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ABSTRACT 

PERFORMANCE EVALUATION OF MAGNETIC FLUX DENSITY BASED 
MAGNETIC RESONANCE ELECTRICAL IMPEDANCE TOMOGRAPHY 

RECONSTRUCTION ALGORITHMS 

 

 

Eker, Gökhan 

MSc., Department of Electrical and Electronics Engineering 

Supervisor: Prof. Dr. B. Murat Eyüboğlu 

September 2009, 141 pages 

 

Magnetic Resonance Electrical Impedance Tomography (MREIT) reconstructs 

images of electrical conductivity distribution based on magnetic flux density ( B
�

) 

measurements. Magnetic flux density is generated by an externally applied 

current on the object and measured by a Magnetic Resonance Imaging (MRI) 

scanner. With the measured data and peripheral voltage measurements, the 

conductivity distribution of the object can be reconstructed. There are two types 

of reconstruction algorithms. First type uses current density distributions to 

reconstruct conductivity distribution. Object must be rotated in MRI scanner to 

measure three components of magnetic flux density. These types of algorithms 

are called J-based reconstruction algorithms. The second type of reconstruction 

algorithms uses only one component of magnetic flux density which is parallel to 

the main magnetic field of MRI scanner. This eliminates the need of subject 

rotation.  These types of algorithms are called B-based reconstruction algorithms. 
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In this study four of the B-based reconstruction algorithms, proposed by several 

research groups, are examined. The algorithms are tested by different computer 

models for noise-free and noisy data. For noise-free data, the algorithms work 

successfully. System SNR 30, 20 and 13 are used for noisy data. For noisy data 

the performance of algorithm is not as satisfactory as noise-free data. Twice 

differentiation of z component of B
�

 (Bz) is used for two of the algorithms. These 

algorithms are very sensitive to noise. One of the algorithms uses only one 

differentiation of Bz so it is immune to noise. The other algorithm uses sensitivity 

matrix to reconstruct conductivity distribution. 

 

 

Keywords: electrical impedance tomography, magnetic resonance imaging, 

conductivity reconstruction, B based reconstruction algorithms. 
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ÖZ 

MANYETĐK AKI YOĞUNLUĞU TABANLI MANYETĐK REZONANS 
ELEKTRĐKSEL EMPEDANS TOMOGRAFĐSĐ GERĐÇATIM 

ALGORĐTMALARININ PERFORMANS DEĞERLENDĐRMESĐ 

 

Eker, Gökhan 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. B. Murat Eyüboğlu 

Eylül 2009, 141 sayfa 

 

Manyetik Rezonans Elektrik Empedans Tomografisi (MREET), bir elektriksel 

iletkenlik dağılımı görüntüsünü manyetik akı yoğunluğu ( B
�

) ölçümlerine dayalı 

olarak geri çatmaktadır. Bir objeye dışarıdan akım uygulandığında bir manyetik 

akı yoğunluğu meydana gelmekte ve bu manyetik akı yoğunluğu Manyetik 

Rezonans Görüntüleme (MRG) tarayıcısıyla ölçülmektedir. Bir cismin içindeki 

iletkenlik dağılımı, ölçülen data ve dış kısımdan yapılan voltaj ölçümleri ile geri 

çatılabilmektedir. Đki çeşit geriçatım algoritması bulunmaktadır. Birinci çeşit, 

iletkenlik dağılımını geri çatmak için akım yoğunluğu dağılımını kullanmaktadır. 

Bu çeşitte cisim, manyetik akı yoğunluğunun üç bileşenini ölçmek için MRG 

tarayıcısı içinde döndürülmektedir. Bu çeşit algoritmalara J-tabanlı geriçatım 

algoritmaları denir. Đkinci çeşit geriçatım algoritmaları, manyetik akı 

yoğunluğunun MRG tarayıcısının ana manyetik alanı ile paralel olan bileşenini 

kullanır. Bu cismin döndürülmesi gereksinimini devre dışı bırakmaktadır. Bu 

çeşit algoritmalara B-tabanlı geriçatım algoritmaları denir. Bu çalışmada değişik 

araştırma gurupları tarafından önerilen dört B-tabanlı geriçatım algoritması 



 vii 

incelenmiştir. Algoritmalar gürültüsüz ve gürültülü durum için değişik bilgisayar 

modelleriyle test edilmiştir. Gürültüsüz durumda algoritmalar başarıyla 

çalışmaktadır. Gürültülü durum için sistem SNR’ı 30, 20 ve 13 olarak kabul 

edilmiştir. Algoritmaların gürültülü durum performansları gürültüsüz durum 

performansları kadar başarılı değildir. Đki algoritmada B
�

’nin z bileşeninin (Bz) 

iki kez türevi kullanılmıştır. Bu algoritmalar gürültüye duyarlıdır. Bir 

algoritmanın bir kez türev kullanması, algoritmanın gürültüye karşı bağışıklık 

kazanmasını sağlamıştır. Diğer algoritma ise iletkenlik dağılımını geri çatmak 

için duyarlılık matrisi kullanmaktadır. 

 

Anahtar Kelimeler: elektriksel empedans tomografisi, manyetik rezonans 

görüntüleme, iletkenlik geri çatma, B tabanlı geriçatım algoritmaları.  
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CHAPTER 1 

INTRODUCTION 

The electrical conductivity imaging is one of the topics of researches on imaging. 

The biological tissues have different conductivity values according to their types. 

Their conductivity values change with the physiological and pathological states 

of the tissues. Some tissues have anisotropic conductivity. But in this thesis used 

conductivity values are isotropic. 

Different methods are used to measure the electrical conductivity of tissues 

inside the body. Some methods are invasive methods. The tissue must be placed 

between two plate electrodes [1]. These methods are difficult methods in 

practice. For this reason a non-invasive measurement method is developed by 

Henderson and Webster in 1978 [2]. Electrical Impedance Tomography (EIT) is 

used to reconstruct cross-sectional conductivity images. In 1984, Barber and 

Brown [3] gave the information to use this method in medical areas. EIT is based 

on potential measurements [1]. Electrodes are attached on the surface of body 

and current is applied to these electrodes. Some methods use coil to induce a 

current distribution inside the body [4].  According to the applied current, a 

current distribution occurs inside the body. Peripheral voltage measurements are 

used. These measurements are taken from the surface electrodes, for different 

combinations of electrodes. The conductivity distribution of tissues inside the 

body is found with these different voltage measurements. But the measured data 

can be affected by the electrode positions and geometry of object [5]. Also EIT 

reconstructs conductivity image with relatively low spatial resolution and 

accuracy [1]. This is a disadvantage for EIT. To solve these problems and 

reconstruct good conductivity images Magnetic Resonance Imaging (MRI) is 
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used with EIT. With an MRI system, magnetic flux density distribution in the 

imaging region can be measured easily. For this purpose a new imaging modality 

to measure current densities by MRI is developed [6]. This technique is called 

Magnetic Resonance-Current Density Imaging (MR-CDI). 

1.1 A Summary of MREIT Studies 

A new imaging method which is called Magnetic Resonance Electrical 

Impedance Tomography (MREIT) is explained by Zhang in 1992 [7]. This new 

method uses conventional voltage measurements and magnetic flux densities to 

produce conductivity distribution of an object. It has a high sensitivity to the 

conductivity distribution and also it provides good spatial resolution. An external 

current is applied to the object by less number of electrodes than EIT. This 

externally applied current produces a current density distribution, J
�

, inside the 

object and generates a magnetic flux density distribution, B
�

, which can be 

measured by a MRI scanner. Conductivity distribution of an object can be easily 

calculated using B
�

, J
�

 and measured boundary voltages.  

Some method, used in MREIT, use J
�

 to reconstruct conductivity distribution. 

To determine J
�

, the x, y and z component of magnetic flux density is used. For 

this purpose, the object must be rotated in MRI scanner. Ider et al [8] used 

integration along the Equipotential lines and Cartesian grid lines. In 2002 Kwon 

et al [9] used an algorithm which is called J-substitution algorithm. Özdemir et al 

[10] explained the Equipotential projection based MREIT and made same 

experiments. In 2009 Boyacıoğlu and Eyüboğlu [11] used a hybrid algorithm, 

which uses J-substitution and filtered Equipotential projection. 

Other methods use only one component of B
�

 to reconstruct a conductivity 

distribution. The component of B
�

 is chosen with the same direction of main 

magnetic field of MRI system. It is always in z direction. By this way the need of 

object rotation inside a MRI scanner is eliminated. In 1998, Ider and Birgül [12] 

proposed a method which uses sensitivity matrix. A sensitivity matrix is 

calculated according to the change of each element’s conductivity value. Birgül 
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et al [13] made experimental studies and they used sensitivity matrix relation 

between conductivity and z component of B
�

, Bz. In 2003, Seo et al [14] 

proposed a new reconstruction algorithm which is based on the measurement of 

Bz. In 2003, Oh et al [15] improved the technique explained by Seo [14]. The 

name of this technique is Harmonic Bz reconstruction algorithm. They used the 

relation between Laplacian of Bz and derivatives of conductivity. Their algorithm 

worked successfully for noise free data. But for noisy data the algorithm did not 

work successfully for low Signal-to-Noise Ratio (SNR) because of twice 

differentiation of noisy Bz data. For this reason, Park et al [16] developed a new 

algorithm called Variational Gradient Bz algorithm to improve the noise 

performance. They differentiated Bz data only once. By this way, they 

differentiated noise only once. The errors near the boundaries spread over the 

inner parts of object in Variational Gradient Bz algorithm. In order to deal with 

this problem, Kwon et al [17] proposed enhanced version of the previous 

algorithm. The boundary information was effectively used in this new algorithm. 

Also in 2004, Ider and Onart [18] proposed a new algorithm which uses Bz. In 

this algorithm non-linear matrix equations were used to reconstruct resistivity. At 

least two current injection patterns were necessary. In 2008, Jeon et al [19] 

proposed an algorithm which is called local Harmonic Bz algorithm. The 

algorithm deals with the defects caused by problematic regions of object. They 

used segmentation method to extract problematic regions. Huixian et al [20] 

explained an algorithm which uses only Bz. The conductivity distribution of 

object at oblique slice can be imaged with their algorithms. 

