
1

MINING FREQUENT SEMANTIC EVENT PATTERNS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ENİS SÖZTUTAR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2009

Approval of the thesis:

MINING FREQUENT SEMANTIC EVENT PATTERNS

submitted by ENİS SÖZTUTAR in partial fulfillment of the requirements for the degree of
Master of Science in Computer Engineering Department, Middle East Technical Uni-
versity by,

Prof. Dr. Canan Özgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Müslim Bozyiğit
Head of Department, Computer Engineering

Prof. Dr. İsmail Hakkı Toroslu
Supervisor, Computer Engineering, METU

Examining Committee Members:

Assoc. Prof. Dr. Ahmet Coşar
METU, Computer Engineering Department

Prof. Dr. İsmail Hakkı Toroslu
METU, Computer Engineering Department

Assist. Prof. Dr. Pınar Şenkul
METU, Computer Engineering Department

Assist. Prof. Dr. Tolga Can
METU, Computer Engineering Department

Güven Fidan
AGMLAB Inc.

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: ENİS SÖZTUTAR

Signature :

iii

ABSTRACT

MINING FREQUENT SEMANTIC EVENT PATTERNS

Söztutar, Enis

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. İsmail Hakkı Toroslu

September 2009, 99 pages

Especially with the wide use of dynamic page generation, and richer user interaction in Web,

traditional web usage mining methods, which are based on the pageview concept are of limited

usability. For overcoming the difficulty of capturing usage behaviour, we define the concept

of semantic events. Conceptually, events are higher level actions of a user in a web site, that

are technically independent of pageviews. Events are modelled as objects in the domain of the

web site, with associated properties. A sample event from a video web site is the ’play video

event’ with properties ’video’, ’length of video’, ’name of video’, etc. When the event objects

belong to the domain model of the web site’s ontology, they are referred as semantic events.

In this work, we propose a new algorithm and associated framework for mining patterns of

semantic events from usage logs. We present a method for tracking and logging domain-level

events of a web site, adding semantic information to events, an ordering of events in respect

to the genericity of the event, and an algorithm for computing sequences of frequent events.

Keywords: Web Usage Mining, Semantic Web Usage Mining, Semantic Events, Event Min-

ing , Apriori

iv

ÖZ

SIK ANLAMSAL OLAY DESENLERİ MADENCİLİĞİ

Söztutar, Enis

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. İsmail Hakkı Toroslu

Eylül 2009 , 99 sayfa

Özellikle Web’deki dinamik sayfa yaratımı ve zengin kullanıcı etkileşimi yüzünden, sayfa

gösterimini temel alan geleneksel Web kullanım madenciliği metodlarının yararlılıkları sınırlıdır.

Anlamsal olaylar kavramı, kullanıcıların davranışlarını modellemedeki zorlukları aşmak için

geliştirildi. Kavramsal olarak, olaylar kullanıcıların daha yüksek seviyedeki eylemleridir ve

sayfa gösteriminden teknik olarak bağımsızdır. Olaylar web sitesinin alanında ilgili özellikleri

olan nesneler olarak modellenmiştir. Bir video izleme web sitesinden örnek bir olay, ’video

izleme olayı’, ilişkili özellikler ise ’video’, ’videonun süresi’, ’videonun uzunluğu’, v.b. olarak

verilebilir. Olay nesneleri, web sitesi ontolojisinin alan modeline ait olduğunda ise, olaylara

anlamsal olaylar denilebilir. Bu çalışmada, web kullanım kayıtlarından anlamsal olay de-

senlerini çıkartacak yeni bir algoritma ve bir çerçeve önerilmiştir. Web sitesinin anlanındaki

olaylarının takip edilmesi, kayıt altına alınması, anlamsal bilgi ile desteklenmesi, olayların

genelliğine ilişkin bir sıralama ve sık olay dizilerinin hesaplanmasına ilişkin bir algoritma

sunulmuştur.

Anahtar Kelimeler: Web Kullanım Madenciliği, Anlamsal Web Kullanım Madenciliği, An-

lamsal Olaylar, Olay Medenciliği, Apriori

v

To my loving Mother and Father

vi

ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude to my supervisor, Prof. Dr. İsmail

Hakkı Toroslu for his guidance, advice, criticism, patience and invaluable insight throughout

the research.

I would also like to extend my thanks to my employer, Ekinoks Yazılım, for allowing me to

pursuit this research, and giving me the opportunity to work on the web analytics product.

Last, but not least, I cannot truly exaggerate my gratitude and love for my parents for their

support, encouragement and love.

This thesis, and the web analytics project is partly sponsored by the Türkiye Bilimsel ve

Teknolojik Araştırma Kurumu (TÜBİTAK) / The Scientific and Technological Research Coun-

cil of Turkey.

vii

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . v

DEDICATON . vi

ACKNOWLEDGMENTS . vii

TABLE OF CONTENTS . viii

LIST OF TABLES . xii

LIST OF FIGURES . xiv

CHAPTERS

1 INTRODUCTION . 1

1.1 Introduction . 1

1.2 Organization . 2

2 BACKGROUND AND RELATED WORK 3

2.1 Web Mining . 3

2.1.1 Web Content Mining . 3

2.1.2 Web Structure Mining 4

2.1.3 Web Usage Mining . 5

2.1.3.1 Statistical Analysis 6

2.1.3.2 Sequential Patterns and Association Rules . . 6

2.1.3.3 Classification 8

2.1.3.4 Clustering 8

2.1.3.5 Web Usage Data 8

2.1.3.6 Data Collection 9

2.1.3.7 Session Management 11

viii

2.1.3.8 Sequential Apriori 12

2.1.3.9 GSP . 14

2.2 Description Logics . 16

2.2.1 TheAL Language . 18

2.2.2 The SHOIN(D) Language 18

2.3 Semantic Web . 19

2.3.1 Semantic Web Components 20

2.3.1.1 Knowledge Representation 20

2.3.1.2 Logic . 21

2.3.1.3 Ontologies 21

2.3.1.4 Agents . 21

2.3.2 OWL : Web Ontology Language 22

2.4 Semantic Web Mining . 24

2.4.1 Extracting Semantics from the Web 24

2.4.2 Using Semantics for Web Mining 25

2.4.2.1 Semantic Web Usage Mining 26

2.4.3 Mining the Semantic Web 27

3 MINING SEMANTIC EVENT PATTERNS FROM WEB USAGE LOGS . . 29

3.1 Overview of the Chapter . 29

3.2 Motivation . 29

3.3 Web Analytics Project . 32

3.3.1 Project objectives . 32

3.3.2 Project Overview . 32

3.3.3 Distributed File System and MapReduce 35

3.3.3.1 Distributed File System 35

3.3.3.2 MapReduce Implementation 35

3.3.4 Data Collector . 35

3.3.5 Traffic Analysis . 38

3.3.5.1 Data Cube Models 38

3.3.5.2 Materialized Cuboids for Reports 39

ix

3.4 Event Tracking . 39

3.4.1 Events . 40

3.4.2 Event Tracking in Web Analytics Project 40

3.4.3 Events as semantic objects 43

3.5 Frequent Pattern Discovery from Semantic Event Logs 47

3.5.1 Problem Statement and Formal Definitions 47

3.5.1.1 Frequent Pattern Discovery from Web Server
Logs . 47

3.5.1.2 Frequent Pattern Discovery from Semantic Event
Logs . 48

3.5.2 Algorithm . 54

3.5.2.1 First Phase - Finding Frequent Atom-trees . . 54

3.5.2.2 Second Phase - Finding Frequent Atom-tree
Sequences 58

3.5.3 Pattern Interestingness 60

4 EXPERIMENTAL RESULTS . 63

4.1 Experimental Setup . 63

4.2 Music Streaming Site . 63

4.2.1 Features of the site . 63

4.2.2 Events in the site . 64

4.2.3 Frequent semantic event patterns for the site 67

4.3 Mobile Network Operator’s Site . 72

4.3.1 Features of the site . 72

4.3.2 Preprocessing the logs 73

4.3.3 Events in the site . 74

4.3.3.1 Site’s Ontology 74

4.3.3.2 Event Mapping 76

4.3.4 Frequent semantic event patterns for the site 78

5 CONCLUSION . 83

5.1 Comparison with Earlier Approaches to Semantic WUM 83

5.2 Conclusion . 84

x

REFERENCES . 86

APPENDICES

A A Sample Screenshot of Buldinle Music Site 90

B Event Patterns for Music Site . 91

C Event Patterns for Mobile Network Operator’s Site 93

D Ontology Details for Mobile Network Operator’s Site 96

xi

LIST OF TABLES

TABLES

Table 2.1 Sample Item-sets for GSP . 16

Table 3.1 Sample Data Cube . 38

Table 3.2 Sample Input Dataset for Second Phase 59

Table 4.1 Sample URL’s for BulDinle . 65

Table 4.2 Events for BulDinle . 67

Table 4.3 Annotation Properties in the Ontology . 67

Table 4.4 Event Patterns for Music Site, {ψ(a)} . 68

Table 4.5 Event Frequencies for Music Site, {φ(ψ(a))} 68

Table 4.6 Event Frequencies for Music Site, {φ2(ψ(a))} 69

Table 4.7 Event Frequencies for Music Site, {φ3(ψ(a))} 69

Table 4.8 Pageview and Session Counts for Network Operator’s Site 72

Table 4.9 Events for the Network Operator’s Site . 75

Table 4.10 Annotation Properties in the Ontology . 76

Table 4.11 Event Mapping for the Network Operator’s Site 77

Table 4.12 Event Mapping for the Network Operator’s Site 78

Table 4.13 Event Patterns for Mobile Network Operator’s Site, {ψ(a)} 78

Table 4.14 Event Patterns for Mobile Network Operator’s Site, {φ(ψ(a))} 79

Table 4.15 Event Patterns for Mobile Network Operator’s Site, {φ2(ψ(a))} 79

Table 4.16 Event Patterns for Mobile Network Operator’s Site, {φ3(ψ(a))} 80

Table 4.17 Event Patterns for Mobile Network Operator’s Site, {φ4(ψ(a))} 80

Table 4.18 Event Patterns for Mobile Network Operator’s Site, {φ5(ψ(a))} 80

xii

Table B.1 Event Patterns for Music Site . 92

Table C.1 Event Patterns for Mobile Network Operator’s Site 94

Table C.2 Event Patterns for Mobile Network Operator’s Site (Cont’d) 95

xiii

LIST OF FIGURES

FIGURES

Figure 2.1 An example taxonomy for GSP . 15

Figure 2.2 Knowledge Base . 17

Figure 3.1 System Architecture Overview . 34

Figure 3.2 Data Collection Sequence Diagram . 36

Figure 3.3 Event Tracking Class Diagram . 41

Figure 3.4 Event Diagram . 45

Figure 3.5 The < relation among atom-trees . 52

Figure 3.6 Example Atom-tree Hierarchy . 59

Figure 4.1 Daily Visit Counts for BulDinle . 64

Figure 4.2 Daily Pageview Counts for BulDinle . 65

Figure 4.3 Class Hierarchy of the Ontology of Music Streaming Site 66

Figure 4.4 Domain-Range Relations of the Ontology of Music Streaming Site 66

Figure 4.5 Number of Candidates and Patterns for Music Streaming Site 71

Figure 4.6 Number of Patterns for Music Streaming Site 71

Figure 4.7 Number of Candidates and Patterns for Network Operator’s Site 82

Figure 4.8 Number of Patterns for Network Operator’s Site 82

Figure A.1 A Sample Screenshot of Buldinle Music Site 90

Figure D.1 Hierarchy of Top-Level Classes of the Ontology of Network Operator . . . 97

Figure D.2 Hierarchy for 2-level Subclasses of ’Personal’ 98

Figure D.3 Hierarchy for Subclasses of ’PersonalServicesMessaging’ 99

xiv

Figure D.4 Domain-range Relations of the Ontology of Network Operator 99

xv

CHAPTER 1

INTRODUCTION

1.1 Introduction

Previous work on analyzing web usage behavior is focussed on processing web server logs,

due to the technicalities of the underlying architecture of the World Wide Web (HTTP proto-

col, web server logs, URL’s, etc.). Typically, the data source for usage analysis is the pageview

requests from the web server logs. Although the HTTP/1.0 protocol dictates a pageview based

user interaction, usage of richer interaction models have exploded in the web using HTTP/1.1

connection keep alive, Adobe Flash, or AJAX. During the usage of the web site, a user hardly

thinks of the web site as a set of pages, but rather she has higher level goals, such as finding

a content, searching for something, listening to a song, etc. Pageviews are insufficient for

capturing such information; therefore for mining rich and structured information, we need to

keep the information to be mined at a more semantic level, similar to the work in [13, 39].

For overcoming the difficulty of capturing usage behavior, we define the concept of semantic

events. Conceptually, events are higher level actions of a user in a web site, that are technically

independent of pageviews. Events are modelled as objects in the domain of the web site, with

associated properties. A sample event from a video web site is the ’play video event’ with

properties ’video’, ’length of video’, ’name of video’, etc. When the event objects belong to

the domain model of the web site’s ontology, they are referred as semantic events.

In this work, we propose a new algorithm and associated framework for mining patterns of

semantic events from the usage logs. We present a method for tracking and logging domain-

level events of a web site, adding semantic information to events, an ordering of events in

respect to the genericity of the event, and an algorithm for computing sequences of frequent

1

events.

We tested the proposed system on two web sites with very different domains. The first web

site is a music streaming site, in which users search for, and listen to songs. The second is a

web site of a large mobile network operator, with a rich content and high traffic. Resulting

semantic event patterns from these studies have shown the approach to be useful and practical.

The work is part of an ongoing research and development project titled ”Web Analytics Sys-

tem” (Section 3.3). The project aims to build a scalable infrastructure for tracking, analysis,

statistical and intelligent reporting of web usage behavior.

1.2 Organization

This text starts with a detailed introduction to the background concepts and related work.

In Chapter 2, Web Mining, Description Logics, Semantic Web, and the so-called Semantic

Web Mining fields are overviewed. In Section 2.4, current research frontier is referred and

discussed in detail in respective sub-sections.

Chapter 3 covers the core concepts in this thesis. First some introduction to the work and

motivation is given. Next, the project, which this thesis is a part of, is introduced and some

project modules are explained. The chapter continues with the discussion of the concept of

events and semantic events. Last, a two-phase algorithm for mining patterns from semantic

event logs are given with sufficient formal detail.

Next, in Chapter 4, the experimental setup and the two web sites used for the experiments

are introduced. The chapter continues with ontology definitions of the sites, the events and

finishes with a discussion of the resulting patterns.

Last, the proposed approach is compared to some of the earlier efforts and a brief conclusion

is given in Chapter 5.

2

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, background knowledge relevant for this work is overviewed, and related work

in the literature is summarized. In the first section, web mining is explained. The second

section contains a short introduction to the Description Logics, which form the basis of the

OWL-DL language. The next section continues with an overview of the Web Ontology Lan-

guage. And finally in the last section, the intersection of semantic web and web mining fields

is reviewed.

2.1 Web Mining

Web mining can be broadly described as the application of data mining techniques on the

web data. The Web mining research is a converging research area from several research

communities, such as Database, IR, and AI, Machine Learning and NLP [34]. The area is

categorized in three subfields according to the type of the data to be mined. In web content

mining, the data to mine is the the content of the web pages; in web structure mining, the data

originates from the web link graph; whereas in web usage mining, the data to be mined is

the usage logs of the web servers. In following sections, each subfield is summarized, with a

special focus on web usage mining.

2.1.1 Web Content Mining

Web content mining describes the usage of knowledge discovery methods on web content.

The content of the web can range from text, audio, video to semi-structured and structured

data. HTML offers only a vague structure on the text, so the web pages in HTML are consid-

3

ered as semi-structured data. Examples of structured data, include extracted data from known

HTML structures (such as forms, lists, etc), data in a self-describing formats (XML, JSON

and data tables), and screen-scraped data from known web page structures. With the recent

interest in machine-readable web, the human-readable content on the web is being slowly

converted to a formal format, which will hopefully increase the portion of structured content

on the web.

Much of the focus in the field was devoted to mining free-format text on the pages, which

is abundant in the current web. The area enjoys a great body of work including informa-

tion retrieval, search engines, topic discovery, classification and clustering of web documents,

natural language processing, Multimedia Retrieval, finding patterns in text, extracting key

phrases from documents, named entity recognition, multilevel databases, and web query sys-

tems. The methods can be categorized in two groups: the IR-centric views and the DB-centric

views. In IR view, the documents are modelled as a bag of words, in vector space model. In

DB-centric view, a structure is imposed over the raw data for enhancing query answering and

information extraction. There also hybrid models combining web content and structure. The

work in this field are not further discussed, as it is beyond the scope of this work. Interested

readers can consult [18, 35, 34, 19].

2.1.2 Web Structure Mining

Hyper links in HTML documents form the basis of the data for web structure mining. The

web is modeled as a directed graph, where the pages in the web are nodes and the hyperlinks

from the pages are the edges [35]. Alternatively, instead of a node for every page, a node

for every site can be generated, with a link from node A to node B, if there exists a page in

the site A linking a page in site B. The most well known algorithms dealing with the web

link graph include the Hyperlink Induced Topic Search (HITS) [33], Pagerank [40] and more

recent adaptive Online Page Importance Calculation (OPIC) [1] algorithms, all of which are

about finding the importance, or rank, of the web pages. In HITS, web pages are attributed

with hub and authority scores. A good hub is a page pointing to good authority pages; and

a good authority is a page pointed by good hubs. Thus the mutual recursive definition of a

page’s hub (hu) and authority (av) score can be expressed as :

4

av =
∑
u→v

hu

hu =
∑
u→v

av

An iterative algorithm computes these scores from the web graph until they converge.

The pagerank algorithm assumes a random surfer model, in which a surfer starts with a page,

and randomly clicks on the links on the page with probability 1 − p, or randomly jumps to

another page with probability p. Then a page’s score(PR) is the probability of the surfer being

in the page at a given time. The pagerank is formalized as :

PR(v) =
p
N

+ (1 − p)
∑
u→v

PR(u)
Nu

, where N is the total number of pages and Nu is the number of outgoing links from page u,

and u→ v indicates page u links to page v.

Contrary to the above, OPIC is an online algorithm, meaning that it does not need to whole set

of URL’s to be fetched for computation. Every page is initialized with some amount of cash,

and when a page is fetched, it’s cash is evenly distributed to it’s outlinks. The importance of

the page (I(v)) is defined as the amount of cash, accumulated in the history of the page. More

formally,

I(v) =
H[v] + C[v]

G + 1

, where C[v] is the current cash of page v, H[v] is the accumulated credit history, and G is the

sum of histories of all pages.

Other areas, where the structure of the web link graph is exploited include social network

analysis, web search, supervised classification of page topics, discovering densely linked sub-

graphs, and spam detection. For a detailed survey, see [18, 35, 34, 19].

2.1.3 Web Usage Mining

Web usage mining (WUM) is the subfield of web mining with a particular focus on knowl-

edge discovery from web usage data. Typically, the searched knowledge is either the fre-

quent browsing behavior patterns, implicit relations among pages or user profiles. Frequent

5

browsing behavior is essential in understanding the navigation paths of the user, whereas rela-

tions among pages reveal latent relations between web pages, or the concepts that web pages

present. User profiles are a key factor in categorizing the users, so that dynamic content can be

generated depending on the profile. Learned knowledge of relations among pages, concepts or

user profiles is utilized in web personalization, recommendation systems, site reorganization,

business intelligence, and usage characterization [34, 47].

