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ABSTRACT 
 
 

ANALYSIS OF MAGNETIC RESONANCE IMAGING IN 
INHOMOGENOUS MAIN MAGNETIC FIELD   

 

 
 

Arpınar, Volkan Emre 

Ph.D., Department of Electrical and Electronics Engineering 

                 Supervisor: Prof. Dr. Murat Eyüboğlu 

 

 

August 2009, 119 pages 

 

 

In this study, analysis of Magnetic Resonance Imaging (MRI) in inhomogeneous 

main magnetic field is conducted. A numerical model based on Bloch equation is 

implemented for MRI, to understand effect of inhomogeneous magnetic field to 

Magnetic Resonance (MR) signal. Using the model, relations between 

inhomogeneity levels in main magnetic field with energy, decay time, bandwidth 

of the FID signal is investigated. Also relation between the magnetic field 

inhomogeneity and field of view is determined. To simulate measurement noise 

in the FID signal under inhomogeneous main magnetic field, noise model for 

MRI with homogeneous main field is altered. Following the numerical model 

development an image reconstruction algorithm for inhomogeneous main 

magnetic field is developed to remove undesirable effect of field inhomogeneity 

in image reconstruction. To evaluate capability of the reconstruction algorithm, 

the algorithm is tested for several input parameters which results in different 
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noise levels in the FID signal. Then reconstruction errors are analysed to gain 

information about feasibility of MRI in inhomogeneous main magnetic field. 

 

 

Keywords: Magnetic resonance imaging, Inhomogeneous magnetic field, Image 

reconstruction. 
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ÖZ 
 
 

HOMOJEN OLMAYAN ANA MANYET ĐK ALAN KULLANAN 
MANYET ĐK REZONANS GÖRÜNTÜLEMENĐN ANAL ĐZĐ 

 
 
 
 

Arpınar, Volkan Emre 

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü 

                      Tez Yöneticisi: Prof. Dr. Murat Eyüboğlu 

 

 

Ağustos 2009, 119 sayfa 

 

 

Bu çalışmada homojen olmayan ana manyetik alan kullanan manyetik rezonans 

görüntülemenin (MRG) analizi yapılmıştır. Homojen olmayan ana manyetik 

alanın, manyetik rezonans (MR) sinyaline etkisini anlamak için Bloch denklemi 

tabanlı sayısal bir model oluşturulmuştur. Oluşturulan sayısal model 

kullanılarak, manyetik alandaki homojenlikten sapma miktarıyla, MR sinyalinin 

enerjisinin, sönüm süresinin ve bant genişliğinin nasıl değiştiği incelenmiştir. 

Ayrıca manyetik alandaki homojenlikten sapma miktarıyla görüntüleme alanının 

nasıl değiştiği incelenmiştir. Homojen olmayan manyetik alandaki gürültü 

sinyalinin benzetimini yapmak için, homojen durum için geçerli gürültü modeli 

geliştirilerek yeni bir gürültü modeli oluşturulmuştur. Sayısal modelin 

geliştirilmesinden sonra homojen olmayan ana manyetik alan için görüntüleme 

algoritması geliştirilmi ştir. Bu görüntüleme algoritması manyetik alandaki 

homojenlikten sapmadan dolayı oluşan bozulmaları düzeltmek içindir. 

Görüntüleme algoritmasının performansını test etmek için farklı görüntüleme 
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parametreleri kullanılarak farklı seviyelerde gürültüye sahip MR sinyalleri 

oluşturulmuştur. Oluşturulacak sinyaller ve geliştirilen görüntü oluşturma 

algoritmasıyla görüntüler elde edilmiş ve elde edilen görüntülerdeki gürültü 

incelenerek homojen olmayan manyetik alan kullanan MRG sistemlerinin 

fizibilitesi hakkında bilgi elde edilmiştir. 

 

 

Anahtar kelimeler: Manyetik rezonans görüntüleme, Homojen olmayan ana 

manyetik alan, Görüntü geriçatımı. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

viii 

 

 

 

 

 

 

 

To my family  

 

 

 

 

 

 

 



 

ix 

 

ACKNOWLEDGEMENTS 
 
 
 
This study was performed under the supervision of Prof. Dr. Murat Eyüboğlu. I 

would like to express my sincere appreciation for his endless support, guidance 

and insights throughout the study. He believes in me more than I do.   

 

Prof. Dr. Adnan Köksal and Prof. Dr. Kemal Leblebicioğlu are members of 

Ph.D. supervision committee. I would like to express my sincere appreciation for 

their valuable support and guidance throughout the study.  

 

The author is currently funded by the research grant 107E141 from The 

Scientific and Technological Research Council of Turkey (TÜBĐTAK). The 

author is also granted with “National Scholarship Programme for PhD Students 

of TÜBĐTAK (2211)” for his Ph.D. studies. This thesis is partially supported by 

Middle East Technical University (METU) Research Grants BAP-2005-07-

02.00.36 and BAP-2006-07-02.00.01. 

 

I would like to thank Prof. Dr. Ziya Đder, Prof. Dr. Nevzat Gençer, and Assit. 

Prof. Dr. Serhat Özyar, Assit. Prof. Dr. Yesim Serinağaoğlu Doğrusöz (also 

Ahmet, Alp & Ela) for their guidance. 

 

I would like to thank Hüseyin Yigitler and Ayhan Ozan Yılmaz, who are team 

members of this project, for their support and helps. 

 

I also would like to thank Prof. Dr. Füsun Eyüboğlu and Mert Eyüboğlu for their 

encouragements and social binding that they developed.   



 

x 

 

I would like to thank all my colleagues, Can Acar, Zeynep Akalın Acar, Taha 

Ahi, Berna Akıncı, Haluk Altunel, Ümit Aydın, Özlem Birgül, Ceren Bora, 

Rasim Boyacıoğlu, Feza Carlak, Uğur Cunedioğlu, Mustafa Çavuşoğlu, Evrim 

Çolak, Evren Değirmenci, Gökhan Eker, Ali Ersöz, Balkar Erdoğan, Doğa 

Gürsoy, Başak Ülker Karbeyaz, Ersin Karcı, Alirıza Mazlomi, Dario Martin 

Lorca, Murat Önal, Orçun Özbek, Koray Özkan, Tankut Topal, Koray Uyar, 

Reyhan Zengin for their comments and supports. 

 

Also, my dear friends Arıl Bircan, Sinan Doğan, Mehmet Tamur, Anıl Aksay 

Pelin&Barış Ünlübaş, Evren Gürkan Çavuşoğlu, Asuman Özbek, Uğur&Ayşe 

Ungan, Feyza&Tolga Taşkın, Buket Yiğitler, Gülşen&Yılca Sert, Özlem Ersöz, 

Mustafa Seçmen, Barış Tanrıverdi, Burcu&Emek Demir, Neslihan&Fatih 

Bayramoğlu, Emre Ulay, Görkem Şarkış, Nazmiye&Sermet Akbay, Sedat 

Doğru, Aslı&Eren Gönen, deserve thanks for all their support and 

encouragements.  

 

Finally, my family, their great support is reassuring. I am sure that I would not 

able to finish this work without their love and affection.  

 



 

xi 

 

TABLE OF CONTENTS 
 
 
 

ABSTRACT.......................................................................................................... iv 

ÖZ..........................................................................................................................vi 

ACKNOWLEDGEMENTS .................................................................................. ix 

TABLE OF CONTENTS......................................................................................xi 

LIST OF TABLES ............................................................................................... xv 

LIST OF FIGURES.............................................................................................xvi 

CHAPTERS 

1. INTRODUCTION......................................................................................... 1 

1.1. Magnetic Resonance Imaging in Homogenous Main Magnetic Fields 1 

1.2. Magnetic Resonance Phenomena in Inhomogeneous Magnetic Fields 3 

1.2.1. Nuclear Magnetic Resonance Systems Using Inhomogeneous 

Magnetic Fields .................................................................................... 3 

1.2.2. Magnetic Resonance Imaging Attempts Using Inhomogeneous 

Magnetic Fields .................................................................................... 5 

1.3. Numerical Models of Magnetic Resonance Phenomena ...................... 6 

1.4. Aim of the Thesis Study ....................................................................... 7 

2. THEORY OF SIGNAL AND NOISE MODELING IN   

INHOMOGENEOUS MAGNETIC FIELDS AND THE PROPOSED FFT 

BASED RECONSTRUCTION ALGORITHM................................................ 9 

2.1. Developed Numerical Model for Magnetic Resonance Phenomena in 

Inhomogeneous Magnetic Fields ................................................................. 9 



 

xii 

 

2.1.1. Magnetic Resonance Phenomena in Inhomogeneous Magnetic 

Fields - Basics and Assumptions .......................................................... 9 

2.1.2. RF Pulse Modeling and Excitation Used in Inhomogeneous 

Magnetic Fields .................................................................................. 18 

2.1.3. Rotating Frame of Reference Selection to Model Magnetic 

Resonance Imaging in Inhomogeneous Magnetic Fields ................... 20 

2.1.4. Derived Bloch Equation to Model Magnetic Resonance 

Phenomena in Inhomogeneous Magnetic Fields ................................ 22 

2.1.5. Free Precession and Relaxation Process in Inhomogeneous 

Magnetic Fields .................................................................................. 27 

2.1.6. Signal Detection Principles Used in Inhomogeneous Magnetic 

Fields .................................................................................................. 28 

2.2. Noise Model of Magnetic Resonance Imaging................................... 32 

2.2.1. Noise Model of Magnetic Resonance Imagining in 

Homogeneous Magnetic Fields .......................................................... 32 

2.2.1. Noise Model of Magnetic Resonance Imagining in 

Inhomogeneous Magnetic Fields........................................................ 33 

2.3. Proposed FFT Based Image Reconstruction Algorithm for 

Inhomogeneous Magnetic Fields ............................................................... 35 

3. FREE INDUCTION DECAY SIGNAL CHARACTERISTICS IN 

INHOMOGENOUS MAGNETIC FIELDS.................................................... 39 

3.1. Analysis Parameters Used to Characterize Free Induction Decay 

Signal in Inhomogeneous Magnetic Fields................................................ 39 

3.1.1. Decay Time of Free Induction Decay Signal ........................... 40 

3.1.2. Signal Peak of Free Induction Decay Signal ............................ 49 



 

xiii 

 

3.1.3. Energy of Free Induction Decay Signal.................................... 50 

3.1.4. Field of View and Image Resolution........................................ 50 

3.2. One-Dimensional Analysis of Free Induction Decay Signal in 

Inhomogeneous Main Magnetic Field ....................................................... 51 

3.2.1. Analytical Results for Free Induction Decay Signal in 

Inhomogeneous Main Magnetic Field ................................................ 52 

3.2.2. Numerical Results for Free Induction Decay Signal in 

Inhomogeneous Main Magnetic Field ................................................ 64 

3.3. Two-Dimensional Analysis of Free Induction Decay Signal in 

Inhomogeneous Main Magnetic Field ....................................................... 66 

3.3.1 Numerical Results for Free Induction Decay Signal in 

Inhomogeneous Main Magnetic Field ................................................ 67 

4. RESULTS OF FFT BASED IMAGE RECONSTRUCTION ALGORITHM 

FOR INHOMOGENOUS MAGNETIC FIELDS........................................... 73 

4.1. FFT Based Image Reconstruction Algorithm Results without Noise. 75 

4.2. FFT Based Image Reconstruction Algorithm Results with Noisy Free 

Induction Decay Signal.............................................................................. 84 

5. EXPERIMENTAL RESULTS .................................................................... 88 

5.1. Experimental Setup............................................................................. 88 

5.2. Experimental Results for FID Signal in Inhomogeneous Main 

Magnetic Field for One-Dimension........................................................... 92 

5.3. Experimental Results for Imaging in Inhomogeneous Main Magnetic 

Field for One-Dimension ........................................................................... 98 

6. CONCLUSIONS ......................................................................................... 99 



 

xiv 

 

REFERENCES................................................................................................... 101 

APPENDICES 

A. THEORY OF MR_EIT IN INHOMOGENOUS MAIN MAGNETIC 

FIELDS.......................................................................................................... 110 

VITA .................................................................................................................. 117 

 



 

xv 

 

LIST OF TABLES 
 
 
 

TABLES 

Table 2.1. Measured SNR values for different MRI systems under various main 

magnetic field strengths. Table is reproduced from [71]. ................................... 33 

Table 3.1. Longitudinal (T1) and transverse (T2) relaxation times of different 

normal tissue types, which are measured in different main magnetic field 

strengths, are given. This table is reproduced from [72]..................................... 41 

Table 3.2. Inhomogeneity level in x and y direction versus time constant and 

minimum sampling frequency needed is given................................................... 72 

Table 4.1. Usage areas of analytic solution......................................................... 74 

Table 4.2. Error values for different inputs for homogenous main magnetic field 

with linear gradient and spin echo pulse sequence ............................................. 80 

Table 4.3. Simulation inputs for inhomogeneous main magnetic field case....... 81 

Table 4.4. Pulse sequence, test object and other parameters used as inputs 

simulation. for inhomogeneous main magnetic field case. ................................. 85 

Table 4.5. SNR values and reconstruction errors for different T2 values............ 87 

Table 4.6. SNR values and reconstruction error corresponding to different input 

parameters (N and ST). ........................................................................................ 87 

 



 

xvi 

 

 

LIST OF FIGURES 
 
 
 

FIGURES 

Figure 2.1. Original and local coordinate systems. ............................................. 19 

Figure 2.2. Main magnetic field strength versus intrinsic SNR. Red dots 

represent calculated intrinsic SNR values in Table 2.1 for different main 

magnetic field strength points. Blue line shows the fitted first order polynomial 

for these measurement points.............................................................................. 34 

Figure 3.1. Time versus FID signal for an inhomogeneous main magnetic field 

with linear 100 parts per million (ppm) inhomogeneity is given. The test object 

selected as uniform with T2 constant of 20 ms. Signal is obtained using spin echo 

pulse sequence..................................................................................................... 43 

Figure 3.2. Time versus magnitude of demodulated FID signal......................... 44 

Figure 3.3. Zoomed version of Figure 3.2 with signal maximum and time elapsed 

when the signal is decreased to half of its maximum.......................................... 45 

Figure 3.4. Demodulated FID signal for different levels of inhomogeneity for 

one-dimensional case is given. In these plots, t = 0 corresponds to echo time TE. 

(a) 0slopeB = 6.55·10-5, which corresponds to 33.8 ppm (b) 0slopeB = 4.29·10-4, 

which corresponds to 222 ppm (c) 0slopeB = 2.81·10-3, which corresponds to 

1.45·103 ppm (d) 0slopeB = 18.3·10-3, which corresponds to 9.52·103 ppm........... 56 

Figure 3.5. Inhomogeneity level versus demodulated FID signals’ maximum 

values plot is given for one-dimensional case. Values are calculated from 

analytical FID signals.......................................................................................... 57 

Figure 3.6. Inhomogeneity level versus demodulated FID signals’ normalized 

energy plot is given for one-dimensional case. Values are calculated from 



 

xvii 

 

analytical FID signal. .......................................................................................... 58 

Figure 3.7. Inhomogeneity level versus demodulated FID signals’ total 

transverse relaxation time constant plot is given for one-dimensional case. 

