

HARDWARE IMPLEMENTATION OF
INVERSE TRANSFORM & QUANTIZATION AND

DEBLOCKING FILTER FOR
LOW POWER H.264 DECODER

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÖNDER ÖNSAY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2009

Approval of the thesis:

HARDWARE IMPLEMENTATION OF

INVERSE TRANSFORM & QUANTIZATION
AND DEBLOCKING FILTER

FOR LOW POWER H.264 DECODER

submitted by ÖNDER ÖNSAY in partial fulfillment of the requirements for the
degree of Master of Science in Electrical and Electronics Engineering
Department, Middle East Technical University by,

Prof. Dr. Canan Özgen _________
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Đsmet Erkmen _________
Head of Department, Electrical and Electronics Engineering

Prof. Dr. Gözde Bozdağı Akar
Supervisor, Electrical and Electronics Engineering Dept., METU _________

Examining Committee Members:

Prof. Dr. Murat Aşkar ______________
Electrical and Electronics Engineering Dept., METU

Prof. Dr. Gözde Bozdağı Akar ______________
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. A. Aydın Alatan ______________
Electrical and Electronics Engineering Dept., METU

Assist. Prof. Dr. Cüneyt Bazlamaçcı ______________
Electrical and Electronics Engineering Dept., METU

Fatih Say, M. Sc. ______________
SST ABTM, ASELSAN

 Date: 09.09.2009

 iii

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

 Name, Surname: Önder ÖNSAY

 Signature :

 iv

ABSTRACT

HARDWARE IMPLEMENTATION OF
INVERSE TRANSFORM & QUANTIZATION AND

DEBLOCKING FILTER FOR
LOW POWER H.264 DECODER

Önsay, Önder

M.Sc., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Gözde Bozdağı Akar

September 2009, 151 pages

Mobile devices became indispensable part of business and entertainment world.

Applications running on these devices tend to increase day by day causing more

battery power consumption. Video decoding is one of the critical applications

running on a mobile device. H.264/AVC is an emerging video compression

standard that is likely to be used widely in multimedia environments. As a mobile

application, H.264 decoder has a complex structure which results high power

consumption. In order to reduce this power demand, power consuming parts of the

algorithms are required to be optimized in terms of power consumption, like

deblocking filter and inverse transform & quantization. Data reuse and reduced

processing time for moderate quality video are some of the methods to reduce

power consumption. In this thesis, a deblocking filter architecture and inverse

transform/quantization architecture with efficient data reuse and reduced memory

access for low power 264/AVC decoder is proposed and implemented on Spartan-3

series FPGA. Proposed architectures obtained moderate processing speed with

minimum external memory access.

 v

Keywords: H.264, Power-efficient Codec, Deblocking, Transform & Quantization,

Decoder Hardware

 vi

ÖZ

DÜŞÜK GÜÇ TÜKETĐMLĐ H.264 ÇÖZÜCÜ ĐÇĐN
TERS DÖNÜŞÜM & NĐCELEME
VE BLOKLAMA SÜZGECĐNĐN

DONANIMSAL GERÇEKLENMESĐ

Önsay, Önder

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Gözde Bozdağı Akar

Eylül 2009, 151 sayfa

Taşınabilir cihazlar iş ve eğlence dünyasının vazgeçilmez bir parçası

durumundadır. Bu cihazların üzerinde birçok uygulama çalışmakta, her geçen gün

bunlara yenileri eklenmekte ve daha fazla batarya gücü tüketimine sebep

olmaktadır. Video çözücü bu uygulamalardan biridir. H.264 birçok çoklu ortam

uygulamasında kullanılacak yeni bir video sıkıştırma standardıdır. H.264 video

çözücü taşınabilir cihazlar için karmaşık bir yapıya sahiptir ve bu nedenle bunu

gerçekleyen donanım daha fazla güce ihtiyac duyar. Bu ihtiyacı düşürmek için

algoritmada fazla güç tüketimine neden olan bloklama süzgeci ve ters dönüşüm &

niceleme gibi parçaları düşük güç tüketimli uygulamalar için uygun hale getirmek

gerekmektedir. Veriyi yeniden kullanım, orta kaliteli video için düşük işleme

zamanı düşük güç tüketimi için kullanılan yöntemlerden birkaçıdır. Bu tezde,

veriyi verimli şekilde yeniden kullanabilen ve düşük hafıza erişimi olan bir

bloklama süzgeç ile ters dönüşüm & niceleme mimarileri ortaya konmakta ve

Spartan-3 serisi FPGA üzerinde gerçeklenmektedir. Ortaya konan mimariler makul

işlem zamanı ve minimum harici bellek erişimi ile çalışabilmektedir.

 vii

Anahtar Kelimeler: H.264, Güç Verimli Kodlayıcı-çözücü, Bloklama, Dönüşüm &

Niceleme, Çözücü Donanımı

 viii

To My Family and Gülşah…

 ix

ACKNOWLEDGEMENTS

I would like to express my appreciation to my supervisor Prof. Dr. Gözde Bozdağı

Akar for her patience, guidance, tolerance and friendship throughout the work.

I would like to thank to my colleagues for their assistance and technical support. I

would like to thank my company ASELSAN for the use of technical resources and

facilities that I used thorughout thesis work .

I would also like to express my thanks to my dear friends Ümit Đrgin and Gökhan

Güvensen for their invaluable academic motivation, encouragement and help

throughout my academic life in METU.

Finally, I would like express my deepest thanks to my sister Özlem, for teaching

me how to read and write and extraordinary support in every situation and to

Gülşah Kafadar for being by my side.

 x

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ ...vi

ACKNOWLEDGEMENTS ... ix

TABLE OF CONTENTS ..x

LIST OF TABLES ...xiii

LIST OF FIGURES..xiv

LIST OF ABBREVIATIONS ...xvii

1. INTRODUCTION .. 1

1.1 General .. 1

1.2 Scope of the Thesis.. 4

1.3 Outline of the Dissertation .. 5

2. OVERVIEW OF H.264/AVC RECOMMENDATION 6

2.1 Introduction ... 6

2.2 H.264 Encoder & Decoder Structure... 8

2.3 Supported Video Format ... 9

2.4 Macroblock and Frame Structure .. 9

2.5 Intra Prediction & Coding ... 11

2.6 Inter Prediction & Coding ... 12

2.7 Transform & Quantization .. 14

2.8 Deblocking Filter... 15

2.9 Entropy Coding ... 16

2.10 Encoding & Decoding Process.. 16

2.11 Profiles... 17

 xi

3. FORWARD AND INVERSE TRANSFORM & QUANTIZATION 18

3.1 Introduction ... 18

3.2 Theoretical Background .. 20

3.2.1 Complete Transform & Quantization Process in H.264.................. 20

3.2.2 Transform & Quantization of a Macroblock 24

3.3 Hardware Architectures in Literature.. 37

3.4 Proposed Implementation.. 39

3.4.1 Proposed Representation for Coefficients 39

3.4.2 System Architecture .. 47

3.4.3 Preparation of Input Macroblock Coefficients 49

3.4.4 Serial Data Transfer... 49

3.4.5 Memory Organization ... 50

3.4.6 Inverse Transform & Quantization Architecture............................. 52

3.5 Results ... 72

4. DEBLOCKING FILTERING... 75

4.1 Introduction ... 75

4.2 Theoretical Background .. 77

4.2.1 Edge Level Adaptivity... 78

4.2.2 Sample Level Adaptivity... 79

4.2.3 Slice Level Adaptivity... 81

4.2.4 Filtering Structures .. 82

4.3 Deblocking Filter Architectures in Literature ... 87

4.3.1 Data Reuse Analysis of Processing Orders in Literature 89

4.4 Implementation.. 106

4.4.1 System Architecture .. 106

4.4.2 Preparation of Input Frame and Control Parameters..................... 108

4.4.3 Serial Data Transfer... 110

4.4.4 Boundary Strength Determination... 111

4.4.5 Deblocking Filtering.. 115

4.5 Results ... 125

5. CONCLUSIONS AND FUTURE WORK... 129

 xii

REFERENCES.. 132

APPENDICES... 137

A. FPGAs AND DESIGN FLOW... 137

A.1 Field Programmable Gate Arrays.. 137

A.2 Structure of FPGA... 138

A.2.1 Configurable Logic Blocks (CLB) ... 138

A.2.2 Distributed Memory Blocks ... 139

A.2.3 Arithmetic Processing Blocks .. 140

A.2.4 Digital Clock Management... 140

A.2.5 Embedded processors ... 141

A.2.6 I/O Blocks... 141

A.3 FPGA Design Flow .. 142

A.3.1 HDL Synthesis and Simulation .. 142

A.3.2 Constraint Determination ... 142

A.3.3 Place & Route... 143

A.3.4 Embedded Processor Integration.. 143

A.3.5 On-chip Debug ... 144

B. HARDWARE DESIGN CONSIDERATIONS .. 145

B.1 Spartan-3 Development Board .. 145

B.2 FPGA Design .. 148

B.3 Embedded Processor Design ... 149

B.4 Serial Communication... 150

B.5 Programming Device... 151

 xiii

LIST OF TABLES

TABLES

Table 3-1 Quantization step size values for each QP [6] 29

Table 3-2 MF values for given QP and position [9] ... 31

Table 3-3 V values for given QP and position [6]... 33

Table 3-4 Maximum values of coefficients and PSNR for given QP 45

Table 3-5 Input and output memory organization .. 51

Table 3-6 Frame memory organization .. 52

Table 3-7 Recommended operating clock frequency values 73

Table 4-1 bS determination conditions [6] .. 79

Table 4-2 Values of α and β coefficients [6] ... 81

Table 4-3 tc0 coefficient values for given QP [6] .. 82

Table 4-4 Data access types of 4x4 blocks with basic processing order 91

Table 4-5 Data access types for 1-D processing order proposed by [18].............. 93

Table 4-6 Data access types for 1-D processing order proposed by [13].............. 95

Table 4-7 Data access types for 2-D processing order proposed by [20].............. 97

Table 4-8 Data access types for 2-D processing order proposed by [35].............. 99

Table 4-9 Data access types for 2-D processing order proposed by [34]............ 101

Table 4-10 Data access types for 2-D processing order proposed by [19].......... 103

Table 4-11 Data access types for 2-D processing order proposed by [16].......... 105

Table 4-12 Parameter memory organization ... 112

Table 4-13 Recommended operating clocks ... 127

Table 4-14 Performance comparison .. 127

 xiv

LIST OF FIGURES

FIGURES

Figure 2-1 H.264 encoder structure... 8

Figure 2-2 H.264 decoder structure... 8

Figure 2-3 4:2:0 sampled video frame... 9

Figure 2-4 Macroblock structure for 4:2:0 sampling format................................. 10

Figure 2-5 A slice configuration for a QCIF (176x144) frame 10

Figure 2-6 Intra16x16 prediction modes ... 11

Figure 2-7 Intra4x4 prediction modes ... 12

Figure 2-8 Variable prediction block sizes [9] .. 13

Figure 2-9 Interpolation for half-pixel accurate motion estimation 14

Figure 3-1 Transform and quantization process.. 21

Figure 3-2 Scaling and inverse transform process .. 23

Figure 3-3 Transmission order of a macroblock [9].. 24

Figure 3-4 Quantization step size and approximate bitrate with respect to QP=0 29

Figure 3-5 Part of 4:2:0 CIF input frame taken from “foreman” sequence........... 46

Figure 3-6 Output of decoder for QP=22 (left) and QP=35 (right)....................... 46

Figure 3-7 System architecture.. 48

Figure 3-8 Processing hardware architecture .. 53

Figure 3-9 Upper: Input DC coefficient block. Lower: Buffer content 54

Figure 3-10 Inverse Hadamard transform unit state transition diagram................ 57

Figure 3-11 Addition structures for (3.50) .. 58

Figure 3-12 Scalar look-up table unit.. 60

Figure 3-13 Multipliers for scaling coefficients.. 61

Figure 3-14 Controlling state machines for inverse quantization 62

Figure 3-15 Multiplication with V scalars ... 63

Figure 3-16 Loading registers with multiplication results 63

Figure 3-17 Addition structures for (3.62) .. 67

 xv

Figure 3-18 Addition structures for (3.63) .. 68

Figure 3-19 Inverse transformed samples (X) loaded to 256-bit register 69

Figure 3-20 Right-shift operation to obtain post scaled samples 69

Figure 3-21 Condition check for rounding.. 70

Figure 3-22 Write access for obtained residual samples 71

Figure 3-23 System performance evaluation for intra16x16 mode....................... 72

Figure 3-24 System performance evaluation for other modes 73

Figure 3-25 Hardware utilization in FPGA... 74

Figure 4-1 Original and reconstructed part of frame “foreman” for QP=28......... 76

Figure 4-2 Part of frame after deblocking filtering ... 76

Figure 4-3 Vertical 4x4 block edges of a macroblock .. 77

Figure 4-4 Horizontal 4x4 block edges of a macroblock 78

Figure 4-5 Samples around 4x4 block edge boundaries.. 79

Figure 4-6 Characteristic of tc0 with increasing QP for given bS.......................... 83

Figure 4-7 Flow chart of filtering decision for each edge 86

Figure 4-8 Basic processing order... 90

Figure 4-9 1-D processing order proposed by [18] ... 92

Figure 4-10 1-D processing order proposed by [13] ... 94

Figure 4-11 2-D processing order proposed by [20] ... 96

Figure 4-12 2-D processing order proposed by [35] ... 98

Figure 4-13 2-D processing order proposed by [34] ... 100

Figure 4-14 2-D processing order proposed by [19] ... 102

Figure 4-15 2-D processing order proposed by [16] ... 104

Figure 4-16 System architecture for deblocking filtering 107

Figure 4-17 Encoder software architecture ... 109

Figure 4-18 Decoder software architecture ... 110

Figure 4-19 Flow chart of boundary strength determination process.................. 114

Figure 4-20 Deblocking filter hardware architecture .. 115

Figure 4-21 Threshold coefficient look-up table unit ... 116

Figure 4-22 Structure of a filter block... 117

Figure 4-23 Vertical and horizontal filtering of pixels around 4x4 block edge .. 118

Figure 4-24 Comparison logic for filtering decision constraints......................... 118

 xvi

Figure 4-25 Filtering enable signals .. 119

Figure 4-26 Filtering structures for p0
’ and p1

’ used for the case bS < 4............. 120

Figure 4-27 Filtering structures for p0
’
, p1

’
, and p2

’ used for the case 4bS = 121

Figure 4-28 Operation of dataflow control unit ... 124

Figure 4-29 Decoder output for QP=35 .. 125

Figure 4-30 Filtered image for QP=35 .. 126

Figure 4-31 Logic resource utilization in FPGA .. 128

Figure A-1 Standard CLB structure .. 138

Figure A-2 General structure of FPGAs.. 139

Figure A-3 Distributed memory blocks among FPGA 140

Figure A-4 FPGA design flow ... 144

Figure B-1 Interfaces of FPGA on board [38] .. 146

Figure B-2 XC3S2000 Development Board [38].. 147

Figure B-3 Memory configuration .. 148

Figure B-4 Internal structure of embedded processor ... 150

Figure B-5 FPGA programmer [37] .. 151

 xvii

LIST OF ABBREVIATIONS

AVC Advanced Video Coding

bS Boundary strength

CABAC Context-based Adaptive Binary Arithmetic Coding

CAVLC Context-based Adaptive Variable Length Coding

CIF Common Intermediate Format

DCT Discrete Cosine Transform

DSP Digital signal processor

DVD Digital Video Disc

DWT Discrete Wavelet Transform

FIR Finite impulse response

FPGA Field programmable gate array

HD High Definition

HDL Hardware description language

IC Integrated circuit

IEC International Electrotechnical Commission

ISO International Organization for Standardization

ITU International Telecommunication Union

JPEG Joint Photographic Experts Group

JTAG Joint Test Action Group

JVT Joint Video Team

KLT Karhunen-Loeve Transform

LUT Look-up table

MF Multiplication factor

MPEG Motion Picture Experts Group

NAL Network Abstraction Layer

PLD Programmable logic device

 xviii

PSNR Peak signal-to-noise ratio

QCIF Quarter Common Intermediate Format

QP Quantization parameter

RAM Random access memory

ROM Read-only memory

SAD Sum of absolute differences

SD Start Definition

UART Universal asynchronous transmitter receiver

VCEG Video Coding Experts Group

VCL Video Coding Layer

VHS Video Home System

VLSI Very large scale integration

1

CHAPTER 1

INTRODUCTION

1.1 General

Available bandwidth and limited storage resources made video compression

indispensable part of video technologies. Researchers focused on this subject and

developed various standards for compression of raw video content. In order to

realize these applications, various hardware and software environments have been

released. Mobile devices such as cellular phones and PDA’s, and media players

running on PC are some examples.

Since 1991, certain video compression standards have been developed by the two

institutes ISO/IEC and ITU-T. MPEG-1, MPEG-2 and MPEG-4 are some

examples which are developed by ISO whereas ITU-T developed H.261, H.263,

H.263+ standards. In each new standard lower bitrate and higher subjective quality,

in other words better rate-distortion performance, was aimed. Some of these

standards are currently used in many multimedia environments. After development

of these standards, H.264/AVC was released by JVT, which is a group formed by

video coding experts from ISO and ITU-T. H.264/AVC is aimed to be an optimum

compression standard that has extremely low bitrate, higher quality, and high

adaptation to different network environments. H.264/AVC is further open to new

extensions such as multi-view and scalable codec extensions.

Implementation of H.264 is well done in software environments. Open source

reference software [1] is available and updated frequently. Algorithms related to

2

rate-distortion optimization are well improved. Another variable to be optimized is

complexity which started to become important after the codec structure became

highly complex for a real-time or mobile implementation. In order to solve the

problem, efficient hardware architectures with effective parallel processing and

pipelining capabilities started to be developed. For hardware implementation,

application specific integrated circuits (ASIC) dedicated for H.264 encoder/decoder

implementation are designed, in which dedicated hard processing blocks for each

function (motion estimation, transform coding, quantization, deblocking filtering

etc.) are used for processing.

Power effective solutions are also proposed to support mobile environments for

H.264 decoder. Design for a low power H.264 decoder system requires special

attendance to certain design aspects. In general low power design can be

implemented by physical, architectural and algorithmic methods. [24]

Physical characteristic of silicon is always determinant on the performance of

designed hardware. Silicon technology of device affects power and processing

speed of the design. Also it determines the static and dynamic power consumption

due to transistor losses and switching respectively. Dynamic power consumption is

proportional with switching frequency, voltage and gate capacitance whereas static

power consumption increases with smaller transistor size due to process

technology.

Obviously hardware with higher operating frequency consumes more power than

the same hardware with low operating frequency. A low-power system should be

operated at a moderate frequency to fulfill performance and power requirements.

Voltage is also effective on power consumption. New generation ASIC, FPGA and

general purpose processors are designed to operate at lower core voltages whereas

the old ones operate at much higher voltages. Dynamic frequency and voltage

scaling, multiple voltages, multiple thresholds are some techniques to reduce power

3

consumption. Used gate count for the design may also be effective since every

switching gate is a capacitance that consumes power during charge and discharge.

Processing platform is significant to get benefit of these physical methods. For

application specific integrated circuits, total gate count is equal to required gate

count for the design. This eliminates power consumption due to redundant gates

which is a problem for FPGA, DSP and general purpose processor platforms. ASIC

is designed for a specific application and the design process is physical which helps

the designer to use the right operating voltage, frequency and resource to fulfill

requirements. For other platforms operating voltage is fixed and operating

frequency may not exceed a value which is not supported by the logic blocks

contained in the design.

The architecture designed for a specific application determines the performance in

terms of processing speed and power consumption. Hardware blocks with different

characteristics are effective on this determination. In terms of performance, for

instance, parallel processing blocks process concurrently more amount of data in a

specific time or concurrently do more processing on the same amount of data than

sequential processing blocks. Pipelined processing elements are also effective since

they process flow of data and outputs to next one for next process which allows

efficient data processing in every clock cycle time. In terms of power, for instance,

memory access consumes more than register access. On the other hand, external

memory access consumes more than internal memory access. Therefore data reuse

is significant to reduce external and internal memory access and use fewer

registers.

There are various low power implementations of H.264 decoder in the literature

that used the techniques mentioned above. Physical methods such as process

technology, clock gating and operating voltage reduction are used by [25], [11],

[13] and [14] to reduce power consumption. Architectural methods such as lower

memory use, pipelining and hardware reduction are used by [14], [13], [31], [16]

4

and [19]. In algorithm level, [25], [23] and [14] tried to modify the hardware

algorithm so that it can be implemented by architecture with lower power

consumption.

The methods mentioned above are the inputs to a design stage. The architecture is

designed to use the right processing blocks and connect them in a right way to

obtain the desired performance metric. Hardware algorithm is determinant on

architecture design. If architecture is designed according to the right algorithm and

implemented on the right processing platform, high performance, low power

consumption or efficient resource use is achieved.

1.2 Scope of the Thesis

The main objective of the study is to develop main building blocks of a low-power

H.264 decoder. As a starting point, inverse transform and quantization part is

selected since it is well defined by the standard and can be designed and tested

individually without the need for other building blocks. Low-power architecture

with reduced memory access is aimed for video with a limit for quantization

parameter.

On the other hand, deblocking filter is also selected to be analyzed and

implemented for a low-power design, which is the most power consuming part of

H.264 decoder (%34 of total power) [28]. Deblocking filter is again an independent

part of the decoder which can be designed and tested individually. Architecture

with reduced memory access, effective data reuse and sufficient processing speed

is aimed for moderate quality low-power applications.

5

1.3 Outline of the Dissertation

The order of the chapters in this thesis is similar to work undertaken. Totally it

consists of 4 further chapters and an appendix part.

In chapter 2, the history and overview of H.264 compression standard is

summarized. Main processing units in H.264 codec structure are briefly explained.

Chapter 3 focuses on forward and inverse transform quantization concept.

