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ABSTRACT

PERFORMANCE EVALUATION OF MAGNETIC FLUX DENSITY BASED
MAGNETIC RESONANCE ELECTRICAL IMPEDANCE TOMOGRAPHY
RECONSTRUCTION ALGORITHMS

Eker, Gokhan
MSec., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. B. Murat Eyiiboglu

September 2009, 141 pages

Magnetic Resonance Electrical Impedance Tomography (MREIT) reconstructs

images of electrical conductivity distribution based on magnetic flux density (B)
measurements. Magnetic flux density is generated by an externally applied
current on the object and measured by a Magnetic Resonance Imaging (MRI)
scanner. With the measured data and peripheral voltage measurements, the
conductivity distribution of the object can be reconstructed. There are two types
of reconstruction algorithms. First type uses current density distributions to
reconstruct conductivity distribution. Object must be rotated in MRI scanner to
measure three components of magnetic flux density. These types of algorithms
are called J-based reconstruction algorithms. The second type of reconstruction
algorithms uses only one component of magnetic flux density which is parallel to
the main magnetic field of MRI scanner. This eliminates the need of subject

rotation. These types of algorithms are called B-based reconstruction algorithms.
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In this study four of the B-based reconstruction algorithms, proposed by several
research groups, are examined. The algorithms are tested by different computer
models for noise-free and noisy data. For noise-free data, the algorithms work
successfully. System SNR 30, 20 and 13 are used for noisy data. For noisy data

the performance of algorithm is not as satisfactory as noise-free data. Twice

differentiation of z component of B (B.) is used for two of the algorithms. These
algorithms are very sensitive to noise. One of the algorithms uses only one
differentiation of B; so it is immune to noise. The other algorithm uses sensitivity

matrix to reconstruct conductivity distribution.

Keywords: electrical impedance tomography, magnetic resonance imaging,

conductivity reconstruction, B based reconstruction algorithms.



0z

MANYETIK AKI YOGUNLUGU TABANLI MANYETIK REZONANS
ELEKTRIKSEL EMPEDANS TOMOGRAFISi GERICATIM
ALGORITMALARININ PERFORMANS DEGERLENDIRMESI

Eker, Gokhan
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii

Tez Yoneticisi: Prof. Dr. B. Murat Eyiiboglu

Eyliil 2009, 141 sayfa

Manyetik Rezonans Elektrik Empedans Tomografisi (MREET), bir elektriksel
iletkenlik dagilim1 goriintiisiinii manyetik aki yogunlugu (B) Olctimlerine dayali
olarak geri catmaktadir. Bir objeye disaridan akim uygulandiginda bir manyetik
aki yogunlugu meydana gelmekte ve bu manyetik aki yogunlugu Manyetik
Rezonans Goriintiilleme (MRG) tarayicisiyla dlgiilmektedir. Bir cismin i¢indeki
iletkenlik dagilimi, 6l¢iilen data ve dig kisimdan yapilan voltaj dlgiimleri ile geri
catilabilmektedir. Iki gesit gericatim algoritmasi bulunmaktadir. Birinci cesit,
iletkenlik dagilimini geri ¢catmak i¢cin akim yogunlugu dagilimini kullanmaktadir.
Bu cesitte cisim, manyetik aki yogunlugunun ii¢ bilesenini 6lgmek icin MRG
tarayicis1 icinde dondiiriilmektedir. Bu ¢esit algoritmalara J-tabanli gericatim
algoritmalar1 denir. Ikinci ¢esit gericatim algoritmalari, manyetik aki
yogunlugunun MRG tarayicisinin ana manyetik alan1 ile paralel olan bilesenini
kullanir. Bu cismin dondiiriilmesi gereksinimini devre dis1 birakmaktadir. Bu
cesit algoritmalara B-tabanli gericatim algoritmalar1 denir. Bu ¢alismada degisik
aragtirma guruplar1 tarafindan Onerilen dort B-tabanli gericatim algoritmasi
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incelenmigstir. Algoritmalar giiriiltiisiiz ve giiriiltiilii durum icin degisik bilgisayar
modelleriyle test edilmistir. Giiriiltiisiiz durumda algoritmalar basariyla
calismaktadir. Giiriiltiili durum i¢in sistem SNR’1 30, 20 ve 13 olarak kabul

edilmistir. Algoritmalarin giiriiltiili durum performanslar1 giiriiltiisiiz durum

performanslar1 kadar basarili degildir. Iki algoritmada B’nin z bileseninin (B.)
iki kez tirevi kullanilmigtir. Bu algoritmalar giiriiltiye duyarhdir. Bir
algoritmanin bir kez tiirev kullanmasi, algoritmanin giiriiltiiye kars1 bagisiklik
kazanmasim saglamigstir. Diger algoritma ise iletkenlik dagilimini geri ¢atmak

icin duyarlilik matrisi kullanmaktadir.

Anahtar Kelimeler: elektriksel empedans tomografisi, manyetik rezonans

goriintiileme, iletkenlik geri catma, B tabanh gericatim algoritmalari.
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CHAPTER 1

INTRODUCTION

The electrical conductivity imaging is one of the topics of researches on imaging.
The biological tissues have different conductivity values according to their types.
Their conductivity values change with the physiological and pathological states
of the tissues. Some tissues have anisotropic conductivity. But in this thesis used

conductivity values are isotropic.

Different methods are used to measure the electrical conductivity of tissues
inside the body. Some methods are invasive methods. The tissue must be placed
between two plate electrodes [1]. These methods are difficult methods in
practice. For this reason a non-invasive measurement method is developed by
Henderson and Webster in 1978 [2]. Electrical Impedance Tomography (EIT) is
used to reconstruct cross-sectional conductivity images. In 1984, Barber and
Brown [3] gave the information to use this method in medical areas. EIT is based
on potential measurements [1]. Electrodes are attached on the surface of body
and current is applied to these electrodes. Some methods use coil to induce a
current distribution inside the body [4]. According to the applied current, a
current distribution occurs inside the body. Peripheral voltage measurements are
used. These measurements are taken from the surface electrodes, for different
combinations of electrodes. The conductivity distribution of tissues inside the
body is found with these different voltage measurements. But the measured data
can be affected by the electrode positions and geometry of object [5]. Also EIT
reconstructs conductivity image with relatively low spatial resolution and
accuracy [1]. This is a disadvantage for EIT. To solve these problems and

reconstruct good conductivity images Magnetic Resonance Imaging (MRI) is



used with EIT. With an MRI system, magnetic flux density distribution in the
imaging region can be measured easily. For this purpose a new imaging modality
to measure current densities by MRI is developed [6]. This technique is called

Magnetic Resonance-Current Density Imaging (MR-CDI).
1.1 A Summary of MREIT Studies

A new imaging method which is called Magnetic Resonance Electrical
Impedance Tomography (MREIT) is explained by Zhang in 1992 [7]. This new
method uses conventional voltage measurements and magnetic flux densities to
produce conductivity distribution of an object. It has a high sensitivity to the
conductivity distribution and also it provides good spatial resolution. An external

current is applied to the object by less number of electrodes than EIT. This
externally applied current produces a current density distribution, J, inside the

object and generates a magnetic flux density distribution, B, which can be

measured by a MRI scanner. Conductivity distribution of an object can be easily

calculated using B, J and measured boundary voltages.

Some method, used in MREIT, use J to reconstruct conductivity distribution.

To determine J , the x, y and z component of magnetic flux density is used. For
this purpose, the object must be rotated in MRI scanner. Ider er al [8] used
integration along the Equipotential lines and Cartesian grid lines. In 2002 Kwon
et al [9] used an algorithm which is called J-substitution algorithm. Ozdemir et al
[10] explained the Equipotential projection based MREIT and made same
experiments. In 2009 Boyacioglu and Eyiiboglu [11] used a hybrid algorithm,

which uses J-substitution and filtered Equipotential projection.

Other methods use only one component of B to reconstruct a conductivity

distribution. The component of B is chosen with the same direction of main
magnetic field of MRI system. It is always in z direction. By this way the need of
object rotation inside a MRI scanner is eliminated. In 1998, Ider and Birgiil [12]
proposed a method which uses sensitivity matrix. A sensitivity matrix is

calculated according to the change of each element’s conductivity value. Birgiil
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et al [13] made experimental studies and they used sensitivity matrix relation

between conductivity and z component of E, B.. In 2003, Seo et al [14]
proposed a new reconstruction algorithm which is based on the measurement of
B.. In 2003, Oh et al [15] improved the technique explained by Seo [14]. The
name of this technique is Harmonic B, reconstruction algorithm. They used the
relation between Laplacian of B; and derivatives of conductivity. Their algorithm
worked successfully for noise free data. But for noisy data the algorithm did not
work successfully for low Signal-to-Noise Ratio (SNR) because of twice
differentiation of noisy B, data. For this reason, Park et al [16] developed a new
algorithm called Variational Gradient B, algorithm to improve the noise
performance. They differentiated B, data only once. By this way, they
differentiated noise only once. The errors near the boundaries spread over the
inner parts of object in Variational Gradient B, algorithm. In order to deal with
this problem, Kwon et al [17] proposed enhanced version of the previous
algorithm. The boundary information was effectively used in this new algorithm.
Also in 2004, Ider and Onart [18] proposed a new algorithm which uses B;. In
this algorithm non-linear matrix equations were used to reconstruct resistivity. At
least two current injection patterns were necessary. In 2008, Jeon et al [19]
proposed an algorithm which is called local Harmonic B, algorithm. The
algorithm deals with the defects caused by problematic regions of object. They
used segmentation method to extract problematic regions. Huixian et al [20]
explained an algorithm which uses only B,. The conductivity distribution of

object at oblique slice can be imaged with their algorithms.

All B-based reconstruction algorithms explained above use only one component

of B that eliminates the object rotation in MRI scanner.



1.2 Objectives of the Thesis

Several studies are made to measure the conductivity distribution of a region
inside the body or object. MREIT is one of the best methods to take these
measurements. Different research groups use different reconstruction algorithms

to produce a conductivity image. Each research group use different methods,
different models and different currents. Some groups use three components of B
to calculate J . But the other groups use only one component of B. By this way,

they eliminate object rotation inside MRI scanner. These kinds of methods are

called B-based reconstruction algorithms.

The objectives of this thesis are:
e To classify the magnetic flux density based reconstruction algorithms.

¢ To examine how magnetic flux density based reconstruction algorithms

work.

¢ To implement some of the magnetic flux density based reconstruction

algorithms.
¢ To compare the implemented algorithms for different conditions.

¢ To take experimental data for testing each algorithm.

In this thesis, four different B-based reconstruction algorithms are studied. First
the Harmonic B, algorithm [15], which uses the relation between Laplacian of B,
and derivative of conductivity distribution, is examined. The second algorithm is
Variational Gradient B, algorithm [16]. The difference of this algorithm from the
previous algorithm is the one B, differentiation. Then Sensitivity matrix
algorithm [12] is examined. The calculated sensitivity matrix is used to
reconstruct conductivity distribution for this algorithm. The last algorithm is
Algebraic reconstruction algorithm [18]. In this algorithm, matrix equations were

used to reconstruct resistivity.



1.3 Organization of the Thesis

In Chapter 2, the forward and inverse problems in MR-EIT are explained and
formulated. The formulas which are used for extracting magnetic flux density
from an image, taken from an MRI scanner, are explained. Also the methods
used in reconstruction are classified. In Chapter 3, the magnetic flux density
based reconstruction algorithms, which are used in this thesis, are explained and
formulations for these reconstruction algorithms are derived. In Chapter 4, four
computer models, which are used to test the performance of each algorithm, are
explained. Also experimental phantom, used to take experimental data, is
explained. The results taken from reconstruction algorithms and comparison for
these algorithms are given. The experimental results are also given in this
chapter. Finally in Chapter 5, a brief summary, conclusions and future work are

given.



CHAPTER 2

THEORY

2.1 Introduction

In this chapter, the forward problem for MREIT is explained in the first section.
The forward problem solutions are the important parts of the iterative algorithms.
The reconstructed conductivity distributions are used as an input for forward
problem during the iterations. For this reason the formulations for MREIT
forward problem are shown. The Finite Element Method (FEM) is explained
briefly. Since, the usage of elements in object is important to produce good
results. Then the procedure to extract magnetic flux density distribution from an
MRI data is explained. In the next section, the inverse problem and formulations
used for inverse problem are explained. The conductivity distribution in the
object is obtained by the inverse problem. Finally, the types of MREIT

reconstruction algorithms are given.

2.2 The Forward Problem of MREIT

In MREIT the generated magnetic flux density is used to produce the
conductivity distribution inside the object. Surface electrodes are used to inject
current. According to the injected current, current density appears inside the
object. But this current density can not be measured directly with MRI scanner.
The magnetic flux density induced by the injected current is used since; magnetic
flux density is the only parameter that can be measured by MRI scanner. The

forward problem solutions are the important parts of the iterative algorithms. The
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reconstructed conductivity distributions are used as an input for forward problem

during the iterations.

The forward problem uses boundary conditions and known conductivity values
to calculate the potential values. A current is injected from the surface electrodes
which are placed on the boundary of the object. The object’s inner conductivity
values are isotropic which changes between zero and positive infinity. This
injected current is triggered with an MRI system. According to the injected
current, a current density is generated inside the object. The object, attached

electrodes and MRI triggered current source shown in Figure 2.1.

Figure 2.1: The object with attached electrodes and MR triggered current source.

As seen in Figure 2.1, the object has a volume,Q, a boundary, 0Q, an inner
conductivity distribution,o and four electrodes, E1, E2, E3, E4. The current
apply interval is short for making the conductivity distribution time independent

during the pulses.

Boundary Value Problem (BVP) is used to calculate potential distribution inside
the object. The boundary conditions are important for solution of BVP. Neumann
boundary condition, which is defined in equation (2.1), is used in forward

problem.



J on positive current electrode
o—=4—J onnegative current electrode (2.1)

0 elsewhere

where, n is the outward unit vector ondQ and J is applied current.

The relation between conductivity, ¢ and potential distribution, ¢ is shown in

equation (2.2).

V-(cVg)=0 in Q 2.2)

where, Q is the volume of the object. As seen from equation (2.2), we can
calculate the potential distribution inside an object, if we know the inner

conductivity distribution of the object.

We can find the potential distribution with different techniques like Finite
Element Method (FEM), Finite Difference Method (FDM), efc. In this thesis,
FEM is used to find the potential distribution inside the object for 2-dimensional
case. Also FEM can be used for 3-dimensional case. The detailed explanations

for 3-dimensional case can be found in Onart [21].

In FEM, the imaging slice is separated into small cells. By this way more points
are used to find the potential distributions inside the object. These small cells are
called as the mesh elements of the object. These mesh elements are shown in

Figure 2.2.

If we increase the mesh element number of model, the solution of potential
distribution will be more accurate. Since, the potential distribution is taken from
more than one mesh element for a pixel. Each pixel uses more information in this

case.



Figure 2.2: Mesh elements used for FEM.

But there is a disadvantage of increasing the mesh element number. If we
increase the element number, we will need more computation time to solve the

forward problem.

After finding the potential distribution, the equation (2.3) is used to find the

electric field intensity.

E=-V¢ 2.3)

The relation between electric field intensity and current density is shown below.

J=0E=-0V¢ (2.4)

As explained before the injected current generates magnetic flux density inside

the object. This magnetic flux density is important for MREIT problems. Biot-



Savart law is used to generate magnetic flux density from calculated current

density. This relation is shown in equation (2.5).

D _:u() T/ (r—r')
B(r)_ES[J(r )><|

dv (2.5)

'3
r—r|

where, 4, is the permeability of free space, r is the unit vector from origin to

source point(x, y,z), r' is the unit vector from origin to field point (x',y',z").

As explained before, small mesh elements are used in FEM approach. Equation
(2.5) gives the magnetic flux density on a point in space. In our studies, we need
discrete calculation of magnetic flux density in the center of each mesh element
of the model. For the i element the current density value is multiplied with the
area of mesh element. Also at the center of each element there is a point current
source, I . The direction of I is the same direction of current density produced
in the mesh element. The generated magnetic field at any field point is calculated

with equation (2.6).

