FPGA IMPLEMENTATION OF JOINTLY OPERATING CHANNEL ESTIMAT®& AND
PARALLELIZED DECODER

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

CAGLAR KILCIOGLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2009

Approval of the thesis:

FPGA IMPLEMENTATION OF JOINTLY OPERATING CHANNEL ESTIMATOR AND
PARALLELIZED DECODER

submitted by;AGLAR KILCIO GLU in partial fulfillment of the requirements for the degree
of Master of Science in Electrical and Electronics Engineering Departrant, Middle East
Technical University by,

Prof. Dr. CanarOzgen
Dean, Graduate School bfatural and Applied Sciences

Prof. Dr.ismet Erkmen
Head of Departmenglectrical and Electronics Engineering

Assoc. Prof. Dr. AliOzgir Yilmaz
SupervisorElectrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Yal¢in Tanik
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. AliOzdir Yilmaz
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Melek Diker Ycel
Electrical and Electronics Engineering Dept., METU

Assist. Prof. Dr. Cgatay Candan
Electrical and Electronics Engineering Dept., METU

Ayse Oznur Girtunca, M.S.
Lead Design Engineer, ASELSAN

Date:

I hereby declare that all information in this document has been obténed and presented
in accordance with academic rules and ethical conduct. | also declarthat, as required
by these rules and conduct, | have fully cited and referenced all ntarial and results that

are not original to this work.

Name, Last Name: CBLAR KILCIOGLU

Signature

ABSTRACT

FPGA IMPLEMENTATION OF JOINTLY OPERATING CHANNEL ESTIMAT® AND
PARALLELIZED DECODER

Kilcioglu, Calar
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assoc. Prof. Dr. ADzgir Yilmaz

September 2009, 83 pages

In this thesis, implementation details of a joint channel estimator and parallelizedete
structure on an FPGA-based platform is considered. Turbo decarersed for the decod-
ing process in this structure. However, turbo decoders introducedeageling latencies since
they operate in an iterative manner. To overcome that problem, parallelizatépplied to
the turbo codes and the resultipgrallel decodable turbo cod@®DTC) structure is employed
for coding. The performance of a PDTC decoder and parameffierstiag its performance
is given on aradditive white Gaussian noig@WGN) channel. These results are compared
with the results of a parallel study which employs &eatlient architecture in implementing
the PDTC decoder. In the fading channel case, a pilot symbol assstiethgon method
is employed for the channel estimation process. In this method, the chaiatients are
estimated by a 2-way LMS (least mean-squares) algorithm. Theutiies in the implemen-
tation of this joint structure in a fixed-point arithmetic and the solutions to oweecthese
difficulties are described in details. The proposed joint structure is tested wyithgdesign
parameters over a Rayleigh fading channel. The overall decoding iledeantd allowed data

rates are calculated after obtaining a reasonable performance frorediga.d

iv

Keywords: iterative decoding, BCJR, parallel processing, chastwhation, FPGA

Oz

BIRLESIK ISLEYEN KANAL KESTIRICI VE PARALELLESTIRILM IS KOD
CcHZUCUNUN FPGAUZERINDE GERCEKLENMES

Kilcioglu, Calar
Yiksek Lisans, Elektrik ve Elektronik vhendislgi Bolumii

Tez Yoneticisi : Doc. Dr. AliOzgir Yilmaz

Eylul 2009, 83 sayfa

Bu tez calismasinda birlestiriimis kanal kestirici ve paralellestiriimis koeligh yapisnin
yerinde programlanabilir gecit dizisi (FPGA) tabanli bigégendirme platformuizerinde
gerceklenmesi ele alinmistir. Yapidaki kadzgne islemini gerceklestirmekzere turbo kod
cozuculer kullaniimistir. Fakat, turbo kodogiciler oldukga yiksek gecikme i&elerine

sahiptir. Bu problemi ortadan kaldirmak amaciyla paralellestirme fikri turbtakadygulan-

mis, ortaya cikan paralebgiimlenebilir turbo kod (PDTC) yapisi sistemdeki kodlama ve kod

cozimleme iglemleri icin kullaniimistir. Toplanir beyaz Gaussigiisi (AWGN) altinda

PDTC kod @zicunin basarimi ve bu performansa etki eden tasarim parametreleri incelen-

mistir. Elde edilen sonugclar bu calismaya paralel baska bir calisfagdabir mimari kul-

lanilarak gerceklenen kodgicinin verddi sonuclarla karsilastiriimistir. Kanal kestirimi
icin pilot sembol destekli kanal kestirimoptemi kullaniimistir. Bu §ntemde, kanal kat-
sayllari ¢ift yonli LMS algoritmasi kullanilarak kestiriimektedir. Bu birlesik yapinin sabit
noktali aritmetik altinda gergeklenmesi sirasinda yasanan zorluklaedanzorluklari agsmak

icin uygulanan dziimlerden bahsedilmistirOnerilen birlesik yapi, cesitli tasarim parame-

treleri ile Rayleigh 8nimli kanal altinda sinanmistir. Tasarimdan makul bir basarim elde

Vi

edildikten sonra gecikmaiseleri ve veri hizlari hesaplanmistir.

Anahtar Kelimeler: yinelemelidziim, BCJR, paralel isleme, kanal kestirimi, FPGA

Vii

To my family...

viii

ACKNOWLEDGMENTS

| would like to express my sincere gratitude and appreciation to Assoc. Brof\li Ozgir
Yilmaz for his guidance, encouragement, and support throughout mig thiesk. | have

benefited from his deep knowledge and discipline on research.

I would also like to convey thanks to jury members for their valuable comments®n th

thesis.

| am deeply grateful to my family for their love and support. Without them, thiskwo

could not have been completed.

| am deeply indebted to my friend Enes Erdin, whose help and stimulating stimue
helped me in all the time of research. We had great time while working togetheein th

telecommunications laboratory while writing a paper to be submitted to IET.

| am thankful to my company ASELSAN Inc. for letting and supporting of mysthe
study.

| also thank the Scientific and Technological Research Council of JufKéBITAK)

for providing the financial means throughout this study.

My special thanks go to my brothers MustaféiRéel, Mustafa Gkce Baydgan, and
Cajlar Ata for their help, support, and cheerful presence through theseof this study.

Thanks for giving me a shoulder to lean on whenever | need.

Finally, | am grateful to my fianc®zge Kirmizi for her love, continued motivating
support and welcomed presence. Without her love, support, and gonsirencouragement |

would never have been able to complete the work presented in this thesis.

TABLE OF CONTENTS

ABSTRACT iv
OZ . o s, Vi
DEDICATION e e e e e e viii
ACKNOWLEDGMENTS e e e e e e e e e iX
TABLE OF CONTENTS e e e e e e e e e e X
LISTOFTABLES e e e e Xiii
LISTOFFIGURES e e e s e e e e VXi
CHAPTERS
1 INTRODUCTION e e e e e 1
2 PARALLEL DECODABLE TURBOCODES 4
2.1 Introduction 4
2.2 Convolutional Encoder 5
2.3 Marginal a PosterioriDecoding 7
2.3.1 An Addition to the BCJR Algorithm 11
2.4 TurboCodes 12
2.5 PDTC Structure e 13
251 Encoding Parallel Decodable Turbo Codes 14
25.2 Decoding Parallel Decodable Turbo Codes 15
253 Memory Collision-Free Interleaver 16
3 JOINT CHANNEL ESTIMATION AND DECODING 20
3.1 Introduction 20
3.2 ChannelModel 21
3.3 Transmitter Model o o 21

3.4 Receiver Model 22

3.5 Channel Estimator 23
3.6 Nonlinear Feedback Function 25
FPGA IMPLEMENTATION e 27
4.1 PDTC Decoder Implementation onthe FPGA 27
41.1 The Center to Top Algorithm 27
41.2 Observation Quantization 29
4.1.3 max Approximation 32
4.1.4 Fixed-Point Summation and Subtraction 34
4.1.5 Node &,) Metric Normalization 35
4.1.6 Memory Complexity 35
4.2 Channel Estimation Implementation on the FPGA 36
4.2.1 Pilot Symbol Insertion and Elimination 36
4.2.2 Channel Estimator 37
4.2.3 LL Computation 42
TESTBED PLATFORM e 43
51 Testbed Hardware, 43
5.1.1 ML-402 Evaluation Platform 44
5.2 Software Used For Simulation, Implementation, and Debugging . . . 47
5.2.1 ISE Design Suitand XST 47
5211 Synthesis. a7
5.2.1.2 Translation 48
5.2.1.3 Mapping, 48
5214 PlaceandRoute 48
5.2.15 BitGen 48
5.2.1.6 Impact 49
5.2.2 ModelSim 49
5.2.3 ChipScope 50
5.2.4 MATLAB 50
5.3 Miscellaneous Components 51

Xi

53.1 Enable Generator 52
5.3.2 Encoder and Pulse Generator 52
5.3.3 Noise Generation 53
5.34 Fading Channel Generation. 59
5.3.5 Error CounterModule 60
5.3.6 CommunicationwithPC 60
6 NUMERICAL RESULTS e e 64
6.1 PDTC Decoder Performance Results 64
6.2 Decoding Latency Calculation 68
6.3 Joint Channel Estimator and Decoder Performance Results 72
6.4 Joint Channel Estimation and Decoding Latency Calculation 76
7 CONCLUSIONS AND FUTUREWORK 80
REFERENCES e 82

Xii

LIST OF TABLES

TABLES

Table 5.1 Specifications of a XC4VSX35-FF668-10 FPGAchip 46
Table 5.2 Some LFSR feedback polynomials with varying width of shift register. 54

Table 5.3 The registers and their meanings used in the implementation of the UART

transmitter module. 62

Table 5.4 The registers and their meanings used in the implementation of the UART

receivermodule. 62

Table 6.1 Synthesis results of the PDTC decoder with max-log-MAP decatiipgthm 65

Table 6.2 Iteration steps and the corresponding number of errors flBEXE decoder

atSNR=1.3dB. 67

Table 6.3 Iteration steps and the corresponding number of errors flBEXE decoder

atSNR=265dB. 68

Table 6.4 Synthesis results of the PDTC decoder with max-log-MAP decadtijog
rithm and pipelining. 71

Table 6.5 Synthesis result of the PDTC decoder féiedéntK values with max-log-
MAP decoding algorithm 73

Table 6.6 Synthesis results of the estimator witfiedentL values. 76

Xiii

LIST OF FIGURES

FIGURES

Figure 2.1 Systematic recursive convolutional encoder Rithl/2andK =3. ... 6

Figure 2.2 Trellis diagram for 4 input and 2 termination bits with the transitionsisho

inl/O0format. e 6
Figure 2.3 State diagram with the transitions shown@Q format. 6

Figure 2.4 Non-systematic non-recursive convolutional encoder Rith 1/2 and

K =3 7
Figure 2.5 Forward recursion in calculationagf,(s) 11
Figure 2.6 Backward recursion in calculationgj(s) 11
Figure 2.7 State diagram for the transitions of the parity bits. 12

Figure 2.8 Turbo code encoder structul@C; andCC, are two convolutional en-

coders and they operate inparallel. 3 1
Figure 2.9 Turbo code decoder structure with the usage of extrinsicnaton. . . . 14

Figure 2.10 PDTC encoder with two clusters, one witland the other witiM con-

stituentencoders. 15
Figure 2.11 PDTC decoder with two clusters, each having 4 constitueotldec . . . 16
Figure 2.12 APDTC decoder interleaver structure that does not gneamory collision. 17

Figure 2.13 RCS-random interleaver generation and encoding of theniafion bits

inparallel. e 18

Figure 2.14 Constituent decoders of the second cluster get the aekldss values

and read the data in the given address to operateon. 19
Figure 3.1 Joint channel estimation and decoding transmitter 22
Figure 3.2 Joint channel estimation and decoding receiver 22

Xiv

Figure 3.3 Packet structure of a received packet wRatenotes the pilot symbols.. . 24

Figure 4.1 « andp values are initialized attime=0. 28

Figure 4.2 « andg values are calculated up to time- 20 with forward and backward

recursive calculations. L 8 2
Figure 4.3 Attimet = 20, LL(u19) andLL(uyo) are calculated. 29

Figure 4.4 LL calculation continues in parallel with theg calculation to the end of

the bit sequence, thatis=39. 29

Figure 4.5 The performanceftiérence between a log-MAP decoder (using the ordi-

narymax operation with infinite precision) and a max-log-MAP decoder. 34
Figure 4.6 Input and output packet structures of the pilot symbol inseddule. . . 37

Figure 4.7 First iteration of the channel estimator (constant fadinfficeat during

onegroupperiod). 38

Figure 4.8 The representations in the fixed-point domain of the forwamthrof the

2—-wayLMSalgorithm. 40
Figure 5.1 Theoveralltestbed.. 43
Figure 5.2 Acommon CLB architecture. 44
Figure 5.3 Slice structure for Xilinx FPGAs. 45

Figure 5.4 The test setup used to see the performance of the propo$e€ddeboder

structure inan AWGN channel. 51

Figure 5.5 The test setup used to see the performance of the proposesimimation

and decoding algorithm in a fadingchannel. 2 5
Figure 5.6 An LFSR of width 16 bits with a seed of “1010110010111100".... . . 53
Figure 5.7 AnLFSR of width 16 bits in the initial state with a seed of “1101000@0001". 55

Figure 5.8 After completing th¥ORoperations, LFSR waits for an external trigger

to update theregistercontents. o 55

Figure 5.9 When the trigger occurs the contents are shifted to the right, |sftemio-
tent is updated with the result ®OR operations, and the right-most content is

giventooutput. 56

XV

Figure 5.10 The histogram of the generated numbers by the proposstbpssadom

number generation method over 10000 samples. 8. 5

Figure 5.11 The histogram of a noise sequence generated by MAT LtABdn () func-
tion. The output vector ofandn() function is multiplied by V40 to match the

VaNiaNCeS. e e e 58

Figure 5.12 The in-phase and quadrature components of a Rayleigy &udinnel with

the normalized fading ratg T = 0.01, over a sequence of length 100. 60

Figure 5.13 The bit alignment of a word used in UART transmission. 61

Figure 6.1 The ffect of theNormMaxvalue on the BER performance of the PDTC
max-log-MAP decoder. 65

Figure 6.2 Performance of PDTC decoder with max-log-MAP decodingitiigo. . . 66

Figure 6.3 Hfect of the iteration number on the BER and PER performances at38R
AB. . e 66

Figure 6.4 Reception gbackel and filling the memory blocks of theing memory
POOL . . . 69

Figure 6.5 Decodingofthpackel. 69

Figure 6.6 Reception gbacke® and filling thepong memory poakhile decoding of

packef still continues. e 70
Figure 6.7 Decoding ofthpackeR. 70

Figure 6.8 The ffect of theNormMaxvalue on the performance of the PDTC decoder
over a Rayleigh fading channel with the normalized fading faf€s = 0.01 at

Ep/No = 8 dB with the assumption of perfectly known CSI at the receiver side. . . 72

Figure 6.9 Performance of the PDTC decoder over a Rayleigh fadimmehwith the
normalized fading ratéy Ts = 0.001 with the assumption of perfectly known CSI

atthereceiverside. e, 37

Figure 6.10 Performance of the PDTC decoder over a Rayleigh fadamqehwith the
normalized fading ratép Ts = 0.01 with the assumption of perfectly known CSI

atthereceiverside. e e e 37

XVi

Figure 6.11 Performance of the PDTC decoder over a Rayleigh fadamehwith the
normalized fading ratépTs = 0.01 by using the best resultifgormMaxvalues

ateach SNR. 74

Figure 6.12 Hect of thes value on the estimation and decoding performance over a

Rayleigh fading channel with the normalized fading rgg&s = 0.01.. 75

Figure 6.13 Performance of the joint estimation and decoding structure ®eyleigh

fading channel with the normalized fading rdtel' s = 0.01 for differentL values. 76

XVii

CHAPTER 1

INTRODUCTION

In wireless communications, channel coding has an important role on@ngahe commu-
nication reliability and quality of service. That role was first indicated in 8bais paper in
1948 [1]. In his paper, Shannon stated that reliable data transmissioa ceenmunication
channel at any rate lower than the channel capacity was possible dafgte error correc-
tion codes are used. As a result of wireless communication being perstdéies on the
channel coding subject has increased. Turbo codes were firstuced by Berrou et. al.
[2] in 1993. These codes are also calfatallel concatenated convolutional cod@xCCC)

due to their architecture. Among all the available codes of its time, turbo cpgesached
the Shannon limit the most. This great performance of turbo codes lies omthess of

combined interleaving and soft-decision decoding [3].

Although turbo codes show very good performance at low SNR values, l#ige de-
coding latency due to their iterative decoding algorithms is a serious probléighrspeed
communication systems, e.g., satellite communication systems. Construction of ffirore e
cient hardware structures is a solution to the decoding latency problem.odfe bn that
solution and utilize a parallel processing structure. Parallel processingnethod to reduce
the decoding latency. In this thesis, we use the parallelization idea and itestigpar-
allelized structure for turbo codes. These code studies are gadiedlel decodable turbo
codegPDTC). The encoder side is parallelized to encode the substreams obitdatianulta-
neously. This parallel processing idea is also used at the decodeOsiifgg to simultaneous

decoding of substreams, decoding latency is decreased significantly.