All B-based reconstruction algorithms explained above use only one component 

of B
�

 that eliminates the object rotation in MRI scanner. 
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1.2 Objectives of the Thesis 

Several studies are made to measure the conductivity distribution of a region 

inside the body or object. MREIT is one of the best methods to take these 

measurements. Different research groups use different reconstruction algorithms 

to produce a conductivity image. Each research group use different methods, 

different models and different currents. Some groups use three components of B
�

 

to calculate J
�

. But the other groups use only one component of B
�

. By this way, 

they eliminate object rotation inside MRI scanner. These kinds of methods are 

called B-based reconstruction algorithms. 

The objectives of this thesis are: 

• To classify the magnetic flux density based reconstruction algorithms. 

• To examine how magnetic flux density based reconstruction algorithms 

work. 

• To implement some of the magnetic flux density based reconstruction 

algorithms. 

• To compare the implemented algorithms for different conditions. 

• To take experimental data for testing each algorithm. 

In this thesis, four different B-based reconstruction algorithms are studied. First 

the Harmonic Bz algorithm [15], which uses the relation between Laplacian of Bz 

and derivative of conductivity distribution, is examined. The second algorithm is 

Variational Gradient Bz algorithm [16]. The difference of this algorithm from the 

previous algorithm is the one Bz differentiation. Then Sensitivity matrix 

algorithm [12] is examined. The calculated sensitivity matrix is used to 

reconstruct conductivity distribution for this algorithm. The last algorithm is 

Algebraic reconstruction algorithm [18]. In this algorithm, matrix equations were 

used to reconstruct resistivity. 
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1.3 Organization of the Thesis 

In Chapter 2, the forward and inverse problems in MR-EIT are explained and 

formulated. The formulas which are used for extracting magnetic flux density 

from an image, taken from an MRI scanner, are explained. Also the methods 

used in reconstruction are classified. In Chapter 3, the magnetic flux density 

based reconstruction algorithms, which are used in this thesis, are explained and 

formulations for these reconstruction algorithms are derived. In Chapter 4, four 

computer models, which are used to test the performance of each algorithm, are 

explained. Also experimental phantom, used to take experimental data, is 

explained. The results taken from reconstruction algorithms and comparison for 

these algorithms are given. The experimental results are also given in this 

chapter. Finally in Chapter 5, a brief summary, conclusions and future work are 

given. 
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CHAPTER 2 

THEORY 

2.1 Introduction 

In this chapter, the forward problem for MREIT is explained in the first section. 

The forward problem solutions are the important parts of the iterative algorithms. 

The reconstructed conductivity distributions are used as an input for forward 

problem during the iterations. For this reason the formulations for MREIT 

forward problem are shown. The Finite Element Method (FEM) is explained 

briefly. Since, the usage of elements in object is important to produce good 

results.  Then the procedure to extract magnetic flux density distribution from an 

MRI data is explained. In the next section, the inverse problem and formulations 

used for inverse problem are explained. The conductivity distribution in the 

object is obtained by the inverse problem. Finally, the types of MREIT 

reconstruction algorithms are given. 

 

2.2 The Forward Problem of MREIT 

In MREIT the generated magnetic flux density is used to produce the 

conductivity distribution inside the object. Surface electrodes are used to inject 

current. According to the injected current, current density appears inside the 

object. But this current density can not be measured directly with MRI scanner. 

The magnetic flux density induced by the injected current is used since; magnetic 

flux density is the only parameter that can be measured by MRI scanner. The 

forward problem solutions are the important parts of the iterative algorithms. The 



 7 

reconstructed conductivity distributions are used as an input for forward problem 

during the iterations. 

The forward problem uses boundary conditions and known conductivity values 

to calculate the potential values. A current is injected from the surface electrodes 

which are placed on the boundary of the object. The object’s inner conductivity 

values are isotropic which changes between zero and positive infinity.  This 

injected current is triggered with an MRI system. According to the injected 

current, a current density is generated inside the object. The object, attached 

electrodes and MRI triggered current source shown in Figure 2.1. 

 

 

Figure 2.1: The object with attached electrodes and MR triggered current source. 

 

As seen in Figure 2.1, the object has a volume, Ω , a boundary, ∂Ω , an inner 

conductivity distribution,σ  and four electrodes, E1, E2, E3, E4. The current 

apply interval is short for making the conductivity distribution time independent 

during the pulses. 

Boundary Value Problem (BVP) is used to calculate potential distribution inside 

the object. The boundary conditions are important for solution of BVP. Neumann 

boundary condition, which is defined in equation (2.1), is used in forward 

problem. 
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on positive current electrode

on negative current electrode

0 elsewhere

J

J
n

φ
σ


∂ 

= −
∂ 



 (2.1) 

where, n is the outward unit vector on∂Ω  and J is applied current. 

The relation between conductivity, σ  and potential distribution, φ  is shown in 

equation (2.2). 

( ) 0 inσ φ∇⋅ ∇ = Ω  (2.2) 

where, Ω  is the volume of the object. As seen from equation (2.2), we can 

calculate the potential distribution inside an object, if we know the inner 

conductivity distribution of the object. 

We can find the potential distribution with different techniques like Finite 

Element Method (FEM), Finite Difference Method (FDM), etc. In this thesis, 

FEM is used to find the potential distribution inside the object for 2-dimensional 

case. Also FEM can be used for 3-dimensional case. The detailed explanations 

for 3-dimensional case can be found in Onart [21]. 

In FEM, the imaging slice is separated into small cells. By this way more points 

are used to find the potential distributions inside the object. These small cells are 

called as the mesh elements of the object. These mesh elements are shown in 

Figure 2.2.  

If we increase the mesh element number of model, the solution of potential 

distribution will be more accurate. Since, the potential distribution is taken from 

more than one mesh element for a pixel. Each pixel uses more information in this 

case.     
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Figure 2.2: Mesh elements used for FEM. 

 

But there is a disadvantage of increasing the mesh element number. If we 

increase the element number, we will need more computation time to solve the 

forward problem.  

After finding the potential distribution, the equation (2.3) is used to find the 

electric field intensity. 

E φ= −∇
�

 (2.3) 

The relation between electric field intensity and current density is shown below. 

J Eσ σ φ= ∇= -
� �

 (2.4) 

As explained before the injected current generates magnetic flux density inside 

the object. This magnetic flux density is important for MREIT problems. Biot-
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Savart law is used to generate magnetic flux density from calculated current 

density. This relation is shown in equation (2.5).  

0
3

( ')
( ) ( ')

4 '

r r
B r J r dv

r r

µ

π
Ω

−
= ×

−
∫

� �
 (2.5) 

where, 0µ  is the permeability of free space, r is the unit vector from origin to 

source point ( , , )x y z , 'r  is the unit vector from origin to field point ( ', ', ')x y z . 

As explained before, small mesh elements are used in FEM approach. Equation 

(2.5) gives the magnetic flux density on a point in space. In our studies, we need 

discrete calculation of magnetic flux density in the center of each mesh element 

of the model. For the ith element the current density value is multiplied with the 

area of mesh element. Also at the center of each element there is a point current 

source, I
�

. The direction of I
�

 is the same direction of current density produced 

in the mesh element. The generated magnetic field at any field point is calculated 

with equation (2.6). 

m
0

3
i 14

I R
B

R

µ

π =

×
= ∑

� �
�

 (2.6) 

In equation (2.6), m is the number of mesh elements, R
�

 is defined from source 

point ( , , )x y z to field point ( ', ', ')x y z , R  is the magnitude of R
�

. By this way, 

discretization can be made and B
�

 can be calculated at the center of each mesh 

element. The effect of each element on itself is assumed negligible to prevent 

singularity problems.  

Forward problem solutions are the important parts of the iterative algorithms. 

First an initial conductivity distribution is assumed. According to this distribution 

potential values are calculated for this uniform case. Then the conductivity 

distribution is calculated. This calculated conductivity distribution used as the 
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input for the forward problem. Then the forward problem is solved. To terminate 

iterations, the change in the conductivity distribution is examined at iterations. 

   

2.3 Extraction of Magnetic Flux Density from MR Images 

The magnetic flux density, which is generated by externally applied current, can 

not be measured directly with an MRI scanner. For this reason some 

computations are used to extract the magnetic flux density distribution from a 

MR image. 

For magnetic flux density computation, the difference between phase for no 

current case and the phase for applied current case are used.  

When we apply a current, a phase shift occurs. The magnetization for no current 

case is shown in equation (2.7). 

( )nc
nc ( , ) ( , ) e

j Bt j
M x y M x y

γ Φ+
=

�
 (2.7) 

After applying an external current on the imaging object, a phase shift occurs. 

This phase shift is shown in equation (2.8). This phase shift is added to the 

equation for no current case. The new equation is shown in equation (2.9). 

J
zJ ( , ) CB x y TΦ γ=  (2.8) 

J
z nc

J

( , )
( , ) ( , ) e

Cj Bt j B x y T j
M x y M x y

γ γ Φ 
 
 

+ +
=

�
 (2.9) 

The ratio of equation (2.9) and (2.7) gives the following equation. 

nc

J ( , ) ( ( , ) ) ( , )
e e

( , )

J
z C

M x y j B x y T j x y

M x y

γ θ
= =

�

�  (2.10) 
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where, γ  is the gyromagnetic ratio, 
CT  current applied time per excitation. 

We can extract magnetic flux density as: 

J
z

( , )
( , )

C

x y
B x y

T

θ

γ
=  (2.11) 

This extracted Bz is a component of magnetic flux density, which is parallel to 

the main magnetic field of MRI scanner. The illustration for the position of 

object to extract Bz is shown in Figure 2.3. 

 

Figure 2.3: The position of object in MRI scanner to extract Bz. 

 

To extract the other components of B
�

 the object must be rotated inside the MRI 

scanner. And the explained procedures must be used for each position. In this 

thesis, only z component of B
�

 is used. Therefore there is no need to rotate the 

object for the reconstruction algorithms used in this thesis.  
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2.4 The Inverse Problem of MREIT 

As explained in the previous section, according to the externally applied current 

a magnetic flux density is generated inside the object. In MREIT, the main aim is 

to find the unknown conductivity distribution inside the object. The generated 

magnetic flux density is used to calculate the conductivity distribution of an 

object. Also some voltage measurement taken on the boundary of the object can 

be used during the reconstruction processes. The forward problem solutions are 

used as the input for inverse problem. 

Reconstruction algorithms which are used in this thesis use only z-component of 

magnetic flux density. This component is parallel to the main magnetic field of 

MRI scanner. For each reconstruction algorithms, Bz data must be calculated 

first. 

As explained by Scott [6], for inverse problem solutions it is assumed that the 

current flows in a region constant conductivity,σ , and permeability, µ . This 

satisfies the following equations. 

J Eσ=
� �

 (2.12) 

where  E
�

 is the electric field intensity.  

