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ABSTRACT

PERFORMANCE EVALUATION OF CURRENT DENSITY BASED MARETIC
RESONANCE ELECTRICAL IMPEDANCE TOMOGRAPHY
RECONSTRUCTION ALGORITHMS

Boyaci@lu, Rasim
MSc., Department of Electrical and Electronics Begring, Biomedical
Engineering

Supervisor : Prof. Dr. B. Murat Eyugla

September 2009, 153 pages

Magnetic Resonance Electrical Impedance TomograREIT) reconstructs
conductivity distribution with internal current dgty (MRCDI) and boundary
voltage measurements. There are many algorithmpopea for the solution of
MREIT inverse problem which can be divided into tgrmups: Current density (J)
and magnetic flux density (B) based reconstrucaigiorithms. In this thesis, J-based
MREIT reconstruction algorithms are implemented amptimized with
modifications. These algorithms are simulated Mk conductivity models which
have different geometries and conductivity valu®esults of simulation are
discussed and reconstruction algorithms are cordpaaecording to their
performances. Equipotential-Projection algorithns h@awver error percentages than
other algorithms for noise-free case whereas Hylaigorithm has the best
performance for noisy cases. Although J-substitutmd Hybrid algorithms have
relatively long reconstruction times, they produdbed best images perceptually.
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Integration along Cartesian Grid Lines and Intagratalong Equipotential Lines

algorithms diverge as noise level increases. Edeipial-Projection algorithm has

erroneous lines starting from corners of FOV esglscifor noisy cases whereas
Solution as a Linear Equation System has a tymddl artifact. When performance
with data of experiment 1 is considered, only Soluts a Linear Equation System
algorithm partially reconstructed all elements whg&how that it is robust to noise.
Equipotential-Projection algorithm reconstructesisgve element partially and other
algorithms failed in reconstruction of conductivdistribution. Experimental results
obtained with a higher conductivity contrast shtwattSolution as a Linear Equation
System, J-Substitution and Hybrid algorithms retmased both phantom elements

and Hybrid algorithm is superior to other algorihm percentage error comparison.

Keywords: electrical impedance tomography, magnetgonance imaging, current

density imaging



oy4

AKIM YO GUNLUGU TABANLI MANYET iK REZONANS ELEKTRKSEL
EMPEDANS TOMOGRAHSI GERICATIM ALGORITMALARININ
PERFORMANS DEERLENDIRMESI

Boyaci@lu, Rasim
Yiksek Lisans, Elektrik ve Elektronik Muhend@IBolumu, Biyomedikal
Muhendislgi
Tez Yoneticisi : Prof. Dr. B. Murat Eyublu

Eylul 2009, 153 sayfa

Manyetik Rezonans Elektriksel Empedans TomogrdMREIT) akim ygunlugu
(MRCDI) ve yuzey potansiyelleri dlcumleri yardimayliletkenlik dgilimini
gericatmaktadir. MREIT geri probleminin ¢ézimunddldnilan bircok metot ve
algoritma vardir. Bu algoritmalar iki gruba aynl#kim (J) ve manyetik aki (B)
yogunlugu tabanh gericatim algoritmalari. Bu gahada J-tabanli MREIT gericatim
algoritmalar1 gercekkgirilip bazi desisikliklerle eniyilenmgtir. Bu algoritmalarin
farkli geometrilere ve iletkenlik gerlerine sahip bgeiletkenlik modeli ile benzetimi
yapilmstir. Benzetim sonuclari yorumlanip, gericatim algoalari performanslarina
gore kiyaslanngtir. Espotansiyelizdisiim algoritmasi guriltiisiz durum igin en
disUk hata oranlarina sahipken, guraltali durumda Keaahgoritma en arnlidir. J-
Degistirme ve Karma algoritmalari ger algoritmalara oranla daha uzun gericatim

Vi



surelerine sahiptir. Buna gamen bu algoritmalarin sonuclari dahasdrdidir.
Kartezyen lIzgara Cizgileri boyunchntegral ve Epotansiyel Cizgileri boyunca
Integral algoritmalari gurulti  seviyesi arttikca ksar. Epotansiyelizdisiim
algoritmasinda gurdltali durumlarda gorunttilemenaa k&elerinden bglayan
hatali cizgiler belirmekteyken Lineer Denklem SmsteCozumu ile Gerigcatim
algoritmasinin tipik 1zgara artefakti vardilk yapilan deneyde elde edilen sonugclara
bakildginda, sadece Lineer Denklem Sistemi Cozimi ile gaem algoritmasi
batin elemanlart kismi olarak gericatabigtmi Bu da bu algoritmanin girtltiye
karsi direncli old@gunu gostermektedir. Buna kam, Espotansiyelizdisim
algoritmasi daha yalitkan olan kare elemani kisngamicatabimgtir. Diger
algoritmalar deneysel veriler ile goriinti gericatda baarisiz olmglardir. Daha
yuksek iletkenlik kontrastina sahip bir fantomlgoyan deney sonucunda, Lineer
Denklem Sistemi Cozumu ile Gerigatim, Jgidéirme ve Karma algoritmalarinin her
iki fantom elemanini da gericaitive Karma algoritmanin hata oranlarinda daha iyi

oldugu gorulmitar.

Anahtar Kelimeler: elektriksel empedans goruntilem@anyetik rezonans

goruntileme, akim yunlugu goruntileme
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CHAPTER 1

INTRODUCTION

Different properties of biological tissues have rbe@vestigated to get more
information about human body and develop new in@giodalities. One of these
parameters is electrical resistivity of biologitiasues. Electrical resistivity of tissues
changes for different parts of the body and phygjicial state [1]. Moreover, tissue
impedance is usually modeled as combination oé@tance and a reactance element
which forces tissue impedance to vary with freqyef#i. Imaging of impedance
distribution inside human body enables to examinendn body in a different
perspective than conventional imaging modalities €T and MRI.

Electrical Impedance Tomography (EIT) is an imagmgdality which was first

proposed by Henderson and Webster [3] and attraatsy scientists over the past
three decades. Henderson and Webster [3] publigiied impedance images.
However, first tomographic images were obtained paoblished by Brown and

Barber [4] just before they introduced the firsinidal impedance tomography
system, which is called Applied Potential TomograAPT). Interested reader for
EIT history is guided to [5] and [6].

EIT mainly consists of currents applied betweensaf electrodes on the imaging
subject and then measuring surface potentials leetwemaining electrodes. There
are mainly two ways of current application, by atjeg via electrodes attached to
surface [6] or inducing via a coil around the boaigh the help of time varying
magnetic fields [7] and [8].

Induced EIT studies are extended with addition aitactless measurement system
by Gencer and Tek [9],[10] and [11]. After dataledlion, transfer impedances are
calculated with the ratio of measured potentialsgplied currents and EIT images

are reconstructed with these transfer impedances.
1



There are many drawbacks of EIT which are studiethny research groups. These
are low spatial resolution, low signal-to-noisdadaimage reconstruction in 3D and
sensitivity of body measurements to body shape.typieal limitation of EIT is that
transfer impedance is constructed with the efféatviaole body impedance which
brings sensitivity to inner regions to be low. Aseault, spatial resolution differs for
inner regions and regions close to the boundargpther words, spatial resolution is
position dependent [5].

This limitation showed the need to determine curmensity data directly from
measurements inside the body. However, there wasunb non-invasive method
until Scott and Joy showed that Magnetic Resondmeging (MRI) can be used to
measure internal current density data with a nedtihigh spatial resolution, [12]
and [13]. They applied currents attached to thendaty of a phantom and measured
magnetic field due to these currents with a sugtadiR pulse sequence. Then by
taking the curl of magnetic fields, current densitfa inside the phantom is obtained
as (1.1).

J=0xB/ 4, (1.1)

where,B =(B,,B,,B,), J =(J,,J,,J,), and 4, is the magnetic permeability of free

X1 =y

space. A rotation of phantom is necessary to olitaie components oB . They
called this new imaging Magnetic Resonance CurBensity Imaging (MRCDI).
Their studies gave birth to a new research ardaccagnetic Resonance Electrical

Impedance Tomography (MREIT).

MREIT is basically a different form of EIT wherercent density in imaging object
is obtained with MRCDI techniques. Then, condutyidistribution inside imaging
object is reconstructed with MREIT reconstructiolgoaithms. First studies of
MREIT were accomplished by Zhang [14], Wetal [15] and Ider and Birgul [16].

Zhang [14] proposed the first MREIT reconstructedgorithm which uses internal
current density distribution and many boundary agdt measurements. The

algorithm makes use of (1.2),



V,, = j pddl (1.2)

whereV,, is the potential difference between two pointand b, on the boundary, C
is the contour for line integral connecting a anahld p is the resistivity distribution

[6] . After discretization of imaging object, a diar system of equations can be

formed as (1.3) for M pixels and N boundary voltageasurements,
VN><1 = GN><M RM x1 + N Nx1 (13)

where,V, R and N are vectors of voltage measurements, resistivisyridution
and noise, respectivel$ is the current density data. Solution of thisdnequation
system is the resistivity distribution of imaginigce. However, this algorithm needs
too many boundary voltage measurements for a solutvith a high spatial

resolution.

Another early algorithm is proposed by Webal [15]. They modeled an error
function between measured and calculated currensityein terms of resistivity
distribution. A sensitivity matrix which relates amired current density data to
resistivity distribution deviations is employed faorinimization of error function.
Minimizing the error function means converging taet values of resistivity
distribution. Ider and Birgul [16] also used a s@wvisy matrix for their algorithm.
But, this time sensitivity matrix is formed betweagnetic flux measurements and
resistivity distribution. An iterative method issal proposed by Eyilgtu [17] where
resistivity distribution is updated after solvingtarnal current density distribution
with FEM with the resistivity of previous iteration

These early studies initiated the research of MR&i@d other algorithms. MREIT
reconstruction algorithms can be grouped in twegaties, using magnetic fiell
directly and current density calculated fromB [18]. It is important to note that
algorithms employing) suffer from a technical difficulty which is the ex for
rotation of imaging object because MRI can only suea only one component Bf

that is parallel to the main magnetic field of M&yistem.



J-based MREIT reconstruction algorithms in literatuare Integration along
Equipotential Lines, Integration along Cartesiamd@ines and Solution as a Linear

Equation System algorithms by Ider [19], J-Substitu algorithm [20] and
Equipotential-Projection algorithm [21].



1.1 Obijectives of the Thesis

MREIT research has been conducted by many grouyge 991 after Scott al
[12] introduced MRCDI to the literature. There amany techniques used for MREIT
inverse problem. Although MREIT literature contamsny J-based reconstruction
algorithms, most of the studies are based on siiouolastudy. Moreover, these
reconstruction algorithms’ performances are testeith different simulation
phantoms which make it difficult to compare them.al previous study, Lorca [22]
compared some of the reconstruction algorithms waittather simple phantom. In
recent years, MREIT research is focused on expeatamhstudy rather than inventing
new reconstruction algorithms. As a result, thissis seeks further investigation of
J-based reconstruction algorithms and experimemtatith real data. Objectives of

this thesis are:

* To implement J-based MREIT reconstruction algorghmliterature
» To optimize implemented J-based MREIT reconstructigorithms
* To propose a novel current density based recorsirualgorithm
* To evaluate and compare J-based MREIT reconstruetigorithms with a
variety of conductivity models
* To compare J-based MREIT reconstruction algorithpesformances with
experimental data
Implemented J-based reconstruction algorithms mategtation along Equipotential
Lines, Integration along Cartesian Grid Lines amaluon as a Linear Equation
system algorithms by by Idest al [19], Equipotential-Projection algorithm by
Ozdemir and Eyubgu [21], [23] and J-Substitution algorithm [20]. s, a new
Hybrid algorithm proposed by Boya@la and Eyubglu [24] is also implemented in
the thesis.



1.2 Organization of the Thesis

Chapter 2 includes problem definition, forward anderse problems of MREIT.
Moreover, basic MRCDI techniques to extract curréensity information are
formulated in this chapter. In Chapter 3, theoryrefonstruction algorithms are
explained in detail with their formulations. Somedifications are done to optimize
each reconstruction algorithm and these are exgdaiim implementation sections of
Chapter 3. Chapter 4 starts with definition andppses of constructed simulation
phantoms. Then, simulation results for reconstouctialgorithms with each
simulation phantom are given in subchapters. Fuortbee, comparison of
performances of reconstruction algorithms is alsmed Also, application of
reconstruction algorithms to experimental dataagied out in Chapter 4. Finally,

Chapter 5 includes the conclusion and future waspbilities.



CHAPTER 2

THEORY

2.1 Introduction

In this section, problem definition of MREIT, whighcludes governing equations
and definitions, is given. Then, forward and ineengroblem for MREIT are
explained in detail. In general, forward problemrmsists of calculating potential
fields in a conductor object for given boundary ditions and conductivity
distribution when current is applied on its bouryddi8]. However, MREIT forward
problem also includes calculation of current densihd magnetic fields. On the
other hand, inverse problem is the calculation ohductivity distribution of a
conductor object when current density inside isegivDifferent formulations and

algorithms are employed for inverse problem.

Forward problem solution can be used both for oltgi simulation data and at each
step of an iterative algorithm for the solutionio¥erse problem. However, in real
data experiments current density is extracted MRCDI techniques. The procedure
to obtain current density from magnetic field measwents with MRI is also

formulated.

2.2 Problem Definition

In Figure 2.1, current carried by lead wirks and | , is applied to a conductive
medium Q through electrode€;, and E, attached on its boundar§Q. Let

magnitude of current applied de Applied current will flow insideQ according to

its resistivity distributionp.



That is, areas with relatively low resistivity willcquire relatively more current
density, and vice versa. As a result, current dglsstribution J inside Q contains
coded information ofo.

Figure 2.1 Conductivity Model

When resistivity distribution is changed, intercalrent pathways, thug, changes
which also effects boundary voltages. In convertiddiT, these boundary voltages
are insensitive to local changes and small dewativhich brings low spatial
resolution and nonlinearity problem [5]. Howevereasurement of magnetic field
with MRI and calculation ofJ from B ensures spatial resolution to be same
everywhere inside? .

2.3 Forward Problem

Forward problem of MREIT is formulated with the lemving boundary value
problem along with Neumann boundary conditions)(2.1



D[ELDV(r)} -0 inQ
p(r)

(2.1)

—EDV (h=g o0noQ
P

where n, g and r are outward unit normal vector a2, normal component of

current | on dQ and a position vector irR®, respectively [6] . Also, current

injection electrodes satisfy,
[ ods==1 j=12 (2.2)

Sign of | depends on direction of current injection pattamd g is obviously

nonzero only for the boundary contacting currejgation electrodes.

For the unique solution df , potential of a single point 08Q has to be specified
becauselV is uniquely determined with the solution of (2.Bfter potential

distribution is calculated, electric field inside Q can be obtained.
E=-0V (2.3)
Ohm'’s law relates current density distributidnto electric field distributiorE as,
1
J(r)=—-=E(r) (2.4)
P
Furthermore, Biot-Savart law can be employed t@iobthagnetic fieldB inside Q.

I

r

r
[

_dv (2.5)
r'

Bg(r)=%7jJ(r')x|r_‘

where 4, is the permeability of free space.

Analytical solutions of (2.1) only exist for spdacifeometries, so numerical methods
such as Finite Element Method (FEM) or Boundaryntgat Method (BEM) need to

9



be employed. In this thesis, FEM is chosen for #ovproblem solution [18].
COMSOL Multiphysics software is employed and apmdimn mode “2D Conductive
Media DC” from “AC/DC module” is used. To ensureidr solution of forward
problem, a model with homogeneous conductivityritistion and electrodes with
size of a single side is constructed. After theusoh of forward problem, current
density data is extracted and investigated. Exdtactirrent density does not change
with position in the direction orthogonal to curt@mection. Moreover, total current
is calculated by integrating current density ovesliae which is perpendicular to

current direction. Applied and calculated curregies turn out to be the same.

2.4 Inverse Problem

MREIT inverse problem is the reconstruction of cactdvity distribution of a
conductor object whose current density or magrfegid distribution is given along
with one or two boundary voltage measurements whenent is applied on its
boundary. As explained earlier, governing equatems formulations differ for each
reconstruction algorithm. Some of the algorithmes direct algorithms whereas the
others are iterative. lterative algorithms usuahlve forward problem at each
iteration and try to minimize an error functionrgach true values of conductivity. In
this section governing equations for each J-basmwbnstruction algorithm are
explained briefly. Detailed formulation and implemegion stages are explained in
CHAPTER 3

Ider proposed three algorithms in [19]. All of tham@ derived from (2.6).

OxE =0 (2.6)
Since,
E=p0J (2.7)
(2.6) can be written as,
Oxpl =0 (2.8)

10



After expansion of (2.8), (2.9) can be written,

OpoxJ+p0xJ =0 (2.9)

With the definition ofJ =In p,

O0xJ =-0xJ (2.10)

Since current density is known, (2.10) is used for calculation [6f and thenp.

Equipotential-Projection algorithm by [21] Ozderaind Eyiibglu uses Ohm’s Law
in (2.7) to reconstruct conductivity distributiomternal potential distribution is
calculated with boundary potentials projected iesifOV in the form of
equipotential lines.

J-Substitution and Hybrid algorithm solve forwartblglem at each iteration and

update resistivity distribution.