Theoretical background related to this chapter, conducted literature survey and

proposed architecture is explained in detail. Implementation details and results are

also given.

Fourth chapter focuses on deblocking filtering concept. Its explanation by the

standard, literature survey about proposed processing orders and architectures are

explained in detail. Proposed low-power implementation and obtained results are

given in detail. In third and fourth chapters theoretical information and

implementation are combined in the form of a detailed chapter to ease referencing

of implemented architecture to its theoretical requirement.

Finally, in fifth chapter, the thesis work is summarized and conclusions drawn from

the work are stated. Further studies that can be carried out on this subject are also

emphasized.

6

CHAPTER 2

OVERVIEW OF H.264/AVC

RECOMMENDATION

2.1 Introduction

Innovations in digital video applications influenced researchers to focus on video

compression techniques which are essential for transmission and storage of raw

video. On the other hand, transmission and storage techniques are also improved as

well, nevertheless in order to use high quality and high resolution instead of low

quality uncompressed video, video compression is still the key technology. Since

early 1990s, mainly two research groups worked on video compression and

developed several standards for specific applications. These are the ITU-T Video

Coding Experts Group (VCEG) and ISO/IEC Motion Picture Experts Group

(MPEG).

Firstly in 1990, H.261 [4] was developed by ITU-T. The purpose was compression

for video conferencing and video telephony applications. H.261 supported frame

sizes up to CIF (352x288). Based on gained experience, MPEG-1 [2] was

introduced by ISO/IEC as a solution for home multimedia applications. MPEG-1

allowed compression of VHS-quality raw digital video and Video CD’s (VCD).

7

After 3 years, MPEG-2 [3] was released by ISO/IEC as an improved version of

MPEG-1. In MPEG-2, prediction modes and entropy coding methods were

improved and support for interlaced video was provided. These improvements

made MPEG-2 a generic and worldwide video standard for various applications

that have different bitrate and quality requirements. Flexibility and interlaced video

support allowed MPEG-2 to be used for broadcast cable-TV, compression in digital

video discs (DVD), standard (SD) and high definition (HD) TV.

ITU-T released H.263 [5] in 1995, as an improved version of H.261 in terms of

compression performance. Motion estimation and entropy coding techniques firstly

introduced with H.263 have played pivotal roles for the development of next

generation compression standards. In order to support a wide range of video

content, with real-life and synthetic material, MPEG-4 Visual was standardized in

1999. MPEG-4 is an improved version of MPEG-1 and MPEG-2 in terms of

compression performance, error resilience and especially flexibility for supported

video content, such as natural video, 2D and 3D graphical objects.

After the commercial success of MPEG-1 and MPEG-2, and the compression

performance and flexibility achievements with H.263 and MPEG-4 respectively,

ISO and ITU-T decided to join in a group to develop a robust network-friendly

standard with better compression performance and open to further improvements.

Joint Video Team (JVT) formed by video coding experts of two leading groups,

released H.264/AVC (Advanced Video Coding) [6] in 2003, using the background

experience gained with the development of previous standards. H.264/AVC

outperforms MPEG-2 and MPEG-4 in terms of rate-distortion performance. [8]

Most of the processing units of H.264 coding structure are actually improved

versions of the ones used for previous standards. Motion compensated prediction to

reduce temporal redundancy, transform coding to reduce spatial correlation,

quantization for bitrate control and entropy coding are some examples. In order to

solve the problems encountered before, also new methods are introduced with

8

H.264, to enhance the performance of building blocks. Generally, a layered

structure is designed for H.264, to provide robustness and adaptability to different

network environments. It consists of a video coding layer (VCL) for compression

and a network abstraction layer (NAL) for network adaptation.

2.2 H.264 Encoder & Decoder Structure

Before explaining each of these blocks in detail, basic structures of H.264 encoder

and decoder are illustrated in Figure 2-1 and 2-2.

Figure 2-1. H.264 encoder structure

Figure 2-2. H.264 decoder structure

9

2.3 Supported Video Format

Interlaced (one of each two lines is scanned) or progressive (each line is scanned)

video with 4:2:0 sampling format and 8-bit pixel representation is supported by

H.264, as a default configuration. As illustrated in Figure 2-3, 4:2:0 sampled video

contains 2 chroma samples (Cb and Cr) for every 4 luminance samples. Therefore

horizontal and vertical resolutions of chrominance samples are half of the luma

sample resolution. Some profiles of H.264 also support 4:2:2, 4:4:4 sampling

formats (where chroma resolution is higher with respect to 4:2:0) and up to 12-bit

pixel representations.

Figure 2-3. 4:2:0 sampled video frame

2.4 Macroblock and Frame Structure

In H.264, frames are splitted into 16x16 blocks, called macroblock, which are the

main processed units for operations such as motion estimation & compensation,

transform & quantization and entropy coding. As illustrated in Figure 2-4, for 4:2:0

sampling format, a macroblock consists of 16x16 luma (Y) samples and 8x8

chroma (Cb and Cr) samples.

10

Figure 2-4. Macroblock structure for 4:2:0 sampling format

In H.264, frames are divided into macroblock groups, called slices. A slice may be

an entire frame whereas a slice may contain a single macroblock. Slices are

independently processed which may have different prediction and quantization

options. There are 5 different slice modes depending on prediction types: I (Intra),

P (Predicted), B (Bi-predictive), SI (switching I) and SP (Switching P).

Figure 2-5. A slice configuration for a QCIF (176x144) frame

11

2.5 Intra Prediction & Coding

Intra coding is applied to make benefit of spatial correlation between samples. It is

simply performed by prediction of a block using previously encoded upper and left

neighboring blocks. Size of the prediction blocks depends on the detail of the

frame. Parts with significant detail are usually coded using intra4x4 mode, whereas

smooth areas are coded using intra16x16 mode. This adaptation has significant

effect on bitrate reduction.

Prediction modes are defined for intra coding and one of them is selected for the

best representation of currently predicted block. Intra16x16 prediction modes are

illustrated in Figure 2-6. In vertical and horizontal modes prediction block is

formed by copying up and left neighbor samples to current macroblock

respectively. In DC mode, mean of upper and left samples are calculated and used

for prediction whereas a plane function of upper and left samples is used for plane

mode. As illustrated in Figure 2-7, similarly for intra4x4 there are 9 prediction

modes and neighboring samples are used to predict the block samples. The sum of

absolute difference (SAD) between a block and its prediction for each mode is

calculated and the one with minimum SAD is selected.

Figure 2-6. Intra16x16 prediction modes

12

Figure 2-7. Intra4x4 prediction modes

2.6 Inter Prediction & Coding

Temporal correlation is the main source of redundancy for video compression.

Since the similarity between adjacent frames is extremely high, reference frames

are used to predict the current frame by obtaining motion vectors. This process is

known as motion estimation. After motion vectors are determined, current frame

can be reconstructed using reference frames and motion vectors. In H.264, motion

estimation & compensation process is modified compared to previous standards.

Variable block-size, quarter-pel accurate motion estimation & compensation is

performed with ability of using multiple reference frames.

13

In H.264, multiple reference frames are used in order to obtain a better

representation of a block to be coded. In previous standards, there was only a single

reference frame for prediction. This technique results higher compression

performance for which a larger memory buffer is required.

In H.264, prediction block size is used instead of fixed block size. Block size varies

according to detail in motion. For detailed motion this approach has significant

effect on compression performance since detailed motion can be represented better.

As illustrated in Figure 2-8 [9], there are 7 prediction blocks. A two level method is

used to select the appropriate block. In first level, 16x16, 8x16, 16x8 and 8x8

blocks are used for motion estimation. If the best residual is obtained by 8x8 in the

second level 8x4, 4x8 and 4x4 modes are also tried for better representation. The

mode with the representation which results minimum SAD for residual is selected.

Figure 2-8. Variable prediction block sizes

In H.264 up to quarter-pixel accurate motion estimation is used. As shown in

Figure 2-9, prediction values at half-pixel sample points (ab, cd, ce, jk etc.) are

interpolated using FIR filtering of full-pixels (A, B, C, D, etc.). Similarly quarter-

pixel samples are found by averaging half and full-pel sample values. Then motion

estimation is conducted on interpolated samples. This approach provides better

prediction and results lower bitrate.

14

ab

J

K

A

C

E

G

B

D

F

H

L

M

jk

gh

lm

cd

ef

ce dfq

Figure 2-9. Interpolation for half-pixel accurate motion estimation

2.7 Transform & Quantization

Transform coding is conducted to reduce spatial correlation between residual

samples to obtain a lower bit count representation for entropy coding. In H.264,

4x4 integer discrete cosine transform (DCT) is used whereas 8x8 classical DCT is

used for previous standards. Smaller block size reduces blocking artifacts and is

compatible with small prediction blocks. One another improvement of H.264 is that

an integer approximation of 4x4 DCT is used. Transform operation can be

implemented by add and shift operations. Integer arithmetic also provides exact

calculation for all processing platforms which is not the case for floating point

arithmetic. Integer transform is almost identical to original in terms of compression

performance. Its inverse is similar and calculated with integer arithmetic without

division.

Smooth areas in a frame are usually coded in intra16x16 mode. For this case, DC

coefficients obtained after transform coding are still correlated and need to be

further transformed. Hadamard Transform is performed on DC coefficients of each

15

4x4 luma block in a macroblock which modifies the energy concentration of DC

coefficients, so that lower amount of bits is adequate for representation. Also 2x2

Hadamard transform is applied to chroma DC coefficients of 4x4 blocks in any

macroblock, since chroma samples also have smooth behavior. Hadamard

Transform can be performed by add and shift operations and its inverse is exactly

the same.

In H.264, scalar quantization is used whereas vector quantization is used for some

coding standards. Transformed coefficients are quantized before entropy coding. A

parameter called, Quantization Parameter (QP) is defined to adjust the quantization

step size for desired bitrate and quality performance. QP ranges from 0 to 51 so

that a wider range of quantization step sizes can be supported for fine bitrate and

quality adjustment. QP can be defined for entire video, frame and slice and even

for each macroblock. More detailed explanation will be given in Chapter 3.

2.8 Deblocking Filter

Blocking artifacts due to coarse quantization of residual blocks and motion

compensated blocks are filtered with an adaptive filter, called deblocking filter.

Deblocking filter both operates as an in-loop filter at encoder side, to filter

reference frames before buffering and as a post-loop filter at decoder side, to filter

output video frames. In-loop filtering also improves compression performance

since it provides better prediction whereas post-loop filtering is just effective on the

subjective quality of decoded frame.

In order to discriminate real edges from artificial blocking edges, QP-dependent

thresholds are defined by H.264 and pixel-differences near the block edges are

compared with these thresholds for deblocking filtering requirement. Thresholds

and filtering structures that will be applied also depend on the block boundary type.

Type of the boundary is determined by consideration of corresponding prediction

16

block type, macroblock edges, quantized coefficient, number of reference frames

and motion vectors. More detailed explanation will be given in Chapter 4.

2.9 Entropy Coding

Entropy coding is a lossless process used to represent quantized residual

coefficients and syntax elements, such as reference frame index, quantization

parameter, motion vectors, block type information and control data, with lower

amount of bits. In H.264, context-adaptive entropy coding methods are used to

provide lower bitrate compared to prior standards. These are Context Adaptive

Variable Length Coding (CAVLC) and Context Adaptive Binary Arithmetic

Coding (CABAC)

2.10 Encoding & Decoding Process

As illustrated in Figure 2-1, H.264 encoder structure consists of several processing

units. Input frame is first splitted into macroblocks for processing. Macroblocks of

input frame are predicted using the macroblocks of reference frame(s), by selected

inter or intra prediction mode. Predicted macroblock is subtracted from the original

to form the residual block. Residual is transformed and quantized to acquire

coefficients that represent the residual. Transformed and quantized coefficients are

reordered and sent to entropy encoder with motion vector and control data

information. Entropy encoder forms the output bit stream for transmission or

storage. Transformed and quantized coefficients are also inverse quantized and

inverse transformed to form back the residual and added to predicted macroblock

to form the reference for intra prediction. Reference is also deblocking filtered and

loaded to reconstructed frame buffer for future prediction.

As illustrated in Figure 2-2, H.264 decoder gets the input bitstream and decodes to

obtain the video output. Decoding operation is exactly the inverse of encoding

where input bitstream is first entropy decoded to get syntax elements such as

17

transformed & quantized coefficients, block types, motion vector information and

control data. Coefficient block is reordered, inverse quantized and inverse

transformed to form the residual macroblock. Predicted macroblock is formed

using the reference macroblocks and prediction mode information in the bitstream.

Residual macroblock is added to predicted macroblock to form the unfiltered

reconstructed macroblock. The final output, reconstructed macroblock, is obtained

after deblocking filtering. Decoded frame is formed by reconstructed macroblocks.

Unfiltered reconstructed macroblock is fed back as a reference for intra prediction

of neighboring macroblocks.

2.11 Profiles

In H.264, profiles are defined to configure the structure according to different

compression requirements. Mainly 4 different profiles are defined as: baseline,

main, extended and high.

Baseline profile is the default configuration that supports inter and intra coding

with P and I slices, CAVLC method as entropy coding, and redundant slices for

data recovery. It is appropriate for video conferencing, wireless and low-power

applications which require moderate compression performance but low complex

processing. Main profile further supports CABAC, inter-coding using B slices,

weighted prediction and interlaced video to be used for interlaced video and

improve the compression performance. It is commonly used for video storage and

television broadcasting. Extended profile adds B-slice and weighted prediction

support to baseline profile, additionally with SP and SI slice support and data

partitioning for better error-resilience. This profile is more appropriate for

streaming applications for which error resilience is critical. High profile supports

various sampling formats with higher chroma resolution and higher pixel bit-depth.

It is mainly used for professional applications.

18

CHAPTER 3

FORWARD AND INVERSE

TRANSFORM & QUANTIZATION

3.1 Introduction

Residual data obtained by inter and intra prediction still has redundancy for entropy

coding. It contains correlated values and therefore represented by similar number

of bits resulting high bitrate. In order to form a data that still represents the residual

but is decorrelated, transform coding is used. The purpose of transform coding is to

obtain a few large numbers that have large portion of total energy and plenty of

small numbers that have the rest energy. At entropy coder, by representing a few

large values with high bit count and plenty of small values with low bit count, total

bitrate is reduced.

Transform coding methods are grouped into two as the block-based and image-

based transforms. The popular block-based methods are Karhunen-Loeve

Transform (KLT), Single Value Decomposition and Discrete Cosine Transform.

All of these are applied to NxN data blocks. They are applicable because of their

lower memory requirement and appropriateness to block-based residual coding.

The disadvantage of block-based transform coding is blocking artifacts appearing

at the reconstructed frame. Discrete Wavelet Transform (DWT) is an example for

image-based transforms, which has higher performance than block-based

19

transforms. Although it results a higher quality reconstruction, DWT is not suitable

for block-based standards and requires high memory for buffering. [9]

Still image compression standards, such as JPEG and JPEG2000 use DCT and

DWT for transform coding respectively. DWT was preferred by JPEG2000 to

improve the quality of compression, but not by video coding standards because of

the reason mentioned above. MPEG-1, MPEG-2, MPEG-4 and H.263 are some of

the first video coding standards that use DCT for transform coding. For these

standards transform block-size is 8x8. In order to reduce the blocking artifacts

caused by large block size and provide transform region for 4x4 prediction blocks,

H.264 baseline profile uses 4x4 DCT for residual samples and Hadamard

Transform for DC coefficients obtained by DCT. Reduced block size and DC

coefficient transform improves compression performance in terms of bitrate and

quality.

Prior to H.264, video coding standards used the exact DCT expression. In order to

ease the implementation for different processing platforms (general purpose

processor, DSP, VLSI etc.), an approximated integer transform is proposed and

used by H.264. The purpose is not just the elimination of floating point operations

but also to develop a transformation that is exactly invertible and give the same

results at different platforms, which was not the case for prior standards. The

reason is that floating point operations need the same floating-point representation

and rounding to be standard at all platforms, which is not possible and each

decoder design obtains different results. These modifications also reduced the need

for arithmetic processing word-length from 32-bit to 16-bit as compared to prior

standards. [9]

Before coding of transformed residual data, data is quantized by defined

quantization levels. H.264 uses a scalar quantizer where some MPEG standards

such as MPEG-4 use vector quantization. Transformed coefficients are quantized at

encoder side and scaled (inverse quantized) at the decoder. This stage is critical,

20

where significant compression loss occurs, since quantized coefficients do not

contain the complete information of transformed coefficients.

3.2 Theoretical Background

3.2.1 Complete Transform & Quantization Process in H.264

3.2.1.1 Transform & Quantization

As illustrated in Figure 3-1, every 4x4 block in input macroblock, is first forward

transformed using 4x4 integer DCT. If macroblock is predicted in intra16x16

mode, the 4x4 matrix formed by DC coefficients of 4x4 luma coefficient blocks is

Hadamard transformed and quantized. For all macroblocks, 2x2 version of

Hadamard transform is applied to 2x2 matrix formed by DC coefficients of 4x4

chroma blocks. Each quantized DC coefficient is inserted to corresponding 4x4

post-scaled and quantized coefficient block. For macroblocks, which are predicted

in different modes than intra16x16, 4x4 luma DC coefficient transform &

quantization is not applied.

Transform & quantization is applied at the encoder side, to obtain uncorrelated and

quantized coefficients, with QP as a rate-distortion controlling parameter. Obtained

coefficients are entropy coded to form the encoded bitstream.

21

Figure 3-1. Transform and quantization process

22

3.2.1.2 Scaling & Inverse Transform

As illustrated in Figure 3-2, firstly, if macroblock is predicted in intra16x16 mode,

inverse Hadamard transform and scaling is applied to luma DC coefficients of

input quantized coefficients. Scaling and 2x2 inverse Hadamard transform is

applied to chroma DC coefficients. Other 4x4 coefficient blocks are inverse

quantized and then pre-scaled, to avoid rounding errors, before inverse core

transform. Scaled and inverse Hadamard transformed DC coefficients are inserted

to corresponding DC positions of these coefficient blocks. Resultant 4x4 blocks are

inverse core transformed. Obtained samples are finally post-scaled by 64 and

rounded to eliminate pre-scaling. For macroblocks that are predicted in different

modes than intra16x16, luma DC coefficient scaling and inverse transform is not

applied.

Inverse quantization & inverse transform is applied both at encoder and decoder

sides. At decoder side, entropy decoded coefficients are scaled and inverse

transformed to obtain residual macroblocks. QP and prediction mode in the

bitstream are the controlling parameters for scaling and inverse DC coefficient

transform respectively. At encoder side, transformed and quantized coefficients are

scaled and inverse transformed to be fed back to prediction modules as “previously

encoded” reference macroblocks.

23

Figure 3-2. Scaling and inverse transform process

24

3.2.2 Transform & Quantization of a Macroblock

H.264 baseline profile uses three types of transform for each macroblock. A 4x4

integer DCT is used for each 4x4 block. For DC coefficients obtained by DCT, a

special type of transform is applied to DC coefficients of 4x4 transformed luma

blocks that are predicted in intra16x16 mode and DC coefficients of chroma

blocks. The transmission order of blocks is as illustrated in Figure 3-3. For

intra16x16 mode, first DC coefficients of luma blocks are transmitted. Then 4x4

luma blocks and DC coefficients of chroma blocks are transmitted. Finally 4x4

chroma blocks are transmitted. [9]

Figure 3-3. Transmission order of a macroblock. [9]

25

3.2.2.1 Discrete Cosine Transform

The classical DCT expression is a linear transformation [10]:

D C TY H x= (3.1)

where x is a length-N vector and HDCT is a linear transformation matrix that maps x

to Y with entries defined as:

2 1
cos

2kn k

k
H c n

N N

π  = +  
  

 (3.2)

for kth row and nth column of HDCT, with 0 2c = and 1kc = .

Hence for 4 4N x= , HDCT becomes:

1 1 1 1
cos(0) cos(0) cos(0) cos(0)

2 2 2 2

1 1 3 1 5 1 7
cos() cos() cos() cos()

2 8 2 8 2 8 2 8

1 2 1 6 1 10 1 14
cos() cos() cos() cos()

2 8 2 8 2 8 2 8

1 3 1 9 1 15 1 21
cos() cos() cos() cos()

2 8 2 8 2 8 2 8

DCTH

π π π π

π π π π

π π π π

 
 
 
 
 
 =
 
 
 
 
 
 

 (3.3)

And HDCT matrix can be rewritten as:

DCT

a a a a

b c c b
H

a a a a

c b b c

 
 − − =
 − −
 

− 

 (3.4)

where and 1
2a = ,

1
cos

2 8
b

π =  
 

1 3
cos

2 8
c

π =  
 

26

Using the DCT matrix, the classical 4x4 DCT expression is given by:

[]T

D C T D C T

a a a a a b a c

b c c b a c a b
Y H X H X

a a a a a c a b

c b b c a b a c

   
   − − − −   = =
   − − − −
   

− − − −   

 (3.5)

The (0,0)Y value is called the “DC coefficient” of transformed X. Other values in Y

represent frequency components of X.