B Hµ=
� �

 (2.13) 

0E∇× =
�

 (2.14) 

0B∇⋅ =
�

 (2.15) 

E = −∇Φ
�

 (2.16) 

The magnetic field intensity, H
�

, of a vector can be written as: 
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2( )H H H∇×∇× = ∇ ∇⋅ − ∇
� � �

 (2.17) 

The equations shown above are used to produce equation (2.18) from equation 

(2.17).  

2H J
σ

σ

∇
∇ = ×
� �

 (2.18) 

This equation shows the relation between magnetic flux intensity, current density 

and conductivity. By using equation (2.12), (2.13), (2.16) and (2.18), the relation 

between magnetic flux density, conductivity and potential distribution can be 

found as: 

2

0

B
φ σ

µ

∇
= −∇ ×∇

�

 (2.19) 

where,  2B∇
�

 is the Laplacian of B
�

,  φ  is the potential distribution. 

This relation is used in magnetic flux density based reconstruction algorithms. 

Using Laplacian B
�

 means, second order derivatives of B
�

 are utilized. But 

laplacian operator has a disadvantage for noisy cases. It differentiates noise 

twice. 

Some of the reconstruction algorithms uses the relation between B
�

, J
�

 and  

natural logarithm of resistivity, R  [8]. They assumed equation (2.14) is satisfied. 

The relation is shown as: 

R J J∇ × = −∇×
� �

 (2.20) 

R  is defined as eRρ = . Using the fact that 0/J B µ= ∇×
� �

, equation (2.20) can be 

written as: 
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2

0 0

B B
R J

µ µ

 ∇ ⋅ ∇
∇ × = −∇ + 

 

� �
�

 (2.21) 

The divergence of B
�

 is equal to zero. So we can write equation (2.21) as: 

2

0

B
R J

µ

∇
∇ × =

�
�

 (2.22) 

Equation (2.22) gives the relation between resistivity, magnetic flux density and 

current density. 

For reconstruction algorithms used in this study, only the z-component of 

magnetic flux density is used. For this reason, equation (2.19) and (2.22) are used 

with only z components.  

The details of reconstruction algorithms’ inverse problem procedures are 

explained in chapter 3. 

  

2.5 Classification of the Reconstruction Algorithms 

There are several methods which are used to reconstruct resistivity or 

conductivity distribution. Each reconstruction algorithm use different parameters 

and conditions. Some methods are iterative. 

The reconstruction algorithms are divided into two main groups. The first group 

of algorithms uses current density distributions to reconstruct conductivity. This 

methods use three components of measured magnetic flux density to produce 

current density. For this reason, these kind of reconstruction algorithms are 

called Current Density Based (J-based) reconstruction algorithms or Type-I 

reconstruction algorithms.  

The other groups of algorithms use only one component of magnetic flux density 

which is parallel to the main magnetic field. The subject rotation is not needed 
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because of the use of only one component of magnetic flux density. For this 

reasons the reconstruction algorithms are called as Magnetic Flux Density Based 

(B-based) reconstruction algorithms or Type-II reconstruction algorithms. 

Four of the B-based reconstruction algorithms are examined in this thesis.  
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CHAPTER 3 

MAGNETIC FLUX DENSITY BASED 

RECONSTRUCTION ALGORITHMS 

Some of the magnetic flux density based MR-EIT reconstruction algorithms use 

only one component of magnetic field, which is parallel to the main magnetic 

field direction. In this chapter four magnetic density based reconstruction 

algorithms are explained. 

 

3.1 Reconstruction by Harmonic Bz algorithm 

 

3.1.1 Introduction 

In this section, one of the magnetic flux density based reconstruction algorithms 

which is called Harmonic Bz reconstruction algorithm is explained. The 

Harmonic Bz reconstruction algorithm is a reconstruction algorithm which uses 

only one component of magnetic flux density. In this thesis z-direction is used as 

the direction of the main magnetic field. 

An applied external current produces a magnetic flux density ( ), ,j j j j

x y zB B B B=
�

 

inside an object. In 2003 Seo et al [14] proposed a new reconstruction algorithm 

which is based on the measurement of only one component of magnetic flux 

density, zB . By this method, they eliminate subject rotation inside a Magnetic 
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Resonance Imaging (MRI) scanner. This reconstruction algorithm uses Laplacian 

of
z

B , 2
z

B∇ . 

In 2003, Oh et al [15] improved the technique explained in the previous part. 

They use Laplacian of Bz. This is a disadvantage for this algorithm. Because, 

using 2
z

B∇  means making twice differentiation of noisy 
z

B . This algorithm 

calculates the derivatives of conductivity, σ∇ , to produce a conductivity 

distribution. 

3.1.2 Problem Definition 

An object Ω   is placed inside an MRI scanner to measure the z-component of 

magnetic flux density, [15]. P different surface electrodes are used to produce 

( 1) / 2N P P= −  independent electrode pairs to apply current. Let the injection 

current between the jth pair of electrodes be jI  for 1, ,j N= … . This injected 

current produces a current density, ( ), ,j j j j

x y zJ J J J=
�

, inside the object. Applied 

external current and produced current density, generates a magnetic flux density 

( ), ,j j j j

x y z
B B B B=
�

 inside the object. As a result, equation 0
j j

B Jµ∇ × =
� �

 is used 

for conductive object. The magnetic flux density increases the MRI phase image. 

This increment is proportional to the produced magnetic flux density component 

which is parallel to the main magnetic field of the MRI scanner. 

In Harmonic Bz reconstruction algorithm, the object conductivities are assumed 

to be isotropic.  

A potential, jφ , is produced according to the injected current ( jI  , 1, ,j N= … ). 

This potential is a solution of the following Neumann Boundary Problem (NBP). 

( )· 0 in 

ˆ·  on 

j

j jn g

σ φ

σ φ

 ∇ ∇ = Ω


− ∇ = ∂Ω
 (3.1) 
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where, n̂  is the outward unit normal vector, j
g  is the normal component of 

current density which is produced with the injected current on the boundary 

( ∂Ω ). This normal component is also defined with equation (3.2). 

j j

e
g ds I= ±∫  (3.2) 

where, e is the current injection electrode. The sign of current depends on the 

direction of current, and j
g  is zero on the regions of the boundary which are not 

in contact with e.  

If the conductivity distribution (σ ), externally applied current ( jI ) and electrode 

configuration on the object are known, the jφ  in equation (3.1) will be calculated 

by using the Finite Element Method (FEM). 

Equation (3.3) is defined by Scott [6]. This equation can be used for Harmonic 

Bz algorithm. 

2
0B µ φ σ∇ = − ∇ ×∇

�
 (3.3) 

The z component of this equation can be written as: 

2

0

1
, · , 1, ,

j j
j

zB j N
x y y x

σ σ φ φ

µ

  ∂ ∂ ∂ ∂
∇ = − =  

∂ ∂ ∂ ∂   
…  (3.4) 

As seen from equation (3.4), the x and y gradients of  jφ  and Laplacian of Bz is 

used to find the x and y derivatives ofσ .   

Matrix form of equation (3.4) is shown as: 

Us = b  (3.5) 
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where, 

1 1

1
z

z

By x
x

B
y

y x

φ φ
σ

σ
φ φ

 ∂ ∂
− ∂     ∇∂ ∂   ∂  

     ∂     ∇∂ ∂     ∂−   ∂ ∂ 

2

2

U = s = b =⋮ ⋮ ⋮

NN N

 (3.6) 

 

3.1.3 Implementation 

In this thesis, two current injection patterns (N=2), which are shown in Figure 

3.1, are used. One of them is vertical, the other is horizontal. This means that 

these current injection patterns are orthogonal to each other. Each injection 

current is equal to 20 mA. 

 

 

Figure 3.1: Vertical and Horizontal current injection patterns. 

 

First, the Laplacian of Bz ( 2
zB∇ ) is calculated according to the change of Bz 

along the x, y and z direction. Central difference, which is shown in equation 

(3.7), is used for calculation of 2
z

B∇ . 
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'' 0 0 0
0 2

( ) 2 ( ) ( )
( )

f x h f x f x h
f x

h

+ − + −
=  (3.7) 

For computation of 2
zB∇   at the ith

 pixel, equation (3.8) is used. This equation is 

also called three-point difference. 

( )
( ) ( ) ( )

( )

( ) ( ) ( )

( )

( ) ( ) ( )

( )

1 12

2

1 1

2

1 1

2

, , 2 , , , ,
, ,

, , 2 , , , ,

, , 2 , , , ,

z i i i z i i i z i i i

z i i i

z i i i z i i i z i i i

z i i i z i i i z i i i

B x y z B x y z B x y z
B x y z

x

B x y z B x y z B x y z

y

B x y z B x y z B x y z

z

+ −

+ −

+ −

− +
∇ = +

∆

− +
+ +

∆

− +
+

∆

 (3.8) 

In equation (3.8), x∆ ,  y∆  and z∆  are the dimensions of each pixel in the x, y 

and z directions. 

The jφ  values are calculated for a uniform conductivity distribution. Then the x-

derivative and y-derivative of jφ  are calculated using the forward difference 

formulation, which is shown in equation (3.9).  

' 0 0
0

( ) ( )
( )

f x h f x
f x

h

+ −
=  (3.9) 

For each current injection pattern, the Laplacian of Bz and x-gradient, y-gradient 

of potential are calculated. These values are calculated for each pixel in the 

imaging slice. Then using equation (3.5), the x-derivative and y-derivative of 

conductivity distribution can be calculated. 

After calculation of conductivity derivatives, the line integral is used to produce 

the conductivity distribution. For this case, we assume that a pixel’s conductivity 

value is known. This is the initial pixel. The reconstructed conductivity 

distribution can be calculated by using the initial conductivity value and 

calculated derivatives of σ . The potential is measured from a point on the edge 
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of imaging slice. This measured potential value is used for scaling. Equation 

(3.10) is used to terminate the iterative Harmonic Bz algorithm.  

1 2

1 2

m m

m

σ σ
ε

σ
+

+

−
<  (3.10) 

where, ε  is the defined tolerance value. As seen from equation (3.10) the 

reconstructed conductivity distributions for mth iteration and (m+1)
th iteration are 

used to terminate the iterations. 

After finding the conductivity distribution, current density image can be found by 

using equation (3.11). 

j j
J σ φ= − ∇
�

 (3.11) 

 

The Harmonic Bz iterative algorithm has the following steps: 

 Step-1:  For m=0, assume an initial conductivity distribution, 0σ . 