Various data mining algorithms are customized and applied to web usage data for knowledge

discovery. In the following sub-sections, we overview some of the common usage mining

methods. We then describe the data that is used in web usage analysis and the collection

methods for usage data. Next, we discuss session management which is crucial in forming

meaningful transactions. We end this section with a detailed explanation of the Apriori algo-

rithm and variants.

2.1.3.1 Statistical Analysis

Statistical analysis is trivial, though it reveals precious insight. Statistical metrics are easily

actionable, meaning that web site administrators can easily interpret the data at hand, and

can make decisions relying on them. Example statistical reports include daily number of

pageviews, daily number of sessions, daily number of unique visitors, daily number of visits

to pages, top pages in the site, top entry/exit pages, distribution of browsers and their versions,

etc. There are both commercial and open source projects that offer statistical analysis from

web server logs.

2.1.3.2 Sequential Patterns and Association Rules

Discovering sequential patterns is one of the most important goals of web usage mining.

Sequential patterns are inter-session sequences of URL’s, that are frequently accessed. Each

session contains ordered URL accesses. The sequential pattern analysis deals with finding

frequent sequences of URL’s that are accessed consecutively. An example 3-item sequential

pattern is given below :

• 30 percent of users access page with URL ’/index.html’,

6

• then the page with URL ’/academic/graduatePrograms.php’,

• and then the page with URL ’/academic/graduateComputerScience.php’.

There will be numerous patterns of the above form, so a minimum support count parameter is

used to filter the patterns. The support of a pattern is defined as the number or sessions that

contains the pattern. Only patterns which have greater support than the defined threshold is

considered interesting.

Association rules offer another type of useful analysis. Association rules predict the user’s

behavior depending on which pages she visited. An example rule is depicted below :

• 80 percent of users who accessed page with URL ’/index.html’,

• then access the page with URL ’/academic/graduateComputerScience.php’.

Association rules can be computed from the sequential patterns in a straightforward compu-

tation. For each prefix subsequence of p of the sequence s = 〈a1, a2, . . . , an〉, we can generate

the rule p ⇒ q, where q is a suffix subsequence of s, and the last index of p is less than the

first index of q.

A con f idence parameter is defined for association rules. Confidence for a sequential associ-

ation rule p ⇒ q is the support count for p, divided by the support count of pq, where pq is

the concatenation of sequences p and q. More formally;

con f idence(p⇒ q) =
support(p)
support(pq)

There are several ways in which discovered association rules and sequential patterns can be

leveraged. Association rules can be used to predict a user’s navigation path, from the current

user session and links or advertisement can be recommended. For example, if a user’s session

matches with a head of a rule with high confidence, then the links in the body part of the

rule can be used as predictors. Another way the sequential patterns can be helpful is web

site reorganization (or web site adaptation), where navigation behavior can be analyzed to

restructure site topology and page layouts.

In finding the sequential patterns, sequential pattern mining algorithms are employed. There

are several algorithms in the literature, with varying characteristics. AprioriAll [3], GSP [46]

7

and SPADE [55], PrefixSpan, MEMISP, and SPIRIT are commonly used methods for this

task. We will review AprioriAll in Section 2.1.3.8, and GSP in Section 2.1.3.9, since they are

closely related to this work. For a more throughout survey, readers can consult [56].

2.1.3.3 Classification

Classification is the problem of assigning predefined labels to items. The labels are said

to be classes of the items. The classification is a supervised learning method. In the web

usage mining context, the users are classified into distinct profiles, so that actions specific to

a profile can be applied. Profiles contain various parameters about the users, such as age,

gender, or purchased items more than 1000 $. The profile information can be leveraged in

recommendation and personalization systems.

2.1.3.4 Clustering

Clustering is the unsupervised method of finding related clusters and assigning items to these

clusters. In the web usage mining domain, either users or pages are clustered [47]. Cluster-

ing of pages reveal the relations among pages and can be used in ontology learning, search

engines, web assistance providers and link recommendation. Clustering of users can be per-

formed to gain insight to similar navigation patterns, collaborative filtering, and link recom-

mendation.

2.1.3.5 Web Usage Data

There are mainly two types of data used in the usage mining process, the HTTP access data

from web servers and application specific usage data. In the former type, a web server keeps

track of every HTTP request along with a selection of parameters passed with the HTTP

header. Most of the work in the field deals with this type of data. The latter type, application

specific data, is common in commercial application servers like WebLogic, BroadVision, and

StoryServer. This type of data is logged in mostly customized formats for the task at hand, so

no generic method for analysis exists.

The underlying protocols of the world wide web, especially the Hypertext Transfer Proto-

8

col (HTTP) enforces the user’s access model to the resources, therefore the resulting data is

closely tied to the protocol definitions. HTTP is basically a text based request-response pro-

tocol on top of TCP/IP. For every HTTP request, web servers keep track of various HTTP

request and response headers. Typically, the ip of the client, the requested URL and the time

for each request is essential in a usage analysis. Other possible fields for logging are listed in

the web server logs part of the following section. HTTP does not offer an explicit mechanism

for a connection-oriented communication. A stateful connection can be achieved indirectly

by either keeping the state in the server side, or using cookies in the client-side to serialize

the state information. If the state information logged by the server does not contain a session

identifier, then sessions should be reconstructed using proactive strategies (Section 2.1.3.7).

In E-commerce applications, keeping track of business events and later analyzing the events

for better insight has become indispensable. However, most of the time, the data collection

method, type and format of the collected data is specific to the application. For example, an E-

commerce application may track information about every transaction, including; (i) items pur-

chased; (ii) user identifier; (iii) date and time; (iv) quantity; (v) total price; (vi) tax; (vii) ship-

ping cost; (viii) billing country; (ix) billing city , etc, whereas a wiki site may keep track of

every change in a document including; (i) the document title; (ii) user identifier; (iii) the size

of the change; (iv) how many times the document is changed before; (v) how many changes

the user has; (vi) is the user original author of the document , etc.

Another type of data which is gaining popularity is the logs of application level events. Appli-

cation level events are distinct from HTTP access logs, in that, the events may not necessarily

correspond to a URL request, and events are meaningful on their own. Events tracking is

implemented in several major web analytics products, and they are being used for statistical

event reporting, e-commerce analysis, and capturing goal conversions. Event tracking, and

it’s role in this project is detailed in Section 3.4.

2.1.3.6 Data Collection

Data collection is an important part of the web usage mining process. The technology for

collecting the data ultimately defines the format, content, and the quality of the usage data.

Not all types of data collection is suitable for a specific task. For example, in event tracking

(see Section 3.4) we can only rely on Javascript tracking for a complete analysis. There are

9

mainly 4 ways of collecting web usage data [31, Ch. 2]: web server logs, web beacons,

javascript tags, and packet sniffing. Below, these types are explained.

Using web Server logs is a convenient way to track user requests. The logs are generated by

the HTTP servers for each user request. Web server logs is by far the most popular way

to collect data in the academic context, however it has several limitations, especially

related to re-constructing user sessions. Some common formats are used by today’s

web servers, which include the Common Log Format, the Combined Log Format and

The Combined Log Format with Cookie [6]. In Combined Log Format with Cookie,

the following fields are logged for each HTTP request; (i) client IP address; (ii) client

authentication name; (iii) time of the request; (iv) HTTP request line, including HTTP

method, the requested resource (URL), and protocol version; (v) HTTP status code;

(vi) Size of the returned content; (vii) Referrer HTTP header; (viii) User-Agent HTTP

header; (ix) Values of the client Cookies;

Web beacons are 1x1 pixel transparent images that are hosted by third-parties. The image is

referred to (included) in the HTML source code of the page to be tracked. When the

browser loads the image from the third-party this request is logged and later analyzed.

This method is now obsolete in favor of javascript tagging which is superior [31, Ch.

2].

Javascript tagging is the insertion of some proprietary script (mostly in Javascript language)

to the pages to be tracked. In hosted web analytics solutions, the script is hosted in the

analytics vendor and it is referred in all the pages of the web site. When the user makes

a pageview, the script is loaded and automatically executed by the user’s browser. The

script collects relevant data about the pageview and sends this data to the vendor’s

servers via another HTTP request.

A Packet sniffer is a hardware or software which analyzes the incoming packets, and logs

the web server requests without interrupting the traffic. In some cases the sniffer can

insert javascript tagging code to the response HTML for collecting more data. This

method is more sophisticated to install than the previous methods and it is not very

scalable in terms of increasing traffic, since all the packages should be routed to the

packet sniffer.

10

Each method has it’s share of advantages and disadvantages. Although using web server logs

is traditionally the popular choice in academics, Javascript tagging is gaining momentum in

the enterprise world, since it allows for service-oriented architectures, easier deployment, and

better session management. For this work, we have utilized both methods, as detailed in

Section 3.3.4 and 4.3.2.

2.1.3.7 Session Management

A session in the context of web browsing is the abstraction of a single user accessing a page,

clicking on one of the links on the page, and so on until she moves to another URL by typing

it, or closing the browser. The sessions are used in web usage mining as the main data form,

since they correspond logically to the transactions in data mining.

However, constructing sessions from individual HTTP requests can be a major problem in

web usage analysis. Since the HTTP protocol is stateless, the sessions should either be marked

explicitly by the web server or sessions should be reconstructed using reactive methods. There

are mainly two approaches to session tracking in practice: tracking user sessions with user

cookies or reconstructing user sessions from raw server logs.

Reconstructing user sessions is a mature research area. Methods that use time oriented, nav-

igation oriented, and and both [44]. Another method is to use both heuristics as well as the

site’s topology in the process to obtain more accurate (reconstructed) sessions [10]. In a recent

study, the ontology of the web site is used in the process [32].

It is reported that session reconstruction with time and session based heuristics has an error

rate of between 10% and 20% [44]. However, proactive methods using cookies effectively

delegate session tracking to the browser, thus eliminating caching and session identification

problems [47]. There are 3 cases where the sessions can be miscalculated in Javascript tag-

ging. They are the cases when the user disables cookies, disables Javascript, or explicitly

deletes the session tracking cookie during the session. It is reported in [23, Ch. 3, p. 36]

that cookie accepting ratio is more than 99%, so depending on cookies is not considered as a

major problem. Moreover cookie-based tracking is not vulnerable to the following problems

:

• browser caching

11

• provider(server side) caching

• different computers using the same IP via NAT

• and using proxies

2.1.3.8 Sequential Apriori

Sequential Apriori is one of the mostly used algorithms in web usage mining. The algorithm

is applied to web usage data to find frequent navigation patterns of the users. In the input data,

each session is considered as a transaction and each URL in the session is considered an item

(or itemset of size 1). The result of the algorithm is frequent patterns, which contains ordered

list of URL’s. Below, we outline the important parts of sequential Apriori algorithms.

In [3] the problem of mining sequential patterns over a set of customer transactions is given,

and several related algorithms are proposed. The algorithms add the concept of sequential

patterns to the previous Apriori algorithm [2].

In Sequential Apriori, a transaction has customer-id, transaction time and item purchased

fields. An itemset is a set of items, and a sequence is an ordered list of itemsets. A sequence,

s1, is contained in another sequence s2, if for every element of ai ∈ s1, there exists a bi ∈ s2,

such that ai is a subset of bi, (ai ⊆ bi) and the index of bi in s2 is greater than the index

of bi−1 ∈ s2. An example from [3] is 〈(3)(45)(8)〉 � 〈(7)(38)(9)(456)(8)〉, where � denotes

’is contained in’ relation. For every customer, a sequence is defined in the database, which

consists of all the transactions of the user. The support for a sequence is defined as the number

of customers whose transactions contain the sequence. In a set of sequences, a sequence s is

maximal if s is not contained in any other sequence.

The problem is defined as follows; given a database of customer transactions, find the maximal

sequences that have a greater support than a given threshold.

In [3], algorithms AprioriAll, AprioriSome and DynamicSome are introduced. AprioriAll

counts all large sequences, whereas in AprioriSome and DynamicSome maximal sequences

are counted first, then resulting sequences are counted in forward-backward phases.

AprioriAll algorithm resembles the Apriori algorithm, and iteratively runs 3 major steps:

12

1. Generate candidate sequences of length k (Ck) from the frequent k-1 length sequences

(Lk−1), by a self join of Lk−1.

2. Scan all transactions to obtain candidate supports for Ck

3. Select sequences that have greater support than threshold (Lk)

A pseudo-code for AprioriAll is given in Algorithm 1. The algorithm starts with selecting

large 1-itemsets, which is denoted L1. Then each iteration generates the candidate set of

length k, Ck, from the frequent itemset of length k-1, Lk−1. The candidate generation function

joins the given set with itself, and returns the result. Two sequences, p and q of length k-1 are

joined if their first k-2 elements are equal. The joined candidate is the concatenation of p with

the last element of q. If the joined candidate sequence contains any subsequences of length

k-1, which is not in Lk−1 then, this candidate is deleted from the candidate set. At the next

step of the algorithm, the dataset is parsed once, so that it is compared with the candidate set,

and support counts for the candidates are incremented. Next, the candidates in the candidate

set, Ck, whose support is greater than minimum support are selected for the set of frequent

sequences, Lk. The algorithm returns the union of all frequent sequences.

Algorithm 1 AprioriAll
L1 ← {Frequent 1-sequences}

for k = 2; Lk−1 , ∅; k++ do

Ck ← generateCandidates(Lk−1)

for all customer sequence, c in Database do

Increment the count of all candidates in Ck that are contained in c

Lk ← {c ∈ Ck|c.count ≥ minS upport}

return Maximal sequences in L =
⋃

k Lk

The AprioriSome and DynamicSome algorithms generate the candidates more greedily than

AprioriAll, relying on the heuristic that counting non-maximal sequences can be skipped.

However, AprioriSome and AprioriAll is shown to have similar performance characteristics

[3].

13

2.1.3.9 GSP

In [46] Srikant and Agrawal introduced the Generalized Sequential Patterns (GSP) algorithm,

which is a modified version of AprioriAll. The problem domain is enhanced to include time

constraints, a rigid definition of transactions (sliding window) and domain taxonomies. Min-

gap, Max-gap and window size time constraints respectively define minimum time between

two data sequence items to be counted in the same itemset, maximum time between two data

sequence items to be counted in the same itemset, and the maximum time of the sequence.

Sliding window relaxes the definition of a transaction by allowing support count checking to

be defined over a sliding window. Is-a relations are defined to form a DAG over the items, so

that a the support for ancestor items can be incremented for their descendents in the database.

Unlike AprioriAll, the length of a sequence is defined as the number of items (not itemsets)

in the sequence. The join step is a two-phase process with join and prune phases. A sequence

s1 joins with s2 if the subsequence obtained by dropping the first item of s1 is the same as

the subsequence obtained by dropping the last item of s2 The candidate sequence generated

by joining s1 with s2 is the sequence s1 extended with the last item in s2. The added item

becomes a separate element if it was a separate element in s2 and part of the last element of

s1 otherwise [46]. In the prune phase, contiguous subsequences of length k-1 for a pattern are

checked, and if any of them is infrequent, the candidate is deleted.

With the introduction of revised definitions of sequence and transactions, the support count-

ing phase is different than AprioriAll. In GSP, supports are counted in a iterative forward-

backward phases. The definitions of forward and backward phases are taken from [46]:

forward phase The algorithm finds successive elements of sequence s in data-sequence d,

as long as the difference between the end-time of the element and the start-time of the

previous element is less than max-gap, if the difference is more than max-gap, algorithm

switches to the backward phase.

backward phase The algorithm backtracks and pulls up previous elements. If si is the cur-

rent element and endtime(si) = t the algorithm finds the first set of transactions con-

taining si−1 whose transaction times are after t − maxgap The start time for si−1 (after

si−1 is pulled up) could be after the end time for si. Pulling up si−1 may necessitate

pulling up si−2 because the max-gap constraint between si−1 and si−2 may no longer be

14

satisfied. The algorithm moves backwards until either the max-gap constraint between

the element just pulled up and the previous element is satisfied, or the first element has

been pulled up. The algorithm then switches to the forward phase, finding elements of s

in d starting from the element after the last element pulled up. If any element cannot be

pulled up (that is, there is no subsequent set of transactions which contain the element)

the data-sequence does not contain s.

The taxonomy over the items can be incorporated in GSP by enhancing each data-sequence,

d, in the database with and extended sequence, d′. Each item in d is replaced by a it’s set of

ancestors. Then regular GSP is run over the database. Two optimization are possible in this

context. First one is to pre-compute the ancestors, and drop ancestors which are not in any of

the candidates. The second optimization is to not count sequential patterns that contain both

the item and its ancestors.

Figure 2.1: An example taxonomy for GSP

An example taxonomy is given in Figure 2.1. The taxonomy contains two top level classes,

Food and Beverages. An example data set and its converted form are given in Table 2.1. The

dataset contains two transactions. The first transaction contains two itemsets, each containing

one element, and the second contains one itemset of two elements. The third column of the

table contains the converted transactions, where for each item, it’s ancestors in the taxonomy

is added to the itemset it belongs.

15

Table 2.1: Sample Item-sets for GSP

Transaction Extended Transaction
〈〈 Beer〉, 〈Cheese〉〉 → 〈〈 Beer, Alcoholic Beverages, Beverages〉, 〈Cheese, Food〉〉
〈〈 Bread, Cheddar〉〉 → 〈〈 Bread, Food, Cheddar, Cheese, Food〉〉

2.2 Description Logics

In this section we will briefly describe description logics, since they play a key role in giving

semantics to the web. More specifically, the languages OWL-DL and OWL-Lite are based on

the decades-long research in the field of Description Logics.

Description Logics (DL) refer to a family of Languages which are decidable fragments of

First Order Logic. Description Logics have been developed as a formalism for knowledge

representation(KR) [38]. The name Description Logics is originated by the fact that the do-

main of application is defined in concept descriptions and the languages differ from the earlier

frame based and network systems by using logic as a basis for formal semantics [8].

In building the knowledge base, the concepts defining the domain are identified first. This part

of the knowledge base is called the terminological part. Then the individuals and properties

of individuals are defined. A Knowledge Base (KB) consists of two components: the TBox

and the ABox [9]. The ’T’ in TBox indicates that this is the terminological part, in which

the vocabulary of the domain is defined. The letter ’A’ in Abox stands for assertional part, in

which assertions about named individuals in the domain are defined.

The vocabulary for the TBox is formalized with concepts and roles. Concepts are unary

predicates and they are used to represent a set of (a class of) individuals. Roles, on the

other hand, are binary predicates and represent relations among individuals. The language

for building descriptions is a characteristic of each DL system, and different systems are

distinguished by their description languages [38].

A knowledge base is depicted in Figure 2.2. The TBox for KB, consists of terminological

axioms, whereas the ABox contains concept or role assertions about individuals.

Description logic languages specify model-theoretic semantics. A formal semantics for the

DL is defined by the interpretation function I. The domain of interpretation is denoted with

16

Figure 2.2: Knowledge Base

∆I and consists of all the objects. The domain, ∆I, together with the interpretation function,

I, defines the model for the DL. The interpretation function maps every concept to a set of

objects in the domain and every role to a subset of cross product of domain with itself, i.e. for

concept A, and role R :

AI ⊆ ∆I

RI ⊆ ∆I × ∆I

DL systems offer algorithms for efficient reasoning support. Current DL systems support

the so-called tableau algorithms for reasoning. The basic inference concept is subsumption,

which defines whether a concept C, is more general than the other one D. The interpretation

can be formalized as the set of objects for D in the domain is a subset of the set of objects for

C, i.e. DI ⊆ CI. The other concepts include satisfiability, equivalence and disjointness. For

every satisfiable concept C, there exists a model such that CI is non-empty. Two concepts, C

and D, are defined to be equal iff CI = DI for every model of I, and disjoint iff CI ∩DI = ∅

for every model of I.

