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ABSTRACT 

PERFORMANCE EVALUATION OF CURRENT DENSITY BASED MAGNETIC 
RESONANCE ELECTRICAL IMPEDANCE TOMOGRAPHY 

RECONSTRUCTION ALGORITHMS 

Boyacıoğlu, Rasim 

MSc., Department of Electrical and Electronics Engineering, Biomedical 

Engineering 

Supervisor    : Prof. Dr. B. Murat Eyüboğlu 

September 2009, 153 pages 

 

Magnetic Resonance Electrical Impedance Tomography (MREIT) reconstructs 

conductivity distribution with internal current density (MRCDI) and boundary 

voltage measurements. There are many algorithms proposed for the solution of 

MREIT inverse problem which can be divided into two groups: Current density (J) 

and magnetic flux density (B) based reconstruction algorithms. In this thesis, J-based 

MREIT reconstruction algorithms are implemented and optimized with 

modifications. These algorithms are simulated with five conductivity models which 

have different geometries and conductivity values. Results of simulation are 

discussed and reconstruction algorithms are compared according to their 

performances. Equipotential-Projection algorithm has lower error percentages than 

other algorithms for noise-free case whereas Hybrid algorithm has the best 

performance for noisy cases. Although J-substitution and Hybrid algorithms have 

relatively long reconstruction times, they produced the best images perceptually. 
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Integration along Cartesian Grid Lines and Integration along Equipotential Lines 

algorithms diverge as noise level increases. Equipotential-Projection algorithm has 

erroneous lines starting from corners of FOV especially for noisy cases whereas 

Solution as a Linear Equation System has a typical grid artifact. When performance 

with data of experiment 1 is considered, only Solution as a Linear Equation System 

algorithm partially reconstructed all elements which show that it is robust to noise. 

Equipotential-Projection algorithm reconstructed resistive element partially and other 

algorithms failed in reconstruction of conductivity distribution. Experimental results 

obtained with a higher conductivity contrast show that Solution as a Linear Equation 

System, J-Substitution and Hybrid algorithms reconstructed both phantom elements 

and Hybrid algorithm is superior to other algorithms in percentage error comparison. 

Keywords: electrical impedance tomography, magnetic resonance imaging, current 

density imaging 
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ÖZ 

AKIM YOĞUNLUĞU TABANLI MANYET ĐK REZONANS ELEKTRĐKSEL 

EMPEDANS TOMOGRAFĐSĐ GERĐÇATIM ALGORĐTMALARININ 

PERFORMANS DEĞERLENDĐRMESĐ  

 

Boyacıoğlu, Rasim 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü, Biyomedikal 

Mühendisliği 

Tez Yöneticisi  : Prof. Dr. B. Murat Eyüboğlu 

Eylül 2009, 153 sayfa 

 

Manyetik Rezonans Elektriksel Empedans Tomografisi (MREIT) akım yoğunluğu 

(MRCDI) ve yüzey potansiyelleri ölçümleri yardımıyla iletkenlik dağılımını 

geriçatmaktadır. MREIT geri probleminin çözümünde kullanılan birçok metot ve 

algoritma vardır. Bu algoritmalar iki gruba ayrılır: Akım (J) ve manyetik akı (B) 

yoğunluğu tabanlı geriçatım algoritmaları. Bu çalışmada J-tabanlı MREIT geriçatım 

algoritmaları gerçekleştirilip bazı değişikliklerle eniyilenmiştir. Bu algoritmaların 

farklı geometrilere ve iletkenlik değerlerine sahip beş iletkenlik modeli ile benzetimi 

yapılmıştır. Benzetim sonuçları yorumlanıp, geriçatım algoritmaları performanslarına 

göre kıyaslanmıştır. Eşpotansiyel-Đzdüşüm algoritması gürültüsüz durum için en 

düşük hata oranlarına sahipken, gürültülü durumda Karma algoritma en başarılıdır. J-

Değiştirme ve Karma algoritmaları diğer algoritmalara oranla daha uzun geriçatım 
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sürelerine sahiptir. Buna rağmen bu algoritmaların sonuçları daha başarılıdır. 

Kartezyen Izgara Çizgileri boyunca Đntegral ve Eşpotansiyel Çizgileri boyunca 

Đntegral algoritmaları gürültü seviyesi arttıkça ıraksar. Eşpotansiyel-Đzdüşüm 

algoritmasında gürültülü durumlarda görüntüleme alanının köşelerinden başlayan 

hatalı çizgiler belirmekteyken Lineer Denklem Sistemi Çözümü ile Geriçatım 

algoritmasının tipik ızgara artefaktı vardır. Đlk yapılan deneyde elde edilen sonuçlara 

bakıldığında, sadece Lineer Denklem Sistemi Çözümü ile Geriçatım algoritması 

bütün elemanları kısmi olarak geriçatabilmiştir. Bu da bu algoritmanın gürültüye 

karşı dirençli olduğunu göstermektedir. Buna karşın, Eşpotansiyel-Đzdüşüm 

algoritması daha yalıtkan olan kare elemanı kısmen geriçatabimiştir. Diğer 

algoritmalar deneysel veriler ile görüntü geriçatımında başarısız olmuşlardır. Daha 

yüksek iletkenlik kontrastına sahip bir fantomla yapılan deney sonucunda, Lineer 

Denklem Sistemi Çözümü ile Geriçatım, J-Değiştirme ve Karma algoritmalarının her 

iki fantom elemanını da geriçattığı ve Karma algoritmanın hata oranlarında daha iyi 

olduğu görülmüştür. 

Anahtar Kelimeler: elektriksel empedans görüntüleme, manyetik rezonans 

görüntüleme, akım yoğunluğu görüntüleme 
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CHAPTER 1 

INTRODUCTION 

Different properties of biological tissues have been investigated to get more 

information about human body and develop new imaging modalities. One of these 

parameters is electrical resistivity of biological tissues. Electrical resistivity of tissues 

changes for different parts of the body and physiological state [1]. Moreover, tissue 

impedance is usually modeled as combination of a resistance and a reactance element 

which forces tissue impedance to vary with frequency [2]. Imaging of impedance 

distribution inside human body enables to examine human body in a different 

perspective than conventional imaging modalities like CT and MRI.  

Electrical Impedance Tomography (EIT) is an imaging modality which was first 

proposed by Henderson and Webster [3] and attracts many scientists over the past 

three decades. Henderson and Webster [3] published first impedance images. 

However, first tomographic images were obtained and published by Brown and 

Barber [4] just before they introduced the first clinical impedance tomography 

system, which is called Applied Potential Tomography (APT). Interested reader for 

EIT history is guided to [5] and [6]. 

EIT mainly consists of currents applied between pairs of electrodes on the imaging 

subject and then measuring surface potentials between remaining electrodes. There 

are mainly two ways of current application, by injecting via electrodes attached to 

surface [6] or inducing via a coil around the body with the help of time varying 

magnetic fields [7] and [8].  

Induced EIT studies are extended with addition of contactless measurement system 

by Gencer and Tek [9],[10] and [11]. After data collection, transfer impedances are 

calculated with the ratio of measured potentials to applied currents and EIT images 

are reconstructed with these transfer impedances. 
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There are many drawbacks of EIT which are studied by many research groups. These 

are low spatial resolution, low signal-to-noise ratio, image reconstruction in 3D and 

sensitivity of body measurements to body shape. The typical limitation of EIT is that 

transfer impedance is constructed with the effect of whole body impedance which 

brings sensitivity to inner regions to be low. As a result, spatial resolution differs for 

inner regions and regions close to the boundary. In other words, spatial resolution is 

position dependent [5].  

This limitation showed the need to determine current density data directly from 

measurements inside the body. However, there was no such non-invasive method 

until Scott and Joy showed that Magnetic Resonance Imaging (MRI) can be used to 

measure internal current density data with a relatively high spatial resolution, [12] 

and [13]. They applied currents attached to the boundary of a phantom and measured 

magnetic field due to these currents with a suitable MR pulse sequence. Then by 

taking the curl of magnetic fields, current density data inside the phantom is obtained 

as (1.1).  

 0/J B µ= ∇×   (1.1) 

where, ( , , )x y zB B B=B , ( , , )x y zJ J J=J , and 0µ  is the magnetic permeability of free 

space. A rotation of phantom is necessary to obtain three components of B . They 

called this new imaging Magnetic Resonance Current Density Imaging (MRCDI). 

Their studies gave birth to a new research area called Magnetic Resonance Electrical 

Impedance Tomography (MREIT).  

MREIT is basically a different form of EIT where current density in imaging object 

is obtained with MRCDI techniques. Then, conductivity distribution inside imaging 

object is reconstructed with MREIT reconstruction algorithms. First studies of 

MREIT were accomplished by Zhang [14], Woo et al [15] and Ider and Birgul [16].  

Zhang [14] proposed the first MREIT reconstruction algorithm which uses internal 

current density distribution and many boundary voltage measurements. The 

algorithm makes use of (1.2),  
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 ab

C

V dρ= ∫ J l  (1.2) 

where abV  is the potential difference between two points, a and b, on the boundary, C 

is the contour for line integral connecting a and b and ρ  is the resistivity distribution 

[6] . After discretization of imaging object, a linear system of equations can be 

formed as (1.3) for M pixels and N boundary voltage measurements, 

 1 1 1N N M M N× × × ×= +V G R N  (1.3) 

where, V , R  and N are vectors of voltage measurements, resistivity distribution 

and noise, respectively. G  is the current density data. Solution of this linear equation 

system is the resistivity distribution of imaging slice. However, this algorithm needs 

too many boundary voltage measurements for a solution with a high spatial 

resolution. 

Another early algorithm is proposed by Woo et al [15]. They modeled an error 

function between measured and calculated current density in terms of resistivity 

distribution. A sensitivity matrix which relates measured current density data to 

resistivity distribution deviations is employed for minimization of error function.  

Minimizing the error function means converging to true values of resistivity 

distribution. Ider and Birgul [16] also used a sensitivity matrix for their algorithm. 

But, this time sensitivity matrix is formed between magnetic flux measurements and 

resistivity distribution. An iterative method is also proposed by Eyüboğlu [17] where 

resistivity distribution is updated after solving internal current density distribution 

with FEM with the resistivity of previous iteration.  

These early studies initiated the research of MREIT and other algorithms. MREIT 

reconstruction algorithms can be grouped in two categories, using magnetic field B 

directly and current density J calculated from B [18]. It is important to note that 

algorithms employing J suffer from a technical difficulty which is the need for 

rotation of imaging object because MRI can only measure only one component of B 

that is parallel to the main magnetic field of MRI system. 
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J-based MREIT reconstruction algorithms in literature are Integration along 

Equipotential Lines, Integration along Cartesian Grid Lines and Solution as a Linear 

Equation System algorithms by Ider [19], J-Substitution algorithm [20] and 

Equipotential-Projection algorithm [21]. 
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1.1 Objectives of the Thesis 

MREIT research has been conducted by many groups since 1991 after Scott et al 

[12] introduced MRCDI to the literature. There are many techniques used for MREIT 

inverse problem. Although MREIT literature contains many J-based reconstruction 

algorithms, most of the studies are based on simulation study. Moreover, these 

reconstruction algorithms’ performances are tested with different simulation 

phantoms which make it difficult to compare them. In a previous study, Lorca [22] 

compared some of the reconstruction algorithms with a rather simple phantom. In 

recent years, MREIT research is focused on experimental study rather than inventing 

new reconstruction algorithms.  As a result, this thesis seeks further investigation of 

J-based reconstruction algorithms and experimentation with real data. Objectives of 

this thesis are: 

• To implement J-based MREIT reconstruction algorithms in literature 

• To optimize implemented J-based MREIT reconstruction algorithms 

• To propose a novel current density based reconstruction algorithm 

• To evaluate and compare J-based MREIT reconstruction algorithms with a 

variety of conductivity models 

• To compare J-based MREIT reconstruction algorithms’ performances with 
experimental data  
 

Implemented J-based reconstruction algorithms are Integration along Equipotential 

Lines, Integration along Cartesian Grid Lines and Solution as a Linear Equation 

system algorithms by by Ider et al [19], Equipotential-Projection algorithm by 

Özdemir and Eyüboğlu [21], [23] and J-Substitution algorithm [20]. Also, a new 

Hybrid algorithm proposed by Boyacıoğlu and Eyüboğlu [24] is also implemented in 

the thesis. 
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1.2 Organization of the Thesis 

Chapter 2 includes problem definition, forward and inverse problems of MREIT. 

Moreover, basic MRCDI techniques to extract current density information are 

formulated in this chapter. In Chapter 3, theory of reconstruction algorithms are 

explained in detail with their formulations. Some modifications are done to optimize 

each reconstruction algorithm and these are explained in implementation sections of 

Chapter 3. Chapter 4 starts with definition and purposes of constructed simulation 

phantoms. Then, simulation results for reconstruction algorithms with each 

simulation phantom are given in subchapters. Furthermore, comparison of 

performances of reconstruction algorithms is also done. Also, application of 

reconstruction algorithms to experimental data is carried out in Chapter 4. Finally, 

Chapter 5 includes the conclusion and future work possibilities. 
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CHAPTER 2 

THEORY 

2.1 Introduction 

In this section, problem definition of MREIT, which includes governing equations 

and definitions, is given. Then, forward and inverse problem for MREIT are 

explained in detail. In general, forward problem consists of calculating potential 

fields in a conductor object for given boundary conditions and conductivity 

distribution when current is applied on its boundary [18]. However, MREIT forward 

problem also includes calculation of current density and magnetic fields. On the 

other hand, inverse problem is the calculation of conductivity distribution of a 

conductor object when current density inside is given. Different formulations and 

algorithms are employed for inverse problem. 

Forward problem solution can be used both for obtaining simulation data and at each 

step of an iterative algorithm for the solution of inverse problem. However, in real 

data experiments current density is extracted with MRCDI techniques. The procedure 

to obtain current density from magnetic field measurements with MRI is also 

formulated. 

2.2 Problem Definition 

In Figure 2.1, current carried by lead wires 1l  and 2l  is applied to a conductive 

medium Ω  through electrodes 1Ε  and 2Ε  attached on its boundary ∂Ω .  Let 

magnitude of current applied be I . Applied current will flow inside Ω  according to 

its resistivity distribution ρ .  



 8 

That is, areas with relatively low resistivity will acquire relatively more current 

density, and vice versa. As a result, current density distribution J  inside Ω  contains 

coded information of ρ .  

 

Figure 2.1 Conductivity Model 

When resistivity distribution is changed, internal current pathways, thus J , changes 

which also effects boundary voltages. In conventional EIT, these boundary voltages 

are insensitive to local changes and small deviations which brings low spatial 

resolution and nonlinearity problem [5]. However, measurement of magnetic field B  

with MRI and calculation of J  from B  ensures spatial resolution to be same 

everywhere inside Ω .  

2.3 Forward Problem 

Forward problem of MREIT is formulated with the following boundary value 

problem along with Neumann boundary conditions (2.1).    

 

1Ε  2Ε  

1ℓ  2ℓ  Ω  

V  J  
ρ  

∂Ω  

B
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1
( ) 0     in 

( )

1
    on 

V

V g

ρ

ρ

 ∇ ⋅ ∇ = Ω 
 

− ∇ ⋅ ∂Ω

r
r

n =

 (2.1) 

where n , g  and r are outward unit normal vector on ∂Ω , normal component of 

current I  on ∂Ω  and a position vector in 3
ℝ , respectively [6] . Also, current 

injection electrodes satisfy, 

     1,2
j

gds I j
Ε

= ± =∫  (2.2) 

Sign of I  depends on direction of current injection pattern and g  is obviously 

nonzero only for the boundary contacting current injection electrodes. 

For the unique solution of V , potential of a single point on ∂Ω  has to be specified 

because V∇  is uniquely determined with the solution of (2.1). After potential 

distribution is calculated, electric field E  inside Ω  can be obtained. 

 E V= −∇  (2.3) 

Ohm’s law relates current density distribution J  to electric field distribution E  as, 

 
1

( ) ( )
ρ

= −J r E r  (2.4) 

Furthermore, Biot-Savart law can be employed to obtain magnetic field B  inside Ω . 

 0
3( ) ( )

4
r dv

µ
πΩ

Ω

′−′ ′= ×
′−∫

r r
B r J

r r
 (2.5) 

where 0µ  is the permeability of free space.  

Analytical solutions of (2.1) only exist for specific geometries, so numerical methods 

such as Finite Element Method (FEM) or Boundary Element Method (BEM) need to 
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be employed. In this thesis, FEM is chosen for forward problem solution [18]. 

COMSOL Multiphysics software is employed and application mode “2D Conductive 

Media DC” from “AC/DC module” is used. To ensure true solution of forward 

problem, a model with homogeneous conductivity distribution and electrodes with 

size of a single side is constructed. After the solution of forward problem, current 

density data is extracted and investigated. Extracted current density does not change 

with position in the direction orthogonal to current injection. Moreover, total current 

is calculated by integrating current density over a slice which is perpendicular to 

current direction. Applied and calculated current values turn out to be the same. 

2.4 Inverse Problem  

MREIT inverse problem is the reconstruction of conductivity distribution of a 

conductor object whose current density or magnetic field distribution is given along 

with one or two boundary voltage measurements when current is applied on its 

boundary. As explained earlier, governing equations and formulations differ for each 

reconstruction algorithm. Some of the algorithms are direct algorithms whereas the 

others are iterative. Iterative algorithms usually solve forward problem at each 

iteration and try to minimize an error function to reach true values of conductivity. In 

this section governing equations for each J-based reconstruction algorithm are 

explained briefly. Detailed formulation and implementation stages are explained in 

CHAPTER 3 

Ider proposed three algorithms in [19]. All of them are derived from (2.6). 

 0∇× =E  (2.6) 

Since, 

 ρ=E J  (2.7) 

(2.6) can be written as, 

 0ρ∇× =J  (2.8) 
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After expansion of (2.8), (2.9) can be written, 

 0ρ ρ∇ × + ∇ × =J J  (2.9) 

With the definition of ln ρℜ = , 

 ∇ℜ× = −∇×J J  (2.10) 

Since current density J  is known, (2.10) is used for calculation of ℜ  and then ρ . 

