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ABSTRACT

FPGA IMPLEMENTATION OF JOINTLY OPERATING CHANNEL ESTIMATOR AND
PARALLELIZED DECODER

Kılcıoğlu, Çăglar

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. AlïOzg̈ur Yılmaz

September 2009, 83 pages

In this thesis, implementation details of a joint channel estimator and parallelized decoder

structure on an FPGA-based platform is considered. Turbo decodersare used for the decod-

ing process in this structure. However, turbo decoders introduce largedecoding latencies since

they operate in an iterative manner. To overcome that problem, parallelizationis applied to

the turbo codes and the resultingparallel decodable turbo code(PDTC) structure is employed

for coding. The performance of a PDTC decoder and parameters affecting its performance

is given on anadditive white Gaussian noise(AWGN) channel. These results are compared

with the results of a parallel study which employs a different architecture in implementing

the PDTC decoder. In the fading channel case, a pilot symbol assisted estimation method

is employed for the channel estimation process. In this method, the channel coefficients are

estimated by a 2-way LMS (least mean-squares) algorithm. The difficulties in the implemen-

tation of this joint structure in a fixed-point arithmetic and the solutions to overcome these

difficulties are described in details. The proposed joint structure is tested with varying design

parameters over a Rayleigh fading channel. The overall decoding latencies and allowed data

rates are calculated after obtaining a reasonable performance from the design.
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ÖZ

BİRLEŞ̇IK İŞLEYEN KANAL KESTİRİCİ VE PARALELLEŞTİRİLM İŞ KOD
ÇÖZÜCÜNÜN FPGAÜZEṘINDE GERÇEKLENMEṠI

Kılcıoğlu, Çăglar

Yüksek Lisans, Elektrik ve Elektronik M̈uhendislĭgi Bölümü

Tez Yöneticisi : Doç. Dr. AliÖzg̈ur Yılmaz

Eylül 2009, 83 sayfa

Bu tez çalışmasında birleştirilmiş kanal kestirici ve paralelleştirilmiş kod çözücü yapısnın

yerinde programlanabilir geçit dizisi (FPGA) tabanlı bir değerlendirme platformüuzerinde

gerçeklenmesi ele alınmıştır. Yapıdaki kod çözme işlemini gerçekleştirmek̈uzere turbo kod

çözücüler kullanılmıştır. Fakat, turbo kod çözücüler oldukça ÿuksek gecikme s̈urelerine

sahiptir. Bu problemi ortadan kaldırmak amacıyla paralelleştirme fikri turbo kodlara uygulan-

mış, ortaya çıkan paralel çözümlenebilir turbo kod (PDTC) yapısı sistemdeki kodlama ve kod

çözümleme işlemleri için kullanılmıştır. Toplanır beyaz Gauss gürültüs̈u (AWGN) altında

PDTC kod ç̈ozücünün başarımı ve bu performansa etki eden tasarım parametreleri incelen-

miştir. Elde edilen sonuçlar bu çalışmaya paralel başka bir çalışmadafarklı bir mimari kul-

lanılarak gerçeklenen kod çözücünün verdĭgi sonuçlarla karşılaştırılmıştır. Kanal kestirimi

için pilot sembol destekli kanal kestirim yöntemi kullanılmıştır. Bu ÿontemde, kanal kat-

sayıları çift ÿonlü LMS algoritması kullanılarak kestirilmektedir. Bu birleşik yapının sabit

noktalı aritmetik altında gerçeklenmesi sırasında yaşanan zorluklardan ve bu zorlukları aşmak

için uygulanan ç̈ozümlerden bahsedilmiştir.̈Onerilen birleşik yapı, çeşitli tasarım parame-

treleri ile Rayleigh s̈onümlü kanal altında sınanmıştır. Tasarımdan makul bir başarım elde
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edildikten sonra gecikme süreleri ve veri hızları hesaplanmıştır.

Anahtar Kelimeler: yinelemeli ç̈ozüm, BCJR, paralel işleme, kanal kestirimi, FPGA
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CHAPTER 1

INTRODUCTION

In wireless communications, channel coding has an important role on enhancing the commu-

nication reliability and quality of service. That role was first indicated in Shannon’s paper in

1948 [1]. In his paper, Shannon stated that reliable data transmission overa communication

channel at any rate lower than the channel capacity was possible if appropriate error correc-

tion codes are used. As a result of wireless communication being pervaded, studies on the

channel coding subject has increased. Turbo codes were first introduced by Berrou et. al.

[2] in 1993. These codes are also calledparallel concatenated convolutional codes(PCCC)

due to their architecture. Among all the available codes of its time, turbo codes approached

the Shannon limit the most. This great performance of turbo codes lies on the success of

combined interleaving and soft-decision decoding [3].

Although turbo codes show very good performance at low SNR values, their large de-

coding latency due to their iterative decoding algorithms is a serious problem inhigh-speed

communication systems, e.g., satellite communication systems. Construction of more effi-

cient hardware structures is a solution to the decoding latency problem. We focus on that

solution and utilize a parallel processing structure. Parallel processing isa method to reduce

the decoding latency. In this thesis, we use the parallelization idea and investigate a par-

allelized structure for turbo codes. These code studies are calledparallel decodable turbo

codes(PDTC). The encoder side is parallelized to encode the substreams of databits simulta-

neously. This parallel processing idea is also used at the decoder side.Owing to simultaneous

decoding of substreams, decoding latency is decreased significantly.

Memory collision is one of the most important problems observed during the paralleliza-

tion process. If two or more decoders/encoders try to access the same memory block at the

1



same clock instant, memory collision occurs and parallel decoders can not operate properly.

The reason of having a memory collision is the permutation order of the interleaver. At the

encoder side, specific collision-free interleavers can be constructed by using a matrix notation.

In that manner,row-column S-random interleaver, which is introduced in [4], is of interest.

In digital mobile communications, one of the the main distortions introduced by the

communication medium is the Doppler spread due to the movement of the receiver. This

Doppler spread results in a time-varying fading channel when communicationmedium has

many scatterers in it. The effect of fading on the transmission is a limiting factor in many

communication systems and may mandate estimation of thechannel state information(CSI)

at the receiver side. Turbo codes have shown near-capacity performance over Rayleigh flat-

fading channels with the perfect knowledge of the CSI [5]. Therefore, to achieve high-speed

reliable communication, channel estimation corresponding to the estimation of the CSI is

very often a necessary process. In our work, a joint structure of channel estimator and PDTC

decoder is implemented to work in an iterative manner.

As a channel estimation algorithm, thepilot symbol assisted estimationmethod has been

studied in this thesis. This method utilizes pilot symbols in the data sequence. At thereceiver

side, the channel estimation process is initiated with the help of the pilot symbols astheir

values are known. Adding pilot symbols into the transmission packets introduce some extra

redundancy and bandwidth efficiency is reduced as a result. In general, the channel estimators

use some sort of filtering to estimate the complex channel coefficients when pilot symbol

assisted estimation is considered. In this thesis, we use a different approach which employs

LMS filtering. The main reason of using LMS is to reduce the complexity and increase the

operating frequency. In [6], a 2-way LMSapproach has been introduced. In this method, the

channel coefficient estimations are carried out in two directions different than the ordinary

LMS algorithm, both in forward and in backward directions.

In our work, we studied two main subjects, PDTC decoders and pilot symbolassisted

channel estimation using the 2-way LMS algorithm. The structures proposedin these algo-

rithms are implemented on an FPGA board and tested with some different design parameters.

Results are compared to make some reasonable choices. These results areparticular to the im-

plementation choices and the way of our implementations is not the only one. Our aim is just

to show what can be done. Optimization should be performed in the different implementation
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cases. The outline of the thesis is as follows.

In Chapter 2, convolutional codes and MAP (marginal a posteriori) decoders are re-

viewed. The encoder and decoder structures of turbo codes and the parallelization procedure

on them to construct PDTC encoder and decoder structures are explained.

In Chapter 3, channel estimation methods using LMS and MMSE algorithms are de-

scribed briefly. The joint channel estimator and decoder structure is given.

In Chapter 4, the details of implementation and optimizations applied during the real-

ization of the proposed systems on an FPGA board is provided. The auxilary components in

obtaining the resulting performances are described.

In Chapter 5, the FPGA-based testbed platform used to test the proposedsystems is

described. The software programs used during the simulation, implementation,debugging,

and testing the systems are mentioned.

In Chapter 6, the results obtained after testing the systems are given and discussed. The

resultant performances are compared in terms of various aspects.
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CHAPTER 2

PARALLEL DECODABLE TURBO CODES

2.1 Introduction

In channel coding sender adds redundant data to the message to be transmitted so that the

receiver can detect and correct the errors caused by the noisy medium. Coding techniques may

differ based on the characteristics of transmission medium. Some of the effects of medium are

additive noise and fading [7]. Different coding techniques can be listed in two main groups:

• Block Codes :They work on fixed-size blocks of bits or symbols of predetermined size.

Some of the block codes are Reed Solomon (used in compact discs and computer hard

drives), BCH, Golay, Hamming, and cyclic codes. These codes will not be considered

hereafter since block codes are not in the scope of this thesis.

• Convolutional Codes : They differ from block codes in that they work on blocks of

bits or symbols of arbitrary length. Details about their encoder and decoder structure

are given in Sections 2.2 and 2.3, respectively.

Choosing the appropriate encoder/decoder structure was an important part of the system

setup procedure in this study. Main considerations in determining the system components

were low latency in time during encoding/decoding operations, low complexity allowing im-

plementation on our FPGA board, and good error rate. After a careful trade off between these

requirements, we decided to use a parallel decodable turbo code (PDTC)structure suggested

by Orhan Gazi in his PhD. thesis work [8]. The reasons for this selectionand how it matches

the listed requirements will be explained with details in Chapter 6.
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2.2 Convolutional Encoder

Convolutional encoders generate an output sequence according to a predefined state transition

mechanism by accepting an input bit sequence of arbitrary length. They are usually illustrated

as finite state machines. Two main elements of these encoders are:

• binary shift registers (flip-flops),

• binary adders (XOR operators).

In each time unit, convolutional encoders receivek input bits and producen output bits.

The ratio of these numbers gives thecode rate, R = k/n, of that encoder. Theconstraint

length, K, of a convolutional encoder is defined as the maximum number of bits in a single

output stream that can be affected by any input bit [7]. Ifmi denotes the number of shift

registers in theith shift register block, the constraint length is calculated as,

K = max(mi + 1). (2.1)

Since (2.1) is used in many publications, we have used it during this study. However, on

some resources [9], constraint length is expressed as

K = n(max(mi + 1)), (2.2)

since the alln output bits are simultaneously affected.

The term max(mi) is called as thememory orderand denoted bym. If we illustrate

convolutional encoder by a finite state machine, there will be 2m states1.

In Figure 2.1, a convolutional encoder with two shift registers (denoted by D to empha-

size “delay”) in one block,m1 = 2, is given. This encoder has 1 input bit,u, 2 output bits,c1

andc2, 4 states and its constraint length is 3. Trellis and state diagrams of this encoder are

given in Figures 2.2 and 2.3, respectively.

In the trellis diagram given in Figure 2.2, it can be seen that encoding startsfrom state 0,

S0, and ends in the same state. This is achieved by adding some extra bit or bits to the input

1 At any time instant, delay elements get a binary value, 0 or 1. By concatenating these binary values one
determines which state the encoder is in.
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D D+
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u

c1
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Figure 2.1: Systematic recursive convolutional encoder withR= 1/2 andK = 3.

0 / 0 0 0 / 0 0

1 / 1 1 1 / 1 1

0 / 0 1

1 / 1 0

1 / 1 1

0 / 0 0
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0 / 0 1
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0 / 0 1

1 / 1 1

0 / 0 0
States

0
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2

3

Input bit is 0

Input bit is 1

Figure 2.2: Trellis diagram for 4 input and 2 termination bits with the transitions shown in
I/OO format.
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S2

S3

1/11

1/11

0/00 0/00 1/10

0/01

0/01

1/10

Figure 2.3: State diagram with the transitions shown in I/OO format.
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after the input message ends and calledtrellis termination. We also guarantee the next packet

to be encoded starting fromS0.

Convolutional encoders are divided into groups regarding their outputs. If the input bits

are reproduced in the output codeword without any changes, this encoder is calledsystematic.

The encoders are classified as recursive if the output bit (or bits) affects the following states

with a feedback path in the structure. The convolutional encoder shown inFigure 2.1 is a

recursive systematic (c1 = u) code, whereas the one in Figure 2.4 is non-recursive and non-

systematic.

D D

++

+

u

c1

c2

Figure 2.4: Non-systematic non-recursive convolutional encoder withR= 1/2 andK = 3.

Hereafter, the code given in Figure 2.1 will be used in the encoding/decoding procedures

in this thesis and we will refer to this code as (1,5/7) code due to its generator polynomial

written in octal form [9].

2.3 Marginal a Posteriori Decoding

Mainly, there are two types of decoding methods for convolutional codes:

• Maximum likelihood (ML) decoding methods,

• Marginal a posteriori (MAP) decoding methods.

ML decoding aims to find the most likely sequence,v̂, for a transmitted sequencev. This

method, basically, minimizes the word (or packet) error rate,P(v̂ , v | r ) , wherer denotes

the received sequence. The Viterbi algorithm is the most popular ML algorithm.

7



The MAP method aims at minimizing the bit error rate (BER) by maximizing the marginal

a posteriori probabilities. By applying MAP decoding,P(ûl , ul | r ) is minimized whereul is

the lth bit of the transmitted sequence and ˆul is thelth bit of the decoder’s decision. The BCJR

algorithm is the best known example to MAP decoding [3].

Although these two methods exhibit comparable performance, MAP decodinghas gained

more importance lately due to its prevalence in iterative decoders. Bit/symbol likelihoods are

required in such decoders which is directly produced by MAP algorithms.

The BCJR algorithm calculates thea posteriori log-likelihood ratio(a posteriori L-

value) of an information bit. The reason of passing into the log-domain will be clarified

later in this section.

The log-likelihood ratio (LLR, or simplyLL) of an information bitul can be calculated

as

LL(ul) = ln

[
p(ul = +1|r )
p(ul = −1|r )

]
, (2.3)

for a received sequencer . Using this a posteriori L-value, a hard decision corresponding toul

can be found by

ûl =


+1, LL(ul) > 0

−1, LL(ul) < 0
. (2.4)

In the remaining part of this section the BCJR decoding algorithm steps are to be explained

without derivation. Detailed derivations can be found in [9].

Theforward metric, denoted byα, at timel is defined as the probability of being at state

s′ at timel and having a received sequencer t<l up to timel. Hence, theα metric is given as

αl = p(sl = s′, r t<l), (2.5)

wheresl is the state at timel.