Values are calculated using analytical FID signal. ............................................. 59 

Figure 3.8. Inhomogeneity level versus maximum sampling period needed is 

given for one-dimensional case. Assumptions are MRI receiver part has a 12 bit 

analog to digital converter and 31 pixel image is reconstructed. Values are 

calculated using analytical FID signal. ...............................................................60 

Figure 3.9. Inhomogeneity level versus minimum sampling frequency needed is 

given for one-dimensional case. Assumptions are MRI receiver part has a 12 bit 

analog to digital converter and 31 pixel image is reconstructed. Values are 

calculated using analytical FID signal. ...............................................................61 

Figure 3.10. Inhomogeneity level versus sampling frequency needed to measure 

the signal for one-dimensional case. Assumptions are MRI receiver part has a 12 

bit analog to digital converter and 31 pixel image is reconstructed. Values are 

calculated using analytical FID signal. ...............................................................62 

Figure 3.11. Inhomogeneity level versus Bandwidth of receiver and Bandwidth 

of RF is given for one-dimensional case. Assumptions are: MRI receiver part has 

a 12 bit analog to digital converter and 31 pixel image is reconstructed. Values 

are calculated using analytical FID signal........................................................... 62 

Figure 3.12. Inhomogeneity level versus (a) Signal maximum, (b) Energy, (c) 

total longitudinal time constant, (d) maximum sampling period, (e) minimum 

sampling frequency, (f) bandwidth of RF and receiver is given. Results are 

obtained from numerical results.......................................................................... 64 

Figure 3.13. Inhomogeneity level versus (a) Signal maximum, (b) Energy, (c) 

total longitudinal time constant, (d) maximum sampling period, (e) minimum 

sampling frequency, (f) bandwidth of RF and receiver is given. Results are 

obtained from numerical FID signal. .................................................................. 65 



 

xviii 

 

Figure 3.14. Inhomogeneity level versus demodulated FID signals’ maximum 

value plot is given for two-dimensional case. Values are calculated from 

numerical FID signals. ........................................................................................ 68 

Figure 3.15. Inhomogeneity level versus demodulated FID signals’ normalized 

energy plot is given for two-dimensional case. Values are calculated from 

analytical FID signal. .......................................................................................... 69 

Figure 3.16. Inhomogeneity level versus demodulated FID signals’ decay time 

constant plot is given for two-dimensional case. Values are calculated from 

analytical FID signal. .......................................................................................... 70 

Figure 3.17. Inhomogeneity level versus minimum sampling frequency needed is 

given for two-dimensional case. Assumptions are MRI receiver part has a 12 bit 

analog to digital converter and 31x31 pixel image is reconstructed. Values are 

calculated using analytical FID signal. ...............................................................70 

Figure 3.18. Inhomogeneity level in logarithmic scale versus sampling frequency 

needed to measure the signal for two-dimensional case. Assumptions are MRI 

receiver part has a 12 bit analog to digital converter and 31x31 pixel image is 

reconstructed. The plane shows the limit is at 1MHz. Values are calculated using 

analytical FID signal. .......................................................................................... 71 

Figure 4.1. Block diagram of the MRI simulator for inhomogeneous magnetic 

field, which includes numerical model, noise model and image reconstruction 

modules. .............................................................................................................. 74 

Figure 4.2. Spin echo pulse sequence. ................................................................ 76 

Figure 4.3. Proton density distribution of the test object. ................................... 77 

Figure 4.4. Simulation results (a) linear scale (b) logarithmic scale................... 77 

Figure 4.5. The magnitude of A matrix is given for homogenous magnetic main 

field with linear gradient and spin echo pulse sequence. .................................... 78 

Figure 4.6. Reconstructed image is given for homogenous main magnetic field 



 

xix 

 

with linear gradient and spin echo pulse sequence. ............................................ 79 

Figure 4.7. Strength and direction of the main magnetic field. Color map shows 

the strength of main magnetic field, the arrows show the direction of the main 

magnetic field. The x-component of the main magnetic field is zero................. 81 

Figure 4.8. Absolute value of demodulated FID signals without noise is given. 82 

Figure 4.9. Direct Fourier transform of the demodulated output signal. ............ 83 

Figure 4.10. a) Relative error, b) Background noise mean versus SD truncation 

level for noiseless inhomogeneous case.............................................................. 83 

Figure 4.11. Reconstructed image using proposed FFT based reconstruction 

algorithm. ............................................................................................................ 84 

Figure 4.12. Reconstructed images with different T2 values. (a) T2 = 300 ms, (b) 

T2 = 100 ms, (c) T2 = 50 ms, (d) T2 = 20 ms, (e) T2 = 10 ms .............................. 86 

Figure 5.1. Experimental phantom with two separate compartments (1 & 2) is 

used for magnetic resonance imaging in inhomogenous main magnetic field. .. 88 

Figure 5.2. Pulse sequence used to find the T1 and T2 estimate of the CuSO4 

solution. ............................................................................................................... 89 

Figure 5.3. Experimental results of FID signal maximum versus different TR 

values are shown as blue circles and fitted curve (A1 = 5.33, T1 = 0.16) for these 

experimental data are shown in red line.............................................................. 90 

Figure 5.4. Experimental results of FID signal maximum versus different TR 

values are shown as green circles and fitted curve (A2 = 5.41, T2 = 0.152) for 

these experimental data are shown in red line..................................................... 92 

Figure 5.5. Pulse sequence used to find the Experimental Results for Free 

Induction Decay Signal in Inhomogeneous Main Magnetic Field for one-

dimentional case.................................................................................................. 93 

Figure 5.6. Inhomogeneity level versus demodulated FID signals’ maximum 



 

xx 

 

values plot is given for one-dimensional case. Blue line is calculated from 

analytical FID signals. Red line shows experimental results. ............................. 94 

Figure 5.7. Inhomogeneity level versus demodulated FID signals’ normalized 

energy plot is given for one-dimensional case. Blue line is calculated from 

analytical FID signal. Red line gives experimental results. ................................ 95 

Figure 5.8. Inhomogeneity level versus  (a) T2
* estimate and (b) minimum 

sampling frequency needed is given for one-dimensional case. Assumptions are 

MRI receiver part has a 12 bit analog to digital converter and 31 pixel image is 

reconstructed. Blue lines are calculated using analytical FID signal. Red lines are 

obtained from experimental results. .................................................................... 96 

Figure 5.9. Bandwidth level versus minimum sampling frequency needed is 

given for one-dimensional case. Assumptions are MRI receiver part has a 12 bit 

analog to digital converter and 31 pixel image is reconstructed. Blue lines are 

calculated using analytical FID signal. Red lines are obtained from experimental 

results. ................................................................................................................. 97 

Figure 5.10. Experimental result of imaging in inhomogeneous main magnetic 

field for one-dimensional case. Blue line is reconstructed image. Red line shows 

the phantom......................................................................................................... 98 

 



 

1 

 

CHAPTER 1 
 
 

INTRODUCTION 

 
 
 

Magnetic Resonance Imaging (MRI) is a well-known tomographic imaging 

technique that produces images of internal physical and chemical characteristics 

of an object from externally measured Free Induction Decay (FID) signals. 

Physically, MRI is based on well-known Nuclear Magnetic Resonance (NMR) 

phenomenon observed by Felix Bloch and Edward Purcell independently in 1946 

[1, 2]. 

 
 

1.1. Magnetic Resonance Imaging in Homogenous Main Magnetic Fields 

 

In 1972, Paul Lauterbour developed an image formation method by the spatial 

information encoded to the MR signal [3]. A conventional imaging system is 

composed of a main magnet, a gradient system, and a radio frequency (RF) 

system.  

 

The main magnet’s function is to generate a strong main magnetic field (0B
�

). In 

clinical MRI systems, magnitude of 0B
�

 is the range of 0.3 T to 3 T [4]. For some 

experimental systems, this value goes up to 20 T. The strength of 0B
�

 directly 

affects Signal to Noise Ratio (SNR) and spatial resolution of an imaging system. 

In these systems, homogeneity over the imaged volume is also important. So, 

efforts are made to achieve homogeneity of the main magnetic field. Therefore, 

in these systems inhomogeneity is as small as 10 ppm to 50 ppm [4]. After 

generation of the homogeneous main magnetic field, the gradient coil system is 
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used to perturb the main magnetic field in a controlled manner to encode spatial 

information to the FID signal. Therefore, tomographic image of an object is 

obtained from the spatially encoded FID signal by means of an image 

reconstruction algorithm.  

 

The magnetic field gradient system normally consists of three orthogonal 

gradient coils. These coils are designed to generate time varying magnetic fields 

in a controlled way. This generates spatial non-uniformity in magnetic field so 

that spatial information is encoded to the FID signal. This makes signal 

localization and imaging possible. Strengths of the gradient fields are small 

compared to main magnetic field. Coils with amplifiers generate these gradient 

fields and the gradient strength is in the order of milli-Tesla per meter (mT/m) in 

MRI systems with homogeneous main magnetic field [5]. In order to receive 

signal from an object, to be imaged, a Radio Frequency (RF) signal, which is 

synchronized with the gradient fields, has to be applied to the object. 

 

The RF system consists of transmitter coils, that are capable of generating time 

varying magnetic fields for excitation, and receiver coils, that are used to collect 

FID signal. In some systems, a single coil is used for both purposes. These 

transmitter and receiver coils are named as RF coils since the operation 

frequency in the range of RF signals. The desired futures of the RF coils are high 

detection sensitivity and generation of uniform magnetic fields. This achieves 

uniform excitation and signal reception from the object to be imaged. 
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1.2. Magnetic Resonance Phenomena in Inhomogeneous Magnetic Fields 

 

Several magnetic resonance studies have been performed in inhomogeneous 

main magnetic fields. The primary usage of inhomogeneous main magnetic 

fields has been in NMR experiments. Following that, some imaging attempts 

were made. 

 
 

1.2.1. Nuclear Magnetic Resonance Systems Using Inhomogeneous Magnetic 

Fields 

 

The first NMR system with inhomogeneous main field is used in oil industry [6-

8]. This system has a probe lowered to the hole of an oil-well. The probe uses a 

small permanent magnet to generate a main magnetic field. Therefore, the main 

magnetic field strength and homogeneity is deteriorating. This inhomogeneous 

magnetic fields strength is about 0.03 T with a field variation of 0.1 T/m. To 

receive signal from the samples, echo techniques are used to overcome the 

effects of field inhomogeneity [9-12]. These systems designed to record signal 

originating from a small region to have limited inhomogeneity in the field 

corresponding to the Region of Interest (ROI).   

 

Inside-out NMR systems are similar to the previous oil-well systems [13-16]. In 

these systems, a NMR sensor, which is smaller than the object, is placed near the 

object. However, the single-sided sensors used in these systems have magnetic 

field as homogeneous as possible. These systems are used to the detection of 

moisture in soil [18,19], concrete [18, 20], building materials [20, 21] and food 

[22-24], explosives detection [25,26], quality and product control [27-30], 

medical diagnostics [15], and on-line monitoring [15, 16, 22].  
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In 1996, a mobile NMR surface scanner (NMR-MOUSE) has been developed for 

investigation of arbitrarily large objects, to be used mainly in material science 

[31, 32]. As the NMR MOUSE is developed, more information about NMR 

phenomenon in inhomogeneous magnetic fields is obtained. Initially, this system 

was mainly used to measure transverse relaxation time of the sample [31]. After 

that, other parameters like longitudinal relaxation time [33-34], diffusion 

coefficients [35 - 38], double-quantum coherences and their relaxation times [39, 

40] and velocities [41] have been measured using this system. 

 

The basic experimental setup of the surface scanner constructed by Eidmann et 

al. is composed of mainly two parts [31]. The first part is the RF pulse 

generation amplification and signal detection part with a NMR spectrometer. 

NMR spectrometer is connected to a PC. The setup size fits on a desktop. The 

PC is also utilized to generate pulse sequence, and acquire data. The second part 

is the probe. The probe weights about 2.5 kg and the user could position it 

arbitrarily. The probe is composed of a solenoid RF coil and a permanent 

magnet. This setup eliminates the usage of super conducting magnet, which is 

the most expensive part of the conventional MR systems. However, main 

magnetic and RF fields are inhomogeneous, Hahn echoes, CPMG type pulse 

sequences are used [42]. In this system, the strength of the pulse is not clear due 

to depth dependence of the excitation flip angle [31]. So the strength of the pulse 

is determined experimentally to make the signal response maximum. Sensitive 

depth range of the system is about 0 - 2 mm and the sensitive area is 3.5 mm x 

3.5 mm for that depth [31]. 
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1.2.2. Magnetic Resonance Imaging Attempts Using Inhomogeneous 

Magnetic Fields 

 

These portable NMR systems are also used for imaging purposes. These systems 

have low and inhomogeneous main magnetic fields. The disadvantage of low and 

inhomogeneous main magnetic field is low sensitivity and low signal to noise 

ratio (SNR) [43]. However, the advantages are the longitudinal relaxation time 

decreases for many materials so the repetition time between scans is shortened, 

the relaxation time contrast improves, chemical shift and susceptibility artifacts 

are scaled down, and the instrumentation becomes smaller and less expensive 

[44]. 

 

In 1998, Bülmich et al. made in-vitro explorative studies on biomedical samples 

using the NMR-MOUSE. They obtained a cross-sectional image of transverse 

relaxation time of a pork tendon [32]. In order to obtain image of the pork leg the 

NMR mouse is positioned over the region of interest. One year later, anisotropy 

of a tendon investigated in- vivo by Haken and Bülmich [45]. 

 

In 2000, Prado et al. integrated a gradient coil to the previously designed NMR-

MOUSE to encode spatial information to the recorded signal. By using this 

gradient, one-dimensional imaging is possible without moving the probe. The 

maximum field of view (FOV) of the system is about 15 mm [46]. Also, Baril et 

al. uses specially designed RF coil which has a RF field inhomogeneity in a 

controlled manner to obtain one-dimensional images of spin density. In this 

method, the gradient fields are not used [47, 48].  

 

By using the NMR-MOUSE, two and three-dimensional images of materials 

have been investigated in recent years. This is achieved by using mechanical 
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movement and by using gradient fields [49-52]. In these images, gradient coils 

are used to encode the position in the FOV. 

 

Another method by using inhomogeneous main magnetic field is Stray-field 

Imaging (STRAFI), first suggested by Samoilenko et al. [53]. This method has a 

restricted sensitive region and it exploits extremely large magnetic field gradient 

found outside the central region of a high field superconducting NMR magnet. 

This method preserves dynamic contrast, which makes magnetic resonance so 

powerful in the first place, while at the same time offers very high spatial 

resolution [54, 55]. Due to extremely large magnetic field gradient, even a short 

radio frequency pulse only excites nuclei in a narrow slice of the sample, 

orthogonal to the gradient direction. This provides spatial localization of the 

NMR measurement. By moving the sample gradually through the gradient and 

repeating the measurement, it is possible to build a profile of the sample in the 

gradient direction. By this mechanical motion, two or three-dimensional images 

can be obtained. Miller and Garroway also employ STRAFI technique with use 

of surface coils that generate RF field perpendicular to an inhomogeneous main 

magnetic field [56]. 

