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ABSTRACT 

EFFICIENT DETECTION AND TRACKING OF  
SALIENT REGIONS  

FOR VISUAL PROCESSING ON MOBILE PLATFORMS 
 

 

Serhat, Gülhan 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Assist. Prof. Dr. Afşar Saranlı 

 

 

September 2009, 111 pages 

 

 

Visual Attention is an interesting concept that constantly widens its application 

areas in the field of image processing and computer vision. The main idea of 

visual attention is to find the locations on the image that are visually attractive. In 

this thesis, the visually attractive regions are extracted and tracked in video 

sequences coming from the vision systems of mobile platforms. First, the salient 

regions are extracted in each frame and a feature vector is constructed for each 

one. Then Scale Invariant Feature Transform (SIFT) is applied only to the salient 

regions to extract more stable features. The tracking is achieved by matching the 

salient regions of consecutive frames by comparing their feature vectors. Then 

the SIFT points of salient regions are matched to calculate the shift values for the 

matched pairs. Limiting the SIFT application to only the salient regions results in 

significantly reduced computational cost. Moreover, the salient region detection 

procedure is also limited to the predetermined regions throughout the video 

sequence in order to increase the efficiency. In addition, the visual attention 
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channels are limited to the most dominant features of the regions. Experimental 

results that compare the algorithm outputs with ground-truth data reveal that, 

the proposed algorithm has fine tracking performance together with acceptable 

computational cost. Promising results are obtained even with blurred video 

sequences typical of ground vehicles and robots and in an uncontrolled 

environment.  

 

Keywords: Visual Attention, Saliency, Video Tracking, SIFT, Feature Extraction 
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ÖZ 

HAREKETLİ PLATFORMLARDA GÖRSEL İŞLEMEDE 
KULLANILMAK ÜZERE 

DİKKAT ÇEKİCİ BÖLGELERİN VERİMLİ BİR ŞEKİLDE 
ÇIKARILMASI VE TAKİP EDİLMESİ 

 
 

Serhat, Gülhan 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Yrd. Doç. Dr. Afşar Saranlı 

 

 

Eylül 2009, 111 sayfa 

 

 

Görsel Dikkat, görüntü işleme ve bilgisayarla görme alanlarında günden güne yeni 

uygulama alanları bulan ilginç bir konudur. Temel fikir, resim üzerindeki görsel 

olarak dikkat çekici bölgeleri bulmaktır. Bu tezde, hareketli platformların görsel 

sistemlerinden gelen videolar üzerinde görsel olarak dikkat çekici bölgeler tespit 

ve takip edilmiştir. İlk olarak, her karede dikkat çekici bölgeler bulunmuş ve her 

biri için bir özellik vektörü çıkarılmıştır. Daha sonra, daha kararlı özellikler 

çıkarmak için bu bölgelere SIFT algoritması uygulanmıştır. Ardışık karelerin dikkat 

çekici bölgeleri, özellik vektörlerini kullanarak eşleştirilmiş ve böylece takip etme 

işlemi gerçekleştirilmiştir. Daha sonra, SIFT noktaları eşleştirilmiş ve eşlenen 

çiftlerden yer değişimi miktarları hesaplanmıştır. SIFT algoritmasının sadece 

görsel olarak dikkat çekici bölgelere sınırlandırılması işlem yükünü ciddi anlamda 

azaltmıştır. Buna ek olarak verimliliği arttırmak için, video boyunca dikkat çekici 

bölge bulma işlemi de daha önceden belirlenmiş bölgelere sınırlandırılmıştır. Son 

olarak, görsel dikkat kanalları bölgenin en baskın görsel dikkat kanalına 
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sınırlandırılmıştır. Algoritma çıktılarını gerçek verilerle kıyaslayan deney 

sonuçlarına göre, önerilen algoritma kabul edilebilir bir işlem yüküne ve iyi bir 

takip etme performansına sahiptir. Yerde giden araçların ve robotların tipik özelliği 

olan bulanık video görüntülerinde ve kontrolsüz ortam videolarında dahi umut 

vadeden sonuçlar elde edilmiştir. 

 

Anahtar Kelimeler: Görsel Dikkat, Dikkat Çekicilik, Video Takibi, SIFT, Özellik 

Çıkarımı   
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CHAPTER 1 

1 INTRODUCTION 

The aim of image processing and computer vision is to automatically interpret the 

visual inputs and to obtain information from them. Nevertheless, the amount of 

data coming from the visual sensors, such as an image, a video stream or a view 

from multiple cameras, is usually enormous. In most of the cases it is impossible 

to process the data in total in a bottom up manner. The same problem also holds 

for human beings. Our eyes supply a great amount of visual data every instant. 

However, we can successfully interpret the data and easily deduce the relevant 

high level information to carry out our tasks. What makes this possible within the 

computational limitations of the human brain may be that, some portions of the 

visual input data is selected for further processing while the rest is simply ignored. 

This is called Visual Attention. 

 

Visual attention is an important topic in image processing and computer vision 

which aims to find the visually attractive parts of the input image that can later be 

used for various purposes. These attractive regions are generally called salient 

regions and saliency is defined as “the state or quality of standing out relative to 

neighboring items” [26]. 

 

There are two motivations behind visual attention. The first one is reducing the 

dimension of the visual input data, thus reducing the processing power and the 

memory storage required. This is achieved by eliminating the irrelevant data by 

means of selecting the regions that presumably involve more information. The 
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second motivation is to further advance autonomy. Since visual attention 

automatically selects the visually attractive parts of the visual input, it promises to 

eliminate the need of human intervention and assistance to visual data processing 

tasks. 

 

Visual attention has various application areas including high-level scene analysis, 

image compression and robot vision applications. To give some examples: 

- Targets can be automatically detected in natural scenes using visual 

attention [12], [13]. 

- Object recognition can be guided by visual attention to achieve high-level 

scene analysis [21], [31].  

- Intelligent image and video compression can be achieved, where the 

attractive parts are compressed at a higher resolution [17], [11]. 

- Advertisement designs can be validated by comparing the outputs of visual 

attention with the desired scheme [25]. 

- Robot self localization can be accomplished by detecting and tracking the 

landmarks in the environment [27], [28].  

 

Visual attention has a number of different implementations, which can be 

categorized into two groups as saliency-based methods and object-based 

methods. Saliency-based methods are in fact pixel-based. That is, they compute a 

saliency value for each pixel, or for a group of pixels, by comparing it with its 

surroundings. These methods may or may not employ global operations that work 

on the whole image like global normalization. On the other hand, object-based 

methods extract the objects in the scene and treat the objects as a whole while 

computing their saliencies.  

 

In this thesis, the problem of efficient and reliable salient region detection and 

tracking in a video sequence is studied with a motivation to apply it for visual 

preprocessing on autonomous mobile platforms. Thus, the proposed method is 

considered as a preprocessing step, regarding that its outputs may be used in 

various ways. In this context, many interesting application areas are possible. As 
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an example, for an autonomous robot with the mission of exploring its 

environment, say a battlefield or a remote planet; our method would be a 

preprocessing step that selects and tracks the parts of the scene that are worth 

analyzing further by subsequent algorithms. In a similar scenario, the relative 

motion of fixed landmarks in the environment, which are automatically selected by 

visual attention, may be used to estimate the vehicle ego-motion. 

 

Since mobile devices are selected as the target platform, their characteristic 

features should be taken into consideration when proposing a solution. Some of 

the requirements can be listed as below: 

- The proposed method should work on video streams, 

- In mobile platforms, the camera is in motion which results in blurred videos. 

So the proposed method must be compatible with this issue. 

- In mobile platforms, processing power is usually limited, thus the proposed 

method should be efficient. 

 

Taking the requirements into account, an efficient salient region detection and 

tracking method is proposed. The method takes the video input and detects and 

tracks a pre-determined number of salient regions. Since the method is assumed 

as a preprocessing step, a saliency-based visual attention algorithm is employed 

[14]. However, a plain saliency approach has both reliability as well as 

computational complexity issues for the considered application domain. To 

increase reliability, the feasibility of using Scale Invariant Feature Transform 

(SIFT) [18] on salient regions is investigated. And to achieve high computational 

efficiency, information gathered from the past frames is utilized and smart 

processing decisions are made such as limiting the regions to be processed.  

 

1.1 Literature Review 

Visual Attention has become an attractive topic over past years. The saliency 

based model of Visual Attention is first proposed in [15] in 1985 by Koch and 

Ulman and has led to many methods and implementations since that time. Itti et 
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al, in 1998, have proposed a complete mathematical model for saliency using 

intensity, color and orientation differences as saliency sources [14]. This method 

has constituted a base for computational saliency-oriented visual attention 

methods. In [24], Ouerhani and Hügli have added the Harris cornerness measure 

[9] to the method as a saliency source. There are also some studies that 

concentrate on object-based visual attention such as [5] and [33]. In 2003, Ma 

and Zhang [19] proposed a new framework by dividing the image into blocks and 

focusing on the difference between the center of one block and the neighboring 

blocks and employed a fuzzy growing method. In [7], using integral images in 

Itti’s method is proposed instead of computing features at several scales. This 

technique introduced a significant gain in computational efficiency, resulting in a 

real time visual attention system. In [1], a contrast determination filter is used in 

various scales to obtain a saliency map at the same resolution of the original 

image and the obtained saliency map is used to segment the whole objects. 

 

There also exist several published studies that utilize visual attention as a feature 

extraction method. To give some examples, Ouerhani and Hügli present an image 

segmentation method based on visual attention [22], and object tracking method 

for dynamic scenes [23]. [31] is an example of object recognition based on visual 

attention. A context-based scene recognition method for mobile robotics 

applications is introduced in [29].  

 

The topic of salient region tracking can be found in [24] and [16]. In the work of 

Ouerhani and Hügli in [24], corner conspicuity channel is added to the intensity 

and color channels. Each “spot of attention” is characterized by its spatial location 

and a feature vector. The feature vector displays the contributions of intensity, 

red-green, blue-yellow and corner channels to the detection of that spot. A 

trajectory is built for each tracked spot of attention. A newly found spot of 

attention is added to a trajectory if its spatial location and feature vector are close 

to the head of the trajectory. Otherwise, a new trajectory is created for it. In the 

end the trajectories that are long enough are selected as landmarks. 
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In [16], Li also has an implementation of salient region detection and tracking in 

video. Salient regions are extracted using orientation and color maps. In the 

following video frames, detection is not performed but these regions are tracked 

using a color-based tracking scheme. When tracking a salient region, only the 

rectangular region around its previous position is searched. Periodically, salient 

region detection procedure is repeated.  

 

The approach studied in this thesis suggests first determining Visual Attention 

regions and then applying SIFT only on these regions to extract more specific 

features. This topic is not entirely new in the literature, but has applications only 

on still images. 

 

In [32], Walther, Rutishauser and Koch suggested applying the feature extraction 

algorithms on the regions extracted by VA algorithm and conducted some 

experiments using the SIFT features. The experiments presented that “saliency-

based region selection improves object recognition in highly cluttered scenes 

considerably”. Moreover, salient region selection has added new capabilities to the 

object recognition algorithm such as “learning multiple objects from single image”. 

 

In [8], Gao has studied eliminating SIFT points that has low saliency values to 

achieve the task of image retrieval. The results showed that keypoint elimination 

enhances both the speed and the accuracy of image retrieval. Speed is improved 

due to the reduced number of keypoints while accuracy is improved since 

keypoints with high saliency values are usually more distinctive. 

 

In [3], visual attention is used to speed up object recognition using SIFT features. 

First salient regions are detected by Itti & Koch’s visual attention algorithm. 

Contrast, orientation, color, and intensity low-level features are used as saliency 

measures. Then Lowe’s SIFT algorithm is employed to extract “a signature of the 

attended object”. This signature is used to compare the object with the object 

database, but first the object database is put in the decreasing order of similarity 

with the objects with already computed low-level features. Experiments show that 
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ordering the search database with respect to saliency features increases the speed 

of object recognition in complex natural scenes. 

 

1.2 Motivation 

This thesis proposes an efficient salient region detection and tracking method for 

the visual processing sub-systems of mobile platforms. Such a technique may 

constitute a basis for various tasks. Exploring unknown environments using 

unmanned vehicles, autonomous target detection, autonomous search and rescue 

and self-localization are only some of the examples. We are highly motivated by 

the extend of possible application areas. 

