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ABSTRACT

ANALYSIS OF SLOT COUPLED PATCH ANTENNAS USING CLOSED FORM
GREEN’S FUNCTIONS

Goksu, Mesut
M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Giilbin Dural

August 2009, 145 pages

In this thesis, an analysis technique for the slot coupled patch antennas using MoM in
conjunction with the closed form Green’s functions is presented. Slot coupled patch
antennas are fed by a microstrip open stub which is coupled to the patch through an
electrically small slot. Current distributions over the microstrip line, slot line and the
patch are represented by rooftop basis functions. First, a relatively simple structure,
microstrip coupled slot line is investigated using the proposed technique. Then the
method is extended to the slot coupled patch antenna geometry. By using the method,
current distributions on the feedline and the patch are calculated for a generic slot
coupled patch antenna. Then by using the distributions, return scattering parameters
of the antenna is approximated with complex exponentials using Prony’s method. A
parametric study is carried out to observe the effect of each antenna component on
the antenna performance. Current distributions and return loss calculations are
repeated for modified antennas to observe and demonstrate the performance
differences. All simulations are verified using HFSS® software and the results

available in the literature.

Keywords: Aperture Coupled Patch Antennas, Slot Coupled Patch Antennas, Method

of Moments, Green’s Functions, Microstrip Lines.
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YARIK KUPLAJLI YAMA ANTENLERIN KAPALI FORMDA GREEN
FONKSIYONLARI KULLANILARAK INCELENMESI

GOKSU, Mesut
Yiiksek Lisans, Elektrik ve Elektronik Mithendisligi Boliimii
Tez Yoneticisi: Prof. Dr. Gililbin DURAL

Agustos 2009, 145 sayfa

Bu tez calismasinda, kapali formda Green fonksiyonlart moment metoduyla birlikte
kullanilarak yarik kuplajli yama antenlerin incelenmesi i¢in bir yontem sunulmustur.
Yarik kuplajli yama antenler agik uclu mikroseritler ile beslenmekte bunlar ise yama
antene kiig¢iik bir yarik ile kuplajlanmaktadir. Mikroserit hatlar, yarik ve yama
lizerindeki akim dagilimi, cat1 taban fonksiyonlar: ile ifade edilmistir. Ilk olarak,
goreceli basit bir yapi olan yarik anten Onerilen yontemle incelenmis, yontem daha
sonra, yarik kuplajli yama antenler i¢in uyarlanmistir. Yontem kullanilarak, genel bir
yarik kuplajli yama antenin mikroserit hat ve yama {izerindeki akim dagilimlar
bulunup, daha sonra, bu akim dagilimlar1 ile Prony yontemi kullanilarak antenin
sacilim parametreleri hesaplanmistir. Parametrik bir ¢alisma yardimi ile degisik
anten bilesenlerinin anten performansi tiizerindeki etkileri incelenmistir. Anten
performanst iizerindeki degisiklikleri gozlemlemek ve gosterebilmek icin akim
dagilimi ve geri doniis kayb1 hesaplar fiziksel olarak degistirilmis anten yapilari i¢in
tekrar edilmistir. Tiim benzetim ve hesaplamalar HFSS® yazilimi kullamlarak ve

literatlirdeki benzer ¢aligmalarin sonuglartyla dogrulanmistir.

Anahtar Kelimeler: Yarik Kuplajli Yama Antenler, Moment Metodu, Green
Fonksiyonlari, Mikrosgerit Hatlar.
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CHAPTER 1

INTRODUCTION

The rapid increase in the interest to the microstrip antenna technology began in the
late 1970s. In the beginning of 1980s, basic microstrip antenna elements and arrays
were almost as good as possible in the sense of design and modeling. Hence,
scientists changed their attentions to improving antenna performance features (e.g.,

bandwidth)

Because of space and bandwidth problems, Pozar and his colleagues searched for a
method which included the use of a variety of two or more layered substrates. One
obvious possibility was to use two back-to-back substrates with feed through pins.
This would allow plenty of surface area, and had the critical advantage of allowing
the use of GaAs (or similar) material for one substrate, with a low dielectric constant
for the antenna elements. However that would yield a problem of fabrication because
of large number of via holes. Hence, Pozar and his friends looked for the possibility
of using a two sided-substrate with printed slot antennas fed with microstrip lines [3].
However at this time bi-directionality of the antenna element was unacceptable. As a
result they concluded with the solution by combining these two approaches by using
aperture to couple the microstrip feed line to the resonant microstrip patch antenna.
Most importantly, the required coupling aperture was small enough so that the back
radiation from the coupling aperture was much smaller than the forward radiation

level [2].

Microstrip fed-slot-coupled patch antenna structure has been introduced in 1985 [1].
Then, it attracted great deal of attention in variety of applications. Versatility and
adaptability of the proposed design inspired many scientists all around the world to

utilize it in several works. Broad bandwidth, independent material selection freedom
3



for radiating and feedline layers, isolated radiating part from the matching circuit,
extensive variety of patch, aperture and feed shape types, are the main features of

these structures [2]. As an example, slot coupled patch antenna structure of Pozar’s

work is shown in Figure 1.1.

s miCrostrip
optirture : ﬂc‘!‘r(\;gr?r'\\rc;p ) /feed
\ -d4 - \ P .l.,// P
"W
i -
- i
' -
fl / "W
"W
4—1» - - I L e
z R Y " l
/ i
7 - e
/ €rl /
€2
,u / / / / {
m;crostrip ground mucrosirip I’ed antenna ground
antenna  plane feed substrate substrate plane

Figure 1.1 Sideview and topview of a patch antenna slot coupled to a microstripline [1]

The feed consists of an open-ended microstripline that is located on a dielectric layer
below the ground plane. The microstrip patch antenna is located on another dielectric
layer above the ground plane and these two microstrips are electromagnetically
coupled through an electrically small aperture in the ground plane between them.
Besides, some advantages of this technique are presented in [1]. Most important two
advantages are as following. First of all, no radiation from the feed microstrip can
interfere with the main radiation pattern from the patch, since a ground plane
separates the two mechanisms. Secondly, since no direct electrical connection to the

antenna elements exists, large probe self reactance or wide microstripline problems

which, are avoided [2].



Aperture-coupled patch antenna elements can provide significantly wider bandwidth
than conventional printed antennas, while carrying desirable features such as low
cost, good reproducibility, and physical robustness. Additionally, they are very
suitable for the integration of active elements since the radiating part because of the
ground plane. Similarly a complementary study was done about arbitrarily-shaped

aperture antennas with the same kind of feed by Chen et al [4].

In [5], slot coupled microstripline antenna is analyzed in terms of its input
impedance. Theoretic basis for the analysis is given and design data is produced
according to this analysis and verified experimentally. Also in [5] another very
important advantage of this technique is explained. This new design technique is
highly advantageous when applied to millimeter wave monolithic phased arrays, by
forming associated active elements such as phase shifters and amplifiers on a high
dielectric substrate. On the other hand, it is preferable to mount the antenna elements

on a low dielectric substrate in order to increase the bandwidth [6].

There are two main methods to analyze microstrip structures as quasi-static and full
wave analysis. Former assumes the dominant mode propagation as pure transverse
electromagnetic (TEM) wave [44]. Hence, microstrip characteristics are calculated
from the electrostatic capacitance of the structure, this method is not accurate at
higher frequencies. On the other hand, the latter one makes the analysis by
considering the other modes of propagation. However, full wave analysis requires

more complex and robust calculations.

So far, moment method techniques based on the spectral domain approach [5, 6]
have been commonly utilized to solve the problem. Even though these methods
generate precise results, the huge amount of computational burden required makes
them uneasy to handle in an actual design environment. In [7], a mixed potential
integral equation (MPIE) method is developed to analyze the aperture coupled
microstrip patch antenna. The method is basically an extension of [8] to aperture

coupled geometry. Instead of using the electric field integral equations in [5], the

5



problem is held as three coupled integral equations in the spatial domain. In order to
get rid of enormous numerical task of evaluating the Sommerfeld integrals, closed-
form Green’s functions [7, 9] are used. Method yields great increase in overall
computational speed without sacrificing from the completeness of the problem. In
[7-10], the closed-form Green’s functions for the potentials of a horizontal electric

dipole (HED) are employed.

Since, using closed-form Green’s functions in the analysis of microstrip geometry in
conjunction with MoM improves computational efficiency; this type of method is
used in order to find the current distributions on the microstrip antenna elements in
this work. By using surface current distributions, the required parameters are
calculated such as input reflection coefficient, and the input impedance, with suitable
approximation methods. Besides, the conventional spatial domain Green’s functions
and spectral domain Green’s functions include slowly convergent integrals making

them rather disadvantageous than closed-form Green’s function [30].

Similar to microstrip line-fed slot coupled antenna, stripline-fed slot coupled patch
antenna is analyzed and moment method solutions are developed in [11]. In this
work a new computing algorithm is established which combines finite element
method and moment method. In [12] a new dual-polarized slot-coupled microstrip
patch antenna is presented. This structure can achieve high-isolation, low cross-
polarization levels, a wide bandwidth, and low backward radiation levels. The

theoretical analysis is based on the finite-difference time-domain (FDTD) method.

In [13] two examples of circularly-polarized slot and slot-coupled patch antennas fed
by a microstrip line are designed at 4.8 GHz. In this paper, the MPIE has been
successfully applied to analyze the behavior of the arbitrarily shaped slot and slot-

coupled patch antennas with a microstrip line feed.



In [14], the analysis of slot-coupled stripline-fed patch antennas with vias is
presented. A moment-method scattering formulation is utilized to include the effect

of vias on the impedance characteristics of the antenna.

Similar to our study, [14] also divides the entire problem into two coupling
problems:

1) Coupling between the slot and the stripline feed in the presence of vias.

2) Coupling between the slot and the patch.

Method of moments (MoM) with Galerkin’s procedure is applied in the spectral

domain.

In [15] the problem of an aperture-coupled patch antenna is studied using the spectral
domain approach. Elements are determined using integral transform techniques.
Several design parameters such as; slot dimensions and inclination with the feedline

or the patch, on the resonance frequency and on the input impedance are studied.

In [16] a similar method of our approach is utilized. Mixed-potential integral
equation (MPIE) is formulated for the electric and magnetic currents on the aperture-
coupled patch antenna. The method of moments (MOM) is used in solving the
integral equations using subsectional basis functions. The input impedance and
radiation efficiency of various aperture-coupled elements are calculated using the
proposed technique. The integral equations are solved via the method of moments
(MOM) employing sub-sectional rooftop-shaped basis functions on the patch,
aperture, and feed line. The Green’s functions are calculated using specialized

numerical techniques discussed in [17].

This study deals with the analysis of the aperture coupled patch antenna structures
using MoM in conjunction with closed-form Green’s functions. In chapter 2,
moments method and closed form Green’s functions are described and formulized.
Next, derivation and calculation of MoM matrix elements are carried out for a multi-

layered planar medium. In chapter 3 microstrip coupled-slot antenna structure is

7



analyzed and the method is verified. Then, aperture-coupled patch antenna geometry
is described and an antenna structure, which is proposed in [1], is solved using a
MoM code in chapter 4. MoM code is used to calculate current distributions on the
microstrip patch and feedline. Feedline, current distributions is used to calculate
reflection coefficient parameter of the antenna. Both current distribution and
reflection coefficient parameter results are compared to HFSS® outputs. Finally,
parametric analysis of the aperture-coupled patch antenna is done in chapter 5.
Parametric analysis is carried out by taking some physical dimensions of the antenna
as variables, such as slot length, slot position, and stub length. This parametric
analysis is carried out by comparing results with HFSS® outputs and the results

available in literature.



CHAPTER 2

METHOD OF MOMENTS IN MULTILAYER
STRUCTURES USING CLOSED FORM GREEN’S
FUNCTIONS

MoM is a numerical technique which was first used in electromagnetic theory by R.
F. Harrington in 1967 [18]. Generally, most electromagnetic problems can be stated

in terms of an inhomogeneous equation as (2-1)

Lf (x)=g(x) (2-1)

where, L is a linear operator, which may be differential, integral or integro-

differential, g(x) is the known source function or excitation of the system, and

f (x) is the unknown function to be determined as a result of the moment method

process. In this work L will mostly be an integral operator.

Method of Moments (MoM) is a general procedure for solving (2-1). The method
inherits its name from the process of taking moment by multiplying with appropriate
weighting functions and integrating. The name ‘method of moments’ has its roots in
Russian Literature [19, 20]. In western literature, the first use of the name is usually
referenced to Harrington. The foundation and development of the moment method

are completely documented by Harrington [21, 22].

The use of MoM in electromagnetic has become widespread since the work of
Richmond in 1965 [23] and Harrington in 1967 [24]. Then the method has been

greatly utilized in very large range of EM problems of practical interest such as
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microstrips and lossy structures, propagation over an inhomogeneous earth, and

antenna beam pattern. An updated review of the method is found in a paper by Ney

[25].

MOM is applied to arbitrary integral equations by following the steps:

(1) Derivation of the appropriate integral equation (IE),

(2) Conversion of the integral equation into a matrix equation using basis and
testing functions.

(3) Evaluation of the matrix elements,

(4) Solving the matrix equation and calculating the parameters of interest.

In order to solve (2-1), the unknown function f (x) is approximated by a linear

combination of a set of known functions ( s frs f3) which are called as basis

functions as shown in (2-2).

ﬂﬂ=ﬁ%ﬁm 2-2)

where os are the unknown coefficients to be determined, f, ’s are the basis functions

and N is the number of basis functions. By substituting (2-2) into (2-1), the equation
(2-3) 1s obtained.

N
L{Z“nfn (x)}g(x) 2-3)
Since L is a linear operator, (2-3) can be transformed into:
N
Z“ann (x) :g(x) (2-4)
n=l

Then, the residual or error function is defined as;
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- {gaann (x)} -g(x) (2-5)

Here, the aim is to make R(x) arbitrarily small [26]. In order to do that, another set

of functions (w],wz,w3...) is used. These functions are named as testing functions.

