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IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2009



Approval of the thesis:

PREDICTION OF PROTEIN-PROTEIN INTERACTIONS FROM SEQUENCE USING

EVOLUTIONARY RELATIONS OF PROTEINS AND SPECIES
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ABSTRACT

PREDICTION OF PROTEIN-PROTEIN INTERACTIONS FROM SEQUENCE USING
EVOLUTIONARY RELATIONS OF PROTEINS AND SPECIES

Güney, Tacettin Doğacan

M.S., Department of Computer Engineering

Supervisor : Assist. Prof. Dr. Tolga Can

September 2009, 39 pages

Prediction of protein-protein interactions is an important part in understanding the biological

processes in a living cell. There are completely sequenced organisms that do not yet have

experimentally verified protein-protein interaction networks. For such organisms, we can

not generally use a supervised method, where a portion of the protein-protein interaction

network is used as training set. Furthermore, for newly-sequenced organisms, many other

data sources, such as gene expression data and gene ontology annotations, that are used to

identify protein-protein interaction networks may not be available. In this thesis work, our

aim is to identify and cluster likely protein-protein interaction pairs using only sequence of

proteins and evolutionary information. We use a protein’s phylogenetic profile because the

co-evolutionary pressure hypothesis suggests that proteins with similar phylogenetic profiles

are likely to interact. We also divide phylogenetic profile into smaller profiles based on the

evolutionary lines. These divided profiles are then used to score the similarity between all

possible protein pairs. Since not all profile groups have the same number of elements, it is

a difficult task to assess the similarity between such pairs. We show that many commonly

used measures do not work well and that the end result greatly depends on the type of the

similarity measure used. We also introduce a novel similarity measure. The resulting dense
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putative interaction network contains many false-positive interactions, therefore we apply the

Markov Clustering algorithm to cluster the protein-protein interaction network and filter out

the weaker edges. The end result is a set of clusters where proteins within the clusters are

likely to be functionally linked and to interact. While this method does not perform as well

as supervised methods, it has the advantage of not requiring a training set and being able to

work only using sequence data and evolutionary information. So it can be used as a first step

in identifying protein-protein interactions in newly-sequenced organisms.

Keywords: phylogenetic profile, clustering, evolution, protein-protein interactions
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ÖZ

PROTEİN PROTEİN ETKİLEŞİMLERİNİN SEKANS BİLGİSİNDEN PROTEİN VE
TÜRLER ARASINDAKİ EVRİMSEL İLİŞKİLERİ KULLANARAK TAHMİN EDİLMESİ

Güney, Tacettin Doğacan

Yuksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Y. Doç. Dr. Tolga Can

September 2009, 39 sayfa

Protein-protein etkileşim tahmini, bir hücredeki biolojik süreçleri anlamanın en önemli adımlarından

biridir. Pek çok sekansı bilinen organizmanın henüz deneylerle doğrulanmış protein-protein

etkileşim ağları bulunmamaktadır. Bu tip organizmaların için, bir öğrenme verisine ihtiyaç

duyan tipik makine öğrenme algoritmaları uygulanamaz. Ayrıca, yeni sekanslanmış orga-

nizmaların, genelde protein-protein etkileşimlerini tahmin etmek için kullanılan biyokimsay

de bulunmayabilir. Bu tez çalışmasında, protein-protein etkileşim ikililerini sadece geno-

mun sekans ve evrimsel bilgilerini kullanarak bulmak ve kümelemeye çalıştık. Evrimsel

baskı hipotezinin benzer filogenetik profillere sahip proteinlerin etkileşim olasılığının yüksek

olduğu önermesinden yararlanarak, tez çalışmasında proteinlerin filogenetik profillerini kul-

landık. Ayrıca bu filogenetik profilleri evrimsel çizgilere göre daha küçük gruplara böldük. Bu

bölünmüş profilleri iki proteinin filogenetik olarak benzerliğine puan vermek için kullandık.

Profilin içindeki gruplarda her zaman aynı sayıda eleman olmadığı için, bu grupların benz-

erliğine puan verebilecek yeni bir benzerlik fonksiyonu ürettik. Aynı zamanda sık kullanılan

benzerlik fonksiyonlarının bu duruma uygun olmadığını gösterdik. Çıkan benzerlik puan-

larını daha sonra Markov Kümeleme algoritmasına vererek sonuçları kümeledik. Sonuçta

çıkan kümeler içinde kalan proteinlerin fonksiyonel olarak benzer özelliklere sahip olması ve
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etkileşim içinde olması yüksek bir olasılıktır. Her ne kadar bu method diğer makine öğrenme

algoritmaları kadar iyi çalışmasa da, öğrenme verisine ihtiyaç duymaması ve sadece sekans ve

evrim bilgilerini kullanarak çalışmasının bir avantaj olduğu söylenebilir. Bu metod protein-

protein etkileşimlerinin tanımlanmasında bir ilk adım olarak kullanılabilir.

Anahtar Kelimeler: filogenetik profil, kümeleme, evrim, protein-protein etkileşimleri
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CHAPTER 1

Introduction

1.1 Problem Definition and Motivation

Protein-protein interactions (PPIs) are a vital part of biological processes in a cell, such as

the structure of sub-cellular organelles, the transport machinery across the various biolog-

ical membranes, packaging of chromatin, the network of sub-membrane filaments, muscle

contraction, signal transduction and regulation of gene expression.

There are a number of methods to extract the protein-protein interaction network of an or-

ganism. Among these methods are Yeast Two Hybrid, Co-immunoprecipitation and Tandem

affinity purification. Many of these methods are high-throughput methods, meaning that the

existence (or non-existence) of many interactions can be determined at once. However, all

of these experimental methods report a large number of false-positive and false-negative in-

teractions, thus limiting their usage. Furthermore, there is usually a time delay between the

sequencing of a new genome (of a new organism) and the appliance of a PPI detection method.

So there are a large number of sequenced organisms out there that have been sequenced but

without any information on its protein-protein interaction network.

Understanding the protein-protein interaction network of an organism enables us to under-

stand the biological functions better. As mentioned above, protein-protein interactions play

an important role in virtually all biological functions. Also aberrant protein-protein interac-

tions are partly responsible for many diseases (such as cancer or Alzheimer’s Disease). So, a

better understanding of PPI networks can lead to better treatments.

Due to problems in experimental high-throughput PPI detection methods, algorithms have

been developed to predict protein-protein interactions. However, most of these methods use
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supervised learning methods, i.e., they take a ”gold standard” set of positive and negative

interactions). But, the task of generating such sets is a difficult one due to inherent noise in

every PPI detection method. Also, for newly-sequenced organisms such gold standard sets do

not exist, limiting the usage of supervised algorithms.

In this thesis, our goal is to develop a unsupervised PPI prediction algorithm using only se-

quence based on co-evolution. For each protein of an organism, we generate its phylogenetic

profile as a vector, then divide the resulting vector into smaller groups using a phylogenetic

tree of the species used to construct its phylogenetic profile. So, similar organisms within

the tree are grouped together. We then calculate the similarity between all protein pairs using

the grouped vector and cluster the pairs. Because of co-evolution, the pairs more likely to

interact will be clustered together while pairs more likely to not interact will also be clustered

together. By examining the resulting clusters, valuable information can be gained about possi-

ble protein-protein interactions. We also show that the end result greatly depends on the type

of distance measure used. We examine commonly used similarity measures and provided a

novel similarity measure in this thesis.