Equipotential-Projection algorithm by [21] Özdemir and Eyüboğlu uses Ohm’s Law 

in (2.7) to reconstruct conductivity distribution. Internal potential distribution is 

calculated with boundary potentials projected inside FOV in the form of 

equipotential lines.  

J-Substitution and Hybrid algorithm solve forward problem at each iteration and 

update resistivity distribution.  

2.5 Basic MRCDI Procedure and Magnetic Field Extraction 

MRCDI is utilized to obtain current density distribution J  when current is applied 

from electrodes attached to the surface of a conductor object. Pioneers of this 

technique are the Toronto group [25], [12] ,[13] and [26]. MRCDI can be divided 

into three basic groups according to the frequency of applied current. VF-MRCDI 

[27] uses currents with variable frequency below a few kHz whereas RF-MRCDI 

[28], as the name implies, injects currents with radio frequency. However, the most 

common and widely used technique is LF-MRCDI which uses low frequency 

currents. In this thesis, dc currents are employed both for simulation and 

experimental study. Furthermore, formulation of magnetic field extraction is based 

on LF-MRCDI. 

Z direction is chosen to be parallel to the main magnetic field, 0B , of the MRI 

system. When current I  is applied through electrodes attached to the surface of a 

conductor object for a cT  time interval, these currents produce a magnetic field 
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inhomogeneity, ( , , )x y zB B B=B , which forces main magnetic field to change to 

0 +B B  [6]. Actually, it is changed to 0 zB+B , taking only z component of B . In 

consequence, resulting signal equations with positive, (2.11), and with negative, 

(2.12), current are, 

 ( )( , )( , ) ( , ) x yz c
j xm k yn kj B x y TIS m n M x y e e dxdyγ+

+∞
∆ + ∆

−∞

= ∫ ∫  (2.11) 

 

 ( )( , )( , ) ( , ) x yz c
j xm k yn kj B x y TIS m n M x y e e dxdyγ−

+∞
∆ + ∆−

−∞

= ∫ ∫  (2.12) 

where M  is the transverse magnetization and γ  is the gyromagnetic ratio of 

hydrogen [6] . After taking Fourier transform of signals in (2.11) and (2.12), and then 

dividing resulting complex images of M gives, 

 ( , )( , )
( ) (2 ) ( , )

( , )
z c

I
j B x y Tc

zI
c

M x y
Arg Arg e x y

M x y
γ

+

− = = Φɶ  (2.13) 

However, zΦɶ  needs unwrapping since it is wrapped to [ ],π π−  interval. In the end, 

magnetic flux density due to injection current can be extracted as in (2.14). 

 
1

( , ) ( , )
2z z

c

B x y x y
Tγ

= Φ  (2.14) 

where zΦ  is unwrapped version of zΦɶ .
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CHAPTER 3 

CURRENT DENSITY BASED RECONSTRUCTION 
ALGORITHMS 

3.1 Introduction  

In Chapter 3, theories and formulation of reconstruction algorithms are given. 

Furthermore, modifications to optimize the performance of each reconstruction 

algorithm are explained in detail in implementation subchapters.  

In Section 2.4, Equation (2.10) set the relation between logarithmic resistivity and 

current density distribution as,  

 ∇ℜ× = −∇×J J  (3.1) 

After applying curl operator and rearranging terms, Equation (3.2) is obtained in a 

matrix form.  

 

0

0

0

yz
z y

x z
z x

y x

y x

JJJ J
y zx
J J

J J
y z x

J J
J J

x yz

∂     ∂∂ℜ− −     ∂ ∂∂     
     ∂ ∂∂ℜ− = − −    ∂ ∂ ∂    
∂   ∂ ∂ℜ −−      ∂ ∂∂    

 (3.2) 

Equation (3.2) is the starting point for Ider algorithms. On the other hand, 

Equipotential-Projection algorithm makes use of Ohm’s law and J-Substitution 

algorithm reconstructs conductivity distribution iteratively.  
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3.2 Reconstruction by Integration Along Equipotential Lines 

Ider [19] stated that method of characteristics is a common technique used for the 

solution of a single first order linear partial differential equation. The formulation is 

the following. 

Let us define, a first order linear partial differential equation with a vector field ( )A x  

and scalar field ( )b x , where [ ]x x y z= T
, as 

 A u b⋅∇ =  (3.3) 

This system has a characteristic curves in the form of an integral curve ( )x s  such 

that, 

 ( ) ( ( ))x s A x s′ =  (3.4) 

where /x dx ds′ = . So, any characteristic curve starting from point 0s , can be 

formulated with Equation (3.5). 

 
0

0( ) ( ) ( ( ))
s

s
x s x s A x t dt= + ∫  (3.5) 

Also, 

 ( ( )) ( ) ( ( ))
d

u x s u x s b x s
ds

′= ∇ ⋅ =  (3.6) 

Equation (3.6) means that, on the characteristic curve of system defined in Equation 

(3.3), solution of u  can be found if its value is defined on a single point, 1s s= , as in 

Equation (3.7), 

 
1

1( ) ( ) ( ( ))
s

s
u s u s b x t dt= + ∫  (3.7) 

In the case of Integration Along Equipotential Lines, the single first order linear 

partial differential equation turns out to be, 
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 ( )y x
y x

J J
J J

x y x y

∂ ∂∂ℜ ∂ℜ− = − −
∂ ∂ ∂ ∂

 (3.8) 

or 

 3 3( )⋅∇ℜ = − ∇ ×ɶJ J  (3.9) 

This equation has characteristic curves defined by 3( ) ( ( ))x s x s′ = ɶJ  staying on a plane 

with constant z value. That is, there is no variation in z direction. 

Let us now assume 0z z=  plane where 0z  is constant and denote the intersection of 

this plane with Ω  as 0
xy
zΩ . 

T

x y

 ∂ℜ ∂ℜ
 ∂ ∂ 

 is the gradient of ℜ  on 0
xy
zΩ  where z 

dependence is omitted and left hand side of Equation (3.8) is the projection of this 

gradient on y x

T
J J −   direction. So, left hand side of Equation (3.8) is 

perpendicular to current direction x y

T
J J    and current streamlines. As a result, 

characteristic curves of system defined in (3.8) and (3.9), 3( ) ( ( ))x s x s′ = ɶJ , are 

equipotential lines. That result gives the opportunity to use method of characteristics 

to calculate  ℜ  in 0
xy
zΩ  by integrating along equipotential lines if ℜ  is known for at 

least one point on each equipotential line. 

Ider [19] explains explicitly the need for at least two current injection patterns for 

unique solution. Let us assume there are two current injection patterns, 1J  and 2J  

being current density distributions for these patterns. Moreover, 1
xyJ  and 2

xyJ  are 

projections of 1J  and 2J  in Ω  onto 0
xy
zΩ . If the condition 1 2 0xy xyJ J× ≠  is satisfied 

for each current injection pattern and for all equipotential lines, then assigning one 

pixel in 0
xy
zΩ  with its true ℜ  value ensures true calculation of ℵ  distribution in 0

xy
zΩ . 
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3.2.1 Implementation 

3.2.1.1 Equipotential Lines 

To obtain equipotential lines, current density distribution is utilized with the fact that 

equipotential lines are perpendicular to current streamlines. 

Equipotential lines are initialized from pixels on the same boundary of the imaging 

phantom. Since the starting point and current streamline direction is known in a 

single pixel on the boundary, the point which the equipotential line exists for that 

pixel is found. The same procedure is applied to the pixel which the equipotential 

line is entering next. As a stopping criterion, when the equipotential line reaches a 

boundary of the imaging phantom, the calculation of that equipotential line is 

finished. 

A simple example is shown in Figure 3.1. Here, four equipotential lines are initiated 

from the left boundary.  

 

Figure 3.1 Pathways of four equipotential lines initiated from the left boundary 

1J
�

 2J
�

 

3J
�

 4J
�
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3.2.1.2 Formulation of Integration 

Lorca [22] explained the formulation of integration in detail. The integration of ℜ  

over the entire imaging region is done with Equation (3.10), which is the solution of 

first order linear partial differential equation in (3.8) with method of characteristics.  

 
1

1( ) ( )
s y x

s

J J
s s dl

x y

∂ ∂ℜ = ℜ + − − ∂ ∂ 
∫

�
 (3.10) 

Here, dl
�

 is the differential element on the integration path l , i.e. equipotential line, 

which is illustrated in Figure 3.2. 

 

Figure 3.2 Equipotential line l  and integration path from 1s  to s  

For Cartesian coordinates, Equation (3.10) takes the form 

 ( , )dl dx dy=
�

 (3.11) 

and 

 
1 1

1( ) ( )
s sy x

s s

J J
s s dx dy

x y

∂ ∂ℜ = ℜ − +
∂ ∂∫ ∫  (3.12) 

With the discretization of Equation (3.12) with trapezoidal method of integration, 

Equation (3.13) is obtained. 

dl
�

dl
�

 

dl
�

 

1s  

s  

l  
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 1 11 1
1

( ) ( ) ( )( ) ( ) ( )
( ) ( )

2 2
y y y yx x x x

J s J s s ss s J s J s
s s

x x y y

∂ ∂ −   − ∂ ∂ℜ = ℜ − + + +   ∂ ∂ ∂ ∂  
(3.13) 

Also, differential elements are changed as, 

 1 1   and   x x y yx s s y s s∆ = − ∆ = −  (3.14) 

The final formulation is  

 1 1
1

( ) ( ) ( ) ( )
( ) ( )

2 2
y y x x

J s J s J s J sx y
s s

x x y y

∂ ∂   ∂ ∂∆ ∆ℜ = ℜ − + + +   ∂ ∂ ∂ ∂  
 (3.15) 

Consider the system illustrated in Figure 3.3 where two equipotential lines are 

initiated form the left boundary. Assuming logarithmic resistivity in pixel 1 and 3 are 

known, pixel 2 and 4 can be calculated. 

 

Figure 3.3 The case where 2 equipotential line pass through pixel 2 and a single 
equipotential line passes through pixel 4. 

1 

3 

2 

4 

21x∆  

21y∆
 

24x∆

24y∆  

43y∆  

43x∆  
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Assuming pixel 3 is known, logarithmic resistivity in 4 can be calculated as, 

 43 43
(3) (4) (3) (4)

(4) (3)
2 2

y y x x
J J x J J y

x x y y

∂ ∂   ∆ ∂ ∂ ∆ℜ = ℜ − + + +   ∂ ∂ ∂ ∂  
 (3.16) 

After pixel 4 is processed, logarithmic resistivity in pixel 2 can be calculated. But in 

this case, both pixel 4 and 1 are taken into account for calculation of logarithmic 

resistivity in pixel 2 because equipotential lines entering pixel 2 are coming from 

pixel 4 and 1. Thus, an averaging is utilized as in Equation (3.17). 

 

21 21

24 24

(1) (2) (1) (2)1
(2) (1)

2 2 2

(4) (2) (4) (2)1
(4)

2 2 2

y y x x

y y x x

J J J Jx y

x x y y

J J J Jx y

x x y y

 ∂ ∂   ∂ ∂∆ ∆ℜ = ℜ − + + + +    ∂ ∂ ∂ ∂   

 ∂ ∂   ∂ ∂∆ ∆ℜ − + + +    ∂ ∂ ∂ ∂   

 (3.17) 

For a generalization of Equation (3.17), Equation (3.18) can be constructed for a 

pixel 0r  which has n  equipotential lines coming each one from a previous pixel ir . 

 0 0 0 0
0

1

( ) ( ) ( ) ( )1
( ) ( )

2 2

n
y i y i x i x i

i
i

J r J r x J r J r y
r r

n x x y y=

 ∂ ∂   ∆ ∂ ∂ ∆ℜ = ℜ − + + +    ∂ ∂ ∂ ∂   
∑ (3.18) 

To calculate ℜ  in a pixel, a priori information is needed. A priori information is the 

ℜ  values of the previous pixels from which equipotential lines are coming. That 

condition forces the algorithm to be recursive.  

The algorithm is implemented as the following. Starting from the end pixel of each 

equipotential line, for each equipotential line in that end pixel, it is checked if 

previous pixels of these equipotential line are processed. If all the previous pixels are 

processed, the end pixel is calculated. Generally, that is not the case. So, previous 

pixels of the end pixel are processed in the same manner, recursively. In the end, all 

the previous pixels contributing to calculation of that end pixel directly or indirectly 

are processed and the end pixel can be processed. The algorithm will continue with 

the second equipotential line. When all the end pixels are processed, the algorithm 

stops. 
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Flowchart of the algorithm is illustrated in Figure (4). There are n  equipotential 

lines, il , 1,2,....,i n=  with end pixels, ( , )
i ll lx yℜ .  

Current density derivatives are calculated with Sobel operators as explained in [12]. 
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Figure 3.4 Flowchart of Integration along Equipotential Lines algorithm 
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3.3 Reconstruction by Integration along Cartesian Grid Lines 

Ider [19] stated that a potential function in Ω  can be found if its gradient is known in 

Ω  except for an additional constant. The exact function can be calculated by 

specifying the potential function in a single point in Ω . In the case of Reconstruction 

by Integration Along Cartesian Grid Lines algorithm, potential function corresponds 

to logarithmic resistivity distribution. Reconstruction of true logarithmic resistivity 

distribution is ensured by assigning a single pixel with its true logarithmic resistivity 

value. 

In the case of a single current injection pattern, gradient of ℜ  can not be calculated 

since the determinant of coefficient matrix in (3.2) is zero. That is, at least two 

current injection patterns should be utilized. Let us assume, two current injection 

patterns are applied, 1J  and 2J  are corresponding current density distributions. As a 

result, third row Equation (3.2) can be rewritten with the concatenation of the two 

current density distributions as,  

 

11

1 1

2 2 22

yx

y x

y x yx

JJ

J J y xx
J J JJ

y y x

 ∂∂∂ℜ 
   − ∂ ∂∂    =   ∂ℜ− ∂   ∂    ∂  ∂ ∂  

 (3.19) 

T

x y

∂ℜ ∂ℜ

∂ ∂
 
  

 can be calculated at any point (x,y,z) if 1 2 2 1
y x y xJ J J J− +  is not zero at that 

point. General form of that condition is, 

 1 2 0xy xyJ J× ≠  (3.20) 

where 1
xyJ  and 2

xyJ  are projections of 1J  and 2J  onto the xy plane, respectively.  
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For 2-D case, where imaging slice is on xy plane, first and second rows of Equation 

(3.2) are not considered since, z dependence is omitted and calculation of 
z

∂ℜ

∂
 is 

unnecessary. 

3.3.1 Implementation 

The coefficient matrix on the left hand side of Equation (3.19), 

 
1 1

2 2
y x

y x

J J

J J

 −
 −  

 (3.21) 

and the right hand side of Equation (3.19),  

 

11

22

yx

yx

JJ

y x

JJ

y x

 ∂∂
 ∂ ∂ 
 ∂∂ 

∂ ∂  

 (3.22) 

are calculated for each pixel. Sobel operators [12] are utilized for calculation of 

current derivatives. After gradients of logarithmic resistivity ℜ  are obtained for 

every pixel in the imaging slice, logarithmic resistivity distribution can be calculated 

from a point which is assigned with its true ℜ  value. 

3.4 Reconstruction by Solution of a Linear Equation System using 

Finite Differences 

Reconstruction by Solution as a Linear Equation System depends on discretization of 

Equation (3.8), which is third row of Equation (3.2) with finite differences. For 2-D 

case, Equation (3.2) is reduced to Equation (3.8) assuming the imaging slice is on xy 

plane. 

Discretization of Equation (3.8) with central differences for inner elements results in 
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( ) ( )

( ) ( )( ) ( ) ( )( )
1, 1, , , 1 , 1 ,

, 1 , 11, 1,

1 1
( )( )

2 2

1 1

2 2

i j i j y i j i j i j x i j

y y x xi j i ji j i j

J J
x y

J J J J
x y

+ − + −

+ −+ −

  ℜ − ℜ − ℜ − ℜ   ∆ ∆

 
= − − − − ∆ ∆ 

 (3.23) 

where i and j are indices of elements in the x and y directions, respectively. x∆  and 

y∆  stands for differential elements. For boundary and corner elements’ 

discretization, backward or forward differences are used. After Equation (3.8) is 

discretized for all elements, the matrix representation of the equations of all 

rectangular mesh elements is obtained as in Equation (3.24). 

 CR = B  (3.24) 

Here, R represents logarithmic resistivity values of rectangular mesh elements and N 

is number of elements in a row. 

 2 21 2 1
......

N N

T
R R R R R

−
 =    (3.25) 

C is a 2N x 2N  matrix consisting of coefficients of Rs on the left hand side of 

Equation (3.23). That is, multiplication of each row of C with R gives the left hand 

side of Equation (3.23) for a particular element. On the other hand, each row of B is 

the right hand side term of Equation (3.23) for that particular element.  

For M different current injection patterns, there are M different matrix 

representations of Equation (3.24). These are concatenated to form a combined set of 

equations as, 

 

1 1

2 2

1 1

1

M M

M M

C B

C B

R

C B

C B
− −

−

   
   
   
   =
   
   
      

M M  (3.26) 

After combined set of equations is obtained, logarithmic resistivity values can be 

reconstructed with a matrix inversion.  
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3.4.1 Implementation  

Let the imaging slice in xy plane : ( , )x( , )D D D DΩ − −  be divided into N x N  pixels. 

In all the pixels, ,i jΩ , current density J  and logarithmic resistivity ℜ  is assumed 

constant where i  andj  are indices in the y and x directions, respectively. Moreover, 

positive x and y directions are taken as right and up, respectively. As discussed 

earlier, discretization of Equation (3.8) will be different for interior, boundary and 

corner pixels. These regions and formulation of indices for logarithmic resistivity, 

pixels, and current densities are shown in Figure 3.5 and Figure 3.6, respectively.  