B=toy IXR (2.6)

In equation (2.6), m is the number of mesh elements, R is defined from source

point (x,y,z)to field point(x',y',z"), R is the magnitude of R. By this way,

discretization can be made and B can be calculated at the center of each mesh
element. The effect of each element on itself is assumed negligible to prevent

singularity problems.

Forward problem solutions are the important parts of the iterative algorithms.
First an initial conductivity distribution is assumed. According to this distribution
potential values are calculated for this uniform case. Then the conductivity

distribution is calculated. This calculated conductivity distribution used as the
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input for the forward problem. Then the forward problem is solved. To terminate

iterations, the change in the conductivity distribution is examined at iterations.

2.3 Extraction of Magnetic Flux Density from MR Images

The magnetic flux density, which is generated by externally applied current, can
not be measured directly with an MRI scanner. For this reason some
computations are used to extract the magnetic flux density distribution from a

MR image.

For magnetic flux density computation, the difference between phase for no

current case and the phase for applied current case are used.

When we apply a current, a phase shift occurs. The magnetization for no current

case is shown in equation (2.7).

Mnc (x, y)= M (x, y) e(j}/Bt+j¢nC) 2.7)

After applying an external current on the imaging object, a phase shift occurs.
This phase shift is shown in equation (2.8). This phase shift is added to the

equation for no current case. The new equation is shown in equation (2.9).
@D =y B (x, )T, (2.8)

- j¥Bt+jv B} (x,9)T -+ jPyc
1t y) = M G yy o /7O I BT e 29)

The ratio of equation (2.9) and (2.7) gives the following equation.

My(x.y) _ LY BIGNTE) _ jO(x.y)

_ 2.10
M, (x,y) 210
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where, ¥ is the gyromagnetic ratio, 7, current applied time per excitation.

We can extract magnetic flux density as:

_6(x.y)

C

B)(x,) @.11)

This extracted B, is a component of magnetic flux density, which is parallel to
the main magnetic field of MRI scanner. The illustration for the position of

object to extract B; is shown in Figure 2.3.

Figure 2.3: The position of object in MRI scanner to extract B;.

To extract the other components of B the object must be rotated inside the MRI

scanner. And the explained procedures must be used for each position. In this

thesis, only z component of B is used. Therefore there is no need to rotate the

object for the reconstruction algorithms used in this thesis.
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2.4 The Inverse Problem of MREIT

As explained in the previous section, according to the externally applied current
a magnetic flux density is generated inside the object. In MREIT, the main aim is
to find the unknown conductivity distribution inside the object. The generated
magnetic flux density is used to calculate the conductivity distribution of an
object. Also some voltage measurement taken on the boundary of the object can
be used during the reconstruction processes. The forward problem solutions are

used as the input for inverse problem.

Reconstruction algorithms which are used in this thesis use only z-component of
magnetic flux density. This component is parallel to the main magnetic field of
MRI scanner. For each reconstruction algorithms, B, data must be calculated

first.

As explained by Scott [6], for inverse problem solutions it is assumed that the

current flows in a region constant conductivity, o, and permeability, . This

satisfies the following equations.

J=GE 2.12)

B=uH (2.13)
VXE=0 (2.14)
V-B=0 (2.15)
E=-V& (2.16)

The magnetic field intensity, H , of a vector can be written as:

13



VXVxH =V(V-H)-V’H (2.17)

The equations shown above are used to produce equation (2.18) from equation

2.17).

1
<
)

V’H = Jx— (2.18)

This equation shows the relation between magnetic flux intensity, current density
and conductivity. By using equation (2.12), (2.13), (2.16) and (2.18), the relation
between magnetic flux density, conductivity and potential distribution can be

found as:

V2B
lu()

=-V¢xVo (2.19)

where, V2B is the Laplacian of B, ¢ is the potential distribution.

This relation is used in magnetic flux density based reconstruction algorithms.

Using Laplacian B means, second order derivatives of B are utilized. But
laplacian operator has a disadvantage for noisy cases. It differentiates noise

twice.

Some of the reconstruction algorithms uses the relation between I§, J and
natural logarithm of resistivity, R [8]. They assumed equation (2.14) is satisfied.

The relation is shown as:

VRXJ =-VxJ (2.20)

R is defined as p =e". Using the fact that J =V xB/ U, equation (2.20) can be

written as:

14



221)

Vij:—V[
ﬂ() lu()

v-éj V2B
— |+

The divergence of B is equal to zero. So we can write equation (2.21) as:

V2B
ll'l()

VRxJ =

(2.22)

Equation (2.22) gives the relation between resistivity, magnetic flux density and

current density.

For reconstruction algorithms used in this study, only the z-component of
magnetic flux density is used. For this reason, equation (2.19) and (2.22) are used

with only z components.

The details of reconstruction algorithms’ inverse problem procedures are

explained in chapter 3.

2.5 Classification of the Reconstruction Algorithms

There are several methods which are used to reconstruct resistivity or
conductivity distribution. Each reconstruction algorithm use different parameters

and conditions. Some methods are iterative.

The reconstruction algorithms are divided into two main groups. The first group
of algorithms uses current density distributions to reconstruct conductivity. This
methods use three components of measured magnetic flux density to produce
current density. For this reason, these kind of reconstruction algorithms are
called Current Density Based (J-based) reconstruction algorithms or Type-I

reconstruction algorithms.

The other groups of algorithms use only one component of magnetic flux density

which is parallel to the main magnetic field. The subject rotation is not needed
15



because of the use of only one component of magnetic flux density. For this
reasons the reconstruction algorithms are called as Magnetic Flux Density Based

(B-based) reconstruction algorithms or Type-II reconstruction algorithms.

Four of the B-based reconstruction algorithms are examined in this thesis.
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CHAPTER 3

MAGNETIC FLUX DENSITY BASED
RECONSTRUCTION ALGORITHMS

Some of the magnetic flux density based MR-EIT reconstruction algorithms use
only one component of magnetic field, which is parallel to the main magnetic
field direction. In this chapter four magnetic density based reconstruction

algorithms are explained.

3.1 Reconstruction by Harmonic B; algorithm

3.1.1 Introduction

In this section, one of the magnetic flux density based reconstruction algorithms
which is called Harmonic B, reconstruction algorithm is explained. The
Harmonic B, reconstruction algorithm is a reconstruction algorithm which uses
only one component of magnetic flux density. In this thesis z-direction is used as

the direction of the main magnetic field.

An applied external current produces a magnetic flux density B’ = (BX’ .B!.B! )

inside an object. In 2003 Seo et al [14] proposed a new reconstruction algorithm
which is based on the measurement of only one component of magnetic flux

density, B,. By this method, they eliminate subject rotation inside a Magnetic
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Resonance Imaging (MRI) scanner. This reconstruction algorithm uses Laplacian

of B., V’B_.

In 2003, Oh et al [15] improved the technique explained in the previous part.

They use Laplacian of B.. This is a disadvantage for this algorithm. Because,
using VZBz means making twice differentiation of noisy B_ . This algorithm

calculates the derivatives of conductivity, Vo, to produce a conductivity

distribution.
3.1.2 Problem Definition

An object Q is placed inside an MRI scanner to measure the z-component of
magnetic flux density, [15]. P different surface electrodes are used to produce

N =P(P-1)/2 independent electrode pairs to apply current. Let the injection
current between the j” pair of electrodes be I/ for j=1,...,N. This injected
current produces a current density, J' = (J LJLT! ), inside the object. Applied
external current and produced current density, generates a magnetic flux density
B’ :(B)f,B;,Bj) inside the object. As a result, equation VxB’ = y,J is used

for conductive object. The magnetic flux density increases the MRI phase image.
This increment is proportional to the produced magnetic flux density component

which is parallel to the main magnetic field of the MRI scanner.

In Harmonic B, reconstruction algorithm, the object conductivities are assumed

to be isotropic.

A potential, ¢, is produced according to the injected current (I/ , j=1,...,N).

This potential is a solution of the following Neumann Boundary Problem (NBP).

V{(oVg’')=0 inQ
{ ( ¢) " (3.1)

-oV¢’'-i=g’ onoQ
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where, n is the outward unit normal vector, gj is the normal component of

current density which is produced with the injected current on the boundary

(9Q). This normal component is also defined with equation (3.2).
[ glds==r (3.2)

where, e is the current injection electrode. The sign of current depends on the
direction of current, and g’ is zero on the regions of the boundary which are not

in contact with e.

If the conductivity distribution ( o), externally applied current (/) and electrode
configuration on the object are known, the ¢’ in equation (3.1) will be calculated

by using the Finite Element Method (FEM).

Equation (3.3) is defined by Scott [6]. This equation can be used for Harmonic
B, algorithm.

VB =-u,VpxVo (3.3)

The z component of this equation can be written as:

J J
isz;' = [a—a a—aj{ai,—aij j=L...,N (34)
Hy '

As seen from equation (3.4), the x and y gradients of ¢’ and Laplacian of B, is

used to find the x and y derivatives of o .

Matrix form of equation (3.4) is shown as:

Us=b (3.5)
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where,

09 39|
dy ox %—O- V*B!
U=| : : s=| 2 b=| (3.6)
N N ao- 2 pN
AT, e VB
| dy ox |

3.1.3 Implementation

In this thesis, two current injection patterns (N=2), which are shown in Figure
3.1, are used. One of them is vertical, the other is horizontal. This means that
these current injection patterns are orthogonal to each other. Each injection

current is equal to 20 mA.

l vertical

l horzontal

¥

¥

|

Figure 3.1: Vertical and Horizontal current injection patterns.

First, the Laplacian of B, (VZBZ) is calculated according to the change of B,
along the x, y and z direction. Central difference, which is shown in equation

(3.7), is used for calculation of V*B. .
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fx,+h)=2f(x,)+ f(x,—h)

[ ()= e

(3.7)

For computation of VZBz at the " pixel, equation (3.8) is used. This equation is

also called three-point difference.

Bz ('xi+1’yi’zi)_231 ('xi’yi’zi)+Bz (xi—l’yi’zi)

V’B, Xis Vis %) = +
(53:2) ot
B (x,¥4::2) 2B, (X.¥,,2 )+ B, (%, 5,2
(Blia) 2B e B a) |
Ay)
+Bz('xi’yi’zi+l)_231('xi’yi’zi)+Bz('xi’yi’zi—l)
(Az)°

In equation (3.8), Ax, Ay and Az are the dimensions of each pixel in the x, y

and z directions.

The ¢’ values are calculated for a uniform conductivity distribution. Then the x-

derivative and y-derivative of ¢’ are calculated using the forward difference

formulation, which is shown in equation (3.9).

f(xo +h)_f(x0)

S (x)= h

(3.9)

For each current injection pattern, the Laplacian of B, and x-gradient, y-gradient
of potential are calculated. These values are calculated for each pixel in the
imaging slice. Then using equation (3.5), the x-derivative and y-derivative of

conductivity distribution can be calculated.

After calculation of conductivity derivatives, the line integral is used to produce
the conductivity distribution. For this case, we assume that a pixel’s conductivity
value is known. This is the initial pixel. The reconstructed conductivity
distribution can be calculated by using the initial conductivity value and
calculated derivatives of ¢ . The potential is measured from a point on the edge
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of imaging slice. This measured potential value is used for scaling. Equation

(3.10) is used to terminate the iterative Harmonic B, algorithm.

o

m+l O-m

o

m+1

i<e (3.10)

2

where, £ is the defined tolerance value. As seen from equation (3.10) the
reconstructed conductivity distributions for m™ iteration and (m+1 )’h iteration are

used to terminate the iterations.

After finding the conductivity distribution, current density image can be found by

using equation (3.11).

Ji=—c V¢’ (3.11)

The Harmonic B, iterative algorithm has the following steps:

Step-1: For m=0, assume an initial conductivity distribution, o, .

Step-2: ¢’ ., is calculated by solving the following NBP for each current

m+1
injection pattern (j=/1,......,N).
V{(o,V4.,)=0 inQ
, , (3.12)
o, V¢! =g’ onodQ.

m+1

Step-3: Calculate the o

m+1

by using the equation (3.5). Then scale this

conductivity distribution using the voltage measurements on the edge of

the object.
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o . —0
Step-4: If ||"’“—’"2< & for a predefined tolerance value, current
(o}

m+1

2
density image can be calculated or iterations can be terminated.

Otherwise, set m =(m+1) and go back to Step 2.

The flowchart for iterative Harmonic B, algorithm is shown below.

Initial guess
0,=0.2 S/m

Solve ¢/ | for NBP
i=12

A

y

Calculate o

m+1

using equation 3.5

Terminate iterations

Figure 3.2: Flowchart for Harmonic B; algorithm.
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3.2 Reconstruction by Variational Gradient B, algorithm

3.2.1 Introduction

In this section, one of the magnetic flux density based reconstruction algorithms
which is called Variational Gradient B, (VGB,) reconstruction algorithm is
explained. The Harmonic B, reconstruction algorithm is a reconstruction
algorithm which uses only one component of magnetic flux density. In this

thesis, z-direction is used as the direction of the main magnetic field.

In 2003, Seo et al [14] and Oh et al [15] proposed a reconstruction algorithm
which is based on the measurement of only one component of magnetic flux

density, B, . It is called as Harmonic B, reconstruction algorithm. This algorithm

is based on the calculation of VZBZ. But this algorithm is very sensitive to noise

because of the twice differentiation of noisy data.

In 2004, Park et al [16] proposed a new reconstruction algorithm which uses only
one differentiation of B,. The name of this algorithm is Variational Gradient B,

reconstruction algorithm.

3.2.2 Problem Definition

The conductivity distribution of the target object is isotropic for VGB,

reconstruction algorithm.

As explained in Section 3.1.2, an applied external current generates a magnetic
flux density, B/ = (BX’ ,B}’,',Bj), inside the object. The z-component of this

generated magnetic flux density is important for VGB, reconstruction algorithm.

A potential ¢’ is produced according to the injected current (17 , j=1,...,N).

This potential is a solution of the NBP which is shown in equation (3.13).
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V(oVg¢’')=0 inQ
{ ( (/j) " (3.13)

-oV¢'i=g’ onoQ,
where, 71 is the outward unit normal vector, g-’ is the normal component of

current density, produced with the injected current, on the boundary (9o ).

There is a relation between magnetic flux density and current density

distribution. This relation is shown in equation (3.14).
VxB=u,J and J=-0V¢ (3.14)

This equation can be written in integral form.

[VxB-% dr=-p,[0Vg-¥ dr forall Fe[(@)F (3.15)
Q Q

where, I’(Q) is the set of square integrable function in domain Q. The x
component, y component and z component of B is placed inside this equation.
But we need only z component of B For this reason we must eliminate B, and

B, with suitable constraints on '

For this purpose, the ¥ s chosen as @z(%—y/,—aa—y/,O) with e T. The
y X

definition of 7" is shown below.

(i)%—l//(r) =O=%—l//(r) if -2, #0
7:=lyeH'(Q):for re 3Q, Y o (3.16)

0 -
(i) 2 (1) = 0if v(r)xE, £0
0z
where, ¢,=(0,0,1) and H'(Q) is the square integrable functions in Q.
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With these constraints and equation (3.15), the following equation which has

only z component of B, can be found.

[oLVe-Vy dr:iJ.VBz-Vl//dr VyeT (3.17)
Q

0Q

~ Jd o 0 1
where V=| —,— | and L=
[ax ayj [—1 Oj

For each pixel, equation (3.17) can be written as:

o909 _0¢)_1(9B. 9B (3.18)
ay ox Hy ay ox ’

For each current injection pattern, equation (3.18) is used to find the conductivity

distribution of imaging slice.

3.2.3 Implementation

In this thesis, two current injection patterns (N=2) are used. One of them is
vertical, the other is horizontal. This means these currents are orthogonal to each
other. Each injection current is equal to 20 mA.