3.2.2.2 Forward & Inverse Transform of 4x4 Blocks

4x4 blocks, numbered 0-15 and 18-28 in Figure 3-3, are transformed using DCT

after inter/intra prediction. The classical expression of DCT has irrational entries as

seen from (3.5). In order to obtain a compact integer expression, [10] replaced

HDCT with an orthogonal integer matrix. This is known as the integer DCT in

literature. In H.264 standard [6], for 4x4 blocks, instead of classical DCT

transform, integer DCT and scalar multiplication with a scaling matrix is

conducted. Scaling matrix is further integrated into the quantization stage, to

reduce the amount of multiplications. [9]

To obtain integer expression, (3.5) is factorized as:

[]

2 2

2 2

2 2

2 2

1 1 1 1 1 1 1

1 1 1 1 1
()

1 1 1 1 1 1 1

1 1 1 1 1

T

d a ab a ab

d d d ab b ab b
Y CXC E X

d a ab a ab

d d d ab b ab b

      
      − − − −      = ⊗ = ⊗
      − − − −
       − − − −      

 (3.6)

where TCXC is defined as “forward core transform” by [9], E is a scaling matrix

and cd
b

= . When d is approximated as 0.5 and 2nd and 4th rows of matrix C is

scaled by 2 to avoid division, integer DCT expression is obtained. b is also

27

modified for transform to remain orthogonal. The expression of final forward

transform becomes:

[]

2 2

2 2

2 2

2 2

2 2
1 1 1 1 1 2 1 1

2 1 1 2 1 1 1 2 2 4 2 4
1 1 1 1 1 1 1 2

2 21 2 2 1 1 2 1 1

2 4 2 4

T

f f f

ab ab
a a

ab b ab b

Y C XC E X
ab ab

a a

ab b ab b

 
 
             − − − −    = ⊗ = ⊗      − − − −         − − − −      
 
  

 (3.7)

where
1

2
a = ,

2

5
b = and T

f fW C XC= is the integer forward core transform.

Obtained final expression is an approximation to classical 4x4 DCT. [10] states that

the difference between the original and approximated transforms is clear but there

is not significant loss in terms of compression performance. Coding gain loss is

calculated by [10] to be less than 0.01 dB which doesn’t cause any performance

penalty. Approximated expression is advantageous, such that only addition,

subtraction and shift operation is needed for core transform calculation, 16-bit

arithmetic can be used and scalar multiplication by fE can be inserted to

quantization process.

H.264 standard [6] defines the inverse transform explicitly as:

[]

2 2

2 2

2 2

2 2

1
1 1 1

1 1 1 12
1 1 1

1 1 1 1 1
2 2 2()
1 1 1 1 1

1 1 1
2 1 1

1 1
1 2 21 1 1
2

T

i i i

a ab a ab

ab b ab b
X C Y E C Y

a ab a ab

ab b ab b

 
   
     
    − − − − 
     = ⊗ = ⊗      − − − −           − −    − − 
 

 (3.8)

28

In the expression since Y is pre-scaled by multiplying with scaling matrix iE ,

multiplication by 1
2 in the inverse core transform expression can be implemented

by a right-shift without accuracy loss.

3.2.2.3 Quantization

Quantization in H.264 is designed to be computationally efficient. In order to

provide this, division operation is avoided and scaling matrices in transform

expressions are integrated to quantization, as explained in previous sections.

The forward quantization operation is defined as [9]:

()ij

ij

Y
Z round

Qstep
= (3.9)

where ijY is a transformed coefficient, Qstep is the quantization step size and ijZ is

the quantized transform coefficient.

Quantization step size is effective to determine the amount of information

contained in quantized coefficients, which determines the quality and bitrate.

Qstep is controlled by a controller parameter, called Quantization Parameter. This

parameter is a critical controller for rate-distortion performance. Quantization step

size doubles for every increment of QP. H.264 standard [6] defines values for QP

as 0 to 51 and therefore 52 step sizes are defined for quantization, as shown in

Table 3-1. With increasing QP, bitrate which is approximately proportional with

quantization step size, also increases. [7] emphasizes that every increment of QP,

results approximately 12% increase for quantization step size and that much bitrate

reduction, as illustrated in Figure 3-4.

29

Table 3-1. Quantization step size values for each QP [6]

QP 0 1 2 3 4 5 6 7 8 9 10 11 12

Qstep 0,625 0,6875 0,8125 0,875 1 1,125 1,25 1,375 1,625 1,75 2 2,25 2,5

QP 13 14 15 16 17 18 19 20 21 22 23 24 25

Qstep 2,75 3,25 3,5 4 4,5 5 5,5 6,5 7 8 9 10 11

QP 26 27 28 29 30 31 32 33 34 35 36 37 38

Qstep 13 14 16 18 20 22 26 28 32 36 40 44 52

QP 39 40 41 42 43 44 45 46 47 48 49 50 51

Qstep 56 64 72 80 88 104 112 128 144 160 176 208 224

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

0 4 8 1216202428 32 36404448

QP

A
p
p
ro
x
im

a
te
 B
it
ra
te
 w
it
h

re
s
p
e
c
t
to
 Q
P
=
0

0

50

100

150

200

250

Q
s
te
p Bitrate

Qstep

Figure 3-4. Quantization step size and approximate bitrate with respect to QP=0

Different QP values can be assigned to luma and chroma components. In H.264

standard [6], by default, QP for chroma is derived from QP for luma. For values of

QP for luma greater than 30, chroma QP is set to be less than luma QP. [9]

30

Scaling matrix values can be combined with quantizer calculation. Post-scaling

matrix fE in (3.7) is integrated to forward quantizer and (3.9) becomes:

()ij f

ij ij

Y PF
Z round round W

Qstep Qstep

 
= =  

 
 (3.10)

where i and j represents row and column numbers of respective matrices and PFf is

the corresponding entry of fE . Hence PFf values are:

2

2

, (,) (0,0), (2,0), (0,2), (2,2)

4, (,) (1,1), (1,3), (3,1), (3,3)

2,
f

a i j

PF b i j

ab else

 =


= =



 (3.11)

Reference model software [1] implements fPF

Qstep

 
 
 

 as a multiplication and a right-

shift operation as:

2
f

qbits

PF MF

Qstep

   = ⇒   
   2

ij ij qbits

MF
Z round W

 =  
 

 (3.12)

where 15 (6)qbits floor QP= + (3.13)

and MF is a multiplication factor for each coefficient position. MF values used by

the reference software are shown in Table 3-2. MF values sometimes can be

slightly changed in order to improve perceptual quality [9].

31

Table 3-2. MF values for given QP and position [9]

QP
Positions

(0,0), (2,0), (2,2), (0,2)
Positions

(1,1), (1,3), (3,1), (3,3) Other Positions

0 13107 5243 8066

1 11916 4660 7490

2 10082 4194 6554

3 9362 3647 5825

4 8192 3355 5243

5 7282 2893 4559

As illustrated in Table 3-2, MF values are given for 6QP < . For higher QP values

MF values are calculated from values given in Table 3-2, since:

((/ 6))MF MF floor QP= (3.14)

The final expression of forward quantizer for integer arithmetic becomes:

() / 2qbits

ij ijZ W MF f= ⋅ +

() ()ij ijsign Z sign W= (3.15)

f can be implemented as [1]:

2
,

3

2
,

6

qbits

qbits

for Intra

f

for Inter




= 



 (3.16)

32

3.2.2.4 Inverse Quantization (Scaling)

Inverse quantization operation is done to obtain transformed coefficients before

inverse transform. The operation is basically:

îj ijY Z Qstep= (3.17)

where îjY is the estimated transform coefficient.

As in the case for quantization which integrates the scalar multiplication matrix fE

of transform expression, scaling operation integrates pre-scaling factor iE of inverse

transform, together with a constant scaling factor to avoid errors caused by

rounding [9]:

ˆ 64ij ij iW Z Qstep PF= ⋅ ⋅ (3.18)

where i and j represents row and column numbers of respective matrices and PFi is

the corresponding entry of iE . At the output of inverse transform, result is divided

by 64 to remove the scaling factor. H.264 standard [6] defines a parameter V for

this operation [9]:

64iV Qstep PF= ⋅ ⋅ (3.19)

V is effective to reduce number of multiplications required for each coefficient. As

in the case for MF, V is also defined for 6QP < , as shown in Table 3-3, and further

scaling factors are computed by doubling for every QP increment of 6:

()6ˆ 2
QP

floor

ij ij ijW Z V= (3.20)

33

Table 3-3. V values for given QP and matrix position [6]

QP
Positions

(0,0), (2,0), (2,2), (0,2)
Positions

(1,1), (1,3), (3,1), (3,3) Other Positions

0 10 16 13

1 11 18 14

2 13 20 16

3 14 23 18

4 16 25 20

5 18 29 23

3.2.2.5 Hadamard Transform

Hadamard Transform is a symmetric, linear and orthogonal transformation that has

relationship with multidimensional DFT. It transforms a 2m x 2m vector kx to

2m x 2m vector kX . [10]

k m kX H x= (3.21)

Hadamard transformation matrix is recursively defined as [10]:

1 1

1 1

1

2
m m

m

m m

H H
H

H H

− −

− −

 
=  − 

 (3.22)

where 0 1H = by identity. 1H and 2H can be calculated by (3.22) as:

0 0
1

0 0

1 11 1

1 12 2

H H
H

H H

   
= =   − −  

 (3.23)

1 1
2

1 1

1 1 1 1

1 1 1 11 1

1 1 1 12 2

1 1 1 1

H H
H

H H

 
 − −   = =   − − − 
 

− − 

 (3.24)

34

1H and 2H are used for 2x2 and 4x4 Hadamard Transform respectively. Scalar

multiplication in the expression can be omitted. In H.264 standard [6] a different

form of 2H is used, which is obtained by substitution of 2nd, 3rd and 4th rows with

each other and is still orthogonal and symmetric:

2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

H

 
 − − =
 − −
 

− − 

 (3.25)

3.2.2.6 4x4 Luma DC Coefficient Transform & Quantization

As in the case for 4x4 blocks, DC coefficients obtained by DCT of each 4x4 block

are also correlated, when the macroblock is predicted in intra16x16 mode. The

reason is the concentration of energy in DC coefficients for smooth surfaces which

are predicted in intra16x16 mode. In order to decorrelate DC coefficients,

Hadamard Transform is used. 4x4 matrix of DC coefficients, which is numbered “-

1” in Figure 3-3, is 4x4 Hadamard transformed and divided by 2 with rounding [9]:

[]

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 11
2 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

DC DCY round W

     
     − − − −     = ⋅     − − − −       − − − −     

 (3.26)

Where DCW and DCY are 4x4 matrices formed by DC coefficients of W and Y,

respectively. DCY entries are further quantized similarly, to obtain quantized DC

coefficients:

() (1)
(,) (,) (0,0) 2 / 2 qbits

DC i j DC i jZ Y MF f += ⋅ + (3.27)

() ()(,) (,)DC i j DC i jsign Z sign Y= (3.28)

35

Since DC coefficients are quantized, MF value that corresponds to (0,0) position is

used.

Inverse transform is similar to (3.26):

[]

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

QDC DCW Z

    
    − − − −    =
    − − − −
     − − − −    

 (3.29)

Inverse quantization is performed using V parameter for (0, 0) position [9]:

for 12QP ≥ :

() 26

(,) (,) (0,0)
ˆ 2

QP
floor

DC i j QDC i jW W V
 − 
 = ⋅ ⋅ (3.30)

Else:

() ()1 26 6

(,) (,) (0,0)
ˆ 2 / 2

QP QP
floor floor

DC i j QDC i jW W V
   − −   
   

 
= ⋅ + 
 

 (3.31)

Obtained scaled DC coefficients (,)
ˆ

DC i jW , are inserted to (0,0) positions of each 4x4

block in a macroblock, then 4x4 inverse DCT is applied.

3.2.2.7 2x2 Chroma DC Coefficient Transform & Quantization

DC coefficients of 4x4 chroma blocks are also correlated, since chroma samples

generally have smooth behavior. For each chroma component, block size in a

macroblock is 8x8, for default 4:2:0 color sampling in H.264. Therefore a 2x2

matrix is formed by DC coefficients of 4x4 chroma blocks, numbered 16 and 17 in

Figure 3-3. 2x2 version of Hadamard Transform, (3.23) is used for this case [9]:

36

[]
1 1 1 1

1 1 1 1DC DCY W
   

=    − −   
 (3.32)

Where
1 1

1 1

 
 − 

 is again orthogonal and consequently its inverse is the same.

Transformed DC coefficients are quantized similarly by (3.27) and (3.28).

Inverse transform is expressed as:

[]
1 1 1 1

1 1 1 1QDC DCW Z
   

=    − −   
 (3.33)

Inverse quantization is performed by [9]:

For 6QP ≥

()6 1
(,) (,) (0,0) 2 floor QP

DC i j QDC i jW W V
−′ = ⋅ ⋅ (3.34)

Else:

()(,) (,) (0,0) / 2DC i j QDC i jW W V′ = ⋅ (3.35)

Obtained scaled DC coefficients are inserted to DC coefficient positions of 4x4

chroma blocks.

37

3.3 Hardware Architectures in Literature

Forward and inverse transform & quantization is one of the critical sections in

H.264 encoder/decoder system. Due to parallel arithmetic operations requirement

for forward and inverse matrix transformations and quantization, hardware

architectures became popular for forward and inverse transform and quantization.

These architectures allow parallel processing for matrix operations in DCT,

Hadamard Transform and shift operations for divisions and multiplications in

forward and inverse quantization. Also hardware solutions provide pipelined

processing which effectively utilize the processing stages and reduces effective

processing duration of a macroblock in a complete frame. These features made

them indispensable for low-power and high-performance H.264 decoders.

There are various approaches for hardware implementation of forward and inverse

transform & quantization. Most of them are architecture solutions for standard

forward and inverse transform & quantization defined by the standard [4]. Some of

them propose a modified algorithm to reduce processing cycle time.

I. Amer et. al. [12] proposed an architecture for 8x8 transform & quantization to be

used for FRExt (Fidelity Range Extensions) extension of H.264 [8]. The

architecture takes 8x8 samples directly as inputs, perform processing and outputs

8x8 quantized coefficients directly. The architecture is implemented on FPGA with

extremely large logic resources to be inserted into a H.264 decoder system. The

architecture seems to be designed just to obtain high throughput of 1

macroblock/clock cycle, but resultant I/O and logic count is extremely high.

E. P. Hong et. al. [32] and T. C. Wang [27] proposed 4x4 forward and inverse

transform architectures based on bit-extension. They aimed to obtain architecture

with lower logic utilization by reducing adder bit-width for different stages of

forward and inverse integer DCT calculation. The method seems to be effective to

reduce transform architecture complexity but not sufficient considering complete

38

transform and quantization architecture in terms of power consumption and

complexity.

W. Hwangbo et. al. [33] proposed a high performance inverse transform

architecture with modifying the calculation steps. They used permutation matrices

to implement inverse transform operations with fewer additions. The purpose is to

obtain lower critical path delay for higher throughput.

Z. Y. Cheng et. al. [29] proposed a high throughput forward and inverse DCT and

Hadamard Transform architectures based on 1-D transform kernels with

addition/subtraction operations for input and output samples.

R. Kordasiewicz et. al. [30] proposed a 4x4 forward transform and quantization

architecture with totally 4 cycle delay for transform and quantization calculations.

The design suffers from high amount of 16 multiplier requirement for quantization

operation and I/O transfer latencies.

H. Y. Lin et. al. [31] proposed combined architectures for forward and inverse

transform & quantization. Both forward and inverse transform operations are

splitted into two parts. Quantization and inverse quantization operations are

inserted into transform stages to decrease number of multiplications.

O. Tasdizen et. al. [26] proposed a forward and inverse transform & quantization

hardware with reconfigurable architecture for forward and inverse transform. Input

and output register files are also combined with the architecture to evaluate

macroblock processing performance different from the previously mentioned

works which only focus on the transform & quantization core. Nevertheless

processing speed performance of the designed core is extremely high for

intra16x16 prediction mode case.

39

3.4 Proposed Implementation

3.4.1 Proposed Representation for Coefficients

Most of the architectures in literature focus on the processing part of forward and

inverse transform & quantization architecture and try to reduce the gate count,

increase processing speed etc. The cost of input and output data transfer in terms of

speed and power is usually not taken into account.

As illustrated before in Figure 3-3, there are mainly 4 types of input data to be

processed by inverse transform & quantization architecture. These are luma DC

coefficients (for intra16x16 mode), luma coefficients, chroma DC coefficients and

chroma coefficients.

Forward transform & quantization takes residual samples as input and obtains

transformed and quantized coefficients. Generally 16-bit bit-width is used to

represent incoming residual samples and output coefficients. Input residual samples

are in the range (-255, 255) which can be represented by 9-bits actually but in order

to be conformable to general 16-bit structure represented by 16-bits.

The range for luma DC coefficients can be found by applying residual macroblock

input with white samples:

40

255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255

255 255

X =

255 255 255 255 255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255

255 255 255 255

25

255 255 255 255 255 255 255 255 255 255 255 255

5 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255

255 255 255 255

255 255 255 2

255 255 255 255 255 255 255 255 255 255 255 255

55 255 255 255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255

 
 
 
 




















 





















 (3.36)

After forward DCT applied to each 4x4 block in macroblock, coefficients and are

obtained:

4080 0 0 0 4080 0 0 0 4080 0 0 0 4080 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4080 0 0 0 4080 0 0 0 4080 0 0 0 4080 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4080 0 0 0 4080 0 0 0 4080 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Y =
4080 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

4080 0 0 0 4080 0 0 0 4080 0 0 0 4080 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.37)

Only DC coefficients are nonzero, since input macroblock has constant sample

values and therefore frequency terms in DCT are eliminated. In intra16x16 mode,

DC coefficients are Hadamard transformed to be decorrelated:

41

4080 4080 4080 4080

4080 4080 4080 4080

4080 4080 4080 4080

4080 4080 4080 4080

DCY

 
 
 =
 
 
 

 (3.38)

32640 0 0 0

0 0 0 01
2 0 0 0 0

0 0 0 0

T

DC DCZ HY H

 
 
 = =
 
 
 

 (3.39)

Since only DC coefficient in (0,0) position is nonzero, only it is quantized. The

highest possible quantized coefficient value is obtained for QP=0 for which

quantization step size is minimum.

15 () 156
QP

qbits floor= + = (3.40)

(0,0) 13107MF = for QP=0 (3.41)

2 10922.6663
qbits

f = = (3.42)

() ()1

6528.3 0.3 0.3 0.3

0.3 0.3 0.3 0.3
2 2

0.3 0.3 0.3 0.3

0.3 0.3 0.3 0.3

qbits

DC DCW Z MF f +

 
 
 = + =
 
 
 

 (3.43)

6528 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

DCW

 
 
 =
 
 
 

 (3.44)

Similarly for macroblock with most negative (-255) values, -6528 is obtained as

minimum DC coefficient value. Therefore transformed and quantized DC

coefficient values are in the range (-6528, 6528) and represented by 16-bits.

Chroma DC coefficients are also included in this range.

42

For prediction modes other than intra16x16 transformed and quantized luma DC

coefficients are not separately transmitted as mentioned before. They are

transmitted in the same blocks with other coefficients. The range of these

coefficients can be similarly found by disabling Hadamard Transform and applying

quantization simply for QP=0:

1632 1632 1632 1632

1632 1632 1632 1632

1632 1632 1632 1632

1632 1632 1632 1632

DCW

 
 
 =
 
 
 

 (3.45)

So the range for these coefficients is (-1632, 1632).

The limit for coefficients corresponding to frequency components can also be

found applying transform & quantization to a macroblock with checkerboard

pattern which has the highest possible frequency component value:

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

25

X

− −

− −

− −

− −

− −

− −

− −

− −
=

− −

− −

− −

− −

− −

− −

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 25

5 255 255 255

255 255 255 255

− −

− −

− −

− −

− −

− −

− −

− −

− −

− −

− −

− −

−

− −

− −

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255

5 255 255

255 255 255 255

255 255 255 255

255 255 255 255

− −

− −

− −

− −

− −

− −

− −

− −

− −

− −

−

−

− −

− −

− −

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

− −

− −

− −

− −

− −

− −

− −

− −

− −

−

− −

− −

− −

− −

− −

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

255 255 255 255

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − −
 − − 
 − −
 

− − 
 − −
 

− − 
 − − 

 (3.46)

This input macroblock is not very realistic for a practical H.264 encoder/decoder

system but helps to find the theoretical limit for the frequency component range.

After DCT is applied DC and AC components are obtained. DC terms are zero

since input has zero mean:

43

0 0 0 0 0 0 0 0

0 1020 0 3060 0 1020 0 3060

0 0 0 0 0 0 0 0

0 3060 0 9180 0 3060 0 9180

0 0 0 0 0 0 0 0

0 1020 0 3060 0 1020 0 3060

0 0 0 0 0 0 0 0

0 3060 0 9180 0 3060 0 9180

0 0 0 0 0 0 0 0

0 1020 0 3060 0 1020 0 3060

0 0 0 0 0 0 0 0

0 3060 0 9180 0 3060 0 9180

0 0 0 0 0 0

0 1020 0 3060

0 0 0 0

0 3060 0 9180

Y =

0 0 0 0 0 0 0 0

0 1020 0 3060 0 1020 0 3060

0 0 0 0 0 0 0 0

0 3060 0 9180 0 3060 0 9180

0 0 0 0 0 0 0 0

0 1020 0 3060 0 1020 0 3060

0 0 0 0 0 0 0 0

0 3060 0 9180 0 3060 0 9180

0 0 0 0 0 0 0 0

0 1020 0 3060 0 1

0 0 0 0

0 3060 0 9180

0 0 0 0 0 0

0 1020 0 3060 0 1020 0 3060

0 0 0 0 0 0 0 0

0 3060 0 9180 0 3060 0 9180

020 0 3060

0 0 0 0

0 3060 0 9180

0 0 0 0

0 1020 0 3060

0 0 0 0

0 3060 0 9180

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.47)

After quantization is applied for QP=0 case:

0 0 0 0 0 0 0 0

0 163 0 489 0 163 0 489

0 0 0 0 0 0 0 0

0 489 0 1469 0 489 0 1469

0 0 0 0 0 0 0 0

0 163 0 489 0 163 0 489

0 0 0 0 0 0 0 0

0 489 0 1469 0 489 0 1469

0 0 0 0 0 0 0 0

0 163 0 489 0 163 0 489

0 0 0 0 0 0 0 0

0 489 0 1469 0 489 0 1469

0 0 0 0 0 0 0 0

0 163 0 489 0 163 0 489

0 0 0 0 0 0 0 0

0 489 0 1469 0 489 0 14

Y =

0 0 0 0 0 0 0 0

0 163 0 489 0 163 0 489

0 0 0 0 0 0 0 0

0 489 0 1469 0 489 0 1469

0 0 0 0 0 0 0 0

0 163 0 489 0 163 0 489

0 0 0 0 0 0 0 0

0 489 0 1469 0 489 0 1469

0 0 0 0 0 0 0 0

0 163 0 489 0 163 0 489

0 0 0 0 0 0 0 0

0 489 0 1469 0 489 0 1469

0 0 0 0 0 0 0 0

0 163 0 489 0 163 0 489

0 0 0 0 0 0 0 0

69 0 489 0 1469 0 489 0 1469

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.48)

Highest value in quantized coefficients is 1469. Therefore the range of AC

coefficients is (-1469, 1469) and represented by 16-bits.