Memory collision is one of the most important problems observed during tladiglara-

tion process. If two or more decodgacoders try to access the same memory block at the

same clock instant, memory collision occurs and parallel decoders capematte properly.
The reason of having a memory collision is the permutation order of the interleAv the
encoder side, specific collision-free interleavers can be construgigesirig a matrix notation.

In that mannenow-column S-random interleavewhich is introduced in [4], is of interest.

In digital mobile communications, one of the the main distortions introduced by the
communication medium is the Doppler spread due to the movement of the rec&hisr
Doppler spread results in a time-varying fading channel when communicagoiium has
many scatterers in it. Thefect of fading on the transmission is a limiting factor in many
communication systems and may mandate estimation afltaenel state informatio(CSlI)
at the receiver side. Turbo codes have shown near-capacityrparice over Rayleigh flat-
fading channels with the perfect knowledge of the CSI [5]. Theretorachieve high-speed
reliable communication, channel estimation corresponding to the estimation ofSthis C
very often a necessary process. In our work, a joint structureasfreél estimator and PDTC

decoder is implemented to work in an iterative manner.

As a channel estimation algorithm, thigot symbol assisted estimatiomethod has been
studied in this thesis. This method utilizes pilot symbols in the data sequence. rattieer
side, the channel estimation process is initiated with the help of the pilot symbtigias
values are known. Adding pilot symbols into the transmission packets intecshroe extra
redundancy and bandwidtlffieiency is reduced as a result. In general, the channel estimators
use some sort of filtering to estimate the complex channefic@nts when pilot symbol
assisted estimation is considered. In this thesis, we usfeaatit approach which employs
LMS filtering. The main reason of using LMS is to reduce the complexity anease the
operating frequency. In [6], a®ay LMSapproach has been introduced. In this method, the
channel cofficient estimations are carried out in two directionfeatent than the ordinary

LMS algorithm, both in forward and in backward directions.

In our work, we studied two main subjects, PDTC decoders and pilot syatsited
channel estimation using the 2-way LMS algorithm. The structures propoghdse algo-
rithms are implemented on an FPGA board and tested with soffieeedit design parameters.
Results are compared to make some reasonable choices. These regaltsarkar to the im-
plementation choices and the way of our implementations is not the only oneirDis jast

to show what can be done. Optimization should be performed in tferelt implementation

cases. The outline of the thesis is as follows.

In Chapter 2, convolutional codes and MAP (marginal a posteriori) dkrsoare re-
viewed. The encoder and decoder structures of turbo codes andrtikelization procedure

on them to construct PDTC encoder and decoder structures are explain

In Chapter 3, channel estimation methods using LMS and MMSE algorithmseare d

scribed briefly. The joint channel estimator and decoder structureas giv

In Chapter 4, the details of implementation and optimizations applied during the real-
ization of the proposed systems on an FPGA board is provided. The gusilienponents in

obtaining the resulting performances are described.

In Chapter 5, the FPGA-based testbed platform used to test the propgstedns is
described. The software programs used during the simulation, implementzimngging,

and testing the systems are mentioned.

In Chapter 6, the results obtained after testing the systems are given angsgéid. The

resultant performances are compared in terms of various aspects.

CHAPTER 2

PARALLEL DECODABLE TURBO CODES

2.1 Introduction

In channel coding sender adds redundant data to the message todmeittethso that the
receiver can detect and correct the errors caused by the noisymedading techniques may
differ based on the characteristics of transmission medium. Some dfebtsef medium are

additive noise and fading [7]. Berent coding techniques can be listed in two main groups:

e Block Codes : They work on fixed-size blocks of bits or symbols of predetermined size.
Some of the block codes are Reed Solomon (used in compact discs andeohgyd
drives), BCH, Golay, Hamming, and cyclic codes. These codes will aaoinsidered

hereafter since block codes are not in the scope of this thesis.

e Convolutional Codes : They difer from block codes in that they work on blocks of
bits or symbols of arbitrary length. Details about their encoder and destdeture

are given in Sections 2.2 and 2.3, respectively.

Choosing the appropriate encoakcoder structure was an important part of the system
setup procedure in this study. Main considerations in determining the sysi@mpooents
were low latency in time during encodiftgcoding operations, low complexity allowing im-
plementation on our FPGA board, and good error rate. After a carafie Wt between these
requirements, we decided to use a parallel decodable turbo code (RDTEure suggested
by Orhan Gazi in his PhD. thesis work [8]. The reasons for this seleatidrhow it matches

the listed requirements will be explained with details in Chapter 6.

4

2.2 Convolutional Encoder

Convolutional encoders generate an output sequence accordingeibediped state transition
mechanism by accepting an input bit sequence of arbitrary length. Teeyaally illustrated

as finite state machines. Two main elements of these encoders are:

e binary shift registers (flip-flops),

e binary adders (XOR operators).

In each time unit, convolutional encoders recedivaput bits and produce output bits.
The ratio of these numbers gives tbede rate R = k/n, of that encoder. Theonstraint
length K, of a convolutional encoder is defined as the maximum number of bits in a single
output stream that can bdfected by any input bit [7]. lim; denotes the number of shift

registers in thé!" shift register block, the constraint length is calculated as,

K = max(m + 1). (2.1)

Since (2.1) is used in many publications, we have used it during this studye\¢o, on

some resources [9], constraint length is expressed as
K = n(max(m + 1)), (2.2)

since the alh output bits are simultaneouslyfacted.

The term maxtfy) is called as thenemory orderand denoted byn. If we illustrate

convolutional encoder by a finite state machine, there will'Bstates.

In Figure 2.1, a convolutional encoder with two shift registers (denogdd to empha-
size “delay”) in one blockmy; = 2, is given. This encoder has 1 input hit,2 output bitsc;
andcp, 4 states and its constraint length is 3. Trellis and state diagrams of this emcede

given in Figures 2.2 and 2.3, respectively.

In the trellis diagram given in Figure 2.2, it can be seen that encoding Btaristate 0,

So, and ends in the same state. This is achieved by adding some extra bit or basrtputh

L At any time instant, delay elements get a binary value, 0 or 1. By condatgrihese binary values one
determines which state the encoder is in.

A 4

C1

Figure 2.1: Systematic recursive convolutional encoder Rith1/2 andK = 3.

States
0/00
0 e e d
“1/11
1
2
3

Input bitis0 ——»

Input bitis1 - d

Figure 2.2: Trellis diagram for 4 input and 2 termination bits with the transitions/shn
I/00 format.

Figure 2.3: State diagram with the transitions shownf@Q format.

after the input message ends and caltetlis termination We also guarantee the next packet

to be encoded starting froBy.

Convolutional encoders are divided into groups regarding their outffutee input bits
are reproduced in the output codeword without any changes, thislenisccalledsystematic
The encoders are classified as recursive if the output bit (or fejta the following states
with a feedback path in the structure. The convolutional encoder showigime 2.1 is a
recursive systematic{ = u) code, whereas the one in Figure 2.4 is non-recursive and non-

systematic.

+ + P C;

+ P C;

Figure 2.4: Non-systematic non-recursive convolutional encoderRvit/2 andK = 3.

Hereafter, the code given in Figure 2.1 will be used in the encgdigngding procedures
in this thesis and we will refer to this code as%17) code due to its generator polynomial

written in octal form [9].

2.3 Marginal a Posteriori Decoding

Mainly, there are two types of decoding methods for convolutional codes:

e Maximum likelihood (ML) decoding methods,
e Marginal a posteriori (MAP) decoding methods.
ML decoding aims to find the most likely sequenggfor a transmitted sequenee This

method, basically, minimizes the word (or packet) error re{&,+# v | r) , wherer denotes

the received sequence. The Viterbi algorithm is the most popular MLidigor

7

The MAP method aims at minimizing the bit error rate (BER) by maximizing the marginal
a posteriori probabilities. By applying MAP decodii((; # u; | r) is minimized wherey, is
thel™ bit of the transmitted sequence andsthel™ bit of the decoder’s decision. The BCJR

algorithm is the best known example to MAP decoding [3].

Although these two methods exhibit comparable performance, MAP decbdsggined
more importance lately due to its prevalence in iterative decodeysyBibol likelihoods are

required in such decoders which is directly produced by MAP algorithms.

The BCJR algorithm calculates tfee posteriori log-likelihood ratio(a posteriori L-
valug of an information bit. The reason of passing into the log-domain will be cldrifie

later in this section.

The log-likelihood ratio LR, or simplyLL) of an information bitu; can be calculated
as
p(ur = +1Jr)
p(u = —1Ir)
for a received sequence Using this a posteriori L-value, a hard decision corresponding to

LL(u) = In[: (2.3)

can be found by

UI:{ +1, LL(u)>0 04

~1, LL(u) <0
In the remaining part of this section the BCJR decoding algorithm steps aseexptained

without derivation. Detailed derivations can be found in [9].

Theforward metric denoted byy, at timel is defined as the probability of being at state

s at timel and having a received sequengg up to timel. Hence, thexr metric is given as

o =p(s =9,r), (2.5)

wheres is the state at timé

Similarly, thebackward metricdenoted bys, at timel is defined as the probability of

receiving a sequenag.| after timel given that the state at tinas s,
B = p(reils = 9). (2.6)
As the third metric definition, thbranch metricat timel is the probability of having a
state transition from stat® to sat timel. It is denoted by and defined as
n=p(s:1=srs=59). (2.7)

8

As a result of a few manipulations based on the definitionsaridg, it can be seen that
a values are updated by a forward recursion, whepeealues are updated by a backward

recursion as given by

(s =), NS Ja(s), (2.8)
Seq)
AS) = D n(S. 9B, (2.9)
with initial conditions,
{ 1, s=0
ao(s) = , (2.10a)
0, s#0
1, s=0
Bn(S) = { : (2.10b)
0, s#0

In (2.10b),N stands for the length of the input sequehde (2.8) and (2.9)¢ denotes
the set of all possible states from which a transition is possible atltando1 denotes the
set of all possible states to which a transition is possible atftime. After having the initial
conditions,a andp values can be calculated for the whole packet with the knowledge of

values.

In an AWGN channel, branch metrics can be written as [9]
y(s,s) =" La(UI)/ze(Lc/z)(rl'Vl), (2.11)

whereL,(u)) is the a priori bit probabilit}, L. is the channel reliability factor which is equal
to 4Es/Np [9], and v, denotes the output vector consisting of data and parity observations
for transition from states’ to s. The dot productr(- vi) gives the correlation between the
transmitted and received vectors. Scaling this distance kitimeans that the observations

are more reliable when SNR is high and a priori values are trusted moreSWigris low.

In order to perform the calculations given in (2.8), (2.9) and (2.11) ieemier way, these

operations are usually realized in the logarithmic domain. The log-domain meluiesvare

2 |t is assumed that termination bits are added at the end of the packet incihéee side. So, the final state
is known to be the zero-state
3 1t must be noted that thie, values for the termination bits are always 0.

given as follows:

La(u) | Le

(&9 = (9 =ur s), (2.12)

a(9 = INapa(9=In Y 9] (2.13)
Seo

Bi(S) = MB(s)=In Y &9l (2.14)

It can easily be seen that both forward and backward metric calculatorsscsimplified

more by defining anax operation
max (x,y) = In(e* + &) = max(x, y) + In(1 + e), (2.15)

where the logarithmic term is usually called tt@rection term

By using the multiple argument form of thmax operation, (2.13) and (2.14) can be

simplified as

af,y(9 = max, [%(s.9 +af(s)]. (2.16)
Bi(S) maxe,,., [¥(s.9) +B,1(9)] (2.17)

with the initial conditions,

0, s=0
ay(s) = , (2.18a)
—00, S#0
. 0, s=0
Bn(S) = . (2.18b)
—c0, S#0

Figures 2.5 and 2.6 illustrate the usenmdiX operation ine andg computations, respectively.

By skipping the intermediate steps, the log-likelihood formula in (2.3) can bettew

using the formulas described above as [9]

LL(u) = In Z eBr+1(S)+yr(S’,S)+(yl*'(S’) —In Z e[i’l"+1(s)+yr(s’,s)+a;‘(s’) (2.19)
(8,9€xf (8,9¢€x,

whereX” andX|" are the sets of transitions with the information bit is 0 and 1, respectively.

10

23.1

As described, the BCJR algorithm calculateslthevalues of only the information (data) bits.

However, for the channel estimation problem, to be described in Section&will need the

) (s)) 7, (s,s)

a4 (8) =max” (e (8/) +71 (8/,9)). (e () + 71 (55,9)))

7 (s}:9)

Figure 2.5: Forward recursion in calculationdgf , (s)

Bla(s)

B (s =max ((Ba(s)+7, (8 8)). (BLa(s)) +71 (85))

Bralsy)

Figure 2.6: Backward recursion in calculation3j(s’)

An Addition to the BCJR Algorithm

LL values also for the parity bits.

The state transitions depend on the information bits only. That's why, the mattie v
(a, B, andy) calculations are notfected even if the parity bits are considered and these com-
putations are carried out without any modification. This means that, no exinplexity is
introduced for these parts. However, in thle calculation step, given in (2.19), the transition
sets are constructed by considering the information bits. For the computatield. values

for the corresponding parity bits, the transition sets are needed for péstyThe transition

diagram given in Figure (2.7) can be used to construct these sets.

11

Figure 2.7: State diagram for the transitions of the parity bits.

After constructing these transition sets, (2.19) can be modified to calculdié tredues

for the parity bits as

LL(pl) =In Z e8r+1(s)+y,*(s’,s)+al*(s’) —In Z e8|"+1(S)+y|*(S’,S)+a|"(s’) (220)
(s’,s)ezg,I (s/,s)e):,‘)’I

whereZEI andzll‘)I are the sets of transitions with the parity bit is 0 and 1, respectively.

2.4 Turbo Codes

Turbo codes were first introduced by Berrou et. al. in 1993 [2]. Aducbde encoder
consists of two convolutional encoders and an interleaver, which islzefere the second
encoder, as shown in Figure 2.8. The input kit$to denote “data” bits), are directly given

to the first convolutional encoder and it produces first sequencarity foits, p;. The second
constituent encoder gets the interleaved fornd @fs input and gives out the second parity
bits, po. As a result of this parallel structure, turbo codes are also known agattadiel
concatenated convolutional cod@BCCC). Constituent encoders are not necessarily same.
On the decoder side, two decoders that can produce likelihoods asi@€ placed together
with an interleaver and deinterleaver as shown in Figure 2.9. The recgipiencs,, in the

decoder side can be separated into three subsequences:

e data observation sequence,

12

o first parity observation sequence,

e second parity observation sequengsg,

It must be noted that the interleaver used on the decoder side is equivatba one in
the encoder side. Interleaving along with iterative decoding results in tse-tbecapacity
performance of turbo codes. However, using interleaver increasexja Some interleaving

algorithms are given in [8].

As seen in Figure 2.9, we apply subtraction on log-likelihood values aftér BEJR
decoder. By subtracting the inplut values from the computed ones, #hérinsic information
is obtained, which is the true likelihood estimation of that decoding step. Maadsiabout

the structure of turbo codes are given in [2].

d p| CC, —» p1

——p! Interleaver —— CC, [——P Py

Figure 2.8: Turbo code encoder structut&; andCC, are two convolutional encoders and
they operate in parallel.

2.5 PDTC Structure

Benedetto and Montorsi have investigated performance of turbo cotlesristudies and they
have found out that these codes show a great performance at low1®NRHowever, high
decoding latency comes out as the main drawback for these codes. ilRpthe decoding
latency is a major problem when speed is taken into consideration. Forispaqu the
decoding process the parallelization idea has been introduced in theedstedture and the

same idea is applied to the encoder side in [11, 12, 13].

13

o >| Decoder 1 LL
A 4
- L
T !
Le
: »2
P, 3| Decoder 2 m

Figure 2.9: Turbo code decoder structure with the usage of extrinsicnatmn.

The FPGA architecture gives us the chance for benefiting from the rpofygarallel
processing. This is achieved by using multiple processors operating afighatHowever,
that parallel structure limits the number of utilizable interleaver algorithms. Usirayla-
trary interleaver structure may cause a memory collusion problem. For #strrememory

collision-free interleavers are used in PDTC structures.

2.5.1 Encoding Parallel Decodable Turbo Codes

Parallel Decodable Turbo Code (PDTC) encoder consists of convadligmcoders concate-
nated in parallel such that each one operate on parallelized informatiorinhitiasieously.
The PDTC encoder structure is illustrated in Figure 2.10. For the uppedencluster, data
bits are first sent to a serial-to-parallel convertgP{So formN subsequences and each sub-
sequence is encoded in parallel (and separately). THeseallel convolutional encoders are
not necessarily the same. Hefacodegl shows the first encoder of the upper cluster and
EncodeiN denotes the last one. The output of the upper cluster is formed by outhids w
come fromN parallel encoders. So, a parallel-to-serial convertgs) B used for generating
first parity sequencep;. In the lower cluster, an interleaver)(is placed before serial-to-
parallel converter and then the converter fofshgarallel substreams. Encoding operation is

accomplished in the same manner as the upper cluster, buMypidrallel encoders.