1 2 3 

4 5 6 

7 8 9 

Figure 3.5 Regions for discretization 

Starting with inner pixels, i.e. region 5, 

2 1i N≤ ≤ − , 2 1j N≤ ≤ −  and 2 /x y D N∆ = ∆ = ,  

Equation (3.8) is discretized with central differences as, 

 
( 1) 1 ( 1) 1 ( 2)

1, 1, , 1 , 1

2 2 2 2

2 2

i N j i N j i N j iN j

i j i j i j i j

Jy Jy Jx Jx
R R R R

x x y y

Jx Jx Jy Jy

y x

− + + − + − − + +

− + + −

− − +
∆ ∆ ∆ ∆

− −
= −

∆ ∆

 (3.27) 
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-1,i jΩ  ( 2)i N jR − +  

1,i jJx −  1,i jJy −  
 

, 1i j−Ω  

( 1) 1i N jR − + −  

, 1i jJx −  , 1i jJy −  

,i jΩ  ( 1)i N jR − +  

,i jJx  ,i jJy  

, 1i j+Ω  

( 1) 1i N jR − + +  

, 1i jJx +  , 1i jJy +  

 
1,i j+Ω  iN jR +  

1,i jJx +  1,i jJy +  
 

Figure 3.6 . Indices of Logarithmic resistivity, Pixels and Current Densities 

For discretization of upper side pixels, i.e. region 2, central differences are used for x 

direction. On the other hand, backward difference is used for y direction. That is, 

 ( 1) 1 ( 1) 1 ( 1)

, 1, , 1 , 1

1  , 2 1,

2 2

2

i N j i N j i N j iN j

i j i j i j i j

i j N

Jy Jy Jx Jx
R R R R

x x y y

Jx Jx Jy Jy

y x

− + + − + − − + +

+ + −

= ≤ ≤ −

− − +
∆ ∆ ∆ ∆

− −
= −

∆ ∆

 (3.28) 

In the case of lower side pixels, i.e. region 8, central differences and forward 

differences are used for x and y directions, respectively. Then, Equation (3.8) 

becomes,  

 ( 1) 1 ( 1) 1 ( 2) ( 1)

( 1), , , 1 , 1

,  2 1

2 2

2

i N j i N j i N j i N j

i j i j i j i j

i N j N

Jy Jy Jx Jx
R R R R

x x y y

Jx Jx Jy Jy

y x

− + + − + − − + − +

− + −

= ≤ ≤ −

− − +
∆ ∆ ∆ ∆

− −
= −

∆ ∆

 (3.29) 
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For left side pixels, i.e. region 4, forward and central differences are used for x and y 

directions, respectively as shown in Equation (3.30). 

 ( 1) 1 ( 1) ( 2)

( 1), 1, , 1 ,

2 1,  1

2 2

2

i N j i N j i N j iN j

i j i j i j i j

i N j

Jy Jy Jx Jx
R R R R

x x y y

Jx Jx Jy Jy

y x

− + + − + − + +

− + +

≤ ≤ − =

− − +
∆ ∆ ∆ ∆

− −
= −

∆ ∆

 (3.30) 

Region 6 pixels, which are on the right boundary, are discretized with central 

difference and backward difference for y and x directions, respectively as in 

Equation (3.31). 

 ( 1) ( 1) 1 ( 2)

( 1), 1, , , 1

2 1,  

2 2

2

i N j i N j i N j iN j

i j i j i j i j

i N j N

Jy Jy Jx Jx
R R R R

x x y y

Jx Jx Jy Jy

y x

− + − + − − + +

− + −

≤ ≤ − =

− − +
∆ ∆ ∆ ∆

− −
= −

∆ ∆

 (3.31) 

Left-up corner pixel in region 1 is a combination of upper and left side discretization 

formulas. That is, forward difference in x direction and backward difference in y 

direction is applied to Equation (3.8), which results in Equation (3.32). 

 ( 1) 1 ( 1) ( 1)

, 1, , 1 ,

1,  1

i N j i N j i N j iN j

i j i j i j i j

i j

Jy Jy Jx Jx
R R R R

x x y y

Jx Jx Jy Jy

y x

− + + − + − + +

+ +

= =

− − +
∆ ∆ ∆ ∆

− −
= −

∆ ∆

 (3.32) 

With the same logic, right-up corner pixel in region 3 is formulated, Equation (3.33), 

with combination of Equation (3.28) and Equation (3.31) for upper and right side 

discretizations, respectively. 
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 ( 1) ( 1) 1 ( 1)

, 1, , , 1
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i N j i N j i N j iN j

i j i j i j i j

i j N

Jy Jy Jx Jx
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Jx Jx Jy Jy
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+ −
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∆ ∆ ∆ ∆

− −
= −

∆ ∆

 (3.33) 

Region 7 pixel on the left down corner combines Equation (3.29) and Equation 

(3.30) for lower and left side pixels, respectively in Equation (3.34). Here, forward 

difference is applied both in x and y directions. 

 ( 1) 1 ( 1) ( 2) ( 1)

1, , , 1 ,

,  1

i N j i N j i N j i N j

i j i j i j i j

i N j

Jy Jy Jx Jx
R R R R

x x y y

Jx Jx Jy Jy

y x

− + + − + − + − +

− +

= =

− − +
∆ ∆ ∆ ∆

− −
= −

∆ ∆

 (3.34) 

Finally, right down pixel in region 9 is discretized with a combination of Equation 

(3.29) and Equation (3.31) for lower and right boundary pixels, respectively. In 

Equation (3.35), forward and backward differences are utilized in y and x directions, 

respectively.  

 ( 1) ( 1) 1 ( 2) ( 1)

1, , , , 1

,  

i N j i N j i N j i N j

i j i j i j i j

i N j N

Jy Jy Jx Jx
R R R R

x x y y

Jx Jx Jy Jy

y x

− + − + − − + − +

− −

= =

− − +
∆ ∆ ∆ ∆

− −
= −

∆ ∆

 (3.35) 

After all pixels in 9 regions are discretized with Equation (3.27) to Equation (3.35), 

linear equation system represented in Equation (3.24) is constructed. Moreover, there 

is need for at least two current injection patterns to ensure reconstruction of true 

conductivity values. With the concatenation of linear equation systems for two 

current injection profiles, the following equation system is obtained. 
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 1 1

2 2

C B
R

C B

   
=   

   
 (3.36) 

Rank of the linear equation system in Equation (3.36) is 2 1N −  which means that at 

least one pixel has to be assigned to its true logarithmic resistivity value. To satisfy 

that criteria, left corner pixel is assigned to its true logarithmic resistivity value.  

The next step is to solve linear equation system. Preconditioned conjugate gradient 

method [29], which ensures fast convergence of the conjugate gradient method, is 

utilized to solve Equation (3.36). Preconditioned conjugate gradient method requires 

C  being symmetric and positive-definite. To satisfy that criteria, both sides of 

Equation (3.36) are multiplied with the transpose of coefficient matrix C  as in 

Equation (3.37).  

 1 1
1 2 1 2

2 2

T T T TC B
C C R C C

C B

   
   =      

   
 (3.37) 

3.5 Reconstruction with Equipotential – Projection Algorithm 

Equipotential-Projection algorithm is proposed by Eyüboğlu et al’s US Patent [23] 

and applied to real data by Özdemir [21]. Theory behind the algorithm and 

verification with real data experiments are explained in detail in [21]. Moreover, 

Lorca [22] extended the algorithm with slight modifications.  

Equipotential-Projection algorithm reconstructs conductivity distribution, σ , with 

the help of current density distribution and surface potential measurements [21]. 

Measured surface potential measurements are projected inside FOV in the form of 

equipotential lines as explained earlier. Then, the potential distribution φ , and its 

gradient φ∇ , inside FOV can be calculated. By making use of Ohm’s law and 

measured current density distribution by MRCDI techniques, conductivity 

distribution, σ , is reconstructed. 
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Jσ
φ

= −
∇

�

 (3.38) 

Basically, there are four steps for Equipotential-Projection algorithm which are, 

• determination of surface potentials 

• obtaining equipotential lines 

• calculation of potential distribution and its gradient 

• obtaining conductivity distribution 

 
Implementation procedure in [21] and modifications done by Lorca [22] are 

explained explicitly in these subsections. 

3.5.1 Determination of surface potentials 

Özdemir measured surface potentials of the experimental phantom at 18 points. 

Moreover, by interpolating between these measurements points, surface potential at 

four boundaries of the phantom are calculated. On the other hand, Lorca used another 

method for surface potential calculation. Assuming conductivity of a column or 

boundary of FOV is known, potential gradient on that column can be calculated with 

Equation (3.38). Then, potentials on that column can be found by integration of 

potential gradient. This modification reduces experimental difficulties. 

3.5.2 Obtaining equipotential lines 

Equipotential lines are obtained as described in Section 3.2.1.1.  

3.5.3 Calculation of potential distribution and its gradient 

After equipotential lines are projected inside FOV, potential distribution can be 

calculated. Since there can be more than one equipotential line in a pixel, the 

potential value in that pixel is a weighted average of the potential values of 
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equipotential lines intersecting that pixel. The weighting factor is the length of 

equipotential lines inside that pixel. If there are n  equipotential crossing thk  pixel, 

the potential of that pixel, kφ , is 

 1

1

i

n

i eq
i

k n

i
i

l

l

φ
φ =

=

=
∑

∑
 (3.39) 

where il  is the length of the thi  equipotential line inside and 
ieqφ  is its potential 

value. 

If there are no equipotential lines through a pixel, its potential value is calculated by 

the averaging of its neighbor pixels’ potential values. 

Gradient of potential distribution, φ∇ , is calculated by Sobel operators. 

3.5.4 Obtaining conductivity distribution 

After gradient of potential distribution is calculated, Ohm’s law in (3.38) is applied 

to every pixel in FOV to obtain conductivity distribution. Since true potential values 

of starting column for equipotential lines are used, reconstructed conductivity 

distribution does not need any scaling.  

In the case of two current injection patterns, the final conductivity distribution is 

found by averaging of reconstructed conductivity distributions for the two current 

injection patterns. Moreover, if a conductivity value of a pixel can not be calculated 

for one of the patterns, the conductivity value found by the other pattern is assigned 

for the final distribution. 

3.6 Reconstruction with J-substitution Algorithm 

Kwon et al [20] proposed J-Substitution algorithm in 2002 which differs from other 

algorithms by using only magnitude of the current density inside FOV and being 
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iterative. The algorithm mainly tries to minimize a cost function defined as the 

difference between measured and calculated current density distributions at each 

step. It is explained explicitly in three sections which are problem and parameter 

definitions, reconstruction algorithm and implementation. 

3.6.1 Problem and parameter definition 

Let Ω  denote 2D cross section of a conductive body with boundary, ∂Ω . *ρ  and 

*p
V  are resistivity and potential distribution when current I  is applied from 

electrodes on the boundary. *J  is the current density magnitude which is measured 

by MRCDI techniques. Ij  is the inward pointing normal component of current 

densities on the boundary which satisfies the compatibility condition in Equation 

(3.40). 

 0Ij ds
∂Ω

=∫  (3.40) 

For a given resistivity, ρ , the forward problem is defined as,  

 
1

0   in Vρρ
 ∇ ⋅ ∇ = Ω 
 

 (3.41) 

and 

 
1

   on I

V
j

n
ρ

ρ
∂

= ∂Ω
∂

 (3.42) 

where Vρ  and n  are voltage distribution inside FOV and the unit outward normal 

vector at the boundary ∂Ω , respectively. 

If ρ  is taken as *ρ , the boundary problem in (3.41) and (3.42) becomes, 



 33 

 

*

*

*

*

*

*

0   in 

   on I

J
V

V

VJ
j

nV

ρ
ρ

ρ

ρ

 
 ∇ ⋅ ∇ = Ω
 ∇
 

∂
= ∂Ω

∂∇

 (3.43) 

where, *1/ ρ  takes the form of *
* /

p
J V∇  through a modification of Ohm’s law. The 

iterative J-Substitution algorithm reconstructs true resistivity distribution *ρ  from 

the highly nonlinear equation depicted in (3.43) where only *J  is known. 

3.6.2 Reconstruction algorithm 

The cost function ( )ρΨ  expressed in Equation (3.44) is starting point for the 

reconstruction algorithm. 

 
2

* 1
( ) : ( ) ( )

( )
J E dρρ

ρΩ
Ψ = −∫ r r r

r
 (3.44) 

where * ( )J r  is the magnitude of measured current density and ( )Eρ r  is the 

calculated electric field intensity when forward problem defined in (3.41) and (3.42) 

is solved with a given ρ  value. 

The formulation which leads to the following algorithm steps are explained in further 

detail in [20]. Moreover, Kwon [20] showed the need for at least two current 

injection patterns, 1I  and 2I , satisfying the condition, 

 1 2 0× ≠J J  (3.45) 

Here, 1J  and 2J  are the two current density distributions resulting from 1I  and 2I . 

If condition in (6) is satisfied, at least one of 1J  and 2J  will change at the boundary 

of two media with different resistivity values. In other words, there will be sufficient 

information to reconstruct resistivity distribution.  
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J-Substitution algorithm which is used to reconstruct *ρ  from two pairs of current 

density data ( , )q qI J , 1,2q =  is the following. 

i. Initial guess: A homogeneous resistivity distribution 0ρ  is chosen. 

ii.  Forward problem solution: With the given resistivity 2p qρ +  ( 1,2q =  and 
0,1,2,...p = ) where p is the iteration number, forward problem expressed in 

Equation (3.46) is solved. 
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∂
= ∂Ω =

∂ ∫

 (3.46) 

Among many numerical methods, finite element method (FEM) [18] is used to 

calculate potential distribution and electric field intensity in (3.46). 

iii.  Update equation: Resistivity distribution to be used for forward problem 
solution in the next iteration is calculated. 

 2 1 :
q
pp q

q

V

J
ρ + +

∇
=  (3.47) 

Consider the case of two resistivity distributions, ρ and αρ . The current density 

distributions for two resistivity distributions are the same, whereas, one of the 

potential distributions for the case of αρ  is scaled to Vα  when V is the potential 

distribution for the case of ρ . To overcome this uniqueness problem, update 

equation is modified as, 

 
*

2

2 1 :
p q

qq
pp q

q q

fV

J f
ρ

ρ

ρ
+

+ +
∇

=  (3.48) 

where  2 p q

qfρ +  is the voltage difference between two current injection electrodes and 

*

qfρ
 is the measured voltage difference for the same current injection pattern. 
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iv. Stopping criteria check: To stop the algorithm, a precision difference ε  
between two successive steps of the algorithm is employed. 

 2 1 2p q p qρ ρ ε+ + +− <  (3.49) 

If the condition in (3.49) is satisfied, the algorithm stops. Otherwise, the algorithm 

returns to step (ii) with 1q q= +  when 1q = , or 1p p= +  and  1q =  when 2q = . 

3.7 J-Substitution and Filtered Equipotential-Projection Based 

Hybrid Reconstruction Algorithm 

In this thesis, a new MREIT reconstruction algorithm is proposed, J-Substitution and 

Filtered Equipotential-Projection Based Hybrid Reconstruction Algorithm. In this 

section, the steps leading to the hybrid algorithm and implementation of the 

algorithm are explained. 

J-substitution algorithm [20] as explained in Section 3.6 reconstructs conductivity 

distribution with a better image contrast and percentage error with respect to other 

MREIT reconstruction algorithms. However, J-substitution algorithm has the worst 

performance in image reconstruction time since it is iterative and solves forward 

problem in each iteration. On the other hand, Equipotential-Projection algorithm [21] 

is one of the fastest algorithms. Equipotential-Projection algorithm has a poorer 

performance in percentage error. Another important point about J-Substitution 

algorithm is that it converges to the solution with a smart choice of starting 

conductivity [20].  

Considering these properties of J-Substitution and Equipotential-Projection 

algorithm, the hybrid algorithm is proposed as the following. 

• Conductivity distribution is reconstructed with Equipotential-Projection 

algorithm. 

• A low-pass filter is applied to the reconstructed image to smooth errors in the 

background. 
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• Filtered conductivity distribution is assigned as the initial conductivity 

distribution for J-Substitution algorithm. 

• J-Substitution algorithm is used to reconstruct true conductivity distribution. 

Low-pass filter is employed before assigning the initial conductivity of J-Substitution 

algorithm to reduce the effect errors in the background.  
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CHAPTER 4  

 SIMULATION AND COMPARISON 

4.1 Introduction 

In this chapter, simulation results for MREIT reconstruction algorithms described in 

CHAPTER 3 will be given. Five different simulation models are used in simulation 

study. Each model has a different purpose which will be explained in further detail. 

Moreover, according to the results of these simulations, reconstructions algorithms 

are compared with 6 different criteria. These are reconstruction time, electrode size, 

number of potential measurements and current injection patterns, noise performance, 

percentage error, and reconstructed image quality. All of these criteria are important 

in terms of readiness for clinical use.  

4.2 Simulation Phantoms 

In experimental study, 0.15 T METU MRI system is used to collect data. To measure 

magnetic flux density perturbations created by currents applied, a new RF coil is 

designed. Hence, experimental phantom size is restricted by the size of RF coil and 

METU MRI system. It is designed as the biggest phantom, with size of 9cm x 9cm, 

that fits into the RF coil. Simulation phantom sizes are chosen the same as the 

experimental phantom for consistency.  

Another important parameter is the resolution or pixel size. Restriction for pixel size 

comes from the resolution of METU MRI system. Since the resolution is 2 mm, 

phantoms are discretized into 40x40 square pixels.  

Different current levels are used in simulation and experimental studies of MREIT. 

Birgül [30] and Özbek [31] used 20 mA for data collection with METU MRI system. 

Ider [19] applied 100 mA for simulation. In this thesis, 20 mA is used for 
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experimental purposes. Considering all of these studies and to be consistent with 

experimental study, 20 mA is chosen as the magnitude of current injection for the 

following simulations.  

Electrode size which is one of the performance criteria is chosen to be 1.8 cm, 1/5 of 

the phantom side length. Moreover, electrodes are placed in the middle of phantom 

sides. However, some algorithms are simulated with boundary electrodes which 

cover a whole side of the phantom because these algorithms are originally designed 

for boundary electrodes and they turned out to have poor performances with small 

electrodes.  

For most of the reconstruction algorithms, two current injection patterns are applied. 

For this reason, 4 electrodes are placed in the middle of each side of simulation 

phantoms. The first current injection, horizontal pattern, is formed by applying 

current form the left side electrode and collecting from right side. In the vertical 

pattern, current is applied form upside electrode and collected from downside 

electrode. As a result, two current injection patterns are orthogonal satisfying the 

condition in Equation (3.45).  

