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ABSTRACT 
 

 
MULTIPLE CRITERIA PROJECT SELECTION PROBLEMS 

 
 
 

Çağlar, Musa 

M.S., Department of Industrial Engineering 

Supervisor: Assoc. Prof. Esra Karasakal  

 

September 2009, 88 pages 

 

In this study, we propose two biobjective mathematical models based on 

PROMETHEE V method for project selection problems. We develop an interactive 

approach (ib-PROMETHEE V) including data mining techniques to solve the first 

proposed mathematical model. For the second model, we propose NSGA-II with 

constraint handling method. We also develop a Preference Based Interactive 

Multiobjective Genetic Algorithm (IMGA) to solve the second proposed 

mathematical model. We test the performance of NSGA-II with constraint handling 

method and IMGA on randomly generated test problems. 

 

 

 

 

Keywords: Project Selection Problem, PROMETHEE V, data mining, Preference 

Based Multiobjective Genetic Algorithm, Interactive Approach 
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ÖZ 
 

 
ÇOK KRİTERLİ PROJE SEÇİMİ PROBLEMLERİ 

 
 
 

Çağlar, Musa 

Yüksek lisans,  Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Doç Dr. Esra Karasakal 

 

Eylül 2009, 88 sayfa 

 

Bu çalışmada, proje seçimi problemleri için PROMETHEE V yöntemini temel alan 

iki amaçlı iki farklı matematiksel model önerilmiştir. İlk önerilen matematiksel 

modeli çözmek için veri madenciliği tekniklerini içeren etkileşimli bir yaklaşım (ib-

PROMETHEE) geliştirilmiştir. İkinci önerilen matematiksel modele ilk olarak 

kısıtları dikkate alan NSGA-II yöntemi uygulanmıştır. Ayrıca, ikinci matematiksel 

modeli çözmek için Tercihe Dayalı Çok Amaçlı Genetik Algoritma (IMGA) 

geliştirilmiştir. Kısıtları dikkate alan NSGA-II yöntemi ve IMGA’nın rassal üretilmiş 

test problemleri üzerinde performansı test edilmiştir. 

 

 

 

 

Anahtar Kelimeler: Proje Seçimi Problemi, PROMETHEE V, veri madenciliği, 

Tercihe Dayalı Çok Amaçlı Genetik Algoritma, Etkileşimli Yaklaşım 
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CHAPTER 1 
 

 

1.                               INTRODUCTION 
 

 

 

In project selection problems, a set of projects is selected among large number of 

competing projects. Projects are evaluated according to some predefined criteria and 

considering the budget of each project, projects are selected. PROMETHEE V is one 

of the methods used in project selection problems. In PROMETHEE V, a single 

objective 0-1 integer programming model is solved to select the best subset of 

projects. The objective function is to maximize total net flow of the selected projects, 

which is a combined measure of superiority (positive flow) and inferiority (negative 

flow) between projects.  

 

We propose two biobjective mathematical models based on PROMETHEE V 

method for project selection problems. In the first mathematical model, first 

objective corresponds to the maximization of the superiorority, and second objective 

corresponds to the minimization of the inferiority. We also develop an interactive 

approach (ib-PROMETHEE V) to solve the proposed model. ib-PROMETHEE V 

approach uses ε -constraint method to generate Pareto front of the model. This 

approach also incorporates data mining techniques by using SPSS Clementine 

software for post-optimality analysis.  

 

In the second mathematical model, first objective corresponds to maximization of the 

total net flow, and second objective corresponds to the minimization of the 

cumulative budget of selected projects. We apply one of the well known heuristics 

NSGA-II to this model with constraint tournament mechanism. We also develop an 
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interactive preference based multiobjective genetic algorithm (IMGA) to solve this 

model. We both test and compare the performance of NSGA-II with constraint 

tournament method and IMGA. 

 

The thesis is organized as follows. In Chapter 2, we summarize the literature on 

PROMETHEE V method and preference based multi objective genetic algorithms. In 

Chapter 3, we give information on PROMETHEE V method, ε -constraint method, 

data mining classification and regression trees (CRT), genetic algorithms, and 

NSGA-II with constraint tournament method. In Chapter 4, we present the first 

proposed mathematical model and ib-PROMETHEE V approach. In Chapter 5, we 

illustrate ib-PROMETHEE V approach on example problems. In Chapter 6, we 

describe the second proposed mathematical model and IMGA. In Chapter 7, 

computational experiments of NSGA-II with constraint tournament method and 

IMGA are presented. In Chapter 8, conclusion and further research are discussed.  
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CHAPTER 2 

 

 

2. LITERATURE SURVEY 

 

 

 

2.1 PROMETHEE V METHOD 

In the last three decades, different kinds of methods and techniques have been 

developed in order to aid the decision maker (DM) in multiple criteria decision 

making (MCDM) problems. MCDM problems can be classified as Multi-Attribute 

Decision Making (MADM), and Multi-Objective Decision Making (MODM) 

problems. MADM deals with discrete MCDM problems, whereas MODM is 

concerned with continuous MCDM problems.  

 

One of the commonly used methods in the field of MADM is Preference Ranking 

Organization METHod for Enrichment Evaluations (PROMETHEE). PROMETHEE 

outranking method was introduced by Brans et al. (1985). Two kinds of preorders are 

generated: partial ranking in PROMETHEE I and complete ranking in 

PROMETHEE II. PROMETHEE V was introduced by Brans and Mareschal (1992) 

due to the fact that only ranking was not adequate in most of the problems, there 

were also some constraints to be considered. In PROMETHEE V, scores calculated 

in PROMETHEE II (net flows) are used in the single maximization objective, and 

some constraints are defined to represent the limitations of the problem and 0-1 

integer programming model is solved to select the subset of best alternatives. Brans 

and Mareschal (1994) also introduced the PROMCALC & GAIA decision support 

system. 
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After the introduction of PROMETHEE V, studies using this method began to appear 

in the literature. Abu-Taleb and Mareschal (1995) solved a water resources planning 

problem in the Middle East with PROMETHEE V method; they selected the best 

subset of water resource designate options that supports the national policies. Al-

Kloub et al. (1997) used PROMETHEE V in order to select the water projects in 

Jordan. Al-Shemmeri et al. (1997) developed a computer aided decision support 

system with PROMETHEE V for water strategic planning in Jordan. Al-Rashdan et 

al. (1999) selected the environmental (wastewater) projects in Jordan with 

PROMETHEE V method.    

 

Pandey and Kengpol (1995) used the PROMETHEE V method in order to select the 

automated inspection devices for flexible manufacturing system. Mavrotas et al. 

(2006) solved the project selection problem under policy restrictions. They revised 

PROMETHEE V method in order to prevent the selection of relatively low rank 

projects with small budgets. Morais and Almeida (2007) selected the feasible options 

for leak management system with PROMETHEE V by group decision making. 

 

2.2 MULTIOBJECTIVE GENETIC ALGORITHMS (MOGAs) 

Multi-objective genetic algorithms (MOGAs) are used to solve MCDM problems. 

They have been so popular in the last decade. Ishibuchi et al. (2008) reviewed the 

MOGA methods. 

 

Deb (2001) classified MOGAs into two parts: elitist and non-elitist MOGAs. In this 

classification, “elitism” refers keeping and transferring the good solutions to the 

following iterations. Thereby, better solutions can be produced and elitist MOGAs 

make less effort when compared to non-elitist MOGAs. There are many MOGAs 

proposed in the literature, however NSGA-II (Deb et al., 2000) and SPEA2 (Zitzler 

et al., 2001) are the most popular elitist MOGAs. One of the reasons of their 

popularity is that they deal with successfully both MADM and MODM problems. 

 

There are also studies on incorporating preference information into MOGAs. Coello 

(2000) reviewed how the preferences were handled in GAs. Rachmawati and 



 5

Srinivasan (2006) reviewed the preference incorporation approaches in MOGAs. 

Basically, preferences of decision maker (DM) can be articulated in three ways; 

before the optimization process (A Priori Methods), during the optimization process 

(Interactive or Progressive Methods), and after the optimization process (A Posteriori 

Methods).  

 

Branke et al. (2001) integrated the preferences into the MOGA by defining linear 

maximum and minimum trade-off functions. Phelps and Koksalan (2003) introduced 

an interactive evolutionary metaheuristic in which pairwise comparisons of the DM 

are used for incorporating preference information. Zitzler and Kunzli (2004) 

developed an indicator based MOGA to incorporate preference information. Deb et 

al. (2006) developed a reference point based MOGA; they combined the NSGA-II 

with reference point interactive approach. Deb and Kumar (2007) proposed a 

reference direction based MOGA. Deb and Kumar (2007) integrated NSGA-II with 

light beam search approach to articulate preferential information. Thiele et al. (2007) 

suggested a preference based interactive MOGA. Almes and Almeida (2007) 

proposed a MOGA based on the Tchebycheff scalarizing function. Beume et al. 

(2007) proposed a MOGA based on a dominated hypervolume. Koksalan and Phelps 

(2007) developed a MOGA for approximating preference-nondominated solutions. 

Soylu and Koksalan (2008) suggested favorable weight based evolutionary algorithm 

in which each solution finds its own weights for a weighed Tchebycheff distance 

function to get its fitness value. Karahan and Koksalan (2008) developed a territory 

defining evolutionary algorithm and incorporated preferences of the DM. Pfeiffer et 

al. (2008) proposed a reference point based MOGA for group decisions. 

 

There are also a few genetic algorithms used for project selection problem in the 

literature. A MOGA based on NSGA-II was proposed by Medaglia et al. (2007) for 

project selection with partially funded projects and resource constraints. A Pareto 

Ant Colony optimization approach for investment projects was proposed by Doerner 

et al. (2004).   
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CHAPTER 3 

 
 

3. THEORETICAL BACKGROUND 

 
 
 

3.1. DEFINITIONS 

The generic form of the MCDM problem can be stated as follows: 

 

“maximize”  )(xfz =  

   s.t   Xx∈  

 

where T
M xfxfxf ))(),......,(()( 1= is a M-vector of objective functions, )(xfm  

represents the mth  objective function , T
uxxx ),.....,( 1= is the decision vector, uRX ⊆  

represents the feasible decision space, )(xfz = represents the objective vector, and  

)(XfZ =  represents the feasible objective space (solution space). 

 

Some of the basic definitions of the MCDM are given below: 

 

Definition 1. A decision vector, Xxk ∈  is efficient if and only if there doesn’t exist 

)()(such that k
t

j
t

j xfxfXx ≥∈  for all t with a strict inequality for at least one t. 

Otherwise kx  is inefficient. 

 

Definition 2. A decision vector, Xxk ∈  is weakly efficient if and only if there 

doesn’t exist )()(such that k
t

j
t

j xfxfXx >∈  for all t. Otherwise kx  is strictly 

inefficient. 
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Definition 3. An objective vector, Zz∈ is non-dominated if and only if there doesn’t 

exist tt zyZy ≥∈ such that  for all t with a strict inequality for at least one t. 

Otherwise z is said to be dominated. 

 

Definition 4. The set of all efficient solutions is called the efficient frontier or 

efficient set.  

 

Definition 5 . The set of all non-dominated objective vectors is called non-dominated 

frontier or non-dominated set. Non-dominated set is also called as “Pareto-optimal 

set, “Pareto front” or “True Pareto Front” in the literature. 

 

3.2. PROMETHEE I, II and V METHODS 

PROMETHEE methods are the outranking methods which use pairwise comparisons 

of alternatives according to the preference functions and consist of two steps: 

constructing and exploiting an outranking relation (Brans and Vincke, 1985). The 

outranking relation is defined for alternative pairs, e.g. alternatives a and b, and a 

outranks b if and only if a is at least as good as b on the majority of the criteria 

whereas a is not considerably worse than b on any of the criteria. (Vincke, 1992). 

In these methods, a weight is assigned to each criterion by DM and an outranking 

degree π (a, b) for alternatives a and b is formulated as follows: 

π (a,b) =∑
=

n

i
ii baPw

1
),(  

where ),( baPi  is the number between 0-1 and calculated according to the preference 

function of  criterion i, iw  is the weight of criterion i, n is the number of criteria. 

Preference function ),( baPi  is defined for each criterion and used to translate the 

difference between the alternatives in terms of the given criterion into a preference 

degree ranging from 0 to 1 ( 1),(0 ≤≤ baPi ). 

 

Let )()( bvavd ii −=  and 
⎩
⎨
⎧

<
≥

=
0 ),(
0 ),( 

)(
dabP
dbaP

dP
i

i  
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where )(avi  is the ith criterion value of alternative a, )(bvi  is the ith criterion value of 

alternative b, and (.)iP is the preference function for ith criterion. 

 

The form of the preference function is determined by the type of criteria and 

thresholds used; six types of criteria and three types of thresholds are defined (Brans 

and Vincke, 1985). Thresholds are indifference, iq , preference, ip  and Gaussian, iσ , 

and they are applied in order to indicate the impreciseness in the criterion values. The 

type of the preference functions and necessary thresholds for each function are 

displayed in Figure 1. Using outranking degree π (a, b), leaving and entering flow of 

each alternative is calculated as follows; 

 

),( ba
Ab

a ∑
∈

+ = πφ   ,    ),( ab
Ab

a ∑
∈

− = πφ  

where A is the set of alternatives; +
aφ is the leaving flow of alternative a, representing 

the significance of alternatives outranked by a; −
aφ  is the entering flow of alternative 

a, representing the significance of alternatives outranking a. PROMETHEE methods 

use leaving and entering flows in order to build an outranking relation.  

 

In PROMETHEE I, the partial ranking is obtained by using following relations: a 

outranks b  if ++ ≥ ba φφ  and  −− ≤ ba φφ  (one being strict);  a is indifferent to b if ++ = ba φφ  

and  −− = ba φφ ; a is incomparable to b otherwise. In PROMETHEE II, net flow is 

calculated by using leaving and entering flows. Net flow of alternative a is defined as 
−+ −= aaa φφφ . The complete ranking resulting from net flow is obtained using the 

following relations: a outranks b if ba φφ > ; a is indifferent to b if ba φφ =  

 

PROMETHEE V integrates PROMETHEE II with 0-1 integer programming. 

Mathematical model of PROMETHEE V is as follows:  

Maximize ∑
=

u

l
ll x

1
*φ       (Maximize Total Net Flows) 

s.t. 

Segmentation constraints (Policy, budget etc.) 
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}{ 10,  ∈lx  

where lφ  is the net flow of alternative l , lx  is a binary variable, lx =1 if alternative l 
is selected, lx =0 otherwise.   

 

Preference Function Shape Properties 

 

Type I, Usual Criterion, No threshold is defined. 

 

Type II, Quasi Criterion, indifference threshold (q) 
is defined. 

 

Type III, Linear Preference Criterion, preference 
threshold (p) is defined. 

 

Type IV, Level Criterion, both indifference 
threshold (q) and preference threshold (p) are 

defined.  

 

Type V, Linear Preference Criterion with 
indifference area, both indifference threshold (q) 

and preference threshold (p) are defined.   

 

Type VI, Gaussian Criterion, Gaussian threshold 
(σ ) is defined. 