44

In order to obtain the limits of AC coefficients and DC coefficients for each QP

and prediction modes different than intra16x16, the maximum value of transformed

& quantized coefficients are calculated, as illustrated in Table 3-4. For QP>21

luma DC coefficients (for prediction modes different than intra16x16) and all AC

coefficients are in the range (-127,127) and therefore can be represented by 8-bits.

For these QP, luma DC coefficients for intra16x16 prediction mode should still be

represented by 16-bits. This “QP coverage” is advantageous because of less

amount of access and storage required to access 8-bit coefficient values instead of

16-bit coefficient values.

Also for QP>21 and intra16x16 prediction mode, luma DC coefficients are in the

range (-512, 512) and can be represented by 9-bits signed representation. This

effectively reduces arithmetic logic required to implement Hadamard Transform

from 16-bits to 9-bits, for this QP range. QP>33 would be a further limitation to

obtain 8-bit representation also for luma DC coefficients in intra16x16 mode but

that QP range would cause significant quality loss, considering the number of these

coefficients compared to other coefficients in residual macroblock.

For a low power H.264 decoder, bitrate and complexity considerations are more

important than quality. Baseline profile is mainly used for low-power decoder

implementations [11, 28] instead of other profiles with high demand of processing

power. A low-complex decoder with ability to decode low-bitrate, moderate quality

bitstream is the description of low-power H.264 decoder for mobile application.

Therefore input bitstream with higher QP, to support lower bitrate is not a surprise

for a low-power H.264 decoder. A simple software decoder (which consists of

simple motion estimation, transform & quantization operations) is designed to

encode an input frame and decode the residual. Obtained decoded frame for QP=22

doesn’t lose much in terms of subjective quality, as shown in Figure 3-5 and 3-6

and has PSNR-Y value of 36.62 dB. Therefore this limitation does not degrade

performance of decoder in terms of quality.

45

Table 3-4. Maximum values of coefficients and PSNR for given QP

QP Luma DC coeff. (intra16x16) Luma DC coeff. (other) AC coeff. PSNR-Y (dB)
0 6528 1632 1469 49.22
1 5934 1483 1335 49.18
2 5021 1255 1130 48.80
3 4663 1166 1049 48.42
4 4080 1020 918 48.30
5 3627 907 816 48.20
6 3264 816 734 47.75
7 2967 742 667 47.57
8 2511 628 565 46.82
9 2331 583 524 46.41

10 2040 510 459 46.11
11 1813 453 408 45.61
12 1632 408 367 44.98
13 1483 371 334 44.58
14 1255 314 282 43.11
15 1166 291 262 42.25
16 1020 255 229 41.65
17 907 227 204 41.39
18 816 204 183 40.45
19 742 185 167 39.76
20 628 157 141 37.98
21 583 146 131 37.72
22 510 127 115 36.62
23 453 113 102 36.15
24 408 102 92 35.4
25 371 93 83 34.65
26 314 78 70 33.19
27 291 73 65 32.95
28 255 64 57 31.88
29 227 57 51 31.20
30 204 51 46 30.46
31 185 46 42 30.14
32 157 39 35 29.00
33 146 36 33 28.34
34 127 32 29 27.84
35 113 28 25 27.12
36 102 25 23 26.44
37 93 23 21 26.12
38 78 19 17 25.42
39 73 18 16 24.86
40 64 16 14 24.06
41 57 14 13 23.77
42 51 13 11 23.49
43 46 11 10 22.98
44 39 10 9 22.57
45 36 9 8 22.05
46 32 8 7 21.45
47 28 7 6 20.88
48 25 6 6 20.74
49 23 6 5 20.09
50 19 5 4 18.69
51 18 4 4 18.33

46

Figure 3-5. Part of 4:2:0 CIF input frame taken from “foreman” sequence

Figure 3-6. Output of decoder for QP=22 (left) and QP=35 (right)

47

3.4.2 System Architecture

During the design process of inverse transform & quantization architecture,

proposed QP limitation is used to obtain a low-complexity design. Input memory

organization and complexity of input buffers and Hadamard Transform unit is

directly affected from this limitation.

Inverse transform & quantization architecture is implemented on Spartan-3 series

XC3S2000 FPGA on evaluation board. Features of the evaluation board are

explained in Appendix B.

System architecture is as illustrated in Figure 3-7. Input CIF frame of transformed

and quantized coefficients, with prediction modes and QP are sent through serial

channel to on-chip embedded processor and then loaded to external SRAM. Then

each macroblock is read from SRAM and written to a internal dual port memory

where inverse transform & quantization hardware reads input coefficients,

processes them and writes the result back to another internal dual-port memory.

Obtained results are loaded back to SRAM and finally complete frame is sent back

to PC. Serial communication between the board and PC is handled by software

designed in MATLAB®. Embedded processor on FPGA is used to control the flow

of data between inverse transform & quantization hardware and PC.

Inverse transform & quantization hardware is the only component in the system

architecture which is designed to be used in a complete H.264 hardware decoder.

Other components are just used to control the flow of data between inverse

transform & quantization hardware and software. Actually their purpose is to

emulate the data transfer between inverse transform & quantization unit and other

processing blocks in a complete H.264 decoder architecture. Therefore their

performance in terms of memory use, processing speed, gate count etc. is ignored

during evaluation of inverse transform & quantization performance.

48

Figure 3-7. System architecture

49

3.4.3 Preparation of Input Macroblock Coefficients

In order to obtain transformed and quantized macroblock coefficients to be

processed by hardware, software is developed in MATLAB®. Transform and

quantization of a macroblock with given QP and prediction mode (whether it is

intra16x16 or not) is implemented and obtained transformed and quantized

coefficients, prediction mode and QP are then sent to hardware. The software

simply implements the processing flow as illustrated before in Figure 3-1.

3.4.4 Serial Data Transfer

Transformed & quantized coefficient data, prediction mode type and QP of a single

CIF frame are sent through serial port using serial communication software.

Transformed and quantized luma DC coefficients, luma coefficients, chroma DC

coefficients, chroma coefficients, quantization parameter and prediction mode are

sent in sequential order. The software running on embedded processor inside

FPGA reads the frame data and send acknowledge for each data group to control

the flow.

The purpose of embedded processor implemented in FPGA is just to control the

data transfer between serial communication software and designed inverse

transform & quantization hardware with its UART and memory controller

interfaces. Embedded processor reads a frame of quantized coefficients, prediction

modes of macroblocks in the frame and QP from UART. This information is

loaded to external SRAM on board. For each macroblock, luma and chroma

quantized coefficients, corresponding prediction mode and QP is read from SRAM

by embedded processor and loaded to input memory for processing. Inverse

transform & quantization hardware is triggered to do the processing and results are

read from output memory and loaded back to SRAM. After all data of a frame is

processed, the results residing in SRAM are sent back to PC through serial channel.

50

Embedded processor software has no task assigned related to any signal

processing, since pure hardware solution is to be designed for inverse transform &

quantization.

3.4.5 Memory Organization

There are three types of memory in the system to implement inverse transform &

quantization of a complete CIF frame.

Input and output memories are used to give quantized coefficient macroblock as an

input to the inverse transform & quantization hardware and store the output to be

read by embedded processor and sent back to PC. They are dual-port memories

inserted to allow concurrent access from both embedded processor and inverse

transform & quantization hardware. With proposed representation for input data,

that is, 16-bit representation for DC coefficients and 8-bit representation for other

coefficients, for a single macroblock input and control parameters, input and output

memories are organized as follows:

16 Luma DC coefficients: 16 16 256⋅ = bits = 32bytes

256 Luma coefficients: 256 8 256⋅ = bytes

8 Chroma DC coefficients: 8 16 128⋅ = bits = 16bytes

128 Chroma coefficients: 128 8 128⋅ = bytes

Quantization parameter: 1 byte

Prediction mode: 1 byte

Total required memory size = 32 256 16 128 2 434 512+ + + + = ⇒ bytes

51

Table 3-5. Input and output memory organization

Data type Memory window base address Memory window size

Luma coefficients 0x0 256bytes

Chroma coefficients 0x100 128bytes

Luma DC coefficients 0x180 32bytes

Chroma DC coefficients 0x1A0 16bytes

Quantization parameter 0x1B0 16bytes (1byte is used)

Prediction mode 0x1C0 16bytes (1byte is used)

Input and output memories have 32-bit access for both ports. Since DC coefficients

are represented by 16-bits, 2 DC coefficients are accessed at each read/write

transaction. On the other hand, 8-bit representation is proposed to be used for this

architecture so that, 4 coefficients are accessed at each read/write access. These

dual-port memories are constructed using the limited memory resources inside

FPGA. Core Generator® tool is used for this purpose. Their ports are directly

connected to inverse transform & quantization hardware and memory controller of

embedded processor. Detailed information about memory resources of FPGA is

given in Appendix A.

Frame memory is an external SRAM device connected to FPGA. It is a single port

2MB memory used to store complete CIF (352x288) frame coefficient data. Data

stored in frame memory is organized as follows:

Number of macroblocks: 22 18 396⋅ =

16 Luma DC coefficients for each MB: 32 396 12bytes kbytes⋅ =

256 Luma coefficients for each MB: 256 396 96bytes kbytes⋅ =

8 Chroma DC coefficients for each MB: 16 396 6bytes kbytes⋅ =

128 Chroma coefficients for each MB: 128 396 48bytes kbytes⋅ =

Quantization parameter: 1byte

Prediction mode of each MB = 396bytes

52

Table 3-6. Frame memory organization

Data type Memory window base address Memory window size

Luma coefficients 0x0 1MB (96KB is used)

Chroma coefficients 0x100000 512KB (48KB is used)

Luma DC coefficients 0x180000 256KB (12KB is used)

Chroma DC coefficients 0x1C0000 128KB (8KB is used)

Prediction modes 0x1E0000 64KB (396 bytes is used)

QP 0x1F0000 16bytes (1byte is used)

3.4.6 Inverse Transform & Quantization Architecture

The architecture consists of processing units which are responsible for data

transfer, inverse transform and inverse quantization. Block diagram of designed

architecture is illustrated in Figure 3-8.

3.4.6.1 Input Data Buffering Unit

Input data buffering is the most complex and critical part of inverse transform &

quantization architecture. The reason is that it should read input coefficients from

input memory in transmission order, load them to a buffer, trigger Hadamard

Transform Unit and send DC coefficients for intra16x16 prediction mode, read the

results back and replace DC coefficients in the buffer with transformed ones. Also

this unit handles luma and chroma cases for loading input coefficients and

Hadamard transform selection.

There is a 32-bit interface between input data buffering unit and dual-port input

memory. In transmission order of a macroblock, DC coefficients of luma samples

are firstly transmitted. Then other luma coefficients and DC coefficients of chroma

samples are transmitted. Finally DC coefficients of chroma samples are

transmitted.

53

Figure 3-8. Processing Hardware Architecture

Input coefficients are read from different locations of input memory in

“transmission order” defined by the standard [6] and inverse transform &

quantization results are written to assigned locations of output memory in the same

order. By this way input and output buffering units obey transmission order for

controlling internal processing units. So the design can easily be immigrated to a

complete H.264 hardware decoder system with small changes in input buffering

unit to provide interface to other processing blocks in decoder hardware.

54

Input buffering unit is mainly composed of two state machines. The first one reads

input coefficients from input memory in transmission order. It handles the

addressing required to read input memory for obeying transmission order.

Coefficients are stored by embedded processor to input memory in the

organization, as previously shown in Table 3-5. The addressing control reads from

these locations in transmission order.

The second state machine loads read input data to a buffer, called input_buffer,

controls the Hadamard Transform Unit to start the right transform operation (for

4x4 luma or 2x2 chroma) and reads transformed coefficient results. input_buffer is

actually a shift-register filled by shifting read input coefficients. input_buffer has

160-bit size used for different coefficient types. 10-bit representation is used for

luma DC coefficients in intra16x16 prediction mode, since QP>21. 10-bit Luma

DC coefficient block are loaded to this buffer as shown in Figure 3-9.

DC_coeff(0,0) DC_coeff(0,1) DC_coeff(0,2) DC_coeff(0,3)

DC_coeff(1,0) DC_coeff(1,1) DC_coeff(1,2) DC_coeff(1,3)

DC_coeff(2,0) DC_coeff(2,1) DC_coeff(2,2) DC_coeff(2,3)

DC_coeff(3,0) DC_coeff(3,1) DC_coeff(3,2) DC_coeff(3,3)

DC_coeff(0,0) DC_coeff(0,1) DC_coeff(0,2) DC_coeff(0,3) …. DC_coeff(3,2) DC_coeff(3,3)

10-bit 10-bit 10-bit 10-bit 10-bit 10-bit

Figure 3-9. Upper: Input DC coefficient block. Lower: 160-bit buffer content

If Hadamard Transform is required, for intra16x16 prediction mode or chroma,

Hadamard Transform Unit is triggered and reads input_buffer content.

Transformation result is from a different 160-bit shift-register called

hadamard_buffer. Then 8-bit represented 4x4 Luma coefficients are read and

loaded to 128-bit (16x8-bit coefficients) portion of input_buffer. The first 10-bit

entry of input_buffer, which is the DC coefficient position, is replaced by

corresponding 10-bit hadamard_buffer entry. Obtained 136-bit content is read by

inverse quantization and transform units for further processing. For the next 4x4

55

block, new coefficient values are loaded to input_buffer and hadamard_buffer is

shifted 16 bits to point next corresponding DC coefficient for replacement. This

continues until all luma blocks are read and DC coefficients are replaced with

Hadamard transformed ones. For prediction modes other than intra16x16,

Hadamard Transform Unit is not triggered for luma and loaded 128-bit

input_buffer content is directly used by other processing units.

3.4.6.2 Inverse Hadamard Transform Unit

As previously mentioned, 4x4 luma DC coefficients are Hadamard transformed at

encoder side for macroblocks predicted in intra16x16 mode. Transformed DC

coefficients are inverse transformed at the decoder side, which is exactly the same

expression with forward transform. 2x2 inverse Hadamard transform is also used

for chroma DC coefficients. A state machine is designed to support both transforms

and controlled by input buffering unit. It lasts only 2 clock cycles to finish the

transform operation and send ready signal hadamard_done, to controlling state

machine of input buffering unit.

As previously mentioned, 4x4 inverse Hadamard transform is simply a matrix

transformation operation:

[]

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

QDC DCW Z

    
    − − − −    =
    − − − −
     − − − −    

 (3.49)

For the implementation, this multiplication is splitted into two parts as (3.50) and

(3.51):

56

[]

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

QDC DCW Z

 
 − − ′ =
 − −
 

− − 

 (3.50)

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

QDC QDCW W

 
 − − ′=
 − −
 

− − 

 (3.51)

Obtained (3.50) is a single matrix multiplication and can be implemented by 4

different vector multiplications such as:

[](0,) (0,) (1,) (2,) (3,)1 1 1 1
T

QDC k DC k DC k DC k DC kW Z Z Z Z′  =   (3.52)

[](1,) (0,) (1,) (2,) (3,)1 1 1 1
T

QDC k DC k DC k DC k DC kW Z Z Z Z′  = − −   (3.53)

[](2,) (0,) (1,) (2,) (3,)1 1 1 1
T

QDC k DC k DC k DC k DC kW Z Z Z Z′  = − −   (3.54)

[](3,) (0,) (1,) (2,) (3,)1 1 1 1
T

QDC k DC k DC k DC k DC kW Z Z Z Z′  = − −   (3.55)

where 0,1,2,3k =

Totally 16 vector multiplications are required for (3.50). These are implemented

using 10-bit addition structures illustrated in Figure 3-11. Coefficient values are

loaded into 10-bit registers and additions are performed on these registers. 4 copies

of each of these structures are used to completely implement (3.50). In (3.51)

matrix multiplication is exactly the same with (3.50) and therefore copies of the

same addition structures are used. All additions for (3.50) and (3.51) are performed

with parallel structures with reduced adder count.

In order to make Hadamard transform controllable by input buffering unit, a state

machine is designed, as illustrated in Figure 3-10. Hadamard transform operation

starts when dc_ready signal is asserted by input buffering unit when buffering of

57

DC coefficients from input memory is completed. When this signal is detected by

Hadamard transform unit, it is checked whether they are luma or chroma DC

coefficients. If they are luma coefficients, (3.50) is implemented using addition

structures with 10-bit registers loaded with coefficients and results are loaded to

10-bit registers. In the next state, (3.51) is implemented on these registers with

similar structures. The final result is loaded to a 160-bit shift-register,

hadamard_buffer (16x10-bit) to be read by input buffering & control unit with

asserting hadamard_done signal. If 2x2 transformation is to be done for chroma,

smaller addition structures with 2 entries are used and the result is loaded to 40-bit

(4x10-bit) portion of hadamard_buffer.

Figure 3-10. Inverse Hadamard transform unit state transition diagram

58

Figure 3-11. Addition structures for (3.50)

59

3.4.6.3 Inverse Quantization Unit

Inverse quantization is a scaling operation to obtain transformed residual samples

from quantized coefficients. Scaling factors depend on the QP and matrix position

of the coefficient to be scaled. Derivation of inverse quantization expression is

previously explained in detail.

There are 3 different V values corresponding to 3 different matrix positions and

QP<6, as illustrated in Table 3-3. In the implementation ijV in (3.20) is combined

with exponent term to form:

()62
QP

floor

ij ijV V′ = (3.56)

ij ij ijW Z V ′′ = (3.57)

The contents of ijV ′ are named as V1, V2 and V3 where;

1 3 1 3

3 2 3 2

1 3 1 3

3 2 3 2

V V V V

V V V V
V

V V V V

V V V V

 
 
 ′ =
 
 
 

 (3.58)

For inverse quantization of luma and chroma DC coefficients, expressions in (3.30)

and (3.31) reduce to (3.59), (3.34) and (3.35) reduce to (3.60) respectively and

easily implemented with same structure used for other coefficients:

1 4ij ijW Z V′ = (3.59)

1 2ij ijW Z V′ = (3.60)

60

V Values for QP>6, are obtained by doubling for each QP increment of 6. In order

to get rid of shifting operation depending on the QP, which would slow the

operation, lookup tables are formed by all QP values. These LUTs are combined in

a scalar lookup table unit. It consists of 3 lookup tables for V1, V2 and V3 values.

All V values can be read from lookup table without any delay. Structure of the

scalar lookup table unit is as illustrated in Figure 3-12. V1, V2 and V3 values are

represented by 18-bit entries and selected by 6-bit QP input.

Figure 3-12. Scalar look-up table unit

Multiplication factors read from LUTs and buffered coefficients are loaded to 4

hardware multiplier units. Hardware multipliers are limited resources of FPGAs

that can be used in arithmetic building blocks of designed architectures. They have

18-bit inputs, 36-bit output and have capability to handle signed numbers

represented in 1’s complement form. They are combinatorial elements with zero

arithmetic processing delay to produce multiplication result. Throughout the

inverse transform & quantization architecture, 2’s complement representation is

used. For multiplication, coefficients are converted 1’s complement representation

and multiplication results are then converted back to 2’s complement form by a

simple logic.

61

Two controller state machines are designed to handle inverse quantization of 4x4

blocks. The state transition diagram for these state machines is as illustrated in

Figure 3-14. The first state machine is triggered by Input Buffering Unit when

buffering is completed for each buffered 4x4 coefficient block (with replaced

Hadamard transformed DC coefficients for intra16x16 prediction mode). In each

clock cycle, 4 coefficients are loaded to multiplier registers and obtained results are

loaded registers simultaneously. Since there are 16 coefficients in each 4x4 block,

4 clock cycles is required to obtain inverse quantization result of a 4x4 coefficient

block. Since V3 is used twice times more than others 2 multipliers are used for V3

multiplication as illustrated in Figure 3-13. Second state machine is triggered at the

same time with first state machine and synchronized to read the multiplication

results from multipliers and load them to registers with triggering Output Memory

Access unit at each 4 clock cycle. Simulation results for multiplication and loading

of results to registers is shown in Figure 3-15 and 3-16.

Figure 3-13. Multipliers for scaling coefficients

62

Figure 3-14. Controlling state machines for inverse quantization

63

Figure 3-15. Multiplication with V scalars

Figure 3-16. Loading registers with multiplication results

64

3.4.6.4 Inverse Integer DCT Unit

Integer form of Discrete Cosine Transform is used by H.264 to ease the hardware

implementation and provide exactly equal results on different processing platforms

which is not the case for floating-point operations. Derivation of integer DCT is

explained in previous sections.

For each 4x4 coefficient block, Integer DCT is implemented using similar

arithmetic structures with the ones used for Hadamard transform. Required

multiplications by 1
2 are implemented by left-shift operations. Since coefficients

may have negative values they are represented in 2’s complement form and

therefore shifting operation is performed in 2’s complement form.