In the following section, simulation phantoms designed will be described with their 

purposes, geometry and conductivity values. 

4.2.1 Simulation model 1 

The first simulation model, whose geometry with 4 electrodes is shown in Figure 4.1, 

is designed to compare overall performance of reconstruction algorithms. Moreover, 

this phantom is implemented for experimental study which enables to check the 

results of simulation study against real data experiments. 
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Figure 4.1 Geometry of Simulation Model 1 

Background of the phantom is set to 0.2 S/m, whereas the big square has a 

conductivity of 0.1 S/m and the big circle is slightly more conductive than 

background with a conductivity of 0.4 S/m. The small elements serve for impulsive 

response of reconstruction algorithms since they have 2 S/m conductivity for the 

square and 0.02 S/m for the circle element. 

4.2.2 Simulation model 2 

This model has two impulsive elements at the centre of the phantom. 10 simulations, 

where these two elements will get far from each other, will be performed. As a result, 

Full Width at Half Maximum (FWHM) values with respect to position will be 

plotted. This analysis enables to see the spatial resolution of each reconstruction 

algorithm. 

There will be two cases for this simulation model, a more and a less conductive case. 

To have an impulsive effect for the more conductive case, small elements have a 

conductivity of 2 S/m with a background of 0.2 S/m. On the other hand, less 

conductive case includes 0.02 S/m conductivity for small elements and again 0.2 S/m 

conductivity for the background.  
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In Figure 4.2 and Figure 4.3, the starting and end positions for these two elements, 

when they are separated from each other at each simulation step, can be seen. 

 

Figure 4.2 Starting position for impulsive elements in Simulation Model 2 

 

Figure 4.3 End position for impulsive elements in Simulation Model 2 

4.2.3 Simulation Model 3 

Simulations with model 3 are carried out to see the position dependency of 

reconstruction algorithms. There are 9 impulsive elements distributed from left-up 

corner to right-bottom corner as in Figure 4.4. Two cases with resistive and 
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conductive elements are investigated. For the resistive case, small elements are 

assigned with 0.02 S/m conductive. Simulation for conductive case has 2 S/m 

conductivity for small elements. In both cases, background is set to 0.2 S/m 

conductivity. 

 

Figure 4.4 Geometry of Simulation Model 3 

4.2.4 Simulation model 4 

This model is designed to see the numerical accuracy of reconstruction algorithms 

with changing conductivity contrast. Geometry of the model is rather simple with a 

square, which has side length of 2.2 cm, in the middle of the phantom as can be seen 

in Figure 4.5.  

For each reconstruction algorithm, 10 simulations will be carried out. In each 

simulation, the conductivity contrast will change. The conductivity contrast between 

the background and the square will increase from 1 to 10 for the conductive case, 

whereas the contrast will decrease from 1 to 0.1 for the resistive case. As a result, a 

plot illustrating the change of average reconstructed conductivity value of the square 

with respect to its true conductivity value will be constructed. 



 42 

 

Figure 4.5 Geometry of Simulation Model 4 

4.2.5 Thorax phantom 

The last phantom developed is a thorax phantom which is the most complex. It is 

designed with true tissue conductivity values. The basic idea behind the thorax 

phantom is comparing reconstruction algorithms with a more complex phantom. 

Moreover, simulation results of the thorax phantom will give a valuable perspective 

of performance of reconstruction algorithms before carrying out experiments with 

real tissue or animals.  

Many studies on measuring true tissue conductivity values [32], [33] and thorax 

images are investigated before deciding on the geometry and conductivity value of 

each element within the thorax phantom. Although, there are many inconsistent 

measurement values in these studies, common results are chosen to be consistent. 

Geometry and conductivity values are illustrated in Figure 4.6 and Table 4.1, 

respectively. 

Thorax is one of the most complex parts of the body which includes many different 

organs with a variety of geometry and conductivity values. Also, there is big contrast 

between the conductivity values of elements in the thorax phantom. As can be seen 

in Figure 4.6, spinal cord inside the spine will serve for the ability of algorithms to 
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reconstruct the areas with relatively low current density since a small proportion of 

injected current will go through the bone. 

 

Figure 4.6 Geometry of Thorax Phantom 

Region 1, background in Figure 4.6, corresponds to skeletal muscle with a 

conductivity value of 0.2 S/m. Two ellipses in the middle of the phantom, region 2, 

are designed to be lungs which have 0.0667 S/m conductivity. Region 3 is simulating 

the heart with a conductivity of 0.6667 S/m. Region 4 elements have the conductivity 

of bone which are sternum on the upper side and the spine below the lungs. Sternum 

will enable to see the ability of current to pass through a region with a relatively high 

resistivity. Spinal cord with the resistivity of CSF (cerebrospinal fluid) is forming 

region 5 and its conductivity value is 1.5625 S/m. In the end, region 6 is designed to 

be aorta with the same conductivity of heart. All these values are listed in Table 4.1.  
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Table 4.1 Conductivity Values of Thorax Phantom 

Region Tissue type Conductivity (S/m) 

1 Skeletal muscle 0.2 

2 Lung 0.0667 

3 Heart 0.6667 

4 Bone 0.006 

5 Spinal cord  (CSF) 1.5625 

6 Aorta 0.6667 

 

4.2.6 Experimental phantom 

Throughout the thesis work, an experimental phantom is designed and constructed. 

There are many experimental MREIT studies in the literature. One of the most 

important results of previous studies is the need for recessed electrodes to eliminate 

the effect of relatively high current density near the electrodes [34]. So, recessed 

electrodes are chosen for experimental phantom. 

Experimental phantom has another important feature. It is designed to serve both for 

2D and 3D experiments. Moreover, its geometry and size is restricted to the size and 

shape of RF coil used in METU MRI System. Design of the experimental phantom is 

carried out with CAD simulations. After the simulations and design, its fabrication is 

done by a private company. For the fabrication of the experimental phantom 

plexiglas material is used.  

To satisfy the exact position in RF coil when experimental phantom is rotated, a table 

mechanism is also designed. Small legs on the experimental phantom fit exactly to 

the holes in the table, so imaging from the same slice is ensured when the 

experimental phantom is rotated. Two oblique CAD views of the experimental 

phantom together with the table can be seen in Figure 4.7 
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Figure 4.7 Two Oblique Views of CAD Simulations of Experimental Phantom 

As can be seen from Figure 4.7 experimental phantom is basically a cube and two 

sides of the phantom do not have electrodes. Actually, that is the setup for 2D 

imaging with two current injection profiles. However, these sides can be taken out 

replaced with other sides which have electrodes attached onto them. As a result, the 

experimental phantom will turn into a 3D phantom with three current injection 

profiles. 

Geometry and original conductivity distribution of experimental phantom 1 are 

shown in Figure 4.8 and Figure 4.9. Two experiments are conducted as for the first 

experiment, square and circle elements have 0.1 and 0.4 S/m conductivity values 

whereas background is set to 0.2 S/m. On the other hand, second experiment includes 

square, circle and background elements with zero, 1,9 and 0.2 S/m conductivity. 

Phantom elements are made with agar, TX151 and TX150 materials [35]. Every 

element has a different combination of these thickening materials. 

 

Figure 4.8 Geometry of Experimental Phantom 
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Figure 4.9 Original Conductivity Distribution of Experimental Phantom 

4.3 Simulation of Measurement Noise 

Simulations of reconstruction algorithms with simulation phantom 1 and complex 

thorax phantom are also carried out with noisy data. These phantoms are chosen for 

simulations in the presence of noise because they have rather complex geometries 

and can be used for numerical analysis in different regions of FOV. 

For noise simulation, random Gaussian noise model proposed by Scott et al [13] is 

used. In their model, added noise is independent from applied currents and magnetic 

flux density. It only depends on SNR of MRI system where magnetic flux density 

due to injection currents is measured. 

 According to this noise model, first magnetic flux densities due to injection currents 

are calculated. Then, a random Gaussian noise is added to magnetic flux density 

based on SNR of the MRI system. With new magnetic flux density, noisy current 

density is calculated. A detailed formulation can be found in [22] and [36]. 

Two noise levels are used for simulations in this thesis. First noise level is SNR 30 

and the other one is SNR 13 which is actually the SNR of METU MRI system [36]. 
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Same noisy data is used for all algorithms to assure consistency. However, some 

algorithms which are more vulnerable to noise could not reconstruct conductivity 

distribution with noisy current density. Because random noise addition changed 

current density values dramatically in some regions especially where initial current 

density is relatively low. So, after addition of noise, these algorithms are tried first. 

When they were successful in reconstructing conductivity, the other algorithms are 

fed with the same noisy current density. 

4.4 Error Calculation and Stopping Criteria 

Error calculation is also carried out for numerical analysis and performance 

comparison of reconstruction algorithms. For error calculation, true values of 

conductivity are necessary which are already available with simulation data. 

General error σε  for the whole image is calculated as,  
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where N , irσ  and icσ  are pixel number, real and calculated conductivity values, 

respectively.  

Regional errors ,rgσε  are also calculated based on Equation (4.1) to determine 

position dependency of errors. 
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where M , ,ir rgσ  and ,ic rgσ  are pixel number of that specific region, real and 

calculated conductivity values, respectively.  

Stopping criterion of iterative algorithms is studied in detail in [22]. Lorca stated that 

J-Substitution algorithm converged to a minimum error result after 5 iterations. The 
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same phenomenon is also encountered in this thesis study. Iterative algorithms, J-

Substitution and Hybrid algorithm, reconstructed conductivity distribution with 

minimum error after 3 iterations and remained with that percentage errors in the 

following iterations. Perceptually, reconstructed images are not changed much after 3 

iterations. Therefore, all results for J-substitution and Hybrid algorithm are obtained 

with 3 iterations. 

4.5 Simulation Results for Current Density Based Algorithms 

In the following sections, results of simulations for the reconstruction algorithms are 

given and reconstruction algorithms’ performances are compared with respect to 

different criteria. 

4.5.1 Simulation Results for Model 1 

This section includes results obtained with simulation model 1. Model 1, whose 

conductivity distribution is shown in Figure 4.10a, is designed to see overall effect 

and noise performance of reconstruction algorithms. It includes a big square with 

conductivity set to 0.1 S/m and a big circle with 0.4 S/m conductivity. Moreover, 

there are two small elements to illustrate impulsive response. Small square on the left 

has 2 S/m conductivity and small circle is set to 0.02 S/m conductivity. However, 

small circle on the left appears to be a square when it is discretized. Background 

conductivity is 0.2 S/m.  

There are two noise levels employed in simulations, SNR 30 and SNR 13. Errors are 

added with the procedure explained in Section 4.3. Errors added to the current 

density data are independent from current density values in each pixel, so pixels with 

relatively low current density are more affected by noise. Performance of 

reconstruction algorithm regarding this phenomenon is an important criterion. SNR 

13 is chosen for noise simulation since it is the noise level of METU MRI system.  

In Figure 4.10, results obtained with simulation of reconstruction algorithms for 

noise-free case are shown. Moreover, reconstructed conductivity distributions with 

noise  
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(a) 

  
(b) (c) 

  
(d) (e) 

  
(f) (g) 

Figure 4.10 Reconstruction Results for Noise-free case a) Original distribution, b) 
Integration along Cartesian grid lines, c) Integration along equipotential lines, d) Solution as 
a linear equation system, e) equipotential projection, f) j-substitution, g) hybrid 
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levels of SNR 30 and SNR 13 are illustrated in Figure 4.11 and Figure 4.12, 

respectively.  

Although reconstructed images give a perceptual idea on performance of 

reconstruction algorithms, percentage errors of all elements and total errors are listed 

in Table 4.2. So, numerical analysis of each algorithm with its noisy simulations and 

other algorithms is possible. Artifacts in reconstructed images and the reasons behind 

them are explained explicitly for each algorithm.  

Ider [19] only used equipotential lines originated from the left boundary for 

simulation of Integration along Equipotential Lines algorithm. But, in this thesis 

conductivity distribution is reconstructed for four times with equipotential lines 

started from left, right, top and bottom boundary columns. At the end, their average 

is taken to find final conductivity distribution. It is important to state that it is 

impossible to use all equipotential lines originated from four boundaries in a single 

step. Because, algorithm is started from pixels which are at the end of equipotential 

lines and it is a recursive algorithm. Integration along Equipotential Lines algorithm 

mainly produces errors at element boundaries since it uses integration of current 

density derivatives. Nevertheless, averaging of four reconstructed conductivity 

distributions reduces percentage error dramatically because errors distributed from an 

element boundary or corner is not seen in other three reconstructed images. 

Another drawback of Integration along Equipotential Lines algorithm is that pixels 

which do not contain any equipotential lines can not be reconstructed since there is 

no information that can be used to reconstruct them. Nevertheless, conductivity 

values of these pixels can be reconstructed with equipotential lines originated from 

other boundaries. When averaging is done, only reconstructed values are taken into 

account. For example, if a pixel’s conductivity value is reconstructed with 

equipotential lines originated from right and top boundary, its value is found by 

averaging these two values.  

Some equipotential lines come across to pixel corners and are terminated at that 

point. These equipotential lines are finished at that point. Moreover, some 
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equipotential lines turn back to their starting boundary which may result in crashing 

of the algorithm due to its recursive nature. These equipotential lines are also 

eliminated for the sake of algorithm.  

This algorithm has a total error of 64% whereas it is more successful in 

reconstructing resistive elements. Big square and square elements have relatively less 

error than circle elements. 

Next analysis of Integration along Equipotential Lines algorithm is its performance 

with noisy current density data. As can be seen in Figure 4.11 and Figure 4.12, the 

worst performance with noisy data comes from Integration along Equipotential Lines 

algorithm. Although SNR 30 is not considered as a significant noise level, 

Integration along Equipotential Lines algorithm has a total reconstruction error of 

230%. Two big elements are still separated from background but boundaries of these 

elements are not clear with respect to noise-free case. The main reason behind is that 

equipotential lines can not cover whole FOV and some points are only reconstructed 

with equipotential lines originated from a single boundary. This is clearer with SNR 

13 noise level. Integration along Equipotential Lines algorithm can not reconstruct 

conductivity distribution properly. Actually, any of the elements can not be 

distinguished from background and only a small portion of the FOV is reconstructed. 

Due to this reason, errors for SNR 13 are not listed in Table 4.2. Integration along 

Cartesian Grid Lines algorithm is also employing integration to reconstruct 

conductivity distribution as Integration along Equipotential Lines algorithms. But its 

advantage is that it uses information of two current injection patterns in a single step. 

Logarithmic resistivity derivatives are calculated for each pixel with the help of 

current density data from two current injection patterns and these derivatives are 

integrated over FOV with the assumption that a logarithmic resistivity of a single 

pixel is known. In this thesis, it is assumed that upper left corner pixel’s resistivity 

value is known. Moreover, an averaging is done to reduce artifacts and errors due to 

integration. Assuming upper left corner pixel value is known, pixels on the top 

boundary are calculated and these pixels are used as initial values for integration 

downwards. Another integration strategy is first calculating pixels on the left  
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(c) (d) 

  
(e) (f) 

Figure 4.11 Reconstruction Results for SNR 30 a) Integration along Cartesian grid lines, b) 
Integration along equipotential lines, c) Solution as a linear equation system, d) 
Equipotential-Projection, e) J-Substitution, f) Hybrid 
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boundary and then reconstructing pixels to the right. In the end, two reconstructed 

logarithmic resistivity values are averaged. 

Although Integration along Cartesian Grid Lines algorithm can not reconstruct 

element boundaries as sharp as other algorithms, boundaries are still definite. This 

result is also proved with relatively small errors for big square and circle. Percentage 

errors of small elements are not an important criterion since they have extreme 

conductivity values and consist of only four pixels. Nevertheless, it fails in 

reconstructing impulsive elements with their true values. 

Big square and circle elements have percentage error around 10% and addition of 

noise does not affect reconstruction of these elements. Dramatic increase in total 

error is mainly caused by background error which is due to integration artifact 

moving to the right and down boundary and caused by small circle on the left. True 

conductivity value of small circle is 0.02 S/m and forces current to flow outside of 

itself. So, added noise affects small circle more than other areas since noise is 

independent from current density amplitude. As a result, errors created in the small 

circle propagate with integration to the right and downwards. This phenomenon can 

be seen in simulations with SNR 30 and SNR 13 but it is more obvious with SNR 13. 

Moreover, error lines originated from big square start to distort the image with SNR 

13. 

In conclusion, Integration along Cartesian Grid Lines algorithm can reconstruct 

elements with definite boundaries and relatively small percentage errors. However, 

addition of noise may result in miscalculated pixels due to errors introduced by 

relatively more resistive areas.   

Solution as a Linear Equation System algorithm also uses information from two 

current injection patterns and does not include integration which results in a superior 

performance over Integration along Equipotential Lines and Integration along 

Cartesian Grid Lines algorithms. It states the relation between logarithmic resistivity 

and current density data as a linear equation system with the help of finite differences 

and solves this linear equation system to reconstruct conductivity distribution. 
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Since Lorca [22] stated that four neighbor pixels are used for each pixel 

discretization, there appears an artifact in the form of a grid shape. However, 

boundaries of elements are definite. If errors for impulsive elements are ignored, 

there is 7.48% error for the background and 12.69% total error. Moreover, simulation 

with SNR 30 noise level produced 7.65% and 12.59% error for background and in 

total, respectively. However, SNR 13 forced total error to be 18.5%. Perceptually, 

grid artifact becomes more obvious with increasing noise. 

Therefore, Solution as a Linear Equation System algorithm is robust to noise and 

reconstructs all elements with sharp contours but has a grid effect on reconstructed 

images which grows with low SNR.  

Next algorithm to be investigated is Equipotential-Projection algorithm. It makes use 

of equipotential lines as Integration along Equipotential Lines algorithm with the 

difference that it uses equipotential lines originated from 4 boundaries together. So, 

artifacts and errors introduced by elimination of equipotential lines are not 

encountered with Equipotential-Projection algorithm.  

Object boundaries are sharper and errors are smaller than algorithms explained above 

for noise-free, SNR 30 and SNR 13 cases. Moreover, elements are homogenous 

leading to around 6% and 9% error for big square and circle elements even with SNR 

13. The main artifact is due to erroneous lines starting from corners of FOV and 

propagates into background which becomes obvious with SNR 13 simulation. These 

artifacts force Equipotential-Projection algorithm to have 16.79% error for 

background with SNR 13 which is bigger than 14.33% error value of Solution as a 

Linear Equation System but thanks to relatively small errors in big square and circle 

element, total error of 15.69% is still below 18.5% total error of  Solution as a Linear 

Equation System. 