 
Figure 1 Preference Function Types 
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3.3. EPSILON (ε ) CONSTRAINT METHOD  

“ε -constraint” method was introduced by Haimes et al (1971). It finds the non-

dominated set of MCDM problems by converting the MCDM problem to its 

corresponding single objective problem. The method basically consists of two steps: 

1. Find the range of objective functions (construct pay-off table). 

2. Convert the MCDM problem into its corresponding “ε -constraint” problem. 

Illustration of the method in the two dimensional space for discrete problems is 

provided below. Consider the following problem: 

Maximize  f1(x) 

Maximize  f2(x) 

s.t 

Xx ∈  

 x are integer. 

An example problem is displayed in Figure 2. To find the range of the objective 

functions, following two problems are solved independently. 

(M1) 

Maximize f1(x) + ρ*f2(x) 

s.t 

Xx ∈  

(M2) 

Maximize f2(x)+ ρ*f1(x) 

s.t 

Xx ∈  

where X is the feasible region, and  ρ is a sufficiently small nonnegative number. 

Augmentation term ρ*f1(x) is added to objective function to prevent obtaining 

weakly efficient solutions. Let A(a1,0) be the optimal solution to the problem M1 and 

B(0,b2) be the optimal solution to the problem M2. Range of the objective functions 

are obtained, they are displayed in Table 1. 
 
 
 

Table 1 Payoff table of objective functions 
 

Objectives f1(x) f2(x) 

f1(x) a1 0 

f2(x) 0 b2 
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Figure 2 Graphic representation of ε -constraint problem 

 

 

 

After obtaining the range of objectives, corresponding “ε -constraint” problem is 

formulated by defining one of the objectives as a constraint. 

 

Maximize  f2(x) + ρ*f1(x) 

s.t 

ε≥)(1 xf  

Xx ∈  

 

Assume that discrete non-dominated set consists of five solutions (see Figure 2). 

)(1 xf  is between 0 and a1. First of all, “ε -constraint” problem solved with ε = 0, the 

non-dominated solution B (arrow 1) is obtained. At the second iteration, ε -constraint 

is increased with very small number to find the neighboring non-dominated solution, 

the problem solved with 610−=ε , and the non-dominated solution pointed by the 

arrow 2 is obtained ( 1ε  is also obtained). At the third iteration, the problem solved 

f1 

f2 

A(a1, 0) 

  B(0, b2) 

3ε  2ε  1ε  

Xx ∈

1
2

3

4

5
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with 6
1 10−+=εε , and the non-dominated solution pointed by the arrow 3 is obtained 

and so on. This method continues until no new efficient solution is generated. 

 

3.4. DATA MINING CLASSIFICATION AND REGRESSION TREES 

Classification and Regression Trees (CRT) is a data mining technique which was 

originally described by the Breiman et al. in 1984. CRT partitions the data into two 

subsets so that the records within each subset are more homogeneous than in the 

previous subset. It is a recursive process, each of those two subsets is then split 

again, and the process repeats until the homogeneity criterion is reached or until 

some other stopping criterion is satisfied. The mathematical algorithms that work 

behind the CRT are not in the scope of this study.  

 

To the best of our knowledge, there was an attempt to do a post-optimality analysis 

using data mining techniques in biobjective traveling salesman problems with profits 

(Karademir, 2008). The cities and their marginal effects over the Pareto front are 

analyzed to give supportive information to the DM.  

 

3.5. GENETIC ALGORITHMS (GAs) 

Genetic algorithms (GAs) are the optimization methods that are inspired by the 

principles of natural genetics. Some basic concepts of genetics are artificially 

embedded into these algorithms. In GAs, a solution is represented by a chromosome 

that is coded with binary or real bits according the characteristic of the problem 

under consideration. After the representation of solutions, a fitness value is assigned 

to each solution by various techniques. Fitness represents the survival of a solution in 

a population.  

 

In GAs, firstly, an initial population (parent population) is randomly generated and 

evaluated according to fitness values. Then reproduction (selection) operator is used 

for eliminating bad solutions and duplicating good solutions. Solutions that survive 

in the population constitute the mating pool. Binary tournament selection is usually 

used as a reproduction strategy in the literature. Simply, in binary tournament 

selection, two solutions are randomly picked from the population and the better one 

is selected and placed into the mating pool. New solutions (offspring population) are 
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created from mating pool by performing crossover (recombination) and mutation 

(injection) operators. In crossover operator, two solutions are randomly taken from 

the mating pool and some bits of the solutions are exchanged between themselves by 

using different techniques such as single-point crossover and two-point crossover. In 

mutation operator, some bits of the solutions are changed with a predefined 

probability.  

 

Reproduction operator favors the good solutions in the population. However, 

crossover and mutation operators create new and diverse solutions. Once the 

offspring population is created, its solutions are evaluated according to the fitness 

values and solutions of the parent population are updated. This generic loop goes on 

until a stopping condition is achieved. In Figure 3, working principle of a generic GA 

is depicted.   

 

 

 

 
Figure 3 Working Principle of a Generic GA 
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3.6. ELITIST NON-DOMINATED SORTING GENETIC ALGORITHM 

(NSGA-II) WITH A CONSTRAINT HANDLING MECHANISM 

Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) was developed by Deb 

et al. (2000). They also proposed constraint tournament method that can be 

embedded into genetic algorithms for constraint handling purposes. In fact, in some 

problems, constraint handling can be somehow performed with adhoc problem-

specific approaches. However, structured constraint handling methods are usually 

compulsory for most of the constrained MCDM problems.  

 

In this study, we apply NSGA-II with constraint tournament method. Therefore, we 

explain NSGA-II that uses the constraint tournament mechanism instead of NSGA-II 

itself. In generic NSGA-II, binary tournament selection with a crowded tournament 

operator is used for reproduction and non-dominated sorting is applied for fitness 

assignment. However, in NSGA-II with constraint tournament method, binary 

tournament selection with a constraint tournament operator is used for reproduction 

and constraint-non-dominated sorting is applied for fitness assignment. In both 

approaches of NSGA-II, an explicit diversity preserving mechanism is used. 

 

Illustration of the constraint-non-dominated sorting concept is displayed in Figure 4. 

In Figure 4, population consists of nine solutions (objectives are to be minimized). 

Constraint-non-dominated sorting is performed as follows; firstly, feasible solutions 

are determined and dominance check is applied to feasible solutions. Each feasible 

solution is compared with every other feasible solution in the population for 

checking whether it is dominated by any feasible solution or not. If it is not 

dominated by any of the feasible solution in the population, it belongs to first 

constraint-non-dominated front. In Figure 4, only one solution constitutes the first 

constraint-non-dominated front. 
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Figure 4 Determining Fronts in NSGA-II with Constraint Tournament Method 

 

 

 

After the determination of the first constraint-non-dominated front, solutions in the 

first constraint-non-dominated front are removed temporarily from the population 

and domination check is performed for remaining feasible solutions and second 

constraint-non-dominated front is constructed by three solutions as seen in Figure 4. 

These three solutions are also temporarily removed from the population and third 

constraint-non-dominated front is determined from the remaining two feasible 

solutions. Finally, three constraint-non-dominated fronts are determined for feasible 

solutions. However, there are also some infeasible solutions in the population. 

Overall constraint violations are calculated for infeasible solutions and infeasible 

solution that has the minimum violation constitute the next constraint-non-dominated 

front. As seen in Figure 4, three constraint-non-dominated fronts are determined for 

infeasible solutions. Finally, six constraint-non-dominated fronts are determined in 

Figure 4. 

 

NSGA-II also uses a mechanism called crowding distance to maintain diversity 

among solutions. Crowding distance can be interpreted as an estimate of the density 

of solutions in the neighborhood of a specific solution. It finds the total scaled 

distance of two solutions on either side of a solution along each objective. Firstly, for 

each front, solutions are sorted according to each objective in ascending order and 

    f1 

       f2 
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sorted lists are formed. Then, boundary solutions are determined and very large 

numbers are assigned to them. For remaining solutions in the front, crowding 

distance of each solution ( jd ) is calculated using following formula: 

 

 

 
where Ij is the solution index of the jth solution in the sorted list of mth objective.  

)( 1
m
jI

mf + and )( 1
m
jI

mf − are the neighbors of the jth solution according to the mth objective. 

max
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mf  denote the maximum and minimum values for the mth objective 

respectively. M is the number of objectives; l is the number of solutions exists in 

each front. In the formula, 
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m ff −+ − is the difference between neighboring 

solutions of jth solution with respect to mth objective. This difference is scaled with 

the range of mth objective. Total scaled differences constitute the crowding distance 

of jth solution.  

 

In Figure 5, crowding distance concept is illustrated; five solutions (a, b, c, d, and e) 

constitute the front. Cuboid (rectangle) distance of solution c is shown with dashed 

lines. Solution “a” and “e” are the boundary solutions to which larger crowding 

distance values are assigned. Solution “b” and “d” are the neighboring solutions of 

solution “c”. Crowding distance of solution “c” is calculated as follows; 
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Figure 5 The Cuboid (rectangle) Distances of a Solution in a Front 

 

 

 

In NSGA-II with constraint tournament method, an initial population (P0) is 

randomly generated. Constraint-non-domination sorting is applied, and constraint-

non-dominated fronts are determined. Each solution in the population is assigned a 

fitness value indicating its belonging constraint-non-dominated front. Binary 

tournament selection with a constraint tournament operator, crossover and mutation 

operators are used to create an offspring population Q0 of size N.  

 

In Figure 6, schematic of the NSGA-II procedure with constraint tournament method 

is depicted. As seen in Figure 6, after offspring population Qt is created from initial 

population, they are combined into Rt with size 2N and constraint-non-dominated 

sorting is applied to Rt. From Rt population, N solutions are selected based on the 

constraint-non-domination sorting and crowding distance; and the parent population 

of the next step Pt+1 is created. As seen in Figure 6, four fronts exist for Rt, the last 

front is directly discarded due to the size N restriction. However, number of solutions 

in the first two front are smaller than size N, whereas number of solutions in the first 
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three front are bigger than size N. Thus, third front (F3) somehow has to be split to 

fill up the Pt+1. At this point, crowded distance sorting is applied and solutions with 

the larger crowding distances are placed into the parent population Pt+1. The reason 

of using crowding distance is favoring the solutions that reside in a less crowded 

region. 

 

 

 
Figure 6 Schema of the NSGA-II with Constraint Tournament Method 

 

 

 

After the production of Pt+1, binary constraint tournament selection operator is used 

for filling up the mating pool. Two solutions are randomly selected from the parent 

population Pt+1, solution belongs to better front wins the tournament and placed into 

the mating pool; in the case of belonging the same front, solution with the larger 

crowding distance wins the tournament and placed into the mating pool. Once the 

mating pool is formed by the selection operator, crossover and mutation operators are 

performed to create offspring population Qt+1. This process goes on until a 

termination condition is achieved. In Figure 7, steps of NSGA-II with constraint 

tournament method are presented. 
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Figure 7 Steps of the NSGA-II with constraint tournament method 
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CHAPTER 4 

 

4. AN INTERACTIVE BIOBJECTIVE PROMETHEE V 

APPROACH (ib-PROMETHEE V) 

 
 
 

4.1 MOTIVATION 

The main motivation behind the proposed approach is that “while calculating net 

flows some useful information about incomparabilities is lost” (Brans and Vincke 

1985; Ozerol and Karasakal 2008). In order to capture these incomparabilities, 

namely leaving and entering flows, ib-PROMETHEE V is proposed. As formulated 

in Section 3, PROMETHEE V combines PROMETHEE II with 0-1 integer 

programming. In ib-PROMETHEE V, we integrated PROMETHEE I with 0-1 

integer programming to capture the trade-offs between leaving and entering flows. 

Mavrotas et al. (2006) stated that PROMETHEE V formulation usually violates the 

project ranking scores (ranking of PROMETHEE II) due to the budget constraint, i.e, 

the projects that have relatively higher budgets may not be selected although they 

have good ranking scores. Mavrotas et al. (2006) demonstrated this drawback in a 

simple example problem (see Table 2). 

 

 

 
Table 2 Example of Misleading Results 

 
 Projects Net Flow Score Budget 

A 65 50 
B 30 20 
C 40 10 
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In Table 2, assume three projects applied for funding. PROMETHEE V objective 

function prefers combination of projects B and C to project A since net flow score of 

combination of B and C is greater than that of A (70>65), and budget of combination 

of B and C is lower than that of A (30<50). In order to overcome this drawback, 

Mavrotas et al. (2006) proposed two approaches. First approach is the revision of the 

PROMETHEE V objective as follows: 
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                               (1) 

However, Mavrotas et al. (2006) claimed that objective (1) complicates the solution 

procedure due to nonlinearity. Thus, they secondly proposed adding the following 

two constraints instead of the budget constraint to PROMETHEE V formulation: 
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where PR(k) is the maximum number of selected projects, totbudg(k) is the 

cumulative budget of PR(k) projects. They solve the problem k times for different 

PR(k) parameters and tried to find the appropriate range on the number of selected 

projects by both considering totbudg(k) and total available budget. They called this 

approach “parametric solution”. To clarify this approach, assume that total available 

budget is 100 monetary units for a specific problem, and there are 20 projects apply 

for funding. In this case, assume that problem is solved with PR(1)=5, PR(2)=10, 

PR(3)=15 parameters and totbudg(1)=40, totbudg(2)=70, totbudg(3)=120 are 

obtained. Since total available budget is 100 monetary units, a suitable range on the 

number of selected project is between 10 and 15 (70<100<120). Once the suitable 

range is obtained, problem is solved with PR(k)=10,11,…15 and six solutions are 

generated. Finally, a single solution is selected from these six solutions. However, 

determination of PR(k) parameter is not well structured in Mavrotas et al. (2006). 

Mavrotas et al. (2006) also stated that they used the normalized net flow values of 
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projects since negative values of net flows are opposite to the maximization objective 

of PROMETHEE V model.  

 

4.2 PROPOSED APPROACH 

In order to overcome the drawback of PROMETHEE V formulation, we simplified 

the idea of parametric solution. We propose a simple way to determine the upper and 

lower bounds on the number of selected projects by using budget information. We 

define constraint set (4) instead of budget constraint. 

                        ubXlb
n

i
i ≤≤ ∑

=1
                         (4)  

where lb is a lower bound and ub is an upper bound on the number of projects. We 

use these bounds to be able to generate a reasonable set of solutions that may convey 

valuable information about the projects and show trade-offs between the objectives 

and the budget. To determine lb and ub on the number of projects, we propose the 

following heuristic: 

Step 1. Rank the projects in decreasing order of their budgets. 

Step 2. Add up the budgets of the projects starting from the highest budget until 

reaching the available budget. Set the lb to the number of projects added up in 

this step. 

Step 3. Add up the budgets of the projects starting from the lowest budget until 

reaching the available budget. Set the ub to the number of projects added up in 

this step. 

 

We develop a two stage algorithm to solve project selection problems. In the first 

stage, we generate the Pareto front of ib-PROMETHEE V model. In the second 

stage, we obtain useful information about Pareto front by using data mining 

techniques and present this useful information to the DM to help him/her during the 

project selection process. Mathematical model of ib-PROMETHEE V for project 

selection problem is as follows:  
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Subject to: 

Constraint set (4). 

Segmentation constraints if any…    (7) 

}{ 10,  ∈iX       (8) 

where iX  is a binary variable, iX = 1, if the ith project is selected; and iX = 0 

otherwise. +
iφ  is the leaving flow, and −

iφ  is the entering flow of ith project, 

respectively. Objectives functions (5) and (6) correspond to maximization of total 

leaving flow and minimization of total entering flow of selected projects, 

respectively. Constraint set (7) implies the segmentation constraints such as policy, 

logical, labor, and time. Constraint set (8) refers to binary decision variables.  