 
 

1.3. Numerical Models of Magnetic Resonance Phenomena 

 

MRI numerical models are generally made for homogenous main magnetic fields 

and RF fields which are perpendicular to main magnetic field [57, 58]. In some 

models inhomogeneity cannot be fully maintained [59, 60]. Only a small 

deviation in the magnitude but not in the direction is covered in the model. In 

1984, Bittoun and colleagues solved the Bloch equation for one-dimension by 

solving for every separate point [61]. Bloch equation models the behavior of 

magnetization vector, which is an ensemble of magnetizations of NMR active 
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atoms. After that, Summers et al. and Olsson et al. used the same technique to 

solve the problem in two-dimensions and then in three-dimensions [62, 63]. 

Since the computational cost is too high to solve the Bloch equation for every 

point, they parallelized the calculations [64, 65]. 

 

Some NMR models use Quantum density matrixes [66-68]. They are good at 

simulating NMR phenomena. This approach models every NMR active atom. 

However, computational cost is very high compared to Bloch equation since, it 

models every atom in the object rather than ensemble of magnetization. Also in 

heterogeneous biological materials, it is not practical to use this model [69]. 

 
 

1.4. Aim of the Thesis Study 

 

Aim of this thesis is analysis of MR imaging in inhomogeneous main magnetic 

field. For that, a numerical model based on Bloch equation is implemented. This 

model gives deep understanding about the effects of inhomogeneous magnetic 

field to the FID signal. Using the model, relations between inhomogeneity levels 

in main magnetic field with energy, decay time, bandwidth of FID signal are 

investigated. Also relation between the magnetic field inhomogeneity and field 

of view is determined. To simulate the noise signal for the inhomogeneous main 

magnetic field case, noise model for MRI with homogeneous field is altered. 

Following the numerical model development, an image reconstruction algorithm 

in inhomogeneous main magnetic field is developed to remove undesirable effect 

of field inhomogeneity in image reconstruction. To evaluate capability of the 

reconstruction algorithm, the algorithm is tested for different input parameters 

which results in different noise levels in the FID signal. Then reconstruction 

errors are analysed to gain information about feasibility of MRI in 

inhomogeneous main magnetic field. 
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Using these analyses of MRI system in inhomogeneous main magnetic field, 

portable MRI systems with inhomogeneous magnetic fields are possible. To 

generate inhomogeneous magnetic field a permanent magnet can be used and the 

price of the system is lowered. Also, the reconstruction algorithm can be applied 

to any MRI system to correct the errors due to inhomogeneity in the main 

magnetic field. 
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CHAPTER 2 
 
 

THEORY OF SIGNAL AND NOISE MODELING IN 
INHOMOGENEOUS MAGNETIC FIELDS AND THE 

PROPOSED FFT BASED RECONSTRUCTION ALGORITHM 
 

 
 

In this chapter, theory of the signal model developed for MRI in inhomogeneous 

magnetic fields is given. Then the noise model developed for this case is given. 

Finally, the proposed reconstruction algorithm is explained. 

 
 

2.1. Developed Numerical Model for Magnetic Resonance Phenomena in 

Inhomogeneous Magnetic Fields 

 

In order to understand and analyze the FID signal, a numerical model is needed 

for magnetic resonance phenomena in inhomogeneous magnetic fields. 

 
 

2.1.1. Magnetic Resonance Phenomena in Inhomogeneous Magnetic Fields - 

Basics and Assumptions 

 

Biological samples are composed of atoms. A fundamental property with odd 

atomic number or atomic weight possesses an angular momentum called as a 

nuclear spin. Nuclear spin can be characterized by quantum mechanics however,  

in MRI of biological tissues an ensemble of the spins is analyzed.  Since the 

imaging of hydrogen atoms in biological tissues is aimed, our interest is the 

ensemble of the spins. So that using quantum mechanics principles, when the 

biological object is placed in an external magnetic field, behavior of a spin 

system, which generates nuclear magnetism, can be found.  
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Nuclear magnetism of a spin system originates from the microscopic magnetic 

field associated with a nuclear spin. As an example: the hydrogen atom, which 

has a nucleus with electrical charge and rotates around its own axis, creates a 

magnetic field around it. This spin’s magnetic field can be represented as a 

vector quantity. This quantity can be related with spin angular momentum (J
�

) 

using (2.1). γ  is a physical constant known as gyromagnetic constant and it is 

nucleus specific. For a hydrogen atom it is equal to 2.675·108 Hz/T. 

 

J
�� γµ =  (2.1) 

 

Based on the theory of quantum mechanics, the magnitude of nuclear magnetic 

moment can take discrete values [3]. The hydrogen atoms can take two possible 

values. Although, the magnitude of nuclear magnetic momentum is certain under 

any conditions, but its direction is completely random in the absence of a strong 

external magnetic field. This is due to thermal random motion. 

 

To achieve macroscopic magnetism from an object, it is necessary to align the 

direction of the spins. This can be done by applying a strong external magnetic 

field. Assume that the magnetic field spatial distribution of main magnetic field 

can be denoted as ),,(0 zyxB
�

. It can be decomposed as magnitude distribution 

( 0( , , )B x y z
�

) and unit vector distribution ('( , , )r x y z
�

) in the same direction with 

),,(0 zyxB
�

. Hence, ),,(0 zyxB
�

 can represented as 
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0 0( , , ) ( , , ) '( , , )B x y z B x y z r x y z=
� �

 (2.2) 

 

As indicated before, the magnetic momentum can take discrete set of 

orientations. When the external magnetic field applied in the direction of 

'( , , )r x y z
�

, the component of the magnetic momentum with direction '( , , )r x y z
�

 

becomes certain but the other components are not known. For hydrogen atom 

there exists two possible orientations in '( , , )r x y z
�

 direction. This means that the 

orientation of magnetic momentum vector quantized along the direction of 

externally applied main magnetic field. Since there is no external magnetic field 

in transverse plane (normal plane to '( , , )r x y z
�

), transverse component of 

magnetic momentum remains arbitrary. In order to find a differential relation 

between magnetic momentum and external magnetic field, motion of magnetic 

momentum has to be described.  

 

According to classical mechanic, the torque of magnetic momentum when placed 

in an external magnetic field is given in equation (2.3) 

 

( )0

( , , , )
( , , , ) ( , , ) '( , , )

J x y z t
x y z t B x y z r x y z

t
µ∂ = ×

∂

�
� �

 (2.3) 

 

Using the equation (2.1) with (2.3), then 

( )0

( , , , )
( , , , ) ( , , ) '( , , )

x y z t
x y z t B x y z r x y z

t

µ γµ∂ = ×
∂

�
� �

 (2.4) 
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In order to solve the differential equation in (2.4), coordinate system has to be 

changed. A new local coordinate system is required to obtain decoupled 

differential equations. The local coordinate system can be defined by the 

orthogonal base vectors namely 'θ
�

, 'ϕ� , and 'r
�

 for every position ( , , )x y z . To 

have a decoupled differential equation 'r
�

 is selected in the same direction as 

0( , , )B x y z
�

. Afterwards 'θ
�

 can be selected arbitrarily which lies in the normal 

plane to 'r
�

. That is 

 

'( , , ) '( , , ) 0r x y z x y zθ⋅ =
��

. (2.5) 

 

Then base vector 'ϕ�  is selected. In order to have a conventional right handed 

coordinate system select 'ϕ� as in (2.6) 

 

'( , , ) '( , , ) '( , , )x y z r x y z x y zϕ θ= ×
�� �

 (2.6) 

 

The equation in scalar form becomes 

 

'
0 ' 0 '

'
0 0' '

'

( , , , )
( , , ) ( , , , ) ( , , ) ( , , , )

( , , , )
( , , ) ( , , , ) ( , , ) ( , , , )

( , , , )
0r

x y z t
B x y z x y z t x y z x y z t

t
x y z t

B x y z x y z t x y z x y z t
t
x y z t

t

θ
ϕ ϕ

ϕ
θ θ

µ
γ µ ω µ

µ
γ µ ω µ

µ

∂
= = ∂

∂ = = ∂
∂ = ∂

�

� �

�

� �

�

�

�
 (2.7) 
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In (2.7) 
'θµ � , 'ϕµ � , 'rµ� , corresponds to projection of µ�  to 'r

�
, 'θ
�

, 'ϕ�  axis. 0ω  is 

named as the Larmor frequency and it is equal to0( , , )B x y zγ
�

. After taking the 

derivatives of the first two equations with respect to time and using the above 

relations, the result is 

 

2
' 2'

0 02 '

2
' 2'

0 0 '2

( , , , )( , , , )
( , , ) ( , , ) ( , , , )

( , , , ) ( , , , )
( , , ) ( , , ) ( , , , )

x y z tx y z t
B x y z x y z x y z t

t t

x y z t x y z t
B x y z x y z x y z t

t t

ϕθ
θ

ϕ θ
ϕ

µµ
γ ω µ

µ µ
γ ω µ

∂∂
= =

∂ ∂
∂ ∂

= =
∂ ∂

� �

�

��

�

�

�
 (2.8) 

 

Setting the initial conditions to '( , , ,0)r x y zµ� , '( , , ,0)x y zϕµ � , and 
'
( , , ,0)x y zφµ �  

then the solution becomes: 

 

'
0 ' 0'

'
0 ' 0'

' '

( , , , )
( , , ,0)cos( ( , , ) ) ( , , ,0)sin( ( , , ) )

( , , , )
( , , ,0)sin( ( , , ) ) ( , , ,0)cos( ( , , ) )

( , , , ) ( , , ,0)

y

r r

x y z t
x y z x y z t x y z x y z t

t
x y z t

x y z x y z t x y z x y z t
t

x y z t x y z

θ
θ

ϕ
ϕθ

µ
µ ω µ ω

µ
µ ω µ ω

µ µ

∂
= + ∂

∂ = − + ∂
=




�

�

�

� �

� �

 
(2.9) 

In order to represent our magnetic moment in a different way the transverse part 

of the magnetic moment, which is defined by 
'
( , , , )x y z tθµ �  and '( , , , )x y z tϕµ � , 

can be combined as a complex function. That is 

 

'' ' '
( , , , ) ( , , , ) ( , , , )x y z t x y z t j x y z tϕθ ϕ θµ µ µ= +� � ��  (2.10) 
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Then (2.9) becomes  

 

0

'

( , , )

' ' ' '

'

( , , , ) ( , , ,0)

( , , , ) ( , , ,0)
r

j B x y z t

r

x y z t x y z e

x y z t x y z

γ
θ ϕ θ ϕµ µ

µ µ

− =


= �

� �� �

�

 (2.11) 

 

To describe the collective behavior of a spin system, a macroscopic 

magnetization vector M
�

can be introduced for inhomogeneous main magnetic 

field. Due to change in the main magnetic field with position, we have to divide 

the object into volume elements (voxels) and assume that main magnetic field 

change is negligible in that voxel. Say that ( , , , )i i iM r tθ ϕ
�� � �

 is the vector sum of all 

the magnetic moment in the voxel defined byiθ
�

, iϕ�  , and ir
�

. Then, 

 

,( , )

,
1

( , , , )
i i iN x y z

i i i n t
n

M x y z t µ
=

= ∑
� �

 (2.12) 

 

where , ,i i ix y zN  is the total number of spins in the voxel. By using previous 

analysis, we can find collective behavior of the spins when placed in static 

magnetic field. As discussed before tn,µ�  takes two possible orientations with 

respect to the '( , , )r x y z
�

 axis at a given time for hydrogen atom. Spins in 

different orientations have different energy interaction with the static magnetic 

field. According to the quantum theory for every voxel, 
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0 ' 0rE B Bµ µ= − ⋅ = − ⋅�
� ��

 (2.13) 

 

Then for pointing up spins, 

 

0

1

2
E h Bγ↑ = −

�
 (2.14) 

 

where h  is Planck’s constant divided by π2 , and pointing down spins 

 

0

1

2
E h Bγ↓ =

�
 (2.15) 

 

As seen above, spin up state is the lower-energy state, while the spin-down state 

is the higher-energy state since 0B
�

 is magnitude. The energy difference between 

the two energy states is 0h Bγ
�

. This nonzero difference in energy level between 

the two spin states is known as the Zeeman Splitting Phenomenon. The spin 

population difference in the two spin states is related to their energy difference. 

According to the Boltzmann relationship 

  








 ∆=
↓

↑

sKT

E

N

N
exp  (2.16) 
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Where ↑N  is number of pointing up spins, ↓N  is number of pointing down 

spins, sT  is absolute temperature of the spin system and K is Boltzmann 

constant. 

 

Assuming magnitude of main magnetic field in the order of Tesla range then 

sKTE <<∆ . Therefore, the exponential term can be written as first order 

approximation. This result can be substituted to (2.16). Then the difference 

between ↑N  and ↓N is 

 

0

2s
s

h B
N N N

KT

γ
↑ ↓− =

�

 (2.17) 

 

This equation indicates that there is a fraction of spins in the lower-energy state. 

This occurs because a spin is more likely to take the lover energy state. This 

population difference generates the M
�

vector, which is equal to 

 

' '

'

( , , , ) ( , , , ) '( , , ) ( , , , ) '( , , )

( , , , ) '( , , )
i i i r i i i i i i i i i i i i

i i i i i i

M x y z t M x y z t r x y z M x y z t x y z

M x y z t x y z
θ

ϕ

θ
ϕ

= +

+

��

�

�� �

�  (2.18) 

 

and it can be rewritten as 
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, ,

,

( , ) ( , )

', ,', ,
1 1

( , )

', ,
1

( , , , ) '( , , ) '( , , )

'( , , )

i i i i i i

i i i

N x y z N x y z

i i i i i i n t i i in t
n n

N x y z

r n t i i i
n

M x y z t x y z x y z

r x y z

ϕθµ θ µ ϕ

µ

= =

=

   
= +   
   

 
 
 

∑ ∑

∑

� �

�

�� �

�
 (2.19) 

 

The first two terms are zero because in transverse plane component phase is 

random so the vector sum is zero for sufficient number of spin in that voxel. 

tnz ,,'µ  can take two possible values as discussed above. These values can be 

 









−

+
=

h

h
tnz

γ

γ
µ

2

1
2
1

,',  (2.20) 

 

Substituting (2.20) to (2.19) 

 

, ,( , ) ( , )

1 1

1 1
( , , , ) '( , , ) '( , , )

2 2

i i i i i iN x y z N x y z

i i i i i i i i i
n n

M x y z t h r x y z h r x y zγ γ
↑ ↓

= =

   
= +   
   
∑ ∑

� � �  (2.21) 

 

Since hγ  is constant 

 

( ), ,

1
( , , , ) ( , ) ( , ) '( , , )

2i i i i i i i i i i i iM x y z t N x y z N x y z h r x y zγ↑ ↓= −
� �

 (2.22) 
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Therefore, the bulk magnetization vector points exactly along the positive 

direction of the '( , , )i i ir x y z
�

axis at equilibrium. Difference between the number 

of spins that pointing up and down is found in (2.17) then the magnitude of 

magnetization vector is equal to: 

 

( )
2 2

0( , , )
( , , , ) , ,

4
i i i

i i i s i i i
s

h B x y z
M x y z t N x y z

KT

γ=
�

 (2.23) 

 

This is true for ½ spin system which corresponds to hydrogen atom. So far the 

magnetic momentum is investigated when there is only position dependent main 

magnetic field. In order to excite the object to be examined, external time 

varying magnetic field has to be applied. This corresponds to the RF pulse. 