As a result, Equipotential-Projection algorithm reconstructs conductivity distribution 

with sharp boundaries but have erroneous lines starting from corners and distorting 

reconstructed image with increasing noise level. 
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(c) (d) 

  
(e) (f) 

Figure 4.12 Reconstruction Results for SNR 13 a) Integration along Cartesian grid lines, b) 
Integration along equipotential lines, c) Solution as a linear equation system, d) 
Equipotential-Projection, e) J-Substitution, f) Hybrid 
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J-Substitution algorithm is an iterative algorithm and solves forward problem at all 

iterations which results in relatively longer solution times. The result of third 

iteration is chosen for the results since it produced the smallest errors for all 

elements. Nevertheless, it took eight minutes of reconstruction time for three 

iterations whereas algorithms explained above have reconstruction times shorter than 

10 seconds. 

Perceptually, J-Substitution algorithm along with Hybrid algorithm produced sharper 

contours and better reconstructed images than all other algorithms. For noise-free 

case its performance is better than Equipotential-Projection algorithms but worse 

than Hybrid algorithm with 3.89% and 4.58% errors for background and in total, 

respectively. Addition of noise with SNR 30 mainly affected background 

conductivity and forced total error to be 8.17%. This effect is clearer when noise 

level is set to SNR 13 which can be seen in Figure 4.12e. It is important to state that 

for simulation of J-Substitution algorithm small electrodes are used which result in 

relatively low current densities in corners. When noise is added these areas are 

affected more than other areas. So, error increase in background dominates total 

error.  

Hybrid algorithm differs from J-Substitution algorithm only in selection of initial 

conductivity distribution. J-Substitution algorithm is initiated with a homogenous 

conductivity distribution of 0.2 S/m which actually is background conductivity 

whereas Hybrid algorithm uses filtered conductivity distribution obtained with 

Equipotential-Projection. Hybrid algorithm has smallest errors for all elements 

except small circle for noise free case. Application of Hybrid algorithm to the result 

of Equipotential-Projection algorithm can be seen as an optimization of both 

percentage error and homogeneity of each element. 

With SNR 30, homogeneity of elements start to decrease but errors are still in the 

range of Equipotential-Projection algorithm and better than J-Substitution algorithm. 

When noise level is increased SNR 13, erroneous current density data and artifacts of 

Equipotential-Projection start to increase errors for background and in total. 
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Nevertheless, all elements are still homogenous and Hybrid algorithm manages to 

correct erroneous lines of Equipotential-Projection algorithm. 

As a result, Hybrid algorithm produced the lowest errors for noise free case, but with 

increasing noise level erroneous lines of Equipotential-Projection algorithm and 

noisy current data are added up to distort image and increase errors. 
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Table 4.2 General and Regional Percentage Errors for Simulations with Model 1 

 
Square 

(%) Circle (%)  
Small 

Square 
(%) 

Small 
Circle 
(%) 

Background 
(%) 

Total 
(%) 

Integration along Cartesian Grid Lines 
Noise-
free 

13.68 10.18 41.25 331.56 13.41 21.25 

SNR 30 14.18 10.43 58.94 335.20 22.56 26.82 

SNR 13 13.61 11.98 60.68 351.21 92.13 83.26 

Integration along Equipotential Lines 
Noise-
free 

19.49 140.47 51.76 430.80 46.50 64.16 

SNR 30 131.57 147.08 78.74 572.28 252.39 233.31 

SNR 13 - - - - - - 

Solution as a Linear Equation System 
Noise-
free 

11.63 5.14 38.69 194.65 7.48 12.69 

SNR 30 12.53 6.13 55.96 181.52 7.65 12.59 

SNR 13 17.14 8.40 51.10 231.45 14.33 18.50 

Equipotential-Projection 
Noise-
free 

5.74 8.39 66.53 38.84 5.26 6.87 

SNR 30 6.07 8.48 65.59 39.22 6.51 7.68 

SNR 13 6.19 9.47 67.88 33.48 16.79 15.69 

J-Substitution 
Noise-
free 

3.02 7.33 33.24 6.46 3.89 4.58 

SNR 30 6.78 7.71 33.36 10.60 8.21 8.17 

SNR 13 14.84 9.07 33.26 46.96 19.17 18.11 

Hybrid 
Noise-
free 

0.67 3.41 30.51 9.65 2.67 3.04 

SNR 30 5.99 4.29 30.61 9.43 8.06 7.69 

SNR 13 13.99 6.70 23.83 48.72 20.84 19.29 
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4.5.2 Simulation Results for Model 2 

4.5.2.1 Full Width at Half Maximum and Spatial Resolution Analysis 

In this section, all algorithms are simulated with simulation model 2 to compare their 

performance with respect to their spatial resolution. In many imaging studies, spatial 

resolution of a system is measured with Full Width at Half Maximum (FWHM) of a 

Point Spread Function (PSF) [37]. 

As discussed in Section 4.2.2, there are two impulsive elements in the middle of 

simulation model 2 which will serve as a PSF.  There are two cases employed, 

conductive and resistive case. In the conductive case, impulsive elements have 

conductivity value of 2 S/m whereas 0.02 S/m is assigned as the conductivity value 

of impulsive elements in the resistive case. For both cases, background conductivity 

is 0.2 S/m.  

10 simulations are carried out for each reconstruction algorithm and each case. In the 

first simulation, two impulsive elements are closest to each other. There is only one 

pixel assigned with the background conductivity separating the two impulsive 

elements. Then, at each simulation, the two impulsive elements are separated from 

each other. In the last simulation, the two impulsive elements are closest to the 

boundaries. 

4.5.2.2 Conductive case 

In the conductive case, the cross-section of reconstructed images at the line where 

the two impulsive elements are positioned is investigated. In the ideal case, FWHM 

is expected to be equal to length of a single pixel which is 0.225 cm for the first case. 

Original conductivity distribution and its image profile are illustrated in Figure 4.13. 

Moreover, cross-section plots of reconstructed images with all algorithms are shown 

in Figure 4.13. 

 



 60 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 4.13 Image Profiles for Conductive Case a) Original FWHM, b) Original conductivity 
distribution with cross-section, c)Integration along Cartesian Grid Lines, d) Integration along 
Equipotential Lines, e) Solution as a Linear Equation System, f) Equipotential-Projection, g) 
J-Substitution, h) Hybrid 
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Hybrid and J-substitution algorithms have FWHM values equal to the ideal case 

which make them superior to other algorithms in case of spatial resolution. Results 

for these algorithms are obtained after three iterations where they reached their 

minimum errors. 

For the cases of Integration along Cartesian Grid Lines and Integration along 

Equipotential Lines, the two impulsive elements are combined to a single element. 

Since these algorithms reconstruct conductivity distribution by integration, effect of 

impulsive elements are spread to the pixel between which makes it impossible to be 

recognized. 

Solution as a Linear Equation System and Equipotential-Projection algorithms have a 

worse performance in spatial resolution than Hybrid and J-substitution algorithms 

but still are able to reconstruct the pixel between with some error. 

Another criterion for comparison is the reconstructed value of impulsive elements 

which have 2 S/m conductivity value. None of the algorithms can reconstruct 

impulsive elements with their true values. Hybrid and J-Substitution algorithms have 

reconstruction value of 1.1 S/m for impulsive elements whereas Solution as a Linear 

Equation system has a slightly worse performance by reconstructing impulsive 

elements with 0.9 S/m. Other algorithms have reconstruction values less than 0.5 

S/m. 

As explained in Section 4.2.2, model 2 has 10 different cases. The first case is when 

two impulsive elements have only one pixel between. Then, at each case two 

impulsive elements are separated to see the effect of position over FWHM. In the 

10th case, two impulsive elements are 6.075 cm apart from each other. In Figure 4.14, 

FWHM values of reconstructed distributions with each algorithm with respect to 

position are shown. 
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J-Substitution and Hybrid algorithms continued their superior performance when 

distance between impulsive elements is increased. Actually, they have 0.225 cm 

FWHM value, same as reference, for all cases. As a result, these algorithms can 

reconstruct impulsive elements independent from their positions even if they are near 

the electrodes. 

Solution as a Linear Equation System and Equipotential-Projection algorithms have a 

slightly worse performance with changing distance between impulsive elements. 

Their FWHM values range from 0.225 cm to 0.26 cm which is still 15 % different 

from reference values. Equipotential-Projection algorithm reconstructed conductivity 

distribution with FWHM of 0.72 cm for the first case when two impulsive elements 

are closest to each other which show its inability to distinguish two impulsive 

elements.   

Integration along Equipotential Lines and Integration along Cartesian Grid Lines 

algorithms suffer from the nature of integration. In the first case they both have 

FWHM of 0.9 cm. Then, in the second case, FWHM reduces to 0.5 cm and is fixed 

to the range from 0.45 cm to 0.55 cm with changing distance between two impulsive 

elements. In the case of Integration along Cartesian Grid Lines, conductivity gradient 

is integrated over FOV and abrupt changes are distributed to the neighbor pixels. 

However, current gradients which result from conductivity distribution are integrated 

and effects of impulsive elements are spread to neighbor pixels for Integration along 

Equipotential Lines.  

To conclude, if FWHM values for the first case are excluded, all algorithms’ FWHM 

values are independent from position. 

The change of reconstructed values of impulsive elements with respect to position is 

also investigated and illustrated in Figure 4.15.   
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None of the algorithms reconstructed the high-contrast elements with their true 

value, 2 S/m. J-Substitution and Hybrid algorithms have reconstruction value of 1.1 

S/m which is the best performance but still with 45% error. Solution as a Linear 

Equation System reconstructed high-contrast elements within the range of 0.9 S/m. 

0.4 S/m, 0.33 S/m and 0.25 S/m are reconstructed conductivity values for high-

contrast elements for Equipotential-Projection, Integration along Cartesian Grid 

Lines and Integration along Equipotential Lines, respectively. 

Another important result that can be deduced from Figure 4.15 is the independence 

of reconstructed values for high-contrast elements from position.  

4.5.2.3 Resistive case 

The geometry of 10 cases and positions of impulsive elements are the same as the 

conductive case but conductivity of impulsive elements are reduced to 0.02 S/m for 

the resistive case.  

The ideal FWHM for the first case where impulsive elements are at the center of 

FOV and closest to each other and original conductivity distribution are illustrated in 

Figure 4.16. Also, cross-section plots of reconstructed images at the line of impulsive 

elements with all algorithms are also shown in Figure 4.16.  

FWHM of J-Substitution and Hybrid algorithms are identical and equal to 0.2363 

cm. Since FWHM of ideal case is 0.225 cm, these algorithms have an error of 5%. 

Results for these two algorithms are obtained after 3 iterations which turned out the 

minimum error. Although these algorithms are not as successful as they are in the 

conductive case, they still are ahead of other algorithms in terms of spatial resolution 

in the conductive case. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 4.16 Image Profiles for Resistive Case a) Original FWHM, b) Original conductivity 
distribution with cross-section, c)Integration along Cartesian Grid Lines, d) Integration along 
Equipotential Lines, e) Solution as a Linear Equation System, f) Equipotential-Projection, g) 
J-Substitution, h) Hybrid 
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Integration along Cartesian Grid Lines and Integration along Equipotential Lines 

algorithms are again unsuccessful in reconstructing the pixel between. Moreover, the 

pixels which are not in the neighborhood of impulsive elements are reconstructed 

with relatively big errors. The reason is that effect of impulsive elements is carried 

until the end of FOV. 

Solution as a Linear Equation System has a poorer performance with FWHM of 0.81 

cm considering it is able to reconstruct the pixel between for the conductive case. In 

the resistive case, impulsive elements and the pixel between are emerged to a single 

element and can not be differentiated from each other. 

In the case of Equipotential-Projection algorithm, FWHM is 0.79 cm but it is still 

possible to recognize the pixel between with some error. 

When reconstructed values of impulsive elements for that case are considered, J-

Substitution and Hybrid algorithms reconstructed impulsive elements with their true 

values, that is 0.02 S/m. After them, Equipotential-Projection algorithm comes with a 

reconstruction value of 0.0328 S/m. 0.0823 S/m is the reconstruction value of 

Solution as a Linear Equation System whereas Integration along Cartesian Grid 

Lines and Integration along Equipotential Lines have reconstruction values greater 

than 0.15 cm which coincides to more than 700% error. 

FWHM values of reconstructed conductivity distributions for all algorithms with 

respect to position are illustrated in Figure 4.17. 

Performances of J-Substitution and Hybrid algorithms are identical and have 

percentage error of 13% in the worst case with FWHM of 0.2542 cm. It is important 

to note that these two algorithms have slightly more error in the case of FWHM 

when their performance in the conductive case is considered. Nevertheless, they are 

still better than other algorithms. 
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Although Solution as a Linear Equation System and Equipotential-Projection 

algorithms have FWHM of 0.81 cm and 0.79 in the first case, respectively, their 

FWHM values are fixed to 0.315-0.38 range with increasing distance between 

impulsive elements.  

As in the conductive case, Integration along Equipotential Lines and Integration 

along Cartesian Grid Lines algorithms have the worst performance with FWHM 

values around 0.55 cm and 150% error. 

Reconstructed values of impulsive elements with respect to position are illustrated in 

Figure 4.18. 

As can be seen in Figure 4.18, only J-Substitution and Hybrid algorithms succeeded 

in reconstructing true values of impulsive elements with 5% error in the worst case. 

Equipotential-Projection algorithm has reconstruction value of 0.35 S/m and 75% 

error whereas Solution as a Linear Equation System has 0.8 S/m reconstruction value 

and 300% error. The other algorithms have reconstruction error for impulsive 

elements more than 700%. 
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4.5.2.4 Reasons behind these performances 

J-Substitution and Hybrid algorithms have identical FWHM and reconstruction 

values for both conductive and resistive cases. They are superior to other algorithms 

when all comparison criteria are considered. In the conductive case, their FWHM 

values are equal to ideal case but reconstructed values for impulsive elements are not 

true whereas FWHM values are different from the ideal case and impulsive elements 

are reconstructed with their true values in the resistive case. 

Integration along Equipotential Lines and Integration along Cartesian Grid Lines 

algorithms can not reconstruct the pixel between both for conductive and resistive 

cases. Although FWHM values are in the range of 1 cm for the first case and both 

algorithms, their FWHM values are fixed to values around 0.5 cm. Moreover, 

reconstructed values of impulsive elements have the biggest error percentage 

compared to other algorithms. Integration along Equipotential Lines algorithm 

reconstructs conductivity distribution for four times for a single current injection 

pattern. Due to the nature of the algorithm, it can reconstruct conductivity 

distribution with equipotential lines starting form only one side of the phantom. For 

two current injection patterns, eight conductivity distributions are found and their 

average is taken. Some big errors especially near the impulsive elements can not be 

corrected with averaging.  

Integration along Cartesian Grid Lines algorithm has slightly better results than 

Integration along Equipotential Lines because it uses the information of two current 

injection patterns in a single step. It calculates conductivity gradient in FOV with a 

single matrix inversion and makes use of this gradient to calculate conductivity 

distribution. Nevertheless, effect of integration is still noticeable from the results 

shown above. 

It is a good point to compare Equipotential-Projection and Integration along 

Equipotential Lines algorithms since both algorithms make use of equipotential lines. 

In the case Equipotential-Projection algorithm, equipotential lines originated from 

four sides of the phantom are used together which helps the calculation of potential 
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and conductivity distribution with less error which can be also seen in Figure 4.14, 

Figure 4.15, Figure 4.17 and Figure 4.18 above. 

Solution as a Linear equation system has mid-level performance, 3rd for conductive 

case and 4th for resistive case. 

4.5.3 Simulation Results for Model 3 

As explained earlier, simulation model 3 is constructed to see position dependency 

and impulsive response of reconstruction algorithms in a single simulation. Its 

geometry consists of nine impulsive elements with sizes of a single pixel distributed 

from left up corner to right bottom corner. 

There are two cases as other simulation models, a conductive and a resistive case. 

Conductive case includes 2 S/m impulsive elements with 0.2 S/m background. On 

the other hand, impulsive elements in resistive case are assigned 0.02 S/m 

conductivity with background again set to 0.2 S/m. 

In Figure 4.19, original and reconstructed images with all six algorithms for 

conductive case are shown. All images have the same gray scale. 

Some of the results obtained with model 2 can also be seen here, especially for 

Integration along Cartesian Grid Lines algorithm. It failed in reconstructing 

impulsive elements with their true values as impulsive elements can be barely 

distinguished form background. Actually, impulsive elements are reconstructed with 

conductivity values around 0.35 S/m. Moreover, due to integration effect, neighbor 

pixels of impulsive elements are affected and diverged from their true values. 

However, this algorithm is position independent. 

Artifacts based on integration are more obvious with Integration along Equipotential 

Lines as these artifacts are spread to background in the form of erroneous lines. 

However, it succeeded in reconstruction of all impulsive elements as average value 

of impulsive elements is 1.9 S/m which corresponds to 5% error. So, Integration 

along Equipotential Lines algorithm is a position independent algorithm. 
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(a) 

  
(b) (c) 

  
(d) (e) 

  
(f) (g) 

Figure 4.19 Reconstructed Images for Model 3 Conductive Case a) Original Distribution, b) 
Integration along Cartesian Grid Lines, c) Integration along Equipotential Lines, d) Solution 
as a Linear Equation System, e) Equipotential-Projection, f) J-Substitution, g) Hybrid 
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Solution as a Linear Equation System algorithm also proved to be independent from 

position because all impulsive elements are reconstructed with 1.2 S/m conductivity. 

Also, typical grid effect of this algorithm is also seen with simulation model 3.  

Equipotential-Projection algorithm is also position independent as can be seen in 

Figure 4.19e. Moreover, it reconstructed impulsive elements with conductivity 

values around 0.45 S/m which is the worst performance after Integration along 

Cartesian Grid Lines algorithm. 