17

2.2.1 TheAL Language

Description logics are named informally by the constructs they provide. The simplest DL is

calledAL , which stands for attributive logic. Other languages are extensions toAL. See [9]

for the specific constructs of different languages, and [7] for a detailed listing for the naming

conventions of DL’s. Different languages embody different decidability properties, and there

is a tradeoff between the expressivity and the complexity of inference on DL’s.

Let A, B be atomic concepts and R a Role, C and D concept descriptions, > the Universal

Concept and ⊥ be the bottom concept . Then concept descriptions in the most basic language

AL can be denoted as :

C,D→ A| (Atomic Concept)

>| (Universal Concept)

⊥| (Bottom Concept)

¬A| (Atomic Negation)

C u D| (Intersection)

∀R.C| (Value Restriction)

∃R.> (limited existential quantification)

Above descriptions of the language AL can be formalized using the interpretation function

as:

>I = ∆I

⊥I = ∅

(¬A)I = ∆I \ AI

(C u D)I = CI ∩ DI

(∀R.C)I = {a ∈ ∆I | ∀b. (a, b) ∈ RI → b ∈ CI}

(∃R.>)I = {a ∈ ∆I | ∃b. (a, b) ∈ RI}

2.2.2 The SHOIN(D) Language

The language SHOIN(D) is of practical importance since the model theory of OWL-DL

(Section 2.3.2) is based on this DL. SHOIN(D) is a member of SH family of languages.

SHOIN(D) adds the following constructs to theAL language :

18

• Complex concept negation (C)

• Role hierarchy (H)

• Transitive roles (R+)

• Union (U)

• Unqualified number restrictions (N)

• Nominals (O)

• Datatype properties (D)

• Inverse roles (−1)

For a complete syntax and semantics for the constructs of SHOIN(D), please refer to [9, 53,

28].

2.3 Semantic Web

Today’s web is mostly for human consumption. Although generated by automatic methods by

machines, nearly all the content is prepared to be presented to users. Huge amounts of data and

knowledge resides in text documents, or HTML documents, which cannot be processed easily

by machines. A canonical example is the search engines. While very useful, search engines

are based on keyword indexing and keyword matching to answer a user’s query. Today’s

search engines do not truly attack the information retrieval problem, in which a user with a

specific information need first transforms her request in a query syntax, sends the query to the

information retrieval system, and obtains the information she needs. Instead, search engines

accept a set of keywords with very restricted syntax, and returns a list of documents, that may

contain relevant information.

Semantic Web, in basic, aims to augment today’s web, with machine-processable data. In

[14], Tim-Berners-Lee, et. al. define Semantic web as ’a new form of web content that is

meaningful to computers’.

Semantic web vision is a layered approach. Each layer is meaningful on it’s own, and is build

upon the ones below it. The layers from the bottom to top are (i) Unicode/URI; (ii) XML + NS

19

+ XML Schema; (iii) RDF + RDF Schema; (iv) Ontology Vocabulary; (v) Logic; (vi) Proof;

(vii) and Trust; .

In the base layer, Unicode allows a standard for exchanging symbols, and Uniform Resource

Identifiers (URI) provide a naming schema for web resources.

Next, the Extensible Markup Language (XML) allows a syntax to mark data, while the schema

for XML defines a grammar for the data. Namespaces (NS) are used to avoid name clashes in

different documents. But namespaces can alternatively be used to refer to the same things in

different documents.

The Resource Description Framework (RDF) offers a basic data model. It can be viewed as

the first layer to introduce some semantics. RDF models contain resources, properties and

statements. Resources can be anything with a URI. A statement in RDF is a triplet with a

subject, property and an object. The subject is any resource, while the object is either a literal,

a resource or another statement.

The RDF Schema (RDFS) defines a richer model on top of RDF. RDFS primitives include

classes, properties, subclass and subproperty relations and domain and range restrictions.

RDFS has it’s own model-theoretic semantics and can be used as a simple ontology language.

The next layers, Ontology and Logic are considered together, since knowledge systems typi-

cally incorporate some way of logic reasoning. A language for defining ontologies, together

with efficient inference support is the key to the Semantic Web.

Proof and Trust layers ensure, validity of obtained knowledge, which is essential in building

fully automated systems. Not enough research has been done in these layers yet.

2.3.1 Semantic Web Components

2.3.1.1 Knowledge Representation

In giving semantics to web, several necessary components are identified. The first one is

a canonical method for knowledge representation (KR). KR has been actively used and re-

searched by the Artificial Intelligence community. In KR, knowledge, as perceived by hu-

mans, is converted to a form, that is parsable, storable, and processable by machines. KR in

20

Semantic Web differs from traditional systems in that, the Web (hence the Semantic Web) is

distributed, heterogeneous, uncontrolled and the amount of information is huge.

2.3.1.2 Logic

Stored knowledge by machines is of little use, without a reasoning support. Adding logic

to the knowledge allows inference about the knowledge at hand. Logic offers unambiguous

formal semantics, in which everybody can agree on the meaning of a sentence. Moreover,

reasoning systems exists for logic systems, which can infer new axioms, based on current

knowledge base. To illustrate reasoning, suppose that all Pizzas have cheese in it, and Amer-

icanHotPizza is a kind of Pizza. Then we can infer that AmericanHotPizza have cheese in

it.

Logic languages can be quite expressive, however there is a tradeoff between the expres-

siveness of the language and efficient reasoning support. In general, complete and efficient

reasoning support for logics can only be accomplished through limiting language constructs.

2.3.1.3 Ontologies

A definition of an Ontology is a specification of a conceptualization. In computer science, an

ontology can be though as a Knowledge Representation system, offering a syntax for defining

concepts in the domain, a common vocabulary, and support for reasoning.

In the context of the Semantic Web, ontologies are expected to play an important role in

helping automated processes (called intelligent agents) to access information. In particular,

ontologies are expected to be used to provide structured vocabularies that explicate the rela-

tionships between different terms, allowing intelligent agents (and humans) to interpret their

meaning flexibly, yet unambiguously [28].

2.3.1.4 Agents

The real power of the Semantic Web will be realized when people create many programs

that collect Web content from diverse sources, process the information and exchange the

results with other programs [14]. Agents, takes goals, which are high level intentions, and

21

perform automated tasks, and return the results to the user. In determining the results, agents

can search for information, talk to other agents, decide on what tasks to execute, and make

reasoning. All of the available semantic technologies are expected to be leveraged by semantic

agents.

2.3.2 OWL : Web Ontology Language

The Web Ontology Language (OWL) is a semantic markup language for publishing and shar-

ing ontologies on the World Wide Web. OWL is developed as a vocabulary extension of RDF

(the Resource Description Framework) and is derived from the DAML+OIL Web Ontology

Language [52].

OWL is a family of languages for knowledge representation. The three sub-languages with in-

creasing expressibility are : OWL-Lite, OWL-DL and OWL-Full. OWL-Full uses proprietary

semantics compatible with RDFS, whereas OWL-DL and OWL-Lite is based on Description

Logic (Section 2.2) reasoning. In fact OWL-DL and OWL-Lite can be viewed as expressive

Description Logics, with an ontology being equivalent to a Description Logic knowledge base

[28].

OWL-Full is the most expressive language. However, the language is so powerful that reason-

ing is undecidable [4]. In OWL-Full, the language constructs can be applied to each other.

OWL-DL is a restricted subset of OWL-Full. OWL-DL is based on SHOIN(D) Description

Logic Language. Application of language constructs to each other is disallowed in OWL-DL.

Reasoning is complete, and decidable, at the expense of full RDF compatibility. In OWL-DL,

a concept in DL is referred as a class, and a role is referred as an object property. A role with

a data type range is referred as a datatype property. In this text, both the DL and OWL jargon

is used interchangeably.

OWL-Lite is modeled on the SHIF (D) language, and it is a sub-language of OWL-DL.

Enumerated classes, disjointness statements and arbitrary cardinality is restricted in OWL-

Lite. OWL-Lite is optimized for ease of use and implementation, however it is not used

frequently.

Most of the elements of an OWL ontology concern classes, properties, instances of classes,

22

and relationships between these instances[51].

Classes A class is a set of elements (individuals). Classes group similar elements, with simi-

lar properties together. Every class in OWL, is a subclass of the top class, owl:Thing.

Individuals belonging to a class are called instances of that class. The rdfs:subClass

relation defines a hierarchy over classes.

Individuals Individuals are objects in the universe of things. Individual belongs to the

classes. Individuals can be named, meaning that a unique URI is associated with the

individual, or anonymous, having a null URI.

Properties Properties are binary relations. In OWL, two types of properties are defined: ob-

ject properties and datatype properties. Object properties relate two individuals, while

datatype properties relate instances of classes with RDF literals and XML Schema

datatypes. These two are differentiated for the language to be decidable. The rdfs:sub-

PropertyOf relation imposes a hierarchy over properties. The domain and range of a

property can be specified with the rdfs:domain, and rdfs:range definitions, respec-

tively.

Other Constructs Other language constructs in OWL include enumerations, boolean com-

binations of classes, transitive, symmetric, functional and inverse-functional properties,

property restrictions, cardinality, and disjointness.

An OWL ontology, when it is serialized in RDF/XML is not very readable. An abstract syntax

was developed to increase human readability, which is documented at [53]. OWL Abstract

syntax uses an Extended BNF notation. Like the language, abstract syntax is rather complex.

We give a subset of the abstract syntax for OWL-DL, as used in this text, in Listing 2.1.

An ontology in the abstract syntax is a set of directives, where a directive is either an axiom

or a fact (ignoring Annotations from now on).

Facts can be either individual definitions or SameIndividual and DifferentIndividuals state-

ments. In OWL-DL types can be general descriptions, however in this work, we only need

classID’s. Similarly, data literals can only be Unicode strings in normal form C. Readers

should consult [53] for a complete reference of the abstract syntax and formal semantics for

OWL.

23

Listing 2.1 A subset of OWL-DL abstract syntax
ontology ::= ’Ontology(’ [ontologyID] directive ’)’

directive ::= axiom

| fact

fact ::= individual

individual ::= ’Individual(’ [individualID] { ’type(’ type ’)’ }

{ value } ’)’

value ::= ’value(’ individualvaluedPropertyID individualID ’)’

| ’value(’ individualvaluedPropertyID individual ’)’

| ’value(’ datavaluedPropertyID dataLiteral ’)’

type ::= classID

2.4 Semantic Web Mining

Especially with the recent increase of interest in Semantic Web, integrating semantics to the

web mining process is a natural direction for research. In [15], the authors elaborate on three

ways that the fields of Semantic Web and Web Mining can co-operate. First, the web mining

techniques can be used for creating or enhancing semantic information. Second, semantic

information can be used in the web mining process, for better and more meaningful results.

Lastly, data mining techniques can be applied directly to the vast amounts of structured se-

mantic data to discover interesting relations and patterns. In the following subsections, we

will review the three ways of integrating Semantic Web and Web Mining.

2.4.1 Extracting Semantics from the Web

The first way to integrate the two fields include methods for extracting latent semantics from

existing knowledge on the Web. Web is in fact the de-facto and preferred platform for sharing

information [41] and the information is abundant, . Thanks to the very nature of the Web,

publishing data is easy and ubiquitous. However, the data in the web is unstructured or semi-

structured at best, making it impossible for richer analysis. In this research direction, the

existing data on the web is used to feed structured knowledge representation systems for

learning knowledge organization, and populating ontologies.

24

Ontologies play a key role in giving semantics to the web. Ontologies are used as the main

Knowledge Representation method on the web. However, creating, mapping, and managing

ontologies is a cumbersome job. Although various tools exists, engineering an ontology is a

specialty, in which the human in the cycle cannot be eliminated. However, semi-automated

methods using Text and Web Mining for ontology development has been shown to be useful.

Ontology learning describes creating or improving an ontology through semi-automated meth-

ods. Semantic relations are extracted using combined techniques from Artificial Intelligence,

Machine Learning, and Information Retrieval.

Ontology merging is another difficult problem the Semantic Web is faced with. In the se-

mantic web vision, the (semantic) data sources are distributed in line with the de-centralized

architecture of the web [14]. Ontologies are created by different groups with different inter-

ests, and slightly different understanding of the domain. A survival-of-the-fittest approach

to public ontologies seems to be taking place in the current state of ontology development.

Therefore, merging ontologies from different origins using traditional tools proves to be a

hard task. On the other hand, several systems have been proposed for supporting the ontology

engineer (see [50]).

Instance learning is concerned with the automatic or semi-automatic methods for populating

the assertional part of the ontologies. Given an knowledge base, annotating existing data is

necessary for the knowledge system to be useful. Semantic web can only be fully utilized, by

annotating existing data as well as newly generated data. For example, without a method to

give meaning, the huge amounts of text content in web pages can not be leveraged by logic

systems.

2.4.2 Using Semantics for Web Mining

In the second form of integration, Semantic Web research can help Web Mining in giving

structure to the underlying data to be mined. Adding semantic annotations for each type of

data (content, structure and usage) allows richer analysis. However, once the web content is

structured, the line separating content and structure mining diminishes. Here, we only detail

the semantic web usage mining methods and recommendation. Interested readers can consult

[50] for a detailed survey.

25

2.4.2.1 Semantic Web Usage Mining

Web usage mining can be enhanced by injecting semantics into various phases of the web

usage mining process. The aim of usage mining is to better understand user’s behavior. How-

ever, usage behavior is not fully captured in the logs of the web servers. For intelligently

mining web usage, the usage information should be mapped to the semantic space.

In [13], the concept of application events is identified. Application events correspond to the

higher level tasks defined in and specific to the domain of the site. They are categorized into

three; content, service and complex application events. Content and service events are called

atomic events, since they more or less correspond to pageviews. Complex application events

are sequences of atomic events, and they are are usually described by regular expressions

whose alphabet consists of atomic application events, or by an order structure on atomic

application events.

Oberle et.al. [39] uses a semantic logging framework for retaining the full information of the

request in logs. KA2 can be described as a semantic portal, which converts URL requests to

F-Logic syntax and routes to the inference engine, Ontobroker. The output is then written to

HTML templates. They introduce a framework for semantic web logs. Each line in the log

contains the URL, time stamp, and a feature vector. They define two types of feature vectors.

In the first type, a dimension is defined for each concept and if the request (semantic) query

contains that concept the value is set to 1. In the second type, a dimension is defined for

every concept, attribute and relation. The log matrix can then be input to various web mining

algorithms, such as clustering.

Recommendation and web personalization are other dimensions that could make use of se-

mantic information. Building profiles from usage logs has been studied extensively in the lit-

erature. Usage profiles are generated through various web usage mining methods, and used in

web personalization and recommendation. However, the profile information generally lacks

structured information and reasoning support. Varying degrees of semantic knowledge, is

incorporated for recommendation in a number of studies [21, 16, 42, 43, 20].

The concept of domain level usage profiles is introduced in [21] which is a weighted set of

instances in the domain. More formally pr = {〈o1,wo1〉, 〈o2,wo2〉, . . . , 〈on,won〉}, where pr is

the profile, oi are objects in the ontology, and woi are the weights of the objects in the profile.

26

Instances, or objects, belong to a class, C, and necessarily have the properties with the domain

C. The property (or role) definition is extended to include an aggregation function, ψa, defined

for each attribute, a. Using these definitions, domain level aggregate profiles, which represent

aggregate data about usage, are computed. The profiles are first partitioned by classes, and

these partitions are aggregated individually using the aggregate function, ψa. Two types of

recommendations can be performed at this stage. First, the current user profile, which is the

weighted items in the user browsing history are compared with the items in the ontology and

the ones with similar features are recommended. Alternatively, current user profile can be

matched with the aggregate domain-level user profiles and recommendations are performed

from the aggregate profile.

In a recent study, [43], semantic information is exploited in processing the usage logs, and

the recommendation system is fed with the resulting patterns. First the web server logs are

converted to individuals in the site’s ontology. Relevant pages in the web site are associated

with one or more individuals. The ad-hoc mapping between the page URL’s and individuals is

stored for later processing. The SPADE [55] algorithm is enhanced so that taxonomical (sub-

class hierarchy) information can be used in subsequence matching; i.e. an item in a sequence

matches it’s ancestors in the pattern. The algorithm outputs association rules, which are then

used in the recommendation phase. Resulting association rules are from item sequences to

item sequences. A window parameter is defined limiting the navigation history of the user

for recommendation. When a user requests a page, the sequence of items (of length window

size) in the user’s history is checked with the association rules. The body part of the rules

whose head matches are ranked in decreasing confidence. For the top item, a reverse lookup

is performed on the page-to-item mapping to find the list of pages (URL’s) that contain this

item. At the last step, found pages are presented to the user as navigation recommendations.

2.4.3 Mining the Semantic Web

The third form of the intersection of Semantic Web and Web Mining, is the application of

mining techniques directly to the structured data residing in the knowledge representation

systems.

The closest field in the literature for mining structured information is the Relational Data

Mining or Inductive Logic Programming [15]. In Relational Data Mining, patterns consisting

27

of more than one relation are searched in relational databases. Classification, regression,

clustering, and association analysis are major techniques. However, recently attention has

shifted from relational databases towards more meaningful, semantically-enabled systems,

such as the ones in Semantic Web [30].

Józefowska et. al. propose a method for discovering frequent patterns from knowledge bases

given in OWL-DLP (Descriptive Logic Programs) in [29], and improve the algorithm in [30].

Given a knowledge base in OWL-DLP, a set of patterns in the language of queries that contain

a reference concept, and a minimum threshold, the task is to find queries with support greater

than minimum support. The reference concept represents what is counted. A conjunctive

query, Q(x, y) is defined as a concatenation of A(s) (atomic concept) or R(s, t) (atomic role)

atoms, where s and t are distinguished or non-distinguished variables. The support for a query

is defined as an assignment of individuals in the ontology to distinguished variables. A level-

wise algorithm, inspired by Apriori, is given in [29], which starts with the trivial query of

the reference concept and gradually iterates by refining the query and counting supports. The

algorithm is improved and a trie-based approach is given in [30].

28

CHAPTER 3

MINING SEMANTIC EVENT PATTERNS FROM WEB USAGE

LOGS

3.1 Overview of the Chapter

This chapter starts with an introduction and motivation for the work. It continues with a

detailed description of the web analytics project, which this work is a part of. Then the event

tracking submodule is outlined, giving an introduction to the data collection with semantic

aspects. At Section 3.5 the architecture for mining frequent semantic event sequences is

discussed thoroughly with a formal statement of the problem and the algorithm.

3.2 Motivation

Web usage mining methods have been studied extensively and they have been proven to be

useful to some extent. To date, especially in frequent sequential association rule mining, the

bulk of the work uses URL’s as the core data. However, this approach has several major

limitations, which are listed below.

• URL’s are hard to interpret on their own. Technical knowledge about the URL con-

struction schema of the web site is generally necessary for meaningful analysis. Site

analysts may not be closely connected to the web developers in some organizations.