Scalar multiplication with Ei is integrated into inverse quantization operation. The

remaining “core inverse transform” is implemented by designed inverse transform

unit:

[]

1
1 1 1

1 1 1 12
1 1 1

1 1 1 1 1
2 2 2
1 1 1 1 1

1 1 1
2 1 1

1 1
1 2 21 1 1
2

T

i scaled i scaledX C Y C Y

 
   
   
   − − − −
   = =    − − − −  
   − −    − − 
 

 (3.61)

As it is performed for inverse Hadamard transform, core inverse transform

expression is also splitted into two matrix multiplications for implementation:

65

[]

1
1 1 1

2
1

1 1 1
2
1

1 1 1
2

1
1 1 1

2

T

i scaled scaledX C Y Y

 
 
 
 − −
 

′ = =  
 − −
 
 

− − 
 

 (3.62)

1 1 1 1

1 1
1 1

2 2
1 1 1 1

1 1
1 1

2 2

iX X C X

 
 
 − −
 ′ ′= =  − −
 
 − −  

 (3.63)

(3.62) is a single matrix multiplication and can be implemented by 4 different

vector multiplications such as:

(0,) (0,) (1,) (2,) (3,)
11 1 1 2

T

k scaled k scaled k scaled k scaled kX Y Y Y Y ′  =    (3.64)

(1,) (0,) (1,) (2,) (3,)
11 1 12

T

k scaled k scaled k scaled k scaled kX Y Y Y Y ′  = − −    (3.65)

(2,) (0,) (1,) (2,) (3,)
11 1 12

T

k scaled k scaled k scaled k scaled kX Y Y Y Y ′  = − −    (3.66)

(3,) (0,) (1,) (2,) (3,)
11 1 1 2

T

k scaled k scaled k scaled k scaled kX Y Y Y Y ′  = − −    (3.67)

where 0,1,2,3k =

Totally 16 vector multiplications are required for (3.62). These are implemented

using addition structures, including shift operations, as illustrated in Figure 3-17.

Coefficient values are loaded into 16-bit registers and addition operations are

performed on these registers. 4 copies of each of these structures are used to

completely implement (3.62). (3.63) is also a single matrix multiplication and can

be implemented as 4 different vector multiplications such as:

66

(,0) (,0) (,1) (,2) (,3)
11 1 1 2

T

k k k k kX X X X X  ′ ′ ′ ′ =     (3.68)

(,1) (,0) (,1) (,2) (,3)
11 1 12

T

k k k k kX X X X X  ′ ′ ′ ′ = − −    (3.69)

(,2) (,0) (,1) (,2) (,3)
11 1 12

T

k k k k kX X X X X  ′ ′ ′ ′ = − −    (3.70)

(,3) (,0) (,1) (,2) (,3)
11 1 1 2

T

k k k k kX X X X X  ′ ′ ′ ′ = − −    (3.71)

where 0,1,2,3k =

Similarly 16 vector multiplications are required for (3.63). These are implemented

using similar structures, as illustrated in Figure 3-18. Results of (3.62) are loaded

into 16-bit registers and addition operations are performed on these registers. 4

copies of each of these structures are used to completely implement (3.63).

Obtained inverse transform result is loaded to a 256-bit buffer (16x16-bit).

For the design of inverse transform stages, simple 16-bit arithmetic is used with

two stages of 1-D DCT operations by (3.62) and (3.63). There are algorithms in the

literature that decrease logic utilization of DCT by using different techniques like

bit-width reduction, division of matrix transformation into several stages etc. These

techniques are effective but have negligible effect considering the total logic

utilization of inverse transform & quantization architecture, therefore a simple

implementation is used.

67

Figure 3-17. Addition structures for (3.62)

68

Figure 3-18. Addition structures for (3.63)

69

3.4.6.5 Output Memory Access Unit

The purpose of this unit is to write the final inverse transform results into output

memory, to be read by embedded processor and sent to PC. Before loading inverse

transform results they are post-scaled by 64 and rounded since they were pre-scaled

in inverse quantization.

Inverse transformed samples are loaded to a 256-bit register containing 16 16-bit

entries, as shown in Figure 3-19.

X(0,0) X(0,1) X(0,2) X(0,3) … X(3,1) X(3,2) X(3,3)

16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit

Figure 3-19. Inverse transformed samples (X) loaded to 256-bit register

Each 16-bit sample is right-shifted 6 times to obtain post-scaled (by 64) results, as

illustrated in Figure 3-20.

Figure 3-20. Right-shift operation to obtain post scaled samples

70

Right-shift operation is an easy way to implement division by powers of 2 but

insufficient to implement rounding. In order to round post-scaled samples, a simple

logic is designed to eliminate rounding errors caused by shift operation. Designed

logic increments post-scaled values by 1 in conditions shown in Figure 3-21.

Positive?

>32 ? ≥32 ?

No

operation

No

operation

Increment

by 1

Increment

by 1

YesNo

No

Yes Yes

No

Figure 3-21. Condition check for rounding.

Obtained post-scaled and rounded results have 10-bit representation. For default 8-

bit pixel representation, obtained results for residual samples is in the range (-255,

255). Therefore 9-bits are required to represent output samples in 2’s complement

representation. Designed output memory access is 32-bits. Modifying it to 36-bits

to write 4 samples at each access would be a solution but 36-bit access is not

supported by memory controller of embedded processor which is rarely used,

whereas 8, 16, 32, 64-bit memory accesses are commonly used by various logic

interfaces. Therefore output values are decided to be splitted into two parts, such as

the sign bit and 8-bit value term. Value terms are grouped into 32-bit registers and

written to memory at each clock cycle, synchronized with the inverse quantization

state machine.

71

Sign bits of all luma residual samples are loaded to a 256-bit register and written to

memory after 8-bit values of all luma residual samples are written, as shown in

Figure 3-22. Since output memory access unit is synchronized with state machines

which are responsible for multiplications in inverse quantization, it should not lose

synchronization by writing sign information. Sign information is designed to be

written to output memory after all luma samples are inverse quantized and

transformed and chroma samples are started to be read from input memory. During

that period inverse quantization state machines are in idle state waiting for input

buffering to be completed and output memory access unit has enough time (8 clock

cycles) to write 256-bit register containing sign bits. 8 clock cycles is enough

because chroma DC coefficients are firstly read, inverse Hadamard transformed

and first 4x4 chroma coefficient block is read before inverse quantization state

machines start to operate leaving idle state.

Figure 3-22. Write access for obtained residual samples

72

3.5 Results

Designed architecture is tested with serial communication software and verified by

comparing the results with inverse transform & quantization software developed in

MATLAB®.

Overall processing time for a single macroblock is 145 clock cycles for worst case

(intra16x16 prediction mode) where Hadamard Transform is required for luma DC

coefficients and 135 clock cycles for other cases. These are observed by sample

differences between start of operation and completed signal assertion in Xilinx

ChipScope® analysis software, shown in Figure 3-23 and 3-24. Obtained sample

difference is divided by 2 since 66MHz clock is used as a sampling clock for

observation of signals.

If QP was not limited with same design, almost twice more memory access would

be required to read input coefficients. This would result higher logic utilization and

higher power consumption.

Figure 3-23. System performance evaluation for intra16x16 mode

73

Figure 3-24. System performance evaluation for other modes

With this processing speed with 33MHz operating clock, a CIF (352x288)

coefficient frame, which contains 396 macroblocks, can be processed in 1.72 ms.

In other words, 581 CIF frames/second processing throughput can be achieved.

Even for higher resolution of 1408x1152, a frame would be processed just in 27.52

ms that is a throughput of 36 fps.

For integrating designed system to a low-power H.264 decoder, the right clock

frequency should be selected to support desired resolution and provide low power

consumption. Some of the recommended clock frequencies that satisfy different

resolutions are given in Table 3-7.

Table 3-7. Recommended operating clock frequency values

resolution frame rate clock frequency

176x144 30fps 500kHz

352x288 30fps 2MHz

704x562 30fps 8MHz

1408x1152 30fps 32MHz

74

Hardware utilization of system implemented in XC3S2000 series FPGA is

illustrated in Figure 3-25. During evaluation of utilization, memory blocks and

embedded processor are taken out from the design and only inverse transform &

quantization architecture is synthesized and implemented by Xilinx ISE® software.

Obtained values give a general idea of logic utilization of designed system but it is

not right to compare it with an ASIC design, since it may give more accurate logic

utilization results.

Figure 3-25. Hardware utilization in FPGA

75

CHAPTER 4

DEBLOCKING FILTERING

4.1 Introduction

At first, when the output of H.264 decoder was analyzed, blocking artifacts were

observed at the decoded frame. The artifacts are mostly due to the coarse

quantization of transformed residual samples and imperfect fit of motion

compensated blocks. An image-based transform would be a solution to reduce the

artifacts but is already not suitable for block-processing video coding and requires

frame buffering. These artifacts affect the compression performance in terms of

subjective quality. In order to obtain a perceptually better decoded video sequence,

output is filtered by an adaptive filter, named post filter, to reduce the blocking

artifacts. It is called a post filter since it is applied after the decoding operation. On

the other hand, since filtering provides a “better representation” of the frame,

insertion as an in-loop filter for reference frame is found to be effective. Better

reference frame provided better inter-picture prediction and therefore slightly

improved objective quality and 5-10% bitrate. Deblocking filtering was an optional

feature for H.263+, but is standardized in H.264 for in-loop filtering and is optional

for decoder post-filtering. [15]

76

Figure 4-1. Original and reconstructed part of frame “foreman” for QP=28

Figure 4-2. Part of frame after deblocking filtering

As illustrated in Figure 4-1, reconstructed frame has blocking artifacts compared to

original frame mostly on smooth background and moving parts. Deblocking filter

smoothes these accidental blocking edges and results a closer frame to original one,

as shown in Figure 4-2. True edges on the frame are not affected because of the

adaptive behavior of filtering.

77

4.2 Theoretical Background

In H.264 standard [6], deblocking filtering is applied to every 4x4 block edge in a

macroblock. As shown in Figure 4-3 and Figure 4-4, filtering is applied to both

horizontal and vertical edges. Luma and chroma block edges are independently

filtered. Totally 32 luma (16 vertical and 16 horizontal edges) and 16 chroma block

edges are filtered (8 vertical and 8 horizontal edges). For each macroblock, filtering

starts from left-most edge to right-most for vertical edges and from upper-most to

lower for horizontal edges. Horizontal edge filtering is required to be applied to

vertical edge filtered blocks. Therefore every 4x4 block in macroblock is first

filtered by vertical edge filtering and the filtered by horizontal edge filtering. This

process is similarly implemented for luma (Y) and chroma (Cb, Cr) components.

Figure 4-3. Vertical 4x4 block edges of a macroblock

78

Figure 4-4. Horizontal 4x4 block edges of a macroblock

The filter is adaptive in order to discriminate artificial blocking artifacts from real

edges. Therefore every 4x4 block edge is checked before filtering, to prohibit

blurring of real edges. On the other hand, blocking artifacts are classified to select

the appropriate type of filtering. Deblocking filtering is also adjusted by the

quantization parameter (QP) to control the filter strength with general quality of the

reconstructed frame.

4.2.1 Edge Level Adaptivity

A Boundary-strength (bS) parameter is set for every 4x4 block edge in a

macroblock. bS determines the type and limit of the filtering. Conditions shown in

Table 4-1 are checked from top to bottom for each 4x4 block edge to determine the

corresponding bS value. For intra coded macroblock edges, generally used for

smooth surfaces, blocking artifacts are more annoying and bS parameter is set to 4

to allow strong filtering. If any other condition is satisfied bS is set to 1 to 3, where

standard filtering is applied and bS determines the “limits of filtering”. If none of

the conditions is satisfied bS is set to zero to disable filtering for that edge. As

illustrated in Table 4-1, bS determination requires block types, motion vectors and

transformed coefficients corresponding to each block to check the conditions. bS

values for chroma edges are set directly from their corresponding luma block

edges, without any extra check. [15]

79

Table 4-1. bS determination conditions [6]

Conditions bS Filtering type

One of the blocks is intra coded and the edge is at

macroblock boundary 4 Strong

One of the blocks is intra coded 3 Standard

One of the blocks has coded coefficients 2 Standard

Difference of block motion ≥ 1 luma samples 1 Standard

Motion compensation from different reference frames 1 Standard

Else 0 None

4.2.2 Sample Level Adaptivity

In order to protect real edges from filtering, samples around each edge are

analyzed. The analysis is done by comparison of edge sample differences with

predefined threshold coefficients. These coefficients, α and β are defined by the

standard after empirical tests to result visually pleasing results. [15] Coefficients

are functions of QP to select the right threshold for given quality metric of the

reconstructed frame.

Figure 4-5. Samples around 4x4 block edge boundaries

80

 As illustrated in Figure 4-5, edge samples are generally denoted by 0 1 2 3, , ,p p p p

and 0 1 2 3, , ,q q q q . Mainly three pixel difference constraints are defined for edge

filtering.

0 0 ()Ap q Indexα− < (4.1)

1 0 ()Bp p Indexβ− < (4.2)

1 0 ()Bq q Indexβ− < (4.3)

IndexA and IndexB are table index values for α and β and calculated as

[]min max(0,),51A AIndex QP Offset= + (4.4)

[]min max(0,),51B BIndex QP Offset= + (4.5)

where QP is in the range 0 to 51 and OffsetA and OffsetB are the offset QP values of

a slice for selecting α and β [6].

α is generally greater than β, since it has a quadratic behavior with increasing QP,

whereas β is truncated linear. The purpose of QP dependency is to adjust strength

of filtering with quality of the frame. With increasing QP, quantization dependent

distortion exponentially increases and more samples are to be filtered. For lower

QP, quantization step size is lower and quantization dependent distortion is lower,

therefore threshold values are defined lower to disable undesired filtering. For

16AIndex < and 16BIndex < , α and β are set to zero and filtering is effectively

disabled.

81

Table 4-2. Values of α and β coefficients [6]

 IndexA (for α) or IndexB (for β)

 0 1 2 3 4 5 6 7 8 9 10 11 12

α 0 0 0 0 0 0 0 0 0 0 0 0 0

β 0 0 0 0 0 0 0 0 0 0 0 0 0

 IndexA (for α) or IndexB (for β)

 13 14 15 16 17 18 19 20 21 22 23 24 25

α 0 0 0 4 4 5 6 7 8 9 10 12 13

β 0 0 0 2 2 2 3 3 3 3 4 4 4

 IndexA (for α) or IndexB (for β)

 26 27 28 29 30 31 32 33 34 35 36 37 38

α 15 17 20 22 25 28 32 36 40 45 50 56 63

β 6 6 7 7 8 8 9 9 10 10 11 11 12

 IndexA (for α) or IndexB (for β)

 39 40 41 42 43 44 45 46 47 48 49 50 51

α 71 80 90 101 113 127 144 162 182 203 226 255 255

β 12 13 13 14 14 15 15 16 16 17 17 18 18

4.2.3 Slice Level Adaptivity

The offset values for the QP in equations 4.4 and 4.5 can be determined for every

slice to adjust the amount of filtering by setting α and β coefficients. The purpose

may be to discriminate areas with high detailed content from smooth surfaces. For

uniform QP through the entire frame, offset values are set to zero and table index

values become directly equal to QP value.

If OffsetA = 0 and OffsetB = 0

[]min max(0,),51AIndex QP QP= = (4.6)

[]min max(0,),51BIndex QP QP= = (4.7)

82

4.2.4 Filtering Structures

There are mainly two filtering structures used for deblocking filter. All filter

structures are FIR filters and can be implemented by add and shift operations

instead of multiplication and division to ease the implementation.

4.2.4.1 Standard Filtering

Standard filtering is used for block edges with boundary strength value from 1 to 3.

This type of filtering modifies maximum 4 pixels near a block edge (2 near left, 2

near right), with a value that is limited by the coefficient tc0, which depends on bS

value and QP. Therefore, pixel modification limit effectively depends on bS and

QP, as illustrated in Figure 4-6. It is named as clipping by the standard and applied

to avoid too much low-pass filtering which can cause blurring. [15] The value of tc0

for given QP and bS determines the limiting value of ∆0, ∆p1 and ∆q1.

Table 4-3. tc0 coefficient values for given QP [6]

 QP

tc0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

bS = 1 0 1 1 1

bS = 2 0 1 1 1 1 1

bS = 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

 QP

tc0 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

bS = 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 4 4 4 5 6 6 7 8 9 10 11 13

bS = 2 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5 5 6 7 8 8 10 11 12 13 15 17

bS = 3 1 2 2 2 2 3 3 3 4 4 4 5 6 6 7 8 9 10 11 13 14 16 18 20 23 25

83

0

5

10

15

20

25

1 4 7 101316192225283134374043464952

QP

tc
0

BS=1

BS=2

BS=3

Figure 4-6. Characteristic of tc0 with increasing QP and for given bS

Let p2, p1, p0 and q0, q1, q2 be the samples near a block edge with bS < 4 and bS ≠ 0.

Filtered samples, 0p ′ and 0q ′ are obtained by the equations [15]:

0 0 0p p′ = + ∆ (4.8)

0 0 0q q′ = − ∆ (4.9)

The change factor, ∆0, is calculated in two steps [15]:

1) The initial value of ∆0 is calculated by 4-tap filtering of p0, p1, q0 and q1.

()0 0 0 1 14 4 3i q p p q∆ = − + + + >>   (4.10)

84

2) Obtained value is clipped by 0ct
′ . 0ct

′ is first set equal to 0ct and

incremented by 1 for each satisfying condition (4.2) and (4.3). For

chrominance filtering, 0ct
′ is set equal to 0ct and directly incremented by 1.

()0 0 0 0min max , ,itc tc ′ ′∆ = − ∆  
 (4.11)

Filtered sample 1p ′ or 1q ′ is obtained similarly if (4.2) or (4.3) is true respectively.

For chrominance filtering, p1 and q1 are left unfiltered.

()1 0 1 1 1B pIf p p Index p pβ ′− < ⇒ = + ∆ (4.12)

()1 0 1 1 1B qIf q q Index q qβ ′− < ⇒ = + ∆ (4.13)

The change factor, ∆p1, is similarly calculated in two steps [15]:

1) The initial value of ∆p1 and ∆q1 are calculated by 4-tap filtering [15]:

(){ }1 2 0 0 11 1 2 1p i p p q p∆ = + + + >> − >>   (4.14)

(){ }1 2 0 0 11 1 2 1q i q p q q∆ = + + + >> − >>   (4.15)

2) Obtained values are clipped by tc0.

()1 0 1 0min max , ,p c p i ct t ∆ = − ∆  (4.16)

()1 0 1 0min max , ,q c q i ct t ∆ = − ∆  (4.17)

85

4.2.4.2 Strong Filtering

Strong filtering is a special type of filtering applied to block edges with bS = 4. The

purpose of this type of filtering is to filter “tiling effects” at smooth surfaces, near

intra macroblock boundaries. [15] 4 different FIR filter structures are used

conditionally. Filtering can modify maximum 6 pixels near an edge (3 at left and 3

at right). Filtering structures are applied depending on the tighter pixel difference

constraint and previous (4.2) and (4.3).

()()0 0 2 2Ap q Indexα− < >> + (4.18)

If (4.18) and (4.2) is satisfied, p0, p1 and p2 luma samples are filtered by 5-tap and

4-tap FIR filters [15]:

()0 2 1 0 0 12 2 2 4 3p p p p q q′ = + + + + + >> (4.19)

()1 2 1 0 0 2 2p p p p q′ = + + + + >> (4.20)

()2 3 2 1 0 02 3 4 3p p p p p q′ = + + + + + >> (4.21)

Else if (4.18) or (4.2) is not satisfied, or chroma filtering is implemented, p0 is

filtered by a weaker 3-tap FIR filter [15]:

()0 1 0 12 2 2p p p q′ = + + + >> (4.22)

Similarly if (4.18) and (4.3) are satisfied, q0, q1 and q2 luma samples are filtered:

()0 2 1 0 0 12 2 2 4 3q q q p q p′ = + + + + + >> (4.23)

()1 2 1 0 0 2 2q q q p q′ = + + + + >> (4.24)

()2 3 2 1 0 02 3 4 3q q q q q p′ = + + + + + >> (4.25)

86

Else if (4.18) or (4.3) is not satisfied, or chroma filtering is implemented, q0 is

filtered similarly.

()0 1 0 12 2 2q q q p′ = + + + >> (4.26)

In Figure 4-7, the flow chart of filtering decision for each edge is illustrated.

Figure 4-7. Flow chart of filtering decision for each edge

87

4.3 Deblocking Filter Architectures in Literature

Deblocking filtering is being interested after standardized in H.264/AVC as an in-

loop filter. Computational load of deblocking filtering, which is approximately

one-third of total decoder complexity [25], made researchers focus on efficient

algorithms to implement deblocking filtering.

On the other hand, improvements for video compression efficiency became

saturated and solutions for H.264 decoder hardware began to be interested.

Deblocking filter is naturally a part of the decoder hardware to be used for various

consumer video coding applications. In order to obtain a design with high

performance to support high resolution, with less power consumption or less logic

utilization, efficient hardware architectures started to be developed since 2005.

B. Sheng et. al. [16] proposed a deblocking filter architecture which has a high

performance but its internal memory requirement is extremely high. Also the gate

count of the design is considerably high for a VLSI design.

B. J. Kim et al. [23] proposed a low power architecture for H.264 deblocking filter.

They used a frame memory to read input pixels and registers to buffer filtered pixel

blocks. They disabled filtering for QP<16 and threshold conditions not satisfied.

The architecture was simple and effective in terms of gate count and power

consumption but throughput was not satisfactory for moderate resolutions even

with a high frequency processing clock.

M. Sima et. al. [22] proposed a deblocking filter architecture with instruction and

parameter interface and 64-byte internal memory which can be embedded into

general purpose processor and DSP as a hardware accelerator software codec.

88

G. Khurana et. al. [13] proposed a pipelined hardware architecture which obtained

brilliant throughput to be used for high resolution video. The architecture is seemed

to be effective to reduce internal memory usage and gate count.

K. Xu et. al. [35] proposed a 5-stage pipelined architecture with single-port SRAM

use as an internal memory and high processing speed to allow high resolutions.