2.5 Basic MRCDI Procedure and Magnetic Field Extraction

MRCDI is utilized to obtain current density disuiibn J when current is applied
from electrodes attached to the surface of a cdodumbject. Pioneers of this
technique are the Toronto group [25], [12] ,[13PHd86]. MRCDI can be divided

into three basic groups according to the frequesfcgipplied current. VF-MRCDI

[27] uses currents with variable frequency beloeaw kHz whereas RF-MRCDI

[28], as the name implies, injects currents witthioarequency. However, the most
common and widely used technique is LF-MRCDI whigbes low frequency

currents. In this thesis, dc currents are employedh for simulation and

experimental study. Furthermore, formulation of metge field extraction is based
on LF-MRCDI.

Z direction is chosen to be parallel to the main metig field, B,, of the MRI

system. When currenk is applied through electrodes attached to theasarbf a
conductor object for ar, time interval, these currents produce a magnegicl f
11



inhomogeneity, B = (B,,B,,B,), which forces main magnetic field to change to

B, + B [6]. Actually, it is changed td, + B,, taking only z component oB . In

consequence, resulting signal equations with p@sit(2.11), and with negative,
(2.12), current are,

S"(mn) = [ [ M (x, y)elr® el T dydly (2.11)

S (mn)= j j M (X, )™ VB yTe @l CMaeynaie) gy gy (2.12)

where M is the transverse magnetization apdis the gyromagnetic ratio of

hydrogen [6] . After taking Fourier transform ofsals in (2.11) and (2.12), and then
dividing resulting complex images &l gives,

Arg(Me V) = prg(aeh™ 0 ) =6, x,y) (219
M (xy)

However, ® , needs unwrapping since it is Wrappe({far,ﬂ] interval. In the end,

magnetic flux density due to injection current tenextracted as in (2.14).

B, (X, y)=%¢z(x, y) (2.14)

c

where @ is unwrapped version ab, .
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CHAPTER 3

CURRENT DENSITY BASED RECONSTRUCTION
ALGORITHMS

3.1 Introduction

In Chapter 3, theories and formulation of recoretiom algorithms are given.
Furthermore, modifications to optimize the perfonta of each reconstruction

algorithm are explained in detail in implementatsartchapters.

In Section 2.4, Equation (2.10) set the relatiotwieen logarithmic resistivity and
current density distribution as,

O0xJ =-0xJ (3.1)

After applying curl operator and rearranging teriguation (3.2) is obtained in a
matrix form.

03, -J,|[e0| [9_ 9%
X dy o0z

-J, 0 J, o0 | |99, (3.2)
ay 0z O0x
o) 0J, aJ,

_Jy -J, O__E_ _E a_y_

Equation (3.2) is the starting point for Ider alguns. On the other hand,
Equipotential-Projection algorithm makes use of Ghiaw and J-Substitution

algorithm reconstructs conductivity distributioardtively.

13



3.2 Reconstruction by Integration Along Equipotential Lines

Ider [19] stated that method of characteristica isommon technique used for the
solution of a single first order linear partialfdifential equation. The formulation is
the following.

Let us define, a first order linear partial diffeti@l equation with a vector field\(x)

and scalar field(X), wherex =[x vy z]T , as

Alu=b (3.3)

This system has a characteristic curves in the fofran integral curvex(s) such

that,

X(s) = A(X(8)) (3.4)

where x' =dx/ds. So, any characteristic curve starting from pogt can be

formulated with Equation (3.5).

X(8) = X() + [ ACx(t)el (35)

Also,

%u(x(s)) = [ulX(s) =b(x(s)) (3.6)

Equation (3.6) means that, on the characteristicecaf system defined in Equation

(3.3), solution ofu can be found if its value is defined on a singdenp s=s, as in

Equation (3.7),

u(s) =u(s) + [ b(x(t)dt (3.7)

In the case of Integration Along Equipotential Lsne¢he single first order linear
partial differential equation turns out to be,
14



—J,—J =—(—-—) (3.8)

or

J, D0 =—(0xJ), (3.9)

This equation has characteristic curves defined'ts) = J,(x(s)) staying on a plane

with constant z value. That is, there is no vasiain z direction.

Let us now assume = z, plane wherez, is constant and denote the intersection of

o oo

this plane withQ as Q. [0 5
X 3y

T
} is the gradient ofl] on Q;/O where z

dependence is omitted and left hand side of EqugB8®) is the projection of this

gradient on [ J, —JX]T direction. So, left hand side of Equation (3.8) is

. o T .
perpendicular to current directignd, J, | and current streamlines. As a result,

characteristic curves of system defined in (3.8)l €8.9), X'(s) =J,(x(s)), are
equipotential lines. That result gives the oppatyuto use method of characteristics
to calculate [ in Q@O by integrating along equipotential lineslif is known for at

least one point on each equipotential line.

Ider [19] explains explicitly the need for at leasio current injection patterns for
unique solution. Let us assume there are two cuimgection patternsJ' and J?

being current density distributions for these pate Moreover,Jiy and ny are

projections ofJ* and J% in Q onto Qf; . If the condition\]}(y Xny # 0 is satisfied

for each current injection pattern and for all egaential lines, then assigning one

pixel in Q@ with its trued value ensures true calculationlofdistribution inQ;/o .

15



3.2.1 Implementation

3.2.1.1 Equipotential Lines

To obtain equipotential lines, current density rilsttion is utilized with the fact that

equipotential lines are perpendicular to currergashlines.

Equipotential lines are initialized from pixels tme same boundary of the imaging
phantom. Since the starting point and current stliea direction is known in a
single pixel on the boundary, the point which tlygipotential line exists for that
pixel is found. The same procedure is applied o fhxel which the equipotential
line is entering next. As a stopping criterion, whte equipotential line reaches a
boundary of the imaging phantom, the calculationtlwdt equipotential line is

finished.

A simple example is shown in Figure 3.1. Here, fequipotential lines are initiated

from the left boundary.

Figure 3.1 Pathways of four equipotential linesiated from the left boundary

16



3.2.1.2 Formulation of Integration
Lorca [22] explained the formulation of integrationdetail. The integration of]

over the entire imaging region is done with Equa{i8.10), which is the solution of
first order linear partial differential equation(8.8) with method of characteristics.

s (0J ,
0(s) :D(q)q%—(a—xy—%ﬂm (3.10)

Here, dl is the differential element on the integrationhphti.e. equipotential line,

which is illustrated in Figure 3.2.

Figure 3.2 Equipotential line and integration path frorg to s

For Cartesian coordinates, Equation (3.10) takesdim

di’ = (dx, dy) (3.11)
and
savJ saJ
O(s) = D(sl)—La—Xydx+La—;dy (3.12)

With the discretization of Equation (3.12) with gezoidal method of integration,
Equation (3.13) is obtained.

17



0(s) =0(s) {0%(%) . aJy(S)} (S.=S) +{adx(sl) N aJx(s)} (5,79,) (314
0X 0X 2 oy oy 2
Also, differential elements are changed as,
Ax=s,—s, and Ay=s -s, (3.14)
The final formulation is
0J 0J
0(s) = D(q){ 8, y(s)}%{‘”x(si) ¥ ‘”x(s)}ﬂ (3.15)
0x 0x 2 oy oy 2

Consider the system illustrated in Figure 3.3 whive equipotential lines are
initiated form the left boundary. Assuming loganitic resistivity in pixel 1 and 3 are

known, pixel 2 and 4 can be calculated.

>
5

3

Figure 3.3 The case where 2 equipotential line pésesugh pixel 2 and a single
equipotential line passes through pixel 4.

18



Assuming pixel 3 is known, logarithmic resistivity4 can be calculated as,

(3.16)

0(4)=0 (3)—{6%(3) + 0 (4)} B {6%(3) + 9% (4)} 278

0X 0x 2 oy oy 2

After pixel 4 is processed, logarithmic resistivitypixel 2 can be calculated. But in
this case, both pixel 4 and 1 are taken into adcéamcalculation of logarithmic

resistivity in pixel 2 because equipotential lirmstering pixel 2 are coming from
pixel 4 and 1. Thus, an averaging is utilized aBdguaation (3.17).

) =%{D (1){0%(1) L9, (2)} DX, _{&]X(l) L0, Ayﬂ} .

0x 0x 2 oy oy 2

: (3.17)
1 gy -| 9™, 9, @) | &, | 03,(4) , 03,(2) | Ay
2 ox ox 2 Y ay | 2

For a generalization of Equation (3.17), EquatiBri8) can be constructed for a

pixel r, which hasn equipotential lines coming each one from a previpelr, .

_13 (103,(r)  03,(r)) |Ax, [ 0,(r) . 8J,(r,) | Ay,
D(ro)—ﬁizﬂ:{ﬂ(ri) { ot } ; +[ 5 + Yy } A }(3.18)

To calculatel] in a pixel,a priori information is neededA priori information is the
[J values of the previous pixels from which equiptitdnines are coming. That

condition forces the algorithm to be recursive.

The algorithm is implemented as the following. &t@yr from the end pixel of each
equipotential line, for each equipotential line timat end pixel, it is checked if
previous pixels of these equipotential line arecpssed. If all the previous pixels are
processed, the end pixel is calculated. Genertibt, is not the case. So, previous
pixels of the end pixel are processed in the samener, recursively. In the end, all
the previous pixels contributing to calculationtlbét end pixel directly or indirectly
are processed and the end pixel can be proceskedalgorithm will continue with
the second equipotential line. When all the enctlgbare processed, the algorithm

stops.
19



Flowchart of the algorithm is illustrated in Figu(4). There aren equipotential

lines, |, i1 =12,...n with end pixels[J(x Y, )

Current density derivatives are calculated witheéalperators as explained in [12].

20



Find end
pixel for |,

R(%,. ¥,)

Check if

Find previous
pixels for

R, %)

Recursive
process
(RP)

Check if
processe

Check if
processe

If all previous
pixels are processt

ProcessR(x; , ¥, )

_________________________________________

Check if
processe

Figure 3.4 Flowchart of Integration along Equipdi@riines algorithm
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3.3 Reconstruction by Integration along Cartesian GridLines

Ider [19] stated that a potential functionGh can be found if its gradient is known in
Q except for an additional constant. The exact foncican be calculated by
specifying the potential function in a single pamtQ . In the case of Reconstruction
by Integration Along Cartesian Grid Lines algorithpotential function corresponds
to logarithmic resistivity distribution. Reconsttion of true logarithmic resistivity
distribution is ensured by assigning a single pixith its true logarithmic resistivity

value.

In the case of a single current injection pattgnadient of(] can not be calculated
since the determinant of coefficient matrix in (3i2 zero. That is, at least two

current injection patterns should be utilized. ustassume, two current injection

patterns are appliedl' and J* are corresponding current density distributions.aA
result, third row Equation (3.2) can be rewritteithwthe concatenation of the two
current density distributions as,

o0 03t 0J;

B3 ax | | oy ax
L; _JZ} S P (3.19)
y x || 22— OJX aJ_y
oy dy  0x
o0 oo
[0— a_} can be calculated at any point (x,y,z)-#,J7 +J2J; is not zero at that
x 0y

point. General form of that condition is,

Jy x5 20 (3.20)

where J)l(y and ny are projections ofl, and J, onto the xy plane, respectively.
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For 2-D case, where imaging slice is on xy planst &nd second rows of Equation

. . . . . o .
(3.2) are not considered since, z dependence itemlmand calculation of’— IS

0z
unnecessary.
3.3.1 Implementation
The coefficient matrix on the left hand side of Btjon (3.19),
NN
y p 3.21
s o
and the right hand side of Equation (3.19),
03 0J;
dy ox (3.22)
0J2 93]
dy 0x

are calculated for each pixel. Sobel operators Hr2] utilized for calculation of
current derivatives. After gradients of logarithmiesistivity [1 are obtained for
every pixel in the imaging slice, logarithmic resigy distribution can be calculated

from a point which is assigned with its trae value.

3.4 Reconstruction by Solution of a Linear Equation Syem using

Finite Differences

Reconstruction by Solution as a Linear Equatiornteé3ysdepends on discretization of
Equation (3.8), which is third row of Equation (BWith finite differences. For 2-D
case, Equation (3.2) is reduced to Equation (38)ming the imaging slice is on xy

plane.

Discretization of Equation (3.8) with central diéaces for inner elements results in
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1 1
E[(DHLJ' _Di-l,j)(Jy)i i ] _Zy[(mi ,j+1_Di J—l)(JX)i,j:|

a0 oo ]

where i and j are indices of elements in the x yaudldrections, respectivelyAx and

(3.23)

Ay stands for differential elements. For boundary aocdrer elements’

discretization, backward or forward differences ased. After Equation (3.8) is
discretized for all elements, the matrix repredssmmaof the equations of all
rectangular mesh elements is obtained as in Equégi@4).

CR=B (3.24)

Here, R represents logarithmic resistivity valueésegtangular mesh elements and N

is number of elements in a row.

R=[R R, ... . R (3.25)

C is a N*xN? matrix consisting of coefficients of Rs on thetléfind side of
Equation (3.23). That is, multiplication of eactwrof C with R gives the left hand
side of Equation (3.23) for a particular element. t®e other hand, each row of B is

the right hand side term of Equation (3.23) fott {herticular element.

For M different current injection patterns, theree aM different matrix
representations of Equation (3.24). These are ¢enated to form a combined set of

equations as,

Cl Bl
CZ BZ
M |R=| M (3.26)
CM -1 BM -1
L CM _ L BM -1

After combined set of equations is obtained, Idbaric resistivity values can be

reconstructed with a matrix inversion.
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3.4.1 Implementation
Let the imaging slice in xy plan@: (-D,D)x(-D, D) be divided intoN x N pixels.
In all the pixels,Q ;, current densityJ and logarithmic resistivity'] is assumed

constant where andj are indices in the y and x directions, respedivieloreover,

positive x and y directions are taken as right apd respectively. As discussed
earlier, discretization of Equation (3.8) will béferent for interior, boundary and
corner pixels. These regions and formulation ofides for logarithmic resistivity,

pixels, and current densities are shown in FigubseaBd Figure 3.6, respectively.

1 2 3
4 5 6
7 8 9

Figure 3.5 Regions for discretization

Starting with inner pixels, i.e. region 5,
2<i<N-1, 2< jsN-1landAx=Ay=2D/N,

Equation (3.8) is discretized with central diffecen as,
Jy Jy JX JX

m R(i—l)N+i+l _E R(i—l)N+j—1_Iy Rq_z)mj +Iy

_ J>§_1,,~ _J)§+1,j _ Jy, ,j+1_‘]yi i-1
20y 2AX

(3.27)
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Qi-l,j F\)(i—Z)N+j
Iy I
Qi,'—l Qi,j+1
R(- : ‘ Qi,j I%i—l)N+j R( ‘
i—1)N+j-1 \]XI] in,j i-1)N+j+1
I Wi I a1 Wija
Qi+l,j RN+]
‘])g+1,j ‘]yi+1,j

Figure 3.6 . Indices of Logarithmic resistivityxBis and Current Densities

For discretization of upper side pixels, i.e. regity central differences are used for x
direction. On the other hand, backward differemscesed for y direction. That is,

i=1,2<j<N-1,
Jy Jy Jx Jx
2Ax Ri-ons s _E R(i—l)N+j—1_A_y Rz in+ ] +A_y R+ ] (3.28)

_ IX = I _ R
Ay 20X

In the case of lower side pixels, i.e. region 8ntcd differences and forward
differences are used for x and y directions, redpely. Then, Equation (3.8)

becomes,

i=N, 2<j<N-1
Jy Jy X Jx
20 Riweo " 2x R“‘l’Nﬂ'—l_A_y Ri-2n) +A_y Ri-ans (3.29)

_ P I W Wi
Ay 2AX
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For left side pixels, i.e. region 4, forward andtcel differences are used for x and y
directions, respectively as shown in Equation (8.30

2<isN-1,j=1

JX JXx

Jy Jy
&Ri—lmﬂ-ﬂ_& R(i—l)N+j _ZyR@—z)Nﬂ +Iy RN+j (3-30)
_ Wiy = Xy _ I 1™ IV

20y AX

Region 6 pixels, which are on the right boundare discretized with central
difference and backward difference for y and x daimns, respectively as in
Equation (3.31).