Testing functions are utilized to make residual error arbitrarily small in every testing

point. By equating the inner product of R(x) with each w, to zero, the expression

(2-6) 1s reached.

N
z < m’Lf ( )> < m’g( )> for m:1,2,3N (2-6)
n=l

In (2-6) the inner product function is used. This function can be defined as:

<u,v> = Iuv*dQ

o (2-7)
Here * denotes the complex conjugate. Above integration is performed over the

entire domain €. The inner product operation satisfies the following conditions [46]:

usv) =(v.u)

{
<ocu + pBv, h> <u h> +p <v, h> a and f are constants.
{
{

f*,f>>0forf¢0 (2-8)

f*.f)>0forf=0

The set of equations (2-6) can be written in matrix form as shown in (2-9) [46].
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(7. ][@.]=]g.] (2-9)

where,

(wi,Lf})  (w.Lf) ... (w, Lf,)
- (W, LSy (W, Lfy) .. (wy, Lf,)

(2-10)
<wm,Lf]> <wm,Lf2> ..... <Wm,Lfn>
a, (w.g)
a=| " and [g]= (:.8) @-11)
a, (W,-8)

I matrix is called ‘the MoM matrix’ and g matrix is called the ‘excitation matrix’. In
order to find the unknown coeefficients matrix, the inverse of the MoM matrix is
needed. Inverse of the MoM matrix exist only if it is nonsingular. Then, the unknown

coefficients vector equals to the expression:

[e]=[1..] [2.] (2-12)

For applying MoM, firstly the physical problem is defined by a suitable complete
equation. Secondly, the suitable basis and testing functions are selected. By using
these basis and testing functions, the unknown function is approximated. Then, the
matrix elements are calculated [27]. In the end unknown coefficients, a‘s, are found
by taking the inverse matrix and multiplying the inverse matrix by the excitation

vector.

In a MoM application, choosing basis and testing functions is a important step of the

problem solution. There are many criteria for basis and testing functions choice.
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These functions are selected according to the geometry of the problem, the physical
characteristics of the fields, integral equation characteristics, the accuracy needed
and the available basis and weighting functions. A discussion on the choice of test

and basis functions is provided by [32].

2.1 Choice of the Basis and Testing Functions

2.1.1 Choice of the Basis Functions

There are two types of basis functions: ‘Entire Domain Basis Functions’ and ‘Sub-
Domain Basis Functions’. According to advantages and disadvantages of each in

solution and the accuracy of the problem, one of these methods is chosen.

2.1.1.1 Entire Domain Basis Functions

If each basis function is defined over the entire calculation domain x € [a,b], then

they are called as ‘Entire Domain Basis Functions’. Sine, cosine functions and

Chebyshew polynomials are ‘Entire Domain Basis Functions’ [47].

2.1.1.2 Sub-Domain Basis Functions

In order to do calculations easier, entire calculation domain may be dissected into
several sub-domains. Definitions of the basis functions may change according to the
sub-domains. Basis function can be zero over all of the-sub domains except from

mterested sub-domain. These kinds of basis functions are called ‘Sub-domain Basis

Functions’. For example, if the region [a,b] is divided into N sub-domains as shown

in Figure 2.2, basis function can be represented as (2-13).
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o fi(x)  xeAx

f(x) ZZN:%fn(X)Z %h(¥)  xehn 2-13)

ayfy(x)  xeAx,

In many MoM applications, ‘Sub-domain Basis Functions’ are used. In this way the
integration range becomes smaller when compared to ‘Entire Domain Basis
Functions’. Besides, calculations are easier. On the other hand, very well chosen
‘Entire Domain Basis Functions’ yield much more accurate results. Also choosing
suitable ‘Entire Domain Basis Functions’, require smaller matrix size compared to

sub-domain solutions.

Figure 2.1 Domain Representation of Entire Domain Basis Function

n

Ax, Ax, Ax

Figure 2.2 Domain Representation of Sub-Domain Basis Function

Pulse or piecewise constant functions, piecewise linear or triangular functions,
piecewise sinusoidal functions are some other types of the ‘Sub-domain Basis

Functions’.
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2.1.2 Choice of the Testing Functions

For different problems, different testing functions may be used in order to make
calculation less cumbersome and results more accurate. Some of them are mentioned

in the following section.

2.1.2.1 Point Matching or Collocation Method

Testing functions are chosen to be Dirac (Kronecker) delta functions in point

matching as shown in Figure 2.3. Suppose, [a,b] represents the spatial domain over

which the unknown function is defined,

w,(x)=6(x-x,) form=1,23...N (2-14)

m

where, w,, ‘s are the chosen points in region [a,b]. Then,

<w,n,R>:jR(x)5(x—x,n )dx=0 (2-15)

As it is seen in (2-15), the error function is forced to be zero for the N testing points
chosen in the domain. This method is the simplest one. However, the chosen points
may not be suitable points and the results may not be accurate enough. On the other
hand this kind of choice is not able to represent rapidly changing solution vectors for

finite collocation points.
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F 1
¥

Function Domain

Figure 2.3 Dirac(Kronecker) Delta Function

2.1.2.2 Sub-sectional Collocation Method

In this method domain is sectioned into N sub-domains. Every testing function is
defined independently. That is to say, every testing function is defined over a sub-
domain, and has no effective contribution on other sub-domains. This method is a
conservative version of point matching. In this method following testing function in

(2-16) 1s used [46].

()=l FEOm d[ R(x)}x=0 m=1,23,..N

w (x)= an X)Jdax=0 m=12,3,..., 2-16

" 0 otherwise 3 216
Wy W W WN-1 Wiy

- -

Function Domain

Figure 2.4 Sub-Domains Weighting Function
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As it is presented in (2-16), error function is forced to be zero over different sub-

domains Q  of Q. Since the error function is forced at variety points of the domain,

results can be more accurate than point matching. However, since the method include
one-dimensional integration it is complicated than point matching or collocation

method.

2.1.2.3 Galerkin’s Method

In this method, the testing functions are chosen to be same as the basis functions:

w, =f, m=12,.N -17)

By using Galerkin’s approach, symmetric matrix is at the hand. Regarding the
computation time, this method is very advantageous, because finding one row or
column is sufficient to set the MoM matrix. However, since the integration over the
convolution of basis and testing function is needed, method is more complicated and

cumbersome, comparing to point matching or sub-sectional collocation method.

2.1.2.4 Method of Least Squares

In this method, testing function is chosen as in (2-18).

w =Lf

m m

(2-18)

Then, the resulting equation becomes:
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ﬁan (Lf,, (x), Lf,(x)) =(Lf,(x),g(x)) for m=1,2,3,..,N (2-19)

This method yields much more accurate results than the other methods. However,

this is the most complicated and bulky one.

2.2 Analysis of Planar Printed Structures Using MoM

In this section, the method used in this work is explained. Firstly, Green’s functions
are introduced. Secondly, conventional spatial domain MoM formulation and
spectral domain MoM formulation are described. Finally, spatial domain closed-form

Green’s function is given in detail.

2.2.1 Green’s Function

Systematic way of obtaining an integral equation from partial differential equation is
setting kernel function as the Green’s function. The Green’s function of a wave
equation is the solution of the wave equation for a point source. Because a general
source is a linear superposition of point source and wave equation is linear, as the
solution of the wave equation for a point source is known, the solution for a general

source can also be found using linear superposition [28].

To obtain the field caused by a distributed source by the Green’s function technique,

we find the effects of each elementary portion of source and add them up. If
G(r,r’)is the field at the observation point » caused by a unit point source at the
source point 7', then the field at r by a source distribution g(#') is the integral of

g(r)G(r, 1’) over the range of ' occupied by the source. The function G is the

Green’s function.

As an example, a scalar wave equation (2-20) in volume ), represented in Figure
2.5, is taken [46].
18



(V2 + &) p(r) = s(7) (2-20)

Where, & is the wave number of the medium, ¢(7) is the unknown wave function,
and s(7) is the vector source function.

First of all, if the Green’s function in the same J/ 1is at hand, the problem becomes

clearer. The Green’s function is the solution of the equation (2-21).

(V2 +k) g(r. 7)) ==8(F -7) @-21)

Because the general source can be obtained as integration of all sources inside the

domain as in (2-22),

s(7)= Id?s(?)é(?—?) 2-22)

Then, by using the principle of linear superposition, the solution of the scalar wave

equation (2-20) can be found as:

qo(r):—J.dF'g(F,F')s(F') (2-23)

19



Volume

Figure 2.5 The radiation of a source in a volume V [28]

In general, Green’s function for the unbounded medium can be stated as shown in

(2-24).

_ e Jk[F=F
g(r,r)—m (2-24)
Hence, the solution of (2-20) is obtained by using (2-24) as [46]:
_ e Jk|F=F| B
Q)(V)——}[WS(V ) (2-25)

2.2.2 Spatial Domain MoM Formulation

Spatial Domain MPIE MoM formulation employs the spatial domain Green’s
functions for the vector and scalar potentials which are represented by Sommerfeld
integrals. In Figure 2.6, a general microstrip structure is shown. In mixed potential
integral equation solution of this structure, substrate layer is assumed to extend to

infinity into x and y directions. In Figure 2.6, d denotes the thickness of the substrate
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and ¢, denotes the permittivity of the substrate. Formulation of Green’s function

presented in this work is for a single layered structure. However, it is valid for all
multilayered structures [22]. Furthermore, in this work, the electric type currents are
used to solve the geometry, but changing the current type to magnetic currents and

analyzing same kind of currents is also possible [29].

4/ PEC Patch

Ground Plane

d Substrate

Figure 2.6 A General Microstrip Structure [10].

In using MPIE method; integral equation in terms of the induced currents on the

conducting surfaces should be obtained [46]. In order to do that electric field is

written in terms of vector and scalar potentials, 4 and ¢, respectively [30].

E=—jwA-V¢ (2-26)

The vector and scalar potentials can be written in terms of induced surface current

density as shown in (2-27) and (2-28) respectively.
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A=G* =] (2-27)

$=G,* (—,lvj] (2-28)

G" is the dyadic Green’s function of the vector potential, and G, is the Green’s

function of the scalar potential, J is the surface current density and * denotes the
convolution integral [30]. By substituting (2-27) and (2-28) into (2-26) and satisfying
the boundary condition at the PEC surfaces, boundary condition integral equation is
obtained. The boundary condition at the PEC surfaces is that, the tangential electric
field on the perfect electric conductors (PEC) at (z =0) should be zero. On the PEC
surface orthogonal components of the electric field can be written down in terms of

the surface current as:

1 ©

E =—jwGA*J +——|G *V.J 2-29
X J XX X ja)ax[ q } ( )
E =—jwG" =J 16G*v7

y——]W y y+]—w§[ q . :‘ (2-30)

where £, and E, are the x,ycomponents of the electric field due to source current

js , respectively[12].

In a MoM application, firstly the current density is expanded as a linear combination
of basis functions as in (2-31) and (2-32), where N is the number of basis functions,

A, and B, are the unknown coefficients of the basis functions, J,, and J .
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N
J, =>4, (xy) (2-31)
n=1

J,=>BJ,(x) (2-32)

n=1

In order to insert basis functions and their unknown coefficients to the equations,
(2-31) and (2-32) are substituted into (2-29) and (2-30), respectively. Then these

field expressions are tested at the observation points with the testing functions T,

and 7, .

(2-33)

(2-34)

The inner product terms in (2-33) and (2-34) are five dimensional integral equations.
The definition of the inner product already yields two integrations. Furthermore,
convolution operation also consists of two more integration. The last integration
comes from the Green’s function over an infinite domain [46]. For example, one of

the integral equations is shown as:

(T,.Gh*J,) = [[ dxdyT,,(x,p) [[ dx'dy'Gl(x—x',y=y)],, (x,y) (@235

D(T) D(B)
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Where, D(T ) and D(B)are the domain of the testing and basis functions,

respectively. In this study Green’s functions theoretically are:

1 % ~ -
Gy ()= [ dijo, 1 (k,0) G () 39

where, k> =k; +k;, p is the variable in cylindrical coordinate system, G and G

are the Green’s functions in the spatial and spectral domains, respectively and H_”

is the Hankel function of the second kind [46]. Spectral domain Green’s functions
are transformed into spatial domain functions which will be discussed in Closed

Form Green’s Functions section (Section 2.3) later [37].

In the formulations (2-33) and (2-34), there are some analytical problems regarding

singularity issues. Since as r— 0, where r 1is distance between source and

observation point, G* - and G, > o [46]. This problem must be overcome in

calculation phase of MoM matrix. In order to overcome this problem, test and basis
functions have to be selected carefully. In doing this the convergence analysis is
applied as described in [30]. Hence, a set of piecewise differentiable functions are
chosen. Choosing these suitable test and basis functions makes the Green’s functions
converge. In [31] and [32] proper analysis of the inner product terms as a result of a

convolution analysis of the inner product terms are given in detail.

The inner product terms in (2-33) and (2-34) can be transformed into much simpler
equations by using (2-37) [30]. Here integration by parts is used. So the inner
product term is transformed into an equation which can be calculated analytically.

This can be represented as:
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T;cm’i[G *i']xn:l == iT;m’G >ki‘]xn> (2-37)
ox| ! ox Ox T ox

On the other hand by change of variables the order of the integrals can also be

changed.

a 8 ' 1! a !t a ’ / (2-38)
<Tm’5€|: q*gc‘])m:|>=_fj.d)@)Gq (x,y)J].dC@ ay;’m(x’y)an’m(x_x9y_y)

In these equations, inner double integral terms are correlation functions, and could be
calculated analytically [30]. In the end, equations (2-33) and (2-34) are converted
into the equations which can be evaluated analytically. Calculation methods of these
terms are provided in Appendix A. This simplification makes us rid of the inner
double integral terms and left only outer double integral term. Then, resulting

equation is a two-dimensional integral over a finite domain.