J-substitution and Hybrid algorithms have a similar performance with simulation 

model 2. They both are position independent. They reconstructed impulsive elements 

near the corners of FOV with bigger errors, since current is applied with small 

electrodes and current density information is limited in these areas. However, they 

managed to reconstruct impulsive elements in the middle of FOV with 1.4 S/m 

conductivity value. As a result, these two algorithms are position independent and 

their reconstructed images turn out to be undistorted along with Solution as a Linear 

Equation System algorithm in a perceptual manner. 

The other analysis with simulation model 2 is the resistive case. Original 

conductivity distribution and simulation results are shown in Figure 4.20. 

With resistive impulsive elements, Integration along Cartesian Grid Lines algorithm 

can not reconstruct them with their true values as they have reconstruction values 

around 0.14 S/m. Nevertheless, it also proved to be position independent for resistive 

case.  

Integration artifact of Integration along Equipotential Lines algorithm continues for 

resistive case. Since result of this algorithm constitutes of averaging of four 

reconstructed conductivity distributions for equipotential lines originated from four 

boundaries, integration artifact is seen in all surrounding pixels of impulsive pixels. 

But it is position independent for resistive case, too. 
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(a) 

  
(b) (c) 

  
(d) (e) 

  
(f) (g) 

Figure 4.20 Reconstructed Images for Model 3 Resistive Case a) Original Distribution, b) 
Integration along Cartesian Grid Lines, c) Integration along Equipotential Lines, d) Solution 
as a Linear Equation System, e) Equipotential-Projection, f) J-Substitution, g) Hybrid 
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Solution as a Linear Equation System algorithm’s grid effect is also present for 

resistive case and can be clearly seen in Figure 4.20d. Moreover, this artifact is 

increasing in corners of FOV for resistive case. This algorithm is also independent 

from position for resistive impulsive elements. 

There appears to be more background errors for Equipotential-Projection algorithm 

than errors in conductive case which get bigger in corners of FOV since current 

density is lower in these areas. However, it is still position independent as in 

conductive case. 

J-substitution and Hybrid algorithm reconstructed impulsive elements and 

background with least errors and sharp boundaries than other algorithms with the 

exception that Hybrid algorithm can not correct erroneous lines in the corners from 

Equipotential-Projection algorithm. Both algorithms are also position independent as 

in conductive case. 

In conclusion, all algorithms are independent from position in FOV both for 

conductive and resistive impulsive elements. However, some of the algorithms failed 

in reconstructing impulsive elements with their true values and defining element 

boundaries sharply. 

4.5.4 Simulation Results for Model 4 

4.5.4.1 Numerical accuracy with changing conductivity contrast 

This section is allocated for results obtained by simulation of reconstruction 

algorithms with model 4. As explained in Section 4.2.4, model 4 is formed by a 

single square in the middle of the phantom. Its conductivity changes in each 

simulation. For conductive case, background conductivity is fixed to 0.2 S/m and 

conductivity of square is changed from 0.2 to 2 with an increase 0.2 S/m at each step. 

On the other hand, resistive case includes 0.2 S/m conductivity for the background 

and square conductivity diminishes to 0.02 S/m at 10 steps starting again from 0.2 

S/m.  
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Three different analyses will be employed for comparison of reconstruction 

algorithms in this section. These are general error, square error and average 

conductivity value of square. All analyses are designed to see the change of these 

parameters with changing conductivity contrast. 

4.5.4.2 Conductive case 

In Figure 4.21, general errors for all reconstruction algorithms are plotted against 

changing square conductivity. All algorithms except Integration along Cartesian Grid 

Lines algorithm converge to some percentage error. 

Among three algorithms with the best performance, Hybrid algorithm has 5.2% error 

when square conductivity is 2 S/m. Then, J-Substitution and Equipotential-Projection 

algorithms have general reconstruction error of 8.1% and 9%, respectively. Results 

for J-substitution and Hybrid algorithm are obtained after three iterations where they 

reached their minimum error. It is important to note the difference between Hybrid 

and J-Substitution algorithms since they usually have identical or similar results with 

other comparison criteria. Hybrid algorithm takes the results of Equipotential-

Projection algorithm, which is still close to J-substitution algorithm, and diminishes 

general error form 9% to 5.2%. This can be seen as an optimization for cases where 

conductivity contrast becomes larger. 

For the cases of Integration along Equipotential Lines and Solution as a Linear 

Equation System, general error converges to 47% and 32%, respectively. 

Although all algorithms converge to some error, Integration along Cartesian Grid 

Lines algorithm diverges and general error becomes larger as conductivity contrast 

between background and square increases. 
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Next analysis consists of error percentage of square element with respect to changing 

conductivity. Figure 4.22 illustrates plots of square percentage error when 

conductivity of square element is increased from 0.2 S/m to 2 S/m stepwise. 

Hybrid algorithm continues its superior performance over other reconstruction 

algorithms with a percentage error of 16% when conductivity contrast is 10, 0.2 S/m 

for the background and 2 S/m for the square. Optimization effect of Hybrid 

algorithm is more obvious when square error is considered. 

J-Substitution, Equipotential-Projection and Solution as a Linear Equation System 

algorithms converge to percentage error of 27% for square element. Moreover, 

Integration along Equipotential Lines has a similar characteristic as in the case of 

general error, but this time with 64% error. On the other hand, Integration along 

Cartesian Grid Lines again failed in that analysis since it diverges with increasing 

conductivity contrast. 

There is a similar phenomenon for all reconstruction algorithms. Their percentage 

errors for square elements are bigger then general percentage errors. So, square 

elements are reconstructed with more error than background. 
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Last analysis for conductive case is change of average conductivity value of square 

element with conductivity contrast. Figure 4.23 shows plots of average conductivity 

values for reconstructed square elements. Figure 4.24 is the zoomed version of 

Figure 4.23, so relation between algorithms except Integration along Cartesian Grid 

Lines can be seen clearly. Moreover, reconstructed conductivity distributions for the 

conductive case where square conductivity is set to 2 S/m are shown in Figure 4.25 

to give a perceptual idea. 

When Figure 4.25 and Figure 4.23 are analyzed together, source of errors for 

Integration along Cartesian Grid Lines and Integration along Equipotential Lines 

algorithms are clearly seen. Even boundaries of square element are not definite. In 

the case of Integration along Cartesian Grid Lines algorithm, pixels of square 

elements are diverged to values around 10 S/m and boundary is still not definite. On 

the other hand, effect of boundary elements are spread to background for Integration 

along Equipotential Lines. 

Although average conductivity values of Solution as a Linear Equation System and 

Equipotential-Projection algorithms are around 1.6 S/m, reconstructed images are 

distorted in a perceptual manner. Reconstructed conductivity values of pixels are in 

the range from 1.2 S/m to 3 S/m. Moreover, relatively big general error for Solution 

as a Linear Equation System comes from artifact seen in square element which 

continues in the background. 

For the case of J-substitution algorithm, if corners of square element are not 

considered, reconstructed values of pixels are in the range of 1.2 S/m to 1.6 S/m. On 

the other hand, Hybrid algorithm has a range of 1.4 S/m to 1.8 S/m. So, in a 

perceptual manner, square elements are more homogeneous with respect to other 

algorithms. Moreover, these algorithms are successful in specifying boundaries of 

square clearly.  
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(a) 

  
(b) (c) 

  
(d) (e) 

  
(f) (g) 

Figure 4.25 Reconstructed Conductivity Distributions for Model 4 Conductive Case a) 
Original Distribution, b) Integration along Cartesian Grid Lines, c) Integration along 
Equipotential Lines, d) Solution as a Linear Equation System, e) Equipotential-Projection, f) 
J-Substitution, g) Hybrid 
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4.5.4.3 Resistive case 

In Figure 4.26, general errors with respect to square conductivity are plotted for all 

algorithms. Integration along Equipotential Lines, Integration along Cartesian Grid 

Lines and solution as a Linear Equation System algorithms diverge whereas other 

algorithms have an increase in general error when square conductivity reduces but 

converges to some error. 

Divergence of Integration along Equipotential Lines is more obvious as it reaches 

80% error for the case where square conductivity has its minimum value, 0.02 S/m. 

On the other hand, Integration along Cartesian Grid Lines and Solution as a Linear 

Equation System algorithms have 35% general error for that simulation. All 

algorithms except Integration along Equipotential Lines algorithm have similar 

general errors until square conductivity reduces to half of background conductivity, 

that is for conductivity values greater than 0.1 S/m. After that point, Integration 

along Cartesian Grid Lines and Solution as a Linear Equation System algorithms 

start to diverge as square conductivity diminishes to 0.02 S/m.  

Among three convergent algorithms, which are Hybrid, J-Substitution and 

Equipotential- Projection algorithms, Hybrid algorithm has smallest general error of 

4.5% when square conductivity is set to 0.02 S/m. Then, Equipotential- Projection 

and J-substitution algorithms follow Hybrid algorithm with 6.3% and 7.6% general 

error, respectively. Application of Hybrid algorithm with the result of Equipotential-

Projection algorithm reduced general error when conductivity value of square 

element is lower than 0.07 S/m. This result can be seen better in Figure 4.27 which is 

zoomed version of Figure 4.26 for general error values less than 10%.   
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Next analysis consists of change of square element error with respect to conductivity 

contrast. Figure 4.28 illustrates errors for square elements when conductivity contrast 

between square and background diminishes form 1 to 1/10. Moreover, Figure 4.29 is 

the zoomed version of Figure 4.28 which marks the relation between convergent 

algorithms. 

As shown in Figure 4.28, errors of square elements become larger with increasing 

conductivity contrast for Integration along Equipotential Lines, Integration along 

Cartesian Grid Lines and Solution as a Linear Equation System algorithms. 

The optimization effect of Hybrid algorithm over J-Substitution algorithm continues 

for square element. When square conductivity is 0.02 S/m, Hybrid algorithm has 

2.6% error whereas J-substitution algorithm reconstructs square element with an 

error of 5.6%. 
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Reconstructed average value for square elements is another comparison criterion 

which are illustrated in Figure 4.30. Moreover, reconstructed conductivity 

distributions for the case of square conductivity set to 0.02 S/m are plotted to give a 

perceptual idea. 

All algorithms except Integration along Equipotential Lines algorithm reconstructed 

square element with its true average values. The key point is that this result can be 

deceptive for some of the algorithms. 

If  Figure 4.28 and Figure 4.31 are considered together, it can be seen that Integration 

along Cartesian Grid Lines and Solution as a Linear Equation System algorithms 

have around 140% error for square element. But average reconstructed square 

element conductivity values are close to true values. Although, these algorithms do 

not reconstruct each square element with its true value, they manage to have average 

values in the range of true square conductivity. This phenomenon can be clearly seen 

in Figure 4.31d which contains conductivity values over 0.1 S/m and less than 0.01 

S/m together inside square element which in fact has 0.02 S/m conductivity. 

Equipotential-Projection, J-Substitution and Hybrid algorithms have square element 

errors less than 12% and reconstructed average square conductivity in the range of 

true values. These results imply that these algorithms reconstruct each square 

element with minimum error. There are no extreme reconstructed values for square 

elements. Moreover, homogenous structure of square elements in Figure 4.31f and 

Figure 4.31g prove that result.  

In a perceptual manner, J-Substitution and Hybrid algorithms defined boundaries of 

square element better than Equipotential-Projection algorithm. Nevertheless, these 

algorithms have miscalculated values at corners of square element which tend to 

distort background. 
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(a) 

  
(b) (c) 

  
(d) (e) 

  
(f) (g) 

Figure 4.31 Reconstructed Conductivity Distributions for Model 4 Resistive Case a) Original 
Distribution, b) Integration along Cartesian Grid Lines, c) Integration along Equipotential 
Lines, d) Solution as a Linear Equation System, e) Equipotential-Projection, f) J-
Substitution, g) Hybrid 
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4.5.5 Simulation Results for Thorax Phantom 

Last phantom used for simulation is thorax phantom whose conductivity distribution 

is shown in Figure 4.32a. This analysis enables to see performance of reconstruction 

algorithms with a complex geometry and true tissue conductivities. As explained 

earlier tissue conductivities vary [32]. There are extremely resistive areas like bone 

structures and extreme conductive tissues like spinal cord. Simulation of thorax 

phantom gives an idea on applying reconstruction algorithms to real experiments. 

Simulation study of thorax phantom with reconstruction algorithms is also carried 

out with noisy data. Two noise levels are employed as in simulations with model 1, 

SNR 30 and SNR 13. Moreover, percentage errors of all tissue regions and overall 

error are calculated for each reconstruction algorithm and noise level which helps to 

make a numerical analysis. 

Reconstructed images and original conductivity distribution for noise free case are 

illustrated in Figure 4.32. It is important to note that all images have the same gray 

scale of Figure 4.32a. 

Integration along Equipotential Lines algorithm can not reconstruct thorax phantom 

because most of the equipotential lines initiated from a boundary can not reach to 

another boundary and are eliminated for this reason. Remaining equipotential lines 

do not have enough information to reconstruct conductivity distribution. So, 

Integration along Equipotential Lines algorithm is excluded from thorax phantom 

simulations. 

Errors for spinal cord region are between 97% and 100% for all algorithms. Spinal 

cord is covered by bone and there is too little amount of current going inside bone 

which eventually forces reconstructed values of spinal cord to be similar to bone 

conductivity. As a result, they are close to zero and 100% error. This conclusion is 

valid for algorithms.  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.32 Reconstructed Images for Thorax Phantom Noise-free case a) Original 
Distribution, b) Integration along Cartesian Grid Lines, c) Solution as a Linear Equation 
System, d) Equipotential-Projection, e) J-Substitution, f) Hybrid 
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There are many miscalculated pixels for the case of Integration along Cartesian Grid 

Lines which suppresses and distorts the image. The reason behind those pixels is the 

boundary between the most conductive element, spinal cord, and the most resistive 

element, bone. Basic idea of this algorithm is integrating conductivity gradient 

through FOV and conductivity gradient reaches its maximum at that boundary. 

Therefore, errors on that boundary are carried to right for noise free case. 

Relatively high error values for lung region and background are due to that 

phenomenon because error lines go through lung and background. Also, general error 

is affected since most of the image is formed by lung and background. Regions 

where these errors are not seen have moderate percentage errors, like 85% for heart 

and 51% for aorta. 

With addition of noise, percentage errors for all regions are increased dramatically 

because errors due to sternum region and background boundary also spread to the 

image. Also, bone being the most resistive element includes the lowest current 

density and is affected the most from noise. Perceptually, images are more distorted 

and suppressed than noise free case which can be seen in Figure 4.33a and Figure 

4.34a 

Figure 4.32c, Figure 4.33b and Figure 4.34b show reconstructed images with 

Solution as a Linear Equation System algorithm for noise free, SNR 30 and SNR 13 

cases, respectively. Perceptually, all elements are distinguished from each other 

although object boundaries are not sharp. This algorithm reconstructed background 

with least error along with J-substitution and Hybrid algorithm. Moreover, 

percentage errors for heart region are lower than all algorithms except Hybrid 

algorithm. Although background error is around 25%, general error reaches to 140% 

for SNR 13. Relatively high general error is due to percentage error of bone element 

which has more than 1000% error for SNR 13. As Lorca [22] made it clear that 

Solution as a Linear Equation system algorithm includes information from four 

neighbor pixels for solution of a single pixel. Therefore, information for bone 

structure around spinal cord comes from spinal cord and forces the algorithm to 

calculate conductivity of bone element inaccurately. 
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(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure 4.33 Reconstructed Images for Thorax Phantom with SNR 30 a) Integration along 
Cartesian Grid Lines, b) Solution as a Linear Equation System, c) Equipotential-Projection, 
d) J-Substitution, e) Hybrid 
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Addition of noise increases percentage errors of all regions but there is no other 

growing artifact rather than typical grid artifact. 

Equipotential-Projection algorithm’s results have the sharpest boundaries between all 

elements and all elements are separated clearly. However, artifacts in the form of 

erroneous lines starting form corners and continuing inside FOV and miscalculated 

pixels in heart region distort reconstructed images. It has a lower general error than 

Solution as a Linear Equation System algorithm but percentage error of background 

is higher due to erroneous lines in FOV.  

Simulations with SNR 30 and SNR 13 have gradually increased errors for all 

elements as expected. Also, reconstructed images with noisy data are not distorted 

with respect to noise free case. 

Simulation and comparison of J-Substitution and Hybrid algorithm with thorax is 

done in a previous study by Boyacıoğlu and Eyüboğlu [24]. Similar results are 

obtained in this thesis. First of all, general and lung region errors for J-Substitution 

are slightly lower than Hybrid algorithm. The main reason behind that is initiating 

Hybrid algorithm with filtered result of Equipotential-Projection algorithm. As 

explained above, there are erroneous lines starting from miscalculated potentials at 

boundaries and projected inside with equipotential lines for Equipotential-Projection 

algorithm. Applying a low-pass filter to the result of Equipotential-Projection 

algorithm reduces these artifacts but can not clear off altogether. These artifacts can 

be seen in Figure 4.32f, Figure 4.33e and Figure 4.34e. On the other hand, J-

substitution algorithm is initiated with a homogeneous distribution which actually 

has a conductivity value 0.2 S/m, equal to background conductivity. As a result, 

background pixels are reconstructed with less error without deviation, that is they 

already have their true values. 

There is a clear optimization for heart and aorta region errors with Hybrid algorithm 

with respect to J-Substitution algorithm. This improvement also shows its effect in 

general error. Although it is expected for Hybrid algorithm to have a higher general 
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error than J-substitution algorithm, they have similar error general errors thanks to 

superior performance of Hybrid algorithm in heart region.  

Dramatic increase in bone region error, especially for SNR 13, for both algorithms is 

related with relatively low current density in that region since added noise affects 

these areas more. Increase in noise level forces the images to distort but object 

boundaries are still sharp. 