14

v
o

Encoder; 1

_|—>

A 4

S/IP

Encoder; N

P/S

_>pl

Encoder, 1

-
_|—>

— S/P

T

YY VY

L

Encoder, M

P/IS

— P2

I

Figure 2.10: PDTC encoder with two clusters, one Witland the other witiM constituent

encoders.

2.5.2 Decoding Parallel Decodable Turbo Codes

To decrease the decoding latency, each MAP decoder in the TC ddsaégtaced with a

cluster of MAP decoders which are concatenated in parallel. With this methot,decoder

in a cluster operates db/N data (information) bits wherB is the number of data bits in a

packet andN is the number of parallel MAP decoders in that cluster. The clusters maginon

different numbers of parallel decoders, say that first clusteNnhparallel decoders and the

second one habl as in the encoder side. Howevét,= M is generally preferred. In our

system we have used 4 parallel decoders (encoders) in each clugterdacoder (encoder)

side, i.e.N = M = 4. The decoder structure fora PDTC is given in Figure 2.11. The @esod

in the first clusterDecodeil, ...,Decodef4) operate on the data bits, and the first parity

bits, p1. After the first cluster finishes its job, the extrinsic informatiag)(is generated from

the computed log-likelihoodL({) values. Thesé. values are used as a priori information

by the decoders of the second clustee¢odesl, ...,Decodepd). These decoders operate

on the interleaved form of data bits and the second parity pits,The LL and L, values

are calculated and so the first iteration is completed. If the desired numlteratfons have

not been reached, then the values are deinterleaved and given to the first cluster for the

15

next iteration. After the final iteration has been finalized the compuledalues are used to

estimate the transmitted bit sequence.

A 4 - _
] I
p. —»{ S/P
~ -1
1 - N - + N
;I Decoder; 3 »| Decoder, 3
d— S/P
I F=—N
> Decoder; 4 > Decoder; 4

3

S/IP j[«— p

YY VY

Figure 2.11: PDTC decoder with two clusters, each having 4 constitueatdes.

2.5.3 Memory Collision-Free Interleaver

Although parallelization reduces the decoding latency, it creates somepegtrtems and
memory collision problem is one of them. The memory collision problem can beieggla

as follows. All the decoders in a cluster run in parallel and access the mdotations
where the extrinsic informationL{) generated by the other cluster's decoders are stored.
During this access more than one decoders in that cluster may try to usertitbdsita at the
same memory block at the same clock instant. However, it is impossible to implement this
operation with the current memory architectures. Hence, memory collisiarroon that

memory segment. An interleaver which causes memory collision is shown in Rdige

The memory collision should be avoided to implement a parallelized turbo deopder
erating properly. This problem stems from the permutation order of the iatene So, it
is important to use a well-designed interleaver structure such that eaodedtg@and also
encoder) in a cluster should try to accesedent memory segments at each clock instant.

For this reason, we have decided to usew-column S-randonfRCS-randorinterleaver

16

> 14 1
7 2
Decoder; 1 RAM1
1 3
12 » 4
» 11 5
6 6
Decoder, 2 RAM2
16 7
3 8
» 9 > 9
15 10
Decoder, 3 RAM3
8 » 11
2 12
> 4 — 13
13 > 14
Decoder, 4 RAM4
10 15
5 16

Interleaver content

Figure 2.12: A PDTC decoder interleaver structure that does notmrevemory collision.

proposed in [4].

The magic behind RCS-random interleavers is the matrix structure. Thatmpeof a
RCS-random interleaver is as follows. First, the data sequence is puttiw@dimensional
matrix. Then, the rows of the matrix are interleaved by distinct S-randonieéatars. After
that, the interleaved matrix is interleaved once more, but this time column-wisdtbyedt
S-random interleavers. Finally, the elements of the matrix are encodedismy4.e., each
row is encoded by constituent encoders of the same encoder clustar tigmumber of rows
does not change after the interleaving process, equal number ditgenscodes are utilized
by this method, that is the case Nf= M*. On the decoder side, the operations are carried
out in the same manner for both the generatgdalues and received sequence. In that matrix
structure, the memory collision occurs if two or more rows have bits at samenolith
variables stored in the same memory block. However, that event is prdvantie firstrow
interleavingoperation. However, if we use less number of blocks than the numbewsfab
the matrix, collision avoidance becomes impossible since at least two deaddiles will

share the same memory block at the same clock instant.

4 The upper encoder cluster operates on the uninterleaved form of thig.ma

17

‘1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12‘13‘14‘15‘16‘

Information bits are written
into a 2D matrix in a row-
wise manner

Rows are interleaved by
independent S-random

112384 interleavers 113124
5 6 7 8 7 6 8 5
9 |10 |11 |12 121119 |10
13|14 |15 | 16 14 |16 | 15 | 13

Columns are interleaved by
independent S-random
interleavers

141119 4 —>» Encoder,1 —»{ 14 (14p| 11 [11p| 9 | 9p | 4 | 4p
7|6 |15 |13 —» Encoder,2 — 7 | 7p | 6 | 6p | 15 | 15p | 13 |13p
1|16 | 8 | 10 —» Encoder,3 —» 1 | 1p | 16 |16p| 8 | 8p | 10 |10p
12| 3 2 5 —» Encoder,4 —» 12 (12p| 3 |[3p | 2 | 2p | 5 | 5p

The 2D matrix of
information bits is encoded
row-wise

Figure 2.13: RCS-random interleaver generation and encoding of threnafion bits in par-
allel.

For a better understanding, we present an example that illustrates tHeRG8-vandom
interleaver in a PDTC structure with = M = 4. In this example encoding and decoding for
the uninterleaved data will be skipped for simplicity. In Figure 2.13, the inta@rigaperation
and the encoding operation according to the generated interleaver ia.s@owhe decoder
side, the second cluster’s decoders usd._thealues generated by the first cluster's decoders.

The access sequence of those decoders in the second cluster iSrsiegure 2.14.

18

> 14 - 1
11 2

Decoder, 1 RAM1
9 3
4 4
> 5
6 6

Decoder, 2 RAM2
15 - 7
13 8
- 1 9
16 10

Decoder, 3 RAM3
8 11
10 '—> 12
> 12 13
3 > 14

Decoder, 4 RAM4
2 15
5 16

Interleaver content

Figure 2.14: Constituent decoders of the second cluster get the selslrei . values and
read the data in the given address to operate on.

19

CHAPTER 3

JOINT CHANNEL ESTIMATION AND DECODING

3.1 Introduction

In digital mobile communications, one of the the main distortions introduced by thence
nication medium is the Doppler spread due to the movement of the receivisrDéppler
spread results in a time-varying fading channel when communication medsimdrgy scat-
terers. Itis removed by estimating tbleannel state informatiofCSl). To achieve high-speed
reliable communication, channel estimation corresponding to the estimation osthevery

often a necessary process.

There exist some flierent channel estimation algorithms in the literature. Theerdnt

estimation techniques can be listed in two main groups:

e Blind Estimation : Blind Estimation techniques use the statistical properties of the
transmitted signals without any knowledge about the transmitted symbols. Mietise
ods do not require a training sequence. Since no training sequenedigitbe pack-
ets, blind estimation provides morffieient usage of bandwidth. Some blind estimation
methods are listed in [14] and [15]. They will not mentioned anymore since bbti-

mation methods are not in the scope of this thesis.

e Pilot Symbol Assisted Estimation : These methods utilize pilot symbols placed in
the data sequence. The channel estimation process is initiated with the hegs®f th
pilot symbols as their bit values are known in the receiver side. Adding gjioiols
into the data sequence introduces some redundancy and bandffimémey somewhat

decreases.

20

In this chapter of the thesis, we will work on an channel estimation method tiséng
pilot symbol assisted estimation technique. In the design, we will use the tedmder
described in Chapter 2 together with the channel estimator to form an itesatinature. The

joint estimation and decoding structure is first proposed in [16].

3.2 Channel Model

As the channel model, we consider a discrete-time time-varying fading ehaith AWGN

so that the received signal at time insti&ran be written as
gk = fkak + Nk (3.1)

where fy is the sample from a time-varying correlated fading process at time irstapis
the transmitted symbol, ang is the sample from circularly symmetric complex Gaussian
random variable with mean 0 and variam:? For the fading coicients fy, it is assumed

that they are independent of the transmitted symbols and the noise.

The Rayleigh fading process used in the model is generated by usingkds deodel
given in [17]. In Jakes’ model, it is assumed that the real and imaginaty pithe complex

channel cofficients (fx values) are independent with the autocorrelation function of
Rt[K] = Jo(27 fakTs) (3.2)

where Jo(.) is the zeroth order Bessel function of the first kirfd,is the relative Doppler
frequency between the transmitter and the receiver, Tand the symbol period. To sim-
plify the future calculations, we assume normalized flat fadi{gf|°} = 1, and unit energy

transmitted symbol€{|a/?} = 1.

3.3 Transmitter Model

At the transmitter side, we use pilot symbol assisted modulation (PSAM) aegedfin [16].

The transmitter model is given in Figure 3.1.

In this model, a data sequenfm} is first encoded by a turbo encoder. The encoded

bit sequencécy} is passed through a channel interleaver. The resulting interleavedrasgu

21

di C Channel G Pilot Symbol 8
— Turbo Encoder > »
Interleaver Inserter

}

a,

Figure 3.1: Joint channel estimation and decoding transmitter

{C«} is then split into groups of\i — 1) bits and the known pilot symbols,} are placed in
the center of each group periodically. The final sequdagkis transmitted over the time-
varying Rayleigh fading channel. In this work, all the sequences arelar fjorm, i.e.,

{dk}, {c), {axlef—1, 1}. The parameteM is called thepilot symbol spacingnd it is assumed

to be odd [16]. These pilot symbols may take ofiatient values.

In this model, a channel interleaver is required for a better performascaube turbo
encoding may not be flicient in the existence of a fading channel induced errors, i.e., burst
errors. For that reason, a channel interleaver is used to scrambligntbels. The &ect of

channel interleaver on the performance gain is given in [5].

3.4 Receiver Model

The iterative channel estimation structure proposed in [16] is used wittdddek path from

the turbo decoder at the receiver side. The receiver structureas givigure 3.2.

— 2@ B (@
[A
Pilot Symbol Channel ‘ Nonlinear “
- - Feedback |
Inserter Interleaver .
Function
éiq)
h J -
r @ !
ko Channel . LL | Pilot Symbol o Channel »| Turbo Decoder
Estimator Computation Eliminator Deinterleaver

t

Figure 3.2: Joint channel estimation and decoding receiver

After the reception of a sequence, the sequence is given to the clestinghtor. At the

22

first run of channel estimation, a filtering operation is performed to obtaimitie estimates

of fading codficients{ fk(C‘)} where superscrigl) denotes the iteration number of the channel
estimation andy = 1 for this first iteration. Using these initial estimat 1)} together
with the received sequence, the log-likelihood ratibk)(are calculated and fed toRilot
Eliminator module to remove theL of the pilots. After removing the pilots, the remaining
LLs are passed through a channel deinterleaver and the redultasgquence is given to
a soft-in soft-out(SISO) decoder. In our system, turbo decoders are used for tioglidgc

process.

To get a better performance from the feedback mechanism, the de@mis to calcu-
late the probabilities of the parity symbols together with the data symbols. The parity
calculation issue, handled in Section 2.3.1, steps in at that point. After tiogidggrocess,
the computed.Ls {1(@} of the coded sequen¢e} are passed throughrenlinear feedback
functionto obtain the estimates of the code symuéfg)}. This feedback function can pro-
duce hard-decision or soft-decision estimates. After the estimation of syueldols, these
estimates are first interleaved and then pilots are added in the same mariagreekin the
transmitter side. After all, the resulting sequence estimaﬁﬁh is given back to the channel
estimator. The estimator runs again, but this time it uses the v{/&(&eset, not only the pilot
values{ap}. After the estimation is completed, the operations explained for the first estimation

and feedback mechanism are repeated iteratively.

In the receiver structure proposed in [16], turbo decoder runasrferiteration after each
iteration of the estimation process. In our system, we prefer to operate bwedecoder for
some iteration numbers to get more reliahles for the code symbols and then feed these

{49} values back to the estimator to complete the estimation iteration.

3.5 Channel Estimator

The receiver model given in Figure 3.2 requires a channel estimatgrémer operation.
Different algorithms are available to estimate the channel. In this part, we wililoesice
estimation method which employs the LMS filtering. An estimation method which uses a

minimum mean-squared err@MMSE) filtering technique instead of LMS is given in [16].
In the channel estimation method which we have used in our system, the estimation

23

process is carried out with a well-known LMS algorithm [15]. Using an Lii®r instead
of MMSE allows less computations. That's why channel estimator structuted MS has

a lower complexity when compared to the ones with MMSE.

This technique derives the first estimates by using the pilot symbols only.e Siec
values of only pilot symbols are available at the receiver side, applyidvEhalgorithm is
not applicable. So, the channel is estimated at the pilot locations and thiesated values
are assumed to be constant around the pilot symbols. The structure adieerkpacket is

given in Figure 3.3 with a pilot symbol spacing .

~Io[ololo] - 7]+ [oo[o[e[e[e] - [F] - [o[o[o]o] <+ -

one group one group

Figure 3.3: Packet structure of a received packet wRatenotes the pilot symbols.

In the following iterations, an LMS filter is employed instead of MMSE filter while
estimating the complex fading cieients. The channel estimation in tge- th iteration is

computed by using the estimates of the transmitted sequence op-tlig-{ stiterationaf(q_l),

f"(Q)

= (00 @9

whereg stand for thestep sizeof the LMS algorithm an@l((q) is called theerror term, defined

as

e = ry— {9, (3.4)

To improve the error performance of an LMS filtering method,féedent approach can
be used, called the-®ay LMS[6]. In this approach the estimation process is carried out in

two ways, in forward and backward directions. In both ways the LMSrélgu is applied.

For the forward channel estimation case, the computations are the sameasghm@e-
viously described in the regular LMS algorithm. If we call the forward estimafecomplex

fading channel cdécients for theg — th iteration as{ﬁ(k(‘)},

H@

0, = 1 s @9

24

Wheree(fql)(stand for the error term in tHerward direction,
() 5(a-1
&) = ri - R8T, (3.6)
In the backward direction, the same computations as in the forward caaepdied with

small diferences. The backward estimations of complex fading channﬁi(neats{gﬁq)} are

computed as follows.

60 = o +peldaly, (3.7)
Sk = f-glal. (38)

The estimates of complex fading channel fa&ents arg fAk(Q)} the average of the esti-

mates computed in forward and backward directions,
R@ Al
(hk +0,)

(@A) _
fl = >

(3.9)

It must be noted that, the 2-way recursive computations are initiated by tn@regti-

mation results of the previous iteration.

A = oD, (3.10)
o = i (311)

wherep is the length of the packet including the pilot symbols.

This 2-way LMS filtering method can also be used for determining the careguéncy

offset to overcome the synchronization problem.

3.6 Nonlinear Feedback Function

The nonlinear feedback function, shown in Figure 3.2, generates tingaéss of the coded
sequencéty} using theL Ls computed by the turbo decodag}. This function can be imple-

mented in two dferent ways as mentioned in Section 3.4,

1. Soft-decision feedback function 1n the soft-decision feedback case, the function uses
the trigonometric tanh)(operation for estimation of coded sequence [16]. Fogthth

iteration the function operation is as follows:
@

25

2. Hard-decision feedback function : The hard-decision case uses the limiting values of

the given soft-decision feedback function in (3.12),

+1, 4@>0
e = . (3.13)
-1, /lk(Q) <0

26

CHAPTER 4

FPGA IMPLEMENTATION

As mentioned before, our aim is to implement the structures described in @h&psnd
3 on an FPGA-based system. During the implementation, we have faced withpsolie
lems due to the fixed-point architecture of the FPGAs. On the other handieveeable to
make some optimizations by using the parallel processing capability of the FRPGAUse.

In this chapter, we mainly concentrate on the implementation aspects of partibelin&
Turbo Decoders and estimating the fading channel characteristics byald8thm on an
FPGA-based system. It must be noted that the implementation steps listed in ftisr cra
determined during the simulations. Resulting performances of the designge dALt402

platform are discussed in Chapter 6.

4.1 PDTC Decoder Implementation on the FPGA

The decoding algorithm for a PDTC decoder using the MAP decodingitiigors given in
Sections 2.3 and 2.5.2 with details. However, implementing a soft-in soft-ds@(Slecoder
on an FPGA inherently faces some problems since it has limited resourcels @dioot
let one easily use floating-point arithmetic or large fixed-point arithmetic.odgimout this

section, we will describe our solutions to the problems and optimizations wealpalied.

4.1.1 The Center to Top Algorithm

When the metric calculations in (2.13) and (2.14) are considered, it caedrethat the
two operations are independent of each other. This gives the ability tolae ands

metrics simultaneously assuming that all of the received values are avadablahch metric

27

calculations. This assumption is valid for the iterative decoding schemes d@ooeling
process can begin after receiving the whole packet. By this algorithmettadihg time can
be halved. Consider a decoder running on 40 information bits. At time 0 thécruetues
are initialized, that isr*(0) andg*(39) values are generated as defined in (2.18a) and (2.18b).
After that,o* andg* values are calculated without computing any LL value up to time 20 as

shown in Figure 4.2.

Middle of the RAM

20

Figure 4.1:« andg values are initialized at time= 0.