Similarly, thebackward metric, denoted byβ, at timel is defined as the probability of

receiving a sequencer t>l after timel given that the state at timel is s,

βl = p(r t>l |sl = s). (2.6)

As the third metric definition, thebranch metricat time l is the probability of having a

state transition from states′ to sat timel. It is denoted byγ and defined as

γl = p(sl+1 = s, r l |sl = s′). (2.7)
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As a result of a few manipulations based on the definitions ofα andβ, it can be seen that

α values are updated by a forward recursion, whereasβ values are updated by a backward

recursion as given by

αl+1(s) =
∑

s′∈σl

γl(s
′, s)αl(s

′), (2.8)

βl(s
′) =

∑

s∈σl+1

γl(s
′, s)βl+1(s), (2.9)

with initial conditions,

α0(s) =


1, s= 0

0, s, 0
, (2.10a)

βN(s) =


1, s= 0

0, s, 0
. (2.10b)

In (2.10b),N stands for the length of the input sequence2. In (2.8) and (2.9),σl denotes

the set of all possible states from which a transition is possible at timel andσl+1 denotes the

set of all possible states to which a transition is possible at timel + 1. After having the initial

conditions,α andβ values can be calculated for the whole packet with the knowledge ofγ

values.

In an AWGN channel, branch metrics can be written as [9]

γl(s
′, s) = eul La(ul )/2e(Lc/2)(r l ·vl ), (2.11)

whereLa(ul) is the a priori bit probability3, Lc is the channel reliability factor which is equal

to 4Es/N0 [9], and vl denotes the output vector consisting of data and parity observations

for transition from states′ to s. The dot product (r l · vl) gives the correlation between the

transmitted and received vectors. Scaling this distance withLc means that the observations

are more reliable when SNR is high and a priori values are trusted more whenSNR is low.

In order to perform the calculations given in (2.8), (2.9) and (2.11) in aneasier way, these

operations are usually realized in the logarithmic domain. The log-domain metric values are

2 It is assumed that termination bits are added at the end of the packet in the encoder side. So, the final state
is known to be the zero-state

3 It must be noted that theLa values for the termination bits are always 0.
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given as follows:

γ∗l (s′, s) = ln γl(s
′, s) = ul

La(ul)
2
+

Lc

2
(r l · vl), (2.12)

α∗l+1(s) = lnαl+1(s) = ln
∑

s′∈σl

e
[
γ∗l (s′,s)+α∗l (s′)

]
, (2.13)

β∗l (s
′) = ln βl(s

′) = ln
∑

s∈σl+1

e
[
γ∗l (s′,s)+β∗l+1(s)

]
. (2.14)

It can easily be seen that both forward and backward metric calculations can be simplified

more by defining amax∗ operation

max∗(x, y) = ln(ex + ey) = max(x, y) + ln(1+ e−|x−y|), (2.15)

where the logarithmic term is usually called thecorrection term.

By using the multiple argument form of themax∗ operation, (2.13) and (2.14) can be

simplified as

α∗l+1(s) = max∗s′∈σl

[
γ∗l (s′, s) + α∗l (s

′)
]
, (2.16)

β∗l (s
′) = max∗s∈σl+1

[
γ∗l (s′, s) + β∗l+1(s)

]
(2.17)

with the initial conditions,

α∗0(s) =


0, s= 0

−∞, s, 0
, (2.18a)

β∗N(s) =


0, s= 0

−∞, s, 0
. (2.18b)

Figures 2.5 and 2.6 illustrate the use ofmax∗ operation inα andβ computations, respectively.

By skipping the intermediate steps, the log-likelihood formula in (2.3) can be rewritten

using the formulas described above as [9]

LL(ul) = ln


∑

(s′,s)∈Σ+l

eβ
∗
l+1(s)+γ∗l (s′,s)+α∗l (s′)


− ln


∑

(s′,s)∈Σ−l

eβ
∗
l+1(s)+γ∗l (s′,s)+α∗l (s′)


(2.19)

whereΣ+l andΣ−l are the sets of transitions with the information bit is 0 and 1, respectively.
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Figure 2.5: Forward recursion in calculation ofα∗l+1(s)
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Figure 2.6: Backward recursion in calculation ofβ∗l (s
′)

2.3.1 An Addition to the BCJR Algorithm

As described, the BCJR algorithm calculates theLL values of only the information (data) bits.

However, for the channel estimation problem, to be described in Section 3.4,we will need the

LL values also for the parity bits.

The state transitions depend on the information bits only. That’s why, the metric value

(α, β, andγ) calculations are not affected even if the parity bits are considered and these com-

putations are carried out without any modification. This means that, no extra complexity is

introduced for these parts. However, in theLL calculation step, given in (2.19), the transition

sets are constructed by considering the information bits. For the computation of theLL values

for the corresponding parity bits, the transition sets are needed for paritybits. The transition

diagram given in Figure (2.7) can be used to construct these sets.
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Figure 2.7: State diagram for the transitions of the parity bits.

After constructing these transition sets, (2.19) can be modified to calculate theLL values

for the parity bits as

LL(pl) = ln



∑

(s′,s)∈Σ+p,l

eβ
∗
l+1(s)+γ∗l (s′,s)+α∗l (s′)


− ln



∑

(s′,s)∈Σ−p,l

eβ
∗
l+1(s)+γ∗l (s′,s)+α∗l (s′)


(2.20)

whereΣ+p,l andΣ−p,l are the sets of transitions with the parity bit is 0 and 1, respectively.

2.4 Turbo Codes

Turbo codes were first introduced by Berrou et. al. in 1993 [2]. A turbo code encoder

consists of two convolutional encoders and an interleaver, which is placed before the second

encoder, as shown in Figure 2.8. The input bits,d (to denote “data” bits), are directly given

to the first convolutional encoder and it produces first sequence of parity bits,p1. The second

constituent encoder gets the interleaved form ofd as input and gives out the second parity

bits, p2. As a result of this parallel structure, turbo codes are also known as theparallel

concatenated convolutional codes(PCCC). Constituent encoders are not necessarily same.

On the decoder side, two decoders that can produce likelihoods as in BCJR are placed together

with an interleaver and deinterleaver as shown in Figure 2.9. The received sequence,r , in the

decoder side can be separated into three subsequences:

• data observation sequence,rd
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• first parity observation sequence,r p1

• second parity observation sequence,r p2

It must be noted that the interleaver used on the decoder side is equivalent to the one in

the encoder side. Interleaving along with iterative decoding results in the close-to-capacity

performance of turbo codes. However, using interleaver increases latency. Some interleaving

algorithms are given in [8].

As seen in Figure 2.9, we apply subtraction on log-likelihood values after each BCJR

decoder. By subtracting the inputLL values from the computed ones, theextrinsic information

is obtained, which is the true likelihood estimation of that decoding step. More details about

the structure of turbo codes are given in [2].

d CC1

CC2Interleaver

d

p1

p2

Figure 2.8: Turbo code encoder structure.CC1 andCC2 are two convolutional encoders and
they operate in parallel.

2.5 PDTC Structure

Benedetto and Montorsi have investigated performance of turbo codes intheir studies and they

have found out that these codes show a great performance at low SNR[10]. However, high

decoding latency comes out as the main drawback for these codes. Reducing the decoding

latency is a major problem when speed is taken into consideration. For speeding up the

decoding process the parallelization idea has been introduced in the decoder structure and the

same idea is applied to the encoder side in [11, 12, 13].
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Figure 2.9: Turbo code decoder structure with the usage of extrinsic information.

The FPGA architecture gives us the chance for benefiting from the power of parallel

processing. This is achieved by using multiple processors operating in parallel. However,

that parallel structure limits the number of utilizable interleaver algorithms. Using an arbi-

trary interleaver structure may cause a memory collusion problem. For that reason, memory

collision-free interleavers are used in PDTC structures.

2.5.1 Encoding Parallel Decodable Turbo Codes

Parallel Decodable Turbo Code (PDTC) encoder consists of convolutional encoders concate-

nated in parallel such that each one operate on parallelized information bits simultaneously.

The PDTC encoder structure is illustrated in Figure 2.10. For the upper encoder cluster, data

bits are first sent to a serial-to-parallel converter (S/P) to formN subsequences and each sub-

sequence is encoded in parallel (and separately). TheseN parallel convolutional encoders are

not necessarily the same. HereEncoder11 shows the first encoder of the upper cluster and

Encoder1N denotes the last one. The output of the upper cluster is formed by outputs which

come fromN parallel encoders. So, a parallel-to-serial converter (P/S) is used for generating

first parity sequence,p1. In the lower cluster, an interleaver (π) is placed before serial-to-

parallel converter and then the converter formsM parallel substreams. Encoding operation is

accomplished in the same manner as the upper cluster, but withM parallel encoders.
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d d

p1

p2

Encoder1 1

S/P

Encoder1 N

P/S

S/P

Encoder2 1

Encoder2 M

P/S

Figure 2.10: PDTC encoder with two clusters, one withN and the other withM constituent
encoders.

2.5.2 Decoding Parallel Decodable Turbo Codes

To decrease the decoding latency, each MAP decoder in the TC decoderis replaced with a

cluster of MAP decoders which are concatenated in parallel. With this method,each decoder

in a cluster operates onD/N data (information) bits whereD is the number of data bits in a

packet andN is the number of parallel MAP decoders in that cluster. The clusters may contain

different numbers of parallel decoders, say that first cluster hasN parallel decoders and the

second one hasM as in the encoder side. However,N = M is generally preferred. In our

system we have used 4 parallel decoders (encoders) in each cluster inthe decoder (encoder)

side, i.e.N = M = 4. The decoder structure for a PDTC is given in Figure 2.11. The decoders

in the first cluster (Decoder11, . . . ,Decoder14) operate on the data bits,d, and the first parity

bits, p1. After the first cluster finishes its job, the extrinsic information (Le) is generated from

the computed log-likelihood (LL) values. TheseLe values are used as a priori information

by the decoders of the second cluster (Decoder21, . . . ,Decoder24). These decoders operate

on the interleaved form of data bits and the second parity bits,p2. The LL and Le values

are calculated and so the first iteration is completed. If the desired number ofiterations have

not been reached, then theLe values are deinterleaved and given to the first cluster for the
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next iteration. After the final iteration has been finalized the computedLL values are used to

estimate the transmitted bit sequence.

+
Decoder1 1

Decoder1 2

Decoder1 3

Decoder1 4

Decoder2 1

Decoder2 2

Decoder2 3

Decoder2 4

-1

-

+
-

+
-

+
-

+
-

+
-

+
-

+
-

S/P

S/Pp1

d

S/P p2

Figure 2.11: PDTC decoder with two clusters, each having 4 constituent decoders.

2.5.3 Memory Collision-Free Interleaver

Although parallelization reduces the decoding latency, it creates some extraproblems and

memory collision problem is one of them. The memory collision problem can be explained

as follows. All the decoders in a cluster run in parallel and access the memory locations

where the extrinsic information (Le) generated by the other cluster’s decoders are stored.

During this access more than one decoders in that cluster may try to use the stored data at the

same memory block at the same clock instant. However, it is impossible to implement this

operation with the current memory architectures. Hence, memory collision occurs on that

memory segment. An interleaver which causes memory collision is shown in Figure2.12.

The memory collision should be avoided to implement a parallelized turbo decoderop-

erating properly. This problem stems from the permutation order of the interleaver. So, it

is important to use a well-designed interleaver structure such that each decoder (and also

encoder) in a cluster should try to access different memory segments at each clock instant.

For this reason, we have decided to use arow-column S-random(RCS-random) interleaver
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Figure 2.12: A PDTC decoder interleaver structure that does not prevent memory collision.

proposed in [4].

The magic behind RCS-random interleavers is the matrix structure. The operation of a

RCS-random interleaver is as follows. First, the data sequence is put into atwo-dimensional

matrix. Then, the rows of the matrix are interleaved by distinct S-random interleavers. After

that, the interleaved matrix is interleaved once more, but this time column-wise by different

S-random interleavers. Finally, the elements of the matrix are encoded row-wise, i.e., each

row is encoded by constituent encoders of the same encoder cluster. Since the number of rows

does not change after the interleaving process, equal number of constituent codes are utilized

by this method, that is the case ofN = M4. On the decoder side, the operations are carried

out in the same manner for both the generatedLe values and received sequence. In that matrix

structure, the memory collision occurs if two or more rows have bits at same column with

variables stored in the same memory block. However, that event is prevented by the firstrow

interleavingoperation. However, if we use less number of blocks than the number of rows of

the matrix, collision avoidance becomes impossible since at least two decoder variables will

share the same memory block at the same clock instant.

4 The upper encoder cluster operates on the uninterleaved form of the matrix.
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Figure 2.13: RCS-random interleaver generation and encoding of the information bits in par-
allel.

For a better understanding, we present an example that illustrates the use of RCS-random

interleaver in a PDTC structure withN = M = 4. In this example encoding and decoding for

the uninterleaved data will be skipped for simplicity. In Figure 2.13, the interleaving operation

and the encoding operation according to the generated interleaver is shown. On the decoder

side, the second cluster’s decoders use theLe values generated by the first cluster’s decoders.

The access sequence of those decoders in the second cluster is shownin Figure 2.14.
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Figure 2.14: Constituent decoders of the second cluster get the addresses ofLe values and
read the data in the given address to operate on.
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CHAPTER 3

JOINT CHANNEL ESTIMATION AND DECODING

3.1 Introduction

In digital mobile communications, one of the the main distortions introduced by the commu-

nication medium is the Doppler spread due to the movement of the receiver. This Doppler

spread results in a time-varying fading channel when communication medium has many scat-

terers. It is removed by estimating thechannel state information(CSI). To achieve high-speed

reliable communication, channel estimation corresponding to the estimation of the CSI is very

often a necessary process.

There exist some different channel estimation algorithms in the literature. These different

estimation techniques can be listed in two main groups:

• Blind Estimation : Blind Estimation techniques use the statistical properties of the

transmitted signals without any knowledge about the transmitted symbols. Thesemeth-

ods do not require a training sequence. Since no training sequence is used in the pack-

ets, blind estimation provides more efficient usage of bandwidth. Some blind estimation

methods are listed in [14] and [15]. They will not mentioned anymore since blind esti-

mation methods are not in the scope of this thesis.

• Pilot Symbol Assisted Estimation : These methods utilize pilot symbols placed in

the data sequence. The channel estimation process is initiated with the help of these

pilot symbols as their bit values are known in the receiver side. Adding pilotsymbols

into the data sequence introduces some redundancy and bandwidth efficiency somewhat

decreases.
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In this chapter of the thesis, we will work on an channel estimation method usingthe

pilot symbol assisted estimation technique. In the design, we will use the turbo decoder

described in Chapter 2 together with the channel estimator to form an iterativestructure. The

joint estimation and decoding structure is first proposed in [16].