In conclusion, Hybrid algorithm reconstructs elements at the centre of the FOV, heart 

region in thorax phantom, better than J-Substitution algorithm. Nevertheless, these 

two algorithms reconstructed images with the least errors both for noise free and 

noisy cases. Furthermore, they produced sharper boundaries and images for noisy 

cases are not distorted as much as other algorithms perceptually.  
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(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure 4.34 Reconstructed Images for Thorax Phantom with SNR 13 a) Integration along 
Cartesian Grid Lines, b) Solution as a Linear Equation System, c) Equipotential-Projection, 
d) J-Substitution, e) Hybrid 
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Table 4.3 General and Regional Percentage Errors for Simulations with Thorax Phantom 

 
Lung 
(%) 

Heart 
(%)  

Bone 
(%) 

CSF 
(%) 

Aorta 
(%) 

Background 
(%) 

Total 
error (%)  

Integration along Cartesian Grid Lines 

Noise-free 9.17*108 85.04 736.48 100 51.45 8.15*108 8.08*108 

SNR 30 5.17*108 2.78*103 6.47*103 99.99 49.54 4.52*108 4.52*108 

SNR 13 5.78*1010 9.69*104 2.53*105 99.99 423.37 4.6*1018 3.45*1018 

Solution as a Linear Equation System 

Noise-free 57.98 30.34 969 96.47 37.76 24.31 122.7 

SNR 30 54.25 34.6 920 97.22 39.88 24.23 116.63 

SNR 13 64.12 34.48 1117 96.69 57 27.9 141.03 

Equipotential-Projection 

Noise-free 17.71 70.71 125.93 98.23 55.04 58.1 51.84 

SNR 30 20.65 161.43 153.44 98 119.75 48.34 63.47 

SNR 13 88.61 99.29 241.98 98.55 69.12 57.76 78.66 

J-Substitution 

Noise-free 12.1 40.93 60.89 97.31 31.66 21.13 22.8 

SNR 30 13.53 41.35 77.43 97.72 31.32 22.04 24.29 

SNR 13 17.66 42.56 214.41 97.04 31.23 26.19 36.45 

Hybrid 

Noise-free 16.67 22.03 54.3 97.45 25.86 23.5 22.65 

SNR 30 19.3 21.48 77.47 97.9 21.62 23.57 24.24 

SNR 13 22.34 23.64 245 97.23 30.3 28.95 39.69 
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4.5.6 Experimental Data 

4.5.6.1 Experiment 1 

Experimental data is collected as explained in Section 2.5, Section 4.2.6 and 

Appendix A. For experiment 1, conductivity values of background, circle and square 

elements are 0.2, 0.4 and 0.1 S/m. Since, simulations include two current injection 

profiles, experimental data is collected both for vertical and horizontal current 

injection profiles. As a result, every slice is imaged twice, one for vertical and one 

for horizontal current injection. Governing equations for calculation of xJ  and 

yJ can be seen in Equation (4.3) and (4.4), respectively. 

 
0

1 yz
x

BB
J

y zµ
∂ ∂= − ∂ ∂ 

 (4.3) 

 
0

1 x z
y

B B
J

z xµ
∂ ∂ = − ∂ ∂ 

 (4.4) 

where 0µ  is the permeability of free-space.  

First, zB  is obtained. Here, slice selection gradient is in z  direction. Two phase 

images are taken for both current injection profiles, which are with positive and 

negative current injection for every slice. Phase images of z  slice for vertical current 

injection can be seen in Figure 4.35 and Figure 4.36. Then, these phase images are 

masked to remove recessed electrodes. Masked phase images are unwrapped, and zB  

is calculated as explained in Section 2.5. zB  images for vertical and horizontal 

current injection profiles can be seen in Figure 4.37 and Figure 4.38, respectively. 

Next step is the calculation of derivatives of zB  with respect to x  and y  directions 

for both vertical and horizontal current injection patterns using Sobel operators 

which are illustrated in Figure 4.39, Figure 4.40, Figure 4.41 and Figure 4.42, 

respectively.  
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Figure 4.35 Phase image of z  slice for vertical and negative current injection. 

 

Figure 4.36 Phase image of z  slice for vertical and positive current injection. 



 104 

 

Figure 4.37 zB  image for vertical current injection, in units of Tesla  

 

Figure 4.38 zB  image for horizontal current injection, in units of Tesla. 
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Figure 4.39 Derivative of zB  (T/m) with respect to x  direction for vertical current injection 

 

Figure 4.40 Derivative of zB  (T/m) with respect to y  direction for vertical current injection 
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Figure 4.41 Derivative of zB  (T/m) with respect to x  direction for horizontal current 

injection 

 

Figure 4.42 Derivative of zB  (T/m) with respect to y  direction for horizontal current 

injection 



 107 

To calculate xJ , derivative of yB  with respect to z direction is also needed. So, 

experimental phantom is oriented inside RF coil in a way such that y  direction of 

the phantom is in the 0B  direction. In that case, slice selection gradient is in y  

direction. Then, two off-slices in z  direction are imaged. They are masked and 

unwrapped. After magnetic field is calculated for both off-slices, derivative of yB  

with respect to z  direction is calculated with forward difference. y
B

z

∂
∂

 is illustrated 

in Figure 4.43 and Figure 4.44 for vertical and horizontal current injection profiles, 

respectively.  

The same procedure is applied for calculation of xB

z

∂
∂

 which is shown in Figure 4.45 

and Figure 4.46, for vertical and horizontal current injection profiles, respectively. 
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Figure 4.43 yB

z

∂
∂

 (T/m) image for vertical current injection 

 

Figure 4.44 yB

z

∂
∂

 (T/m) image for horizontal current injection 
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Figure 4.45 xB

z

∂
∂

 (T/m) image for vertical current injection 

 

Figure 4.46 xB

z

∂
∂

 (T/m) image for horizontal current injection 
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xJ  and yJ  are calculated with Equation (4.3) and (4.4), respectively. Figure 4.47 and 

Figure 4.48 includes current density distributions for vertical current injection in x  

and y  directions, respectively. Moreover, current density distributions of horizontal 

current injection are shown in Figure 4.49 and Figure 4.50. Next step is the 

calculation of total current density, J , with Equation (4.5). 

 2 2
x yJ J J= +  (4.5) 

Total current density distributions for vertical and horizontal current injection are 

shown in Figure 4.51 and Figure 4.52, respectively. Also, arrow plots of current 

densities of vertical and horizontal current injection are shown in Figure 4.53 and 

Figure 4.54, respectively, to give an idea about the path and magnitude of current 

density distributions. 

 

Figure 4.47 xJ  ( 2/A m ) image for vertical current injection 
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Figure 4.48 yJ  ( 2/A m ) image for vertical current injection 

 

Figure 4.49 xJ  ( 2/A m ) image for horizontal current injection 
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Figure 4.50 yJ  ( 2/A m ) image for horizontal current injection 

 

Figure 4.51 J  ( 2/A m ) image for vertical current injection 
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Figure 4.52 J  ( 2/A m ) image for horizontal current injection 

 

Figure 4.53 Arrow Plot for Current Density Distribution of Vertical Current Injection 
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Figure 4.54 Arrow Plot for Current Density Distribution of Horizontal Current Injection 

After current density distributions, xJ , yJ  and J , for both current injection patterns 

are obtained reconstruction algorithms are fed with these experimental data. First, 

reconstructed images obtained with simulation data will be given to be able to make 

a comparison between experimental and simulation results. Figure 4.55 illustrates 

original conductivity distribution and reconstructed images with simulation with 

experiment 1 parameters. Similar artifacts and performances continue. Equipotential-

Projection and solution as a Linear Equation System algorithms have their typical 

erroneous lines and grid artifact, respectively. However, for both algorithms circle 

and square elements are separated from background and have sharp boundaries. J-

Substitution and Hybrid algorithms are still superior and Hybrid algorithm suffer 

from the erroneous lines of Equipotential-Projection algorithm. 

 

 



 115 

 

 

(a) 

  

(b) (c) 

  

(d) (e) 

Figure 4.55 Reconstructed Images with Simulated Data for Experiment 1, a) Original 
Distribution, b) Equipotential-Projection, c) Solution as a Linear Equation System, d) J-
Substitution (3 iteration), e) Hybrid (3 iteration) 
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Result obtained with Equipotential-Projection for data of experiment 1 is shown in 

Figure 4.56. Moreover, low-pass filtered version of the result of Equipotential-

Projection algorithm is shown in Figure 4.57. Square element which is more resistive 

than background is slightly distinguished although its boundaries are not clear. On 

the other hand, circle element’s boundaries can be recognized. However, there are 

erroneous lines distorting the reconstructed image which are initiated from corners of 

FOV. Origins of these artifacts can be seen in Figure 4.58 and Figure 4.59 which 

include the conductivity distributions reconstructed with only vertical and horizontal 

current injections, respectively. When filtered conductivity distribution in Figure 

4.57 is analyzed, boundaries of square element are clearer than the original 

reconstructed conductivity distribution. 

 

Figure 4.56 Reconstructed Conductivity (S/m) for Experimental Data with Equipotential-
Projection Algorithm 
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Figure 4.57 Filtered Version of Reconstructed Conductivity (S/m) with Equipotential-
Projection Algorithm 

 

Figure 4.58 Reconstructed Conductivity (S/m) for Experimental Data of Vertical Current 
Injection with Equipotential-Projection Algorithm 
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Figure 4.59 Reconstructed Conductivity (S/m) for Experimental Data of Horizontal Current 
Injection with Equipotential-Projection Algorithm 

Filtered conductivity distribution of Equipotential-Projection algorithm is set as the 

initial conductivity distribution for Hybrid algorithm. Result obtained with Hybrid 

algorithm for experimental data is shown in Figure 4.60. Since corners of FOV 

contain lower amount of current density with respect to other regions, effect of noise 

becomes dominant in these regions. The same conclusion is deduced from simulation 

results. When result of Hybrid algorithm is compared with result of Equipotential-

Projection algorithm, square element can not be reconstructed. However, circle 

element is separated from background with Hybrid algorithm.  

J-Substitution algorithm has a similar performance as Hybrid algorithm with the 

difference that erroneous lines are not seen in the reconstructed conductivity 

distribution. Reconstructed conductivity with J-substitution algorithm is shown in 

Figure 4.61 
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Figure 4.60 Reconstructed Conductivity Distribution (S/m) with Hybrid Algorithm 

 

Figure 4.61 Reconstructed Conductivity Distribution (S/m) with J-Substitution Algorithm 
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Solution as a Linear Equation System algorithm is also fed with experimental data 

and its result can be seen in Figure 4.62. Solution as a Linear Equation System 

algorithm has the best performance perceptually with data of experiment 1 since it 

reconstructed both square and circle elements although boundaries are not clear. 

Simulation results showed that this algorithm was robust to noise and it is proven 

here, too. In the simulation results, Solution as a Linear Equation System algorithm 

has relatively higher percentage errors with simulations of models with high 

conductivity contrast. However, experimental phantom’s conductivity contrast value 

is two both for resistive square and conductive circle element.  

Integration along Equipotential Lines and Integration along Cartesian Grid Lines 

algorithms failed to reconstruct conductivity distribution with experimental data. 

They can not reconstruct conductivity distribution with simulations of SNR 13 noise 

level, either. 

 

Figure 4.62 Reconstructed Conductivity Distribution (S/m) with Solution as a Linear 
Equation System Algorithm 
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In conclusion, Equipotential-Projection and Solution as a Linear Equation System 

algorithms reconstructed conductivity distribution partially. On the other hand, J-

Substitution and Hybrid algorithm suffer from relatively high noise effect especially 

at the corners of FOV. Integration along Cartesian Grid Lines and Integration along 

Equipotential Lines algorithms can not reconstruct conductivity distribution with 

experimental data. When experimental and simulation results are compared for all 

algorithms, another experiment with a higher conductivity contrast is essential since 

none of the algorithms reconstructed both elements clearly. 

4.5.6.2 Experiment 2 

Another experiment is conducted to see the effect of conductivity contrast on 

reconstructed images. In this experiment, phantom geometry is kept the same while 

conductivity of the circle element is increased to 1.9 S/m and the square element is 

designed as a pure insulator. In Figure 4.63 and Figure 4.64, xJ  and yJ  components 

of vertical current injection pattern can be seen. Moreover, xJ  and yJ  of horizontal 

current injection are also shown in Figure 4.65 and Figure 4.66. Arrow plot 

illustration of both current injection patterns can be seen in Figure 4.67. 
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Figure 4.63 xJ  ( 2/A m ) Image For Vertical Current Injection, Experiment 2  

 

Figure 4.64 yJ  ( 2/A m ) Image For Vertical Current Injection, Experiment 2  
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Figure 4.65 xJ  ( 2/A m ) Image For Horizontal Current Injection, Experiment 2  

 

Figure 4.66 yJ  ( 2/A m ) Image For Horizontal Current Injection, Experiment 2 
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(a) 

 
(b) 

Figure 4.67 Arrow Plots for current density a) Vertical Injection, b)Horizontal Injection 
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As can be seen in Figure 4.67, both objects are distinguishable even with current 

density plots. However, square object which almost has zero conductivity is more 

distinguishable than circle object. This result is proved also by reconstructed images.  

First, simulation results obtained with experimental phantom parameters are given. 

Original and reconstructed conductivity distributions are given in Figure 4.68. 

 

(a) 

  

(b) (c) 

  

(d) (e) 

Figure 4.68 Reconstructed Images with Simulated Data for Experiment 2, a) Original 
Distribution, b) Equipotential-Projection, c) Solution as a Linear Equation System, d) J-
Substitution (3 iteration), e) Hybrid (3 iteration) 
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According to these results, all reconstruction algorithms except Solution as a Linear 

Equation System succeeded in reconstructing the resistive square element. Although, 

boundaries of square element are visible for the result of Solution as a Linear 

Equation System algorithm, two extreme pixels with relatively high conductivity 

values distort image and increase error percentage dramatically. Moreover, typical 

grid artifact of Solution as a Linear Equation System algorithm is present here, too. 

Another important point is the relation between J-substitution and Hybrid algorithms. 

Hybrid algorithm has already reached to an optimum result where as J-substitution 

algorithm still needs to be iterated after three iterations. This phenomenon is also 

seen in Figure 4.69 where general error percentages with respect to iteration number 

are shown. 

 

(a) 

 

(b) 

Figure 4.69 General Percentage Errors of a) J-Substitution, b) Hybrid algorithm 
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It is clear that, J-Substitution reaches the optimum error percentage value (%20) after 

10 iterations, as Hybrid algorithm quickly converged to that value in a single 

iteration. This result is also another proof of optimization effect of Hybrid algorithm 

over J-Substitution algorithm.  

Reconstructed conductivity distributions obtained with data of experiment 2 are 

given in Figure 4.70, Figure 4.71, Figure 4.72 and Figure 4.73. If results of 

experiment one and two are compared, some similarities will be realized. J-

Substitution and Hybrid algorithms still have problems in FOV corners due to low 

amount of current and domination of noise, so these regions diverge to extreme 

values. Second, all algorithms are better in reconstructing resistive square element 

which is also expected. Third, Equipotential-Projection algorithm still has problems 

in reconstructing conductive circle element. 

 

Figure 4.70 Reconstructed Image (S/m) with Equipotential-Projection Alg., Experiment 2 
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Figure 4.71 Reconstructed Image (S/m) with Solution as a Lin. Eq. Sys. Alg., Experiment 2 

 

Figure 4.72 Reconstructed Image (S/m) with J-Substitution Alg., Experiment 2 
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Figure 4.73 Reconstructed Image (S/m) with Hybrid Alg., Experiment 2 

If corners of FOV are not considered, Solution as a Linear Equation System, J-

Substitution and Hybrid algorithms have perceptually similar reconstructed images. 

Both circle and square elements are clearly distinguished. Table 4.4 shows error 

percentages of circle element in reconstructed images. Hybrid algorithm here 

continued its superior performance over J-substitution and other algorithms. 

Moreover, Solution as a Linear Equation System algorithm has a worse performance 

than J-substitution and Hybrid algorithms as conductivity contrast increases. Error 

percentage of square element is not considered since all algorithms fail to reconstruct 

this region with almost zero conductivity. 

Table 4.4 Circle Element Error Percentages of Reconstructed Images 

 Sol. Lin. Eq. Sys. EPP J-substitution Hybrid 

Circle Element Error 
Percentage (%) 

77% 80% 69% 64% 
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CHAPTER 5  

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

In a previous study, Lorca [22] implemented and compared five J-based and a B-

based MREIT reconstruction algorithms. The motivation of his thesis is to compare 

the algorithms with the same phantom. Moreover, he studied the effect of different 

noise levels. However, his study is based on a simulation with a rather simple 

phantom. Lorca stated in his thesis the future work possibilities which are 

simulations with different phantoms to compare performance of algorithms with 

different criteria. These criteria are position dependency, spatial resolution, electrode 

size, reconstruction time and perceptual analysis. So, in this thesis, J-based 

reconstruction algorithms are compared with five different simulation phantoms with 

the criteria mentioned above. Moreover, a novel J-based reconstruction algorithm is 

proposed which is a combination of Equipotential-Projection and J-Substitution 

algorithms. 

Implemented J-based reconstruction algorithms are Integration along Equipotential 

Lines [19], Integration along Cartesian Grid Lines [19], Solution as a Linear 

Equation System [19], Equipotential-Projection [21], J-Substitution [20] and Hybrid 

algorithms [24]. Moreover, these algorithms are optimized with slight modifications 

to increase their performance. Regional and total reconstruction errors are calculated 

for each algorithm to make a numerical analysis. 

Five different simulation phantoms are designed for simulation of reconstruction 

algorithms. The first model is explained in Section 4.2.1. Its purpose is to see the 

overall performance of reconstruction algorithms with two big square and circle 

elements. Also, it includes two impulsive elements.  
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Integration along Equipotential Lines algorithm has the worst performance with 

model 1 with respect to other algorithms. Errors are mainly due to element 

boundaries which are spread to the image with integration. However, using 

equipotential lines originated from four boundaries decreased total error 

dramatically. The other reason of errors is that some areas are not covered by 

equipotential lines leading to miscalculation of conductivity in these areas. Noise-

free case yielded 64% error for Integration along Equipotential Lines algorithm and 

simulations with SNR 30 noise level produced 230% error. Moreover, with SNR 13, 

Integration along Equipotential Lines algorithm can not reconstruct conductivity 

distribution. 

Integration along Cartesian Grid Lines algorithm also uses integration but it has a 

main advantage over Integration along Equipotential Lines algorithm such that it 

uses the information of two current injection patterns in a single step. Moreover, two 

integration strategies are employed for integration and their average is taken which 

enhances the performance of Integration along Cartesian Grid Lines algorithm. 

