbation magnitude is plotted in Figure 4.1 for the flow over Ni bump case. The 

given result corresponds to the solution of the transonic flow case, by 1st order AUSM 

scheme. The computation is performed with double precision. The optimum perturbation 

magnitude and the minimum relative error read from that figure are compared with the 

values proposed by Equations 4.20 and 4.21 in Table 4.1.  

Table 4.1 Estimated and evaluated optimum perturbation magnitudes  

 εOPT 

 (Equation 5.15) 

εOPT 

 (Plotted ) 

minimum relative error 

(Equation 5.16 ) 

minimum relative error 

(Plotted ) 

L1 2.97 x 10-8 2.51 x 10-8 2.97 x 10-8 2.10 x 10-8 

L 2.97 x 10-8 2.51 x 10-8 2.97 x 10-8 2.37 x 10-8 

LF 2.97 x 10-8 2.51 x 10-8 2.97 x 10-8 1.47 x 10-8 
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Figure 4.1 Variation of the error in numerical Jacobian by finite difference perturbation 

magnitude 

As it can be seen from Table 4.1 the result of the estimation performed for optimum 

perturbation magnitude is very close to the actual optimum value obtained from trial 

error procedure. Moreover the estimated magnitude of the minimum relative error also 

agrees well with the actual relative error.  

Table 4.2 Relative error values read from Figure 4.1 for the smallest and the largest ε 

 || Relative Error ||1 || Relative Error || || Relative Error ||F 

ε =10-14 0.0255 0.0237 0.0471 

ε =10-1 0.0593 0.0418 0.0893 

 

 

The result presented in Figure 4.1 can be also used to check the validity of the 

assumptions made to simplify the Equations 4.16 and 4.17. As it was stated earlier; for 

very small magnitudes of perturbation, the truncation error becomes negligible compared 

to the condition error and for very large magnitudes of perturbation, truncation error 

becomes dominantly large relative to negligible condition error. Hence in Figure 4.1 the 

relative error presented for the smallest and largest ε values correspond to condition and 
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truncation errors respectively. Those error values are tabulated in Table 4.2 and they can 

be used to detect the norm values of the round-off error and the second derivatives 

relative to norm value of the Jacobian matrix. 

 

The absolute truncation error was defined in Equation 4.2. That formulation can be 

rewritten for the relative truncation error of the numerical Jacobian as: 
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 (4.23) 

Inserting the values given for ε =10-1 in the second row of the Table 4.2 to the left hand 

side of the above equation, the ratio of the norm value of the second derivatives to the 

norm value of the flux Jacobian is calculated as; 1.186 for L1 norm, 0.836 for L norm 

and 0.942 for the Frobenius norm. Those calculated ratios shows that the assumption 

made for the order of the first and second derivatives in Equation 4.19 is reasonable 

enough.   

 

The definition of the absolute condition error was given in Equation 4.5. That 

formulation can be rewritten for the relative condition error of the numerical Jacobian as: 
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 (4.24) 

Inserting the error values given for ε =10-14 in the first row of the Table 4.2 to the left 

hand side of the above equation, the ratio of the round-off error to the norm value of the 

flux Jacobian elements is calculated as; 1.28x10-16 for L1 norm, 1.19x10-16 for L norm, 

and 2.36x10-16 for the Frobenius norm. In previous section it was stated that the machine 

epsilon was evaluated as 2.2x10-16 for double precision computation. Those results 

present that assumptions made in Equation 4.18 for the definition of round off error 

performs very well with the assumption made for the relation in the order of norms of the 

flux vector, Jacobian elements and the second derivatives. 
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In previous paragraphs it is shown that assumptions made by Equation 4.19 for 

simplifying the Equations 4.16 and 4.17 are meaningful. As a last check of the validity of 

that assumption the second derivatives are calculated by finite differencing and the ratio 

of their norm values to norm values of the analytical Jacobian is analyzed. In order to 

find an appropriate finite difference step size for the second derivative evaluation, 

various perturbation magnitudes are tested.  The results are presented in Figure 4.2 and 

they show that the norm values of second derivatives stayed almost constant in the 

perturbation magnitude interval of 10-8 to 10-3. The estimation of the second derivatives 

can be done properly with the choice of perturbation magnitude from that interval. The 

ratio of the norm value of the approximated second derivatives to norm value of the 

Jacobian matrix elements is found to be close to unity. The ratio is calculated as 0.66 for 

L1 norm, 0.69 for L norm, and 0.54 for the Frobenius norm. These results also verify 

that the assumption made on ratio of orders of second and first derivatives of the residual 

vector in Equation 4.19 perform well enough. 

 

In the following sections the performances of the formulation given in Equation 4.19 for 

the estimation of the optimum perturbation magnitude will be examined for variety of 

flow solution cases with varying flow regimes, mesh and discretization scheme. The 

information presented in Equations 4.16 and 4.17 is used to analyze the cause of possible 

inconsistencies in the calculated and the estimated results. 

 
Figure 4.2 Ratio of the norm of the numerically calculated second derivatives to norm of 

analytically evaluated Jacobian  
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4.4.1 Effect of the Precision on the Numerical Jacobian Error  

In this section the variation of the error in the numerical Jacobian with the computer 

precision is presented. Results are evaluated by using single and the double precision 

computations for the solution of flow over the Ni-bump geometry with the inlet velocity 

of 0.675 Mach. The computations are performed by 1st order AUSM scheme.  

 

The change in the precision affects only the round-off error and has a negligible effect on 

the magnitude of the second derivatives. The round off error in the single precision 

computation approximately equals to the square of the round-off error in double 

precision computation due to the change in machine epsilon. The Figure 4.3 shows that 

with the change of the computation precision from double to the single, the optimum 

values become the square root of the values obtained for double precision. In single 

precision computation, the optimum value is read as 6x10-4 from Figure 4.3 for both of 

the L1 and LF norm definitions. That value agrees very well with the estimated 6.9x10-4 

value by Equation 4.19. The magnitude of the minimum relative error is estimated as 

6.9x10-4 by the Equation 4.20 and it is calculated as 3.2x10-4 for Frobenius norm and as 

4.1x10-4 for L1 matrix norm as presented in Figure 4.3.  

 

The norm values of relative error calculated by the smallest perturbation magnitude for 

the single precision computation are specified in Table-4.3.  For that perturbation 

magnitude the truncation error is small compared to the magnified condition error, hence 

the computed relative error can be defined as the condition error. Using the Equation 

4.24 with the values presented in Table-4.3 the magnitude of the relative round-off error 

occurred in the single precision computations is calculated as 5x10-8 for L1 norm and 

2.5x10-8 for Frobenius norm. Comparing these results with the single precision machine 

epsilon, which equals to 1.19x10-7, it can be concluded that the assumptions made in 

Equation 4.18 for the definition of round-off error is good enough.  

Table 4.3 Calculated relative error for the smallest  by single precision  

 || Relative Error ||1 || Relative Error ||F 

ε =10-7 1.01 0.59 
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Figure 4.3  Effect of the precision on the numerical Jacobian error  

4.4.2 Effect of the Norm Definition on the Optimum Perturbation 
Magnitude 

In Equation 4.16, the norm values of round-off error and second derivatives are in 

division, hence the optimum perturbation magnitude does not vary with different norm 

definitions. However in Equation 4.17 the norms of round-off error and second 

derivatives are in multiplication. Hence the absolute error will vary with the norm 

definition. In previous section, the results were given for the relative error definition, and 

in this section, the variation of the absolute numerical Jacobian error for the same flow 

case is given in Figure 4.4 for different norm definitions. 

 

The number of elements used in the L1 matrix norm is small compared to the number of 

elements used in the Frobenius norm definition since whole matrix elements are used in 

the Frobenius norm definition. Therefore, in Figure 4.4 the Frobenius norm of the 

absolute error is larger compared to the L1 norm of the absolute error. The optimum 

perturbation magnitude is same for both norm definitions whether the minimization is 

performed for the relative or the absolute error of the numerical Jacobian 
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Figure 4.4 Variation of absolute error in numerical Jacobian with perturbation 

magnitude  

4.4.3  Effect of the Size of the Grid Cells on the Numerical Jacobian Error 

The geometries, grid topology and the boundary conditions used in the internal and 

external flow computations generally vary greatly. Therefore, to analyze the effect the 

size of the grid cells on the optimum perturbation magnitude, the accuracy of numerical 

Jacobian is studied in both internal and external flow solutions. In both of the flow 

solutions over bump and airfoil geometries, approximately similar transonic flow 

conditions are used. The main difference between the two cases was the sizes of the cell 

faces of the mesh. 

 

For internal flow problem, the flow over Ni-bump is analyzed on an H-type grid, whose 

inlet and outlet are located 1.75 chord length away from the leading and trailing edges. 

For external flow problem, a C-type grid, in which distance between far-field boundary 

and the airfoil geometry varies 20 to 60 chord lengths, is used. To be able to resolve the 

gradients, nodes are clustered near to airfoil geometry and were expanded at the far-field.  

The size of the cell faces of the grid used in flow over airfoil problem is significantly 

larger than the ones used in H-type grid, except at the regions near to wall geometries. At 

far field of the C-type grid, cell faces are approximately larger by two orders of 
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magnitude than the ones used at the inlet and the outlet of the H-type grid. Due to the 

larger cell faces it will be reasonable to expect larger flux values in the solution 

performed for airfoil case compared to solution performed for bump geometry case. The 

enlargement in the flux magnitudes may amplify the round-off error and will cause the 

second and first derivatives of the flux vectors to grow. In Figure 4.5 the variation of the 

absolute error in the numerical Jacobian for the flow over airfoil and flow over bump 

computations is presented. In the computations of the both cases 1st order AUSM 

discretization scheme is used. 