 
 

2.1.2 RF Pulse Modeling and Excitation Used in Inhomogeneous Magnetic 

Fields 

 

RF pulse generates magnetic field and it can be named as 1B
�

 field. This is called 

“RF pulse” since its frequency is in radio frequency range and it is applied for a 

short time. It is normally ON for a few microseconds to milliseconds.  The 

strength of 1B
�

 field has to be small compared to main magnetic field strength. It 

has a form of 

 

[
]),,(),,(),,(),,(

),,(),,()cos()(2),,,(

,1,1

,111

iiiiiiziiiiiiy

iiiiiixrf
e

iii

zyxzzyxBzyxyzyxB

zyxxzyxBttBtzyxB
��

�

++

+= ϕω
 (2.24) 
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'( , , )r x y z
�

 component, which defines one of the axis of local coordinates, is 

chosen in the direction of the static magnetic field 0B
�

. The other two 

components can be chosen arbitrarily such that it is orthogonal to '( , , )i i ir x y z
�

 

and each other. In order to represent 1( , , )i i iB x y z
�

 in an easier way select 

'( , , )i i ix y zθ
�

 as in the direction of 1( , , )i i iB x y z
�

 field projected into the normal 

plane to '( , , )i i ir x y z
�

. This can be seen in Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Original and local coordinate systems. 

In local coordinate system by selecting '( , , )i i ix y zθ
�

 as above, 1( , , )i i iB x y z
�

 can 

be written as 

 

1 1 1, '

1, '

( , , , ) 2 ( )cos( ) ( , , ) '( , , )

( , , ) '( , , )

e
i i i rf i i i i i i

r i i i i i i

B x y z t B t t B x y z x y z

B x y z r x y z

θω φ θ= + 

+ 

�

�

�

�  (2.25) 

 

x  

y  

z  

0B
�

 

'r
�

 

1B
�

 

'θ
�
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To solve the effect of the RF magnetic field to the bulk magnetization one more 

coordinate system transformation has to be defined. This is called rotating frame 

of reference. 

 
 

2.1.3. Rotating Frame of Reference Selection to Model Magnetic Resonance 

Imaging in Inhomogeneous Magnetic Fields 

 

A rotating frame is a coordinate system whose transverse plane is rotating clock-

wise at an angular frequency ω . This transverse plane is spanned in the local 

coordinate directional vectors 'θ
�

 and 'ϕ� . The directional vectors for rotating 

frame of reference can be named as "θ
�

, ''ϕ� , and "r
�

. And the relation between 

the rotating frame vectors to local frame vectors can be defined as  

 

"( , , , ) cos( ( , , ) ) '( , , ) sin( ( , , ) ) '( , , )

"( , , , ) sin( ( , , ) ) '( , , ) cos( ( , , ) ) '( , , )

"( , , , ) '( , , )

i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i

i i i i i i

x y z t x y z t x y z x y z t x y z

x y z t x y z t x y z x y z t x y z

r x y z t r x y z

θ ω θ ω ϕ
ϕ ω θ ω ϕ

 = −
 = −
 =

� � �

�� �

� �

 (2.26) 

 

Also the time derivatives of the unit directional vectors are 

"( , , , )
( , , ) "( , , , )

"( , , , )
( , , ) "( , , , )

"( , , , )
( , , ) "( , , , )

i i i
i i i i i i

i i i
i i i i i i

i i i
i i i i i i

x y z t
x y z x y z t

t
x y z t

x y z x y z t
t

r x y z t
x y z r x y z t

t

θ ω θ

ϕ ω ϕ

ω

∂ = × ∂
∂ = × ∂
∂ = × ∂

�
��

�
� �

�
� �

 (2.27) 

 

where ω�  is defined by 
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( , , ) ( , , ) "( , , , )i i i i i i i i ix y z x y z r x y z tω ω= −� �
 (2.28) 

 

and as discussed before 

 

''

'

( , , , ) ( , , , ) '( , , ) ( , , , ) '( , , )

( , , , ) '( , , )
i i i i i i i i i i i i i i i

r i i i i i i

M x y z t M x y z t x y z M x y z t x y z

M x y z t r x y z

ϕθ θ ϕ= +

+

� �

�

�� �

�  (2.29) 

 

and rotM
�

 can be defined as  

 

""

"

( , , , ) ( , , , ) "( , , , ) ( , , , ) "( , , , )

( , , , ) "( , , , )
rot i i i i i i i i i i i i i i i

r i i i i i i

M x y z t M x y z t x y z t M x y z t x y z t

M x y z t r x y z t

ϕθ θ ϕ= +

+

� �

�

�� �

�  (2.30) 

 

So the relation between rotM
�

and M
�

 in a matrix form is 

 

" '

" '

" '

( , , , ) cos( ( , , ) ) sin( ( , , ) ) 0 ( , , , )

( , , , ) sin( ( , , ) ) cos( ( , , ) ) 0 ( , , , )

( , , , ) 0 0 1 ( , , , )

i i i i i i i i i i i i

i i i i i i i i i i i i

r i i i r i i i

M x y z t x y z t x y z t M x y z t

M x y z t x y z t x y z t M x y z t

M x y z t M x y z t

θ θ

ϕ ϕ

ω ω
ω ω

−     
     =     
         

� �

� �

� � 

 (2.31) 

 

Derivatives of rotM
�

and M
�

can be related as 
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'

' '

( , , , )( , , , )
'( , , )

( , , , ) ( , , , )
'( , , ) '( , , )

i i ii i i
i i i

i i i r i i i
i i i i i i

dM x y z tdM x y z t
x y z

dt dt
dM x y z t dM x y z t

x y z r x y z
dt dt

θ

ϕ

θ

ϕ

=

+ +

�

� �

�
�

� �
 (2.32) 

 

"

" "

( , , , )( , , , )
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Then, 
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As seen from (2.34), the rate of change in M
�

, as observed in local coordinate 

system and the rate of change of M
�

as observed in the rotating coordinate system 

are not equal. 

 

2.1.4. Derived Bloch Equation to Model Magnetic Resonance Phenomena in 

Inhomogeneous Magnetic Fields 

 

The time-dependent behavior of M
�

in the presence of an applied magnetic field 

is described quantitatively by the Bloch equation. The Bloch equation takes the 
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general form [1]. For inhomogeneous main and RF magnetic fields with 

described coordinate system  
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(2.35) 

 

where 0
'( , , )r i i iM x y z�  is the thermal equilibrium value for ( , , , )i i iM x y z t

�
 in the 

presence of 0( , , )i i iB x y z
�

 only, which is calculated in (2.23). 1( , , )i i iT x y z  and 

2( , , )i i iT x y z  are time constants characterizing the relaxation process of a spin 

system after it has been disturbed from its thermal equilibrium state. While 

calculating the effect of RF pulse, the second and the third terms are generally 

omitted since RF pulse duration is much shorter than 1( , , )i i iT x y z  and 

2( , , )i i iT x y z  [3]. Under these assumptions 
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By using (2.34), above equation can be written in the rotating frame of reference 

as 
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and effective magnetic field is 
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Moreover, Bloch equation can be rewritten as  
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Using the above equations, the effect of an RF pulse on a spin system can be 

analyzed and time dependent behavior of M
�

 can be found. In order to do that 

RF pulse transverse component is expressed according to the rotating frame of 

reference in the local coordinate system, which becomes 
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 (2.40) 

 

Then effective field ( , , , )eff i i iB x y z t
�

 that the nuclear spin system sees in rotating 

frame of reference is 
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If the RF frequency is equal to resonance frequency then effective magnetic field 

becomes rotB ,1

�
. Substituting the above result to the Bloch equation with the 

assumption of short RF application time (pτ ) compared to 1T  and 2T  then 
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and in scalar form, we have 
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By using the initial conditions of thermal equilibrium which is  
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then 
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As seen from the above equation, the effect of excitation, as observed in the 

rotating frame, is a precession of the bulk magnetization about the "θ
�

 axis. Also 

(2.45) indicates that the final value of magnetization vector, after the RF pulse, 

depends on the integral of envelope function not the shape of it. This is called 

flip angle (α ) and equals to 
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This effect of RF pulse can be described as rotation operator, which is defined by 

the rotation matrix around "θ
�

 axis with a variable α  as 
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For general case, that is 1B
�

 field which has a "r
�

 component then M
�

 can be 

found by solving (2.42) for that situation again. The rotation of M
�

 due to RF 

pulse component along the direction of ''ϕ� is zero, because by selecting ''θ
�

 with 

the same direction of 1B
�

  there is no RF magnetic field in that direction. 
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2.1.5. Free Precession and Relaxation Process in Inhomogeneous Magnetic 

Fields 

 

After a magnetized spin system has been perturbed from its thermal equilibrium 

by an RF pulse described as above, the system returns to its original equilibrium 

state in a sufficient time. This process is characterized by a precession of M
�

 

about the 0B
�

 field with the relaxation processes in longitudinal and transverse 
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components. This relation can be written in rotating frame of reference at the 

resonance frequency as in scalar form as  
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Solving (2.49), time variation of transverse and longitudinal magnetization 

components can be found. As a note, 1T  is about 0.3 to 2 second and 2T  is about 

0.03 to 0.15 seconds in biological tissues.  
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2.1.6. Signal Detection Principles Used in Inhomogeneous Magnetic Fields 

 

FID signal is received by a receiver coil placed near the object to be imaged and 

signal is received from this coil for a specific time range. Signal detection in MR 

is based on the Faraday law of electromagnetic induction and the reciprocity 

principle. The Faraday law of induction states that time varying magnetic flux 

through the receiver coil induces a voltage that is equal to the rate of change in 

magnetic flux through the coil. The detection sensitivity of a receiver coil is 

determined through the principle of reciprocity.  
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Assume that 2( , , )B x y z
�

 is the magnetic field at location ( , , )x y z  produced by a 

unit direct current flowing in the receiver coil. Then the magnetic flux through 

the coil by ),,,( tzyxM
�

 is equal to 
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By using Faraday law, 
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This equation is represented in scalar form as (2.53) 
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Since ),,(2 zyxB
�

 and integral do not depend on time then the derivative term can 

propagate to ),,,( tzyxM
�

 term. 
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Changing the coordinate system to local coordinates and discretizing the 

equation in space assuming that ),,(2 zyxB
�

is constant in each voxel (2.54) 

becomes, 
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In the above equation v∆ is volume of the voxel. As discussed before 1T  values 

are in the order of seconds. So that as compared to the free precession of 
'

Mθ
�  

and 'Mϕ�  being much faster than longitudinal relaxation 

( 0 1( , , ) ( , , )x y z T x y zω ≫ ), the derivative of 'rM �  can be ignored.  

 

In order to simplify the equation, define 
2, '

B φ
�  and 2, 'B ϕ�  in polar coordinates 

where 
2, ' '

B θ ϕ
� �  corresponds to magnitude and 

2, ' 'θ ϕφ � �  to phase. Also M
�

can be 

written in the polar form where 
' '

( , , ,0)i i iM x y zθ ϕ
� �

�
 corresponds to magnitude and 

( , , )M i i ix y zϕ corresponds to phase, then 
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and the derivatives are equal to 
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(2.57) 

 

Assuming 2/1 T>>ω , second terms can be neglected in the above equation. Then 

induced voltage on the receiver coil becomes, 
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This is a high frequency signal at the resonance frequency. So while discretizing 

the signal in time domain for the simulation, special care has to be taken 

according to the maximum frequency content in the signal. 
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2.2. Noise Model of Magnetic Resonance Imaging 

 

In this part, first the noise model of magnetic resonance imaging in homogenous 

magnetic fields is investigated. Afterwards, this noise model is extended to cover 

the inhomogeneous case.   

 
 

2.2.1. Noise Model of Magnetic Resonance Imagining in Homogeneous 

Magnetic Fields 

 

In experiments with homogenous main magnetic fields with different field 

strengths, signal to noise ratio (SNR) is related to:   
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where, ψ is the SNR, B0 is the main magnetic field strength and α is change in 

SNR due to RF coil [70, 71]. If B0 is large compared to α then, the noise 

originating from the RF coil can be neglected. In order to find intrinsic SNR, first 

overall system SNR is measured; then effect of electronic losses and noise 

generated in electronic instrument stage is eliminated. Intrinsic SNR can be 

calculated using,  
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Here, ψS is measured SNR, ψI is the intrinsic SNR, NF is the noise figure of the 

electronics in decibels, QL and QE, are loaded and unloaded quality factors of the 

RF coil, respectively. Edelstein et al measured these values for different MRI 

systems under various main magnetic field strengths [71]. These values are given 

in table 2.1. 

 

 

Table 2.1. Measured SNR values for different MRI systems under various main 
magnetic field strengths. Table is reproduced from [71]. 

B0 

(T) 
ψS 

(ml-1Hz1/2) 
NF 

(dB) 
QE QL 

ψI 
(ml-1Hz1/2) 

0.12 944 1.0 240 170 1.96⋅103 

0.5 4,660 2.0 327 89 6.88⋅103 
1.0 9,642 1.7 356 51 1.27⋅104 
1.5 16,730 1.4 431 64 2.13⋅104 

 

 

 

By using these measurements given in table 2.1, a relationship between ψI and B0 

strength can be found. The points B0 strength versus ψI is given in Figure 2.2. 
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Figure 2.2. Main magnetic field strength versus intrinsic SNR. Red dots 
represent calculated intrinsic SNR values in Table 2.1 for different main 
magnetic field strength points. Blue line shows the fitted first order polynomial 
for these measurement points. 

 

 

 The obtained relation,  
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is linear as plotted in Figure 2.2. If pixel SNR is calculated for a fixed pulse 

sequence then, 
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where, ρ is proton density relative to water, V is pixel volume, N is number of 

averages, TS is sampling time, TR is repetition time, TE is echo time, T1 is 

longitudinal relaxation time and T2 is transversal relaxation time.  

 

Pixel SNR can be determined for each pixel by using equations (2.60), (2.61) and 

(2.62) together with the magnetic field information, test object properties and 

pulse sequence. Signal strength for every pixel can also be determined by the 

given information. Using pixel SNR and signal strength, noise level can be 

determined for every pixel and then Gaussian noise with zero mean is added to 

the signal. 