3.2 Channel Model

As the channel model, we consider a discrete-time time-varying fading channel with AWGN

so that the received signal at time instantk can be written as

rk = fkak + ηk (3.1)

where fk is the sample from a time-varying correlated fading process at time instantk, ak is

the transmitted symbol, andηk is the sample from circularly symmetric complex Gaussian

random variable with mean 0 and varianceσ2
η. For the fading coefficients fk, it is assumed

that they are independent of the transmitted symbols and the noise.

The Rayleigh fading process used in the model is generated by using the Jakes’ model

given in [17]. In Jakes’ model, it is assumed that the real and imaginary parts of the complex

channel coefficients (fk values) are independent with the autocorrelation function of

Rf [k] = J0(2π fdkTs) (3.2)

whereJ0(.) is the zeroth order Bessel function of the first kind,fd is the relative Doppler

frequency between the transmitter and the receiver, andTs is the symbol period. To sim-

plify the future calculations, we assume normalized flat fading,E{| fk|2} = 1, and unit energy

transmitted symbols,E{|ak|2} = 1.

3.3 Transmitter Model

At the transmitter side, we use pilot symbol assisted modulation (PSAM) as proposed in [16].

The transmitter model is given in Figure 3.1.

In this model, a data sequence{dk} is first encoded by a turbo encoder. The encoded

bit sequence{ck} is passed through a channel interleaver. The resulting interleaved sequence
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Figure 3.1: Joint channel estimation and decoding transmitter

{ck} is then split into groups of (M − 1) bits and the known pilot symbols{ap} are placed in

the center of each group periodically. The final sequence{ak} is transmitted over the time-

varying Rayleigh fading channel. In this work, all the sequences are in polar form, i.e.,

{dk}, {ck}, {ak}ǫ{−1,1}. The parameterM is called thepilot symbol spacingand it is assumed

to be odd [16]. These pilot symbols may take on different values.

In this model, a channel interleaver is required for a better performance because turbo

encoding may not be sufficient in the existence of a fading channel induced errors, i.e., burst

errors. For that reason, a channel interleaver is used to scramble the symbols. The effect of

channel interleaver on the performance gain is given in [5].

3.4 Receiver Model

The iterative channel estimation structure proposed in [16] is used with a feedback path from

the turbo decoder at the receiver side. The receiver structure is given in Figure 3.2.

Channel
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Interleaver

Channel

Deinterleaver
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Figure 3.2: Joint channel estimation and decoding receiver

After the reception of a sequence, the sequence is given to the channelestimator. At the
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first run of channel estimation, a filtering operation is performed to obtain theinitial estimates

of fading coefficients{ f (q)
k } where superscript(q) denotes the iteration number of the channel

estimation andq = 1 for this first iteration. Using these initial estimates{ f̂ (1)
k } together

with the received sequence, the log-likelihood ratios (LL) are calculated and fed to aPilot

Eliminator module to remove theLL of the pilots. After removing the pilots, the remaining

LLs are passed through a channel deinterleaver and the resultantLL sequence is given to

a soft-in soft-out(SISO) decoder. In our system, turbo decoders are used for the decoding

process.

To get a better performance from the feedback mechanism, the decoder needs to calcu-

late the probabilities of the parity symbols together with the data symbols. The parityLL

calculation issue, handled in Section 2.3.1, steps in at that point. After the decoding process,

the computedLLs {λk
(q)} of the coded sequence{ck} are passed through anonlinear feedback

functionto obtain the estimates of the code symbols{ĉ(q)
k }. This feedback function can pro-

duce hard-decision or soft-decision estimates. After the estimation of codedsymbols, these

estimates are first interleaved and then pilots are added in the same manner explained in the

transmitter side. After all, the resulting sequence estimation{â(q)
k } is given back to the channel

estimator. The estimator runs again, but this time it uses the whole{â(q)
k } set, not only the pilot

values{ap}. After the estimation is completed, the operations explained for the first estimation

and feedback mechanism are repeated iteratively.

In the receiver structure proposed in [16], turbo decoder runs forone iteration after each

iteration of the estimation process. In our system, we prefer to operate the turbo decoder for

some iteration numbers to get more reliableLLs for the code symbols and then feed these

{λk
(q)} values back to the estimator to complete the estimation iteration.

3.5 Channel Estimator

The receiver model given in Figure 3.2 requires a channel estimator forproper operation.

Different algorithms are available to estimate the channel. In this part, we will describe the

estimation method which employs the LMS filtering. An estimation method which uses a

minimum mean-squared error(MMSE) filtering technique instead of LMS is given in [16].

In the channel estimation method which we have used in our system, the estimation
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process is carried out with a well-known LMS algorithm [15]. Using an LMSfilter instead

of MMSE allows less computations. That’s why channel estimator structures with LMS has

a lower complexity when compared to the ones with MMSE.

This technique derives the first estimates by using the pilot symbols only. Since the

values of only pilot symbols are available at the receiver side, applying anLMS algorithm is

not applicable. So, the channel is estimated at the pilot locations and these estimated values

are assumed to be constant around the pilot symbols. The structure of a received packet is

given in Figure 3.3 with a pilot symbol spacing ofM.

D D D D D D D D D D D D D D .   .    .

M M

one group one group

P P. . .  . .    . .    . 

Figure 3.3: Packet structure of a received packet whereP denotes the pilot symbols.

In the following iterations, an LMS filter is employed instead of MMSE filter while

estimating the complex fading coefficients. The channel estimation in theq − th iteration is

computed by using the estimates of the transmitted sequence in the (q−1)− st iterationâ(q−1)
k ,

f̂ (q)
k+1 = f̂ (q)

k + βe
(q)
k â(q−1)

k (3.3)

whereβ stand for thestep sizeof the LMS algorithm ande(q)
k is called theerror term, defined

as

e(q)
k = rk − f̂ (q)

k â(q−1)
k . (3.4)

To improve the error performance of an LMS filtering method, a different approach can

be used, called the 2-way LMS[6]. In this approach the estimation process is carried out in

two ways, in forward and backward directions. In both ways the LMS algorithm is applied.

For the forward channel estimation case, the computations are the same as theones pre-

viously described in the regular LMS algorithm. If we call the forward estimates of complex

fading channel coefficients for theq− th iteration as{ĥ(q)
k },

ĥ(q)
k+1 = ĥ(q)

k + βe
(q)
f ,kâ

(q−1)
k (3.5)
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wheree(q)
f ,k stand for the error term in theforward direction,

e(q)
f ,k = rk − ĥ(q)

k â(q−1)
k . (3.6)

In the backward direction, the same computations as in the forward case areapplied with

small differences. The backward estimations of complex fading channel coefficients{ĝ(q)
k } are

computed as follows.

ĝ(q)
k−1 = ĝ(q)

k + βe
(q)
b,kâ

(q−1)
k , (3.7)

e(q)
b,k = rk − ĝ(q)

k â(q−1)
k . (3.8)

The estimates of complex fading channel coefficients are{ f̂ (q)
k } the average of the esti-

mates computed in forward and backward directions,

f̂ (q)
k =

(
ĥ(q)

k + ĝ(q)
k

)

2
(3.9)

It must be noted that, the 2-way recursive computations are initiated by usingthe esti-

mation results of the previous iteration.

ĥ(q)
0 = f̂ (q−1)

0 , (3.10)

ĝ(q)
p−1 = f̂ (q−1)

p−1 , (3.11)

wherep is the length of the packet including the pilot symbols.

This 2-way LMS filtering method can also be used for determining the carrier frequency

offset to overcome the synchronization problem.

3.6 Nonlinear Feedback Function

The nonlinear feedback function, shown in Figure 3.2, generates the estimates of the coded

sequence{ĉk} using theLLs computed by the turbo decoder{λk}. This function can be imple-

mented in two different ways as mentioned in Section 3.4,

1. Soft-decision feedback function :In the soft-decision feedback case, the function uses

the trigonometric tanh(.) operation for estimation of coded sequence [16]. For theq− th

iteration the function operation is as follows:

ĉ(q)
k = tanh

(
λk

(q)

2

)
. (3.12)
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2. Hard-decision feedback function :The hard-decision case uses the limiting values of

the given soft-decision feedback function in (3.12),

ĉ(q)
k =


+1, λk

(q) > 0

−1, λk
(q) ≤ 0

. (3.13)
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CHAPTER 4

FPGA IMPLEMENTATION

As mentioned before, our aim is to implement the structures described in Chapters 2 and

3 on an FPGA-based system. During the implementation, we have faced with someprob-

lems due to the fixed-point architecture of the FPGAs. On the other hand, wewere able to

make some optimizations by using the parallel processing capability of the FPGA structure.

In this chapter, we mainly concentrate on the implementation aspects of parallelization of

Turbo Decoders and estimating the fading channel characteristics by LMSalgorithm on an

FPGA-based system. It must be noted that the implementation steps listed in this chapter are

determined during the simulations. Resulting performances of the designs on the ML-402

platform are discussed in Chapter 6.

4.1 PDTC Decoder Implementation on the FPGA

The decoding algorithm for a PDTC decoder using the MAP decoding algorithm is given in

Sections 2.3 and 2.5.2 with details. However, implementing a soft-in soft-out (SISO) decoder

on an FPGA inherently faces some problems since it has limited resources which do not

let one easily use floating-point arithmetic or large fixed-point arithmetic. Throughout this

section, we will describe our solutions to the problems and optimizations we haveapplied.

4.1.1 The Center to Top Algorithm

When the metric calculations in (2.13) and (2.14) are considered, it can be seen that the

two operations are independent of each other. This gives the ability to calculateα and β

metrics simultaneously assuming that all of the received values are available for branch metric
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calculations. This assumption is valid for the iterative decoding schemes sincedecoding

process can begin after receiving the whole packet. By this algorithm, the decoding time can

be halved. Consider a decoder running on 40 information bits. At time 0 the metric values

are initialized, that isα∗(0) andβ∗(39) values are generated as defined in (2.18a) and (2.18b).

After that,α∗ andβ∗ values are calculated without computing any LL value up to time 20 as

shown in Figure 4.2.

*

0

*

40

0 1 2 19 20 37 38 39.    .   . .    .    .

Middle of the RAM

.    .   .

.    .   . .    .    .

.    .    .

Figure 4.1:α andβ values are initialized at timet = 0.

0 1 2 19 20 37 38 39.     .     . .     .     .

Middle of the RAM

Calculate *

k  values for }19,...,2,1{k

*

1

*

2

*

0

*

40

*

39

*

38

*

19

Calculate *

k  values for }21,...,38,39{k

*

21
.     .     .

.     .     .

.     .     .

.     .     .

Figure 4.2: α and β values are calculated up to timet = 20 with forward and backward
recursive calculations.

At time 20, both ofα∗20, β
∗
21 andα∗19, β

∗
20 values are available together with the branch

metrics for the time instants,γ∗20 andγ∗19. So,LL(u20) andLL(u19) are computed and given

out as shown in Figure 4.3.

That process, starting from the center of the frame, continues to the end and simultane-

ously to the beginning of the frame. That’s why this algorithm is named as “center to top”

[12]. The rest of the process after the calculation of the center log-likelihood values is shown
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Figure 4.3: At timet = 20,LL(u19) andLL(u20) are calculated.

in Figure 4.4.
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Figure 4.4:LL calculation continues in parallel with theα/β calculation to the end of the bit
sequence, that ist = 39.

It must be noted thatα andβmetric values do not have to be written to memory after the

midpoint, sinceLL values are calculated simultaneously. So, not only the decoding time but

also the memory usage is halved by this algorithm. The decoding of a 40-bit sequence (20

information bits and 20 parity bits) just takes 40 clock cycles and this processuses a memory

block of length 401.

4.1.2 Observation Quantization

In the conventional mathematical model, a+1 or−1 is assumed to be transmitted for BPSK,

an appropriate noise is added and calculations are carried on with these assignments. An

1 The width of the used memory depends on the representation of the metric values in the fixed-point archi-
tecture
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AWGN channel for BPSK modulation can be modeled as

yk = hkxk + nk, (4.1)

for any time instantk whereyk is the received symbol,hk is the channel gain (
√

Es in an

AWGN channel withEs being the signal energy),xk is the transmitted bit (xk = ∓1) andnk is

a circularly symmetric complex Gaussian random variable with mean 0 and varianceN0.

The conditional probability of a received symbolyk can be expressed as

f (yk|hk, x) =
1
πN0

e−
|yk−hkx|2

N0 , (4.2)

ln( f (yk|hk, x)) = − ln(πN0) − |yk|2
N0
− |hk|2|xk|2

N0
+

2
N0
ℜ{ykh

∗
kx∗}, (4.3)

= C +
2
N0
ℜ{ykh

∗
kx∗}, (4.4)

whereC is a constant and has no effect on the MAP calculations. Hence, the function can be

redefined as

ln( f (yk|hk, x))=̇
2
N0
ℜ{ykh

∗
kx∗}, (4.5)

where=̇ denotes equality with a constant.

As we use fixed-point arithmetic, the metric values in the BCJR algorithm are repre-

sented by a fixed number of bits,K. However, the decoder is not guaranteed to work properly

with this representation unless the channel observations (input of the decoder) are carefully

quantized. For that reason, we need to quantize observations by a quantization factor,q, such

that the represented observations lay in a setSsmaller than the set of numbers represented by

K bits. After that, the quantized observation probability forx = 1 is used in decoding with

Qk = Q(ln( f (yk|hk, x = 1))) =

⌊
2/N0ℜ(ykh∗k)

q

⌋
. (4.6)

If we apply the AWGN channel model given in (4.1) on (4.6) for a BPSK modulation,

we get

Qk =

⌊
2
√

Es/N0ℜ{yk}
q

⌋
, (4.7)

=

⌊
2
√

Es/N0ℜ{(
√

Es+ nk)}
q

⌋
, (4.8)

=

⌊
2Es

N0q
+

2
√

Es

N0q
nI

⌋
, (4.9)

wherenI is the real part of the complex Gaussian noise with mean 0 and varianceN0/2.
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Recalling that a finite number of bits are used in representing numbers, the question is

how to chooseq. If q is chosen to be very small,Qk’s will be large and the formulas such as

(2.19) will not function properly due to overflow. Ifq is chosen to be very large, then the dif-

ference in noise values of the observations will not be properly passedto the decoder and then

soft decoding will suffer. We resolve the problem above by the compromise that the packet

is normalized with respect to its absolute maximum symbol value,ObsMax. If we represent

that value with a predefined value,NormMax(absolute maximum value after the quantiza-

tion is performed) then we get a setS = {−NormMax,−NormMax+ 1, . . . ,NormMax−

1,NormMax} for decoder’s input sequence. This information can be combined with a well

known property of the Gaussian distribution that, in a normally distributed set with meanµ

and varianceσ2, observing a numberp such that|p| > µ + 3σ has a probability of about

1/1000. To be able to apply that property, we need to identify the mean and variance of the

random variableA = 2Es
N0q +

2
√

Es
N0q nI .