Middle of the RAM
Calculate e, values for k ={1,2,...19}

. . . .
G| a4 | o Qg

o 1 2 - - - 1912 - - - 37 38 39

ﬂ; " : " ﬁ;a ﬂ:;g ﬂ:o

Calculate S, values for k ={39,38,...,.23}

Figure 4.2: « and g values are calculated up to timhe= 20 with forward and backward
recursive calculations.

At time 20, both ofa}, 55, andaj,, 55, values are available together with the branch
metrics for the time instantyy,, andyjs. So,LL(Uzo) andLL(u19) are computed and given

out as shown in Figure 4.3.

That process, starting from the center of the frame, continues to thenerglraultane-
ously to the beginning of the frame. That’s why this algorithm is named as ‘icemtep”

[12]. The rest of the process after the calculation of the center log-ld@ditvalues is shown

28

Middle of the RAM

Calculate LL(u,g)
AN

a | o | a| - ||
o 1 2 - - - |19f2]| - - - 37 38 39
B\ Bu) - - | Pu| Bl B

\<> Calculate LL(u,,)

Figure 4.3: At timet = 20, LL(uy9) andLL(uyp) are calculated.

in Figure 4.4,
Middle of the RAM
Calculate LL(u,) for k ={1817,...,.0} | Calculate «; values for k ={21,22,...,39}
o | o | o | || || | o
o 1 2 S 19 | 20 o 37 38 39
ﬁ; ﬂ; /B:: /B;o ﬁ;1 ! ' ' ﬁ;s ﬂ;g ﬂ;c
Calculate f; values for k ={19,18,...1} | Calculate LL(u,) for k ={21,22,...,.39}

Figure 4.4:LL calculation continues in parallel with tlgg calculation to the end of the bit
sequence, that ts= 39.

It must be noted that andg metric values do not have to be written to memory after the
midpoint, sincelL values are calculated simultaneously. So, not only the decoding time but
also the memory usage is halved by this algorithm. The decoding of a 40-bitrses| (20
information bits and 20 parity bits) just takes 40 clock cycles and this prasessa memory

block of length 46.

4.1.2 Observation Quantization

In the conventional mathematical modek-& or —1 is assumed to be transmitted for BPSK,

an appropriate noise is added and calculations are carried on with trsigenasnts. An

! The width of the used memory depends on the representation of the madtrésyn the fixed-point archi-
tecture

29

AWGN channel for BPSK modulation can be modeled as
Yk = X + N, (4.1)

for any time instank whereyy is the received symboky is the channel gain{Es in an
AWGN channel withEs being the signal energyy is the transmitted bitg = #1) andn is

a circularly symmetric complex Gaussian random variable with mean 0 and eahNgn

The conditional probability of a received symhglcan be expressed as

1 _ \yk*hkx\z

fdhex) = —e Mo, (4.2)
7Ng
2 h 21y, |2 2
It) = ~ngeNg) - 2 DL ey, @9
0 0 0
= C+£%{ykhEX*}, (4.4)
No

whereC is a constant and has nffect on the MAP calculations. Hence, the function can be

redefined as
.2
In(f (yklhk, X))=N—0%{ykh’.2x*}, (4.5)

where= denotes equality with a constant.

As we use fixed-point arithmetic, the metric values in the BCJR algorithm are-rep
sented by a fixed number of bit§, However, the decoder is not guaranteed to work properly
with this representation unless the channel observations (input of tel@@are carefully
guantized. For that reason, we need to quantize observations bytizqtian factorq, such
that the represented observations lay in éS&shaller than the set of numbers represented by
K bits. After that, the quantized observation probability ot 1 is used in decoding with

2/NoR (yxhy, J

Qk = QUn(f (yulhi, x = 1))) =]

(4.6)

If we apply the AWGN channel model given in (4.1) on (4.6) for a BPSK uiatilon,

we get
2+VEs/No'R
O - WJ (4.7)
_ ZVE_S/NO%;(\/E_SﬁLnk)}J, (4.8)
~ 2E, 2VE:
- et) 9

wheren; is the real part of the complex Gaussian noise with mean 0 and variyi2e

30

Recalling that a finite number of bits are used in representing numbers, élsgayuis
how to choose. If gis chosen to be very smal’s will be large and the formulas such as
(2.19) will not function properly due to overflow. ¢fis chosen to be very large, then the dif-
ference in noise values of the observations will not be properly passbd decoder and then
soft decoding will s&fer. We resolve the problem above by the compromise that the packet
is normalized with respect to its absolute maximum symbol vallesMax If we represent
that value with a predefined valudormMax(absolute maximum value after the quantiza-
tion is performed) then we get a sBt= {—-NormMax—-NormMax+ 1,...,NormMax-—

1, NormMax for decoder’s input sequence. This information can be combined withla we
known property of the Gaussian distribution that, in a normally distributed getmeanu
and variancer?, observing a numbep such thatp| > u + 30 has a probability of about

1/1000. To be able to apply that property, we need to identify the mean arahearof the

: _ 2B 2VEs
random variable\ = g2 + =N
2Es
E(A} = — 4.10
A = (4.10)
e 2VE 2VE VD
Nog " Nog +2
_[ZEsL
Nod A
_ VEA (4.11)
Va

After the quantization of the packet, it is known that symbols greater tiNdormMax
or smaller than-NormMaxcan occur in the packet with a small probability. If we neglect

the small probability of 11000, we can definslormMaxas

NormMax = E{A}+ 3oa (4.12)
VE{A]

= E{A}l+3 4.13

{A} + NG (4.13)

By replacing (4.10) in (4.13), we get

2E¢ 2Es 1
NormMax= — + 3,|———. 4.14
Nog \J Nog /A (4.14)

By solving this equationg can be calculated as
2Es 2E
% 3V

v 4.15
NormMax ()

q:

31

As it is obvious in (4.15)g is a function of theS NR(Es/Np) for a selectedNormMax
value. Instead of calculating tltpvalue for each packet, a look-up table (LUT) can be used.
A relatively large LUT that stores thgpvalues in 8 bits, 3 for integer part and 5 for the decimal
part gives a precision of/2° and yields a satisfactory performance. Tépiglue will be used

to represent any floating-point number in our used representationdédee

4.1.3 max Approximation

Themax expression given in (2.15) contains two terms: the maximization term ¢magx(
and the correction termf{(|x — y|) = In(1 + e™*M)). This correction term poses a trouble
when it is needed to be expressed in fixed-point arithmetic. It is not pegsikasily realize
thenaturallogarithmandexponentiafunctions fully in such a system. That’s why, some ap-
proximations have been applied to realize the correction fefix—y|) in themax operation.
Four diferent approximations have been listed in [18] with the resulting BER perforesa

These methods can be listed as follows.

1. Max-log-MAP approximation: With this method, the correction term is neglected
(fe(Ix = y) = 0) for all (x,y) pairs and themax operation is approximated as the
ordinary max operation,

max(x,y) ~ max(,y). (4.16)

2. Constant log-MAP approximation: This method takes the correction term as a con-
stant valueC or as zero. To give out the result, thé&fdrence of the two operandg<{y))
is compared to a predetermined threshold valuend if the diference is higher than
that threshold the correction term gets the value 0. However, if tiereince is found
to be smaller than the threshold then the correction term is expressed witlstardon

value. This algorithm can be formulated as

0 iflx-y>T
f(x—-Vy) = In(L+ e * M) ~) (4.17)
C iflx-y<T

3. Linear log-MAP approximation: In this method, the correction term is approximated

by a piece-wise linear function.

0 ifIx—y|>T
fe(x—yl) = . : (4.18)
alx-y|-T) if|x=y<T

32

The minimum mean-squared error (MMSE) algorithm gives a reasonalitosoto
(4.18) asa = —0.24904 andl' = 2.5068 [18]. It must be noted that, tHevalue must
be quantized with thg value defined in (4.15) since it is an expression in unquantized

floating-point domain. The neWw value will beT’ = T/q.

. Lookup table (LUT) approximation: In this method, a table is used to store thgx—

y|) terms. The performance of this method strongly depends on the depthidiind w
of the table. The width of the table determines the precision of the correction ter
projected to thenaxX operation. On the other hand, to span a sét efy| values within
more precise intervals, larger tables must be used. The mostimportarissad UT
approximation method is that the table must store the values in the quantized form. T

generate a LUT, we can write an equation as the following.

(4.19)

orty <[22

wherei = |x —y| andq is the quantization factor calculated during the observation
guantization process. When compared with the other approximation mettsints,au
LUT requires much more resources to be implemented but approximates tiregfloa
pointmax operation in the best way (when a table with appropriate depth and width is

used).

As itis obvious in the explanations above, to get a better numeric approxinzatimre

complex method is needed to be used. This complexity brings some extra cafwikatio

gether and that results in more resource consumption, slower clock, speeldigher decod-

ing latency. With all these in the hand, the approximation method must be dedidec a

carefully carried on analysis. As declared at the beginning of this chajgeoding latency

and resource consumption are two important requirements of our desiggllass the error

correction performance. Among the 4 described methods, only max-loB-&#proxima-

tion neglects the correction term. So, thh&alue is not used since no real value needs to be

represented in our own fixed-point domain. This means that, no readimgfstoring LUT

is needed and no latency is introduced due to reading ofjtvedue. That brings an extra

speed fomax operation. After all, we have decided to use the max-log-MAP approximation

method by accepting a performance degradation up2aB as seen in Figure 4.5. This fig-

ure is obtained after a simulation over 2000 packets with each containingal®bits. As a

33

result of using this approximation method in the decoding process, the Médeldeis named

themax-log-MAP decodeand we have carried on the studies with that decoder architecture.

BER

—6—log-MAP

107

—8&— max-log-MAP

0.5
E,/N, (dB)

Figure 4.5: The performanceftérence between a log-MAP decoder (using the ordinaay
operation with infinite precision) and a max-log-MAP decoder.

Studies in [19] and [20] have shown that max-log-MAP decoders widttowt any need
on SNR estimation. In other words, that decoder does not need anSiXRcestimation to
operate properly. So, not only tileax operators but also the constituent BCJR decoders do
not need the-storing LUT. When this LUT is removed, the decoder consumes lessroesou

and operates on faster clock speeds.

4.1.4 Fixed-Point Summation and Subtraction

Using a restricted set{[2%- — 1), 2-1 — 1] whereK is the metric size) to represent metric
values forces us to introduce new summation and subtraction operations witthoure
property in the given set. The operatiolpsum denoted by, replaces with the regular
summation. Under the assumptiongis_inf = 2K-1 — 1 andminus.inf = —plus_inf,
plus.inf, a> plus.inf orb > plus.inf

minus.inf, a<minusinf orb < minus.inf

a®b=4 plusinf, a+b> plus.inf (4.20)

minus.inf, a+b < minusinf

a+b, else

34

Similarly, a new subtraction operati@tipsubtract(e) is introduced as

aeb=aa(-b). (4.21)

4.1.5 Node &, 8) Metric Normalization

In (2.8) and (2.9) it has been shown tlatndg values are updated in a recursive manner.
As the computations go further, these metric values may overtiopl§s_inf) or underflow

(< minusinf). To solve this problemg andg values are normalized at each trellis step.
After each forward recursion, maximum of the newly generated forwaettic values is
subtracted from these values amdnetrics are updated with these normalized values. The
same is applied to the metrics. After the normalization process, we get a maximum value
of 0 for @ andpB metrics at each time instant and prevent underflow and overflow cases. O
any of the metric values reagtlus_inf or minus.inf, further calculations will not be able

to diverge from that value due to tleipsumoperation given in (4.20). So, normalization
acts an important role in implementation of the BCJR decoder in fixed-point atithméso,
some normalization procedure may be used even in floating-point casestbigpthe system.

Another approach to node metric normalization can be found in [21].

4.1.6 Memory Complexity

Before the decoding process, the observations have to be storéfnewli memory blocks in
order to use them in a parallel decoder structure. For that reason, arynstnoature is defined
as follows. If there aréN decoders operating in parallel, then there musNbadependent
memory blocks for data bit observatiorssiQ Figure 2.11). AccordinglyN memory blocks
for parity observations and memory blocks for interleaved parity observatiops &nd p,

in Figure 2.11, respectively). In addition to the$é,memory blocks are also defined for

interleaver (memory collision-free) tables.

Log-likelihood values are stored in RAMs, too. Each decoder needgaaraprobabil-
ity (La) and generates log-likelihood ratidl() andextrinsic information(Le), where in our

designLe's are calculated within the MAP decodefThesel. andL, notations are eligible

2 The extrinsic information is generated inside the decoder to decreasgsteenscomplexity at the expense
of maximum clock speed.

35

for the decoders running in the first cluster. In the second clusterdees use.. values as
and generates tHe values which will be used ds;, in the next iteration. The word “cluster”
is used just for picturing the system and corresponds to the blocks infreaffiteration. In
fact, decoders only change their state to switch the input and output Ididpdid ratios (4
andLe). SincelLL values are final results, they are updated (overwritten) after elaster
run. That structure brings out a memory usagefriBemory blocks for log-likelihood ratio

storage in the PDTC decoder.

Summing up all yields a usage oN7number of memory blocks for a PDTC decoder

with N constituent decoders in each cluster.

4.2 Channel Estimation Implementation on the FPGA

The channel estimation algorithm for the joint estimation and decoding strustgieen in
Chapter 3 with details, and shown in Figures 3.1 and 3.2. In this section, weesitibe the

implementation steps of the proposed structure on an FPGA-based platform.

4.2.1 Pilot Symbol Insertion and Elimination

The simulations given in [16] have been carried out for twidedéent pilot symbol spacing
values,M = 11 andM = 21. In our system, we use a reasonalllesalue by considering
these previous studiels| = 17. There are two main factors that makes this choice reasonable:
the Doppler frequency range of the simulated channel (to be discus&ddpter 6), and the

valueM — 1 must be a divisor of the packet length (512).

As shown in Figure 3.1, the interleaved form of the encoded bits is giveretBitbt
Symbol Insertemodule for the pilot insertion process. To accomplish this, these bits are first
split into groups of 16 bits. After that, the pilot symbols are placed into the cefteach
group. Although these pilot symbols may be assigné@édint values, we udep} = 1 in our

structure. The input and output sequences of the pilot inserter modudgvan in Figure 4.6.

To remove these pilot symbols, Rilot Symbol Eliminatormodule is assigned at the
receiver side as shown in Figure 3.2. The operation applied in that modaladly the

inverse of the insertion process given in Figure 4.6.

36

e 16 e 16—

one group ﬂ one group

Pilot Symbol Insertion

l

- - [po[p[o[p[- - [p] - - [p[p[p[p[p[D[- - [P| - - [D[D[D[D[- - -
17 e 17
one group one group

Figure 4.6: Input and output packet structures of the pilot symbolteiserodule.

SinceM = 17 is considered in the design, 518 = 32 pilot symbols are inserted into
the packet. After that insertion, the packet length becomes 544, i.e. , smluedancy is

introduced due to pilot symbol assisted channel estimation algorithm.

4.2.2 Channel Estimator

The two channel estimation algorithms for the pilot symbol assisted estimation meéned
described in Section 3.5 in detail. In this section, we give out the details #imumhplemen-

tation of the2-way LMSestimation algorithm.

Similar to the PDTC case, the main problem appears as the realization of a [§l$0 a
rithm in fixed-point arithmetic, this time a filtering algorithm. To handle that problem, th
received values are first represented in fixed-point. Thus, a ga#atizprocess is applied
to the received sequence to represent these values by a predetenomimeet of bits, i.e.l..
Different than the PDTC case, the channel is a Rayleigh fading channal li®dting value

(like NormMaxin the PDTC structure) is not easy to define.

The received sequences are first quantized by MATLAB on PC amd diu@ntized forms
of the sequences are given to the evaluation platform through the UARJe (tescribed in
Chapter 5). Inside the channel estimator, these quantized forms arensteatl of the real
values. After that quantization process, we getltHat representation sequences of the in-

phase and quadrature components of the received values. Theseguenses are handled

37

through two parallel and identical processes. Since they are identicglivereletails about
just the operations on the in-phase component. It must be noted that thésseemeed out

on the quadrature component.

For the first iteration of the channel estimator, a zero forcing equalizateppised. The
reason of using the zero forcing algorithm is to reduce the complexity asdhleuesource
consumption. The first iteration of the estimation process is carried out édlthweing. The
channelis estimated at the pilot locations using a zero forcing algorithm. hiemogodulation
is BPSK and the pilot symbol values are always “1”, the received valtg® pilot locations
are regarded as the fading ¢daent at those time instants. After that, the group of each pilot
(the nearesM — 1 locations to that pilot, shown in Figure 4.6) is assumed to have the same

fading codficient as the pilot. This first channel estimation iteration is shown in Figure 4.7.

Received Sequence

1% group 2" group . . . « 3"grop—— »

Py Py

' ' '

f‘]m fzm H f. 3121)
Channel Estimation

1% group 2" group . . . -« 3"grop—— »

‘flo)‘. -

fol . . . |fo
f] 1

PR I fol . . .
i E

fol .o
f32

fo
f32

Figure 4.7: First iteration of the channel estimator (constant fadinfficeast during one
group period).