 
 

2.3. Proposed FFT Based Image Reconstruction Algorithm for 

Inhomogeneous Magnetic Fields 

 

In MRI, k-space is filled with Free Induction Decay (FID) signal sampled 

according to the imaging pulse sequence. In conventional MRI systems, pulse 

sequences are designed such that the k-space is sampled uniformly [4]. However, 

in MRI systems with inhomogeneous main magnetic field and nonlinear gradient 

fields, it is not possible to obtain uniformly sampled k-space data. Therefore, 

uniform k-space sampling followed by Discrete Fourier Transform (DFT) leads 

to highly distorted images in inhomogeneous magnetic fields. Consequently, the 

measured FID signal needs to be corrected. A two-dimensional FOV and a spin 

echo pulse sequence is adopted in order to simplify the FID signal as 
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where, m is phase encoding number, n is sampling number, L is number of pixels 

in FOV, Ml is  weighted proton density of pixel l, Bl is signal gain associated 

with pixel l, ωl is l th pixel resonance frequency due to main and gradient fields, 

ω0 is demodulation frequency, dt is signal period and θl is phase due to gradient 

and inhomogeneity in main magnetic field. 

 

This signal can be transformed using two-dimensional DFT. Then by 

interchanging the summations while taking Bl and Ml out of m and n summation, 

the result is  
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where, u and v are spatial frequency variables of DFT. 

 

As seen from equation (2.64), C does not depend on Ml and the part labeled as C 

can be calculated for known magnetic fields, pulse sequence, u and v for every 

pixel l. If C is named as 1,vN u la + +  then, 
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(2.66) 
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When summation in equation (2.66) is written in open form for every u and v 

pair, a set of linear equations is obtained between DFT of FID signal and 

weighted proton density values. 

This can be written as in open form  
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Then define A, b, x as follows 
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and the equation becomes in the form of linear equation 

 

bAx =  (2.72) 

 

Solution for the set of linear equations can be found if this equation set is not ill 

conditioned. If it is ill conditioned then a partial solution can be also found. 



 

39 

 

CHAPTER 3 
 
 

FREE INDUCTION DECAY SIGNAL CHARACTERISTICS 
IN INHOMOGENOUS MAGNETIC FIELDS 

 
 
 

In this chapter, magnetic resonance (MR) signal deviation due to inhomogeneity 

in the main magnetic field is investigated. This analysis is done to understand the 

effect of inhomogeneity in magnetic field to the signal decay time, the signal 

energy, and the peak of the signal. In addition, the relation between 

inhomogeneity in main magnetic field and field of view is investigated.  

 

Using these parameters, suitability of specific MRI hardware designed for 

inhomogeneous magnetic field can be analyzed. This means that using following 

analysis, the inhomogeneity tolerance of a specific hardware can be found. Or 

else, given the inhomogeneity distribution, the hardware design parameters can 

be selected accordingly.  

 
 

3.1. Analysis Parameters Used to Characterize Free Induction Decay Signal 

in Inhomogeneous Magnetic Fields 

 

Some of the parameters used to characterize the FID signal in inhomogeneous 

main magnetic field are important, like signal energy, peak value, decay time and 

field of view. These parameters’ importance and calculation methods are 

explained in this part.  
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3.1.1. Decay Time of Free Induction Decay Signal 

 

The decay time is an important parameter. If signal decays very fast compared to 

sampling rate of the MRI system then a meaningful signal with sufficient 

information to reconstruct image cannot be collected.  

 

The FID signal decays with time whether the main magnetic field is homogenous 

or not. However, the behavior of these two cases are different from each other. 

For homogenous main magnetic field, the decay in the signal is due to relaxation 

processes. These relaxation processes are defined by longitudinal and transverse 

relaxation times and included in Bloch equation. 

 

The longitudinal relaxation is due to proton interactions with lattice. This 

relaxation is described by a time constant T1 which implies the rate of change in 

longitudinal magnetization. This is because perturbed magnetic moments will 

tend to reach to the minimum energy state. The minimum energy state is reached 

when the magnetic moment is parallel to the main magnetic field. T1 values 

depend on the object or the main magnetic field strength. For biological tissues, 

the range of T1 values is about hundreds to thousands of milliseconds for main 

magnetic field strength larger than 0.01T [3]. 

 

The transverse relaxation is due to spin-spin interactions. Spins themselves 

generate magnetic field. Therefore, total magnetic field on a spin, is combination 

of main magnetic field and field generated from neighboring spins. Since there is 

spin variation over the object, the total magnetic field across the sample differs 

from position to position. Because of this difference in the total magnetic field, 

spins precess at different frequencies and they lose their synchronization. As a 

result, the net magnetization and FID signal decreases over time. This relaxation 
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is described by a time constant T2. For biological tissues, the range of T2 values 

is about ten to hundreds of milliseconds [3]. These relaxation times of different 

tissues, measured in different main magnetic field strengths, are given in Table 

3.1. 

 

 

Table 3.1. Longitudinal (T1) and transverse (T2) relaxation times of different 
normal tissue types, which are measured in different main magnetic field 
strengths, are given. This table is reproduced from [72]. 

 

T1 (ms) T2 (ms) 
Tissue 

0.06 T 0.1 T 1.5 T 0.06 T 0.1 T 1.5 T 

Liver 138 215 340 36 37 30 

Muscle 185 259 740 49 28 38 

Kidney 214 419 685 56 39 56 

Brain 285 399 1361 75 - 149 

 

 

As seen from Table 3.1 T2 values are independent from main magnetic field 

strength. Bottomley et al. reports that T2 values are dependent mainly on tissue 

type [72]. As seen from the table, T1 values increase as the main magnetic field 

increases. This shows there is a relationship between T1 and main magnetic field 

strength. Bottomley et al. also reports that the dominant factors on T1 values are 

tissue type and the main magnetic field strength [72]. If T1 weighted images are 

aimed at MRI in an environment where main magnetic field variation is large, 

the behavior of  T1 has to be taken into consideration.  
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Continuing from the FID signal decay perspective, the effect of transverse 

relaxation is dominant because sensitivity of RF receiver coil of MRI system is 

in the direction of transverse plane and T2 values are smaller then T1 values 

(Table 3.1).   

 

The external main magnetic field inhomogeneity have a significant influence on 

decay of free induction decay (FID) signal over time. This decay can be defined 

with a different time constant '2T . The combined time constant is referred to as 

*
2T  and it is equal to 

 

* '
2 2 2

1 1 1

T T T
= + . (3.1) 

 

This decrease can be observed in conventional MRI systems since the main 

magnetic field assumed to be homogenous although it is practically not 

homogenous. Furthermore, this effect is more dominant as the inhomogeneity 

increases in main magnetic field. Thus, the relation between inhomogeneity level 

and signal decay has to be analyzed. The analysis can be done by determining 

FID signal analytically and numerically, and then processing it. However, this 

signal decay not only depends upon inhomogeneity level but also inhomogeneity 

distribution. To simplify the analysis, constant inhomogeneity distribution with 

variable inhomogeneity level is assumed.  

 

This analysis is used to relate *2T   to MR system hardware parameters like 

maximum sampling rate, spatial resolution, SNR and bandwidth of the system. A 

characteristic FID signal, which is the Electromotive Force (EMF) in the RF 

receiver, is shown in Figure 3.1. In MRI systems, the signal is demodulated 
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using quadrature amplitude demodulation technique. This demodulation 

technique produces two signals. These two signals are converted to digital using 

analog to digital converters.  Afterwards, these two digital outputs are combined 

to form a single complex signal. If this process is applied to the signal given in 

Figure 3.1, then the demodulated complex signal is obtained as in Figure 3.2. 
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Figure 3.1. Time versus FID signal for an inhomogeneous main magnetic field 
with linear 100 parts per million (ppm) inhomogeneity is given. The test object 
selected as uniform with T2 constant of 20 ms. Signal is obtained using spin echo 
pulse sequence. 
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Figure 3.2. Time versus magnitude of demodulated FID signal.  

 

 

The signal, which is given in Figure 3.2, decays with time, due to inhomogeneity 

in the main magnetic field and transverse relaxation. This relaxation can be 

estimated from the demodulated MR signal. The demodulated FID signal 

depends on object properties, MRI system properties and pulse sequence 

parameters. To make the analysis possible, the signal can be divided into two 

parts as,  

1: the signal decrease due to *
2T  and  

2: rest of the signal: 

 

�
*
2/

12

( ) ( ) t TS t f t Ae−≈ ���  (3.2) 
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To do that first the maximum value of the signal is obtained. Then, the time 

needed for the signal to decrease to half of its maximum value,  

 

{ }max ( )
( )

2 2
fwhmt S t

S ≈  (3.3) 

 

is determined as illustrated in Figure 3.3. 
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Figure 3.3. Zoomed version of Figure 3.2 with signal maximum and time elapsed 
when the signal is decreased to half of its maximum. 

 

 

Assuming f(t) variation is low in (3.1), the signal decay is due to relaxation. 

Then, 

�
fwhmt

 

{ }max ( )S t  



 

46 

 

{ } { }*
22 max ( )

( ) max ( )
2 2

fwhmt

fwhm Tt S t
S S t e

−

≈ ≈  (3.4) 

 

Dividing both sides with { }max ( )S t  and taking natural logarithm, (3.4) becomes 

 

*
2

1
ln

2 2
fwhmt

T
 − ≈  
 

 (3.5) 

 

Rearranging the equation (3.5) to find *
2T  

 

( )
*

2 2ln 2
fwhmt

T ≈  (3.6) 

 

Using the above equation, *2T  values can be estimated for different levels of 

inhomogeneity and distributions. These values give information about how fast 

the signal decays due to main magnetic field inhomogeneity.  

 

As stated before, if signal decays very fast compared to sampling rate of the MRI 

system then a meaningful signal with sufficient information to reconstruct an 

image cannot be acquired. From this point of view, a relation between sampling 

properties (sampling frequency and resolution) of MRI system and the total 

transverse relaxation time can be found. Using Nyquist theorem and the relation 

between the sampling frequency and *
2T  , bandwidth of the receiver part can be 

found.  
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Assuming an MRI receiver hardware composed of an Nbit bit analog to digital 

converter (ADC) with sampling frequency of fs and with a gain set to cover the 

analog voltage range of [- { }max ( )S t , { }max ( )S t ]. Using this ADC the FID 

signal which decays with time constant *
2T  is sampled. If an image is to be 

reconstructed with N samples, then these samples have to be acquired before the 

FID signal decays below the resolution of ADC.  

 

To determine the described relation, we should first obtain the ADC’s resolution 

which is equal to 

 

{ } { }[max ( ) ( max ( ) )]

2 bitN

S t S t
dS

− −
=  (3.7) 

 

and the sampling period is equal to 

 

1

s

dt
f

=  (3.8) 

 

To acquire N samples using analog to digital converter, total time of (N-1)dt is 

required. Assuming (3.2) holds, after a time of (N-1)dt passes, the signal 

decreases to a value   

 

*
2 ( 1)(( 1) ) max{ ( )} T N dtS N dt S t e− −− ≈  (3.9) 
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because of the relaxation processes described by *
2T . This value has to be larger 

than dS (right side of the inequality in (3.10)) to detect the signal using the ADC 

and this relation is given in (3.10).  

 

*
2( 1) / 2max{ ( )}

max{ ( )}
2 bit

N dt T
N

S t
S t e− − >  (3.10) 

 

Simplifying the above relation, it is equal to 

 

*
2ln(2)( 1)

( 1)
bitN T

dt
N

−<
−

. (3.11) 

 

If (3.11) is written for sampling frequency then  

 

*
2

( 1)

ln(2)( 1)s
bit

N
f

N T

−>
−

. (3.12) 

 

Using Nyquist theorem, bandwidth of the receiver part ( rcvBW ) has to satisfy 

 

*
2

( 1)

2 ln(2)( 1)rcv
bit

N
BW

N T

−>
−

. (3.13) 
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3.1.2. Signal Peak of Free Induction Decay Signal 

 

Signal peak is an important parameter for the FID signal, because it gives the 

information about the strength of the signal. It can be defined as 

 

{ }max ( )Signal peak S t= . (3.14) 

 

Moreover, it affects MRI hardware parameters like receiver signal gain. As 

explained in the previous subsection FID signal depends on object, MRI system 

and pulse sequence. Some pulse sequences like spin echo pulse sequence can 

recover some effects of field inhomogeneity in FID signal [4]. As such, these 

pulse sequences are preferred in MRI in inhomogeneous main magnetic fields 

[43]. If spin echo pulse sequence is used for the analysis, then the signal peak 

value is not dominantly related to main magnetic field inhomogeneity. However, 

there is a weak relation between signal peak and main magnetic field 

inhomogeneity. This is because magnetization vector magnitude is related to 

main magnetic field strength. This relation is explained in the previous chapter 

and it is equal to 

 

( )
2 2

0( , , )
( , , , ) , ,

4

i i i

i i i s i i i
s

h B x y z
M x y z t N x y z

KT

γ
=

�
�

. (3.15) 

 

These magnetization vectors generate FID signal, so if the magnetic field 

variation is large then signal peak can vary.  
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3.1.3. Energy of Free Induction Decay Signal 

 

Signal energy is an important parameter and it has to be taken into account 

during the analysis. As the demodulated FID signal is complex, the energy of the 

signal can be defined as 

 

2
( )

acqT

Signal energy S t dt
< >

= ∫ . (3.16) 

 

Signal energy is closely related to the signal peak and relaxation time constant, 

which are explained in above subsections. Therefore, the same variables affect 

the signal energy.  

 
 

3.1.4. Field of View and Image Resolution 

 

Field of view (FOV) is defined as distance in one-dimension, area in two-

dimensions or volume in three-dimensions, which will be imaged. For MRI in 

homogeneous magnetic field, FOV is a rectangular image. For inhomogeneous 

case, FOV is directly related to main magnetic field strength and gradient field 

strength. Again, the resolution of the reconstructed image has a close relationship 

with FOV. As FOV decreases resolution increases.  

 

For this analysis, assume that RF excitation coil has an orthogonal component to 

main magnetic field in imaging volume and off-resonance excitation effects are 

negligible. Then the FOV depends to main magnetic field strength distribution, 
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RF center frequency (cf ), and RF field bandwidth ( RFBW ). The relation is given 

in (3.17). 

 

0( , , ) ( , , )
2 2

RF RF
c c

BW BW
FOV x y z f B x y z fγ    = − < < +    

    

�
 (3.17) 

 

FOV is related to BWRF. But for the MRI system there is another bandwidth limit 

which is rcvBW . This is the receiver bandwidth limit. Receiver bandwidth is 

related to the hardware of the receiver part and sampling frequency of the signal.  

 
 

3.2. One-Dimensional Analysis of Free Induction Decay Signal in 

Inhomogeneous Main Magnetic Field 

 

To make one-dimensional analysis of FID signal in inhomogeneous main 

magnetic field some of the parameters have to be set.   

 

Assume that: 

1. Main magnetic field direction is in z-axis, and main magnetic field 

strength varies linearly in x direction. 

 ( )0 0 0( ) mean slope zB x B B x a= +
� �

 

2. Single RF coil is used for excitation and reception. The magnetic field is 

in the direction of x and uniform. Perfect 90º and 180º pulses are 

assumed. 

 1 2 1( ) ( ) xB x B x B a= =
� � �
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3. Test object is uniform. Object’s proton density is equal to one relative to 

water, T2 value is 20 ms and T1 value is 1 s. 