Resulting two dimensional integrals consist of the spatial domain Green’s functions
which can be obtained by the integration of the spectral domain Green’s functions as
shown in (2-36). As s it obvious, Bessel function of the first kind is transformed into
spectral domain Green’s function. Inside the integral there is an oscillatory and slow-
converging function. Therefore the calculation of the spatial domain Green’s
function is difficult in the sense of computational aspects. In order to overcome this
problem, closed-form Green’s functions method can be utilized [46]. This method

will be mentioned in Section 2.3.

At that point, the spectral domain MoM formulation could be analyzed to clarify it is

advantageous and disadvantageous over the spatial domain MoM formulation.
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2.2.3 Spectral Domain MoM Formulation

MoM matrix equation involves convolution integral in the spatial domain. However
it is represented by a multiplication in the spectral domain. Hence, (2-39) and (2-40)

can be expressed as:

E (kok))=Z, (k. k)T (kok)+Z, (k5 )T, (K&, (2-39)
E (ky.k))=Z,(k.k,)J, (k. k) +Z (k. k)T, (k,.k,) (2-40)
where, ~ implies spectral domain representations. The electric field Green’s

functions, Zl.j , in the spectral domain can somehow be written down in closed-form

equations [33] . To apply MoM, spectral domain transformations of the summation
of the current distribution functions, (2-31) and (2-32), are substituted into (2-39) and
(2-40), firstly. Then, testing with the spectral transformations of the testing functions

is applied. Resulting equations are as follows:

> AT 2T o)+ 2B, (T 2 ) =0 (2-41)
ZAn <fym’Z~}ocjxn>+an <fym,Z~yyjyn>:0 (2-42)

In (2-41) and (2-42) inner products are defined over the infinite domain as in (2-43).

(12,7 ) = [[ bl T )2, ()T G K, -4

ym
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As it is presented, the integral dimension is reduced to two, which is a advantage of
spectral domain MoM application over the spatial domain approach. However, since
spectral domain formulation contains oscillatory and slow converging parts, it needs
to be applied with an acceleration technique. Acceleration techniques are in use by
subtracting the asymptotic part of the Green’s function, calculating the asymptotic
part either analytically or in a numerically efficient manner and adding it to the result
[34]. Even the acceleration techniques are utilized; the computational burden can be
still huge because of the oscillatory nature of the Green’s function, especially for the
terms for which the observation node coincides with the source node. For all this
reasons, the spatial domain MoM formulation in conjunction with the closed-from

Green’s functions is established as a more efficient method.

2.3 Closed-form Green’s Functions

Spectral domain MoM application can be time consuming since it requires infinite
domain inner product operation and results an integral equation consists of double
integrals. One way to evaluate MoM in the spatial domain is numerical evaluation of
the Sommerfeld integral (2-44) which requires repeated calculations and is very time
consuming. Hence, instead of the spectral domain MoM employment or the
numerical evaluation of the Sommerfeld integral, MoM with the closed-form Green’s
functions can be applied. That results in two-dimensional integral equations in finite
domains. This approach was first introduced in [35] for a one-layer planar medium
for a horizontal electric dipole (HED) over a thick substrate on a ground plane. In
this method, spectral domain Green’s functions are approximated as closed-form
expressions by using an approximation method. Next, using Prony’s method and
least-square Prony’s method, this study is improved in [36] for a two-layer planar
medium. This method is developed and made all applicable for different kind of
sources as horizontal electric, magnetic, and vertical electric, magnetic dipoles
embedded in general, multilayer, planar media in [37]. In this study, the general
closed-form Green’s functions of the vector and scalar potentials of sources located

in an arbitrary layer of a planar-layered medium will be utilized.
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A typical multi-layer medium is shown in Figure 2.7. The sources rules in region i

and the observation point can be located in any layer. The electric and magnetic
properties (gr,ur) and the thicknesses of each layer are arbitrary either [46]. The

layers extend to infinity in both x and y directions.

Z

|
Layer N-1 | v,
LE}’E‘I‘ i+1 HED VED, HMD, VD
Layer i - -
Layer i-1
Layer O

Figure 2.7 A Typical Layered Medium with Embedded Sources in Layer-i.

The general algorithm for calculating the general closed-form Green’s functions is
outlined as below [37]:
1 ) Green’s functions in the spectral domain are derived;
a.) Green’s functions are derived in the source layer,
b.) Green's functions in the observation layer are derived using an
iterative algorithm applied to TE-TM components of the Green's
functions in the source layer,
i) Spatial domain, closed-form Green's functions are derived;
a) In this method the surface wave poles and the direct terms are

extracted first. Then the spectral Domain Green's functions are
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approximated in terms of complex exponentials, which are gathered
from the approximation scheme, generalized pencil of function
(GPOF) [38].

b) Closed-form Green's functions are obtained using the Sommerfeld

integrals property for each complex exponential.

Spectral domain Green’s functions are derived for the scalar and vector potentials in
detail in [37] using the similar methods described in [28]. The spatial domain
Green’s functions are expressed by using the spectral domain Green’s functions as in

(2-44) [7]:

1 7 ~ -
Gy ()= [ dijo, 1 (k,0) G, () 49

These types of integrals are called as Sommerfeld integrals. These Sommerfeld
integrals can not be evaluated analytically. In order to make analytical evaluation
possible in (2-44), the spectral domain Green’s function is approximated by
exponentials. Then the spatial domain Green’s functions can be evaluated

analytically using the well-known Sommerfeld identity [7]:

1 > e (2-45)
=—— [ di ke, (k,p)

SIP z

o

r

where, SIP is the Sommerfeld integration path [39].
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almfk, ]

k, - plane

e - M - -

Figure 2.8 Definitions of the Sommerfeld Integration Path and Integration Path for One Level
Approximation [40].

In [37], the spatial domain Green’s functions are derived by using an approximation
method which is the generalized pencil of function (GPOF) method, for
approximation of the spectral domain Green’s functions with the complex
exponentials. Analogous to the other two methods, Prony and least-square Prony, the
generalized pencil of function (GPOF) method requires uniform sampling of a
complex valued-function versus a real variable. Sampling along any variable would
yield exponentials in terms of the same variable. Hence any sampling along the

variable k, would give exponential terms of k . On the other hand, to use the
Sommerfeld identity, the exponentials should be in terms of %, . In order to gather
exponentials in terms of k_, a deformed path on k. plane must be defined. This is

defined as a mapping of a real variable ¢ onto the complex plane k_ as [46]:

kz:kl:_jtJ{l_Lﬂ’ 0<t<T, (2-46)
T
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where, k., and k are defined in the source layer [37]. The integration path is shown
n Figure 2.8. The Green’s functions are uniformly sampled uniformly on
€[0,7;]. By this way Green’s function is mapped onto theC,, with

1
k :k[1+T02}2. This function is approximated in terms of exponentials of ¢

pmax
which can easily be transformed into a form of exponentials of k& . The

approximation which uses this method is called the one-level approximation because

the complex function to be approximated is sampled between zero and 7| and it is

negligible from then on [38].

Almlk, ] k, - plane
SIP
Capl P e ——y - — —— ———
#ull : » Re[k ]
“““ ~=—=""T & k& K.
Capl

Figure 2.9 The Paths and Used in Two-Level Approximation [40].

There is a trade-off in choosing the approximation parameters. The number of

samples should be large enough to follow the rapid changes for small values of & ,.

On the other hand 7| should be chosen large enough to fit the asymptotic behavior of

the Green’s function. However, this would result an over-sampling at large values of
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k,. Since for large values of k,, Green’s function is generally slowly varied [30],
oversampling at large values of &, is redundant. In order to overcome this problem,

in [40] it is suggested that, GPOF method should be applied in two level
approximations. Using this approach, the first part of the approximation is performed
as shown in

along the path C_. while the second part is done along the path C

apl ap?
Figure 2.9. In the first approximation, the asymptotic behavior of the function is
extracted and then in the second phase, the details and high frequency features of the
second function are approximated by using small number of sampling points. Two

different functions are used to map the real variable ¢ onto the complex variable £,

along the pathsC,, and C

p2» as it is given in [30]. These two functions can be

represented as:

ik, =—jk [T, +t], 0<t<T, (2-47)

apl * 7z
Cap2 :kz :ks {]l"F[l—L]}’ OStST(V)Z (2-48)
Ty,

As a result of the two-level approximation, the spectral domain scalar Green’s

functions can be written as:

~ 1 ikl N, B N, B _
G ~ . e ]kﬂ‘ ‘ + z a],,e ok +z azne ok (2 49)
]28k i n=1 n=l

Where, a,, and «,, are the coefficients gathered from the first part, a,, and «,, are

from the second part of the two-level approximation. Next, by substituting spectral
domain representation into the Sommerfeld identity (2-45), the following closed-

form spatial domain Green’s function is written down.
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e (2-50)

2 2 2 2 2 :
where, 7, =+x"+y" —a and 1, =\x"+y —a,, are the complex distances

calculated using the real distance and coefficients obtained, k; is the wave number in

the source layer. (2-48) and (2-49) are obtained by direct sampling of spectral
domain Green’s functions [41]. As a result, (2-49) and (2-50) turns into:

~

S |:za]n —oy,k ,+Za2n —ay,k ,j| (2-51)
J 8 zi

Jk un N, —Jkiry,
N e 2-52
= |: : ‘,aln : ‘,a2n j| ( )
4re, r

]n n=l 2n

The representation (2-52) can be simplified as:

e " -
G=Ya (2-53)

where 7, =./p’ —b. is the general form of the complex distance and &, is the wave

number of the source medium. According to the formulation given in [37], the
coefficients for any layered medium with located sources are calculated by a
computer program. In different geometry and medium solutions of this study,

outcomes of this program are used.

Choosing, the correct approximation parameters in two-level approximation scheme
one could get the approximated Green’s functions successfully. As the level count of

the approximation scheme increases, number of samples per level also increases.
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Hence using, two-level approximation is better than using single-level approximation
scheme. On the other hand, two-level approximation scheme can also be used to

improve to multi-level approximation scheme.

One time calculation of closed form Green’s function coefficients for a layered
structure is sufficient for all. Then, these values can always be used, in the analysis
of many similar-layered microstrip geometries. This is the major advantage of the

using closed-form Green’s functions.

In this chapter, first, a brief description of MoM formulation is introduced. Next, the
Green’s functions are presented. The spatial domain and spectral domain MoM
formulation in conjunction with the Green’s functions are detailed and the two
approaches are compared for their advantages and disadvantages. Finally, the closed-
form Green’s function in spatial domain is discussed. In the next chapters, by using
the closed-from Green’s functions, analysis of microstrip fed-slot antenna and slot
coupled patch antenna structures will be formulized, electrical and magnetic current
distributions will be evaluated in necessary locations. Finally, using the current

distributions, some antenna parameters will be calculated.
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CHAPTER 3

MoM ANALYSIS OF THE MICROSTRIP FED SLOT
ANTENNA

In this chapter, a microstrip fed-slot antenna is analyzed. This is a preparation
chapter for the microstrip fed-slot coupled patch antenna analysis. Firstly, the method
will be applied to a relatively simpler structure which is also a building component of
the slot coupled patch antenna structure. Then, in chapter 4, formulation and analysis

of slot coupled patch antenna is given.

The current distribution on the microstrip feed line and the slot are calculated using
closed-form Green’s function in the spatial domain in conjunction with Galerkin’s
method of moment. Firstly, a microstrip fed-slot coupled patch antenna structure is
set. According the structure, microstrip to slot and slot to microstrip coupling
equations are derived as explained in chapter 4. Then the current distribution on the
microstrip line is calculated using MoM code written in Matlab®. By getting current
distribution on the microstripline, antenna reflection coefficiente is calculated using
Prony’s method [42]. Frequency versus S11 characteristic of the slot structure yields
the resonance frequency. In this work, Alexopoulos’ microstrip to slot scheme [45] is

used in order to verifty MoM computer code.

3.1 Definition of the Structure

Microstrip fed-slot coupled structure contains one-layer dielectric. This scheme of
antenna does not require an electrical connection between the slot and microstripline.

Figure 3.1 and Figure 3.2 demonstrates the antenna structure proposed in [45].
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Figure 3.1 General strip coupled slot antenna structure.

Figure 3.2 Strip to slot structure (dimensions).

The parameters of the structure given in Figure 3.2 are:

36



L, = length of the microstrip stub
L, = length of the slot
W, = width of the microstrip stub

W, = width of the slot

On the other hand, since the structure is based on the Alexopoulos’ work, for
comparison purposes, other parameters are taken from there such as relative

dielectric constant (&, =20 ) and substrate thickness (d, =0.3175 cm).

3.2 Formulation

By using the equivalence principle we can separate the slot problem into two
different regions by closing the aperture with a PEC. In order to maintain the original
field in both regions, surface currents must exist in the both faces of the aperture.

These currents are written down according to the related boundary conditions.

- - = (3-1)

— = - (3-2)
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Figure 3.3 Strip coupled slot structure (sideview).

According to our model, only magnetic currents exist on both surfaces of the
aperture. Then the related boundary conditions are derived. First, boundary condition
on the aperture is considered. The tangential magnetic field is continuous across the
aperture. This happens to be our first boundary condition. Since, aperture is assumed
to be very narrow, only x-directed magnetic currents are considered. On the

aperture’s both sides, x-directed magnetic fields must be equal.