In the second (and next) iterations, the step gize included in the LMS-based estima-
tion algorithm. In our fixed-point domain, thevalue is represented with 6 bits, 1 for integer
part and 5 for decimal part. The integer bit is used to represent thesibis always 0 since
B > 0[15]. Asgis a multiplier in (3.5) and (3.7), the representation bit number is increased
during this iteration due to this multiplication. Not to lose the accuracy, the redei@ues
and the fading ca@cients estimated in the first iteraticoﬁ((l)} are represented dy+ 5 bits.

The second iteration of the channel estimation algorithm operates as folbe$orward and
backward channel estimates are initialized using the first estimation resutist @ + 5 bit

representation, the first estimation results are shifted 5 times to the left anditntiainging

38

the sign of that estimation result.

A2 = fi¥x 100000 (4.22)
62, = f1 x100000 (4.23)

After that shifting operation, the resultant values possess a decimalffabits and an
integer part ofL bits. Hereafter, we will denote this representation with5*. The integer
part remains as bits since the integer part in the step size is always 0,4.e<,1 in our

design.

The second factor that mighffect the representation consistency is the feedback coming
from the turbo decoder. Due to the complexity avoidance issue, a haisiaitemechanism
is used on the feedback path. This choice brings no more additional cdiopsta the LMS
algorithm, but just an inversion if the calculated value is negativeé Since the inversion

process does noffact the representation bit number, the notatidhkeeps its form.

In the expressions (3.6) and (3.8), the error terms are computed bytractidn oper-
ation. For this operation to work properly the received sequéngés also represented in
L.5 bits in this iteration. However, this sequence was representédditg in the first itera-
tion. Enlargement ta..5 bits is achieved in the same manner as in the initializatio{rﬁf&n
and{g(kz)} sequences. After the representations in the subtraction is matchipsbtract
operation is applied, as described in Section 4.1#ledint than the ordinary subtraction op-
eration. However, this time, thelus.inf andminus.inf values change to2°>1 — 1 and

— (251 - 1), respectively.

After having a consistent representation during this iteration, the multiplicaeoo(d)
operations in (3.5) and (3.7) can be resolved easily. If we call these m"nmlt(,qi)(and

multf)ql)(for forward and backward error terms, in the second iteration we have

mulf?) = pefal” (4.24)
mult’) = peal. (4.25)

In the multiplication equations given above, ﬁi@ ferm has no fect on the bit number

of the result but fiects the sign. So, we will omit this term. The error terrdé)((andegzll

3 Since(&?} e (-1, 1}, the product is fiected just in sign.

39

have the representation bf5, while 8 has 15. Therefore, the multiplication result has the
representation ofl(+ 1).10. However, one of the bits in the integer part is unnecessary in
this representation since the integer bit of théerm is always “0”. After removing this
unnecessary bit, we get a representatioh..@D. These multiplication results are summed
up with {ﬁ(kz)} and{g(kz)} to get the resultant valuqﬁfi)l} and{g(ki)l}. To match the resultant
representation, the multiplication terms are needed to be represented innthefflol5. For

that reason, the last (rightmost) 5 bits are discarded. Although discéatdiag bits decrease
the precision of the multiplication result, thifect can be neglected when the quantization
process before the decoding operation is taken into actoting representation used in each
step is shown in Figure 4.8 for the first two steps in the forward LMS compatatibe final

summation is realized with elipsumoperation,plus.inf = 2->-1 — 1 andminus.inf =
_ (2|_+5—1 _ 1).

L.5 L.O

e(fzi =0 (2)51(1)&» Just affects
‘ the sign
L.5 L.5

multﬂ = ,Be(fzi'\a; Just affects
the sign
(L+)10 15 L5

Unnecessary bitsare | y. . . xx.xxxxx uuuuu
discarded 5

L.5

RO = A% @ mult?

v

L.5 L.5 L.5

Figure 4.8: The representations in the fixed-point domain of the forwartth of the 2 way
LMS algorithm.

For the following iterations (if any), the operations described for tieit2ration are
carried out in the same manner. Although the precision is increased by 5 Hissia itera-

tions, this does notftect the storage capacity. This increase in the representation bit number

4 The decoders operate on metric values represented in very few nofritits

40

is effective just for the computation registers. The results are stored in the memithiehe
width of L bits by discarding the 5 decimal bits at the rightmost place for these iterations.
After computing the forward and backward estimation sequerﬁi@s}; and{g(kq)}, the final
estimates of the fading channel ¢ogents are calculated as in (3.9). To realize this averag-
ing operation, summation result is first expressed_by 1 bits without any loss. Instead of

division by 2, the rightmost bit is discarded and the result is expresdetiits again.

The duration of the estimation process is an important parameter for the sy$tem.
reduce this duration, some implementation tricks are used as follows. In th@iterather
than the first one, the 2-way LMS algorithm is used for the estimation issug.isAsbvious
in (3.5) and (3.7), the forward and backward recursive computatiensdependent of each
other. Therefore to speed up this LMS algorithm, we can apply the CTTgcém top)
algorithm described in Section 4.1.1. By applying the CTT algorithm the estimatomegs
of a sequence with length 544 is completed in 544 cycles rather than 1088.

Up to this point the computations are described for the in-phigssomponents. After
carrying out the same operations on the quadrature compori@mge(can calculate theL

values to feed the turbo decoder.

As a design consideration we chodse- K, i.e., the operations carried out in channel
estimation operations are more precise when compared to the decodingrbregason of
that choice can be explained as follows. Implementation of a channel estiomERGA is
realized with the use of sequential logics mostly. Hence, the clock speethamdsource
consumption of the design are ndtexcted so much for increasing valuesLofOn the other
hand, the observations received by the turbo decoder is quantikedits in theobservation
guantizationprocess described in Section 4.1.2. Notffeet the performance of the decoder,
choosing arL value larger thaik seems more reasonable when the performance of the overall
system is considered. However, choosing a very largalue will bring some unnecessary
complexity in the estimator side since the representation bit number is eventuleitybvack

for the decoder operations.

41

4.2.3 LL Computation

As seen in Figure 3.2, after the channel estimation process,Lihvalues to be used by the
turbo decoder are computed. During this computation the channel estihﬁ%‘feare used
together with the received sequenog. As mentioned before, both of the sequences consist

of complex values and each value is expressed as

Mk el +1ireQ, (4.26)

(9 = £ +ifD. (4.27)

The LL computation is achieved in [16] by multiplying the received sequence by the
complex conjugate of the channel estimations and with a factofNg. 2T his multiplication
factor comes from thi;/2 term in branch metric equation given in (2.11) whiege= 4Es/No

andEs = 1 in BPSK modulation. As a result, thé. computation is accomplished in the way

_ 2 ~(0)

LLe = N—O%{rkfk } (4.28)
_ 2 - Q) £(0)
= N—O%{(rkJHer)(ka ~if o)) (4.29)
_ 2 £ Aq)
- N_o(rk’l il + reofen) (4.30)

However, since the turbo decoder used in the system is a max-log-MARIeleche
exact values are not needed for the proper operation of this de[d@&0]. That's why, the
term 2/Np in (4.30) is dropped to reduce the computational complexity. After modifying the

LL computation operation, we get

L =1 £ + o fia. (4.31)
In (4.31), there exist two multiplication terms which operate on balnit numbers. The
results of these multiplications can be representedlbyi%s without any loss in accuracy.
Since the representations will be representedibits after theobservation quantization
process, there is no need to representihealues with 2 bits. That’s why, the multiplication
results can be represented in any number ofBjtwith B > K not to dfect the performance
of the decoder. As a design choice, the multiplication results are considetedits by

regarding the rightmost (least significahtpits.

42

CHAPTER 5

TESTBED PLATFORM

In this thesis the motivation is basically the hardware implementation of a parall&lides
decoder and a channel estimation algorithm as described in Chapters882 lanarder not to
deal with problems that one faces with actual wireless modules, the desegoardaed on a
stand-alone operating environment. Expected characteristics of aw#alrenent is realized

on the FPGA with out any loss of generality.

5.1 Testbed Hardware

We designed our system and carried out the experiments on the ML-4@R-Wif Evaluation
Platform with the help of some test and measurement equipments like the ospidesand

function generators. The overall testbed setup is given in Figure 5.1.

. | RS 232
port

JTAG | JTAG
Emulator port

A
A

A

ML-402 Virtex-1V
Evaluation
Platform

Figure 5.1: The overall testbed.

43

The communication to the board is accomplished with two connections. First one is
the connection between the USB port of the PC and the JTAG port of theadiea board
via a JTAG emulator. This connection is used to write a “.BIT” file to the FPGADAIs
this connection is used by the ChipScope during the debugging process ¢@scribed in
Section 5.2.3). The second connection is maintained betwedRSP&2 ports of the PC and
the evaluation board. This connection is controlled by MATLAB on the PC aidkused to

collect data during run time.

5.1.1 ML-402 Evaluation Platform

A Field Programmable Gate Array (FPGA) is a kind of logic chip that can b&gaed by
the user after its manufacturing. Unlike a logic gate, which has a fixed funaio FPGA
has an undefined function at the time of manufacturing. FPGAs are very istmiRLDs
(programmable logic device), but theyfigir at the number of gates they contain and their
memory structures. Although PLDs are limited to hundreds of gates, FPGAsonégin up

to millions of gates. Since the FPGAs have volatile memory due to their static rarm@®ssa
memory (SRAM) based structures, they need to be programmed after ppweFPGAS
are composed ofonfigurable logic block§CLBs). These logic blocks can be configured
to perform complex combinational functions or to implement simple logic gatesAlD
andOR A common CLB contains the elementary structures such as look-up tablés)LU
flip-flops, multiplexers, etc. as shown in Figure 5.2. Other than CLBs, FR@# contain

Random Access Memory (RAM) modules for data storage tasks.

: = Output
— 4-input ‘ N
Inputs LUT

D Flip-Flop

—

Clock—

Figure 5.2: A common CLB architecture.

In Xilinx FPGAs, the CLBs are called “slices” and theyffér from the common CLBs
with their contents. The slice structure of a Xilinx FPGA is shown in Figure 5hi&s€ logic

blocks are connected to each other with programmable switches. If thereladian between

44

slices then these switches will be ON, else OFF. When it is needed to stota, #haésoutput
of LUTs can be multiplexed to the slice flip-flops. Other than storage, fligsfloppoduce
pipelining by breaking an operation into two parts in order to obtain a faglagating func-
tion. As a result of having these combinatorial logic parts, FPGAs haveat gotential in

operating parallel processes simultaneously.

Inputs c1 C2 C3 C4
| selector |
G4 | [state | Outputs
- S
G3 :
FHORHE D Q Q2
G2 Table D
&1 . |
. D E =
Lookup| - D i
Table T G
F4 | state |
s
2 Lookup 5 @ ai
F2 Table i
F1 O 1.
D Vee . D
Clock F

Figure 5.3: Slice structure for Xilinx FPGAs.

Our evaluation platform is the Xilinx ML-402 Evaluation Platform. It containg@4X/ SX35-
FF668-10 Xilinx FPGA chip. The basic specifications of this chip is givenabl@5.1. The
block RAM resources are 18 kb true dual-gdRAM blocks, programmable from 16k x 1
to 512 x 36, in various depth and width configurations by concatenatingdbkdovertically

andor horizontally as desired.

In addition to the FPGA chip, ML-402 contains several other featuresraedaces. A

short list of these interfaces is given below [22].

e DDR SDRAM : The board includes an external 64 MB of DDR SDRAM using two
Infineon HYB25D256160BT-7 chips. Each chip has 16-bits wide datbgral two of

! Dual-port RAMSs contain two ports which operate independently and sgnolas with two diferent clocks.
Two different pieces of information can be written (read) to (from) two distindtegses of the RAM concurrently.

45

Table 5.1: Specifications of a XC4VSX35-FF668-10 FPGA chip

| Structure | Count | Explanations |
Slice 15,360 Function gene_rators, storage
elements,multiplexers, etc.
BRAM (kb) 3,456 Variable size RAM blocks

for data storage
18-bit x 18-bit signed multiplien
and 48-bit accumulator

Xtreme DSP Slice 192

them form a 32-bit data bus which is capable of running up to 266 MHz [RRthe
presence of a microprocessor, these RAMs can be used to store datarfd-alone
operations. Besides, these RAMs can be used as the processor mdmnairyneludes

instructions in the presence of a soft microprocessor core.

ZBT Synchronous SRAM : The board contains a 256K x 36 bits synchronous ZBT
RAM which provides a high speed low-latency external memory to the FP®&s. T

module is also available for data storage.

RS-232 Port with Direct FPGA connection : The ML-402 board contains an DB-9
serial port which allows the FPGA to communicate with other devices. An imeerfa
chip changing the voltage-levels are also included. The RS-232 comrméstime of

the most widely used communication methods and is known for its low-weight trans
mitter/receiver structure. In our setup, RS-232 is used for simulation pespds the

run-time, the FPGA communicates with the PC through this port.

10/10Q1000Tri-Speed Ethernet PHY : The board contains a Marvell Alaska PHY
device operating at Y000’1000 Mbps. This port makes it available to reach the board
through ethernet connection. However, to accomplish that, a small gacasd an

ethernet controller are needed.

Compact Flash and SystemACE:The board contains a Xilinx System ACE Com-
pactFlash (CF) configuration controller. A maximum of eight configuratiorgasan
a single CF card can be supported by the SystemACE controller. Using itcbasvon

the board, the configuration file to be loaded on the FPGA can be selected.

Differential Clock Input And Output With SMA Connectors : High precision clock
signals can be fed to FPGA by SBSMA connectors. This structure allows the FPGA

46

to be fed by function generators.

5.2 Software Used For Simulation, Implementation, and Debgging

In this section, some of the software programs used during the studies witidoeibed very
briefly. These programs are used atatient phases of the setup procedure. We can group

these phases as simulation, implementation, and debugging.

5.2.1 ISE Design Suit and XST

ISE (Integrated Synthesis Environment) is thieegrated development environm¢iRE) de-
signed by Xilinx. This environment provides a GUI (graphical user iat=j to the designers.
XST (Xilinx Synthesis Tools) is the software used for synthesis, implemeniatiwhloading

a project on a Xilinx FPGA. During implementation of the system on a Xilinx FPGA, w
have used Xilinx ISE software. The implementation steps of a general Xiliojegris di-
vided into steps, each having certain inputs and outputs. Brief descripfitimsse synthesis,

implementation, and loading steps are as follows [23].

5.2.1.1 Synthesis

The project is firstly synthesized before the implementation process. Sigtes an im-
portant role that is analogous to the compilation process in a software ddsigms step,
the hardware description language (HDL) is converted into registerféraiesel (RTL) de-
scriptions. In this description level, the design is represented in terms o&ldgarks, like
gates. The operation following that conversion is the optimization procasisl process,
the unused signals are removed and the number of slices is reduced yngithe slices
which do the same job with an existing one. Xilinx XST produces a “.NGC” file irakjin

format.

a7

5.2.1.2 Translation

Translation is the first step of the implementation process. In this step, a g&iaic
database (NGD) file is generated by combining all of the input netlists angihdesnstraint
information provided by ISE. The generated file contains all the informageded for map-

ping the design on the destination FPGA.

5.2.1.3 Mapping

The mapping process starts to operate after the translation finishes its joleatets the NGD
file. In this step, a design rule check (DRC) is run over this file and the Wésimpapped into
the Xilinx FPGA as specific hardware blocks. It is possible to see an eressage if there
is a mismatch in the specified constraints. This kind of errors mostly occuns thbd VDS
(low voltage diferential signaling) drivers are used in the design. The results of theingapp

process are output to a Xilinx native circuit description (NCD) file.

5.2.1.4 Place and Route

After the mapping of the design, the place and route (PAR) step starts Whik.operation
places and routes the design in accordance with the previously gendi@tedile. Con-
straints have a great importance in this step since the design is placed orGAdd-Batisfy
the given constraints. This importance can be exemplified as the followiag:dhstraint on
the clock speed is given to be at least 100 MHz, the placement of the locke FPGA
slices are done in a way to satisfy this clock speed in the worst case. Astig,ca NCD

file which matches all the design specifications is generated.

5.2.1.5 BitGen

BitGen is the programming file generator for Xilinx FPGAs. This program is eldée in
the Xilinx ISE tool. After the implementation of the design finishes, BitGen accepts th
previously generated NCD file and produces a “.BIT” file which is in therddformat for

programming a Xilinx FPGA via a JTAG connection.

48

5.2.1.6 Impact

Impact is another program which is embedded in the ISE tool. Other than tpmir-PGA,
it has some additional features like [24],
e verify configuration data for single devices,

e create PROM, SVF, STAPL, System ACE CF, and System ACE MPM pnogriag

files.

As the final step, Impact loads the “.BIT” file to the Xilinx FPGA. If all the giveteps are
completed successfully, the logic blocks in the FPGA are arranged in thectdorm to

perform the desired function described in the HDL.

5.2.2 ModelSim

ModelSim is an advanced simulation and debugging tool designed for A&igli¢ation-

specific integrated circuit) and FPGA designs. ModelSim has 3 major distnilsutio

e ModelSim PE (Personal Edition),

e ModelSim SE (Special Edition),

e ModelSim LE (Linux Edition).