 

1.3 Scope of the Thesis 

With the proposed method, multiple salient regions can be detected and tracked in 

video sequences. First, the salient regions on the frame are found by applying the 

Visual Attention algorithm of Itti et al [14]. Then, a saliency feature vector is 

extracted for each salient region. Each region is tracked by a trajectory and the 

salient regions found in a new frame are either added to the existing trajectories 

or initiate a new trajectory depending on their saliency feature vectors. Then, SIFT 

algorithm [18], which extracts more specific and robust image features, is applied 

only on the salient regions. In consecutive frames, the extracted SIFT points are 

matched to compute the inter-frame displacement values, thus to achieve more 

precise tracking. Eliminating the false SIFT point matches by RANSAC [6] 

enhanced the performance. The increasing computational cost of combining visual 

attention with SIFT features is tackled by limiting the salient region search areas 

and by limiting the visual attention channels. SIFT feature extraction is also 

limited to the determined salient regions. As a last step, the search regions are 

further narrowed by estimating the salient region locations using the extracted 

camera motion information. 

 



7 

 

At each step the methods are tested and the experimental results are compared 

both with ground truth data and with each other. In addition, the proposed 

algorithms are also tested with realistic video sequence data to evaluate their 

performances. 

 

1.4 Contributions 

The following points, to the best of our knowledge, represent the novel 

contributions of this thesis: 

• Development of a complete and efficient salient region detection and 

tracking method. 

• Testing of a salient region detection and tracking method with videos 

representing legged motion. 

• Applying SIFT on only the visually salient regions on a video sequence to 

enhance the tracking performance. 

• Limiting the visual attention channels on successive frames by using only 

the most dominant visual channel of previous frame. 

 

1.5 Outline of the Thesis 

The organization of this thesis is as follows: In chapter 2, three major algorithmic 

components of the proposed approach, namely Visual Attention, SIFT and 

RANSAC, are explained in detail to form the theoretical background of the thesis. 

In chapter 3, the test data and performance criteria are introduced first. Then the 

proposed approach to achieve a reliable and efficient salient region detector and 

tracker is presented and explained in an incremental manner. In addition, the 

results of the comprehensive experiments that are conducted to verify the claimed 

ideas are presented. In chapter 4, the proposed methods are extensively tested 

with realistic data. Last, chapter 5 presents the conclusions and possible directions 

for future work.  
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CHAPTER 2 

2 THEORETICAL BACKGROUND 

In this thesis, the Visual Attention [14], Scale Invariant Feature Detection (SIFT) 

[18] and Random Sample Consensus (RANSAC) [6] algorithms are commonly 

utilized. This chapter gives the algorithmic details of these algorithms as the 

theoretical background. Section 2.1 examines the Visual Attention, section 2.2 

examines the SIFT algorithm and section 2.3 examines the RANSAC algorithm. 

 

2.1 Visual Attention 

Despite its very limited processing speed, human brain has the ability to process 

highly complicated scenes in real time. One of the reasons that make this possible 

is a preprocessing step called “visual attention”. In human brain, there exists a 

mechanism that selects some attention-drawing parts of the scene, which are 

called “salient locations”. Then these salient parts are segmented and only these 

regions are passed to further processing units. This decrease in the dimension of 

the data results in a very significant increase in the processing speed. 

 

The features that are required for a region to be salient have been investigated a 

lot through many experiments done on primates. That features include, but not 

limited to, intensity contrast, color contrast, orientation contrast, texture contrast 

and shape contrast. In humans, the attention system has both a “bottom-up, 
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saliency-driven, task-independent” mechanism, as well as a “top-down, volition-

controlled, task-dependent” one [14].  

 

The bottom-up, saliency-based visual attention scheme is introduced in [15] by 

Koch and Ulman. In [14], Itti et al, have formulated and implemented the theory, 

which considerably increased the popularity of the visual attention concept.  

 

The algorithm presented in [14] uses RGB color images as input and has 4 main 

steps: 

1. Extracting some visual features from the input image and creating feature 

maps for them. 

2. Constructing conspicuity maps for each feature, which show the parts of the 

image that strongly differ from their surroundings. 

3. Constructing a saliency map by combining all conspicuity maps. 

4. Selecting the most salient locations by using a winner-take-all neural network 

on the saliency map. 

 

The flow of the algorithm can be visualized in Figure 2.1. 

 

2.1.1  Feature Maps 

In order to detect the locations which are noticeably different from their 

surroundings, a “center-surround” mechanism is implemented. The method is 

based on computing the differences between fine and coarse scales. A pixel at 

scale { }4,3,2∈c  is taken as the center and the corresponding pixel at scale 

δ+= cs , where { }4,3∈δ , is taken as the surround. Then the coarser scale is 

interpolated to the finer scale and point-by-point subtraction gives the across-

scale difference, denoted by Θ. Using each c and δ values, 6 maps are constructed 

per feature. This allows multi-scale feature extraction. 
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Figure 2.1 – Flowchart of Visual Attention algorithm 

First, color, intensity and orientation features are extracted from the image. The 

center-surround difference computation and normalization of the features give the 

feature maps. Then, feature maps are combined into conspicuity maps, which are 

also combined into the saliency map. Finally, a winner-take-all neural network selects 

the most salient locations [14]. 

 

 

 

The visual cues used in [14] are intensity, color and orientation. Based on these 

cues, 7 features are extracted for each image. 

 

 Intensity cue: 

First, intensity image is obtained by  

 ( ) 3bgrI ++=  (2.1) 

where r, g, b are red, green, blue channels of the image respectively.  
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Then, a set of 6 center-surround difference maps are computed by  

 )()(),( sIcIscI Θ=  (2.2) 

where { }4,3,2∈c  and { }4,3∈δ . 

 

 Color cue: 

First, four color channels are created, which are defined as follows: 

 

For red:  

 2/)( bgrR +−=  (2.3) 

For green:  

 2/)( brgG +−=  (2.4) 

For blue: 

 2/)( grbB +−=  (2.5) 

For yellow: 

 bgrgrY −−−+= 2/2/)(  (2.6) 

 

Then, red-green and blue-yellow “double opponency system”, which also exists 

in human visual cortex, is employed to extract two chromatic features. 

 

For red-green: 

 ( ) ( ))()()()(),( sRsGcGcRscRG −Θ−=  (2.7) 
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And for blue-yellow: 

 ( ) ( ))()()()(),( sBsYcYcBscBY −Θ−=  (2.8) 

 

A set of 12 center-surround difference maps are computed. 

 

 Orientation cue: 

Oriented Gabor pyramids are used in { }°°°°=Θ 135,90,45,0  degrees to extract 

local orientation features. 24 center-surround difference maps are computed 

by,  

 ),(),(),,( θθθ sOcOscO Θ=  (2.9) 

 

Thus, a total of 42 feature maps are computed: 6 for intensity, 12 for color and 24 

for orientation. 

 

2.1.2  Conspicuity Maps 

The 42 feature maps are combined into 3 conspicuity maps I , C  and O  

corresponding to intensity, color and orientation respectively. To be able to 

combine different feature maps, a map normalization operator is introduced. The 

normalization operator, N (.), applies three stages: 

 The values in the map are normalized to a fixed range [0..M]. 

 The location of the map’s global maximum M is found and the average 

m of all other local maxima is computed. 

 The map is multiplied by (M-m)2. 

 

The normalization operator is illustrated in Figure 2.2. It can be seen that this 

normalization operation amplifies “small number of strong peaks”, while 

smoothing “numerous comparable peaks”. 
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Figure 2.2 – Feature map normalization operator 

The normalization operation suppresses frequent peaks while amplifying rare peaks. 

In the sample image, the numerous intensity differences are suppressed while the 

unique orientation difference is amplified [14]. 

 

 

 

The intensity, color and orientation based feature maps are normalized and 

combined into related conspicuity maps according to the following formulas: 
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2.1.3  Saliency Map 

At this step, the three conspicuity maps are normalized and combined into a final 

map called Saliency Map by, 

 ( ))()()(
3
1 ONCNINS ++=  (2.13) 

The saliency map directly illustrates the salient locations in the image, where the 

maximum value on the map corresponds to the most salient region on the image. 

 

2.1.4  Selecting the most salient location 

A winner-take-all (WTA) neural network scheme is employed to control the 

attention shifts. First, the maximum value of the map is searched. This point, 

corresponding to the most salient region, is regarded as the winner and the “focus 

of attention” is shifted to this point. Then, a local inhibition mechanism is activated 

around this point to avoid further attention shifts to this already focused region. 

Accordingly, the next most salient location becomes the winner and attention is 

shifted to that region. The number of regions to attend can be adjusted. 

 
In this thesis, iLab Neuromorphic Vision Toolkit - Windows porting is utilized as the 

visual attention code [10].  

 

2.2 Scale Invariant Feature Transform 

Scale Invariant Feature Transform (SIFT) is an image feature extraction method 

developed by David Lowe [18]. SIFT features are known for being invariant and 

distinctive, so they can reliably be used for image matching purposes. They are 

independent from scale and rotation, and robust to affine distortions, viewpoint 

changes, noise and illumination changes. Additionally, SIFT features are highly 

distinctive, thus can be correctly matched against a large set of features. By the 
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help of these properties, SIFT features can be used in many areas including object 

recognition, stereo matching, 3D structure estimation and motion tracking. 

 

SIFT algorithm takes gray-scale input images. The method consists of four main 

steps: 

1. Stable keypoint candidates are searched over all scales using difference-of-

Gaussian (DOG) function. 

2. The intensity values around each keypoint are modeled to determine the 

keypoint’s location and scale in sub-pixel accuracy. In addition, unstable 

keypoints are eliminated. 

3. Local gradient directions are computed and based on them, orientations are 

assigned to each keypoint. 

4. The local gradients around each keypoint are used to construct a keypoint 

descriptor. 

 

2.2.1  Scale-space extrema detection 

2.2.1.1 Obtaining difference-of-Gaussian images 

The algorithm starts with detecting candidate keypoints which are stable against 

scale change. To achieve scale independence, stable features are searched over all 

possible scales.  

 

As scale space kernel, variable scale Gaussian function is used.  

Let ),,( σyxL  be the scale space of an image, ),,( σyxG  be the variable scale 

Gaussian defined as  
222 2/)(

22
1),,( σ

πσ
σ yxeyxG +−=  and ),( yxI  be the input image; 

 ),(),,(),,( yxIyxGyxL ∗= σσ  (2.14) 

 

To be able to detect stable keypoint locations, difference-of-Gaussian function 

),,( σyxD  is used, which is the difference between two adjacent scales. 
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 ),()),,(),,((),,( yxIyxGkyxGyxD ∗−= σσσ  (2.15) 

 ),,(),,( σσ yxLkyxL −=  (2.16) 

where k is a constant multiplicative factor between the scales. 

  

Difference-of-Gaussian function is a relatively efficient scale-space function. 

Furthermore, it provides a close approximation to scale normalized Laplacian of 

Gaussian function, which is known to produce the most stable scale invariant 

image features [20].  

 

The method of obtaining the difference-of-Gaussian function can be visualized in 

Figure 2.3. 

• First, the original input image ),( yxI  is serially convolved with Gaussian 

functions ),,( σyxG . This results in a series of images, called an octave, shown 

in left side of the figure. In an octave, the scale of each image differs from the 

scale of previous image by a constant factor k, and the last image in an octave 

has twice the scale of the first image. Each octave is chosen to be divided into 

s intervals, where s is an integer and related to k by sk /12= . To be able to 

cover a complete octave for local-extrema detection, s+3 images are created 

for each octave.  

• To produce the difference-of-Gaussian images, shown in right side of the 

figure, images with adjacent scales in an octave are subtracted. 

• After processing the complete octave, the image whose scale is twice the initial 

scale is subsampled by 2 to obtain the first image of the second octave. 

 

Some typical values for the algorithm are 2=k , s=2, and s+3=5 images are 

created for each octave. The first image in the octave will be the input image with 

scale σ, the second will have scale σ2 , and the third will have scale 2σ, so the 

initial scale will be doubled. But to cover the complete octave for local extrema 
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detection, 2 more images will be created to complete the number to s+3 which 

equals 5. When passing to the next octave, the third image, whose scale is 2σ, will 

be downsampled. 