E{A} = 2Es

N0q
(4.10)

σA =
2
√

Es

N0q
σnI =

2
√

Es

N0q

√
N0√
2

=

√
2Es
N0q

1√
q

=

√
E{A}√

q
(4.11)

After the quantization of the packet, it is known that symbols greater than+NormMax

or smaller than−NormMaxcan occur in the packet with a small probability. If we neglect

the small probability of 1/1000, we can defineNormMaxas

NormMax = E{A} + 3σA (4.12)

= E{A} + 3

√
E{A}√

q
(4.13)

By replacing (4.10) in (4.13), we get

NormMax=
2Es

N0q
+ 3

√
2Es

N0q
1√
q
. (4.14)

By solving this equation,q can be calculated as

q =

2Es
N0
+ 3

√
2Es
N0

NormMax
. (4.15)
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As it is obvious in (4.15),q is a function of theS NR(Es/N0) for a selectedNormMax

value. Instead of calculating theq value for each packet, a look-up table (LUT) can be used.

A relatively large LUT that stores theq values in 8 bits, 3 for integer part and 5 for the decimal

part gives a precision of 1/25 and yields a satisfactory performance. Thisq value will be used

to represent any floating-point number in our used representation if needed.

4.1.3 max∗ Approximation

Themax∗ expression given in (2.15) contains two terms: the maximization term (max(x, y))

and the correction term (fc(|x − y|) = ln(1 + e−|x−y|)). This correction term poses a trouble

when it is needed to be expressed in fixed-point arithmetic. It is not possible to easily realize

thenaturallogarithmandexponentialfunctions fully in such a system. That’s why, some ap-

proximations have been applied to realize the correction termfc(|x−y|) in themax∗ operation.

Four different approximations have been listed in [18] with the resulting BER performances.

These methods can be listed as follows.

1. Max-log-MAP approximation: With this method, the correction term is neglected

( fc(|x − y|) ≈ 0) for all (x, y) pairs and themax∗ operation is approximated as the

ordinary max operation,

max∗(x, y) ≈ max(x, y). (4.16)

2. Constant log-MAP approximation: This method takes the correction term as a con-

stant valueC or as zero. To give out the result, the difference of the two operands (|x−y|)

is compared to a predetermined threshold valueT and if the difference is higher than

that threshold the correction term gets the value 0. However, if the difference is found

to be smaller than the threshold then the correction term is expressed with a constant

value. This algorithm can be formulated as

fc(|x− y|) = ln(1+ e−|x−y|) ≈


0 if |x− y| > T

C if |x− y| ≤ T
. (4.17)

3. Linear log-MAP approximation: In this method, the correction term is approximated

by a piece-wise linear function.

fc(|x− y|) ≈


0 if |x− y| > T

a(|x− y| − T) if |x− y| ≤ T
. (4.18)
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The minimum mean-squared error (MMSE) algorithm gives a reasonable solution to

(4.18) asa = −0.24904 andT = 2.5068 [18]. It must be noted that, theT value must

be quantized with theq value defined in (4.15) since it is an expression in unquantized

floating-point domain. The newT value will beT′ = T/q.

4. Lookup table (LUT) approximation: In this method, a table is used to store thefc(|x−

y|) terms. The performance of this method strongly depends on the depth and width

of the table. The width of the table determines the precision of the correction term

projected to themax∗ operation. On the other hand, to span a set of|x−y| values within

more precise intervals, larger tables must be used. The most important issueof the LUT

approximation method is that the table must store the values in the quantized form. To

generate a LUT, we can write an equation as the following.

LUT(i) =

⌊
ln(1+ e−iq)

q

⌋
(4.19)

where i = |x − y| and q is the quantization factor calculated during the observation

quantization process. When compared with the other approximation methods, using a

LUT requires much more resources to be implemented but approximates the floating-

pointmax∗ operation in the best way (when a table with appropriate depth and width is

used).

As it is obvious in the explanations above, to get a better numeric approximationa more

complex method is needed to be used. This complexity brings some extra calculations to-

gether and that results in more resource consumption, slower clock speed, and higher decod-

ing latency. With all these in the hand, the approximation method must be decided after a

carefully carried on analysis. As declared at the beginning of this chapter, decoding latency

and resource consumption are two important requirements of our design aswell as the error

correction performance. Among the 4 described methods, only max-log-MAP approxima-

tion neglects the correction term. So, theq value is not used since no real value needs to be

represented in our own fixed-point domain. This means that, no reading from q-storing LUT

is needed and no latency is introduced due to reading of theq value. That brings an extra

speed formax∗ operation. After all, we have decided to use the max-log-MAP approximation

method by accepting a performance degradation up to 0.2 dB as seen in Figure 4.5. This fig-

ure is obtained after a simulation over 2000 packets with each containing 160 data bits. As a
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result of using this approximation method in the decoding process, the MAP decoder is named

themax-log-MAP decoderand we have carried on the studies with that decoder architecture.
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Figure 4.5: The performance difference between a log-MAP decoder (using the ordinarymax∗

operation with infinite precision) and a max-log-MAP decoder.

Studies in [19] and [20] have shown that max-log-MAP decoders work without any need

on SNR estimation. In other words, that decoder does not need an exactSNR estimation to

operate properly. So, not only themax∗ operators but also the constituent BCJR decoders do

not need theq-storing LUT. When this LUT is removed, the decoder consumes less resources

and operates on faster clock speeds.

4.1.4 Fixed-Point Summation and Subtraction

Using a restricted set ([−(2K−1 − 1),2K−1 − 1] whereK is the metric size) to represent metric

values forces us to introduce new summation and subtraction operations with the closure

property in the given set. The operationclipsum, denoted by⊕, replaces with the regular

summation. Under the assumption ofplus−in f = 2K−1 − 1 andminus−in f = −plus−in f ,

a⊕ b =



plus−in f , a ≥ plus−in f or b ≥ plus−in f

minus−in f , a ≤ minus−in f or b ≤ minus−in f

plus−in f , a+ b ≥ plus−in f

minus−in f , a+ b ≤ minus−in f

a+ b, else.

(4.20)
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Similarly, a new subtraction operationclipsubtract(⊖) is introduced as

a⊖ b = a⊕ (−b). (4.21)

4.1.5 Node (α, β) Metric Normalization

In (2.8) and (2.9) it has been shown thatα andβ values are updated in a recursive manner.

As the computations go further, these metric values may overflow (> plus−in f ) or underflow

(< minus−in f ). To solve this problem,α andβ values are normalized at each trellis step.

After each forward recursion, maximum of the newly generated forwardmetric values is

subtracted from these values andα metrics are updated with these normalized values. The

same is applied to theβ metrics. After the normalization process, we get a maximum value

of 0 for α andβ metrics at each time instant and prevent underflow and overflow cases. Once

any of the metric values reachplus−in f or minus−in f , further calculations will not be able

to diverge from that value due to theclipsumoperation given in (4.20). So, normalization

acts an important role in implementation of the BCJR decoder in fixed-point arithmetic. Also,

some normalization procedure may be used even in floating-point case to speed up the system.

Another approach to node metric normalization can be found in [21].

4.1.6 Memory Complexity

Before the decoding process, the observations have to be stored in different memory blocks in

order to use them in a parallel decoder structure. For that reason, a memory structure is defined

as follows. If there areN decoders operating in parallel, then there must beN independent

memory blocks for data bit observations (d in Figure 2.11). Accordingly,N memory blocks

for parity observations andN memory blocks for interleaved parity observations (p1 and p2

in Figure 2.11, respectively). In addition to these,N memory blocks are also defined for

interleaver (memory collision-free) tables.

Log-likelihood values are stored in RAMs, too. Each decoder needs an apriori probabil-

ity (La) and generates log-likelihood ratio (LL) andextrinsic information(Le), where in our

designLe’s are calculated within the MAP decoder2. TheseLe andLa notations are eligible

2 The extrinsic information is generated inside the decoder to decrease the system complexity at the expense
of maximum clock speed.
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for the decoders running in the first cluster. In the second cluster, decoders useLe values asLa

and generates theLe values which will be used asLa in the next iteration. The word “cluster”

is used just for picturing the system and corresponds to the blocks in half of an iteration. In

fact, decoders only change their state to switch the input and output log-likelihood ratios (La

andLe). SinceLL values are final results, they are updated (overwritten) after eachcluster

run. That structure brings out a memory usage of 3N memory blocks for log-likelihood ratio

storage in the PDTC decoder.

Summing up all yields a usage of 7N number of memory blocks for a PDTC decoder

with N constituent decoders in each cluster.

4.2 Channel Estimation Implementation on the FPGA

The channel estimation algorithm for the joint estimation and decoding structureis given in

Chapter 3 with details, and shown in Figures 3.1 and 3.2. In this section, we willdescribe the

implementation steps of the proposed structure on an FPGA-based platform.

4.2.1 Pilot Symbol Insertion and Elimination

The simulations given in [16] have been carried out for two different pilot symbol spacing

values,M = 11 andM = 21. In our system, we use a reasonableM value by considering

these previous studies,M = 17. There are two main factors that makes this choice reasonable:

the Doppler frequency range of the simulated channel (to be discussed inChapter 6), and the

valueM − 1 must be a divisor of the packet length (512).

As shown in Figure 3.1, the interleaved form of the encoded bits is given to the Pilot

Symbol Insertermodule for the pilot insertion process. To accomplish this, these bits are first

split into groups of 16 bits. After that, the pilot symbols are placed into the center of each

group. Although these pilot symbols may be assigned different values, we use{ap} = 1 in our

structure. The input and output sequences of the pilot inserter module are given in Figure 4.6.

To remove these pilot symbols, aPilot Symbol Eliminatormodule is assigned at the

receiver side as shown in Figure 3.2. The operation applied in that module isexactly the

inverse of the insertion process given in Figure 4.6.
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P P.    . .    . .  . .    . 

Figure 4.6: Input and output packet structures of the pilot symbol inserter module.

SinceM = 17 is considered in the design, 512/16 = 32 pilot symbols are inserted into

the packet. After that insertion, the packet length becomes 544, i.e. , some redundancy is

introduced due to pilot symbol assisted channel estimation algorithm.

4.2.2 Channel Estimator

The two channel estimation algorithms for the pilot symbol assisted estimation methodwere

described in Section 3.5 in detail. In this section, we give out the details aboutthe implemen-

tation of the2-way LMSestimation algorithm.

Similar to the PDTC case, the main problem appears as the realization of a SISO algo-

rithm in fixed-point arithmetic, this time a filtering algorithm. To handle that problem, the

received values are first represented in fixed-point. Thus, a quantization process is applied

to the received sequence to represent these values by a predeterminednumber of bits, i.e.,L.

Different than the PDTC case, the channel is a Rayleigh fading channel. So,a limiting value

(like NormMaxin the PDTC structure) is not easy to define.

The received sequences are first quantized by MATLAB on PC and then, quantized forms

of the sequences are given to the evaluation platform through the UART (tobe described in

Chapter 5). Inside the channel estimator, these quantized forms are usedinstead of the real

values. After that quantization process, we get theL-bit representation sequences of the in-

phase and quadrature components of the received values. These two sequences are handled
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through two parallel and identical processes. Since they are identical, wegive details about

just the operations on the in-phase component. It must be noted that the sameis carried out

on the quadrature component.

For the first iteration of the channel estimator, a zero forcing equalization isapplied. The

reason of using the zero forcing algorithm is to reduce the complexity and thus the resource

consumption. The first iteration of the estimation process is carried out as thefollowing. The

channel is estimated at the pilot locations using a zero forcing algorithm. Sincethe modulation

is BPSK and the pilot symbol values are always “1”, the received valuesat the pilot locations

are regarded as the fading coefficient at those time instants. After that, the group of each pilot

(the nearestM − 1 locations to that pilot, shown in Figure 4.6) is assumed to have the same

fading coefficient as the pilot. This first channel estimation iteration is shown in Figure 4.7.

P1 P2

1
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nd
 group

.   .  .    . . .    .    . .  . .    . .    .    .   . .    .  . .    .    .  . .    .

.    . .

P32
.    .   . . .  . .    .

32
nd

 group

)1(

1f̂
)1(

2f̂
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.    .   . .    .    .

.    . . 32nd group

Channel Estimation
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Figure 4.7: First iteration of the channel estimator (constant fading coefficient during one
group period).

In the second (and next) iterations, the step sizeβ, is included in the LMS-based estima-

tion algorithm. In our fixed-point domain, theβ value is represented with 6 bits, 1 for integer

part and 5 for decimal part. The integer bit is used to represent the sign and is always 0 since

β > 0 [15]. Asβ is a multiplier in (3.5) and (3.7), the representation bit number is increased

during this iteration due to this multiplication. Not to lose the accuracy, the received values

and the fading coefficients estimated in the first iteration{ f̂ (1)
k } are represented byL + 5 bits.

The second iteration of the channel estimation algorithm operates as follows.The forward and

backward channel estimates are initialized using the first estimation results. Toget aL+ 5 bit

representation, the first estimation results are shifted 5 times to the left and without changing
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the sign of that estimation result.

ĥ(2)
1 = f̂ (1)

1 x 100000, (4.22)

ĝ(2)
544 = f̂ (1)

544 x 100000. (4.23)

After that shifting operation, the resultant values possess a decimal partof 5 bits and an

integer part ofL bits. Hereafter, we will denote this representation with “L.5”. The integer

part remains asL bits since the integer part in the step size is always 0, i.e.,β < 1 in our

design.

The second factor that might effect the representation consistency is the feedback coming

from the turbo decoder. Due to the complexity avoidance issue, a hard-decision mechanism

is used on the feedback path. This choice brings no more additional computations in the LMS

algorithm, but just an inversion if the calculatedLL value is negative3. Since the inversion

process does not affect the representation bit number, the notationL.5 keeps its form.

In the expressions (3.6) and (3.8), the error terms are computed by a subtraction oper-

ation. For this operation to work properly the received sequence{rk} is also represented in

L.5 bits in this iteration. However, this sequence was represented byL bits in the first itera-

tion. Enlargement toL.5 bits is achieved in the same manner as in the initialization of{ĥ(2)
k }

and{ĝ(2)
k } sequences. After the representations in the subtraction is matched, aclipsubtract

operation is applied, as described in Section 4.1.4, different than the ordinary subtraction op-

eration. However, this time, theplus−in f andminus−in f values change to 2L+5−1 − 1 and

−
(
2L+5−1 − 1

)
, respectively.