• The query part of the URL include both relevant and irrelevant content, which is very

hard to make use of in the usage analysis. Most of the work in this area discard the

query part of the URL, however web pages in today’s web are hardly static. Moreover,

29

if the query part is used, then some of the parameters may become problematic if they

do not cause the web server to serve a different page. For example, consider the URL

’/search.jsp?query=computer&session=2342344&from=opensearch’. The URL

requests a page with the path ’/search.jsp’ and has 3 parameters in the query :

query, session, and from. The first parameter is used as the query phrase, the second

is for keeping the session id, and the last indicates that the user used OpenSearch for

accessing the URL. Now, in the analysis, if the query part is erased, the user’s search-

ing for computers and something else cannot be differentiated, and information is lost.

If we include the query part, then a different user with a different session id, but with

same query and from parameters are erroneously counted as distinct. The problem be-

comes harder if we consider the from parameter. Does two URL’s with different from

parameters differ? To answer this question low level technical knowledge about the site

domain and URL construction schema is needed.

• Not every action in the web page is captured by an HTTP request. With the invention of

asynchronous web requests, extensive use of Javascript and Adobe Flash and dynamic

layering of web pages, the concept of pageview is beginning to be blurred and hence

becomes less relevant. For example in a video streaming site, a page request is logged,

when a user requests for a page including the video. However, the actions of actually

playing the video, stopping the video, skipping it, etc are not logged.

• URL’s may not capture all the parameters about some user action. To illustrate, a user’s

preferences can be kept in a cookie, and the web server can decide on the content of the

page using the URL and the cookie information obtained from the user.

• The assumption that every web page is about a more-or-less isolated content, and the

aim of the web user is to satisfy her information need is hardly valid in todays web.

Richer content pages, richer user interaction, and pages serving multiple purposes are

abundant in Web. For example, we cannot associate any single content type, action or

user goal for customizable web pages, which have several widgets (like Yahoo!’s home

page or iGoogle page), or the social network sites (Facebook/Twitter content streams),

RSS aggregators, etc. For these types of sites, a URL does not map to a unique page

with deterministic content.

30

Due to the above limitations, traditional methods should be reconsidered for more correct

and throughout analysis of web usage behavior. A natural direction is incorporating semantic

knowledge in the process. In improving the usage analysis with semantic information, there

are three requirements. First, a method should be devised to capture user intent more robustly

than pageviews. Second, usage data should be captured or mapped to the semantic space.

Last, an algorithm exploiting semantic relations should be devised according to the knowledge

discovery task at hand.

As discussed in the introduction, we can effectively model the usage behavior with the concept

of semantic events. Events in the application domain are discussed to be useful in enhancing

mining results in [50]. In this work, events are tracked from the Javascript of the web site,

and are thus independent of pageviews. It is possible to define one or more events for each

pageview, and an event can occur at anytime during the viewing of the web page. Events are

also more flexible than URL’s, in that events are defined in the semantic space of the site’s

ontology. The literal and object properties of the events capture rich information about the

event instance.

To intelligently mine the web usage data, the data to be mined or the supplementary data

should be obtained in semantic form. There are mainly two methods for obtaining semanti-

cally enriched logs: converting existing logs to semantic form, or logging semantic informa-

tion directly from the web server. Previous work, in the field of semantic web usage mining

[13, 21, 16, 42, 43, 37] has mostly dealt with the former. In [39], the KA2 portal, uses a

semantic framework (RDF and F-Logic) to generate the web pages. As a part of the process,

it logs the RDF annotations used to generate the site, forming a semantic log. However, both

approaches depend on the assumption that every interaction with the site corresponds to a

(single) pageview, and requesting a page signals an interest in several domain level objects.

The assumptions does not necessarily hold for the reasons listed above. Our approach of

logging semantic events asynchronously, and independent of the pageview is more relevant in

today’s web. Moreover, the metadata that is logged with each event contains all the interesting

parameters, and nothing more.

In this work, we are interested in mining frequent patterns of users. For this task, we define

the event and semantic events concepts, and provide an level-wise algorithm for discovering

frequent sequences of semantic events.

31

3.3 Web Analytics Project

As stated in Chapter 1, Web Analytic project is an ongoing research and development project

undertaken by Ekinoks Software Ltd. Şti., Ankara, Turkey. In this section a brief overview

of the project is given. The work for the thesis heavily depends on some of the modules of

the project, especially data collector and traffic analysis, therefore they are discussed in some

detail in sections 3.3.4 and 3.3.5.

3.3.1 Project objectives

The objectives of the project can be summarized as

• Developing a tool for tracking users’ requests for client web pages

• Developing algorithms for parsing and analyzing web request logs

• Producing reports for analyzing web usage behavior to be used by web site administra-

tors

• Research for integrating semantic reasoning to web usage mining

• Research for rule based decision support systems to help the site admin

• Developing a system to analyze/compare user behavior for different web site designs

(Web Site Test System)

• Developing a scalable storage, processing, querying and retrieval architecture for web

usage logs and reports

• Developing a web based user interface for viewing reports and user interaction

• Developing a hosted web analytics service as a commercial product

3.3.2 Project Overview

Web analytics project offers traditional web analytics features, such as detailed reports about

site’s usage, Ad campaign tracking, A|B testing, etc. In addition to these features the project

32

aims to improve the analysis process by offering web usage mining, semantic web usage

mining, and rule based decision support services.

A simplified view of the project architecture is given in Figure 3.1. There are 2 actors and 1

external component. The external component is the client web site (or shortly client) which

is a client of the web analytics project. The first actor is the user who is using the client web

site and she is mostly unaware of the web analytics service. The second actor is a manager

or administrator of the client web site. She has the role of correctly deploying web analytics

code to the site and consuming the reports generated by the web analytics project.

There project consists of 6 modules:

• Data Collector Module

• Traffic Analysis Module

• Web Site Design Test Module

• Semantic Web Usage Mining Module

• Decision Support Module

• Web Portal Module

Data collector module is responsible for tracking user’s request to client web pages. The

data collector module consists of a Javascript client and server side components for logging

the requests. Client web sites include a reference to the Javascript source file, and make an

explicit call via the exposed API for each page intended to be tracked. The data collector

client then sends collected data to the data collector web servers. Data collector web servers

save the data in local filesystem. A scheduled log fetcher service is run to dump the local data

in the web servers to the distributed file system.

Traffic analysis module is responsible for parsing and analyzing the logs. The module consist

of several algorithms, implemented as mapreduce jobs, to calculate statistical reports over the

web usage data. The reports are then dumped to the database for later retrieval by the user

facing components.

33

Figure 3.1: System Architecture Overview

Web site design test module includes the algorithms and user interfaces for comparing web

site’s statistical reports. This module allows A|B testing based on different times, different

URL parameters or different javascript tags.

Decision support module is designed as a rule based system for supporting site administrator’s

decisions. A submodule of the decision support module calculates frequent browsing patterns

for each client site for the given time interval. Frequent patterns are extracted from sessions

using the sequential Apriori algorithm. A distributed version of the algorithm is implemented

using Hadoop mapreduce. The patterns and optionally the web site topology are then used

with predefined rules to suggest improvements in site navigation.

Web portal module is the main interaction point for interacting with client web site adminis-

trators and managers. The portal allows management of the service and exposes reports to the

client.

In the following sections Apache Hadoop library, which is used as a distributed file system

and mapreduce library is introduced and the Data Collector and Traffic Analysis module are

34

detailed. Semantic web usage mining module is build upon the work in this thesis, which is

detailed in Section 3.5. As the other modules are rather orthogonal to the work, they are not

further discussed.

3.3.3 Distributed File System and MapReduce

Apache Hadoop [5] is used as a distributed file system for storage and archival, and as a

MapReduce [22] implementation. The distributed file system is used for reliable storage of

all the data in the project. The traffic analysis, decision support, frequent pattern mining are all

built on top of the mapreduce framework. Below very short descriptions are given, interested

readers can consult [5, 54, 22, 24]

3.3.3.1 Distributed File System

Hadoop Distributed file system is modelled after the Google File System [24]. Hadoop dis-

tributed file system is scalable, reliable, and fault-tolerant with a single master, and hundreds

or thousands of slaves architecture. All the metadata operations are handled by the master,

which exposes a hierarchical namespace and file operations. Files are split into blocks, with

a block size larger than traditional file systems (default 64MB). Slave nodes handle block

operations and block storage and the data does not route through the master node.

3.3.3.2 MapReduce Implementation

Mapreduce is a simplified programming paradigm for processing large amounts of data in a

large cluster. Mapreduce programs define custom map and reduce functions and the frame-

work executes these functions over the data. Hadoop mapreduce allows writing highly scal-

able, fault tolerant, distributed and efficient programs with minimum coding.

3.3.4 Data Collector

In data collector sequence diagram (Figure 3.2), the sequence of communication between the

client site’s user, the client web site, load balancer and web analytics server is given. The

35

sequence of actions is as follows.

Figure 3.2: Data Collection Sequence Diagram

1. The user types in a URL or clicks a link in her browser

2. The browser makes an HTTP request to the client web site

3. The client web site serves the HTML page which contains a reference to the web ana-

lytics project javascript tracking client.

4. HTML page is rendered to the user (Asynchronous to the below steps)

5. The referred Javascript code is requested from the web analytics servers

6. Javascript file is returned from the HTTP request

7. When the script is loaded by the user’s browser the script is executed. The script collects

data about the request and makes an HTTP request to send the collected data to web

analytics servers.

Collected data is transferred from the user’s browser to the web servers by an HTTP request

for an 1x1 transparent image file. The data is converted to parsable text and appended to URL

of the image file as the query part. The following data is collected and logged per pageview

request :

36

• The identifier for client web site

• Session identifier

• Visitor identifier

• URL of the requested page

• Title of the page

• Referrer

• Language as reported by the browser

• Color Depth

• Screen Resolution

• Whether Cookies are enabled

• Whether Java is enabled

• Adobe Flash Version is plugin is found

• Character Set as reported by the browser

The visitors are tracked using cookies. The script first queries for a specifically named cookie

with the web analytics’ domain. If the cookie is not found a new unique identifier is generated

for the user and saved in the cookie. The cookie’s expiration date is set to an unforeseeable

future date, so that it practically never expires. If the cookie is found the visitor identifier is

loaded and used. For the identifier 16 byte Universally Unique Identifier, Version 4 (UUID)

[36] is used.

Web analytics project uses session tracking cookies and associated Javascript code for pro-

actively tracking user sessions (see Section 2.1.3.6). For each pageview, a cookie is queried

for previous session information. If the cookie is found, contained session identifier is used,

if not a new session identifier UUID is generated and saved in the cookie. The cookie lifetime

is set so that the browser deletes it once the session is finished.

37

3.3.5 Traffic Analysis

Traffic analysis module is the core module, which contains the business logic for web analyt-

ics. This module consists of piped jobs which are implemented in mapreduce, and thus runs

distributed over several nodes. The first job parses the collected web server logs to extract the

parameters send by the data collector. Both pageview and events are parsed and saved after

the job in compressed, binary form. The second step constructs the sessions using the session

identifiers. The records belonging to a session are grouped and sorted. The output of this job

is a set of sessions. After the sessions are constructed, the statistical reporting jobs are run.

3.3.5.1 Data Cube Models

The web browsing data is modelled as 4 different data cubes with several dimensions and

metrics. The dimensions are computed or filtered from the tracking data. The dimensions and

the metrics for a sample data cube is given in Table 3.1. The data cube contains dimensions

Browser Name, Browser Version, etc. and metrics Pageview Count, Visit Count, etc.

Table 3.1: Sample Data Cube

Browser Name
Browser Version
Operating System Name
Operating System Version
IP
Country
Screen Resolution
Referrer
Referrer Search Engine
. . .
Pageview Count
Visit Count
Total Time on Site
. . .

38

3.3.5.2 Materialized Cuboids for Reports

From the data cube we can define a lattice of cuboids. Cuboids are defined as data cubes with

different levels of summarization [27]. For example a cuboid with dimensions Browser Name

and Browser Version, and all the other dimensions rolled up will result in Browser Name x

Browser Version x Pageview Count table.

Similar to the above example, some of the data cuboids in the lattice are selected as a basis

for the reports. The data cubes, dimensions and the metrics are then computed and aggre-

gated accordingly to generate the final reports. The data cube model and and the lattice is

a conceptual data model employed in traffic analysis module. However it is not space and

time efficient to generate all the cuboids in the lattice. In reality the base cuboid with all the

dimensions is summarized for a few selected dimensions, and only cuboids with one, two or

three dimensions are materialized and dumped into the database. The business requirements

for the web analytics project determines which dimensions are materialized. Below a sample

list of reports are given :

• Daily pageview count, visit count, average time on site, and new visits for operating

systems between given time intervals

• Daily pageview count, visit count, average time on site, and new visits for countries

between given time intervals

• Daily pageview count, visit count, average time on site, and new visits for referrer pages

between given time intervals

• Daily number of visit counts for visitors which visit the site 1, 2, 3, 4, 5..9, 10..19, 20,

49, 50+ times

• Daily percentage of link clicks for each link on the home page

3.4 Event Tracking

Event tracking is a part of the Data Collector module (Section 3.3.4), however due to its major

role in the semantic web usage mining work, it is discussed here, separately.

39

3.4.1 Events

Events are conceptual actions that the user performs to achieve a certain affect. Events are

used to capture business actions that are defined in the site’s domain. Some examples of events

are ’Play’ event for a video on the page, ’Add to shopping cart’ event for and E-Commerce

site, or ’add friend’ action for a social site. Most of the time, events have associated properties

that define the event. For example a ’search event’ has the search query as a property, and ’play

a song’ event has a property showing which song is played.

With the advent of the rich Internet applications leveraging Adobe Flash, Microsoft Silverlight

or asynchronous XML/JSON communication, tracking and reporting domain events along

with pageviews has emerged as a special need. Event tracking is implemented in a few web

analytics projects [31, Ch. 12],[25], however event tracking is considered only an extension

to pageview based reporting. As an example let us look at how event tracking is implemented

in Google Analytics.

Event tracking in Google Analytics[26] is done via explicit Javascript calls. There are 2

required and 2 optional attributes for defining the event parameters. The required event at-

tributes are category, which is the name of the group of objects, and the action name. The

label attribute is optional and defines an additional dimension. The value is again optional

and used for specifying numerical data in integer type. The names for actions are treated as

unique, and reports for the actions with the same name are grouped together. The category

and label attributes are used as dimensions for the reports. The number of events, the average

and sum of the value attributes are reported as metrics.

3.4.2 Event Tracking in Web Analytics Project

Similar to it’s competitors, events play a key role in the web analytics project. However,

unlike the others, web analytics project enables a more flexible and customizable architecture

for event definition and event parameters. In the Web Analytics Project model, every event is

defined as an object. Objects can have two types of properties. A property of an object relates

the object to either another object, or a data literal. In this simple event model, capturing

arbitrary detail about an object becomes possible. The total information about an event is the

event object graph, including the event object itself, and it’s related objects recursively.

40

Figure 3.3: Event Tracking Class Diagram

Events in web analytics project are tracked and logged from the Javascript client, which en-

ables logging events from Ajax and Adobe Flash applications. The Javascript client of the

Web Analytics project exposes a simple Event Tracking API for its users. The simplified URL

class diagram is given in Figure 3.3. The API defines a class, which is named Individual.

The Individual class has a classname attribute and addProperty(name, value) meth-

ods. An application event is captured by an instance of an Individual object, which can have

multiple properties. A property for an Individual is a name, value pair. The name is a string

name and the value can either be one of the Javascript primitive data types(numbers, strings,

boolean values), or another Individual object. The Tracker defines a trackEvent()

method which takes an object of type Individual. This method is responsible for serializ-

ing and logging the Individual object, and its dependent objects. A check is performed to

avoid cyclic dependencies in the object dependency graph.

Events in the domain of the web site is composed using the API defined above. Every event is

represented with an Individual object, however all the Individual objects need not correspond

to an event. The classname of the Individual object defines the corresponding classname in the

ontology of the web site. The objects of type Individual can have named properties which

are either literals, or other objects. The data associated with each event is an Individual

41

object, and its properties, possibly including other objects. Therefore an event is actually a

set of individuals having literal properties and related to each other with object properties in

a tree topology. The structure of the event, and the mapping of events into semantic space is

discussed more rigorously in the following section.

An example invocation to track an event is given in Listing 3.1. The example is taken from the

source code of a music streaming site [17], which is detailed in Section 4.2. The Javascript

code is run whenever a song is played in the site, thus it captures a ’play song event’. The

code uses the provided API to construct the event objects. In line (1) and (2), two objects

of type Individual are created having classname attributes ’PlaySongEvent’ and ’Song’,

respectively. Line (3) adds a name property to the song individual. Line (4) adds a song

property to PlayVideoEvent individual, relating it with the Song individual. At this stage, the

event tree (detailed in the next section) is complete. Finally the event is tracked in line (5).

Listing 3.1 Javascript code for tracking a sample event
(1) var evt = new tracker.Individual(’PlaySongEvent’);

(2) var song = new tracker.Individual(’Song’);

(3) song.addProperty(’name’, name);

(4) evt.addProperty(’song’, song);

(5) tracker.trackEvent(evt);

All the data about an event is logged by the trackEvent() function of the Tracker class.

Actual sending of the data is performed by collecting required data, converting it to string

and sending the data via an HTTP request. The data collected and logged along with the

individuals per event is listed below.

• The identifier for client web site

• Session identifier (see Section 2.1.3.7)

• Visitor identifier

• Client IP address

• URL of the page

• Time of the event

42

• Character Set as reported by the browser

• Individuals and properties in the event

Event tracking is tightly coupled to the semantic web usage mining framework introduced in

this thesis. Events and pageviews are considered to capture all the aspects of user’s interaction

with the site. This assumption is dependent on the correct and sufficient usage of the event

tracking API by the site’s administrator. The interactions and pageview requests must be

explicitly marked by the administrator, and the API functions should be called for every page

and event to be tracked. Although this may seem a disadvantage of script based log collection,

wide adoption of the technique by major web analytics and large number of deployments

proves that it practical.

3.4.3 Events as semantic objects

As discussed above, and detailed in Figure 3.3, events are captured by instances of Individual

objects. This allows capturing events in arbitrary detail. Moreover the event objects created by

the client web page effectively model the domain of the users action. With a correspondence

between the ontology capturing the user’s action and the event objects, we can treat the events

as semantic entities, and call them Semantic Events.

The responsibility of construction of the ontology and event objects, and tracking the events

(by calling the API) in the appropriate context is delegated the site’s administrator. The moti-

vation for this is to offer the framework to all of the parties, and to allow usage of this feature

by interested sites. The site’s ontology and related events are best understood by the peo-

ple who create the content for the site. For this work, we have developed the ontologies and

implemented event tracking for two web sites. Please refer to Chapter 4 for more information.

Events in the web site are expected to have a type. That is, there are expected to have a number

of distinct types of events with varying parameters. For example, for a video viewing site a

subset of the possible events are Play Video, Stop Video, Search, Login, etc. and for each

event, corresponding classes, properties and linked classes are defined. When some event

occurs, the individuals are created and logged with appropriate values. For example the Play

Video event might have a PlayVideo individual, a video property linking a Video individual,

which in turn has several properties such as length, id, name, etc. However, the assumption of

43

types of events is not a necessary condition for the frequent pattern mining algorithm. Events

can be defined partially, by only listing known properties. For example if the length of the

video is not knows for some of the videos, it can be omitted.