1.2 Related Work

1.2.1 Supervised Methods for Protein-Protein Interaction Prediction

The Auto-Covariance (AC) method proposed by Guo et al. [7] generates a feature vector using

several biochemical measures and the neighborhood of amino acids in a protein sequence

by means of auto-covariance. A training set of positive and negative interaction sets are

then used to train a Support Vector Machine (SVM). We used their positive and negative

gold standard data sets to measure the success of our distance measures. Another method by

Martin et al. [12] predicts the protein-protein interactions by training an SVM with signatures

of protein pairs that are generated by encoding the variable length amino acids using their

neighbours. Another technique proposed by Bock et al. [2] uses the primary structure of

proteins together with the residual properties of amino acids such as charge, hydrophobicity

and surface tension of a known database of protein interactions as training data for SVM.

Other than being supervised methods, all of these methods use the physical and/or chemical

properties of proteins and do not consider co-evolution.
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1.2.2 Using Phylogenetic Profiles for Protein-Protein Interaction Prediction

The co-evolutionary pressure hypothesis suggests that during evolution two interacting pro-

teins are likely to coevolve and interact in the evolved organism or disappear together, i.e, no

orthologs of two proteins exist. Many researchers use this idea in protein-protein interaction

prediction. The study by Jothi et al. [9] shows that proteins with similar phylogenetic profiles

are likely to interact assuming that proteins in the same metabolic pathway or cellular system

are co-inherited during evolution. Wu et al. [22] infer a confidence value between protein

pairs based on the probability that a given arbitrary degree of similarity between two profiles

would occur by chance, with no biological pressure. Pellegrini et al. [17] demonstrates that

functions of protein-protein interactions can be detected by comparing the phylogenetic pro-

files and counting the numbers of bits changed (a basic form of similarity measure). They

use binary phylogenetic profiles. While simple, this approach loses information as more fine-

grained phylogenetic profiles can be generated. Bowers et al. [3] compute the probability

of coevolution based on hypergeometric distribution. In other words, given two phylogenetic

profiles they convert it into a probability value that represents their confidence on their co-

evolution. They use this probability value in an integrative framework to derive functional

association of proteins. Kim et al. [11] use a mutual information function based on the Shan-

non entropy to indicate the level of similarity between two phylogenetic profiles. Vert [21]

developed a tree kernel that can use the phylogenetic tree of a genome along with the phy-

logenetic profiles of two proteins. This tree kernel is used to predict the functional class of

a gene. Sato et al. [19] improve Pearson‘s correlation coefficient by using partial correla-

tion coefficient on the matrix of Pearson‘s correlation coefficient values calculated between

all proteins. Gonzales et al. [6] include the phenotype knowledge to phylogenetic profiles

in order to extend the binary strings to continuous phenotypes and develop scoring functions

to use them in pairs. Juan et al. [10] use an estimator of coevolution that takes the whole

network of similarities between all of the pairs of proteins within a genome instead of rely-

ing on the individual tree similarity between two proteins, thereby also taking coevolutionary

context into account. They use an iterative neighborhood extension method to construct links

between protein pairs that are likely to interact. This is similar to a clustering approach but it

is limited to only two iterative steps. We use a full clustering approach to cluster the protein

pairs.
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Another research in this area is the master’s thesis work by Bahar Pamuk[15]. The author uses

a number of clustering and filtering methods to reduce the dimensionality of phylogenetic

profile vectors, then use SVM to predict the PPI networks.

1.3 Contributions

Our contributions in this thesis are:

1. We propose a new clustering approach where a distance value is calculated between all

possible protein pairs in an organism. This distance value is defined by the similarity

of the phylogenetic profiles of protein pairs.

2. We propose that by grouping similar organisms together in a phylogenetic profile, a

more useful profile can be obtained. A grouped phylogenetic profile will feature less

dimensions than a regular one. We show that when distance measures are used on

high-dimensional phylogenetic profiles of protein pairs, results tend to converge, thus

making protein-protein interaction prediction difficult.

3. We, furthermore, propose that by weighing the phylogenetic groups that are closer to

the organism from an evolutionary perspective, the quality of clustering can be im-

proved.

4. We propose a new distance measure that is more applicable than Pearson‘s correlation

or Euclidean distance. We also show that the quality of the end result varies greatly

depending on the distance measure employed.

1.4 Thesis Outline

This thesis is organized as follows: In Chapter 2, we provide the necessary background knowl-

edge to understand the problem domain and the solutions. In Chapter 3, datasets are described

and technical details of the proposed methods are given. In Chapter 4, experimental results

which demonstrate the utility of the proposed methods are shown. In Chapter 5, the thesis is

concluded with a summary and future directions.
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CHAPTER 2

BACKGROUND

2.1 Amino Acids and Proteins

Proteins are essential parts of organisms and participate in virtually every process within cells.

They are formed of linear chains of amino acids. A number of amino acids (as defined by a

gene sequence) are joined by a peptide bond. An amino acid chain is commonly made of

200-300 amino acids.

The amino acid sequence of a protein can be represented by a string composed of letters each

representing one of the 20 different kinds of amino acids. The amino acid sequence is not a

complete representation as a protein’s function or its interaction with other proteins are also

defined by their structures (Figure 2.1), their physiochemical properties and locations in the

living cell, among other things.
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Figure 2.1: The complex 3D structure of a protein.

2.2 Pairwise and Multiple Protein Sequence Alignment

Making and alignment between the amino acid sequences of two proteins can give impor-

tant insights into the functional relationship between them or help a researcher understand

if two proteins are homologous or not. There are well-known algorithms for aligning a pair

of proteins (pairwise alignment) based on dynamic programming. But generally, these ap-

proaches do not scale well to multiple protein sequence alignment. So for multiple alignment

faster heuristics are used. These methods usually work by first aligning local sequences that

are deemed more significant by the algorithm then using this alignment to align other pro-

teins. Commonly used alignment tools are FASTA [16], BLAST [1], CLUSTAL W [20] and

MUSCLE [5].

6



2.3 Protein-Protein Interaction Networks

Protein-protein interaction network is a graph (often undirected) that represent the interactions

for all proteins in a genome (Figure 2.2). An edge between two protein nodes in the network

indicate that the proteins interact in some way. Due to uncertainty in determining interactions

between proteins, protein-protein interaction networks may be weighted where the weight of

the edge indicate the confidence value for the interaction between proteins. Edges may also

be labeled to indicate the type of interaction.

A common feature of protein-protein interaction networks is that they are very sparse; i.e.

only a tiny portion of all possible edges is present in the network. For example, research by

Hart et al. [8] indicate that a yeast’s protein-protein interaction network is predicted to contain

only 40 to 80 thousand interactions out of the possible 18 million edges.