For some FPGA vendors, there exist some special distributions of Model&uelsim

XE is the distribution of ModelSim for Xilinx ISE. It is replaced with the originailiXx
simulation tool after installation and fully integrates to ISE. This distribution hagitfterent
license choices. One of the licenses is free and can be obtained fronelipage of Xilinx

through a member account. The other license is a full one which simulatesdbe £600

times faster when compared to the free licensed version of ModelSim.

ModelSim simulations can be grouped into two, behavioral simulations and qast-

simulations.

1. Behavioral Simulation : Behavioral simulation simulates the behavior of the code

without considering the gate delays and clock skews. The results of thitationuare

49

“perfect” when compared to the real operation of the design. Synthgdizndesign

is enough for this simulation to run.

. Post-Route Simulation : This simulation can be run after the place and route step of
the implementation. That's why, post-route simulation is highly reliable and generally
simulates the design in the best way. However, this simulation method is slower whe
compared with the behavioral one. In this simulation model, logic block struofure
the design on the actual FPGA is simulated. So, latency introduced by theagates

skew in the clock can be observed. Although the design is simulated in thevagst

by this process, it becomes harder to debug the code since the simulatsoonrtime

optimized form of the design.

5.2.3 ChipScope

ChipScope is a real-time debugging tool designed by Xilinx. This tool embexeaal
block in the FPGA in order to track the signal changes and report themdoghrthe JTAG
emulator in run-time. The signals to be observed in real-time have to be deterpafurd
synthesizing the project since the ChipScope uses some additional slec&sAMh on the

FPGA.

There may be some special cases that the overall design functions invanted man-
ner. Simulations may not be adequate to see these problematic conditions.t tagba
ChipScope may be used to collect the relevant data to resolve the problear.dtudies, we

have used ChipScope whenever we face with such a situation.

5.2.4 MATLAB

MATLAB is used in diferent phases of this thesis study. Before implementing the system on

the FPGA board, all the blocks are first generated in MATLAB envirortm&hese blocks
are simulated until the desired results are obtained and the implementationspooctse
FPGA board starts after then. The encoder and decoder blocks, ectdahnel estimation
algorithm, described in Chapters 2 and 3 respectively, are implemented DhABAtO see
how they behave in the existence of an AWGN (additive white Gaussian)raisefading

channels. The MATLAB environment presents a fast verification metbioithé decoding and

50

estimation algorithms. To collect data from the board and to change the desmmeters
in the run-time, MATLAB is used on the PC side. For these run-time purpd4as| AB
uses the RS232 port of the computer. The collected data on the PC sidedsg#d to obtain

performance results and related figures again by MATLAB.

5.3 Miscellaneous Components

In this section, we will describe the procedure carried out during thehbeste of the proposed

systems and algorithms.

The test setups are shown in Figures 5.4 and 5.5. During the perfortestsef PDTC
decoder architecture under AWGN, the setup given in Figure 5.4 is Usdtlis setup, the
most compelling part is the generation of the AWGN channel on an FPGApdtiermance
tests of the PDTC decoder in a fading channel with a channel estimator idetechp the
setup in Figure 5.5. In this setup, fading channel is generated on the EG\sMATLAB

and the resulting received signals are directly given to the ML-402 board

Enable Generator Noise Generator [

Transmitter Receiver Error Counter
(Encoder & Pulse Generator) (Quantizer & Decoder)

A

A [
' |
UART UART JTAG
Receiver | Transmitter port
’ MATLAB ‘ ’ Xilinx ISE ‘
PC

Figure 5.4: The test setup used to see the performance of the profd$&ddecoder struc-
ture in an AWGN channel.

51

Y |

Quantizer &

’—v Quantizer » Estimator > Decoder Error Counter

v

UART UART
Receiver | Transmitter

A 'J
1

MATLAB

\ 4

PC

Figure 5.5: The test setup used to see the performance of the propodeskjonation and
decoding algorithm in a fading channel.

5.3.1 Enable Generator

The “Enable Generator” module produces an enable signal periodiddilg. period is ad-
justed not to interrupt the decoder operations. The generated enaféé tsiggers the en-

coder block and transmission of a packet starts after that point.

5.3.2 Encoder and Pulse Generator

“Encoder and Pulse Generator” module is triggered by an enable sigmdliged by the
“Enable Generator”. After this enable signal is received, the module stapgsoduce the
encoded version of a known sequence. When the sequence is rebdyremsmitted, the
BPSK modulation is applied to this sequence with an amplitude value o§™fo denote
the signal amplitude). This value is given to the system by the UART module ievach
some test parameters by varying the SNR value. Giving an amplitulgresults in a BPSK

modulated signal with the energy Bf = AZ.

52

5.3.3 Noise Generation

To obtain the performance of the proposed decoder architecture in &aNAwWiannel, the
most important point is to realize such a channel on the FPGA. In our siudy)dom data
generation algorithm is needed in order to generate a realistic environmanevelr, a true
random number generation is impossible since the state of the data genfeatsrthe future
data and future states of this generator block, and tiiésedisrupts the randomness of the
generated data. There are manffatent methods for generating random data and they vary
as to how unpredictable the generated data pattern is or how statisticallyrrahedalata is.
In most of the generators, an initial state is assumed to begin from. This initelistzalled
the “seed”, and the numbers are generated by the usage sketusAlthough this method
creates long runs of data with good random properties, after some peisetuence repeats
itself. That's why, the generators using this kind of number generation methe called

“pseudo-random number generators”.

One of the most popular pseudo-random number generating algorithms ‘lintree
feedback shift register” (LFSR) method. The word “linear” comes fittwa binary linear
operations XOR used in the method. This generator updates the register bit contents by
shifting the register in a way and a feedback mechanism operates to upelatis¢harged

content. An LFSR with a register width of 16 bits is shown in Figure 5.6.

1 11 13 14 16

1 (input;

Figure 5.6: An LFSR of width 16 bits with a seed of “1010110010111100".

The arrangement of taps for feedback in an LFSR can be expressgubéynomial with
codficients “0” and “1”. This polynomial is called thieedback polynomiair characteristic
polynomial If a content is not used in the feedback path, then the corresporatifigcient in

the polynomial is 0. The feedback polynomial of the LFSR given in Figure&nge written

53

as,

x4 xB e xtt sl (5.1)

where the constant term “1” in the polynomial corresponds to the input firsheit (x° = 1).

In a feedback polynomial, the first bit is always connected as input anlsh bit is always
included as a tap. The algorithms running based on a seed repeats itsedfalftiée, and so
does LFSR since the register used has a fixed width. The maximum numbieaiofadle dif-
ferent numbers from an LFSR with shift register of widthan be told to be™®- 1. An LFSR
providing this maximum number of flerent outputs is called asmaximum-lengtih.FSR.

This maximum number of @fierent obtainable output values is called tregiod In other
words, the LFSR of width is called amaximum-length FSR if its period is equal to™- 1.

To obtain anaximum-length FSR, some restrictions exist on the feedback polynomials, such

as

Number of taps must be even.

The set of taps must be relatively prime.

There can be more than one maximum-length tap sequence for a given LEBR w

For ann-bit LFSR, if the tap sequencae,fa, b, ¢, 0] is a maximum-length tap sequence

then the sequence,[n — ¢, n — b, n — a, 0] constructs a maximum-length LFSR, too.

Some feedback polynomials forfféirent register widths are listed in Table 5.2 with the
corresponding repetition periods. All these polynomials generate maximugtilefASRs,

but they are not the only ones for the given widths.

Table 5.2: Some LFSR feedback polynomials with varying width of shift registe

| Bits (n) | Feedback polynomial | Period (2 - 1) |

10 x4 x"+1 1024
11 X+ x2+1 2047
12 x4+ x4 x04 x4+ 1 | 4095
13 xBixZ4 x4 x@+1 | 8191
14 x4+ xB e x24x2+1 | 16383
15 x4y x4l 32767
16 x4+ x4+ x13 4 x11 11 | 65535

54

Operation steps of an LFSR with a 16-bit register are shown in Figure$3,7and
5.9. The feedback polynomial given in (5.1) is used in this design. The tatidms are
shaded in these figures aX®DR operations are depicted with The seed of the LFSR is
given as “1101001000010001". This seed can be chosen foriaggduence with length
of 16 without any restrictions. The shifting operation and linear operatomsriggered by
an external clock source. After the bit contents in the tap locationX@feed (input “1” is
included), LFSR waits for an external clock for the shift operation. kiine external clock
triggers the LFSR, the contents are shifted once to the MSE sidd the result oXOR
operations is written to the first bit location. The content in th® b locations comes out

of the register and this content is given to the output.

Figure 5.7: An LFSR of width 16 bits in the initial state with a seed of “1101000Q20001".

Figure 5.8: After completing thEORoperations, LFSR waits for an external trigger to update
the register contents.

The VHDL code that performs an LFSR with a feedback polynomial asgivé€s.1) is
as follows.

2 The MSB side for the given figures are on the right-hand side, sincesthbitlis in the rightmost location.

55

Figure 5.9: When the trigger occurs the contents are shifted to the rightnésft-content is
updated with the result ofORoperations, and the right-most content is given to output.

signal reg_content : std_logic_vector(1l5 downto 0);

constant signal seed : std_logic_vector(1l5 downto 0) := "1101001000010001";
process(clk)
begin

if rising_edge(clk) then
if rst = '1’ then
reg_content <= seed;
else
reg_content <= (reg_content(5) xor reg_content(3) xor reg_content(2) xor
reg_content(0) xor ’1’) & reg_content(14 downto 0);
end if;
end if;

end process;

In probability theory, the “central limit theorem” (CLT) states that the sum effé-
ciently large number of independent random variables, each with finite arerariance,
will be approximately normally (Gaussian) distributed [15]. If we implemertticently
many LFSRs and sum up the output values of them, this variable is expectaeketdibtribu-

tion very close to Gaussian (normal) distribution.

In our design, 40 LFSRs, all having 16-bit width andfelient seeds, are implemented
on the FPGA. The seeds are generated by MATLAB and written to a file 'WHgesynthesis
operation starts, the tool reads the data from that file and initializes all ofRB&k with the
desired seeds. A clock, which is 4 times faster than the overall system daded to trigger

this LFSR block. The VHDL code is as follows.

constant reg_no : integer := 40;

56

process(clkX4)
begin
if rising_edge(clkX4) then
if rst = '1’ then
for ii in 1 to reg_no loop
reg_content(ii) <= seed_file(ii*16 downto (ii-1)*16+1);
end loop;
else
for jj in 1 to reg_no loop
reg_content(jj) <= (reg_content(jj)(5) xor reg_content(jj)(3)
xor reg_content(jj)(2) xor reg_content(jj)(0)
xor ’1’) & reg_content(jj) (14 downto 0);
end loop;
end if;
end if;

end process;

In one cycle of “clk”, “clkX4” completes 4 cycles and 4 random numbees gener-
ated. By summing up these 4 numbers, we generpteado-random noisghich is updated
synchronously with the system clock. The main idea behind using a fastds fdoLFSR
operations is not to consume more resources for implementing an LFSR hitbck60 reg-
isters. After the reset operation, the registers are updated from dilge@dhich contains 40

random seeds generated by MATLAB.

As the generated numbers are sum of 40 bits in each fast clock cycleyaheds vary

between 0 and 40. Letbe the random variable generated by summing up these 40 bits. The

E(x} = E{ Z bo} (5.2)

reg-no

mean ofx is found as,

wherebyg is the right-most bit of LFSRs and the value of this bit is either 1 or 0. Since the

LFSRs have independent seeds, they generate independent ranohdy@rs. So,

E{x} = Z E{bol, (5.3)
reg_no
1

EX =) 3 (5.4)
reg-no

E(x} = reg;no. (5.5)

As we use 40 registers, at the output we get a random variable with meag0, and

57

the distribution of this random variable is approximately Gaussian. To reabzefétt of an
AWGN channel, the mean is normalized to 0 by subtracting 20 from the numberajed at
each tick of “clkX4”. It must be noted that subtracting a constant doesffect the variance

of the random variable. When we sum up these 4 generated random nsudubag one
clock period, the resultant random variable has a mean equal to 0. ldowles variance of
this random variable will beftected from this summation operation. Figure 5.10 shows the
distribution of the proposed noise generator at each “clk” instant. Thisefighows how the
histogram of the noise generator comes out and approximates the Galissiaation given

in Figure 5.11.

Number of generated values
N w B [$)] D ~
o o o o o o
o o o o o o

=
o
=]

0 10 20 30
Value

Figure 5.10: The histogram of the generated numbers by the propcagdipsandom number
generation method over 10000 samples.

©
=]
=)

@ ~

=1 o

=] =]
T T

o

=3

S
T

w

o

=]
T

Number of generated values
N B
(=] o
T 7

[N

o

S
T

)
[
o

!
N
o

|
N
S}
(=}

10 20 30

Figure 5.11: The histogram of a noise sequence generated by MARrABAN() function.
The output vector ofandn()function is multiplied by V40 to match the variances.

When we simulate this LFSR implementation on MATLAB, the variance of the gener-

ated noise turns out to be 40. That value is the noise power of the AWGNehereated on

58

the FPGA board and is used while producing the test results.

5.3.4 Fading Channel Generation

To obtain the performance results of the proposed joint channel estimattbalecoding
structure in a fading channel model, we need to realize such a fadinge@hansimulate

its effects. At first, we had decided to implement a fading channel on FPGA by tisin
autoregressive (AR) model with an order of one [25]. However, tldis aperfect match for
the applied LMS algorithm. Due to this matching, the estimator is anticipated to opetiate w
a better performance when compared to the real world fading case.s Tat, instead of
realizing a fading channelfiect on the FPGA board, we simulate a Rayleigh fading model
on MATLAB. The modulated signals are passed through a fading chamsisk is added on

them, and then the resultant data is given to the board as the receivetheequ

In MATLAB, to generate a Rayleigh fading channel object, the functayteighchan()
is used. This function takes two values as input, one is the sample time in termootise
(Ts), and the other one is the maximum Doppler frequency in 2. (The generated object
is a “single-path” Rayleigh fading channel with the given features. Ei§ut2 shows the path

gains of a channel generated by tagleighchan(function.

The generated Rayleigh fading channel object is used to realize thaditefiect on a
transmitted signal. To realize th&ect of channel on a transmitted signfdter() function is
used. After the fadingféect, AWGN is added to the resultant sequence with proper variance
to match the desired SNR value. This sequence is quantized before githgE&GA. This
guantization process is carried out with optimum quantization decision poiot$§ind the
optimum decision points the training sequences with 1000-packet lengthdifousach SNR.

The location of these optimum points vary with the SNR value. After obtainingghiemam
quantization decision points for each SNR, the received packet is gedmtizording to this
optimum values. After all these operations, the sequence is given to thA pR@Gorm

through UART module for testing estimation and decoding.

59

In-Phase Component

15 T T T

Path gain

-1 1 1 1 1 1 1 1 1 |
0 10 20 30 40 50 60 70 80 90 100
Sample No

Quadrature Component
15 T T T

4
3

Path gain

|
4
2

|
[N

o

10 20 30 40 60 70 80 90 100

50
Sample No

Figure 5.12: The in-phase and quadrature components of a Rayleigh fathnnel with the

normalized fading ratéy T = 0.01, over a sequence of length 100.

5.3.5 Error Counter Module

Theerror counter moduleounts the number of errors occurred in the packet and the number

of packets which is not decoded correctly. The data to be coded in tloelenside is also

known by this module in both of the test setups. The operation of this modubeadescribed

as follows. Whenever the decoder block starts to produce the bit estiniasasodule starts

to check whether the estimate is correct or not and keeps the numberrg estmates until

the number of packets reach a predetermined value. Besides, it alde bounmany packets

are decoded incorrecfly These number of wrong estimated bits and packets are fed to the

UART transmitter module for reporting to the PC.

5.3.6 Communication with PC

Communication between the testbed and PC is accomplished by UART (Uhivesga

chronous Receiver Transmitter). In our design, a full duplex UART ued implemented

and used in conjunction with RS-232. Simply, a UART transmitter takes a padali@land

3 Evenif only 1 bit is estimated wrong, the whole packet is decoded indtyrec

60

transmits it bit by bit in a sequential configuration. In the receiver sidejéacoming data is
detected, it receives data bit by bit in serial and translates the recsgeence into a parallel
form. The conversions between serial to parallel and parallel to seea@omplished by

the use of shift registers.

This protocol is called “asynchronous” because the transmitter doesendtany clock
signal to the receiver side. The transmission process may start whénewansmitter sends
a start bit. After the transmission of the start bit, the data is transmitted beginmoimgttie
least significant bit to the most significant bit. Optionally, a parity bit can aésaduled to the
end of the data for error check. A stop bit finishes the transmission ofrd*wBigure 5.13

represents the alignment of these bits.

Start
Bit

ol 1| 23|45]| 6| 7 |stpsi

Data bits

Figure 5.13: The bit alignment of a word used in UART transmission.

The communication between the testbed and PC is handled by a protocol. Irotiois p
col, the register names (or addresses) are represented in UART. vildridsprotocol works
basically as follows. The transmitter sends the word representing the rawste to be up-
dated in the transmission of the first word. After that, the content of thistezgssput in the
transmission channel. On the receiver side, the update operation is cagptetading to

the register name and content.