2<i<N-1,j=N

Jy Jy JX JX
&Ri—l)Nﬂ _E R(i—l)N+j—1_2_AyRG—2)N+j +Iy RN+] (3.31)
_ ‘]X(i—l),j _‘])ﬁ+1,j _ Y% Jj -y -1

20y AX

Left-up corner pixel in region 1 is a combinatidnupper and left side discretization
formulas. That is, forward difference in x directiand backward difference in y

direction is applied to Equation (3.8), which reésuh Equation (3.32).
i=1,j=1

Jy Y 3

& R(i—l)N+j+1_ AX R(i—l)N+j _A_y R

JX
(—N+j +A_y RN+] (3-32)

— ‘J)ﬁ,j _J)ﬁﬂ,j _ Jy; ,j+l_‘]yi J
Ay AX

With the same logic, right-up corner pixel in regi® is formulated, Equation (3.33),
with combination of Equation (3.28) and Equation3(3 for upper and right side
discretizations, respectively.
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i=1j=N

Jy Jy JX JX
& R(i—l)N+j _& R(i—l)N+j—1_A_y RG—l)N+j +A_y RN+j (3.33)

- ‘J)ﬁ,j _J)ﬁﬂ,j _ JYi B _JYi J-1
Ay Ax

Region 7 pixel on the left down corner combines &uun (3.29) and Equation
(3.30) for lower and left side pixels, respectivelyEquation (3.34). Here, forward

difference is applied both in x and y directions.

i=N, j=1
Jy Jy JX N)
& R(i—l)N+j+1_& R(i—l)N+j _A_y Ra—z)N+j +A_y Rq—l)\Hj (3-34)
- ‘J)ﬁ—l,j _‘]Xi,j _ ‘in,j+1_‘in i
Ay AX

Finally, right down pixel in region 9 is discrettzavith a combination of Equation
(3.29) and Equation (3.31) for lower and right baoary pixels, respectively. In
Equation (3.35), forward and backward differencesudilized in y and x directions,

respectively.

i=N, j=N
Jy Jy JX JX
ER(i—l)Nﬂ _& R(i—l)N+j—1_A_yRG—2)N+j +A_qu—1)N+j (3.35)
— ‘])9—1,1 _J)ﬁ,j _ ‘]yi,j — -1
Ay Ax

After all pixels in 9 regions are discretized wilquation (3.27) to Equation (3.35),
linear equation system represented in Equatiorj3s2constructed. Moreover, there
is need for at least two current injection pattetmsensure reconstruction of true
conductivity values. With the concatenation of éineequation systems for two

current injection profiles, the following equatieystem is obtained.
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Rank of the linear equation system in Equation§Bi8 N° -1 which means that at
least one pixel has to be assigned to its trueriigaic resistivity value. To satisfy
that criteria, left corner pixel is assigned totitge logarithmic resistivity value.

The next step is to solve linear equation systemacdhditioned conjugate gradient
method [29], which ensures fast convergence ofcthrgugate gradient method, is
utilized to solve Equation (3.36). Precondition@hjagate gradient method requires
C being symmetric and positive-definite. To satisfat criteria, both sides of
Equation (3.36) are multiplied with the transpogecoefficient matrix C as in
Equation (3.37).

c’ c;]{(ﬂ R=[C/ c;][sl} (3.37)

2 2
3.5 Reconstruction with Equipotential — Projection Algaithm

Equipotential-Projection algorithm is proposed byiiEoglu et al’'s US Patent [23]
and applied to real data by Ozdemir [21]. Theonhihe the algorithm and
verification with real data experiments are expmdinn detail in [21]. Moreover,

Lorca [22] extended the algorithm with slight machtions.

Equipotential-Projection algorithm reconstructs aactivity distribution, o, with
the help of current density distribution and suefgmtential measurements [21].
Measured surface potential measurements are pedj@aside FOV in the form of
equipotential lines as explained earlier. Then, gbeential distributiong, and its
gradient g, inside FOV can be calculated. By making use om@hlaw and

measured current density distribution by MRCDI teghes, conductivity

distribution, g, is reconstructed.
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o (3.38)

g=-

Basically, there are four steps for Equipotentiadj€ction algorithm which are,

determination of surface potentials

» obtaining equipotential lines

calculation of potential distribution and its grewli

» obtaining conductivity distribution

Implementation procedure in [21] and modificatiodene by Lorca [22] are

explained explicitly in these subsections.

3.5.1 Determination of surface potentials

Ozdemir measured surface potentials of the expeatmhegohantom at 18 points.
Moreover, by interpolating between these measur&snaoints, surface potential at
four boundaries of the phantom are calculated.iH@rother hand, Lorca used another
method for surface potential calculation. Assumaanductivity of a column or
boundary of FOV is known, potential gradient ont tt@umn can be calculated with
Equation (3.38). Then, potentials on that column ba found by integration of

potential gradient. This modification reduces expental difficulties.

3.5.2 Obtaining equipotential lines

Equipotential lines are obtained as described oti@e3.2.1.1.

3.5.3 Calculation of potential distribution and its gradient

After equipotential lines are projected inside FQdgtential distribution can be
calculated. Since there can be more than one ewmgmipal line in a pixel, the

potential value in that pixel is a weighted averagethe potential values of
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equipotential lines intersecting that pixel. Theigiting factor is the length of
equipotential lines inside that pixel. If there areequipotential crossing™ pixel,

the potential of that pixelg , is

@ ="t (3.39)

where |, is the length of thé™ equipotential line inside angy, is its potential

value.

If there are no equipotential lines through a pixsl potential value is calculated by

the averaging of its neighbor pixels’ potentialuesd.

Gradient of potential distribution,l@, is calculated by Sobel operators.

3.5.4 Obtaining conductivity distribution

After gradient of potential distribution is calctdd, Ohm’s law in (3.38) is applied
to every pixel in FOV to obtain conductivity digtution. Since true potential values
of starting column for equipotential lines are yseeconstructed conductivity

distribution does not need any scaling.

In the case of two current injection patterns, tinal conductivity distribution is
found by averaging of reconstructed conductivitgtrbutions for the two current
injection patterns. Moreover, if a conductivity walof a pixel can not be calculated
for one of the patterns, the conductivity valuenfdby the other pattern is assigned

for the final distribution.

3.6 Reconstruction with J-substitution Algorithm

Kwon et al [20] proposed J-Substitution algorithm2i002 which differs from other

algorithms by using only magnitude of the curreanglty inside FOV and being
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iterative. The algorithm mainly tries to minimizecast function defined as the
difference between measured and calculated cudensity distributions at each
step. It is explained explicitly in three sectiombich are problem and parameter

definitions, reconstruction algorithm and implenaiun.

3.6.1 Problem and parameter definition
Let Q denote 2D cross section of a conductive body Wwihndary,0Q. o and

Vp, are resistivity and potential distribution whenrremt | is applied from

electrodes on the boundary. is the current density magnitude which is measured

by MRCDI techniques.j, is the inward pointing normal component of current

densities on the boundary which satisfies the caimpty condition in Equation
(3.40).

LQLds:O (3.40)

For a given resistivity 0, the forward problem is defined as,

Dﬁ%DWJ:O inQ (3.41)
and
ov
1% _ j, onaQ (3.42)
£ on

whereV, and n are voltage distribution inside FOV and the unitveard normal

vector at the boundargQ , respectively.

If o istaken aso’, the boundary problem in (3.41) and (3.42) becomes
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(3.43)
J ov.
———2=j, ondQ
‘Dvp" on

where,1/ p" takes the form of)’ /‘DVP*‘ through a modification of Ohm’s law. The

iterative J-Substitution algorithm reconstructsetmesistivity distributionp” from

the highly nonlinear equation depicted in (3.43evéhonlyJ” is known.

3.6.2 Reconstruction algorithm

The cost functionW(p) expressed in Equation (3.44) is starting point tiog

reconstruction algorithm.

2

1 dr (3.44)

W(p)=| IO B0

where J'(r) is the magnitude of measured current density &ndr) is the

calculated electric field intensity when forwardplem defined in (3.41) and (3.42)
Is solved with a giverp value.

The formulation which leads to the following algbm steps are explained in further

detail in [20]. Moreover, Kwon [20] showed the nefd at least two current

injection patterns)* and 1?2, satisfying the condition,

[97x 3720 (3.45)

Here, J* and J? are the two current density distributions resaltirom 1* and 2.

If condition in (6) is satisfied, at least one &f and J* will change at the boundary
of two media with different resistivity values. dther words, there will be sufficient

information to reconstruct resistivity distribution

33



J-Substitution algorithm which is used to recoraitra from two pairs of current

density datg(1,J%), q=1,2 is the following.

i. Initial guess: A homogeneous resistivity distribbutio® is chosen.
ii. Forward problem solution: With the given resisivip**® (q=1,2 and

p=0,1,2,..) where pis the iteration number, forward problem expressed
Equation (3.46) is solved.

D[@%Dvgj:o inQ
Yo,

(3.46)
AV
21p+q—p:jq onoQ andJ' Vlds=
Yo, on I 0Q

Among many numerical methods, finite element metiileEM) [18] is used to

calculate potential distribution and electric fightensity in (3.46).

iii. Update equation: Resistivity distribution to be dider forward problem
solution in the next iteration is calculated.

A
Jq

oot = (3.47)
Consider the case of two resistivity distributionsand ap. The current density
distributions for two resistivity distributions amhe same, whereas, one of the
potential distributions for the case ofo is scaled toaV whenV is the potential
distribution for the case ofp. To overcome this uniqueness problem, update
equation is modified as,

q q
vy f

= rl_~2 (3.48)
q q
3

2p+g+l.
Jo :

2ptq

where f:m is the voltage difference between two currentdtiga electrodes and

fp‘i Is the measured voltage difference for the samecuinjection pattern.
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iv.  Stopping criteria check: To stop the algorithm, recgsion differencee
between two successive steps of the algorithm [@ayad.

‘p2p+q+1_p2p+q <& (349)

If the condition in (3.49) is satisfied, the algbm stops. Otherwise, the algorithm

returns to step (ii) witg=g+1 whenq=1, or p=p+1and q=1 whenq=2.

3.7 J-Substitution and Filtered Equipotential-Projection Based
Hybrid Reconstruction Algorithm

In this thesis, a new MREIT reconstruction algaritis proposed, J-Substitution and
Filtered Equipotential-Projection Based Hybrid Restouction Algorithm. In this
section, the steps leading to the hybrid algoritmd implementation of the

algorithm are explained.

J-substitution algorithm [20] as explained in Sa&etB.6 reconstructs conductivity
distribution with a better image contrast and petage error with respect to other
MREIT reconstruction algorithms. However, J-sulbsitiin algorithm has the worst
performance in image reconstruction time sinces iiteérative and solves forward
problem in each iteration. On the other hand, Eapeiptial-Projection algorithm [21]
is one of the fastest algorithms. Equipotentialj@iion algorithm has a poorer
performance in percentage error. Another importaoint about J-Substitution
algorithm is that it converges to the solution wihsmart choice of starting

conductivity [20].

Considering these properties of J-Substitution aBduipotential-Projection

algorithm, the hybrid algorithm is proposed asftiwing.

» Conductivity distribution is reconstructed with Hoptential-Projection

algorithm.

* A low-pass filter is applied to the reconstructethge to smooth errors in the

background.
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» Filtered conductivity distribution is assigned dase tinitial conductivity

distribution for J-Substitution algorithm.

» J-Substitution algorithm is used to reconstruat tanductivity distribution.

Low-pass filter is employed before assigning thgahconductivity of J-Substitution
algorithm to reduce the effect errors in the backgd.
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CHAPTER 4

SIMULATION AND COMPARISON

4.1 Introduction

In this chapter, simulation results for MREIT restaction algorithms described in
CHAPTER 3 will be given. Five different simulationodels are used in simulation
study. Each model has a different purpose whichb&lexplained in further detail.

Moreover, according to the results of these sinmat reconstructions algorithms
are compared with 6 different criteria. These @®nstruction time, electrode size,
number of potential measurements and current injegatterns, noise performance,
percentage error, and reconstructed image qualityf these criteria are important

in terms of readiness for clinical use.

4.2 Simulation Phantoms

In experimental study, 0.15 T METU MRI system igdiso collect data. To measure
magnetic flux density perturbations created by ents applied, a new RF coil is
designed. Hence, experimental phantom size isictestrby the size of RF coil and
METU MRI system. It is designed as the biggest pran with size of 9cm x 9cm,
that fits into the RF coil. Simulation phantom sizare chosen the same as the

experimental phantom for consistency.

Another important parameter is the resolution aepsize. Restriction for pixel size
comes from the resolution of METU MRI system. Sirthe resolution is 2 mm,

phantoms are discretized into 40x40 square pixels.

Different current levels are used in simulation @axgerimental studies of MREIT.
Birgiil [30] and Ozbek [31] used 20 mA for data eotion with METU MRI system.
Ider [19] applied 100 mA for simulation. In thisesis, 20 mA is used for
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experimental purposes. Considering all of thesdissuand to be consistent with
experimental study, 20 mA is chosen as the magaitfdcurrent injection for the

following simulations.

Electrode size which is one of the performancesgdtis chosen to be 1.8 cm, 1/5 of
the phantom side length. Moreover, electrodes Eeed in the middle of phantom
sides. However, some algorithms are simulated Wwithndary electrodes which
cover a whole side of the phantom because theseitalgs are originally designed
for boundary electrodes and they turned out to hpae performances with small

electrodes.

For most of the reconstruction algorithms, two entrinjection patterns are applied.
For this reason, 4 electrodes are placed in thalmidf each side of simulation
phantoms. The first current injection, horizontattprn, is formed by applying
current form the left side electrode and collectirgm right side. In the vertical
pattern, current is applied form upside electroadel @ollected from downside
electrode. As a result, two current injection pateare orthogonal satisfying the

condition in Equation (3.45).

In the following section, simulation phantoms desig will be described with their

purposes, geometry and conductivity values.

4.2.1 Simulation model 1

The first simulation model, whose geometry withec&godes is shown in Figure 4.1,
is designed to compare overall performance of reitoation algorithms. Moreover,
this phantom is implemented for experimental stwdhjich enables to check the

results of simulation study against real data expants.
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Figure 4.1 Geometry of Simulation Model 1

Background of the phantom is set to 0.2 S/m, wiserke big square has a
conductivity of 0.1 S/m and the big circle is slighmore conductive than
background with a conductivity of 0.4 S/m. The dnetééments serve for impulsive
response of reconstruction algorithms since theyeHa S/m conductivity for the

square and 0.02 S/m for the circle element.

4.2.2 Simulation model 2

This model has two impulsive elements at the cesfttee phantom. 10 simulations,
where these two elements will get far from eacletiill be performed. As a result,
Full Width at Half Maximum (FWHM) values with resgeto position will be

plotted. This analysis enables to see the spatwdlution of each reconstruction

algorithm.

There will be two cases for this simulation mo@emore and a less conductive case.
To have an impulsive effect for the more conductase, small elements have a
conductivity of 2 S/m with a background of 0.2 S/@n the other hand, less

conductive case includes 0.02 S/m conductivitysfoall elements and again 0.2 S/m

conductivity for the background.
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In Figure 4.2 and Figure 4.3, the starting and positions for these two elements,
when they are separated from each other at eachation step, can be seen.

Figure 4.2 Starting position for impulsive elemeantSimulation Model 2

Figure 4.3 End position for impulsive elements im@ation Model 2

4.2.3 Simulation Model 3

Simulations with model 3 are carried out to see puosition dependency of

reconstruction algorithms. There are 9 impulsivemadnts distributed from left-up

corner to right-bottom corner as in Figure 4.4. Twases with resistive and
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conductive elements are investigated. For the tresicase, small elements are
assigned with 0.02 S/m conductive. Simulation fonductive case has 2 S/m
conductivity for small elements. In both cases, kigaound is set to 0.2 S/m

conductivity.

Figure 4.4 Geometry of Simulation Model 3

4.2.4 Simulation model 4

This model is designed to see the numerical acgur&ceconstruction algorithms
with changing conductivity contrast. Geometry of tinodel is rather simple with a
square, which has side length of 2.2 cm, in thedieidf the phantom as can be seen

in Figure 4.5.

For each reconstruction algorithm, 10 simulation e carried out. In each
simulation, the conductivity contrast will chan@édne conductivity contrast between
the background and the square will increase frota 10 for the conductive case,
whereas the contrast will decrease from 1 to OrlHe resistive case. As a result, a
plot illustrating the change of average reconsadiconductivity value of the square

with respect to its true conductivity value will benstructed.
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Figure 4.5 Geometry of Simulation Model 4

4.2.5 Thorax phantom

The last phantom developed is a thorax phantomiwisiche most complex. It is
designed with true tissue conductivity values. Hasic idea behind the thorax
phantom is comparing reconstruction algorithms wathmore complex phantom.
Moreover, simulation results of the thorax phanteit give a valuable perspective
of performance of reconstruction algorithms befoagrying out experiments with

real tissue or animals.

Many studies on measuring true tissue conductivilues [32], [33] and thorax
images are investigated before deciding on the gégnand conductivity value of
each element within the thorax phantom. Althoudteré are many inconsistent
measurement values in these studies, common remeltshosen to be consistent.
Geometry and conductivity values are illustratedFigure 4.6 and Table 4.1,

respectively.

Thorax is one of the most complex parts of the betich includes many different
organs with a variety of geometry and conductivitjues. Also, there is big contrast
between the conductivity values of elements intttwrax phantom. As can be seen

in Figure 4.6, spinal cord inside the spine wiltveefor the ability of algorithms to
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reconstruct the areas with relatively low curreansity since a small proportion of

injected current will go through the bone.

| E—

7\

Figure 4.6 Geometry of Thorax Phantom

Region 1, background in Figure 4.6, correspondsskeletal muscle with a
conductivity value of 0.2 S/m. Two ellipses in tméddle of the phantom, region 2,
are designed to be lungs which have 0.0667 S/mumivity. Region 3 is simulating
the heart with a conductivity of 0.6667 S/m. Regloelements have the conductivity
of bone which are sternum on the upper side andpghe below the lungs. Sternum
will enable to see the ability of current to pas®ugh a region with a relatively high
resistivity. Spinal cord with the resistivity of EScerebrospinal fluid) is forming
region 5 and its conductivity value is 1.5625 Skmthe end, region 6 is designed to
be aorta with the same conductivity of heart. A#de values are listed in Table 4.1.
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Table 4.1 Conductivity Values of Thorax Phantom

Region Tissue type Conductivity (S/m)
1 Skeletal muscle 0.2
2 Lung 0.0667
3 Heart 0.6667
4 Bone 0.006
5 Spinal cord (CSF) 1.5625
6 Aorta 0.6667

4.2.6 Experimental phantom

Throughout the thesis work, an experimental phan®tesigned and constructed.
There are many experimental MREIT studies in therdiure. One of the most

important results of previous studies is the negddcessed electrodes to eliminate
the effect of relatively high current density nehe electrodes [34]. So, recessed

electrodes are chosen for experimental phantom.