Since the event object dependency graph is non-cyclic, there is a root, and objects can only

be linked to one object, the graph of event objects can be considered as a tree structure. Three

types of nodes are defined: nodes containing an individual, a datatype property or an object

property. The properties of an individual are stored as children. A datatype property node

is always a leaf node and contains the property name and value. An Object property node

contains the property name and has a single child, which is another individual node.

An illustration for the tree structure is given in Figure 3.4. The knowledge base for this event

include classes Video, PlayVideoEvent, KittenVideos, VideoCategory, and User, datatype

properties Title, Tag, ID and Length which all have Video as domain, username and

isSubscriberwith User as domain, and object properties videowith domain PlayVideoEvent

and range Video, Categorywith domain Video and range VideoCategory, and Submitter

with domain Video and range User. The KittenVideos class is a subclass of VideoCategory.

When a user views a video with the title ”mykitten”, and event is created with an individual

of class PlayVideoEvent, as the root of the tree. The individual has a single object prop-

erty child, video, which relates the individual to an individual of type Video. The Video

individual has several datatype properties such as the title, ID and Length of the video.

It has also several Tags. The category object property relates this video to an individual of

type KittenVideos. And the Submitter property relates a User individual with username

and isSubscriber properties. Please note that, even when the user views the same video,

different individuals for Video, User, and KittenVideos are created, since there is no way

to refer to the definitions in the ABox from the event tracking client. However, similar events

will be aggregated appropriately using anonymous objects.

44

Play

Video

Event

Video

Title ID Length

mykitten 2323… 62

Kitten

Videos

Tag

kitten

Tag

cute

User

isSubs

criber

false

userna

me

foo

Legend:

Individual node

Object property

node

Datatype

property node
video

Subm

itter

categ

ory

Figure 3.4: Event Diagram

To treat events as semantic entities we define formal semantics in Section 3.5.1.2, where

atom and atom-trees are defined. Events are formalized with atom-trees, and individuals

and properties are formalized with atoms. By a mapping between tracked events and their

semantic counterparts, we are able to perform mining tasks leveraging semantic inference.

The mapping between the event objects and the semantic objects are done using the classname

attribute, and the names of properties of Individual objects. These names are matched with

the class and property names in the given web site ontology, and an exact match is searched.

The pseudo code for the matching algorithm is given in Algorithm 2. The algorithm as-

sumes that there is a given ontology capturing the event and property definitions. The al-

gorithm takes the ontology model and the XML namespace for the ontology. The function

45

getMapping() takes an event, which is generated by the site and returns an Individual

Atom. The IndividualAtom, DatatypePropertyAtom and ObjectPropertyAtom classes

extend the Atom class, and hold ontology class, datatype property and object property defini-

tions respectively.

Algorithm 2 Event Ontology Mapping
function getMapping(e : Event) : IndividualAtom

Ont ← Ontology given in OWL-DL

NS ← XML namespace for the ontology

if ∃ an OntClass ∈ Ont with NS + e.classname as URI then

ontClass← 0nt.getOntologyClass(NS + e.classname)

ind← IndividualAtom(ontClass)

for all property p of e do

if e is a datatype property then

if ∃ a datatype property ∈ Ont with URI NS+p.name as URI then

add DatatypePropertyAtom(p.name, p.value) to ind as a child

else

return NIL

else if e is an object property then

if ∃ a object property ∈ Ont with URI NS+p.name as URI then

c← getMapping(p.value)

if c , NIL then

add ObjectPropertyAtom(p.name c) to ind as a child

else

return NIL

else

return NIL

return inv

else

return NIL

46

3.5 Frequent Pattern Discovery from Semantic Event Logs

The events are tracked via the Event Tracking API and they are saved by the Data Collector

Module. These logs are called semantic event logs, since they contain semantic events. Then

the traffic analysis module, parses the logs, and groups these events in sessions. The sessions

files becomes the input to the frequent pattern discovery phase.

In the next phase, frequent pattern discovery from semantic event logs, the background knowl-

edge is given in a Description Logic Knowledge Base (KB). We use OWL-DL as a knowledge

representation Language. The ontology (or KB) is taken as an input, which contains only ter-

minological axioms. The class and property axioms are read from the ontology definition file

(OWL File) and a memory model is built using the Jena library. Any definition regarding

individuals in the ontology is discarded. The assertional part of the ontology is given in the

event logs. Although the events in the event log are mapped to the semantic objects in the

ontology model, no individual axiom is added to the Jena memory model of the ontology.

This section starts with formal definitions and problem statement. In the next section, the

proposed algorithm is explained in detail and an optimization for filtering subjectively unin-

teresting patterns is given.

3.5.1 Problem Statement and Formal Definitions

In this section formal definitions for the web usage mining task is given. The formal defini-

tions for the traditional setting is given first, then they are adopted and extended in the next

section to form a mathematical language for the algorithms.

3.5.1.1 Frequent Pattern Discovery from Web Server Logs

In the traditional setting for web usage mining, the problem definition is a follows.

Let U denote a ith user, P a URL representing a pageview, and S a session of the user. A

session is a set of ordered pageviews by a certain user :

S =< P1, P2, P3, . . . >

47

, where < . . . > denotes an ordered set, and S [i] denotes the ith element of the ordered set.

The data set, D for web usage mining is a set of sessions :

D = {S 1, S 2, S 3, . . .}

, where {. . .} denotes an unordered set

Then the aim of frequent pattern mining algorithm is to find the set of frequent patterns, L,

where a pattern Q is defined as :

Q =< P1, P2, P3, . . . >

L = {Q1,Q2,Q3, . . .}

A session S contains, or supports, the pattern Q iff Q is a subsequence of S. Q is a subsequence

of S if Q can be obtained by deleting some elements of S. More formally:

S =< P1, P2, P3, . . . , Pn >

Q =< P′1, P
′
2, P

′
3, . . . , P

′
m >

Q is a subsequence of S ⇐⇒ ∀i ∈ [1,m],∃ ji s.t. Q[i] = S [ji] ∧ ji > ji−1

The support of the pattern is the the number of sessions containing that pattern. Frequent

patterns are the patterns which has greater support than the minimum support, which is a

parameter to the algorithm.

3.5.1.2 Frequent Pattern Discovery from Semantic Event Logs

In mining frequent semantic events, we make similar definitions as the above section. Events

were defined in section 3.4.3, however a more formal definition is given here. Events, hereby

referred as atom trees, contain nodes which are called atoms. The aim of the algorithm is to

find frequent atom trees.

Definition 3.5.1 (Atom) An atom is either an individual of class C, a datatype property as-

sertion, or an object property assertion. An atom, denoted with α, is a node in the atom-tree

(defined below). �

More specifically, for the knowledge base, KB, interpretation function I, domain of interpre-

tation, ∆I, domain of data types, ∆D
I, Concept C, Role R, individual oi, o j data values, v j,

48

and U for Datatype Role (UI ⊆ ∆I × ∆D
I)

α = C(oi)

| U(oi, vi)

| R(oi, o j)

The property assertions have the parent individuals as the object. The object property atom

have the child atom’s individual as the subject of the statement. Individuals in the Knowledge

Base can be unique or anonymous. The unique individuals have a unique URI, whereas

the anonymous individuals does not. The anonymous individuals are used as representative

samples of their class.

Definition 3.5.2 (Atom-tree) An atom-tree is a tree of connected atoms. The atom tree rep-

resents a domain event in the web site’s ontology. �

An atom tree, denoted with a, is formalized as :

a = {α1, α2, α3, . . .}

The atoms in the atom tree are connected in a tree structure. If αi = R(oi, o j), than C(oi) ∈

a,C(o j) ∈ a, and if αi = U(oi, vi), than C(oi) ∈ a

Definition 3.5.3 (Session) A session is an ordered set of domain events of a single user in a

certain browsing activity. �

Unlike traditional web usage mining, a session is not defined as an ordered set of pageviews,

but as a set of ordered events. This comes from the realization that, all the actions of the user,

including accessing and viewing a page, can be captured by events.

S = {a1, a2, a3, . . .}

Definition 3.5.4 (ismoregeneralthan, < relation) We define the relation isMoreGeneralThan(<

) over individuals, role assertions, atoms and atom-trees, which states that the left hand side

is a more general term than the right hand side. Eq. 3.1 lists possible cases: �

49

(1) o1 < o2 ⇐⇒ C1(o1),C2(o2),C1 w C2, o1is anonymous

(2) R1(o1, o2) < R2(o1, o2) ⇐⇒ R1 w R2

(3) R1(o, o1) < R2(o, o2) ⇐⇒ o1 < o2,R1 w R2

(4) U1(o1, v1) < U2(o1, v1) ⇐⇒ U1 w U2

(5) α1 < α2 ⇐⇒ α1 and α2 are of the same type, and either (1)-(4) holds

(6) a1 < a2 ⇐⇒ a1 = {α11, α12, . . .}, a2 = {α21, α22, . . .},

∀α1i,∃α2 j, s.t. α1i < α2 j,

and α1i, α2 j are in the same level in the tree
(3.1)

The semantics, under the interpretation I of (<) should be clear from Equation 3.1. In plain

English the operator <, states that

1. An individual o1, is more general than o2, iff the class of o1 is a superclass of the class

of o2, and o1 is anonymous. If o1 is a named individual, than it is not more general than

another named individual.

2. An assertion R1(o1, o2) is more general that R2(o1, o2), iff their objects and subjects are

equal and the first role is a super-role of the second.

3. An assertion R1(o, o1) is more general that R2(o, o2), iff they have the same object, and

the subject of the first is more general than the subject of the second and first role is a

super-role of the second.

4. A datatype assertion U1(o1, v1) is more general than U2(o1, v1), iff they have the same

object and subject and U1 is a super-role of U2

5. An atom α1 is more general than α2 iff the atoms are both individual assertions, datatype

property assertions, or object property assertions, and the first assertion is more general

than the second according to rules 1–4.

6. An atom-tree a1 is more general than a2, iff for each atom in the first tree, there is a less

general atom in the second tree in the same level.

Is more general than, <, relation is transitive, reflexive and antisymmetric over the sets it is

defined (i.e. the set of individual assertions, datatype assertions, role assertions and atom-

trees). Equation 3.2 lists the properties in mathematical notation.

50

a1 < a2 ∧ a2 < a3 ⇒ a1 < a3 (Transitivity)

∀a, a < a (Reflexivity)

∀ai, a j, ai < a j ∧ a j < ai ⇒ ai = a j (AntiSymmetry)

(3.2)

With transitivity, reflexivity and antisymmetry, < defines a partial order over the sets it is

defined. Nevertheless, < is not a total order, since some of the pairs are incomparable. In

mathematical notation :

∀ai, a j, either ai < a j | ai < a j | (ai % a j ∧ a j % ai) (3.3)

For notational convenience the relations, isLessGeneralThan,4, and strictIsMoreGeneralThan,�

, and strictIsLessGeneralThan,≺, are defined as in Equation 3.4.

a1 � a2 ⇐⇒ a1 < a2 ∧ a1 , a2

a1 4 a2 ⇐⇒ a2 < a1

a1 ≺ a2 ⇐⇒ a1 4 a2 ∧ a1 , a2

(3.4)

To illustrate the < relation among atom-trees, some atom-trees are compared in Figure 3.5.

The knowledge base contains concepts C1,C2, . . ., Datatype roles D1,D2, . . ., and object roles

O1,O2, C1 is a super concept of C2, D1 is a super role of D2, and O1 is a super role of O2.

The < relation is the key point of injecting semantics to the web usage mining process. It is

defined over four sets, which are the set of individuals in the ABox, the set of datatype and

object role assertions in the ABox, and the set of atom-trees. The relation leverages the class

and role hierarchy semantic constructs of the terminological box, and usage of anonymous

objects for representing the class. The domain and range restrictions for properties are used

to limit the search space. Annotation properties of OWL is used in eliminating uninteresting

patterns. Other constructs, other than the ones mentioned in this section are not used explicitly

for the purposes of this work.

The frequent semantic event mining task is to find the frequent sequence of events, from

the set of sessions. A frequent pattern, shows the sequence of events that the users perform

frequently. Unlike, the sequence of URL’s, the sequence of events is a more direct method to

understand user’s interaction with the site.

51

C1

D1

v1

C2

D1

v1

C1

D1

v1

C1

D1

v1

D2

v2

C1

D1

v1

C2

D2

v1

C1 C2

C1 C1

(a) C1 is a super class of C2

(b) C1 is a super class of C2

(C) O1 is a super property of O2

(e) For all of the nodes in the

first tree, there is a node in the

same level that the node is

more general than

(d) D1 is a super property of D2

O1 O1

O1 O2

Legend:

Individual node

Object property

node

Datatype

property node

Figure 3.5: The < relation among atom-trees

Definition 3.5.5 (Pattern) A pattern is an ordered set of atom-trees, representing a list of

events. �

Patterns are similar to the sessions in the data set. However, the atom-trees in the patterns

are constructed from the ones in the data set, using the < relation. For all the atom trees in

the pattern, there exists an atom-tree in the data set, that the pattern is more general than. A

pattern, Q, is denoted as:

Q = {a1, a2, a3, . . .}

A session S contains, or supports, the pattern Q iff Q is a subsequence of S, where the subse-

quence relation uses < for determining inclusion.

52

Definition 3.5.6 Q is a subsequence of S iff for each element in Q, there is an element in S

that is less general and its index is greater than the previous. �

S =< a1, a2, a3, . . . , an >

Q =< a′1, a
′
2, a
′
3, . . . , a

′
m >

Q is a subsequence of S ⇐⇒ ∀i ∈ [1,m],∃ ji s.t. Q[i] < S [ji] ∧ ji > ji−1

(3.5)

Definition 3.5.7 (Support of Pattern) The support of a pattern is the number of sessions,

that this pattern is a subsequence of. �

support(Q) = | { S | Q is a subsequence of S } | (3.6)

where |.| gives the number of elements in the set.

The support of an atom-tree is similar:

Definition 3.5.8 (Support of atom-tree) The support of an atom-tree is the support of the

pattern with the atom-tree as its single element. �

The frequency is defined in terms of the support as

Definition 3.5.9 (Frequency) The frequency of an atom-tree or pattern is the support of the

atom-tree/pattern divided by the total number of sessions. �

f requency(Q) =
support(Q)
|D|

(3.7)

Then for given Dataset, D, the problem is to find the set of patterns, Q, with support greater

than the threshold value, minS upport. In the next section an algorithm to search for this set

is given.

Q = {Q | support(Q) ≥ minsupport} (3.8)

53

3.5.2 Algorithm

The algorithm to find frequent sequences of atom-trees from the set of sessions is inspired

by the level-wise search in the GSP algorithm. The algorithm consists of two phases. In

the first phase the frequent atom-trees are found, and in the second phase, frequent atom-tree

sequences are searched.

3.5.2.1 First Phase - Finding Frequent Atom-trees

In the first phase of the algorithm, frequent atom trees are found using the definitions in

Section 3.5.1.2.

The algorithm is similar to the Apriori algorithm, in that, it iterates by generating candidates

at each level, counting support of the candidates and generating new candidates from the

previous ones.

A close examination of the definitions of support and < reveal that, there is an Apriori prop-

erty among atom-trees. If an atom-tree is more general than the other, then its support is

greater. Then by the following lemma, the algorithm searches for more general atom-trees

and eliminates infrequent ones.

Lemma 3.5.10 Given atom-trees a1, a2, if a1 < a2 ⇒ support(a1) ≥ support(a2)

The proof for lemma 3.5.10 is straightforward from the definition of subsequence relation(

Eq. 3.6) and support of pattern (Eq. 3.6). All the sessions supporting a2 supports a1 by the

transitivity of <.

To eliminate infrequent candidates in the early iterations, we begin counting the most general

forms of the atom-trees and gradually refine the frequent ones. To obtain the initial set of

atom-trees, a getMostGeneralForms, ψ, operation is defined over atom-trees.

Definition 3.5.11 (getMostGeneralForms, ψ) The getMostGeneralForms, ψ, operation re-

turns the set of trees, that are more general than the given atom-tree and that are not less

general than any other tree in the set of atom-trees. �

54

ψ(a) = {a′ | a′ < a ∧ @a′′ s.t. a′′ < a′}

The pseudo code for the algorithm for finding most general forms of an atom-tree is given in

Algorithm 3. The getMostGeneralForms function expects an AtomTree and returns a set of

AtomTrees. The function expects the root node of the AtomTree to be a node containing an

individual. Since all the events from the event tracking system is formed with an individual

root, we can safely make this assumption. Top-level super classes of an ontology class are

returned by the getMostS uperClasses method (not given). For each top-level super class of

the root’s OntClass, we construct a new tree with an anonymous individual atom of super

class.

Algorithm 3 Finding Most General Forms of an Atom-tree
function getMostGeneralForms(a : AtomTree) : Set

Ont← Ontology given in OWL-DL

F ← {}

if a.root is an IndividualAtom then

ontClass← a.root.getOntologyClass()

superClasses← getMostSuperClasses(Ont, ontClass)

for all superClass ∈ superClasses do

atomTree.root← IndividualAtom(superClass)

F ← F ∪ atomTree

else

Signal error

return F

Once the most general forms of the atom trees are found, the frequent trees are refined itera-

tively until no more candidates can be generated. A one-step refinement operator, φ is defined

over the set of individual atoms, object and datatype property assertion atoms.

Definition 3.5.12 (one step refinement, φ) Given individual atoms o1, o2, roles R1,R2, datatype

roles U1,U2, the φ operator is defined over pairs where the first one more general than the

other as :

55

• if o1 < o2, φ(o1, o2) is the set of individual atoms that are individuals of direct sub-

classes of the class of o1, and have the o2’s class as a subclass.

• if R1(o1, o2) < R2(o1, o2), φ(R1(o1, o2),R2(o1, o2)) is the set of role assertions, that have

a direct subproperty of R1 and have R2 as a subproperty.

• if R1(o, o1) < R1(o, o2), φ(R1(o, o1),R1(o, o2)) is the set of role assertions, that have the

subject belonging to the set φ(o1, o2)

• if U1(o1, v1) < U2(o1, v1), φ(U1(o1, v1),U2(o1, v1)) is the set of datatype role assertions,

that have a direct subproperty of U1 and have U2 as a subproperty.

�

In mathematical terms the one-step refinement can be defined by:

(1) φ(o1, o2) = {o | o1 � o < o2 ∧ @o′ s.t. o1 � o′ � o}

(2) φ(R1(o1, o2),R2(o1, o2)) = {R(o1, o2) | R1 A R w R2 ∧ @R′ s.t. R1 A R′ A R}

(3) φ(R1(o, o1),R1(o, o2)),= {R(o, o′) | o′ ∈ φ(o1, o2)}

(4) φ(U1(o1, v1),U2(o1, v1)) = {U(o1, v1) | U1 A U w U2 ∧ @U′ s.t. U1 A U′ A U}
(3.9)

The one-step refinement operator over the set of atom-trees is defined using the above defini-

tions. We use the uppercase symbol, Φ for the operator.

Definition 3.5.13 Given two atom-trees, a1, a2, and a1 < a2, Φ(a1, a2) returns a set of atom-

trees that is constructed by either

• refining a single node in the tree (by applying φ), or

• adding the mostGeneralForm of a child (by applying ψ) in a2, that does not exists in a1,

to the corresponding parent node of a1.

�

Finally, Algorithm 4 contains the pseudo code for finding frequent atom-trees. The algorithm

first finds the initial candidate set, and iterates until no more candidates can be generated. At

56

each iteration the atom-trees in the candidate set(Ci) is compared towards the dataset and the

support of the candidates is incremented for each atom-tree in the dataset that is less general

than the candidate. The next set of candidates is computed in this iteration by adding all

the refinements of the candidate (Φ(ac, a)) with the atom-tree in the data set. Once all the

candidates are counted, those with support at least minS upport are kept in Li, as the frequent

atom-trees. The candidates in Ci+1 which are generated by refining some infrequent candidate

are removed from the set.