 
Figure 4.5 Variation of the absolute numerical Jacobian error for flow solutions with 

different geometries and grids 

In Figure 4.5 the absolute error is shown on the vertical axis and the error plots are 

drawn for both L1 and Frobenius norms.  In both of the flow solutions on H-type and C-

type grids, the optimum perturbation magnitudes are found to be same and agree well 

with the proposed value by Equation 4.19. One of the important conclusions from this 

figure is that, although the grid type and size almost have no effect on the magnitude of 

optimum perturbation, they significantly affect the magnitude of the absolute error. The 

absolute error in the airfoil case is approximately larger by two order of magnitudes 

compared to the bump case. The cause of this difference can be extracted from the 
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Equations 4.16 and 4.17. In formulation which gives optimum perturbation magnitude, 

the round off error and second derivatives are in division whereas in the formulation 

which gives the total error, those two terms are in multiplication. An increase in the total 

error without a change in the optimum perturbation magnitude can only be possible with 

the proportional enlargement in both of round-off error and the second derivatives.  

 
Figure 4.6 Variation of second derivatives on grid used for Ni bump geometry  

The second derivatives of the residual at a given cell depends on the flow variable at that 

cell plus the 4 or 8 neighboring cells according to the order of discretization. The contour 

plots of the averaged second derivatives of the residual vector are given in Figure 4.6 and 

4.7. Those figures show that the second derivatives of the residual vector get larger as the 

size of the cell face gets larger. The comparison of the values of second derivatives for 

those two cases shows that in the regions closer to the wall geometries the size of the 

cells are approximately equal and the second derivatives are in the same order of 

magnitudes. However in the far-field regions of the C-grid the cells are approximately 

larger by two orders of magnitude compared to the grid used on bump geometry and the 
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resulting second derivatives of the residual vector are also larger by approximately 2 

orders of magnitude.  

 
Figure 4.7 Variation of second derivatives of residual vector on grid used for 

NACA0012 airfoil geometry  

The effects of the cell size on the second derivatives and on the total absolute error in 

numerical Jacobian are also shown by two other alternative ways. Firstly, comparison of 

the absolute error resulted from flow solution over bump geometry and the flow over 

airfoil geometry is performed by only using the small sized cells of C-grid that are close 

to the airfoil. Secondly, the same flow over airfoil problem is re-solved with a C-grid 

whose farfield is closer to the airfoil geometry with the same number of nodes. The grids 

used in those two alternative approaches are given in Figures 4.8 and 4.9. 
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Figure 4.8 Alternative 1: The small sized cells closer to the airfoil geometry 

 

 

 
Figure 4.9 Alternative 2: The c-type grid with closer far-field 
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Figure 4.10  Variation of the absolute error in numerical Jacobian by the size of the cell 

faces 

The absolute error plots of the numerical Jacobian for those two alternative cases are 

given in Figure 4.10 with the error plot of the H-grid case. The small region chosen from 

the C-grid has approximately equal sized cells compared to the grid used for bump 

geometry. Hence the absolute numerical Jacobian error computed for that region is found 

to be close to the absolute error calculated for the H-grid case. The results also show that 

by using a grid with closer farfield boundaries, uniformly sized grid cells can be 

constructed and the absolute error may become smaller due to the decrease in the size of 

the cell faces. 

 

Since there is no practical way of round-off error representation for double precision 

computations, the variation of round-off error according to the size of the cell face is 

checked for single precision computation. To estimate the off error in single precision; 

the flux residuals are computed both by single and double precision. The difference of 

the residuals is defined as the round off error. Although the absolute error plots given in 

Figures 4.5 and 4.10 were presented for double precision, the single precision 

computation can also give satisfactory clues for the variation of round-off errors by grid 

type. The round-off errors calculated by single precision are tabulated in Table 4.4 for 

both the H-type and C-type grids with different norm definitions.  



 

 

 

80 

Table 4.4 Single precision round-off error  
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65x17 H-grid 7.41x10-9 1.3x10-8 

129x33 C-grid 1.4x10-7 4x10-6 

 

 

If the assumptions made in Equation 4.18 were valid the resulting relative errors in both 

bump and airfoil case would be approximately the same. Therefore to examine the 

validity of that assumption the variation of the relative error in numerical Jacobian is 

plotted in Figure 4.11 for the same case analyzed in Figure 4.5 for absolute error 

variation. 

 
Figure 4.11 Variation of the relative numerical error in Jacobian for the flow solutions 

with different geometries and grids  

Figure 4.11 shows that the relative error in the numerical Jacobian is approximately same 

for the flow solutions performed with bump and airfoil geometries except the small 

discrepancy occurred in the usage of small perturbation magnitudes where the condition 
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error is dominant. Comparing the results presented in Figure 4.11 with the estimated 

values, it can be said that the approximation formulas given in Equations 4.20 and 4.21 

produce very accurate results for the optimum perturbation magnitude and the resulting 

minimum relative error is also guessed successfully for each type of grid and the 

geometry. 

4.4.4 Effect of the Flux Scheme on the Numerical Jacobian Error 

The variation of the magnitude of the second derivatives of flux vector and the round-off 

error with different flux evaluation method is analyzed to get the dependency of the 

optimum perturbation magnitude on the flux evaluation method. The formulation for the 

second derivatives of the flux vector that is obtained by differentiating the Equation 2.46 

is given below: 
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  (4.25) 

In first order accurate spatial discretization, the second derivatives of interpolated face 

variables with respect to the cell center flow variables equal to zero. Hence the 

magnitudes of the second derivatives of the fluxes depend only on the second derivatives 

of the splitted fluxes. Applying the first order spatial discretization, the variation of the 

second derivatives by the fluxes evaluation method is investigated. Second derivatives 

are approximated by the central differencing and for each flux evaluation method the 

magnitude of them are found to be approximately equal. The L2 norm values of the 

second derivatives of the residual vectors are given in Table-2 for the transonic flow over 

bump case. The magnitudes of the flow variables and the fluxes will not change 
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significantly as long as the solved flow problem or the used grid does not change.  Hence 

the amount of round-off error will also be identical in each flux calculation methods 

Table 4.5 Second derivatives of the residual, calculated for the transonic flow over the 
bump 

            
2

2
( )

Frobenius

R w
w

∂
∂

  

1st order Steger Warming 23.859 

1st order Van Leer 25.186 

1st order  AUSM 24.405 

 

 

The effect of flux evaluation methods on the relative numerical Jacobian error is 

presented in Figure 4.12 for the first order accurate spatial discretization. The figure 

shows that the magnitude of the error and the optimum perturbation magnitude do not 

change with 1st order Steger-Warming, Van-Leer and AUSM flux evaluation methods.  

 
Figure 4.12 Effect of the flux evaluation method on the relative numerical Jacobian 

error 
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4.4.5 Effect of Order of Discretization on Numerical Jacobian Error 

In second order accurate spatial discretization, the second derivatives of interpolated face 

variables with respect to the flow variables are nonzero. Hence these terms will affect the 

second derivatives of the residual vector. The formulation of the interpolated face 

variables was given in Equation 2.36. Differentiating this equation with respect to the 

flow variables twice gives:    
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The second derivatives of the interpolated face variables directly depend on the second 

derivatives of the limiter functions. In smooth flow regions, difference of the flow 

variables at the neighboring cells is nearly zero. Therefore backward and forward 

differencing of flow variables (a and b in Equation 2.39) can be reasonably assumed to 

be equal to each other. The formulation for the second derivatives of the limiter function 

with this assumption will become very simple and it is given in Equation 4.27.  
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∂ =
∈∂ +w

 (4.27) 

Limiters are known to stall the convergence of an iterative scheme, because of accidental 

switching in smooth flow regions [59], [65], [67]. The remedy proposed by most of the 

researchers dealing with this issue is the addition of a small number, ∈to the numerator 

and denominator of the interpolation formulation to control the activation of the limiter. 

There are different studies performed to define the proper values of ∈. [68], [69]. The 

formulation given in Equation 4.27 presents that in smooth flow regions, the second 

derivatives of the limiter functions will be large if the value of ∈ is small. The effects of 

the magnitude of ∈ on the accuracy of numerical Jacobians are studied. In Table 4.6, the 

change of Frobenius norm of the second derivatives of the residual vector with the 

variation of the size of ∈ is presented. The results given in Table 4.6 are generated by the 

transonic flow solution over the bump geometry using 65x17 grid and 2nd order AUSM 

scheme with Van Albada Limiter. Consistent to Equations 4.25, 4.26 and 4.27, the 

second derivatives of residual vector get larger as the size of the ∈ gets smaller. The 
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variation of the Frobenius norm of the relative error in numerical Jacobian matrix with 

respect to the size of ∈ is given in Figure 4.13 and 4.14 for the Koren and Van Albada 

limiters respectively. 