Experimental phantom has another important feattire.designed to serve both for
2D and 3D experiments. Moreover, its geometry arel is restricted to the size and
shape of RF coil used in METU MRI System. Desigthaf experimental phantom is
carried out with CAD simulations. After the simudats and design, its fabrication is
done by a private company. For the fabrication lné &xperimental phantom

plexiglas material is used.

To satisfy the exact position in RF coil when expental phantom is rotated, a table
mechanism is also designed. Small legs on the Empstal phantom fit exactly to

the holes in the table, so imaging from the sameesis ensured when the
experimental phantom is rotated. Two oblique CARws of the experimental

phantom together with the table can be seen inr€igLy
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Figure 4.7 Two Oblique Views of CAD SimulationsExfperimental Phantom

As can be seen from Figure 4.7 experimental phansobasically a cube and two
sides of the phantom do not have electrodes. Agtutilat is the setup for 2D
imaging with two current injection profiles. Howeye¢hese sides can be taken out
replaced with other sides which have electrodexhttd onto them. As a result, the
experimental phantom will turn into a 3D phantomthwthree current injection

profiles.

Geometry and original conductivity distribution ekperimental phantom 1 are
shown in Figure 4.8 and Figure 4.9. Two experimamésconducted as for the first
experiment, square and circle elements have 0.10ahd/m conductivity values
whereas background is set to 0.2 S/m. On the bidradl, second experiment includes
square, circle and background elements with zef®,ahd 0.2 S/m conductivity.
Phantom elements are made with agar, TX151 and UXfh&terials [35]. Every

element has a different combination of these thicige materials.

Figure 4.8 Geometry of Experimental Phantom
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Figure 4.9 Original Conductivity Distribution of pgrimental Phantom

4.3 Simulation of Measurement Noise

Simulations of reconstruction algorithms with siatidn phantom 1 and complex
thorax phantom are also carried out with noisy .dakeese phantoms are chosen for
simulations in the presence of noise because theg hather complex geometries

and can be used for numerical analysis in differegions of FOV.

For noise simulation, random Gaussian noise moagigsed by Scottt al [13] is
used. In their model, added noise is independem fxpplied currents and magnetic
flux density. It only depends on SNR of MRI systarhere magnetic flux density

due to injection currents is measured.

According to this noise model, first magnetic fldensities due to injection currents
are calculated. Then, a random Gaussian noisedsdatb magnetic flux density
based on SNR of the MRI system. With new magnétic flensity, noisy current

density is calculated. A detailed formulation canfund in [22] and [36].

Two noise levels are used for simulations in thissts. First noise level is SNR 30

and the other one is SNR 13 which is actually tNR ®f METU MRI system [36].
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Same noisy data is used for all algorithms to &sswnsistency. However, some
algorithms which are more vulnerable to noise caubd reconstruct conductivity
distribution with noisy current density. Becaus&dam noise addition changed
current density values dramatically in some regiesigecially where initial current
density is relatively low. So, after addition ofis® these algorithms are tried first.
When they were successful in reconstructing comdtictthe other algorithms are

fed with the same noisy current density.

4.4 Error Calculation and Stopping Criteria

Error calculation is also carried out for numericahalysis and performance
comparison of reconstruction algorithms. For erpadculation, true values of

conductivity are necessary which are already abviglith simulation data.

General erroke,, for the whole image is calculated as,

£, = \/Nz( - o)’ x100 (4.1)

i=1 0-|

where N, o, and o,, are pixel number, real and calculated conductivajues,

respectively.

Regional errorsg,  are also calculated based on Equation (4.1) terchate

position dependency of errors.

13 O g O rg)
J,rg _Z x100 (42)

M i=1 0-|r rg

where M, o .. and o are pixel number of that specific region, real and

ir,rg ic,rg

calculated conductivity values, respectively.

Stopping criterion of iterative algorithms is stedlin detail in [22]. Lorca stated that

J-Substitution algorithm converged to a minimunoeresult after 5 iterations. The
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same phenomenon is also encountered in this teagly. Iterative algorithms, J-
Substitution and Hybrid algorithm, reconstructechawctivity distribution with
minimum error after 3 iterations and remained vttt percentage errors in the
following iterations. Perceptually, reconstructethges are not changed much after 3
iterations. Therefore, all results for J-substdntand Hybrid algorithm are obtained

with 3 iterations.

4.5 Simulation Results for Current Density Based Algorihms

In the following sections, results of simulatiows the reconstruction algorithms are
given and reconstruction algorithms’ performances eompared with respect to

different criteria.

4.5.1 Simulation Results for Model 1

This section includes results obtained with simatatmodel 1. Model 1, whose
conductivity distribution is shown in Figure 4.108,designed to see overall effect
and noise performance of reconstruction algorithingacludes a big square with
conductivity set to 0.1 S/m and a big circle witld /m conductivity. Moreover,
there are two small elements to illustrate imp@sisponse. Small square on the left
has 2 S/m conductivity and small circle is set ©20S/m conductivity. However,
small circle on the left appears to be a squarenwhés discretized. Background

conductivity is 0.2 S/m.

There are two noise levels employed in simulati@R 30 and SNR 13. Errors are
added with the procedure explained in Section Ef3ors added to the current
density data are independent from current densiliyes in each pixel, so pixels with
relatively low current density are more affected bgise. Performance of
reconstruction algorithm regarding this phenomeisoan important criterion. SNR

13 is chosen for noise simulation since it is tbhes@ level of METU MRI system.

In Figure 4.10, results obtained with simulation retonstruction algorithms for
noise-free case are shown. Moreover, reconstrumeductivity distributions with
noise
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Figure 4.10 Reconstruction Results for Noise-fressec a) Original distribution, b)
Integration along Cartesian grid lines, ¢) Inteigraalong equipotential lines, d) Solution as
a linear equation system, e) equipotential prapecti) j-substitution, g) hybrid
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levels of SNR 30 and SNR 13 are illustrated in Fegd.11 and Figure 4.12,

respectively.

Although reconstructed images give a perceptuala iden performance of
reconstruction algorithms, percentage errors otlalnents and total errors are listed
in Table 4.2. So, numerical analysis of each atiyoriwith its noisy simulations and
other algorithms is possible. Artifacts in reconsted images and the reasons behind

them are explained explicitly for each algorithm.

Ider [19] only used equipotential lines originaté@m the left boundary for
simulation of Integration along Equipotential Linekyorithm. But, in this thesis
conductivity distribution is reconstructed for fotimes with equipotential lines
started from left, right, top and bottom boundanjumns. At the end, their average
is taken to find final conductivity distributiont Is important to state that it is
impossible to use all equipotential lines origimateom four boundaries in a single
step. Because, algorithm is started from pixelschvtare at the end of equipotential
lines and it is a recursive algorithm. Integratadang Equipotential Lines algorithm
mainly produces errors at element boundaries sincses integration of current
density derivatives. Nevertheless, averaging ofr foeconstructed conductivity
distributions reduces percentage error dramati¢ebause errors distributed from an

element boundary or corner is not seen in otheetheconstructed images.

Another drawback of Integration along Equipotentiades algorithm is that pixels
which do not contain any equipotential lines cah lm® reconstructed since there is
no information that can be used to reconstruct thBievertheless, conductivity
values of these pixels can be reconstructed withpetential lines originated from
other boundaries. When averaging is done, onlyn&cocted values are taken into
account. For example, if a pixel's conductivity wal is reconstructed with
equipotential lines originated from right and topuhdary, its value is found by

averaging these two values.

Some equipotential lines come across to pixel esramd are terminated at that
point. These equipotential lines are finished aat tipoint. Moreover, some
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equipotential lines turn back to their starting bdary which may result in crashing
of the algorithm due to its recursive nature. Thesgipotential lines are also

eliminated for the sake of algorithm.

This algorithm has a total error of 64% whereasisit more successful in
reconstructing resistive elements. Big square gundre elements have relatively less

error than circle elements.

Next analysis of Integration along Equipotentiahés algorithm is its performance
with noisy current density data. As can be seeRigure 4.11 and Figure 4.12, the
worst performance with noisy data comes from Irdgggn along Equipotential Lines
algorithm. Although SNR 30 is not considered as igniScant noise level,
Integration along Equipotential Lines algorithm tagotal reconstruction error of
230%. Two big elements are still separated fronkgpamind but boundaries of these
elements are not clear with respect to noise-fese.cThe main reason behind is that
equipotential lines can not cover whole FOV and squints are only reconstructed
with equipotential lines originated from a singleubdary. This is clearer with SNR
13 noise level. Integration along Equipotential dsnalgorithm can not reconstruct
conductivity distribution properly. Actually, anyf ahe elements can not be
distinguished from background and only a smalliparof the FOV is reconstructed.
Due to this reason, errors for SNR 13 are notdisteTable 4.2. Integration along
Cartesian Grid Lines algorithm is also employingegration to reconstruct
conductivity distribution as Integration along Epptiential Lines algorithms. But its
advantage is that it uses information of two curiejection patterns in a single step.
Logarithmic resistivity derivatives are calculatéat each pixel with the help of
current density data from two current injectiont@ats and these derivatives are
integrated over FOV with the assumption that a Hibigaic resistivity of a single
pixel is known. In this thesis, it is assumed thpper left corner pixel's resistivity
value is known. Moreover, an averaging is donesthuce artifacts and errors due to
integration. Assuming upper left corner pixel valseknown, pixels on the top
boundary are calculated and these pixels are usediteal values for integration

downwards. Another integration strategy is firdtakating pixels on the left
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Figure 4.11 Reconstruction Results for SNR 30 t9dration along Cartesian grid lines, b)
Integration along equipotential lines, c¢) Soluti@s a linear equation system, d)
Equipotential-Projection, e) J-Substitution, f) Higb
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boundary and then reconstructing pixels to thetrighthe end, two reconstructed

logarithmic resistivity values are averaged.

Although Integration along Cartesian Grid Linesagithm can not reconstruct
element boundaries as sharp as other algorithmsdaoies are still definite. This
result is also proved with relatively small erréos big square and circle. Percentage
errors of small elements are not an important roite since they have extreme
conductivity values and consist of only four pixeNevertheless, it fails in

reconstructing impulsive elements with their tradues.

Big square and circle elements have percentage arooind 10% and addition of
noise does not affect reconstruction of these aMsnddramatic increase in total
error is mainly caused by background error whichdig to integration artifact
moving to the right and down boundary and causednbgll circle on the left. True
conductivity value of small circle is 0.02 S/m afiodces current to flow outside of
itself. So, added noise affects small circle mdrant other areas since noise is
independent from current density amplitude. Asslie errors created in the small
circle propagate with integration to the right atmlvnwards. This phenomenon can
be seen in simulations with SNR 30 and SNR 13thatrore obvious with SNR 13.
Moreover, error lines originated from big squar@tsto distort the image with SNR
13.

In conclusion, Integration along Cartesian Grid dsnalgorithm can reconstruct
elements with definite boundaries and relativelyabrpercentage errors. However,
addition of noise may result in miscalculated mxelue to errors introduced by

relatively more resistive areas.

Solution as a Linear Equation System algorithm alses information from two
current injection patterns and does not includegrdation which results in a superior
performance over Integration along Equipotentiahels and Integration along
Cartesian Grid Lines algorithms. It states theti@habetween logarithmic resistivity
and current density data as a linear equation sysii¢h the help of finite differences
and solves this linear equation system to recocistanductivity distribution.
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Since Lorca [22] stated that four neighbor pixele aised for each pixel
discretization, there appears an artifact in thenfef a grid shape. However,
boundaries of elements are definite. If errors ifopulsive elements are ignored,
there is 7.48% error for the background and 12.68%8 error. Moreover, simulation
with SNR 30 noise level produced 7.65% and 12.58% dor background and in
total, respectively. However, SNR 13 forced totabeto be 18.5%. Perceptually,

grid artifact becomes more obvious with increasingse.

Therefore, Solution as a Linear Equation Systenordlgn is robust to noise and
reconstructs all elements with sharp contours lastd grid effect on reconstructed
images which grows with low SNR.

Next algorithm to be investigated is EquipotenRabjection algorithm. It makes use
of equipotential lines as Integration along Equambial Lines algorithm with the
difference that it uses equipotential lines origgolafrom 4 boundaries together. So,
artifacts and errors introduced by elimination djuipotential lines are not

encountered with Equipotential-Projection algorithm

Object boundaries are sharper and errors are sritadlie algorithms explained above
for noise-free, SNR 30 and SNR 13 cases. Morealements are homogenous
leading to around 6% and 9% error for big squarkcurcle elements even with SNR
13. The main artifact is due to erroneous linestiata from corners of FOV and

propagates into background which becomes obviotls 8NR 13 simulation. These
artifacts force Equipotential-Projection algorithto have 16.79% error for

background with SNR 13 which is bigger than 14.3&%6r value of Solution as a
Linear Equation System but thanks to relatively Ibr@ors in big square and circle
element, total error of 15.69% is still below 18.58tal error of Solution as a Linear

Equation System.

As a result, Equipotential-Projection algorithmamestructs conductivity distribution
with sharp boundaries but have erroneous linesirggairom corners and distorting

reconstructed image with increasing noise level.
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Figure 4.12 Reconstruction Results for SNR 13 t9dration along Cartesian grid lines, b)
Integration along equipotential lines, c¢) Soluti@s a linear equation system, d)
Equipotential-Projection, e) J-Substitution, f) Higb
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J-Substitution algorithm is an iterative algorittand solves forward problem at all
iterations which results in relatively longer sabdat times. The result of third
iteration is chosen for the results since it pradliche smallest errors for all
elements. Nevertheless, it took eight minutes afomstruction time for three
iterations whereas algorithms explained above hewenstruction times shorter than
10 seconds.

Perceptually, J-Substitution algorithm along witibid algorithm produced sharper
contours and better reconstructed images thantladir algorithms. For noise-free
case its performance is better than Equipotentigjetion algorithms but worse
than Hybrid algorithm with 3.89% and 4.58% erroos background and in total,
respectively. Addition of noise with SNR 30 mainlgffected background
conductivity and forced total error to be 8.17%.sThffect is clearer when noise
level is set to SNR 13 which can be seen in Figut@e. It is important to state that
for simulation of J-Substitution algorithm smalkefrodes are used which result in
relatively low current densities in corners. Wheoise is added these areas are
affected more than other areas. So, error increasgmckground dominates total

error.

Hybrid algorithm differs from J-Substitution algtbnm only in selection of initial
conductivity distribution. J-Substitution algorithia initiated with a homogenous
conductivity distribution of 0.2 S/m which actuallg background conductivity
whereas Hybrid algorithm uses filtered conductivdistribution obtained with
Equipotential-Projection. Hybrid algorithm has skasi errors for all elements
except small circle for noise free case. Applicatod Hybrid algorithm to the result
of Equipotential-Projection algorithm can be seen am optimization of both

percentage error and homogeneity of each element.

With SNR 30, homogeneity of elements start to deswebut errors are still in the
range of Equipotential-Projection algorithm andtérethan J-Substitution algorithm.
When noise level is increased SNR 13, erroneougmudensity data and artifacts of

Equipotential-Projection start to increase erroos background and in total.
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Nevertheless, all elements are still homogenous Hylatid algorithm manages to

correct erroneous lines of Equipotential-Projectdgorithm.

As a result, Hybrid algorithm produced the lowasbes for noise free case, but with
increasing noise level erroneous lines of EquiptdaeRrojection algorithm and

noisy current data are added up to distort imager@rease errors.
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Table 4.2 General and Regional Percentage ErroSiiaulations with Model 1

Small Small
S?(;)?re Circle (%) | Square | Circle Baclzgor )O und T(;t)‘;‘l
(%) (%)
Integration along Cartesian Grid Lines
Nf?ésee' 13.68 10.18 41.25| 331.56 13.41 21.25
SNR 30 14.18 10.43 58.94 335.20 22.56 26.82
SNR 13 13.61 11.98 60.68 351.21 92.13 83.26
Integration along Equipotential Lines
Nf?('esee' 1949 | 14047 | 51.76| 430.80 46.50 64.16
SNR 30 131.57 147.08 78.74 572.28 252.39 233|131
SNR 13 - - - - - -
Solution as a Linear Equation System
Nf?(':ee' 11.63 514 38.60| 194.65 7.48 12.69
SNR 30 12.53 6.13 55.96 181.52 7.65 12.59
SNR 13 17.14 8.40 51.10 231.45 14.33 18.50
Equipotential-Projection
Noise- 5.74 8.39 66.53| 38.84 5.26 6.87
free
SNR 30 6.07 8.48 65.59 39.22 6.51 7.68
SNR 13 6.19 9.47 67.88 33.48 16.79 15.69
J-Substitution
Noise- | 5 7 7.33 33.24|  6.46 3.89 4.58
free
SNR 30 6.78 7.71 33.36 10.60 8.21 8.17
SNR 13 14.84 9.07 33.26 46.96 19.17 18.11
Hybrid
Nolse- | .67 341 | 3051| 965 2.67 3.04
free
SNR 30 5.99 4.29 30.61 9.43 8.06 7.69
SNR 13 13.99 6.70 23.83 48.72 20.84 19.29
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4.5.2 Simulation Results for Model 2

4.5.2.1 Full Width at Half Maximum and Spatial Resolution Analysis

In this section, all algorithms are simulated vgimulation model 2 to compare their
performance with respect to their spatial resofutia many imaging studies, spatial
resolution of a system is measured with Full WigthHalf Maximum (FWHM) of a
Point Spread Function (PSF) [37].