Elements of conductivity distribution reconstructed with Integration along Cartesian 

Grid Lines algorithm do not have sharp boundaries but still are definite. Addition of 

noise to current density data affected resistive elements more since current tends to 

flow outside of these elements. As a result, errors of these regions increased 

dramatically and spread to background with integration which distorts the 

reconstructed image. Integration along Cartesian Grid Lines algorithm has 21%, 

26.8% and 83% total errors for noise-free, SNR 30 and SNR 13 cases, respectively. 

Solution as a Linear Equation System algorithm also uses information from two 

current injection patterns and does not employ integration which result in a superior 

performance than Integration along Cartesian Grid Lines and Integration along 

Equipotential Lines algorithms. However, there is a typical grid artifact because to 

calculate the conductivity value of a single pixel, Solution as a Linear Equation 

System algorithm uses information only from four neighbor pixels. Element 

boundaries are sharper than Integration along Cartesian Grid Lines and Integration 

along Equipotential Lines algorithms. Moreover, Solution as a Linear Equation 
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System algorithm is robust noise producing 12.7%, 12.6% and 18.5% total errors for 

noise-free, SNR 30 and SNR 13 cases, respectively. 

Equipotential-Projection algorithm uses equipotential lines started from four 

boundaries together. It reconstructs conductivity distribution with sharp boundaries 

but have erroneous lines originating from corners of FOV with SNR 13 noise level 

leading to distortion of reconstructed image. 

J-Substitution and Hybrid algorithm produced the sharpest boundaries and 

perceptually better reconstructed images. Hybrid algorithm has a slightly better 

performance than J-Substitution algorithm in noise-free case as it has only 3% total 

error. But, addition of noise affected the performance of Hybrid algorithm because of 

the erroneous lines from the result of Equipotential-Projection algorithm.  

Model 2 is used for spatial resolution analysis with calculation of FWHM values. 

Two cases, conductive and resistive, are used for simulation.  

In the conductive case, J-Substitution and Hybrid algorithms have FWHM values of 

0.225 cm which is equal to ideal case even when impulsive elements are closest to 

each other. On the other hand, Integration along Cartesian Grid Lines and Integration 

along Equipotential Lines algorithms produced FWHM values around 0.45 cm. 

Equipotential-Projection and Solution as a Linear Equation System algorithms have 

slightly bigger FWHM values than J-Substitution and Hybrid algorithms as they 

produced FWHM of 0.25 cm. Moreover, all algorithms’ FWHM values are 

independent from distance between two impulsive elements. 

In the resistive case, J-Substitution and Hybrid algorithms have FWHM around 0.235 

cm which has 5% error with respect to ideal case. As in the conductive case, 

Cartesian Grid Lines and Integration along Equipotential Lines algorithms has the 

worst performance with FWHM around 0.55 cm. Equipotential-Projection and 

Solution as a Linear Equation System algorithms have FWHM values around 0.35 

cm. All algorithms have FWHM values independent from distance between two 

impulsive elements in the resistive case. 
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Model 3 is designed to see the position dependency of reconstruction algorithms 

which has a resistive and conductive case. Simulation results show that all algorithms 

are independent from position both for conductive and resistive cases but some 

algorithms can not reconstruct impulsive elements with their true values and define 

element boundaries sharply. 

Simulations with model 4 reveal the numerical accuracy of reconstruction algorithms 

with changing conductivity contrast. The conductivity of square element in the center 

of FOV is increased and decreased gradually for conductive and resistive cases, 

respectively. In the conductive case, when conductivity contrast is increased general 

error is increased for all algorithms. However, all algorithms except Integration along 

Cartesian grid Lines algorithm converge to an error value. When square conductivity 

is 2 S/m, general errors are 5.2%, 8.1%, 9%, 32% and 47% for Hybrid, J-

Substitution, Equipotential-Projection, Solution as a Linear Equation System and 

Integration along Cartesian Grid Lines algorithms, respectively. 

When error percentage of square is considered, all algorithms’ error values increase 

but converge to some value except Integration along Cartesian Grid Lines algorithm 

in the conductive case. 

For the resistive case, Integration along Cartesian Grid Lines, Integration along 

Equipotential Lines and Solution as a Linear Equation System algorithms have 

divergence characteristics for general error when conductivity contrast is increased. 

They reach to general errors of 80% for Integration along Equipotential Lines and 

35% for Integration along Cartesian Grid Lines and Solution as a Linear Equation 

System algorithms when square element has a conductivity contrast of 1/10 with 

respect to background conductivity. For that case, Hybrid, J-substitution and 

Equipotential-Projection algorithms converge to general errors of 4.5%, 7.6% and 

6.3%, respectively. Here, optimization effect of Hybrid algorithm over J-Substitution 

algorithm is more obvious. 

The above conclusions still apply when square error is considered. As conductivity 

contrast increases Integration along Cartesian Grid Lines, Integration along 
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Equipotential Lines and Solution as a Linear Equation System algorithms diverge 

whereas Hybrid, J-substitution and Equipotential-Projection algorithms converge to 

square errors of 2.5%, 5.6% and 11%, respectively. 

The last simulation phantom is the thorax phantom with a complex geometry and 

true tissue conductivities. Thorax phantom is also used with noisy data simulations of 

SNR 30 and SNR 13. Moreover, regional and total errors are calculated for each 

reconstruction algorithm to make a numerical analysis. 

Integration along Equipotential Lines algorithm failed in reconstructing conductivity 

distribution even in the noise-free case. Most of the equipotential lines can not make 

it to another boundary and are eliminated. The remaining equipotential lines are not 

sufficient to reconstruct an image.  

All algorithms reconstructed spinal cord region inside bone structure with around 

100% error, because current can not get into bone structure and forces spinal cord 

inside to be reconstructed with conductivity value of bone. 

Integration along Cartesian Grid Lines algorithm has the largest regional and total 

error values because it is based on integration of conductivity gradient. The 

conductivity gradient reaches to its maximum values at the boundary between bone 

element and other regions. So, errors from these regions are distributed to other 

elements and especially to the background. Moreover, addition of noise affected 

these areas the most due to relatively low current density and increased both regional 

and total errors dramatically.  

For the case Solution as a Linear Equation System algorithm, all elements are 

separated form each other but the boundaries are not sharp. Regional error for bone 

element is increased much more than other regions because of the low current 

density. Moreover, typical grid artifact is also present with thorax phantom 

simulations. 
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Equipotential-Projection algorithm produced the sharpest boundaries with thorax 

phantom but lacked reconstructing each element with its true conductivity value. 

When noise is added typical erroneous lines originating from corners of FOV start to 

distort image and increase both regional and background errors. 

The most satisfying results both numerically and perceptually are obtained with 

Hybrid and J-Substitution algorithms. The success of Hybrid algorithm in 

reconstructing regions in the center of FOV is clearly seen with thorax phantom 

simulations. The error of heart region is around 20% for Hybrid algorithm whereas J-

substitution algorithm has around 40% error. However, typical erroneous line artifact 

of Equipotential-Projection algorithm dominates lung region and background errors 

of Hybrid algorithm which in turn forces Hybrid algorithm to have higher total errors 

than J-Substitution algorithm. 

As a part of the thesis work, an MREIT experiment is conducted as explained in 

Section 0 and Appendix A. Measured magnetic fields and all components used in the 

calculation of current density data are given in Section 4.5.6. Measured current 

density data is consistent with simulation data. However, current density deviations 

due to square and circle elements of experimental phantom are not enough to 

reconstruct these elements. Therefore, another experiment including elements with 

high conductivity contrast with respect to background conductivity can be conducted.  

Main reasons of errors in experimental data are alignment problems, position of 

slices and calculation of magnetic field derivatives. Therefore, special care must be 

taken in every step of data collection. 

According to the reconstruction results obtained with data of experiment 1, Solution 

as a Linear Equation System algorithm is the most successful one since it 

reconstructed both circle and square element partially. This result is expected as 

Solution as a Linear Equation System algorithm proved to be robust to noise 

especially in low conductivity contrast regions and experimental phantom has a 

conductivity contrast of only 2. Therefore, when conductivity contrast increases, 

Solution as a Linear Equation System algorithm may have a poorer performance. 
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Also, Equipotential-Projection algorithm has a partial reconstruction where square 

element is slightly distinguished. On the other hand, J-Substitution and Hybrid 

algorithms can not reconstruct conductivity distribution. Moreover, noise becomes 

dominant in corners of FOV for J-Substitution and Hybrid algorithms. Integration 

along Equipotential Lines and Integration along Cartesian Grid Lines algorithms can 

not reconstruct conductivity distribution with data of experiment 1. 

Another experiment with a higher conductivity contrast is also conducted where 

circle element’s conductivity is increased to 1.9 S/m and square element is designed 

to have nearly zero conductivity. Background is still set to 0.2 S/m. According to 

results of experiment 2, Solution as a Linear Equation System, J-substitution and 

Hybrid algorithms reconstructed both circle and square elements clearly. However, 

conductivity values at corners of FOV diverge for J-Substitution and Hybrid 

algorithm since these regions have lower current density and more vulnerability to 

noise. When error percentages for circle element are investigated, Hybrid algorithm 

seems to have the lowest error which shows its superiority to J-substitution 

algorithm. Equipotential-Projection algorithm can only reconstruct resistive square 

element whereas Integration along Equipotential Lines and Integration along 

Cartesian Grid Lines algorithms failed with data of experiment 2.   

A star plot is designed to see the overall performance of reconstruction algorithms 

with aforementioned criteria. These are reconstruction time, noise performance, error 

performance, electrode size and reconstructed image quality. Different simulation 

results are chosen for each criterion as mentioned below. 

• Error comparison with noisy data is performed with total error results of SNR 

13 simulations with model 1. 

• Error comparison is performed by noise-free case simulations of model 1. 

• Image quality comparison is carried out with thorax phantom results, such 

that each reconstruction algorithm is graded from 1 to 5 with respect to its 

performance. 
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• Electrode size is 9 cm for Integration along Equipotential Lines, Integration 

along Cartesian Grid Lines and Solution as a Linear Equation System 

algorithms and 1.8 cm for other algorithms. 

• Reconstruction time for Hybrid and J-substitution algorithms is the time 

elapsed for three iterations.  

• Experimental performance comparison is done with percentage error of circle 

element for experiment 2. 

Number of potential measurements and current injection patterns are not included in 

comparison since they use the same number of these parameters for consistency.  

Each axis of star plot is discretized with the numerical results shown in Table 5.1. 

Discretization of each axis is made in a way that as the distance from origin 

increases, the performance gets better. For example, reconstruction time axis is 

plotted with 1/(reconstruction time) values. Star plot is shown in Figure 5.1.  

Table 5.1 Numerical Values for Star Plot 

 
Integ. Eq. 

Pot 
Integ. 

Cart. Grid 
Sol. Lin. 
Eq. Sys 

EPP Jsub Hybrid 

Reconstruction 
Time 

10 s 10 s 10 s 10 s 8 min 8 min 

Noise Error 233% 83% 18.5% 15.7% 18.1% 19.3% 

Error 64%  21.2% 12.7% 6.9% 4.6% 3% 

Electrode Size 9 cm 9 cm 9 cm 1.8 cm 1.8 cm 1.8 cm 

Image Quality 1 2 4 3 5 5 

Experimental 
Error - - 77% 80% 69% 64% 
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Figure 5.1 Star Plot 

5.2 Future work  

In this thesis, current density (J) based MREIT reconstruction algorithms are 

implemented and optimized with slight modifications. Moreover, these algorithms 

are compared both with simulated and experimental data set with respect to different 

criteria. Some future work possibilities are: 

• More experiments can be conducted especially with high conductivity 

contrast phantoms. 

• Another MRI system with a higher SNR level can be used. 



 139 

• Numerical methods for perceptual analysis on performance of reconstruction 

algorithms can be developed. 

• Experiments with real tissues can be conducted.  
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APPENDIX A 

MREIT EXPERIMENT PROCEDURE 

In Appendix A, experimental setup and procedure for experiment 1 will be explained 

in detail. In Section 2.5 and Section 4.2.6, general information about data extraction 

and MREIT experiments is given. In this chapter, further information is provided for 

interested reader. 

In Figure A.1, general setup for a conventional MREIT experiment is given. Main 

components are MRI system (main magnet and RF coil), current source and 

phantom. These components will be explained in detail. 

 

Figure A.1 General Setup for MREIT Experiments 

Current 
Source 

Magnet 

Fiber 
optic 
cables 

RF Coil 
and 
Phantom 
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0.15 T METU MRI system is used for conducting the experiments. MRI system is 

controlled by a software which is designed by Özsüt [38]. Moreover, pulse sequence 

parameters are assigned and data collection is performed utilizing this software. 

Another important component is the RF coil which serves both as a transmitter and 

receiver coil. RF coil in Figure A.2 is designed and implemented as a part of the 

thesis work.  Before data collection, the RF coil has to be tuned. 

 

Figure A.2 RF coil with the phantom inside. 

Next component is the current source used for current injection. In a previous study, 

Özbek [31] designed a current source to conduct MREIT experiments with METU 

MRI system. However, control of METU MRI system has changed which forced to 

design and implement a new current source. Two pictures of the current source from 

the front and back side are shown The new current source is based on Özbek’s design 

with the difference that trigger for current injection is taken directly from pulse 

sequence and trigger information is carried to the current source with fiber optic 

cables to eliminate noise interference. So, a transmitter and a receiver unit are added 

to previous design for fiber optic transmission. As can be seen in Figure A.3a, there 

is a BNC output in front of the current source. It measures the voltage on a resistor of 
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10Ω , that is the applied current amplitude can be found by dividing the voltage seen 

by 10. 

  
(a) (b) 

Figure A.3 Current Source a) Front View, b) Back View 

Next step is preparing the phantom. As explained in Section 0, a plexiglas phantom 

is constructed which is shown in Figure A.4. 2D geometry is obtained with plexiglas 

walls seen in Figure A.4b. These walls force the current applied to flow between 

them.  

  

(a) (b) 

Figure A.4 Plexiglas Phantom, a) Oblique View, b) Upper Side Removed 
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Phantom elements are prepared with different combinations of three solidfying 

materials, TX151 [35], TX150 [35] and Agar-Agar [39]. Moreover, NaCl is added to 

the solutions to increase conductivity. TX151 and TX150 are used to reduce ion 

diffusion [40]. Also, CuSO4 (1g/L) is added to every solution to fix T1 relaxation 

time [31]. Preparation procedure for phantom elements is as follows [41], 

• NaCl is added to distilled water and solution is stirred. 

• TX151, TX150 and Agar-Agar are added and solution is boiled. 

• Boiled solutions are poured quickly inside molds shown in Figure A.5 

  

(a) (b) 

Figure A.5 Molds for Phantom Elements, a) Mold for Square Element, b) Mold for Circle 
Element 

After phantom elements inside the molds are hardened, they are taken out and put 

inside plexiglas phantom as in Figure A.6. The same preparation procedure is applied 

to background solution which is poured into the phantom just after phantom elements 

are placed, shown in Figure A.6b. Critical point for all preparation procedure is the 

amount of all solidifying materials, distilled water and NaCl inside phantom 

elements. Conductivity of all elements are found with conductivity cell in Figure 

A.7. Conductivity values of all elements are determined after each solution is poured 

and hardened inside conductivity cell. When the solution is hardened inside the 
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conductivity cell, its conductivity value is also fixed. Amounts of all TX151, TX150, 

Agar-Agar, distilled water and NaCl for each phantom element are given in Table 

A.1. 

  
(a) (b) 

Figure A.6 Phantom with all Elements, a) Phantom Elements, b) Phantom Elements and 
Background Solution 

 

Figure A.7 Conductivity Cell 
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Table A.1 Composition of Phantom Elements 

 
Square Element 

(0.1 S/m) 
Circle Element 

(0.4 S/m) 
Background Solution 

(0.2 S/m) 

Agar-Agar 0.5 g 1 g - 

TX151 - 1 g 1.8 g 

TX150 1 g - 0.2 g 

CuSO4 0.1 g 0.1 g 0.1 g 

Distilled Water 100 ml 100 ml 100 ml 

NaCl - 0.1 g 0.1 g 

 

After experimental phantom is prepared data collection stage starts. In Figure A.8, 

basic MREIT pulse sequence is illustrated. Here, slice selection, phase encoding and 

frequency encoding gradients are in ,  y and xz  directions, respectively. 

 

Figure A.8 MREIT Pulse Sequence 
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Screenshot of the software used for pulse sequence design and data collection for 

METU MRI system is shown in Figure A.9 for imaging zB  component. Procedure 

for imaging z  component of magnetic field (zB ) is as follows, 

• Current electrodes are connected to the current source. 

• Negative current is applied for horizontal current injection and phase image is 

obtained. 

• Current polarity is changed to positive current injection and phase image is 

obtained. 

• Magnetic field ( zB ) is extracted as explained in Section 2.5 

• Above steps are repeated for vertical current injection 

 

Figure A.9 Screen Shot Image of MRI software for zB  imaging 
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Next step is obtaining magnetic field in x  direction ( xB ). First, phantom orientation 

is changed such that imaging slice is orthogonal to x  direction. In that configuration 

slice selection, phase encoding and frequency encoding gradients are in ,  y and zx  

directions, respectively. Screen shot of the software for xB  imaging is shown in 

Figure A.10. Data collection procedure is the same as the general procedure 

explained above with the following changes, 

• Slice position is adjusted to 5 mm above the center of imaging slice in x 

direction and above procedure is repeated. 

• Slice position is adjusted to 5 mm below the center of imaging slice in x 

direction and above procedure is repeated. 

 

Figure A.10 Screen Shot Image of MRI software for xB  imaging 
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Then, xB  is extracted as explained in Section 4.5.6. Imaging of y  component of 

magnetic field ( yB ) is done in the same way as imaging of xB  with the difference 

that slice positioning is done in y direction. Screen shot of MRI software for yB  

imaging is shown in Figure A.11. Here, slice selection, phase encoding and 

frequency encoding gradients are in ,  z and xy  directions, respectively.  

After all components of magnetic field are obtained current density data both in 

 and x y  directions (  and x yJ J ) are obtained as explained in Section 4.5.6. 

 

Figure A.11 Screen Shot Image of MRI software for yB  imaging 

                                                 

 