In the implementation of UART transmitter on the FPGA, a memory is used to store
the data and queue them before the transmission starts. After collectioffiofest data
for performance evaluation, a command signal is sent to the transmitter tanitifait the
memory is ready. After that command, the transmitter module starts to read the memory
contents one by one and puts these contents on a shift register emplopedditel to serial
conversion. After the word is placed on this shift register, the bits arsrtidired serially at
an agreed baud rate through the transmit pin of RS-232 port placed diiLtd@®2 platform.

The transmission protocol is given in Table 5.3.

4 The bit sequence sent in each transmission is called a “word”.

61

Table 5.3: The registers and their meanings used in the implementation of the taiR¥

mitter module.

EQDeg(l:isrtT?;I)Address Register Name Description

160 Total number of bits estimated incorrectly.
161 Bit_error counter This register has a width of 32 bits, and
162 - - transmitted in 4 episodes.

163

164 Total number of packets estimated incorreg
165 Packet error counter in at least 1 bit. This register has a width
166 N of 24 bits.

tly

In the UART receiver module, a small block is employed to check the signal &v

the receiver pin of the RS-232 port. Aftestart bitis detected, the module starts to receive

the sequential signals. During the reception process, a shift registeedsto carry out the

serial to parallel conversion. After a word reception is complete, the sarak lslock starts

to check for astop bit The reception protocol is given in Table 5.4.

Table 5.4: The registers and their meanings used in the implementation of the tga&ver

[©]

module.
(R;egclisr';e;lf\ddress Register Nameg Description
170 A s The amplitude of the BPSK signals.
Used to vary SNR values.
171 Iteration.no Number of iterations that the decoders will
run for.
172 The number of packets that the simulation go
173 Paketno for. This register has a width of 24 bits.
174
175 NormMax NorquxvaIue to_ configure the
observation quantizer.
175 The in-phase part of the received signal for th
176 Ry | fading channel tests. This register has a width
177 of 32 bits.
178
179 The quadrature-phase part of the received signal
180 RX_Q for the fading channel tests. This register has|a
181 width of 32 bits.
182
183 Beta Thep value used in the LMS algorithm.

62

To catch up synchronization in the UART module, we used counters to indimtiata
transmissiofreception instants. At each system clock, the counters count up. Tinsicg
operation continues till the desired baud rate is reached by the couritex.dbunter reaches
the number of system ticks to be generated in one baud rate period, thistimatsthe UART
transmitter (receiver) can transmit (receive) the next bit of the wordample code for the
counter blocks of these modules are given below. At each system theckpunters count
up. This counting operation continues till the desired baud rate is reaghtb@ lsounter. If
the counter reaches the number of system ticks to be generated in oneatepdriod, this
means that the UART transmitter (receiver) can transmit (receive) thébit@f the word. A

sample code for the counter blocks of these modules is given below.

constant baud_rate : integer := 115_200;

generic(

clk_freq : integer := 36_000_000

signal counter_limit : integer := clk_freq/baud_rate;

signal counter : integer range 0 to counter_limit;

The signal “counter” is the register used to hold the number of clock ticksted up
to that time. The signal “counteimit” represents the number of system ticks to be counted
during one period of the given “baurdhte”. If “counter” reaches that “countdimit” value,

this means that a new bit can be transmjtteceived in the UART module.

63

CHAPTER 6

NUMERICAL RESULTS

In Chapter 4, the implementation procedure of the two proposed structudesdsibed in
detail. In this chapter, theffects of the implementation choices will be shown and the perfor-
mances of the joint channel estimation and parallelized decoder structutgevdiscussed.
During the tests, the convolutional encoder shown in Figure 2.1 is usec a®ftistituent
encoder in the PDTC encoder. On the decoder side, the constituent g¥&AB decoders
have been used with the state diagram given in Figure 2.3. For the joimehastimation
and decoder tests, in the first iteration of the channel estimator zerodascapplied and in

the second iteratioR-way LMSalgorithm is applied.

6.1 PDTC Decoder Performance Results

The choice for the numbé&tormMax(explained in Section 4.1.2) is an important issue for the
decoder to work in an optimum way in the fixed-point domain. Choosing aKigtmMax
value results in saturation in metric calculations while choosing a small valuegausss

in representing observation values. Thikeet on the performance of the PDTC decoder
has been shown in Figure 6.1. The figure is obtained by observing Gif@1s with each
containing 160 information bits fdg,/Np = 2.6423 dB in an AWGN channel. The optimum
NormMaxvalues for eaclK value can be obtained from this figure. It can be seen in the
figure that as thé& value increases, so does the number of available optifN@mmMax

values.

Another parameter thattacts the performance of the decoder is the selection oKthe

value. Choosing a largk results in a better performance while at the same time causes the

64

BER

0 5 10 15 20 25
NormMax value

Figure 6.1: The fect of theNormMaxvalue on the BER performance of the PDTC max-
log-MAP decoder.

decoder to consume more resources on the FPGA and to work on lowkispleeds. There-
fore, there is a tradefbbetween the performance, resource consumption, and the speed. The
resulting performances are given in Figure 6.2. It must be noted that toesparisons are
made by using the best resultifgprmMaxvalues for eaclK value after 2000 runs on a 512-
bit packet with a fixed iteration number of 4 forfidirentk values. The implementation results
are given in Table 6.1 to compare the resource consumption and the maxirailabl@clock
speed features for filerent metric sizeK) values. These performance and synthesis results
are obtained for the turbo decoder with 4 constituent decoders in eathrclAn important
point is that, the resource consumption is approximately linearly proportiortaé number

N and increasing th&l value does notféect the performance of the PDTC decoder [8]. In
the determination of the maximum data rate (see Section 6.2) of the system thastyroitl

be used.

Table 6.1: Synthesis results of the PDTC decoder with max-log-MAP degadtjorithm

| metric size (bits)| Slices used Slice usage (%) Max. clock speed (MHz)

4 5709 37 50.053
5 5894 38 48123
6 6665 43 46.786
7 7566 49 42.865

Figure 6.2 shows that &increases, the performance approaches the floating-point case.

That’s why, the selection of thi€ value in a design must be done carefully to match the BER

65

BER

-k —&— floating-point
F|B-K=7
4 |&"K=6
0 AKk=5
[-s=Kx=1

10’5 1 1 1 1 1 1 1 1 1

-2 -15 -1 -0.5 05 1

E /N_ (dB

o/N, (dB)

Figure 6.2: Performance of PDTC decoder with max-log-MAP decodingyiditgn.

requirement. As it is obvious in the figure, the performance increase iegdldewn after
K = 6. On the other hand, it is shown in Table 6.1 that resource consumpticases as
K increases while the maximum available clock speed decreases. So, the achidias 6

seems to be a good compromise for this decoder structure when we takesadlezations into
account. It must be noted that this choice brings a performance worséfloating-point

decoder by (b dB.

The other parameter thaffects the performance of the decoding process is the iteration
numberl. It can be anticipated that the error correction performance will ehasche
decoder runs for more iterations. In [13], some studies have beertafigare out the fect
of the iteration number on the performance. For our architecture, fileistés given in Figure

6.3.

Performance

—F— BER (Bit Error Rate)
—©— PER (Packet Error Rate)

10° | | I | | | | |
7

1 2 3 4 5 6
Iteration Number (1)

Figure 6.3: Hect of the iteration number on the BER and PER performances a:3$/SRB.

66

For a better illustration of thefiect, the number of errors after each iteration is given
in Table 6.2. The data on Table 6.2 is generated on a 512-bit packet wittbitlBalR,
En/No = 1.3 dB. The same packet is sent several times over the AWGN channel with the
appropriate noise power and the data is collected after simulating a rebsonatber of

packets.

Table 6.2: Iteration steps and the corresponding number of errorséd?@TC decoder at
SNR= 1.3 dB.

Packets
Iteration Step| Packet-1| Packet-2| Packet-3| Packet-4| Packet-5
1 23 24 17 26 19
2 13 17 15 16 19
3 8 14 6 14 18
4 8 5 0 10 16
5 4 0 0 3 12
6 3 0 0 2 9
7 0 0 0 0 5
8 0 0 0 0 3
9 0 0 0 0 2
10 0 0 0 0 0

However, a large iteration number may pose a trouble when we work onrhgiie
values. When the same packet decoding process described abovelaesimvith data bit
SNR, Ep/Np = 2.65 dB, we can see that the number of errors decreases up to some number
of iterations, and then begins to increase. Some simulation results are gilanént.3. The
reason of that situation is the saturation (overflow or underflow) of.thealues after some
point. To prevent this problem, fierent early stop algorithms exist in the literature and some
are listed in [26] and [27].

In the early stop algorithms, the iteration number varies according to the instanis
channel condition. This ambiguity in the iteration number makes it impossible tandater
an exact decoding latency and so the maximum data fedeed by the proposed system. Not
to deal with that uncertainty, we need to use a constant iteration number gystem. As
it can be seen in Figure 6.3, as the iteration number increases, the BERwante of the
decoder improves. However, largemeans a larger decoding latency and a lower data rate.

After considering all thesefkects, we decide on a value bk 4.

67

Table 6.3: Iteration steps and the corresponding number of errorséd?@i C decoder at

SNR= 2.65 dB.
Packets
Iteration Step| Packet-1| Packet-2| Packet-3| Packet-4
1 18 13 16 10
2 7 5 9 3
3 5 3 6 0
4 0 0 0 0
5 4 14 0 0
6 5 16 0 0
7 5 19 1 4
8 20 20 5 5
9 28 23 9 7
10 30 26 11 12

6.2 Decoding Latency Calculation

Large decoding latencies in turbo codes are told to be the drawback aféoeider structures.
By making them operate in parallel, a decrease in their decoding latenciegeisted. To
observe that decrease, decoding latency is better to write in a formulaletbeding latency,

7, for our parallel decodable turbo code decoder structure is,

T= % x 2l (6.1)

whereD is the number of information (data) bits in the packetis the number of parallel
decoders in a cluster, ands the iteration number. Thﬁ term is the decoding latency of a
single BCJR decoder operating with the CTT algorithm. The reason of multiplyiriti s
that in each iteration the BCJR decoders run twice, one for the unintediéava of data and

one for the interleaved.

During the decoding latency calculations, we assume tlpangpongbuffer structure
is used in the receiver side. Each of fiiag andpongstructures contains 3 memory blocks
in which d, p; and p, observations are storked As each structure consists of 3 memory
blocks, we name theming memory pooandpong memory pool To decrease the latency
and increase the data rate, these memory pools are used as follows. Wifiilst thacket is

being received, the observations are stored irpthg memory poain the quantized form as

1 Each of these memory structures contaihslistinct memories to be used by each BCJR decoder in the
cluster.

68

described in Section 4.1.6 fol p; and p2 observations. After the memory blocks are filled
and ready to be read, PDTC decoder begins to run. Storing and dgamuinations of the

first packet packel) are shown in Figures 6.4 and 6.5, respectively.

__| Ping

memory pool

FM Observation PDTC

Demodulator Quantization Decoder

Pong

memory pool

Figure 6.4: Reception ghacketl and filling the memory blocks of th@ing memory pool

Ping

memory pool

FM Observation PDTC L - LLpacketl

Demodulator Quantization Decoder

Pong

memory pool

Figure 6.5: Decoding of thpacket.

If the second packetp@ackeR) arrives during the decoding placket, thed, p; and p;
observations are stored in tipeng memory poolin this case, the decoding process is not

affected by the reception of the new packet as shown in Figure 6.6.

When the decoder finishes its job, it starts operating frompthreg memory poaind
this time theping memory poobecomes available for another packet storage. This structure
doubles the memory usage in the system for storing observations but ireghevdata rate

in a significant amount.

69

Ping

memory pool

FM Observation PDTC

Demodulator Quantization Decoder

—» LLpackell

Pong

memory pool

Figure 6.6: Reception gdacke® and filling thepong memory poathile decoding obackel
still continues.

Ping

memory pool

FM Observation

Demodulator Quantization

PDTC
Decoder

o LLpacket2

ik
]

Pong

memory pool

Figure 6.7: Decoding of thpackep.

At this point, we can find the maximum available data rate of our system. If wetelen

the data rate by, we can formulate it as,

S Dxf:DDxf 6.2)
T NXZI
f xN
= 5 (6.3)

wheref is the maximum available frequency ands the decoding latency. To find the exact
data rate, we need to decide on the metric representation vidditlit¢ration numberl(), the
number of constituent decoders in a clusté).(In (6.3) it is obvious that the data rate of the
system is proportional tdl, and inversely proportional tb. Besides, it must be noted that
the data rate is independentdf This means that the data rate will stay constant if we use
longer packets to communicate while the overall BER performance will impreweeause

larger interleaver tables. In data rate calculation,ftivalue can be obtained by checking the

70

Table 6.1 for the selected value. Similarly,r value can be obtained from (6.1). During the
studies we had already decidedNras 4,| as 4, anK as 6, and used a coding scheme with
rate-1/3 (1, 5/7) convolutional coding given in Figure 2.1. Using the Table 6.1 and Figu@e

with the design choices listed above, we can find the available data rate as

46 x 1P x 4
= — =2 1
v A 3x 1¢ bps

21.93 Mbps (6.4)

&

To find a maximum data rate available for the system without any degradatioe in th
performance, we can increase the number of parallel decoders itleatdr,N, to use all of
the available resources on the FPGA. Since the resource consumpti@pastimnal to the
number of parallel decoders, we can increase this number upto 9 afteatng the synthesis
results given in Table 6.1. Such an implementation on the FPGA allows us the maximum

available data rate as

46 x 16 x 9
2x4
49.35 Mbps (6.5)

= 5175 x 10 bps

Umax =

Q

This PDTC decoder structure is implemented by usingfedint architecture in [28]. In
that study, pipelining is applied to increase the operating clock frequentye &PGA. The

synthesis results of that architecture, taken from [28], are givenble&a4.

Table 6.4: Synthesis results of the PDTC decoder with max-log-MAP degattjorithm and
pipelining.

| metric size (bits)| Slices used Slice usage (%) Max. clock speed (MHz)

4 6347 42 87.253
5 6501 42 86.963
6 6994 45 86.949
7 7537 49 85.704

When the synthesis results given in Table 6.4 are considered, it carebelss the
operating frequency of the decoder can be enhanced significantly ipigliring. On the

other hand, there is a slight increase in the resource consumption buegligable.

71

6.3 Joint Channel Estimator and Decoder Performance Results

In Figure 6.2, the performances of the PDTC decoder is compared gxciiémnel is assumed

to be AWGN. However, if the channel has a fadirftget, the performance results probably
change. To find an appropriatevalue for the decoder, first we need to compare the perfor-
mances in the case of a Rayleigh fading channel. For that reasonffeloe af NormMax
value is compared for fierentK values to obtain the best resultingprmMaxvalues over a
fading channel. The resulting performances fdfedentNormMaxvalues are given in Fig-

ure 6.8 after running on 20000 packets. During the tests, CSI knowledge is assumed to be

known at the receiver side and PDTC decoder parameters areldet dsl = 4.

10° ¢ T T

10"

PER

107

15
NormMax

Figure 6.8: The ffect of theNormMaxvalue on the performance of the PDTC decoder over
a Rayleigh fading channel with the normalized fading rigf€s = 0.01 atEp/Ng = 8 dB with
the assumption of perfectly known CSI at the receiver side.

After obtaining the best resultinfjormMaxfor eachK value, the &ect of K value
on the PER performances can be tested. The performances given ia Bigare acquired
for SNR= 8 dB. These results probably change foffetient SNR values andftérent best
resultingNormMaxvalues can be obtained. However, it is not easy to optimize all these
parameters at the same time to get the best performances. For that teasameéNormMax
values are used in the tests for all SNR values. The performances oDi€ &ecoder for
differentK values are given in Figures 6.9 and 6.10. These figures are obtaiaeg@/000
packets of length 512 bits for twoftierent Rayleigh fading channels by running the PDTC
decoder withN = 4 andl = 4. During these tests, known channel state information (CSlI) is

assumed at the receiver side.

72

floating-point decoder
P K=8
—©-K=7
1025 | - K=6
Foo|—B-K=5 . :
| [1 [I |
4 5 6 7 8 9 10 11 12 13 14
E /N
b0

Figure 6.9: Performance of the PDTC decoder over a Rayleigh fadigneh with the nor-
malized fading ratdpTs = 0.001 with the assumption of perfectly known CSI at the receiver
side.

107k

o
L
o
10k 4
[floating-point decoder
-4
10 E ——K=8
[|—&—K=7
- —Q—bi'
[|—8—K=5
T | |
2 4 6 8 10 12 14
E /N
b0

Figure 6.10: Performance of the PDTC decoder over a Rayleigh fatiengnel with the nor-
malized fading ratdpTs = 0.01 with the assumption of perfectly known CSI at the receiver
side.

Table 6.5: Synthesis result of the PDTC decoder féiedentK values with max-log-MAP
decoding algorithm

| K (bits) | Slices used Slice usage (%) Max. clock speed (MHz)

5 5894 38 48123
6 6665 43 46.786
7 7566 49 42.865
8 8621 56 40461

73

Since the representation bit numbers of the interest changed a bit, thesgntsults
are given as a whole in Table 6.5. From the given performance figkigsrés 6.9 and 6.10),
the choice of 7 bits for metric representation in the PDTC decoder seems taebhsanable
choice, diterent than the AWGN case, when the resource consumption and the chmk sp
factors given in Table 6.5 are taken into account. In the following tests, #hiewvill be
used in the decoder side with the assumption thaKthialue does notféect the performance
of the channel estimation. It must be noted that this choice brings a perioemaorse
than the floating-point decoder by7® dB. In Figures 6.9 and 6.10, it can be seen that the
performance dierences get larger for increasing SNR. The main reason may be told te be th
effect of NormMax This performance dlierence can be decreased by using the best resulting

NormMaxvalues at each SNR as given in Figure 6.11.