Over the years, numerous organisms have been extensively researched and have publicly

available high-quality protein-protein interaction networks available. The interactions in these

organisms are usually validated by wet-lab experiments. There are also several high-quality

databases of protein-protein interactions networks, such as MIPS and DIP. MIPS (Munich In-

formation Center for Protein Sequences) [14] Mammalian Protein-Protein Interaction Database

provide PPI networks for many mammals. All interactions in MIPS are confirmed by wet-lab

experiments. DIP (Database of Interacting Proteins) [23] is another protein-protein interac-

tion network database that catalogs experimentally determined interactions between proteins

by using both wet-lab experiments and high-confidence PPI prediction methods.

2.4 Phylogenetic Profiles and Trees

Phylogenetic profile of a protein represents the existence or absence of the ortholog of a

protein across a number of organisms. One way of generating a phylogenetic profile is to use

a binary representation where 0 indicates absence and 1 indicating presence. In our thesis,

BLAST is used to generate a protein’s phylogenetic profile across 450 organisms. For every

protein a BLAST search is performed and the negative log of E-value is used. E-value of the

alignment of the query protein with a database protein indicates the similarity. We use a series

of normalizations and quantizations on BLAST data before using it in our method. Methods
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Figure 2.2: A Human Protein-Protein Interaction Network.

that generate binary phylogenetic profiles generally use BLAST E-values use 10−3 as a cutoff

point.

Phylogenetic trees show the evolutionary links between organisms. In a phylogenetic tree, a

parent node represents the common ancestor of the organisms in its child nodes. Observed

organisms are in leaf nodes while the internal nodes can not be directly observed and thus are

hypothetical groupings. A phylogenetic tree can also have a branch length indicating the evo-

lutionary distance between nodes. In our dataset, evolutionary distances between taxonomy

units are not present so we assume all branch lengths to be 1.

Phylogenetic trees are very useful for understanding and visualizing the evolutionary process.

Figure 2.3 shows a sample phylogenetic tree1.

1 http://nai.arc.nasa.gov/library/images/news articles/big 274 3.jpg
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Figure 2.3: A sample phylogenetic tree.

2.5 Euclidean Distance

For two points (represented by n dimensional vectors p and q), the Euclidean distance between

two points is defined as:

√√
n∑

i=1

(pi − qi)2

2.6 Pearson Product-Moment Correlation Coefficient

Pearson’s Product-Moment Correlation Coefficient (sometimes referred to as Pear-

son’s r, referred simply as Pearson’s correlation in this thesis) is a measure to calcu-

late the linear dependence between two variables. A value of +1 indicates that the

two variables are perfectly linearly dependent on each other, i.e., as one increases the

other also increases. A value of -1 indicates a negative correlation such that if the

increase in one variable causes a decrease in the other. A value of 0 indicates that

the two variables are linearly independent. Values in between show different levels of
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positive or negative correlation. Pearson’s correlation is defined as:

1
n − 1

n∑
i=1

(
Xi − X̄

sX

) (
Yi − Ȳ

sY

)
,

where

X̄ and sX

are the mean of X and the standard deviation of X, respectively.

Pearson’s correlation values can be misleading if outliers are present. It is also unde-

fined for cases where standard deviation of a variable is zero, even though biologically

two profiles may be highly correlated.

2.7 Dijkstra’s Shortest Path Algorithm

Finding the shortest path between all nodes in a graph is a common computer science

problem. In our thesis, Dijkstra’s shortest path algorithm is used to calculate the

evolutionary distance between different nodes in a phylogenetic tree. The algorithm

is defined as:

• Set all distances between all nodes to infinity.

• Mark all nodes as unvisited..

• Select an initial node and set its distance to 0.

• For all nodes still unvisited in graph, select the one with the smallest distance

from the initial node:

1. Consider all its unvisited neighbors and calculate their distance from the

initial node.
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2. If this distance is less than the distance stored in the edge, update the dis-

tance.

3. Mark the current node as visited.

Computing the evolutionary distance between groups allows us to assign weights to

phylogenetic profile groups. From an evolutionary perspective, the existence or ab-

sence of a protein pair in organisms closer to each other in phylogenetic trees may be

more relevant information than the existence of a protein pair between two organisms

far from each other.

2.8 Markov Clustering

Clustering algorithms try to divide a graph to clusters so that generally, the number

of edges between nodes in a cluster is high. Markov Clustering [4] is a fast graph

clustering algorithm based on Markov chains. The basic idea behind Markov Clus-

tering is that a random walk between nodes should frequently stay within the nodes

of that cluster and seldom go to a different cluster. So between two arbitrary nodes of

a cluster, we expect a large number of high-length paths (and thus, we expect the ran-

dom walk to usually end within the cluster). One of the main advantages of Markov

Clustering is its speed. Since we will be using our method on all protein pairs within

an organism (for example, for Saccharomyces cerevisiae there are 18 million protein

pairs) speed is an important consideration for us.

Markov Clustering takes a column stochastic matrix as its input. A column stochastic

matrix is a non-negative matrix with the property that each of its columns sums to

1. The value at row i, column j corresponds to the distance between nodes i and j in

original graph normalized so that the total distance of i to all its neighbors equal 1.

This value is the probability of traversing from node i to node j.

Markov Clustering works in two main steps called expansion and inflation. In the

expansion step, the algorithm simulates one step of random walk. This computes the

probability of a random walker ending up on a node after one edge traversal. In the

inflation step, the Hadamard power of the matrix is taken, followed by a scaling step
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so that the matrix is column stochastic again. The inflation step severs the weak links

between nodes, thus forming clusters.

The algorithm can be described as follows:

• Set M1 to be the current matrix

• While change is smaller than a predefined value

1. M2 = M1 ∗ M1

2. M1 = Hadamard(M2)

3. M1 = scale(M1)

4. change = M1 − M2

• The components of M1 are the resulting clusters

The algorithm may never converge (depending upon the matrix). However, in most

cases, algorithm tends to converge after 3-10 iterations.

2.9 Gaussian Radial Basis Function

A radial basis function is a real-valued function whose value only depends on the

distance from the origin. For example, Euclidean distance is a radial basis function.

Gaussian Radial Basis Function is a decaying radial basis function. It is very com-

monly used in Support Vector Machines as a kernel function. However, it can also be

used as a way of assessing similarity. It is defined as:

ϕ(r) = e−βr2
,

where β is the decaying factor and is positive and r is the distance.
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2.10 Support Vector Machines

Support Vector Machines (SVMs) are not used in our proposed method but we make

use of SVMs in some experiments so they are briefly described here.

Support Vector Machines are supervised learning methods used for classification and

regression. Input data is represented by pairwise similarity values computed by a

kernel function. Given two sets of data points, SVMs solve the problem of finding

the best separating hyperplane such that the geometric margin is maximized. An

example of a maximum margin hyperplane is given in Figure 2.4.

Figure 2.4: Maximum margin hyperplane that separates two data sets

SVMs use a kernel function to compare the data instances. A kernel function can be

any function as long as it satisfies two properties: (a) The function must be symmetric

(b) The function must be positive semi-definite. If the kernel function is the dot-

product of two vectors then SVM is a linear classifier. However, using other kernel

functions, such as Guassian Radial Basis Function, result in non-linear classifiers.

Using a non-linear kernel function maps the data to a higher dimensional space (in

the case of Gaussian RBF, to Hilbert space, i.e., infinite dimensions) such that the

mapped data is linearly separable.
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2.11 N-Fold Cross Validation

Cross validation is a technique for estimating the performance of a predictive model.