 1

2

( ) 1

( ) 1

( ) 20

relative x

T x s

T x ms

ρ =
=
=

 

4. Spin echo pulse sequence with pulse repetition time of 6 s and echo time 

of 22 ms and acquisition time of 20 ms.  

6

22

20

R

E

acq

T s

T ms

T ms

=
=
=

 

 
 

3.2.1. Analytical Results for Free Induction Decay Signal in Inhomogeneous 

Main Magnetic Field 

 

After the above assumptions, first the magnetization vector magnitude has to be 

determined. Using (2.23), assumptions 1 and 3, magnetization vector magnitude 

at thermal equilibrium is equal to    

 

( )
2 2

0
0 0( )

4
s

mean mean
s

h N
M x B B x

KT

γ= +
�

 (3.18) 

 

The magnetization vector direction is the same with main magnetic field 

direction in thermal equilibrium, so magnetization vector direction is in z.  
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The magnetization vector, which is in thermal equilibrium, is exited with an ideal 

90º RF pulse. After that, TE/2 time is waited and then 180º RF pulse is applied. 

So that using (2.31) and (2.48) resultant vector can be found. For this case in 

(2.31) the r’  is equal to z, θ’ is equal to x and ϕ’  is equal to y. Then for our case 

the FID signal is equal to 

 

 

2, 2,

0

( , )( , )
( ) ( ) ( ) yx

x y

M x tM x t
V t B x B x

t t

∂∂= − +
∂ ∂��� 2,

0

( , )
( ) z

z

M x t
B x

t

 ∂ +
 ∂


���

0

0

x

x

dx
−






∫  (3.19) 

 

In the above equation 2, ( )xB x  is equal to B1. The derivative of magnetization 

vector can be obtained using (2.36), and it is equal to 

 

0

( , )
( , ) ( )

dM x t
M x t B x

dt
γ= ×

�
� �

. (3.20) 

 

This is because no extra field is applied at that time. Using 0( )B x
�

 is in the 

direction of z, the (3.20) becomes 

 

0, 0,

( , )
ˆ ˆ( ) ( , ) ( ) ( , )z y x z x y

x component

dM x t
B x M x t a B x M x t a

dt
γ γ   = +   

�

���������
 (3.21) 

 

and signal becomes 
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( )
0

0

2 0( ) ( ) ( , )
x

y

x

V t B B x M x t dxγ
−

 = −  ∫  (3.22) 

 

Using (2.56) the magnetization vector is equal to 

  

( )2/ ( )
0( , ) ( ,0) cos ( )t T x

y xyM x t M x e B x t−= −
�

 (3.23) 

 

Where ( ,0)xyM x
�

 is equal to magnetization vector magnitude in thermal 

equilibrium which is given in (3.18). Then,  

 

( ) ( )( )( )0

2

0

3 2
2/

2 0 0 0 0( ) cos
4

x
t Ts

mean slope mean slope
s x

h N
V t B e B B x B B x t dx

KT

γ −

−

 = − + − +  ∫  (3.24) 

 

The integral is equal to 
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(3.25) 

 

Using the above equation, the analytical result can be found for different levels 

of inhomogeneity. Inhomogeneity level in the main magnetic field is changed 

using 0slopeB . The range is selected as [10-5, 10-1], and the steps of 0slopeB  is 

selected logarithmic. The mean of the main magnetic field strength is selected as 

0.15 T. The half of object size (x0) is equal to 7.5 cm. For these parameters, the 

demodulated FID signals’ magnitude are given in Figure 3.4.    
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        (c)          (d) 

Figure 3.4. Demodulated FID signal for different levels of inhomogeneity for 
one-dimensional case is given. In these plots, t = 0 corresponds to echo time TE. 
(a) 0slopeB = 6.55·10-5, which corresponds to 33.8 ppm (b) 0slopeB = 4.29·10-4, 

which corresponds to 222 ppm (c) 0slopeB = 2.81·10-3, which corresponds to 

1.45·103 ppm (d) 0slopeB = 18.3·10-3, which corresponds to 9.52·103 ppm.  

 

 

As seen from Figure 3.4 the demodulated FID signal is plotted for different 

inhomogeneity levels. From these plots as the inhomogeneity level increases, the 

signal decay increases, peak value does not change very much, and energy 

decreases. Using the procedure explained in previous sub-section, one can find 

the relation between inhomogeneity and relaxation time constant. The plots 

relating inhomogeneity level versus total relaxation time, peak and energy are 

given in Figure 3.5, 3.6 and 3.7.  
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Figure 3.5. Inhomogeneity level versus demodulated FID signals’ maximum 
values plot is given for one-dimensional case. Values are calculated from 
analytical FID signals. 

 

 

As seen from the Figure 3.5, inhomogeneity level has an effect on the signal 

peak. There is a small decrease in the signal peak level when inhomogeneity 

level increases. This decrease is about 10%. There are three reasons for that. 

First, for demodulation a low pass filter is used which has the following effect on 

demodulated signal: as the inhomogeneity increases the bandwidth of the signal 

increases too and the filter attenuates some of the signal content. Second, as the 

magnetic field distribution changes, the magnetization vector magnitude and 

precession frequency changes too. Due to that, both the total signal and the 

signal peak changes. Third, the signal maximum occurs at the time of TE, and 

integral result given in (3.25) has a 0/0 uncertainty at that time instant. To 

overcome this problem, time is selected as TE+dt/1000 instead of TE. Therefore, 

signal peak may vary.   
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Figure 3.6. Inhomogeneity level versus demodulated FID signals’ normalized 
energy plot is given for one-dimensional case. Values are calculated from 
analytical FID signal. 

 

 

As seen from the Figure 3.6, inhomogeneity level severely affects the energy of 

the signal. This is expected because as the inhomogeneity level increases the 

precession frequency of the magnetization vectors along the object changes. This 

station results a loss of synchronization and loss of the energy of the signal.  
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Figure 3.7. Inhomogeneity level versus demodulated FID signals’ total 
transverse relaxation time constant plot is given for one-dimensional case. 
Values are calculated using analytical FID signal. 

 

 

As seen from Figure 3.7, the total decay time of the FID signals affected severely 

for large inhomogeneity levels. The plot is similar to energy of FID signal 

change. As inhomogeneity increases, the effect of the transverse relaxation due 

to inhomogeneity in the main magnetic field increases. The reason of the signal 

decay is the loss of synchronization in magnetization vectors as the time passes. 

Furthermore, if the inhomogeneity levels are small then the dominant signal 

decay is due to transverse relaxation of the sample. These results are compatible 

with the (3.1), which describes the total relaxation. Also for our case TR >> T1 

then T1  values does not have a dominant affect on the FID signal. 

 

Using the above result given in Figure 3.7, transversal relaxation and sampling 

period of the ADC can be found. To do that, assume the MRI receiver part has a 

12 bit ADC and reconstruction of an image with 31 pixels is aimed. Using 

(3.11), inhomogeneity level versus sampling period relation can be found. As 
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seen from (3.11) and from Figure 3.8, as inhomogeneity level increases, 

sampling period degreases. This is because, inhomogeneity affects the transverse 

relaxation, transverse relaxation affects the sampling period.  
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Figure 3.8. Inhomogeneity level versus maximum sampling period needed is 
given for one-dimensional case. Assumptions are MRI receiver part has a 12 bit 
analog to digital converter and 31 pixel image is reconstructed. Values are 
calculated using analytical FID signal. 

 

 

From sampling period information, it is easy to calculate the sampling frequency 

as shown in Figure 3.9. As seen from the figure, for high inhomogeneity levels 

the sampling frequency is directly related. However, for low inhomogeneity 

levels, the effect of transverse relaxation due to inhomogeneity is less.  
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It is concluded that, if the sampling frequency of the system is larger than the 

values is plotted in Figure 3.9, then this system is capable of measuring the 

signal. 
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Figure 3.9. Inhomogeneity level versus minimum sampling frequency needed is 
given for one-dimensional case. Assumptions are MRI receiver part has a 12 bit 
analog to digital converter and 31 pixel image is reconstructed. Values are 
calculated using analytical FID signal. 
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Figure 3.10. Inhomogeneity level versus sampling frequency needed to measure 
the signal for one-dimensional case. Assumptions are MRI receiver part has a 12 
bit analog to digital converter and 31 pixel image is reconstructed. Values are 
calculated using analytical FID signal. 
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Figure 3.11. Inhomogeneity level versus Bandwidth of receiver and Bandwidth 
of RF is given for one-dimensional case. Assumptions are: MRI receiver part has 
a 12 bit analog to digital converter and 31 pixel image is reconstructed. Values 
are calculated using analytical FID signal. 
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This plot gives information about the inhomogeneity level and RF field 

bandwidth. Since the whole object is excited, it is directly related to FOV. Object 

size is equal to [-75 mm, 75 mm]. Also, N is equal to 31, so the resolution of the 

MR image is 5mm. Also, the RF bandwidth used to excite the sample is smaller 

than the bandwidth of receiver. This means that receiver part bandwidth does not 

affect the FOV.   

 

The same analysis are done for linearly varying main magnetic field in the range 

of [10-4, 10-1]. The results are given in Figure 3.12. The results are the same with 

the logarithmic case. 
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(e)        (f) 

Figure 3.12. Inhomogeneity level versus (a) Signal maximum, (b) Energy, (c) 
total longitudinal time constant, (d) maximum sampling period, (e) minimum 
sampling frequency, (f) bandwidth of RF and receiver is given. Results are 
obtained from numerical results. 

 

 

3.2.2. Numerical Results for Free Induction Decay Signal in Inhomogeneous 

Main Magnetic Field 

 

In subsection 3.2.1 results are obtained using analytical analysis. To verify and 

test the developed numerical model explained in previous chapter same results 

are obtained. The same assumptions given in section 3.2 are used for numerical 

model. The results are similar to the analytical results given in 3.2.1. Results 

obtained analytically (Figure 3.12) and from the numerical model (Figure 3.13) 

has maximum difference in the peak value is 2.6%, for the relaxation time 

constant, maximum difference is 4.3%, And for the energy, it is  3.8%. These 

differences in the results are due to the discretization of the domain into voxels 

and assumption of uniform magnetic field within the voxel.      
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(e)        (f) 

Figure 3.13. Inhomogeneity level versus (a) Signal maximum, (b) Energy, (c) 
total longitudinal time constant, (d) maximum sampling period, (e) minimum 
sampling frequency, (f) bandwidth of RF and receiver is given. Results are 
obtained from numerical FID signal. 
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3.3. Two-Dimensional Analysis of Free Induction Decay Signal in 

Inhomogeneous Main Magnetic Field 

 

To make two-dimensional analysis of FID signal in inhomogeneous main 

magnetic field, values of some of the parameters have to be set a priori.   

 

Assuming that: 

1. Main magnetic field direction is in z-axis, and main magnetic field 

strength varies linearly in x and y direction. 

 ( )0 0 0 0( , ) mean slopex slopey zB x y B B x B y a= + +
� �

 

2. Single RF coil is used for excitation and reception. The magnetic field is 

in the direction of x and uniform. Perfect 90º and 180º pulses are 

assumed. 

 1 2 1( , ) ( , ) xB x y B x y B a= =
� � �

 

3. Frequency gradient field is in the direction of z. It is linearly varying in x 

direction.  

 ( , )frq frq zG x y G xa=
� �

 

4. Test object is uniform. Object’s proton density is equal to one relative to 

water, T2 value is 20 ms and T1 value is 1 s. 

 1

2

( , ) 1

( , ) 1

( , ) 20

relative x y

T x y s

T x y ms

ρ =
=
=
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5. Spin echo pulse sequence with pulse repetition time of 6 s and echo time 

of 22 ms and acquisition time of 20 ms.  

6

22

20

R

E

acq

T s

T ms

T ms

=
=
=

 

 

Since the problem is two-dimensional, analytic formulation of the signal cannot 

be found. So that, only the numerical results are presented here.  

 
 

3.3.1 Numerical Results for Free Induction Decay Signal in Inhomogeneous 

Main Magnetic Field 

 

Similar to the one-dimensional case the FID signals are obtained based on the 

assumptions given in section 3.2 and the numerical model. The main difference 

from one-dimensional case is existence of the gradient during data acquisition. 

Using numerical model FID signal are obtained for different levels of 

inhomogeneity in main magnetic field for both direction. By analyzing this FID 

signals, peak values, energy and relaxation time constants are obtained. The 

results are tabulated and presented in three-dimensional plots.  
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Figure 3.14. Inhomogeneity level versus demodulated FID signals’ maximum 
value plot is given for two-dimensional case. Values are calculated from 
numerical FID signals. 

 

 

As seen from Figure 3.14, as inhomogeneity level increases the signal peak 

degreases. The result is similar for one-dimensional case. However, signal peak 

variation is small (0.18%) compared to the one-dimensional case. This can be 

related to, constant magnetic field assumption for every pixel and the gradient 

field application during signal reception. 

 

In Figure 3.15, inhomogeneity versus normalized energy plot is given. As 

inhomogeneity level in x direction or in y direction increases, signal energy 

decreases. Again, this is an expected result since the magnetization vectors are 

lost their synchronization due to inhomogeneity. Also in Figure 3.16, decay time 

constant is obtained. There is a jump in decay time constant graph. This jump 

occurs because at low inhomogeneity in main magnetic field, signal decays due 

to frequency encoding gradient. From these decay times, minimum sampling 
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frequency is obtained. The same jump occurs in frequency graph in Figure 3.17.  

After that the same plot. i.e. inhomogeneity level in x and y direction versus 

minimum sampling frequency graph is given in figure 3.18. But, for this case the 

ppm levels logarithm versus sampling frequency is plotted. Also, a plane added 

to show the tolerable inhomogeneity levels for 1MHz ADC. The results are 

tabulated in Table 3.2. 

 

 

 

Figure 3.15. Inhomogeneity level versus demodulated FID signals’ normalized 
energy plot is given for two-dimensional case. Values are calculated from 
analytical FID signal. 
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Figure 3.16. Inhomogeneity level versus demodulated FID signals’ decay time 
constant plot is given for two-dimensional case. Values are calculated from 
analytical FID signal. 

 

 

 

Figure 3.17. Inhomogeneity level versus minimum sampling frequency needed is 
given for two-dimensional case. Assumptions are MRI receiver part has a 12 bit 
analog to digital converter and 31x31 pixel image is reconstructed. Values are 
calculated using analytical FID signal. 
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Figure 3.18. Inhomogeneity level in logarithmic scale versus sampling frequency 
needed to measure the signal for two-dimensional case. Assumptions are MRI 
receiver part has a 12 bit analog to digital converter and 31x31 pixel image is 
reconstructed. The plane shows the limit is at 1MHz. Values are calculated using 
analytical FID signal.  
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Table 3.2. Inhomogeneity level in x and y direction versus time constant and minimum sampling frequency needed is given. 