As discussed in Section 4.2.2, there are two innilelements in the middle of
simulation model 2 which will serve as a PSF. €hare two cases employed,
conductive and resistive case. In the conductivee,campulsive elements have
conductivity value of 2 S/m whereas 0.02 S/m isgaexl as the conductivity value
of impulsive elements in the resistive case. Fdh lmases, background conductivity
is 0.2 S/m.

10 simulations are carried out for each reconstnalgorithm and each case. In the
first simulation, two impulsive elements are cldgeseach other. There is only one
pixel assigned with the background conductivity asaping the two impulsive

elements. Then, at each simulation, the two impelglements are separated from
each other. In the last simulation, the two impdselements are closest to the

boundaries.

4.5.2.2 Conductive case

In the conductive case, the cross-section of rénacted images at the line where
the two impulsive elements are positioned is ingastd. In the ideal case, FWHM
is expected to be equal to length of a single pmeth is 0.225 cm for the first case.
Original conductivity distribution and its imageofite are illustrated in Figure 4.13.
Moreover, cross-section plots of reconstructed esagith all algorithms are shown
in Figure 4.13.
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Figure 4.13 Image Profiles for Conductive Case @gial FWHM, b) Original conductivity
distribution with cross-section, c)Integration ajdDartesian Grid Lines, d) Integration along
Equipotential Lines, e) Solution as a Linear Equatbystem, f) Equipotential-Projection, g)
J-Substitution, h) Hybrid
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Hybrid and J-substitution algorithms have FWHM wauequal to the ideal case
which make them superior to other algorithms inecaspatial resolution. Results
for these algorithms are obtained after three titena where they reached their

minimum errors.

For the cases of Integration along Cartesian Giiided and Integration along
Equipotential Lines, the two impulsive elements eoenbined to a single element.
Since these algorithms reconstruct conductivityridistion by integration, effect of
impulsive elements are spread to the pixel betwdgioh makes it impossible to be

recognized.

Solution as a Linear Equation System and Equip@teRtojection algorithms have a
worse performance in spatial resolution than Hylamdl J-substitution algorithms

but still are able to reconstruct the pixel betwegth some error.

Another criterion for comparison is the reconstedcvalue of impulsive elements
which have 2 S/m conductivity value. None of thgoaithms can reconstruct

impulsive elements with their true values. Hybmtl al-Substitution algorithms have
reconstruction value of 1.1 S/m for impulsive eletsevhereas Solution as a Linear
Equation system has a slightly worse performancerdmpnstructing impulsive

elements with 0.9 S/m. Other algorithms have retoason values less than 0.5
S/m.

As explained in Section 4.2.2, model 2 has 10 dffe cases. The first case is when
two impulsive elements have only one pixel betwe€hen, at each case two
impulsive elements are separated to see the effgobsition over FWHM. In the
10" case, two impulsive elements are 6.075 cm apant fach other. In Figure 4.14,
FWHM values of reconstructed distributions with leadgorithm with respect to

position are shown.
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J-Substitution and Hybrid algorithms continued th&iperior performance when
distance between impulsive elements is increasetuatly, they have 0.225 cm
FWHM value, same as reference, for all cases. Assalt, these algorithms can
reconstruct impulsive elements independent fronr fhasitions even if they are near

the electrodes.

Solution as a Linear Equation System and Equip@teRtojection algorithms have a
slightly worse performance with changing distaneween impulsive elements.
Their FWHM values range from 0.225 cm to 0.26 cmcihs still 15 % different
from reference values. Equipotential-Projectioroatbm reconstructed conductivity
distribution with FWHM of 0.72 cm for the first casvhen two impulsive elements
are closest to each other which show its inabildydistinguish two impulsive

elements.

Integration along Equipotential Lines and Integmatialong Cartesian Grid Lines
algorithms suffer from the nature of integration. the first case they both have
FWHM of 0.9 cm. Then, in the second case, FWHM ceduo 0.5 cm and is fixed
to the range from 0.45 cm to 0.55 cm with changlisiance between two impulsive
elements. In the case of Integration along CameGiad Lines, conductivity gradient

is integrated over FOV and abrupt changes areilois¢d to the neighbor pixels.
However, current gradients which result from conhity distribution are integrated

and effects of impulsive elements are spread tghteir pixels for Integration along

Equipotential Lines.

To conclude, if FWHM values for the first case axeluded, all algorithms’ FWHM

values are independent from position.

The change of reconstructed values of impulsiveetds with respect to position is

also investigated and illustrated in Figure 4.15.
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None of the algorithms reconstructed the high-asttrelements with their true
value, 2 S/m. J-Substitution and Hybrid algorithinas’e reconstruction value of 1.1
S/m which is the best performance but still witl&&rror. Solution as a Linear
Equation System reconstructed high-contrast elesneithin the range of 0.9 S/m.
0.4 S/m, 0.33 S/m and 0.25 S/m are reconstructeduxtivity values for high-

contrast elements for Equipotential-Projection,egnation along Cartesian Grid

Lines and Integration along Equipotential Linespectively.

Another important result that can be deduced frogure 4.15 is the independence
of reconstructed values for high-contrast elemé&ota position.

4.5.2.3 Resistive case

The geometry of 10 cases and positions of impulsieenents are the same as the
conductive case but conductivity of impulsive elatseare reduced to 0.02 S/m for

the resistive case.

The ideal FWHM for the first case where impulsivengents are at the center of
FOV and closest to each other and original condigtalistribution are illustrated in
Figure 4.16. Also, cross-section plots of recortséd images at the line of impulsive

elements with all algorithms are also shown in Fegl116.

FWHM of J-Substitution and Hybrid algorithms areemtical and equal to 0.2363
cm. Since FWHM of ideal case is 0.225 cm, theserdlgns have an error of 5%.
Results for these two algorithms are obtained &teerations which turned out the
minimum error. Although these algorithms are notsascessful as they are in the
conductive case, they still are ahead of otherrdlguos in terms of spatial resolution

in the conductive case.
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Integration along Cartesian Grid Lines and Intagratalong Equipotential Lines
algorithms are again unsuccessful in reconstru¢hegixel between. Moreover, the
pixels which are not in the neighborhood of impegselements are reconstructed
with relatively big errors. The reason is that effef impulsive elements is carried
until the end of FOV.

Solution as a Linear Equation System has a po@donqmance with FWHM of 0.81
cm considering it is able to reconstruct the pbe&tween for the conductive case. In
the resistive case, impulsive elements and thd petveen are emerged to a single

element and can not be differentiated from eachroth

In the case of Equipotential-Projection algorithiBWWHM is 0.79 cm but it is still

possible to recognize the pixel between with somar e

When reconstructed values of impulsive elementstliat case are considered, J-
Substitution and Hybrid algorithms reconstructegutsive elements with their true

values, that is 0.02 S/m. After them, EquipoterBadjection algorithm comes with a
reconstruction value of 0.0328 S/m. 0.0823 S/mhis teconstruction value of

Solution as a Linear Equation System whereas latiegr along Cartesian Grid

Lines and Integration along Equipotential Lines énagconstruction values greater
than 0.15 cm which coincides to more than 700%rerro

FWHM values of reconstructed conductivity distribas for all algorithms with

respect to position are illustrated in Figure 4.17.

Performances of J-Substitution and Hybrid algorghm@wre identical and have
percentage error of 13% in the worst case with FW#fNd.2542 cm. It is important
to note that these two algorithms have slightly enerror in the case of FWHM
when their performance in the conductive case msicered. Nevertheless, they are

still better than other algorithms.
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Although Solution as a Linear Equation System amlifotential-Projection
algorithms have FWHM of 0.81 cm and 0.79 in thetficase, respectively, their
FWHM values are fixed to 0.315-0.38 range with @&sing distance between

impulsive elements.

As in the conductive case, Integration along Equ@iptal Lines and Integration
along Cartesian Grid Lines algorithms have the wpesformance with FWHM

values around 0.55 cm and 150% error.

Reconstructed values of impulsive elements witpeesto position are illustrated in
Figure 4.18.

As can be seen in Figure 4.18, only J-Substitugioth Hybrid algorithms succeeded
in reconstructing true values of impulsive elemenits 5% error in the worst case.
Equipotential-Projection algorithm has reconstauttvalue of 0.35 S/m and 75%
error whereas Solution as a Linear Equation Sys$tasn).8 S/m reconstruction value
and 300% error. The other algorithms have recocstru error for impulsive

elements more than 700%.
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4.5.2.4 Reasons behind these performances

J-Substitution and Hybrid algorithms have identieAVHM and reconstruction
values for both conductive and resistive casesy Hne superior to other algorithms
when all comparison criteria are considered. In dbeductive case, their FWHM
values are equal to ideal case but reconstructees#&or impulsive elements are not
true whereas FWHM values are different from thaidmse and impulsive elements

are reconstructed with their true values in théstiv® case.

Integration along Equipotential Lines and Integmatialong Cartesian Grid Lines
algorithms can not reconstruct the pixel betweeth lfor conductive and resistive
cases. Although FWHM values are in the range oimlfar the first case and both
algorithms, their FWHM values are fixed to valuesuand 0.5 cm. Moreover,

reconstructed values of impulsive elements have hilggest error percentage
compared to other algorithms. Integration along igogential Lines algorithm

reconstructs conductivity distribution for four & for a single current injection
pattern. Due to the nature of the algorithm, it caatonstruct conductivity

distribution with equipotential lines starting foromly one side of the phantom. For
two current injection patterns, eight conductivitistributions are found and their
average is taken. Some big errors especially meamtpulsive elements can not be

corrected with averaging.

Integration along Cartesian Grid Lines algorithns sdightly better results than
Integration along Equipotential Lines because é@suthe information of two current
injection patterns in a single step. It calculateaductivity gradient in FOV with a
single matrix inversion and makes use of this gmaidito calculate conductivity
distribution. Nevertheless, effect of integratian still noticeable from the results

shown above.

It is a good point to compare Equipotential-Progcttand Integration along
Equipotential Lines algorithms since both algorithmake use of equipotential lines.
In the case Equipotential-Projection algorithm, ipgtential lines originated from
four sides of the phantom are used together whatpshthe calculation of potential
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and conductivity distribution with less error whichn be also seen in Figure 4.14,
Figure 4.15, Figure 4.17 and Figure 4.18 above.

Solution as a Linear equation system has mid-lpeeformance, 8 for conductive

case and%for resistive case.

4.5.3 Simulation Results for Model 3

As explained earlier, simulation model 3 is congied to see position dependency
and impulsive response of reconstruction algoritimsa single simulation. Its
geometry consists of nine impulsive elements witessof a single pixel distributed

from left up corner to right bottom corner.

There are two cases as other simulation modelsnductive and a resistive case.
Conductive case includes 2 S/m impulsive elemeritis &2 S/m background. On
the other hand, impulsive elements in resistiveecase assigned 0.02 S/m

conductivity with background again set to 0.2 S/m.

In Figure 4.19, original and reconstructed imagdh vall six algorithms for
conductive case are shown. All images have the gpayescale.

Some of the results obtained with model 2 can &kscseen here, especially for
Integration along Cartesian Grid Lines algorithnh. failed in reconstructing

impulsive elements with their true values as impelselements can be barely
distinguished form background. Actually, impulselements are reconstructed with
conductivity values around 0.35 S/m. Moreover, tuéntegration effect, neighbor
pixels of impulsive elements are affected and djedr from their true values.

However, this algorithm is position independent.

Artifacts based on integration are more obviou$witegration along Equipotential
Lines as these artifacts are spread to backgroartia form of erroneous lines.
However, it succeeded in reconstruction of all ileme elements as average value
of impulsive elements is 1.9 S/m which correspotwl$% error. So, Integration
along Equipotential Lines algorithm is a positiodépendent algorithm.
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Figure 4.19 Reconstructed Images for Model 3 Cotidri€Case a) Original Distribution, b)
Integration along Cartesian Grid Lines, c) Inteigraalong Equipotential Lines, d) Solution
as a Linear Equation System, e) Equipotential-Rtije, f) J-Substitution, g) Hybrid
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Solution as a Linear Equation System algorithm glswved to be independent from
position because all impulsive elements are recoctsid with 1.2 S/m conductivity.

Also, typical grid effect of this algorithm is alseen with simulation model 3.

Equipotential-Projection algorithm is also positiodependent as can be seen in
Figure 4.19e. Moreover, it reconstructed impulselements with conductivity
values around 0.45 S/m which is the worst perfoceaafter Integration along

Cartesian Grid Lines algorithm.

J-substitution and Hybrid algorithms have a simg@&rformance with simulation
model 2. They both are position independent. Tleepmstructed impulsive elements
near the corners of FOV with bigger errors, sincerent is applied with small
electrodes and current density information is kdiin these areas. However, they
managed to reconstruct impulsive elements in thédlmi of FOV with 1.4 S/m
conductivity value. As a result, these two alganghare position independent and
their reconstructed images turn out to be undistbailong with Solution as a Linear

Equation System algorithm in a perceptual manner.

The other analysis with simulation model 2 is thesistive case. Original

conductivity distribution and simulation resultg ahown in Figure 4.20.

With resistive impulsive elements, Integration gdbartesian Grid Lines algorithm
can not reconstruct them with their true valuesh&y have reconstruction values
around 0.14 S/m. Nevertheless, it also proved tpds#ion independent for resistive

case.

Integration artifact of Integration along EquipdiahLines algorithm continues for
resistive case. Since result of this algorithm ttutes of averaging of four
reconstructed conductivity distributions for equgdial lines originated from four
boundaries, integration artifact is seen in alr@unding pixels of impulsive pixels.

But it is position independent for resistive cdse,
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Figure 4.20 Reconstructed Images for Model 3 Resistase a) Original Distribution, b)
Integration along Cartesian Grid Lines, c) Inteiprmtilong Equipotential Lines, d) Solution
as a Linear Equation System, e) Equipotential-Rtije, f) J-Substitution, g) Hybrid
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Solution as a Linear Equation System algorithm’sl gffect is also present for
resistive case and can be clearly seen in Figtéd4.Moreover, this artifact is
increasing in corners of FOV for resistive caseisTdigorithm is also independent

from position for resistive impulsive elements.

There appears to be more background errors forptgntial-Projection algorithm
than errors in conductive case which get biggecamers of FOV since current
density is lower in these areas. However, it ifl gsition independent as in

conductive case.

J-substitution and Hybrid algorithm reconstructethpulsive elements and
background with least errors and sharp boundahias bther algorithms with the
exception that Hybrid algorithm can not correcbagous lines in the corners from
Equipotential-Projection algorithm. Both algorithimu® also position independent as

in conductive case.

In conclusion, all algorithms are independent fr@osition in FOV both for
conductive and resistive impulsive elements. Howes@me of the algorithms failed
in reconstructing impulsive elements with theiretrualues and defining element

boundaries sharply.

4.5.4 Simulation Results for Model 4

4.5.4.1 Numerical accuracy with changing conductivity contast

This section is allocated for results obtained byugation of reconstruction
algorithms with model 4. As explained in Sectio2.4, model 4 is formed by a
single square in the middle of the phantom. Itsdomtivity changes in each
simulation. For conductive case, background condtyctis fixed to 0.2 S/m and
conductivity of square is changed from 0.2 to Zhveith increase 0.2 S/m at each step.
On the other hand, resistive case includes 0.2 c®mauctivity for the background
and square conductivity diminishes to 0.02 S/m@asteps starting again from 0.2
S/m.
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Three different analyses will be employed for congmm of reconstruction
algorithms in this section. These are general gersguare error and average
conductivity value of square. All analyses are giesd to see the change of these

parameters with changing conductivity contrast.

45.4.2 Conductive case

In Figure 4.21, general errors for all reconstauttalgorithms are plotted against
changing square conductivity. All algorithms excepegration along Cartesian Grid

Lines algorithm converge to some percentage error.

Among three algorithms with the best performancghridl algorithm has 5.2% error
when square conductivity is 2 S/m. Then, J-Suligiiiuand Equipotential-Projection
algorithms have general reconstruction error o#8dnd 9%, respectively. Results
for J-substitution and Hybrid algorithm are obtairedter three iterations where they
reached their minimum error. It is important toenthe difference between Hybrid
and J-Substitution algorithms since they usuallyehidentical or similar results with
other comparison criteria. Hybrid algorithm takdee tresults of Equipotential-
Projection algorithm, which is still close to J-stitution algorithm, and diminishes
general error form 9% to 5.2%. This can be seesnasptimization for cases where

conductivity contrast becomes larger.

For the cases of Integration along Equipotentialeki and Solution as a Linear
Equation System, general error converges to 47%33%6 respectively.

Although all algorithms converge to some errorggmaition along Cartesian Grid
Lines algorithm diverges and general error becolaeger as conductivity contrast

between background and square increases.
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Next analysis consists of error percentage of sjament with respect to changing
conductivity. Figure 4.22 illustrates plots of sppapercentage error when

conductivity of square element is increased frotln®m to 2 S/m stepwise.