 

We solve the ib-PROMETHEE V model by ε -constraint method. After generating 

the Pareto front, we ask the decision maker (DM) allowable deviation percentage 

(α ) on the total available budget (TAB). According to the DM’s answer, allowable 

budget range (ABR) is calculated as follows: 

100
)100(* α±

=
TABABR  

The solutions which are in the ABR are determined as candidate solutions. We 

assume that DM selects his/her preferred solution from the candidate solutions.  

 

In a posteriori MCDM problem, DM selects the most preferred solution from the 

solution set by evaluating the objective values of solutions. However, this brings 

cognitive burden to DM. Moreover, s/he may want to know the differences among 

solutions in terms of decision variables, such as selection frequencies of projects in 

the solution set. 
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In our proposed approach, when we obtain the candidate set, we determine the 

projects that are different in the set and call these projects as critical projects. 

Selecting the most preferred solution from candidate solution set is equivalent to 

deciding on which critical projects to include in the solution. However, how can the 

DM decide on critical projects? How much knowledge does DM have about critical 

projects? At that point, data mining analysis of critical projects helps the DM to 

decide among critical projects. We propose following three post-optimality analyses 

by using SPSS Clementine data mining software : 

Analysis 1. Frequency analysis: Selection frequencies of critical projects over Pareto 

front are analyzed. For example, if A is a critical project, number of solutions 

including the project A over the Pareto front gives the frequency of project A. It is 

expected that DM prefers the solutions whose frequencies are high. 

Analysis 2. Classification and Regression Tree (CRT) analysis: Marginal impacts of 

critical projects on cumulative budget, entering flow, and leaving flow are analyzed 

by using CRT. Marginal impact refers to how the inclusion or exclusion of critical 

projects in the generated part of the Pareto front affects the cumulative budget, 

entering and leaving flows. In a problem, suppose Pareto front consist of 20 

solutions, for example 11 solutions including project A have an average cumulative 

budget of $1000, whereas 9 solutions excluding project A have an average 

cumulative budget of $1600. So, Pareto front is classified into two sets according to 

the project A and DM has a chance to see the significant impact of project A on 

cumulative budget. Classification goes on in this manner and subsets are determined 

with the inclusion or exclusion of other projects. Thus, DM has a chance to see the 

classification of Pareto front in terms of both critical projects and objectives 

(cumulative budget, leaving flow, entering flow). We illustrate this analysis in detail 

in Section 5. 

Analysis 3. Frequency distribution analysis: Frequency distribution of any critical 

project interested by DM over the range of cumulative budget, entering flow, and 

leaving flow is analyzed. In a problem, suppose the entering flow range of candidate 

solutions is between 21 and 25, for example, selection frequency of project A is low 

when the entering flow objective value is between 15 and 20, whereas selection 

frequency of project A is high when the entering flow objective value is between 21 
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and 25. It is expected that DM may prefer the projects whose frequencies are high in 

the desired range of cumulative budget, entering flow, and leaving flow.  

  

Thereby, DM has a chance to learn more about critical projects with the guidance of 

above analyses. According to the data mining results on critical projects, DM may 

prefer some of the critical projects, then candidate solutions are updated and 

normalized values of leaving flow, entering flow, and cumulative budget of the 

candidate set in the interval [0,1] are graphically presented to the DM. Finally, the 

DM either selects the most preferred solution from updated candidate solutions or 

continues to do data mining analysis with the remaining critical projects.   

We summarize the ib-PROMETHEE V below: 

Stage I: Generating Pareto front 

Step 1.1. Ask the DM to determine the type of preference function for each 

criterion, criterion weights, and thresholds. Compute entering and leaving 

flows of alternatives. 

Step 1.2. Ask the DM about segmentation constraints if any. 

Step 1.3. Ask the DM to determine TAB andα . Calculate the ABR. 

Step 1.4. Compute the lower and upper bounds on number of selected projects 

by using TAB. 

Step 1.5. Solve the mathematical model of ib-PROMETHEE V with ε -

constraint method, and generate Pareto front. 

Stage II: Data mining analysis and selecting the most preferred solution. 

Step 2.1. Determine the candidate solution set. 

Step 2.2. Determine the critical projects. 

Step 2.3. Display the frequencies of the critical projects over the Pareto front. 

Step 2.4. Display the marginal impacts of the critical projects on cumulative 

budget, entering flow, and leaving flow by using CRT. 



 26

Step 2.5. Display the frequency distribution of any critical project interested by 

DM over the range of cumulative budget, entering flow, and leaving flow.  

Step 2.6. Ask DM which projects s/he prefers. 

Step 2.7. Update the candidate solution set and display the normalized graph of 

the set.  

Step 2.8. Ask DM whether s/he decides on selecting one of the solutions. If yes 

stop, otherwise go to step 7. 

The flowchart of the ib-PROMETHEE V is shown in Figure 8. 

 

 

 

 

Figure 8 Flowchart of ib-PROMETHEE V 
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CHAPTER 5 

 

 

4. ILLUSTRATIVE EXAMPLES  
 

 

 

To illustrate ib-PROMETHEE V, firstly an example from literature is solved, and 

then a big-sized randomly generated example is solved and analyzed.     

5.1 AN EXAMPLE FROM LITERATURE 

Mavrotas et al. (2006) solve the following problem with their parametric 

PROMETHEE V solution method which is discussed in Section 4. We solve the 

same problem with the ib-PROMETHEE V algorithm. Our approach finds the results 

of Mavrotas et al. (2006) as well as different alternative solutions.  

 

There are 20 industrial firms that apply for funding their projects. These firms belong 

to two different regions and to three different sectors and the submitted projects have 

different budgets. The projects are evaluated and scored according to the six criteria 

(to be maximized) that are shown in Table 3. Data of the literature example is given 

in Table 4. 
 

 

 

Table 3 Criteria characteristics  

Criteria Criteria Definitions* Weight Preference 
Function Type Threshold Values 

Criterion 1 (C1) Sales2000/Sales1999 0.14 Type V q=0.05, p=0.2 

Criterion 2 (C2)  
Employees2000/employees1999 0.14 Type V q = 0.05, p = 0.2 

Criterion 3 (C3) Profit margin/sales 0.14 Type V q = 0.02, p = 0.1 
Criterion 4 (C4) Net profit/equity 0.14 Type V q = 0.1, p = 0.3 
Criterion 5 (C5) Sales/employees 0.14 Type V q = 5, p = 20 
Criterion 6 (C6) Quality of application 0.3 Type II q = 1 

* Criteria are explained in detail in Mavrotas et al. (2006). 
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Total available budget (TAB) is 4000k€ and there are some additional policy 

constraints in order to avoid the accumulation of funds in a specific region or sector. 

These constraints are stated below: 

 
Regional constraint: The approved projects in metropolitan areas (Athens and 

Thessaloniki) must not exceed 75% of the total approved projects. 

 
Sectoral constraint: The approved projects from each sector must be between 20% 

and 50% of the total approved projects.  

 

 

 

Table 4 Data for the literature example (Mavrotas et al. 2006) 
 

No Firm Region* Sector* Budget
(kЄ) C1 C2 C3 C4 C5 C6 +

iφ  −
iφ  

1 A A TX 356 1.02 0.84 0.36 0.56 42.00 4.00 4.33 8.60 
2 B A FD 256 1.04 0.91 0.17 0.35 28.00 3.00 0.94 11.71 
3 C A CH 189 1.10 0.97 0.14 0.27 16.00 2.00 0.83 13.08 
4 D O CH 203 1.37 1.10 0.26 0.22 25.00 5.00 4.65 7.66 
5 E A FD 380 1.09 1.01 0.30 2.31 19.00 4.00 5.03 7.88 
6 F A TX 114 2.19 1.20 0.04 0.11 32.00 5.00 5.22 8.61 
7 G O FD 121 1.36 1.41 0.22 1.08 48.00 8.00 11.38 3.91 
8 H O TX 376 1.74 1.40 0.17 0.88 34.00 9.00 10.40 3.85 
9 I A FD 494 1.64 0.84 0.21 0.71 26.00 6.00 5.27 7.13 

10 J A CH 116 1.04 1.00 0.02 0.07 33.00 2.00 0.79 13.31 
11 K A FD 94 1.62 2.00 0.39 2.85 49.00 10.00 15.72 0.83 
12 L O CH 116 1.11 1.82 0.21 0.77 16.00 6.00 5.50 7.09 
13 M O TX 225 1.01 2.23 0.34 0.91 89.00 8.00 12.36 3.30 
14 N A FD 1117 1.24 0.94 0.09 0.41 48.00 5.00 4.19 8.43 
15 O O TX 475 1.10 1.00 0.27 0.72 32.00 5.00 3.82 6.88 
16 P A TX 583 1.14 1.58 0.50 1.90 32.00 10.00 12.32 2.66 
17 Q A FD 416 1.25 0.77 0.39 0.48 24.00 6.00 5.19 7.69 
18 R A FD 156 1.16 1.12 0.26 0.65 44.00 6.00 6.10 5.91 
19 S O TX 99 2.84 1.94 0.20 2.02 29.00 9.00 12.14 2.48 
20 T A FD 1021 1.20 0.94 0.31 1.34 61.00 7.00 9.43 4.62 

* The region A means Athens or Thessaloniki and O means others. The sector TX  is for Textile, FD 

for Food and Beverage and CH for Chemicals. 
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We solve the above problem with ib-PROMETHEE V as follows: 

Stage I: Generating Pareto front 

Step 1.1: Preference function types, criterion weights, threshold are given in Table 3. 

Entering and leaving flows are calculated and displayed in the last two columns of 

Table 4. 

Step 1.2: Regional and sectoral constraints are specified above. 

Step 1.3: TAB is 4000k€, suppose DM indicates that allowable deviation percentage 

(α ) is 10%. 

[ ]44003600 interval in the is 
100

 10)(100*4000
100

)100(*
−⇒

±
=

±
= ABRTABABR α  

Step 1.4: Lower and upper bounds on the number of selected projects are calculated. 

 

 

Table 5 Computing lower and upper bounds 

Firm Budget 
(k€) lb 

Cumulative Budget 
Top to Bottom 

(k€) 
ub 

Cumulative Budget 
From Bottom to Top 

(k€) 
N 1117 1 1117 20 6907 
T 1021 2 2138 19 5790 
P 583 3 2721 18 4769 
I 494 4 3215 17 4186 
O 475 5 3690 16 3692 
Q 416 6 4106 15 3217 
E 380 7 4486 14 2801 
H 376 8 4862 13 2421 
A 356 9 5218 12 2045 
B 256 10 5474 11 1689 
M 225 11 5699 10 1433 
D 203 12 5902 9 1208 
C 189 13 6091 8 1005 
R 156 14 6247 7 816 
G 121 15 6368 6 660 
J 116 16 6484 5 539 
L 116 17 6600 4 423 
F 114 18 6714 3 307 
S 99 19 6813 2 193 
K 94 20 6907 1 94 
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In Table 5, “Budget” column presents the ranking of projects in decreasing order of 

their budgets. In the “Cumulative Budget Top to Bottom” and “Cumulative Budget 

Bottom to Top” columns, budget of projects calculated cumulatively. lb (lower 

bound) and ub (upper bound) columns show that how many projects are considered 

in calculating the corresponding cumulative budget value. For example, in the 

“Cumulative Budget Top to Bottom” column, the highest cumulative less than 4000 

is 3690; this corresponds to the number 5 in the lb column. Similarly, in the 

“Cumulative Budget Bottom to Top” column, the highest budget less than 4000 is 

3692; this corresponds to the number 16 in the ub column. Thereby, lb is set to 5, and 

ub is set to 16, respectively. 

Step 1.5: ib-PROMETHEE V model of the problem is as follows: 
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∑ ∑
∈ =

≥
CHSector  

T

A

*2.0
i i

ii XX    i = A, B,……., T (17) 

    ∑
=

T

Ai
iX ≤ 16     i = A, B,……., T      (18) 

∑
=

T

Ai
iX ≥ 5     i = A, B,……., T      (19) 
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where iX  is a binary variable, iX = 1, if the ith project is selected; and iX = 0 

otherwise. +
iφ  is the leaving flow, and −

iφ  is the entering flow of ith project, 

respectively. Objective function (9) maximizes the total leaving flow of the selected 

projects, and objective function (10) minimizes the total entering flow of selected 

projects. Regional constraint is represented in constraint set (11). Sectoral constraints 

are represented in constraint sets (12)-(17). Constraint sets (12) and (13) correspond 

to textile sector, (14) and (15) correspond to food and beverage sector, (16) and (17) 

correspond to chemical sector. Constraint sets (18) and (19) give upper and lower 

bounds on the number of selected projects. Constraint set (20) represents the binary 

decision variables. 

Above model is solved with ε -constraint method via C program which calls the 

GAMS model iteratively. 25 non-dominated solutions are generated (see Table 6). In 

Table 6, each column corresponds to one solution, 1 and 0 values in each column 

shows whether the project is selected or not in the solution. Cumulative budget, total 

leaving flow, total entering flow, and number of selected projects of each solution is 

displayed at the end of each column. Frequency column shows the number of 

solutions including the project in the corresponding row (explained in Step 2.3). The 

gray columns in Table 6 shows the solutions found by Mavrotas et al. (2006). Pareto 

front of the problem in the objective space is also shown in Figure 9. 