Table 4.6 Variation of the second derivatives of residuals by the ∈ value used in limiters 
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10.5( )i i+∈= Ω +Ω  21.03 24.11 

∈ = 10-3 209.7 156.9 

∈ = 10-6 10211.7 7705.6 

∈ = 10-9 162762.3 124771.2 

∈ = 10-12 365644.2 355329.1 

 

 

 
Figure 4.13 Variation of the numerical Jacobian error for Koren limiter 
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Figure 4.14 Variation of the numerical Jacobian error for Van Albada limiter 

 

In second order discretization, the size of the second derivatives of the residual vector is 

dominated by the second derivatives of the limiter functions for small ∈ values. However 

the value of ∈ has no affect on the round-off error. Therefore, as the values of ∈ become 

smaller the magnitude of second derivatives increases while the round-off error stays 

constant. As a result, according to Equation 4.17 the usage of small values of ∈ will 

result in magnified total error and smaller optimum perturbation magnitude. The results 

show that limiter functions calculated with small ∈ values significantly increased the 

magnitudes of the second derivative of residual vector and the validity of the assumption 

made in Equation 4.18 is lost. Hence the optimum perturbation magnitude deviates from 

the one proposed by Equation 4.20 significantly.   

 

The usage of very small ∈ values is shown to be prohibitive due to the amplifying effect 

on second derivatives. However the selection of large values for the ∈ is also not 

reasonable.  In the case of using very large values for the ∈, the second derivatives of 

interpolated face variables will become negligibly smaller  compared to the second 

derivatives of splitted flux vectors. Hence, the size of the second derivatives of the 

residual vector will be significantly dominated by the second derivatives of the splitted 
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flux vectors. The further enlargement in ∈ will not affect the magnitude of the second 

derivatives of the residual vector nor the accuracy of the Jacobian. Moreover, the usage 

of very large ∈ values in limiter function will be improper since the definition of the 

interpolation with limiter function will be degraded. As a summary, the accuracy of the 

second order numerical Jacobian is bounded by that of the first order numerical Jacobian. 

In this study the most accurate evaluation for the second order numerical Jacobian is 

achieved with the usage of the ∈ values as proposed in Equation 4.28. ∈ value that will 

be used in the face variable interpolation is defined as the square root of the average of 

the cell areas of the neighboring cells located at upstream and downstream of the face.  

 ( )1
1
2 i i+∈= Ω +Ω  (4.28) 

4.4.6  Variation of Error with Resolution of Grid 

Completing the search for the optimum perturbation magnitude for different flux 

evaluation methods and for different flow problems with different grid types, the 

variation of the error with grid resolution is studied. The analysis is performed both for 

the H-type grid and C-type grid cases.  The results are presented in Figures 4.15 and 

4.16. Calculations are performed using AUSM scheme for first and second order spatial 

discretizations. In second order discretization, limiter function of the Van Albada is used 

with ∈ value defined in Equation 4.28. For the bump geometry an inlet Mach number of 

0.675 and for the airfoil geometry the free stream Mach number of 0.85 and 1 degree of 

angle of attack is used. Like in the previous cases, for different grid resolutions, the 

optimum perturbation locations for bump and airfoil geometries coincide with each 

others, and they are in good agreement with value proposed by Equation 4.20. To make 

the grid finer or coarser changes the magnitudes of the flux variables slightly but has no 

significant effect on the ratios of magnitudes of the round-off error and the second 

derivatives to magnitude of fluxes. As a result the optimum perturbation magnitude 

minimizing the total error is identical for all coarse and fine grids. The minimum relative 

error is approximately equal for all cases and in good agreement with Equation 4.21. 
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Figure 4.15 Variation of the relative error with varying grid resolution for the solution 

of the flow over Ni bump 

 

 
Figure 4.16 Variation of the relative error with varying grid resolution for the solution 

of the flow over NACA0012 airfoil 
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4.4.7 Variation of Error with Flow Regime 

As the last factor affecting the accuracy, the effect of the free-stream flow condition is 

analyzed.   

 
Figure 4.17 Variation of the relative error with varying inlet Mach # (Ni bump)  

 
Figure 4.18 Variation of the relative error with varying free-stream Mach# (airfoil)  
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For the Ni-bump geometry the inlet flow Mach numbers of 0.5, 0.675 and 2.0 are tested. 

For the NACA0012 airfoil geometry, free stream flows of, 0.3 Mach, 0.85 Mach with 1 

degree of angle of attack, and 1.2 Mach with 7 degrees of angle of attack are analyzed. 

Figure 4.16 shows the change of relative error with perturbation magnitude for three 

different flow conditions over Ni bump geometry. Similar results are shown in Figure 

4.17 for three different flow conditions analyzed for NACA0012 airfoil. The presented 

results are calculated by AUSM scheme with first and second order spatial 

discretizations. Results show that the optimum perturbation magnitude is not sensible to 

the free stream or inlet conditions of the flow problem. The optimum magnitude did not 

varied significantly for the cases with varying flow regimes and it is in well agreement 

with the magnitude proposed by Equation 4.20. 

4.5 Performance of the Numerical Jacobian on Flow Solution 

In previous sections, different factors which may affect the accuracy of the numerical 

Jacobian are analyzed in detail. All the results show that usage of the finite difference 

perturbation magnitude prescribed by Equation 4.20 is satisfactory enough to construct 

accurate numerical Jacobian matrices compared to analytical ones. The Equation 4.20 

was the simplification of the Equation 4.16 by assuming that norms of second 

derivatives, Jacobian matrix and flux vectors equal to each others. Magnitude of the 

round off error was assumed as the machine epsilon times the norm of the flux vector. 

Those assumptions performed well for all the cases tried except the cases where the 

proper tuning of the interpolation formulation is not done in second order accurate spatial 

discretization. It is realized that the proper scaling of the small number, which is added to 

face interpolation formulation in order to inactivate the limiter in smooth flow domain, is 

needed. The addition of very small values of ∈, resulted in amplified magnitude of 

second derivatives relative to norm of flux vector. The scaling of ∈ by the neighboring 

cell areas produced satisfactory results and the retained the reasonability of the 

assumptions made in derivation of simple formula of optimum perturbation magnitude. 

The proposed optimum perturbation magnitude is 3x10-8 for double precision 

computations and 6.9x10-4 for single precision computations. Analyzing the ways of 
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accurate computation of numerical Jacobian, the effect of the accuracy of the Jacobian on 

the convergence of the flow solution is studied.  

 
Figure 4.19 Residual histories for AUSM and Van Leer schemes in the solution of flow 

over Ni-bump. M=0.675 

The convergence performance of the flow solver using the analytically evaluated 

Jacobian was given in Chapter 3. The convergence performance obtained by the 

utilization of the numerical Jacobian, which is evaluated by optimum perturbation 

magnitude, is compared with those results given for analytical Jacobian. Similar to the 
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strategy followed in accuracy analysis change of convergence performance by numerical 

Jacobian matrices that are derived by the variety of the perturbation magnitude is 

presented. 

Figure 4.20 Residual histories for AUSM and Van Leer schemes in the solution of flow 
over Ni-bump. M=0.675 
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Figure 4.21 Residual histories for AUSM and Van Leer schemes in the solution of flow 

over NACA0012. M=0.85  = 1o 

Figure 4.19 gives the history of the averaged density residual for the ASUM and Van 

Leer schemes for both of the first and second order accurate spatial discretization. 

Similar results are given for the Steger warming scheme in Figure 4.20. In those plots the 

convergence history attained by the analytical Jacobian is represented by symbols and 

the results correspond to the numerical Jacobian matrices are presented by lines. In 

Figure 4.20 the residual histories resulted from the usage of Roe’s scheme are also given. 

Although the analytical differentiation of the Roe scheme is not performed for Jacobian 

evaluation, the results corresponding to numerical Jacobian matrices are given to present 
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the effect of the perturbation magnitude on the convergence rate. Figure 4.19 and 4.20 

presents the convergence histories correspond to solution of transonic flow solution over 

bump geometry. Results correspond to the solution of transonic flow over NACA0012 

airfoil is presented in Figure 4.21 and 4.22 

 
Figure 4.22 Residual histories for Steger Warming and Roe schemes in the solution of 

flow over NACA0012. M=0.85  = 1o 

The residual history plots presented for the bump geometry are evaluated by the mesh 

that has 65x17 nodes and the plots correspond to NACA0012 airfoil are evaluated by the 
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mesh that has 129x33 nodes. To eliminate the effect of diagonally added time like term 

on the convergence, its initial and withdrawal values are kept constant for all numerical 

Jacobian matrices evaluated with different finite difference perturbation magnitude. 

Those fixed values for the flow over bump and airfoil geometries are listed in Table 4.7. 

Table 4.7 The initial and withdrawal values used for the diagonally added term, 1/t in 
the generation of presented results  

 t0 tf 

1st order spatially accurate solution of flow over bump 3 5 

2nd order spatially accurate solution of flow over bump 50 1000 

1st order spatially accurate solution of flow over NACA0012 300 10000 

2nd order spatially accurate solution of flow over NACA0012 200 20000 

 

 

In Chapter 3 it was shown that usage of smaller values of ∈, which is used to inactivate 

the limiter in smooth flow regions, degraded the convergence performance of the flow 

solver. In the section 4.4.5 it is shown that magnitude of the second derivatives of the 

residual becomes significantly larger compared to the norm of the flux vector. The large 

values of second derivatives of the residual may degrade the validity of the assumption 

made in the linearization of the residual by neglecting the high order terms. The 

inaccurate linearization will be caused due to the large values of second derivatives and it 

may result in as a fall of convergence performance.  

 

Figure 4.23 presents the change of the residual histories of the flow solutions evaluated 

by variety of  ∈ used in MUSCL interpolation. The results evaluated by analytical 

Jacobian is represented by the symbols and the residual histories resulted from the 

utilization of the numerical Jacobian matrices are represented by the lines. The results are 

generated by the transonic flow solution over bump geometry. Second order spatial 

discretization is used with the Van Albada’s limiter. In Figure 4.14 it was shown that the 

optimum perturbation magnitude for the numerical Jacobian evaluation changes 

depending on the magnitude of ∈ used. In the generation of the Figure 4.23 each 
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numerical Jacobian is constructed by its own optimum finite difference perturbation 

magnitude that is read from Figure 4.14.  