Algorithm 4 Find frequent atom trees
function generateC1(D : DataS et) : C1

C1 ← {}

for all session s ∈ D do

for all atomTree a ∈ s do

C1 ← C1 ∪ getMostGeneralForms(a)

return C1

function f indFrequentAtomTrees(D : DataS et,minS upport) : L1

L1 ← {}

C2,3,... ← {}

C1 ← generateC1(D)

for (i = 1; Ci , ∅; i++) do

for all session s ∈ D do

for all atomTree a ∈ s do

for all candidate atom-tree ac ∈ Ci do

if ac < a then

ac.count++

Ci+1 ← Ci+1 ∪ Φ(ac, a)

for all candidate ac ∈ Ci do

if ac.count ≥ minSupport then

L1 ← L1 ∪ ac

else

Ci+1 ← Ci+1 \ {a′ | a′ ∈ Φ(a, ac) for some a }

return L1

57

The algorithm returns the set of frequent atom-trees. The set of frequent atom-trees is the

types of events that occur frequently in the web site. These atom-trees and their supports are

already interesting, since they capture usage statistics and how frequent events occur.

3.5.2.2 Second Phase - Finding Frequent Atom-tree Sequences

In the next stage of the algorithm the set of frequent atom-tree sequences are found. This

stage of the algorithm is much similar to GSP [46]. In GSP, item hierarchies(taxonomies)

can be introduced in the mining process. To mine frequent patterns with taxonomy, each data

item is converted to an extended sequence, where each transaction contains all the items, and

all the ancestors of the items in the hierarchy.

In the second phase of finding frequent event patterns, we use the < relation, which defines a

partial order over the set of atom-trees. This order is used to introduce a taxonomy over the

atom-trees, so that GSP is used with little modification.

For efficient comparison between atom-trees, we define and store a mapping from the atom-

tree to its hash for each atom-tree in the set of frequent atom-trees, L1. An important property

of the the hash function is that it should not allow collisions, since once the dataset is con-

verted, there is no way to compare the objects other than their hash values.

In the next step, each atom-tree in the data set is converted to a set of integers representing

the atom-tree and it’s ansectors according to < relation. For each atom-tree in the session,

the set of frequent atom-trees that are more general than it is found, and the atom-tree is

replaced by a set of hashes of the atom-tree and its parents. This operation converts a session

into an ordered set of item-sets, where each item-set includes hashes of the atom-tree and its

ancestors.

As an example for the subsequence relation, consider atom-trees a1, a2, . . . , a10, where a1 <

a2 < a3, a1 < a3, a5 < a6 < a7, and a8 < a9. And further let ∀i∈[0,10] hash(ai) = i. The

taxonomy for the atom-trees is given in Figure 3.6, where atom-trees are represented with

their hashes. A sample input with 4 sessions is listed in Table 3.2. The atom-trees in the

sessions are represented with their hashes. The second column contains the session events,

while the third contains extended sessions. In the first row, the session with one event, 〈2〉,

is augmented with 1, which is 2’s parent ; i.e. 〈{1, 2}〉. In the next row, 〈7〉 is replaced with

58

{5, 6, 7}.

Figure 3.6: Example Atom-tree Hierarchy

Table 3.2: Sample Input Dataset for Second Phase

Session # Session Extended Session
1 〈2〉 〈{1, 2}〉
2 〈7, 10, 8〉 〈{5, 6, 7}, {10}, {8}〉
3 〈3, 5〉 〈{1, 3}, {4, 5}〉
4 〈4, 9, 10〉 〈{1, 2, 4}, {8, 9}, {10}〉

The subsequence relation between item-sets and sessions should be modified to include above

semantics. Given a session, S , which is an ordered set of sets containing hash values of atom-

trees, and a pattern ,Q, which is an ordered set of hash values of atom-trees the definition is

as follows:

Definition 3.5.14 Q is a subsequence of S , iff for each element qi in Q, there is an element,

S [j] in S that contains qi and its index is greater than the previous.

�

More formally,

S =< {s11, s12, . . .}, {s21, . . .}, . . . , {sn1, sn2, . . .} >

Q =< q1, q2, . . . , qm >

Q is a subsequence of S ⇐⇒ ∀i ∈ [1,m],∃ ji s.t. Q[i] ∈ S [ji] ∧ ji > ji−1

(3.10)

With the < operator, and the modified subsequence definition, the task of finding frequent

59

event patterns is reduced to finding ordered frequent sequences in the dataset. We use an

algorithm that is similar to GSP, however other sequential pattern mining algorithms such as

SPADE [55] can be adapted in this phase. We have chosen and Apriori like algorithm since it

offers straight-forward parallelization via MapReduce (Section 3.3.3).

The pseudo code for finding frequent atom-tree sequences is listed in Algorithm 5. The al-

gorithm starts with initializing the candidate sets, C2,3,..., and frequent sequence sets, L2,3,...,

to empty, and L1 is initialized from phase 1. Note that, while the candidate sets, C1,... are

different in phase 1 and 2, the set of frequent sequences, L1 is the same. A mapping from

atom-trees to their hashes is stored in variable µ. Then the dataset and patterns are converted

to their hashes as discussed above. The algorithm, iterates over generate candidates, count

candidates, and select candidates phases. New candidate set, Ck+1 is generated by joining the

frequent pattern set Lk with itself. Two sequences l1 and l2 of length k are joined if their first

k − 1 elements match, and the resulting sequence is generated by appending the last element

of l2 to l1. If the candidate has any subsequence of length k − 1 that is not frequent, then

the candidate is filtered. In the counting candidates phase, for each the session, s, the set

of candidates that are subsequences of the session is found and their support is incremented

by 1. Hash-tree data structure or other optimizations in [46, 3] (such as eliminating sessions

that does not contain any frequent item, etc.) can be used in this step. In the select phase,

the candidate whose support is greater than the threshold minS upport is selected as frequent.

The algorithm then reconverts the pattern sets and returns the union of them.

3.5.3 Pattern Interestingness

In analyzing the resulting frequent patterns from the experimental setups (Chapter 4), a prob-

lem we faced was separating really interesting patterns from the obvious ones. In this process,

we have identified two main problems that are causing subjectively uninteresting patterns.

The first problem is the atom-trees that lack some of it’s children. By the definition of the <

operator, an atom will or will not have all of the related properties. However such patterns are

generated in internal steps in the algorithm and output as frequent patterns. As an example

consider the PlayVideoEvent, Video classes and video object property relating the two.

The atom-tree PlayVideo event but without associated video child is not interesting.

60

Algorithm 5 Find frequent event patterns
function f requentEventPatterns(D : DataS et,minS upport)

L2,3,... ← {}

C2,3,... ← {}

L1 ← f indFrequentAtomTrees(D,minS upport)(D)

µ← getMapping(L1)

D← convertDataSet(D, µ)

L1 ← convertPatterns(L1, µ)

for k = 2; Lk−1 , ∅; k++ do

Ck ← generateCandidates(Lk−1)

countCandidates(D, Ck)

Lk ← {c ∈ Ck|c.count ≥ minS upport}

L2,3,... ← reconvertPatterns(µ, L1, L2, . . .)

return L =
⋃

k Lk

function countCandidates(D : DataS et,Ck)

for all session s ∈ D do

for all c ∈ Ck s.t. c is a subsequence of s do

c.count++;

function generateCandidates(Lk,minS upport) : Ck+1

Ck+1 ← {}

for all l1 ∈ Lk do

for all l2 ∈ Lk do

if ∀ j∈[1,(k−1)] l1[j] = l2[j] then

c← 〈l1[1], l1[2], . . . , l1[k], l2[k]〉

if not hasIn f requentS ubset(Lk, c) then

Ck+1 ← Ck+1 ∪ c

function hasIn f requentS ubset(Lk, c) : boolean

for all subsequence s of length (k-1) of c do

if s < Lk then

return TRUE

return FALSE

61

The second problem results from the fact that for some event patterns, the instances in that

event may not be specific enough to be usable. For example, consider the classes VisitContent

Event, Content, TopVideos, and Homepage and object property content relating Visit

ContentEvent and Content. Further suppose that TopVideos and HomePage are subclasses

of Content. With this ontology at hand, it is clear that the event (given in OWL abstract syn-

tax, Section 2.3.2) :

Individual(type(VisitContentEvent) value(content Individual(type(Content)))

which is a pattern with an individual of type VisitContentEvent and single child Content,

is not interesting at all. For the pattern to be interesting we need to refine the Content instance

with either an instance of HomePage or TopVideos.

For filtering subjectively uninteresting patterns, we use predefined annotations. The devel-

oper of the ontology can optionally use two named boolean annotations, is_required and

need_refinement, to add annotations to class or property definitions. The elimination of

uninteresting patterns occur between the two phases of the algorithm. Unfiltered atom-trees

from the first phase, is reported to the user, since the count of them is still interesting, but they

are not used in the second phase.

An atom-tree is inspected for interestingness recursively starting from the root node. When

we are at a node that contains an individual, we check the individual’s class in the ontology

to have the need_refinement annotation valued true. If so, we do not pass this atom-tree

to the second phase. Moreover, we get the list of properties having the individual class as

domain, and having is_required annotation as true. Then, we check each such property to

be present among the children, and if not found we filter the atom-tree.

In this context, the interestingness of the patterns are defined subjectively. The ontology

engineer is responsible for defining which classes or properties are too generic or necessary.

In the following chapter, more concrete examples are given as a part of the experiments.

62

CHAPTER 4

EXPERIMENTAL RESULTS

4.1 Experimental Setup

For testing the usability and performance of the proposed algorithm and framework for dis-

covering frequent semantic events, we have deployed two experimental setups. The first is a

small site for listening streaming music and the second one is a web site for a major mobile

network operator in Turkey. For both of the sites, the ontologies capturing domain events are

developed and used during tests.

4.2 Music Streaming Site

4.2.1 Features of the site

The first experiments were performed in the music streaming site, called BulDinle [17]. The

site offers searching and listening to songs that are uploaded to various online video sites. The

site is targeted to the young population in Turkey, with an HTML/Ajax interface in Turkish.

A screenshot of the BulDinle is given in Appendix A. The site offers a limited set of features

and rather focussed on ease of use and speed. The features of the site is listed below:

• Make keyword searches: the results for the search are the list of songs that contain the

query keywords in their title or metadata.

• Listen a song

• Add a song to the playlist

63

• Remove a song from playlist

• Play/Pause/Stop the song

• Go next/previous song in the playlist

• Send a song to a friend: send a mail to a friend with a URL to listen to the song.

The site enables to search over 7 million songs which are contained in other sites. The site

sees a moderate amount of traffic with average 2700 visits and 8000 pageviews per day. Daily

visit (session) counts, and pageviews between June 01, 2009 and June 29, 2009 are given in

Figure 4.1 and Figure 4.2 respectively.

Figure 4.1: Daily Visit Counts for BulDinle

The user interface of the site is based on asynchronous communication, and all the user in-

teraction with the site curiously occurs in one page. All of the URL’s in the site starts with

"/index.php", which makes event tracking even more meaningful. Table 4.1 gives some

frequently visited URL’s of the site along with number of pageviews for each URL. As can

be seen from the table, raw URL’s are far from being interesting or useful.

4.2.2 Events in the site

For the music streaming site, we have defined several events that capture the user’s interaction

with the site. Furthermore for modeling the events in the site, we have developed an ontology

64

Figure 4.2: Daily Pageview Counts for BulDinle

Table 4.1: Sample URL’s for BulDinle

URL Num. Pageview
/ 71710
/index.php?a=3 x8v4jz&k=6087559 5410
/index.php?a=3 x8g0vi&k=5508310 4698
/index.php?a=3 x71p76&k=3838533 2011
/index.php?a=3 x9bkpo&k=7064121 1851
/index.php?a=1 svgcxredkme&k=4851048 1672
/index.php?i=0&a=3 x8v4jz&k=6087559 1247

containing only the TBox of the ontology. The ontology, although simple, and the defined

types of events proved to be sufficient for semantic analysis.

Figure 4.3 contains a visualization of the class hierarchy of the ontology for the music stream-

ing site, and Figure 4.4 contains domain and range relations of the object properties. The on-

tology contains 7 classes, 1 object property and 2 datatype properties. The classes are, Song,

PlaySongEvent, AddSongToPlaylistEvent, SearchEvent, RemoveSongFromPlaylist-

Event, ShareSongEvent, the object property is song with domain SongEvent and range

Song, and the datatype properties are keyword with domain SearchEvent, and name with

domain Song. The events that are tracked in the site and sample atom-trees for the types of

events are listed in Table 4.2. Five type of events are tracked with associated properties. The

first column describes the intended action and the second column shows an example atom-tree

65

Figure 4.3: Class Hierarchy of the Ontology of Music Streaming Site

Figure 4.4: Domain-Range Relations of the Ontology of Music Streaming Site

resulting from the event. For example the second row of the table contains a sample event for

playing a song. When a user performs this action, a new atom-tree is logged with the root

node being an individual of class PlaySongEvent, and having an object property child, of

type song. The song object property node has an individual atom child of type Song. The

name of the song is a datatype property child of the song.

As mentioned in Section 3.5.3, not all the events that are counted as frequent is interest-

ing. For example, in the above ontology, analysts might not be interested at all for events

of SongEvent, rather that its one of it’s subclasses, PlaySongEvent, ShareSongEvent,

AddSongToPlaylistEvent. Similarly, a PlaySongEvent without an associated song might

not be very informative in a pattern. Thus, to avoid uninteresting events occurring in patterns

66

Table 4.2: Events for BulDinle

Event Sample atom-tree
Add a song to the playlist AddSongToPlaylistEvent(e1), song(e1,s1), Song(s1),

name(s1, ’Billie Jean’)

Play a song PlaySongEvent(e2), song(e2,s2), Song(s2), name(s2,

’Thriller’)

Search Event SearchEvent(e3), keyword(e3, ’Michael Jackson’)

Remove a song from playlist RemoveSongFromPlaylistEvent(e4)

Send a song to a friend ShareSongEvent(e5), song(e5,s5), Song(s5)

of length more than one, we have defined is_required and need_refinement annotations

as in Table 4.3. The song and name properties are defined to be required for their respective

domains. However, the keyword property for domain SearchEvent is not required, since

search events without drilling down to the keyword is considered to be sufficiently interest-

ing. As can be realized, the determination of what constitutes an interesting event in a pattern,

and making the annotations is in the responsibility of the domain analyst. The proposed sys-

tem merely offers a way to help filter unsolicited results.

Table 4.3: Annotation Properties in the Ontology

OntResource is required need refinement
SongEvent true
song true
name true
keyword false

4.2.3 Frequent semantic event patterns for the site

We used the event logs of the site for June 2009 to generate frequent event patterns. The

logs contain 263076 pageviews and 284819 events in 75890 sessions, for an average of 3.47

pageviews and 3.75 events per session. 15959 sessions contains events, which gives an av-

erage number of 17.85 events per session. Relatively high number of events per session is

suspected to be due to high engagement of core users with the site.

The algorithm was run on the described data set with minS upport = 480 (f requency = 0.03).

67

Table 4.4 contains the supports for most general atom-trees whose support is greater than

minS upport. The atom-trees are given in OWL Abstract Syntax [53] in the first column and

the supports are listed in second, the third column is the frequency of the event, and the last

column states whether the event is interesting in terms of the definitions in Section 3.5.3.

Table 4.4: Event Patterns for Music Site, {ψ(a)}

Event Support Freq. Interesting
Individual(type(SearchEvent)) 6211 0.389 true
Individual(type(RemoveSongFromPlaylistEvent)) 1500 0.093 true
Individual(type(SongEvent)) 15240 0.954 false

The frequent events of most general form, denoted with {ψ(a)}, in Table 4.4 states that in 6211

of 15959 sessions, the user made a search, in 1500, the user removed a song from her playlist,

and in 15240, the user made an action about a song, i.e. an event of one of the subclasses of

SongEvent. In the next iteration of the algorithm, the frequencies for the one step refinements

of the most general forms are computed. The resulting frequent events, denoted with {φ(ψ(a))}

are listed in Table 4.5. The SongEvent in Table 4.4 is refined by adding a song property, the

SongEvent is refined by subclasses PlaySongEvent and AddSongToPlaylistEvent. It

is clear that, in 92.6% percent of the sessions, the user played a song, which confirms the

expected user behavior.

Table 4.5: Event Frequencies for Music Site, {φ(ψ(a))}

Event Support Freq. Interesting
Individual(type(SongEvent) value(song

Individual(type(Song))))

15240 0.954 false

Individual(type(PlaySongEvent)) 14786 0.926 false
Individual(type(AddSongToPlaylistEvent)) 4400 0.275 false

In the next iteration, the frequent events are refined again to calculate more refined patterns,

φ2(ψ(a)) . A sample set of the results are given in Table 4.6. In this refinement level, the

names (more precisely unique identifiers) of the songs are counted for SongEvents. For the

popular songs, such as, the ones with ID’s ’3__x8v4jz’, ’3__x8v4jz’, . . . the number of

times each song is played or added to a playlist can be seen from Table 4.7, which contains

68

the last level of refined events.

Table 4.6: Event Frequencies for Music Site, {φ2(ψ(a))}

Event Support Freq. Interesting
Individual(type(SongEvent) value(song

Individual(type(Song) value(name

’3 x9bdi9’))))

1333 0.083 false

Individual(type(SongEvent) value(song

Individual(type(Song) value(name

’3 x8v4jz’))))

2397 0.150 false

Individual(type(SongEvent) value(song

Individual(type(Song) value(name

’3 x8ib4g’))))

1334 0.083 false

.
Individual(type(PlaySongEvent) value(song

Individual(type(Song))))

14786 0.926 false

Individual(type(AddSongToPlaylistEvent)

value(song Individual(type(Song))))

4400 0.275 false

Table 4.7: Event Frequencies for Music Site, {φ3(ψ(a))}

Event Support Freq. Interesting
Individual(type(AddSongToPlaylistEvent)

value(song Individual(type(Song) value(name

’3 x9bkpo’))))

492 0.030 true

Individual(type(PlaySongEvent) value(song

Individual(type(Song) value(name

’3 x8v4jz’))))

2287 0.143 true

Individual(type(PlaySongEvent) value(song

Individual(type(Song) value(name

’3 x8qhzu’))))

956 0.059 true

.

In the first phase, a total of 55 events are found to be frequent with f requency greater than

0.03. 26 of the events are found to be interesting according to the annotations in the ontology.

Both interesting and not interesting patterns are reported as one-item patterns, however only

interesting patterns are used to generate patterns of length 2 or more. In the second phase of

the algorithm, the frequent sequences of the frequent events are searched and a total of 139

frequent patterns are found.

69

A sample of patterns of length more than 1 are listed in Table B.1 in Appendix B. The

table contains some interesting patterns for consideration. For example, the pattern num-

ber 1, shows that in 673 sessions, a search is performed after playing the song with ID

’3__x8ib4g’. Pattern with number 4, indicates that the song with ID ’3__x8v4jz’, which

is played 2287 times according to 1 event pattern, is played after 5 searches, in 697 sessions,

thus in 30% of the time, the song may be searched up to 5 times. This result alone may point

to some lack of metadata of the song, or relevancy issues in the search system of the site. Pat-

tern with number 4, shows that sequential removal of songs from playlist is frequent, which

is clearly due to a lack of ’clear playlist’ button in the playlist interface. The pattern with

number 7, assures that searching is performed frequently in the site.