 



 32

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

Total Leaving Flow

To
ta

l E
nt

er
in

g 
Fl

ow

 

Figure 9 Pareto front of the illustrative problem 
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Table 6 Non-dominated Solutions of Literature Example 
   Solution Number 

# Name Budget 1 2 3 4 5 6 7 8 9 10 11 12 13 
1 A 356 0 0 1 0 0 0 0 0 0 0 0 0 0 
2 B 256 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 C 189 1 1 1 1 1 1 1 1 1 1 1 1 1 
4 D 203 1 1 1 1 1 1 1 1 1 1 1 1 1 
5 E 380 1 1 1 0 1 0 1 0 0 0 0 0 0 
6 F 114 1 1 0 1 0 1 0 1 0 1 0 0 0 
7 G 121 1 1 1 1 1 1 1 1 1 1 1 1 1 
8 H 376 1 1 1 1 1 1 1 1 1 1 1 1 1 
9 I 494 1 1 1 1 1 1 1 1 1 1 1 1 1 

10 J 116 1 0 0 0 0 0 0 0 0 0 0 0 0 
11 K 94 1 1 1 1 1 1 1 1 1 1 1 1 1 
12 L 116 1 1 1 1 1 1 1 1 1 1 1 1 1 
13 M 225 1 1 1 1 1 1 1 1 1 1 1 1 1 
14 N 1117 0 0 0 0 0 0 0 0 0 0 0 0 0 
15 O 475 0 0 0 1 1 0 0 1 1 0 0 1 0 
16 P 583 1 1 1 1 1 1 1 1 1 1 1 1 1 
17 Q 416 1 1 1 1 1 1 1 0 1 0 1 0 0 
18 R 156 1 1 1 1 1 1 1 1 1 1 1 1 1 
19 S 99 1 1 1 1 1 1 1 1 1 1 1 1 1 
20 T 1021 1 1 1 1 1 1 1 1 1 1 1 1 1 

Cumulative Budget 4703 4587 4829 4682 4948 4207 4473 4266 4568 3791 4093 4152 3677 
Total Leaving Flow 122.33 121.54 120.65 120.33 120.14 116.51 116.32 115.14 115.11 111.32 111.29 109.92 106.1 
Total Entering Flow 100.01 86.7 86.69 85.7 84.97 78.82 78.09 78.01 77.09 71.13 70.21 69.4 62.52 
Number of Selected Projects 16 15 15 15 15 14 14 14 14 13 13 13 12 
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 Table 6 Non-dominated Solutions of Literature Example (Continues) 
      Solution Number   

# Name Budget 14 15 16 17 18 19 20 21 22 23 24 25 Frequency 
1 A 356 0 0 0 0 0 0 0 0 0 0 0 0 1 
2 B 256 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 C 189 1 1 0 0 0 0 0 0 0 0 0 0 15 
4 D 203 1 1 1 1 1 1 1 1 1 0 0 0 22 
5 E 380 0 0 0 0 0 0 0 0 0 0 0 0 5 
6 F 114 0 0 0 0 0 0 0 0 0 0 0 0 6 
7 G 121 1 1 1 1 1 1 1 1 1 1 1 1 25 
8 H 376 1 1 1 1 1 0 0 0 0 0 0 0 18 
9 I 494 0 0 0 0 0 0 0 0 0 0 0 0 13 

10 J 116 0 0 0 0 0 0 0 0 0 0 0 0 1 
11 K 94 1 1 1 1 1 1 1 1 1 1 1 1 25 
12 L 116 1 1 1 1 1 1 1 1 1 1 1 1 25 
13 M 225 1 1 1 1 1 1 1 1 0 1 1 0 23 
14 N 1117 0 0 0 0 0 0 0 0 0 0 0 0 0 
15 O 475 1 0 0 0 0 0 0 0 0 0 0 0 6 
16 P 583 1 1 1 1 1 1 1 0 1 1 0 1 23 
17 Q 416 0 0 0 0 0 0 0 0 0 0 0 0 9 
18 R 156 1 1 1 0 0 0 0 0 0 0 0 0 16 
19 S 99 1 1 1 1 1 1 0 1 1 0 1 1 23 
20 T 1021 1 1 1 1 0 0 0 0 0 0 0 0 17 

Cumulative Budget 3658 3183 2994 2838 1817 1441 1342 858 1216 1139 655 1013   
Total Leaving Flow 104.65 100.83 100 93.9 84.47 74.07 61.93 61.75 61.71 57.28 57.1 57.06   
Total Entering Flow 62.27 55.39 42.31 36.4 31.78 27.93 25.45 25.27 24.63 17.79 17.61 16.97   
Number of Selected Projects 12 11 10 9 8 7 6 6 6 5 5 5   
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Stage II: Data mining analysis and selecting the most preferred solution.  

Step 2.1: Solutions 6, 8, 10, 11, 12, 13, and 14 are in the ABR. Hence, these seven 

solutions form the candidate set. Candidate set is shown in Table 7.  

 
 
 

Table 7 Candidate solution set 
 Name Budget 6 8 10 11 12 13 14 Frequency 

1 A 356 0 0 0 0 0 0 0 0 
2 B 256 0 0 0 0 0 0 0 0 
3 C 189 1 1 1 1 1 1 1 7 
4 D 203 1 1 1 1 1 1 1 7 
5 E 380 0 0 0 0 0 0 0 0 
6 F 114 1 1 1 0 0 0 0 3 
7 G 121 1 1 1 1 1 1 1 7 
8 H 376 1 1 1 1 1 1 1 7 
9 I 494 1 1 1 1 1 1 0 6 

10 J 116 0 0 0 0 0 0 0 0 
11 K 94 1 1 1 1 1 1 1 7 
12 L 116 1 1 1 1 1 1 1 7 
13 M 225 1 1 1 1 1 1 1 7 
14 N 1117 0 0 0 0 0 0 0 0 
15 O 475 0 1 0 0 1 0 1 3 
16 P 583 1 1 1 1 1 1 1 7 
17 Q 416 1 0 0 1 0 0 0 2 
18 R 156 1 1 1 1 1 1 1 7 
19 S 99 1 1 1 1 1 1 1 7 
20 T 1021 1 1 1 1 1 1 1 7 
Cumulative Budget 4207 4266 3791 4093 4152 3677 3658  
Total Leaving Flow 116.51 115.14 111.32 111.29 109.92 106.1 104.65  
Total Entering Flow 78.82 78.01 71.13 70.21 69.4 62.52 62.27  
Number of Selected 
Projects 14 14 13 13 13 12 12  

 

 

 

Step 2.2: Critical projects are determined from the frequency column of Table 7. 

Frequency column shows the number of solutions including the project in the 

corresponding row, i.e, project A is not selected in any of the candidate solution 

since its frequency value is zero, and project C is selected in all candidate solutions 

since its frequency value is seven. We look for the projects which are selected in 

some solutions; i.e., projects whose frequencies are strictly between zero and seven. 

Thus, projects F, I, O, and Q are the critical projects since their frequencies are 3, 6, 

3, and 2, respectively. 
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Step 2.3: In this step, we present the frequencies of projects F, I, O, and Q over the 

Pareto front to the DM. In Table 8, the frequencies of these projects over Pareto front 

are shown. This information is taken from the frequency column of Table 6. Suppose 

the DM realizes that frequencies of project I and Q are relatively high. 

 
 
 

Table 8 Frequency analysis of critical projects 
 

Critical Projects Frequency (out of 25 solutions) Percentage 
F 6 24% 
I 13 52% 
O 6 24% 
Q 9 36% 

 
 
 

Step 2.4: The marginal impacts of the projects F, I, O, and Q on cumulative budget, 

leaving flow, and entering flow are depicted in Figure 10, Figure 11, and Figure 12, 

respectively. In these figures, CRT branches on the critical projects. In SPSS 

Clementine, once we specify the projects, software automatically place the projects 

into the CRT branches. Application of the software is described in Appendix A. 

A variety of useful information can be extracted from Figures 10, 11, and 12. For 

instance, in Figure 10 “node 0” shows that there are 25 solutions and their average 

cumulative budget is 3165.2; “node 4” shows that average cumulative budget is 

4382.769 for the solutions including project I, and 1846.167 for the solutions 

excluding project I. Therefore, project I has a great impact on the cumulative budget 

and project I’s budget is relatively high compared to those of other projects. “Node 

12” depicts that average cumulative budget is 4565.556 for the solutions both 

including projects I and Q. In Figures 11, and 12, leaving flow and entering flow 

classification are presented, respectively. Suppose that DM evaluates “node 12” in 

Figures 10, 11, and 12; and realizes that frequency of the solutions including both 

project I and Q is 9 out of 25.  

Step 2.5: Suppose that DM has some idea about critical project, s/he thinks that 

frequencies of project I and Q are high and solutions including both project I and Q 

constitute the 36% of the Pareto front. 
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Figure 10 CRT of the cumulative budget 
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Figure 11 CRT of Leaving Flow 
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 Figure 12CRT of Entering Flow 
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However, suppose that DM thinks that project I has a great impact on cumulative 

budget, and wants to see the frequency distribution of this project over the range of 

the cumulative budget, leaving flow, and entering flow to make the final decision on 

it. In Figure 13, frequency distribution of project I over the range of cumulative 

budget, leaving flow, and entering flow is depicted, respectively. 

 

 

 
Figure 13 Distribution of project I over cumulative budget, leaving and entering 

flows 
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In Figure 13, at the right top corner of the graphs, I represents the project I, 1 and 0 

represent whether the project I is selected or not. Suppose DM evaluates Figure 13, 

and realizes that frequency of the project I is high in the cumulative budget range 

[3658-4207]; in the leaving flow range [104-116]; and in the entering flow range [62-

78]. These ranges correspond to the ranges of candidate solutions (see Table 7).  

 

Step 2.6: In the light of above analyses suppose DM prefers project I and Q. Thus, 

DM wants to see the project I and the project Q in his/her most preferred solution. 

 

Step 2.7: We update the candidate set in which project I and project Q selected 

simultaneously. Only solutions 6 and 11 are left. We display the normalized graph of 

updated candidate set to DM in Figure 14. In Figure 14, cumulative budget is 

normalized according to the available budget (0 shows the available budget in the y 

axis); leaving flow and entering flow are normalized according to their maximum 

and minimum values in the candidate set.   
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Figure 14 Normalized Graph of Updated Candidate Solutions 
 
 
 
Step 2.8: There is a trade off between solution 6 and solution 11 in terms of 

cumulative budget, leaving and entering flow. Suppose DM does not want to exceed 

available budget too much, solution 11 is selected as the most preferred solution. 
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To summarize, “ib-PROMETHEE V” approach gives alternative solutions for the 

specific number of selected projects (i.e. what are the solutions if we select 15 

projects?), however parametric PROMETHEE V approach (Mavrotas et al., 2006) 

gives only one solution for the specific number of selected projects. Thus, our 

approach not only finds the solutions of PROMETHEE V, but also finds the 

alternative solutions because of the biobjective formulation. Note that our approach 

finds all the efficient solutions including convex dominated ones. 

 

5.2 RANDOMLY GENERATED  EXAMPLE 

In this section, we generate an example problem. Criterion, budget, threshold values 

are uniformly generated. Criterion weights are taken equal. There are 100 projects 

and 10 criteria. We assume that all criteria are to be maximized and PROMETHEE 

function type is V for all criteria.  

Stage I: Generating Pareto front 

Step 2.1: Preference function types, criterion weights, thresholds information are 

given above. Entering and leaving flows are calculated. 

Step 2.2:  Suppose DM does not specify any segmentation constraints. 

Step 2.3: Suppose total available budget (TAB) is 5000 monetary units, suppose DM 

indicates that allowable deviation percentage (α ) is 2%. 

[ ]51004900 interval in the is 
100

 2)(100*5000
100

)100(*
−⇒

±
=

±
= ABRTABABR α  

Step 2.4: Lower (lb) and upper bounds (ub) on the number of selected projects are 

calculated as 21 and 46, respectively. 

Step 2.5: ib-PROMETHEE V model of the problem is as follows; 

Max  i
i

i X*
100

1
∑
=

+φ       

Min  i
i

i X*
100

1
∑
=

−φ   
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s.t 

46
100

1

≤∑
=i

iX     

21
100

1

≥∑
=i

iX   

}{ 10,  ∈iX  (5) 

328 efficient solutions are generated byε -constraint method. Pareto front of the 

problem in the objective space is shown in Figure 15.  
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Figure 15 Pareto front of the randomly generated example 

 

 

 

Stage II: Data mining analysis and selecting the most preferred solution.  

Step 2.1: 11 solutions are in the ABR out of 328 solutions. Candidate set is shown in 

the Appendix B, Table 20. In Appendix B, Table 20 each column corresponds to one 

solution, 1 and 0 values in each column shows whether the project is selected or not 

in the solution; cumulative budget, total leaving flow, total entering flow, and 
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number of selected projects of each solution are displayed at the end of each column; 

“F” column shows the number of solutions including the project in the corresponding 

row. 

Step 2.2: Critical projects can be easily determined by looking at the “F” column of 

Appendix B. There are 9 critical projects; project A3, A10, A35, A36, A56, A69, 

A71, A78 and A93.  

Step 2.3: The frequencies of the critical projects over the Pareto front are shown in 

Figure 16. “%” column represents the frequency in percentage. Suppose DM does 

not prefer project A56 since its frequency percentage (57%) is the lowest among the 

critical projects. Note that frequency analysis is more meaningful in this example 

since the Pareto front size is big enough to make comprehensive judgments. 

 

 

Figure 16 SPSS Clementine frequency analyses of critical projects 
 
 
 
Step 2.4: The marginal impacts of the critical projects on cumulative budget, leaving 

flow, and entering flow are depicted in Figures 17, 18 and 19, respectively. In these 

Figures, effect means that the difference between the current node and its parent 

node, numbers in the parenthesis indicate the number of projects in the 

corresponding nodes. 



 45

 
Figure 17 CRT list of cumulative budget  

 
 
 

 
 

Figure 18 CRT list of leaving flow  
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Figure 19 CRT list of entering flow 

 
 
 
From Figure 17-19, it is seen that project A71 has a great marginal impact on 

cumulative budget and entering flow and does not have any significant impact on 

leaving flow. In Figure 17, it is seen that solutions excluding project A71 have an 

average cumulative budget of 4429, and solutions including project A71 have an 

average cumulative budget of 6596. In Figure 19, it is seen that solutions excluding 

project A71 have an average entering flow of 5.584, and solutions including project 

A71 have an average entering flow of 8.073. Figure 17 shows that frequency of 

project A78 in the solutions excluding project A71 is 27 out of 328 solutions; 

whereas there are 99 solutions excluding both projects A71 and A78.  

 

Step 2.5: Frequencies of project A56, A71, and A78 are relatively low when 

compared to other critical projects. Also including A71 into the solution increases 

cumulative budget and entering flow which is not desirable and does not have 

significant impact on leaving flow.  

 

In Figure 20, frequency distribution of project A71 over the range of cumulative 

budget, leaving flow, and entering flow is depicted, respectively. Suppose DM 

evaluates Figure 20, and realizes that frequency of the project A71 in the budget 

range [4915-5093]; in the leaving flow range [2.51-2.67]; and in the entering flow 
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range [6.10-6.31] is very low. These ranges correspond to the candidate solutions 

range (see Appendix B).   

 

Step 2.6: According to the data mining results, suppose the DM does not prefer 

projects A56, A71, and A78.  

 

Step 2.7: We update the candidate set in which projects A56, A71, and A78 are not 

selected simultaneously. Solutions 2, 8 and 10 are left. We display the normalized 

graph of updated candidate set to DM in Figure 21. In Figure 21, budget is 

normalized according to the available budget; leaving flow and entering flow are 

normalized according to their maximum and minimum values in the candidate set.   

 

Step 2.8: Suppose, the DM selects solution 8 from Figure 21. 
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Figure 20 Distribution of project A71 over budget, leaving and entering flows 
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Figure 21 Normalized graph of updated candidate solutions 
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CHAPTER 6 

 
 

6. AN INTERACTIVE MULTIOBJECTIVE GENETIC 
ALGORITHM (IMGA) 

 
 
 

We propose another mathematical model for project selection problem to capture the 

trade-offs between net flow scores and budget of projects; and develop an interactive 

multiobjective genetic algorithm (IMGA) to solve the proposed model. We put lower 

and upper bounds to the budget objective not to generate the whole Pareto front. 

 
 
Our proposed mathematical model is: 

 

Max     ∑
=

=
n

i
ii Xz

1
1 *φ            (21)          

Min     ∑
=

=
n

i
ii XBudgetz

1
2 *      (22) 
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1
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=
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n

i
ii        (23) 

     
100

)100(**
1
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≤∑

=

TABXBudget
n

i
ii        (24) 

}{ 10,  ∈iX      (25) 

 

where iX  is a binary variable, iX = 1, if the ith project is selected; and iX = 0 

otherwise. iφ  is the normalized net flow of the ith project, iBudget  is the budget of ith 

project. TAB is the total available budget of the problem. α  is the allowable budget 
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deviation percentage. Objective (21) corresponds to maximizing total normalized net 

flow. We normalized the net flow of projects as in the Mavrotas et al (2006). 

Objective (22) corresponds to minimizing cumulative budget of the selected projects. 

Constraint set (23) and (24) correspond to lower and upper bounds on the objective 

(22), respectively. Constraint set (25) corresponds to binary decision variables.  