H!(J)+ H!(-M,)= H!(M,) ¢

By using magnetic vector potential and magnetic scalar potential we can write

magnetic field:

H=—jweF —Vd" (3-4)

Scalar magnetic potential and vector magnetic potential are formulated using

magnetic Green’s functions:
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D" =G * (—,ivﬁ) (3-5)
Jw

- == — 3-6
F=G"*M 0

Dyadic Green’s function is used in finding vector magnetic potential based on the

magnetic current:

G =xxG +}}G e &N
xx »y zz

By using scalar and vector potential and the magnetic current, general magnetic field

expression is written as:
J— _ 1 - _
H=—jweG" *M—V{G% *(—_—V.Mﬂ (3-8)
Jjw

Since we are interested only in x-directed magnetic field, we can reduce the equation
to only x-directed components. The magnetic field due to magnetic current above

the aperture, in the air region, is formulated as:

H{(M,)=—jweGy, *M, +i3(G;f(m *ﬁMx] (3-9)
’ jwox\ " ox

Besides, the magnetic field due to magnetic current below the aperture, in the

dielectric region, is formulated as:

1 0 0
HY (M )=—iweGF *(=M |G * -M (3-10)
x( x) ]Wg XX, ( X)+JW ax( X, ax( x)]
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In order the complete the slot boundary region equations, we need one more
component. In the dielectric region there must exist another magnetic field

component due to electric current on the microstrip line.

By using vector electric potential, magnetic field below the aperture is formulated.

H=1vxi G110
y7,

Since we are only interested in x-directed magnetic field, vector electric potential is

reduced such a way that its curl yields only x-directed components.

ﬁx:%w(zﬁz) G-12)

As a result x-directed magnetic field is written using y and z-directed vector

potentials.

F:l(_ﬁA +EAZ] (3-13)

The y and z directed electrical vector potentials are written by using y-directed

electric currents and suitable dyadic Green’s functions are used.

4 (3-14)
Ay - ny * Jy

o (3-15)
A =Gi*J,

Then x-directed magnetic field in the dielectric region is found as:
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- =1 0 0 (3-16)
H (J):—(—gG;;*JﬁaG;;*Jy]

As a result, first boundary condition is set upon x-directed magnetic field across the

aperture.
Jw Ox Ox 3-17)
—l(aic;;; *Jy—aiG; *Jy]:O
u\oy z

Next, other boundary condition equation related to microstrip line must be derived.
Since there is no magnetic current on the microstrip line and it is assumed to be a
very narrow PEC, the tangential electric field on the microstrip line surface must
vanish. That is to say, on the microstrip surface y-directed tangential electric field
must equal to zero. There is three components creating the y-directed field on the

microstrip.

a;r arags inc 3-18
E“(J)+E“(M,)+E"™ =0 (3-18)

In order to find y-directed electric field due to magnetic current, vector magnetic

potential is used.
E*(M,) = (VxF) (3-19)
g
Then the equation is reduced only to y-directed electric field yielding components as:
E}(M,)= é(ﬁ F-OF ] (320

Oz ox
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Vector magnetic potentials in x and z directions are found by using magnetic currents

and suitable Green’s functions such as:
F=G" *M andF =G’ *M (3-21)

As a result, y-directed electric field on the microstrip line surface is written as:
E”(E):l(i Gg *Mx)_i((;; *M*)j (3-22)
! e\ oz “ ox a

Secondly, we find y-directed electric field due to electric current, which exists on the
microstrip line surface. Electric field is written using vector and scalar electrical

functions.

E‘(J)=—jwA-V¢ (3-23)

Potential functions are written down as convolutions of dyadic Green’s function and

the electric current.

E‘(J,)=- G, *J,)=-V(G] *(—jiwv,Jy] (3-24)
Then, the equation is reduced to y-directed components only.

E}(J,)=~jw(G}, *Jy>+i3(cq *ijj (3-25)

jW ay Ya ay y

As a result, the second boundary condition is established as:
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— WG T )b

_l(i(GzZ * )\
g\ox ¢

Lofgis2y +1(3(G; *Mx)]
jwoyl oy V) eloz ¢

x)j+E0 =0

3.2 Current Distribution Results

(3-26)

Strip coupled slot geometry can be solved using method of moments in conjunction

with the closed form Green’s functions with the parameters which are given in

Figure 3.2 as:L =0.69cm,L =0.69cm, W =0.16cm,W, =0.2 cm .Since the

geometry has a wide-band antenna characteristics, simulations are done in wide

range of frequencies. Some of these simulation results are depicted below.

Surface Electric

Current Density an the feedline(dy) @1.300 GHz
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Figure 3.4 Surface electric current distribution on the microstrip feed at 1.3 GHz
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Having completed the current distribution calculations, current distribution function
could be approximated using Prony analysis [42] which is explained in Appendix B.

As a result of this analysis, parameters of the current distribution function given in
(3-27) are obtained.

I(x)=ce™ +c,e™ (3-27)

According to (3-27) incoming and reflecting wave coefficients can be used to

evaluate reflection coefficient.

¢, =1.5449 - 3.5007i
¢, =-1.7077 - 0.9905i
B, =-3.3329 -84.7337i

B, =-18.1541 +86.55751

. . c
These parameters can be used to evaluate reflection coefficient (I' =—2).
G

In the same frequency magnetic current distribution for A/2 slot length on either side

of the aperture are also evaluated as in Figure 3.5.

44



Surface Magnetic Current Density an the slot(Mx) &@1.3 GHz
EDD T T T T T T

5 : 'D | =0 = MoM result
450 ........... ........... fP/'U\ ....... .......... . .......... R Al

A0k .......... ........ y ........... \ ....... .......... .......... i

AR s .......... .r" ..... ........... ........... ..... \ .......... ......... _

0L .......... [ ......... ........... .......... .......... \ ......... .

Magnitude Mx on the slot(/m)
[ o] )
] [hg]
[ [}
~a_
: i
e
AR
i i

i
=
:
-
i

ookt ........... ...................... ......... ,l ......... 4

o]0 PP Joo .......... ra— —— ........... l|_ ........ -

# direction(cm)

Figure 3.5 Surface magnetic current distribution on the slotline at 1.3 GHz.

In Figure 3.6 feedline current distribution for 1.2 strip at 1.5 GHz is shown.
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Surface Electric Current Density on the feedline(Jy) @1.500 GHz
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Figure 3.6 Surface electric current distribution on the microstrip feed at 1.5 GHz.

Then, the current distribution function could be approximated using Prony analysis.

As a result of this analysis, current distribution function parameters of (3-27) are
evaluated as:

¢ =2.6817 +3.6911i
¢, =0.3484 - 0.4795i
B, =-0.0230 - 93.31i

B, =0.1664 + 94.38i

Next, in Figure 3.7 feedline current distribution for 2A strip at 2.5 GHz is given.
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Figure 3.7 Surface electric current distribution on the microstrip feed at 2.5 GHz.

As a result of the Prony analysis, current distribution function parameters of (3-27)
are obtained.

¢, =-3.6408 - 2.06141
¢, =0.5030 - 0.08281
B, =-0.0078 - 158.201

B, =-0.0482 + 163.48i

Next, in Figure 3.8 feedline current distribution 2.4A strip at 3.0 GHz is shown.
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Surface Electric Current Density an the feedline(Jy) &@3.0 GHz
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Figure 3.8 Surface electric current distribution on the microstrip feed at 3.0 GHz.

As a result of the Prony analysis, current distribution function parameters of (3-27)
are obtained.

¢, = -0.4644 - 4.3655i
¢, =0.6638 - 0.6029i
B, =-0.0111 - 202.00i

B, =-0.1241 + 204.66i

As a result of the evaluated current distribution functions, and reflection coefficients,
S11 variance throughout 1.3-4 GHZ frequency band is obtained. This S11 data of

strip coupled slot structure is shown in Figure 3.9 in comparison with Alexopoulos’
results [45].
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Figure 3.9 S11 characteristic of strip coupled slot antenna between 1.3-4.5GHz.

According to the analysis of the strip coupled-slot structure with the closed form
Green’s functions, these results are obtained. According to the comparative analysis
shown in Figure 3.9, results are much more similar to the Alexopoulos’ results in the
true resonant frequency than other frequencies. However, other than resonance,

frequency sweep analysis yields reasonably similar results.
Having overviewed the strip coupled slot interaction, microstrip fed-slot coupled

patch antenna formulation and analysis is held as the main focus of this study in the

next chapters.
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CHAPTER 4

MoM ANALYSIS OF THE MICROSTRIPLINE FED-
SLOT COUPLED PATCH ANTENNA

In this chapter, a microstrip fed-slot coupled patch antenna is analyzed. The current
distribution on the microstrip feed line and the patch are calculated using closed-
form Green’s function in the spatial domain in conjunction with Galerkin’s method
of moment. Firstly, a microstrip fed slot coupled patch antenna structure is set.
According the structure, microstrip to slot and slot to patch coupling equations are
derived. Then the current distribution on the microstrip line is calculated using MoM
code written in Matlab®. By getting current distribution on the microstrip line,
reflection coefficient value is calculated using Prony’s method [42]. Frequency
versus S11 characteristic of the patch antenna yields the resonance frequency of the
antenna. At this resonance frequency two-dimensional current distribution is
calculated and demonstrated with plots. In this work, Pozar’s microstrip fed-slot
coupled patch antenna scheme [1] is used as a start-up structure in order to verify
MoM computer code. Finally, other parameters and structural changes are analyzed

and the results are demonstrated.

4.1 Definition of the Structure

Microstrip fed-slot coupled patch is an antenna structure which contains two-layer of
dielectrics. This scheme of antenna does not require an electrical connection between
the radiating part and feed line. The structure involves two substrates separated by a
ground plane. One substrate contains the radiating patch, while the other substrate
contains the feed. Figure 4.1 and Figure 4.2 demonstrates the antenna structure

proposed in [1].
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*

Figure 4.1 Slot Coupled Patch Antenna.

There is a small aperture in the ground plane, also known as slot, which allows
coupling between microstrip feed and microstrip patch. The feed is generally in the

form of open circuited stub [1].

Patch (Signal)

 sa\Deeric) | 0.16em
Slot (Plane)
 supzpeedis) | 0.16em

Feed (Signal)

Figure 4.2 Slot Coupled Patch Antenna (side view).
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4.2 Establishment of the Problem

In previous chapter it is stated that, the electric field can be expressed in terms of
scalar and vector potentials. Besides, the scalar and the vector potentials can be
written in terms of induced surface current densities. Similarly, magnetic field can

also be expressed in terms of scalar and vector potentials as in (4-1).
“4-1)

= joF -V¢"

Magnetic vector and scalar potential functions can be formulated using magnetic

Green’s functions and magnetic current densities as shown in (4-2) and (4-3).

o =GTm (- Lvin (4-2)
Jo

F=G"*i1 @)

In order to bring all equations together, electric field in terms of scalar and vector

potentials are indicated in (4-4).
44

E=—jwA-V¢

In (4-5) and (4-6) scalar and the vector potentials are written in terms of induced

surface current densities.

A=G"%J 4-5)
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=G, *(_Lv.ij (4-6)
Jja

Reciprocally, electric field and magnetic field can be stated in terms of magnetic

vector potential and electrical vector potential as shown in (4-7) and (4-8).

E(M)==VxF 4-7)
g

I-_I(j):leZ 4-8)
u

A general schematic view of the feed and the antenna is shown in Figure 4.3. The

ground plane and the dielectric substrates extend to infinity in both x and y

directions.
’]‘ ,
En \Jp
_—
Eh ES
]
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4
y
£,

b 4

Jinc"'Jf

£

Figure 4.3 Schematic of Electric current on the feed and the antenna
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4.3 Boundary Conditions

In Figure 4.4, it is shown that, the electric surface currents on the feedline are
assumed to be y-directed. On the other hand magnetic surface currents on aperture’s
both sides are assumed to be x-directed. This is because, both strip and slot widths
are very small as compared to the wavelength. Hence, the x-directed current density
is assumed to be uniform for feedline and the y-directed current densities is assumed
to be uniform for the aperture. However, microstrip patch structure has respectable
widths in both sides, which makes x and y-directed current densities change along
the structure. In this work, x and y-directed current densities are considered in

derivations of the patch.

En \Jp
—_—
Eh
M. =-M
@M TN Y
4
n v ® M2=M. y
£,
Jinc"'Jf

£

Figure 4.4 General scheme of the boundary electrical and magnetic currents

Firstly, in order to solve the structure and the derive equations, boundary conditions
for 3 boundaries are defined. In microstrip fed-slot coupled patch antenna structure,
there are 3 boundaries. For these 3 boundaries, 4 boundary equations can be written
as;

I. The y-directed electric field is zero along the microstrip line.

II. The tangential magnetic field is continuous across the aperture.

III. The x-directed electric field is zero along the patch.
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IV. The y-directed electric field is zero along the patch.

Next, these boundary conditions are written down as equations and all effective
current density contributions are considered in the establishment of the boundary

condition equations.

4.3.1 Feedline Boundary Conditions

On a perfect electric conductor, tangential electric field must vanish along the surface
of the material. Since x-directed electric field is assumed to be uniform along the
feedline, only the y-directed electric field condition on the feedline boundary is
regarded. The y-directed electric field is zero along the microstrip feedline. In (4-9)

all effective components of this boundary condition are stated.
E+E;(J])+Ei (M )=0 4-9)

where, E;"" is excitation of the feedline, E;’ (J f ) is the electric field in the region a

due to y-directed electric current on the feedline, and E7 (M )is the electric field

x

contribution in region a due to x-directed magnetic current on the aperture. Using

(4-4), (4-5) and (4-6), E; (J M ) can be written down as in (4-10).

1 0 0
a f\_ . A f a
Ey (Jy )—_Ja)nya *Jy +_J _ay |:Gq *—ay Jy:| (4-10)

Similarly, according to (4-9), magnetic currents below the aperture contribute to the

electric field as shown in (4-11).
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1 — 1( 0 0
E‘A\M \=—VxF=—|—F —F 4-11
y( x) £ 8 g(@x T ox y] (@-11)

Since, we are considering only x-directed currents; our testing functions will be x-

directed either. Hence, 6_Fy contribution brings ‘0’ because it is tested with x-
x

directed testing function. Then, this leaves us with (4-12).

) 2o )

&

As a result, if all these contributions are gathered down, total boundary condition

equation on the microstrip line is written as in (4-13).