In cross validation, data is partitioned into complementary subsets, where one subset

is used for training and other subset is used for validation.

In N-fold cross-validation, the original sample is partitioned into N subsets. One sub-

set is then selected as the validation set and the remaining N - 1 subsets are combined

to produce the training set. This operation is repeated N times (the number of folds),

each time a different subset is selected as the validation set. The resulting N success

rates are then averaged to give the overall estimation. The advantage of this method

over repeated random sub-sampling is that all observations are used for both training

and validation, and each observation is used for validation exactly once.
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CHAPTER 3

MATERIALS AND METHODS

3.1 Data Sets

In this section, we represent the data sets used in this thesis and the tools we use to

measure the performance of our method. The protein-protein interaction network of

baker’s yeast (Saccharomyces Cerevisiae) is predicted in this thesis.

3.1.1 Phylogenetic Profiles

The phylogenetic profile of an organism is constructed via the BLAST tool described

in Chapter 2. A BLAST search is performed for every protein (approximately 6000)

in Saccharomyces Cerevisiae, where BLAST aligns the protein to its orthologs in 450

different organisms. BLAST E-values are in the range [0,∞]. We use the negative log

of BLAST E-values as a measure of similarity, i.e, smaller E-values are normalized

to larger numbers. E-values smaller than 10−200 are converted to 200, i.e., 200 is the

upper bound of similarity.

In many studies, two sequences with BLAST E-value of 10−3 are considered ho-

mologs. However, in the conversion method described above, two E-values 10−3 and

10−150 would be different by a factor of 50 even though they are close values in bio-

logical terms. Because of this, we perform an extra quantization step:

1. If the normalized E-value is less than or equal to 3, it is not quantized, i.e., taken

as it is.
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2. If the normalized E-value is between 3 (exclusive) and 50 (inclusive), it is taken

to be 3.

3. If the normalized E-value is between 50 (exclusive) and 100 (inclusive), it is

taken to be 4.

4. If the normalized E-value is between 100 (exclusive) and 150 (inclusive), it is

taken to be 5.

5. If the normalized E-value is larger than 150, it is taken to be 6.

An example of quantization, for protein YBR160W, is given in Table 3.1.

Table 3.1: Quantization of a portion of a phylogenetic profile

Prot./Org. hsa ptr mmu rno cfa bta ssc gga xla xtrl
YBR160W (norm.) 106 101 105 105 103 106 48.5 105 102 102
YBR160W (quant.) 5 5 5 5 5 5 3 5 5 5

The organisms used to generate the phylogenetic profiles can be found in Appendix

A.1.1.

3.1.2 Phylogenetic Tree

The phylogenetic tree is constructed from the Kyoto Encyclopedia of Genes and

Genomes (KEGG) database. The file used can be found here1. The file format is

simple, a line starting with ’#’ indicates a group and the number of ’#’s indicate the

level of the group. Every organism is written in a single line in the PIR-PSD2 (Inter-

national Protein Sequence Database) format.

However, the tree generated from KEGG database include only 438 of the 450 organ-

isms from BLAST. So, the 12 organisms not in our tree is removed from the generated

phylogenetic profile. The phylogenetic tree has a maximum depth of 5 and leaf nodes,

i.e., organisms, are in levels 3 and 4. Overall, there are 107 groups, 49 in level 4 and

50 in level 3.
1 ftp://ftp.genome.jp/pub/kegg/genes/taxonomy
2 http://pir.georgetown.edu/pirwww/dbinfo/pir psd.shtml
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Organisms used in the phylogenetic tree can be seen on Appendix A.1.2. Part of the

phylogenetic tree can be seen on Appendix A.2.

3.1.3 Positive and Negative Interaction Sets

We use the datasets used by Guo et al. [7]. They define approximately 6000 protein-

protein interaction pairs for positive and negative interactions as their ’gold standard’

set. The positive gold standard set come from DIP core interaction dataset3. Since

our method is unsupervised, we do not use this data in training (as Guo et al. do) but

use it to test the performance of our similarity measures. Even without the clustering

step, one can expect that the similarity measure should give high scores to protein-

protein interaction pairs in the positive set, while giving low scores to the pairs in the

negative set.

3.1.4 Gene Ontologies

The Gene Ontology4 (GO) is a bioinformatics initiative that aims to annotate all genes

and gene products across all species and provide tools to facilitate access too all as-

pects of the provided data.

We downloaded the most recent yeast GO annotations and the most recent ontology

definition file as of date. We got a list of significant biological process terms from

supplementary material of Myers et al. [13] and extracted the process terms. There

were 295 significant terms in the supplementary data, 186 of which is annotated to

at least one protein. Every protein in each of these 186 cluster has the same GO

annotation, thus can be assumed to be in the same functional path.

GO annotations have many uses, for example, they can be used to predict protein-

protein interactions. However, since GO annotations are not likely to be available

for newly-sequenced organisms, we do not use GO annotations for PPI prediction in

our thesis. Still, our test organism (baker’s yeast) is well-studied and well-annotated.

3 http://dip.doe-mbi.ucla.edu/dip/Main.cgi
4 http://www.geneontology.org/
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Because proteins in the same functional path are likely to evolve together, they are

also likely to be phylogenetically similar to one another. So after the clustering step,

the resulting clusters may be expected to map to a GO annotated cluster.

Even for well-studied organisms such as baker’s yeast, a significant portion of the

PPI network is not yet validated by wet-lab experiments. Because of this, for a given

GO cluster, it is possible that there are other proteins that are in the same functional

path but not yet GO-annotated. This tells us that, after the clustering step, the result-

ing clusters may contain apparent false-positives that should actually be in that GO

cluster.

3.2 Overview

This section describes the overview of our method while the following sections detail

the steps in our algorithm.

1. Construct phylogenetic profiles for all proteins in the test organism using BLAST.

2. Normalize, then quantize the BLAST E-values

3. Construct the phylogenetic tree for organisms in the phylogenetic profiles.

4. Using the phylogenetic tree, group the phylogenetic profiles into taxonomy

units.

5. For all protein pairs, calculate the similarity value for all groups.

6. Average the similarity vector using evolutionary distance information from the

phylogenetic tree and reduce the similarity vector to a single value.

7. Cluster the resulting network

3.3 Phylogenetic Profile Grouping

Based on the phylogenetic tree, the generated phylogenetic profiles are divided into

smaller groups. To achieve this, we take all the phylogenetic groups one level above
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the organisms and group the profile accordingly. For example, for the group Fishes

(Eukaryotes → Vertebrates → Animals → Fishes), the profile values for organisms

Danio rerio (zebrafish), Fugu rubripes (Japanese puffer fish), Tetraodon nigroviridis

(green spotted puffer) and Oryzias latipes (Japanese medaka) are put in a group. A

portion of a sample profile is given in Figure 3.1.

Figure 3.1: A portion of the grouped phylogenetic profile for protein YBR040W.

3.4 Assessing the Similarity Between Profiles

After dividing the phylogenetic profiles into smaller groups, we then need a similarity

measure that can score how biologically related the aforementioned groups are. There

are a couple of methods we can use.