First the sum of x-gradient and y-gradient of B, ,{ai+aij is calculated

dy Ox
according to the change of B, along the x-direction and y-direction. Forward

difference, which is shown in equation (3.19), is used for the calculation of

0B. 0B.
dy Ox
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S +h)—f(x))

f(x)= P

(3.19)

The ¢’ values are calculated for a uniform conductivity distribution. Then the x-

derivative and y-derivative of ¢’ are calculated using the forward difference

formulation, which is shown in equation (3.19).

For each current injection pattern, the x and y gradients of B, and potential are
calculated. These values are calculated for each pixel in the imaging slice. Then

using equation (3.18), the conductivity distribution can be calculated.

The potential is measured from a point on the edge of imaging slice. This
measured potential value is used for scaling. To terminate the iterative VGB,

algorithm, equation (3.20) is used.

m+1 m

o

m+1

lo,..—o

i<e (3.20)

2

where ¢ 1is the defined tolerance value. As seen from equation 3.20 the
reconstructed conductivity distributions for m™ iteration and (m+1)™ iteration are

used to terminate the iterations.

The VGBz iterative algorithm has the following steps:
Step-1: For m=0, assume an initial conductivity distributiono,.

Step-2: ¢’ . is calculated by solving the following NBP for each current

m+1

injection pattern (j=/1,...,N).

27



V{0, V¢).,)=0 inQ

m+1

_O-mV I:H—l.n = gj on aQ

(3.21)
[g1=0
30
Step-3: Calculate the o0, ,, by using the equation (3.22).
1 1
IG,,M - = |dr= VYyel (3.22)
Q (LVu?)Vy LJ'VBZZ-Vl//dr
0Q

Then, scale this conductivity distribution using the voltage measurements

on the edge of the subject.

m+l O-m

Step-4: If | 2 <& for a predefined tolerance value, terminate

m+1 |2

the iterations. Otherwise, set m = (m+1)and go back to Step 2.

The flowchart for iterative VGB, is shown in Figure 3.3.
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Initial guess
0,=0.2 S/m

Solve ¢/  for NBP

m+1

j=12

A

A

Calculate o

m+1

using equation 3.22

Terminate iterations

Figure 3.3: Flowchart for VGB, algorithm.
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3.3 Reconstruction by Sensitivity Matrix algorithm

3.3.1 Introduction

In this section, one of the magnetic flux density based reconstruction algorithms
which is called Sensitivity Matrix reconstruction algorithm is explained. The
Sensitivity Matrix reconstruction algorithm is a reconstruction algorithm which

uses only one component of magnetic flux density.

In 1998, Ider and Birgiil [12] use Sensitivity Matrix for reconstructing the
conductivity distribution. Sensitivity matrix is related to the change of magnetic
flux density according to the change of conductivity values of each element in
the object. This algorithm uses perturbation in magnetic field measurement and
Sensitivity matrix to find the perturbation in the conductivity values of each

element.

3.3.2 Problem Definition

The conductivity values used in this algorithm is isotropic. As explained in

Section 3.1.2, an applied external current generates a magnetic flux density,
B’ = (B)f .B/,B! ), inside the object. The z-component of this generated magnetic

field is important for Sensitivity Matrix reconstruction algorithm.

This algorithm is based on producing a Sensitivity matrix. If we know the change
characteristic of B, for an initial conductivity distribution and the perturbation of
conductivity, we will easily find the B, data for the real conductivity distribution.

This is shown in equation (3.23).
0B
B (0) =B (0,)+—AcC (3.23)
rele

where, Ao is equal to the difference between real conductivity distribution (o)

and initial conductivity distribution (o, ).
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Equation 3.23 can be written in a matrix form which is shown below.

Ab=S Ao (3.24)

where, Ab is a vector which includes the perturbations in magnetic field
measurements, Ag is a vector which includes perturbation in the conductivity
values of object’s elements and S is a matrix which is called sensitivity matrix.

These are shown below.

T
Ab=[Ab, Ab, .. Ab,, | (3.25)
T
Ac=|Ac, Ao, ... Ao, | (3.26)
ab, ab,
do, 9o,
S=| : . : (3.27)
db, b,
aO-l ao—n —
O'—O'O

where, m is the number of measurements, n is the number of elements of object.

By producing a sensitivity matrix, we have a characteristic of change in B,
according to the change of conductivity values. To form a sensitivity matrix, all

elements are changed with small values. The difference between B; and B( 0, ) is

divided by the change of conductivity value. If the measurement number and
elements number are high, the computation time for sensitivity matrix will be
high. The sensitivity matrix is calculated for only the initial conductivity

distribution. Then this matrix is used for different cases.

Singular Value Decomposition (SVD) is used to test the performance of the
calculated sensitivity matrix. For this reason, we must examine the singular

values of the sensitivity matrix. The S matrix can be written as:
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S=UAV" (3.28)

where, U is a mxm orthonormal matrix , V is a nxn orthonormal matrix, Ais a
mxn diagonal matrix. Diagonal elements are the singular values of S. For testing
the performance of this matrix we must calculate the condition number which is
equal to the ratio of the maximum singular value and minimum singular value. If
the condition number very near to 1, the matrix said well-conditioned. If the

condition number is greater than 1, the matrix said to be ill-conditioned.

After calculating the sensitivity matrix, the pseudo inverse of S is calculated.
Then this pseudo inverse and the calculated perturbation in magnetic field
measurements are multiplied to find the perturbation in conductivity. This is

shown in equation (3.29).

Ac =S'Ab (3.29)

where, S’ is the pseudo inverse of sensitivity matrix.

After finding the conductivity perturbation, the reconstructed conductivity

distribution can be calculated.

3.3.3 Implementation

In this study, two orthogonal current injection patterns (N=2) are used to inject
20 mA current. The number of measurements is equal to 40. The number of
elements of object is equal to 40. So, we must produce a 1600x1600 Sensitivity

matrix. Initial conductivity distribution is assumed o©,=0.2 S/m. For this

distribution each element’s conductivity is changed 0.02 S/m. For all changing

cases, the difference between B, and B,0,) is divided by the change of

conductivity value. The computed sensitivity matrix for one current injection
pattern is ill-conditioned. For this reason, the sensitivity matrices can be

combined.
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S =[s, s,|' (3.30)

combined
After computing the combined sensitivity matrix, singular values of matrix

S

are examined. The singular values, which are very close to zero, are

combined

truncated.

After computing a good sensitivity matrix the equation (3.31) is used to find
Aco.
)" Ab

Ac=(S (3.31)

combined combined

where, Ab is the combined version of perturbation in B, for two current

combined

injection pattern.

The reconstructed conductivity distribution is calculated using equation (3.32).

0 =0,,,+AC (3.32)

The Sensitivity Matrix reconstruction algorithm has the following steps:

Step-1: Assume an initial conductivity distribution, o, .

Step-2:  Compute the combined sensitivity matrix, S according to

combined °
the changes on the initial conductivity distribution for all current injection

patterns. If necessary use truncation.
Step-3:  Find pseudo inverse of S.

Step-4:  Measure B; for all current injection pattern and calculate the

perturbation in the magnetic field measurements, Ab .

Step-5:  Calculate perturbation in element conductivity values with

. il
Cquatlon AO' = (Scombined ) Abcombined

Step-6: Calculate conductivity distribution.
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The flowchart for Sensitivity Matrix algorithm is shown in Figure 3.4.

assume

6,=0.2 S/m

compute S

combined

Scombined 18

v

truncate

well-conditioned

Find S' <

VY,

Compute

Ab .

combined
Ao=(S

T
combined ) Abcombined

l

[ Calculate o and STOP }

Figure 3.4: Flowchart for Sensitivity Matrix reconstruction algorithm.
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3.4 Reconstruction by Algebraic reconstruction algorithm

3.4.1 Introduction

In this section, one of the magnetic flux density based reconstruction algorithms
which is called Algebraic reconstruction algorithm is explained. The Algebraic
reconstruction algorithm is an iterative reconstruction algorithm which uses only

one component of magnetic flux density.

In 2003, Ider et al [8] have examined the reconstruction in MREIT and have
proposed three methods for numerical implementations. Ider and Onart [18]
examined one of the methods, explained in Ider et al [8], which uses non-linear
matrix equations to find the resistivity distribution of the target object. They use
only one component of magnetic flux density which is parallel to the main
magnetic field. Also they said that at least two current injection patterns are
necessary to reconstruct the resistivity distributions. After finding the resistivity

distribution, the conductivity distribution can be found easily.

3.4.2 Problem Definition

The conductivity values used in this algorithm is isotropic. As explained in

Section 3.1.2, an applied external current generates a magnetic flux density,
B’ = (B 7 B; , B’ ), inside the object. The z-component of this generated magnetic
flux density is used in Algebraic reconstruction algorithm.

A part of the following equation is used in this algorithm. Because this algorithm

uses only B;.

V’B
ll'l()

VRxJ =

(3.33)

In equation (3.33), R is called the natural logarithm of resistivity.
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p=e* (3.34)

The matrix form of equation (3.33) is shown below.

o
0o J. -J, § VB
-J. 0 J, ||Z|=—| VB, (3.35)
1,oa0 ] Bl

Lo ]

The row of this equation, which includes B is important for Algebraic

reconstruction algorithm. For this reason, we can write equation (3.36).

OR = OR 1
), -=J =—VB,
n T T (3.36)

As seen above, the x-derivative and y-derivative of logarithmic resistivity is
used. Central difference, which is shown in equation (3.37), is used for

calculation of these derivatives.

Sy +h)— f(x,—h)
2h

f(x)= (3.37)

Central difference is used for interior regions of the subject. The edge regions

forward difference or backward difference must be used.

With these information we can write equation (3.36) in the form of equation

(3.38) for (i,j )’h element of the imaged object.

Ringy = Rioy J - Rijy =Ry J — Vsz
2Ax M) A X)) L (3.38)
Y 0 /G
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For computation of VZBz at the /" pixel, equation (3.39) is used. This equation

is also called three-point difference.

Bz(xH—l’yi’Zi)_sz(xi’yi’ )+B( _15 Vi ,)+
(Ax)’
Bz(xi’yi+1’zi)_2B Xis Vis Z ) &(xi’yi—l’zi)

(
(&)
(
(

Vsz (xi’ yi’Zi):

+

+

(3.39)

Bz(xi’yi’ZH—l)_zB Xi» Vis Z ) A(XI’yi’Zi—l)

Az)’

+

In equation (3.38) and equation (3.39), Ax, Ay and Az are the dimensions of

each element in the x, y and z directions.

The number of elements in x and y directions are equal to K and M, respectively.
For all elements inside the object, we can write the equation (3.38) as the

following matrix form.

AR=b (3.40)

where, A is the coefficient matrix with dimensions (KMxKM), R is a (KMxI)
vector which includes the logarithmic resistivity values of all elements, b is a

(KMxI) vector which includes the Laplacian of B..

Singular Value Decomposition (SVD) is used to test the performance of the

calculated coefficient matrix. If necessary, truncation can be made.

The pseudo inverse of A is calculated. With this pseudo inverse and the
calculated Laplacian for magnetic field measurements are multiplied to find the

logarithmic resistivity of all elements. This is shown in equation (3.41).

R=AD (3.41)
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where, A" is the pseudo inverse of coefficient matrix.

After finding the logarithmic resistivity, the reconstructed resistivity distribution
is calculated with equation (3.34). Then the conductivity distribution is

calculated by equation (3.42).

o=— (3.42)

3.4.3 Implementation

For this reconstruction algorithm, two orthogonal current injection patterns

(N=2) are used to inject 20 mA current.

First the measurements for B; are taken for each element inside the object. Then

VzBz is calculated using the equation (3.39).

As seen from equation (3.38), the x-component and y-component of current
density must be calculated. The components of current density are calculated for
a uniform conductivity distribution. With these calculated values we can produce

the coefficient matrix, which is defined in equation (3.40).

We use two different current injection patterns. The computed coefficient matrix
for one current injection pattern will be ill-conditioned. For this reason, the

coefficient matrices can be combined.

A =[A, A,] (3.43)

combined

After computing the combined coefficient matrix, singular values of matrix

A are examined. The last two singular values are truncated. Because they

combined

are very close to zero.

After computing the coefficient matrix, equation (3.44) is used to find R.
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RZ(A combined )Tbcombined (3 44)

where, b is the combined version of Laplacian of B, for two current

combined

injection pattern.

The reconstructed conductivity distribution is calculated using equation (3.34)

and equation (3.42).

The Algebraic reconstruction algorithm has the following steps:

Step-1:  Measure B; for all current injection pattern and calculate the

Laplacian of B; .

Step-2:  Assume an initial conductivity distribution, o, .
Step-3: Calculate J_ and J ’

Step-4: Compute the combined coefficient matrix, A

combined *

Step-5:  Find pseudo inverse of A

combined *

Step-6:  Solve R=(A and then calculate conductivity

+
combined ) bcombined

distribution.

||O-m+1 - O-m 2
(o)

m+1

Step-T7: If the stopping criterion, <¢g, for a predefined

A
tolerance value, is obtained the iterations will terminate. Otherwise go

back to Step 3.

The flowchart for Algebraic reconstruction algorithm is shown in Figure 3.5.
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||O-m+1 ||2

[ Terminate iterations }

Figure 3.5: Flowchart for Algebraic reconstruction algorithm.
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CHAPTER 4

SIMULATION AND COMPARISON

4.1 Introduction

In this chapter, computer models used in simulations and the reconstructed
results which are taken from the simulations are explained. Different computer
models and different conditions are used to test the performance of the

reconstruction algorithms.

4.2 Computer models

Four different computer models are used to test the performance of four different
reconstruction algorithms which are explained in previous chapters. The
dimensions of the models are selected according to the experimental phantom
used in experiments in METU 0.15 Tesla MRI system. In order to compare the
reconstruction algorithm’s performance, same dimensions are used for four

different models.

The size of the imaging slice is chosen as 9 cm x 9 cm and the electrode size is
selected 1/5 of the model’s edge size. So the electrode size is 1.8 cm. The
thickness of the model is 0.2 cm. For each model 20 mA current is used in each

current injection.
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4.2.1 Computer Model-1

Computer model-1 is shown in Figure 4.1. In this model, there are four different
objects inside a background. The objects have isotropic conductivities. Two of
the objects are more resistive than the background. The other two objects are
more conductive than the background. The background conductivity has been

chosen to be 0.2 S/m. The object conductivities are shown in Table 4.1.

Table 4.1: Conductivity values of computer model-1

Region Object Conductivity value

(S/m)
1 Background 0.2
2 Big Square 0.1
3 Big Circle 0.4
4 Small Square 2
5 Small Circle 0.02

1
2

Figure 4.1: Computer model-1 with different conductivity regions.

Four electrodes are used in computer model-1. With these four electrodes, two
different and orthogonal current injection patterns are used in model-1. These

current injection patterns are shown in Figure 4.2.
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|
(a) b)

Figure 4.2: Current injection patterns. (a) Vertical current injection pattern.
(b) Horizontal current injection pattern.

4.2.2 Computer Model-2

Computer model-2 is shown in Figure 4.3. There are two squares in the middle of
the model. Both squares have 0.225 cm x 0.225 cm which is a size of a pixel of
the imaging slice. The background conductivity is equal to 0.2 S/m. There are
two cases for this model. First one is conductive case. For conductive case, the
conductivities of squares are 2 S/m. The other case is resistive case. For resistive

case, the conductivities of squares are 0.02 S/m.

Figure 4.3: Computer model-2 with different conductivity regions.

43



This model is used to test the spatial resolution performance of four
reconstruction algorithms by calculating the Full-Width-at-Half-Maximum
(FWHM) values. Also the gap between two squares is changed. All positions for

this model are shown in Table 4.2.

Table 4.2: Number of pixels in the gap, for different positions

Position 1 2 3 4 5 6 7 8 9 10

Number of pixelsinthegap 1 3 5 7 9 11 15 19 23 27

Same as model-1, four electrodes are used to inject vertical current injection

pattern and horizontal current injection pattern which are orthogonal.