E;"“‘—ja)c;y;*J-yf+li G2 gt +l(ﬁ(G;a*Mx)j=0 (4-13)
jooy| ¥ oy | e\lox

In (4-13) electric and magnetic current functions are the unknowns. Hence, J yf and

M , can be approximated using a series of known basis functions as shown in (4-14)

and (4-15).

N
J(x,y) =D 1,1, (x.y) (4-14)
n=l1

where, I, ‘s are the unknown coefficients of the basis functions and J yfn (x,y) is the

basis function for the feedline [43].

Similarly,
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N
M, (x,y)=D AM (x,y) (4-15)

n=l

where, A4, ’s are the unknown coefficients of the basis functions and M (x,y) is the

basis function for the aperture magnetic currents. Additionally, on the feedline y-

directed testing functions can be stated as in (4-16).

N
T,(x,y)=>.T,(x,») (4-16)
n=1

If resulting equation (4-13) is tested with (4-16), boundary condition equation

becomes as shown in (4-17) for an arbitrary testing point.

N
E;"" —ja)<Tym,GA (ZInJ-yfn (x, y)]>
n=l1

A Olgeal ﬁl J!(x,) (4-17)
Jjo\ "oyl 1 o\ o
1 0

+—< o {GF ZAM (x, y)}>

&

Since convolution is a linear operation, (4-17) can be manipulated to (4-18);

E;'"°'+ﬁ1 {=jo(T,,. G, * T}, (x,))

+L< ym’ai[G” *J! (x, y)]>} (4-18)

Jja

+ﬁ“ 4 { ! < ym,; (Gl * M (x, y)]>}

Because, the basis functions in this study are chosen as rooftops which are piecewise
differentiable functions, it is possible to use the integration by parts as described in

[30] to change order of the integrals. Then (4-18) can be rewritten as:
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O r 0 4
{ayT”" oy Y )m

N 1 a inc
+; A,, {Z<5G;w[Tym *Mx(x,y)}>} = _Ey

N P 1
>, —jw(GWa,Tym*J-yz(x,y>>—j—w G,

n=l

(4-19)

One of the inner product terms of (4-19) is written in open form as:

<G;;a T, *J{n (x,y)> = J. dudvaA;a (u, v)J.J. dxdyT,, (x—u,y— v)];; (x,y) (@4-20)

The double integration of basis and testing functions shown in the above equation
represents the convolution of the basis and testing functions which can be carried out
analytically. The details of the calculations of these convolution integrals are
described in Appendix A. Then, (4-20) can be solved just by double integration. In
this study, since Galerkin’s Method of Moments is used, the basis functions and

testing functions are chosen to be the same.

4.3.2 Aperture Boundary Conditions

Across the slot tangential magnetic field is continuous, that is to say, the tangential
magnetic field in the aperture’s lower side is equal to the tangential magnetic field in
the upper side. Since, it is assumed that only x-directed magnetic current exists

across the aperture, boundary condition equation can be stated as in (4-21).
HY () )+ HY (M) = H (=M )+ 1 (J] )+ H{ (J]) @4-21)

Where, H! (Jf ) is the magnetic field due to electric currents on the feedline,

H{ (M) is the magnetic field due to magnetic currents in the lower side of the slot.
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These two components make the total tangential magnetic field below the slot.

Above the slot, H;(—M,) is the magnetic field due to the magnetic current,

Hf (J ’ ) is the magnetic field due to y-directed currents on the patch and Hf (J ){ ) is

the magnetic field contribution due to the x-directed currents on the patch.

Next, all components of the slot boundary condition equality are written down. By

using (4-8) H*(J/) can be defined as in (4-22).
x \Yy

(Vx4) 4-22)

If electrical vector potential is located into (4-22) and necessary calculations are

carried out, equation turns to (4-23) .

H' :l{a"ai/lz —aXaﬁAy] (4-23)
pl "oy 4

Next, 4, and A, are replaced with the Green’s function definitions by using (4-24)

and (4-25).

_ A4 S
A, =GA ] (4-24)

A, =G5 *J! (4-25)

Then, (4-25) is transformed into (4-26).
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Hy (J'yf)zl(i(% «)-2 (a1, *J'yf)] (4-26)

o

Because, this study is dealing with x directed currents on the slot, only x-directed
testing functions are used. As a result first term in (4-26) vanishes. Considering that

(4-26) can be rewritten as:

(01 208 @

Having completed feedline contribution to the total magnetic field, magnetic currents

which are located on the slot boundaries contribution to the magnetic field can be

formulized. By using (4-1), (4-2) and (4-3), H! (M x) can be written as in (4-28).

H! (M, )= —ja)F—V(G""’ *_—IV-Mx]

¥ jo (4-28)

However, (4-28) can be rewritten, using magnetic vector and scalar potential

functions.

H!(M,)=—joGL, *M + LE(G“ *iMx] (4-29)
joox\ ! ox

Similarly, for the upper side of the slot magnetic current contribution to the magnetic

field can be written as in (4-30).

H!(M,)= joGl,*M, —(Lg(qf *aiM]] (4-30)
jw Ox X
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In upper side of the slot, there is also a magnetic field contribution from the induced

currents on the patch. Firstly, the y-directed electric currents on the patch creates

magnetic field component Hf (J ’ ) of (4-21) just like (4-27).

e (07) = elen )] @

Finally, x-directed currents are considered as contributors of the magnetic field in the
upper side of the slot. However, since x-directed electric currents cannot create x-
directed magnetic field, this contribution come out to be null. All derived quantities

are gathered, and final boundary condition equation is written down:

—lﬁG;u «J ! — joG, *M, +LE(G; *ﬁMx]

U oz jo Ox ox 432)
= joG’, *M —li(Gb*ﬁM ]—lﬁG*‘b*ﬂ
Xx Yojoox\ " ox ) poz U7

Then vector Green’s functions and the scalar Green’s functions are brought either

sides of the equation.

Jjo(GlL,+GL, ) *M,———(G! +Gb)*§M
o . - (4-33)

_;éGW” *J! +;§GW *J) =0
After that, the electric and magnetic current functions are replaced by the basis
functions. Also they are tested with the testing function which yields the equation
shown in (4-34). At the same step, change of order of the integrals is done using the

same rules applied in (4-19).
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v . o o
nZAm{ o(GL, +GL,.T, M(xy)>+J—<G Gba—Tm*aMx>}

N N
z { <a yyb’T Jp>}+ Ixn{l<a G}/:/a’T;*JJ{>}:0
n=l1 n=l :u aZ

4.3.3 Patch Boundary Conditions

(4-34)

Patch is the radiating element of the microstrip fed-slot coupled patch antenna and is
made of perfect electric conductor. Hence, the tangential electric field is zero on the
patch surface. Being different from the feedline and the slot it has two dimensional
electric surface currents in both sides. Since it has respectable width parameter for
both x and y dimensions, surface currents of neither x-directed nor y-directed can be
neglected. Because of that, boundary conditions can be separated and analyzed in set

of two equations.

4.3.3.1 Y-directed Patch Surface Field Equations

Along the patch, the y-directed electric field is zero (4-35). In the structure, there are
2 known induced current sources that are known to create y-directed electric field.
They are, x-directed magnetic current elements on the upper side of the patch, and y-

directed electric current elements on the patch itself (4-36).

E"=0 (4-35)

E!=E (J")-E,(M,) (4-36)

In (4-36), the term £, (J 4 ) , 1s the y-directed electric field component due to electric

currents induced on the patch. It can be written in terms of vector and scalar dyadic

Green’s functions using (4-4), (4-5) and (4-6).
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_ -1
E, (J;’):—ja)A—V(Gq*j—wV-J”] 4-37)

E,(J])==joG,*J! +jlwv(Gg *VeJ”) (4-38)

If the term J” is the replaced with the surface current vector, the field equations

becomes as shown in (4-39):

1 0 0 0
E (J!)==joG: *J" + ——| G! *=—J" +GI *—J" 4-39
J/( ) J wb y ]a)ﬁy( b Ox x b 6_)} y] ( )
The term, E (M,) in (4-35) is the y-directed electric field component due to

magnetic currents induced on the upper side of the slot. It can be written in terms of

vector and scalar dyadic Green’s functions in (4-40) just as the same as (4-12).
E,(M,)= (5(%} xMx)] (4-40)

In order to enhance (4-36), (4-39) and (4-40) are inserted into their locations in the

equation yielding:

—jw(G;b*J;)+,iﬁ(Gg éJf] LQ(G‘! *%J;]

Jjoy\ = & ") jody (4-d1)
_l(ﬁ(q; *Mx)jzo

e\az

Then, electric and magnetic current functions are replaced by the basis functions.

Resulting function is tested with the testing functions which yield the equation
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shown in (4-42). At the same step, change of order of the integrals is done using the

same rules applied in (4-19).

(4-42)

4.3.3.2 X-directed Patch Surface Field Equations

Along the patch, the x-directed electric field equals to zero (4-43). In the structure,
there is only one known induced current source that is known to create x-directed

electric field. This is the x- electric current elements on the patch itself (4-44).

E?=0 (4-43)

E'=E(J") (4-44)

In (4-44), the term £ (J r ) is the x-directed electric field component due to electric

currents induced on the patch. It can be written in terms of vector and scalar dyadic

Green’s functions using (4-4), (4-5) and (4-6).

EX(JP):—ij—V{Gq*;IV-JP] (4-45)

jo

E (J")==joG.,*J" +'LV(G,3 Vo) (4-46)
jo
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If the term J” is replaced with the surface current vector, the field equations return

to (4-47).

E(J")=- ja)G;b*J"+Li i+ 2 grigrx Ly (4-47)
jw Ox ox oy

Then, electric and magnetic current functions are replaced by the basis functions.
Resulting equation is tested with the testing function which yields the equation
shown in (4-48). At the same step, change of the order of the integrals is done using

the same rules applied in (4-19).

, , 1 0. 0 .,
ZI {JCO< Cts Lom ¥ (xy)>—J—<GZ " o ,*&Jx(x,y)>

1 0 0
—(G ,—T *—J"(x, =0
ja)< Y oy },(xy)>}

(4-48)

In this study, Galerkin’s Method of Moments is used. Hence the basis and testing
functions are chosen to be same. In the following sections of this chapter, the exact

representations of the basis functions and testing functions will be detailed.

4.4 Test and Basis Functions

Basis and testing functions are chosen to be identical and as rooftops. These
functions are triangular in longitudinal direction and uniform in transverse direction.
The rooftop basis functions are shown in Figure 4.5. As an example, the

mathematical representation of the feedline rooftop basis functions is given in (2-49)

[4]:
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ok (l—n)hx+x] (n-1)h, <x<nh,, |y|£3
J,(x,y)= j[(l+n)hx—x] nhXSxS(n+l)hx, y|£% (4-49)

X

0 otherwise

I (N+1)
——
h h.

X

)
4

I=(N+Dh,

Figure 4.5 Rooftop Basis and Testing Functions [3]

4.5 MoM Matrices and the Number of Unknowns

In applying moments method, selecting the number of unknowns is an important
step. Discretization of the calculation domain determines the number of unknowns.
In this study, microstrip feedline and slot are assumed to have current distributions
varying only in one dimension. For that reason, they are both discretized along only
one dimension. On the other hand, microstrip path have two-dimensionally varying
current distribution. For most of the simulations of this study, 19 point discretization
of the domain is applied. Hence, patch is dissected into 19x19 sub-domains. Hence,
for a microstrip fed-slot coupled patch antenna, total number of sub-domains

becomes 361. There are 4 equations for 4 groups of unknowns:

y-directed electric current coefficients on the feed = 19;
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x-directed magnetic current coefficients on the aperture = 19;
y-directed electric current coefficients on the patch = 361;

x-directed electric current coefficients on the patch = 361;

Total number of unknown coefficients=760;

This discretization of the domain with a general type MoM equation, Ax = b results;
Size of the A matrix=760x760;

Size of the unknown vector x=760x1;

Size of the unknown vector b=760x1;

4-6 Results

In this section, results of the MoM analysis of the microstrip fed-slot coupled patch
antenna will be presented in comparison with the calculations and measurements of
[2]. Electric current distribution along the feedline and the patch will be calculated.
Then reflection coefficient parameter of the antenna in analyzed frequencies will be

presented.
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Figure 4.6 Parametric geometry of the microstrip fed-slot coupled patch antenna

Figure 4.7 Parametric geometry of the microstrip fed-slot coupled patch antenna(sideview)
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In Figure 4.7, ¢, is relative permittivity constant below the aperture, ¢, is relative
permittivity constant above the aperture, d, is the thickness of the substrate below

the aperture and d, is the thickness of the substrate above the aperture.

The design parameters for the given design based on Figure 4.6 and Figure 4.7 are
given as:

f=2.12GHz
g,=2.55
g,=2.55
L,=4cm

w, =3 cm
L,,=7cm
W, =0.47 cm
W,, =0.155 cm
L,=14cm
L,=12cm
d,=0.16 cm

d,=0.16 cm

where, d, is the thickness of the substrate below the aperture and d, is the thickness

of the substrate above the aperture.

These are the parameters which Pozar suggested in his work [1] and repeated here
for comparison purposes. By using these parameters, it is assured that slot is at the
center of the patch, which enables the maximum coupling from feedline to the patch

through the aperture.
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As a result of MoM simulation, electric current distribution is calculated. In Figure
4.8 electric surface current on the feedline is shown as a result of our MoM code and

HFFS® together. Both results are extracted from simulations done at 2.14GHz.

Surface Electric Current Density on the feedline(dy) @2.14 GHz
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Figure 4.8 Electric current distribution along the feedline

According to the current distribution result, it can be said that reflection coefficients
of the two analyses resemble in magnitudes. However, their phases have some
differences. This is because HFFS® , uses exact model boundaries creating
reflections, which is the reason of phase changes. However, in our study all layers

are assumed to extend to infinity in transverse directions.