3.4.1 Pearson’s Correlation

A common method for measuring correlation between vectors is Pearson’s Correla-

tion. There are some problems with using Pearson’s Correlation in comparing phy-

logenetic profiles. One problem is that Pearson’s Correlation measures the level of

dependence between two vectors. This score will not always necessarily be correlated

with how similar the profiles are from a biological perspective. Another problem is

that if Pearson’s Correlation is run on the original 450 dimensional vector, many pro-

tein pairs (both actually positive and negative) will get similarity scores due to the

high number of dimensions. We aim to mitigiate this for Pearson’s Correlation (and

other similarity measures) by dividing phylogenetic profile to smaller groups.

Pearson’s Correlation also does not work well with a grouped phylogenetic profile.

Some of our phylogenetic groups (for example, Eukaryotes→ Fungi→ Ascomyetes

→ Fission Yeasts) only include one organism (for Fission Yeasts, Schizosaccha-

romyces pombe), and Pearson’s Correlation is undefined for a vector with a single

dimension. In our tests, we ignored single-organism groups which means important
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evolutionary data is lost.

Also consider these two profile portions:

Table 3.2: Profile portions for YOR275C and YPR173C

Budding Yeasts
Protein dsmi dsba ago dkwa cal
YOR275C 200.0 200.0 119.0 145.0 71.2
YPR173C 67.3 200.0 200.0 200.0 175.0

Both proteins have highly similar orthologs for all organisms in Budding Yeasts and

a good similarity measure should give this pair a large score. However, calculating

Pearson’s correlation for these two profile portions gives:

Pearson′s Correlation(



200.0

200.0

119.0

145.0

71.2


,



67.3

200.0

200.0

200.0

175.0


) = −0.40 ,

implying that the profile portions are negatively-correlated. Because Pearson’s Corre-

lation works by first centering the vectors on their respective means (means are 147.0

and 168.4 respectively). After the vectors are centered on their means, first vector has

2 negative, 3 positive values and the second vector has 1 negative, 4 positive values.

Since Pearson’s Correlation then multiplies the dimensions on mean-centered vectors

we end up with a negative value.

Another problem is especially apparent after the quantization step in phylogenetic

profiles. Among positive interaction pairs, there are many high-similarity values for

many orthologs, but after quantization these values are scaled to a smaller range. After

the quantization step, many groups in the phylogenetic profile of proteins consist of

a single value. But since Pearson’s Correlation measures the correlation of change

between two vectors, single repeating value profile pairs can not be calculated. An

example is given below in Table 3.3.

Pearson’s Correlation of these two profile portions will be undefined even though
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Table 3.3: An example of quantization for profiles

Mammals
Protein/Organism hsa ptr mmu rno cfa bta ssc
YHL004W 16.5 16.6 17.0 18.0 17.6 18.3 7.6
YDR036C 44.5 11.3 45.0 39.0 43.3 40.1 10.2
YHL004W (quant.) 3 3 3 3 3 3 3
YDR036C (quant.) 3 3 3 3 3 3 3

from a biological perspective it looks like these two profile portions should be highly

correlated. We may try to extend the Pearson’s Correlation to assign such profiles a

value of 1 but that approach would be problematic, as correlation of two profiles, one

made of 3’s, the other made of 0’s will also be undefined and it is not immediately

clear how such profiles should be scored.

3.5 Normalized Euclidean Distance

Because of the problems with Pearson’s Correlation, we may consider other similarity

measures. One of the possible measures is the Euclidean distance. Euclidean distance

has some significant advantages over Pearson’s Correlation:

1. It works for single element profile portions.

2. It works for profile portions where standard deviation is zero, i.e., profile portion

is made of the same repeating number.

3. It is much more resistant to small changes in vectors.

However, Euclidean distance also has its share of problems. Distances between high-

dimensional vectors tend to be higher than low-dimensional vectors. So if we were

to use Euclidean distance directly, phylogenetic profile groups with many members

would dominate the profile and dominate the overall results.

So, we propose a simple change to Euclidean distance:
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√∑n
i=1(pi − qi)2

n
Another problem is that Euclidean Distance is a measure of distance and not of sim-

ilarity, i.e., if two profiles are ’closer’ to one another, normalized Euclidean Distance

value will be small, while for unrelated profiles it will be large. We can get a similar-

ity measure by simply dividing 1 to the normalized Euclidean distance. Alternatively,

we use the Gaussian Radial Basis Function:

1

eβ
∑n

i=1(pi−qi)2

n

where β is the decaying factor and larger than 0.

A Gaussian Radial Basis function is stronger than inverting the result as Gaussian

RBF decays to zero faster (depending on β). Thus, only very similar profiles get a

high score.

3.6 Averaging Grouped Phylogenetic Profile Similarity Vectors

After the initial BLAST query, we have 450-dimensional profile vectors. We then

use the information in the phylogenetic tree to divide the 450-dimensional vector into

smaller groups (for example, 47 groups if we take groups to be the taxonomy units

that are parents of leaf nodes). We then apply one of the similarity measure described

in the previous section to the protein pairs and we get a low-dimensional (continuing

the example, 47-dimensional) vector that describes the similarity between two protein

phylogenetic profiles within groups. We can use this vector directly to predict protein-

protein interactions. But the Markov Clustering algorithm that we used in our work

expects a single scalar value as the edge length between nodes. Because of this, we

need to reduce the new similarity vector to a single dimension.
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One approach is to average the values in the similarity vector. While simple, this

approach ignores the evolutionary distance between different organisms. Profile sim-

ilarities that are coming from organisms similar to our test organism from an evolu-

tionary perspective are more likely to have an effect on overall profile scoring than

those organisms that are not related evolutionarily. Because of this, we propose an-

other averaging method where the evolutionary distance is weighted accordingly. We

assume the phylogenetic tree to be an undirected graph and calculate the shortest

distance between all nodes (both organisms and other taxonomy units). After that,

Gaussian Radial Basis Function is applied to every group.

1
eβr2

where β is the decaying factor and r is the shortest distance between test organism,

i.e., yeast, and the organism in the profile.

3.7 Scaling and Clustering

After averaging is complete, we now have a single scalar value that represents the

similarity between two phylogenetic profiles. These scalar values are calculated for

every possible protein-protein pair in the network, thus forming a complete clique

with 6000 nodes. The resulting k-clique is converted to matrix form and scaled so that

the sum of values in a column add up to 1 as Markov Clustering expects a column-

stochastic matrix. The scaled matrix is then given to Markov Clustering.

Since proteins in a functional path have a high probability of co-evolving, clustering

approach enables us to consider all proteins in the functional path together, instead of

just focusing on the probability of interaction between two proteins. These proteins

in functional paths will likely have a high intra-cluster distance so Markov Clustering

is a good approach for clustering them.
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CHAPTER 4

RESULTS

In this chapter, we represent the experimental results of our method.

4.1 Quantization and Dimension Reduction

As discussed in Chapter 3, after taking the negative log values of BLAST E-values,

we perform an extra quantization where we reduce the range of values. For our ex-

periments, we also define a simple binarization of BLAST E-values (as used by other

researches) where BLAST E-values smaller than or equal to 10−3 are taken to be 1

and other values are taken to be 0.