After having a consistent representation during this iteration, the multiplication (second)

operations in (3.5) and (3.7) can be resolved easily. If we call these termsas mult(q)
f ,k and

mult(q)
b,k for forward and backward error terms, in the second iteration we have

mult(2)
f ,k = βe(2)

f ,kâ
(1)
k (4.24)

mult(2)
b,k = βe(2)

b,kâ
(1)
k . (4.25)

In the multiplication equations given above, the ˆa(1)
k term has no effect on the bit number

of the result but affects the sign. So, we will omit this term. The error terms (e(2)
f ,k ande(2)

b,k)

3 Since{ĉ(q)
k } ∈ {−1,1}, the product is affected just in sign.
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have the representation ofL.5, while β has 1.5. Therefore, the multiplication result has the

representation of (L + 1).10. However, one of the bits in the integer part is unnecessary in

this representation since the integer bit of theβ term is always “0”. After removing this

unnecessary bit, we get a representation ofL.10. These multiplication results are summed

up with {ĥ(2)
k } and{ĝ(2)

k } to get the resultant values{ĥ(2)
k+1} and{ĝ(2)

k+1}. To match the resultant

representation, the multiplication terms are needed to be represented in the form of L.5. For

that reason, the last (rightmost) 5 bits are discarded. Although discardingthese bits decrease

the precision of the multiplication result, this effect can be neglected when the quantization

process before the decoding operation is taken into account4. The representation used in each

step is shown in Figure 4.8 for the first two steps in the forward LMS computation. The final

summation is realized with aclipsumoperation,plus−in f = 2L+5−1 − 1 andminus−in f =

−
(
2L+5−1 − 1

)
.
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Figure 4.8: The representations in the fixed-point domain of the forward branch of the 2−way
LMS algorithm.

For the following iterations (if any), the operations described for the 2nd iteration are

carried out in the same manner. Although the precision is increased by 5 bits inthese itera-

tions, this does not affect the storage capacity. This increase in the representation bit number

4 The decoders operate on metric values represented in very few number of bits
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is effective just for the computation registers. The results are stored in the memories with the

width of L bits by discarding the 5 decimal bits at the rightmost place for these iterations.

After computing the forward and backward estimation sequences{ĥ(q)
k } and {ĝ(q)

k }, the final

estimates of the fading channel coefficients are calculated as in (3.9). To realize this averag-

ing operation, summation result is first expressed byL + 1 bits without any loss. Instead of

division by 2, the rightmost bit is discarded and the result is expressed inL bits again.

The duration of the estimation process is an important parameter for the system.To

reduce this duration, some implementation tricks are used as follows. In the iterations other

than the first one, the 2-way LMS algorithm is used for the estimation issue. Asit is obvious

in (3.5) and (3.7), the forward and backward recursive computations are independent of each

other. Therefore to speed up this LMS algorithm, we can apply the CTT (center to top)

algorithm described in Section 4.1.1. By applying the CTT algorithm the estimation process

of a sequence with length 544 is completed in 544 cycles rather than 1088.

Up to this point the computations are described for the in-phase (I ) components. After

carrying out the same operations on the quadrature components (Q) we can calculate theLL

values to feed the turbo decoder.

As a design consideration we chooseL > K, i.e., the operations carried out in channel

estimation operations are more precise when compared to the decoding ones.The reason of

that choice can be explained as follows. Implementation of a channel estimatoron FPGA is

realized with the use of sequential logics mostly. Hence, the clock speed andthe resource

consumption of the design are not affected so much for increasing values ofL. On the other

hand, the observations received by the turbo decoder is quantized toK bits in theobservation

quantizationprocess described in Section 4.1.2. Not to affect the performance of the decoder,

choosing anL value larger thanK seems more reasonable when the performance of the overall

system is considered. However, choosing a very largeL value will bring some unnecessary

complexity in the estimator side since the representation bit number is eventually rolled back

for the decoder operations.
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4.2.3 LL Computation

As seen in Figure 3.2, after the channel estimation process, theLL values to be used by the

turbo decoder are computed. During this computation the channel estimates{ f̂ (q)
k } are used

together with the received sequence{rk}. As mentioned before, both of the sequences consist

of complex values and each value is expressed as

rk = rk,I + ir k,Q, (4.26)

f̂ (q)
k = f̂ (q)

k,I + i f̂ (q)
k,Q. (4.27)

The LL computation is achieved in [16] by multiplying the received sequence by the

complex conjugate of the channel estimations and with a factor of 2/N0. This multiplication

factor comes from theLc/2 term in branch metric equation given in (2.11) whereLc = 4Es/N0

andEs = 1 in BPSK modulation. As a result, theLL computation is accomplished in the way

LLk =
2
N0
ℜ

{
rk f̂ ∗(q)

k

}
(4.28)

=
2
N0
ℜ

{(
rk,I + ir k,Q

) (
f̂ (q)
k,I − i f̂ (q)

k,Q

)}
(4.29)

=
2
N0

(
rk,I f̂ (q)

k,I + rk,Q f̂ (q)
k,Q

)
. (4.30)

However, since the turbo decoder used in the system is a max-log-MAP decoder, the

exact values are not needed for the proper operation of this decoder[19, 20]. That’s why, the

term 2/N0 in (4.30) is dropped to reduce the computational complexity. After modifying the

LL computation operation, we get

LL′k = rk,I f̂ (q)
k,I + rk,Q f̂ (q)

k,Q. (4.31)

In (4.31), there exist two multiplication terms which operate on twoL-bit numbers. The

results of these multiplications can be represented by 2L bits without any loss in accuracy.

Since the representations will be represented inK bits after theobservation quantization

process, there is no need to represent theLL values with 2L bits. That’s why, the multiplication

results can be represented in any number of bitsB, with B > K not to affect the performance

of the decoder. As a design choice, the multiplication results are consideredas L bits by

regarding the rightmost (least significant)L bits.
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CHAPTER 5

TESTBED PLATFORM

In this thesis the motivation is basically the hardware implementation of a parallelizedturbo

decoder and a channel estimation algorithm as described in Chapters 2 and3. In order not to

deal with problems that one faces with actual wireless modules, the designs are carried on a

stand-alone operating environment. Expected characteristics of a real environment is realized

on the FPGA with out any loss of generality.

5.1 Testbed Hardware

We designed our system and carried out the experiments on the ML-402 Virtex-IV Evaluation

Platform with the help of some test and measurement equipments like the oscilloscopes and

function generators. The overall testbed setup is given in Figure 5.1.

RS 232 

port

JTAG

port

JTAG

Emulator

ML-402 Virtex-IV 

Evaluation

Platform

Figure 5.1: The overall testbed.
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The communication to the board is accomplished with two connections. First one is

the connection between the USB port of the PC and the JTAG port of the evaluation board

via a JTAG emulator. This connection is used to write a “.BIT” file to the FPGA. Also,

this connection is used by the ChipScope during the debugging process (tobe described in

Section 5.2.3). The second connection is maintained between theRS232 ports of the PC and

the evaluation board. This connection is controlled by MATLAB on the PC sideand used to

collect data during run time.

5.1.1 ML-402 Evaluation Platform

A Field Programmable Gate Array (FPGA) is a kind of logic chip that can be configured by

the user after its manufacturing. Unlike a logic gate, which has a fixed function, an FPGA

has an undefined function at the time of manufacturing. FPGAs are very similar to PLDs

(programmable logic device), but they differ at the number of gates they contain and their

memory structures. Although PLDs are limited to hundreds of gates, FPGAs maycontain up

to millions of gates. Since the FPGAs have volatile memory due to their static random access

memory (SRAM) based structures, they need to be programmed after powerup. FPGAs

are composed ofconfigurable logic blocks(CLBs). These logic blocks can be configured

to perform complex combinational functions or to implement simple logic gates likeAND

andOR. A common CLB contains the elementary structures such as look-up tables (LUTs),

flip-flops, multiplexers, etc. as shown in Figure 5.2. Other than CLBs, FPGAmay contain

Random Access Memory (RAM) modules for data storage tasks.

4-input

LUT
D Flip-Flop

Inputs
Output

Clock

Figure 5.2: A common CLB architecture.

In Xilinx FPGAs, the CLBs are called “slices” and they differ from the common CLBs

with their contents. The slice structure of a Xilinx FPGA is shown in Figure 5.3. These logic

blocks are connected to each other with programmable switches. If there is arelation between
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slices then these switches will be ON, else OFF. When it is needed to store a data, the output

of LUTs can be multiplexed to the slice flip-flops. Other than storage, flip-flops introduce

pipelining by breaking an operation into two parts in order to obtain a fast propagating func-

tion. As a result of having these combinatorial logic parts, FPGAs have a great potential in

operating parallel processes simultaneously.

Figure 5.3: Slice structure for Xilinx FPGAs.

Our evaluation platform is the Xilinx ML-402 Evaluation Platform. It contains a XC4VSX35-

FF668-10 Xilinx FPGA chip. The basic specifications of this chip is given in Table 5.1. The

block RAM resources are 18 kb true dual-port1 RAM blocks, programmable from 16k x 1

to 512 x 36, in various depth and width configurations by concatenating the blocks vertically

and/or horizontally as desired.

In addition to the FPGA chip, ML-402 contains several other features andinterfaces. A

short list of these interfaces is given below [22].

• DDR SDRAM : The board includes an external 64 MB of DDR SDRAM using two

Infineon HYB25D256160BT-7 chips. Each chip has 16-bits wide data port and two of

1 Dual-port RAMs contain two ports which operate independently and synchronous with two different clocks.
Two different pieces of information can be written (read) to (from) two distinct addresses of the RAM concurrently.
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Table 5.1: Specifications of a XC4VSX35-FF668-10 FPGA chip

Structure Count Explanations

Slice 15,360
Function generators, storage
elements,multiplexers, etc.

BRAM (kb) 3,456
Variable size RAM blocks
for data storage

Xtreme DSP Slice 192
18-bit x 18-bit signed multiplier
and 48-bit accumulator

them form a 32-bit data bus which is capable of running up to 266 MHz [22]. In the

presence of a microprocessor, these RAMs can be used to store data for stand-alone

operations. Besides, these RAMs can be used as the processor memory which includes

instructions in the presence of a soft microprocessor core.

• ZBT Synchronous SRAM : The board contains a 256K x 36 bits synchronous ZBT

RAM which provides a high speed low-latency external memory to the FPGA. This

module is also available for data storage.

• RS-232 Port with Direct FPGA connection : The ML-402 board contains an DB-9

serial port which allows the FPGA to communicate with other devices. An interface

chip changing the voltage-levels are also included. The RS-232 connection is one of

the most widely used communication methods and is known for its low-weight trans-

mitter/receiver structure. In our setup, RS-232 is used for simulation purposes. In the

run-time, the FPGA communicates with the PC through this port.

• 10/100/1000Tri-Speed Ethernet PHY : The board contains a Marvell Alaska PHY

device operating at 10/100/1000 Mbps. This port makes it available to reach the board

through ethernet connection. However, to accomplish that, a small processor and an

ethernet controller are needed.

• Compact Flash and SystemACE:The board contains a Xilinx System ACE Com-

pactFlash (CF) configuration controller. A maximum of eight configuration images on

a single CF card can be supported by the SystemACE controller. Using the switches on

the board, the configuration file to be loaded on the FPGA can be selected.

• Differential Clock Input And Output With SMA Connectors : High precision clock

signals can be fed to FPGA by 50Ω SMA connectors. This structure allows the FPGA
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to be fed by function generators.

5.2 Software Used For Simulation, Implementation, and Debugging

In this section, some of the software programs used during the studies will bedescribed very

briefly. These programs are used at different phases of the setup procedure. We can group

these phases as simulation, implementation, and debugging.

5.2.1 ISE Design Suit and XST

ISE (Integrated Synthesis Environment) is theintegrated development environment(IDE) de-

signed by Xilinx. This environment provides a GUI (graphical user interface) to the designers.

XST (Xilinx Synthesis Tools) is the software used for synthesis, implementation, and loading

a project on a Xilinx FPGA. During implementation of the system on a Xilinx FPGA, we

have used Xilinx ISE software. The implementation steps of a general Xilinx project is di-

vided into steps, each having certain inputs and outputs. Brief descriptionsof these synthesis,

implementation, and loading steps are as follows [23].

5.2.1.1 Synthesis

The project is firstly synthesized before the implementation process. Synthesis acts an im-

portant role that is analogous to the compilation process in a software design. In this step,

the hardware description language (HDL) is converted into register transfer level (RTL) de-

scriptions. In this description level, the design is represented in terms of logical blocks, like

gates. The operation following that conversion is the optimization process. In this process,

the unused signals are removed and the number of slices is reduced by removing the slices

which do the same job with an existing one. Xilinx XST produces a “.NGC” file in binary

format.
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5.2.1.2 Translation

Translation is the first step of the implementation process. In this step, a nativegeneric

database (NGD) file is generated by combining all of the input netlists and design constraint

information provided by ISE. The generated file contains all the information needed for map-

ping the design on the destination FPGA.

5.2.1.3 Mapping

The mapping process starts to operate after the translation finishes its job andcreates the NGD

file. In this step, a design rule check (DRC) is run over this file and the design is mapped into

the Xilinx FPGA as specific hardware blocks. It is possible to see an errormessage if there

is a mismatch in the specified constraints. This kind of errors mostly occurs when the LVDS

(low voltage differential signaling) drivers are used in the design. The results of the mapping

process are output to a Xilinx native circuit description (NCD) file.

5.2.1.4 Place and Route

After the mapping of the design, the place and route (PAR) step starts work.This operation

places and routes the design in accordance with the previously generatedNCD file. Con-

straints have a great importance in this step since the design is placed on the FPGA to satisfy

the given constraints. This importance can be exemplified as the following. Ifa constraint on

the clock speed is given to be at least 100 MHz, the placement of the blockson the FPGA

slices are done in a way to satisfy this clock speed in the worst case. As the output, a NCD

file which matches all the design specifications is generated.

5.2.1.5 BitGen

BitGen is the programming file generator for Xilinx FPGAs. This program is embedded in

the Xilinx ISE tool. After the implementation of the design finishes, BitGen accepts the

previously generated NCD file and produces a “.BIT” file which is in the desired format for

programming a Xilinx FPGA via a JTAG connection.
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5.2.1.6 Impact

Impact is another program which is embedded in the ISE tool. Other than loading the FPGA,

it has some additional features like [24],

• verify configuration data for single devices,

• create PROM, SVF, STAPL, System ACE CF, and System ACE MPM programming

files.

As the final step, Impact loads the “.BIT” file to the Xilinx FPGA. If all the given steps are

completed successfully, the logic blocks in the FPGA are arranged in the correct form to

perform the desired function described in the HDL.

5.2.2 ModelSim

ModelSim is an advanced simulation and debugging tool designed for ASIC (application-

specific integrated circuit) and FPGA designs. ModelSim has 3 major distributions:

• ModelSim PE (Personal Edition),

• ModelSim SE (Special Edition),

• ModelSim LE (Linux Edition).

For some FPGA vendors, there exist some special distributions of ModelSim.Modelsim

XE is the distribution of ModelSim for Xilinx ISE. It is replaced with the original Xilinx

simulation tool after installation and fully integrates to ISE. This distribution has twodifferent

license choices. One of the licenses is free and can be obtained from the webpage of Xilinx

through a member account. The other license is a full one which simulates the codes 1000

times faster when compared to the free licensed version of ModelSim.