 

Non-dominated solutions of the above mathematical model are obtained by using ε -

constraint method in a reasonable time for small and moderate-sized problems. 

However, when the number of projects increases, solution time increases 

exponentially; and problem becomes a combinatorial optimization problem. Thus, 

using a multi-objective genetic algorithm (MOGA) is appropriate for large-sized 

problems. 

 

Our proposed algorithm is a preference-based multi-objective genetic algorithm 

which is based on the pairwise comparisons of the DM and the reference point 

determined by the DM.  

 

Our Interactive Multiobjective Genetic Algorithm (IMGA) is a steady state 

algorithm in which one solution is produced and evaluated in each iteration. The 

IMGA works with a fixed size population of solutions (individuals) and interacts 

with the decision maker (DM) to learn his or her preferences in terms of pairwise 

comparisons. The population converges toward preferred solutions. 

 

Determining the reference point: Total available budget (TAB) and allowable 

deviation percentage (α ) are obtained by interacting with the DM. In the beginning, 

we set the reference point to R(r1, r2) where  

 

r1= total net flows and  r2=- 
100

)100(* α−TAB   (26) 

 

Reference point of cumulative budget is negative since we maximize all objectives. 

Reference point is allowed to be updated by the DM throughout the algorithm. 
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Creation of initial population: Initial population should have a predetermined fixed 

size. In the IMGA, a unique solution is randomly generated and its budget is 

checked, if its budget is in the allowable budget range (ABR) it is inserted into the 

population. The process repeats until the population reaches its predetermined fixed 

size. We set the population size to 25 in our algorithm. 

 

Fitness function: Our algorithm depends on the reference point provided by the DM. 

Our fitness function is an achievement scalarizing function that ensures minimization 

of the deviation from the reference point. Solutions close to the reference point in the 

desired direction are directly favored by our fitness function. Achievement 

scalarizing fitness function value of a solution is calculated as follows:  

( )    2,1or  )(*Max  
2

1

=−− ∑
=

jfzzr
j

jjjjj
ελ        (27) 

where jλ  is the weight, rj is the reference point, and zj is the objective value of the jth 

objective. ε  is a sufficiently small positive constant and 1 =∑
j

jλ . Augmentation 

term ∑
=

2

1j
jzε is included in the function to prevent the generation of weakly efficient 

solutions. jλ , rj, and zj values are scaled in the interval [0, 1] to prevent bias of 

different ranges. 

 

Selection of the parents: Once the initial population is created, the objectives and 

fitness function of the solutions are calculated and ranked according to their fitness 

function values. The best two solutions (the incumbent and the second best) are 

picked from the population for crossover and mutation. 

 

Creation of the offspring and interactions: Offspring is produced by using 

crossover and mutations operators. The single point crossover is used. In single point 

crossover, a cross site on a chromosome is randomly selected, and left side bits of the 

first parent and right side bits of the second parent of the selected site are combined 

to produce the new chromosome (offspring) (see Figure 22). In Figure 22, third site 

along the chromosome length is randomly selected, and first three bits of the first 



 52

parent and last (fourth) bit of the second parent are combined to produce the 

offspring. In genetic algorithms, crossover operators work with crossover probability 

pc (usually taken between 0.9 and 1 in the literature) to preserve some of the good 

solutions produced with the reproduction operator. However, we set to pc=1 since we 

do not use any reproduction operator in the IMGA. 

 

 

 

 

Figure 22 Generation of the offspring by single point crossover operator 
 
 
 
Besides, we use a bit-wise mutation operator in which each bit has an independent 

mutation probability pm. In Figure 23, the bit-wise mutation operator is depicted.. In 

the literature small mutation probability is used (usually taken 0.01) to maintain 

diversity as well as not to destroy good solutions. Thus, pm is set to 0.01.  

 
 
 

 
Figure 23 The bit-wise Mutation Operator 
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In the IMGA, once an offspring is created, its budget is checked. If its budget is in 

the allowable budget range (ABR), it is inserted into the population; otherwise a new 

offspring is created. This process goes on until creating an offspring whose budget is 

in the ABR. After inserting the offspring into the population, fitness function values 

of the solutions are updated and solutions are ranked according to their fitness 

values. The solution that has the worst fitness value is eliminated from the 

population. The incumbent and the second best solution are picked from the 

population and following four conditions are checked before interacting with DM in 

order to decrease cognitive load being placed on the DM: 

Condition 1. This comparison should not have been done before by DM:  If this 

comparison is previously done by DM, the same solutions are not compared again. 

 

Condition 2.The best two solutions should not be so close to each other: The 

solutions which are so close to each other according to objective values are not 

presented to the DM. The incumbent is said to be close to the second best solution if 

 

2,1      )solutionbest  second the()incumbent the( =∀≤− kzz kkk µ  

 

where  1µ and  2µ  are closeness thresholds for objectives 1 and 2 respectively. 

These thresholds may either be provided by the DM or set to a small value. 

 

Condition 3. The second best solution should not be close to the solutions not 

preferred to the current incumbent: DM should not make comparisons that 

contribute little information to the preference (desired) direction, thus a list of 

solutions which are not preferred previously kept in memory. The second best 

solution that is very close to a solution not preferred previously is not presented to 

the DM. The second best solution is said to be close to one of the previously not 

preferred solutions of the incumbent, preferrednotx − , if  

 

2,1      )()solutionbest  second the( =∀≤− − kxzz k
preferrednot

kk µ  
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Condition 4. The best solution should not dominate the second best solution: If 

the second best solution is dominated by the incumbent, achievement scalarizing 

weights of the fitness function are updated in favor of the incumbent without 

interacting with the DM. 

 

If these four conditions are not satisfied, DM is asked to compare the best two 

solutions. Favorable achievement scalarizing weights of the preferred solution ( z ) 

are calculated according to below formula (Steuer, 1986) and weights of the 

algorithm updated.  
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In the IMGA, DM responses are used to update the achievement scalarizing weights 

of the preferred solutions. Thus, solutions in the desired directions (preferred 

regions) are favored and the algorithm converges toward the preferred solutions. 

Evolution and interactions repeat in this manner until the DM concludes the search or 

some predetermined termination condition is realized.  

 

The IMGA is summarized below:  

Step 0. Initialization 
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Ask the DM total available budget (TAB) and allowable deviation percentage 

(α ), Set reference point to R (r1, r2) according to (26), and create the initial 

population in the allowable budget range (ABR). 

 

Step 1. Evaluation of the initial population 

1.1 Calculate the objective value of each solution. 

1.2 Calculate the fitness value of each solution by using initial weights 

according to (27). Equal weights are taken as initial weights. 

1.3 Sort the solutions in the population in increasing order of their fitness 

values. The solution that has the minimum fitness value is determined as 

the incumbent. 

 

Step 2. Selection of the parents 

Select the incumbent and the second best solution for crossover and mutation  

from the population. 

 

Step 3. Crossover  

Perform single point crossover to create an offspring. 

 

Step 4. Mutation 

 Perform mutation on the offspring with mutation probability. 

 

Step 5. Budget Check 

Check the budget of the offspring. If it is in the ABR, insert the offspring into 

population, and eliminate solution with the maximum fitness value. 

Otherwise go to Step 3.  

 

Step 6. Interactions with the DM.  

6.1 Ask the DM to compare the best two solution in the population if  

• this comparison was not done before by DM or 

• the best two solutions are not so close to each other or 

• the second best solution is not so close to the previously not    

preferred solutions of current incumbent or 
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• the best solution does not dominate the second best solution, 

• Otherwise go to Step 3. 

6.2 Suppose DM prefers one solution to another, update the achievement 

scalarizing function weights in the favor of preferred solution ( z ) according 

to (28).  

6.3 Ask the DM whether s/he wants to change the reference point, if yes, 

update the reference point. 

 

Step 7. Updating fitness function values  

  Calculate the fitness value of all solutions in the population according to (27). 

 

Step 8. Present the current incumbent to the DM, if  

8.1 the DM is satisfied with the incumbent or 

8.2 the DM has made a predetermined number of pairwise comparisons or 

8.3 a predetermined number of crossovers have been realized, then stop. 

Otherwise go to step 2. 
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CHAPTER 7 

 
 

7. COMPUTATIONAL EXPERIMENTS FOR THE IMGA 

 
 

In this chapter, we use the IMGA, NSGA-II with constraint tournament method, and 

ε -constraint method to solve our second proposed mathematical model discussed in 

Chapter 6. We compare results of IMGA with those of ε -constraint method for 

small size problems and with those of NSGA-II with constraint tournament method 

for large size problems. The IMGA is coded with the Java programming language on 

the Net Beans IDE 6.1 software. C codes of NSGA-II with constraint tournament 

method are available at www.iitk.ac.in/kangal/codes.shtml. C Codes are used with 

some modifications on BloodShed DevC++ software version 4. Runs are performed 

on Intel Pentium IV, 2.30 GHz, and 512 MB of RAM computer. 

 

7.1 GENERATION OF THE PROBLEMS 

We test the performance of the IMGA and NSGA-II with constraint tournament 

method on four problem sets. Each problem set consists of ten different problems. 

Each problem has ten criteria, weights of the criteria are assumed to be equal, and all 

criteria are assumed to be maximized. Linear (Type V) PROMETHEE preference 

function is used for all criteria. Budget, criteria, indifference and preference 

threshold values are generated according to the uniform distribution. The properties 

of problem sets are given in Table 9. Net flow values are calculated and normalized.  

 

Pareto front of the problem sets 1, 2, and 3 are generated with ε -constraint method. 

Table 10 reports averages and standard deviations of the solution times of theε -

constraint method for each problem set. Average solution time of problem set 1 is 5.4 

minutes, problem set 2 is 35.91 minutes, and problem set 3 is 77.76 minutes. 

However, problem set 4 cannot be solved with ε -constraint method in 120 minutes.  
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Table 9 Problem Sets Characteristics 

  
Problem 

Set 1 
Problem 

Set 2 
Problem 

Set 3 
Problem 

Set 4 
Number of Problems in Each Set 10 10 10 10 

Number of Projects in Each Problem 100 250 350 500 

Number of Criteria in Each Problem 10 10 10 10 

Criterion Weight Values in Each Problem 0.1 0.1 0.1 0.1 

Preference Function Type for All Criteria Type V Type V Type V Type V 

Available Budget in Each Problem 7500 18500 27500 50000 
Allowable Budget Deviation Percentage in 

Each Problem 10% 10% 10% 10% 

 
 
 
Table 10 also presents the average number of non-dominated solutions found by 

theε -constraint method. The number of non-dominated solutions increases 

considerably when the problem size increases. On the average, 279.6 solutions are 

found for problem set 1, 1365.7 solutions are found for problem set 2 and 2635.4 

solutions are found for problem set 3. Note that only Pareto front solutions falling in 

allowable budget range are generated in these experiments. Thus, generation of the 

whole Pareto front is expected to take much longer time. 

 
 
 

Table 10 Results of the initial experiments 

  Solution Time (in minutes) Average Number of 
non-dominated 

solutions Problem Set Average Standard 
Deviation 

1 5.40 1.32 279.6 
2 35.91 10.70 1365.7 
3 77.76 13.06 2635.4 
4 * * * 

* Not solved in 120 minutes.  
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7.2 PERFORMANCE METRICS 

We test the performance of the IMGA with the following formula: 
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where δ  is the deviation from optimal (in percentage), optimalx  is the optimal 

solution, and IMGAx  is the solution obtained by the IMGA, U(x) is the underlying 

utility function value of solution x. 

 

We first test the performance of the NSGA-II with constraint tournament method 

with Hyper Volume Ratio (HVR), and Inverted Generational Distance (IGD) 

metrics.  

 

Hypervolume (HV) metric is proposed by Zitzler and Thiele (1998). In our problem, 

HV gives the total area in the two dimensional objective space dominated by the 

non-dominated solutions with respect to a given reference point. HV metric provides 

both convergence and diversity information of the population. A bad solution or the 

nadir point is usually taken as a reference point (N). 
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where nP  is the number of non-dominated solutions in the NSGA-II final 

population, N
iA  is the area dominated by solution nPi∈  with respect to a reference 

point N. Area of non-dominated solutions for our proposed model is illustrated in 

Figure 24. In Figure 24, for instance, the area dominated by unique solution e is 

shown in the dashed area.  
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Figure 24 Area enclosed by the non-dominated solutions 

 
 
 
Hyper Volume Ratio (HVR) is another metric which is computed based on HV 

metric. HVR is defined as follows: 

PF

nP

HV
HVHVR =  

where HVnP is the hypervolume of the non-dominated solutions of the final 

population (nP) of the NSGA-II, and HVPF is the hypervolume of the Pareto front. 

Large HVR values (>0.95) imply a good approximation of the Pareto front. 

 

Inverted Generational Distance (IGD) is developed by Bosman and Thiernes (2003). 

IGD finds the Euclidean distance of each non-dominated solution found by NSGA-II 

to its closest Pareto front solution. Small IGD values imply a good approximation of 

the Pareto front. IGD is defined as follows: 
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where nP is the non-dominated solutions found by the NSGA-II, PF is the Pareto 

front of the problem; iz  is the solution found by the NSGA-II, jz is the solution in 

the Pareto front, and
2

 ji zz − is the Euclidean distance between solutions iz and jz . 
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7.3 PARAMETER SETTING 

We use a binary chromosome representation in the IMGA and NSGA-II with 

constraint tournament method. The length of chromosome is equal to n, which is the 

number of projects in the problem. 

 

 

 

1 0 0 1 
 

Figure 25 Representation of a Solution 
 
 
 
In Figure 25, a chromosome (a solution) has four bits, which means that there are 

four projects in the problem. First bit is “1” indicating that first project is selected; 

second bit is “0” indicating that second project is not selected in the solution, and so 

on. 

7.3.1 Parameter Setting for IMGA 

In the IMGA, we use the following linear and Chebyshev utility functions to 

simulate the preferences of the DM: 
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where *
jz  is the ideal point and jλ  is the weight of the jth objective; and )(xz j  is the 

jth objective value of the solution x. For each problem, objective (maximizing total 

net flow and minimizing total budget) weights of the utility function are generated 

according to the uniform distribution in the interval [0, 1].  
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As discussed in Section 6, crossover (pc) and mutation probabilities (pm) are set to 1 

and 0.01, respectively; and population size is set to 25. The IMGA is sensitive to the 

closeness thresholds, hence preliminary experimental runs are done on problem sets 

1 and 3 for parameter setting of IMGA. Five problems are selected from problem sets 

1 and 3. 15 parameter sets are tested in problem set 1 and 9 parameter sets are tested 

in problem set 3 as shown in Table 11. For each parameter set and for each problem, 

five runs are performed; hence, totally 600 runs are performed. Parameter sets are 

given in Table 11. 

 
 

Table 11 Parameters for the IMGA 

  Number of Crossovers Closeness  Thresholds 
Parameter set 1 10,000 0.005 
Parameter set 2 10,000 0.01 
Parameter set 3 10,000 0.02 
Parameter set 4* 10,000 0.03 
Parameter set 5* 10,000 0.04 
Parameter set 6 25,000 0.005 
Parameter set 7 25,000 0.01 
Parameter set 8 25,000 0.02 
Parameter set 9* 25,000 0.03 
Parameter set 10* 25,000 0.04 
Parameter set 11 50,000 0.005 
Parameter set 12 50,000 0.01 
Parameter set 13 50,000 0.02 
Parameter set 14* 50,000 0.03 
Parameter set 15* 50,000 0.04 

   *  Only tested in problem set 1. 
 