Grouping phylogenetic profiles can be considered a way of dimension reduction. We

start with a 450 dimensional vector where every dimension represents an organism

and values represent the similarity between the current protein and protein in the rep-

resented organism. We then reduce this phylogenetic profile to a lower dimensional

vector by grouping. In the grouped phylogenetic profiles, every dimension represents

a phylogenetic group and values represent the overall similarity between the current

protein and all the proteins of organisms in that phylogenetic group. For the next steps

of our algorithm to work, i.e., the averaging and the clustering steps, this dimension-

ality reduction needs to be meaningful. Even though our method is unsupervised,

we use classification to show that dimensionality reduction does not lose important

information.

We use the dataset described in Section 3.1.3. We employed Support Vector Machines
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(SVM) as the classification algorithm. We used the widely-used libsvm1 library as the

Support Vector Machines implementation. The libsvm tool is used with the default

settings. In its default mode, libsvm tool uses Gaussian Radial Basis Function as its

kernel method. We used 5-fold cross validation to measure the accuracy of classifica-

tion.

We also need a 450 dimensional representation of the similarity between two profiles.

To that end, we define a simple similarity algorithm that takes two 450 dimensional

vectors as its input and returns a 450 dimensional similarity vector as its output:

• Convert both profile vectors to binary vectors using the binarization method

described above.

• For dimension i

1. If the ith dimension of both profiles are 1, then set dimension i to 1.

2. If the ith dimension of both profiles are both 0, then set dimension i to 0.5.

3. If the ith dimension of the profiles are different values, then set dimension

i to 0.

This method is similar to XOR-ing the profiles except if both dimensions are 0, the

resulting value is 0.5 instead of 1.0.

Accuracies for different methods are given in Table 4.1. Grouped Euclidean rep-

resents the similarity measure that we propose in this thesis (the similarity measure

described in Section 3.5 used with grouped phylogenetic profiles). Grouped Pearson’s

Correlation represents the similarity measure where Pearson’s Correlation is applied

to every group for protein pairs. In both grouped methods, we assumed the parents

of leaf nodes to be the groups. This gives us 47 groups. For completeness, we also

use regular Euclidean distance (again, Gaussian Radial Basis Function is applied to

Euclidean distance to convert it from a distance measure to a similarity measure) and

Pearson’s Correlation between two profiles. In these two methods, Euclidean distance

1 http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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or Pearson’s Correlation is calculated between two full profiles without using phylo-

genetic trees. Finally, Modified XOR represents the similarity measure described

above.

For the descriptions in between parantheses, ”(normalized)” indicates that negative

logs of BLAST E-values are taken. Label ”(quantized)” indicates that the quantization

step is performed. Label ”(binary)” indicates that the simple binarization scheme

described above is used.

For consistency, every dimension of every vector (for all methods) given to libsvm is

scaled between [0.0, 1.0].

Table 4.1: Classification Results.
Method Accuracy
Grouped Euclidean (normalized) 63.5555%
Grouped Euclidean (quantized) 64.7532%
Grouped Euclidean (binary) 64.103%
Grouped Pearson’s Correlation (normalized) 50.9111%
Grouped Pearson’s Correlation (quantized) 51.125%
Grouped Pearson’s Correlation (binary) 50.2438%
Regular Euclidean (normalized) 50.1754%
Regular Euclidean (quantized) 54.6326%
Regular Euclidean (binary) 50.1668%
Regular Pearson’s Correlation (normalized) 54.7096%
Regular Pearson’s Correlation (quantized) 61.1087%
Regular Pearson’s Correlation (binary) 63.3929%
Modified XOR 66.3701%

Generally, for all methods, normalized forms perform worse than quantized and bi-

narized forms. Also, except for regular Pearson’s Correlation, quantized form outper-

forms binary form.

Grouped Pearson’s Correlation performs no better than a coin toss, thus is not very

useful. This is expected because of the problems mentioned in Section 3.4.1. Regular

Euclidean also perform no better than a coin toss. The so-called ’curse of dimension-

ality’ applies here where the Euclidean distance between two high dimensional (450

dimensions in this case) for many different vectors are similarly large values and so,

the Gaussian Radial Basis function converts all values to very small values.
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Grouped Euclidean similarity (in quantized form) performs very close to Modified

XOR method. This shows that the lower-dimensionality of a grouped phylogenetic

profile does not sacrifice important information if the right similarity measure is used

for comparison.

For the above table, the decaying factor β in Gaussian Radial Basis function for

grouped Euclidean is taken to be 1.0. However, different values of β have little effect

on the accuracy of classification, as can be seen in Figure 4.1. Even for much larger

beta values (such as 10 or 20), accuracy remains largely the same.

Figure 4.1: Accuracy of classification for various β.

We also expect that the similarity vectors for positive and negative protein-protein

interactions to be distant from each other. So, for both the positive and the negative

set, the mean of each dimension is calculated. This corresponds to computing the

mean of every group. The results are given in Figure 4.2.

The group ids correspond to the group given in Appendix A.2.1. For example, group

id 1 correspond to Acidobacteria. For almost all groups, means of positive interaction

values are consistently higher than means of negative interaction values.
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Figure 4.2: Means of Interaction values for different groups.

4.2 Clustering

After the previous step, 450-dimensional phylogenetic profitles were reduced to smaller

dimensional vectors. However, for the clustering algorithm, this value needs to be

reduced to a scalar. To achieve this, we can simply average the correlations or use a

weighted average method using evolutionary distance as described in Section 3.6. We

call the first averaging method ’simple’ and the second ’tw’ (short for tree-weighted).

During our tests, we saw that all methods, save for one, fail to produce meaningful

results. For most of the methods, the Markov Clustering algorithm simply returned

1 cluster containing all proteins. We can create more clusters by experimenting with

Markov Clustering or method parameters to extreme ranges but these will not lead to

good results so are skipped. The one method that generates useful clusters is quan-

tized grouped Euclidean similarity averaged using the tree-weight method.

Markov Clustering algorithm is mainly controlled by the inflation parameter. This

parameter indicates the level of aggressiveness in severing links between nodes. The
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default value is 2.0. We also use the most aggressive value in the recommended range

(4.0) to sever all the weak links that are likely to be false-positives. We also tried the

value 8.0 for experiments. The number of resulting clusters for different values of β

(decaying factor for Gaussian RBF) and inflation parameters is given below in Table

4.2.

Table 4.2: Number of clusters for different values of inflation (β = 1).

Inflation Number of Clusters
2.0 8
4.0 16
8.0 26

The number of resulting clusters for different values of β is given in Table 4.3.

Table 4.3: Number of clusters for different values of β (inflation = 1).

Decaying Factor Number of Clusters
0.5 2
1.0 8
10.0 168
20.0 247

As expected, increasing decaying factor or inflation increases the number of clusters.

To test the performance of clustering, we use the DIP dataset which includes approx-

imately 18000 protein protein interaction pairs where all interactions are obtained by

high-throughput experiments. This dataset only contains a portion of the possible 40

to 80 thousand interaction pairs, so it is probable that some of the protein pairs in

clusters interact in reality but is missed because it is not in the dataset. So we only

calculate the ratio of clustered protein pairs to all protein pairs in dataset, i.e., recall.