Figure 4.5 contains the number of candidates that are counted and the number of frequent

patterns for each iteration of the algorithm. The first 5 iterations are in the first phase, while

remaining iterations belong to the second. Figure 4.6 offers a closer look on the number of

patterns. The number of candidates in phase 1 are far greater than the number of the frequent

patterns. This is due to the relatively large number of distinct events generated as candidates.

For example, at the fourth iteration, most of the candidates consists of a PlaySongEvent

with a specific song ID. Generating a candidate for every distinct song event in the logs, may

seem an overkill, however this is the only way to find frequent patterns in the refinement

level of individual songs. In this respect, a parallelization with more traditional web usage

mining setting is to generate a candidate for every distinct URL (including the query part)

such as ’/index.php?a=3__x8v4jz&k=6087559’ instead of for every URL path, such as

’/index.php’.

70

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 5 10 15 20 25
Iteration

candidates

�

�

�

�

� � � � � � � � � � � � � � � � � �

�
patterns

× ×

×

Figure 4.5: Number of Candidates and Patterns for Music Streaming Site

0

5

10

15

20

25

30

0 5 10 15 20 25
Iteration

patterns

×
×

×

×

×
×

×

×

×

×
× × × × × × × × × × × ×

×

Figure 4.6: Number of Patterns for Music Streaming Site

71

4.3 Mobile Network Operator’s Site

4.3.1 Features of the site

The second set of experiments was performed on the logs of the web servers of a large mobile

network operator. The web site for the mobile network operator is a rather deep and complex

one, with both static and dynamic content. The site enjoys a very large number of visitors.

Two days worth of logs, on 28-29 June 2008, as obtained from the company is used in the

analysis. The number of pageviews and the number of sessions for each day is listed in Table

4.8. A total of more than 1 million pageviews occurred in 175K sessions.

Table 4.8: Pageview and Session Counts for Network Operator’s Site

Date # of Pageview # of sessions
2008-06-28 568804 97114
2008-06-29 470415 78492

The web site is reported to be a core asset of the wireless network operator company, which

enhances overall user experience, and allows online users to reach the features offered by the

network. The web site includes a rich content with both static and dynamic pages. In the

given time interval, 1,644 distinct URL paths (not containing query part of the URL), and

138,058 distinct URL’s were accessed. The web site offers various set of features ranging

from browsing static content to sending SMS online. A list of sample content and features of

the site is given below.

• Browse through static content pages

• Perform a search in the site

• Download a document

• Use online services for account related actions

• Browse the content pages in English (default content is in Turkish)

• Seek help in help section

72

• Send an SMS online

• Buy prepaid subscriber units

Many more services, such as mobile services, specific sites for different types of paid plans,

music streaming services, etc. can be reached from the main site. However, the log, as ob-

tained from the company, contains only the logs for the main site, excluding most of the

services that requires user sign-in. Due to privacy concerns, logs containing sensitive infor-

mation was not sent over by the company for the analysis.

4.3.2 Preprocessing the logs

Unfortunately, we have not yet integrated event tracking of the Web Analysis project to the

network operator’s web site. Therefore, for this experiment, we have used the web server

logs, as obtained from the company. The logs are formatted with the ’Combined Log Format

with Cookie’ [6] containing more than 10M lines of raw HTTP requests.

A preprocessing is performed over the logs to be used in the frequent event discovery phase.

The logs are converted to event logs as tracked by the tracking module in the Web Analytics

project. First, the logs are cleaned by removing non-page requests, and malformed lines.

Only requests for HTML pages are kept, and all other requests, such as image, js, css files

are removed from the log. A mapping is performed to convert page requests to events, which

is detailed in Section 4.3.3. Finally the session and visitor identifiers are generated so that

converted logs can be fed directly to the traffic analysis module.

Raw web server logs, did not contain a valid session identifier and a visitor identifier, so

sessions had to be reconstructed reactively. For every distinct IP, we have generated a unique

visitor ID, making the assumption that every distinct ip is a different visitor.

In constructing the sessions, we have grouped the pageview request by the visitor ID’s and

used time based heuristics to reconstruct the sessions. We have avoided more robust session

reconstruction methods, such as using time and navigation oriented heuristics, or topology

based heuristics [10], since they are considered orthogonal to the work. The frequent event

pattern discovery system in production will always be used through the Web analytics project,

specifically the log tracking module as discussed in Sections 2.1.3.7 and 3.4.

73

The preprocessing of the logs and defining path to event mappings is a one-time operation for

the sake of experimentation. The web analysis project itself does not contain any apparatus

for ontology creation, manipulation or semantic mapping. The project only allows the web

sites to use event tracking by the Javascript API, and explore semantic event patterns. The

creation of the domain ontology, uploading the ontology to the web analysis servers, and

sending event tracking requests (according to the ontology) are the responsibilities of the web

sites’ administrators.

4.3.3 Events in the site

In this section the events in the site and the ontology is formalized. In the first subsection,

types of events are defined and relevant detail about the site’s ontology is provided. In the

second, event mapping from the server logs are elaborated.

4.3.3.1 Site’s Ontology

As discussed above, the logs contain data mostly about the static content. Thus the ontology

and the events are defined according to the data at hand. In generating the ontology for

capturing user interaction with the site, we have used both manual and automated methods.

We have defined 5 types of events, with classes DownloadFileEvent, PageviewEvent,

SearchEvent, VisitContentEvent, and SendSMSEvent that can be performed on the

site, which are listed in Table 4.9. The second column describes the intended action and

the third column shows an example atom-tree resulting from the event. The first row in-

dicates that whenever a page, which contains a known content in the ontology, is visited a

VisitContentEvent is generated with a content property linking it with an object of the

content’s class. In this case the content’s class is Palm_treo_750, indicating a content about

the ’Palm Treo 750’ mobile phone. The second row in the table, indicates that a pageview is

performed but the content in the page is not associated with any class in the ontology. The

URL of the page is linked to the event with ’url’ datatype property. The third action cap-

tures a search event together with the query, and the fourth action is for all types of downloads,

where the filename is associated with the event. The last action is instantiated when a user

sends an SMS from the web page.

74

Table 4.9: Events for the Network Operator’s Site

Event Sample atom-tree
1 Visit a page associated with

a content
VisitContentEvent(e1), content(e1,c1), Blackberry(c1)

2 Visit a page not associated in
the ontology

PageviewEvent(e2), url(e2,’/c/oth/websmsframe.html’)

3 Make a search SearchEvent(e3), query(e3, ’blackberry’)

4 Download a file DownloadFileEvent(e4), filename(e4,

’/downloads/windowsmobile6.pdf’)

5 Send an SMS SendSMSEvent(e5)

The number of event types in the site may seem small, which is partly due to logs not contain-

ing mobile services, and online services. Also note that, some of the events, such as printing

a page, cannot be reconstructed from the logs, since no pageview requests is performed for

the event.Moreover, for some of the events (such as SendSMSEvent), the possible parameters

for the event cannot be reconstructed. For some of these events, the web site tracks these

statically by explicitly calling tracking methods in a competitor web analytic product. When

the site switches to the web analysis product that is being developed here, a more extensive

analysis of the site’s events would become possible.

For the static pages, the site contains a site map, which includes the hierarchy, and a nice

URL construction schema, from which the page content can be mapped. The part of the on-

tology about site’s content was generated combining the site map, URL structure and manual

effort. The sub-classes of the Content class, is highly specific to the knowledge domain, and

extended know-how on the domain and knowledge of Turkish may be required for a com-

plete interpretation. Since most of the content is in Turkish, some of the classes have Turkish

names, however English translations of the class names are given in parenthesis in relevant

context. Moreover the classes and their intended semantic interpretations will be detailed in

Section 4.3.4 whenever necessary.

The terminological part of the ontology, contains 503 classes, 3 datatype properties and 1

object property. The datatype properties are filename with domain DownloadFileEvent,

query with domain SearchEvent and url with domain PageviewEvent. The object prop-

erty is content with domain ViewContentEvent and range Content.

75

Appendix D contains some detail about the ontology of the site. Figure D.1 gives a visual-

ization of the top 2-level classes in the ontology. Some of the notable ones include, the 5

event types defined in Table 4.9, the Content class and Anasayfa (HomePage in English),

Bireysel (Personal), Kurumsal(Institutional) and Yardim (Help) classes. The sub-

classes of the Content class capture the semantic content in the static pages. The ontol-

ogy contains over 500 classes, and the deepest subclass in the hierarchy has a depth of 7,

therefore only a portion of the ontology is given here. Figure D.2 contain 2-level subclasses

of the Bireysel(Personal) class. Figure D.3 further details the subclass hierarchy of the

BireyselServislerMesajlasma (PersonalServicesMessaging) class, which is itself a

subclass of Bireysel (Personal). Lastly, in Figure D.4, the domain-range relation for the

content object property is given. In accordance with the discussion in Section 3.5.3, not

all the possible events are interesting. For eliminating uninteresting ones, we have used the

is_required and need_refinement annotation properties in the ontology, which are listen

in Table 4.10. The Content and it’s direct subclasses are considered to be generic enough

to be considered uninteresting, whereas indirect subclasses are accepted to provide sufficient

detail. The content, query and url properties are needed for the event individuals in the

domain to make sense. However, the query parameter is not considered essential for the

SearchEvent.

Table 4.10: Annotation Properties in the Ontology

OntResource is required need refinement
Content true
Direct sub-classes of Content true
Indirect sub-classes of Content false
content true
filename true
query false
url true

4.3.3.2 Event Mapping

As discussed above, the events for the site are not logged explicitly for the web site. However,

according to the domain of the site, the events are defined and the logs are converted so that

they contain the events as though generated by the event tracker. For each pageview, an event

76

is extracted and saved for later analysis.

For the mapping of pageview requests to event instances, we have developed a mapping

schema. The URL of the requested page is analyzed to define the event type, and the event

parameters. Table 4.11 overviews the mapping conditions and mapped events. Each pageview

is first checked if it is a download event or search event. If not, the path of the URL is checked

from the paths to contents table (detailed below) to see if the content in the page is a defined

in the ontology. If so, an VisitContentEvent is generated, and the ontology class corre-

sponding to the content is linked with the content property. If not, a PageviewEvent is

generated as a last resort, linking the URL of the request with the url property

Table 4.11: Event Mapping for the Network Operator’s Site

Condition Event
URL path ends with one of ’pdf’, ’zip’,
’doc’, . . .

DownloadFileEvent with URL as filename
property

URL path is ’/yardim/arama’
(’/help/search’ in English)

SearchEvent with query property obtained from
URL parameter ’q’

URL path is in path to Content map-
ping Table

VisitContentEvent with mapped content

None of the above matches PageviewEvent with URL as url property

As mentioned in the previous section, the part of the ontology containing subclasses of Con-

tent are generated by a combination of the site map, the URL structure and manual effort.

For most of the cases, the last part in the URL path is taken as the class name, and the

directory structure in the path is converted to the class hierarchy in the domain. As an ex-

ample, let’s look at the Palm_treo_750 class. The class hierarchy is constructed as fol-

lows: Palm_treo_750 → TurkcellPDA → MobileInternet → Services → Personal

→ Content, where→ indicates is a subclass of relation. The class names and class hierarchy

are extracted from the URL, such as /bireysel/servisler/mobilinternet/turkcellpda/

palm treo 750. The mapping from URL’s to classes is illustrated in Table 4.12.

The mapping is performed manually for the URL’s, whose path names do not match the

expected hierarchy. Generated classes were inspected, and verified to be descriptive of the

content they represent.

77

Table 4.12: Event Mapping for the Network Operator’s Site

path Ontology Class

E
ng

lis
h

/personal/services/mobileinternet/turkcellpda/palm treo 750 Palm_treo_750

/personal/services/mobileinternet/turkcellpda/ TurkcellPDA

/personal/services/mobileinternet/ MobileInternet

/personal/services/ Services

/personal/ Personal

Tu
rk

is
h

/bireysel/servisler/mobilinternet/turkcellpda/palm treo 750 Palm_treo_750

/bireysel/servisler/mobilinternet/turkcellpda/ TurkcellPDA

/bireysel/servisler/mobilinternet/ MobilInternet

/bireysel/servisler/ Servisler

/bireysel/ Bireysel

4.3.4 Frequent semantic event patterns for the site

We have run the proposed algorithm over the converted 2-day logs. Minimum support was

chosen to be 5268, corresponding to 0.03 frequency. In determination of the minimum fre-

quency to use, we have slowly decremented the frequency at each iteration until number of

patterns is in the order of hundreds.

At the first phase of the algorithm, a total of 35 events are counted to be frequent. The most

generic events are listed in Table 4.13 together with their support, frequency and whether they

are interesting according to the interestingness criteria, defined in Section 3.5.3.

Table 4.13: Event Patterns for Mobile Network Operator’s Site, {ψ(a)}

Event Support Freq. Interesting
Individual(type(SearchEvent)) 17171 0.098 true
Individual(type(VisitContentEvent)) 171531 0.977 false
Individual(type(PageviewEvent)) 67991 0.387 false
Individual(type(SendSMSEvent)) 8716 0.050 true

Table 4.13 shows that nearly 10% of the sessions contain at least on search action, nearly all

of the sessions contain browsing static content, and in 38% of the sessions, a page not catego-

rized in the ontology is visited. Note that although Individual(type(DownloadFileEvent))

was a candidate, it is not frequent, which indicates that downloading a file is not common.

78

The events in the above table, are refined in the next step of the algorithm. A sample of the

resulting events are listed in Table 4.14. The events contain various pageview events with a

specific URL, and a visit content event. For the SearchEvent, not a single query is identified

as frequent.

Table 4.14: Event Patterns for Mobile Network Operator’s Site, {φ(ψ(a))}

Event Support Freq. Interesting
Individual(type(PageviewEvent) value(url

’/c/oth/galery.xml’))

7918 0.045 true

Individual(type(PageviewEvent) value(url

’/c/oth/websmsframe.html?tab=dig 20080217 webmesaj’

))

8385 0.047 true

Individual(type(VisitContentEvent)

value(content Individual(type(Content))))

171531 0.976 true

.

At the next steps, the events are further refined as listed in Table 4.15, 4.16, 4.17, and 4.18

respectively. All of the events at these levels are patterns of VisitContentEvents, with the

content property of a subclass of Content. At each level, the Content classes are replaced

by their subclasses. For example, the Bireysel (Personal in English) class in Table 4.15

is a super-class of the BireyselServisler (PersonalServices in English) class in Table

4.16, which is in turn a subclass of Asistan (Assistant in English) class in Table 4.17.

Table 4.15: Event Patterns for Mobile Network Operator’s Site, {φ2(ψ(a))}

Event Support Freq. Interesting
Individual(type(VisitContentEvent)

value(content Individual(type(Yurtdisi))))

5826 0.033 false

Individual(type(VisitContentEvent)

value(content Individual(type(Bireysel))))

79058 0.450 false

Individual(type(VisitContentEvent)

value(content Individual(type(Anasayfa))))

128454 0.731 true

Individual(type(VisitContentEvent)

value(content Individual(type(Yardim))))

7082 0.040 false

.

79

Table 4.16: Event Patterns for Mobile Network Operator’s Site, {φ3(ψ(a))}

Event Support Freq. Interesting
Individual(type(VisitContentEvent)

value(content Individual(

type(BireyselTarifeler))))

35328 0.201 true

Individual(type(VisitContentEvent)

value(content Individual(

type(BireyselServisler))))

30588 0.174 true

Individual(type(VisitContentEvent)

value(content Individual(

type(Bireyselkampanyalar))))

32968 0.188 true

.

Table 4.17: Event Patterns for Mobile Network Operator’s Site, {φ4(ψ(a))}

Event Support Freq. Interesting
Individual(type(VisitContentEvent)

value(content Individual(type(Asistan))))

7881 0.045 true

Individual(type(VisitContentEvent)

value(content Individual(

type(Ozelavantajlar))))

18490 0.105 true

Individual(type(VisitContentEvent)

value(content Individual(

type(Onlineislemmerkezi))))

6268 0.036 true

Individual(type(VisitContentEvent)

value(content Individual(type(Hazirkart))))

18033 0.103 true

.

Table 4.18: Event Patterns for Mobile Network Operator’s Site, {φ5(ψ(a))}

Event Support Freq. Interesting
Individual(type(VisitContentEvent)

value(content Individual(

type(Hazirkarttarifeler))))

10046 0.057 true

Individual(type(VisitContentEvent)

value(content Individual(

type(Faturalitarifeler))))

8140 0.046 true

.

80

In the first phase, a total of 35 events are found to be frequent with f requency greater than

0.03. 27 of the events are found to be interesting according to the annotations in the ontology.

Both interesting and not interesting patterns are reported as one-item patterns, however only

interesting patterns are used to generate patterns of length 2 or more. In the second phase of

the algorithm, the frequent sequences of the frequent events are searched and a total of 173

frequent patterns are found.

Some of the subjectively interesting patterns with length more than 1 are listed in Table C.1

and C.2 in Appendix C. Found patterns are mostly of visit content events, with a few excep-

tions.

The pattern number 1 in the table indicates the frequency of sessions, in which the user first

visited sub-categories of BireyselKampanyalar (PersonalCampaigns in English), and

then BireyselServices (PersonalServices in English) Similarly, pattern 2 shows the

support for patterns, in which the user visited Anasayfa (HomePage in English) and moved to

BireyselTarifeler (PersonalTariff). Pattern 3 captures users visiting BireyselServices

(PersonalServices in English), then making a search, whereas pattern 4 covers users

making a search, then visiting PersonalServices. Other interesting patterns include the

6th pattern, which captures the sessions browsing subsequently about BireyselServisler

(PersonalServices in English), and the 7th pattern which captures sessions browsing sub

categories of BireyselTarifeler (PersonalTariff).

Lastly, the candidate counts and the pattern counts are plotted in Figure 4.7. First 7 iterations

are for the first phase of the algorithm, while the remaining 7 belong to the second. As can

be seen from the figure, the number of generated candidates can go as high as 12000, which

is due to the large number of distinct URL’s, and search queries. Note, that the number of

candidates can easily be kept at the desired level, by allowing or disallowing more specific

event constructs in the ontology. For example, if we do not include the url property in the

PageviewEvent, then the number of candidates at this step is substantially reduced at the cost

of ignoring URL-specific patterns. Figure 4.8 offers a closer look at the number of frequent

patterns found at each iteration.

81

0

2000

4000

6000

8000

10000

12000

14000

0 2 4 6 8 10 12 14
Iteration

candidates

�

�

� � � � � �
� � � � � �

�
patterns

× × × × × × × × × × × × × ×

×

Figure 4.7: Number of Candidates and Patterns for Network Operator’s Site

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14
Iteration

patterns

×

×
× ×

×

×
×

×

×

×

×

× × ×

×

Figure 4.8: Number of Patterns for Network Operator’s Site

82

CHAPTER 5

CONCLUSION

In this chapter, we give a comparison of the proposed system with earlier approaches and end

with a brief conclusion.

5.1 Comparison with Earlier Approaches to Semantic WUM

The VisitContentEvent and PageviewEvent events defined in Section 4.3.3.1 deserves

a special attention in the context of semantic web usage mining literature. In some of the

earlier efforts, such as [13, 21, 16], a taxonomy of classes in the domain is developed, and

every pageview is associated with one or more of the classes in the taxonomy. Then, instead

of using raw URL logs, mining is performed from these content instances. However, as

discussed in the Section 3.2, the pageview based user-access model is flawed in today’s web.