 

 

 

 

 
 

Figure 2.3 – Difference of Gaussian operation 

In each octave, the first image is convolved by a series of Gaussians which produces 

the scale space images. Each image in an octave differs by a scale factor k from its 

previous image. Subtracting the adjacent images in an octave produces the 

difference-of-Gaussian images on the right. After processing an octave completely, 

the Gaussian blurred image is downsampled by 2 to create the initial image of the 

next octave [18]. 
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2.2.1.2 Detecting local extrema 

To obtain stable keypoints, the local maxima and minima of Gaussian function 

),,( σyxD  are searched. To detect them, each point is compared with its 8 

neighbors on the same image and 9 neighbors on the one scale above and one 

scale below images (see Figure 2.4).  The point is selected as a candidate keypoint 

if it is larger than or smaller than all its neighbors. 

 

 

 

 

 

Figure 2.4 – Neighborhood of the candidate keypoint 

To find local minima and maxima, each point (marked with X) is compared with its 26 

neighbors, 8 on the same image, 9 on the scale above and 9 on the scale below [18]. 

 

 

 

The sampling frequency for extrema detection introduces a tradeoff between 

efficiency and completeness. The best choice can be experimentally determined 

according to the task. 

 

2.2.2  Keypoint Localization 

After determining local extrema, which are the candidate keypoint locations, the 

keypoints should be more accurately localized for enhanced stability. To achieve 

this, a detailed function is fit to the nearby pixels of the candidate keypoints. This 
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step brings some improvements to the algorithm such as; sub-pixel accuracy, 

elimination of low contrast points and elimination of edge points.  

 

This technique, fitting a 3D quadratic function to the neighboring region of the 

sample point, is developed by Brown [4]. In his approach, the Taylor series 

expansion of the scale-space function ),,( σyxD  is used. 

 
x

x
Dxx

x
DDxD T

T

2

2

2
1)(

∂
∂

+
∂
∂

+=  (2.17) 

The function includes up to the quadratic terms and is shifted to have origin at the 

sample point. D and its derivatives are calculated at the sample point and 

Tyxx ),,( σ=  is the offset from the sample point.  

 

The extrema location x̂  can be evaluated by taking the derivative of this equation 

and equating it to zero, which results in; 

 

x
D

x
Dx

∂
∂

∂
∂

−=
−1

2

2

ˆ  (2.18) 

If x̂ , which represents the offset of the accurate keypoint location from the 

sample point location, is greater than 0.5 in any direction; that means the 

accurate location is closer to another pixel. In such a case, the sample point is 

changed and the operations are repeated for the new one. The final x̂  value is 

added to the location of the sample point, which provides sub-pixel localization. 

 

2.2.2.1 Eliminating low contrast points 

The points which have low contrast in their neighborhood typically provide 

unstable keypoints so they should be removed. To obtain them, equation (2.18) 

can be substituted into equation (2.17), which results; 
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Assuming image pixel values are in the range [0,1], the points that have )ˆ(xD  

less than 0.03 are discarded. 

 

2.2.2.2 Eliminating edge points 

The locations of keypoints which are localized along an edge are generally quite 

unstable and sensitive to noise, so they should be eliminated for enhanced 

stability. To find out the points positioned along an edge, the principal curvatures 

of the difference-of-Gaussian function are examined. For a point lying along an 

edge, the DOG function will have a small principle curvature along the edge 

direction and a large principal curvature in the perpendicular direction. On the 

other hand, a stable point is expected to have comparable curvatures in both 

directions. The principal curvatures can be evaluated using the Hessian matrix; 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

yyxy

xyxx

DD
DD

H  

 

The eigenvalues of the Hessian matrix are proportional to the principal curvatures 

of the DOG function. Since only the ratio of the eigenvalues is needed, explicit 

computation of them can be avoided. This approach is the main idea behind the 

Harris Corner Detector [9].  

 

Let α and β be the eigenvalues of H; then trace of H gives the sum of α and β, 

and determinant of H gives their multiplication. 

 βα +=+= yyxx DDHTr )(  
(2.20) 

 αβ=−= 2)()( xyyyxx DDDHDet  (2.21) 
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Let r be the ratio of the eigenvalues, such that βα r= , 
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 (2.22) 

depends only on r, but not on α and β.  

 

The value 
r

r 2)1( +
takes its minimum value when r=1, i.e., when the two 

eigenvalues are equal, and increases as their ratio r increases. Thus, checking this 

value against a threshold is enough to observe the ratio of the principal curves. 

The Lowe paper [18] uses a value of r=10 as a threshold. 

 

2.2.3  Orientation Assignment 

Now that the keypoints are selected, unstable ones are eliminated and their 

accurate locations are found, a descriptor should be assigned to each keypoint to 

characterize it. This descriptor should be scale and rotation invariant. The scale 

invariance is achieved by selecting the Gaussian smoothed image L(x,y), with the 

scale closest to the scale of the keypoint, and performing all operations on this 

image. To achieve rotation invariance, an orientation is assigned to each keypoint 

and the keypoint descriptor is computed relative to this orientation. 

 

For a sample image L(x,y), the magnitude m(x,y) and orientation θ(x,y) of the 

gradient can be calculated as; 

 22 ))1,()1,(()),1(),1((),( −−++−−+= yxLyxLyxLyxLyxm  (2.23) 
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Orientations around a keypoint are added up to a histogram for each keypoint. 

The histogram has 36 bins for 360° range. Each sample is weighted by the 

gradient magnitude and also by a Gaussian function with a scale 1.5 times of the 

scale of the keypoint, and added to the histogram. Peaks of the histogram are 

taken as the dominant direction of the gradient. Moreover, the local peaks that are 

larger than 80% of the highest peak are also accepted and a new keypoint is 

created for them. Therefore, there can be keypoints that have the same location 

but different orientations, which contribute considerably to matching stability. As a 

last step, a parabola is fit to the 3 histogram values around the peak to achieve 

better localization. 

 

2.2.4  Constructing a keypoint descriptor 

Up to this point, the keypoints are detected based on the local extrema, and 

location, scale and orientation values are assigned to each of them. These 

parameters provide a local 2D coordinate system for the local image region, thus 

provide translation, scale and rotation invariance. Next, a distinctive descriptor 

should be assigned to each keypoint to characterize it, which can later be used for 

matching. 

 

The first step is to compute the local image gradient magnitudes and orientations 

around each keypoint. For this operation, the Gaussian blurred image with the 

scale of the keypoint is used, providing scale invariance. For rotation invariance, 

the gradient orientations and descriptor coordinates are rotated to the assigned 

keypoint orientation.  

 

In Figure 2.5, (a) shows an example of local gradient magnitudes and 

orientations. The magnitudes of the gradient are weighted by a Gaussian with 

scale 1.5 times the width of the descriptor window, and added up to a histogram 

to construct the descriptor. A sample descriptor can be seen in (b). Here, the 

gradient samples are taken in an 8x8 neighborhood. Then 4x4 regions are used 

for histogram computation and eight direction bins are used for histogram entries. 
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The gradient samples contribute to both of its adjacent histogram entries with a 

weight factor of (1-d) where d is the distance between the original orientation of 

the sample and the central value of the bin. 

 

 

 

 

(a)      (b) 

 

Figure 2.5 – Construction of the keypoint descriptor 

This figure shows the construction of keypoint descriptor. (a) shows the local image 

gradient magnitudes and orientations in a 8x8 neighborhood of the keypoint. The 

circle represents a Gaussian weighting applied to the gradient magnitudes. (b) shows 

the histograms of eight directions, each created by 4x4 regions. The magnitudes of 

the histogram entries correspond to the sum of the gradient magnitudes near that 

direction [18]. 

 

 

 

After creating the histograms, each histogram entry is taken as an element of the 

descriptor vector. In Figure 2.5, the gradient computations are performed on an 

8x8 region, resulting in a 2x2 histogram array, thus producing a 32 dimension 

descriptor vector. Though, the implementation of Lowe utilizes 16x16 

neighborhoods, resulting in a 4x4 histogram arrays and descriptor vectors of 

length 128. 
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In this thesis, the SIFT++ code by A. Vedaldi is utilized as the SIFT code [30]. 

 

2.3 Random Sample Consensus (RANSAC) 

Random Sample Consensus (RANSAC) is an algorithm to fit a mathematical model 

to a set of observed data which contains “a significant percentage of gross erros” 

[6]. It is a non-deterministic algorithm that iteratively tries to find a model that 

fits to as much of the data as possible. The probability of having a realistic model 

increases as the number of iterations increase. 

 

The inputs to the RANSAC algorithm are: 

• the observed data,  

• a parametric model to be fit to the observed data (the model parameters 

will be estimated by RANSAC),  

• n: the number of data points that will be used for the initial estimate, 

• t: the error threshold to decide if a point fits well to a model, 

• d: the minimum number of inliers for a model to be accepted, 

• k: the number of iterations. 

 

The algorithm first selects n random points from the data set which are called 

hypothetical inliers. The model parameters are calculated from these hypothetical 

inliers. Then all the remaining points in the data set are tested against this 

predicted model. The points fitting well to the predicted model, that is, with an 

error less than a threshold t, are added to the hypothetical inliers set and this new 

set is named the consensus set. If the number of elements in the consensus set is 

larger than d, the model has a probability to be a reasonable one. At this step, the 

model parameters are recomputed using the elements in the consensus set since 

the former parameters were based on only the initial hypothetical inliers. To 

evaluate the accuracy of the model, the error of the inliers relative to the error is 

computed. If this error value is smaller than the current lowest error value, this 

model is saved as the current best model. Then another iteration is performed 

again starting with an initial random subset of the data set. The procedure 
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continues this way until k iterations are made. The current best model is updated 

every time a model with a lower error is found. When the iterations finish, the 

model saved as the current best model constitutes the estimate of the RANSAC 

algorithm. 

 

The RANSAC parameters n, t and d are problem specific parameters that should 

be given to the algorithm. On the other hand, the parameter k, i.e., the number of 

iterations, can be estimated. As stated above, the algorithm starts with selecting n 

random points from the data set. Let the probability of selecting an inlier from the 

data set be w, 

 

setdatatheinelementsofnumbertotal
setdatatheininliersofnumberw =  (2.25) 

 

In many cases, the number of inliers in the data set may not be known but a 

rough estimate can be used. Using this value, the probability of all the selected n 

points be inliers becomes wn and the probability of having at least one outlier in 

selected n points becomes 1-wn. In k iterations, the algorithm will select at least 

one outlier in all k iterations with a probability of (1-wn)k, and will have at least 

one iteration with all inliers with probability 1-(1-wn)k. Estimating the model from 

a data set consisting of all inliers will give a reasonable result, so this value also 

represents the probability of RANSAC finding a good model. If we set it to a 

constant value, in other words to the desired probability, we obtain: 

 ( )knwP −−= 11  (2.26) 

 ( )
( )nw

Pk
−
−

=
1log
1log

 (2.27) 

This k value is the maximum number of iterations required to find a fine model 

with probability P. 
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CHAPTER 3 

3 A ROBUST AND EFFICIENT SALIENT REGION 
DETECTOR AND TRACKER FOR VIDEO SEQUENCES 

The focus of this thesis is to construct a reliable and computationally efficient 

salient region detector and tracker using the visual attention concept. The 

algorithm should be suitable for outdoor video sequences. Since the outdoor 

environments are normally uncontrolled, the Visual Attention algorithm is 

promising since it autonomously selects the locations that it will concentrate on.  

 

This chapter is organized as follows. First, section 3.1 describes the video data 

used in the tests and section 3.2 specifies the evaluation criteria to interpret the 

tests. The remaining sections propose methods towards obtaining a reliable and 

efficient salient region detector and tracker. In section 3.3, the Visual Attention 

algorithm is used alone and its behavior is analyzed. In section 3.4, the SIFT 

features are used alone as a region tracker to observe its performance. Then, in 

section 3.5, SIFT features combined with the Visual Attention to achieve better 

performance. Section 3.6 considers using RANSAC algorithm with matched SIFT 

points to get more robust results. Section 3.7 studies the idea of region-based-

processing to decrease the augmented computational load. Section 3.8 suggests 

limiting the attention channels to further decrease the complexity. 
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3.1 Test Data 

The test data used by the tests consist of four videos which are called Shaky, 

Planar, Blurred and CarPark. 

 

• Shaky is an outdoor video sequence recorded in the front yard of a building. 