4.2.3 Computer Model-3

Computer model-3 is shown in Figure 4.4. There are 9 squares on the diagonal of
the imaging slice. The sizes of the squares are equal to the size of a pixel. For
this model, there are two cases, which are conductive and resistive, to test the
performance of all algorithms. Background conductivity is 0.2 S/m. Conductive

square conductivity is 2 S/m and the resistive square conductivity is 0.02 S/m.

O

Figure 4.4: Computer model-3 with different conductivity regions.
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In model-3, there are four electrodes. The position of electrodes are same as
model-1. Two different and orthogonal current injection patterns are used. This
model is used to test the spatial resolution performance of all algorithms for

conductive and resistive cases.

4.2.4 Computer Model-4

Computer model-4 is shown in Figure 4.5. The background conductivity is equal
to 0.2 S/m. There is a square at the center of the imaging slice. The size of the
square is 2.25 cm x 2.25 cm. There are two different cases which are conductive
case and resistive case. For conductive case, the square is more conductive than

background. For resistive case, the square is more resistive than background.

Figure 4.5: Computer model-4 with different conductivity regions.

For each case, there are 10 different contrast levels. This means, for each level
square has different conductivity value. Different conductivity values of square

for all cases of this model are shown in Table 4.3.
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Table 4.3: Square conductivities for different cases and contrast levels
8

3 4 5

6

7

9

1.8

10

2.0

Contrast
Level

1 2

1.0

1.2

14

1.6

Conduct
case

ive
06 0.8

02 04

(Square
conductivity
S/m)

Resistive
case
(Square
conductivity
S/m)

02 0.1 0.066 0.05 0.04 0.033 0.028 0.025 0.022 0.02

4.2.5 Thorax Model
Thorax model is shown in Figure 4.6. This model simulates different tissues in

thorax.

—
_.r"/-—_ h T /’ri_\\
ff' > ] \\. 1|
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Figure 4.6: Thorax Model with different conductivity regions.

Each region has different conductivity value. The conductivity values of all

regions are shown in Table 4.4.
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Table 4.4: Conductivity values of Thorax Model

Conductivity value

Region Tissue Type (S/m)
1 Skeletal muscle 0.2
2 Lung 0.0667
3 Heart 0.667
4 Bone 0.0006
5 Spinal cord (CSF) 1.5625
6 Aorta 0.667

4.3 Phantom used in experiments

The reconstruction algorithms tested with an experimental phantom. For
experimental study, a 3D phantom is produced. The geometry of this phantom is
shown in Figure 4.7(a). The inner size of this phantom is equal to9x9x9 cm .
The middle part of phantom is used for taking the experimental data. The front
view of this part is shown in Figure 4.7(b). Size of this part is9x9x2 cm. 1 cm
slice thickness is used for taking the experimental data. The conductivities of the

regions are shown in Table 4.5.

Table 4.5: Experimental model’s conductivity values

Region Object Conductivity value

(S/m)
1 Background 0.2
2 Square 0.1
3 Circle 0.4

To obtain these conductivity values, combination of different materials are used.

The ratios of combination are shown in Table 4.6.
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Figure 4.7: Experimental phantom. (a) 3D view of phantom. (b) Front view of
imaging slice (with four recessed electrodes).

Table 4.6: Material ratios for different conductivity values.

Conductivity ~ Conductivity Conductivity

Material value value value
(0.1 S/m) (0.2 S/m) (0.4 S/m)
Water 100 ml 100 ml 100 ml
Salt - - 0.1 gr
CuSO4 0.1 gr 0.1 gr 0.1 gr
TX150 [26] 1gr 0.2 gr -
TX151 [26] - 1.8 gr 1gr
Agar [27] 0.5 gr - 1gr

For experiment, 20 mA current is injected to the phantom. Two different and

orthogonal currents are used. One of them is vertical, the other is horizontal.

4.4 Noise used for computer models

To test the performance of reconstruction algorithms under noisy case, a random

Gaussian noise which is explained by Scott et al [22], is used. The real Signal-to-
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Noise Ratio (SNR) uses the ratio between the signal and the noise. But this has a
disadvantage. This ratio can be changed by the applied current. If we increase the
amount of the applied current, the amount of the magnetic flux density will be
increased. The signal amount used in SNR calculation increases. So the SNR
ratio decreases. Scott et al [22], uses a SNR which is independent from the
direction and amount of the applied current. This SNR value is related only the

MRI system which is used for experiments. They define SNR as:
A
SNR,, =— =¥ AxAyAz\|NT;M (x,y) “4.1)
o

where, A is the magnitude of the noise-free pixel value of the corresponding MR

image, ¥ is a system SNR, AxAyAzis the voxel volume, N is the total number
of excitations (averages times phase encodes), T is the readout sampling time
for one echo, and M (x,y)is the magnetization. The phase error probability

density function used in equation (4.1) is defined as:

fo(9)= %exp[_;z ]+ a;jsz(_f) exp[_a2 Si2n2 (¢)]erfc[_a i(/);(m] 4.2)

where, a:\/ESNR, and @ represents the phase error. Lorca [23] gives the
details about system SNR calculation in his MSc thesis.

For this thesis, the values for SNR are chosen as 30, 20 and 13. Birgiil et al [24]
shows that the system SNR for 0.15 T METU MRI scanner is equal to 13. Also
a 2 T MRI scanner has system SNR which is equal to 30 [22]. For these reasons,
the SNR values are chosen to test the noise performance of reconstruction

algorithms.
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4.5 Error calculation and stopping criteria

To test the error performance of four reconstruction algorithms, the error values
are calculated using the L, norm error. In experimental studies, the real
conductivity values of target objects are not known. But in simulations, the real
conductivity values of the objects are known. According to this information total

error values can be calculated as:

e = lo, =ail, x100%
43)

o, total —
T2

where, o, means real conductivity of the object, o; means reconstructed
conductivity of the object and ||||2 is the L, norm. L, norm is defined in

equation (4.4).

12
Il :(Zafj (44)

where, a, is the i element of .

If someone wants to calculate the error value in a specific region, equation (4.5)

must be used.

‘O-r region ~ Oi 1

_ ,region i,region ||,

go‘,region - X 100% (45)
O-r,region 2

where, O, oion aDd O 0, are the real conductivity distribution and

reconstructed conductivity distribution for the specific region.

For computer models, error calculation is easy. Since, real conductivity
distributions are known. But in experimental studies, the real conductivity

distributions are not known. For this reason, a stopping criterion must be defined
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to stop the iterations for iterative algorithms. To prevent infinite iterations a

tolerance value is defined to terminate iterations. Stopping criteria is shown as:

m+1 m

(o}

m+1

lo,..—o

t<e (4.6)

8

where, € is the tolerance value, o, is the reconstructed conductivity after m"

iteration, O

m+1

is the reconstructed conductivity after (m+1 )’h iteration and || . || , 18

the L, norm defined in equation (4.4).

4.6 Spatial Resolution

Spatial resolution of an imaging system is defined as the system ability to
distinguish minimum size object. Also the spatial resolution gives the degree of
deblurring in an image. For this purpose, the Point Spread Function (PSF) is

examined. Since, it includes the information about the spatial resolution.

The spatial resolution performances of four reconstruction algorithms are tested
by using the model-2. In this model, there are two small squares which have a
size equal to one pixel size. The PSF at the middle row of the model is examined.
Also the PSF according to the gap between two pixels is examined. To find the
spatial resolution performance, the maximum and the minimum values on PSF
are taken. According to these values the Full-Width-at-Half-Maximum (FWHM)
value can be calculated easily. This is shown in Figure 4.8. FWHM value gives
the information about how the gap between two squares effect the reconstructed

conductivity and spatial resolution.
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Figure 4.8: FWHM on the PSF of the middle row of the imaging slice.

4.7 Simulation Results for Magnetic Flux Density Based
Reconstruction Algorithms

In the following sections, the results of four magnetic flux density based
reconstruction algorithms (which are explained in chapter 3) are given and

discussed.

4.7.1 Reconstruction by Harmonic B, algorithm

In this section, the reconstructed conductivity distributions of four different
models are examined and discussed by using the Harmonic B, algorithm

explained in chapter 3.

As explained in chapter 3, this iterative algorithm uses only the z component of
the magnetic flux density (B;), which is parallel to the main magnetic field. First,
the B, is taken and the Laplacian of B, is calculated. Then, the x-gradient and y-

gradient of the potential for uniform case are calculated. With these values, the x-
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derivative and y-derivative of conductivity distribution can be found. At the end,

the conductivity distribution can be calculated by using the line integral.

4.7.1.1 Results for Model-1

As explained in Section 4.2.1, there are five different conductivity regions in the
imaging slice and there are two orthogonal current injection patterns. 20 mA

current is injected for both injection patterns.

The real conductivity distribution for model-1 is shown in Figure 4.9(a). The
reconstructed conductivity distributions after iteration 1 and after iteration 7 are
shown in Figure 4.9(b) and Figure 4.9(c). These results are taken for noise free

data.

The 7™ iteration is chosen. Since, Harmonic B, algorithm starts to be stable after
iteration 7. This is easily seen from the total error figure which is shown in
Figure 4.10(a). All regions’ error characteristic can be seen in Figure 4.10. The

reconstructed error values of all regions, for iteration 7 are shown in Table 4.7.

As seen from Figure 4.9 and Figure 4.10, Harmonic B, algorithm reconstructs

conductivity successfully without added noise.

53



Afm

(b) (©

Figure 4.9: Reconstruction by Harmonic B, algorithm for Model-1 (noise free
data). (a) Real conductivity distribution for Model-1. (b) Reconstructed
conductivity distribution after iteration 1. (c) Reconstructed conductivity
distribution after iteration 7.

Table 4.7: Reconstructed error values after iteration 7

go,mml 80' ,background 80' ,bigsquare 80' ,bigcircle 80' ,smallsquare go,smallcircle
(%) (%) (%) (%) (%) (%)
33.83 11.17 23.05 8.08 72.67 264.30
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Figure 4.10: Reconstructed conductivity errors by Harmonic B, algorithm for
Model-1 (noise free data). (a) Total error. (b) Background error, Big Circle error,
Big Square error. (¢) Small Circle error, Small Square error.
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Then this reconstruction algorithm tested with different noise levels, SNR 30,
SNR 20 and SNR 13. The reconstructed conductivity distributions are shown in
Figure 4.11.

As seen from Figure 4.11, the reconstructed conductivity distributions for noisy
data are not good as noise free data. This result is expected. Because, Harmonic
B, algorithm uses Laplacian of B,, which means twice differentiation of both B,

and noise.

Also this reconstruction algorithm uses line integral after finding the x-derivative
of conductivity and y-derivative of conductivity. According to these reasons, it is

seen that SNR must be high to take good results.

Increasing the number of current injection patterns and increasing the amount of

current give good reconstructed conductivity results at low SNR values.
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(d) (e

Figure 4.11: Reconstruction by Harmonic B, algorithm for Model-1 (all images
for iteration 7). (a) Real conductivity distribution for Model-1. (b) Reconstructed
conductivity distribution, noise free data. (c) Reconstructed conductivity
distribution SNR 30. (d) Reconstructed conductivity distribution SNR 20. (e)
Reconstructed conductivity distribution SNR 13.
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Total error plot comparison can be seen in Figure 4.12. As seen in figure, the
minimum SNR value must be 30 to reconstruct good conductivity distributions.
This algorithm is not stable for low SNR vales. But it reconstructs conductivity

successfully without added noise.

2500 -
2000 -
S
= —*—no noise
< 1 +
E 500 —+H— SNR30
c
S 1000l —<— SNR20
o
c
4 5004
G S
2

iteration number

Figure 4.12: Comparison of reconstruction errors for Harmonic B, algorithm, for
different SNR values and no noise data, for Model-1.

4.7.1.2 Results for Model- 2

As explained in Section 4.2.2, there are two square objects with different
conductivity values than background, in the imaging slice and there are two
orthogonal current injection patterns. 20 mA current is injected for both injection
patterns. There are two cases for this model. First one is conductive case. For
conductive case, the conductivities of squares are 2 S/m. The other case is
resistive case. For resistive case, the conductivities of squares are 0.02 S/m. Also
there are 10 different positions, which are shown in Table 4.8, used to test the
spatial resolution performance of Harmonic B, reconstruction algorithm by

calculating the Full-Width-at-Half-Maximum (FWHM) values.

Table 4.8: Number of pixels in the gap, for different positions

Position 1 2 3 4 5 6 7 8 9 10

Number of pixelsinthegap 1 3 5 7 9 11 15 19 23 27
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The reconstructed conductivity distributions for both cases with position 4 are
shown in Figure 4.13. These results are taken without added noise. Also for each
case and position, 4 iterations are used. Since, the algorithm starts to converge

after 4" iteration.
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Figure 4.13: Reconstruction by Harmonic B, algorithm for Model-2, position-4.
(a) Real conductivity distribution for conductive case. (b) Reconstructed
conductivity distribution for conductive case. (c) Real conductivity distribution
for resistive case. (d) Reconstructed conductivity distribution for resistive case.

Also, the Point Spread Functions for the middle row of the imaging slice and
position-1 are shown in Figure 4.14. Calculated FWHM values according to

change of gap between two squares for all positions are shown in Figure 4.15.
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Figure 4.14: PSF for middle row of imaging slice by Harmonic B, algorithm for
Model-2, position-1. (a) For conductive case. (b) For resistive case.
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Figure 4.15: FWHM values according to change of gap between two squares for
all positions.

As seen from Figure 4.15, the calculated FWHM values are close for conductive
and resistive cases. For position-1, the gap between two squares is 1 pixel. Only
for position-1, two reconstructed squares are merged. This means a pixel affects
the other pixels which are placed around the target pixel. But for other positions,

the calculated FWHM values are independent from the position of two squares.

These results show that Harmonic B, algorithm can reconstruct an object which
is equal to a pixel size. But target object affects the pixels which are placed

around this target object.
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4.7.1.3 Results for Model- 3

In Model-3, there are 9 small squares on the diagonal of the imaging slice. The

sizes of the squares are equal to the size of a pixel.

For this model, there are two cases which are conductive and resistive, to test the
performance of algorithm. Background conductivity is 0.2 S/m. Conductive

square conductivity is 2 S/m and the resistive square conductivity is 0.02 S/m.

Reconstructed conductivity distributions for conductive case and resistive case

are shown in Figure 4.16.
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Figure 4.16: Reconstruction by Harmonic B, algorithm for Model-3 (after
iteration 8). (a) Real conductivity distribution for conductive case. (b)
Reconstructed conductivity distribution for conductive case. (c) Real
conductivity distribution for resistive case. (d) Reconstructed conductivity
distribution for resistive case.
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The effect of the line integral, which is used in reconstruction algorithm, can be
seen easily. Especially on the top left corner, a high change in the conductivity
value can affect the rest of the column or row of the imaging slice. This is a

disadvantage for this reconstruction algorithm.

4.7.1.4 Results for Model- 4

In Model-4, there is a square at the center of the imaging slice. The size of the
square is 2.25 cm x 2.25 cm. There are two different cases which are conductive
case and resistive case. For conductive case, the square is more conductive than
background. For resistive case, the square is more resistive than background.
Also there are 10 different contrast levels. This means, for each contrast level
square has different conductivity value. The used conductivity values of square

for all cases are shown in Table 4.3 in the Section 4.2.4.

For conductive case and resistive case, 4 iterations are used for all contrast

levels. The algorithm starts to converge at 4™ jteration.

For conductive case, the real conductivity distribution and the reconstructed

conductivity distribution for o, = 0.4 S/m (contrast level-2) are shown in
Figure 4.17.
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Figure 4.17: Reconstruction by Harmonic B, algorithm for Model-4, contrast
level-2. (a) Real conductivity distribution for conductive case. (b) Reconstructed
conductivity distribution for conductive case (after iteration 4).
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For resistive case, the real conductivity distribution and the reconstructed

conductivity distribution for o= 0.1 S/m (contrast level-2) are shown in
Figure 4.18.
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Figure 4.18: Reconstruction by Harmonic B, algorithm for Model-4, contrast
level-2. (a) Real conductivity distribution for resistive case. (b) Reconstructed
conductivity distribution for resistive case (after iteration 4).