 
 
The deviations from the optimal, number of comparisons, and solution time of all 

these runs (averages and standard deviations) are given in Tables 12 and 13. As seen 

in Tables 12 and 13, for problem set 1, parameter 14 and for problem set 3, 

parameter 11 give the best results in terms of deviation from the optimal solution. 

For all problem sets, it is observed that 50,000 crossovers are suitable for the 

termination condition of the IMGA. 
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Table 12 Results of the Parameter Setting Runs for Problem Set 1 
  Deviation 

from optimal 
Number of 

Comparisons 
Solution Time 

(in seconds) 
 Avg Std Avg Std Avg Std 
Parameter 1 8.53 2.44 36.68 22.95 5.48 0.477 
Parameter 2 5.95 1.71 13.7 9.44 4.84 0.45 
Parameter 3 5.10 1.45 2.48 1.77 4.80 0.51 
Parameter 4 3.43 1.63 0.49 0.33 5.28 0.69 
Parameter 5 5.21 2.34 0.08 0.17 5.56 0.56 
Parameter 6 7.05 2.29 47 20.93 11.96 1.14 
Parameter 7 5.45 2.90 15.4 9.58 10.23 0.55 
Parameter 8 3.85 2.38 1.44 1.17 10.16 1.38 
Parameter 9 2.98 1.40 0.92 1.34 12.20 1.55 
Parameter 10 5.35 1.20 0.12 0.26 12.04 1.06 
Parameter 11 6.82 1.20 39.72 20.17 21.04 2.34 
Parameter 12 4.39 1.65 13.32 8.86 19.00 1.46 
Parameter 13 2.83 1.68 1.00 1.07 19.76 2.77 
Parameter 14 1.71 1.70 0.56 0.57 21.24 2.78 
Parameter 15 4.62 1.75 0.04 0.09 21.80 1.83 

 
 

 
 

Table 13 Results of the Parameter Setting Runs for Problem Set 3 
  Deviation from 

optimal 
Number of 

Comparisons 
Solution Time 
(in seconds) 

 Avg Std Avg Std Avg Std 
Parameter 1 3.00 0.90 10.56 2.41 34.08 2.36 
Parameter 2 3.98 1.46 1.68 1.20 32.48 2.94 
Parameter 3 8.68 2.20 0.40 0.38 35.40 2.06 
Parameter 6 2.06 1.46 11.95 6.13 81.52 10.00 
Parameter 7 3.46 1.01 1.96 1.32 79.48 2.42 
Parameter 8 7.04 2.87 0.40 0.66 82.56 3.75 
Parameter 11 1.40 0.57 14.92 7.48 180.16 5.44 
Parameter 12 2.87 0.84 1.40 1.08 176.96 9.25 
Parameter 13 7.07 1.98 0.20 0.3085 191.12 9.109 

 
 
 
For problem set 1, closeness thresholds are set to 0.03; for problem set 3 and 4, 

closeness thresholds are set to 0.005; for problem set 2, closeness thresholds are set 

to 0.01. Different closeness thresholds are used for different-sized problems since 

objectives are scaled in the interval [0, 1] in all problems, and same interval length 

corresponds to different number of projects for different problem sizes. For example, 

same interval length may represent the 100 projects in problem set 1, and 500 

projects in problem set 4. 
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Number of comparisons considerably increases when the problem size is 350. 

Number of comparisons is on the average 0.56 with standard deviation 0.57 for 

problem set 1 and on the average 14.92 with standard deviation 7.48 for problem set 

3. Number of comparisons of the selected parameter is one of the smallest for the 

problem set 1, whereas number of comparisons of the selected parameter is the 

highest for the problem set 3. Average solution time is 21.24 seconds for problem set 

1 and 180.16 seconds for problem set 3. Solution times of the selected parameters are 

the highest ones for the problem sets 1 and 3. However, these solution times are 

considerably small when compared to the exact solution time of the problems.  

 

7.3.2 Parameter Setting for NSGA-II with Constraint Tournament Method 

In the literature, single point crossover and uniform crossover operators are usually 

performed in NSGA-II with probability between 0.9 and 1 and mutation operator is 

applied usually with probability between 0.002 and 0.02. In uniform crossover an 

offspring is produced by selecting the every bit with probability p (usually taken 0.5) 

from either parent (Deb, 2001). In the preliminary experiments, population size is set 

to 50 for problem set 1, 80 for problem set 2, and 100 for problem sets 3 and 4. Other 

parameters used in the runs are given in Table 14. Iteration size is taken 500. 

 
 
 

Table 14 Parameters for the NSGA-II with constraint tournament method 

 Crossover          
Type 

Crossover 
Probability 

Mutation    
Probability 

Parameter Set I Single Point 
Crossover 1 0.002 

Parameter Set  II Uniform 
 Crossover 1 0.01 

 
 
 
We select one problem from problem set 1, and one problem from problem set 4. We 

only generate the Pareto front of the problem taken from the problem set 4 in 3 hours 

53 minutes 25 seconds to have an idea about the NSGA-II performance on large-

sized problems. For the problem taken from the problem set 1, we solve it with 

different allowable budget deviation percentages to have an idea about the 
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performance of the constraint tournament mechanism of the NSGA-II. Each problem 

is solved 10 times with NSGA-II constraint tournament method. Totally 30 runs are 

performed. We know that number of test problems is not adequate for parameter 

settings, but they give us some idea about the performance of NSGA-II. In Table 15, 

average HVR values of the runs are shown. Parameter set I is selected to be used in 

the NSGA-II with constraint tournament method runs.  

 
 
 

Table 15 Parameter Settings for NSGA-II with constraint tournament method 

Problem Size Allowable Budget Deviation Percentage 
Average HVR Values 

Parameter 
Set I 

Parameter 
Set II 

100 10% 0.9832 0.9815 
100 20% 0.9884 0.9675 

  500* 10% 0.9881 0.7176 
 
 
 
7.4 COMPUTATONAL RESULTS 

We solve each problem in problem sets five times with the IMGA and NSGA-II with 

constraint tournament method using the above selected parameters. Totally, 400 runs 

are performed. 

Performance of the NSGA-II with constraint tournament method for problem sets 1, 

2, and 3 are reported in Table 16. Average of HVR is about 98% and average of IGD 

is about 0.0015. HVR and IGD values of the NSGA-II with constraint tournament 

method imply a good approximation to the true Pareto front. For problem set 4, five 

runs of the NSGA-II with constraint tournament method are combined and estimated 

Pareto front is obtained by the non-dominated solutions of the combined set.  

 
 
 

Table 16 HVR and IGD values of problem sets 1, 2 and 3 
 

 Problem Set I Problem Set II Problem Set III 

 HVR IGD HVR IGD HVR İGD 

Average 0.9838 0.0016 0.984 0.0014 0.9808 0.0017 
Standard 
Deviation 0.005 0.0019 0.0020 0.0009 0.0095 0.0027 
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Computational results of the IMGA are reported in Table 17. Deviations from 

optimal or estimated front (for problem size 500) are less than 3.98% for linear utility 

functions and less than 5.45% for Chebyshev utility functions. Standard deviations of 

the deviations from optimal are less than 1.84% for linear utility functions, and less 

than 2.06% for Chebyshev utility functions. In linear utility functions, average 

deviation from optimal is 1.49% with standard deviation 0.98 for problem set 1, 

1.82% with standard deviation 0.82 for problem set 2, 1.93% with standard deviation 

0.83 for problem set 3, and average deviation from estimated front is 3.98% with 

standard deviation 1.84 for problem set 4. In Chebyshev utility functions, average 

deviation from optimal is 3.05% with standard deviation 1.06 for problem set 1, 

3.26% with standard deviation 1.22 for problem set 2, 3.65% with standard deviation 

1.14 for problem set 3, and average deviation from estimated front is 5.45% with 

standard deviation 2.06 for problem set 4. Deviations of both linear and Chebyshev 

utility functions imply good approximations to the optimal solutions. IMGA finds 

good solutions especially for problem set 1, 2, and 3. Besides, deviations of the linear 

utility functions are smaller than that of Chebyshev utility functions.  

 

Number of comparisons is less than 14 for linear utility functions and less than 13 for 

Chebyshev utility functions. As we stated before, our IMGA is sensitive to closeness 

thresholds, number of comparisons of the problems with size 500, that is 8.67, is 

smaller than number of comparisons of the problems with size 350, 12.40. Note that 

we take the closeness thresholds of problems with size 350 and 500 equal, thus 

number of comparisons of the problems with size 500 decreases, but average 

deviation from optimal (estimated front) increases. 
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Table 17  Computational Results for IMGA 

 Problem size 100 250 350 500* 

U(x) Measure Avg Std dev Avg Std dev Avg Std dev Avg Std dev 

Linear 
Deviation from optimal (δ ) 1.49 0.98 1.82 0.82 1.93 0.83 3.98 1.84 

Comparisons (total) 0.64 0.49 3.80 1.73 13.60 5.09 8.22 2.95 

          

Chebyshev 
Deviation from optimal (δ ) 3.05 1.06 3.26 1.22 3.65 1.14 5.45 2.06 

Comparisons (total) 0.52 0.58 3.88 1.47 12.40 5.72 8.67 3.06 

          
* Deviation from estimated front is calculated. 
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We also make an attempt to compare our algorithm with NSGA-II with constraint 

tournament method. For each problem in problem sets, five runs are performed with 

the NSGA-II with constraint tournament method and IMGA. We calculate the best 

deviation of each run of NSGA-II with constraint tournament method with respect to 

utility functions used in the IMGA. Average of the best deviations for NSGA-II with 

constraint tournament method and IMGA are reported in Table 18. Note that 

solutions found by NSGA-II are in the allowable budget range since NSGA-II uses 

constraint tournament method for constraint handling. 

 

In Table 18, in linear utility functions, average of best deviation of NSGA-II with 

constraint tournament method is 0.64 for problem set 1, 2.41 for problem set 2, 3.23 

for problem set 3 and average of best deviation of IMGA is 1.49 for problem set 1, 

1.82 for problem set 2, 1.93 for problem set 3. So, in problem sets 2 and 3, averages 

of best deviation of IMGA are less than those of NSGA-II with constraint 

tournament method for linear utility functions. However, in problem set 1; averages 

of best deviation of IMGA are greater than that of NSGA-II with constraint 

tournament method for linear utility. In Chebyshev utility functions, average of best 

deviation of NSGA-II with constraint tournament method is 0.78 for problem set 1, 

3.93 for problem set 2, 7.59 for problem set 3, and average of best deviation of 

IMGA is 3.05 for problem set 1, 3.26 for problem set 2, 3.65 for problem set 3. 

Averages of best deviation of IMGA are less than those of NSGA-II with constraint 

tournament method for Chebyshev utility functions in problem sets 2 and 3. 

However, average of best deviation of NSGA-II with constraint tournament method 

is better than that of IMGA for problem set 1.  In both utility functions, performance 

of the IMGA deteriorates for the problem sets 1. This may be stem from the 

indifference thresholds since IMGA is very sensitive to them. For problems with size 

500, deviation from estimated front is calculated, and average of best deviation of 

IMGA is 3.98 for linear utility functions and 5.45 for Chebyshev utility functions. 

NSGA-II with constraint tournament method finds better solutions for problem set 4 

since deviation from estimated front is calculated for IMGA and these deviations are 

non-negative. In both utility functions, performance of the IMGA also deteriorates 

for the problem set 4. This may be stem from the indifference thresholds or 

termination condition used in the problem set 4. 
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Table 18 Comparison of NSGA-II with constraint tournament method and IMGA in 
terms of deviation from optimal 

 
 

    

NSGA-II with 
Constraint Handling IMGA 

Problem 
Size 

Utility 
(U(x)) Best Average 

100 
Linear 0.64 1.49 

Chebyshev 0.78 3.05 

250 
Linear 2.41 1.82 

Chebyshev 3.93 3.26 

350 
Linear 3.23 1.93 

Chebyshev 7.59 3.65 

500* 
Linear 

 ** 
  

3.98 

Chebyshev 5.45 
 *: Deviation from estimated front is calculated    
 **: True Pareto front is not known 

 
 
 

Comparison of solution times for NSGA-II with constraint tournament method and 

IMGA are presented in Table 19. Average solution time of IMGA is better than that 

of NSGA-II with constraint tournament method. Average solution time of IMGA is 

about 18 seconds for problem set 1, 77 seconds for problem set 2, 173 seconds for 

problem set 3, and 291 seconds for problem set 4. Average solution time of NSGA-II 

with constraint tournament method is 37.93 seconds for problem set 1, 168.79 

seconds for problem set 2, 197.62 seconds for problem set 3, and 497.84 seconds for 

problem set 4. However, we definitely conclude that solution time of both NSGA-II 

with constraint tournament method and IMGA are very small compared to exact 

solution times.  

 

Detailed results of the NSGA-II with constraint tournament method and IMGA are 

given in Appendix C. 
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Table 19 Solution time of the IMGA and NSGA-II with constraint tournament method 

 

  
NSGA-II with 

constraint 
tournament method 

IMGA 

Problem 
Size 

Utility 
(U(x)) Average Standart 

deviation Average Standart 
deviation 

100 
Linear 

37.93 2.27 
19.04 2.07 

Chebyshev 17.32 1.68 

250 
Linear 

168.79 14.84 
77.36 7.39 

Chebyshev 77.62 7.10 

350 
Linear 

197.62 6.49 
174.94 3.99 

Chebyshev 172.54 4.52 

500 
Linear 

497.84 94.04 
293.86 4.89 

Chebyshev 289.97 4.46 
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CHAPTER 8 

 

 

8. CONCLUSION AND FURTHER RESEARCH 

 
 
 
PROMETHEE V is one of the most used methods in MCDM. In this study, we 

formulated two biobjective models based on PROMETHEE V method for project 

selection problems. We discussed the drawback of budget constraint in project 

selection problems and developed two mathematical models to avoid the drawback. 

 

In the first proposed mathematical model, objective functions correspond to the 

PROMETHE I flows, namely leaving and entering flows. To solve this mathematical 

model, we develop an interactive approach, called ib-PROMETHEE. This approach 

consists of two stages. In the first stage, we solve the biobjective model using ε -

constraint approach to generate the Pareto front. In the second stage, we use data 

mining techniques to obtain useful information about Pareto front and present this 

useful information to the decision maker to help her/him during the selection process.  

 

In the second proposed mathematical model, one objective is to maximize the total 

net flow of the selected projects, and other objective is to minimize the cumulative 

budget of selected projects. We apply a well known heuristic algorithm, NSGA-II 

with constraint handling mechanism to this second model. We also develop a 

Preference Based Interactive Genetic Algorithm (IMGA) to solve this model. We test 

the performance of above algorithms on randomly generated test problems. 

Computational experiments show that solutions obtained by both NSGA-II with 

constraint handling method and IMGA imply good approximations to optimal 

solutions.  
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In this study, we assume that projects can be funded fully. As a future work, above 

biobjective models can be reformulated assuming that projects can be partially 

funded. Furthermore, three-objective mathematical models in which objectives 

correspond to PROMETHEE I flows and cumulative budget of selected projects may 

be studied as a future work.  
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APPENDIX A 
 
 

A: SPSS CLEMENTINE DATA MINING SOFTWARE 
 
 
 
In this study, we use the CRT model and necessary graph tools. In Figure 26, the 

modeling interface of the software is depicted. “130eff.txt” icon represents the data 

(Pareto front) you feed into program; “Filter” icon represents selection of critical 

projects and objectives, “CRT Leaving” icon represents the construction of CRT 

modeling with the target objective leaving. Triangle icons represent the various 

graph forms that can be used in the analysis. 