PER

= floating-point decoder
El—pr=s
[|=&—K=7
107 | —0—K=6
E|-a-k=5
2 7 G

8 10 12 14
E,/N, (dB)

Figure 6.11: Performance of the PDTC decoder over a Rayleigh fadiagnel with the
normalized fading ratdpTs = 0.01 by using the best resultilf§ormMaxvalues at each
SNR.

After deciding on theK value for the decoder, the next task is the determination of the
design parameters for the channel estimator, which are described inrS&&ia. The pilot
symbol spacingM, is determined by examining the performance results of the system for
two differentM values over a Rayleigh fading channel with the normalized fading rate of
fpTs = 0.01 given in [6]. As seen in this comparison, choosing a siMalalue gives a better
performance output. However, the redundancy is increased in thetdackdding more pilot
symbols and the overall data rate is degraded. To get a reasonablesF&Rance together
with a high enough data rat®] = 17 is chosen after a careful trad.dHereafter, we make

tests on our system considering the normalized fading rateaf O

74

Thep value is an important factor thatfacts the success of the estimation. However,
the most appropriate value is not the same for all SNR values. Therefore, we need the best
resultings values for each SNR value in the region of our interest. In Figure 6.12flbet
of B value for some SNR values is given. To obtain these results, the estimatorfeg three

iterations and. = 20, M = 17 values are used constant not to lose the generality.

10° ¢
F B T T T T T = I = I 4m
-1
WPy B 5 B B B -
107 =
e 0 o e EEDGEEHESIEREST \
m -3
w 107 .
o E |
P » e
r L . * =
—B-SNR = 2 dB
10 —>—SNR = 5 dB .
£ : —©-SNR = 8 dB 3
—#—SNR = 11 dB
SNR = 14 dB
10°F i : E
107 I I I I I I I I
0.05 01 015 02 025 03 035 0.4 045 05

Figure 6.12: Hect of thes value on the estimation and decoding performance over a Rayleigh
fading channel with the normalized fading rdteT s = 0.01.

As the final design parameter, thevalue is needed to be determined. To obtain a
reasonablé value, the performance of the overall system fdfedtentL values is tested. In
this test, the best resultimgyvalues are used for each SNR value. The result of this test is
given in Figure 6.13. Since the decoder operates on 6-bit metric valsiag, & very high_
value is meaningless and just increases the consumption of the resontbesFPGA. The

synthesis results for the testedialues are listed in Table 6.6.

From the given synthesis resulis,= 15 seems to be a reasonable choice since the
memory usage is nearly doubled after that point. The reason of the iadrete number of
used block RAMs aftet. = 15 is that the block RAMs on the FPGA have maximum width
of 16 bits. When a wider RAM is needed in the design, two block RAMs areatenated

75

PER

10 known CST, K=7
—B—1=25, K=7

1oL | -L=20 K=T
—4—L=15 K=7
—6-L=10, K=7

5

12

Figure 6.13: Performance of the joint estimation and decoding structureaoRayleigh
fading channel with the normalized fading rdteTs = 0.01 for differentL values.

Table 6.6: Synthesis results of the estimator witffiedentL values.

| L (bits) | Slices used Slice usage (%) Block RAMs used| Max. clock speed (MHz)

10 302 1 7 99.668
15 392 2 7 96.313
20 647 4 13 82.218
25 857 5 13 75.753

to generate the required width. When the performances are considgedttieo with the
synthesis results, the choice bf= 15 seems a reasonable one. There is a performance
difference of 2 dB when the = 15 case is compared with the perfect known CSI case. The 2-
way LMS algorithm and getting into a fixed-point domain cause that perfarendiference.

It must be noted that, the selectionlof= 15 does not fiect the operating frequency of the
overall system because it allows higher clock speeds when comparesl BiDINC decoder.

The joint structure has the maximum clock speed of 42 MHz.

6.4 Joint Channel Estimation and Decoding Latency Calculatia

After completing the overall system setup, we can find the overall lateneydunted by the
joint estimator and decoder structure. The latency introduced by the PRTaddr was

formulated before as in 6.1. In this section we will deal with the overall sy$igncy.
If D data bits are encoded and transmitted after pilot symbol insertion, we geket pa

76

length ofP = D/R+ 32 whereRis the coding rate. However, as we use thé(¥) code given

in Section 2.2, the code rate is already determined/8s If it is assumed that the received
sequence is ready on a RAM in the receiver side when the channel eststeats its first
iteration, the packet reception duration can be omitted in the latency calculatieopera-
tion can be realized by using the ping-pondtbustructure as mentioned earlier. If a packet
arrives while the operations are in progress on another packet, tlsedirfping or pong)
memories can be used to store the new arriving packet. After employingasstolcture, we

can assume that the received sequence is ready in a memory for thstfirstten.

In the first estimation step, the estimator does not make any complex operétitns,
gives the received values and channelfioient estimates to theL computing component.
However, in every clock cycle at most two readings can be achievettfre memories which
store the received sequence and channel estimates even if we usgdiRAM modules.
The calculation of. L values can be achieved at the same clock cycle in which the inputs of the
module are ready. Thereforiel. computation does not introduce any latency, but outputting
the estimates and the received values k2R clock cycles. It must be noted that, the pilot
values are discarded for this first iteration of the channel estimator. it computation,
these values are given to theservation quantizemodule of the PDTC decoder. Since the
estimation process in the next iteration waits for the decoder outputs to computevthe
LL values, there is no need to implement a ping-pong structure before the B&er.
However, to decrease the latency introduced by the turbo decodetitfgedperation of the
d, p1, andp, memory structures can be completed during the quantization processiagcord
to the parallelization in the decoder. Each of these memory structures cohtaemory
blocks with a length (depth) db/N whereN is the number of constituent decoders in a
cluster. If we use dual port RAMs in these structures, the storing anddimerleaving

process jointly takeB /2N clock cycles.

In the next estimation iterations, the CTT algorithm is applied to reduce the latBycy
employing a CTT structure in the 2-way LMS algorithm, two channel estimateanputed
beginning from the center of the packet and that tdke®ck cycles to estimate the channel
for the whole packet duration. Although estimation process at the pilot losatian be
avoided in the first iteration, in the next iterations the estimates at the pilot losdtave to
be calculated due to the recursive computations in the LMS algorithm. By usngptierated

estimates, theL values are calculated instantly, again beginning from the center of thetpack

77

During theLL calculation process, the estimates and observations at the pilot locations are
discarded. The resultingL value are written to thé&/N memory blocks inD/2N clock

cycles. Then, the PDTC decoder starts to operate.

After these reckonings, we can write the joint estimation and decoding laiecior-

mula as

Tz(ZERJF%)Jr(PJr %)(le—lyr(%zld)le (6.6)

wherel, is the iteration number of the channel estimator &né the iteration number of
the PDTC decoder. The ter% + % gives the latency of the first iteration of the channel
estimationP+% gives the latency of the second and later iterations of the channel estimation,

and%ZId gives the decoding latency of the PDTC decoder runningfderations.

After having the latency formula, we can calculate the available data rate dlloyvhe

proposed system by using the equation

(6.7)

The values ofr and f depends on the design parameters used in the system setup. To
calculate the latency, we need to decide on the values®fR, N, l¢, andlg. On the other
hand, to determine the value bf operating frequency, we need to decide on the valués of
andL. To obtain the maximum data rate, we can increase the parallelization number in the
decoder as much as the FPGA allows in terms of resource consumption. Tt d&doder
consumes 49% of the resourcesifoe 4 andK = 7, and the channel estimator consumes 2%
for L = 15. This means that the number of parallel decoders in each cluster gaerémsed
up to 8 for data rate maximization. With the design parameteB €f160,R = 1/3,N = 8,
le = 3, andly = 4, we get a minimum latency introduced by the proposed joint estimator and
decoder as

160 160 160 160
T = (%+1—6)+(160X3+32+1—6)2+(?8)3

1774 clock cycles (6.8)

To find the maximum available data rate, the operating frequency can be abtaine
Tables 6.1 and 6.6 for the choskn= 8 andL = 15 values. From the found operating fre-
guencies it can be seen that the limitation on the clock speed comes from tit2 ddadder.

Therefore,f = 42 MHz is obtained as the clock speed for the whole system by checking

78

the Table 6.1 folK = 8. After deciding on all of the design parameters of the system, the
maximum data rate comes out as
160 x 42 x 16

1774
3.79 x 1 bps

Q

3.61 Mbps (6.9)

The parallelization idea can also be implemented on the channel estimatingspriices
we divide the overall estimation process into 4 parallel parts, the length oféh®ories stor-
ing the received sequence and the estimate®gkeand the number of these memories arise
to 4 fold of the old one. After this parallelization, it can be anticipated that thi®imeance

degrades in a non-significant amount. However, the total latency becomes

T/=(D/Ne+R)+(N£e+%)(le_l)+(%2|d)le (6.10)

2R 2N

whereNg is the number of parallel processing estimators. With the same design pasameter

mentioned before ande = 4, we get the overall latency and data rate as

o[l 1), (10xse2, 109), (160,
2/3 16 4 16 8
826 clock cycles (6.11)
160 x 42 x 16
826

7.76 Mbps (6.12)

Q

It must be noted that these results depend on the iteration numbers of the@stinth
the decoder. They can be enhanced by using soffer@it methods in the literature, e.g.,
early stop algorithms for the turbo codes. Also, better performances eabtained by

optimizing the parametefs, Ne, le, andly.

79

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The work on this thesis aims at implementing a jointly operating channel estimatgaand
allel decodable turbo code (PDTC) decoder on a FPGA-based platfiorthis thesis, we
applied the parallelization idea on turbo codes to reduce the decoding lateadyp their
iterative structure. On the other hand, the complexity of the design is imttedier this op-
eration. By this idea, the decoding latency is decreased by a factor ofithiean of parallel
branches employed in the decoder. Parallelization is induced by employialtepancoders
operationg on substreams of the data sequence simultaneously. Thd pesa#iesing struc-
tures are implemented on FPGA with the help of its architecture contatoimiggurable logic
blocks(CLBSs).

However, parallelization process introduces some problems during the imyhkioa.
The memory collision problem arises as the most critical one. In literatures &xést some
interleavers designed to prevent the memory collision problem. As one of themory

collision free row-column S-random interleavers are used in this thesis.

During implentation of a PDTC decoder we face with some problems. Implementing

a soft-in soft-out (SISO) decoder on an FPGA is the most critical prolsiane FPGA has
limited resources which do not let one easily use floating-point arithmeticge faked-point
arithmetic. To work on fixed-point arithmetic, a metric quantization scheme is \Behe
operations used in the decoding process is modified to work on the fixetlgsahmetic.
Parametersféective on the performance of the implemented decoder are presented and a
decoding latency is calculated together with the available data rate for tlumedsds choices

of these parameters. These results are compared with the ones obtainpedaled study in

which the decoder is implemented by using fietent architecture which applies pipelining.

80

It has been observed that the pipelining architecture enhances thdrelqQukncy.

A channel estimator algorithm is implemented to work jointly with the the PDTC de-
coder structure. For the channel estimation process,-thay2 MSalgorithm which uses the
pilot symbol assisted estimation method is employed. The operations used itithatios
process are optimized to work on the fixed-point architecture of the FR&&Y.adjoining the
two structures, the design parameters of the decoder are decided aghiaitoa reasonable
performance from the joint structure. The latency introduced by this jtinttsire and the
resultant data rate is calculated as well. By applying the parallelization ide® estimation

algorithm, the latency is reduced in some amount to enhance the availabletdata ra

In addition to the studies described in this thesis, some additional researohmove-

ments to our testbed are set as future goals. These goals can be listiolas fo

e An early-stopping algorithm can be used to prevent the extra iteration® &?HITC
decoder. Thereby, the decoding latency can be decreased moreeauthibvable data

rate can be enhanced.

e The performance comparisons of the used channel estimation algorithm evibithibr

algorithms in the literature can be made as an additional study.

81

REFERENCES

[1] C. E. Shannon, “A mathematical theory of communicatidiije Bell System Technical
Journal vol. 27, pp. 379-423, July 1948.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit ecanrecting
coding and decoding: Turbo-codes)’Proc. ICC'93 pp. 1064-1070, May 1993.

[3] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decodihgjnear codes for
minimizing symbol error rate,JEEE Transactions on Information Thegmwyol. IT-20,
pp. 284-287, 1974.

[4] O. Gazi and AOzgir Yilmaz, “Collision free row column S-random interleaveéEEE
Communications Lettersol. 13, April 2009.

[5] E. K. Hall and S. G. Wilson, “Design and analysis of turbo codes agl&gh fading
channels,lEEE Journal on Selected Areas in Communicatjorsd. 16, pp. 160-174,
February 1998.

[6] Y. Yapict and A.Ozgir Yilmaz, “Joint channel estimation and decoding with low-
complexity iterative structures in time-varying fading channétstie presented at IEEE
PIMRC 2009, Tokyo, Japan

[7] S. B. Wicker,Error Control Systems for Digital Communication and StoraBeentice-
Hall, Inc., January 1995.

[8] O. Gazi,Parallelized Architectures for Low Latency Turbo StructuresD thesis, Mid-
dle East Technical University, 2007.

[9] S. LinandD. J. C. JrError Control Coding Prentice-Hall, Inc., second ed., 2004.

[10] S. Benedetto and G. Montorsi, “Unveiling turbo codes: some resuitacallel concate-
nated coding scheme$BEEE Transactions on Information Theompl. 42, pp. 409-428,
March 1996.

[11] O. Gazi and AOzgir Yiimaz, “Fast decodable turbo codet2EE Communications
Letters vol. 11, April 2007.

[12] J. Jdung, |. Lee, D. Choi, J. Jeong, K. Kim, E. Choi, and D. Olgs$ign and architecture
of low-latency high-speed turbo decodeiSTRI Journa) vol. 27, pp. 525-532, October
2005.

[13] S. Yoon and Y. Bar-Ness, “A parallel MAP algorithm for low laterteybo decoding,”
IEEE Communications Lettersol. 6, pp. 288—290, July 2002.

[14] L. Tong, G. Xu, and T. Kailath, “Blind identification and equalizatiorséd on second-
order statistics: A time domain approactEEE Transactions on Information Theory
vol. 40, pp. 340-349, March 1994.

82

[15] J. G. ProakispPigital Communications McGraw-Hill Science Engineering, fourth ed.,
August 2000.

[16] M. C. Valenti and B. D. Woerner, “Iterative channel estimation dedoding of pilot
symbol assisted turbo codes over flat-fading channil&E Journal on Selected Areas
in Communicationsvol. 19, pp. 1697-1705, September 2001.

[17] A. Goldsmith,Wireless Communication€ambridge University Press, 2005.

[18] M. C. Valenti and J. Sun, “The UMTS turbo code and &icent decoder implementa-
tion suitable for software defined radiosjternational Journal of Wireless Information
Networksvol. 8, pp. 203-215, October 2001.

[19] T. A. Summers and S. G. Wilson, “SNR mismatch and online estimation in tletodd
ing,” IEEE Transactions on Communicatign®l. 46, pp. 421-423, April 1998.

[20] A. Worm, P. Hoeher, and N. When, “Turbo-decoding without Sé#mation,”|EEE
Communications Lettewol. 4, pp. 193—-195, June 2000.

[21] P. H.-Y. Wu and S. M. Pisuk, “Implementation of a low complexity, low poviteger-
based turbo decodelGlobal Telecommunications Conferenpe. 946-951, 2001.

[22] “ML401/ML402/ML403 Evaluation Platform User Guide.” httpwww.xilinx.com-
/supporfdocumentatiofiboardsand kits/ug080.pdf, last visited on 14 August 2009.

[23] “Synthesis and Simulation Design Guide.” httpww.xilinx.comnysupport-
/documentatiofsw_manualgxilinx11/sim.pdf, last visited on 14 August 2009.

[24] “IMPACT User Guide.” http/www.xilinx.comnyitp/xilinx4/datadocgpagpac.html, last
visited on August 2009.

[25] J. G. Proakis and D. ManolakiBjgital Signal Processing: Principles, Algorithms, and
Applications Pearson Prentice Hall, fourth ed., 2007.

[26] F. Zhaiand I. Fair, “Techniques for early stopping and erggedtion in turbo decoding,”
IEEE Transactions on Communication®l. 51, pp. 1617-1623, October 2003.

[27] D. Lee and I. Park, “A low complexity stopping criterion for iterativelia decoding,”
IEICE Transactions on Communicatign®l. 88, no. 1, pp. 399-401, 2005.

[28] E. Erdin, “Performance of parallel decodable turbo and repeatimulate codes imple-
mented on an FPGA platform,” Master’s thesis, submitted to Graduate Sdhvalural
and Applied Sciences of Middle East Technical University, Septem@3.20

83