Then using Prony’s method [42] which is explained in Appendix B, reflection
coefficient parameter is found. The current distribution function on the feedline is

represented as in (4-50).
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I(x)=ce™ +c,e™ (4-50)

The related parameters are found as a result of Prony analysis are:

¢, =-1.9993 + 0.8014
¢, =0.5217 - 0.1033;
B, =-1.2435 -64.5529j

B, =-4.8460 +68.55931

Reflection coefficient parameter can be calculated using these constants (I° :c—z).
G

The ratio < gives S11 which is depicted in Figure 4.9 for different frequencies. On

G
the other hand Pozar’s results are also shown for the same frequencies.
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Figure 4.9 Comperative demonstration of input impedance from MoM and Pozar’s results

Through the aperture, electromagnetic energy coupled to the microstrip patch.
Induced y-directed electric surface current distributions for different x-locations are

given in Figure 4.10 and Figure 4.11.
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Figure 4.10 Y-directed electric current distribution along the patch y-direction at X=-0.75 cm
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Figure 4.11 Y-directed electric current distribution along the patch y-direction at X=0 cm
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Slot coupled patch structure has a resonant frequency very close to 2.14 GHz. For the
sake of getting other frequency solutions, MoM code is run with 2.5 GHz
parameters. By looking at the initial solutions, it is expected that S11 would be very
close to 0 dB at 2.5 GHz. Feedline current distribution solutions are shown in Figure

4.12.

Surface Electric Current Density on the feedlineldy) @2.5 GHz
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Figure 4.12 Electric current distribution along the feedline at 2.5 GHz

By using the electric current distribution on the feedline and Prony’s method we get

coefficients of incident and reflected currents, ¢,and c,as depicted in (4-50). These

incident and reflected wave coefficients yield a S11 value very close to 0.

For the sake of completion and the comparison with the resonance frequency, patch

current distribution characteristics are given for 2.5 GHz.
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Figure 4.13 Y-directed electric current distribution along the patch y-direction at X=-0.75 cm
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Figure 4.14 Y-directed electric current distribution along the patch y-direction at X=0 cm
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By examining the current distribution results, it can be said that our approach yields
very reasonable outputs. Comparisons between HFFS®, Pozar’s studies and our work
verifies each other. However, all results deviate from each other in some manner.
This 1s because all approaches use different approximations and medium
characteristics. MoM analysis using closed from Green’s functions assumes the
substrate layers extend to infinity in transverse directions. Also, in this study surface
waves are as assumed to be ignorable. On the other hand, Pozar uses a different
model in the solutions of this kind of antenna geometries. Similarly, HFFS® outputs
may be somehow different, because it solves the bounded geometry. Boundary

definitions of the software and sizes can change the solution.
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CHAPTER 5

PARAMETRIC ANALYSIS OF THE MICROSTRIP FED-
SLOT COUPLED PATCH ANTENNA

Having completed the analysis of a generic well-defined microstrip fed-slot coupled
patch antenna, our work of MoM analysis approach is considered to be verified.
Then, this study continues with the parametric analysis of the structure with different
parameters such as stub length, slot length, slot width, and slot location etc. In
designing this kind of a patch antenna, there are two degrees of freedom for tuning

[1]. These are the aperture length (Z,, ) and the stub length (L ) shown in Figure 5.1.

Besides, slot width and the slot location affect the antenna performance by increasing
or decreasing the coupled field from feedline to patch. In this work parametric
analysis is done by changing slot location, stub length and slot length, while slot
width is held fixed. For all above mentioned parametric analysis will be carried out

with our MoM code and will be compared with HFSS® and also with [5].

77



4
€ lerlp :
______ U I
- 1 fime= Y
+ | =
W 1
17
2 L
4
N x,y =(0.,0)
X

Figure 5.1 Parametric geometry of a microstrip fed-slot coupled patch antenna

5.1 Analysis of a Base Structure

First of all, before continuing with the parametric analysis, it will be a good
verification method to built a base structure and compare it with a study from the

literature. The parameters of our base structure are as below:

Model 1:

This model is structured and analyzed with the parameters:

f=2.17 GHz
g,=2.55
g,=2.55
L,=4cm

w, =3 cm

L, =7cm

strip
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W, =0.495 cm
Wap =0.11 cm
Lap =14 cm
L,=2cm
d,=0.16 cm

d,=0.16 cm

where, ¢, 1s relative permittivity constant below the aperture, ¢, is relative
permittivity constant above the aperture, d, is the thickness of the substrate below

the aperture and d, is the thickness of the substrate above the aperture.

With these parameters, moment method yields the current distribution at different

frequencies which are shown in Figure 5.2, Figure 5.3 and Figure 5.4.
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Figure 5.2 Surface electric current distribution on the microstrip feedline at 2.17 GHz.
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Figure 5.3 Surface electric current distribution on the microstrip feedline at 2.16 GHz.
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Figure 5.4 Surface electric current distribution on the microstrip feedline at 2.18 GHz.

80



According to the current distribution result at the resonance frequency of 2.17 GHz,
it can be said that reflection coefficient of the analysis come out to be very small.
Using Prony’s method for resulting current distribution of the MoM analysis,
reflection coefficient value of the antenna at different frequencies is found. The
related parameters given in (4-50) at 2.17 GHz are calculated to be;

¢ =2.2011-1.5165j
¢, =0.2813-0.31101
B, =-3.2587 -60.67041

B, =-17.0243 +65.83841

That result is given comparatively with the Schaubert’s study [5] in Figure 5.5.
According to that comparison, our result yields smaller reflection coefficient than
Schaubert’s study. This may be due to difference of approximation schemes. On the

other hand, both results give minimum reflection coefficient at 2.17 GHz.
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Figure 5.5 Comperative demonstration of input impedance of MoM and Schaubert’s results [5]
After that, y-directed electric current distributions on the patch are demonstrated for
82

several x-coordinates comparatively.
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Figure 5.6 Surface electric current distribution on the microstrip patch at 2.2 GHz at x=-0.75 cm
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Figure 5.7 Surface electric current distribution on the microstrip patch at 2.2 GHz at x=0 cm
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By looking at these results, it can be said that our approach gives similar results to
Schaubert’s study [5]. On the other hand comparative analysis of current
distributions on the strip and on the patch demonstrates the difference of the two
approaches. By looking at the phase of the reflection coefficients they are very close
as seen in Figure 5.5 . However, magnitudes of the two results make the difference
between solutions seen on the Smith Chart. As it is seen in Figure 5.4 and in Figure
5.5 there 1s a magnitude difference between different approaches. This may be due to
Schaubert’s [5] use of different approach, whereas we are using MoM in conjunction

with closed form Green’s functions.

5.2 Analysis of Slot Length Effects to the Antenna

Performance

In this section, antenna performance with respect to the slot length changes is
questioned. In order to do that, 3-different models are created, current distributions
and reflection coefficient values are demonstrated comparatively with different

sources.

5.2.1 Slot Length is 1.2 cm

Model 2:

This model is structured and analyzed with the parameters:

f=221GHz
g,=2.55
g,=2.55
L,=4cm

w, =3 cm
L,,=7cm
W, =0.495 cm
W, =0.11 cm
L,=12cm
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L,=2cm
d,=0.16 cm

d,=0.16 cm

Surface Electric Current Density on the feedline(dy) &2.21 GHz
=

45 . e — ;
; ; T g —HFSS(tm) result
AN e R e /ﬁ( —|:|-.— MaM result i
- - NN . o
E JE( : : \
< : : E )
E H, ............ ............ .......... q ........... -
8 e oA
- R R — ,}"\*4\\\ ........ _
Eﬂ ............................. k*_’(* ............ e \"-]\ ..... &
L | .................................... X{E
== TR N W _____________________________________ ....... ;‘;\ i
? .
Y
D 1 | 1 1 1 1
5 4 3 2 1 0 1 2

Y directionfcrm)

Figure 5.8 Surface electric current distribution on the microstrip feedline at 2.21 GHz.

According to the current distribution result, it can be said that reflection coefficients
of the two analyses resemble in magnitudes. However, their phases have some
differences. In Figure 5.9 and Figure 5.10 current distribution results of the

frequencies 2.2 GHz and 2.22 GHz are shown respectively.
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Surface Electric Current Density on the feedline(Jy) @2 .22 GHz
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Figure 5.9 Surface electric current distribution on the microstrip feedline at 2.2 GHz.

Surface Electric Current Density on the feedline(Jy) @2 .22 GHz
B T T T T T T
: i | =B = Mol result

=

m)

Magnitude Jy on the feed(A/

-5 -4 -3 -2 -1 a 1 2
Y direction{cm)

Figure 5.10 Surface electric current distribution on the microstrip feedline at 2.22 GHz.
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By using Prony’s method for resulting current distribution of the MoM analysis,

reflection coefficient value of the antenna is calculated. The related parameters at
2.21 GHz are found to be;

¢ =3.1753 - 1.3151i

c, =0.5524 +0.71591

B, =-1.6475 -60.76241

B, =0.6294 +59.9048i

That result is given comparatively with the Schaubert’s study [5] in Figure 5.11.

Figure 5.11 Comparative demonstration of input impedance of MoM and Schaubert’s results [5]

According to the above results, it can be said that, changing slot length from 1.4 to
1.2 cm positively affects antenna performance. On the other hand resonance
frequency of the antenna changes slightly. Besides, patch current distribution is

87



calculated and compared with the HFSS® output at the center of the patch in Figure
5.12.
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Figure 5.12 Surface electric current distribution on the microstrip patch at 2.21 GHz at x=0 cm

By looking at these results, it is observed that our approach gives similar results to
Schaubert’s study [5]. On the other hand comparative analysis of current
distributions on the microstrip and on the patch demonstrates the difference of the
two approaches. By looking at the absolute reflection coefficient they are close.
However, phase of the two results are differs solutions on the Smith Chart. This

phase difference is very clear in Figure 5.8.

5.2.2 Slot Length is 1 cm

Model 3:
This model is structured and analyzed with the parameters:

f=225GHz
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g,=2.55
g,=2.55
L,=4cm

w, =3 cm
L,,=7cm
W, =0.495 cm
W, =0.11 cm
L,=lcm
L,=2cm
d,=0.16 cm

d,=0.16 cm

Surface Electric Current Density on the feedline(y) @2.25 GHz
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Figure 5.13 Surface electric current distribution on the microstrip feedline at 2.25 GHz.
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For this structure, there is very little coupling from feedline to the patch for this
geometry. This coupling difference becomes much more apparent in our analysis. In
Figure 5.14 and Figure 5.15 current distribution results of the frequencies 2.2 GHz
and 2.3 GHz shown respectively.

Surface Electric Current Density on the feedlineldy) @2.2 GHz
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Figure 5.14 Surface electric current distribution on the microstrip feedline at 2.2 GHz.

90



Surface Electric Current Density on the feedlineldy) @2.3 GHz
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Figure 5.15 Surface electric current distribution on the microstrip feedline at 2.3 GHz.

By using Prony’s method for resulting current distribution of the MoM analysis,
reflection coefficient value of the antenna can be calculated. The related parameters
at 2.2 GHz are evaluated to be;

¢, =4.9083 - 1.0923i

¢, =1.8734 +2.3129i
B, =-1.5317 -65.5376i

B, =-9.1227 +68.3853i

That result is given comparatively with the Schaubert’s study [5] in Figure 5.10.
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Figure 5.16 Comperative demonstration of input impedance from MoM and Schaubert’s results[5]

According to the above results, it can be said that, changing slot length from 1.2 to 1
cm negatively affects antenna performance. There is almost 10 dB decrease in S11
value for all analysis approaches. On the other hand, resonance frequency changes
slightly as it is expected. This time it moves to 2.25 GHz. For both S11 value and the
resonance frequency, there occurs a bigger change than previous case. Patch current

distributions for this structure are also demonstrated.
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Figure 5.17 Surface electric current distribution on the microstrip patch at 2.25 GHz, x=-1.5 cm
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Figure 5.18 Surface electric current distribution on the microstrip patch at 2.25 GHz, x=0 cm
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As the slot length decreases, coupling from microstrip to patch is also decreasing. In
this case the two results become much more different than the previous case.
However, by looking at the Smith Chart demonstration, the two approaches performs

similar characteristic in the sense of phase difference in the band.

5.3 Analysis of Stub Length Effects to the Antenna

In this analysis feedline stub length (L,) is a variable. By changing the stub length,

slot coupled patch structure’s performance is changed. Being similar to the slot
position analysis, changing the stub length also changes the coupling from the
feedline to the patch. This is because, as the stub length is decreased from 2 cm,
maximum current location does not coincide with the slot location. In another

meaning, stub length cannot continue to be A/4 long.

5.3.1 Stub Length is 2 cm

Model 4:

This model is structured and analyzed with the parameters:

f=22GHz
g,=2.55
g,=2.55
L,=4cm

w, =3 cm
L,,=7cm
W, =0.442 cm
W,, =0.155 cm
L,=112cm
L,=2cm
d,=0.16 cm
d,=0.16 cm
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Figure 5.19 Surface electric current distribution on the microstrip feedline at 2.2 GHz.
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Figure 5.20 Surface electric current distribution on the microstrip feedline at 2.175 GHz.
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Figure 5.21 Surface electric current distribution on the microstrip feedline at 2.225 GHz.

By using Prony’s method with current distribution of the MoM analysis, reflection
coefficient value of the antenna can be calculated. The related parameters at 2.2 GHz
are calculated to be;

=2.8154 - 1.80121
¢, =0.9105-0.10311
B, =-2.3790 -63.14941
B, =-5.9114 +65.10791

The resulting current distribution at this frequency is given comparatively with the

HFSS® output in Figure 5.19.
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Figure 5.22 Comparative demonstration of input impedance

Patch current distributions for this structure are calculated and compared with the

HFSS® outputs as depicted in below figures.
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Figure 5.23 Surface electric current distribution on the microstrip patch at 2.2 GHz, x=0 cm
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Figure 5.24 Surface electric current distribution on the microstrip patch at 2.2 GHz, x=0.75 cm
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By looking at these results, it can be said that our approach gives very similar results
to Schaubert’s study [5]. By looking at the absolute reflection coefficient at true
resonant frequency, they are very close. However, phase of the two results are differs

solutions on the Smith Chart. This behavior is quite clear in Figure 5.19.