Some bright and colored objects are distributed throughout the scene to act as 

visually attracting objects. The environment is motionless. The video is 

recorded by holding the camera by hand and ‘shaking’ it with a pattern that 

represents legged motion. Some sample frames can be observed in Figure 3.1. 

 

 

 

  

  

 

Figure 3.1 – Sample frames from the video Shaky 

Some sample frames from the video Shaky which represents legged motion. 
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• Planar is recorded in the same environment. The camera is held by hand and 

moved slowly. The motion of the camera in this video has a feature as follows: 

First the tentative salient objects in the environment have been detected. Then 

the camera is moved such a way that the trajectories of the salient objects do 

not overlap throughout the video. This video is used to evaluate the tracking 

performances of various algorithms by comparing the actual trajectories of the 

objects with the computed trajectories. Since the paths of the objects do not 

overlap, this video is called Planar for the ease of comprehension. Some sample 

frames from the video Planar can be observed in Figure 3.2. 

 
 
 

  

  
 

Figure 3.2 – Sample frames from the video Planar 

Some sample frames from the video Planar. This is the test video for the evaluation 

of tracking capabilities of the algorithms. 
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• Blurred is recorded in the same environment. The camera is held by hand and 

moved very fast in order to obtain images which are highly motion blurred. 

Motion blur is an inevitable factor in many video sequences, as seen in the 

camera outputs of mobile robots. The aim of this sequence is to test the 

robustness of the algorithms against motion blur. Some sample frames from 

the video Blurred can be observed in Figure 3.3. 

 

 

 

  

  

 

Figure 3.3 – Sample frames from the video Blurred 

Some sample frames from the video Blurred. It is used for testing robustness of the 

algorithms against motion blur. 
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• CarPark is recorded in a small car park. The camera is held by hand and moved 

again simulating a legged motion. In this sequence there are no intentionally 

distributed salient objects around the scene so the environment is totally 

uncontrolled. It is used to test the behaviors of the algorithms in real life 

scenarios. Some sample frames from the video CarPark can be observed in 

Figure 3.4. 

 

 

 

  

  

 

Figure 3.4 – Sample frames from the video CarPark 

Some sample frames from the video CarPark. This video represents a real life 

scenario. 
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In the experiments of this chapter, the test videos Shaky and Planar are used. 

Shaky is used to measure the errors, so the performances, of the algorithms while 

Planar is used to visualize the actual and computed positions of the salient regions 

on the image in order to evaluate the tracking capabilities. 

 

3.2 Evaluation Criteria 

Performing some tests, we need to measure the tracking capabilities and the 

efficiencies of the methods. Intuitively, the evaluation criteria compare the 

algorithms based on their, 

• ability to find discriminative features,  

• reproducibility of these features, 

• ability to track those features over time in consecutive frames, 

• computational efficiency. 

By taking these into account, formal evaluation criteria are produced.  

 

First, a reference data is obtained for each test video. Let N be the number of 

frames in the sequence and M be the number of reference points in each frame. 

The mth point in nth frame can be represented as xm,n(x, y), where ]1,0[ −∈ Mm , 

]1,0[ −∈ Nn  and x and y are the horizontal and vertical locations of the point 

respectively. First, M reference points are chosen from the first frame. Then for 

each following frame, the point corresponding to the same location is found 

manually. The displacement vector between subsequent reference points is 

calculated as: 

 ∆xm,n = xm,n – xm,n-1 (3.1) 

These inter-frame displacement values are calculated by hand and recorded. They 

give the exact displacements in the image; hence constitute the ground-truth 

data. The results of the following tests are compared with these values. 
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When testing each algorithm, for the first frame, the coordinates of the detected 

objects/points are recorded. Then for each following frame, the displacement 

vectors are calculated by the algorithm. Finally, the calculated displacement 

vectors are compared with the reference data.  

 

This procedure can be formalized as follows:  

x’m,n(x, y) : The computed coordinate of the mth point in the nth frame, 

The computed inter-frame displacement vector ∆x’m,n can be computed as: 

 ∆x’m,n = x’m,n – x’m,n-1 (3.2) 

The error between the calculated displacement vector and the ground-truth 

displacement vector can be calculated as: 
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To have a measure of the overall error of the algorithm, one of the M reference 

points is selected and the mean and variance of the inter-frame errors is 

calculated: 
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These values give a measure of the error between the ground-truth data and the 

data calculated by the algorithms. In the experiments in chapters 3 and 4, Eµ  is 

used as the measure of the performance of the algorithm. (While calculating the 
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error 
nmx ,∆E , the error in x direction Ex, and the error in y direction Ey are 

computed separately and then combined according to 22
yx EEE += .) 

 

At this instant, having a measure of performance, we need to measure the 

efficiency of the algorithms as well. To measure the computational efficiency, the 

average time spent for processing a frame is measured and recorded for each 

algorithm. The total time to process the video sequence, ∆tT can be computed as: 

 
startendT ttt −=∆  (3.6) 

where tstart is the local time when the algorithm starts, and tend is the local time 

when the algorithm quits. 

 

Average time spent to process a frame, ∆tavg, can be easily computed as: 

 

N
tt T

avg
∆

=∆  (3.7) 

where N is the total number of frames processed. 

 

 

3.3 Using Visual Attention alone for salient region detection 
and tracking in video sequences (VAonly) 

The idea is using the Visual Attention algorithm alone as a salient region detector 

and tracker. From now on, this method will be called VAonly. The inputs of the 

algorithm are the video sequence and the number of salient regions to track, M.  

 

The flow of the algorithm can be visualized in Figure 3.5. For each frame, the 

algorithm is run and the M salient region positions on the image are found. The 

algorithm provides the center points of the visually salient areas; that is xm,n(x,y) 
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for the mth salient region in nth frame, where ]1,0[ −∈ Mm , ]1,0[ −∈ Nn , and N is 

the total number of frames. Then, a saliency feature vector f is extracted for each 

salient region which will later be used for matching purposes.  

 

The details of ‘saliency feature extraction’ are given in Figure 3.6 (a). Remember 

that Visual Attention algorithm creates three conspicuity maps that display the 

visually attractive areas of the image in terms of intensity, color and orientation 

differences (see section 2.1.2). The feature vector fm,n for the mth salient region in 

nth frame is defined as: 
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where Im,n is the sum of the values in the intensity conspicuity map in the 16x16 

region around xm,n. Similarly, Cm,n and Om,n are computed from the color and 

orientation conspicuity maps respectively.  

 

Notice that all the three components are normalized. The elements of feature 

vector represent the contribution of each channel to the saliency of the region (for 

instance, a salient region may have 30% of its saliency coming from intensity 

channel, 10% from color and 60% from orientation channel). 

A salient region can be defined as SRm,n = (xm,n , fm,n) where x is its spatial 

location and f is its feature vector. 

Having the salient regions defined, they should be added to the trajectories that 

track the salient regions over frames. If current frame is the first frame of the 

video sequence, then M initial trajectories are created from the M salient regions 

and the processing loop continues with the next frame. If it is not the first frame, 

there must be M active trajectories coming from the previous frames. The regions 

found on this frame are tried to be added to one of the active trajectories using 

the procedure given in Figure 3.6 (b). Let SRm,n=(xm,n,fm,n) be the salient region to 

be added to a trajectory, and Hj=(xj,fj)  be the head element of trajectory-j. SRm,n 

is added to trajectory-j if the two conditions hold: 
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 xxx ε<− jnm,  (3.9) 

 
fff ε<− jnm,  (3.10) 

where εx and εf are the threshold values to be determined in accordance with the 

data. 

 

Equation (3.9) ensures that the salient region is in the neighborhood of the 

candidate trajectory. Since the frames are successive elements of a video 

sequence, the elements of the trajectory must be in continuity. And equation 

(3.10) ensures that the feature vectors of SRm,n and Hj are similar. A salient region 

can be added to at most one trajectory, and a trajectory can include at most one 

salient region from a frame. 

 

After appending the salient regions of current frame to their trajectories, the 

trajectories that have not been extended in current frame are closed. If less than 

M active trajectories are left as a result of this action, new trajectories are started 

using the unassigned salient regions of current frame. 

 

Using the active trajectories, the inter-frame displacement vectors are computed 

for each tracked region. These displacement vectors are recorded to be used for 

comparison with the actual displacement vectors, which are computed by hand 

(see section 3.2). The processing loop continues up to the end of the video.  
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Figure 3.5 – Flowchart of VAonly algorithm 

The Visual Attention algorithm is applied to the input frames to locate the required 

number of salient regions. Then these regions are tracked over frames by forming a 

trajectory for reach tracked region. In each frame, the displacement vectors are 

computed for each trajectory and are compared with the actual displacement vectors 

to evaluate the tracking capability of the algorithm. 
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(a) 

 

 

(b) 
 

Figure 3.6 – Internal diagrams of some blocks of VAonly 

(a) Extracting salient region feature vectors  

(b) Adding a salient region to a trajectory  
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To observe the behavior of the proposed algorithm, experiments are performed. 

Section 3.3.1 explains the experiments conducted with different test videos.  

 

3.3.1  Experimental Results 

The test videos used in this experiment are: 

• Shaky, which is an outdoor video sequence with shaky motion,  

• Planar, which is an outdoor video sequence with non-overlapping motion,  

The test videos employed here are described in detail in section 3.1.  

 

The performance of the algorithm can best be evaluated by observing the inter-

frame displacement vectors calculated by the algorithm with respect to the 

ground-truth inter-frame displacement vectors. The video Shaky is used to 

measure the error of the algorithm in calculating the inter-frame displacement 

vectors. That’s why in this run, M, which is the number of salient regions to track, 

is entered as 1. A sample frame of Shaky sequence with the detected salient 

region position can be seen in Figure 3.7.  

 

 

 

 
Figure 3.7 – The detected salient region position in a frame of Shaky 
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 (a) (b) (c) 

 

(d) 

 

Figure 3.8 – Conspicuity and saliency maps of the frame in Figure 3.7. 

 (a) intensity conspicuity map (b) color conspicuity map 

 (c) orientation conspicuity map (d) saliency map 

 

 

 

Figure 3.8 displays the conspicuity maps and the saliency map of the sample 

frame of Shaky where (a) is the intensity conspicuity map, (b) is the color 

conspicuity map, (c) is the orientation conspicuity map and (d) is the saliency 

map. Using these maps, the saliency feature vector of the most salient region 

(marked in Figure 3.7) is found as [56.2, 0.0, 43.8] which means that 56.2% of 

the region’s saliency comes from intensity discrepancy while 43.8% comes from 

orientation discrepancy. 

 

Figure 3.9 displays the graph of calculated versus actual displacement vectors for 

the video sequence Shaky. In this figure, the x-axis is the processed frame and 

the y-axis is the displacement between ith and (i+1)th frame in pixel values. The 

part (a) of the graph is for the x component of the motion while the part (b) is for 

the y component. When Figure 3.9 is observed, it can be seen that the computed 

patterns only roughly follow the ground-truth data. The error is too large and the 
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results are extremely fluctuating. This is mainly because of the low repeatability of 

the points found by the Visual Attention algorithm. Visual Attention roughly gives 

the salient region positions but it has an algorithmic noise that results in slightly 

different positions in each run1. As a result of this poor repeatability of Visual 

Attention algorithm, the error of VAonly algorithm is quite large in all runs.  

 

To have a better idea of the algorithm’s behaviour, the errors between the actual 

and computed inter-frame displacement vectors are calculated. Figure 3.10 

displays the error between the graphs in Figure 3.9, i.e., between the ground-

truth displacement vectors and the ones calculated by the VAonly algorithm for 

the video sequence Shaky. The (a) part of the graph is the error in x-component 

of the motion, the (b) part is the error in y-component and the (c) part is the total 

error calculated by, 

 22
yxT EEE +=  (3.11) 

where Ex and Ey are the errors in x and y dimensions respectively.  

 

The errors are appearantly very high, varying approximately between ±20 pixels 

in x and y directions. The errors are zero-mean since there is no bias in any step 

of the algorithm. 

 

 

                                          
1 The utilized visual attention code by iLab Neuromorphic Toolkit [10] can detect the salient positions in 

16 pixel resolution and adds a random noise between +8 and -8 pixels to each detected position in 

order to achieve pixel resolution. 