We assume that two proteins are interacting if they are in the same cluster and that

they are not interacting if they are in different clusters.

Unfortunately, clustering results are pretty bad and are in fact, worse than a coin flip

as shown in Table 4.4:
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Table 4.4: Recall results.
Inflation/β Recall
I=4.0,β=20.0 8%
I=8.0,β=10.0 8%
I=8.0,β=10.0 9%
I=8.0,β=1.0 25%
I=4.0,β=1.0 29%
I=2.0,β=1.0 45%
I=2.0,β=0.5 91%

Due to high-number of false-positives, Markov Clustering does not perform well

when used with default inputs and generates very few clusters. If we force a larger

number of clusters with high inflation and β values, then recall is very low. With de-

fault values, while recall is naturally high, the precision is extremely low. However,

Markov Clustering can still be a useful first step in identifying groups of proteins that

are likely and not likely to interact. For example, with inflation 2.0 and β 0.5, there

are two clusters, first one with 5237 and the second with 626 members. If, for the

moment, we were to assume that the approximately 18000 interactions were the only

interactions for yeast (which is, of course, not true, but useful for a thought experi-

ment) and since there are 18 million possible interactions, we can say that, for every

1 real interaction there are 1000 possible interactions. In other words, real to possi-

ble interaction ratio is 1/1000. For the second cluster (with 626 members) there are

195938 possible interactions. However, from DIP dataset, only 37 interactions exist

within the second cluster. So real to possible interaction ratio is about 1/5000. So,

Markov Clustering was successful in dividing the network into two groups, one likely

to interact and the other unlikely to interact.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusions

Protein-protein interaction prediction remains an interesting problem in Bioinformat-

ics. In this thesis, we set out to develop novel methods for protein-protein interaction

prediction using only the evolutionary information and sequence of proteins in an

unsupervised framework. We used the phylogenetic profiles of proteins as our main

data source and used the knowledge of co-evolutionary pressure hypothesis to pre-

dict interactions based on the similarity of profiles. We showed that preprocessing of

phylogenetic profile vector (by normalization, quantization, etc.) can lead to signifi-

cantly different outcomes. By going beyond a simple binary phylogenetic vector and

including the BLAST E-values in a carefully scaled form led to better accuracy.

We also proposed a way to group phylogenetic profiles based on phylogenetic trees.

We identified the shortcomings of various other similarity measures and introduced

a new robust similarity measure to compute the similarity of group pairs for pro-

teins. We used Support Vector Machines and 5-fold cross validation to show that this

grouping step results in a significant dimensional reduction without the loss of impor-

tant information as SVM performance for high-dimensional and lower-dimensional

vectors were mostly identical.

We applied a weighted average method to reduce the lower-dimensional similarity

vectors to 1 dimension. This weighted average method made use of phylogenetic

trees and the concept of evolutionary distance. Tree-weighted method fared better
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compared to simple averaging when they are used in clustering.

We made use of Markov Clustering to cluster likely interaction pairs together. While

this approach did not perform very well, it can still be used as an initial step in iden-

tifying the protein-protein interaction pairs in a new organism.

5.2 Future work

An important extension would be to extend the Markov Clustering tool so that it also

returns the resulting edge probabilies instead of just clusters. Alternatively, another

clustering algorithm, such as k-means clustering, self-organizing maps or hierarchical

clustering, may be used.

While the co-evolutionary pressure hypothesis suggests that interacting proteins are

likely to evolve or disappear together, it does not take into account the random pos-

sibility of two non-interacting proteins that happen to evolve together. Two proteins

evolving together will always have a high similarity value even though they may not

be interacting. Since the ratio of the number of total protein-protein interactions to the

number of total possible protein-protein interactions is tiny, there may be a huge num-

ber of such false-positive interactios. So, a false-positive elimination algorithm may

work before the clustering step, eliminating the easily-noticeable false-positives. This

will result in a less dense graph, thus making clustering easier. One such algorithm

is subcellular localization prediction. The idea behind subcellular localization is that

interacting proteins are likely to be localized in the same part of a living cell. Follow-

ing this line of thought, proteins in different localizations are not likely to interact.

Subcellular localization prediction (SLP) algorithms predict the likely localization of

a protein. For example, the BaCelLo algorithm proposed by Pierleoni et al.[18] do

SLP by using protein sequence data (but they use a supervised method). One of the

downsides is that, there may be interacting proteins even though they are in different

subcellular localization so SLP can predict some false-negative interactions. Another

option may be Gene Ontology. For a newly-sequenced organism, Gene Ontology

data will probably not be available. But, since, Gene Ontology annotates proteins ac-

cording to their functions (among other things), such annotated proteins are likely to
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evolve together. So ontology clusters from a well-studied organism may be mapped

to the proteins in the test organism to identify likely interacting protein pairs in the

same functional path. The weights of such edges can then be increased to emphasize

the importance of these protein homologs.

33



REFERENCES

[1] S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. Lip-
man. Gapped blast and psi-blast: a new generation of protein database search
programs. Nucleic Acids Research, 25:3389–3402, 1997.

[2] J. R. Bock and D. A. Gough. Predicting protein protein interactions from pri-
mary structure. Bioinformatics, 17:455–460, 2001.

[3] P. M. Bowers, M. Pellegrini, M. J. Thompson, J. Fierro, T. O. Yeates, and
D. Eisenberg. Prolinks: a database of protein functional linkages derived from
coevolution. Genome Biology, 5:R35, 2004.

[4] S. V. Dongen. A cluster algorithm for graphs. Information Systems, 10:1–40,
2000.

[5] R. Edgar. Muscle: a multiple sequence alignment method with reduced time
and space complexity. Bioinformatics, 5:113, 2004.

[6] O. Gonzales and R. Zimmer. Assigning functional linkages to proteins using
phylogenetic profiles and continuous phenotypes. Bioinformatics, 24:1257–
1263, 2008.

[7] Y. Guo, L. Yu, Z. Wen, and M. Li. Using support vector machine combined with
auto covariance to predict protein protein interactions from protein sequences.
Nucleic Acids Research, 36:3025–3030, 2008.

[8] G. T. Hart, A. K. Ramani, and E. M. Marcotte. How complete are current yeast
and human protein-interaction networks? Genome Biology, 7(11):120, 2006.

[9] R. Jothi, T. M. Przytycka, and L. Aravind. Discovering functional linkages
and uncharacterized cellular pathways using phylogenetic profile comparisons:
a comprehensive assessment. BMC Bioinformatics, 8:173, 2007.

[10] D. Juan, F. Pazos, and A. Valencia. High-confidence prediction of global inter-
actomes based on genome wide coevolutionary networks. PNAS, 105:934–939,
2008.

[11] Y. Kim and S. Subramaniam. Locally defined protein phylogenetic profiles re-
veal previously missed protein interactions and functional relationships. Pro-
teins, 62:1115–1124, 2006.

[12] S. Martin, D. Roe, and J.-L. Faulon. Predicting protein protein interactions
using signature products. Bioinformatics, 21:218–226, 2005.

[13] C. L. Myers, D. R. Barrett, M. A. Hibbs, C. Huttenhower, and O. G. Troyan-
skaya. Finding function: evaluation methods for functional genomic data. BMC
Genomics, 7:187, 2006.