5.3.2 Stub Length is 1.6 cm

Model 5:

This model is structured and analyzed with the parameters:

f=22GHz
g,=2.55
g,=2.55
L,=4cm

w, =3 cm
L,,=7cm
W, =0.442 cm
W,, =0.155 cm
L,=112cm
L,=1.6cm
d,=0.16 cm
d,=0.16 cm
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Surface Electric Current Density on the feedline(dy) @2.20 GHz
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Figure 5.25 Surface electric current distribution on the microstrip feedline at 2.2 GHz.
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Figure 5.26 Surface electric current distribution on the microstrip feedline at 2.175 GHz.
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Surface Electric Current Density an the feedline(Jy) @2.225 GHz
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Figure 5.27 Surface electric current distribution on the microstrip feedline at 2.225 GHz.

By using Prony’s method with current distribution of the MoM analysis, reflection

coefficient value of the antenna is calculated. It is obviously seen that, decreasing

stub length from 2 cm to 1.6 cm decreased coupling, as well. This is because;

maximum current location of the microstrip feedline is no more below the slot line.
The related parameters at 2.2 GHz are calculated to be;

¢, =3.4218 - 1.2564i

c, =1.3434 + 0.8445i

B, =1.0232 -62.8313i1

B, =-14.5857 +62.74861

That result is given comparatively with the Schaubert’s study [5] in Figure 5.28
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Figure 5.28 Comparative demonstration of input impedance of MoM and Schaubert’s results[5]

Patch current distribution at the center of the patch for this structure are calculated

and compared with the HFSS® outputs as depicted in Figure 5.29.
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Figure 5.29 Surface electric current distribution on the microstrip patch at 2.2 GHz, x=0 cm

By looking at the absolute reflection coefficients, it can be said that two studies
yields similar results. However, phase of the two results creates the difference

between the solutions on the Smith Chart. This behavior is quite clear in Figure 5.25.

5.3.3 Stub Length is 0.6 cm

Model 6:
This model is structured and analyzed with the parameters:
f=22GHz
g,=2.55
g, =2.55
L,=4cm
w, =3 cm
L,,=7cm
W, =0.442 cm
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W,, =0.155 cm
L,=112cm
L,=0.6 cm
d,=0.16 cm

d,=0.16 cm

Surface Electric Current Density on the feedline(dy) @2.20 GHz
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Figure 5.30 Surface electric current distribution on the microstrip feedline at 2.2 GHz.
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Surface Electric Current Density on the feedline(dy) @2.175 GHz
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Figure 5.31 Surface electric current distribution on the microstrip feedline at 2.175 GHz.
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Figure 5.32 Surface electric current distribution on the microstrip feedline at 2.225 GHz.
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By using Prony’s method with current distribution of the MoM analysis, reflection
coefficient value of the antenna is calculated. It is observed that, decreasing stub

length from 1.6 cm to 0.6 cm decreased coupling from feedline to patch very much.

The related parameters at 2.2 GHz are calculated to be;

¢, =-4.4906 - 4.0487i

¢, =-2.1915 + 4.8458i
B, =-0.3054 -59.6217i
B, =-0.4873 +59.3803i

That result is given comparatively with the Schaubert’s study [5] in Figure 5.33.
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Figure 5.33 Comparative demonstration of input impedance of MoM and Schaubert’s results[5]

Patch current distributions for this structure are calculated and compared with the

HFSS® outputs as depicted in Figure 5.34 and Figure 5.35.
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Figure 5.34 Surface electric current distribution on the microstrip patch at 2.2 GHz, x=0 cm
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Figure 5.35 Surface electric current distribution on the microstrip patch at 2.2 GHz, x=0.75 cm
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By observing these results, it is clear that our approach and Schaubert’s study yields
similar frequency responses. However, the magnitude difference of the feedline
current distribution creates the difference between the solutions on the Smith Chart.

This behavior is quite clear in Figure 5.33.

5.3.4 Stub Length is 0.4 cm

Model 7:

This model is structured and analyzed with the parameters:

f=22GHz
g,=2.55

g, =2.55
L,=4cm

w, =3 cm
L,,=7cm
W, =0.442 cm
W,, =0.155 cm
L,=112cm
L,=04cm
d,=0.16 cm
d,=0.16 cm
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Surface Electric Current Density on the feedline(dy) @2.20 GHz
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Figure 5.36 Surface electric current distribution on the microstrip feedline at 2.2 GHz.
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Figure 5.37 Surface electric current distribution on the microstrip feedline at 2.175 GHz.
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Figure 5.38 Surface electric current distribution on the microstrip feedline at 2.225 GHz.

By using Prony’s method with current distribution of the MoM analysis, reflection
coefficient value of the antenna is calculated. As it is expected, decreasing stub
length from 0.6 cm to 0.4 cm decreased coupling from feedline to patch. This time,
coupling and S11 get very close to 0. This is because; slot is in very close

neighborhood of the minimum current location of the feedline. The related
parameters at 2.2 GHz are calculated to be;

¢, =-7.4989 + 0.3966i
¢, =-4.1071 + 5.8716i
B, =-9.1420 -56.9133i
B, =-11.4942 +57.1238i

That result 1s given comparatively with the Schaubert’s study [5] in Figure 5.39.
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Figure 5.39 Comparative demonstration of input impedance of MoM and Schaubert’s results[5]

Patch current distributions for this structure are calculated and compared with the

HFSS® outputs as depicted in Figure 5.40.
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Figure 5.40 Surface electric current distribution on the microstrip patch at 2.2 GHz, x=0 cm

According to the parametric analysis on the slot coupled patch antenna, some
important deductions can be extracted. First important deduction is about the position
of the slot. By looking at the electric current distribution along the microstrip line,
optimum stub length can be decided as A/4. In order to test that, other slot positions
geometry modifications are done and simulations are carried out both by MoM and
HFSS® . All results verified the optimum slot position as the center of the patch.
This is because; electric current distribution hits the maximum, just exactly at this

point for our frequency and feedline combination.

On the other hand, stub length is also another important parameter for catching the
maximum coupling from feedline to the patch. Since, slot position must coincide
with the maximum current location; stub length also can change that. For that

parameter, our program and results from the literature give the same deductions.

Third important parameter for slot coupled patch antenna is slot length. It can be

changed in order to fine tune the antenna. By changing slot position and the stub
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length, antenna coarse tuning is succeeded. Then fine tuning can be done by

changing the slot length in order to find optimum value.

In this parametric analysis, our results and other ones reasonably coincide. However,
for some cases they diverge little bit. As antenna performance converges to the best,
all results are very similar. At some extreme cases such as, too few coupling from
feedline to patch, they begin to diverge. Also, at the center of the patch electric
current distributions are very similar. However, at the sides of the patch, they
resemble less. This is because; our Green’s coefficients assume an infinite ground

plane. At the sides it may not yield suitably good approximations.

Results of this study are also compared with the results from the previous approaches
[1,5] from the literature. Generally results of this study, hold with the others. On the
other hand, phase and magnitude of the reflection coefficients does not always
coincide. This is because; our MoM approach needs very high resolution
discretization for perfect solution. Besides, length of the sub-domains becomes more
important in high frequency solutions. Since strip coupled patch structure is a
narrow band antenna, it needs very high resolution for sweeping frequencies.
Because of that, missing the true resonant frequencies for non-perfect solutions are
possible. At some frequencies, missing the true resonance frequency may yield

different S11 parameters for different approaches.
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CHAPTER 6

CONCLUSION

6.1 Summary

In this study, analysis of microstrip fed-slot coupled patch antenna structure using
closed form Green’s functions is achieved. Closed form Green’s functions are
utilized in conjunction with MoM. First of all, brief historical background of printed
structures and slot coupled patch antennas are put in the picture. Main features and
the advantages of the antenna which are the reasons of such a great deal of attention
are mentioned. In historical manner, new improvements, perspectives, modifications
are explained. In this course, developed and modified analysis methods are explained

and compared. Besides, other related works and structures briefly mentioned.

Moments method and its application fields are detailed. Importance of choice of
basis and testing functions explained and different approaches compared in order to
clarify advantages of using Galerkin’s method. Next, analysis of the printed
structures using MoM is described including the Green’s function formulation.
Spatial domain and spectral domain MoM formulation is done and computational
difficulties are discussed. As a remedy to these difficulties closed form Green’s

functions suggested with formulations.

Then, the proposed geometry of aperture coupled patch antenna [1] structure is
formed and the problem is established with the unknown current functions on the
boundaries. Then by applying MoM formulation, using boundary conditions on the
feedline, slot and the patch and carrying out necessary derivations integral equations
are obtained. These integral equations are used to derive MoM matrix, which is used

to find current distributions on the boundaries with excitation vector. Resulting
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current distribution is used to find S11 parameter of the antenna by applying Prony’s
method [42]. Same calculation procedure is repeated to learn antenna’s

characteristics in different frequencies.

Slot coupled patch antennas have some important parameters such as slot length, slot
position, stub length etc. These parameters can be changed in order to coarse or fine
tune the antenna, or to change the coupling from feedline to the patch. Finally,
antenna performance and characteristic changes are investigated by carrying out a
parametric analysis. In this parametric analysis, antenna is modeled; current
distributions are obtained and demonstrated comparatively with the HFSS® outputs.
Then S11 parameters are calculated and given in comparison tables including
HFSS®outputs and solutions reported in the literature. As a result of the parametric
analysis, antenna performance changes based on the geometrical modifications are
demonstrated. The result of the parametric analysis yielded very similar behaviours
over the frequency band of the antennas. However, there was some amplitude or
phase mismatches between our results and the available in the literature. This was
because, this study applied a different method from other studies analysing the same

structure.

In order to carry out calculations of this study, MoM is preferred over FEM which is
a solution method of HFSS®™. This is because, this study utilizes closed form Green’s
functions as build stone of the problem. Using MoM with the Galerkin’s method
results symmetric MoM matrices. This simplifies the computations and decreases the
order of unknowns. Each final equation is an inner product term which is a 4-
dimensional integral. Two of the integrals are from the definition of the inner product
and two of them are from the closed-form Green’s functions. Choosing the basis
functions as rooftops, the two of the integrals which are called as convolution
integral over testing and basis functions can be carried out analytically. Then the

final equation becomes a 2-dimensional integral equation.
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However, FEM is a more generic solution technique. Its systematic generality of the
method makes it possible to construct general purpose programs for solving wide
range of problems. For a specific planar geometry problem it would require a great
deal of work and computations. In this method meshing and dicretization is much
harder tasks. Preparing the data and generating grids for FEM are very time
consuming phases. Additionally, by applying MoM, problem of multi-planar 3-
dimensional geometry is reduced to a problem of coupled 2-dimensional geometries.
Hence, meshing is done only for 2-dimensional geometries. On the other hand, FEM
would require the solution for all media. HFSS® is industrial software which is
intended to solve all type of EM problems. It’s a generic problem solution tool and,

uses FEM which is a more generic solution technique.

In conclusion, slot coupled patch antenna is analyzed using closed form Green’s
functions in conjunction with MoM. Different structures from the literature are
solved and analyzed in comparison with our results and HFSS®. As a result of these
analyses, very close results are obtained to previously accomplished studies, which
verify our method and MoM code. These results and reflection coefficient
parameters are demonstrated for feedline and for different locations of the patch in

the plots.

6.2 Future Work

As a continuum of this study, geometry could be changed in order to allow dual
polarized radiation from the antenna. To do that, two orthogonal slots are required
between feedline and the patch. The x and y-directed narrow slots induces y-and x-
directed currents respectively on the patch and these currents create dual-polarized
radiation. Similarly, study of multiple slotted and circular slot shaped antennas could
be carried out for the sake of comparison. This study ends with the calculation of
surface currents and scattering parameters for the structure. Radiation pattern

calculations are reserved for the future work.
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APPENDIX A

CALCULATION OF THE CONVOLUTION INTEGRAL
OVER BASIS AND TESTING FUNCTIONS

In utilizing MoM, the choice of basis and testing functions are very important. Since
Galerkin’s method of moment is employed in this study, in which the basis and

testing functions are the same, the resulting matrix is symmetric.

If closed-form Green’s functions in the spatial domain are used, then each inner
product term yields a four dimensional. In order to overcome this computational
burden, change of variable method is used. In this way, it can be shown that the
convolution over the Green’s function and the basis function can be transferred to the
convolution over testing and basis function. Hence, choice of basis function must be
done in way such that their convolution integral can be carried out analytically. Then

each inner product term becomes only a two dimensional integral.

As a result, the mathematical definitions of shifted testing function and its derivative,
basis function and its derivative, source function and its derivative are used during
the calculations. Because rooftop basis and testing functions are used in this study,

definitions are written down mentioned above.

Basis function:
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1

wh (1- nh+x] (n—1)h, <x<nh
an(x,y): #[l+n —x] nhxéxé(n+1)hx

X

0

Derivative of the basis functio
1
wh_
d 1
—J _(x,y)=9—
dx X"( y) wh_
0

Shifted testing function:

X

Jo(x—1,y—v)=

X

Derivative of the shifted test

%Jm(x—u,y—v) =

Source function:

-

W}%[(Hm)hx —x+u]

elsewhere

n:
(n—l)hx <x<nh_ , |y|£%
nh,<x<(n+1)h, |y|£%

elsewhere

m)h, +x—u] (m=1)h +u<x<mh +u

0 elsewhere

ing function:

1
— (m=1)h +u<x<mh +u ,
wh,
1
—_— mh +u<x<(m+1)h +u
wh,
0 elsewhere

122

y=u 5

mh +u<x<(m+)h+u ,

w
<

=i

A.l

A2

A3

A4



W_—}jx(hx+x) ~h <x<0 |y|gE
1
JS(X,y): W(hx—x) OSXShX R |y|£% AS
0 elsewhere

Derivative of source function:

| w
—_— —h <x<0 , <—
wh, = |y| 2
d 1
—J = — 0<x<h , <—
dx s (X,y) th X X |y| 2 A.6
0 elsewhere

For the feed microstripline, formulation results in an equation with four inner product
terms. This inner product terms consist of the convolution integrals of:
1. basis function with testing function,
i1.  derivative of basis function with derivative of testing function,
1.  basis function with source function,

1v. derivative of the basis function with derivative of the source function.