ModelSim simulations can be grouped into two, behavioral simulations and post-route

simulations.

1. Behavioral Simulation : Behavioral simulation simulates the behavior of the code

without considering the gate delays and clock skews. The results of this simulation are
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“perfect” when compared to the real operation of the design. Synthesizing the design

is enough for this simulation to run.

2. Post-Route Simulation : This simulation can be run after the place and route step of

the implementation. That’s why, post-route simulation is highly reliable and generally

simulates the design in the best way. However, this simulation method is slower when

compared with the behavioral one. In this simulation model, logic block structureof

the design on the actual FPGA is simulated. So, latency introduced by the gatesand

skew in the clock can be observed. Although the design is simulated in the bestway

by this process, it becomes harder to debug the code since the simulation runs on the

optimized form of the design.

5.2.3 ChipScope

ChipScope is a real-time debugging tool designed by Xilinx. This tool embeds aspecial

block in the FPGA in order to track the signal changes and report them in through the JTAG

emulator in run-time. The signals to be observed in real-time have to be determinedbefore

synthesizing the project since the ChipScope uses some additional slices and RAM on the

FPGA.

There may be some special cases that the overall design functions in an unwanted man-

ner. Simulations may not be adequate to see these problematic conditions. In that case,

ChipScope may be used to collect the relevant data to resolve the problem. Inour studies, we

have used ChipScope whenever we face with such a situation.

5.2.4 MATLAB

MATLAB is used in different phases of this thesis study. Before implementing the system on

the FPGA board, all the blocks are first generated in MATLAB environment. These blocks

are simulated until the desired results are obtained and the implementation process on the

FPGA board starts after then. The encoder and decoder blocks, and the channel estimation

algorithm, described in Chapters 2 and 3 respectively, are implemented on MATLAB to see

how they behave in the existence of an AWGN (additive white Gaussian noise) and fading

channels. The MATLAB environment presents a fast verification method for the decoding and
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estimation algorithms. To collect data from the board and to change the design parameters

in the run-time, MATLAB is used on the PC side. For these run-time purposes,MATLAB

uses the RS232 port of the computer. The collected data on the PC side is processed to obtain

performance results and related figures again by MATLAB.

5.3 Miscellaneous Components

In this section, we will describe the procedure carried out during the testphase of the proposed

systems and algorithms.

The test setups are shown in Figures 5.4 and 5.5. During the performancetests of PDTC

decoder architecture under AWGN, the setup given in Figure 5.4 is used.In this setup, the

most compelling part is the generation of the AWGN channel on an FPGA. Theperformance

tests of the PDTC decoder in a fading channel with a channel estimator is completed in the

setup in Figure 5.5. In this setup, fading channel is generated on the PC side by MATLAB

and the resulting received signals are directly given to the ML-402 board.

Enable Generator

Transmitter

(Encoder & Pulse Generator) 

Noise Generator

Receiver

(Quantizer & Decoder)
Error Counter

UART

Receiver

UART

Transmitter

JTAG

port

PC

MATLAB Xilinx ISE

Figure 5.4: The test setup used to see the performance of the proposed PDTC decoder struc-
ture in an AWGN channel.
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Quantizer Estimator
Quantizer & 

Decoder

UART

Receiver

UART

Transmitter

PC

MATLAB

Error Counter

Figure 5.5: The test setup used to see the performance of the proposed joint estimation and
decoding algorithm in a fading channel.

5.3.1 Enable Generator

The “Enable Generator” module produces an enable signal periodically.This period is ad-

justed not to interrupt the decoder operations. The generated enable signal triggers the en-

coder block and transmission of a packet starts after that point.

5.3.2 Encoder and Pulse Generator

“Encoder and Pulse Generator” module is triggered by an enable signal produced by the

“Enable Generator”. After this enable signal is received, the module startsto produce the

encoded version of a known sequence. When the sequence is ready tobe transmitted, the

BPSK modulation is applied to this sequence with an amplitude value of “A−s” (to denote

the signal amplitude). This value is given to the system by the UART module to achieve

some test parameters by varying the SNR value. Giving an amplitude ofAs results in a BPSK

modulated signal with the energy ofEs = A2
s.
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5.3.3 Noise Generation

To obtain the performance of the proposed decoder architecture in an AWGN channel, the

most important point is to realize such a channel on the FPGA. In our study,a random data

generation algorithm is needed in order to generate a realistic environment. However, a true

random number generation is impossible since the state of the data generator affects the future

data and future states of this generator block, and this effect disrupts the randomness of the

generated data. There are many different methods for generating random data and they vary

as to how unpredictable the generated data pattern is or how statistically random the data is.

In most of the generators, an initial state is assumed to begin from. This initial state is called

the “seed”, and the numbers are generated by the usage of thisseed. Although this method

creates long runs of data with good random properties, after some point the sequence repeats

itself. That’s why, the generators using this kind of number generation methods are called

“pseudo-random number generators”.

One of the most popular pseudo-random number generating algorithms is the“linear

feedback shift register” (LFSR) method. The word “linear” comes fromthe binary linear

operations (XOR) used in the method. This generator updates the register bit contents by

shifting the register in a way and a feedback mechanism operates to update the discharged

content. An LFSR with a register width of 16 bits is shown in Figure 5.6.

1 1411 1613

1 (input) output
1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 0

Figure 5.6: An LFSR of width 16 bits with a seed of “1010110010111100”.

The arrangement of taps for feedback in an LFSR can be expressed as a polynomial with

coefficients “0” and “1”. This polynomial is called thefeedback polynomialor characteristic

polynomial. If a content is not used in the feedback path, then the corresponding coefficient in

the polynomial is 0. The feedback polynomial of the LFSR given in Figure 5.6can be written
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as,

x16+ x14+ x13+ x11+ 1 (5.1)

where the constant term “1” in the polynomial corresponds to the input to thefirst bit (x0 = 1).

In a feedback polynomial, the first bit is always connected as input and the last bit is always

included as a tap. The algorithms running based on a seed repeats itself after a while, and so

does LFSR since the register used has a fixed width. The maximum number of obtainable dif-

ferent numbers from an LFSR with shift register of widthn can be told to be 2n−1. An LFSR

providing this maximum number of different outputs is called as amaximum-lengthLFSR.

This maximum number of different obtainable output values is called theperiod. In other

words, the LFSR of widthn is called amaximum-lengthLFSR if its period is equal to 2n − 1.

To obtain amaximum-lengthLFSR, some restrictions exist on the feedback polynomials, such

as

• Number of taps must be even.

• The set of taps must be relatively prime.

• There can be more than one maximum-length tap sequence for a given LFSR width.

• For ann-bit LFSR, if the tap sequence [n,a,b, c,0] is a maximum-length tap sequence

then the sequence [n,n− c,n− b,n− a,0] constructs a maximum-length LFSR, too.

Some feedback polynomials for different register widths are listed in Table 5.2 with the

corresponding repetition periods. All these polynomials generate maximum-length LFSRs,

but they are not the only ones for the given widths.

Table 5.2: Some LFSR feedback polynomials with varying width of shift registers.

Bits (n) Feedback polynomial Period (2n − 1)

10 x10+ x7 + 1 1024
11 x11+ x9 + 1 2047
12 x12+ x11+ x10+ x4 + 1 4095
13 x13+ x12+ x11+ x8 + 1 8191
14 x14+ x13+ x12+ x2 + 1 16383
15 x15+ x14+ 1 32767
16 x16+ x14+ x13+ x11+ 1 65535
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Operation steps of an LFSR with a 16-bit register are shown in Figures 5.7,5.8, and

5.9. The feedback polynomial given in (5.1) is used in this design. The tap locations are

shaded in these figures andXORoperations are depicted with⊕. The seed of the LFSR is

given as “1101001000010001”. This seed can be chosen for any bit sequence with length

of 16 without any restrictions. The shifting operation and linear operationsare triggered by

an external clock source. After the bit contents in the tap locations areXORed (input “1” is

included), LFSR waits for an external clock for the shift operation. When the external clock

triggers the LFSR, the contents are shifted once to the MSB side2 and the result ofXOR

operations is written to the first bit location. The content in the 16th bit locations comes out

of the register and this content is given to the output.

1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 1+

+++

output0

Figure 5.7: An LFSR of width 16 bits in the initial state with a seed of “1101001000010001”.

1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1+

+++

output

0 0 0

1111

1

0

Figure 5.8: After completing theXORoperations, LFSR waits for an external trigger to update
the register contents.

The VHDL code that performs an LFSR with a feedback polynomial as given in (5.1) is
as follows.

...

2 The MSB side for the given figures are on the right-hand side, since the 16th bit is in the rightmost location.
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1 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0
1

+

+++

output0

Figure 5.9: When the trigger occurs the contents are shifted to the right, left-most content is
updated with the result ofXORoperations, and the right-most content is given to output.

signal reg_content : std_logic_vector(15 downto 0);

constant signal seed : std_logic_vector(15 downto 0) := "1101001000010001";

...

process(clk)

begin

if rising_edge(clk) then

if rst = ’1’ then

reg_content <= seed;

else

reg_content <= (reg_content(5) xor reg_content(3) xor reg_content(2) xor

reg_content(0) xor ’1’) & reg_content(14 downto 0);

end if;

end if;

end process;

In probability theory, the “central limit theorem” (CLT) states that the sum of asuffi-

ciently large number of independent random variables, each with finite meanand variance,

will be approximately normally (Gaussian) distributed [15]. If we implement sufficiently

many LFSRs and sum up the output values of them, this variable is expected to have distribu-

tion very close to Gaussian (normal) distribution.

In our design, 40 LFSRs, all having 16-bit width and different seeds, are implemented

on the FPGA. The seeds are generated by MATLAB and written to a file. When the synthesis

operation starts, the tool reads the data from that file and initializes all of the LFSRs with the

desired seeds. A clock, which is 4 times faster than the overall system clock, is used to trigger

this LFSR block. The VHDL code is as follows.

...

constant reg_no : integer := 40;
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...

process(clkX4)

begin

if rising_edge(clkX4) then

if rst = ’1’ then

for ii in 1 to reg_no loop

reg_content(ii) <= seed_file(ii*16 downto (ii-1)*16+1);

end loop;

else

for jj in 1 to reg_no loop

reg_content(jj) <= (reg_content(jj)(5) xor reg_content(jj)(3)

xor reg_content(jj)(2) xor reg_content(jj)(0)

xor ’1’) & reg_content(jj)(14 downto 0);

end loop;

end if;

end if;

end process;

...

In one cycle of “clk”, “clkX4” completes 4 cycles and 4 random numbers are gener-

ated. By summing up these 4 numbers, we generate apseudo-random noisewhich is updated

synchronously with the system clock. The main idea behind using a faster clock for LFSR

operations is not to consume more resources for implementing an LFSR block with 160 reg-

isters. After the reset operation, the registers are updated from a seedfile, which contains 40

random seeds generated by MATLAB.

As the generated numbers are sum of 40 bits in each fast clock cycle, theirvalues vary

between 0 and 40. Letx be the random variable generated by summing up these 40 bits. The

mean ofx is found as,

E{x} = E


∑

reg−no

b0

 (5.2)

whereb0 is the right-most bit of LFSRs and the value of this bit is either 1 or 0. Since the

LFSRs have independent seeds, they generate independent randomnumbers. So,

E{x} =
∑

reg−no

E{b0}, (5.3)

E{x} =
∑

reg−no

1
2

(5.4)

E{x} = reg−no
2
. (5.5)

As we use 40 registers, at the output we get a random variable with mean,µ = 20, and
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the distribution of this random variable is approximately Gaussian. To realize the effect of an

AWGN channel, the mean is normalized to 0 by subtracting 20 from the number generated at

each tick of “clkX4”. It must be noted that subtracting a constant does not affect the variance

of the random variable. When we sum up these 4 generated random numbers during one

clock period, the resultant random variable has a mean equal to 0. However, the variance of

this random variable will be affected from this summation operation. Figure 5.10 shows the

distribution of the proposed noise generator at each “clk” instant. This figure shows how the

histogram of the noise generator comes out and approximates the Gaussiandistribution given

in Figure 5.11.
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Figure 5.10: The histogram of the generated numbers by the proposed pseudo-random number
generation method over 10000 samples.
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Figure 5.11: The histogram of a noise sequence generated by MATLAB’s randn() function.
The output vector ofrandn()function is multiplied by

√
40 to match the variances.

When we simulate this LFSR implementation on MATLAB, the variance of the gener-

ated noise turns out to be 40. That value is the noise power of the AWGN channel created on
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the FPGA board and is used while producing the test results.

5.3.4 Fading Channel Generation

To obtain the performance results of the proposed joint channel estimation and decoding

structure in a fading channel model, we need to realize such a fading channel or simulate

its effects. At first, we had decided to implement a fading channel on FPGA by using the

autoregressive (AR) model with an order of one [25]. However, this was a perfect match for

the applied LMS algorithm. Due to this matching, the estimator is anticipated to operate with

a better performance when compared to the real world fading case. That’s why, instead of

realizing a fading channel effect on the FPGA board, we simulate a Rayleigh fading model

on MATLAB. The modulated signals are passed through a fading channel,noise is added on

them, and then the resultant data is given to the board as the received sequence.

In MATLAB, to generate a Rayleigh fading channel object, the functionrayleighchan()

is used. This function takes two values as input, one is the sample time in terms of seconds

(Ts), and the other one is the maximum Doppler frequency in Hz (fD). The generated object

is a “single-path” Rayleigh fading channel with the given features. Figure 5.12 shows the path

gains of a channel generated by therayleighchan()function.

The generated Rayleigh fading channel object is used to realize the channel effect on a

transmitted signal. To realize the effect of channel on a transmitted signal,filter() function is

used. After the fading effect, AWGN is added to the resultant sequence with proper variance

to match the desired SNR value. This sequence is quantized before giving tothe FPGA. This

quantization process is carried out with optimum quantization decision points. To find the

optimum decision points the training sequences with 1000-packet length is used for each SNR.

The location of these optimum points vary with the SNR value. After obtaining the optimum

quantization decision points for each SNR, the received packet is quantized according to this

optimum values. After all these operations, the sequence is given to the FPGA platform

through UART module for testing estimation and decoding.
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Figure 5.12: The in-phase and quadrature components of a Rayleigh fading channel with the
normalized fading ratefDTs = 0.01, over a sequence of length 100.

5.3.5 Error Counter Module

Theerror counter modulecounts the number of errors occurred in the packet and the number

of packets which is not decoded correctly. The data to be coded in the encoder side is also

known by this module in both of the test setups. The operation of this module canbe described

as follows. Whenever the decoder block starts to produce the bit estimates,this module starts

to check whether the estimate is correct or not and keeps the number of wrong estimates until

the number of packets reach a predetermined value. Besides, it also counts how many packets

are decoded incorrectly3. These number of wrong estimated bits and packets are fed to the

UART transmitter module for reporting to the PC.