C. C. Cheng et. al. [21] proposed an improved version of their previous

architecture [18] for which data reuse is effective and only 64 byte of internal

memory is required with degraded processing speed.

T. M. Liu et. al. [20] proposed an architecture which is compatible with MPEG-4

and H.264 decoders. The architecture has capability to work in-loop and post-loop.

They used a hybrid processing order and tried to reduce memory accesses.

M. Parlak et. al. [25] proposed a different processing order compatible with the

transmission order of inverse transform & quantization unit to increase processing

performance. Two different architectures are proposed for high performance and

low power applications. Obtained architectures have low gate count, but have large

amount of memory access and insufficient processing speed.

89

4.3.1 Data Reuse Analysis of Processing Orders in Literature

Processing order selection for deblocking filtering is effective on the architecture

design and data reuse performance. Several processing orders are used in proposed

architectures mentioned above. These processing orders are analyzed in terms of

data reuse to determine their performance for an architecture with a register set for

buffering intermediate filtering results instead of “power and chip area consuming”

internal memory.

In the analysis, data access types and number of registers required to support

“memory-free design” are determined. In tables, “direct” represents data transfer of

a previously filtered block to next filtering stage. “reg1, reg2 …” represent load

and store accesses from the register set. “ext” represents an access to external

memory. External memory accesses are restricted to be allowed only for reading

new blocks to be filtered or writing blocks with all edges filtered. The purpose is to

minimize external memory access and use only register set for intermediate results

buffering to obtain a low power implementation. Consequently, the processing

order with minimum external memory access and register requirement is to be

determined for implementation.

90

4.3.1.1 Basic Processing Order

Basic processing order is the simplest method to implement the deblocking filter,

where all vertical edges are filtered first in a sequential order and horizontal edges

are filtered next. Processing order of edges do not take data reuse into account but

the controller architecture is simple and do not require complex hardware. Basic

processing order, as shown in Figure 4-8, is specified in H.264 standard [6] and

used by [17, 22], which the architecture is a base point for further improvements in

terms of processing speed and memory use.

Figure 4-8. Basic processing order

As illustrated in Table 4-4, for this processing order:

of read access from external memory = 24 luma + 16 chroma = 40

of write access to external memory = 24 luma + 16 chroma = 40

of direct read access from previous filtering result = 0

of registers required = 24 (or 24x128bit internal memory)

of read and write access to registers = 56 + 56 = 112

If chroma filtering was performed after luma filtering is totally finished, 16

registers would be adequate, but still the architecture would need a large internal

memory for buffering instead of large number of registers.

91

Table 4-4. Data access types of 4x4 blocks with basic processing order

Edge # Block1 Block2 load1 load2 store1 store2

1 BF BG ext ext ext reg1

2 CF CG ext ext ext reg2

3 DF DG ext ext ext reg3

4 EF EG ext ext ext reg4

5 BG BH reg1 ext reg1 reg5

6 CG CH reg2 ext reg2 reg6

7 DG DH reg3 ext reg3 reg7

8 EG EH reg4 ext reg4 reg8

9 BH BI reg5 ext reg5 reg9

10 CH CI reg6 ext reg6 reg10

11 DH DI reg7 ext reg7 reg11

12 EH EI reg8 ext reg8 reg12

13 BI BJ reg9 ext reg9 reg13

14 CI CJ reg10 ext reg10 reg14

15 DI DJ reg11 ext reg11 reg15

16 EI EJ reg12 ext reg12 reg16

17 LN LO ext ext ext reg17

18 MN MO ext ext ext reg18

19 LO LP reg17 ext reg17 reg19

20 MO MP reg18 ext reg18 reg20

21 RT RU ext ext ext reg21

22 ST SU ext ext ext reg22

23 RU RV reg21 ext reg21 reg23

24 SU SV reg22 ext reg22 reg24

25 AG BG ext reg1 ext reg1

26 AH BH ext reg5 ext reg5

27 AI BI ext reg9 ext reg9

28 AJ BJ ext reg13 ext reg13

29 BG CG reg1 reg2 ext reg2

30 BH CH reg5 reg6 ext reg6

31 BI CI reg9 reg10 ext reg10

32 BJ CJ reg13 reg14 ext reg14

33 CG DG reg2 reg3 ext reg3

34 CH DH reg6 reg7 ext reg7

35 CI DI reg10 reg11 ext reg11

36 CJ DJ reg14 reg15 ext reg15

37 DG EG reg3 reg4 ext ext

38 DH EH reg7 reg8 ext ext

39 DI EI reg11 reg12 ext ext

40 DJ EJ reg15 reg16 ext ext

41 KO LO ext reg17 ext reg17

42 KP LP ext reg19 ext reg19

43 LO MO reg17 reg18 ext ext

44 LP MP reg19 reg20 ext ext

45 QU RU ext reg21 ext reg21

46 QV RV ext reg23 ext reg23

47 RU SU reg21 reg22 ext ext

48 RV SV reg23 reg24 ext ext

92

4.3.1.2 1-D Processing Order Proposed by [18]

1-D processing order takes more care on date reuse than the previous one so that

each edge being filtered is transferred to next filtering stage. This approach is

advantageous so that some of intermediate filtering results can be used

instantaneously without storing and reloading. The method is called 1-D and used

by [18, 23], since data reuse is only in horizontal direction for vertical edge

filtering and vertical direction for horizontal edge filtering.

Figure 4-9. 1-D processing order proposed by [18]

As illustrated in Table 4-5, for this processing order:

of read access from external memory = 24 luma + 16 chroma = 40

of write access to external memory = 24 luma + 16 chroma = 40

of direct read access from previous filtering result = 24

of registers required = 24 (or 24x128bit internal memory)

of read and write access to registers = 32 + 32 = 64

Although there is data reuse with direct transfer of some of previously filtered

blocks, architecture is still inappropriate for a memory-free design because of large

number of registers. Like the previous case, 16 registers would be enough if

chroma filtering is implemented after luma filtering is completely finished.

93

Table 4-5. Data access types for 1-D processing order proposed by [18]

Edge # Block1 Block2 load1 load2 store1 store2

1 BF BG ext ext ext direct

2 BG BH direct ext reg1 direct

3 BH BI direct ext reg2 direct

4 BI BJ direct ext reg3 reg4

5 CF CG ext ext ext direct

6 CG CH direct ext reg5 direct

7 CH CI direct ext reg6 direct

8 CI CJ direct ext reg7 reg8

9 DF DG ext ext ext direct

10 DG DH direct ext reg9 direct

11 DH DI direct ext reg10 direct

12 DI DJ direct ext reg11 reg12

13 EF EG ext ext ext direct

14 EG EH direct ext reg13 direct

15 EH EI direct ext reg14 direct

16 EI EJ direct ext reg15 reg16

17 LN LO ext ext ext direct

18 LO LP direct ext reg17 reg18

19 MN MO ext ext ext direct

20 MO MP direct ext reg19 reg20

21 RT RU ext ext ext direct

22 RU RV direct ext reg21 reg22

23 ST SU ext ext ext direct

24 SU SV direct ext reg23 reg24

25 AG BG ext reg1 ext direct

26 BG CG direct reg5 ext direct

27 CG DG direct reg9 ext direct

28 DG EG direct reg13 ext ext

29 AH BH ext reg2 ext direct

30 BH CH direct reg6 ext direct

31 CH DH direct reg10 ext direct

32 DH EH direct reg14 ext ext

33 AI BI ext reg3 ext direct

34 BI CI direct reg7 ext direct

35 CI DI direct reg11 ext direct

36 DI EI direct reg15 ext ext

37 AJ BJ ext reg4 ext direct

38 BJ CJ direct reg8 ext direct

39 CJ DJ direct reg12 ext direct

40 DJ EJ direct reg16 ext ext

41 KO LO ext reg17 ext direct

42 LO MO direct reg19 ext ext

43 KP LP ext reg18 ext direct

44 LP MP direct reg20 ext ext

45 QU RU ext reg21 ext direct

46 RU SU direct reg23 ext ext

47 QV RV ext reg22 ext direct

48 RV SV direct reg24 ext ext

94

4.3.1.3 1-D Processing Order Proposed by [13]

This processing order is proposed by [13], to be used for a pipelined architecture

which outperforms the previous ones in terms of data reuse and allows pipelined

processing since horizontal and vertical edge filtering can be implemented

simultaneously in different stages.

Figure 4-10. 1-D processing order proposed by [13]

As illustrated in Table 4-6, for this processing order:

of read access from external memory = 24 luma + 16 chroma = 40

of write access to external memory = 24 luma + 16 chroma = 40

of direct read access from previous filtering result = 16

of registers required = 8 (or 8x128bit internal memory)

of read and write access to registers = 40 + 40 = 80

For this processing order number of registers required is much more less than

previous ones. 8 128-bit registers, each holding a 4x4 block with 8-bit pixel depth,

can be used as a buffer for intermediate filtering results instead of a 8x128

(128byte) memory.

95

Table 4-6. Data access types of 1-D processing order proposed by [13]

Edge # Block1 Block2 load1 load2 store1 store2

1 BF BG ext ext ext direct

2 BG BH direct ext reg1 direct

3 BH BI direct ext reg2 direct

4 BI BJ direct ext reg3 reg4

5 AG BG ext reg1 ext reg1

6 AH BH ext reg2 ext reg2

7 AI BI ext reg3 ext reg3

8 AJ BJ ext reg4 ext reg4

9 CF CG ext ext ext direct

10 CG CH direct ext reg5 direct

11 CH CI direct ext reg6 direct

12 CI CJ direct ext reg7 reg8

13 BG CG reg1 reg5 ext reg5

14 BH CH reg2 reg6 ext reg6

15 BI CI reg3 reg7 ext reg7

16 BJ CJ reg4 reg8 ext reg8

17 DF DG ext ext ext direct

18 DG DH direct ext reg1 direct

19 DH DI direct ext reg2 direct

20 DI DJ direct ext reg3 reg4

21 CG DG reg5 reg1 ext reg1

22 CH DH reg6 reg2 ext reg2

23 CI DI reg7 reg3 ext reg3

24 CJ DJ reg8 reg4 ext reg4

25 EF EG ext ext ext direct

26 EG EH direct ext reg5 direct

27 EH EI direct ext reg6 direct

28 EI EJ direct ext reg7 reg8

29 DG EG reg1 reg5 ext ext

30 DH EH reg2 reg6 ext ext

31 DI EI reg3 reg7 ext ext

32 DJ EJ reg4 reg8 ext ext

33 LN LO ext ext ext direct

34 LO LP direct ext reg1 reg2

35 MN MO ext ext ext direct

36 MO MP direct ext reg3 reg4

37 KO LO ext reg1 ext reg1

38 KP LP ext reg2 ext reg2

39 LO MO reg1 reg3 ext ext

40 LP MP reg2 reg4 ext ext

41 RT RU ext ext ext direct

42 RU RV direct ext reg1 reg2

43 ST SU ext ext ext direct

44 SU SV direct ext reg3 reg4

45 QU RU ext reg1 ext reg1

46 QV RV ext reg2 ext reg2

47 RU SU reg1 reg3 ext ext

48 RV SV reg2 reg4 ext ext

96

4.3.1.4 2-D Processing Order Proposed by [20]

2-D processing orders outperform 1-D, in terms of data reuse. As the name implies,

data reuse is in both dimensions and therefore less memory is required for

intermediate buffering.

Figure 4-11. 2-D processing order proposed by [20]

As illustrated in Table 4-7, for this processing order:

of read access from external memory = 24 luma + 16 chroma = 40

of write access to external memory = 24 luma + 16 chroma = 40

of direct read access from previous filtering result = 12

of registers required = 8 (or 8x128bit internal memory)

of read and write access to registers = 44 + 44 = 88

97

Table 4-7. Data access types for 2-D processing order proposed by [20]

Edge # Block1 Block2 load1 load2 store1 store2

1 BF BG ext ext ext reg1

2 CF CG ext ext ext reg2

3 BG BH reg1 ext reg1 reg3

4 CG CH reg2 ext reg2 reg4

5 AG BG ext reg1 ext direct

6 BG CG direct reg2 ext reg2

7 BH BI reg3 ext reg3 reg1

8 CH CI reg4 ext reg4 reg5

9 AH BH ext reg3 ext direct

10 BH CH direct reg4 ext reg4

11 BI BJ reg1 ext reg1 reg3

12 CI CJ reg5 ext reg5 reg6

13 AI BI ext reg1 ext direct

14 BI CI direct reg5 ext reg5

15 AJ BJ ext reg3 ext direct

16 BJ CJ direct reg6 ext reg6

17 DF DG ext ext ext reg1

18 EF EG ext ext ext reg3

19 DG DH reg1 ext reg1 reg7

20 EG EH reg3 ext reg3 reg8

21 CG DG reg2 reg1 ext direct

22 DG EG direct reg3 ext ext

23 DH DI reg7 ext reg7 reg1

24 EH EI reg8 ext reg8 reg2

25 CH DH reg4 reg7 ext direct

26 DH EH direct reg8 ext ext

27 DI DJ reg1 ext reg1 reg3

28 EI EJ reg2 ext reg2 reg4

29 CI DI reg5 reg1 ext direct

30 DI EI direct reg2 ext ext

31 CJ DJ reg6 reg3 ext direct

32 DJ EJ direct reg4 ext ext

33 LN LO ext ext ext reg1

34 MN MO ext ext ext reg2

35 LO LP reg1 ext reg1 reg3

36 MO MP reg2 ext reg2 reg4

37 KO LO ext reg1 ext direct

38 LO MO direct reg2 ext ext

39 KP LP ext reg3 ext direct

40 LP MP direct reg4 ext ext

41 RT RU ext ext ext reg1

42 ST SU ext ext ext reg2

43 RU RV reg1 ext reg1 reg3

44 SU SV reg2 ext reg2 reg4

45 QU RU ext reg1 ext direct

46 RU SU direct reg2 ext ext

47 QV RV ext reg3 ext direct

48 RV SV direct reg4 ext ext

98

4.3.1.5 2-D Processing Order Proposed by [35]

This is another version of 2-D processing order proposed by [35].

Figure 4-12. 2-D processing order proposed by [35]

As illustrated in Table 4-8, for this processing order:

of read access from external memory = 24 luma + 16 chroma = 40

of write access to external memory = 24 luma + 16 chroma = 40

of direct read access from previous filtering result = 12

of registers required = 8 (or 8x128bit internal memory)

of read and write access to registers = 44 + 44 = 88

Although data reuse is well done, number of required registers is still high.

99

Table 4-8. Data access types for 2-D processing order proposed by [35]

Edge # Block1 Block2 load1 load2 store1 store2

1 BF BG ext ext ext direct

2 BG BH direct ext reg1 reg2

3 CF CG ext ext ext direct

4 CG CH direct ext reg3 reg4

5 AG BG ext reg1 ext direct

6 BG CG direct reg3 ext reg3

7 BH BI reg2 ext reg2 reg1

8 CH CI reg4 ext reg4 reg5

9 AH BH ext reg2 ext direct

10 BH CH direct reg4 ext reg4

11 BI BJ reg1 ext reg1 reg2

12 CI CJ reg5 ext reg5 reg6

13 AI BI ext reg1 ext reg1

14 AJ BJ ext reg2 ext reg2

15 BI CI reg1 reg5 ext reg5

16 BJ CJ reg2 reg6 ext reg6

17 DF DG ext ext ext direct

18 DG DH direct ext reg1 reg2

19 EF EG ext ext ext direct

20 EG EH direct ext reg7 reg8

21 CG DG reg3 reg1 ext direct

22 DG EG direct reg7 ext ext

23 DH DI reg2 ext reg2 reg1

24 EH EI reg8 ext reg8 reg3

25 CH DH reg4 reg2 ext direct

26 DH EH direct reg8 ext ext

27 DI DJ reg1 ext reg1 reg2

28 EI EJ reg3 ext reg3 reg4

29 CI DI reg5 reg1 ext reg1

30 CJ DJ reg6 reg2 ext reg2

31 DI EI reg1 reg3 ext ext

32 DJ EJ reg2 reg4 ext ext

33 LN LO ext ext ext direct

34 LO LP direct ext reg1 reg2

35 MN MO ext ext ext direct

36 MO MP direct ext reg3 reg4

37 KO LO ext reg1 ext reg1

38 KP LP ext reg2 ext reg2

39 LO MO reg1 reg3 ext ext

40 LP MP reg2 reg4 ext ext

41 RT RU ext ext ext direct

42 RU RV direct ext reg1 reg2

43 ST SU ext ext ext direct

44 SU SV direct ext reg3 reg4

45 QU RU ext reg1 ext reg1

46 QV RV ext reg2 ext reg2

47 RU SU reg1 reg3 ext ext

48 RV SV reg2 reg4 ext ext

100

4.3.1.6 2-D Processing Order Proposed By [34]

It is proposed by [34] and also used in [25], to be compatible with transform and

quantization transmission order to increase processing speed.

Figure 4-13. 2-D Processing order proposed by [34]

As illustrated in Table 4-9, for this processing order:

of read access from external memory = 24 luma + 16 chroma = 40

of write access to external memory = 24 luma + 16 chroma = 40

of direct read access from previous filtering result = 24

of registers required = 6 (or 6x128bit internal memory)

of read and write access to registers = 32 + 32 = 64

Number of registers required is only 6 for this proposed processing order but

required controlling hardware seems to be complex. The types of data access for

each edge seems not be symmetric with others which may result a complicated

state machine.

101

Table 4-9. Data access types of 4x4 blocks with processing order proposed by [34]

Edge # Block1 Block2 load1 load2 store1 store2

1 BF BG ext ext ext direct

2 BG BH direct ext direct reg1

3 AG BG ext direct ext reg2

4 CF CG ext ext ext direct

5 CG CH direct ext direct reg3

6 BG CG reg2 direct ext reg2

7 BH BI reg1 ext direct reg1

8 AH BH ext direct ext reg4

9 BI BJ reg1 ext direct reg1

10 AI BI ext direct ext reg5

11 AJ BJ ext reg1 ext reg1

12 CH CI reg3 ext direct reg3

13 BH CH reg4 direct ext reg4

14 CI CJ reg3 ext direct reg3

15 BI CI reg5 direct ext reg5

16 BJ CJ reg1 reg3 ext reg1

17 DF DG ext ext ext direct

18 DG DH direct ext direct reg3

19 CG DG reg2 direct ext reg2

20 EF EG ext ext ext direct

21 EG EH direct ext direct reg6

22 DG EG reg2 direct ext ext

23 DH DI reg3 ext direct reg2

24 CH DH reg4 direct ext reg3

25 DI DJ reg2 ext direct reg4

26 CI DI reg5 direct ext reg5

27 CJ DJ reg1 reg4 ext reg4

28 EH EI reg6 ext direct reg2

29 DH EH reg3 direct ext ext

30 EI EJ reg2 ext direct reg2

31 DI EI reg5 direct ext ext

32 DJ EJ reg4 reg2 ext ext

33 LN LO ext ext ext direct

34 LO LP direct ext direct reg1

35 KO LO ext direct ext reg2

36 KP LP ext reg1 ext reg1

37 MN MO ext ext ext direct

38 MO MP direct ext direct reg3

39 LO MO reg2 direct ext ext

40 LP MP reg1 reg3 ext ext

41 RT RU ext ext ext direct

42 RU RV direct ext direct reg1

43 QU RU ext direct ext reg2

44 QV RV ext reg1 ext reg1

45 ST SU ext ext ext direct

46 SU SV direct ext direct reg3

47 RU SU reg2 direct ext ext

48 RV SV reg1 reg3 ext ext

102

4.3.1.7 2-D Processing Order Proposed by [19]

Figure 4-14. 2-D processing order proposed by [19]

As illustrated in Table 4-10, for this processing order:

of read access from external memory = 24 luma + 16 chroma = 40

of write access to external memory = 24 luma + 16 chroma = 40

of direct read access from previous filtering result = 21

of registers required = 5 (or 8x128bit internal memory)

of read and write access to registers = 35 + 35 = 70

Only 5 registers are required for this processing order and direct transfers are

higher compared to previous ones.

103

Table 4-10. Data access types for 2-D processing order proposed by [19]

Edge # Block1 Block2 load1 load2 store1 store2

1 BF BG ext ext ext reg1

2 CF CG ext ext ext reg2

3 DF DG ext ext ext reg3

4 EF EG ext ext ext reg4

5 BG BH reg1 ext direct reg1

6 AG BG ext direct ext reg5

7 CG CH reg2 ext direct reg2

8 BG CG reg5 direct ext reg5

9 DG DH reg3 ext direct reg3

10 CG DG reg5 direct ext reg5

11 EG EH reg4 ext direct reg4

12 DG EG reg5 direct ext ext

13 BH BI reg1 ext direct reg5

14 AH BH ext direct ext reg1

15 CH CI reg2 ext direct reg2

16 BH CH reg1 direct ext reg1

17 DH DI reg3 ext direct reg3

18 CH DH reg1 direct ext reg1

19 EH EI reg4 ext direct reg4

20 DH EH reg1 direct ext ext

21 BI BJ reg5 ext direct reg5

22 AI BI ext direct ext reg1

23 CI CJ reg2 ext direct reg2

24 BI CI reg1 direct ext reg1

25 DI DJ reg3 ext direct reg3

26 CI DI reg1 direct ext reg1

27 EI EJ reg4 ext direct reg4

28 DI EI reg1 direct ext ext

29 AJ BJ ext reg5 ext direct

30 BJ CJ direct reg2 ext direct

31 CJ DJ direct reg3 ext direct

32 DJ EJ direct reg4 ext ext

33 LN LO ext ext ext reg1

34 MN MO ext ext ext reg2

35 LO LP reg1 ext direct reg1

36 KO LO ext direct ext reg3

37 MO MP reg2 ext direct reg2

38 LO MO reg3 direct ext ext

39 KP LP ext reg1 ext direct

40 LP MP direct reg2 ext ext

41 RT RU ext ext ext reg1

42 ST SU ext ext ext reg2

43 RU RV reg1 ext direct reg1

44 QU RU ext direct ext reg3

45 SU SV reg2 ext direct reg2

46 RU SU reg3 direct ext ext

47 QV RV ext reg1 ext direct

48 RV SV direct reg2 ext ext

104

4.3.1.8 2-D Processing Order Proposed by [16]

2-D processing order proposed by [16] and also used by [21, 36] is the best in

terms of data reuse. A block filtered is next used twice before storing to external

memory so that internal memory requirement is minimized. Processing order of

edges is illustrated in Figure 4-15.