Since functions mentioned above are piecewise continuous, convolution integrals can

be calculated in suitable regions. Defining the following notations will simplify the

calculations:

BU =(n+1)hx , BC =nhx , BL=(n—1)hx
TU =u+(m+1)hx , TC =u+mhx , TL=u+(m—1)hx
SU = hx , SC=0 , SL =—hx

where TP: Test Positive (left part of the testing function),

TP: Test Negative (right part of the testing function),
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BP: Basis Positive (left part of the basis function),
BN: Basis Negative (right part of the basis function),
SL: Source Left (left part of the source function) and
SR: Source Right (right part of the source function).

i.  Convolution of basis function with the testing function

me,G;;*Jnx = dudvG; u,v dxdmex(x—u,y—v)Jnx(x,y) A7
(1,v)

a. Region 1: BL<TU <BC

In this region the shaded area in Figure 1, [;, is calculated.

TU
I,= | axTNBP AS
BL

Figure A.1 Region 1 of the convolution over testing and basis functions.

b. Region 2: BC<TU <BU

In this region the shaded area in Figure 2, I;, can be calculated by summing integrals

12, 13 and I4.
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=L+ 13+ 14,

A9
e
1, = [ axTPBP A.10
BL
BC
I, = [ dxTNBP il
e
TU
I,= [ dxTNBN A2

BC

TL BL TC BC TU BU

Figure A.2 Region 2 of the convolution over testing and basis functions.

¢. Region3: BC<TC<BU

In this region the shaded area in Figure 3, I can be calculated by summing integrals
15, 16 and 17.
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I=15+ 1+ I A.13

BC

I, = [ dxTPBP A4
L
TC

I, = [ dxTPBN A5
BC
BU

I, = | dxTNBN A16

e

Figure A.3 Region 3 of the convolution over testing and basis functions.

d. Region 4: TC <BU

In this region the shaded area in Figure 4, I5 as:

BU
I, = [ axTPBN AT

TL
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BL BC

Figure A.4 Region 4 of the convolution over testing and basis functions.

In these all 4 regions, there are 4 kinds of integrals with changing boundaries. These

4 kinds of integrals can be written down for parametric boundaries as below:

2

X 3 3 2
| axTvBP = : {—xz_x‘ +[(m+n)hx+u]x2;x]

2

5 (wh,) 3 A18
+[(1+m)hx+u](l—n)hx(x2—x])}
deTPBP— 1 {xj—x,3+[(2 m—n)h u]xzz_x'z

- 2 - - x
(wh) L 3 2 A19
+[(1=m)h —u](1=n)h,(x,~x,)}
% 1 PR 2 —x
IdeNBNZ 2{#—[(2+m+n)hx+u] 22 !
e (wh) L 3 A.20

+[(l+m)hx +u](1+n)hx (x2 —X, )}
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% 33 2 2
[ axTPBN = 1 { 20 ()b 4 |2
3 2

e (whx)2
+[(1—m)hx —u](1+n)hx (x2 —-X )}

A.21

ii. Convolution of derivative of the basis function with derivative of the

testing function

<ime’Gq *i']nx>

dx dx
d d A.22
=\l dudvG (u,v)||dxdy—J (x—-u,y—-v)—J (x,
[[ducrG, () [ dxdy—=, (x =,y =v)—= . (x.)
a. Region 1: BL<TU<BC
In this region, the shaded area in Figure 5, I, is calculated as:
U
I, = [ axTNBP A23
BL

BC BU

Figure A.5 Region 1 of the convolution over derivative of testing and basis functions.

b. Region 2: BC<TU <BU

In this region, the shaded area in Figure 6, I is calculated as the sum of; I, Is and 14,
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I=1,+1I,+1, A.24

e

1, = [ dxTPBP A25
BL
BC

I, = [ dxTNBP A.26
e
TU

I,= [ dxTNBN A-27
BC

BU

Figure A.6 Region 2 of the convolution over derivative of testing and basis functions.

¢. Region3: BC<TC<BU

In this region, the shaded area in Figure 7, I is calculated as the sum of, Is, Is and I7,

I=I,+1,+1, A.28
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BC
Iy = [ dxTPBP A29

TL

c

Io= [ dxTPBN A.30
BC
BU

I, = | dxINBN A31

IC

BL TL BC

Figure A.7 Region 3 of the convolution over derivative of testing and basis functions.

d. Region 4: TC <BU

In this region, the shaded area in Figure 8, I, is calculated as:

BU
Iy = [ axTPBN A32
L
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BL BC

Figure A.8 Region 4 of the convolution over derivative of testing and basis functions.

In these all 4 regions, there are 4 kinds of integrals with changing boundaries. These

4 kinds of integrals can be written down for parametric boundaries as below:

J' dxTNBP = — (W}ll v (x,—x,) A33
j dxTPBP = (W}llx ? (x,—x) A34
:j:deNBN = (W}llx (%, —x) A.35
:j:dePBN =-— (W}ll -(x,—x) A36

iii.  Convolution of basis function with source function
<me, G4 *JS> = J.J.dudvai (u,v) J.J.dxdmex (x—u,y-v)J,(x,») A.37
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a. Region 1: SL<TU<SC

In this region, the shaded area in Figure 9, I, is calculated as:

TU
I, = [ axTNSL A38

SL

i \\ TU

SC SU

Figure A.5 Region 1 of the convolution over derivative of testing and basis functions.

b. Region 2: SC<TU<SU

In this region, the shaded area in Figure 10, I is calculated as the sum of, I, 15 and I,

I=1,+1I,+1, A.39
TC

I, = [ dxTPSL A.40
SL
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SC
I, = [ dxTNSL A4l

e

TU
I,= [ dxTNSR A42

Ne

SC TU SU

Figure A.6 Region 2 of the convolution over derivative of testing and basis functions.

¢. Region 3: SC<TC<SU

In this region, the shaded area in Figure 7, I is calculated as the sum of, Is, Is and I7,
I=I,+1,+1, A43

SC
Iy = [ axTPSL A4
TL
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e
I, = [ dxTPSR A45

Ne

SU
I, = [ dxTNSR A.46

e

SL

Figure A.6 Region 2 of the convolution over derivative of testing and basis functions.

d. Region 4: TC <SU

In this region, the shaded area in Figure 8, I, is calculated as:

SU
Iy = [ dxTPSR A47

TL
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SL

TL SU TC TU

Figure A.8 Region 4 of the convolution over derivative of testing and basis functions.

In these all 4 regions, there are 4 kinds of integrals with changing boundaries. These

4 kinds of integrals can be written down for parametric boundaries as below:

2 3 3 2 2
s [ = g
: (wh.) 3 2 A48

+[(1+m)hx +u]hx (x, —xl)}

X2 3 3 2 2
| axTPSL=- L {xz o [(2-m)h, —u |2
5 (wh,) 3 2 A49

+[(1—m)hx —u]hx (x, —x, )}

X3 3 3 2 2
| dxTNSR = : 2{x2—x] ~[(2+m)h, +u]2 0
! (wa,)' | 3 2

+[(1+m)hx +u]hx (x, —x, )}

A50
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% 1 ¥y 22— x>
[ dxTPSR = 2{—2 Lt [mh, +u] 21
’ (wh,) 3 2

+[(1—m)hx —u]hx (x, —x, )}

A51

iv. Convolution of derivative of the basis function with derivative of the

source function

<%Jm,Gq *%Js> =JJ-dud\Gq (u,v)ﬂdxaﬁ/%Jm (x—u,y—v)%]s (x,5) A.52

a. Region 1: SL<TU<SC

In this region, the shaded area in Figure 9, I, is calculated as:

TU
I, = [ axTNSL A53

SL

....................

SL TU SC SU

SOURCE

Figure A.5 Region 1 of the convolution over derivative of testing and basis functions.

b. Region 2: SC<TU<SU
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In this region, the shaded area in Figure 10, I is calculated as the sum of, I,, Is and I,

I=1,+I,+1,

e
I, = [ dxTPSL

SL

SC
I, = [ dxTNSL

e

TU
I,= [ dxTNSR

Ne

TC SC TU

SU

A.54

A.55

A.56

A.57

SOURCE

Figure A.14 Region 2 of the convolution over derivative of testing and derivative of source basis

functions.

¢. Region 3: SC<TC<SU

In this region, the shaded area in Figure 7, I is calculated as the sum of, Is, Is and 17,
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I=I,+1,+1, A.58

SC

Iy = [ axTPSL A59
TL
e

I, = [ dxTPSR A.60
SC
SU

I, = [ dxTNSR A.61

e

I SOURCE
SC

Figure A.14 Region 2 of the convolution over derivative of testing and derivative of source basis
functions.

d. Region 4: TC <SU

In this region, the shaded area in Figure 8, Is, is calculated as:
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SU
Iy = [ dxTPSR A62

TL

SL

SOURCE

Figure A.14 Region 2 of the convolution over derivative of testing and derivative of source basis functions.

In these all 4 regions, there are 4 kinds of integrals with changing boundaries. These

4 kinds of integrals can be written down for parametric boundaries as below:

J' dxTNSL = (W}ll ? (x,—x,) A.63
IdePSL =- (W;l (%, —x) A.64
IdeNSR = (W}llx -(x,—x) A.65
:j: dxTPSR = —W(x2 -x,) A.66
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APPENDIX B

PRONY’S METHOD

Prony analysis has been shown to be a viable technique to model a linear sum of
complex exponentials to signals that are uniformly sampled [42]. The Prony method
was developed by Gaspard Riche, Baron de Prony in 1795 in order to explain the
expansion of various gases [42]. In his original work, Prony suggested fitting a sum
of exponentials to equally spaced data points and extended the model to interpolate at
intermediate points. This method is not only used for a signal analysis but also for
the system identification method, which is widely used in the areas of power system
electromechanical oscillation, biomedical monitoring, radioactive decay, radar,
sonar, geophysical sensing and speech processing. Different form oscillatory signal
analysis techniques such as Fourier analysis, Prony analysis has the advantage of
estimating damping coefficients apart from frequency, phase and amplitude. On the
other hand, it best fits a reduced-order model to a high-order system both in time and

frequency domains [42].

In this study, using the current distributions over the lines as sampled data, the
reflected wave coefficients and incident wave coefficients can be found and the

sampled data can be formulated as given below:

I(x)= e’ +c,e™ B.2
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Firstly, a p-exponent discrete function should be defined as:
p
][X] = Z Ckeﬂkx B.2

Where ¢, and B, are the unknown complex parameters which will be found out

after analysis. It is important to note that the sampled data is gathered from equally

spaced points over the line as:

o length of line "

Nil where 0 <n < N +1 (N: number of basis) B.3

and

length of line

B

z, =e N+l B.4

By substituting (B.3) and (B.4) into (B.2), below equation is obtained:

I[n];chzZ B.5

p
k=1

Matrix equivalent of (B.5) is depicted in (B.6).
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_ o[ 1ol
z oz ..oz, oz ¢ 1[[1]]
1 1 1 1
Z, z, Z, z, c, B
- B.6
' I
B A A o

Hence (B.5) can be approached as the solution of some homogeneous linear constant

coefficient difference equation. Polynomial ¢(z) can be defined in order to find form

of this difference equation.

o) =] z-2) b

Where, zcs are the roots of the polynomial. Same polynomial can also be defined

below:

H2) =S alm

Where a[m] ‘s are complex coefficients to be found and a[0]=1. In order to find
these coefficients, (p+1) equations are multiplied by a[p], a[p-1], ...,a[l] and 1
respectively. Then results are added. This process should be repeated (N+1-p) times

and the following (N-p+2) equations are obtained.
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[ ~1[p] ]

1[0 1] 1[p=2) 1[p-1]] ap]
11] 12 Ip=1 1A |alp-1])_ _I[].?H] B9
I[N—ill—p] I[N+.2—p] 1[]\}—1] I[M “m _;[I][v]\jl] |

In general N>2p , hence, using the pseudo-inverse of the / matrix, ajm]’s are found.
Then the roots of (B.8) can be gathered by substituting ajm]’s in that equation. If zs

are known, f3, ‘s can be obtained as described in (B.4). Using the equation (B.6), ¢,

‘s can also be found.
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APPENDIX C

SINGULARITY EXTRACTION

As r—0, due to the direct term of the Green’s functions shown in (C.1), a singularity

occurs.

— jkr
N e Tkt
GEZan C1
n=1 I"n

In order to remove the singularity, first double integration in (4-20) is performed by

extracting the direct term from the total equation. Then, the direct term is expanded

using Taylor series expansion. e’ about r=0 can be expressed as in (C.2):

. 2 _ 3
e =14 (= jkr) + Jzk'r) n "3"'” C2

By dividing (C.2) to 1, a direct term can be ontained in the right hand side of (C.3)

et 1 0, 2 R

PR Ry 3]
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Then, the right hand side of (C.3) can be added to the double integration except from
first term. When the source and observation points are at z=0, first term of the right

hand side of (C.3) can be represented as in (C.4) in two dimensions.

x>+ y

Then, this representation is used in the double integration as [27]:

Y3 X

jj;dx‘{y:%log _XI+W +, log ﬂchfW
" \/m _x2+\/x22+y22_ _x]+\/x]2+y]2 a

- C5

+x, log P4 +\jx22 +y/ +x log W +\jx12 + 3,
2 |
—V, X% 0 —y, xS+

(C.5) completes the singularity extraction problem, and it can be used in double

integration in order to include the direct term.
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