For conductive case, the square’s conductivity increases when the contrast level
increases. But for resistive case, the square’s conductivity decreases when the

contrast level increases. The square error plots according to the change of the

contrast levels for both cases are shown in Figure 4.19.
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Figure 4.19: Error plots of the square for 10 different contrast levels.
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As seen from Figure 4.19, if we increase the difference between square
conductivity value and background conductivity value, the error value of the
reconstructed square will increase. This means if the contrast is high, the

reconstruction error will be high.

Also in Figure 4.20, the plot of the real conductivity values of square and mean
of the reconstructed conductivity values of square for each contrast level can be

seen.
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Figure 4.20: Mean real conductivity and mean reconstructed conductivity versus
10 different contrast levels. (a) For conductive case. (b) For resistive case.
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4.7.1.5 Results for Thorax Model

The model shown in Section 4.2.5 is used to test the performance of Harmonic
B, for noise-free data and noisy data. The reconstructed conductivity

distributions are shown in Figure 4.21.
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Figure 4.21: Reconstruction by Harmonic B, algorithm for Thorax Model (all
images for iteration 2). (a) Real conductivity distribution. (b) Reconstructed
conductivity distribution, noise-free data. (c) Reconstructed conductivity
distribution SNR 30. (d) Reconstructed conductivity distribution SNR 20. (e)
Reconstructed conductivity distribution SNR 13.
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As seen from Figure 4.21, the reconstructed conductivity distributions for noisy
data are not good as noise free data. The total reconstruction errors for noisy case

and noise free case are shown in Table 4.9.

Table 4.9: Reconstructed error values for thorax model.

Noise-free SNR30 SNR20 SNRI3
case
Eg ro1a1 (%0) 52.65 105.67 357.9 501.6

4.7.2 Reconstruction by Variational Gradient B, Algorithm.

In this section, the reconstructed conductivity distributions of four different
models are examined and discussed by using the Variational Gradient B, (VGB,)

algorithm explained in chapter 3.

As explained in chapter 3, this iterative algorithm uses only the z component of
the magnetic flux density (B;), which is parallel to the main magnetic field.
Different from the Harmonic B, algorithm, VGB, algorithm differentiate B, only
once. Firstly the B, is taken and the x-gradient and y-gradient of B; is calculated.
Then the x-gradient and y-gradient of the potential for uniform case are
calculated. At the end the conductivity distribution can be calculated by using

these gradient values.
4.7.2.1 Results for Model- 1

As explained in Section 4.2.1, there are five different conductivity regions in the
imaging slice and there are two orthogonal current injection patterns. 20 mA

current is injected for both injection patterns.

The real conductivity distribution for model-1 is shown in Figure 4.22(a). The
reconstructed conductivity distributions after iteration 1 and after iteration 9 are
shown in Figure 4.22(b) and Figure 4.22(c). These results are taken for noise free

data.
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Figure 4.22: Reconstruction by VGB, algorithm for Model-1 (noise free data).
(a) Real conductivity distribution for Model-1. (b) Reconstructed conductivity
distribution after iteration 1. (c) Reconstructed conductivity distribution after
iteration 9.

As seen from Figure 4.22, the reconstructed conductivity distribution at the
corners of the imaging slice is not good as the reconstructed conductivity
distribution at the other areas. This is a result of the differentiation of B, along x
and y directions. In VGB, algorithms x-gradient and y-gradient of B, are
calculated and summed. Especially at the edges of electrodes, this summation
can affect the reconstructed conductivity distribution. This effect starts from the
edges of electrodes and spread to the corners of the image. In Model-1, the ratio
of electrode size to model edge is equal to 1/5. This means electrode size is equal

to 1.8 cm for a 9 cm model edge. Tests on this algorithm show that, if electrode-
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edge ratio is equal or greater than 3/5, VGB, algorithm will successfully

reconstruct the conductivity distributions at the corner of the imaging slice.

The effect of the Electrode-Edge Ratio (EER) is shown in Figure 4.23.
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Figure 4.23: Effect of electrode-edge ratio (noise free data) (a) Reconstructed
conductivity distribution, 1 iteration, EER=1/5. (b) Reconstructed conductivity
distribution, 9 iterations, EER=1/5. (c¢) Reconstructed conductivity distribution, 1
iteration, EER=3/5. (d) Reconstructed conductivity distribution, 9 iterations,
EER=3/5.

In Figure 4.23(a) and Figure 4.23(b), there are artifacts at the corners of the
reconstructed conductivity distribution for small EER. If we increase the
electrode size, these artifacts will disappear. This is shown in Figure 4.23(c) and
Figure 4.23(d).
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The 9" iteration is chosen. Since, VGB, algorithm starts to be stable after
iteration 9. This is easily seen from the total error figure which is shown in
Figure 4.24(a). All regions’ error characteristics are shown in Figure 4.24. The

reconstructed error values of all regions, for iteration 1 and iteration 9 are shown

in Table 4.10.

Table 4.10: Reconstructed error values of all regions, for iteration-1, iteration-9

After iteration 1 | After iteration 9
€5 1ota1 (%) 48.72 42.44
Eq packgroma (%) 18.58 20.11
€ pigsquare (%) 32.96 30.82
E5 pigeircle (%0) 45.21 24.73
Eg smatisquare (70) 88.14 83.70
Eg.smalicircle (70) 477.01 501.88

As seen from Table 4.10, the small circle, which has very small conductivity

value than the other regions, is reconstructed with a high reconstruction error.

As seen from Figure 4.22 and Figure 4.24, VGB, algorithm reconstructs
conductivity successfully without added noise. Only there are artifacts at the

corners of reconstructed conductivity distribution for small electrode size.
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Figure 4.24: Reconstructed conductivity errors by VGB, algorithm for Model-1
(noise free data). (a) Total error. (b) Background error, Big Circle error, Big
Square error. (¢) Small Circle error, Small Square error.
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This reconstruction algorithm tested with different noise levels: SNR 30, 20 and

13. The reconstructed conductivity distributions are shown in Figure 4.25.
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Figure 4.25: Reconstruction by VGB, algorithm for Model-1. (a) Real
conductivity distribution for Model-1. (b) Reconstructed conductivity
distribution noise free data. (c) Reconstructed conductivity distribution SNR 30.
(d) Reconstructed conductivity distribution SNR 20. (e) Reconstructed
conductivity distribution SNR 13.
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As seen from Figure 4.25, the reconstructed conductivity distributions for noisy
data are good as noise free data. VGB, algorithm has a better noise immunity.
This result is expected. Because, VGB, algorithm uses only one differentiation of
B, which means one differentiation of both B, and noise. So this algorithm gives

good results for both noisy and noise free data.

If we increase the number of current injection patterns, amount of currents, and
size of electrodes, this algorithm will give good reconstructed conductivity

distributions.

Total error plot comparison is shown in Figure 4.26. As seen from the figure, this
algorithm reconstructs conductivity successfully with low SNR values. But
reconstruction errors for low SNR value will increase with the increasing number

of iterations.
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Figure 4.26: Comparison of reconstruction errors for VGB, algorithm, for
different SNR values and noise free data, for Model-1.

4.7.2.2 Results for Model- 2

As explained in Section 4.2.2, there are two square objects with different

conductivity values than background, in the imaging slice and there are two
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orthogonal current injection patterns. 20 mA current is injected for both injection

patterns.

There are two cases for this model. First one is conductive case. For conductive
case, the conductivities of squares are 2 S/m. The other case is resistive case. For
resistive case, the conductivities of squares are 0.02 S/m. Also there are 10
different positions, which are shown in Table 4.11, used to test the spatial
resolution performance of VGB, reconstruction algorithm by calculating the

Full-Width-at-Half-Maximum (FWHM) values.

Table 4.11: Number of pixels in the gap, for different positions

Position 1 2 3 4 5 6 7 8 9 10

Number of pixelsinthegap 1 3 5 7 9 11 15 19 23 27

In Figure 4.27 and Figure 4.28, reconstructed conductivity distributions for both
cases with position-4 can be seen. These results are taken without added noise.
Also for each position, 4 iterations are used. Since, the algorithm starts to

converge at iteration 4.
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Figure 4.27: Reconstruction by VGB, algorithm for Model-2, position-4, for
conductive case. (a) Real conductivity distribution. (b) Reconstructed
conductivity distribution.
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Figure 4.28: Reconstruction by VGB, algorithm for Model-2, position-4, for
resistive case. (a) Real conductivity distribution. (b) Reconstructed conductivity

distribution.

The Point Spread Function for the middle row of the imaging slice and position-1

is shown in Figure 4.29.

Calculated FWHM values according to change of gap between two squares for

all positions are shown in Figure 4.30.
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Figure 4.29: PSF for middle row of imaging slice by VGB, algorithm for Model-

2, position-1. (a) For conductive case. (b) For resistive case.
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Figure 4.30: FWHM values according to change of gap between two squares for
all positions.

As seen from Figure 4.27, the calculated FWHM values for conductive case are
smaller than FWHM values for resistive case. For position-1, the gap between
two squares is 1 pixel. Only for position-1, two reconstructed squares are
merged. The two square objects affect each other. But the other positions the
FWHM values are nearly twice of the size of a pixel. This means a pixel affects
the other pixels which placed around the target pixel. These results show that
VGB, algorithm’s reconstruction performance is not good to reconstruct an

object, whose size is equal to one pixel size.

4.7.2.3 Results for Model- 3

In Model-3, there are 9 small squares on the diagonal of the imaging slice. The
sizes of the squares are equal to the size of a pixel. For this model, there are two
cases, which are conductive and resistive, to test the performance of this
algorithm. Background conductivity is 0.2 S/m. Conductive square conductivity

is 2 S/m and the resistive square conductivity is 0.02 S/m.

Reconstructed conductivity distributions for conductive case and resistive case

are shown in Figure 4.31.
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Figure 4.31: Reconstruction by VGB, algorithm for Model-3, (after iteration 8).
(a) Real conductivity distribution for conductive case. (b) Reconstructed
conductivity distribution for conductive case. (c) Real conductivity distribution
for resistive case. (d) Reconstructed conductivity distribution for resistive case.

The effect of the differentiation at the corner of the imaging slice can be seen. As
described in previous section, this effect starts from the electrode edges. Also
Figure 4.31 shows that an object, which has a size equal to a pixel size, affects

the other pixels which placed around this object.

4.7.2.4 Results for Model-4

In Model-4, there is a square at the center of the imaging slice. The size of the
square is 2.25 cm x 2.25 cm. There are two different cases which are conductive
case and resistive case. For conductive case, the square is more conductive than

background. For resistive case, the square is more resistive than background.
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Also there are 10 different contrast levels. This means, for each contrast level
square has different conductivity value. These are shown in Table 4.3 in the
Section 4.2.4. For conductive case and resistive case, 5 iterations are used for all

contrast levels. The algorithm starts to converge at 5™ iteration.

For conductive case, the real conductivity distribution and the reconstructed

conductivity distribution for o = 0.4 S/m (contrast level-2) are shown in

square
Figure 4.32(a) and Figure 4.32(b). For resistive case, the real conductivity

distribution and the reconstructed conductivity distribution for ¢ = 0.1 S/m

square

(contrast level-2) are shown in Figure 4.32(c) and Figure 4.32(d).
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Figure 4.32: Reconstruction by VGB, algorithm for Model-4, contrast level-2. (a)
Real conductivity distribution for conductive case. (b) Reconstructed
conductivity distribution for conductive case (after iteration 5). (c) Real
conductivity distribution for resistive case. (d) Reconstructed conductivity
distribution for resistive case (after iteration 5).
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For conductive case, the square’s conductivity increases when the contrast level
increases. But for resistive case the square’s conductivity decreases when the
contrast level increases. The square error plots according to the change of the

contrast level for both cases are shown in Figure 4.33.
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Figure 4.33: Error plots of the square for 10 different contrast levels.

As seen from Figure 4.33, if the difference between square conductivity value
and background conductivity value are increased, the error value of the

reconstructed square will increase. This means if the contrast is increased, the

error will be high.

In Figure 4.34, the plot of the real conductivity values of square and mean of the
reconstructed conductivity values of square for each level are shown. As seen

from figure that for resistive case, the performance of algorithm is better than the

conductive case.
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Figure 4.34: Mean real conductivity and mean reconstructed conductivity versus
10 different contrast levels. (a) For conductive case. (b) For resistive case.

4.7.2.5 Results for Thorax Model

The model shown in Section 4.2.5 is used to test the performance of VGB, for
noise-free and noisy data. The reconstructed conductivity distributions are shown
in Figure 4.35. The total reconstruction errors for noisy and noise free case are

shown in Table 4.12.

Table 4.12: Reconstructed error values for thorax model

Noise-free SNR30 SNR20 SNRI13
case
€5 total (70) 65.52 65.76 65.93 66.67
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Figure 4.35: Reconstruction by VGB, algorithm for Thorax Model (all images
for iteration 3). (a) Real conductivity distribution. (b) Reconstructed conductivity
distribution, noise-free data. (c) Reconstructed conductivity distribution SNR 30.
(d) Reconstructed conductivity distribution SNR 20. (e) Reconstructed
conductivity distribution SNR 13.

As seen from Figure 4.35, the reconstructed conductivity distributions for noisy
data are good as noise free data. But there are artifacts at the corners of image

because of the small electrode size.
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4.7.3 Reconstruction by Sensitivity Matrix

In this section, the reconstructed conductivity distributions of four different
models are examined and discussed by using the Sensitivity Matrix algorithm

explained in chapter 3.

As explained in chapter 3, this algorithm uses only the z component of the
magnetic flux density (B;), which is parallel to the main magnetic field. A
sensitivity matrix is produced according to the change of conductivity values of
each pixel in the imaging slice. It is produced for only the initial conductivity
distribution. The pseudo inverse of this matrix is calculated using Singular Value
Decomposition (SVD). For models explained in this thesis, the singular values of
sensitivity matrix, which are very close to zero, are truncated. Because, their
values are very close to zero and gives wrong reconstructed conductivity values.
Then, the perturbations in magnetic field measurements are calculated. At the
end the conductivity distribution can be calculated by using the perturbation in

element conductivity values which are calculated.

4.7.3.1 Results for Model- 1

As explained in Section 4.2.1, there are five different conductivity regions in the
imaging slice and there are two orthogonal current injection patterns. 20 mA

current is injected for both injection patterns.

The real conductivity distribution for model-1 is shown in Figure 4.36(a). The
reconstructed conductivity distributions for noise free data are shown in Figure

4.36(b).
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Figure 4.36: Reconstruction by Sensitivity Matrix for Model-1. (a) Real
conductivity distribution. (b) Reconstructed conductivity distribution for noise
free data.

For noise free data, the reconstructed conductivity error values of all regions are
shown in Table 4.13. As seen from Table 4.13, the small circle, which has very

small conductivity value than the other regions, is reconstructed with a high

Table 4.13: Reconstructed error values of all regions, noise free data

Noise free case

E.toat (%) 31.39
€5 packground (70) 17.76
Eg pigsquare (70) 33.73
Eq pigeircte (%) 8.59
Eq smalisquare (70) 66.81
€5 smalicircte (70) 94.35
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This reconstruction algorithm reconstructs a conductivity distribution with low

total error.

Then this reconstruction algorithm tested with different noise levels: SNR 30,
SNR 20 and SNR 13. The reconstructed conductivity distributions are shown in
Figure 4.37.

The reconstructed conductivity errors of all regions are shown in Table 4.14.