Hybrid algorithm continues its superior performanaceer other reconstruction
algorithms with a percentage error of 16% when aetidity contrast is 10, 0.2 S/m
for the background and 2 S/m for the square. Opation effect of Hybrid

algorithm is more obvious when square error is cmaned.

J-Substitution, Equipotential-Projection and Salntias a Linear Equation System
algorithms converge to percentage error of 27% Siguare element. Moreover,
Integration along Equipotential Lines has a simdharacteristic as in the case of
general error, but this time with 64% error. On tither hand, Integration along
Cartesian Grid Lines again failed in that analysisce it diverges with increasing

conductivity contrast.

There is a similar phenomenon for all reconstrucidgorithms. Their percentage
errors for square elements are bigger then gememalentage errors. So, square

elements are reconstructed with more error thakdrsaand.
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Last analysis for conductive case is change ofameeconductivity value of square
element with conductivity contrast. Figure 4.23wh@lots of average conductivity
values for reconstructed square elements. Figu2é & the zoomed version of
Figure 4.23, so relation between algorithms exdefgigration along Cartesian Grid
Lines can be seen clearly. Moreover, reconstructediuctivity distributions for the

conductive case where square conductivity is set $m are shown in Figure 4.25

to give a perceptual idea.

When Figure 4.25 and Figure 4.23 are analyzed hegetsource of errors for
Integration along Cartesian Grid Lines and Intagratalong Equipotential Lines
algorithms are clearly seen. Even boundaries o&rggaelement are not definite. In
the case of Integration along Cartesian Grid Liadgorithm, pixels of square
elements are diverged to values around 10 S/m anddary is still not definite. On
the other hand, effect of boundary elements areashbto background for Integration

along Equipotential Lines.

Although average conductivity values of Solutionaakinear Equation System and
Equipotential-Projection algorithms are around %/, reconstructed images are
distorted in a perceptual manner. Reconstructedwdivity values of pixels are in
the range from 1.2 S/m to 3 S/m. Moreover, reldyireg general error for Solution
as a Linear Equation System comes from artifach seesquare element which

continues in the background.

For the case of J-substitution algorithm, if cosn&f square element are not
considered, reconstructed values of pixels arberrange of 1.2 S/m to 1.6 S/m. On
the other hand, Hybrid algorithm has a range of 3/vh to 1.8 S/m. So, in a
perceptual manner, square elements are more hommgewith respect to other
algorithms. Moreover, these algorithms are sucokssfspecifying boundaries of

square clearly.
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AverageSigma

Figure 4.25 Reconstructed Conductivity Distribuofor Model 4 Conductive Case a)
Original Distribution, b) Integration along Cartasi Grid Lines, c) Integration along
Equipotential Lines, d) Solution as a Linear Equatbystem, e) Equipotential-Projection, f)
J-Substitution, g) Hybrid
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4.5.4.3 Resistive case

In Figure 4.26, general errors with respect to sgeanductivity are plotted for all
algorithms. Integration along Equipotential Linéstegration along Cartesian Grid
Lines and solution as a Linear Equation Systemralgos diverge whereas other
algorithms have an increase in general error whgrare conductivity reduces but

converges to some error.

Divergence of Integration along Equipotential Linesmore obvious as it reaches
80% error for the case where square conductivigyittaminimum value, 0.02 S/m.
On the other hand, Integration along Cartesian Ginés and Solution as a Linear
Equation System algorithms have 35% general eroor that simulation. All
algorithms except Integration along Equipotentiahds algorithm have similar
general errors until square conductivity reducehald of background conductivity,
that is for conductivity values greater than 0.InSAfter that point, Integration
along Cartesian Grid Lines and Solution as a Lirtegmation System algorithms

start to diverge as square conductivity diminisioe3.02 S/m.

Among three convergent algorithms, which are HybridSubstitution and
Equipotential- Projection algorithms, Hybrid alghm has smallest general error of
4.5% when square conductivity is set to 0.02 S/hmenl Equipotential- Projection
and J-substitution algorithms follow Hybrid algbnt with 6.3% and 7.6% general
error, respectively. Application of Hybrid algonithwith the result of Equipotential-
Projection algorithm reduced general error whendaootivity value of square
element is lower than 0.07 S/m. This result casd®n better in Figure 4.27 which is

zoomed version of Figure 4.26 for general errougslless than 10%.
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Next analysis consists of change of square eleereot with respect to conductivity
contrast. Figure 4.28 illustrates errors for squeeenents when conductivity contrast
between square and background diminishes form111#. Moreover, Figure 4.29 is
the zoomed version of Figure 4.28 which marks #lation between convergent

algorithms.

As shown in Figure 4.28, errors of square elembetome larger with increasing
conductivity contrast for Integration along Equipatial Lines, Integration along

Cartesian Grid Lines and Solution as a Linear Hque&ystem algorithms.

The optimization effect of Hybrid algorithm ovelSilibstitution algorithm continues
for square element. When square conductivity i B0m, Hybrid algorithm has
2.6% error whereas J-substitution algorithm recqoiets square element with an

error of 5.6%.

88



ase) aANsIsay ‘1Isenuapidnpuo) buibueyd yum siolg arenbs gz v ainbi-

(wyg) Annanpuog alenbg

4] ¢l 810 910 70 zko
——— .

dd3 ——

pugiy ——

ansf —g—

shg b3 un se jog ——
saur jodbg Gaju) —i—
S8UM pUSHED) —5—

05

00k

051

0oz

052

00E

o 10113 abejuaniag alenbg

89



Ay

UOISISA PaW00Z ‘ase)d aAnsIsay ‘Isenuapidnpuo) buibueyd yum siol3 arenbs 6z 7 ainbi4

njanpuoy) asenbs
L0

200 00 700

o

dd3 —— -

pughy ——

ansf —g—

'shg b3 ur se jog ——
saur jodbg Gaju —&—
Saur pugue) —o—

01

4

Tl

9l

9; louig abeusalay alenbg

90



Reconstructed average value for square elemengmather comparison criterion
which are illustrated in Figure 4.30. Moreover, aestructed conductivity
distributions for the case of square conductivéyte 0.02 S/m are plotted to give a

perceptual idea.

All algorithms except Integration along Equipotahtiines algorithm reconstructed
square element with its true average values. Tlyepkent is that this result can be

deceptive for some of the algorithms.

If Figure 4.28 and Figure 4.31 are consideredttmgeit can be seen that Integration
along Cartesian Grid Lines and Solution as a Lirfegmation System algorithms
have around 140% error for square element. Butageemreconstructed square
element conductivity values are close to true \al#dthough, these algorithms do
not reconstruct each square element with its teleey they manage to have average
values in the range of true square conductivitys fhenomenon can be clearly seen
in Figure 4.31d which contains conductivity valm&r 0.1 S/m and less than 0.01

S/m together inside square element which in fastth@2 S/m conductivity.

Equipotential-Projection, J-Substitution and Hybaidorithms have square element
errors less than 12% and reconstructed averageesqaaductivity in the range of
true values. These results imply that these algost reconstruct each square
element with minimum error. There are no extrene@mstructed values for square
elements. Moreover, homogenous structure of sgel@ments in Figure 4.31f and

Figure 4.319g prove that result.

In a perceptual manner, J-Substitution and Hybigor&ghms defined boundaries of
square element better than Equipotential-Projectilgorithm. Nevertheless, these
algorithms have miscalculated values at cornersgofare element which tend to

distort background.

91



A4

ase) aANSISay ‘ 1senuo) Auanonpuo)d Buibueympapienbs Jjo anjea Alanonpuo) abelaay Og'y ainbi4

(wyg) Apanonpuoy) asenbg ani|
z0 810 910 70 Zko L0 800 900 v0°0 z00
I I I I

dd3 ——

pughy ——

ansr —g—

BIUBIBYEY -------

‘shg b3 ur se 0§ ——
saur] “jodbg Hagu) —a—
s8un puo veny —o—

900

200

A

{wys) Apanonpuog sienbs pajonisuooay abels vy

92



5, 0.18
10 0,18

014

0.08
0.06

004

A0 002

Figure 4.31 Reconstructed Conductivity Distributidar Model 4 Resistive Case a) Original
Distribution, b) Integration along Cartesian Grithds, c¢) Integration along Equipotential
Lines, d) Solution as a Linear Equation System, Eguipotential-Projection, f) J-
Substitution, g) Hybrid
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4.5.5 Simulation Results for Thorax Phantom

Last phantom used for simulation is thorax phantdmese conductivity distribution
is shown in Figure 4.32a. This analysis enablesetperformance of reconstruction
algorithms with a complex geometry and true tissaeductivities. As explained
earlier tissue conductivities vary [32]. There axtremely resistive areas like bone
structures and extreme conductive tissues likeaspsnrd. Simulation of thorax
phantom gives an idea on applying reconstructignraghms to real experiments.

Simulation study of thorax phantom with reconstiuttalgorithms is also carried
out with noisy data. Two noise levels are emplogedn simulations with model 1,
SNR 30 and SNR 13. Moreover, percentage errordl tissue regions and overall
error are calculated for each reconstruction allgoriand noise level which helps to

make a numerical analysis.

Reconstructed images and original conductivityritigtion for noise free case are
illustrated in Figure 4.32. It is important to ndkat all images have the same gray
scale of Figure 4.32a.

Integration along Equipotential Lines algorithm aast reconstruct thorax phantom
because most of the equipotential lines initiatesinfa boundary can not reach to
another boundary and are eliminated for this reaBamaining equipotential lines
do not have enough information to reconstruct cotdity distribution. So,

Integration along Equipotential Lines algorithmeiscluded from thorax phantom

simulations.

Errors for spinal cord region are between 97% ab@PA for all algorithms. Spinal
cord is covered by bone and there is too little @amb@f current going inside bone
which eventually forces reconstructed values ohalptord to be similar to bone
conductivity. As a result, they are close to zemd 400% error. This conclusion is

valid for algorithms.
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15

Figure 4.32 Reconstructed Images for Thorax Phanboise-free case a) Original
Distribution, b) Integration along Cartesian Grithés, ¢) Solution as a Linear Equation
System, d) Equipotential-Projection, e) J-Substitytf) Hybrid
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There are many miscalculated pixels for the cadatefjration along Cartesian Grid
Lines which suppresses and distorts the image r@dson behind those pixels is the
boundary between the most conductive element, lspord, and the most resistive
element, bone. Basic idea of this algorithm is grdéing conductivity gradient
through FOV and conductivity gradient reaches itaximum at that boundary.
Therefore, errors on that boundary are carriedgtat for noise free case.

Relatively high error values for lung region andchkground are due to that
phenomenon because error lines go through lundpackiyround. Also, general error
is affected since most of the image is formed hygland background. Regions
where these errors are not seen have moderatentsgeeerrors, like 85% for heart

and 51% for aorta.

With addition of noise, percentage errors for aljions are increased dramatically
because errors due to sternum region and backgrboanddary also spread to the
image. Also, bone being the most resistive elemeciudes the lowest current
density and is affected the most from noise. Peuedly, images are more distorted
and suppressed than noise free case which canebeirsé-igure 4.33a and Figure
4.34a

Figure 4.32c, Figure 4.33b and Figure 4.34b showorstructed images with
Solution as a Linear Equation System algorithmnimise free, SNR 30 and SNR 13
cases, respectively. Perceptually, all elementsdsgnguished from each other
although object boundaries are not sharp. Thisriéhgo reconstructed background
with least error along with J-substitution and Hgbralgorithm. Moreover,
percentage errors for heart region are lower thihralgorithms except Hybrid
algorithm. Although background error is around 2%f#neral error reaches to 140%
for SNR 13. Relatively high general error is dugévcentage error of bone element
which has more than 1000% error for SNR 13. As &di22] made it clear that
Solution as a Linear Equation system algorithmudek information from four
neighbor pixels for solution of a single pixel. Té®re, information for bone
structure around spinal cord comes from spinal amd forces the algorithm to

calculate conductivity of bone element inaccurately
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Figure 4.33 Reconstructed Images for Thorax Phantdim SNR 30 a) Integration along
Cartesian Grid Lines, b) Solution as a Linear EignaBystem, c) Equipotential-Projection,
d) J-Substitution, e) Hybrid
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Addition of noise increases percentage errors bfegjions but there is no other

growing artifact rather than typical grid artifact.

Equipotential-Projection algorithm’s results hakie sharpest boundaries between all
elements and all elements are separated clearlyetdr, artifacts in the form of
erroneous lines starting form corners and contopumside FOV and miscalculated
pixels in heart region distort reconstructed imadebas a lower general error than
Solution as a Linear Equation System algorithmgarcentage error of background

is higher due to erroneous lines in FOV.

Simulations with SNR 30 and SNR 13 have graduafigreased errors for all
elements as expected. Also, reconstructed imagidsneisy data are not distorted

with respect to noise free case.

Simulation and comparison of J-Substitution and ritlylalgorithm with thorax is
done in a previous study by Boyagho and Eyubg@lu [24]. Similar results are
obtained in this thesis. First of all, general dmagy region errors for J-Substitution
are slightly lower than Hybrid algorithm. The magason behind that is initiating
Hybrid algorithm with filtered result of EquipoteéaltProjection algorithm. As
explained above, there are erroneous lines staftorg miscalculated potentials at
boundaries and projected inside with equipotefitigls for Equipotential-Projection
algorithm. Applying a low-pass filter to the resuwf Equipotential-Projection
algorithm reduces these artifacts but can not @#aaltogether. These artifacts can
be seen in Figure 4.32f, Figure 4.33e and FiguBglel. On the other hand, J-
substitution algorithm is initiated with a homogeuns distribution which actually
has a conductivity value 0.2 S/m, equal to backgdooonductivity. As a result,
background pixels are reconstructed with less emitiiout deviation, that is they

already have their true values.

There is a clear optimization for heart and aoegian errors with Hybrid algorithm
with respect to J-Substitution algorithm. This iioygment also shows its effect in

general error. Although it is expected for Hybrigaithm to have a higher general
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error than J-substitution algorithm, they have Emerror general errors thanks to
superior performance of Hybrid algorithm in headion.

Dramatic increase in bone region error, especfalysNR 13, for both algorithms is

related with relatively low current density in tha&gion since added noise affects
these areas more. Increase in noise level foroesntiages to distort but object
boundaries are still sharp.

In conclusion, Hybrid algorithm reconstructs eletseat the centre of the FOV, heart
region in thorax phantom, better than J-Substituitgorithm. Nevertheless, these
two algorithms reconstructed images with the leasbdrs both for noise free and
noisy cases. Furthermore, they produced sharpeandaoes and images for noisy

cases are not distorted as much as other algorpeenceptually.
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Figure 4.34 Reconstructed Images for Thorax Phamtdim SNR 13 a) Integration along
Cartesian Grid Lines, b) Solution as a Linear ElgmaSystem, c¢) Equipotential-Projection,
d) J-Substitution, e) Hybrid

100



Table 4.3 General and Regional Percentage ErroiSifaulations with Thorax Phantom

Lung Heart Bone CSF | Aorta | Background Total
(%) (%) (%) (%) | (%) (%) error (%)
Integration along Cartesian Grid Lines
Noise-free | 9.17*1C | 85.04 | 736.48| 100| 51.45 8.15%10 | 8.08*1C
SNR 30 | 5.17*1C | 2.78*1C | 6.47*10° | 99.99 | 49.54 452*10 | 4.52*1CF
SNR 13 | 5.78*101° | 9.69*1¢' | 2.53*1F | 99.99 | 423.37| 4.6*1§ | 3.45*10°
Solution as a Linear Equation System
Noise-free| 57.98 30.34 969 96.47 37.76 24.31 122.7
SNR30 | 54.25 34.6 920 97.22 39.88 24.23 116.63
SNR 13 64.12 34.48 1117 | 96.69 57 27.9 141.03
Equipotential-Projection
Noise-free| 17.71 70.71 125.93| 98.23 55.04 58.1 51.84
SNR30 | 20.65 161.43| 153.44 98| 119.75 48.34 63.47
SNR 13 88.61 99.29 241.98| 9855 69.12 57.76 78.66
J-Substitution
Noise-free| 12.1 40.93 60.89 | 97.31 31.66 21.13 22.8
SNR 30 13.53 41.35 7743 | 9772 31.3p 22.04 24.29
SNR 13 17.66 42.56 214.41| 97.04 31.23 26.19 36.45
Hybrid
Noise-free| 16.67 22.03 543 | 97.45 25.8p 23.5 22.65
SNR 30 19.3 21.48 7747 | 979 21.62 23.57 24.24
SNR 13 22.34 23.64 245 97.23  30.3 28.95 39.69
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4.5.6 Experimental Data

4.5.6.1 Experiment 1

Experimental data is collected as explained in i8ecR.5, Section 4.2.6 and
Appendix A. For experiment 1, conductivity valudsackground, circle and square
elements are 0.2, 0.4 and 0.1 S/m. Since, simuaktioclude two current injection
profiles, experimental data is collected both fartiecal and horizontal current
injection profiles. As a result, every slice is med twice, one for vertical and one

for horizontal current injection. Governing equasofor calculation ofJ, and

J,can be seen in Equation (4.3) and (4.4), respégtive

o\ oy oz
J, =i(aBX —Ej (4.4)
M\ 0z OX

where 4, is the permeability of free-space.