 Step-2: 1
j

mφ +  is calculated by solving the following NBP for each current 

injection pattern (j=1,......,N). 

( )1

1

· 0 in 

ˆ· on .

j

m m

j j

m m n g

σ φ

σ φ

+

+

 ∇ ∇ = Ω


− ∇ = ∂Ω
 (3.12) 

 Step-3: Calculate the 1m
σ +   by using the equation (3.5). Then scale this     

conductivity distribution using the voltage measurements on the edge of 

the object. 
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 Step-4:  If  1 2

1 2

m m

m

σ σ
ε

σ
+

+

−
<    for a predefined tolerance value, current 

density image can be calculated or iterations can be terminated. 

Otherwise, set ( 1)m m= + and go back to Step 2.    

The flowchart for iterative Harmonic Bz algorithm is shown below. 

 

Figure 3.2: Flowchart for Harmonic Bz algorithm. 
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1 2
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3.2 Reconstruction by Variational Gradient Bz algorithm 

 

3.2.1 Introduction 

In this section, one of the magnetic flux density based reconstruction algorithms 

which is called Variational Gradient Bz (VGBz) reconstruction algorithm is 

explained. The Harmonic Bz reconstruction algorithm is a reconstruction 

algorithm which uses only one component of magnetic flux density. In this 

thesis, z-direction is used as the direction of the main magnetic field. 

In 2003, Seo et al [14] and Oh et al [15] proposed a reconstruction algorithm 

which is based on the measurement of only one component of magnetic flux 

density, 
z

B . It is called as Harmonic Bz reconstruction algorithm. This algorithm 

is based on the calculation of 2
zB∇ . But this algorithm is very sensitive to noise 

because of the twice differentiation of noisy data. 

In 2004, Park et al [16] proposed a new reconstruction algorithm which uses only 

one differentiation of Bz. The name of this algorithm is Variational Gradient Bz 

reconstruction algorithm. 

 

3.2.2 Problem Definition 

The conductivity distribution of the target object is isotropic for VGBz 

reconstruction algorithm.  

As explained in Section 3.1.2, an applied external current generates a magnetic 

flux density, ( ), ,j j j j

x y zB B B B=
�

, inside the object. The z-component of this 

generated magnetic flux density is important for VGBz reconstruction algorithm. 

A potential jφ  is produced according to the injected current ( jI  , 1, ,j N= … ). 

This potential is a solution of the NBP which is shown in equation (3.13). 
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( )· 0 in 

ˆ· on ,

j

j jn g

σ φ

σ φ

 ∇ ∇ = Ω


− ∇ = ∂Ω
 (3.13) 

where, n̂  is the outward unit normal vector, j
g  is the normal component of 

current density, produced with the injected current, on the boundary ( σ∂ ). 

There is a relation between magnetic flux density and current density 

distribution. This relation is shown in equation (3.14). 

0B Jµ∇× =
� �

   and   J σ φ= − ∇
�

 (3.14) 

This equation can be written in integral form. 

0r rB d dΨ µ σ φ Ψ
Ω Ω

∇× ⋅ = − ∇ ⋅∫ ∫
� � �

 for all  2 3[ ( )]LΨ ∈ Ω
�

 (3.15) 

where, 2 ( )L Ω  is the set of square integrable function in domain Ω . The x 

component, y component and z component of B
�

 is placed inside this equation. 

But we need only z component of B
�

. For this reason we must eliminate Bx and 

By with suitable constraints on Ψ
�

.  

For this purpose, the Ψ
�

 is chosen as ( , ,0)
y x

ψ ψ
Ψ

∂ ∂
= −

∂ ∂

�
 with Ψ Τ∈

�
. The 

definition of Τ  is shown below. 

3
1

3

( ) (r) 0 (r) if 0

H ( ) :for r ,

( ) (r) 0 if (r) 0

i e
y x

ii e
z

ψ ψ
υ

Τ ψ
ψ

υ

∂ ∂ 
⋅ ≠ ∂ ∂ 

:= ∈ Ω ∈∂Ω 
∂ × ≠

 ∂ 

= =

=

�

�
 (3.16) 

where, 3e
�

=(0,0,1)  and 1H ( )Ω  is the square integrable functions in Ω . 
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With these constraints and equation (3.15), the following equation which has 

only z component of B
�

, can be found. 

0

1
r rzL d B dσ φ ψ ψ ψ Τ

µ
Ω Ω

∇ ⋅∇ = ∇ ⋅∇ ∀ ∈∫ ∫ɶ ɶ   (3.17) 

where  ,
x y

 ∂ ∂
∇ =  

∂ ∂ 
ɶ  and 

0 1

1 0
L

 
=  

− 
 

For each pixel, equation (3.17) can be written as: 

 
0

1 z zB B

y x y x

φ φ
σ

µ

   ∂ ∂∂ ∂
− = +   

∂ ∂ ∂ ∂   
  (3.18) 

For each current injection pattern, equation (3.18) is used to find the conductivity 

distribution of imaging slice. 

 

3.2.3 Implementation 

In this thesis, two current injection patterns (N=2) are used. One of them is 

vertical, the other is horizontal. This means these currents are orthogonal to each 

other. Each injection current is equal to 20 mA. 

First the sum of x-gradient and y-gradient of Bz , z zB B

y x

 ∂ ∂
+ 

∂ ∂ 
 is calculated 

according to the change of Bz along the x-direction and y-direction. Forward 

difference, which is shown in equation (3.19), is used for the calculation of 

z zB B

y x

 ∂ ∂
+ 

∂ ∂ 
. 
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' 0 0
0

( ) ( )
( )

f x h f x
f x

h

+ −
=  (3.19) 

The jφ  values are calculated for a uniform conductivity distribution. Then the x-

derivative and y-derivative of jφ  are calculated using the forward difference 

formulation, which is shown in equation (3.19).  

For each current injection pattern, the x and y gradients of Bz and potential are 

calculated. These values are calculated for each pixel in the imaging slice. Then 

using equation (3.18), the conductivity distribution can be calculated. 

The potential is measured from a point on the edge of imaging slice. This 

measured potential value is used for scaling. To terminate the iterative VGBz 

algorithm, equation (3.20) is used.  

1 2

1 2

m m

m

σ σ
ε

σ
+

+

−
<  (3.20) 

where ε  is the defined tolerance value. As seen from equation 3.20 the 

reconstructed conductivity distributions for mth iteration and (m+1)th iteration are 

used to terminate the iterations. 

 

The VGBz iterative algorithm has the following steps: 

 Step-1:  For m=0, assume an initial conductivity distribution 0σ . 

 Step-2: 1
j

mφ +  is calculated by solving the following NBP for each current 

injection pattern (j=1,...,N). 
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            Step-3: Calculate the 1m
σ +    by using the equation (3.22). 
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2

0
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∫

ɶ ɶ

ɶ ɶ
  (3.22) 

 Then, scale this conductivity distribution using the voltage measurements 

on the edge of the subject. 

 Step-4:  If  1 2

1 2

m m

m

σ σ
ε

σ
+

+

−
<    for a predefined tolerance value, terminate 

the iterations. Otherwise, set ( 1)m m= + and go back to Step 2.    

The flowchart for iterative VGBz is shown in Figure 3.3. 
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Figure 3.3: Flowchart for VGBz algorithm. 
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3.3 Reconstruction by Sensitivity Matrix algorithm 

 

3.3.1 Introduction 

In this section, one of the magnetic flux density based reconstruction algorithms 

which is called Sensitivity Matrix reconstruction algorithm is explained. The 

Sensitivity Matrix reconstruction algorithm is a reconstruction algorithm which 

uses only one component of magnetic flux density. 

In 1998, Ider and Birgül [12] use Sensitivity Matrix for reconstructing the 

conductivity distribution. Sensitivity matrix is related to the change of magnetic 

flux density according to the change of conductivity values of each element in 

the object. This algorithm uses perturbation in magnetic field measurement and 

Sensitivity matrix to find the perturbation in the conductivity values of each 

element. 

3.3.2 Problem Definition 

The conductivity values used in this algorithm is isotropic. As explained in 

Section 3.1.2, an applied external current generates a magnetic flux density, 

( ), ,j j j j

x y z
B B B B=
�

, inside the object. The z-component of this generated magnetic 

field is important for Sensitivity Matrix reconstruction algorithm.  

This algorithm is based on producing a Sensitivity matrix. If we know the change 

characteristic of Bz for an initial conductivity distribution and the perturbation of 

conductivity, we will easily find the Bz data for the real conductivity distribution. 

This is shown in equation (3.23). 

0( ) ( ) z
z z

B
B Bσ σ σ

σ

∂
≈ + ⋅∆

∂
 (3.23) 

where,  σ∆  is equal to the difference between real conductivity distribution (σ ) 

and initial conductivity distribution ( 0σ ). 
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Equation 3.23 can be written in a matrix form which is shown below. 

∆ = ∆b S σσσσ  (3.24) 

where, ∆b  is a vector which includes the perturbations in magnetic field 

measurements, ∆σσσσ  is a vector which includes perturbation in the conductivity 

values of object’s elements and S  is a matrix which is called sensitivity matrix. 

These are shown below. 

T

1 2 ...... mb b b ∆ = ∆ ∆ ∆ b  (3.25) 

T

1 2 ...... nσ σ σ ∆ = ∆ ∆ ∆ σσσσ  (3.26) 

1 1

1

1
0

n

m m

n

b b

b b

σ σ

σ σ

σ σ
=

∂ ∂ 
 ∂ ∂
 
 =
 

∂ ∂ 
 ∂ ∂ 

S

…

⋮ ⋱ ⋮

⋯

 (3.27) 

where, m is the number of measurements, n is the number of elements of object.  

By producing a sensitivity matrix, we have a characteristic of change in Bz 

according to the change of conductivity values. To form a sensitivity matrix, all 

elements are changed with small values. The difference between Bz and Bz( 0σ ) is 

divided by the change of conductivity value. If the measurement number and 

elements number are high, the computation time for sensitivity matrix will be 

high. The sensitivity matrix is calculated for only the initial conductivity 

distribution. Then this matrix is used for different cases. 

Singular Value Decomposition (SVD) is used to test the performance of the 

calculated sensitivity matrix. For this reason, we must examine the singular 

values of the sensitivity matrix. The S matrix can be written as: 
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T=S U VΛΛΛΛ  (3.28) 

where, U is a mxm orthonormal matrix , V is a nxn orthonormal matrix, ΛΛΛΛ is a 

mxn diagonal  matrix. Diagonal elements are the singular values of S. For testing 

the performance of this matrix we must calculate the condition number which is 

equal to the ratio of the maximum singular value and minimum singular value. If 

the condition number very near to 1, the matrix said well-conditioned. If the 

condition number is greater than 1, the matrix said to be ill-conditioned.  