 
 
 

 
Figure 26 SPPS Clementine modeling interface 

 
 
 
When you run the CRT, you obtain the decision tree (see Figure 27 in the graph form 

and Figure 28 in the list form). For example, in Figure 27, “node 0” reports that there 

are 130 solutions with the average leaving objective value of 10.628. “node 8” 

reports that the number of solutions including project A41 is 94 with the average 

leaving objective value of 10.841. In Figure 28, effect means that the difference 
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between the current node and its parent (up) node in terms of leaving flow, numbers 

in the parenthesis indicate the number of solutions in the corresponding nodes. 

 
 
 

 
Figure 27 Illustration of CRT graph 

 
 
 

 
Figure 28 Illustration of the CRT list 
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APPENDIX B 
 
 

B: RANDOMLY GENERATED EXAMPLE  
 
 
 

Table 20  Candidate Solutions of Randomly Generated Example 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Project\ 
Solution 1 2 3 4 5 6 7 8 9 10 11 F* 

A1 0 0 0 0 0 0 0 0 0 0 0 0 
A2 0 0 0 0 0 0 0 0 0 0 0 0 
A3 1 1 1 1 1 0 1 1 1 1 1 10 
A4 1 1 1 1 1 1 1 1 1 1 1 11 
A5 1 1 1 1 1 1 1 1 1 1 1 11 
A6 0 0 0 0 0 0 0 0 0 0 0 0 
A7 0 0 0 0 0 0 0 0 0 0 0 0 
A8 0 0 0 0 0 0 0 0 0 0 0 0 
A9 1 1 1 1 1 1 1 1 1 1 1 11 
A10 1 1 1 0 0 0 1 1 0 0 0 5 
A11 0 0 0 0 0 0 0 0 0 0 0 0 
A12 0 0 0 0 0 0 0 0 0 0 0 0 
A13 0 0 0 0 0 0 0 0 0 0 0 0 
A14 0 0 0 0 0 0 0 0 0 0 0 0 
A15 0 0 0 0 0 0 0 0 0 0 0 0 
A16 0 0 0 0 0 0 0 0 0 0 0 0 
A17 1 1 1 1 1 1 1 1 1 1 1 11 
A18 1 1 1 1 1 1 1 1 1 1 1 11 
A19 0 0 0 0 0 0 0 0 0 0 0 0 
A20 0 0 0 0 0 0 0 0 0 0 0 0 
A21 0 0 0 0 0 0 0 0 0 0 0 0 
A22 0 0 0 0 0 0 0 0 0 0 0 0 
A23 0 0 0 0 0 0 0 0 0 0 0 0 
A24 0 0 0 0 0 0 0 0 0 0 0 0 
A25 0 0 0 0 0 0 0 0 0 0 0 0 
A26 0 0 0 0 0 0 0 0 0 0 0 0 
A27 0 0 0 0 0 0 0 0 0 0 0 0 
A28 1 1 1 1 1 1 1 1 1 1 1 11 
A29 0 0 0 0 0 0 0 0 0 0 0 0 
A30 0 0 0 0 0 0 0 0 0 0 0 0 
A31 0 0 0 0 0 0 0 0 0 0 0 0 
A32 1 1 1 1 1 1 1 1 1 1 1 11 
A33 0 0 0 0 0 0 0 0 0 0 0 0 
A34 1 1 1 1 1 1 1 1 1 1 1 11 
A35 0 1 1 1 1 1 0 1 1 1 1 9 
A36 1 1 1 1 1 1 0 0 0 1 1 8 
A37 0 0 0 0 0 0 0 0 0 0 0 0 
A38 1 1 1 1 1 1 1 1 1 1 1 11 
A39 0 0 0 0 0 0 0 0 0 0 0 0 
A40 0 0 0 0 0 0 0 0 0 0 0 0 
A41 0 0 0 0 0 0 0 0 0 0 0 0 
A42 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 20 Candidate Solutions of Randomly Generated Example (Continues) 
 

Project\ 
Solution 1 2 3 4 5 6 7 8 9 10 11 F* 

A43 0 0 0 0 0 0 0 0 0 0 0 0 
A44 0 0 0 0 0 0 0 0 0 0 0 0 
A45 0 0 0 0 0 0 0 0 0 0 0 0 
A46 0 0 0 0 0 0 0 0 0 0 0 0 
A47 1 1 1 1 1 1 1 1 1 1 1 11 
A48 0 0 0 0 0 0 0 0 0 0 0 0 
A49 0 0 0 0 0 0 0 0 0 0 0 0 
A50 0 0 0 0 0 0 0 0 0 0 0 0 
A51 0 0 0 0 0 0 0 0 0 0 0 0 
A52 1 1 1 1 1 1 1 1 1 1 1 11 
A53 1 1 1 1 1 1 1 1 1 1 1 11 
A54 1 1 1 1 1 1 1 1 1 1 1 11 
A55 1 1 1 1 1 1 1 1 1 1 1 11 
A56 0 0 0 0 0 1 0 0 0 0 0 1 
A57 0 0 0 0 0 0 0 0 0 0 0 0 
A58 0 0 0 0 0 0 0 0 0 0 0 0 
A59 0 0 0 0 0 0 0 0 0 0 0 0 
A60 0 0 0 0 0 0 0 0 0 0 0 0 
A61 0 0 0 0 0 0 0 0 0 0 0 0 
A62 0 0 0 0 0 0 0 0 0 0 0 0 
A63 1 1 1 1 1 1 1 1 1 1 1 11 
A64 0 0 0 0 0 0 0 0 0 0 0 0 
A65 0 0 0 0 0 0 0 0 0 0 0 0 
A66 0 0 0 0 0 0 0 0 0 0 0 0 
A67 0 0 0 0 0 0 0 0 0 0 0 0 
A68 0 0 0 0 0 0 0 0 0 0 0 0 
A69 1 1 1 1 0 0 1 1 1 1 0 8 
A70 0 0 0 0 0 0 0 0 0 0 0 0 
A71 0 0 0 0 1 1 0 0 0 0 0 2 
A72 1 1 1 1 1 1 1 1 1 1 1 11 
A73 0 0 0 0 0 0 0 0 0 0 0 0 
A74 1 1 1 1 1 1 1 1 1 1 1 11 
A75 1 1 1 1 1 1 1 1 1 1 1 11 
A76 0 0 0 0 0 0 0 0 0 0 0 0 
A77 0 0 0 0 0 0 0 0 0 0 0 0 
A78 1 0 1 1 1 1 1 0 1 0 1 8 
A79 1 1 1 1 1 1 1 1 1 1 1 11 
A80 0 0 0 0 0 0 0 0 0 0 0 0 
A81 0 0 0 0 0 0 0 0 0 0 0 0 
A82 1 1 1 1 1 1 1 1 1 1 1 11 
A83 0 0 0 0 0 0 0 0 0 0 0 0 
A84 0 0 0 0 0 0 0 0 0 0 0 0 
A85 0 0 0 0 0 0 0 0 0 0 0 0 
A86 0 0 0 0 0 0 0 0 0 0 0 0 
A87 0 0 0 0 0 0 0 0 0 0 0 0 
A88 0 0 0 0 0 0 0 0 0 0 0 0 
A89 0 0 0 0 0 0 0 0 0 0 0 0 
A90 1 1 1 1 1 1 1 1 1 1 1 11 
A91 0 0 0 0 0 0 0 0 0 0 0 0 
A92 0 0 0 0 0 0 0 0 0 0 0 0 
A93 1 1 0 1 1 1 1 1 1 1 1 10 
A94 0 0 0 0 0 0 0 0 0 0 0 0 
A95 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 20 Candidate Solutions of Randomly Generated Example (Continues) 
 

Project\ 
Solution 1 2 3 4 5 6 7 8 9 10 11 F* 

A96 0 0 0 0 0 0 0 0 0 0 0 0 
A97 0 0 0 0 0 0 0 0 0 0 0 0 
A98 1 1 1 1 1 1 1 1 1 1 1 11 
A99 0 0 0 0 0 0 0 0 0 0 0 0 

A100 1 1 1 1 1 1 1 1 1 1 1 11 
Cumulative 

Budget 5035 5093 5054 5090 5084 4928 4915 4973 4970 4916 4978 55036

Total 
Entering 

Flow 
6.31 6.31 6.30 6.30 6.27 6.24 6.12 6.12 6.11 6.11 6.10 68.35 

Total 
Leaving 

Flow 
2.66 2.65 2.65 2.64 2.63 2.62 2.56 2.55 2.53 2.52 2.51 28.57 

Number of 
Selected 
Projects 

29 29 29 29 29 29 28 28 28 28 28 314 

  
 * Frequency of Projects 
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APPENDIX C 
 
 

C: RESULTS OF THE IMGA AND NSGA-II  

 
 
 

Table 21 Results of the IMGA with Linear Utility  

Linear 
Utility 

Problem Size 
100 250 350 500 

P* R* D* C* T* D C T D C T D C T 

1 

1 0.25 0 27 0.89 7 71 1.01 13 178 1.24 11 272 
2 0.39 0 22 1.03 1 69 1.37 12 179 4.15 12 279 
3 0.32 0 22 0.75 4 78 1.04 4 180 5.91 8 284 
4 0.25 0 30 1.32 6 70 0.9 18 185 2.27 6 280 
5 0.91 0 26 1.67 5 73 0.95 19 176 2.48 7 274 

Avg 0.424 0 25.4 1.132 4.6 72.2 1.054 13.2 179.6 3.21 8.8 277.8 
Std 0.28 0.00 3.44 0.37 2.30 3.56 0.18 5.97 3.36 1.84 2.59 4.82 

2 

1 0.85 0 21 2.69 6 67 0.97 8 198 5.72 8 301 
2 0 0 23 1.08 3 80 1.42 32 200 4.3 11 287 
3 3.69 1 21 0.62 5 78 1.23 18 197 6.03 7 289 
4 0.65 0 24 0.35 3 81 1.14 33 201 7.72 6 293 
5 0.6 0 26 1.91 2 80 0.44 19 189 1.15 8 294 

Avg 1.158 0.2 23 1.33 3.8 77.2 1.04 22 197 4.984 8 292.8 
Std 1.45 0.45 2.12 0.96 1.64 5.81 0.37 10.51 4.74 2.46 1.87 5.40 

3 

1 2.66 1 21 1.15 2 89 0.94 14 175 3.28 7 305 
2 0.85 0 25 1.04 7 63 0.81 10 170 7.19 15 302 
3 0.1 0 20 3.27 5 62 1.02 9 181 2.21 8 309 
4 0 0 19 2.1 3 81 1.07 13 177 4.38 7 301 
5 3.47 1 16 2.08 1 71 0.68 6 164 1.23 7 303 

Avg 1.416 0.4 20.2 1.928 3.6 73.2 0.904 10.4 173.4 3.658 8.8 304 
Std 1.57 0.55 3.27 0.90 2.41 11.67 0.16 3.21 6.58 2.30 3.49 3.16 

4 

1 3.61 1 16 2.69 4 67 1.37 11 176 3.98 9 303 
2 2.28 0 19 0.69 6 86 1.58 13 172 5.23 8 302 
3 0.44 0 19 1.34 7 80 1.24 14 175 5.8 10 300 
4 0.92 0 20 2.29 2 79 1.51 9 169 7.8 7 290 
5 1.35 0 21 2.36 3 86 1.14 10 170 2.08 4 293 

Avg 1.72 0.2 19 1.874 4.4 79.6 1.368 11.4 172.4 4.978 7.6 297.6 
Std 1.26 0.45 1.87 0.83 2.07 7.77 0.18 2.07 3.05 2.13 2.30 5.77 

5 

1 0.81 4 23 1.13 7 91 2.1 14 169 5.68 6 297 
2 2.17 2 17 0.53 3 111 3.09 46 188 7.79 4 290 
3 1.92 0 21 0.51 8 101 5.63 2 171 2.87 5 299 
4 3.14 2 16 0.77 5 90 2.12 24 175 1.21 7 303 
5 1.01 2 16 0.89 6 93 0.26 14 189 5.81 6 302 

Avg 1.81 2 18.6 0.766 5.8 97.2 2.64 20 178.4 4.672 5.6 298.2 
Std 0.94 1.41 3.21 0.26 1.92 8.84 1.96 16.49 9.48 2.61 1.14 5.17 
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Table 21 Results of the IMGA with Linear Utility (Continues)  
 

Linear 
Utility 

Problem Size 
100 250 350 500 

6 

1 2.7 0 20 3.41 6 67 7.1 12 177 4.78 6 291 
2 0.36 1 16 3.62 4 72 4.27 16 171 3.94 6 288 
3 1.27 1 15 1.27 7 66 5.01 15 169 1.01 14 286 
4 3.7 1 15 2.36 6 69 4.39 13 171 5.81 6 282 
5 3.72 1 15 0.33 2 66 4.04 13 179 3.01 9 286 

Avg 2.35 0.8 16.2 2.198 5 68 4.962 13.8 173.4 3.71 8.2 286.6 
Std 1.50 0.45 2.17 1.40 2.00 2.55 1.25 1.64 4.34 1.83 3.49 3.29 

7 

1 2.28 1 15 0.21 7 78 2.05 10 171 4.25 8 308 
2 2.17 1 15 4.22 4 69 1.01 14 168 3.68 5 301 
3 2.28 1 14 5.02 6 100 2.09 12 170 3.94 5 298 
4 1.75 1 14 1.35 8 94 2.01 10 168 3.15 15 303 
5 2.01 1 15 2.95 3 90 1.78 5 172 3.35 7 306 

Avg 2.098 1 14.6 2.75 5.6 86.2 1.788 10.2 169.8 3.674 8 303.2 
Std 0.22 0.00 0.55 1.99 2.07 12.54 0.45 3.35 1.79 0.44 4.12 3.96 

8 

1 0.29 1 17 3.49 4 69 0.99 15 161 4.91 11 273 
2 0.34 0 21 3.16 1 70 1.33 10 163 5.61 9 281 
3 0.15 1 21 1.21 2 69 1.38 8 162 3.18 14 285 
4 0.69 0 20 3.28 1 78 1.32 13 165 7.64 9 276 
5 0.25 1 20 2.87 1 89 5.07 9 166 5.58 5 288 

Avg 0.344 0.6 19.8 2.802 1.8 75 2.018 11 163.4 5.384 9.6 280.6 
Std 0.21 0.55 1.64 0.92 1.30 8.69 1.71 2.92 2.07 1.60 3.29 6.19 

9 

1 2.99 0 20 0.95 1 70 2.06 9 169 0.23 18 297 
2 3.4 0 15 0.7 1 69 2.74 8 170 1.29 9 298 
3 0.61 1 17 0.59 2 86 1.23 9 168 1.36 11 303 
4 1.79 1 16 0.74 1 81 0.56 14 172 2.55 7 302 
5 0.93 1 17 0.93 1 69 1.75 13 174 3.74 7 309 

Avg 1.944 0.6 17 0.782 1.2 75 1.668 10.6 170.6 1.834 10.4 301.8 
Std 1.23 0.55 1.87 0.15 0.45 7.97 0.83 2.70 2.41 1.35 4.56 4.76 