5.3.6 Communication with PC

Communication between the testbed and PC is accomplished by UART (Universal Asyn-

chronous Receiver Transmitter). In our design, a full duplex UART module is implemented

and used in conjunction with RS-232. Simply, a UART transmitter takes a paralleldata and

3 Even if only 1 bit is estimated wrong, the whole packet is decoded incorrectly.
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transmits it bit by bit in a sequential configuration. In the receiver side, if anew coming data is

detected, it receives data bit by bit in serial and translates the receivedsequence into a parallel

form. The conversions between serial to parallel and parallel to serial are accomplished by

the use of shift registers.

This protocol is called “asynchronous” because the transmitter does notsend any clock

signal to the receiver side. The transmission process may start whenever the transmitter sends

a start bit. After the transmission of the start bit, the data is transmitted beginning from the

least significant bit to the most significant bit. Optionally, a parity bit can also be added to the

end of the data for error check. A stop bit finishes the transmission of a word4. Figure 5.13

represents the alignment of these bits.

Start

Bit
0 1 2 3 4 5  6 7 Stop Bit

Data bits

Figure 5.13: The bit alignment of a word used in UART transmission.

The communication between the testbed and PC is handled by a protocol. In this proto-

col, the register names (or addresses) are represented in UART words. This protocol works

basically as follows. The transmitter sends the word representing the register name to be up-

dated in the transmission of the first word. After that, the content of this register is put in the

transmission channel. On the receiver side, the update operation is completed according to

the register name and content.

In the implementation of UART transmitter on the FPGA, a memory is used to store

the data and queue them before the transmission starts. After collection of sufficient data

for performance evaluation, a command signal is sent to the transmitter to inform that the

memory is ready. After that command, the transmitter module starts to read the memory

contents one by one and puts these contents on a shift register employed for parallel to serial

conversion. After the word is placed on this shift register, the bits are transmitted serially at

an agreed baud rate through the transmit pin of RS-232 port placed on theML-402 platform.

The transmission protocol is given in Table 5.3.

4 The bit sequence sent in each transmission is called a “word”.
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Table 5.3: The registers and their meanings used in the implementation of the UARTtrans-
mitter module.

Register Address
Register Name Description

(Decimal)

160

Bit−error−counter

Total number of bits estimated incorrectly.
161 This register has a width of 32 bits, and
162 transmitted in 4 episodes.
163
164

Packet−error−counter

Total number of packets estimated incorrectly
165 in at least 1 bit. This register has a width
166 of 24 bits.

In the UART receiver module, a small block is employed to check the signal level at

the receiver pin of the RS-232 port. After astart bit is detected, the module starts to receive

the sequential signals. During the reception process, a shift register is used to carry out the

serial to parallel conversion. After a word reception is complete, the same small block starts

to check for astop bit. The reception protocol is given in Table 5.4.

Table 5.4: The registers and their meanings used in the implementation of the UARTreceiver
module.

Register Address
Register Name Description

(Decimal)

170 A−s
The amplitude of the BPSK signals.
Used to vary SNR values.

171
Iteration−no Number of iterations that the decoders will

run for.
172

Paket−no
The number of packets that the simulation go

173 for. This register has a width of 24 bits.
174

175 NormMax
NormMaxvalue to configure the
observation quantizer.

175

Rx−I

The in-phase part of the received signal for the
176 fading channel tests. This register has a width
177 of 32 bits.
178
179

Rx−Q

The quadrature-phase part of the received signal
180 for the fading channel tests. This register has a
181 width of 32 bits.
182
183 Beta Theβ value used in the LMS algorithm.
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To catch up synchronization in the UART module, we used counters to indicatethe data

transmission/reception instants. At each system clock, the counters count up. This counting

operation continues till the desired baud rate is reached by the counter. Ifthe counter reaches

the number of system ticks to be generated in one baud rate period, this meansthat the UART

transmitter (receiver) can transmit (receive) the next bit of the word. Asample code for the

counter blocks of these modules are given below. At each system clock,the counters count

up. This counting operation continues till the desired baud rate is reached by the counter. If

the counter reaches the number of system ticks to be generated in one baudrate period, this

means that the UART transmitter (receiver) can transmit (receive) the next bit of the word. A

sample code for the counter blocks of these modules is given below.

...

constant baud_rate : integer := 115_200;

...

generic(

clk_freq : integer := 36_000_000

...

);

...

signal counter_limit : integer := clk_freq/baud_rate;

signal counter : integer range 0 to counter_limit;

...

The signal “counter” is the register used to hold the number of clock ticks counted up

to that time. The signal “counter−limit” represents the number of system ticks to be counted

during one period of the given “baud−rate”. If “counter” reaches that “counter−limit” value,

this means that a new bit can be transmitted/received in the UART module.
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CHAPTER 6

NUMERICAL RESULTS

In Chapter 4, the implementation procedure of the two proposed structures isdescribed in

detail. In this chapter, the effects of the implementation choices will be shown and the perfor-

mances of the joint channel estimation and parallelized decoder structure willbe discussed.

During the tests, the convolutional encoder shown in Figure 2.1 is used as the constituent

encoder in the PDTC encoder. On the decoder side, the constituent max-log-MAP decoders

have been used with the state diagram given in Figure 2.3. For the joint channel estimation

and decoder tests, in the first iteration of the channel estimator zero forcing is applied and in

the second iteration2-way LMSalgorithm is applied.

6.1 PDTC Decoder Performance Results

The choice for the numberNormMax(explained in Section 4.1.2) is an important issue for the

decoder to work in an optimum way in the fixed-point domain. Choosing a highNormMax

value results in saturation in metric calculations while choosing a small value causes a loss

in representing observation values. This effect on the performance of the PDTC decoder

has been shown in Figure 6.1. The figure is obtained by observing 6000 packets with each

containing 160 information bits forEb/N0 = 2.6423 dB in an AWGN channel. The optimum

NormMaxvalues for eachK value can be obtained from this figure. It can be seen in the

figure that as theK value increases, so does the number of available optimumNormMax

values.

Another parameter that affects the performance of the decoder is the selection of theK

value. Choosing a largeK results in a better performance while at the same time causes the
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Figure 6.1: The effect of theNormMaxvalue on the BER performance of the PDTC max-
log-MAP decoder.

decoder to consume more resources on the FPGA and to work on lower clock speeds. There-

fore, there is a trade off between the performance, resource consumption, and the speed. The

resulting performances are given in Figure 6.2. It must be noted that these comparisons are

made by using the best resultingNormMaxvalues for eachK value after 2000 runs on a 512-

bit packet with a fixed iteration number of 4 for differentK values. The implementation results

are given in Table 6.1 to compare the resource consumption and the maximum available clock

speed features for different metric size (K) values. These performance and synthesis results

are obtained for the turbo decoder with 4 constituent decoders in each cluster. An important

point is that, the resource consumption is approximately linearly proportionalto the number

N and increasing theN value does not affect the performance of the PDTC decoder [8]. In

the determination of the maximum data rate (see Section 6.2) of the system this property will

be used.

Table 6.1: Synthesis results of the PDTC decoder with max-log-MAP decoding algorithm

metric size (bits) Slices used Slice usage (%) Max. clock speed (MHz)

4 5709 37 50.053
5 5894 38 48.123
6 6665 43 46.786
7 7566 49 42.865

Figure 6.2 shows that asK increases, the performance approaches the floating-point case.

That’s why, the selection of theK value in a design must be done carefully to match the BER
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Figure 6.2: Performance of PDTC decoder with max-log-MAP decoding algorithm.

requirement. As it is obvious in the figure, the performance increase is slowed down after

K = 6. On the other hand, it is shown in Table 6.1 that resource consumption increases as

K increases while the maximum available clock speed decreases. So, the choice of K as 6

seems to be a good compromise for this decoder structure when we take all considerations into

account. It must be noted that this choice brings a performance worse than the floating-point

decoder by 0.5 dB.

The other parameter that affects the performance of the decoding process is the iteration

numberI . It can be anticipated that the error correction performance will enhance as the

decoder runs for more iterations. In [13], some studies have been doneto figure out the effect

of the iteration number on the performance. For our architecture, this effect is given in Figure

6.3.
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Figure 6.3: Effect of the iteration number on the BER and PER performances at SNR=1.3 dB.
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For a better illustration of the effect, the number of errors after each iteration is given

in Table 6.2. The data on Table 6.2 is generated on a 512-bit packet with databit SNR,

Eb/N0 = 1.3 dB. The same packet is sent several times over the AWGN channel with the

appropriate noise power and the data is collected after simulating a reasonable number of

packets.

Table 6.2: Iteration steps and the corresponding number of errors for the PDTC decoder at
SNR= 1.3 dB.

Packets
Iteration Step Packet-1 Packet-2 Packet-3 Packet-4 Packet-5

1 23 24 17 26 19
2 13 17 15 16 19
3 8 14 6 14 18
4 8 5 0 10 16
5 4 0 0 3 12
6 3 0 0 2 9
7 0 0 0 0 5
8 0 0 0 0 3
9 0 0 0 0 2
10 0 0 0 0 0

However, a large iteration number may pose a trouble when we work on higher SNR

values. When the same packet decoding process described above is simulated with data bit

SNR,Eb/N0 = 2.65 dB, we can see that the number of errors decreases up to some number

of iterations, and then begins to increase. Some simulation results are given inTable 6.3. The

reason of that situation is the saturation (overflow or underflow) of theLL values after some

point. To prevent this problem, different early stop algorithms exist in the literature and some

are listed in [26] and [27].

In the early stop algorithms, the iteration number varies according to the instantaneous

channel condition. This ambiguity in the iteration number makes it impossible to determine

an exact decoding latency and so the maximum data rate offered by the proposed system. Not

to deal with that uncertainty, we need to use a constant iteration number in oursystem. As

it can be seen in Figure 6.3, as the iteration number increases, the BER performance of the

decoder improves. However, largerI means a larger decoding latency and a lower data rate.

After considering all these effects, we decide on a value ofI = 4.
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Table 6.3: Iteration steps and the corresponding number of errors for the PDTC decoder at
SNR= 2.65 dB.

Packets
Iteration Step Packet-1 Packet-2 Packet-3 Packet-4

1 18 13 16 10
2 7 5 9 3
3 5 3 6 0
4 0 0 0 0
5 4 14 0 0
6 5 16 0 0
7 5 19 1 4
8 20 20 5 5
9 28 23 9 7
10 30 26 11 12

6.2 Decoding Latency Calculation

Large decoding latencies in turbo codes are told to be the drawback of theirdecoder structures.

By making them operate in parallel, a decrease in their decoding latencies is expected. To

observe that decrease, decoding latency is better to write in a formula. Thedecoding latency,

τ, for our parallel decodable turbo code decoder structure is,

τ =
D
N

x 2I (6.1)

whereD is the number of information (data) bits in the packet,N is the number of parallel

decoders in a cluster, andI is the iteration number. TheDN term is the decoding latency of a

single BCJR decoder operating with the CTT algorithm. The reason of multiplying by 2I is

that in each iteration the BCJR decoders run twice, one for the uninterleaved form of data and

one for the interleaved.

During the decoding latency calculations, we assume that aping-pongbuffer structure

is used in the receiver side. Each of theping andpongstructures contains 3 memory blocks

in which d, p1 and p2 observations are stored1. As each structure consists of 3 memory

blocks, we name themping memory poolandpong memory pool. To decrease the latency

and increase the data rate, these memory pools are used as follows. While thefirst packet is

being received, the observations are stored in theping memory poolin the quantized form as

1 Each of these memory structures containsN distinct memories to be used by each BCJR decoder in the
cluster.
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described in Section 4.1.6 ford, p1 andp2 observations. After the memory blocks are filled

and ready to be read, PDTC decoder begins to run. Storing and decoding operations of the

first packet (packet1) are shown in Figures 6.4 and 6.5, respectively.

memory pool

Observation

Quantization

memory pool

PDTC

Decoder

FM

Demodulator

Figure 6.4: Reception ofpacket1 and filling the memory blocks of theping memory pool.

memory pool
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Quantization

memory pool

PDTC

Decoder

FM

Demodulator
LLpacket1

Figure 6.5: Decoding of thepacket1.

If the second packet (packet2) arrives during the decoding ofpacket1, thed, p1 andp2

observations are stored in thepong memory pool. In this case, the decoding process is not

affected by the reception of the new packet as shown in Figure 6.6.

When the decoder finishes its job, it starts operating from thepong memory pooland

this time theping memory poolbecomes available for another packet storage. This structure

doubles the memory usage in the system for storing observations but improves the data rate

in a significant amount.
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Figure 6.6: Reception ofpacket2 and filling thepong memory poolwhile decoding ofpacket1
still continues.
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Figure 6.7: Decoding of thepacket2.

At this point, we can find the maximum available data rate of our system. If we denote

the data rate byυ, we can formulate it as,

υ =
D x f
τ
=

D x f
D
N x 2I

(6.2)

=
f x N

2I
(6.3)

where f is the maximum available frequency andτ is the decoding latency. To find the exact

data rate, we need to decide on the metric representation width (K), iteration number (I ), the

number of constituent decoders in a cluster (N). In (6.3) it is obvious that the data rate of the

system is proportional toN, and inversely proportional toI . Besides, it must be noted that

the data rate is independent ofD. This means that the data rate will stay constant if we use

longer packets to communicate while the overall BER performance will improve as we use

larger interleaver tables. In data rate calculation, thef value can be obtained by checking the
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Table 6.1 for the selectedK value. Similarly,τ value can be obtained from (6.1). During the

studies we had already decided onN as 4,I as 4, andK as 6, and used a coding scheme with

rate-1/3 (1,5/7) convolutional coding given in Figure 2.1. Using the Table 6.1 and Figure6.2

with the design choices listed above, we can find the available data rate as

υ =
46 x 106 x 4

2 x 4
= 23 x 106 bps

≈ 21.93 Mbps. (6.4)

To find a maximum data rate available for the system without any degradation in the

performance, we can increase the number of parallel decoders in eachcluster,N, to use all of

the available resources on the FPGA. Since the resource consumption is proportional to the

number of parallel decoders, we can increase this number upto 9 after evaluating the synthesis

results given in Table 6.1. Such an implementation on the FPGA allows us the maximum

available data rate as

υmax =
46 x 106 x 9

2 x 4
= 51.75 x 106 bps

≈ 49.35 Mbps. (6.5)

This PDTC decoder structure is implemented by using a different architecture in [28]. In

that study, pipelining is applied to increase the operating clock frequency ofthe FPGA. The

synthesis results of that architecture, taken from [28], are given in Table 6.4.