41 

 

 

(a) 

 

 

(b) 

 

 

Figure 3.9 – Inter-frame displacement vectors computed by VAonly vs. ground truth data for 

Shaky 

(a) x-component of the motion (inter-frame displacements in x direction) 

(b) y-component of the motion (inter-frame displacements in y direction) 
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(a) 

 

(b) 

 

(c) 

 

Figure 3.10 – The error between the actual inter-frame displacement vectors and the ones 

calculated by VAonly for Shaky 

(a) Error for the x-component of the motion 

(b) Error for the y-component of the motion 

(c) Total error that equals the vector sum of (a) and (b) 



43 

 

The mean and the variance of the total error are computed according to the 

equations (3.4) and (3.5) respectively. As mentioned in section 3.2, the evaluation 

criterion regarding the performance is the mean of the total error. Below are the 

mean and variance of the total error for the video Shaky. 

 

µE = 12.13 pixels 

σE = 5.42 pixels 

 

The measure for computational cost, i.e., the average processing time per frame, 

is calculated according to the equation (3.7). Below is the average computational 

time per frame for video Shaky. 

 

tavg = 3,24 s 

 

The performance and the computational cost of the algorithms are the two major 

parameters for evaluation. A good visualization can be made by placing the 

algorithm on the performance-cost space. Figure 3.11 shows a graph of 

computational cost versus algorithm performance, where x-axis is the cost and y-

axis is the performance. Computational cost of the algorithm is computed as the 

average time spent for processing a frame, whereas the performance is taken as 

the mean of the total error between the actual and computed inter-frame 

difference vectors. In this graph, it is better to be close to the origin since in this 

region both the computational cost and the error of the algorithm is low, thus 

providing a good performance with a low cost.  

 

The position of VAonly in the graph of Figure 3.11 is computed using the Shaky 

sequence. This video is the reference data set for the future experiments. It can 

be seen that the position of VAonly in performance-cost space is quite far from the 

origin in both coordinates, which indicates a low performance with a high cost. 
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Figure 3.11 – The position of VAonly algorithm in “performance-computational cost” space 

x-axis is the average time spent for processing a frame and y-axis is the mean of the 

total error between the displacement vectors computed by the algorithm and the 

actual ones. The region close to the origin is the sweet stop since this region 

represents good performance and low cost. 

 

 

 

To have an idea of the practical error of the algorithm, the inter-frame 

displacement vectors can be used to compute the object locations in pixel 

coordinates in each frame. Then these position values can be compared with the 

ground-truth object locations in pixel coordinates. To achieve this, an experiment 

is performed using the Planar sequence. The reason of using this video is that, in 

other test videos the salient object positions overlap a lot throughout the video, 

thus resulting in unrecognizable graphs. Figure 3.12 shows the actual and 

computed positions of the tracked salient region for the video Planar. In this run, 

M, which is the number of salient regions to track, is entered as 2. 
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Examining Figure 3.12, it is seen that the computed positions give an idea about 

the locations of the regions, but the trajectories are very irregular with high 

variations. 

 

 

 

 

 

Figure 3.12 – The actual and computed positions of the tracked regions for VAonly 

It can be seen that the error in the position of the salient object is approximately 

around 25 pixels. To give an idea, an error of 50 pixels corresponds to an error of 25 

centimeters in the location of the salient regions in this video, which are 

approximately 2 meters away from the camera. 



46 

 

Summing up the experimental results of the VAonly algorithm, the error of the 

algorithm is too large to be used in practical applications. Moreover, the 

computational cost is also quite large since Visual Attention is a very costly 

algorithm especially when applied to large frames. If we concentrate on improving 

the performance first, it can be deduced that the performance of VAonly can be 

increased if some more robust features are computed and used for the visually 

attractive region. These features could possibly be Harris corners [9], SIFT 

features [18], SURF features [2] and so forth. Being highly robust and distinctive 

as well as being well accepted in the literature, SIFT features turned out to be our 

choice. 

 

 

3.4 Using SIFT alone as a region tracker in video sequences 
(SIFTonly) 

The idea here is to use SIFT to track regions in video sequences. This method will 

be called SIFTonly. The SIFT algorithm is applied to the frame and the SIFT points 

are extracted. Then these points are tried to be matched to the SIFT points of the 

previous frame.  

 

SIFT point matching is performed according to the method of Lowe [18]. As 

described in section 2.2, each SIFT point has a feature vector of dimension 128. 

Assume that we are trying to match two SIFT point groups group-1 and group-2 

having n1 and n2 elements respectively. Let the ith point of group-1 be P1-i. To 

match P1-i to a point in group-2, the vector distance between the feature vector of 

P1-i and the feature vector of each point in group-2 are calculated. The elements in 

group-2 are sorted according to these vector distance values, which show its 

similarity with P1-i. Then, this sorted list of group-2 is analyzed. Let the head of the 

sorted list be P2-1 and the second element in the list be P2-2. Notice that P2-1 is the 

element that is most similar to P1-i while P2-2 is the second most similar one. If P2-1 

is 60 percent more similar to P1-i than P2-2, then P2-1 is accepted as a match. If the 



47 

 

difference between the similarity values of the head and second elements is less 

than 60 percent, then it is said that no match is found for P1-i. 

 

After matching the SIFT points of current frame to the SIFT points of previous 

frame, inter-frame displacement vectors should be computed. An inter-frame 

displacement vector can be computed for each matched SIFT point pair. To obtain 

a single displacement vector, these values are averaged. Then these computed 

displacement vectors are recorded to be compared with the actual ones. The 

processing loop continues up to the end of the video. The flow of the algorithm 

can be visualized in Figure 3.13. 

 

Section 3.4.1 presents the experimental results of SIFTonly. 
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Figure 3.13 – Flowchart of SIFTonly algorithm 

SIFT is applied to the input frames to extract the local stable features. Then the SIFT 

points of current frame are tried to be matched to the SIFT points of previous frame. 

The inter-frame displacement vectors are calculated using the matched SIFT point 

pairs. These values are recorded and the processing continues in this way till the end 

of the video. 
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3.4.1  Experimental Results 

The test videos used in this experiment are Shaky and Planar. Similar to section 

3.3.1, Shaky is used to evaluate the error and cost of the algorithm, while Planar 

is used to evaluate the tracking trajectories. 

 

In this experiment, the inter-frame displacement vectors will be calculated using 

the SIFT points; however, the displacement values definitely depend on the depth 

of the region. Thus, the frames of the test videos cannot be fed to SIFTonly as full 

frames.  To overcome this issue, first, a region with relatively uniform depth is 

segmented from the input frames by hand. 

 

For a typical frame of the video Shaky, SIFT algorithm extracts points in the order 

of thousands. A uniform depth region from a sample frame of Shaky can be seen 

in Figure 3.14 with SIFT points marked as red points. 

 

 

 

 

 
Figure 3.14 – SIFT points on a frame of Shaky 

SIFT algorithm extracted 3017 points in this region. 

 

 

 

Figure 3.15 is the plot of computed and actual inter-frame displacement vectors 

and Figure 3.16 is the plot of errors. In all graphs, pixel units are employed. The 

(a) parts of the figures are for the x-component of the motion while the (b) parts 

are for the y-component. In the error graphs, the (c) parts represent the total 

error computed by the equation (3.11). 
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(a) 

 

 

(b) 

 

 

Figure 3.15 – Inter-frame displacement vectors computed by SIFTonly vs. ground truth data 

for Shaky 

(a) x-component of the motion (inter-frame displacements in x direction) 

(b) y-component of the motion (inter-frame displacements in y direction) 
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(a) 

 

(b) 

 

(c) 

 

Figure 3.16 – The error between the actual inter-frame displacement vectors and the ones 

calculated by SIFTonly for Shaky 

(a) Error for the x-component of the motion 

(b) Error for the y-component of the motion 

(c) Total error that equals the vector sum of (a) and (b) 
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Observing Figure 3.15, the inter-frame displacement vectors computed by 

SIFTonly follow the ground truth data very well providing very precise results. 

Correspondingly the errors in Figure 3.16 are very low around 2 and 3 pixels.  

 

The mean and variance of the error and the processing time per frame are 

computed by equations (3.4), (3.5) and (3.7) respectively. 

 

=Eµ 1.03 pixels 

=Eσ 0.51 pixels 

=avgt 11.9 s 

 

Using these values, SIFTonly can be placed in the performance - computational 

cost space as in Figure 3.17. 

 

 

 

 

 

Figure 3.17 – The position of SIFTonly algorithm in “performance-computational cost” space 

x-axis is the average time spent for processing a frame and y-axis is the mean of the 

total error between the displacement vectors computed by SIFTonly and the actual 

ones. 
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In Figure 3.17, it can be seen that SIFTonly demonstrate a much better 

performance with respect to VAonly but the computational cost is unacceptably 

high. The main reason of this is the enormous number (~3000) of extracted SIFT 

points which the makes the matching procedure very costly. 

 

To view the error in computed object locations, the experiment with video Planar 

is used (see Figure 3.18). Since no region is defined in SIFTonly algorithm, the 

position values are computed for the center of the frame using the inter-frame 

displacement vectors. In Figure 3.18, the computed positions follow the ground 

data well but there is an accumulating error. The reason for that is the integration 

operation performed. Matching SIFT points and calculating the coordinate 

differences between the matched pairs gives us the derivative of the motion. To 

compute the positions in each frame, we integrate these values, thus 

accumulating the error.  

 

Considering all the experimental results of SIFTonly, it can be said that this 

algorithm has a very low level of error but it is computationally too costly. A 

reason of this computational load is that SIFT itself is a very time-consuming 

algorithm. And another reason is the SIFT point matching procedure. Notice that, 

if we assume n SIFT points are extracted, the complexity of the matching 

procedure is O(n2); and knowing that the number of SIFT points per frame are in 

the order of thousands, the matching procedure is unsurprisingly very expensive. 

The simplest way of decreasing the time spent by SIFT and matching is decreasing 

the processed image size. By this way, both the SIFT algorithm will take less time 

and the matching procedure will be faster since the number of points will decrease 

significantly. Thus, it would be a useful idea to apply SIFT on specific regions of 

the image, namely the salient regions. 
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Figure 3.18 – The actual and computed positions of the frame for SIFTonly 

The max error in position is approximately 15 pixels resulting in an error of 8 

centimeters in world coordinates. 
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3.5 Applying SIFT on Visual Attention regions (VA+SIFT) 

In section 3.3, we have observed that using Visual Attention algorithm alone as an 

salient region detector and tracker displays a poor performance. It gives a rough 

idea about the motion information but would be useless for lots of applications 

that require higher levels of accuracy. And in section 3.4, we have observed that 

SIFT algorithm is very good at providing accurate results but computationally very 

expensive when applied to large image regions. As a consequence, it would be a 

smart idea to use SIFT features on the visually attractive region.  

 

The idea is to apply the SIFT algorithm to the regions around the visually salient 

locations of the image. This method will be called VA+SIFT. The flow of the 

execution can be seen in Figure 3.19.  

 

The flow of the algorithm is very similar to VAonly. The detected salient regions 

are added to the trajectories and the non-extended trajectories are terminated as 

in the case of VAonly. In this method, after this step, the salient regions are 

segmented from the input image for further processing. When segmenting the 

salient part, a 100x100 region is cropped with the found region center. This 

cropped region is fed to the SIFT algorithm and so as to extract the SIFT feature 

points. Formerly we were using the center points of the salient regions to calculate 

the inter-frame displacement vectors of the trajectories. This time, we use the 

SIFT points of the regions. The SIFT points of the head of the trajectory are 

matched with the SIFT points of the second element of the trajectory. The 

matching procedure is explained in detail in section 3.4. SIFT algorithm typically 

provides quite a lot of points. As an outcome of this, the matched SIFT points are 

also several. Since every single SIFT point match may suggest a different 

displacement value for the frames, this information should somehow be collected 

together. A trivial procedure is taking the average of these values. 

 

The experimental results of VA+SIFT can be found in section 3.5.1. 
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Figure 3.19 – Flowchart of VA+SIFT algorithm 

In VA+SIFT, unlike VAonly, the salient regions are cropped and SIFT algorithm is 

applied on them to extract more stable features so as to obtain more accurate 

results. The SIFT points of salient regions of consecutive frames are matched and the 

inter-frame displacement vectors are calculated using the matched pairs. 
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3.5.1  Experimental Results 

Similar to sections 3.3.1 and 3.4.1, the test videos are Shaky and Planar. 