Table 4.14: Reconstructed error values of all regions for noise free and noisy data

Noise | SNR30 | SNR20 | SNRI3
free case

Eg soral (%) 31.39 32.41 33.43 35.93

E packgrouna (%) | 1776 20.57 22.93 29.43
Eobigsquare (%) | 3373 37.92 42.53 51.71
Eo pigeircte (%) 8.59 9.78 9.88 11.59
Egsmattsquare (%) | 66.81 66.62 66.77 65.12
Eg smalcircte () | 9435 94.30 94.24 94.16
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Figure 4.37: Reconstruction by Sensitivity Matrix for Model-1. (a) Real
conductivity distribution for Model-1. (b) Reconstructed conductivity
distribution, noise free data. (c) Reconstructed conductivity distribution SNR 30.
(d) Reconstructed conductivity distribution SNR 20. (e) Reconstructed
conductivity distribution SNR 13.
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As seen from Table 4.14, if we decrease the SNR value, the total error value will
increase. In Figure 4.37, the effect of SNR can be seen. This algorithm
reconstructs conductivity distributions for noisy case good as noise free case. If
we increase the number of current injection patterns and amount of current, this
algorithm will give good reconstructed conductivity results for lowest SNR

values.

The mean reconstructed conductivity values and the real conductivity values of

regions are shown in Table 4.15.

Table 4.15: Mean reconstructed conductivity values of all regions for noise free
and noisy data

Real Mean Reconstructed Conductivity
Conductivity
Noise free | SNR30 | SNR20 | SNR I3
Opackgrouna (/M) 0.2 0.2312 0.2334 | 0.2357 | 0.2390
Opigsquare  (S/M) 0.1 00702 | 00709 | 0.0720 | 0.0758
Opigeircle  (S/m) 0.4 03768 | 03799 | 0.3851 | 0.3890
O ymatisquare (S/M) 2 0.6638 | 0.6677 | 0.6646 | 0.6987
O gmalicircle (SM) 0.02 0.0011 0.0011 | 0.0012 | 0.0012

Sensitivity matrix is produced for an initial conductivity distribution which is
uniform. The Sensitivity Matrix algorithm reconstructs conductivity distribution
of the imaging slice. This reconstructed conductivity distribution can be used as
initial conductivity distribution to produce a new sensitivity matrix. This

produced sensitivity matrix can be used during reconstruction.

In Figure 4.38, the reconstructed conductivity distributions for two different

cases are shown.

For case-1, the conductivity distribution is reconstructed by using sensitivity

matrix which is produced from a uniform conductivity distribution.

For case-2, the conductivity distribution is reconstructed by using sensitivity

matrix which is produced from a reconstructed conductivity distribution.
85



The mean reconstructed conductivity values of all regions for two cases are

shown in Table 4.16.
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Figure 4.38: Reconstructed conductivity distributions for two cases (for noise-
free data). (a) Case-1, reconstruction by sensitivity matrix produced from
uniform conductivity distribution. (b) Case-2, reconstruction by sensitivity
matrix produced from reconstructed conductivity distribution.

Table 4.16: Mean reconstructed conductivity values of all regions for two cases
(for noise free data).

Real Mean Reconstructed Conductivity
Conductivity

Case-1 Case-2
Opackgrouna (S/M) 02 02312 0.2289
Opigsquare  (S/M) 0.1 0.0702 0.0798
Opigeircte  (S/M) 0.4 0.3768 0.4289
O smatisquare (S/M) 2 0.6638 0.6824
O maticircle (S/M) 0.02 0.0011 0.0022

As seen from Figure 4.38 and Table 4.16, reconstructed conductivity values for
two cases are nearly same. For each case, the algorithm needs high computation

time during sensitivity matrix production. If we choose initial conductivity
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distribution sufficiently near to the true conductivity values, new sensitivity

matrix production will be eliminated.

In this study, the sensitivity matrix is calculated for only the initial conductivity

distribution. Initial conductivity distribution is assumed o¢,=0.2 S/m. Then this

matrix is used during conductivity distribution reconstruction.

4.7.3.2 Results for Model-2

As explained in Section 4.2.2, there are two square objects with different
conductivity values than background, in the imaging slice and there are two
orthogonal current injection patterns. 20 mA current is injected for both injection
patterns. There are two cases for this model. First one is conductive case. For
conductive case, the conductivities of squares are 2 S/m. The other case is
resistive case. For resistive case, the conductivities of squares are 0.02 S/m. Also
there are 10 different positions, which are shown in Table 4.17, used to test the
spatial resolution performance of Sensitivity Matrix reconstruction algorithm by

calculating the Full-Width-at-Half-Maximum (FWHM) values.

Table 4.17: Number of pixels in the gap, for different positions

Position 1 2 3 4 5 6 7 8 9 10

Number of pixelsinthegap 1 3 5 7 9 11 15 19 23 27

In Figure 4.39, you can see reconstructed conductivity distribution for conductive

case and resistive case. These results are taken for noise free data.
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Figure 4.39: Reconstruction by Sensitivity Matrix for Model-2, position-4. (a)
Real conductivity distribution for conductive case. (b) Reconstructed
conductivity distribution for conductive case. (c) Real conductivity distribution
for resistive case. (d) Reconstructed conductivity distribution for resistive case.

For conductive and resistive case, the Point Spread Function for the middle row
of the imaging slice for position-1 is shown in Figure 4.40 and calculated FWHM
values according to change of gap between two squares for all positions are

shown in Figure 4.41.
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Figure 4.40: PSF for middle row of imaging slice by Sensitivity Matrix algorithm
for Model-2, position-1. (a) Conductive case. (b) Resistive case.
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Figure 4.41: FWHM values according to change of gap between two squares for
all positions.

As seen from Figure 4.41, the reconstructed FWHM values are very close to the
pixel size especially for conductive case. For position-1, the gap between two
squares is 1 pixel. Only for position-1, two reconstructed squares are merged.
The two square objects affect each other. But the other positions the FWHM
values are very close to the size of a pixel. These results show that Sensitivity
Matrix algorithm successfully reconstruct an object which is equal to a pixel size.

It has a good spatial resolution performance for conductive and resistive cases.
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4.7.3.3 Results for Model-3

In Model-3, there are 9 small squares on the diagonal of the imaging slice. The
sizes of the squares are equal to the size of a pixel. For this model, there are two
cases which are conductive and resistive. Background conductivity is 0.2 S/m.

Conductive square conductivity is 2 S/m and the resistive square conductivity is

0.02 S/m.

Reconstructed conductivity distributions for conductive case and resistive case

are shown in Figure 4.42. These results are taken for noise free data.

As seen in Figure 4.42, the Sensitivity Matrix algorithm successfully reconstructs
conductivity distribution both for resistive case and conductive case. The effect
of the one pixel sized square objects to the around neighboring pixels are very

small. This is an advantage for this algorithm.

The mean reconstructed conductivity values and the real conductivity values of

squares are shown in Table 4.18.

Table 4.18: Mean Conductivity values of squares

Mean Conductivity(Conductive case) | Mean Conductivity(Resistive case)

O O O O

real ,square reconstructed ,square real ,square reconstructed ,square

2 0.5146 0.02 0.0136
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Figure 4.42: Reconstruction by Sensitivity Matrix for Model-3. (a) Real
conductivity distribution for conductive case. (b) Reconstructed conductivity
distribution for conductive case. (c) Real conductivity distribution for resistive

case. (d) Reconstructed conductivity distribution for resistive case.

4.7.3.4 Results for Model-4

In Model-4, there is a square at the center of the imaging slice. The size of the

square is 2.25 cm x 2.25 cm. There are two different cases which are conductive

case and resistive case. For conductive case, the square is more conductive than

background. For resistive case, the square is more resistive than background.

Also there are 10 different contrast levels. This means, for each level square has

different conductivity value. These are shown in Table 4.3 in the Section 4.2.4.
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For conductive case, the real conductivity distribution and the reconstructed

conductivity distribution for o = 0.4 S/m (contrast level-2) are shown in

square

Figure 4.43(a) and Figure 4.43(b).

For resistive case, the real conductivity distribution and the reconstructed

conductivity distribution for o = 0.1 S/m (contrast level-2) are shown in

square

Figure 4.43(c) and Figure 4.43(d).
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Figure 4.43: Reconstruction by Sensitivity Matrix for Model-4, contrast level-2.
(a) Real conductivity distribution for conductive case. (b) Reconstructed
conductivity distribution for conductive case. (c) Real conductivity distribution
for resistive case. (d) Reconstructed conductivity distribution for resistive case.
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This algorithm successfully reconstructs conductivity distribution for Model-4

and for all contrast levels.

For the conductive case, the square’s conductivity increases when the contrast
level increases. But for resistive case the square’s conductivity decreases when
the contrast level increases. The square reconstruction error values according to

the change of the contrast level for both cases are shown in Figure 4.44.
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Figure 4.44: Error plots of the square for 10 different contrast levels.

As seen from Figure 4.44, if we increase the difference between square
conductivity value and background conductivity value, the error value of the
reconstructed square will increase. Especially for resistive case the error values
are very high for higher contrast levels. This means if the contrast is high, the
error will be high. For conductive case, this algorithm has better reconstruction

performance than resistive case for higher contrast levels.

In Figure 4.45, the plot of the real conductivity values and mean of the

reconstructed conductivity values of square for each contrast level can be seen.

These results show that Sensitivity Matrix algorithm successfully reconstruct
conductivity distributions for both cases. But the error values are high for high

conductivity value differences between square and background.
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Figure 4.45: Mean real conductivity and mean reconstructed conductivity versus
10 different contrast levels. (a) For conductive case. (b) For resistive case.

4.7.3.5 Results for Thorax Model

The model shown in Section 4.2.5 is used to test the performance of Sensitivity
matrix algorithm for noise-free and noisy data. The reconstructed conductivity
distributions are shown in Figure 4.46. The total reconstruction errors for noisy

and noise free case are shown in Table 4.19.

Table 4.19: Reconstructed error values for thorax model.

Noise-free SNR30 SNR20 SNRI13
case
€5 tora1 (70) 57.82 57.90 57.98 58.20
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Figure 4.46: Reconstruction by Sensitivity Matrix algorithm for Thorax Model.
(a) Real conductivity distribution. (b) Reconstructed conductivity distribution,
noise-free data. (c) Reconstructed conductivity distribution SNR 30. (d)
Reconstructed conductivity distribution SNR 20. (e) Reconstructed conductivity
distribution SNR 13.
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As seen from Figure 4.46, the reconstructed conductivity distributions for noisy
data are good as noise free data. The effect of noise to this algorithm is very

small.
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4.7.4 Reconstruction by Algebraic Reconstruction Algorithm

In this section, the reconstructed conductivity distributions of four different
models is examined and discussed by using the Algebraic Reconstruction

algorithm explained in chapter 3.

As explained in chapter 3, this iterative algorithm uses only the z component of
the magnetic flux density (B;), which is parallel to the main magnetic field. Same
as Harmonic B, algorithm, Algebraic Reconstruction algorithm uses Laplacian of
B.. Firstly, the B, is taken and Laplacian of B, is calculated. Then, the x-gradient
and y-gradient of the current density for uniform case are calculated. At the end,
the conductivity distribution can be calculated using the calculated logarithmic

resistivity values.

4.7.4.1 Results for Model- 1

As explained in Section 4.2.1, there are five different conductivity regions in the
imaging slice and there are two orthogonal current injection patterns. 20 mA

current is injected for both injection patterns.

The real conductivity distribution for model-1 is shown in Figure 4.47(a). The
reconstructed conductivity distributions after iteration 2 and after iteration 8 are
shown in Figure 4.47(b) and Figure 4.47(c). These results are taken for noise free

data.

After the iteration 2, the algorithm starts to be stable. This means after iteration 2
the change in the reconstructed conductivity distribution is very small. It is easily
seen from the total error figure which is shown in Figure 4.48(a). All regions’
error characteristics are shown in Figure 4.48. The reconstructed error values of

all regions, for iteration 2 are shown in Table 4.20.

As seen from Figure 4.47 and Figure 4.48, Algebraic Reconstruction algorithm

reconstructs conductivity successfully without added noise.
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Figure 4.47: Reconstruction by Algebraic Reconstruction algorithm for Model-1
(noise free data). (a) Real conductivity distribution for Model-1. (b)
Reconstructed conductivity distribution after iteration 2. (c¢) Reconstructed
conductivity distribution after iteration 8.

Table 4.20: Reconstructed error values after 2 iterations

go‘,mtal go',backgmund go‘,bigsquare go',bigcircle go‘,smallsquare go', smallcircle
(%) (%) (%) (%) (%) (%)
27.05 22.72 43.66 18.27 55.96 208.23
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Figure 4.48: Reconstructed conductivity errors by Algebraic Reconstruction
algorithm for Model-1 (noise free data). (a) Total error. (b) Background
error, Big Circle error, Big Square error. (c) Small Circle error, Small
Square error.
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As seen from Figure 4.48, the error values are very high after the first iteration.

But after iteration 2, the error values become stable near an error value.

Then this reconstruction algorithm tested with different noise levels, SNR 30,
SNR 20 and SNR 13. The total error plot comparison is shown in Figure 4.49.
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Figure 4.49: Comparison of reconstruction errors for Algebraic Reconstruction
algorithm, for different SNR values and no noise case, for Model-1.

In Figure 4.49 it is seen that if SNR equal to 30, the reconstruction error is very

near to error for noise free data.

The reconstructed conductivity distributions for noisy data and noise free data
are shown in Figure 4.50. As seen from Figure 4.50 the reconstructed
conductivity distribution are not good as noise free data. For lowest SNR values,
this result is expected. Because Algebraic Reconstruction algorithm uses
Laplacian of B;, which means twice differentiation of both B, and noise. For low
SNR values, there are some dominant conductive pixels in the reconstructed
conductivity distribution. According to these reasons it is seen that SNR must be
high to take good results. Also increasing the number of current injection
patterns and amount of current will give good reconstructed conductivity results

with low SNR values.
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Figure 4.50: Reconstruction by Algebraic Reconstruction algorithm for Model-1
(all images for iteration 2). (a) Real conductivity distribution for Model-1. (b)
Reconstructed conductivity distribution noise free data. (c) Reconstructed
conductivity distribution SNR 30. (d) Reconstructed conductivity distribution
SNR 20. (e) Reconstructed conductivity distribution SNR 13.
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4.7.4.2 Results for Model-2

As explained in Section 4.2.2, there are two square objects with different
conductivity values than background, in the imaging slice and there are two
orthogonal current injection patterns. 20 mA current is injected for both injection
patterns. There are two cases for this model. First one is conductive case. For
conductive case, the conductivities of squares are 2 S/m. The other case is
resistive case. For resistive case, the conductivities of squares are 0.02 S/m. Also
there are 10 different positions, which are shown in Table 4.21, used to test the
spatial resolution performance of Algebraic Reconstruction algorithm by

calculating the Full-Width-at-Half-Maximum (FWHM) values.

Table 4.21: Number of pixels in the gap, for different positions

Position 1 2 3 4 5 6 7 8 9 10

Number of pixelsinthegap 1 3 5 7 9 11 15 19 23 27

In Figure 4.51, the reconstructed conductivity distribution for both cases with
position-4 can be seen. These results are taken without added noise. Also for
each position, 2 iterations are used. Since, the algorithm becomes stable after pnd

iteration.

Also, the Point Spread Function for the middle row of the imaging slice for

position-1 is shown in Figure 4.52.

Calculated FWHM values according to change of gap between two squares for

all positions are shown in Figure 4.53.
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Figure 4.51: Reconstruction by Algebraic Reconstruction algorithm for Model-2,
position-4. (a) Real conductivity distribution for conductive case. (b)
Reconstructed conductivity distribution for conductive case. (c) Real
conductivity distribution for resistive case. (d) Reconstructed conductivity
distribution for resistive case.
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Figure 4.52: PSF for middle row of imaging slice by Algebraic Reconstruction
algorithm for Model-2, position-1. (a) For conductive case. (b) For resistive case.
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Figure 4.53: FWHM values according to change of gap between two squares for
all positions.

As seen from Figure 4.53, the reconstructed FWHM values are very close to the
pixel size especially for conductive case. As seen from Figure 4.52, for position-
1, the gap between two squares is 1 pixel. Only for position-1, two reconstructed
squares are merged for resistive case. The two square objects affect each other.
These results show that Algebraic Reconstruction algorithm successfully
reconstruct an object whose size is equal to one pixel size. It has a good spatial

resolution performance.