After calculating the sensitivity matrix, the pseudo inverse of S is calculated. 

Then this pseudo inverse and the calculated perturbation in magnetic field 

measurements are multiplied to find the perturbation in conductivity. This is 

shown in equation (3.29). 

†∆ = ∆S bσσσσ  (3.29) 

where, †S  is the pseudo inverse of sensitivity matrix. 

After finding the conductivity perturbation, the reconstructed conductivity 

distribution can be calculated.  

3.3.3 Implementation 

In this study, two orthogonal current injection patterns (N=2) are used to inject 

20 mA current. The number of measurements is equal to 40. The number of 

elements of object is equal to 40. So, we must produce a 1600x1600 Sensitivity 

matrix. Initial conductivity distribution is assumed 0σ =0.2 S/m. For this 

distribution each element’s conductivity is changed 0.02 S/m. For all changing 

cases, the difference between Bz and Bz( 0σ ) is divided by the change of 

conductivity value. The computed sensitivity matrix for one current injection 

pattern is ill-conditioned. For this reason, the sensitivity matrices can be 

combined. 
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[ ]
T

combined = 1 2S S S  (3.30) 

After computing the combined sensitivity matrix, singular values of matrix 

combinedS  are examined. The singular values, which are very close to zero, are 

truncated.  

After computing a good sensitivity matrix the equation (3.31) is used to find 

∆σσσσ . 

( )
†

combined combined∆ = ∆S bσσσσ  (3.31) 

where, combined∆b  is the combined version of perturbation in Bz for two current 

injection pattern. 

The reconstructed conductivity distribution is calculated using equation (3.32). 

initial
σ σ= + ∆σσσσ  (3.32) 

The Sensitivity Matrix reconstruction algorithm has the following steps: 

 Step-1:    Assume an initial conductivity distribution, 0σ . 

 Step-2:   Compute the combined sensitivity matrix, combinedS , according to 

the changes on the initial conductivity distribution for all current injection 

patterns. If necessary use truncation. 

 Step-3:     Find pseudo inverse of S. 

 Step-4:   Measure Bz for all current injection pattern and calculate the 

perturbation in the magnetic field measurements, ∆b . 

 Step-5:  Calculate perturbation in element conductivity values with 

equation ( )
†

combined combined∆ = ∆S bσσσσ  

 Step-6:   Calculate conductivity distribution. 



 34 

The flowchart for Sensitivity Matrix algorithm is shown in Figure 3.4. 

 

 

Figure 3.4: Flowchart for Sensitivity Matrix reconstruction algorithm. 

    assume            

0σ =0.2 S/m 

        compute  combinedS  

     Scombined  is  

  well-conditioned 

    Find  †S  

    truncate 

   

 Compute       

combined∆b  

 ( )
†

combined combined∆ = ∆S bσσσσ  

     Calculate σ  and STOP 

YES 

NO 



 35 

3.4 Reconstruction by Algebraic reconstruction algorithm 

 

3.4.1 Introduction 

In this section, one of the magnetic flux density based reconstruction algorithms 

which is called Algebraic reconstruction algorithm is explained. The Algebraic 

reconstruction algorithm is an iterative reconstruction algorithm which uses only 

one component of magnetic flux density. 

In 2003, Ider et al [8] have examined the reconstruction in MREIT and have 

proposed three methods for numerical implementations. Ider and Onart [18] 

examined one of the methods, explained in Ider et al [8], which uses non-linear 

matrix equations to find the resistivity distribution of the target object. They use 

only one component of magnetic flux density which is parallel to the main 

magnetic field. Also they said that at least two current injection patterns are 

necessary to reconstruct the resistivity distributions. After finding the resistivity 

distribution, the conductivity distribution can be found easily. 

 

3.4.2 Problem Definition 

The conductivity values used in this algorithm is isotropic. As explained in 

Section 3.1.2, an applied external current generates a magnetic flux density, 

( ), ,j j j j

x y z
B B B B=
�

, inside the object. The z-component of this generated magnetic 

flux density is used in Algebraic reconstruction algorithm.  

A part of the following equation is used in this algorithm. Because this algorithm 

uses only Bz. 

2

0

B
R J

µ

∇
∇ × =

�
�

 (3.33) 

 In equation (3.33), R  is called the natural logarithm of resistivity. 
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eRρ =  (3.34) 

The matrix form of equation (3.33) is shown below. 

2

2

0 2

0
1

0 .

0

z y x

z x y

y x z

R

x

R

y

R

z

J J B

J J B

J J B
µ

∂

∂
∂

∂

∂

∂

 
    − ∇
    

− = ∇    
    − ∇    
  

 (3.35) 

The row of this equation, which includes Bz, is important for Algebraic 

reconstruction algorithm. For this reason, we can write equation (3.36). 

2

0

1
y x z

R R
J J B

x y µ

∂ ∂
− = ∇

∂ ∂
 (3.36) 

As seen above, the x-derivative and y-derivative of logarithmic resistivity is 

used. Central difference, which is shown in equation (3.37), is used for 

calculation of these derivatives. 

' 0 0
0

( ) ( )
( )

2

f x h f x h
f x

h

+ − −
=  (3.37) 

Central difference is used for interior regions of the subject. The edge regions 

forward difference or backward difference must be used. 

With these information we can write equation (3.36) in the form of equation 

(3.38) for (i,j)th element of the imaged object. 

2
( 1, ) ( 1, ) ( , 1) ( , 1)

( , ) ( , )

0 ( , )
2 2

i j i j i j i j z
y i j x i j

i j

R R R R B
J J

x y µ
+ − + −− −  ∇

− =  
∆ ∆  

 (3.38) 
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For computation of 2
z

B∇   at the ith pixel, equation (3.39) is used. This equation 

is also called three-point difference. 

( )
( ) ( ) ( )

( )

( ) ( ) ( )

( )

( ) ( ) ( )

( )

1 12

2

1 1

2

1 1

2

, , 2 , , , ,
, ,

, , 2 , , , ,

, , 2 , , , ,

z i i i z i i i z i i i

z i i i

z i i i z i i i z i i i

z i i i z i i i z i i i

B x y z B x y z B x y z
B x y z

x

B x y z B x y z B x y z

y

B x y z B x y z B x y z

z

+ −

+ −

+ −

− +
∇ = +

∆

− +
+ +

∆

− +
+

∆

 (3.39) 

 

In equation (3.38) and equation (3.39), x∆ ,  y∆  and z∆  are the dimensions of 

each element in the x, y and z directions. 

The number of elements in x and y directions are equal to K and M, respectively. 

For all elements inside the object, we can write the equation (3.38) as the 

following matrix form. 

AR = b  (3.40) 

where, A is the coefficient matrix with dimensions (KMxKM), R is a (KMx1) 

vector which includes the logarithmic resistivity values of all elements, b is a 

(KMx1)  vector which includes the Laplacian of Bz. 

Singular Value Decomposition (SVD) is used to test the performance of the 

calculated coefficient matrix. If necessary, truncation can be made. 

The pseudo inverse of A is calculated. With this pseudo inverse and the 

calculated Laplacian for magnetic field measurements are multiplied to find the 

logarithmic resistivity of all elements. This is shown in equation (3.41). 

†=R A b  (3.41) 
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where, †A  is the pseudo inverse of coefficient matrix. 

After finding the logarithmic resistivity, the reconstructed resistivity distribution 

is calculated with equation (3.34). Then the conductivity distribution is 

calculated by equation (3.42). 

1
σ

ρ
=  (3.42) 

3.4.3 Implementation 

For this reconstruction algorithm, two orthogonal current injection patterns 

(N=2) are used to inject 20 mA current.  

First the measurements for Bz are taken for each element inside the object. Then 

2
zB∇  is calculated using the equation (3.39). 

As seen from equation (3.38), the x-component and y-component of current 

density must be calculated. The components of current density are calculated for 

a uniform conductivity distribution. With these calculated values we can produce 

the coefficient matrix, which is defined in equation (3.40). 

We use two different current injection patterns. The computed coefficient matrix 

for one current injection pattern will be ill-conditioned. For this reason, the 

coefficient matrices can be combined. 

[ ]
T

combined = 1 2A A A  (3.43) 

After computing the combined coefficient matrix, singular values of matrix 

combinedA are examined. The last two singular values are truncated. Because they 

are very close to zero. 

After computing the coefficient matrix, equation (3.44) is used to find R . 
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†
combined combined=( )R A b  (3.44) 

where, combinedb  is the combined version of Laplacian of Bz for two current 

injection pattern. 

The reconstructed conductivity distribution is calculated using equation (3.34) 

and equation (3.42). 

The Algebraic reconstruction algorithm has the following steps: 

Step-1:   Measure Bz for all current injection pattern and calculate the 

Laplacian of Bz . 

Step-2:    Assume an initial conductivity distribution, 0σ . 

 Step-3:    Calculate 
xJ  and 

yJ   

 Step-4:    Compute the combined coefficient matrix, combinedA .  

 Step-5:     Find pseudo inverse of combinedA . 

 Step-6:   Solve †
combined combined=( )R A b  and then calculate conductivity 

distribution. 

 Step-7:  If the stopping criterion, 1 2

1 2

m m

m

σ σ
ε

σ
+

+

−
< ,  for a predefined 

tolerance value, is obtained the iterations will terminate. Otherwise go 

back to Step 3. 

 

The flowchart for Algebraic reconstruction algorithm is shown in Figure 3.5. 
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Figure 3.5: Flowchart for Algebraic reconstruction algorithm. 
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CHAPTER 4 

SIMULATION AND COMPARISON 

4.1 Introduction 

In this chapter, computer models used in simulations and the reconstructed 

results which are taken from the simulations are explained. Different computer 

models and different conditions are used to test the performance of the 

reconstruction algorithms. 

 

4.2 Computer models 

Four different computer models are used to test the performance of four different 

reconstruction algorithms which are explained in previous chapters. The 

dimensions of the models are selected according to the experimental phantom 

used in experiments in METU 0.15 Tesla MRI system. In order to compare the 

reconstruction algorithm’s performance, same dimensions are used for four 

different models. 