 
Figure 4.23 Variation of the residual histories by the value of the ∈ that is used in 

MUSCL interpolation 

The last residual history type plot is given to present the effect of the exactness of the 

Jacobian matrix linearization on the convergence performance. In references [70], [71], 

[72] it was stated that for the best convergence performance the scheme used in the 

linearization of the residual for Jacobian evaluation should be consistent with the one 

used in the spatial discretization. In this study Roe scheme is implemented into the 

developed code for spatial discretization but the analytical Jacobian derivation of the Roe 

flux scheme was not performed. A trial case, where the Jacobian is evaluated by AUSM 

scheme and the fluxes are calculated by the Roe scheme, is solved to observe the effect 

of the inexact linearization on the convergence performance.  The residual history given 

in Figure 4.24 presents the significant reduction in the convergence rate due to inexact 

linearization.   

 

Results given in Figures 4.19 to 4.22 presents that using the optimum perturbation 

magnitude given by Equation 4.20 for numerical Jacobian evaluation, convergence 



 

 

 

96 

performance identical to one resulted from the usage of analytical Jacobian can be 

obtained. However it is also shown that convergence performance of the Newton’s 

method in the flow solution is not very sensitive to the accuracy of the Jacobian. The 

reduction in the accuracy of the numerical Jacobian only caused a slight increment in the 

number of iterations required for the converged solution. Moreover it is also shown by 

Figures 4.23 and 4.24 that, the convergence performance degraded significantly in the 

case of improper MUSCL limiter definition and in the case of inexact linearization. 

 

 

Figure 4.24 Effect of the inexact linearization of the Jacobian on the convergence rate 

 It can be concluded that as long as exact linearization is performed; the Newton’s 

method is very robust scheme in terms of convergence and it is insensitive to the small 

errors in the Jacobian matrix. Results also showed that numerical evaluation of the 

Jacobian matrix can be very beneficial since Jacobian of complex schemes can be 

constructed simply without a loss in convergence performance.   

 

This chapter is concluded by the cost analysis of the choice made on analytical and 

numerical Jacobian in the flow solution. The comparison of the cost is made in terms of 

the CPU time spent. 
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Figure 4.25 presents the ratio of the CPU time spent in evaluation and factorization of 

the numerical Jacobian to total CPU time spent in an iteration of the Newton’s method. 

As it can be seen from the plots almost entire computational effort in a Newton’s method 

is demanded by Jacobian evaluation and the factorization. As the grid gets finer, the 

percentage of the time spent in the factorization step increases. 

 
Figure 4.25 CPU time spent in numerical Jacobian evaluation and factorization in terms 

of the percentage of the total time spent in iteration 

Figure 4.26 presents the variation of the CPU time spent in evaluation and factorization 

of both of the numerical and analytical Jacobian matrices by the change of grid 
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resolution. Both of the cost of first and second order discretization is presented in that 

figure.  Figure 4.26 shows that the both of first and second order numerical Jacobian 

evaluation require 5 times more CPU time than the one needed for the evaluation of 

analytical Jacobian. Another conclusion is that, if the numerical Jacobian is used in flow 

solution by a fine grid, great percentage of the computational effort will be spent on the 

finite differencing. On the other hand if the analytical Jacobian is used the CPU time 

spent in matrix factorization will be larger than the one required for the evaluation of the 

analytical differentiation. 

 

 
Figure 4.26 Variation of the CPU time spent in one Newton iteration by the grid 

resolution 
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CHAPTER 5  

SENSITIVITY ANALYSIS 

5.1 Introduction 

In recent years, the promising developments accomplished in the computational science 

and enabled the usage of CFD as an efficient design tool. Today very complex aircraft 

configuration can be designed effectively by the utilization of the CFD methods.  Design 

techniques applied by the researchers have continuously evolved, and resulted in variety 

of available design techniques. Amongst the widely used design techniques, gradient 

based optimization methods are the most commonly applied ones. The efficiency and the 

effectiveness of the gradient based optimization methods are dependent on the technique 

known as the sensitivity analysis. 

 

Sensitivity analysis was a well understood technique in the field of computational 

structural mechanics prior to its applications in the fluid dynamics discipline. At the most 

fundamental level sensitivity analysis is developed on the principle that, information 

about the behavior of an unknown function in the neighborhood of a known point can be 

approximated if the slopes in the neighborhood of the known point are defined. Roughly 

speaking, a sensitivity analysis involves the calculation of slopes, known as sensitivity 

derivatives. Those slopes are replaced by the gradients in the gradient based design 

optimization applications.  

 

Application fields of the of sensitivity analysis are not limited to design optimization, but 

they are also effectively used;  in the generation of better initial guesses for analysis, in 

function approximation to predict trends in the response of a system as a consequence of 

changes in the independent variables, and in error estimation. In this thesis performed 

study is focused on the application of sensitivity analysis in the aerodynamic design 

optimization. 
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5.2 Aerodynamic Design Optimization 

Today the coupled efficient optimization algorithms with CFD solvers became a handy 

tool to be used both in the aerodynamic design and the modernization of existing designs 

for further performance enhancement. Generally the numerical optimization problem is 

defined as 

 
( ) : ( )
: ( ) 0 1,

1,
j

L U
i i i

Minimize Maximize F
subject to g j J

i Iβ β β

≤ =

≤ ≤ =


 . (5.1) 

where, F is the objective function to be minimized (maximized), and gj are the J 

inequality constraints. ββββ is the vector of design variables which has I iβ components. 

L
iβ and U

iβ are the side constraints which determine the lower and upper limits of the 

design variables.   

 

The gradient based optimization method is one of the most widely used techniques in 

aerodynamic design optimization. The objective of the optimization is generally defined 

as maximization or minimization of the aerodynamic loads. To be able satisfy this 

objective, gradients of objective functions in design variable space is required. Those 

gradients of aerodynamic loads are called as aerodynamic sensitivities. The efficient and 

accurate computation of the sensitivities are vital since the procedure followed in the 

sensitivity evaluation and the accuracy of them directly affect the quality of the design 

and the performance of the design in terms of computational requirements.  Sensitivity 

analysis is also required in inverse design optimization where the objective is defined as 

obtaining the aerodynamic geometry which produces the specified pressure distribution, 

under specified flight conditions. In the iterative design process of the inverse design, 

which starts from an initial baseline geometry and end up with target geometry, the 

sensitivities of the surface pressure to the design variables are needed. 
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5.3 Aerodynamic Sensitivity Analysis 

Aerodynamic loads are functions of state flow variables, geometrical variables and the 

design variables [73].  

 ( ) ( ){ }j jC C  ,  , = w X  (5.2) 

The sensitivities of the aerodynamic loads to the design variables can be defined by the 

utilization of the chain rule as below: 

 j j j j

k k k k

dC C C C
dβ β β β

∂ ∂ ∂        ∂ ∂= + +        ∂ ∂ ∂ ∂ ∂        

w X
w X

 (5.3) 

Equation 5.3 shows that three group of derivatives are needed to evaluate the sensitivities 

of the aerodynamic loads. In Equation 5.3, the second term represents the sensitivity of 

the aerodynamic loads on the geometric variables. Geometric variables consist of the 

coordinates of the analyzed geometry and the mesh used to discretize the flow domain. If 

the aerodynamic optimization is performed with non-geometric design variables with 

constant kept geometry and mesh, the second term in the right side of the Equation 5.3 

becomes zero. If the geometric design variables are used to control the geometry and the 

mesh, the third term in the right hand side of the equality will be zero equated to zero, 

since the effect of the geometrical variables on the total derivative will already be stated 

by the second term.  

 

In the aerodynamic shape optimization geometry will be parameterized and the design 

variables would be geometrical and directly related to the parameterization. There is 

wide range of parameterization techniques available in literature and the most common 

ones are the parameterization by shape functions and the method of B-spline control 

points. During the shape optimization process to satisfy the targeted objective, 

parameterized baseline geometry is distorted by applied perturbations. The amount of 

those perturbations is controlled by design variables. For aerodynamic shape 

optimization applications, the Equation 5.4 will be simplified to Equation 5.5  
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 j j j

k k k

dC C C
dβ β β

∂ ∂      ∂ ∂= +      ∂ ∂ ∂ ∂      

w X
w X

 (5.5) 

where Cj, w, X, βk  are aerodynamic loads, flow variables vector, grid coordinates and 

design variables, respectively. The aerodynamic loads have explicit dependence on the 

flow variables and on the coordinates of the geometry. As an example, for Euler 

equations, the lift coefficient, CL, and drag coefficient, CD will be evaluated from the 

pressure coefficient, Cp, which explicitly depends on the flow variables and the geometry 

coordinates. The explicit relations between the aerodynamic loads, pressure coefficient, 

flow variables and the mesh coordinates are presented in Equations 5.6 to 5.10.   

 
cos sin
sin cos

L y x

D y x

C C C

C C C

α α
α α

= −

= +
 (5.6) 

Cx and Cy are the force coefficients in x and y directions and can be evaluated as:  

 
1 1

NE NE

x x j y y j
j j

C C C C
= =

= =   (5.7) 

In above equation, NE denotes the number of elements on the geometry constructed by 

the mesh. The evaluation of the Cx j and Cy j will be performed by using Cp as follow: 

 
( )
( )