4.7.4.3 Results for Model-3

In Model-3, there are 9 small squares on the diagonal of the imaging slice. The
sizes of the squares are equal to the size of one pixel. To test the performance of
this algorithm, conductive and resistive cases, are used. Background conductivity
is 0.2 S/m. Conductive square conductivity is 2 S/m and the resistive square

conductivity is 0.02 S/m.

Reconstructed conductivity distributions for conductive case and resistive case

are shown in Figure 4.54.
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Figure 4.54: Reconstruction by Algebraic Reconstruction algorithm for Model-3,
(after iteration 2) (a) Real conductivity distribution for conductive case. (b)
Reconstructed conductivity distribution for conductive case. (c) Real
conductivity distribution for resistive case. (d) Reconstructed conductivity
distribution for resistive case.

As seen in Figure 4.54, the Algebraic Reconstruction algorithm successfully
reconstructs conductivity distribution for resistive case and conductive case. This
is an advantage for this algorithm. The effect of the one pixel sized square
objects to the around neighboring pixels are very small for conductive case and
resistive case. But the effect for resistive case is more than the effect for

conductive case.
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4.7.4.4 Results for Model-4

In Model-4, there is a square at the center of the imaging slice. The size of the
square is 2.25 cm x 2.25 cm. There are two different cases which are conductive
case and resistive case. For conductive case, the square is more conductive than
background. For resistive case, the square is more resistive than background.
Also there are 10 different contrast levels. This means, for each contrast level
square has different conductivity value. These are shown in Table 4.3 in the

Section 4.2.4.

For conductive case and resistive case, 2 iterations are used for all contrast

levels. The algorithm starts to converge at 2™ iteration.

For conductive case, the real conductivity distribution and the reconstructed

conductivity distribution for o = 0.4 S/m (contrast level-2) are shown in

square

Figure 4.55.

For resistive case, the real conductivity distribution and the reconstructed

conductivity distribution for o = 0.1 S/m (contrast level-2) are shown in

square —

Figure 4.56.
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Figure 4.55: Reconstruction by Algebraic Reconstruction algorithm for Model-4,
contrast level-2. (a) Real conductivity distribution for conductive case. (b)
Reconstructed conductivity distribution for conductive case (after iteration 2).
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Figure 4.56: Reconstruction by Algebraic Reconstruction algorithm for Model-4,
contrast level-2 (a) Real conductivity distribution for resistive case. (b)
Reconstructed conductivity distribution for resistive case (after iteration 2).

For the conductive case, the conductivity of square increases as the contrast level
increases. But for resistive case, the conductivity of square decreases when the

contrast level increases. The square error plots according to the change of the

contrast level for both cases are shown in Figure 4.57.

As seen from Figure 4.57, if we increase the difference between square
conductivity value and background conductivity value, the error value of the

reconstructed square will increase. This means if the contrast is increased, the

error will increase.
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Figure 4.57: Error plots of the square for 10 different contrast levels
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Also in Figure 4.58, the plot of the real conductivity values of square and mean

of the reconstructed conductivity values of square for each level can be seen.
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Figure 4.58: Mean real conductivity and mean reconstructed conductivity versus
10 different contrast levels. (a) For conductive case. (b) For resistive case.

These results show that Algebraic reconstruction algorithm successfully
reconstruct conductivity distributions for both cases. But the error values are high

for high conductivity value differences between square and background.

107



4.7.4.5 Results for Thorax Model

The model shown in Section 4.2.5 is used to test the performance of Algebraic
reconstruction matrix algorithm for noise-free and noisy data. The reconstructed

conductivity distributions are shown in Figure 4.59.
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Figure 4.59: Reconstruction by Algebraic reconstruction algorithm for Thorax
Model (all images are for iteration-4). (a) Real conductivity distribution. (b)
Reconstructed conductivity distribution, noise-free data. (c) Reconstructed
conductivity distribution SNR 30. (d) Reconstructed conductivity distribution
SNR 20. (e) Reconstructed conductivity distribution SNR 13.
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As seen from Figure 4.59, the reconstructed conductivity distributions for noisy
data are not good as noise free data. The low SNR value affects Algebraic
reconstruction algorithm. The total reconstruction errors for noisy cases and

noise free case are shown in Table 4.22.

Table 4.22: Reconstructed error values for thorax model.

Noise-free SNR30 SNR20 SNRI3
case
Eg 1ot () 74.31 74.66 88.76 167.58

4.8 Comparison of Four Magnetic Flux Density Based
Algorithms

In this section, four magnetic flux density based reconstruction algorithms are

compared under the same conditions for different computer models.

4.8.1 Noise-free data

For noise free data same conditions are used to test the performance of different
algorithms. All models use two orthogonal current injection patterns. 20 mA

current is injected for both injection patterns.

Three of the reconstruction algorithms are iterative algorithm. For this reason,
the iteration number, which makes system stable, is chosen to compare results for
each algorithm. For non-iterative reconstruction algorithm, only error values are

taken for comparison.

First of all, the performance of each algorithm is compared according to the
Model-1 explained in Section 4.2.1. The reconstructed conductivity distributions

of Model-1 for each algorithm are shown in Figure 4.60.
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Figure 4.60: Reconstructed conductivity distributions for Model-1 (noise free
data). (a) Real conductivity distribution for Model-1. (b) Reconstruction by
Harmonic B, after iteration 7. (c) Reconstruction by VGB, after iteration 9. (d)
Reconstruction by Sensitivity Matrix. (e) Reconstruction by Algebraic
Reconstruction after iteration 2.
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The reconstructed conductivity error for all regions of Model-1 is shown in Table

4.23.

Also the comparison of three iterative algorithms according to the total error

values and iteration numbers are shown in Figure 4.61.

Table 4.23: Reconstructed error values of all regions for noise free data

Harmonic B, VGB, Sensitivity Algebraic
Matrix | Reconstruction
(7 iteration) (9 iteration) (2 iteration)
Eo total (%) 33.83 42.44 31.39 27.05
go’,backgr()und
(%) 11.17 20.11 17.76 22.72
go’,bigxquare
(%) 23.05 30.82 33.73 43.66
go’,bigcircle
(%) 8.08 24.73 8.59 18.27
go‘,smallsquare
(%) 72.67 83.70 66.81 55.96
go‘,smallcircle
(%) 264.30 501.88 94.35 208.23

Table 4.22 shows that the Algebraic reconstruction algorithm gives the lowest
total error. But the total error value for Sensitivity Matrix algorithm is very close
to the Algebraic Reconstruction algorithm’s error value. All of the iterative
algorithms have high reconstruction errors for small object, which has small

conductivity value.

Also in Figure 4.60, it can be seen that, Sensitivity Matrix algorithm gives good
results. Harmonic B, algorithm and VGB, algorithm have blurring effects. The
Harmonic B, result seems good. If the conductivity image for Harmonic B,
algorithm is compared with the Sensitivity Matrix algorithm or Algebraic

Reconstruction algorithm, it can be seen that the edges of objects for Sensitivity
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Matrix algorithm and Algebraic reconstruction algorithm are sharper than

Harmonic B, image.

Figure 4.60 shows that there are artifacts at the corners of the reconstructed
conductivity distribution for VGB, algorithm. If we increase the size of the

electrode, we will reduce these artifacts on corners of image.
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Figure 4.61: Comparison of three iterative algorithms according to the total error
values and iteration numbers.

Figure 4.61 show that Algebraic Reconstruction algorithm has the lowest total
error values in three iterative reconstruction algorithms. If the number of iteration
increases, the reconstructed error values will decrease. Because this kind of
algorithms correct themselves at each iteration until they converge a point.
According to this, algorithms give good results for larger iteration numbers. But
iteration is the main disadvantage for this kind of algorithms. Iterative algorithms

need large computation times. For example, a non-iterative Sensitivity Matrix
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algorithm needs 822 seconds to reconstruct a conductivity distribution. An
iterative Harmonic B, algorithm needs 314 seconds for one iteration; this means
for 7 iterations it needs 7*314=2198 seconds to reconstruct a good conductivity

distribution.

The spatial resolution performances of all algorithms are tested with different
positions shown in Table 4.24. The spatial resolution performances of all
algorithms are tested by calculating the Full-Width-at-Half-Maximum (FWHM)

values.

Table 4.24: Number of pixels in the gap, for different positions

Position 1 2 3 4 5 6 7 8 9 10

Number of pixelsinthegap 1 3 5 7 9 11 15 19 23 27

Models used in simulation have a pixel size equal to 0.225 cm x 0.225 cm.
Model-2, which is explained in Section 4.2.2, is used to measure the FWHM
values. The calculated FWHM values for all reconstruction algorithms are shown

in Figure 4.62, for 10 different positions.

Figure 4.62 shows that FWHM values for Sensitivity Matrix algorithm and
Algebraic Reconstruction algorithm are very close to the pixel size. This means
spatial resolution performances of these two algorithms are better than the other
two reconstruction algorithms. The gap between two objects in Model-2 is equal
to one for position-1. Only for position-1, two square elements are merged. This
means two object affects each other for one pixel gap. But for other positions,

these effect is disappeared.

For resistive case and conductive case, the calculated FWHM values are

independent from the position of two square elements.
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Figure 4.62: Calculated FWHM according to the positions of two square
elements. (a) Conductive case. (b) Resistive case.

Model-4, explained in Section 4.2.4, is used to test the reconstruction
performance according to the change of the difference between background

conductivity and object conductivity.

In Figure 4.63, the comparison plot of the real conductivity values and mean of
the reconstructed conductivity values of square for each contrast level can be

seen.
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Figure 4.63: Comparison of mean real conductivity and mean reconstructed
conductivity versus 10 different contrast levels, for all reconstruction algorithms.
(a) For conductive case. (b) For resistive case.

For conductive case, Algebraic Reconstruction algorithm reconstructs near
conductivity values to the real conductivity values. For this reason, performance
of Algebraic Reconstruction algorithm for conductive case is better than other
reconstruction algorithms. But for resistive case, Harmonic B, algorithm

reconstructs similar conductivity values to the real conductivity values. For this
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reason, performance of Harmonic B, algorithm for resistive case is better than
other reconstruction algorithms. Also in Figure 4.63(b) it is seen that,
performance of Sensitivity Matrix is very near to the Harmonic B, performance.
If we increase the difference between square conductivity value and background
conductivity value, the error value of the reconstructed square will increase. This
means if the contrast is high, the error of the reconstructed conductivity values
will be high.

The reconstructed conductivity distributions of Thorax Model for each algorithm

are shown in Figure 4.64.

Figure 4.64: Reconstructed conductivity distributions for Thorax Model (noise
free data). (a) By Harmonic B, after iteration 2. (b) By VGB, after iteration 3. (c)
By Sensitivity Matrix. (d) By Algebraic Reconstruction after iteration 4.

For Thorax model, Sensitivity matrix algorithm has the best performance.

Reconstructed conductivity image by VGB, has blurring effect. Also the effect of
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line integral can be seen from Figure 4.64(a). All reconstruction algorithms could
not reconstruct spinal cord which has high conductivity value. There is bone
around the spinal cord. The conductivity of bone is very small. So the current can
not flow inside the spinal cord. And the reconstruction algorithms can not

reconstruct this region.

4.8.2 Noisy data

For noisy data, same conditions are used to test the performance of different
algorithms. All models use two orthogonal current injection patterns. 20 mA
current is injected for both injection patterns. SNR is chosen as 30 to test the

performance of four reconstruction algorithms.

Three of the reconstruction algorithms are iterative algorithm. For this reason,
the iteration number, which makes system stable, is chosen to compare results for
each algorithm. For non-iterative reconstruction algorithm only error values are

taken for comparison.

First of all, the performance of each algorithm is compared according to the
Model-1 explained in Section 4.2.1. The reconstructed conductivity distributions

of Model-1 for each algorithm are shown in Figure 4.65.

The reconstructed conductivity error for all regions of Model-1 is shown in Table

4.25.
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Figure 4.65: Reconstructed conductivity distributions for Model-1 (SNR 30). (a)
Real conductivity distribution for Model-1. (b) Reconstruction by Harmonic B,
after iteration 7. (c) Reconstruction by VGB, after iteration 9. (d) Reconstruction
by Sensitivity Matrix. (e) Reconstruction by Algebraic Reconstruction after
iteration 2.
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Table 4.25: Reconstructed error values of all regions for noisy data

Harmonic B, VGB, Sensitivity Algebraic
Matrix .
Reconstruction
(7 iteration) (9 iteration) (2 iteration)
€5 total (%) 192.19 42.67 32.41 33.14
go‘,hackgmund
(%) 245.58 20.99 20.57 29.59
go‘,higsquare
(%) 445.13 31.09 37.92 52.86
go’,bi gcircle
(%) 103.56 24.73 9.78 21.44
go’,xmallxquare
(%) 51.44 83.75 66.62 55.19
go’,xmallcircle
(%) 2744.00 504.20 94.30 210.32

As shown in Figure 4.65 and Table 4.25, the reconstructed conductivity
distribution are not good as noise free data. Especially Harmonic B, algorithm is
very sensitive to the noise. For noisy data, the performance of Harmonic B,
algorithm is poor because of the twice differentiation of noisy B, data. Signal-to-

noise ratio must be high to take good results.

The reconstruction algorithm which gives third lowest error is Variational
Gradient B, algorithm. Because VGB, algorithm uses only one differentiation of
B.. So it works successfully for noisy data. But there is a blurring effect on

VGB,, reconstruction image.

According to the Table 4.25, Sensitivity Matrix algorithm’s total reconstruction

error value is the lowest error. The effect of noise is very low for this algorithm.
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Also, Algebraic reconstruction algorithms’ error value is very near to Sensitivity
Matrix error value. These two algorithms are not sensitive as Harmonic B,
algorithm. As seen from Figure 4.65, the edges of objects for Sensitivity Matrix
and Algebraic Reconstruction algorithms are sharper than the other two

algorithms’ reconstructed images.

The reconstructed conductivity distributions of Thorax Model for each algorithm

are shown in Figure 4.66.

(a)
(©)

Figure 4.66: Reconstructed conductivity distributions for Thorax Model
(SNR30). (a) By Harmonic B, after iteration 2. (b) By VGB, after iteration 3. (c)
By Sensitivity Matrix. (d) By Algebraic Reconstruction after iteration 4.

0.5

0.4

(b)

(d)

Sensitivity matrix algorithm has the best reconstruction performance for noisy
data. The number of current patterns or the size of the electrode can be increased

to improve results for noisy data.
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4.9 Experimental Results for Magnetic Flux Density Based
Reconstruction Algorithms

In this section, the measured B, data taken from 0.15 Tesla METU MRI system
are shown. Four magnetic flux density based reconstruction algorithm are tested

with the measured experimental data.

For experimental data, the phantom, which is explained in Section 4.3, was used.

Only z component of B was measured. Because, the reconstruction algorithms

explained in this study use only one component of magnetic flux density.

The following steps were used to extract magnetic flux density from an MRI

image.

1. First, for vertical current injection pattern, the phase image of slice was

taken with positive current.

2. For vertical current injection pattern, the phase image of slice was taken

with negative current.

3. For horizontal current injection pattern, the phase image of slice was

taken with positive current.

4. For horizontal current injection pattern, the phase image of slice was

taken with negative current.

5. To produce B, data for vertical current, the phase image of vertical
current injection pattern with negative current was subtracted from the

phase image of positive current case.

6. To produce B; data for horizontal case, the phase image of horizontal
current injection pattern with negative current was subtracted from the

phase image of positive current case.

7. The target regions of these images were taken by masking the undesired

regions.
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8. [Each subtracted images were divided by gyromagnetic ratio ( ), current
applied time per excitation (7). Finally we produce z component of

magnetic flux density.

The measured B; data for vertical current injection pattern and horizontal current

injection pattern are shown in Figure 4.67.

w107 w107
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0.5 0.5
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(a) (b)

Figure 4.67: Experimental B, data. (a) For vertical current injection pattern.
(b) For horizontal current injection pattern.