The size of the imaging slice is chosen as 9 cm x 9 cm and the electrode size is 

selected 1/5 of the model’s edge size. So the electrode size is 1.8 cm. The 

thickness of the model is 0.2 cm. For each model 20 mA current is used in each 

current injection. 
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4.2.1 Computer Model-1 

Computer model-1 is shown in Figure 4.1. In this model, there are four different 

objects inside a background. The objects have isotropic conductivities. Two of 

the objects are more resistive than the background. The other two objects are 

more conductive than the background. The background conductivity has been 

chosen to be 0.2 S/m. The object conductivities are shown in Table 4.1. 

Table 4.1: Conductivity values of computer model-1 

Region Object 
Conductivity value 

(S/m) 
1 Background 0.2 
2 Big Square  0.1 
3 Big Circle 0.4 
4 Small Square 2 
5 Small Circle 0.02 

 

 

 
Figure 4.1: Computer model-1 with different conductivity regions. 

 

 

Four electrodes are used in computer model-1. With these four electrodes, two 

different and orthogonal current injection patterns are used in model-1. These 

current injection patterns are shown in Figure 4.2. 
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          (a)         (b) 

Figure 4.2: Current injection patterns. (a) Vertical current injection pattern.       
(b) Horizontal current injection pattern. 

 

4.2.2 Computer Model-2 

Computer model-2 is shown in Figure 4.3. There are two squares in the middle of 

the model. Both squares have 0.225 cm x 0.225 cm which is a size of a pixel of 

the imaging slice. The background conductivity is equal to 0.2 S/m. There are 

two cases for this model. First one is conductive case. For conductive case, the 

conductivities of squares are 2 S/m. The other case is resistive case. For resistive 

case, the conductivities of squares are 0.02 S/m. 

 

 

Figure 4.3: Computer model-2 with different conductivity regions. 
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This model is used to test the spatial resolution performance of four 

reconstruction algorithms by calculating the Full-Width-at-Half-Maximum 

(FWHM) values. Also the gap between two squares is changed. All positions for 

this model are shown in Table 4.2. 

Table 4.2: Number of pixels in the gap, for different positions 

Position 1 2 3 4 5 6 7 8 9 10 

Number of pixels in the gap 1 3 5 7 9 11 15 19 23 27 

 

Same as model-1, four electrodes are used to inject vertical current injection 

pattern and horizontal current injection pattern which are orthogonal. 

 

4.2.3 Computer Model-3 

Computer model-3 is shown in Figure 4.4. There are 9 squares on the diagonal of 

the imaging slice. The sizes of the squares are equal to the size of a pixel. For 

this model, there are two cases, which are conductive and resistive, to test the 

performance of all algorithms. Background conductivity is 0.2 S/m. Conductive 

square conductivity is 2 S/m and the resistive square conductivity is 0.02 S/m. 

 

Figure 4.4: Computer model-3 with different conductivity regions. 
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In model-3, there are four electrodes. The position of electrodes are same as 

model-1. Two different and orthogonal current injection patterns are used. This 

model is used to test the spatial resolution performance of all algorithms for 

conductive and resistive cases. 

 

4.2.4 Computer Model-4 

Computer model-4 is shown in Figure 4.5. The background conductivity is equal 

to 0.2 S/m. There is a square at the center of the imaging slice. The size of the 

square is 2.25 cm x 2.25 cm. There are two different cases which are conductive 

case and resistive case. For conductive case, the square is more conductive than 

background. For resistive case, the square is more resistive than background. 

 

 

Figure 4.5: Computer model-4 with different conductivity regions. 

 

For each case, there are 10 different contrast levels. This means, for each level 

square has different conductivity value. Different conductivity values of square 

for all cases of this model are shown in Table 4.3.   
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Table 4.3: Square conductivities for different cases and contrast levels 

Contrast 

Level 
1 2 3 4 5 6 7 8 9 10 

Conductive 
case 

(Square 
conductivity 

S/m) 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

 Resistive 
case    

(Square 
conductivity 

S/m) 

0.2 0.1 0.066 0.05 0.04 0.033 0.028 0.025 0.022 0.02 

 

4.2.5 Thorax Model 

Thorax model is shown in Figure 4.6. This model simulates different tissues in 

thorax.  

 

Figure 4.6: Thorax Model with different conductivity regions. 

 

Each region has different conductivity value. The conductivity values of all 

regions are shown in Table 4.4. 
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Table 4.4: Conductivity values of Thorax Model 

Region Tissue Type 
Conductivity value 

(S/m) 

1 Skeletal muscle 0.2 

2 Lung 0.0667 

3 Heart 0.667 

4 Bone 0.0006 

5 Spinal cord (CSF) 1.5625 

6 Aorta 0.667 

 

4.3 Phantom used in experiments 

The reconstruction algorithms tested with an experimental phantom. For 

experimental study, a 3D phantom is produced. The geometry of this phantom is 

shown in Figure 4.7(a). The inner size of this phantom is equal to 9 9 9 cm× × . 

The middle part of phantom is used for taking the experimental data. The front 

view of this part is shown in Figure 4.7(b). Size of this part is 9 9 2 cm× × . 1 cm 

slice thickness is used for taking the experimental data. The conductivities of the 

regions are shown in Table 4.5.  

 

Table 4.5: Experimental model’s conductivity values 

Region Object 
Conductivity value 

(S/m) 

1 Background 0.2 

2 Square 0.1 

3 Circle 0.4 

 

To obtain these conductivity values, combination of different materials are used. 

The ratios of combination are shown in Table 4.6. 
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(a) (b) 

Figure 4.7: Experimental phantom. (a) 3D view of phantom. (b) Front view of 
imaging slice (with four recessed electrodes). 

 

Table 4.6: Material ratios for different conductivity values. 

Material 
Conductivity  

value 
(0.1 S/m) 

Conductivity  
value 

(0.2 S/m) 

Conductivity 
value 

(0.4 S/m) 
Water 100 ml 100 ml 100 ml 
Salt - - 0.1 gr 

CuSO4 0.1 gr 0.1 gr 0.1 gr 
TX150 [26] 1 gr 0.2 gr - 
TX151 [26]  - 1.8 gr 1 gr 
Agar     [27] 0.5 gr - 1 gr 

 

For experiment, 20 mA current is injected to the phantom. Two different and 

orthogonal currents are used. One of them is vertical, the other is horizontal. 

  

4.4 Noise used for computer models 

To test the performance of reconstruction algorithms under noisy case, a random 

Gaussian noise which is explained by Scott et al [22], is used. The real Signal-to-
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Noise Ratio (SNR) uses the ratio between the signal and the noise. But this has a 

disadvantage. This ratio can be changed by the applied current. If we increase the 

amount of the applied current, the amount of the magnetic flux density will be 

increased. The signal amount used in SNR calculation increases. So the SNR 

ratio decreases. Scott et al [22], uses a SNR which is independent from the 

direction and amount of the applied current. This SNR value is related only the 

MRI system which is used for experiments. They define SNR as: 

( )· ,MR s S

A
SNR x y z N T M x y

σ
= = Ψ ∆ ∆ ∆  (4.1) 

where, A is the magnitude of the noise-free pixel value of the corresponding MR 

image, 
sΨ  is a system SNR, x y z∆ ∆ ∆ is the voxel volume, N is the total number 

of excitations (averages times phase encodes), 
S

T  is the readout sampling time 

for one echo, and ( ),M x y is the magnetization. The phase error probability 

density function used in equation (4.1) is defined as: 

( )
( ) ( ) ( )2 22 cos sin cos1

exp exp
2 2 22 2 2

a a aa
f erfc

φ φ φ
φ

π
Φ

 − −  −
= +     

    
  (4.2) 

where, 2a SNR= , and Φ  represents the phase error. Lorca [23] gives the 

details about system SNR calculation in his MSc thesis. 

For this thesis, the values for SNR are chosen as 30, 20 and 13. Birgül et al  [24] 

shows that the system SNR for 0.15 T  METU MRI scanner is equal to 13. Also 

a 2 T MRI scanner has system SNR which is equal to 30 [22]. For these reasons, 

the SNR values are chosen to test the noise performance of reconstruction 

algorithms. 
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4.5 Error calculation and stopping criteria 

To test the error performance of four reconstruction algorithms, the error values 

are calculated using the L2 norm error. In experimental studies, the real 

conductivity values of target objects are not known. But in simulations, the real 

conductivity values of the objects are known. According to this information total 

error values can be calculated as: 

2
,

2

100%
r i

total
r

xσ

σ σ
ε

σ

−
=   (4.3) 

where, rσ  means real conductivity of the object, iσ  means reconstructed 

conductivity of the object and  
2

·  is the 2L  norm. 2L  norm is defined in 

equation (4.4). 

1 2

2
i

i

a a
 

=  
 
∑

�
  (4.4) 

where, 
ia  is the ith element of a

�
. 

If someone wants to calculate the error value in a specific region, equation (4.5) 

must be used. 

, , 2
,

, 2

100%
r region i region

region

r region

xσ

σ σ
ε

σ

−
=   (4.5) 

where, ,r regionσ  and ,i regionσ  are the real conductivity distribution and 

reconstructed conductivity distribution for the specific region. 

For computer models, error calculation is easy. Since, real conductivity 

distributions are known. But in experimental studies, the real conductivity 

distributions are not known. For this reason, a stopping criterion must be defined 
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to stop the iterations for iterative algorithms. To prevent infinite iterations a 

tolerance value is defined to terminate iterations. Stopping criteria is shown as: 

1 2

1 2

m m

m

σ σ
ε

σ
+

+

−
<   (4.6) 

where, ε  is the tolerance value, 
mσ  is the reconstructed conductivity after mth 

iteration, 1m
σ +  is the reconstructed conductivity after (m+1)

th iteration and 
2

·  is 

the 2L  norm defined in equation (4.4). 

 

4.6 Spatial Resolution 

Spatial resolution of an imaging system is defined as the system ability to 

distinguish minimum size object. Also the spatial resolution gives the degree of 

deblurring in an image. For this purpose, the Point Spread Function (PSF) is 

examined. Since, it includes the information about the spatial resolution. 

The spatial resolution performances of four reconstruction algorithms are tested 

by using the model-2. In this model, there are two small squares which have a 

size equal to one pixel size. The PSF at the middle row of the model is examined. 

Also the PSF according to the gap between two pixels is examined. To find the 

spatial resolution performance, the maximum and the minimum values on PSF 

are taken. According to these values the Full-Width-at-Half-Maximum (FWHM) 

value can be calculated easily. This is shown in Figure 4.8. FWHM value gives 

the information about how the gap between two squares effect the reconstructed 

conductivity and spatial resolution.  
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Figure 4.8: FWHM on the PSF of the middle row of the imaging slice. 