First, B, is obtained. Here, slice selection gradient iszirdirection. Two phase

images are taken for both current injection prefilevhich are with positive and
negative current injection for every slice. Phasades ofz slice for vertical current
injection can be seen in Figure 4.35 and Figuré.4T8en, these phase images are

masked to remove recessed electrodes. Masked phages are unwrapped, aj
is calculated as explained in Section 2. images for vertical and horizontal

current injection profiles can be seen in FiguB/4and Figure 4.38, respectively.

Next step is the calculation of derivatives Bf with respect tox and y directions

for both vertical and horizontal current injectigratterns using Sobel operators
which are illustrated in Figure 4.39, Figure 4.#gure 4.41 and Figure 4.42,
respectively.
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Figure 4.36 Phase image afslice for vertical and positive current injection.
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Figure 4.37B, image for vertical current injection, in units bésla

Figure 4.38B, image for horizontal current injection, in unifsT@sla.
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Figure 4.40 Derivative oB, (T/m) with respect toy direction for vertical current injection
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Figure 4.41 Derivative ofB, (T/m) with respect tox direction for horizontal current
injection

Figure 4.42 Derivative ofB, (T/m) with respect toy direction for horizontal current
injection
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To calculate J,, derivative of B, with respect to z direction is also needed. So,
experimental phantom is oriented inside RF coidiway such thaty direction of
the phantom is in théB, direction. In that case, slice selection gradienin y

direction. Then, two off-slices ire direction are imaged. They are masked and
unwrapped. After magnetic field is calculated fattb off-slices, derivative oB,
. o . _ 0B, . .
with respect toz direction is calculated with forward dn‘ferencea.—y Is illustrated
z
in Figure 4.43 and Figure 4.44 for vertical andiramtal current injection profiles,

respectively.

The same procedure is applied for calculatior—s?(—agifL which is shown in Figure 4.45
z

and Figure 4.46, for vertical and horizontal cutiiefection profiles, respectively.
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0B
Figure 4.446—y (T/m) image for horizontal current injection
z
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. 0B . : s
Figure 4.466—" (T/m) image for horizontal current injection
z
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J, and J, are calculated with Equation (4.3) and (4.4), eetipely. Figure 4.47 and

Figure 4.48 includes current density distributidoisvertical current injection irx
and y directions, respectively. Moreover, current dgndistributions of horizontal
current injection are shown in Figure 4.49 and Fegd.50. Next step is the

calculation of total current density,, with Equation (4.5).

NENREERE (4.5)

Total current density distributions for verticaldahorizontal current injection are
shown in Figure 4.51 and Figure 4.52, respectivAlgo, arrow plots of current

densities of vertical and horizontal current inj@astare shown in Figure 4.53 and
Figure 4.54, respectively, to give an idea aboet gath and magnitude of current

density distributions.

Figure 4.47J, (A/ m?) image for vertical current injection
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Figure 4.48\]y (A/'m*) image for vertical current injection

Figure 4.49J ( A/ m?) image for horizontal current injection
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Figure 4.50\]y ( A/ m*) image for horizontal current injection

Figure 4.51J (A/m?) image for vertical current injection
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Figure 4.52J (A/m?) image for horizontal current injection
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Figure 4.53 Arrow Plot for Current Density Distrtlmn of Vertical Current Injection
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Figure 4.54 Arrow Plot for Current Density Distrtimn of Horizontal Current Injection

After current density distributions],, J, and J, for both current injection patterns

are obtained reconstruction algorithms are fed whiése experimental data. First,
reconstructed images obtained with simulation galabe given to be able to make
a comparison between experimental and simulatisalte Figure 4.55 illustrates
original conductivity distribution and reconstrugtémages with simulation with

experiment 1 parameters. Similar artifacts andgoerdnces continue. Equipotential-
Projection and solution as a Linear Equation Systégorithms have their typical

erroneous lines and grid artifact, respectivelywideer, for both algorithms circle

and square elements are separated from backgrouwhtteave sharp boundaries. J-
Substitution and Hybrid algorithms are still superand Hybrid algorithm suffer

from the erroneous lines of Equipotential-Projectdgorithm.
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(b) (c)

(d) (e)

Figure 4.55 Reconstructed Images with SimulatedaCfat Experiment 1, a) Original
Distribution, b) Equipotential-Projection, c) Sobrt as a Linear Equation System, d) J-
Substitution (3 iteration), e) Hybrid (3 iteration)
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Result obtained with Equipotential-Projection fatal of experiment 1 is shown in
Figure 4.56. Moreover, low-pass filtered versiontbé result of Equipotential-
Projection algorithm is shown in Figure 4.57. Sgualement which is more resistive
than background is slightly distinguished althoutghboundaries are not clear. On
the other hand, circle element’s boundaries camnebegnized. However, there are
erroneous lines distorting the reconstructed imalgieh are initiated from corners of
FOV. Origins of these artifacts can be seen in l@gi58 and Figure 4.59 which
include the conductivity distributions reconstrutteith only vertical and horizontal
current injections, respectively. When filtered doativity distribution in Figure
4.57 is analyzed, boundaries of square elementchrarer than the original

reconstructed conductivity distribution.

Figure 4.56 Reconstructed Conductivity (S/m) fopé&xmental Data with Equipotential-
Projection Algorithm
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Figure 4.57 Filtered Version of Reconstructed Catiglity (S/m) with Equipotential-
Projection Algorithm

Figure 4.58 Reconstructed Conductivity (S/m) fopé&nxmental Data of Vertical Current
Injection with Equipotential-Projection Algorithm
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Figure 4.59 Reconstructed Conductivity (S/m) fop&xmental Data of Horizontal Current
Injection with Equipotential-Projection Algorithm

Filtered conductivity distribution of EquipotentiBrojection algorithm is set as the
initial conductivity distribution for Hybrid algafim. Result obtained with Hybrid

algorithm for experimental data is shown in Fig4r€0. Since corners of FOV
contain lower amount of current density with resgether regions, effect of noise
becomes dominant in these regions. The same cameligssdeduced from simulation
results. When result of Hybrid algorithm is comphreith result of Equipotential-

Projection algorithm, square element can not benstcucted. However, circle
element is separated from background with Hybrggadhm.

J-Substitution algorithm has a similar performamseHybrid algorithm with the
difference that erroneous lines are not seen in rdwmnstructed conductivity
distribution. Reconstructed conductivity with J-stitution algorithm is shown in
Figure 4.61
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Figure 4.60 Reconstructed Conductivity Distribut{&»m) with Hybrid Algorithm

Figure 4.61 Reconstructed Conductivity Distribut{&»m) with J-Substitution Algorithm
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Solution as a Linear Equation System algorithmls® &d with experimental data
and its result can be seen in Figure 4.62. Soludsra Linear Equation System
algorithm has the best performance perceptualli déta of experiment 1 since it
reconstructed both square and circle elements wjthdoundaries are not clear.
Simulation results showed that this algorithm wealsust to noise and it is proven
here, too. In the simulation results, Solution dsreear Equation System algorithm
has relatively higher percentage errors with sitmms of models with high

conductivity contrast. However, experimental pharitoconductivity contrast value

is two both for resistive square and conductiveleielement.

Integration along Equipotential Lines and Integmatialong Cartesian Grid Lines
algorithms failed to reconstruct conductivity distition with experimental data.
They can not reconstruct conductivity distributieith simulations of SNR 13 noise

level, either.
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Figure 4.62 Reconstructed Conductivity Distributi¢®/m) with Solution as a Linear
Equation System Algorithm
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In conclusion, Equipotential-Projection and Solntias a Linear Equation System
algorithms reconstructed conductivity distributipartially. On the other hand, J-
Substitution and Hybrid algorithm suffer from réaly high noise effect especially
at the corners of FOV. Integration along Cartegsaiu Lines and Integration along
Equipotential Lines algorithms can not reconstraohductivity distribution with

experimental data. When experimental and simulatesults are compared for all
algorithms, another experiment with a higher comiglitg contrast is essential since

none of the algorithms reconstructed both elemaptaly.

4.5.6.2 Experiment 2

Another experiment is conducted to see the efféctamductivity contrast on
reconstructed images. In this experiment, phanteongtry is kept the same while
conductivity of the circle element is increasedlLt® S/m and the square element is

designed as a pure insulator. In Figure 4.63 agdr€i4.64,J, and J, components
of vertical current injection pattern can be sedoreover, J, and J, of horizontal

current injection are also shown in Figure 4.65 dfidure 4.66. Arrow plot

illustration of both current injection patterns damseen in Figure 4.67.

121



30
10r = 20

15} 1
- 410

20k -

10

25 F il
-10

30 b -
-20

35 | 4
i -30

-"-1-':'.' 1 1 1 i =il e e

Figure 4.64J, (A/ m’) Image For Vertical Current Injection, Experimént
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Figure 4.66\]y (A/m*) Image For Horizontal Current Injection, Experirhn
123



I e e ey T e (P g T R N _Z// T ——————
A G e T i T G BSREE SRHRE BRILE \:\::\\\\\ // SIEERR RN Y
H“HMHH¥\## tttttttttt e ERRSESEE RS S \\\\\\\m\\\m /4/ ﬂ@ﬁ@&é///f/////
\\\\\NMHHHIJ&J#&JJJ/JI/;fx/f/fxx;;///f,. ctrrrrtttd! ./ // LR SR AE VR
e e R Fa b et BES BN
B S e, ETEE et 2 b p8 ¥l BOVRROR LV
L e e ven AW
e e ) - i A
S 0y RERTR LY LA
\wwwvrjlgifff///J/!fJJ////////r////// P A P /////J/,ﬁ
\\MWWWT;J(.YYWJI/JJJJJ«////{////J/((‘/,////\m \f trr sy b ey a
\ llllllll B e T S \\‘.__u__ ”WM_J_
alu..HH.“”wa//////JJ/////////////////// P % o w3 //j
SR - T A R R R TR R R R R M R mm N R NNy T |
............. TN e TR M T W TR T e St T T T ety Ty TE x,
\\\\\\\\\\\\\\\\ BN R R TR TR e e TR R S N e e e o] H) b o e o J
....... L e T G et T
.............. N T T et e AT T ¢ sl
\\\\\\\\\\\\\\\ Nm s e e e et s e ] G —
L BN Bl m i 2 s f oS e PRl SRS S — L% e
e T . hmm\ FEE R
L T T B e = | ! 63
B s memee o S PR S S S S S SR % L
8 e wemmes m s P A & IR SR ]
\\\\\\\\\\\\\\\ B e IT:) s o
e BT A A A A T I, b R
/7Wﬂ¢4n\¢>\u&x\\\\\\&\x\\\\\\\\\\\\\\\\\ L
T BNES Sl T RS S SR e S S Ao y
//mwW/W/WJW¢W@|WIW(«<~\«VM\«\\\\\u\‘\‘\ i AR R B R B Aol ool ﬁ ” ;
/ %ﬁfﬁﬁi¢¢l¥\\\\\\\\\\\\\\\\\\\sx\xx\xﬁm R i
///fﬂﬁéi*i}}&h\\\\\\\\\\M\\\\\\\\\\\\\\ s A
o S ¥ ey t
”W””H”;V/f/wtvtrJW\W\Wxa\v\i\w\V\u\-\-x.\ S R T e A s B Ve X % ﬁ ﬂ W ﬂ ﬁ
it B T D TN NN 11
5 S e e e s i e e e S e e e e e R T
N i e e e e T e g L B el frrd
R B T VRRRAVNARN 2Lt
e S e S S R R R B R s
I e S L e S ) N Fli L |
I 1 1 1 1 I 1 o L] sl
= ] = = © = o e o

a0 2% Kl 3
124

(b)

Figure 4.67 Arrow Plots for current density a) et Injection, b)Horizontal Injection



As can be seen in Figure 4.67, both objects arindigshable even with current
density plots. However, square object which almas zero conductivity is more

distinguishable than circle object. This resujpiseved also by reconstructed images.

First, simulation results obtained with experimémaantom parameters are given.

Original and reconstructed conductivity distribuscare given in Figure 4.68.
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Reconstructed Image after 3 iteration

Figure 4.68 Reconstructed Images with SimulatedaCfat Experiment 2, a) Original
Distribution, b) Equipotential-Projection, c) Sobrt as a Linear Equation System, d) J-
Substitution (3 iteration), e) Hybrid (3 iteration)

125



According to these results, all reconstruction atgms except Solution as a Linear
Equation System succeeded in reconstructing thetikessquare element. Although,
boundaries of square element are visible for theulreof Solution as a Linear
Equation System algorithm, two extreme pixels wigtatively high conductivity
values distort image and increase error percentagmatically. Moreover, typical
grid artifact of Solution as a Linear Equation ®ystalgorithm is present here, too.
Another important point is the relation betweemnbstitution and Hybrid algorithms.
Hybrid algorithm has already reached to an optintesult where as J-substitution
algorithm still needs to be iterated after thresations. This phenomenon is also
seen in Figure 4.69 where general error percentagbhsespect to iteration number

are shown.
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Figure 4.69 General Percentage Errors of a) J-Butosn, b) Hybrid algorithm
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It is clear that, J-Substitution reaches the optimasror percentage value (%20) after
10 iterations, as Hybrid algorithm quickly convelgéo that value in a single
iteration. This result is also another proof ofimytation effect of Hybrid algorithm

over J-Substitution algorithm.

Reconstructed conductivity distributions obtainedhwdata of experiment 2 are
given in Figure 4.70, Figure 4.71, Figure 4.72 dfidure 4.73. If results of

experiment one and two are compared, some singlarivill be realized. J-

Substitution and Hybrid algorithms still have praiols in FOV corners due to low
amount of current and domination of noise, so theggons diverge to extreme
values. Second, all algorithms are better in rettoasng resistive square element
which is also expected. Third, Equipotential-Progt algorithm still has problems

in reconstructing conductive circle element.

Figure 4.70 Reconstructed Image (S/m) with EquiptcaeProjection Alg., Experiment 2

127



Figure 4.71 Reconstructed Image (S/m) with Soluéiem Lin. Eq. Sys. Alg., Experiment 2

Figure 4.72 Reconstructed Image (S/m) with J-Stutigin Alg., Experiment 2
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Figure 4.73 Reconstructed Image (S/m) with Hybrig. AExperiment 2

If corners of FOV are not considered, Solution akireear Equation System, J-
Substitution and Hybrid algorithms have perceptuaiimilar reconstructed images.
Both circle and square elements are clearly distgiged. Table 4.4 shows error
percentages of circle element in reconstructed @wnadiybrid algorithm here
continued its superior performance over J-subsiitutand other algorithms.
Moreover, Solution as a Linear Equation Systemrélym has a worse performance
than J-substitution and Hybrid algorithms as cotiglitg contrast increases. Error

percentage of square element is not considered sihalgorithms fail to reconstruct

this region with almost zero conductivity.

Table 4.4 Circle Element Error Percentages of R&tcocted Images

Sol. Lin. Eq. Sys.

EPP

J-substitution

Hybrid

Circle Element Error

0
Percentage (%) 1%

80%

69%

64%
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In a previous study, Lorca [22] implemented and parad five J-based and a B-
based MREIT reconstruction algorithms. The motatof his thesis is to compare
the algorithms with the same phantom. Moreoverstadied the effect of different
noise levels. However, his study is based on a latma with a rather simple
phantom. Lorca stated in his thesis the future wepdssibilities which are
simulations with different phantoms to compare @enfance of algorithms with
different criteria. These criteria are position eegency, spatial resolution, electrode
size, reconstruction time and perceptual analySis, in this thesis, J-based
reconstruction algorithms are compared with fiidedent simulation phantoms with
the criteria mentioned above. Moreover, a noveasel reconstruction algorithm is
proposed which is a combination of Equipotentialj€ction and J-Substitution

algorithms.

Implemented J-based reconstruction algorithms @ategtation along Equipotential
Lines [19], Integration along Cartesian Grid Linf9], Solution as a Linear
Equation System [19], Equipotential-Projection [21]Substitution [20] and Hybrid
algorithms [24]. Moreover, these algorithms areimoed with slight modifications
to increase their performance. Regional and tetabmstruction errors are calculated

for each algorithm to make a numerical analysis.

Five different simulation phantoms are designed dimnulation of reconstruction
algorithms. The first model is explained in Sect@.1. Its purpose is to see the
overall performance of reconstruction algorithmgshwiwo big square and circle

elements. Also, it includes two impulsive elements.

130



Integration along Equipotential Lines algorithm hhg worst performance with
model 1 with respect to other algorithms. Errorge anainly due to element
boundaries which are spread to the image with ratem. However, using
equipotential lines originated from four boundariekecreased total error
dramatically. The other reason of errors is thanhecareas are not covered by
equipotential lines leading to miscalculation ohdactivity in these areas. Noise-
free case yielded 64% error for Integration alomgiipotential Lines algorithm and
simulations with SNR 30 noise level produced 230%reMoreover, with SNR 13,
Integration along Equipotential Lines algorithm caat reconstruct conductivity

distribution.

Integration along Cartesian Grid Lines algorithraoalises integration but it has a
main advantage over Integration along Equipoteritines algorithm such that it
uses the information of two current injection patsein a single step. Moreover, two
integration strategies are employed for integratad their average is taken which
enhances the performance of Integration along €arteGrid Lines algorithm.
Elements of conductivity distribution reconstructeih Integration along Cartesian
Grid Lines algorithm do not have sharp boundarigtsstill are definite. Addition of
noise to current density data affected resistieenehts more since current tends to
flow outside of these elements. As a result, ermofrsthese regions increased
dramatically and spread to background with integratwhich distorts the
reconstructed image. Integration along Cartesiaid Gines algorithm has 21%,
26.8% and 83% total errors for noise-free, SNR1BD BNR 13 cases, respectively.