 

ppm in x  
ppm in y 

5.17 11.9 27.6 63.7 147 340 785 1.81·103 4.19·103 9.68·103 22.3·103 51.6·103 

T2* 3,04E-6 3,05E-6 3,05E-6 3,05E-6 3,05E-6 3,05E-6 3,04E-6 3,02E-6 2,85E-6 2,25E-6 1,23E-6 1,33E-6 
fs 

5.17 
6,74E+5 6,71E+5 6,71E+5 6,71E+5 6,71E+5 6,71E+5 6,74E+5 6,79E+5 7,19E+5 9,11E+5 1,66E+6 1,54E+6 

T2* 3,05E-6 3,05E-6 3,05E-6 3,05E-6 3,05E-6 3,04E-6 3,02E-6 2,85E-6 2,25E-6 1,23E-6 1,33E-6 1,32E-6 
fs 

11.9 
6,71E+5 6,71E+5 6,71E+5 6,71E+5 6,71E+5 6,74E+5 6,79E+5 7,19E+5 9,11E+5 1,66E+6 1,54E+6 1,55E+6 

T2* 3,05E-6 3,05E-6 3,05E-6 3,05E-6 3,04E-6 3,02E-6 2,85E-6 2,25E-6 1,23E-6 1,33E-6 1,32E-6 1,32E-6 
fs 

27.6 
6,71E+5 6,71E+5 6,71E+5 6,71E+5 6,74E+5 6,79E+5 7,19E+5 9,11E+5 1,66E+6 1,54E+6 1,55E+6 1,55E+6 

T2* 3,05E-6 3,05E-6 3,05E-6 3,04E-6 3,02E-6 2,85E-6 2,25E-6 1,23E-6 1,33E-6 1,32E-6 1,32E-6 1,32E-6 
fs 

63.7 
6,71E+5 6,71E+5 6,71E+5 6,74E+5 6,79E+5 7,19E+5 9,11E+5 1,66E+6 1,54E+6 1,55E+6 1,55E+6 1,55E+6 

T2* 3,05E-6 3,05E-6 3,04E-6 3,02E-6 2,85E-6 2,25E-6 1,23E-6 1,33E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 
fs 

147 
6,71E+5 6,71E+5 6,74E+5 6,79E+5 7,19E+5 9,11E+5 1,66E+6 1,54E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 

T2* 3,05E-6 3,04E-6 3,02E-6 2,85E-6 2,25E-6 1,23E-6 1,33E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 
fs 

340 
6,71E+5 6,74E+5 6,79E+5 7,19E+5 9,11E+5 1,66E+6 1,54E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 

T2* 3,04E-6 3,02E-6 2,85E-6 2,25E-6 1,23E-6 1,33E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 
fs 

785 
6,74E+5 6,79E+5 7,19E+5 9,11E+5 1,66E+6 1,54E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 

T2* 3,02E-6 2,85E-6 2,25E-6 1,23E-6 1,33E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 
fs 

1.81·103 
6,79E+5 7,19E+5 9,11E+5 1,66E+6 1,54E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 

T2* 2,85E-6 2,25E-6 1,23E-6 1,33E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 1,31E-6 
fs 

4.19·103 
7,19E+5 9,11E+5 1,66E+6 1,54E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 1,56E+6 

T2* 2,25E-6 1,23E-6 1,33E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 1,31E-6 1,31E-6 
fs 

9.68·103 
9,11E+5 1,66E+6 1,54E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 1,56E+6 1,56E+6 

T2* 1,23E-6 1,33E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 1,31E-6 1,31E-6 1,23E-6 
fs 

22.3·103 
1,66E+6 1,54E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 1,56E+6 1,56E+6 1,66E+6 

T2* 1,33E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 1,32E-6 1,31E-6 1,31E-6 1,23E-6 9,71E-7 
fs 

51.6·103 
1,54E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 1,55E+6 1,56E+6 1,56E+6 1,66E+6 2,11E+6 
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CHAPTER 4 
 
 

RESULTS OF FFT BASED IMAGE RECONSTRUCTION 
ALGORITHM FOR INHOMOGENOUS MAGNETIC FIELDS  

 
 
 

Theory behind the developed FFT based image reconstruction algorithm for 

inhomogeneous magnetic fields is given in Chapter 2. The developed 

reconstruction algorithm needs main magnetic field distribution, RF magnetic 

field distribution, Gradient field distribution, pulse sequence, RF coil parameters, 

MRI system parameters and FID signals. These inputs except the FID signals are 

known.  

 

To obtain a realistic FID signal for inhomogeneous case, a simulator is 

developed. The implemented simulator is based on derived Bloch equation and 

noise model given in Chapter 2. For specific inputs, direct solution of the derived 

Bloch equation can be found, instead of solving it numerically. This improves 

computational efficiency. Block diagram of the MRI simulator for 

inhomogeneous magnetic field is given in Figure 4.1. Furthermore, image 

reconstruction modules are given in this figure.  
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Figure 4.1. Block diagram of the MRI simulator for inhomogeneous magnetic 
field, which includes numerical model, noise model and image reconstruction 
modules. 

 

 

For some inputs, analytical solution of the derived Bloch equation can be found. 

The cases where the equation has analytical solution is listed in Table 4.1. The 

numerical solution covers all possibilities but it is computationally intensive, and 

the additional numerical error introduced [73]. 

 

 

Table 4.1. Investigating usage of analytical solution. 

 Analytical  
Static magnetic field applied � 
Circularly polarized RF signal at resonance frequency � 
Random RF signal � 
Slow varying gradient fields � 
Fast varying gradient fields � 
Time varying T1, T2, and ρ � 
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4.1. FFT Based Image Reconstruction Algorithm Results without Noise 

 

To test the validity of the proposed FFT Based Image Reconstruction Algorithm, 

two-dimensional experiments at uniform magnetic fields are investigated. This 

analysis is performed since the results are expected to be the same as 

conventional MRI. 

 

In order to do that assume uniform main magnetic field, which is equal to 

 

0 ˆ( , , ) 0.1 zB x y z a=
�

 (4.1) 

 

Then RF coil’s magnetic field can be defined as:   

 

xazyxB ˆ101),,( 4
1

−⋅=
�

 (4.2) 

 

The gradient fields are selected as in conventional MRI systems. In these 

systems, gradient fields’ directions are the same with the direction of main 

magnetic field and linearly varying with respect to position according to which 

gradient it is. As an example for x gradient, 

 

2 ˆ( , , ) 10x zG x y z xa−=
�

 (4.3) 
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A spin echo pulse sequence as shown in Figure 4.2 is assigned, as a pulse 

sequence. In the pulse sequence, the RF signal magnitude is selected such that 

the spins are rotated 90 and 180 degrees. The strength of gradients are selected, 

such that FOV is same as the test object. The repetition time (TR) and echo time 

(TE) are selected as to get proton density images. TR and TE are equal to 5 s and 5 

ms respectively. 

 

 

 

Figure 4.2. Spin echo pulse sequence. 

 

 

As a test object, two-dimensional Shepp-Logan head phantom geometry with 

MR parameters is used. The proton density image of the test object relative to 

water is shown in Figure 4.3. The relaxation times for the test object (T1, T2) 

selected as uniform. T1, T2 selected as 1 s and 500 ms. 
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Figure 4.3. Proton density distribution of the test object. 

 

 

The simulation studies are made using the above input parameters. Hence, the 

results of the numerical model without noise are obtained. Calculation of FID 

signals to fill the k-space takes about 120 minutes with a PC (Pentium 4 2.8GHz 

CPU & 2GB RAM). The output of the numerical model is given in Figure 4.4.   

 

 

Figure 4.4. Simulation results (a) linear scale (b) logarithmic scale. 
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Since this is the simulation of well-known conventional MRI, the output signal 

corresponds to two-dimensional Fourier transform of the proton density image. 

So that, the image can be reconstructed by taking two-dimensional Inverse 

Fourier Transform. However, in the proposed reconstruction algorithm the 

results are multiplied by inverse of “A” matrix, which is defined in (2.70). The 

magnitude of A matrix is shown in Figure 4.4. As seen from Figure 4.5, matrix A 

is nearly an identity matrix. Elements other than the diagonal, are in the order of 

10-12. The matrix rank is full and eigen values of the magnitude of A matrix are 

equal to each other. Hence, its inverse is identity matrix.  
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50

 

Figure 4.5. The magnitude of A matrix is given for homogenous magnetic main 
field with linear gradient and spin echo pulse sequence.  

 

 

Figure 4.6 shows the reconstructed image. Relative error in the reconstructed 

image can be found using Equation (4.3) where proton density is nonzero. In the 

equation ρ is proton density of test object, ρR is reconstructed proton density l is 

pixel number, L1 is number of pixel, where proton density is non zero.  
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Figure 4.6. Reconstructed image is given for homogenous main magnetic field 
with linear gradient and spin echo pulse sequence.  
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1

2
,

2
11

( )1
100%

L
l R l

l lL

ρ ρ
ρ=

−
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An error measure, where the test object’s proton density is zero, has to be 

defined. As an error measure mean of values where the test object’s proton 

density is zero. The formula is given in (4.4). In this equation L2 is number of 

pixel, where proton density is zero. 

 

Background noise 
2

,
12

1 L

R l
lL

ρ
=

= ∑  where ρ = 0  (4.4) 

 

As seen from Figure 4.6, the image is reconstructed almost perfectly. The errors 

are due to the numerical truncation error and numerical derivatives used while 

calculating the induced voltage. The relative error is 3.02⋅10-3%, and background 
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noise described in (4.4) is 4.21⋅10-5. After that, some parameters are changed and 

results are obtained for these cases. The changed parameters and calculated 

errors are given in Table 4.2. 

 

 

Table 4.2. Error values for different inputs for homogenous main magnetic field 
with linear gradient and spin echo pulse sequence 
 

 
Relative 
error % 

Background 
Noise 

Reference 3.02⋅10-3 4.21⋅10-5 
Proton density distribution doubled 3.02⋅10-3 4.20⋅10-5 
T1 value of test object doubled 3.82⋅10-3 4.33⋅10-5 
T2 value of test object doubled 3.77⋅10-3 1.13⋅10-4 
TE value doubled 3.03⋅10-3 8.41⋅10-5 
TR value doubled 2.81⋅10-3 3.71⋅10-5 

 

 

As seen from the table, the error values are small. This shows that the simulation 

works fine for uniform inputs and reconstruction algorithm give correct results. 

To understand the necessity of the proposed algorithm, the results for non-

uniform magnetic field case, has to be analyzed. In order to investigate the non-

uniform case, non-uniform main and magnetic field have to be used. For 

inhomogeneous main magnetic field, outside of a 0.15 T Oxford magnet is 

measured and used as the main magnetic field. By doing this, a more realistic 

simulation is made. The measured magnetic field with a maximum 

inhomogeneity of 1.95×105 ppm is shown in Figure 4.7. As seen in the figure, 

there is no x-component in the main magnetic field. The RF coil’s magnetic field 

is assumed to be uniform and in x-direction. By this assumption, RF magnetic 

field is perpendicular to the main magnetic field. A spin echo pulse sequence is 

used as the pulse sequence. 
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Figure 4.7. Strength and direction of the main magnetic field. Color map shows 
the strength of main magnetic field, the arrows show the direction of the main 
magnetic field. The x-component of the main magnetic field is zero. 

 

The parameters used for the simulation are given in Table 4.3. The gradient 

fields are selected such that they are parallel to the main magnetic field & 

varying linearly with position accordingly with a constant of 10-3 T/m. The input 

proton density is the same as the previous. 

 

 

Table 4.3. Simulation inputs for inhomogeneous main magnetic field case. 

Parameter Value 
Longitudinal Relaxation for phantom (T1) 2 s 
Transverse Relaxation (T2) 0.5 s 
Echo time (TE) 5 ms 
Repetition time (TR) 5 s 
Data Acquisition Time (TS) 0.5 ms 
Number of averages (N) 4 
Slice thickness 1 cm 
Number of pixels 31x31 
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The simulation is performed for described inputs then the resultant signals are 

found. 

 

 

Signal K space
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Figure 4.8. Absolute value of demodulated FID signals without noise is given. 

 

 

Two-dimensional Fourier transform of the demodulated FID signal is shown in 

Figure 4.9. For the image in Figure 4.8 the relative error, is 95% and the mean of 

background noise is 0.15. Following the Fourier transformation, the A matrix is 

calculated. For this case, A matrix is not full rank so that for matrix inversion 

singular value decomposition (SVD) technique is used. To achieve better results, 

truncation can be applied in SVD method. The truncation level can be selected 

according to the relative error, since the original phantom is known. Error versus 

truncation level is shown in Figure 4.10. The truncation level selected as 843rd 

singular value. The value for this is about 0.9% of the largest singular value. 

Then, for this truncation level the image reconstructed using proposed FFT based 

reconstruction algorithm. The reconstructed image is shown in Figure 4.11. The 

reconstructed image has 8.3% relative error with 0.03 background noise mean.  
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Direct FFT reconstructed image
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Figure 4.9. Direct Fourier transform of the demodulated output signal. 
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Figure 4.10. a) Relative error, b) Background noise mean versus SD truncation 
level for noiseless inhomogeneous case.  
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Reconstructed image

 

 

5 10 15 20 25 30

5

10

15

20

25

30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

Figure 4.11. Reconstructed image using proposed FFT based reconstruction 
algorithm. 

 

 

4.2. FFT Based Image Reconstruction Algorithm Results with Noisy Free 

Induction Decay Signal 

 

Pixel SNR can be found for each pixel by the method explained in theory part. 

To find it the main and RF magnetic field information, test object properties and 

pulse sequence have to be known. Signal strength for every pixel can also be 

determined by the given information. Using pixel SNR and signal strength, noise 

level can be determined for every pixel and then Gaussian noise with zero mean 

is added to the signal. Rest of the FID signal calculation and image 

reconstruction is the same as the noiseless case. Again, Shepp-Logan head 

phantom geometry with MR properties given in figure 4.6 and table 4.4. is used 

as a test object. Properties of the other parameters are given in Table 4.4.  
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Table 4.4. Pulse sequence, test object and other parameters used as inputs 
simulation for inhomogeneous main magnetic field case. 

 
Parameter Value 
TE time 5 ms 
TR time 5 s 
TS time 0.07 ms 
Number of averages (N) 2 
T1 relaxation 1 s 
Number of pixels 31x31 
Object size 11.5x11.5 cm 
Slice Thickness (ST) 1 cm 
Noise Figure (NF) 1.5 dB 
QL quality 170 
QE quality 240 

 

 

FID signal decays primarily with T2, and this decay becomes more rapid under 

inhomogeneous magnetic fields. In order to evaluate the effect of T2 in MR 

imaging using inhomogeneous magnetic fields and realistic FID signals for 

various T2 values (i.e. 300, 100, 50, 20 and 10 ms) are generated using the 

developed model. Based on these FID signals, MRI images are reconstructed by 

using the developed FFT based reconstruction algorithm for MRI in 

inhomogeneous fields. Reconstructed images are given in figure 4.12. 
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Figure 4.12. Reconstructed images with different T2 values. (a) T2 = 300 ms, (b) 
T2 = 100 ms, (c) T2 = 50 ms, (d) T2 = 20 ms, (e) T2 = 10 ms  

 

 

The reconstructed image contrast decreases with T2, since T2 becomes 

comparable with TE and the resultant image is not a spin density weighted image 

anymore. Noise becomes more dominant in the reconstructed images with 
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decreasing T2, causing larger reconstruction errors (Table 4.5). Images with 

tolerable error are obtained with T2 values comparable to those of biological 

tissues when the proposed reconstruction algorithm is used. 