10 

1 2.71 0 17 2.16 1 65 0.99 13 173 5.09 10 304 
2 3.11 1 16 2.58 2 70 1.27 16 171 1.16 6 301 
3 0.69 1 16 2.35 4 66 0.64 12 174 2.72 4 289 
4 1.24 1 17 3.23 2 74 3.3 15 169 3.82 6 291 
5 0.45 0 17 2.68 2 75 2.9 11 170 5.74 10 295 

Avg 1.64 0.6 16.6 2.6 2.2 70 1.82 13.4 171.4 3.706 7.2 296 
Std 1.20 0.55 0.55 0.41 1.10 4.53 1.20 2.07 2.07 1.84 2.68 6.40 

              
 Avg 1.49 0.64 19.04 1.82 3.80 77.36 1.93 13.60 174.94 3.98 8.22 293.86
 Std 0.98 0.49 2.07 0.82 1.73 7.39 0.83 5.09 3.99 1.84 2.95 4.89 

 
 
* P: Problem, R: Run, D: Deviation from optimal, C: Number of Comparison, T: Solution Time (in 
seconds)  

 



 85

 
Table 22 Results of the IMGA with Chebyshev Utility 

Chebyshev 
Utility 

Problem Size 
100 250 350 500 

P* R* D* C* T* D C T D C T D C T 

1 

1 4.5 0 20 0.57 3 78 8.92 6 194 0.09 13 286 
2 2.3 0 19 1.16 4 75 8.9 7 187 0.35 9 278 
3 3.35 1 19 2.34 2 76 9.62 8 179 0.07 8 280 
4 3.55 0 19 1.9 6 77 9.26 5 171 0.81 15 283 
5 2.28 0 16 0.99 7 76 5.98 6 186 -2.18 14 290 

Avg 3.196 0.2 18.6 1.392 4.4 76.4 8.536 6.4 183.4 -0.17 11.8 283.4 
Std 0.93 0.45 1.52 0.72 2.07 1.14 1.46 1.14 8.73 1.16 3.11 4.77 

2 

1 0.72 0 20 1.81 4 71 1.12 14 169 9.71 6 269 
2 2.74 0 20 0.81 7 69 0.54 13 171 8.94 8 274 
3 1.44 0 10 4.79 3 68 2.37 9 168 7.57 7 281 
4 2.71 1 15 1.63 6 67 1.81 11 170 9.91 8 276 
5 0 1 25 1.01 4 70 0.61 14 181 8.87 10 277 

Avg 1.522 0.4 18 2.01 4.8 69 1.29 12.2 171.8 9 7.8 275.4 
Std 1.21 0.55 5.70 1.61 1.64 1.58 0.79 2.17 5.26 0.92 1.48 4.39 

3 

1 1.74 2 14 6.09 6 59 3.38 9 170 5.17 15 290 
2 0 0 19 4.13 3 60 3.19 29 169 8.24 6 291 
3 0.64 0 18 5.19 4 69 1.33 14 173 8.41 8 293 
4 1.58 0 19 3.93 3 68 0.68 10 176 2.81 13 289 
5 0.67 0 19 3.21 1 70 0.64 13 170 7.09 10 288 

Avg 0.926 0.4 17.8 4.51 3.4 65.2 1.844 15 171.6 6.344 10.4 290.2 
Std 0.72 0.89 2.17 1.13 1.82 5.26 1.35 8.09 2.88 2.36 3.65 1.92 

4 

1 4.07 1 14 1.16 5 81 5.18 15 177 7.61 7 279 
2 2.73 0 14 1.2 6 88 7.16 10 175 10.66 4 282 
3 4.23 1 14 1.28 3 82 5.56 12 171 5.73 9 285 
4 3.55 1 16 2.38 4 67 6.13 9 179 0.01 16 291 
5 3.03 0 15 3.41 5 71 5.07 15 168 8.95 7 295 

Avg 3.522 0.6 14.6 1.886 4.6 77.8 5.82 12.2 174 6.592 8.6 286.4 
Std 0.65 0.55 0.89 0.99 1.14 8.58 0.86 2.77 4.47 4.10 4.51 6.54 

5 

1 3.12 1 26 0.73 6 101 3.13 11 167 8.76 6 287 
2 4.28 0 25 3.66 4 106 0.91 6 173 7.08 3 279 
3 5.62 0 25 0.74 5 102 1.39 6 171 9.91 8 283 
4 5.65 0 23 2.31 5 97 3.81 55 169 10.33 4 286 
5 4.71 0 25 1.98 3 89 1.91 8 181 6.79 5 279 

Avg 4.676 0.2 24.8 1.884 4.6 99 2.23 17.2 172.2 8.574 5.2 282.8 
Std 1.05 0.45 1.10 1.22 1.14 6.44 1.21 21.23 5.40 1.61 1.92 3.77 

6 

1 3.28 1 14 3.94 6 65 5.15 11 165 4.19 8 279 
2 2.03 1 15 5.17 4 91 5.21 18 166 2.74 11 285 
3 2.01 0 14 2.71 3 84 3.78 16 167 8.41 8 286 
4 4.21 0 15 4.61 4 88 6.98 11 169 6.89 4 281 
5 4.09 1 16 2.31 5 81 3.58 19 171 7.74 5 279 

Avg 3.124 0.6 14.8 3.748 4.4 81.8 4.94 15 167.6 5.994 7.2 282 
Std 1.07 0.55 0.84 1.22 1.14 10.13 1.37 3.81 2.41 2.43 2.77 3.32 
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Table 22 Results of the IMGA with Chebyshev Utility (Continues) 

Chebyshev 
Utility 

Problem Size 
100 250 350 500 

P* R* D* C* T* D C T D C T D C T 

7 

1 4.5 1 15 5.53 4 92 4.14 9 178 3.42 4 289 
2 2.35 1 14 3.96 6 89 4.86 10 168 4.29 10 293 
3 0.04 1 15 5.65 3 79 3.03 13 171 6.33 7 300 
4 3.33 1 14 2.53 6 68 1.29 17 174 1.51 12 301 
5 5.2 1 14 5.43 4 73 2.03 11 167 0.01 18 309 

Avg 3.084 1 14.4 4.62 4.6 80.2 3.07 12 171.6 3.112 10.2 298.4 
Std 2.02 0.00 0.55 1.36 1.34 10.23 1.47 3.16 4.51 2.45 5.31 7.73 

8 

1 0.9 0 20 3.24 2 69 3.31 10 159 5.26 10 299 
2 0.88 0 19 4.11 3 70 3.4 7 163 7.49 4 293 
3 3.88 3 14 4.55 1 76 0.58 11 167 6.08 7 295 
4 0.83 1 19 4.97 6 81 2.08 8 169 3.33 9 296 
5 3.26 0 17 3.69 4 78 2.27 9 170 1.06 15 297 

Avg 1.95 0.8 17.8 4.112 3.2 74.8 2.328 9 165.6 4.644 9 296 
Std 1.50 1.30 2.39 0.68 1.92 5.17 1.14 1.58 4.56 2.51 4.06 2.24 

9 

1 6.1 1 16 2.77 4 69 5.52 11 177 1.14 11 302 
2 4.8 0 17 5.42 1 65 5.24 8 175 4.25 8 290 
3 5.84 1 17 4.49 2 64 7.08 13 167 3.62 8 293 
4 3.58 1 16 5.52 1 69 4.99 8 170 6.37 9 297 
5 5.03 0 15 5.9 2 89 7.48 12 171 1.7 10 300 

Avg 5.07 0.6 16.2 4.82 2 71.2 6.062 10.4 172 3.416 9.2 296.4 
Std 0.99 0.55 0.84 1.26 1.22 10.21 1.14 2.30 4.00 2.10 1.30 4.93 

10 

1 3.29 0 17 5.55 2 62 0.1 34 179 7.42 6 311 
2 4.02 0 17 5.98 3 96 0.18 10 176 6.81 9 303 
3 3.62 1 16 3.19 5 85 1.38 8 175 7.64 7 312 
4 3.31 0 15 1.27 2 81 0.23 9 177 5.74 7 291 
5 2.91 1 16 2.34 2 80 0.17 12 171 7.5 8 301 

Avg 3.43 0.4 16.2 3.666 2.8 80.8 0.412 14.6 175.6 7.022 7.4 303.6 
Std 0.41 0.55 0.84 2.04 1.30 12.28 0.54 10.95 2.97 0.78 1.14 8.53 

              

 
Avg 3.05 0.52 17.32 3.26 3.88 77.62 3.65 12.40 172.54 5.45 8.67 289.97
Std 1.06 0.58 1.68 1.22 1.47 7.10 1.13 5.72 4.52 2.06 3.06 4.46 

 
* P: Problem, R: Run, D: Deviation from optimal, C: Number of Comparison, T: Solution Time (in 
seconds) 
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Table 23 HVR and IGD Results of NSGA-II with constraint tournament method 

    100 250 350 
Problem Runs HVR IGD Time* HVR IGD Time* HVR IGD Time*

1 

1 0.9859 0.0001 37 0.9839 0.0007 176 0.98091 0.00136 186 
2 0.9861 0.0001 36 0.9840 0.0007 165 0.98074 0.00137 193 
3 0.9861 0.0001 35 0.9838 0.0007 156 0.98096 0.00132 177 
4 0.9861 0.0001 39 0.9837 0.0008 191 0.98068 0.00132 190 
5 0.9858 0.0001 37 0.9837 0.0006 187 0.98099 0.00139 191 

2 

1 0.9885 0.0002 40 0.9866 0.0007 169 0.98203 0.00101 196 
2 0.9885 0.0002 41 0.9865 0.0007 187 0.98241 0.00100 192 
3 0.9887 0.0003 39 0.9868 0.0005 178 0.98166 0.00133 189 
4 0.9887 0.0001 36 0.9870 0.0005 195 0.98146 0.00124 193 
5 0.9885 0.0002 34 0.9870 0.0006 147 0.98197 0.00109 192 

3 

1 0.9881 0.0003 38 0.9797 0.0022 161 0.98480 0.00076 199 
2 0.9880 0.0003 37 0.9800 0.0019 147 0.98441 0.00068 189 
3 0.9881 0.0003 36 0.9796 0.0020 198 0.98490 0.00059 201 
4 0.9882 0.0001 39 0.9798 0.0021 176 0.98415 0.00078 200 
5 0.9858 0.0004 40 0.9798 0.0019 159 0.98455 0.00087 202 

4 

1 0.9826 0.0015 33 0.9834 0.0008 158 0.98376 0.00075 197 
2 0.9827 0.0015 37 0.9830 0.0009 177 0.98297 0.00083 196 
3 0.9836 0.0011 35 0.9834 0.0008 174 0.98323 0.00087 200 
4 0.9828 0.0012 34 0.9832 0.0010 169 0.98367 0.00069 201 
5 0.9831 0.0015 39 0.9832 0.0010 143 0.98393 0.00064 203 

5 

1 0.9780 0.0052 42 0.9834 0.0002 142 0.98393 0.00039 194 
2 0.9776 0.0052 37 0.9830 0.0001 187 0.94997 0.00045 199 
3 0.9781 0.0051 36 0.9834 0.0002 147 0.95008 0.00032 197 
4 0.9773 0.0054 39 0.9832 0.0001 155 0.94927 0.00065 200 
5 0.9780 0.0051 37 0.9832 0.0001 169 0.94974 0.00057 200 

6 

1 0.9854 0.0002 33 0.9854 0.0023 175 0.98283 0.00094 200 
2 0.9848 0.0003 34 0.9856 0.0026 157 0.98231 0.00093 209 
3 0.9846 0.0004 39 0.9850 0.0026 166 0.98285 0.00096 199 
4 0.9850 0.0003 38 0.9855 0.0024 186 0.98348 0.00074 198 
5 0.9851 0.0004 37 0.9853 0.0027 173 0.98322 0.00087 199 

7 

1 0.9894 0.0002 39 0.9865 0.0012 188 0.98578 0.00049 199 
2 0.9898 0.0003 41 0.9868 0.0014 167 0.98570 0.00048 200 
3 0.9888 0.0005 40 0.9864 0.0018 162 0.98634 0.00035 201 
4 0.9897 0.0002 40 0.9868 0.0019 159 0.98537 0.00054 200 
5 0.9889 0.0003 37 0.9869 0.0014 149 0.98518 0.00051 197 

8 

1 0.9695 0.0045 40 0.9836 0.0026 145 0.98452 0.00037 211 
2 0.9770 0.0045 39 0.9837 0.0021 169 0.98499 0.00038 208 
3 0.9779 0.0044 39 0.9833 0.0024 189 0.98502 0.00036 200 
4 0.9776 0.0046 34 0.9837 0.0024 181 0.98488 0.00040 188 
5 0.9769 0.0044 41 0.9838 0.0019 177 0.98469 0.00038 193 

9 

1 0.9764 0.0033 40 0.9836 0.0023 153 0.98245 0.00078 203 
2 0.9768 0.0034 40 0.9838 0.0020 150 0.98295 0.00089 205 
3 0.9767 0.0034 39 0.9841 0.0025 151 0.98351 0.00060 210 
4 0.9762 0.0035 39 0.9840 0.0028 160 0.98346 0.00071 191 
5 0.9763 0.0035 40 0.9842 0.0034 169 0.98337 0.00073 201 

10 

1 0.9868 0.0001 39 0.9831 0.0014 178 0.98453 0.00933 209 
2 0.9855 0.0006 41 0.9827 0.0015 182 0.98542 0.00930 201 
3 0.9869 0.0001 39 0.9832 0.0014 180 0.98374 0.00956 193 
4 0.9867 0.0003 39 0.9827 0.0012 177 0.98382 0.00960 194 
5 0.9868 0.0002 37 0.9829 0.0014 179 0.98409 0.00963 196 

 Avg 0.9838 0.0016 37.90 0.9840 0.0014 169.02 0.9808 0.0017 197.53
 Std 0.0050 0.0019 2.28 0.0020 0.0009 14.9 0.0095 0.0027 6.5259

 * in seconds. 
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Table 24 Results of the NSGA II with constraint tournament method  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  Problem  Size 
  100 250 350 

Problem Utility U(x) 

Best 
Deviation 

From 
Optimal 

Best 
Deviation 

From 
Optimal 

Best 
Deviation 

From 
Optimal 

1 Linear 0.02 0.97 0.60 
Chebyshev 0.16 1.14 7.81 

2 Linear 0.14 0.61 7.28 
Chebyshev 0.26 1.21 7.94 

3 Linear 0.08 5.34 0.49 
Chebyshev 0.25 7.85 7.69 

4 Linear 0.49 1.15 0.37 
Chebyshev 0.59 1.59 7.76 

5 Linear 0.86 0.21 6.60 
Chebyshev 0.32 0.31 7.90 

6 Linear 0.41 7.73 0.59 
Chebyshev 0.46 8.08 7.53 

7 Linear 0.33 5.14 4.92 
Chebyshev 0.45 8.08 8.25 

8 Linear 2.67 0.65 5.68 
Chebyshev 4.02 1.36 7.61 

9 Linear 0.86 0.62 0.33 
Chebyshev 0.22 7.67 5.74 

10 Linear 0.49 1.65 5.38 
Chebyshev 1.11 2.02 7.70 

     
Linear Average 0.64 2.41 3.23 

Chebyshev Average 0.78 3.93 7.59 
 
 