1

1

j j

j j

x j p j b b

y j p j b b

C C y y

C C x x

+

+

= −

= −
 (5.8) 

Pressure coefficient can be calculated as:  

 
21

2
j

wall j
p

l

P
C

Vρ∞ ∞

=  (5.9) 

Finally, the pressure on the geometry can be written in terms of the conservative flow 

variables as below: 



 

 

 

103

 ( ) ( )
( ) ( )2 2

1
2

j

j

wall wall j
wall j wall

wall j

u v
P E

ρ ρ
γ ρ

ρ

 +
 = − −  
 

 (5.10) 

Following the relations given in above equations the analytical evaluations of the 

sensitivity of the aerodynamic load to the flow variables and to grid coordinates (Cj /w 

and Cj /X derivatives) can be performed effortlessly as follow: 

 j j p j y px

x p y p

C C C C C CC
C C

∂ ∂ ∂ ∂ ∂ ∂∂
= +

∂ ∂ ∂ ∂ ∂ ∂ ∂w C w C w
 (5.11) 

 j j j yx

x y

C C C CC
C X C X

∂ ∂ ∂ ∂∂
= +

∂ ∂ ∂ ∂ ∂X
 (5.12) 

The evaluation of the grid sensitivity term is also straightforward for most of the 

practical cases. Considering the shape function usage in the aerodynamic shape 

optimization, the geometry modification will be performed by the formulation given 

below: 

 max

max
( )

1new old k k
j jf x
j

β
 −

= +  − 
X X  (5.13) 

where ( )kf x is the shape function used for geometric parameterization, j is the grid point 

index which varies along the direction vertical to the geometry, βk is the weighting of the 

shape function(design variable) , Xnew and Xold are the coordinates of the grid points prior 

to and after the perturbation respectively. Generally the modification to geometry is 

applied such that the domain close to the wall geometry will be perturbed mostly and 

effect of perturbation will be diminished away from the wall. The grid points on the 

boundaries that are furthest to the wall are generally prevented from the modification to 

keep the bounds of the flow solution domain constant. 

 

Equation 5.13 shows that the grid coordinates have an explicit dependence on the design 

variables; hence the grid sensitivities can be evaluated simply as: 
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 ( ) max

max 1k
k

j jf x
jβ

−∂ =
∂ −

X  (5.14) 

Although, the evaluation of the gradients; Cj /w, Cj /X, X/βk is straightforward 

thanks to the explicit relations presented above, the evaluation of the derivative w/βk is 

not simple since the relation between flow variables and design variables is implicit. This 

derivative can be evaluated with a brute approach using the finite differencing, however 

the evaluated sensitivities would be erroneous. More accurate evaluation can be 

performed analytically by one of two common methods. First alternative is the direct 

differentiation method where, the solution of linear system is performed for the 

evaluation of flow state sensitivities. Adjoint method is the other alternative and it also 

requires a solution of similar linear system for the evaluation of the adjoint variable. 

Adjoint method bypasses the requirement for the evaluation of the flow sate sensitivities, 

w/βk, by introduction of Lagrange multipliers. The computational advantage of the 

introduction of the adjoint method can be summarized as; requirement on multiple linear 

system solutions for the evaluation of the sensitivity of flow variables with respect to 

each design variables will be reduced to a single linear system solution for the adjoint 

variable. Both of the adjoint and the direct differentiation method necessitate the 

calculation of the flux Jacobian matrices in the solution of the linear systems. By 

utilization of those two techniques the sensitivity of the aerodynamic loads can be 

evaluated fully analytically, hence sensitivity derivatives can be obtained accurately 

compared to the evaluated ones by finite difference. The choice between those two 

analytical methods is made according to the size of the objective functions and the design 

variables. If the number of design variables is larger than the number of objective 

functions, the adjoint method is computationally more desirable compared to the direct 

differentiation method. However the usage of direct solvers in flow solution will remove 

the computational difference between those two methods. The Jacobian matrix which 

was factored in the flow solution can be reused in sensitivity analysis; hence cost of the 

application of both techniques will reduce considerably. In this study the direct 

differentiation method is applied for sensitivity analysis and its formulation is given in 

next sub-section. Detailed formulations for both of the direct differentiation method and 

the adjoint methods can be found in References [78] and [79].  
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5.3.1 Direct Differentiation Method 

Flux residual vector, which is dependent on flow variables and grid coordinates, equals 

to zero at the steady state conditions.  

 ( ) ( )( ){ } { }0k kR ,β β =w X  (5.15) 

Following the fact given in Equation 5.15 the flow state sensitivity, w/βk will be 

evaluated from direct differentiation of steady state flow governing equations as follow 

[75], [76]. 

   0
k k

R R X
Xβ β

   ∂ ∂ ∂ ∂   + =      ∂ ∂ ∂ ∂      

w
w

 (5.16) 
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R R X
Xβ β

−  ∂ ∂ ∂ ∂   = −     ∂ ∂ ∂ ∂     

w
w

 (5.17) 

The formulation given in Equation 5.14, shows the straightforward evaluation of the 

/ kX β∂ ∂ term. The /R X∂ ∂  term can be performed analytically or numerically. The 

analytical evaluation is favorable and it can be generally performed simply. For most of 

the cases the dependency of residual on the grid coordinates comes from the explicit 

relations used in the definitions of the face normal vectors.  

 

The solution for the systems of linear equations given by Equation 5.16 can be 

performed with the same algorithm used in the flow solution. As it is stated earlier; using 

the LU factors of the Jacobian that are computed in the flow solution, the sensitivity 

vector can be evaluated efficiently. Simple backward and forward substitution operations 

will be sufficient to obtain the solution vector.    

5.4 Analytical Sensitivity Analysis 

This section briefly summarizes the results obtained from the analytical sensitivity 

analysis. To generate the results presented in this chapter the geometry was firstly 
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parameterized by the utilization of Hicks-Henne shape functions. Application of smooth 

perturbations on the geometry by adding set of Hicks-Henne functions is a commonly 

used technique in geometry modification. The peak value of the each function in the set 

occurs in different chord-wise locations, hence the geometry modification can be 

controlled by adjustment of the weighting of each functions in the set. The weighting of 

each Hicks-Henne functions are defined as the design variables in the generation of 

results presented in this chapter.  

 

Throughout this chapter the direct differentiation technique is used to evaluate the 

sensitivities of flow state variables. Both of the numerically and analytically evaluated 

Jacobian matrices are used in the solution of the system given in equation 5.16. In the 

following sections the sensitivities evaluated by numerical Jacobian is compared with the 

one that is evaluated using the analytical Jacobian. Before proceeding into such kind of 

error analysis, the verification of the sensitivities evaluated by the direct differentiation 

method is performed, in order to examine whether the developed code produces 

reasonable analytical sensitivities or not. 

 

Firstly, verification is performed by the comparison of the analytically evaluated flow 

variables sensitivities with the ones evaluated simply by finite differencing. Although 

finite difference results are erroneous, using the proper step size their results will not 

differ from the exact results tremendously and they can be used to examine the 

reasonability of analytical results. In the evaluation of the sensitivity derivatives by finite 

differencing the magnitude of the step size is determined by the approach presented in 

reference [74].  
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Figure 5.1 The comparison of the sensitivities evaluated by direct differentiation method 
and finite differencing  (Upper halves: finite difference, lower half: analytical sensitivity 

analysis) 
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Figure 5.1 presents the comparison of the contours of the analytically evaluated flow 

variable sensitivities and the ones that are evaluated by finite differencing. The 

analytically evaluated sensitivity contours are presented on the upper half of the plots 

whereas on the lower halves the sensitivities evaluated by brute method are presented.  

The presented contour plots correspond to the sensitivities of the flow variables with 

respect to the randomly selected Hicks-Henne’s function, whose peak value occurs at the 

thirty percent of the chord.  The contour patterns obtained from both of the analytical and 

brute sensitivity evaluation looks similar with approximately equal magnitudes, hence it 

can be referred from that figure that the developed solver works fine for the analytical 

sensitivity computation. 

 

Secondly, the cost of the application of direct differentiation method for sensitivity 

analysis is presented. The utilization of the Newton’s method in the flow solution 

brought out the efficient sensitivity evaluation. Using the LU factors obtained in flow 

solution, flow state sensitivities formulated by Equation 5.17 are calculated in single 

iteration by simple backward and forward substitution. The computational time spent in 

the evaluation of the sensitivities is presented in Table 5.1. To present the cost of the 

sensitivity evaluation relative to flow solution, the CPU time spent in the flow solution is 

also given in Table 5.1. Results are given for the evaluation of sensitivities with respect 

to one design variable. 

Table 5.1 Comparison of time CPU time spent in flow and sensitivity analysis 

 
CPU time spent in flow 

solution 

(seconds) 

CPU time spent in the evaluation 

of flow variable sensitivities to one 

design variable 

(seconds) 

65x17 grid, 1st order  9.23 0.11 

65x17 grid, 2ndorder 18.87 0.21 

 

The advantage gained by the re-use of the LU factors is independent from the evaluation 

method followed in the Jacobian evaluation. Although the utilization of the Newton’s 



 

 

 

109

method is expensive for flow solution in terms of computation time, the sensitivity 

analyses can be handled very efficiently both by the numerical and the analytical 

Jacobian matrices. 