Figure 4-15. 2-D processing order proposed by [16]

As illustrated in Table 4-11, for this processing order:

of read access from external memory = 24 luma + 16 chroma = 40

of write access to external memory = 24 luma + 16 chroma = 40

of direct read access from previous filtering result = 24

of registers required = 5 (or 5x128bit internal memory)

of read and write access to registers = 32 + 32 = 64

This processing order again requires 5 registers for memory-free design. The

controller hardware seems to be obviously complex than basic processing order

case but there is symmetry between data access decisions for most of the edges

compared to the one proposed by [19]. So a state-machine that handles the data

access case for each edge can be designed without complicated hardware. The

design is memory-free and requires only 5x128-bit registers replacing a minimum

of 80-bytes internal memory and a lot of memory access.

105

Table 4-11. Data access types for 2-D processing order proposed by [16]

Edge # Block1 Block2 load1 load2 store1 store2

1 BF BG ext ext ext direct

2 BG BH direct ext direct reg1

3 AG BG ext direct ext reg2

4 BH BI reg1 ext direct reg1

5 AH BH ext direct ext reg3

6 BI BJ reg1 ext direct reg1

7 AI BI ext direct ext reg4

8 AJ BJ ext reg1 ext reg5

9 CF CG ext ext ext direct

10 CG CH direct ext direct reg1

11 BG CG reg2 direct ext reg2

12 CH CI reg1 ext direct reg1

13 BH CH reg3 direct ext reg3

14 CI CJ reg1 ext direct reg1

15 BI CI reg4 direct ext reg4

16 BJ CJ reg5 reg1 ext reg5

17 DF DG ext ext ext direct

18 DG DH direct ext direct reg1

19 CG DG reg2 direct ext reg2

20 DH DI reg1 ext direct reg1

21 CH DH reg3 direct ext reg3

22 DI DJ reg1 ext direct reg1

23 CI DI reg4 direct ext reg4

24 CJ DJ reg5 reg1 ext reg5

25 EF EG ext ext ext direct

26 EG EH direct ext direct reg1

27 DG EG reg2 direct ext ext

28 EH EI reg1 ext direct reg1

29 DH EH reg3 direct ext ext

30 EI EJ reg1 ext direct reg1

31 DI EI reg4 direct ext ext

32 DJ EJ reg5 reg1 ext ext

33 LN LO ext ext ext direct

34 LO LP direct ext direct reg1

35 KO LO ext direct ext reg2

36 KP LP ext reg1 ext reg1

37 MN MO ext ext ext direct

38 MO MP direct ext direct reg3

39 LO MO reg2 direct ext ext

40 LP MP reg1 reg3 ext ext

41 RT RU ext ext ext direct

42 RU RV direct ext direct reg1

43 QU RU ext direct ext reg2

44 QV RV ext reg1 ext reg1

45 ST SU ext ext ext direct

46 SU SV direct ext direct reg3

47 RU SU reg2 direct ext ext

48 RV SV reg1 reg3 ext ext

106

4.4 Implementation

4.4.1 System Architecture

Deblocking filter with 2-D processing order proposed by [16] and internal

memory-free architecture is implemented on Spartan-3 series XC3S2000 FPGA on

evaluation board.

System architecture is similar with the one used for inverse transform &

quantization. It is as illustrated in Figure 4-16. Input frame and control information

is sent through serial channel to be loaded to 2MB SRAM on board. Frame parts

are sent to on-chip memory of FPGA and deblocking filter architecture processes

par of input frame using the control information and writes the result back to

memory. Filtered frame parts are written back to SRAM and finally sent to PC

through serial channel. Software developed in MATLAB® handles the serial

communication between the board and PC. Embedded processor on FPGA is again

used to control the flow of data between frame, pixel and parameter memories and

PC.

Deblocking filter hardware is the only component which is designed to use in an

H.264 hardware decoder. Other components in the system architecture are again

used to control the flow of data between deblocking filter and serial

communication software. Therefore their performance in terms of memory use,

processing speed, gate count etc. is ignored during evaluation of deblocking filter

performance.

107

Figure 4-16. System architecture for deblocking filtering

108

4.4.2 Preparation of Input Frame and Control Parameters

Deblocking filtering is used to filter out blocking artifacts of a reconstructed frame

in a H.264 encoder/decoder structure. In order to form input data that is applied to

the designed hardware, a simple encoder and decoder software are implemented in

MATLAB®. The purpose of the software is to emulate the processing blocks in the

H.264 hardware decoder that forms the required inputs to deblocking filter

hardware. During the design of this simple codec, bitrate, quality and processing

speed considerations are not taken into account. Simple motion estimation and

prediction modes are used. Actually the implementations are basic which are not

fully conformable with a standard H.264 encoder/decoder system but adequate to

generate a frame with blocking artifacts and required control data to a standard

H.264 deblocking filter.

4.4.2.1 Encoder

The encoder software takes two adjacent frames as an input, obtains the motion

vectors and motion compensated frame to form the residual frame. The output of

the encoder is transformed and quantized residual frame. Quantization parameter is

an input to the system as a controller for quality loss. Encoder software architecture

is illustrated in Figure 4-17.

For motion estimation, simple full-pel block matching method is used in a search

window of 12 pixels with fixed 4x4 prediction block size. Obtained motion vectors

are used to estimate the second frame from the reference frame. Areas which are

not predicted by motion compensation or have very low pixel difference with

respect to reference frame are intra coded using three different prediction modes for

4x4 or 16x16 blocks, such as horizontal, vertical and DC modes. The prediction

modes are decided considering the SAD for 4x4 or 16x16 blocks, as intra4x4 or

intra16x16 respectively. Prediction mode information for other blocks which are

predicted using motion compensation is set as inter predicted.

109

Figure 4-17. Encoder software architecture

4.4.2.2 Decoder

The decoder software simply takes the quantized residual frame coefficients,

quantized reference frame coefficients, prediction mode information and motion

vectors to obtain the decoded residual. Then it forms the estimated frame using

motion vectors and reference frame. Obtained estimated frame is added to decoded

residual to form the decoded frame output. Decoder uses the same QP with

encoder. Decoder software architecture is illustrated in Figure 4-18. Finally

obtained decoded frame with blocking artifacts, motion vectors, prediction mode

110

information and corresponding quantized coefficients are fed to serial

communication software to be sent to deblocking filter hardware.

Figure 4-18. Decoder software architecture

4.4.3 Serial Data Transfer

On the PC side, parameter and pixel data for deblocking filtering is sent through

serial port using serial communication software. Luma (Y) and chroma (Cb and Cr)

components of image, intra/inter prediction mode flag, intra16x16 mode flag,

quantized coefficients and motion vectors (in x and y directions) are sent to board

111

in sequential order. The software running on embedded processor inside FPGA

reads the data and acknowledges for each group of data to control the flow.

As in the case for inverse transform & quantization implementation, the purpose of

embedded processor implemented in FPGA is again to control the data transfer

between serial communication software and designed deblocking filter hardware.

The tasks of software running on embedded processor are to read frame and

parameter data from serial port, write it to parameter and frame memories obeying

memory organization, trigger operation of bS determination and deblocking

filtering, read results of deblocking filter from frame memory and send back the

results to serial port. Embedded processor software has again no task assigned

related to processing for deblocking filtering.

4.4.4 Boundary Strength Determination

Boundary strength (bS) value of each block edge is determined by a designed

hardware. “Boundary strength generator” reads prediction type, motion vectors and

quantized coefficients from parameter memory for each macroblock and

determines the bS value of each block edge by sequentially checking for the

conditions described in Table 4-1. Obtained bS values are loaded to a “bS memory”

which is further read by deblocking filter during filtering.

4.4.4.1 Parameter Memory Organization

Parameter memory is designed to store enough parameter data for a 48x48 image

with 4:2:0 sampling rate. The purpose of 48x48 resolution selection is limiting

memory resources in Spartan-3 XC3S2000 FPGA. On the other hand this

resolution is enough to see deblocking filter performance and is not related with

deblocking filter architecture design which operates based on a macroblock as a

processed unit. Therefore 16KB resource is selected as parameter memory.

Parameter memory organization is as illustrated in Table 4-12.

112

Table 4-12. Parameter memory organization

Data type Memory window base address Memory window size

Motion vector (x) 0x0 256bytes

Motion vector (y) 0x100 256bytes

Intra/Inter prediction mode flag 0x200 256bytes

Intra16x16 prediction mode flag 0x1000 4Kbytes

Transformed coefficients 0x2000 4Kbytes

Motion vectors are 12x12 matrices for a 48x48 image which correspond to motion

activity of each 4x4 block. Motion vectors are separately obtained for both

directions. Intra & Inter prediction mode flag is again a 12x12 matrix that

represents the prediction type of each 4x4 block in a 48x48 image. Intra16x16

prediction mode flag is separate from intra & inter prediction mode flag which

points out the 16x16 intra coded macroblocks. In order to ease macroblock edge

detection this flag is set to be a 48x48 matrix which have all zero entries except

ones for intra 16x16 prediction block edges. Intra macroblock edges are critical to

be detected for boundary strength determination. Transformed and quantized

coefficients also form a matrix of 48x48 for a 48x48 image. It is used to decide for

lower bS values.

All of the mentioned parameter data is obtained by designed encoder software and

sent to board by serial communication software. Embedded processor on FPGA

gets the data and fills it to parameter memory with previously mentioned memory

organization. Boundary strength generator is then ready for bS determination.

113

4.4.4.2 Boundary Strength Generator Hardware

Boundary strength generator is separately designed from deblocking filter. A large

finite state machine is operated to check the conditions for bS determination and set

the bS value for corresponding block edge. It realizes the boundary strength

determination algorithm illustrated in Figure 4-19.

Operation is started by embedded processor by asserting go_command signal for

the boundary strength generator after parameter and frame memories are filled with

data. Boundary strength determination state machine processes 4 horizontal and 4

vertical edges in parallel and jump to next 4 when their bS values are determined.

Therefore duration of bS determination for 4 edge groups varies depending on the

bS value. If all edges in the group are intra block boundaries, duration is short

whereas it lasts longer for inter block edges.

Determined horizontal and vertical bS values are loaded to separate buffers to be

written to bS memory. Another state machine writes the content of buffers to a dual

port memory called bS memory to be read from deblocking filter. Two state

machines, which are responsible for bS determination and memory access, are two

stages of a pipeline so that first stage is not stalled by second stage. This would not

be possible if it was implemented on a general purpose processor. bS memory is

designed to store 12x12 horizontal and vertical edges to be used for 48x48 input

images. Deblocking filter is activated after bS of all edges of 48x48 image is

determined. This would be changed when integrated to macroblock based H.264

decoder design.

114

Figure 4-19. Flow chart of boundary strength determination process

115

4.4.5 Deblocking Filtering

Deblocking filtering is a complicated operation and therefore should be partitioned

into tasks that can be handled by independent processing units. The overall

architecture of designed deblocking filter hardware is illustrated in Figure 4-20.

There are four main blocks in the architecture. Details of boundary strength

generator are previously mentioned. The output of boundary strength generator, bS

values, are used by deblocking filter to determine the filter type and threshold

coefficients for filtering decision.

Figure 4-20. Deblocking filter hardware architecture

116

4.4.5.1 Threshold Coefficient Look-up Table

Threshold coefficients ,α β and 0ct are to be determined for each edge depending

on the boundary strength and quantization parameter value. In order to accomplish

this, a look-up table unit is designed to output corresponding threshold values for

given bS and QP. Structure of this unit is as shown in Figure 4-21. It simply

includes look-up tables that have fixed table values defined in the standard [6] for

,α β and 0ct , as illustrated before in Table 4-2 and Table 4-3. Look-up tables are

combinatorial elements such that output is directly driven almost at the same time

with asserted input, with a negligible propagation delay. Therefore there isn’t any

delay for reading threshold coefficients from look-up tables which would degrade

performance.

Figure 4-21. Threshold coefficient look-up table unit

117

4.4.5.2 Filter Blocks

Filter blocks are identical units such that each one can process an edge with 4

pixels at both sides with threshold coefficients, bS value and sample type

(luma/chroma) are given as inputs. 4 filter blocks form a filtering unit that can

process 4x4 block edge with a combinatorial logic without processing delay. A

filter block is responsible to decide on filtering and its type by analyzing input

pixels and boundary strength. Then the appropriate filtering is applied on input

block pixels. Structure of the filter block is as illustrated in Figure 4-22.

Figure 4-22. Structure of a filter block

Pixels near a block edge, shown in Figure 4-23 as p0-p3 and q0-q3, are taken as

inputs and absolute values of differences related to filtering constraints are

calculated. Absolute values are compared by threshold values as defined by the

constraints by the logic illustrated in Figure 4-24. Comparator outputs signal are

asserted when the corresponding constraint is satisfied.

118

Figure 4-23. Vertical and horizontal filtering of pixels around 4x4 block edge

Figure 4-24. Comparison logic for filtering decision constraints

119

Asserted signals by the comparators are used to enable/disable all filters and some

of them for special cases. When bS is nonzero and constraints defined in (4.2) and

(4.3) are satisfied filtering is generally enabled for all types of filters, with asserting

filter_enable signal. Filtering for luma pixels p1, p2 and q1, q2 depends on the

constraints (4.2) and (4.3) respectively and a logic asserts filter_p1p2_enable and

filter_q1q2_enable signals as illustrated in Figure 4-25 when constraints are

satisfied. These signals select filter outputs for p1, p2 and q1, q2 respectively.

Figure 4-25. Filtering enable signals

Filtering structures are independently implemented and filter outputs are selected

with a multiplexer for each pixel input. Multiplexer select signals are obtained by

bS filter enabling signals. There are mainly 2 filter structures used in deblocking

filtering. 4 copies of these structures are used to implement 4x4 block edge

filtering.

For bS < 4 case, filtering expressions are previously mentioned by (4.12) and

(4.13). The structures to implement these are as illustrated in Figure 4-26. The

same structures are also used for filtering of q0’ and q1’ samples.

120

-q0

p0

+ + ∆0i>>

3

<<

2

p1 q1

+

4

Clip∆0i

c0

+

p0

p0
'

Figure 4-26. Filtering structures for p0’ and p1’ used for the case bS < 4

For bS = 4 case, filtering expressions are previously mentioned by (4.19), (4.20),

(4.21) and (4.22). The structures used to obtain filtered samples, p0
’
, p1

’
, and p2

’ ,

are illustrated in Figure 4-27. Only additions and shift operations are used. Copies

of same structures are used for filtering of q0
’
, q1

’
, and q2

’.

121

Figure 4-27. Filtering structures for p0
’
, p1

’
, and p2

’ used for the case 4bS =

Filter blocks are initially appropriate for vertical edge filtering, for horizontal edge

filtering case a transpose_command signal is asserted to filter blocks to transpose

totally 32 input and 32 output registers (corresponding to 2 4x4 blocks) to allow

filtering in other dimension.

122

4.4.5.3 Dataflow Control

Dataflow control is the main block of deblocking filter. Boundary strength of each

edge is previously determined by bS generator and resides in bS memory. Dataflow

control unit is triggered after bS values are completely determined. There are

mainly 3 operation states in dataflow control state machine, prepare for reading

input pixels from appropriate sources, read input pixels and write filtered pixels to

appropriate destinations. The sources and destinations of pixels are nothing but the

register set and external (frame) memory. Frame memory is called external

memory since it is outside the deblocking filter hardware, which would be an

external memory device to deblocking filter IC.

The operation of dataflow control unit is illustrated in Figure 4-28. Firstly QP is

read from parameter memory, 8 bS values (4 for horizontal and 4 for vertical

edges) are read from bS memory and filled to a buffer. bS value corresponding to

currently processed edge is read from this buffer. Following the 2-D processing

order, the required access to read two input blocks near the edge, to read from

frame memory or register set is done. In order to read from external memory, a

read command signal is asserted to be detected by memory controller state machine

which reads specified address of external memory. For register access, specified

register in processing order is accessed.

When external memory is read, a 4x4 block data (128-bits) is read in 4 cycles with

32-bit accesses. Therefore operation flow waits until data is ready. If two blocks

are to be read from external memory, in 8 clock cycles data is ready. Else if only

one block is read from memory and the other is read from register set, in 4 clock

cycles data is ready. If both are read from register set, there is no wait delay.

After input pixels are read, they are sent to be filtered in parallel by 4 filter blocks.

A single clock cycle is enough to obtain filtered pixels of 2 4x4 blocks near an

edge. Filtered blocks are written to registers if they will further be used. Otherwise,

123

if all edges of a block is filtered, it is written to external memory. Before read and

write accesses, memory controller state machines are checked if they are idle.

During read access from external memory, read_command signal and read address

is sent to memory controller of read port and dataflow state machine waits for data

ready signal in the next state to get the read data. During write access to external

memory, write_command signal, write address and data are sent to memory

controller of write port and dataflow state machine jumps to next stage without

waiting for memory controller. Since both ports of external memory are accessed

from deblocking filter side, read and write accesses can be done concurrently.

After all luma edges are filtered, chroma samples are read from frame memory.

Accesses required for chroma filtering, as previously shown in Table 4-11, are

conducted. After all of edges are completed, data flow state machine goes back to

initial state.

124

Figure 4-28. Operation of dataflow control unit

125

4.5 Results

Designed system is tested with a frame randomly grabbed from “foreman”

sequence. Selected frame resolution is CIF (352x288) but actually sent to

deblocking filter hardware as 48x48 image parts. Higher resolution images would

also be tested by this method but actually designed device can support up to a

limited resolution for real-time operation.

As QP gets larger filter performance is more observable, since blocking artifacts

due to coarse quantization increases. Subjective quality improvement is observed

by comparison of decoder output and filtered images, as illustrated in Figure 4-29

and 4-30. Objective quality improvement is measured as PSNR improvement and it

is slightly increased from 31.64 dB to 31.85 dB for this frame.

Figure 4-29. Decoder output for QP=35

126

Figure 4-30. Filtered image QP=35

Designed system obtains the filtered output at 336 clock cycles for each

macroblock (MB). Therefore hardware can process a CIF frame in 3.98 ms with 33

MHz operating clock. (396 macroblocks x 336 clock cycles/MB x 30ns clock

period = 3.98 ms) So it can process 1000/3.98 = 251 CIF frames. With 33MHz

operating clock it can also process 704x562 frames since it can process 62.75 fps.

For CIF and QCIF resolutions operating clock frequency can be reduced to obtain

lower power consumption. Some operating clock frequencies recommended to be

used for different resolutions are illustrated in Table 4-13. Frequencies are given

for 30fps processing rate. By doubling the clock frequency, 60fps performance can

also be achieved.

127

Table 4-13. Recommended operating clocks

resolution operating clock processing rate

176x144 1 MHz 30fps

352x288 4 MHz 30fps

704x562 15 MHz 30fps

1408x1124 60 MHz 30fps

Performance of system is compared with other architectures proposed in literature.

Most of them are designed to support HD resolutions with high processing clocks

up to 200MHz. In terms of processing speed, system achieves a sufficient

performance for a low power device, decoding much lower resolutions compared

to HD supporting devices. Also designed hardware doesn’t have internal memory

to buffer intermediate filtering results whereas all architectures in literature have

for buffering. Comparison with some of the architectures in literature is given in

Table 4-14.

Table 4-14. Performance comparison

 Cycle/MB Platform

Proposed 336 FPGA

[13] 192 VLSI

[16] 446 VLSI

[17] 614 VLSI

[18] 336 VLSI

[19] 246 FPGA

[20] 243 VLSI

[21] 300 VLSI

[22] >600 FPGA

[23] 2268 VLSI

[25] 5600 FPGA

[34] 5600 FPGA

[35] 204 VLSI

128

Logic resource utilization of designed hardware in FPGA is given in Figure 4-31.

Figure 4-31. Logic resource utilization in FPGA

129

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

The main objective of this study is to develop hardware architectures for power

efficient H.264 decoder. Mainly two building blocks of decoder is selected and

implemented with proposed architectures. In both architectures internal structures

are designed to be simple enough to be used for a low complexity system.

At the beginning of study, power and complexity reduction techniques used in

various parts of H.264 video coding structure are investigated. Physical methods

are found to be effective but platform-dependent. Architectural methods are also

effective but they actually depend on the chosen hardware algorithm which is

implemented by the designed architecture. Therefore throughout this work,

hardware algorithms for power efficient architectures in literature are investigated

and modified to obtain solutions for selected parts of H.264 decoder.

As a starting point, inverse transform & quantization part is selected to be

implemented. During implementation, it is found that by limiting QP, input

buffering performance of the unit can be increased by reducing memory accesses

and internal transform units can be modified with lower complex architectures. By

this limitation it is observed that still 36.6 dB PSNR can be obtained for QP=22,

which is satisfactory in terms of objective quality. Also obtained decoded frame is

observed to have subjective quality for this QP.

130

Secondly, deblocking filter part is selected, which has significant computational

complexity in H.264 decoder. Deblocking filter architectures in literature are

investigated. Most of the structures in literature focus on high performance

deblocking filtering for high resolutions with power-inefficient architectures.

Power-efficient architectures are also investigated and data reuse is found to be the

critical part of power-efficient design. Processing orders in literature that are used

for edge filtering are analyzed and the best processing order in terms of data reuse

is selected to be used for hardware design. Architecture is designed obeying this

processing order and architecture with efficient data reuse and lowest possible

external memory access is achieved. Performance degradation compared to high

resolution solutions in literature is not critical since high resolutions are usually not

supported by mobile decoders.