 

In the test with Shaky, the number of salient regions to track is entered as 1. In 

Figure 3.20, (a) is an input frame from Shaky with the most salient region 

marked, (b) is the segmented region for SIFT processing, (c) displays the detected 

SIFT points on the region and (d) shows the SIFT point matches with the next 

frame. It can be seen that there exist a small number of wrong matches. 

 

 

 

 

(a) 

       

 (b) (c) (d) 
 

Figure 3.20 – Segmenting the salient region from a frame of Shaky 

(a) The input frame. The found salient region is roughly marked. 

(b) The segmented salient region 

(c) The 141 SIFT points extracted from the cropped region. 

(d) The matched SIFT point pairs. 
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The actual inter-frame displacement vectors and the ones calculated by VA+SIFT 

are plotted in Figure 3.21 for the video Shaky. The error in these figures is plotted 

in Figure 3.22. Consistently, pixel units are employed in all plots. 

 

Remembering Figure 3.9 in section 3.3.1, the inter-frame displacement vectors 

computed by VAonly algorithm were only roughly following the actual pattern with 

unacceptable levels of error. Currently in Figure 3.21, it can be seen that the 

pattern computed by VA+SIFT follows the ground-truth data much better. 

Similarly, comparing Figure 3.22 with Figure 3.10; it is apparent that the errors 

decreased remarkably.  

 

The mean and variance of the total error and the processing time per frame are 

computed by equations (3.4), (3.5) and (3.7) respectively. 

 

=Eµ 3.10 pixels 

=Eσ 2.17 pixels 

=avgt 3.93 s 

 

Using these data, VA+SIFT algorithm can be placed in the performance versus 

computational cost space as in Figure 3.23. 
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(a) 

 

 

(b) 

 

 

Figure 3.21 – Inter-frame displacement vectors computed by VA+SIFT vs. ground truth data 

for Shaky 

(a) x-component of the motion (inter-frame displacements in x direction) 

(b) y-component of the motion (inter-frame displacements in y direction) 
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(a) 

 

(b) 

 

(c) 

 

Figure 3.22 – The error between the actual inter-frame displacement vectors and the ones 

calculated by VA+SIFT for Shaky 

(a) Error for the x-component of the motion 

(b) Error for the y-component of the motion 

(c) Total error that equals the vector sum of (a) and (b) 
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Figure 3.23 – The position of VA+SIFT algorithm in “performance-computational cost” space 

x-axis is the average time spent for processing a frame and y-axis is the mean of the 

total error between the displacement vectors computed by VA+SIFT and the actual 

ones. 

 

 

 

Figure 3.23 makes it possible to compare VAonly, SIFTonly and VA+SIFT in terms 

of the two major criteria: performance and computational cost. The plot illustrates 

that using the SIFT features for the salient region improves the performance 

significantly compared to VAonly while causing only a slight increase in the 

computational cost. VA+SIFT is also much more feasible with respect to SIFTonly 

seeing that the error difference between them is very small whereas the cost 

difference is massive. 

 

Figure 3.24 displays the actual versus computed positions of the two tracked 

regions in video Planar in pixel coordinates. The actual and computed patterns are 

very much alike despite the accumulating error. 

 



62 

 

 

 

 

 

 

 

Figure 3.24 – The actual and computed positions of the tracked regions for VA+SIFT 

The max error in position is approximately 40 pixels resulting in an error of 20 

centimeters in world coordinates. 
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The experimental results of VA+SIFT displayed that using the distinctive SIFT 

features around the visually salient regions to compute precise displacement 

vectors provide a good tracking performance. However, the computational cost is 

still too high to be practical. Before concentrating on lowering the computational 

time, first we will search if we can further enhance the performance.  

 

 

3.6 Using RANSAC to eliminate the outliers (VASR) 

Please note that in section 3.5, the SIFT points of the salient region of current 

frame were matched with the SIFT points of the salient region of previous frame, 

yielding matched pairs in the order of tens. Each of these pairs may obviously 

indicate a different displacement vector. In section 3.5, these values were 

averaged to get a single displacement vector per salient region. A more intelligent 

method could be employed taking in mind that these values generally contain 

outliers. RANSAC is an outlier elimination method described in section 2.3. 

 

The idea here is to use RANSAC algorithm while calculating the inter-frame 

displacement vectors from the matched SIFT point pairs. This method will be 

called VASR as an abbreviation of VA+SIFT+RANSAC. The flow of the algorithm is 

same with Figure 3.19 with the exception of employing RANSAC in the “Inter-

frame displacement calculation” block.  

 

To eliminate the outliers using RANSAC, first a parametric system model is needed 

to be defined. Here the mean and the variance of the displacement vectors will be 

employed as the model parameters, resulting in 4 parameters: 

 

• The mean of the x component of the displacement vectors, 

• The variance of the x component of the displacement vectors, 

• The mean of the y component of the displacement vectors, 

• The variance of the y component of the displacement vectors. 
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The usage of this model in RANSAC is such that: 

• First, a number of random samples are chosen from the displacement 

vectors, which are calculated using the matched SIFT point pairs. 

• A mean and a variance are computed for them. 

• Then the remaining samples are tested by these mean and variance values. 

If the distance between the sample and the computed mean is smaller than 

the computed variance, the sample is accepted as an inlier; otherwise it is 

an outlier. 

• After testing all samples, if a good number of them are classified as inliers, 

the estimated model may be a successful one.  If so, the mean and 

variance are re-calculated taking all inliers into account. 

• Finally, an error value is computed for the inliers by averaging their 

distances with the mean value. 

• The model with the lowest error is accepted when the predetermined 

number of iterations are completed. 

 

The experimental results of VASR can be found in section 3.6.1. 

 

3.6.1  Experimental Results 

Figure 3.25 is the plot of the inter-frame displacement vectors that are computed 

by VASR. It can be seen that now the computed pattern almost exactly follows the 

ground-truth data. In the same way, the errors between the actual and computed 

displacement vectors, plotted in Figure 3.26, are extremely low. 
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(a) 

 

 

(b) 

 

 

Figure 3.25 – Inter-frame displacement vectors computed by VASR vs. ground truth data for 

Shaky 

(a) x-component of the motion (inter-frame displacements in x direction) 

(b) y-component of the motion (inter-frame displacements in y direction) 
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(a) 

 

(b) 

 

(c) 

 

Figure 3.26 – The error between the actual inter-frame displacement vectors and the ones 

calculated by VASR for Shaky 

(a) Error for the x-component of the motion 

(b) Error for the y-component of the motion 

(c) Total error that equals the vector sum of (a) and (b) 
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Using equations (3.4), (3.5) and (3.7), the mean and variance of the total error 

and the processing time per frame are computed. 

 

=Eµ 1.56 pixels 

=Eσ 0.96 pixels 

=avgt 4.16 s 

 

Using these statistics, VASR is placed in performance-cost space in Figure 3.27 

(SIFTonly is not displayed in the plots henceforth as it is on the far right side).  

 

 

 

 

 

Figure 3.27 – The position of VASR algorithm in “performance-computational cost” space 

x-axis is the average time spent for processing a frame and y-axis is the mean of the 

total error between the displacement vectors computed by VASR and the actual 

ones. 
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The position of VASR in Figure 3.27 indicates that VASR is a more accurate 

algorithm compared to VA+SIFT at the cost of a minor increase in complexity. 

 

Figure 3.28 is the plot of actual and computed positions of the two tracked regions 

in video Planar in pixel coordinates. It can be seen that the error between the 

actual and computed pattern has decreased with respect to VA+SIFT. 

 

Evaluating the progress from VAonly to VASR, it can be concluded that at this 

point, the performance is significantly enhanced by VASR algorithm and has 

reached an acceptable level. Nevertheless, the complexity of the algorithm is even 

higher. Decreasing the computational cost of VASR in some way would be very 

beneficial on the road to obtaining a practically valuable algorithm. Section 3.7 

proposes a way of decreasing the costs. 
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Figure 3.28 – Actual and computed positions of the tracked regions for VASR 

The actual and computed patterns are very similar though an accumulation in the 

error can be observed. 
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3.7 Adding Region-Based Processing (R-based VASR) 

At this point, having an algorithm that is substantially acceptable in performance 

(VASR), our aim is to reduce the computational cost. If we analyze the flowchart 

of VASR in Figure 3.19 and search for the time consuming blocks, the Visual 

Attention block stands out. In fact, the experimental statistics reveal that this step 

takes about 80 percent of the processing time. The time it takes to process a 

frame by Visual Attention depends on several parameters but the mostly on the 

frame size. Hence, if we can reduce the size of the input images fed to the Visual 

Attention block, the time spent per frame is expected to decrease significantly. 

 

Since the input frames are the elements of a video sequence, there is continuity in 

between. In other words, if the position of the mth salient region is (xm,n,ym,n) in 

the nth frame and (xm,n+1,ym,n+1) in the (n+1)th frame; then (xm,n+1,ym,n+1) must be 

in the vicinity of (xm,n,ym,n). Thus, if the position of a salient region is known in nth 

frame, it is unnecessary to search everywhere in the (n+1)th frame for that region. 

It is just sufficient to process the region around its earlier position. 

 

Adapting this idea to VASR, the idea is, once the salient region locations are 

computed in the first frame, only the neighboring regions can be searched for 

those salient regions in the following frames. This method will be called R-based 

VASR as an abbreviation of Region-based VASR. The flow of the algorithm is in 

Figure 3.29. There exists a decision block at the first step to decide whether the 

current frame will fully be processed or only its specific regions will be processed. 

The internal structure of this decision block can be found in Figure 3.30.  

 

A frame is fully processed if any of the three cases below holds: 

• If it is the first frame of the input video sequence, 

• If the number of active trajectories (regions being tracked) is less than the 

required number, (Notice that the number of active-trajectories is not 

completed to the required number as in the case of full frame processing.) 

• If the time for periodic full frame processing has reached. 
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The periodic full frame processing scheme aims to avoid diverging as the number 

of processed frames increase. 

 

Depending on the outcome of the decision block, a frame can either be fully or 

regionally processed. If full processing is required, the flow of the algorithm is 

same with VASR. If the current frame will be processed in a region-based manner, 

the algorithm starts with determining the regions to be processed. Remember that 

the salient region positions of the current frame are expected to be in the 

neighborhood of the salient region positions of the previous frame. Thus the 

salient region centers of the previous frame are used to crop the processing 

regions of the current frame. Let the center of mth salient region in nth frame be 

(xm,n,ym,n). The search region of (n+1)th frame is computed solely by taking 

(xm,n,ym,n) as the center and cropping the region around it with constant size in 

both directions (100 pixels, resulting in a 200x200 square region). A brighter idea 

would be using the motion information that can be extracted from a number of 

past frames. 

 

After segmenting the regions, they are fed to the Visual Attention block to locate 

the salient region positions and extract the saliency features. After finding the new 

salient positions and adding them to their matched trajectories, the regions 

around them are re-cropped (100x100) in order to apply SIFT. The remaining part 

of the algorithm is same with the full frame processing scheme except that; if the 

number of active trajectories remain less than the required number (M), they are 

not completed but the forthcoming frame is fully processed to obtain M salient 

regions. 

 

A problem that is worth mentioning is that assume nth frame is fully processed. As 

a result, its saliency feature vectors (contribution of each of intensity, color and 

orientation channels to the saliency value) are computed using the full image. 

When the next frame, which is (n+1)th, is regionally processed, this time the 

feature vectors are computed using the region image. Since Visual Attention 

algorithm is not solely pixel-orientated but involves global normalization 

operations, these two feature vectors appear to be quite different and do not 
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satisfy equation (3.10). Therefore the feature vectors cannot be matched and the 

found region cannot be added to its trajectory. This problem is solved by 

processing the nth frame once more in a region-based manner. The 200x200 

regions around the salient positions are fed to the Visual Attention algorithm once 

more to compute the saliency feature vectors. 

 

Section 3.7.1 presents the experimental results of R-based VASR. 

 

3.7.1  Experimental Results 

In the test with the video Shaky, the number of salient regions to track is entered 

as 1 as usual. In Figure 3.31, (a) is the 200x200 search region in an input frame 

of Shaky. The search region is derived from the salient region location in the 

previous frame. Figure 3.31 (b) is the found salient region. It can be seen that the 

search region is indeed quite large. This is because of the fact that, when 

estimating the search region, no information is gathered about the dynamics of 

the motion, but only the salient region of the previous frame is taken and 

expanded in all directions. 