 

4.7 Simulation Results for Magnetic Flux Density Based 

Reconstruction Algorithms 

In the following sections, the results of four magnetic flux density based 

reconstruction algorithms (which are explained in chapter 3) are given and 

discussed. 

 

4.7.1 Reconstruction by Harmonic Bz algorithm 

In this section, the reconstructed conductivity distributions of four different 

models are examined and discussed by using the Harmonic Bz algorithm 

explained in chapter 3. 

As explained in chapter 3, this iterative algorithm uses only the z component of 

the magnetic flux density (Bz), which is parallel to the main magnetic field. First, 

the Bz is taken and the Laplacian of Bz is calculated. Then, the x-gradient and y-

gradient of the potential for uniform case are calculated. With these values, the x-
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derivative and y-derivative of conductivity distribution can be found. At the end, 

the conductivity distribution can be calculated by using the line integral. 

 

4.7.1.1 Results for Model-1 

As explained in Section 4.2.1, there are five different conductivity regions in the 

imaging slice and there are two orthogonal current injection patterns. 20 mA 

current is injected for both injection patterns. 

The real conductivity distribution for model-1 is shown in Figure 4.9(a). The 

reconstructed conductivity distributions after iteration 1 and after iteration 7 are 

shown in Figure 4.9(b) and Figure 4.9(c). These results are taken for noise free 

data. 

The 7th iteration is chosen. Since, Harmonic Bz algorithm starts to be stable after 

iteration 7. This is easily seen from the total error figure which is shown in 

Figure 4.10(a). All regions’ error characteristic can be seen in Figure 4.10. The 

reconstructed error values of all regions, for iteration 7 are shown in Table 4.7. 

As seen from Figure 4.9 and Figure 4.10, Harmonic Bz algorithm reconstructs 

conductivity successfully without added noise. 
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                                                         (a) 

  

(b) (c) 

Figure 4.9: Reconstruction by Harmonic Bz algorithm for Model-1 (noise free 
data). (a) Real conductivity distribution for Model-1. (b) Reconstructed 
conductivity distribution after iteration 1. (c) Reconstructed conductivity 
distribution after iteration 7. 

 

Table 4.7: Reconstructed error values after iteration 7 

,totalσε  

(%) 

,backgroundσε  

(%) 

,bigsquareσε  

(%) 

,bigcircleσε  

(%) 

,smallsquareσε  

(%) 

,smallcircleσε  

(%) 

33.83 11.17 23.05 8.08 72.67 264.30 
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(c) 

Figure 4.10: Reconstructed conductivity errors by Harmonic Bz algorithm for 
Model-1 (noise free data). (a) Total error. (b) Background error, Big Circle error, 
Big Square error. (c) Small Circle error, Small Square error. 
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Then this reconstruction algorithm tested with different noise levels, SNR 30, 

SNR 20 and SNR 13. The reconstructed conductivity distributions are shown in 

Figure 4.11.  

As seen from Figure 4.11, the reconstructed conductivity distributions for noisy 

data are not good as noise free data. This result is expected. Because, Harmonic 

Bz algorithm uses Laplacian of Bz, which means twice differentiation of both Bz 

and noise.  

Also this reconstruction algorithm uses line integral after finding the x-derivative 

of conductivity and y-derivative of conductivity. According to these reasons, it is 

seen that SNR must be high to take good results.  

Increasing the number of current injection patterns and increasing the amount of 

current give good reconstructed conductivity results at low SNR values. 
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(a) 

  

(b) (c) 

  

(d) (e) 

Figure 4.11: Reconstruction by Harmonic Bz algorithm for Model-1 (all images 
for iteration 7). (a) Real conductivity distribution for Model-1. (b) Reconstructed 
conductivity distribution, noise free data. (c) Reconstructed conductivity 
distribution SNR 30. (d) Reconstructed conductivity distribution SNR 20. (e) 
Reconstructed conductivity distribution SNR 13. 
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Total error plot comparison can be seen in Figure 4.12. As seen in figure, the 

minimum SNR value must be 30 to reconstruct good conductivity distributions. 

This algorithm is not stable for low SNR vales. But it reconstructs conductivity 

successfully without added noise. 
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Figure 4.12: Comparison of reconstruction errors for Harmonic Bz algorithm, for 
different SNR values and no noise data, for Model-1. 

 

4.7.1.2 Results for Model- 2 

As explained in Section 4.2.2, there are two square objects with different 

conductivity values than background, in the imaging slice and there are two 

orthogonal current injection patterns. 20 mA current is injected for both injection 

patterns. There are two cases for this model. First one is conductive case. For 

conductive case, the conductivities of squares are 2 S/m. The other case is 

resistive case. For resistive case, the conductivities of squares are 0.02 S/m. Also 

there are 10 different positions, which are shown in Table 4.8, used to test the 

spatial resolution performance of Harmonic Bz reconstruction algorithm by 

calculating the Full-Width-at-Half-Maximum (FWHM) values. 

Table 4.8: Number of pixels in the gap, for different positions 

Position 1 2 3 4 5 6 7 8 9 10 

Number of pixels in the gap 1 3 5 7 9 11 15 19 23 27 
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The reconstructed conductivity distributions for both cases with position 4 are 

shown in Figure 4.13. These results are taken without added noise. Also for each 

case and position, 4 iterations are used. Since, the algorithm starts to converge 

after 4th iteration. 

 

  

(a) (b) 

  

(c) (d) 

Figure 4.13: Reconstruction by Harmonic Bz algorithm for Model-2, position-4. 
(a) Real conductivity distribution for conductive case. (b) Reconstructed 
conductivity distribution for conductive case. (c) Real conductivity distribution 
for resistive case. (d) Reconstructed conductivity distribution for resistive case. 

 

Also, the Point Spread Functions for the middle row of the imaging slice and 

position-1 are shown in Figure 4.14. Calculated FWHM values according to 

change of gap between two squares for all positions are shown in Figure 4.15. 
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Figure 4.14: PSF for middle row of imaging slice by Harmonic Bz algorithm for 
Model-2, position-1. (a) For conductive case. (b) For resistive case. 
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Figure 4.15: FWHM values according to change of gap between two squares for 
all positions.  

 

As seen from Figure 4.15, the calculated FWHM values are close for conductive 

and resistive cases. For position-1, the gap between two squares is 1 pixel. Only 

for position-1, two reconstructed squares are merged. This means a pixel affects 

the other pixels which are placed around the target pixel. But for other positions, 

the calculated FWHM values are independent from the position of two squares. 

These results show that Harmonic Bz algorithm can reconstruct an object which 

is equal to a pixel size. But target object affects the pixels which are placed 

around this target object. 
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4.7.1.3    Results for Model- 3 

In Model-3, there are 9 small squares on the diagonal of the imaging slice. The 

sizes of the squares are equal to the size of a pixel.  

For this model, there are two cases which are conductive and resistive, to test the 

performance of algorithm. Background conductivity is 0.2 S/m. Conductive 

square conductivity is 2 S/m and the resistive square conductivity is 0.02 S/m. 

Reconstructed conductivity distributions for conductive case and resistive case 

are shown in Figure 4.16. 

  

(a) (b) 

  

(c) (d) 

Figure 4.16: Reconstruction by Harmonic Bz algorithm for Model-3 (after 
iteration 8). (a) Real conductivity distribution for conductive case. (b) 
Reconstructed conductivity distribution for conductive case. (c) Real 
conductivity distribution for resistive case. (d) Reconstructed conductivity 
distribution for resistive case. 
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The effect of the line integral, which is used in reconstruction algorithm, can be 

seen easily. Especially on the top left corner, a high change in the conductivity 

value can affect the rest of the column or row of the imaging slice. This is a 

disadvantage for this reconstruction algorithm. 

4.7.1.4    Results for Model- 4 

In Model-4, there is a square at the center of the imaging slice. The size of the 

square is 2.25 cm x 2.25 cm. There are two different cases which are conductive 

case and resistive case. For conductive case, the square is more conductive than 

background. For resistive case, the square is more resistive than background. 

Also there are 10 different contrast levels. This means, for each contrast level 

square has different conductivity value. The used conductivity values of square 

for all cases are shown in Table 4.3 in the Section 4.2.4. 

For conductive case and resistive case, 4 iterations are used for all contrast 

levels. The algorithm starts to converge at 4th iteration. 

For conductive case, the real conductivity distribution and the reconstructed 

conductivity distribution for squareσ = 0.4 S/m (contrast level-2) are shown in 

Figure 4.17. 

  

(a) (b) 

Figure 4.17: Reconstruction by Harmonic Bz algorithm for Model-4, contrast 
level-2. (a) Real conductivity distribution for conductive case. (b) Reconstructed 
conductivity distribution for conductive case (after iteration 4). 
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For resistive case, the real conductivity distribution and the reconstructed 

conductivity distribution for 
square

σ = 0.1 S/m (contrast level-2) are shown in 

Figure 4.18. 

  

(a) (b) 

Figure 4.18: Reconstruction by Harmonic Bz algorithm for Model-4, contrast 
level-2. (a) Real conductivity distribution for resistive case. (b) Reconstructed 
conductivity distribution for resistive case (after iteration 4). 

 

For conductive case, the square’s conductivity increases when the contrast level 

increases. But for resistive case, the square’s conductivity decreases when the 

contrast level increases. The square error plots according to the change of the 

contrast levels for both cases are shown in Figure 4.19. 
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Figure 4.19: Error plots of the square for 10 different contrast levels. 
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As seen from Figure 4.19, if we increase the difference between square 

conductivity value and background conductivity value, the error value of the 

reconstructed square will increase. This means if the contrast is high, the 

reconstruction error will be high. 

Also in Figure 4.20, the plot of the real conductivity values of square and mean 

of the reconstructed conductivity values of square for each contrast level can be 

seen. 
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Figure 4.20: Mean real conductivity and mean reconstructed conductivity versus 
10 different contrast levels. (a) For conductive case. (b) For resistive case. 
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4.7.1.5 Results for Thorax Model 

The model shown in Section 4.2.5 is used to test the performance of Harmonic 

Bz for noise-free data and noisy data. The reconstructed conductivity 

distributions are shown in Figure 4.21. 