Designs are proposed to be used for a low-power baseline profile H.264 hardware

decoder in a mobile device that supports low resolutions and bitstream with

moderate bitrate. Operating frequency of designed hardware is chosen low to be

used for a low-power which can be increased to support higher resolutions.

FPGA’s are usually used in prototyping stage before ASIC design of high volume

products, such as for multimedia market. The reason is the cost of FPGA for high-

volume production and redundant logic in FPGA which degrades performance in

terms of power and processing speed. Redundancy comes from the configurable

logic blocks in FPGA which are not completely used for a design, consume power

and degrade achievable clock speeds. Because of this reason, power measurement

is not conducted throughout this work. Therefore architectures designed and

verified throughout this work are not the final solutions for a low power H.264

decoder product, but can be migrated to an ASIC design with small modifications

so that an optimum solution can be achieved. Like the examples in literature [35,

36], power consumption of an ASIC solution is more reasonable to be measured

since ASIC design is optimum in terms of logic utilization.

131

As a future study, proposed inverse transform & quantization architecture can be

modified to implement 8x8 inverse transform used in FRExt extension of H.264

[8]. Proposed deblocking filter architecture can be re-designed with a pipelined

structure to support higher resolutions with same processing order and operating

clock frequency . On the other hand, both architectures can be modified to support,

pixel-widths up to 12-bits and other sampling ratios (4:2:2, 4:4:4).

132

REFERENCES

[1] Nokia H.264, ftp://standards.polycom.com/IMTC_Media_Coding_AG,

updated September 25th 2005, visited June 20th 2009

[2] ISO/IEC International Standard 11172; "Coding of moving pictures and

associated audio for digital storage media up to about 1.5 Mbits/s", November 1993

[3] ISO/IEC International Standard 13818, "Generic coding of moving pictures

and associated audio information", November 1994

[4] ITU-T Recommendation H.261, “Video Codec for Audiovisual Services at

px64 kbit/s”, 1993

[5] ITU-T Recommendation H.263, “Video Coding for very Low Bit rate

Communication”, 1996

[6] Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG, "Draft ITU-T

Recommendation and Final Draft International Standard of Joint Video

Specification (ITU-T Rec. H.264/ISO/IEC 14496-10 AVC)", JVT-G050, March

2003.

[7] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra, “Overview of the

H.264/AVC Video Coding Standard”, Circuits and Systems for Video Technology,

IEEE Transactions on Volume 13, Issue 7, July 2003, pp. 560 – 576.

133

[8] G. J. Sullivan, P. Topiwala, A. Luthra, “The H.264/AVC Advanced Video

Coding Standard: Overview and Introduction to the Fidelity Range Extensions”,

SPIE Conference on Applications of Digital Image Processing XXVII, August

2004.

[9] Iain E.G. Richardson, H.264 and MPEG-4 Video Compression, UK: Wiley

& Sons, 2003.

[10] H. S. Malvar, A. Hallapuro, M. Karczewicz, L. Kerofsky, “Low-complexity

transform and quantization in H.264/AVC”, Circuits and Systems for Video

Technology, IEEE Transactions on Volume 13, Issue 7, July 2003, pp. 598 – 603.

[11] T. M. Liu, T. A. Lin, S. Z. Wang, W. P. Lee, J. Y. Yang, K. C. Hou and C.

Y. Lee, “A 125µW Fully Scalable MPEG-2 and H.264/AVC Video Decoder for

Mobile Applications”, IEEE Journal of Solid State Circuits, Volume 42, Issue 1,

January 2007, pp. 161-169.

[12] I. Amer, W. Badawy, G. Jullien “A High-Performance Hardware

Implementation of the H.264 Simplified 8x8 Transformation and Quantization”,

IEEE Conference on Acoustics, Speech and Signal Processing, Pennsylvania,

1137-1140 (2005).

[13] G. Khurana, A. A. Kassim, T. P. Chua, Bi Mi M., “A Pipelined Hardware

Implementation of In-loop Deblocking Filter in H.264/AVC”, Consumer

Electronics, IEEE Transactions on Volume 52, Issue 2, May 2006, pp. 536 – 540.

[14] T. C. Chen, Y. H. Chen, S. F. Tsai, S. Y. Chien and L. G. Chen, “Fast

Algorithm and Architecture Design of Low-Power Integer Motion Estimation for

H.264/AVC”, Circuits and Systems for Video Technology, IEEE Transactions on

Volume 17, Issue 5, May 2007, pp. 568-577.

134

[15] P. List, A. Joch, J. Lainema, G. Bjontegaard, M. Karczewicz, “Adaptive

Deblocking Filter”, Circuits and Systems for Video Technology, IEEE

Transactions on Volume 13, Issue 7, July 2003, pp. 614-619.

[16] B. Sheng, W. Gao and D. Wu, “An Implemented Architecture of

Deblocking Filter for H.264/AVC”, International Conference on Image Processing,

Singapore, 665-668 (2004).

[17] Y. W. Huang, T. W. Chen, B. Y. Hsieh, T. C. Wang, T. H. Chang, L. G.

Chen, “Architecture Design for Deblocking Filter in H.264/JVT/AVC” Proc. IEEE

International Conference on Multimedia and Expo., Volume 1, 693-696 (2003).

[18] C. C. Cheng and T. S. Chang, “A Hardware Efficient Deblocking Filter for

H.264/AVC”, IEEE Consumer Electronics, ICCE 2005 Digest of Technical Papers

International Conference, 235-236 (2005).

[19] S. Y. Shih, C. R. Chang, Y. L. Lin, “A Near Optimal Deblocking Filter for

H.264 Advanced Video Coding”, Proc. of the 2006 Asia and South Pacific Design

Automation Conference, Yokohama, Japan, 170-175 (2006).

[20] T. M. Liu, W. P. Lee, C. Y. Lee, “An In/Post-Loop Deblocking Filter With

Hybrid Filtering Schedule”, Circuits and Systems for Video Technology, IEEE

Transactions on Volume 17, Issue 7, July 2007, pp. 937-943.

[21] C. C. Cheng, T. S. Chang, K. B. Lee, “An In-Place Architecture for the

Deblocking Filter in H.264/AVC”, Circuits and Systems for Video Technology,

IEEE Transactions on Volume 53, Issue 7, July 2006, pp. 530-534.

[22] M. Sima, Y. Zhou, W. Zhang, “An Efficient Architecture for Adaptive

Deblocking Filter of H.264/AVC Video Coding”, Consumer Electronics, IEEE

Transactions on Volume 50, Issue 1, February 2004, pp. 292-296.

135

[23] B. J. Kim, J. I. Koo, M. C. Hong, and Seongsoo Lee, “Low-Power H.264

Deblocking Filter Algorithm and Its SoC Implementation”, First Pacific Rim

Symposium, Hsinchu, Taiwan, 771-779 (2006).

[24] C. J. Lian, P. C. Tseng and L. G. Chen, “Low Power and Power-Aware

Video Codec Design: An Overview”, China Communications, October 2006.

[25] M. Parlak and I. Hamzaoglu, “Low Power H.264 Deblocking Filter

Hardware Implementations”, Consumer Electronics, IEEE Transactions on Volume

54, Issue 2, May 2008, pp. 808-816.

[26] O. Tasdizen and I. Hamzaoglu, “A High Performance and Low Cost

Hardware Architecture for H.264 Transform and Quantization Algorithms”, 13th

European Signal Processing Conference, Antalya, Turkey, September 2005.

[27] T. C. Wang, Y. W. Huang, H. C. Fang and L. G. Chen, “Parallel 4x4 2D

Transform and Inverse Transform Architecture for MPEG-4 AVC / H.264”,

Proceedings of IEEE ISCAS 2003 – IEEE International Symposium on Circuits

and Systems, Bangkok, Thailand, 800-803 (2003).

[28] T.M. Liu, etc. al., "An 865-µW H.264/AVC video decoder for mobile

applications", IEEE Asian Solid-State Circuits Conference, 301 – 304 (2005).

[29] Cheng Z., C. Chen, B. Liu and L. Yang, “High Throughput 2-D Transform

Architectures for H.264 Advanced Video Coders”, IEEE Asia-Pacific Conference

on Circuits and Systems, Fukuoka, Japan, 1141-1144 (2004).

[30] Kordasiewicz, R. and S. Shirani, “Hardware Implementation of the

Optimized Transform and Quantization Blocks of H.264”, Canadian Conference on

Electrical and Computer Engineering, Ontario, Canada, 943-946 (2004).

136

[31] H. Y. Lin, Y. C. Chao, C. H. Chen, B. D. Liu and J. F. Yang, “Combined 2-

D Transform and Quantization Architectures for H.264 Video Coders”, IEEE

International Symposium on Circuits and Systems, Kobe, Japan, 1802-1805 (2005).

[32] E. P. Hong, E. G. Jung, H. Fraz, D. S. Har, “Parallel 4x4 Transform

Architecture Based on Bit Extended Arithmetic for H.264/AVC”, International

Symposium on Circuits & Systems, Kobe, Japan, 95-98 (2005)

[33] W. Hwangbo, J. Kim and C. M. Kyung, “A High Performance 2-D Inverse

Transform Architecture for the H.264/AVC Decoder”, IEEE International

Symposium on Circuits and Systems, New Orleans, USA, 1613-1616 (2007).

[34] M. Parlak, I. Hamzaoglu, “An efficient hardware architecture for H.264

adaptive deblocking filter algorithm”, Conference on Adaptive Hardware and

Systems, Istanbul, Turkey, 381 – 385 (2006).

[35] K. Xu and C. S. Choy, “A 5-stage Pipeline, 204 Cycles/MB, Single-port

SRAM Based Deblocking Filter for H.264/AVC”, Circuits and Systems for Video

Technology, IEEE Transactions on Volume 18, Issue 3, 2008, pp. 363-374.

[36] Xilinx Corporation, http://www.xilinx.com, visited May 5th 2009.

[37] Altera Corporation, http://www.altera.com, visited May 5th 2009.

[38] Xilinx, “Xilinx Spartan-3 Development Kit Product Brief, Literature

Number: ADS-AA/S3DEV/10_04”, 2004.

137

APPENDIX A

FPGAs AND DESIGN FLOW

In this appendix, development, structure and design flow of FPGAs will be

introduced. First, brief history of FPGA development will be given. Secondly,

building blocks and structure of FPGA devices will be explained. Finally design

flow of an FPGA application will be discussed.

A.1 Field Programmable Gate Arrays

Programmable logic devices (PLD) are components that are used to build

reconfigurable logic circuits for various applications. Field programmable gate

arrays are developed based from ROM and PLDs. As the name implies, FPGAs are

devices that can be programmable “in field”, in other words, in design development

stage, different than ROMs and PLDs which have fixed logic circuit. In 1985,

Xilinx introduced the first commercial FPGA device that integrates 64 configurable

logic blocks with 3-input LUTs and programmable interconnection pattern. In

1990’s, production volume and gate integration of FPGA’s increased enormously

to 600,000 gates in single chip. Now there are a lot of vendors and FPGA devices

contain over million gates. [36]

Also microprocessor cores are integrated to FPGA to enable microprocessor and

reconfigurable logic implementation on single chip, so called “system on

programmable chip” [36]. Additionally dedicated memory blocks, multiplier

blocks, dedicated DSP slices, high speed I/O etc. are integrated to different FPGA

138

families to allow several high-speed signal processing and control applications

possible on single chip with peripheral devices. With these additions FPGA design

process became more complex then a straight forward logic design. In addition to

logic design software, new software is introduced to handle complex design

process.

A.2 Structure of FPGA

A.2.1 Configurable Logic Blocks (CLB)

FPGA structure consists of configurable logic blocks (CLB) with interconnections.

As illustrated in Figure A-1, a standard configurable logic block contains a 4-input

LUT, a multiplexer and D-flip flop. LUTs are actually programmable ROMs that

can implement programmed logic functions, in sum-of-products form etc., of their

inputs and give the result. Clocked D-flip flop and multiplexer allows

implementation of sequential logic circuits. Some FPGA vendors introduce

different CLB structures by using 6-input or 8-input LUTs and more logic

components to increase performance.

Figure A-1. Standard CLB structure

General structure of a FPGA is a matrix of CLBs connected with programmable

interconnection switches, as shown in Figure A-2. Boolean logic equations is

converted by software to switch positions and programmed to static RAM on

FPGA that controls the switch positions and implements the desired logic circuit.

I/O blocks are used to interface designed logic to device pins and external circuit.

139

Figure A-2. General structure of FPGAs

A.2.2 Distributed Memory Blocks

New FPGA families have also dedicated blocks of static RAM distributed among

and controlled by logic elements. As illustrated in Figure A-3, RAM blocks are

surrounded by CLBs and can be accessed by controller logic implemented on these

CLBs. The amount of distributed memory in high-end FPGA families is high to

allow data buffering in several performance demanding applications such as radar

signal and video processing. On the other hand, memory is costly in terms of

FPGA chip area; therefore some families have limited memory resources but more

CLB slices.

In design stage, memory size, data access bit width (8-bit, 16-bit, etc.), memory

type (single-port, dual-port etc.) and memory access type (read-only, random-

access) can be configured by user. User is responsible to design the controlling

logic which should obey memory access requirements.

140

Figure A-3. Distributed memory blocks among FPGA

A.2.3 Arithmetic Processing Blocks

Hardware multipliers and DSP slices are also dedicated blocks in some FPGA

families used to increase implementation speed of arithmetic operations.

A.2.4 Digital Clock Management

There are also digital clock management (DCM) units in FPGA which have

dedicated digital PLL circuitry to implement clock operations such as frequency

multiplication/division, phase shifting etc. The configuration of DCM is done in

design stage. Generally, input oscillator clock is multiplied or divided by a scalar to

obtain the desired clock frequency used in state machines or as an external clock

output.

141

A.2.5 Embedded processors

Embedded processors, implemented inside FPGA chip, are commonly used to

decrease design cycle time and assign tasks that is easy to do by software instead of

hardware. In general there are two types of embedded processor implementation.

Some FPGA families have embedded hard processor cores already implemented in

FPGA chip and accessed and configured by user. They have high performance and

even have capability to run real time operating system. For FPGA devices that

don’t contain hard processor core, soft processor core is implemented using logic

resources. Microblaze® by Xilinx and Nios® by Altera are some of commonly used

soft processor cores. [36, 37] These cores are much simpler compared to hard

cores but still effective for interfacing applications, such as UART, Ethernet, PCI

etc. and is available on most of FPGA families. Their disadvantage is consumption

of logic resources.

A.2.6 I/O Blocks

I/O blocks are the endpoints that connect input logic circuitry to device pin and

external circuit. There are I/O banks in a FPGA that can implement different I/O

standards and speed. Designer is responsible to select the right pin that can satisfy

required electrical characteristics. FPGA configuration and supply pins are

prohibited to be used by designer.

142

A.3 FPGA Design Flow

A.3.1 HDL Synthesis and Simulation

The first stage of an FPGA design is description of design using a schematic editor

or hardware description language (HDL). Schematic editor is an old method and

hard to be used for complex designs, therefore mostly HDL is used for design

description. Some of the well-known HDL are VHDL, Verilog and ABEL. VHDL

is more commonly used in military applications whereas Verilog is preferred by

communication market. Both languages are used for the same purpose but the

syntax is different. HDL differs from software description languages such that it is

not compiled and converted to instructions but it is synthesized and converted to

logic equations. Since HDL describes the hardware, it doesn’t “run” on device, but

configures it. Therefore HDL doesn’t work sequentially like instructions running

on a processor but describes the hardware structure.

After synthesis is completed, design can be simulated by a simulation software to

verify operation. This is done independent from FPGA device. Input signals to

designed logic are simulated by a behavioral source code called test bench.

Waveforms of internal signals are observed. It is a pre-check for HDL design but is

not a complete verification since it doesn’t include physical constraints, such as

timing.

A.3.2 Constraint Determination

Physical design constraints related to timing, slice utilization, pin I/O standard and

pin locations are defined in this stage. Timing constraints are related to delays

between selected signals, clocks and I/O pads. These are critical and strictly

defined especially for high speed applications. Logic utilization constraints are

sometimes used to restrict the design to be implemented in a specific logic resource

area of FPGA. It is critical for high speed memory controller applications not to

143

split the design among device and be close to related pins. Pin location constraints

are related to I/O bank, pin and I/O standard selection for device pins. These are

important to interface FPGA with other devices.

A.3.3 Place & Route

With constraints defined, the software maps the logic equations to logic resources

of selected FPGA device. Additional blocks, such as memory, DCM, embedded

processor etc., are also mapped. The software checks whether selected device has

adequate resources (logic, memory, etc.) to implement the design. The mapped

design is placed and routed. That is FPGA resources to be used are selected and

their interconnection patterns are determined for routing. In this stage, defined

constraints are taken into account and verified. A bit file is generated to be

programmed to device to implement desired logic.

A.3.4 Embedded Processor Integration

For embedded processor integration, a tool independent from place & route tool is

used to configure the processor (interfaces, operating clock, cache configuration

etc.) and compile the source code running on the processor. A hex file is generated

by complier which includes instructions that are defined in the instruction set of

processor. The processor is added to logic design as a block with defined ports and

synthesized with HDL code. In logic design, processor needs a clock and reset

connection for proper operation. Processor connections to internal logic and FPGA

pin are defined in HDL code. After place & route is completed, hex file is

appended to bit file and a single bit file is obtained. This bit file is programmed to

device by a programmer that commonly uses JTAG interface. On runtime,

processor reads instructions from an instruction memory defined during

configuration. Instruction memory can be distributed memory in FPGA or any

external memory. The process is similar for both hard and soft processor cores.

144

A.3.5 On-chip Debug

After programming is completed, design is verified using on-chip debugging tool.

In order to allow debugging, a sampler core should be integrated to design and

connected to selected signals in place & route stage. Sampling depth, selected

signals and sampling clock are configured before place & route. After bit file is

generated and programmed to device user defines a triggering condition to trigger

sampler to start sampling and take defined amount of samples. Samples are written

to distributed memory of FPGA. Debug software reads samples from memory

through JTAG interface and shows waveforms of selected signals. The overall

FPGA design flow is illustrated in Figure A-4.

Figure A-4. FPGA design flow

145

APPENDIX B

HARDWARE DESIGN CONSIDERATIONS

In this appendix, hardware design considerations will be introduced.

B.1 Spartan-3 Development Board

Development board has several components used for different purposes [38]:

• Xilinx XC3S2000-FG676 Spartan-3 FPGA

• 2x16 character LCD

• 128x64 OSRAM OLED graphical display

• 32 MB DDR SDRAM

• 16 MB Flash memory

• 2 MB SRAM

• PS2 keyboard and mouse ports

• 8-position DIP switch, push-buttons and LEDs

• 140-pin I/O expansion connectors

Board has interfaces for [38]:

• RS-232

• 10/100 Ethernet

• USB 2.0

• GPIO

146

Figure B-1. Interfaces of FPGA on board [38]

147

Figure B-2. XC3S2000 development board [38]

148

B.2 FPGA Design

Xilinx ISE® is used as the FPGA design environment including XST® for

synthesis, EDK® for embedded processor development, iMPACT® for

programming and ChipScope® for on-chip debugging. Building blocks of design

are coded using VHDL language and combined in hierarchical structure. Memory

blocks, hardware multipliers, clock management units and embedded processor are

generated and inserted to FPGA design as black boxes.

Memory blocks are generated using Xilinx Core Generator® tool. The configuration

of dual-port memories used for inverse transform & quantization hardware is

illustrated in Figure B-3. Port data width, memory size and read/write properties

are configured.

Figure B-3. Memory configuration

149

Hardware multipliers are limited resources inside FPGA devices. They are inserted

to design by instantiating in VHDL code. Overall design is synthesized in ISE and

pin location constraints are added for place & route. After place & route a BIT file

is generated.

B.3 Embedded Processor Design

Embedded processor in design is constructed using MicroBlaze® processor IP for

XILINX FPGAs. The processor is clocked using 40MHz oscillator on board. The

processor is constructed with following features:

• Core clock frequency: 40 MHz

• Local memory bus (LMB) for instruction and data access

• Processor Local Bus (PLB) for peripheral controllers:

o 32-bit BRAM memory controllers (x2) (xps_bram_if_ctrl)

o 32-bit external memory (SRAM) controller (xps_mch_emc)

o UART for serial communication (xps_uartlite)

o General purpose I/O with 32 configurable pins (xps_gpio)

Embedded processor is implemented using Xilinx EDK® (Embedded development

kit) tool. Designed processor is inserted to hardware design. The software running

on embedded processor is developed in Xilinx SDK® environment. Software is

coded in C language and runs in standalone mode. In other words there isn’t any

operating system running on processor. Obtained HEX file is added to BIT file

generated by VHDL synthesis tool and a final BIT file is generated to be

programmed to device. Internal structure of designed embedded processor is

illustrated in Figure B-4.

150

Figure B-4. Internal structure of embedded processor

B.4 Serial Communication

Serial communication between board and MATLAB® software is conducted using

RS-232 port of PC and 9-pin DB9 connector on board. These are connected using a

cross cable with TX (transmit), RX (receive) and GND (ground) connections. The

settings of communication software developed in MATLAB® are:

151

• Baud rate : 115200 kbps

• Data width : 8 bits

• Parity : Odd

• Flow control : None

• Input buffer size : 8 KB

• Output buffer size : 8 KB

The software uses serial object in MATLAB® for communication. UART of

embedded processor is used for serial communication. Baud rate and data parity

settings of embedded processor UART are the same with MATLAB® software.

B.5 Programming Device

FPGA is programmed using the JTAG interface on board. Platform cable USB

programmer is used to connect to board through USB port of PC and JTAG

connector of board. Programmer is illustrated in Figure B-5. Xilinx iMPACT® tool

is used to access to device and program.

Figure B-5. FPGA programmer [36]