5.5 Accuracy of Sensitivity Analyses 

In previous section it was explained that, the flow state sensitivities are the dominant 

components on the accuracy of the objective function sensitivities. Hence, the accuracy 

of the flow state sensitivities are analyzed in detail and results are presented in this 

section. Equation 5.17 shows that, the calculation of flow state sensitivities requires the 

evaluation of flux Jacobian matrix, R/w. In Chapters 3 and 4, the analytical and 

numerical evaluations of flux Jacobian were presented, and the accuracy of the numerical 

Jacobian was analyzed. The main interest of this section is to investigate the effect of 

accuracy of the numerical flux Jacobian on the accuracy of flow state sensitivities.  

5.5.1 Condition Number 

In linear algebra to find out the effect of small changes, which occurred in the right-hand 

side vector or in left-hand side matrix, on the solution of the system the condition 

number is defined. The linear system  

 Ax b=  (5.18) 

has a unique solution for every right-hand side only if the matrix, A is square and non-

singular. The exact solution of the system is defined as: 

 1x A b−=  (5.19) 

Suppose that the left hand-side matrix is changed to A+δA by a perturbation δA, and the 

exact solution of the system with the perturbed matrix is calculated as x+δx, i.e. 

 ( )( )A A x x bδ δ+ + =  (5.20) 
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The deviation, δx, resulted in the solution x due to the small change, δA, in the matrix is 

formulated as: 

 1 ( )x A A x xδ δ δ= − +  (5.21) 

Applying the vector and matrix norm definitions, the measure of the deviation, δx, can be 

estimated by 

 1 ( )x A A x xδ δ δ−≤ +  (5.22) 

 

Representing the amount of change Aδ relative to the A , the relative change in the 

exact solution is given as: 

   1

( )
x A

A A
x x A

δ δ
δ

−≤
+

 (5.23) 

Equation 5.23 represents that, for a linear system with non varying right hand side 

vector, the relative change in the exact solution due to the relative change in the left hand 

side matrix is bounded by a factor 1A A− . This factor is defined as condition number, 

cond(A).The condition number is always greater than one, and it indicates the maximum 

effect of the perturbation occurred in matrix on the exact solution. If the condition 

number is large the matrix is called as ill conditioned. For ill conditioned matrices, even 

a small amount of change relative to matrix can cause substantial variations on the exact 

solution. 

 

In this study the condition number definition is used to obtain an initial consideration on 

the effect of the error occurred in numerical Jacobian on the analytically calculated 

sensitivities. Following the above equations, the relative change in the left hand side 

matrix is defined as relative Jacobian error in this study, and the relative change in the 

solution is defined as the relative sensitivity error. The resulting formula derived from 

Equation 5.23 to define the relation between the relative sensitivity error and the relative 

Jacobian error is given below: 
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 (5.24) 

 

 where  

 
1R R Rcond

w w w

−∂ ∂ ∂  = ∂ ∂ ∂ 
 (5.25) 

 

The condition number evaluation is not straightforward since the norm value of the 

inverse of the large sparse Jacobian matrix is needed.  In literature there are some 

routines developed for the estimation of the condition number without any matrix 

inversion algebra [77]. In this study the approximate condition number provided by the 

UMFPACK sparse matrix solver is used. 

  

The condition number alters slightly during the flow solution, since the Jacobian matrix 

is updated at each Newton’s iteration. The average of the condition number evaluated in 

the last three Newton’s iteration of the flow solution is used to estimate the maximum 

bound of the sensitivity error. The variation of the condition number by the grid size, 

order of spatial discretization and flow regime is presented in the Table 5.2 for the flow 

over NACA0012 cases. The approximation to the optimum perturbation magnitude and 

the resulting minimum error was given by Equation 4.20 and Equation 4.21 in Chapter 4. 

Inserting those condition numbers and estimated minimum numerical Jacobian error 

values into the Equation 5.24; the maximum bounds of the relative sensitivity error, 

which correspond to the numerical Jacobian evaluated by optimum perturbation 

magnitude, are estimated. Estimated error bounds are given in Table 5.2.   

 

The results presented in Table 5.2 propose that, the condition number varies significantly 

by the change of order of the spatial discretization. Due to the relation between stencil 

size and the order of discretization, the change in order of discretization will significantly 

affect the structure of the Jacobian matrix. Hence it is reasonable to expect shifting 
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condition number by that kind of change. Table 5.2 also presents that condition number 

is sensitive to change in free-stream/inlet Mach number of the dealt flow case. In 

supersonic flow all the eigenvalues of the Jacobian matrix would be positively signed; 

hence the flux vectors would be calculated by the utilization of the downstream cells 

only. However for subsonic case cells located both in downstream and the upstream 

would be used in the flux evaluation. Therefore the structure of the Jacobian matrix may 

slightly vary with the change in the flow regime.  That kind of variation could be the 

main reason for the change of condition number by the flow regime. 

Table 5.2 

NACA 0012 
 Estimated 

condition number 

Estimated maximum bound 

for the relative sensitivity 

error 

129x33 grid,  0.85Mach 1st order 2.0x104 6.3 x 10-4 

129x33 grid,  0.85Mach 2nd order 7.1 x105 2.1 x 10-2 

257x65 grid,  0.85Mach 2nd order 8.3 x105 2.5x10-2 

129x33 grid,  0.5Mach 2nd order 2.4 x105 7.2x10-3 

129x33 grid,  1.20Mach 2nd order 1.1 x106 3.3 x 10-2 

5.5.2 Effect of the Numerical Jacobian Accuracy on the Sensitivity 
Accuracy 

Expressing the effect of the condition number on the accuracy of the analytical 

sensitivity evaluation the detailed error analysis is performed. Approach similar to one 

followed in Chapter 4 is followed to examine the effect of the numerical Jacobian 

evaluation on the accuracy of the sensitivity analysis. Numerical Jacobian matrices are 

evaluated by variety of finite difference perturbation magnitudes and they are used in 

sensitivity evaluation to calculate sensitivity vectors and they are referred as numerical 

sensitivities in the following sections. The numerical sensitivities evaluated with those 

numerical Jacobian matrices are compared with the ones that are evaluated by the 

analytical Jacobian. The difference between the sensitivities that are evaluated from 
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numerical and analytical Jacobian is defined as the sensitivity error. To be able to present 

the total error in the sensitivity vector, vector norm definitions are used.  

 ( )sensitivity i
k knumeric jacobian analytic jacobiani i

W WError
β β

   ∂ ∂   = −
   ∂ ∂   

 (5.26) 

 

sensitivity 1
1

2

sensitivity 2
1

4(imax)(jmax)

k ki numeric jacobian analytic jacobiani i

4(imax)(jmax)

k ki numeric jacobian analytic jacobiani i

W WError

W WError

β β

β β

=

=

   ∂ ∂   = −
   ∂ ∂   

    ∂ ∂    = −
    ∂ ∂    





 (5.27) 

The relative error in the numerical sensitivity vector is defined as: 

 ( ) sensitivity
sensitivity relative

by analytick jacobian

Error
Error

W
β

=
∂
∂

 (5.28) 

To be able to perform the accuracy analysis investigating the affect of the finite 

difference perturbation magnitude used in Jacobian evaluation on the accuracy of 

sensitivity evaluation, following procedure is followed by the developed flow solver. 

 

Firstly, the flow equations are solved with Newton’s method for given operating 

conditions. In the last Newton iteration, the LU factors of the analytical Jacobian 

evaluated with converged flow solution is stored in the disk (UMFPACK provides an 

option for this). The right hand side of the Equation 5.17 is evaluated analytically for 

each design variable. Using the stored factors of analytical Jacobian, analytical 

sensitivities are evaluated. A loop is constructed to vary the finite difference perturbation 

magnitude. In the loop for the each perturbation magnitudes, numerical Jacobian 

matrices are calculated and using those ones, numerical sensitivity vectors are computed. 

For the each perturbation magnitude in the loop, calculated numerical Jacobian and 

sensitivity are compared with the previously stored analytical Jacobian and the 

sensitivity to generate the error plots given in following sections.  
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5.5.3 Effect of the Spatial Discretization Method on the Variation of the 
Sensitivity Error 

In this section, the effects of the flux splitting methods and the order of discretization on 

the variation of the error in the numerical sensitivities are presented. In Figures 5.2 and 

5.3 sensitivity error plots showing the variation of the error for different flux splitting 

schemes are given. The plots are generated for the flow over Ni-bump and the 

NACA0012 airfoil cases respectively. In those plots, the identical cases used in the 

generation of the Figures 4.11 and 4.12 are used. Comparison of the Figures 5.2 and 5.3 

with the Figures 4.11 and 4.12 shows that; same perturbation magnitude minimizes both 

of the error in the numerical Jacobian and sensitivity evaluations. The optimum 

perturbation magnitudes presented by those plots are in good agreement with the one 

approximated by Equation 4.11.  

 
Figure 5.2 Effect of the flux evaluation method on the variation of the sensitivity error 

with respect to the finite difference perturbation magnitude used in numerical Jacobian, 
bump geometry 
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Figure 5.3 Effect of the flux evaluation method on the variation of the sensitivity error 

with respect to the finite difference perturbation magnitude used in numerical Jacobian, 
airfoil 

In the Table 5.2 it was presented that; the condition number of the matrix does not vary 

significantly with the change in the upwind method whereas it magnifies approximately 

by an order of magnitude when the second order discretization is used. Basing on that 

change in the condition number, relevant increase in the maximum bound of sensitivity 

error was approximated. The results plotted in Figures 5.2 and 5.3 are also in consistent 

behavior with those given in Tables 5.2. The magnitude of the error in the sensitivity 

vector amplified for the higher order spatial accuracy. 

5.5.4 Variation of Error with Grid Resolution 

The effect of the grid resolution on the accuracy of the sensitivity analysis is studied. 