Solution as a Linear Equation System algorithm alses information from two
current injection patterns and does not employgiatigon which result in a superior
performance than Integration along Cartesian Grideds and Integration along
Equipotential Lines algorithms. However, there igypical grid artifact because to
calculate the conductivity value of a single pix8blution as a Linear Equation
System algorithm uses information only from fourighdor pixels. Element
boundaries are sharper than Integration along €larteGrid Lines and Integration

along Equipotential Lines algorithms. Moreover, (8ion as a Linear Equation
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System algorithm is robust noise producing 12.726% and 18.5% total errors for

noise-free, SNR 30 and SNR 13 cases, respectively.

Equipotential-Projection algorithm uses equipotEntlines started from four
boundaries together. It reconstructs conductivistridhution with sharp boundaries
but have erroneous lines originating from corndrs@V with SNR 13 noise level

leading to distortion of reconstructed image.

J-Substitution and Hybrid algorithm produced thearpkst boundaries and
perceptually better reconstructed images. Hybrgbrthm has a slightly better
performance than J-Substitution algorithm in ndise-case as it has only 3% total
error. But, addition of noise affected the perfoneeof Hybrid algorithm because of

the erroneous lines from the result of EquipotéRi@jection algorithm.

Model 2 is used for spatial resolution analysishwéalculation of FWHM values.

Two cases, conductive and resistive, are usedrfaration.

In the conductive case, J-Substitution and Hyblgdr@thms have FWHM values of
0.225 cm which is equal to ideal case even wheruisnge elements are closest to
each other. On the other hand, Integration alontge€ian Grid Lines and Integration
along Equipotential Lines algorithms produced FWH/sllues around 0.45 cm.
Equipotential-Projection and Solution as a Linegu&ion System algorithms have
slightly bigger FWHM values than J-Substitution aHgbrid algorithms as they
produced FWHM of 0.25 cm. Moreover, all algorithmBWHM values are

independent from distance between two impulsiveelds.

In the resistive case, J-Substitution and Hybrigbathms have FWHM around 0.235
cm which has 5% error with respect to ideal cass. i the conductive case,
Cartesian Grid Lines and Integration along Equiptiéd Lines algorithms has the
worst performance with FWHM around 0.55 cm. Equgpdil-Projection and
Solution as a Linear Equation System algorithmsehaWHM values around 0.35
cm. All algorithms have FWHM values independentniralistance between two

impulsive elements in the resistive case.
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Model 3 is designed to see the position dependehagconstruction algorithms

which has a resistive and conductive case. Sinaumagsults show that all algorithms
are independent from position both for conductiviel aesistive cases but some
algorithms can not reconstruct impulsive elemerith ¥heir true values and define

element boundaries sharply.

Simulations with model 4 reveal the numerical aacyrof reconstruction algorithms
with changing conductivity contrast. The condudjiof square element in the center
of FOV is increased and decreased gradually fodgctive and resistive cases,
respectively. In the conductive case, when condiigtcontrast is increased general
error is increased for all algorithms. However,adjorithms except Integration along
Cartesian grid Lines algorithm converge to an evedue. When square conductivity
is 2 S/m, general errors are 5.2%, 8.1%, 9%, 32% 4r% for Hybrid, J-

Substitution, Equipotential-Projection, Solution asLinear Equation System and

Integration along Cartesian Grid Lines algorithnespectively.

When error percentage of square is considere@|gdrithms’ error values increase
but converge to some value except Integration afdadesian Grid Lines algorithm

in the conductive case.

For the resistive case, Integration along Cartesiaund Lines, Integration along
Equipotential Lines and Solution as a Linear EdquatBystem algorithms have
divergence characteristics for general error whamdactivity contrast is increased.
They reach to general errors of 80% for Integrattomg Equipotential Lines and
35% for Integration along Cartesian Grid Lines &ulution as a Linear Equation
System algorithms when square element has a cawitjpatontrast of 1/10 with

respect to background conductivity. For that cadgprid, J-substitution and
Equipotential-Projection algorithms converge to eyah errors of 4.5%, 7.6% and
6.3%, respectively. Here, optimization effect ofldg algorithm over J-Substitution

algorithm is more obvious.

The above conclusions still apply when square @ésr@onsidered. As conductivity
contrast increases Integration along Cartesian QGiildes, Integration along
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Equipotential Lines and Solution as a Linear EdquatSystem algorithms diverge
whereas Hybrid, J-substitution and Equipotentiajution algorithms converge to

square errors of 2.5%, 5.6% and 11%, respectively.

The last simulation phantom is the thorax phantoih \ complex geometry and
true tissue conductivities. Thorax phantom is ailsed with noisy data simulations of
SNR 30 and SNR 13. Moreover, regional and totabrerare calculated for each

reconstruction algorithm to make a numerical anslys

Integration along Equipotential Lines algorithmlddi in reconstructing conductivity
distribution even in the noise-free case. Mosthef équipotential lines can not make
it to another boundary and are eliminated. The neimg equipotential lines are not

sufficient to reconstruct an image.

All algorithms reconstructed spinal cord regionidesbone structure with around
100% error, because current can not get into bowetsre and forces spinal cord
inside to be reconstructed with conductivity vatiidone.

Integration along Cartesian Grid Lines algorithns hiae largest regional and total
error values because it is based on integrationcafductivity gradient. The
conductivity gradient reaches to its maximum valaethe boundary between bone
element and other regions. So, errors from theg®ne are distributed to other
elements and especially to the background. Morecagdition of noise affected
these areas the most due to relatively low cumensity and increased both regional

and total errors dramatically.

For the case Solution as a Linear Equation Systkyorithm, all elements are
separated form each other but the boundaries drshaop. Regional error for bone
element is increased much more than other regi@tause of the low current
density. Moreover, typical grid artifact is alsoepent with thorax phantom

simulations.
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Equipotential-Projection algorithm produced the rpkat boundaries with thorax
phantom but lacked reconstructing each element usthirue conductivity value.
When noise is added typical erroneous lines origiggdrom corners of FOV start to

distort image and increase both regional and backgt errors.

The most satisfying results both numerically andcggtually are obtained with
Hybrid and J-Substitution algorithms. The succeds Hybrid algorithm in

reconstructing regions in the center of FOV is idieaeen with thorax phantom
simulations. The error of heart region is aroun#&oeZ0r Hybrid algorithm whereas J-
substitution algorithm has around 40% error. Howgtygical erroneous line artifact
of Equipotential-Projection algorithm dominatesduregion and background errors
of Hybrid algorithm which in turn forces Hybrid algthm to have higher total errors

than J-Substitution algorithm.

As a part of the thesis work, an MREIT experimeniconducted as explained in
Section 0 and Appendix A. Measured magnetic fieldd all components used in the
calculation of current density data are given ircttea 4.5.6. Measured current
density data is consistent with simulation datawkler, current density deviations
due to square and circle elements of experimertaniom are not enough to
reconstruct these elements. Therefore, anotherriexga including elements with

high conductivity contrast with respect to backgrdweonductivity can be conducted.

Main reasons of errors in experimental data argnalient problems, position of
slices and calculation of magnetic field derivasiv&herefore, special care must be

taken in every step of data collection.

According to the reconstruction results obtainethwliata of experiment 1, Solution
as a Linear Equation System algorithm is the mastcessful one since it
reconstructed both circle and square element pgrtibhis result is expected as
Solution as a Linear Equation System algorithm edowo be robust to noise
especially in low conductivity contrast regions aexperimental phantom has a
conductivity contrast of only 2. Therefore, whemduoctivity contrast increases,
Solution as a Linear Equation System algorithm rhaye a poorer performance.
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Also, Equipotential-Projection algorithm has a @drteconstruction where square
element is slightly distinguished. On the other dyad-Substitution and Hybrid

algorithms can not reconstruct conductivity disition. Moreover, noise becomes
dominant in corners of FOV for J-Substitution angbHd algorithms. Integration

along Equipotential Lines and Integration alongt€san Grid Lines algorithms can
not reconstruct conductivity distribution with datbexperiment 1.

Another experiment with a higher conductivity castr is also conducted where
circle element’s conductivity is increased to 1/Bh&nd square element is designed
to have nearly zero conductivity. Background il stt to 0.2 S/m. According to
results of experiment 2, Solution as a Linear BguaBystem, J-substitution and
Hybrid algorithms reconstructed both circle andasquelements clearly. However,
conductivity values at corners of FOV diverge foiSubstitution and Hybrid
algorithm since these regions have lower currensitle and more vulnerability to
noise. When error percentages for circle elemeantirarestigated, Hybrid algorithm
seems to have the lowest error which shows its reupg to J-substitution
algorithm. Equipotential-Projection algorithm canlyoreconstruct resistive square
element whereas Integration along Equipotentialetinand Integration along
Cartesian Grid Lines algorithms failed with datsemperiment 2.

A star plot is designed to see the overall perferreaof reconstruction algorithms
with aforementioned criteria. These are reconstindime, noise performance, error
performance, electrode size and reconstructed ingagdity. Different simulation
results are chosen for each criterion as mentitesaly.

» Error comparison with noisy data is performed wdtal error results of SNR

13 simulations with model 1.

» Error comparison is performed by noise-free caseilsitions of model 1.

* Image quality comparison is carried out with thogbantom results, such
that each reconstruction algorithm is graded frono 5 with respect to its
performance.
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» Electrode size is 9 cm for Integration along Eqteptial Lines, Integration
along Cartesian Grid Lines and Solution as a LinEguation System

algorithms and 1.8 cm for other algorithms.

* Reconstruction time for Hybrid and J-substitutiolgosithms is the time

elapsed for three iterations.

» Experimental performance comparison is done witiesgrgage error of circle

element for experiment 2.

Number of potential measurements and current iojegiatterns are not included in
comparison since they use the same number of th@seneters for consistency.
Each axis of star plot is discretized with the ntuoa results shown in Table 5.1.
Discretization of each axis is made in a way thaittlee distance from origin
increases, the performance gets better. For examgbenstruction time axis is

plotted with 1/(reconstruction time) values. Stht jis shown in Figure 5.1.

Table 5.1 Numerical Values for Star Plot

et | canond | tqsys | EPP | Jsb | hybi
Recon_struction 10s 10s 10s 10s 8 min 8 min
Time
Noise Error 233% 83% 18.5% 15.7% 18.1% 19.3%
Error 64% 21.2% 12.7% 6.9% 4.6% 3%
Electrode Size 9cm 9cm 9cm 1.8cm 1.8 cm 1.8 cm
Image Quality 1 2 4 3 5 5

Experimental
Error

- - 7% 80% 69% 64%
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Figure 5.1 Star Plot

5.2 Future work

In this thesis, current density (J) based MREITonstruction algorithms are
implemented and optimized with slight modificatioM8oreover, these algorithms
are compared both with simulated and experimerat det with respect to different

criteria. Some future work possibilities are:

 More experiments can be conducted especially witjh hconductivity

contrast phantoms.

* Another MRI system with a higher SNR level can bedi
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* Numerical methods for perceptual analysis on perémce of reconstruction

algorithms can be developed.

* Experiments with real tissues can be conducted.
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APPENDIX A

MREIT EXPERIMENT PROCEDURE

In Appendix A, experimental setup and proceduresiqgreriment 1 will be explained
in detail. In Section 2.5 and Section 4.2.6, gdneafarmation about data extraction
and MREIT experiments is given. In this chaptertHfer information is provided for

interested reader.

In Figure A.1, general setup for a conventional NTRExperiment is given. Main
components are MRI system (main magnet and RF, coijrent source and

phantom. These components will be explained inildeta

Magnet
) RF Caoll
Flb_er and
optic Phantom
cables
Current
Source

Figure A.1 General Setup for MREIT Experiments
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0.15 T METU MRI system is used for conducting tixperiments. MRI system is
controlled by a software which is designed by O#38}. Moreover, pulse sequence
parameters are assigned and data collection i®rpestl utilizing this software.
Another important component is the RF coil whichves both as a transmitter and
receiver coil. RF coil in Figure A.2 is designeddamplemented as a part of the

thesis work. Before data collection, the RF cai$ o be tuned.

Figure A.2 RF coil with the phantom inside.

Next component is the current source used for ntirngection. In a previous study,
Ozbek [31] designed a current source to conduct NIREperiments with METU
MRI system. However, control of METU MRI system hldmanged which forced to
design and implement a new current source. Twaiggstof the current source from
the front and back side are shown The new cur@nts is based on Ozbek’s design
with the difference that trigger for current inject is taken directly from pulse
sequence and trigger information is carried to ¢herent source with fiber optic
cables to eliminate noise interference. So, a e and a receiver unit are added
to previous design for fiber optic transmission. @@ be seen in Figure A.3a, there

is a BNC output in front of the current sourcemitasures the voltage on a resistor of
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10Q, that is the applied current amplitude can be doly dividing the voltage seen
by 10.

(b)
Figure A.3 Current Source a) Front View, b) Backwi

Next step is preparing the phantom. As explaine8ention 0, a plexiglas phantom
Is constructed which is shown in Figure A.4. 2D metry is obtained with plexiglas
walls seen in Figure A.4b. These walls force therent applied to flow between

them.

Figure A.4 Plexiglas Phantom, a) Oblique View, Ipper Side Removed
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Phantom elements are prepared with different coations of three solidfying
materials, TX151 [35], TX150 [35] and Agar-Agar [3®oreover, NaCl is added to
the solutions to increase conductivity. TX151 and130 are used to reduce ion
diffusion [40]. Also, CuS® (1g/L) is added to every solution to fix, Telaxation

time [31]. Preparation procedure for phantom elesenas follows [41],

+ NaCl is added to distilled water and solution ig'stl.

e TX151, TX150 and Agar-Agar are added and solutsobailed.

* Boiled solutions are poured quickly inside moldewh in Figure A.5

(@) (b)

Figure A.5 Molds for Phantom Elements, a) Mold 8quare Element, b) Mold for Circle
Element

After phantom elements inside the molds are hadieteey are taken out and put
inside plexiglas phantom as in Figure A.6. The spmeparation procedure is applied
to background solution which is poured into therghen just after phantom elements
are placed, shown in Figure A.6b. Critical point &l preparation procedure is the
amount of all solidifying materials, distiled watend NaCl inside phantom
elements. Conductivity of all elements are foundhwionductivity cell in Figure

A.7. Conductivity values of all elements are deteed after each solution is poured

and hardened inside conductivity cell. When theutsmh is hardened inside the
148



conductivity cell, its conductivity value is alsadd. Amounts of all TX151, TX150,
Agar-Agar, distilled water and NaCl for each phamtelement are given in Table
Al

(a) } o)

Figure A.6 Phantom with all Elements, a) Phantoranigints, b) Phantom Elements and
Background Solution

Figure A.7 Conductivity Cell
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Table A.1 Composition of Phantom Elements

Square Element Circle Element | Background Solution
(0.1 S/m) (0.4 S/m) (0.2 S/m)
Agar-Agar 059 19 -

TX151 - lg 189
TX150 1lg - 029
CuSQ 019 01g 0.1g

Distilled Water 100 ml 100 ml 100 ml
NacCl - 0.1g 01g

After experimental phantom is prepared data cobtacstage starts. In Figure A.8,
basic MREIT pulse sequence is illustrated. Helieg felection, phase encoding and

frequency encoding gradients arezny and x directions, respectively.
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Figure A.8 MREIT Pulse Sequence
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Screenshot of the software used for pulse sequeéesgn and data collection for

METU MRI system is shown in Figure A.9 for imagir® component. Procedure

for imaging z component of magnetic fieldB() is as follows,

Current electrodes are connected to the curremtsou

* Negative current is applied for horizontal curreméction and phase image is

obtained.

e Current polarity is changed to positive curreneation and phase image is

obtained.

* Magnetic field (B,) is extracted as explained in Section 2.5

e Above steps are repeated for vertical current tigac
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Figure A.9 Screen Shot Image of MRI software Byr imaging
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Next step is obtaining magnetic field i direction (B, ). First, phantom orientation

is changed such that imaging slice is orthogonat wirection. In that configuration

slice selection, phase encoding and frequency emgagtadients are irx, y and z
directions, respectively. Screen shot of the satwlar B, imaging is shown in

Figure A.10. Data collection procedure is the saasethe general procedure
explained above with the following changes,

» Slice position is adjusted to 5 mm above the ceatamaging slice in x

direction and above procedure is repeated.

» Slice position is adjusted to 5 mm below the cewofeimaging slice in x

direction and above procedure is repeated.
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Figure A.10 Screen Shot Image of MRI software Byrimaging
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Then, B, is extracted as explained in Section 4.5.6. Im@gih y component of

magnetic field 8,) is done in the same way as imagingBf with the difference

that slice positioning is done in y direction. Ssreshot of MRI software foB,

imaging is shown in Figure A.11. Here, slice setatt phase encoding and

frequency encoding gradients areyinz and » directions, respectively.

After all components of magnetic field are obtaimadrent density data both in

x andy directions {J, andJ,) are obtained as explained in Section 4.5.6.
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Figure A.11 Screen Shot Image of MRI software B;rimaging
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