 



73 

 

 

 

Figure 3.29 – Flowchart of R-based VASR algorithm 

Depending on the outcome of the initial decision block, a frame is either fully or 

regionally processed. 
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Figure 3.30 – Flowchart of the decision block of R-based VASR algorithm 

If current frame is the first frame of the video sequence, or if less than required 

number of regions are being tracked, current frame will be fully processed. 

Moreover, a periodical full frame processing scheme exists as well to avoid diversion. 
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 (a) (b) 

Figure 3.31 – The search region and the found salient region in a frame of Shaky 

(a) The search region derived from the previous position of the salient region 

(b) The salient region found in the search region 

 

 

 

The inter-frame displacement vectors computed by R-based VASR are displayed in 

Figure 3.32 for the video Shaky. Figure 3.33 displays the errors between these 

actual and computed displacement vectors. The error values did not change much 

with respect to the errors of VASR.  

 

Computing the mean and the variance of the total error, and the average time 

spent per frame using equations (3.4), (3.5) and (3.7) we get: 

 

=Eµ 1.45 pixels 

=Eσ 0.94 pixels 

=avgt 1.43 s 

 

Using these values to place R-based VASR in performance-cost space, Figure 3.34 

is obtained. The vital outcome of Figure 3.34 is that region based processing 

scheme decreased the computational cost dramatically while preserving the 

algorithm performance. The position R-based VASR is the current best position 

obtained on this graph (closest to origin). 
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(a) 

 

 

(b) 

 

 

Figure 3.32 – Inter-frame displacement vectors computed by R-based VASR vs. ground truth 

data for Shaky 

(a) x-component of the motion (inter-frame displacements in x direction) 

(b) y-component of the motion (inter-frame displacements in y direction) 
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(a) 

 

(b) 

 

(c) 

 

Figure 3.33 – The error between the actual inter-frame displacement vectors and the ones 

calculated by R-based VASR for Shaky 

(a) Error for the x-component of the motion 

(b) Error for the y-component of the motion 

(c) Total error that equals the vector sum of (a) and (b) 
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Figure 3.34 – The position of R-based VASR algorithm in “performance-computational cost” 

space 

x-axis is the average time spent for processing a frame and y-axis is the mean of the 

total error between the displacement vectors computed by R-based VASR and the 

actual ones. 

 

 

 

Figure 3.35 is the plot of actual and computed positions of the two tracked regions 

in video Planar in pixel coordinates using R-based VASR. It can be seen that the 

error between the actual and computed patterns is small. However, region-based 

processing has such an effect that the tracked regions are sometimes lost 

throughout the video. When this happens, the next frame of the video is fully 

processed to complete the required number of regions being tracked. This causes 

breaks in the trajectories. 

 

Evaluating R-based VASR, the computational cost of the algorithm is less than any 

other proposed method so far but still not very low. Accordingly, section 3.8 

suggests a way of further decreasing the cost. 
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Figure 3.35 – Actual and computed positions of the tracked regions for R-based VASR 

 

 



80 

 

3.8 Limiting Visual Attention Channels (RC-based VASR) 

Region-based processing concept has decreased the computational cost 

significantly but still about 65 percent of the processing time is spent for the Visual 

Attention processing. Remember that, Visual Attention algorithm has three 

channels; namely intensity, color and orientation. When it is invoked, it computes 

the saliency values of the regions with respect to these three channels. A question 

that comes in mind is that could fewer channels be sufficient? When salient 

regions in a frame are detected, in the following frame, the same salient regions 

are searched to continue tracking. In addition, recall that we have a salient region 

feature vector keeping information about the contributions of each channel to the 

region’s saliency. Having these in mind, it can be deduced that similar to limiting 

the search regions, attention channels can also be limited. 

 

The idea is, once a saliency feature vector is computed for a salient region, that 

region can be searched in the subsequent frame using only its most dominant 

attention channel. This method will be called “RC-based VASR” as an abbreviation 

of “Region and Channel based VA+SIFT+RANSAC”. The flowchart of the algorithm 

is same with R-based VASR except for the Visual Attention block (see Figure 

3.29). Channel limiting is only performed in the regions processing branch. When 

full frame is processed, the attention channels are not be limited in order to find 

new salient regions. 

 

Experimental results of RC-based VASR can be found in section 3.8.1. 

 

3.8.1  Experimental Results 

The inter-frame displacement vectors computed by RC-based VASR are displayed 

in Figure 3.36 for the video Shaky. Figure 3.37 display the errors between the 

actual and computed displacement vectors. The mean and the variance of the 

total error, and the average time spent per frame are: 
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(a) 

 

 

(b) 

 

 

Figure 3.36 – Inter-frame displacement vectors computed by RC-based  VASR vs. ground 

truth data for Shaky 

(a) x-component of the motion (inter-frame displacements in x direction) 

(b) y-component of the motion (inter-frame displacements in y direction) 
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(a) 

 

(b) 

 

(c) 

 

Figure 3.37 – The error between the actual inter-frame displacement vectors and the ones 

calculated by RC-based VASR for Shaky 

(a) Error for the x-component of the motion 

(b) Error for the y-component of the motion 

(c) Total error that equals the vector sum of (a) and (b) 
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=Eµ 1.43 pixels 

=Eσ 0.88 pixels 

=avgt 1.43 s 

 

Placing RC-based VASR to the performance-cost space based on these values 

gives the plot in Figure 3.38. 

 

 

 

 

 

Figure 3.38 – The position of RC-based VASR algorithm in “performance-computational cost” 

space 

x-axis is the average time spent for processing a frame and y-axis is the mean of the 

total error between the displacement vectors computed by RC-based VASR and the 

actual ones. 
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The positions of RC-based VASR and R-based VASR in Figure 3.38 are quite on top 

of each other. However, comparing the numerical statistics reveal that RC-based 

VASR is slightly better than R-based VASR in both performance and cost. The 

reason of the performance gain is that limiting the attention channels increases 

the possibility of finding the same salient region, thus decreases the possibility of 

wrong matches. The gain in cost was expected due to the reduced operations in 

Visual Attention block. Indeed the cost gain is much less than expected. 

 

Figure 3.39 is the plot of actual and computed pixel coordinates of the two tracked 

regions in video Planar using RC-based VASR. It can be seen that the error 

between the actual and computed patterns is again very small. Furthermore, 

limiting the Visual Attention channels removed the breaks on the trajectories. 

Recall that the trajectories in Figure 3.35 were split since region-based processing 

caused losing the tracked regions a few times. Limiting the attention channels 

increased the probability of finding the same salient region thus making longer 

trajectories possible. 

 

Evaluating RC-based VASR, the computational cost and the performance of the 

algorithm are quite satisfactory. 
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Figure 3.39 – Actual and computed positions of the tracked regions for RC-based VASR 
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3.9 Narrowing the search regions (MoReC) 

In section 3.7, the idea of region based processing is introduced to decrease the 

computational cost. When a salient region position is determined in a frame, only 

the neighboring region is searched in the next frame. In section 3.7, the search 

region is defined as the 200 pixel x 200 pixel area around the previous position of 

the salient region. In this section, the search region is tried to be narrowed by 

using the motion information in order to further decrease the computational load. 

 

The idea is to extract the motion information of the tracked salient region by using 

the past frames and then to estimate the region’s next position, thus to obtain a 

much narrower search area. This method will be called MoReC as an abbreviation 

of “Motion-Region-Channel-based VASR”.  

 

The motion extraction is performed in its simplest way such that, the displacement 

is calculated between the two previous frames. Let the position of mth salient 

region is (xm,n,ym,n) in the nth frame and (xm,n+1,ym,n+1) in the (n+1)th frame. When 

trying to compute a search region for the (n+2)th frame, first we should estimate 

the motion information using the nth and (n+1)th frames. The displacement 

between nth and (n+1)th frames, call ∆xn+1, can be computed by: 

 ),(),(),( ,,,,1,1,1,1,1,1, nmnmnmnmnmnmnmnmnm yxyxyx xxx −=∆∆∆ ++++++ (3.12) 

It can be assumed that the time intervals between frames are equal since they are 

part of a video sequence. Accordingly, with the assumption that the camera has 

uniform translational motion, i.e., moving on a straight line with constant speed, it 

can be supposed that the displacement between the (n+1)th and (n+2)th frame will 

be equal to ∆xm,n+1. Thus, the estimated position of the salient region in (n+2)th 

frame, call x’m,n+2,  can be written as below: 

 ),(),(),(' 1,,1,1,1,1,1,2,2,2, +++++++++ ∆+= nmnmnmnmnmnmnmnmnm yxyxyx xxx (3.13) 
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In this implementation, the search region of mth salient region in (n+2)th frame is 

defined as the 100 pixel x 100 pixel square centered at x’m,n+2. Notice that this is 

one-fourth of the search region defined in section 3.7. 

 

Experimental results of MoReC can be found in section 3.9.1. 

 

3.9.1  Experimental Results 

Figure 3.40 shows examples of the estimated search regions for the video Shaky. 

The first two images are examples of the worst calculated search regions and the 

third one is a typical one. It can be observed that even the worst cases are 

sufficiently successful. 

 

 

 

     
Figure 3.40 – Examples of search regions in Shaky 

 

 

 

The inter-frame displacement vectors computed by MoReC are displayed in Figure 

3.41 for the video Shaky. Figure 3.42 display the errors between the actual and 

computed displacement vectors. The mean and the variance of the total error, and 

the average time spent per frame are: 

 

=Eµ 1.35 pixels 

=Eσ 0.97 pixels 

=avgt 1.17 s 
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(a) 

 

 

(b) 

 

Figure 3.41 – Inter-frame displacement vectors computed by MoReC vs. ground truth data 

for Shaky 

(a) x-component of the motion (inter-frame displacements in x direction) 

(b) y-component of the motion (inter-frame displacements in y direction) 
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(a) 

 

(b) 

 

(c) 

 

Figure 3.42 – The error between the actual inter-frame displacement vectors and the ones 

calculated by RC-based VASR for Shaky 

(a) Error for the x-component of the motion 

(b) Error for the y-component of the motion 

(c) Total error that equals the vector sum of (a) and (b) 
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Placing MoReC to the performance-cost space gives the plot in Figure 3.43. It can 

be seen that MoReC has considerably lower average processing time per frame 

with respect to RC-based VASR.  This means that, narrowing the search regions 

resulted in a noticeable decrease in computational load while preserving the 

performance. 

 

 

 

 

 

Figure 3.43 – The position of MoReC algorithm in “performance-computational cost” space 

x-axis is the average time spent for processing a frame and y-axis is the mean of the 

total error between the displacement vectors computed by MoReC and the actual 

ones. 
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Figure 3.44 is the plot of actual and computed pixel coordinates of the two tracked 

regions in video Planar using MoReC. It can be seen that the error between the 

actual and computed positions of the salient regions is again small. This proves 

that the narrowed search regions did not result in a degraded tracking 

performance. 

 

Evaluating MoReC, the computational cost and the performance of the algorithm 

are the best results obtained in this chapter. 
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Figure 3.44 – Actual and computed positions of the tracked regions for MoReC 
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CHAPTER 4 

4 EXTENSIVE EXPERIMENTS 

In chapter 3, several methods are proposed in an incremental manner for 

detecting and tracking salient regions. However, the test videos used in chapter 3 

are specifically chosen to clearly display the gains with each proposed method. As 

a result of this, they were far from real life scenarios on account of the 

intentionally placed salient objects around the scene. In this chapter, the proposed 

methods are tested on more realistic video sequences. In section 4.1, the video 

Blurred (see section 3.1 for the test videos) is used to test the algorithm 

performances against motion blur. In section 4.2, the video CarPark is used to test 

the performances in an uncontrolled real life environment. 

 

4.1 Motion Blur 

The goal of this thesis is to obtain a salient region detector and tracker which can 

be used in mobile platforms. An inevitable phenomenon of the visual inputs of 

mobile systems is the motion blur. Thus, the methods proposed in chapter 3 

should be tested against motion blurred videos.  