Figures 5.4 and 5.5 present sensitivity accuracy analysis for bump and airfoil geometries, 

respectively. In the flow solutions over both of the presented geometries the relative error 

does not vary by the change of the grid resolution. Similar behavior was presented in 

Table 5.2 where there was no variation in condition number by the change of the grid 

resolution. The increment in the magnitude of the relative sensitivity error by the usage 

of second order of spatial discretization can also be detected from those figures 
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Figure 5.4 Variation of the relative error in sensitivity by grid resolution, bump 

geometry 

 

 
Figure 5.5 Variation of the relative error in sensitivity by grid resolution, NACA0012 

geometry 
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5.5.5 Variation of Error with Flow Regime 

 
Figure 5.6 Variation of the relative error in sensitivity by inlet Mach number, Ni bump 

geometry 

 
Figure 5.7 Variation of the relative error in sensitivity by free stream Mach number, 

NACA0012 geometry 
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The effect of the flow regime on the relative error of sensitivities is investigated both for 

the flow over bump and flow over airfoil cases. For flow over Ni-bump case, the inlet 

Mach number and for the flow over NACA0012 airfoil case the free stream Mach 

number is altered. The resulting changes in the relative error of the sensitivities are 

presented in Figure 5.6 and 5.7. The optimum finite difference perturbation magnitude 

which results in minimum relative sensitivity error is found to be identical in all cases. 

Moreover the calculated relative error almost equals to the value that is estimated by 

Equation 4.20.  In Table 5.1, the condition number was presented to be smaller for 

subsonic flow regime. Similar results were also shown by the Figures 5.6 and 5.7.  

 

For all the cases investigated above, it is seen that magnitude of the relative sensitivity 

error varies by the finite differencing perturbation magnitude used in Jacobian 

evaluation. In all cases, relative sensitivity error is minimized by the identical 

perturbation magnitude, which can be efficiently estimated by equation 4.20. Analyzing 

the effects of the grid resolution, flux evaluation technique, order of discretization and 

the flow regime on the variation of the sensitivity error it is found that, the increase in the 

order of discretization amplified the error in all cases nearly by an order of magnitude, 

whereas no significant outcome was observed from the other factors. For all cases the 

magnitude of the upper bound of relative error was estimated by the condition number 

definition. The variation in the both of the condition number and the relative sensitivity 

error was found to be consistent. However, the magnitude of the calculated relative 

sensitivity error is found to be significantly smaller relative to the estimated upper 

bound. Those results show that although the error in the Jacobian matrix affects the 

sensitivity error and it is possible to minimize the sensitivity error by the utilization of 

the most accurate numerical Jacobian, the magnitude of the resulting relative error is still 

small even for the usage of perturbation magnitudes significantly larger or smaller than 

the optimum one.     
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CHAPTER 6  

INVERSE DESIGN 

6.1 Introduction 

The efficiency of the aerodynamic design optimization depends on many factors. The 

choice of the design parameterization technique and number of the design variables used 

in the parameterization significantly affects the quality of the design and the efficiency of 

the optimization procedure. However to perform efficient design optimization, focusing 

on the quality of the parameterization is not sufficient alone. If the optimization is 

applied via gradient based methods, accurate evaluation of sensitivities and the accurate 

modeling of the flow domain are also critical as much as the effort made on the 

parameterization. In previous chapters the accuracy study performed both for the flow 

solver and the sensitivity analysis was presented. The main focus of this chapter is the 

investigation of the effect of the errors in the numerical Jacobian evaluation on the 

efficiency of the aerodynamic design optimization. To perform this objective inverse 

design of an airfoil is practiced. Various shape functions are used in the geometry 

parameterization. The weightings of the components of the shape function are defined as 

the design variables. Both of the analytical and numerical Jacobian matrices are used to 

evaluate the sensitivities of the surface pressure that are required in the inverse design 

optimization. The variation of the performance of the inverse design by the Jacobian 

evaluation method is analyzed. The comparison of the design results evaluated with the 

numerical Jacobian matrices that are evaluated by various finite difference perturbation 

magnitudes is presented.  
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6.2 Inverse Design Optimization 

The objective of an inverse design optimization is to obtain the geometry which produces 

a specified pressure distribution, under specified operating conditions. The design 

process starts from initial baseline geometry and perturbations will be applied on it 

iteratively till the desired pressure distribution is obtained. The iterative design 

optimization process will be speeded up by the usage of an initial guess which has 

pressure distribution already close to the targeted one.  Figure 6.1 presents the numerical 

procedure followed for the inverse design optimization. 

 
Figure 6.1 Flow chart of inverse design optimization process  

In the design process the flow analysis step will evaluate the pressure distribution of the 

latest geometry and it will be followed by the comparison step to check the closeness to 

the targeted pressure distribution. If this check is failed new design cycle will start with 

sensitivity analysis which gives the variation of the pressure distribution due to each 

geometry parameter perturbation. The geometry is modified by addition of smooth 

perturbations and the weighting of the each perturbation is determined through an 

optimization process. The design cycle will be completed by the flow analysis step 
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applied on the geometry which was modified according to the information obtained from 

the optimization step. 

6.2.1 Design Variables 

The aerodynamic geometry is modified by adding a smooth perturbation, y, which is 

defined as linear combinations of the shape functions, fk as below: 

 
1

( ) ( )
K

k k
k

y x f xβ
=

Δ =  (6.1) 

where x is the normalized chordwise position, fk is the shape function and K is the 

number of the shape functions. The design variables are defined as the weightings of the 

each shape functions and they are symbolized as kβ  in the Equation (6.1). The design 

variables mainly control the amount of the perturbation that will be applied on the 

geometry by each shape functions. Variety of shape functions are used to examine the 

affect of the geometry parameterization on the efficiency of the design cycle. Hicks-

Henne functions, Wagner functions, Legendre polynomials and the patched polynomials 

are used in the study. Detailed explanations and formulations on the functions and 

polynomials used in the shape parameterization are given in Appendix-B.  

6.2.2 Least Squares Minimization Optimization 

 In this study, a least-square optimization method is used in the optimization step to 

minimize the discrepancy between the pressure of the target and the designed airfoil. The 

formulation for that objective function is given below:  

 
2 1

1
( ) ( ) ( )

J
n T n n

OBJ j j j
j

F P P Sβ β β −

=

 = − Δ   (6.2) 

In equation 6.2 j is the location where the pressure is evaluated and Sj is the length of 

the surface element of the designed airfoil that provides a proper scaling for the pressure 

values which is necessary due to the varying size of computational cells. Sj is evaluated 
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at design cycle n-1 hence, it is viewed as a constant in the differentiation of F(βn) with 

respect to design variables n
iβ .There are total of J elements on the airfoil. The pressure 

distribution of the target airfoil and the pressure distribution of designed airfoil at design 

cycle n are denoted by  T
jP  and ( )n

jP β respectively. 

 

The pressure distribution at design cycle n can be evaluated by the Taylor series 

expansion as below: 

 ( )
1

1 1

1

( )
( ) ( )

nI
jn n n n

j j i i
ii

P
P P

β
β β β β

β

−
− −

=

∂
= + −

∂  (6.3) 

where, the Pj /βi are the sensitivities. If Equation 6.3 is substituted into the Equation 

6.2 the objective function can be approximated as 

 ( )
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The minimization condition with respect to n
iβ yields 

 ( ) 0n
n
k

F β
β
∂ =
∂

 (6.5) 

Substituting Equation(6.4) into equation(6.5) gives: 

 ( )
1 1

1 1 1

1 1

( ) ( )
2 ( ) ( ) 0

n nI I
j jT n n n n

j j i i j
i kj i

P P
P P S
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∂ ∂  
   (6.6) 

for j=1,K. This formulation can be rewritten as: 
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  (6.7) 
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Solving the Equation 6.7 the weighting of the shape functions, i will be determined. 

 

In order to judge the design quality and to monitor the convergence of the design cycle, a 

convergence parameter CP is defined. This parameter is based on the root-mean square 

of length weighted pressure discrepancies between the target pressure and the pressure of 

the designed geometry. 
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 




   (6.8) 

where T
iP is the targeted pressure the iP  is evaluated pressure on the point i. iSΔ is the 

length of the surface element I is the number elements on the geometry. 

 

In previous chapter the technique applied for the evaluation of the flow variable 

sensitivities were given. Those sensitivities will be used to derive the surface pressure 

sensitivities required by the aerodynamic design optimization, which is formulated above 

by Equations 6.1 to 6.8. 
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 (6.9) 

6.3 Results 

The pressure distribution generated by the RAE 2822 airfoil was chosen as target 

pressure and the inverse design is applied by using the NACA 0012 airfoil as the initial 

geometry. The operating conditions are chosen as free-stream flow by 0.73 Mach with 
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2.78 degrees angle of attack. The flow analysis is performed by 2nd order AUSM scheme 

with the usage of Van Albada limiter. Flow domain is discretized by the C-type grid 

which has 129x33 node points. Each shape functions presented in the previous section is 

examined in the same inverse design problem to observe the effect of the geometry 

parameterization on the design.  

 
Figure 6.2 Inverse Design of RAE-2822 airfoil by using NACA0012 as baseline 
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Figure 6.2 presents the evolution of the airfoil geometry throughout the inverse design 

cycle. The targeted geometry is presented by red solid line, initial geometry is presented 

by black solid line and the geometry attained by design is presented by green dashed 

lines.  