In this sense our method of using semantic events to model arbitrary events (using Visit

ContentEvent along with subclasses of Content for categorized content pages, using

Pageview Event for uncategorized content, and other events for non-content actions) is

more generic.

If the mapping from raw logs is performed using only instances of PageviewEvent, the

approach is reduced to finding frequent URL patterns, similar to the traditional web usage

mining setting. If the mapping is performed using only VisitContentEvent instances with

a content taxonomy, the algorithm is reduced to the earlier methods. On the other hand, with

the proposed system and with a complete domain model at hand, capturing, and counting

complex usage behavior, such as ’Visit content about Cats’, ’Search for kittens’, ’Click on

first link’, ’Play a game about kittens, mice and dogs’, becomes possible.

83

In [20], Dai et.al. cover the importance of the query strings (the part of the URL’s after

the ’?’ character), and states that in well designed sites, there is usually an explicitly avail-

able semantic mapping between query parameters and objects. For example, the query string

?action=viewitem&item=1234567&category=1234 from a fictional online book-seller

web site, can indicate the viewing of the item 1234567 in the category 1234. However, typi-

cally the query parameter construction in real world web sites tend to be more complex than

the given example. There may be lots of unrelated parameters (such as sessionid), input form

values passed as URL parameters, misconfigured URL parameter names, etc. However, in our

method, URL’s and individual query parameters can be easily be tracked without an explicit

site ontology as follows. Define the following classes in the ontology: PageviewEvent,

URL, Parameter, object properties : url, having, and datatype properties path, value,

and name. The url has the domain PageviewEvent and range URL. path has domain URL

and having has domain URL and range Parameter. name and value properties have the

Parameter as their domain. This short ontology basically captures the obvious : URL’s have

path, and a list of Parameters with name and value properties. If we use this ontology for cap-

turing every pageview request, and use the semantic pattern mining algorithm, we can find

patterns of URL paths, with or without specific URL parameters.

5.2 Conclusion

In this thesis, we have introduced semantic events and an algorithm for mining frequent se-

mantic event sequences. The system has been tested on two real world web sites, and resulting

patterns are interpreted in Chapter 4. We believe that proposed system has several advantages

over traditional web usage mining systems and some of the earlier approaches to integrating

semantics to the process.

First, the definition of events as objects with properties, and semantic events as mapped to

objects in the ontology is a valid model for capturing web surfing behavior, as demonstrated

in the experiments. It is discussed previously that pageview based access models are insuf-

ficient for capturing web site usage. The web analytics system, offers a way to capture user

interaction through event objects and log them.

Second, the ordering relation among event atom trees is intuitive and sound. It is intuitive

84

because each of the 6 cases in Equation 3.1 makes sense according to their plain English

definitions. The relation is sound because it depends on the model-theoretic semantics of the

underlying logics. By using this relation, we can employ an ordering among possible events,

and use the Apriori property to eliminate counting infrequent candidates.

Third, semantics is richly injected to the process. Much of the constructs in the knowledge

representation system (OWL-DL in this case) is exploited in the algorithm. Previous efforts

have mostly been focussed on class taxonomy, and limited support for properties. However,

the proposed system, exploits classes, properties, sub-class and sub-property relations, indi-

viduals, property statements of individuals, and annotations. Moreover, possible future work

for this project include taking into account other language constructs, such as enumeration,

cardinality restrictions, grouping or aggregating datatype literals, etc. A curious extension

would be using the property aggregator functions defined in [21], for grouping datatype liter-

als.

It is clear from the examples of the music streaming site and the web site for mobile network

operator that, the approach can be applicable to web sites with very different characteristics,

usage patterns and site structures. The music streaming site is a one-page web site, with

highly interactive and asynchronous access, while the mobile operator’s site is filled with

static content. Resulting patterns from these two web sites also show that, the patterns from

the analysis are subjectively more meaningful than URL patterns. The patterns are also more

easy to interpret by a site analyzer who may not be aware of the URL structure. We have seen

that, without having a deep knowledge of the underlying technicalities of the sites, we can

easily interpret the results of the algorithm.

Another advantage of the algorithm is that the Apriori-like architecture makes the algorithm

parallelizable in a straightforward way. For the system to be used by hundreds of customers

across many domains, with possibly millions of events and pageviews, it is vital that a dis-

tributed approach is employed. In the course of the project, the semantic mining algorithm is

projected to be implemented over the MapReduce architecture (Section 3.3.3). We have al-

ready ported the AprioriAll algorithm so that the generate, count and select candidates phases

are all run distributedly. The proposed algorithm can also be modified similarly.

85

REFERENCES

[1] S. Abiteboul, M. Preda, and G. Cobena. Adaptive on-line page importance computation.
In WWW ’03: Proceedings of the 12th international conference on World Wide Web,
pages 280–290, New York, NY, USA, 2003. ACM.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Sets of
Items in Large Databases. pages 207–216, 1993.

[3] R. Agrawal and R. Srikant. Mining Sequential Patterns. In ICDE ’95: Proceedings of
the Eleventh International Conference on Data Engineering, pages 3–14, Washington,
DC, USA, 1995. IEEE Computer Society.

[4] G. Antoniou and F. vanHarmelen. A Semantic Web Primer. MIT Press, Cambridge,
MA, USA, 2004.

[5] Apache Software Foundation. Hadoop Core Project. http://hadoop.apache.org/, last
visited on August 2009.

[6] Apache Software Foundation. Log Files, Apache HTTP Server.
http://httpd.apache.org/docs/2.0/logs.html, last visited on August 2009.

[7] F. Baader. Appendix: Description Logic Terminology. pages 485–495, 2003.

[8] F. Baader, I. Horrocks, and U. Sattler. Description Logics as Ontology Languages for
the Semantic Web. In Festschrift in honor of Jörg Siekmann, Lecture Notes in Artificial
Intelligence, pages 228–248. Springer-Verlag, 2003.

[9] F. Baader and W. Nutt. Basic Description Logics. pages 43–95, 2003.

[10] M. A. Bayir, I. H. Toroslu, and A. Cosar. A New Approach for Reactive Web Usage
Data Processing. In ICDE Workshops, page 44, 2006.

[11] B. Berendt. Using Site Semantics to Analyze, Visualize, and Support Navigation. Data
Mining and Knowledge Discovery, 6:37–59, 2002.

[12] B. Berendt, A. Hotho, and G. Stumme. Towards semantic web mining. In International
Semantic Web Conference (ISWC, pages 264–278. Springer, 2002.

[13] B. Berendt, G. Stumme, and A. Hotho. Data Mining: Next Generation Challenges and
Future Directions, chapter Usage Mining for and on the Semantic Web, pages 461–480.
AAAI/MIT Press, 2004.

[14] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,
May, 2004.

[15] B. Bettina, A. Hotho, and G. Stumme. Towards Semantic Web Mining. In First Inter-
national Semantic Web Conference on The Semantic Web, pages 264–278, London, UK,
2002. Springer-Verlag.

86

[16] A. Bose, K. Beemanapalli, J. Srivastava, and S. Sahar. Advances in Web Mining and
Web Usage Analysis, volume 4811/2007 of Lecture Notes in Computer Science, chapter
Incorporating Concept Hierarchies into Usage Mining Based Recommendations, pages
110–126. Springer Berlin / Heidelberg, 2007.

[17] Buldinle Web Site. http://www.buldinle.com/, last visited on August 2009.

[18] S. Chakrabarti. Data mining for hypertext: a tutorial survey. SIGKDD Explor. Newsl.,
1(2):1–11, 2000.

[19] R. Cooley, B. Mobasher, and J. Srivastava. Web Mining: Information and Pattern Dis-
covery on the World Wide Web. In ICTAI, pages 558–567, 1997.

[20] H. Dai and B. Mobasher. Integrating Semantic Knowledge with Web Usage Mining for
Personalization, 2005.

[21] H. K. Dai and B. Mobasher. Using Ontologies to Discover Domain-Level Web Usage
Profiles. 2002.

[22] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters.
In OSDI’04: Proceedings of the 6th conference on Symposium on Opearting Systems
Design & Implementation, Berkeley, CA, USA, 2004. USENIX Association.

[23] P. Eric. Web analytics demystified: a marketer’s guide to understanding how your web
site affects your business. Celilo Group Media, 2004.

[24] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. SIGOPS Oper.
Syst. Rev., 37(5):29–43, 2003.

[25] Google Analytics. http://www.google.com/analytics, last visited on August 2009.

[26] Google Analytics Event Tracking Guide. http://code.google.com/apis/analytics/docs/
tracking/eventTrackerGuide.html, last visited on August 2009.

[27] J. Han and M. Kamber. Data mining: concepts and techniques. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2000.

[28] I. Horrocks, P. F. Patel-Schneider, and F. V. Harmelen. From SHIQ and RDF to OWL:
The Making of a Web Ontology Language. Journal of Web Semantics, 1:2003, 2003.

[29] J. Józefowska, A. Lawrynowicz, and T. Lukaszewski. Rules and Rule Markup Lan-
guages for the Semantic Web, chapter Towards Discovery of Frequent Patterns in De-
scription Logics with Rules, pages 84–97. Springer Berlin / Heidelberg, 2005.

[30] J. Józefowska, A. Lawrynowicz, and T. Lukaszewski. Intelligent Information Process-
ing and Web Mining, chapter Faster Frequent Pattern Mining from the Semantic Web,
pages 121–130. Springer Berlin / Heidelberg, 2006.

[31] A. Kaushik. Web Analytics: An Hour a Day. SYBEX Inc., Alameda, CA, USA, 2007.

[32] N. Khasawneh and C.-C. Chan. Active user-based and ontology-based web log data pre-
processing for web usage mining. In WI ’06: Proceedings of the 2006 IEEE/WIC/ACM
International Conference on Web Intelligence, pages 325–328, Washington, DC, USA,
2006. IEEE Computer Society.

87

[33] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM,
46(5):604–632, 1999.

[34] R. Kosala and H. Blockeel. Web mining research: a survey. SIGKDD Explor. Newsl.,
2(1):1–15, 2000.

[35] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tompkins, and E. Upfal. The
Web as a graph. In PODS ’00: Proceedings of the nineteenth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 1–10, New York, NY,
USA, 2000. ACM.

[36] P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier (UUID) URN
Namespace. RFC 4122 (Proposed Standard), July 2005.

[37] A. Mikroyannidis and B. Theodoulidis. Heraclitus: A Framework for Semantic Web
Adaptation. IEEE Internet Computing, 11(3):45–52, 2007.

[38] D. Nardi and R. J. Brachman. An Introduction to Description Logics. pages 1–40, 2003.

[39] D. Oberle, B. Berendt, A. Hotho, and J. Gonzalez. Conceptual User Tracking. In AWIC,
pages 155–164, 2003.

[40] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking: Bring-
ing Order to the Web. Technical Report 1999-66, Stanford InfoLab, November 1999.
Previous number = SIDL-WP-1999-0120.

[41] E. peng Lim and A. Sun. Web Mining - the Ontology Approach. In International
Advanced Digital Library Conference, 2005.

[42] T. Robal and A. Kalja. Applying User Profile Ontology for Mining Web Site Adap-
tation Recommendations. In Ioannidis, Y., Novikov, B. and Rachev, B. (eds) 11th
East-European Conference on Advances in Databases and Information Systems (AD-
BIS 2007), 2007.

[43] S. Salın. Web Usage Mining and Recommendation with Semantic Information. Mas-
ter’s thesis, Middle East Technical University, 2009.

[44] M. Spiliopoulou, B. Mobasher, B. Berendt, and M. Nakagawa. A Framework for the
Evaluation of Session Reconstruction Heuristics in Web-Usage Analysis. INFORMS
Journal on Computing, 15(2):171–190, 2003.

[45] R. Srikant and R. Agrawal. Mining Generalized Association Rules. pages 407–419,
1995.

[46] R. Srikant and R. Agrawal. Mining Sequential Patterns: Generalizations and Perfor-
mance Improvements. In EDBT, pages 3–17, 1996.

[47] J. Srivastava, R. Cooley, J. Srivastava, R. Cooley, M. Deshpande, and P. ning Tan. Web
Usage Mining: Discovery and Applications of Usage Patterns from Web Data, 2000.

[48] S. Staab, J. Angele, S. Decker, M. Erdmann, A. Hotho, A. Maedche, H.-P. Schnurr,
R. Studer, and Y. Sure. Semantic community Web portals. Comput. Netw., 33(1-6):473–
491, 2000.

[49] G. Stumme and A. Hotho. Usage Mining for and on the Semantic Web. 2004.

88

[50] G. Stumme, A. Hotho, and B. Berendt. Semantic Web Mining: State of the art and
future directions. J. Web Sem., 4(2):124–143, 2006.

[51] W3C Recommendation. OWL Web Ontology Language Guide.
http://www.w3.org/TR/owl-guide, last visited on August 2009, 2004.

[52] W3C Recommendation. OWL Web Ontology Language Overview.
http://www.w3.org/TR/owl-features, last visited on August 2009, 2004.

[53] W3C Recommendation. OWL web ontology language semantics and abstract syntax.
http://www.w3.org/TR/owl-semantics/, last visited on August 2009, 2004.

[54] T. White. Hadoop: The Definitive Guide. O’Reilly and Yahoo! Press, 2009.

[55] M. J. Zaki. SPADE: an efficient algorithm for mining frequent sequences. Machine
Learning, 42(1/2):31–60, 2001.

[56] Q. Zhao and S. S. Bhowmick. Sequential Pattern Mining: A Survey. Technical report,
Center for Advanced Information Systems, School of Computer Engineering, Nanyang
Technological University, Singapore, 2003.

89

APPENDIX A

A Sample Screenshot of Buldinle Music Site

Below is a sample screenshot of the music streaming site BulDinle [17].

Figure A.1: A Sample Screenshot of Buldinle Music Site

90

APPENDIX B

Event Patterns for Music Site

A sample of patterns of length more than 1, for the music streaming site [17], are listed in the

following table.

91

Table B.1: Event Patterns for Music Site

Pa
tt

er
n

#

E
ve

nt
C

ou
nt

E
ve

nt
#

Pattern Su
pp

or
t

Fr
eq

ue
nc

y

.

1 2
1 Individual(type(PlaySongEvent) value(song

Individual(type(Song) value(name ’3 x8ib4g’))))
673 0.042

2 Individual(type(SearchEvent))

2 2
1 Individual(type(PlaySongEvent) value(song

Individual(type(Song) value(name ’3 x8v4jz’))))
480 0.030

2 Individual(type(PlaySongEvent) value(song

Individual(type(Song) value(name ’3 x8v4jz’))))

.

3 3
1 Individual(type(SearchEvent))

697 0.0432 Individual(type(RemoveSongFromPlaylistEvent))

3 Individual(type(SearchEvent))

.

4 6

1 Individual(type(SearchEvent))

554 0.034

2 Individual(type(SearchEvent))

3 Individual(type(SearchEvent))

4 Individual(type(SearchEvent))

5 Individual(type(SearchEvent))

6 Individual(type(PlaySongEvent) value(song

Individual(type(Song) value(name ’3 x8v4jz’))))

5 6

1 Individual(type(RemoveSongFromPlaylistEvent))

502 0.031

2 Individual(type(RemoveSongFromPlaylistEvent))

3 Individual(type(RemoveSongFromPlaylistEvent))

4 Individual(type(RemoveSongFromPlaylistEvent))

5 Individual(type(RemoveSongFromPlaylistEvent))

6 Individual(type(RemoveSongFromPlaylistEvent))

.

6 7

1 Individual(type(SearchEvent))

1460 0.091

2 Individual(type(SearchEvent))

3 Individual(type(SearchEvent))

4 Individual(type(SearchEvent))

5 Individual(type(SearchEvent))

6 Individual(type(SearchEvent))

7 Individual(type(SearchEvent))

.

92

APPENDIX C

Event Patterns for Mobile Network Operator’s Site

A sample of patterns of length more than 1, for the mobile network operator’s site, are listed

in Table C.1 and C.2.

93

Table C.1: Event Patterns for Mobile Network Operator’s Site

Pa
tt

er
n

#

E
ve

nt
C

ou
nt

E
ve

nt
#

Pattern Su
pp

or
t

Fr
eq

ue
nc

y

.

1 2
1 Individual(type(VisitContentEvent)

value(content Individual(

type(Bireyselkampanyalar))))

5269 0.030

2 Individual(type(VisitContentEvent)

value(content Individual(

type(BireyselServisler))))

2 2
1 Individual(type(VisitContentEvent)

value(content Individual(type(Anasayfa))))
16965 0.09

2 Individual(type(VisitContentEvent)

value(content Individual(

type(BireyselTarifeler))))

3 2
1 Individual(type(VisitContentEvent)

value(content Individual(

type(BireyselServisler))))

5378 0.031

2 Individual(type(SearchEvent))

4 2
1 Individual(type(SearchEvent))

5402 0.032
2 Individual(type(VisitContentEvent)

value(content Individual(

type(BireyselServisler))))

.

5 3
1 Individual(type(VisitContentEvent)

value(content Individual(

type(BireyselServisler))))
5778 0.033

2 Individual(type(VisitContentEvent)

value(content Individual(type(Anasayfa))))

3 Individual(type(VisitContentEvent)

value(content Individual(

type(BireyselServisler))))

.

6 4

1 Individual(type(VisitContentEvent)

value(content Individual(

type(BireyselServisler)))) 6327 0.037

2 Individual(type(VisitContentEvent)

value(content Individual(

type(BireyselServisler))))

3 Individual(type(VisitContentEvent)

value(content Individual(

type(BireyselServisler))))

4 Individual(type(VisitContentEvent)

value(content Individual(

type(BireyselServisler))))

.

94

Table C.2: Event Patterns for Mobile Network Operator’s Site (Cont’d)

Pa
tt

er
n

#

E
ve

nt
C

ou
nt

E
ve

nt
#

Pattern Su
pp

or
t

Fr
eq

ue
nc

y

7 7

1 Individual(type(VisitContentEvent)

value(content Individual(

type(BireyselTarifeler))))

5280 0.0312 Individual(type(VisitContentEvent)

value(content Individual(

type(BireyselTarifeler))))

3 Individual(type(VisitContentEvent)

value(content Individual(

type(BireyselTarifeler))))

4 Individual(type(VisitContentEvent)

value(content Individual(

type(BireyselTarifeler))))

5 Individual(type(VisitContentEvent)

value(content Individual(

type(BireyselTarifeler))))

6 Individual(type(VisitContentEvent)

value(content Individual(

type(BireyselTarifeler))))

7 Individual(type(VisitContentEvent)

value(content Individual(

type(BireyselTarifeler))))

95

APPENDIX D

Ontology Details for Mobile Network Operator’s Site

In this section, several visualizations of the ontology of the mobile network operator’s site

are given. The figures are generated using the Protégé and Jambalaya tools. Please refer to

Section 4.3.3.1 for a detailed discussion about the ontology constructs.

96

Figure D.1: Hierarchy of Top-Level Classes of the Ontology of Network Operator

97

Figure D.2: Hierarchy for 2-level Subclasses of ’Personal’

98

Figure D.3: Hierarchy for Subclasses of ’PersonalServicesMessaging’

Figure D.4: Domain-range Relations of the Ontology of Network Operator

99