 

In this section the video Blurred, a highly motion blurred outdoor video, is used as 

the test video. Figure 4.1 displays the total errors between the actual inter-frame 

displacement vectors and the ones computed by the proposed algorithms. 
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(a) Total error of VAonly for Blurred 

 

 
(b) Total error of VA+SIFT for Blurred 

 

 
(c) Total error of VASR for Blurred 

 

Figure 4.1 – Total errors of the proposed algorithms for video Blurred 

 (a) VAonly (b) VA+SIFT (c) VASR 

 (d) R-based VASR (e) RC-based VASR 
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(d) Total error of R-based VASR for Blurred 

 

 
(e) Total error of RC-based VASR for Blurred 

 
Figure 4.1 – Total errors of the proposed algorithms for video Blurred (continued) 

 

 

 

Examining the plots in Figure 4.1, unlike the tests in chapter 3, the error of VAonly 

is not undoubtedly the highest one. The main reason of this is that SIFT algorithm 

is more sensitive to noise than Visual Attention algorithm.  

 

Visual Attention detects salient region based on intensity, color and orientation 

discrepancies, which do not change much with motion blur. On the other hand, 

SIFT detects blob-like (Mexican hat-like) structures, which definitely change with 

motion blur. This can easily be easily realized by observing Figure 4.2, Figure 4.3 

and Figure 4.5. In Figure 4.2, there are two sample frames, (a) without motion 
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blur and (b) with motion blur. Let the sharp frame be called Frame A and the 

blurred frame be called Frame B. Figure 4.3 (a) and (b) shows the SIFT points 

detected on these frames respectively. In Frame A, 7418 SIFT points are detected 

while in Frame B only 589 SIFT points are detected. These results reveal that SIFT 

algorithm is sensitive to motion blur. In fact most of the remaining points in Frame 

B can truly be matched to their counterparts in Frame A, as can be seen in Figure 

4.4. Nevertheless, the decreasing number of points may cause problems especially 

when processing regions instead of full frame. On the other hand, the effects of 

motion blur on Visual Attention can be observed in Figure 4.5. (a), (b) and (c) 

parts of the figure are the intensity, color and orientation conspicuity maps of 

Frame A respectively. (d) is the saliency map of Frame A. Similarly, (e)-(h) are 

the conspicuity and saliency maps of Frame B. As it can easily be noticed, (a)-(d) 

are extremely similar to (e)-(h), telling that motion blur do not affect Visual 

Attention much. 

 

As a result of these facts, the error levels of VAonly for video Blurred are 

comparable to the results of video Shaky (see section 3.3.1) while the errors of 

other algorithms have apparently increased.  

 

Calculating the mean errors of the total errors in Figure 4.1 (a) to (f), and 

measuring the average processing times per frame, the algorithms can be placed 

on the performance-computational cost space as in Figure 4.6. In this figure, 

comparing VAonly, VA+SIFT and VASR, VASR displays the best performance as 

expected. However, adding SIFT features did not decrease the error enormously 

as in the video Shaky. The computational times of these three algorithms are 

almost equal. On the other hand, R-based VASR and RC-based VASR have slightly 

higher errors with much lower computational costs, meaning that region-based 

processing has increased the errors while decreasing the cost. It can be seen that 

limiting the attention channel in RC-based VASR has decreased the errors with 

respect to R-based VASR. 

 

To sum up, RC-based VASR and VASR have the two best results in Figure 4.6. 

VASR stand out with low error value, while RC-based VASR stands out with low 
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cost. The average error levels of the algorithms are between 8 and 14 pixels which 

correspond to 4 to 7 centimeters for the objects in the video which are 

approximately 3 meters away. In the light of these results, it can be concluded 

that the proposed algorithms, especially RC-based VASR and VASR, are proved to 

be functional with motion blurred videos. 

 

 

 

   

 (a) (b) 

 

Figure 4.2 – Sample frames 

(a) Without motion blur (Frame A) 

(b) With motion blur (Frame B) 
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 (a) (b) 

 

Figure 4.3 – SIFT points 

(a) SIFT points of Frame A 

(b) SIFT points of Frame B 

 

 

 

 

 

Figure 4.4 – SIFT point matches between Frame A and Frame B 

Most of the SIFT points in Frame B can truly be matched to Frame A. 
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(a) (b) (c) 

 

 (d) 

 

   

(e) (f) (g) 

 

 (h) 

 

Figure 4.5 – Conspicuity and saliency maps 

(a) Intensity conspicuity map of Frame A (e) Intensity conspicuity map of Frame B 

(b) Color conspicuity map of Frame A (f) Color conspicuity map of Frame B 

(c) Orientation conspicuity map of Frame A (g) Orientation conspicuity map of Frame B 

(d) Saliency map of Frame A  (h) Saliency map of Frame B 
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Figure 4.6 – The position of the algorithms in “performance-cost” space for video Blurred 

x-axis is the average time spent for processing a frame and y-axis is the mean of the 

total error between the computed displacement vectors and the actual ones. 

 

 

 

4.2 Real Life Environment 

In this section, the test video is CarPark, which is an outdoor video sequence 

recorded in an uncontrolled environment (a car park with no intentionally placed 

objects). The aim of this experiment is to test the algorithms on more realistic 

videos. 

 

In Figure 4.7, a sample frame of CarPark, its saliency map and examples of the 

tracked salient regions can be found. 
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The chief point in this test is that, the salient region tracking trajectories are 

generally much shorter with respect to other test videos; that is, the salient 

regions that are being tracked change many times throughout the video. This is 

because of the fact that the saliency values of many regions are comparable; thus, 

some of the tracked regions got lost while new regions turn out to be dominant.  

 

In Figure 4.8, the trajectories of the tracked salient regions can be found for the 

test RC-based VASR on video CarPark. In this run, the number of salient regions 

to track is entered as 3. The positions of the tracked salient regions on image 

plane can be viewed throughout the frames. If the axis showing the frames is 

followed, it can be observed that there are 3 tracked salient regions at all times. 

Once a region gets lost during tracking, a new region is started to be tracked by 

creating a new trajectory for it. Since RC-based VASR is used in this run, region 

based processing is performed. Also a periodic full frame processing scheme exists 

with the period defined as 10, meaning full frame is processed once in every 10 

frames. An interesting point is that most of the trajectory losses are occurred 

when full processing occurs, i.e., when frame count is a multiple of 10. From this 

result, it can be deduced that region-based processing in fact increases the 

continuity of the trajectories. 
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(a) 

 

(b) 

       

(c) 

 

Figure 4.7 – Samples from video CarPark 

(a) A sample frame from video CarPark 

(b) The saliency map of the sample frame 

(c) Examples of the salient regions that are tracked throughout the video 
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Figure 4.8 – Trajectories of the salient regions of CarPark, tracked by RC-based VASR 

The number of salient regions to track is 3. This figure shows the positions of the 

tracked regions on image plane throughout the frames. 

 

 

 

The algorithms are tested on the video CarPark and are placed on the 

performance-cost space as in Figure 4.9. It can be seen that adding SIFT and 

RANSAC to Visual Attention decreased the error while slightly increasing the cost. 

Region-based processing concept decreased the cost remarkably while increasing 

the error. Limiting the visual attention channels slightly decreased the augmented 

error. Consequently, RC-based VASR can be deduced to have the best statistics. 

Having an average error of 9 pixels and processing time per frame of 1.7 seconds, 

it can be used as a salient region detector and tracker in real life videos such as 

CarPark. 
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Figure 4.9 – The position of the algorithms in “performance-cost” space for video CarPark 

x-axis is the average time spent for processing a frame and y-axis is the mean of the 

total error between the computed displacement vectors and the actual ones. 
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CHAPTER 5 

5 CONCLUSION 

Visual Attention is an interesting theory that tries to detect the regions of the 

image that are most likely to draw attention of human beings. Having designed in 

accordance with human judgment, Visual Attention is expected to be widely used 

in autonomous systems in near future. In this work, an efficient salient region 

detection and tracking method is proposed that can be used for visual processing 

in mobile platforms. 

 

An efficient algorithm is incrementally obtained through a series of tests. First, the 

Visual Attention algorithm by Itti et al. [14] is used alone as a salient region 

detector and tracker. This algorithm detects the parts of the image which are 

different from their surroundings in terms of intensity, color and orientation. The 

visually attractive parts of the images are extracted with the help of the Visual 

Attention algorithm and a feature vector is extracted for each region. These 

regions are tracked across frames with the help of their positions and feature 

vectors. The tests showed that using Visual Attention is promising but its single 

performance and cost are not appropriate for practical usage.  

 

Next, SIFT [18] features are used within the salient region to achieve more 

precise tracking results. The SIFT points of the salient region of current frame are 

matched with the ones in previous frame to compute the displacements. The tests 

displayed that this step significantly enhanced the tracking performances. What is 
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more, since SIFT algorithm is only applied to the salient region, the computational 

complexity of the algorithm only slightly increased.  

 

Next, the performance is further improved by eliminating the wrong SIFT point 

matches using RANSAC algorithm [6]. This addition is proved to be functional with 

the help of the experimental results. 

 

At this point, having achieved a satisfactory performance, the augmented 

computational cost became the weak point. The previously mentioned methods 

and tests are analyzed to find the most time consuming blocks. It is noticed that 

applying the Visual Attention algorithm takes the majority of the processing time. 

Since the time it takes to process a frame by Visual Attention most depends on 

the image size, possible ways of decreasing the image sizes are investigated. 

Since the input frames are parts of a video sequence, there is continuity in 

between. Thus the salient region may not move enormously between adjacent 

frames. Using this information, once finding the salient regions in frame, search 

regions are defined for the following frames to look for the salient regions. This 

region based processing scheme significantly enhanced the timings of the method. 

In addition, the performance is not affected considerably.  

 

Next, techniques are searched to further decrease the computational cost. The 

proposed idea is limiting the visual attention channels. Similar to limiting the 

search regions, visual attention channels can also be limited due to the continuity 

of the frames. Once a salient region is found and its feature vector is extracted, 

the contributions of each channel to the saliency value are known. The idea is to 

use only the most dominant visual channel of a salient region when searching for 

it in subsequent frames. Surprisingly, this method did not decrease the 

computational costs significantly. However, as a surprising effect, it enhanced the 

performance. The reason of this is that limiting the visual attention channels 

increased the probability of finding the same salient region in successive frames. 

Last, the search regions are further limited using the extracted motion 

information. This final algorithm, which is obtained incrementally by adding a 

module in each step, is called MoReC as an abbreviation of “Motion and Region 
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and Channel based Visual Attention+SIFT+RANSAC”. It displayed the best 

experimental results and accepted as a conclusion. 

 

Having found a promising algorithm, additional tests are performed using more 

realistic data sets. First the algorithms are tested against motion blur. The results 

revealed that Visual Attention algorithm do not seem to be affected much by the 

motion blur while SIFT algorithm is significantly affected. As a result of this, the 

proposed methods displayed larger error values with the blurred data with respect 

to the previous results. However, the statistics of RC-based VASR were good 

enough so it can be deduced that this algorithm is useful even with motion blur. 

 

Next, RC-based VASR is tested with a realistic video which is recorded in a car 

park. The characteristic of this video is that the environment is uncontrolled, with 

no intentionally placed objects. The experimental results showed that in an 

environment like that, the salient regions that the algorithm tracks changes more 

throughout the video. However, the algorithm managed to track given number of 

salient regions at all times thus achieving the task. In addition, the error level of 

the algorithm was acceptable, thus proving to be useful. 

 

5.1 Future Work 

As future work, the computational cost of the algorithm will tried to be decreased 

further since in mobile platforms the processing power is usually very limited. A 

method could be using a better motion estimation method, for example fitting a 

parabola. This would make it possible to further limit the search regions by 

estimating the region’s future positions more accurately. 

 

As another enhancement, the selection of salient regions to track can be 

performed in more intelligent ways. Currently, the salient regions that are visually 

most attractive are selected. This process can be improved by selecting the 

regions with some criteria that can be defined in relation with the intention. 
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As explained in section 1.1, there are several methods to extract the visual 

attention regions. Itti’s method in [14] is utilized in this thesis as it is highly 

accepted in the literature and is regarded as “one of the best known attention 

systems available” [7]. As future work, a number of the other promising saliency 

detection algorithms can be utilized and evaluated in the proposed tracking 

scheme. In particular, the real time visual attention method using integral images, 

proposed in [7], can be tried to speed up the process and the method in [1] can 

be tried to obtain saliency maps at the original image resolution, thus to enhance 

the accuracy. 
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