 
Figure 6.3 Change of pressure coefficient distribution throughout the inverse design 
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Figure 6.3 presents the evolution of the pressure coefficient distribution throughout the 

inverse design cycle. The targeted Cp is presented by symbols, initial Cp is presented by 

solid line and the Cp attained by the design is presented by dashed lines 

 

Figures 6.2 and 6.3 shows that, performing the geometry parameterization by each of the 

patched polynomials, Hicks-Henne’s and Wagner’s shape functions, the objective of the 

design is successfully accomplished. However the utilization of Legendre polynomials is 

found to be insufficient to capture the targeted pressure distribution at the vicinity of 

trailing edge.  The chordwise distribution of the Legendre polynomials causes that 

insufficiency. As it can be seen by the formulations and figures given in Appendix-B the 

Legendre polynomials have their peak values in the vicinity of leading edge and their 

values get smaller near the trailing edge. Hence the smooth perturbations defined by 

Legendre polynomials are ineffective in the vicinity of the trailing edge.  

 

The inverse design results given in Figures 6.2 and 6.3 are evaluated by using analytical 

Jacobian matrix in the sensitivity evaluation. The same inverse design is also performed 

by the usage of numerical Jacobian matrices, to investigate the accuracy of the numerical 

Jacobian matrix on the design cycle.  

 

The variation of the surface pressure sensitivities relative to finite difference perturbation 

magnitude is given in Figures 6.4 to 6.7 for each geometry parameterization technique. 

In those figures, variations correspond to the 2nd, 5th, 9th and 12th design variables are 

given. The design variables 2 and 5 modify the upper surface whereas 9 and12 are 

effective on lower surface. The results presented in those figures shows that finite 

difference perturbation magnitude used in the Jacobian evaluation almost have no effect 

on the sensitivities of the surface pressure. Almost identical sensitivities are attained for 

the wide range of perturbation magnitudes used. The reason behind that can be extracted 

from the error plots given in previous chapter. In those plots it can be seen that the 

relative error in the flow variable sensitivities are very small even for the perturbation 

magnitudes significantly larger or smaller than the optimum one. For example in Figure 

5.1, usage of any perturbation magnitude from 10-4 to 10-12 resulted in a relative error 

lower than 10-2. 
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Figure 6.4 Comparison of pressure sensitivities evaluated by analytical and numerical 

Jacobian matrices (Hicks Henne functions) 
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Figure 6.5 Comparison of pressure sensitivities evaluated by analytical and numerical 

Jacobian matrices (Wagner functions) 
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Figure 6.6 Comparison of pressure sensitivities evaluated by analytical and numerical 
Jacobian matrices (Patched polynomials) 
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Figure 6.7 Comparison of pressure sensitivities evaluated by analytical and numerical 

Jacobian matrices  Legendre polynomials) 

Finally the effect of the finite difference perturbation magnitude on the efficiency of the 

design cycle is studied. The variations of the convergence parameter of the designs, 

which are performed with different numerical Jacobian matrices, are presented in Figure 

6.8. The plots presented shows that, finite difference perturbation magnitude does not 
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affect the convergence and design objective is accomplished by the equal number of 

design cycles.    

 

 

Figure 6.8 History of convergence parameter of inverse design 
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CHAPTER 7  

CONCLUSION 

In this thesis study, the Newton’s method was successfully applied for the solution of the 

two dimensional Euler equations. The results are generated by the code developed 

throughout the study. The finite volume method is used in the discretization of the 

governing equations. Fluxes are evaluated by the upwinding methods and high order 

accuracy in the spatial discretization is attained by MUSCL interpolation. The steady 

flow solutions were performed for the varying flow regimes. The Jacobian matrix 

required by the Newton’s method was evaluated both analytically and numerically. The 

UMFPACK, unsymmetrical multifrontal sparse matrix solver is utilized to factorize the 

Jacobian matrix, which is highly sparse. The gradient based optimization method is 

applied for the inverse aerodynamic design. The gradients are evaluated analytically by 

the sensitivity analysis using the direct differentiation method.   

 

The one of the main objective of this thesis study was to analyze the accuracy of the 

numerically evaluated flux Jacobian. The difference between the numerical and the 

analytical Jacobian matrices is defined as error in the study. Detailed error analysis is 

performed by considering the effects of the finite difference perturbation magnitude. The 

variation of the error is examined for variety of flow solution cases by changing the 

discretization technique, grid resolution, geometry and the flow regime. Simple formula 

is derived for the approximation of the optimum perturbation magnitude which 

minimizes the error in the numerical Jacobian. For all cases the derived formula 

approximated the optimum finite difference perturbation magnitude successfully. The 

effect of the limiters, which are used in the high order discretization, on the accuracy of 

the Jacobian matrix is examined. Results showed that to deactivate the limiter in the 

smooth flow regions, proper tuning on the limiter function is required. Significant 

enlargement occurred in the magnitude of the second derivatives of the flux vector, in the 

cases where the limiter was not tuned properly. The enlargement of the second 

derivatives caused significant shift in the optimum perturbation magnitude. 
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The convergence of the flow solution by the Newton’s method is analyzed. The 

Newton’s method provides quadratic convergence as long as a good initial guess is 

provided.  The presented results show that, the number of iterations required for the 

convergence will be tremendous or solution may even diverge if a poor initial guess is 

used. To strengthen the initial guess, time like terms are added to the diagonal of the 

Jacobian matrix in initial iterations. The initial and the withdrawal values of those added 

diagonal terms are found to be most critical factors on the convergence of the solution. 

Another factor which directly affects the convergence directly is the consistency between 

the schemes used in the Jacobian and the residual evaluations. It is found that, if the 

linearization of the Jacobian is not performed exactly the quadratic rate can not be 

achieved anymore and the iterations required for the converged solution will drastically 

increase. The effect of the accuracy of the Jacobian matrix on the convergence is also 

analyzed. Compared to effects of initial conditioning and the exactness of the 

linearization, the effect of numerical Jacobian accuracy on the convergence is found to 

be negligible. To sum up the studies conducted on the convergence, it can be said that, 

the convergence of the Newton’s method is insensitive to the errors in the numerical 

Jacobian and quadratic convergence can be achieved independently from the Jacobian 

evaluation technique as long as the initial conditioning and the linearization of the matrix 

is applied properly.  

 

The effects of the accuracy of the numerical Jacobian matrix on the accuracy of the flow 

variable sensitivities are analyzed. The sensitivities evaluated by analytical Jacobian is 

compared with one ones evaluated by numerical Jacobian matrices to define the error. 

The upper bound of the relative error is estimated by condition number. The actual 

relative error was found to be significantly smaller than that approximated bound. 

Although the accuracy of the sensitivities varied by the finite differencing perturbation 

magnitude used in Jacobian evaluation, the relative error was found to be very small 

even for large and very small perturbation magnitudes.  

 

The effects of the sensitivity accuracy on the efficiency of the inverse design 

optimization were analyzed.  Due to very small relative sensitivity error, identical 
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designs and design convergence were obtained from the usage of numerical and 

analytical Jacobian. 

 

To conclude, the numerical evaluation of the Jacobian matrix can be very advantageous 

since the occurring relative error is very small and do not introduces any practical 

penalty.  Moreover using the numerical evaluation, very complex schemes can be 

linearized effortlessly compared to the analytical evaluation. The only penalty of the 

numerical Jacobian usage is the increase in the CPU time spent. 
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APPENDIX A 

ANALYTICAL FLUX JACOBIANS FOR STEGER-

WARMING FLUX VECTOR SPLITTING SCHEME 

The Steger-Warming scheme defines the convective fluxes vectors  as follows: 
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Where xη and yη  are the components of the face normal vector. The 

eigenvalues 1λ , 2λ , 3λ and the speed of sound c is defined as: 

 ( ) ( )2 2

1 2 3

11
2

, ,

tc e u v

U U c U c

γ γ

λ λ λ

 = − − + 
 

= = + = −

 (A.2) 

Then taking the derivatives of each flux Fi  with respect to the each flow variable wj flux 

Jacobians Fij are obtained as follows: 
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Where the derivatives of speed of sound c and eigenvalues i with respect to flow 

variables wj, being cj and ij respectively are defined as: 
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The positive and negative flux vectors and their Jacobian matrices are obtained from 

Equation (A.1) to Equation(A.6) by substituting ’s by +’s and -’s respectively. 

Here, iλ
  and its derivative with respect to the flow variables wj , ijλ are defined as: 
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APPENDIX B 

DESIGN VARIABLES 

Airfoil Shape Modification 

The geometry was modified by adding smooth perturbations. The perturbation was 

defined as a linear combination of base functions fk  

 
1

( ) ( )
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k k
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y x f xβ
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Δ =  (B.1) 

Where x is the normalized chord wise position,  kβ  is design variable, fk is the shape 

function, and K is the number of design variables to be used.  

 

Hicks-Henne Functions: 
 

The sinusoidal shape functions are frequently used in airfoil optimization. 
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Here xk are the locations of maximum height of the corresponding shape funtions. 

 

Wagner Functions: 
 

Wagner functions provide large variations with high harmonics. 
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Patched Polynomials: 
 

A cubic on one side of xk is patched with another cubic on the other side to produce a 

smooth curve of second order continuity. xk is the location of maximum perturbation . 
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Legendre Polynomials: 
 

The orthogonal functions can also be used as shape functions. The first seven shape 

functions of the Legendre polynomials are given as follows 
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Figure B.1 Hicks-Henne Functions 

 

 
Figure B.2 Wagner Functions 
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Figure B.3 Patched Polynomials 

 

 
Figure B.4 Legendre Polynomials 

 