 

Noise performance of the proposed reconstruction algorithm is also evaluated for 

T2 = 100 ms (typical for head tissue). N and Slice Thickness changed to obtain 

different SNR levels (table 3). Increasing slice thickness as well as averaging 

improves SNR hence the reconstruction error decreases.  

 
 

Table 4.5. SNR values and reconstruction errors for different T2 values. 

 

T2 SNR 
Reconstruction 

Error 
300 ms 52.7 13.6 % 
100 ms 51.1 14.5 % 
50 ms 48.2 16.7 % 
20 ms 42.0 25.2 % 
10 ms 32.4 41.4 % 

 
 
 
 

Table 4.6. SNR values and reconstruction error corresponding to different input 
parameters (N and ST).  

 

N ST SNR 
Reconstruction 

Error 
- - ∞ 8.5 % 
4 1 cm 72.4 11.4 % 
2 1 cm 51.1 14.5 % 
1 1 cm 35.8 15.9 % 
1 0.5 cm 18.6 22.7 % 
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CHAPTER 5 
 
 

EXPERIMENTAL RESULTS 

 
 
 

To obtain experimental results for magnetic resonance imaging in inhomogenous 

main magnetic field, a phantom filled with a material containing MR active 

nuclei is needed.  

 
 

5.1. Experimental Setup 

 

The chosen phantom has a simple shape, which is given in Figure 5.1.  

 

 

 
Figure 5.1. Experimental phantom with two separate compartments (1 & 2) is 
used for magnetic resonance imaging in inhomogenous main magnetic field. 
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In experiments phantom compartments filled 1g of CuSO4 in 1lt pure water at 

25ºC.  

 

In order to estimate T1 and T2 relaxation time constants compartment 1 of the 

phantom is completely filled with CuSO4 solution. A spin echo pulse sequence 

without a slice selection and phase encoding gradient is applied. Adopted pulse 

sequence is shown in Figure 5.2. For this pulse sequence Echo time (TE) is fixed 

to 17 ms and TR values changed in the range of [70 ms, 5 s] and FID signal is 

collected 16 times and averaged to find less noisy data. Then maximum of 

averaged FID signal found for the corresponding TR time. 

 

 

 

Figure 5.2. Pulse sequence used to find the T1 and T2 estimate of the CuSO4 
solution.  
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Using these points FID signal maximum versus TR plot is obtained and shown in 

figure 5.3. In addition, the Bloch equation that relates signal maximum of the 

FID signal the relation is given in (5.1) [4] as  

 

{ } ( )1 1max FID(t) = 1-exp(-T /T )RA  (5.1) 

 

Using relation (5.1) a curve can be fitted to the experimental data. For curve 

fitting Nonlinear Least Squares method and Trust-Region algorithm is used. A1 

estimate is equal to 5.33 with 95% percent confidence bound (5.27, 5.40) and T1 

estimate is equal to 0.160 with 95% percent confidence bound (0.156, 0.164). 

For these A1 and T1 values obtained curve is given in Figure 5.3. 
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Figure 5.3. Experimental results of FID signal maximum versus different TR 
values are shown as blue circles and fitted curve (A1 = 5.33, T1 = 0.16) for these 
experimental data are shown in red line.  

 

 



 

91 

 

 

For T2 estimation, the same phantom and pulse sequence are used but TR is fixed 

to 1 s and TE is varied in the range of [17 ms, 307 ms].  FID signal is collected 16 

times and averaged. The relation between FID signal maximum and TE is given 

in (5.2). 

 

{ } ( )2 2max FID(t) = exp(-T /T )EA  (5.2) 

 

Using the same technique for T1 estimation a curve fitted for the experimental 

results. The fitted curve and experimental results are given in Figure 5.4. A2 

estimate is equal to 5.41 with 95% percent confidence bound (5.26, 5.56) and T2 

estimate is equal to 0.152 with 95% percent confidence bound (0.142, 0.161). 

Corresponding curve for these A2 and T2 values is given in Figure 5.4. 
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Figure 5.4. Experimental results of FID signal maximum versus different TR 
values are shown as green circles and fitted curve (A2 = 5.41, T2 = 0.152) for 
these experimental data are shown in red line. 

 

 

5.2. Experimental Results for FID Signal in Inhomogeneous Main Magnetic 

Field for One-Dimension 

 

To make one-dimensional analysis of FID signal in inhomogeneous main 

magnetic field for one-dimension, conventional 0.15T METU-MRI system with 

a special pulse sequence is used. As a test object, the phantom described above 

with compartment 1 filled with CuSO4 solution is used. Object’s, T2 and T1 value 

are found to be 152 ms and 160 ms, respectively. Using pulse sequence shown in 

Figure 5.5, main magnetic field strength in z direction varies linearly in x 

direction. In addition, single RF coil is used for excitation and reception. The 

magnetic field of RF coil is in the direction of x and assumed to be uniform.  
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Figure 5.5. Pulse sequence used to find the Experimental Results for Free 
Induction Decay Signal in Inhomogeneous Main Magnetic Field for one-
dimensional case.  

 

To generate linear variation on the main magnetic field x-gradient is used, so the 

main magnetic field is varied linearly in the FOV. Varying the strength of x-

gradient, different level of inhomogeneity in the FOV is obtained. Amplitude of 

FID results are shown in Figure 5.6.   
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Figure 5.6. Inhomogeneity level versus demodulated FID signals’ maximum 
values plot is given for one-dimensional case. Blue line is calculated from 
analytical FID signals. Red line shows experimental results. 

 

 

In Figure 5.6. analytic results are obtained assuming ideal 90º RF pulse is used. 

Therefore, the signal maximum for analytical case does not change. However, 

for experimental results, RF pulse gain is set manually and this affects the signal 

peak. by changing the RF gain  about 90º RF pulse can be obtained below the 

1.5⋅102 ppm inhomogeneity level, As the inhomogeneity in the FOV increases, 

RF pulse bandwidth has to increase. In order to increase the bandwidth, the pulse 

duration decreases, due to RF gain limitation the pulse degree decreases. In 

addition, the results are affected due to frequency characteristics of the RF coil 

and electronics part. 
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Figure 5.7. Inhomogeneity level versus demodulated FID signals’ normalized 
energy plot is given for one-dimensional case. Blue line is calculated from 
analytical FID signal. Red line gives experimental results. 

 

 

For the energy plot up to 1.5⋅102 ppm inhomogeneity level, experimental and 

analytical results are similar. Due to RF pulse gain limitation, amplitude of the 

signal so the energy decreases.  
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(a) 

 

(b) 

Figure 5.8. Inhomogeneity level versus  (a) T2
* estimate and (b) minimum 

sampling frequency needed is given for one-dimensional case. Assumptions are 
MRI receiver part has a 12 bit analog to digital converter and 31 pixel image is 
reconstructed. Blue lines are calculated using analytical FID signal. Red lines are 
obtained from experimental results. 
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Figure 5.9. Bandwidth level versus minimum sampling frequency needed is 
given for one-dimensional case. Assumptions are MRI receiver part has a 12 bit 
analog to digital converter and 31 pixel image is reconstructed. Blue lines are 
calculated using analytical FID signal. Red lines are obtained from experimental 
results. 

 

 

As seen from the results in Figure 5.8 the T2
* values and the sampling frequency 

does not depend on amplitude variation. This is compensated while calculating 

T2
* estimates which is given in subsection 3.1.1. The difference between 

analytical and experimental results may due to the gradient field strength 

variation and gradient amplifier gain. 
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5.3. Experimental Results for Imaging in Inhomogeneous Main Magnetic 

Field for One-Dimension 

 

To make obtain one-dimensional image for inhomogeneous main magnetic field 

again conventional 0.15T METU-MRI system with previous pulse sequence 

given in Figure 5.5 is used. Same test object and RF coil is used. The 

inhomogeneity level is set to 1.5⋅102 ppm which is the maximum limit applicable 

to a 90º RF pulse. Since the variation in the main magnetic field is linear in x-

direction the reconstruction matrix found to be identity and the obtained result is 

shown in Figure 5.10. The reconstruction error is 14.3%. 

 

 

Figure 5.10. Experimental result of imaging in inhomogeneous main magnetic 
field for one-dimensional case. Blue line is reconstructed image. Red line shows 
the phantom. 
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CHAPTER 6 
 
 

CONCLUSIONS 

 
 
 

In this thesis, analysis of magnetic resonance imaging in inhomogeneous main 

magnetic filed is aimed. To do this analysis, MR systems that use 

inhomogeneous magnetic fields and FID signal models used for these systems 

are surveyed.  

 

A new model is developed to calculate FID signal for inhomogeneous magnetic 

fields. The model consists of two main parts, which are magnetization vector 

calculation part and signal formation part. The first part is similar to Bloch 

equation, but it is position dependent to cover inhomogenous case. So that, using 

this part, magnetization vectors are found for every time instant and voxel. Then 

utilizing these magnetization vectors and developed model’s signal reception 

part, FID signals are calculated.  

 

Furthermore, a new noise model is implemented to achieve realistic FID signal. 

To calculate realistic noisy FID signal, noise model for MRI with homogeneous 

fields is extended for inhomogeneous fields. Then FID signal and noise models 

are used synchronously to calculate MR and additive noise signals. 

 

Using these models’ outputs and derived analytical results, FID is characterized 

in inhomogeneous main fields. The characterization is done for different levels 

of inhomogeneity for one and two-dimensional cases. The characterization 

includes the relation between inhomogeneity level and signal decay, signal peak, 



 

100 

 

signal energy, FOV, and MRI system parameters (RF bandwidth, receiver 

bandwidth, resolution, and maximum sampling rate). Using these relations and 

obtained results, required system parameters can be calculated from 

inhomogeneity level. Similarly, inhomogeneity level limit can be calculated from 

system parameters. 

 

A new image reconstruction algorithm is proposed for inhomogeneous magnetic 

fields. Proposed algorithm is FFT based. The algorithm is tested using a test 

object in homogeneous magnetic field. The obtained results are almost same to 

original object proton density distribution (relative error < 3.77⋅10-3 %). After 

that, the algorithm is tested with inhomogeneous main magnetic field. The 

proposed reconstruction algorithm gives 8.5 % relative error. When only two-

dimensional Fourier transform is employed, the reconstructed image has 95 % 

relative error. Image reconstruction algorithm is also tested for different levels of 

noise and relaxation times to understand the influence of both variables. In the 

worst case relative error of 42 % is achieved. This result is twice as better as 

compared to direct FFT reconstruction. 
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APPENDIX A 
 
 
 

THEORY OF MR-EIT IN INHOMOGENEOUS MAIN MAGNETIC 

FIELDS 

 
 

As stated before Bloch equation can be used model the spin & magnetic field 

interaction in macroscopic level. That is 
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where 0( )B r
�

 static main magnetic flux density, and 
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In MR-EIT experiments the test object has to be conductive. And an external 

current is applied to the object via electrodes. This externally applied current 

generates current distribution in the test object. Due to that current distribution a 

magnetic flux density is generated. Name this magnetic flux density as ( )CB r
�

. 

This ( )CB r
�

 can be inserted as new term in Bloch equation as, 
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If the main magnetic flux density 0( )B r
�

 is very large compared to ( , )CB r t
�

 than 

total magnetic field can written as  
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Since ( , )CB r t
�

 assumed to be zero very small compared to 0( )B r
�

 then B can be 

ignored. Then 
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This is generally the case since the externally applied current has a limit in 

medical applications. As seen in the computer simulations the generated 
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magnetic flux density is in the range of µT and the main magnetic flux density is 

in the range of T due to that assumption is correct. So let us define a new 

parameter ( ),CeffB r t
�

 which is the effective component of the ( ),CB r t
�

. 
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By substituting  ( ),CeffB r t
�

 to (A.4) the Bloch equation becomes 
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The general form of Bloch equation when an externally current is applied is 

shown in (A.9). From there the effect on ( ),M r t
�

 can be calculated. In MR 

systems, the magnetization vectors can not be directly measured. Only induced 

voltages in the receiver coil due to magnetization vector change with time can be 

measured. The induced voltage satisfies for a receiver coil defined by its 

magnetic flux density 2( )B r
�

 as in (A.10). 

  

2
( , )

( ) ( )
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�
�

 (A.10) 

 

In (A.10) objV is the volume that will be imaged.   
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Now define ( )2B r
�

 sum of two vectors ( )2||B r
�

 and ( )2B r⊥

�
 as 
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and 
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Substitute (A.11) & (A.12) into (A.10) and by using (A.2) & (A.3) equation 

becomes 
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Take the derivative operator out of the integral and perform the dot product 

(A.13) becomes 
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A and B terms are equal to zero since the vectors are orthogonal to each other. 

Also for the other two dot product term vectors are parallel to each other. So that 

 

2|| || 2( ) ( ) ( , ) ( ) ( , )
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d
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 (A.15) 

 

Divide the integral into two and take the derivative inside, then 
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 (A.16) 

 

If assumed that only the gradients can be applied during the signal reception 

phase, then parallel component of magnetization vector can be found using the 

solution of (A.9) [4]. 

 

( ) ( )( ) ( ) ( )1 1/ /0
|| || ||( , ) 1 ,0t T r t T rM r t M r e M r e− −

+= − +
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 (0.1) 

 

In (A.17) ( )0
||M r
�

 means magnetization vector at rest and ( )|| ,0M r +
�

 means 

parallel component of the magnetization vector after RF excitation pulse. As 

seen from the (A.17) derivative of the ||( , )M r t
�

 inversely related to the 

relaxation parameter ( )1T r . For biological tissues in human body minimum of 

relaxation parameter 1T  found as 340 ms [72]. 
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Now consider the part B in (A.16) to solve this part again assume that only the 

gradients can be applied during the signal reception interval then  

 

( ) ( ) ( ) 02

( ( , ) ) ( ( , ) ( , ) )
/( , ) ,

Tt SA

i i Ceff
i iTSA

j G r d j G r B r d
t T r j r t

SA
A B C

M r t M r T e e e e
γ τ τ γ τ τ τ

ω +

− − +
−

⊥ ⊥

∑ ∑∫ ∫
=

� � �

� �
�����������������

 (A.18) 

 

In equation (A.18) Above function can be divided as multiple time dependent 

parts (A, B, C) then the derivative of above equation with respect to time is  
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The dominant part is the second one since ( ) ( )0r B rω γ=
�

 is very large 

compared to 21/ ( )T r  and ( , )i
i

G rγ τ∑
�

 for our case. In addition, ( )rω  is also 

very large compared to 11/ ( )T r  then A part of (A.16) can be also ignored. Then 
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The only difference in this equation due to current application is shown in the 

box above. By using previously designed reconstruction algorithm phase induced 

in the signal hence the ( , )CeffB r τ
�

 can be found directly. 
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For practical application in order to minimize the phase errors due to difference 

between actual and measured magnetic fields as an extra first image can be taken 

without a current application. And by taking the ratio of the signals a better result 

can be obtained. But since this is a simulation there has to be no need for taking 

the ratio since there is no deviation in magnetic fields.   
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