As explained in Section 4.3, the experimental phantom has three regions which
have different conductivity values. There is a square object which is more
resistive than background and there is a circle object which is more conductive

than background.

For reconstruction of conductivity distribution from the experimental data, two
methods were used during the matrix inversion in Sensitivity Matrix algorithm.
The first one is Singular Value Decomposition (SVD), the other one is Least
Square Method (LLSM) [25]. The true conductivity distribution and reconstructed
conductivity distributions by Sensitivity Matrix algorithm are shown in Figure
4.68.
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Figure 4.68: Reconstructed conductivity distributions for experimental phantom.
(a) True conductivity distribution. (b) Reconstruction by Sensitivity Matrix
algorithm with SVD. (c¢) Reconstruction by Sensitivity Matrix algorithm with

LSM. (The unit of conductivity is S.m™)

The Sensitivity Matrix reconstruction algorithm successfully reconstructs
conductivity distribution for experimental data.

reconstructed conductivity distribution for Sensitivity Matrix reconstruction

algorithm are shown in Table 4.26.

Table 4.26: Error values of regions for Sensitivity Matrix algorithm

Sensitivity Matrix Sensitivity Matrix
(by SVD) (by LSM)
Eo soral (70) 32.94 33.57
€5 packground (70) 14.83 15.67
Eo square (70) 65.27 67.19
Eg circte (%) 47.29 47.78
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As seen from Table 4.26, the total error value of experimental data with SVD is
very close to the total error value of experimental data with LSM. The
background conductivity distribution can be reconstructed with less error value

than the other regions.

The reconstructed conductivity distributions with Harmonic Bz reconstruction
algorithm, VGBz reconstruction algorithm and Algebraic reconstruction

algorithm are shown in Figure 4.69.

The reconstructed conductivity distributions after iteration 1 and after iteration 4

are shown in Figure 4.69.

As seen in Figure 4.69, the Harmonic B, reconstruction algorithm could not
reconstruct conductivity distribution for experimental data. Harmonic B,
reconstruction algorithm is very sensitive to noise. The SNR is equal to 13 [24]
for 0.15 Tesla METU MRI system. Also this algorithm use Laplacian of B, and
line integral during reconstruction. For this reason, the reconstruction by

Harmonic B, algorithm is not successful for this system.

The phantom used in experiments uses electrodes with small sizes. VGB,
reconstruction algorithm could not reconstruct the conductivity distribution for
experimental data. Because of the poor performance of VGBz algorithm for
small sized electrodes. Also Algebraic reconstruction algorithm could not
reconstruct conductivity distribution for experimental data. Since, the SNR value

of the system is low.
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Figure 4.69: Reconstructed conductivity distributions for experimental phantom.
(a) By Harmonic Bz, 1 iteration. (b) By Harmonic Bz, 4 iteration. (c) By VGBz,
1 iteration. (d) By VGBz, 4 iteration. (e) By Algebraic reconstruction, 1 iteration.

(f) By Algebraic reconstruction, 4 iteration.
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Then the conductivity values of the elements in experimental phantom are
changed. The same conductivity value is used for background which is equal to
0.2 S/m. The conductivity value of circle object is increased to 1.9 S/m. And an
insulator square object is used. With these changes, we increase the contrast

between background and objects which are placed in background.

For new experimental phantom, the measured B, data for vertical current

injection pattern and horizontal current injection pattern are shown in Figure

4.70.
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Figure 4.70: Experimental B, data. (a) For vertical current injection pattern.
(b) For horizontal current injection pattern.

For reconstruction of conductivity distribution from the new experimental data,
SVD and LSM methods were used during the matrix inversion in Sensitivity
Matrix algorithm. The true conductivity distribution and reconstructed
conductivity distributions by Sensitivity Matrix algorithm are shown in Figure
4.71.

The error values for reconstructed conductivity distribution for Sensitivity Matrix

reconstruction algorithm are shown in Table 4.27.
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Figure 4.71: Reconstructed conductivity distributions for experimental phantom.
(a) True conductivity distribution. (b) Reconstruction by Sensitivity Matrix
algorithm with SVD. (c¢) Reconstruction by Sensitivity Matrix algorithm with
LSM. (The unit of conductivity is S.m™)

Table 4.27: Error values of regions for Sensitivity Matrix algorithm

Sensitivity Matrix Sensitivity Matrix
(by SVD) (by LSM)
€5 torar (70) 80.60 81.00
€5 packground (70) 39.18 58.23
Eq square (70) 392.57 391.13
Eg circte (70) 82.22 54.39

As seen from Table 4.27, the total error value of experimental data with SVD is
very close to the total error value of experimental data with LSM. As seen from

Figure 4.71, Sensitivity Matrix reconstruction algorithm successfully

reconstructs conductivity distribution for experimental phantom which has

elements with high conductivity differences.
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The reconstructed conductivity distributions with Harmonic Bz reconstruction
algorithm, VGBz reconstruction algorithm and Algebraic reconstruction
algorithm are shown in Figure 4.72.

(e) ®

Figure 4.72: Reconstructed conductivity distributions for experimental phantom.
(a) By Harmonic Bz, 1 iteration. (b) By Harmonic Bz, 4 iteration. (c) By VGBz,
1 iteration. (d) By VGBz, 4 iteration. () By Algebraic reconstruction, 1 iteration.
(f) By Algebraic reconstruction, 4 iteration.

128



As seen in Figure 4.72, the Harmonic B, reconstruction algorithm could not
reconstruct conductivity distribution for experimental data. Harmonic B,
reconstruction algorithm is very sensitive to noise. Since, this algorithm uses

twice differentiation of noisy B; data and line integral.

For VGBz reconstruction algorithm and Algebraic reconstruction algorithm, the

total reconstruction errors of all regions are shown in Table 4.28.

Table 4.28: Error values of all regions for VGBz algorithm and Algebraic
reconstruction algorithm

VGBz Algebraic
After 1 After 4 After 1 After 4
iteration iteration iteration iteration
Eg 1ot (%) 96.20 100.14 19141 102.96
g packground (70) 85.01 237.99 646.83 231.38
E square (%) 6.25 33.14 1354.2 641.38
Egcircle (%0) 459.74 409.30 397.46 385.33

As seen from Figure 4.72 and Table 4.28, reconstruction performance of
Algebraic reconstruction algorithm and VGBz algorihm is very poor for
experimental data. The phantom used in experiments uses electrodes with small
sizes. Because of the small sized electrodes, VGB, reconstruction algorithm
could not reconstruct good conductivity distribution for experimental data.
Especially at the corner of the image there are artifacts. These artifacts spread
into the image at iterations. Also Algebraic reconstruction algorithm’s
reconstruction performance is not satisfactory. In this algorithm twice
differentiation of noisy B; is used during reconstruction. For low SNR values, the

effect of noise on Algebraic reconstruction algorithm is very high.
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4.10 Comparison of Simulation and Experimental Results

In this section, reconstructed conductivity distributions are shown for simulated

and experimental data.

As explained in Section 4.9, two phantoms are used during experiments. Each
phantom has different conductivity regions. The conductivity values for each

phantom are shown in Table 4.29.

Table 4.29: Experimental phantoms’ conductivity values

Region Object Conductivity values (S/m)
Phantom-1 Phantom-2
1 Background 0.2 0.2
2 Square 0.1 Insulator
3 Circle 04 1.9

The reconstructed conductivity distributions of simulated data and experimental

data for Phantom-1 are shown in Figure 4.73.

Birgiil er al [24] shows that the system SNR for 0.15 T METU MRI scanner is
equal to 13. A random Gaussian noise, which is explained in Section 4.4, is used
for simulations. Several random noise distributions with SNR 13 are produced
and the noise distribution, which gives the best reconstructed conductivity

distribution, is used for simulated data.

For Phantom-2, the reconstructed conductivity distributions of simulated data

and experimental data are shown in Figure 4.74.
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Figure 4.73: Reconstructed conductivity distributions for Phantom-1 (after 4
iterations). (a) Experimental, Harmonic Bz. (b) Simulation, Harmonic Bz. (c)
Experimental, VGBz. (d) Simulation, VGBz. (e) Experimental, Sensitivity. (f)
Simulation, Sensitivity. (g) Experimental, Algebraic. (h) Simulation, Algebraic.
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Figure 4.74: Reconstructed conductivity distributions for Phantom-2 (after 4
iterations). (a) Experimental, Harmonic Bz. (b) Simulation, Harmonic Bz. (c)
Experimental, VGBz. (d) Simulation, VGBz. (e) Experimental, Sensitivity. (f)
Simulation, Sensitivity. (g) Experimental, Algebraic. (h) Simulation, Algebraic.
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As seen in Figure 4.73 and Figure 4.74, the Harmonic B, reconstruction
algorithm could not reconstruct conductivity distribution for experimental data.
Also the performance of Harmonic B, reconstruction algorithm is very poor for
simulated data. Harmonic B, reconstruction algorithm is very sensitive to noise.

Since, this algorithm uses line integral and twice differentiation of noisy B; data.

Reconstruction performance of Algebraic reconstruction algorithm and VGB,
reconstruction algorithm is very poor for experimental data. The phantoms used
in experiments use electrodes with small sizes. Because of the small sized
electrodes, VGB, reconstruction algorithm could not reconstruct good
conductivity distribution for experimental data. For simulated data, the effect of
electrode size can be seen in Figure 4.73(d) and Figure 4.74(d). Especially at the
corner of the image there are artifacts. These artifacts spread into the image at
iterations. Also, Algebraic reconstruction algorithm’s reconstruction performance
is not satisfactory. In this algorithm, twice differentiation of noisy B; is used
during reconstruction. For SNR 13, the effect of noise on Algebraic

reconstruction algorithm is very high.

The Sensitivity Matrix reconstruction algorithm successfully reconstructs
conductivity distributions for experimental data. Sensitivity Matrix algorithm has
good reconstruction performance for experimental phantom-2 which has
elements with high conductivity differences. For simulated data, the performance

of this algorithm is satisfactory for two phantoms.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

MREIT reconstructs images of electrical conductivity distribution based on
magnetic flux density (B) measurements. This magnetic flux density is

generated by an externally applied current on the object. And generated B is
measured by MRI scanner. There are several methods to reconstruct conductivity
distribution. MREIT reconstruction algorithms are classified into two groups.

The first group use current density distributions. To produce current density

distribution, three components of B are used. For this purpose, object must be
rotated inside the MRI scanner. These kinds of reconstruction algorithms are

called J-based reconstruction algorithms. On the other hand, the second group

reconstruction algorithms use only one component of B, which is parallel to

main magnetic field of MRI system. These kinds of reconstruction algorithms are

called B-based reconstruction algorithms. Using only one component of B,

eliminates the object rotation inside MRI scanner.

In this thesis, four magnetic flux density based MREIT reconstruction algorithms
were examined. The examined algorithms are: Harmonic B, reconstruction
algorithm, Variational Gradient B, (VGB,) reconstruction algorithm, Sensitivity
Matrix reconstruction algorithm and Algebraic reconstruction algorithm. These

reconstruction algorithms were proposed by several research groups.

To test the performance of reconstruction algorithms, different cases were used.
Algorithms were tested with noise-free data, SNR 30 data, SNR 20 data and SNR

13 data. Also different models were used. Four different computer models and
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one experimental phantom were used. For each model four electrodes were used
to inject two different and orthogonal current. Reconstructed conductivity
images, reconstruction errors and spatial resolutions were compared for four

different reconstruction algorithms.

First, the algorithms are compared for noise free data. All reconstruction
algorithms successfully reconstruct conductivity distributions for noise free data.
Algebraic reconstruction algorithm gives the lowest total error which is equal to
27.05 %. Also, the total error values for Sensitivity Matrix algorithm and
Harmonic B, algorithm are very close to each other. The total error values are
31.39 % and 33.83 %, respectively. As said before, three of the reconstruction
algorithms are iterative algorithms, Harmonic Bz, VGB, and Algebraic
reconstruction. All of the iterative algorithms have high reconstruction errors for
small object, which has small conductivity value. Harmonic B, algorithm and
VGB, algorithm have blurring effects. The Harmonic B, result seems good. If the
conductivity image for Harmonic B, algorithm is compared with the Sensitivity
Matrix algorithm or Algebraic Reconstruction algorithm, it can be seen that the
edges of objects for Sensitivity Matrix algorithm and Algebraic reconstruction
algorithm are sharper than Harmonic B, image. For VGB, reconstruction
algorithm, the reconstructed conductivity distribution at the corners of the
imaging slice is not good as the reconstructed conductivity distribution at the
other areas. This is a result of the differentiation of B; along x and y directions.
Especially at the edges of electrodes, differentiation can affect the reconstructed
conductivity distribution. This artifact starts from electrode edges and goes to the
corners of image. If we increase the size of the electrode, we will reduce this

artifact on corners of image.

For iterative algorithms, if the number of iteration increases, the reconstructed
error values will decrease. Because this kind of algorithms correct themselves at
each iteration until they converge a point. For this reason, algorithms give good
results for larger iteration numbers. Because of the large computation time,
iteration sometimes is a disadvantage. For example a non-iterative, Sensitivity
Matrix algorithm needs 822 seconds to reconstruct a conductivity distribution.

An iterative Harmonic B, algorithm needs 314 seconds for one iteration; this
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means for 7 iterations it needs 7*314=2198 seconds to reconstruct a good

conductivity distribution.

The spatial resolution performances of all algorithms are tested by calculating the
Full-Width-at-Half-Maximum (FWHM) values. The calculated FWHM values
are very near to one pixel size for Algebraic reconstruction algorithm. Also
Sensitivity Matrix reconstruction algorithm has similar results with Algebraic

reconstruction algorithm.

To test the noise performance of reconstruction algorithms, SNR 30, SNR 20 and
SNR 13 are used. The reconstructed conductivity distributions are not good as
noise free data. Especially Harmonic B, algorithm is very sensitive to the noise.
For noisy data, the performance of Harmonic B, algorithm is poor because of the
twice differentiation of noisy B, data. Signal-to-noise ratio must be high to take
good results. Sensitivity Matrix algorithms’ total reconstruction error value is the
lowest error. It is equal to 32.41 %. The effect of noise is very low for this
algorithm. Also Algebraic reconstruction algorithms’ error value is very near to
Sensitivity Matrix error value. The total error is 33.14 %. These two algorithms

are not sensitive as Harmonic B, algorithm.

The reconstruction algorithm, which gives third lowest error, is the Variational
Gradient B, algorithm. Because VGB, algorithm uses only one differentiation of
B.. So it works successfully for noisy data. But there is a blurring effect on

VGB, reconstruction image.

The number of current patterns, amount of injected current and the size of the

electrode can be increased to improve results for noisy data.

The performance of four magnetic flux density based reconstruction algorithms
can be compared from performance chart which is shown in Figure 5.1. The

related parameters for this performance chart are shown in Table 5.1.
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Figure 5.1: Performance chart for four B-based reconstruction algorithms.

Table 5.1: The parameters used for performance chart

Harmonic VGBz Sensitivity | Algebraic
Bz Matrix
Eg 10t (%0) (No noise) 33.83 42.44 31.39 27.05
Eg 1011 (%0) (SNR 30) 192.19 42.67 32.41 33.14
Eg 1011 (%) (SNR 13) 463.33 47.75 35.93 63.71
Reconstruction Time 36.67 47.60 13.70 15.00
(minute)
Reconstructed Image 2 4 1 3
Quality

In Figure 5.1, the algorithm, which is placed outer part of the performance chart,

has the better reconstruction performance. The algorithm, which is placed near to

the origin of the performance chart, has the worse reconstruction performance.
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So Sensitivity Matrix reconstruction algorithm is the best reconstruction

algorithm in four B-based MREIT reconstruction algorithms.

5.2 Future work

In this thesis study, four magnetic flux density reconstruction algorithms are
explained, implemented and tested with different models and conditions. Some

of the possible future work can be:

1) Testing these reconstruction algorithms with more experimental
data.
ii) Improve the noise performance of these reconstruction algorithms,

by this way small amount of currents can be injected to object.
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