Table 6.4: Synthesis results of the PDTC decoder with max-log-MAP decoding algorithm and
pipelining.

metric size (bits) Slices used Slice usage (%) Max. clock speed (MHz)

4 6347 42 87.253
5 6501 42 86.963
6 6994 45 86.949
7 7537 49 85.704

When the synthesis results given in Table 6.4 are considered, it can be seen that the

operating frequency of the decoder can be enhanced significantly with pipelining. On the

other hand, there is a slight increase in the resource consumption but it is negligable.
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6.3 Joint Channel Estimator and Decoder Performance Results

In Figure 6.2, the performances of the PDTC decoder is compared, but the channel is assumed

to be AWGN. However, if the channel has a fading effect, the performance results probably

change. To find an appropriateK value for the decoder, first we need to compare the perfor-

mances in the case of a Rayleigh fading channel. For that reason, the effect of NormMax

value is compared for differentK values to obtain the best resultingNormMaxvalues over a

fading channel. The resulting performances for differentNormMaxvalues are given in Fig-

ure 6.8 after running on 200,000 packets. During the tests, CSI knowledge is assumed to be

known at the receiver side and PDTC decoder parameters are set asN = 4, I = 4.
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Figure 6.8: The effect of theNormMaxvalue on the performance of the PDTC decoder over
a Rayleigh fading channel with the normalized fading ratefDTs = 0.01 atEb/N0 = 8 dB with
the assumption of perfectly known CSI at the receiver side.

After obtaining the best resultingNormMax for eachK value, the effect of K value

on the PER performances can be tested. The performances given in Figure 6.8 are acquired

for SNR= 8 dB. These results probably change for different SNR values and different best

resultingNormMaxvalues can be obtained. However, it is not easy to optimize all these

parameters at the same time to get the best performances. For that reason,the sameNormMax

values are used in the tests for all SNR values. The performances of the PDTC decoder for

differentK values are given in Figures 6.9 and 6.10. These figures are obtained over 200,000

packets of length 512 bits for two different Rayleigh fading channels by running the PDTC

decoder withN = 4 andI = 4. During these tests, known channel state information (CSI) is

assumed at the receiver side.
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Figure 6.9: Performance of the PDTC decoder over a Rayleigh fading channel with the nor-
malized fading ratefDTs = 0.001 with the assumption of perfectly known CSI at the receiver
side.
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Figure 6.10: Performance of the PDTC decoder over a Rayleigh fading channel with the nor-
malized fading ratefDTs = 0.01 with the assumption of perfectly known CSI at the receiver
side.

Table 6.5: Synthesis result of the PDTC decoder for differentK values with max-log-MAP
decoding algorithm

K (bits) Slices used Slice usage (%) Max. clock speed (MHz)

5 5894 38 48.123
6 6665 43 46.786
7 7566 49 42.865
8 8621 56 40.461
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Since the representation bit numbers of the interest changed a bit, the synthesis results

are given as a whole in Table 6.5. From the given performance figures (Figures 6.9 and 6.10),

the choice of 7 bits for metric representation in the PDTC decoder seems to be areasonable

choice, different than the AWGN case, when the resource consumption and the clock speed

factors given in Table 6.5 are taken into account. In the following tests, this value will be

used in the decoder side with the assumption that theK value does not effect the performance

of the channel estimation. It must be noted that this choice brings a performance worse

than the floating-point decoder by 0.75 dB. In Figures 6.9 and 6.10, it can be seen that the

performance differences get larger for increasing SNR. The main reason may be told to be the

effect ofNormMax. This performance difference can be decreased by using the best resulting

NormMaxvalues at each SNR as given in Figure 6.11.
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Figure 6.11: Performance of the PDTC decoder over a Rayleigh fading channel with the
normalized fading ratefDTs = 0.01 by using the best resultingNormMaxvalues at each
SNR.

After deciding on theK value for the decoder, the next task is the determination of the

design parameters for the channel estimator, which are described in Section 4.2.2. The pilot

symbol spacing,M, is determined by examining the performance results of the system for

two differentM values over a Rayleigh fading channel with the normalized fading rate of

fDTs = 0.01 given in [6]. As seen in this comparison, choosing a smallM value gives a better

performance output. However, the redundancy is increased in the packet by adding more pilot

symbols and the overall data rate is degraded. To get a reasonable PER performance together

with a high enough data rate,M = 17 is chosen after a careful trade off. Hereafter, we make

tests on our system considering the normalized fading rate of 0.01.
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Theβ value is an important factor that affects the success of the estimation. However,

the most appropriateβ value is not the same for all SNR values. Therefore, we need the best

resultingβ values for each SNR value in the region of our interest. In Figure 6.12, theeffect

of β value for some SNR values is given. To obtain these results, the estimator is run for three

iterations andL = 20, M = 17 values are used constant not to lose the generality.
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Figure 6.12: Effect of theβ value on the estimation and decoding performance over a Rayleigh
fading channel with the normalized fading ratefDTs = 0.01.

As the final design parameter, theL value is needed to be determined. To obtain a

reasonableL value, the performance of the overall system for differentL values is tested. In

this test, the best resultingβ values are used for each SNR value. The result of this test is

given in Figure 6.13. Since the decoder operates on 6-bit metric values, using a very highL

value is meaningless and just increases the consumption of the resources on the FPGA. The

synthesis results for the testedL values are listed in Table 6.6.

From the given synthesis results,L = 15 seems to be a reasonable choice since the

memory usage is nearly doubled after that point. The reason of the increase in the number of

used block RAMs afterL = 15 is that the block RAMs on the FPGA have maximum width

of 16 bits. When a wider RAM is needed in the design, two block RAMs are concatenated
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Figure 6.13: Performance of the joint estimation and decoding structure over a Rayleigh
fading channel with the normalized fading ratefDTs = 0.01 for differentL values.

Table 6.6: Synthesis results of the estimator with differentL values.

L (bits) Slices used Slice usage (%) Block RAMs used Max. clock speed (MHz)

10 302 1 7 99.668
15 392 2 7 96.313
20 647 4 13 82.218
25 857 5 13 75.753

to generate the required width. When the performances are considered together with the

synthesis results, the choice ofL = 15 seems a reasonable one. There is a performance

difference of 2 dB when theL = 15 case is compared with the perfect known CSI case. The 2-

way LMS algorithm and getting into a fixed-point domain cause that performance difference.

It must be noted that, the selection ofL = 15 does not affect the operating frequency of the

overall system because it allows higher clock speeds when compared to the PDTC decoder.

The joint structure has the maximum clock speed of 42 MHz.

6.4 Joint Channel Estimation and Decoding Latency Calculation

After completing the overall system setup, we can find the overall latency introduced by the

joint estimator and decoder structure. The latency introduced by the PDTC decoder was

formulated before as in 6.1. In this section we will deal with the overall systemlatency.

If D data bits are encoded and transmitted after pilot symbol insertion, we get a packet
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length ofP = D/R+32 whereR is the coding rate. However, as we use the (1,5/7) code given

in Section 2.2, the code rate is already determined as 1/3. If it is assumed that the received

sequence is ready on a RAM in the receiver side when the channel estimator starts its first

iteration, the packet reception duration can be omitted in the latency calculation.This opera-

tion can be realized by using the ping-pong buffer structure as mentioned earlier. If a packet

arrives while the operations are in progress on another packet, the unused (ping or pong)

memories can be used to store the new arriving packet. After employing sucha structure, we

can assume that the received sequence is ready in a memory for the first estimation.

In the first estimation step, the estimator does not make any complex operations,but

gives the received values and channel coefficient estimates to theLL computing component.

However, in every clock cycle at most two readings can be achieved from the memories which

store the received sequence and channel estimates even if we use dualport RAM modules.

The calculation ofLL values can be achieved at the same clock cycle in which the inputs of the

module are ready. Therefore,LL computation does not introduce any latency, but outputting

the estimates and the received values takeD/2R clock cycles. It must be noted that, the pilot

values are discarded for this first iteration of the channel estimator. AftertheLL computation,

these values are given to theobservation quantizermodule of the PDTC decoder. Since the

estimation process in the next iteration waits for the decoder outputs to compute thenew

LL values, there is no need to implement a ping-pong structure before the PDTCdecoder.

However, to decrease the latency introduced by the turbo decoder, the filling operation of the

d, p1, andp2 memory structures can be completed during the quantization process according

to the parallelization in the decoder. Each of these memory structures containN memory

blocks with a length (depth) ofD/N whereN is the number of constituent decoders in a

cluster. If we use dual port RAMs in these structures, the storing and thedeinterleaving

process jointly takesD/2N clock cycles.

In the next estimation iterations, the CTT algorithm is applied to reduce the latency. By

employing a CTT structure in the 2-way LMS algorithm, two channel estimates arecomputed

beginning from the center of the packet and that takesP clock cycles to estimate the channel

for the whole packet duration. Although estimation process at the pilot locations can be

avoided in the first iteration, in the next iterations the estimates at the pilot locations have to

be calculated due to the recursive computations in the LMS algorithm. By using the generated

estimates, theLL values are calculated instantly, again beginning from the center of the packet.
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During theLL calculation process, the estimates and observations at the pilot locations are

discarded. The resultingLL value are written to theD/N memory blocks inD/2N clock

cycles. Then, the PDTC decoder starts to operate.

After these reckonings, we can write the joint estimation and decoding latencyin a for-

mula as

τ =

( D
2R
+

D
2N

)
+

(
P+

D
2N

)
(Ie− 1)+

(D
N

2Id

)
Ie (6.6)

where Ie is the iteration number of the channel estimator andId is the iteration number of

the PDTC decoder. The termD2R +
D
2N gives the latency of the first iteration of the channel

estimation,P+ D
2N gives the latency of the second and later iterations of the channel estimation,

and D
N2Id gives the decoding latency of the PDTC decoder running forId iterations.

After having the latency formula, we can calculate the available data rate allowed by the

proposed system by using the equation

υ =
D x f
τ
. (6.7)

The values ofτ and f depends on the design parameters used in the system setup. To

calculate the latencyτ, we need to decide on the values ofD, R, N, Ie, andId. On the other

hand, to determine the value off , operating frequency, we need to decide on the values ofK

andL. To obtain the maximum data rate, we can increase the parallelization number in the

decoder as much as the FPGA allows in terms of resource consumption. The PDTC decoder

consumes 49% of the resources forN = 4 andK = 7, and the channel estimator consumes 2%

for L = 15. This means that the number of parallel decoders in each cluster can beincreased

up to 8 for data rate maximization. With the design parameters ofD = 160,R= 1/3, N = 8,

Ie = 3, andId = 4, we get a minimum latency introduced by the proposed joint estimator and

decoder as

τ =

(
160
2/3
+

160
16

)
+

(
160 x 3+ 32+

160
16

)
2+

(
160
8

8

)
3

= 1774 clock cycles. (6.8)

To find the maximum available data rate, the operating frequency can be obtained from

Tables 6.1 and 6.6 for the chosenK = 8 andL = 15 values. From the found operating fre-

quencies it can be seen that the limitation on the clock speed comes from the PDTC decoder.

Therefore, f = 42 MHz is obtained as the clock speed for the whole system by checking
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the Table 6.1 forK = 8. After deciding on all of the design parameters of the system, the

maximum data rate comes out as

υ =
160 x 42 x 106

1774

= 3.79 x 106 bps

≈ 3.61 Mbps. (6.9)

The parallelization idea can also be implemented on the channel estimating process. If

we divide the overall estimation process into 4 parallel parts, the length of thememories stor-

ing the received sequence and the estimates getP/4 and the number of these memories arise

to 4 fold of the old one. After this parallelization, it can be anticipated that the performance

degrades in a non-significant amount. However, the total latency becomes

τ′ =

(
D/Ne

2R
+

D
2N

)
+

(
P
Ne
+

D
2N

)
(Ie− 1)+

(D
N

2Id

)
Ie (6.10)

whereNe is the number of parallel processing estimators. With the same design parameters

mentioned before andNe = 4, we get the overall latency and data rate as

τ′ =

(
160/4
2/3

+
160
16

)
+

(
160 x 3+ 32

4
+

160
16

)
2+

(
160
8

8

)
3

= 826 clock cycles, (6.11)

υ′ =
160 x 42 x 106

826

≈ 7.76 Mbps. (6.12)

It must be noted that these results depend on the iteration numbers of the estimator and

the decoder. They can be enhanced by using some different methods in the literature, e.g.,

early stop algorithms for the turbo codes. Also, better performances can be obtained by

optimizing the parametersN, Ne, Ie, andId.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The work on this thesis aims at implementing a jointly operating channel estimator andpar-

allel decodable turbo code (PDTC) decoder on a FPGA-based platform.In this thesis, we

applied the parallelization idea on turbo codes to reduce the decoding latencydue to their

iterative structure. On the other hand, the complexity of the design is increased after this op-

eration. By this idea, the decoding latency is decreased by a factor of the number of parallel

branches employed in the decoder. Parallelization is induced by employing parallel encoders

operationg on substreams of the data sequence simultaneously. The parallel processing struc-

tures are implemented on FPGA with the help of its architecture containingconfigurable logic

blocks(CLBs).

However, parallelization process introduces some problems during the implementation.

The memory collision problem arises as the most critical one. In literature, there exist some

interleavers designed to prevent the memory collision problem. As one of them,memory

collision free row-column S-random interleavers are used in this thesis.

During implentation of a PDTC decoder we face with some problems. Implementing

a soft-in soft-out (SISO) decoder on an FPGA is the most critical problemsince FPGA has

limited resources which do not let one easily use floating-point arithmetic or large fixed-point

arithmetic. To work on fixed-point arithmetic, a metric quantization scheme is used. Some

operations used in the decoding process is modified to work on the fixed-point arithmetic.

Parameters effective on the performance of the implemented decoder are presented and a

decoding latency is calculated together with the available data rate for the reasonable choices

of these parameters. These results are compared with the ones obtained in aparallel study in

which the decoder is implemented by using a different architecture which applies pipelining.
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It has been observed that the pipelining architecture enhances the clockfrequency.

A channel estimator algorithm is implemented to work jointly with the the PDTC de-

coder structure. For the channel estimation process, the 2-way LMSalgorithm which uses the

pilot symbol assisted estimation method is employed. The operations used in the estimation

process are optimized to work on the fixed-point architecture of the FPGA.After adjoining the

two structures, the design parameters of the decoder are decided again toobtain a reasonable

performance from the joint structure. The latency introduced by this joint structure and the

resultant data rate is calculated as well. By applying the parallelization idea on the estimation

algorithm, the latency is reduced in some amount to enhance the available data rate.

In addition to the studies described in this thesis, some additional research and improve-

ments to our testbed are set as future goals. These goals can be listed as follows:

• An early-stopping algorithm can be used to prevent the extra iterations of the PDTC

decoder. Thereby, the decoding latency can be decreased more and the achievable data

rate can be enhanced.

• The performance comparisons of the used channel estimation algorithm with the other

algorithms in the literature can be made as an additional study.
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