[14] P. Pagel, S. Kovac, M. Oesterheld, B. Brauner, I. Dunger-Kaltenbach, G. Fr-
ishman, C. Montrone, P. Mark, V. StÃ1
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APPENDIX A

APPENDIX A

A.1 ORGANISMS

A.1.1 Organisms Used for the Construction of Phylogenetic Profiles

The short names of the 450 organisms used to generate the phylogenetic profiles is

given below: bqu cfa eba sme rxy dpyo tan sma dcbr nme reh cyb cya nma jan tac

dme cel ttj tth tte lpp cef lpn dbmo lpl vpa pho mxa xla bps ilo lpf hdu bpn bpm rde

pha bpe bpa gox cdi aha rco osa hwa pgi ccr ddha ago hch mca erw dkwa eru cch wbr

pfu wbm cca pfo cvi pfl erg mbo afu cbu rbe dtni pfa rba afm ayw sit sil lmo pen bms

rty lmf lme yps tpv lma gme ypn mtu ypm ypk hal bmf bme mtp mac bmb ype bma

cal aeh hac ypa ctr mth shm tpa cac cab mtc wsu she blo cte sha llc ctc dyli lla cta rsp

nha msu bli rso bld hso pcu ade sgl pcr ngo ooe hsa rru csa xft pca gka sfx sfv dge sfu

dncr sfr aci ace crp syw ljo sfl xfa uur syn dfru ava syg nfa syf sye syd abo syc bja ser

neu sep pub net pau pat neq par lin tma aba lil dsba det dcnb sec pai lic ptr rpr pae pto

mpu pac fal pab hpy sdy deh ftu mpn atu cpv cpt rpe rpd cps ftl aae sdn cpr rpc rpb

rpa mpe hpj fth cpn ftf mpa cpj ath sde swo eli hpa cpf pst cpe atc psp cpa wol xcv

ddi nwi tko bhe dde bha sco psb xcc xcb lga rno dvu gga bga art vfi sbo sus bfs hne

bfr fra cne mmy bfl mmu mmr mmp sav mmo sau sat sas sar cmu rme sao san sty nar

sam xtr oih sal sak lxx sai stt mmc xac mma sag sto sac dar ppu hma sab stm stl cme

saa ppr sth ste stc mlo ppe dcin rle bxe mle dame poy aph ssp sso ehi ape ssn dspd

ldb dsy ddpo pol ssc lwe vvy nse vvu aor dkla vch bcz sru mka dpkn bcn dmgr tfu

bcl lca bci bch fnu bce bcc gvi dcgr bca lbu lbr cjr dre lbl bbu mja zmo lbj cjk ani dra

bbr pmu pmt cje ana gbe pmn ter pmm efa bur pmi tel hit bba spz hin pma spy buc
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spt sps bat spr bas bar dsmi spo spn plu plt spm ban mhy lac spk bam ama spj spi sph

spg baf dps spd nph tdn spb spa chy bab baa btk chu tws bth tde rha bte cho xoo bta

xom hhe twh son tcx gsu bsu tcr mgm noc ecv ecu tvo ecs mge ecp eco ecn cgl mga

ecj eci ech ece rfr cgb ecc tbr eca mfl rfe tbd smu daga nmu cfe reu ret

A.1.2 Organisms Used for the Phylogenetic Tree

The short names of the organisms used in the phylogenetic tree are given below: hsa

ptr mmu rno cfa bta ssc gga xla xtr dre dfru dtni dme dbmo cel ath osa cme dsmi dsba

ago dkwa cal spo ani afm aor cne ecu ddi pfa dpkn tan tpv cpv cho tbr tcr lma ehi eco

ecj ece ecs ecc eci ecp ecv sty stt spt sec stm ype ypk ypm ypa ypn yps sfl sfx sfv ssn

sbo sdy eca plu buc bas bab bcc wbr sgl bfl bpn hin hit hdu hso pmu msu xfa xft xcc

xcb xcv xac xoo xom vch vvu vvy vpa vfi ppr pae pau ppu pst psb psp pfl pfo pen par

pcr aci son sdn sfr she shm ilo cps pha pat sde cbu lpn lpf lpp mca ftu ftf ftl fth tcx

noc aeh hch csa abo aha bci crp nme nma ngo cvi rso reu reh rme bma bxe bur bcn

bch bam bps bpm bte bpe bpa bbr rfr pol neu net nmu eba dar tbd hpy hpj hpa hhe hac

wsu tdn cje cjr gsu gme pca dvu dde bba dps ade mxa sat sfu rpr rty rco rfe rbe wol

wbm ama aph eru erw erg ecn ech nse pub mlo sme atu atc ret rle bme bmf bmb bms

bja rpa rpb rpc rpd rpe nwi nha bhe bqu ccr sil sit rsp jan rde mmr hne zmo nar sal eli

gox gbe rru mgm aba sus bsu bha ban bar baa bat bce bca bcz btk bli bld bcl oih gka

sau sav sam sar sas sac sab saa sao sep ser sha ssp lmo lmf lin lwe lla llc spy spz spm

spg sps sph spi spj spk spa spb spn spr spd sag san sak smu stc stl ste lpl ljo lac ldb

lbu lbr lca lga ppe efa ooe lme cac cpe cpf cpr ctc sth swo chy dsy tte mge mpn mpu

mpe mga mmy mmo mhy uur poy ayw mfl mtu mtc mbo mle mpa mmc cgl cgb cef

cdi cjk nfa rha sco sma twh tws lxx art pac tfu fra fal ace blo rxy fnu rba ctr cta cmu

cpn cpa cpj cpt cca cab cfe pcu bbu bga baf tpa tde lil lic lbj lbl syn syw syc syf syd

sye syg cya cyb tel gvi ana ava pma pmm pmt pmn pmi ter bth bfr bfs pgi sru chu cte

cch plt det deh dra dge tth ttj aae tma mja mmp mac mma mtp mth mka afu hal hma

hwa nph tac tvo pto pho pab pfu tko ape sso sto sai pai neq
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A.2 PHYLOGENETIC TREE

The full phylogenetic tree is too large to reasonably fit in this page, so a portion of

the phylogenetic tree are given below:

Figure A.1: A portion of the phylogenetic tree showing the animal kingdom

A.2.1 Phylogenetic Tree Groups

The groups given below are used in our tests:

Acidobacteria, Actinobacteria, Alpha/others, Alpha/rhizobacteria, Alpha/rickettsias,

Amphibians, Apicomplexa, Bacillales, Bacteroides, Basidiomycetes, Beta, Birds,

Budding yeasts, Butterflies and moths, Cellular slime molds, Chlamydia, Clostridia,

Crenarchaeota, Cyanobacteria, Deinococcus-Thermus, Delta, Entamoeba, Epsilon,

Euglenozoa, Eurotiales, Euryarchaeota, Fishes, Fission yeasts, Flies, Fusobacteria,

Gamma/enterobacteria, Gamma/others, Grass family, Green nonsulfur bacteria, Green

sulfur bacteria, Hyperthermophilic bacteria, Lactobacillales, Magnetococcus, Mam-

mals, Microsporidians, Mollicutes, Mustard family, Nematodes, Red algae, Spiro-

chete
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