 

(a) 

  

(b) (c) 

  

(d) (e) 

Figure 4.21: Reconstruction by Harmonic Bz algorithm for Thorax Model (all 
images for iteration 2). (a) Real conductivity distribution. (b) Reconstructed 
conductivity distribution, noise-free data. (c) Reconstructed conductivity 
distribution SNR 30. (d) Reconstructed conductivity distribution SNR 20. (e) 
Reconstructed conductivity distribution SNR 13. 
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As seen from Figure 4.21, the reconstructed conductivity distributions for noisy 

data are not good as noise free data. The total reconstruction errors for noisy case 

and noise free case are shown in Table 4.9. 

Table 4.9: Reconstructed error values for thorax model. 

 Noise-free 

case 

SNR30 SNR20 SNR13 

,totalσε  (%) 52.65 105.67 357.9 501.6 

 

4.7.2 Reconstruction by Variational Gradient Bz Algorithm. 

In this section, the reconstructed conductivity distributions of four different 

models are examined and discussed by using the Variational Gradient Bz (VGBz) 

algorithm explained in chapter 3. 

As explained in chapter 3, this iterative algorithm uses only the z component of 

the magnetic flux density (Bz), which is parallel to the main magnetic field. 

Different from the Harmonic Bz algorithm, VGBz algorithm differentiate Bz only 

once. Firstly the Bz is taken and the x-gradient and y-gradient of Bz is calculated. 

Then the x-gradient and y-gradient of the potential for uniform case are 

calculated. At the end the conductivity distribution can be calculated by using 

these gradient values. 

4.7.2.1 Results for Model- 1 

As explained in Section 4.2.1, there are five different conductivity regions in the 

imaging slice and there are two orthogonal current injection patterns. 20 mA 

current is injected for both injection patterns. 

The real conductivity distribution for model-1 is shown in Figure 4.22(a). The 

reconstructed conductivity distributions after iteration 1 and after iteration 9 are 

shown in Figure 4.22(b) and Figure 4.22(c). These results are taken for noise free 

data. 
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                                                         (a) 

  

(b) (c) 

Figure 4.22: Reconstruction by VGBz algorithm for Model-1 (noise free data). 
(a) Real conductivity distribution for Model-1. (b) Reconstructed conductivity 
distribution after iteration 1. (c) Reconstructed conductivity distribution after 
iteration 9. 

 

As seen from Figure 4.22, the reconstructed conductivity distribution at the 

corners of the imaging slice is not good as the reconstructed conductivity 

distribution at the other areas. This is a result of the differentiation of Bz along x 

and y directions. In VGBz algorithms x-gradient and y-gradient of Bz are 

calculated and summed. Especially at the edges of electrodes, this summation 

can affect the reconstructed conductivity distribution. This effect starts from the 

edges of electrodes and spread to the corners of the image. In Model-1, the ratio 

of electrode size to model edge is equal to 1/5. This means electrode size is equal 

to 1.8 cm for a 9 cm model edge. Tests on this algorithm show that, if electrode-
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edge ratio is equal or greater than 3/5, VGBz algorithm will successfully 

reconstruct the conductivity distributions at the corner of the imaging slice.  

The effect of the Electrode-Edge Ratio (EER) is shown in Figure 4.23. 

  

(a) (b) 

  

(c) (d) 

Figure 4.23: Effect of electrode-edge ratio (noise free data) (a) Reconstructed 
conductivity distribution, 1 iteration, EER=1/5. (b) Reconstructed conductivity 
distribution, 9 iterations, EER=1/5. (c) Reconstructed conductivity distribution, 1 
iteration, EER=3/5. (d) Reconstructed conductivity distribution, 9 iterations, 
EER=3/5. 

 

In Figure 4.23(a) and Figure 4.23(b), there are artifacts at the corners of the 

reconstructed conductivity distribution for small EER. If we increase the 

electrode size, these artifacts will disappear. This is shown in Figure 4.23(c) and 

Figure 4.23(d).  
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The 9th iteration is chosen. Since, VGBz algorithm starts to be stable after 

iteration 9. This is easily seen from the total error figure which is shown in 

Figure 4.24(a). All regions’ error characteristics are shown in Figure 4.24. The 

reconstructed error values of all regions, for iteration 1 and iteration 9 are shown 

in Table 4.10. 

Table 4.10: Reconstructed error values of all regions, for iteration-1, iteration-9 

 After iteration 1 After iteration 9 

,totalσε  (%) 48.72 42.44 

,backgroundσε  (%) 18.58 20.11 

,bigsquareσε  (%) 32.96 30.82 

,bigcircleσε  (%) 45.21 24.73 

,smallsquareσε  (%) 88.14 83.70 

,smallcircleσε  (%) 477.01 501.88 

 

As seen from Table 4.10, the small circle, which has very small conductivity 

value than the other regions, is reconstructed with a high reconstruction error. 

As seen from Figure 4.22 and Figure 4.24, VGBz algorithm reconstructs 

conductivity successfully without added noise. Only there are artifacts at the 

corners of reconstructed conductivity distribution for small electrode size. 
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(c) 

Figure 4.24: Reconstructed conductivity errors by VGBz algorithm for Model-1 
(noise free data). (a) Total error. (b) Background error, Big Circle error, Big 
Square error. (c) Small Circle error, Small Square error.   
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This reconstruction algorithm tested with different noise levels: SNR 30, 20 and 

13. The reconstructed conductivity distributions are shown in Figure 4.25.  

 

 

(a) 

  

(b) (c) 

  

(d) (e) 

Figure 4.25: Reconstruction by VGBz algorithm for Model-1. (a) Real 
conductivity distribution for Model-1. (b) Reconstructed conductivity 
distribution noise free data. (c) Reconstructed conductivity distribution SNR 30. 
(d) Reconstructed conductivity distribution SNR 20. (e) Reconstructed 
conductivity distribution SNR 13. 
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As seen from Figure 4.25, the reconstructed conductivity distributions for noisy 

data are good as noise free data. VGBz algorithm has a better noise immunity.  

This result is expected. Because, VGBz algorithm uses only one differentiation of 

Bz, which means one differentiation of both Bz and noise. So this algorithm gives 

good results for both noisy and noise free data.  

If we increase the number of current injection patterns, amount of currents, and 

size of electrodes, this algorithm will give good reconstructed conductivity 

distributions. 

Total error plot comparison is shown in Figure 4.26. As seen from the figure, this 

algorithm reconstructs conductivity successfully with low SNR values. But 

reconstruction errors for low SNR value will increase with the increasing number 

of iterations. 
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Figure 4.26: Comparison of reconstruction errors for VGBz algorithm, for 
different SNR values and noise free data, for Model-1. 

 

4.7.2.2  Results for Model- 2 

As explained in Section 4.2.2, there are two square objects with different 

conductivity values than background, in the imaging slice and there are two 
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orthogonal current injection patterns. 20 mA current is injected for both injection 

patterns.  

There are two cases for this model. First one is conductive case. For conductive 

case, the conductivities of squares are 2 S/m. The other case is resistive case. For 

resistive case, the conductivities of squares are 0.02 S/m. Also there are 10 

different positions, which are shown in Table 4.11, used to test the spatial 

resolution performance of VGBz reconstruction algorithm by calculating the 

Full-Width-at-Half-Maximum (FWHM) values. 

Table 4.11: Number of pixels in the gap, for different positions 

Position 1 2 3 4 5 6 7 8 9 10 

Number of pixels in the gap 1 3 5 7 9 11 15 19 23 27 

 

In Figure 4.27 and Figure 4.28, reconstructed conductivity distributions for both 

cases with position-4 can be seen. These results are taken without added noise. 

Also for each position, 4 iterations are used. Since, the algorithm starts to 

converge at iteration 4. 

 

  

(a) (b) 

Figure 4.27: Reconstruction by VGBz algorithm for Model-2, position-4, for 
conductive case. (a) Real conductivity distribution. (b) Reconstructed 
conductivity distribution. 
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(a) (b) 

Figure 4.28: Reconstruction by VGBz algorithm for Model-2, position-4, for 
resistive case. (a) Real conductivity distribution. (b) Reconstructed conductivity 
distribution. 

 

The Point Spread Function for the middle row of the imaging slice and position-1 

is shown in Figure 4.29. 

Calculated FWHM values according to change of gap between two squares for 

all positions are shown in Figure 4.30. 
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Figure 4.29: PSF for middle row of imaging slice by VGBz algorithm for Model-
2, position-1. (a) For conductive case. (b) For resistive case. 
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Figure 4.30: FWHM values according to change of gap between two squares for 
all positions.  

 

As seen from Figure 4.27, the calculated FWHM values for conductive case are 

smaller than FWHM values for resistive case. For position-1, the gap between 

two squares is 1 pixel. Only for position-1, two reconstructed squares are 

merged. The two square objects affect each other. But the other positions the 

FWHM values are nearly twice of the size of a pixel. This means a pixel affects 

the other pixels which placed around the target pixel. These results show that 

VGBz algorithm’s reconstruction performance is not good to reconstruct an 

object, whose size is equal to one pixel size. 

 

4.7.2.3  Results for Model- 3 

In Model-3, there are 9 small squares on the diagonal of the imaging slice. The 

sizes of the squares are equal to the size of a pixel. For this model, there are two 

cases, which are conductive and resistive, to test the performance of this 

algorithm. Background conductivity is 0.2 S/m. Conductive square conductivity 

is 2 S/m and the resistive square conductivity is 0.02 S/m. 

Reconstructed conductivity distributions for conductive case and resistive case 

are shown in Figure 4.31. 
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(a) (b) 

  

(c) (d) 

Figure 4.31: Reconstruction by VGBz algorithm for Model-3, (after iteration 8). 
(a) Real conductivity distribution for conductive case. (b) Reconstructed 
conductivity distribution for conductive case. (c) Real conductivity distribution 
for resistive case. (d) Reconstructed conductivity distribution for resistive case. 

 

The effect of the differentiation at the corner of the imaging slice can be seen. As 

described in previous section, this effect starts from the electrode edges. Also 

Figure 4.31 shows that an object, which has a size equal to a pixel size, affects 

the other pixels which placed around this object. 

 

4.7.2.4  Results for Model-4 

In Model-4, there is a square at the center of the imaging slice. The size of the 

square is 2.25 cm x 2.25 cm. There are two different cases which are conductive 

case and resistive case. For conductive case, the square is more conductive than 

background. For resistive case, the square is more resistive than background. 
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Also there are 10 different contrast levels. This means, for each contrast level 

square has different conductivity value. These are shown in Table 4.3 in the 

Section 4.2.4. For conductive case and resistive case, 5 iterations are used for all 

contrast levels. The algorithm starts to converge at 5th iteration. 

For conductive case, the real conductivity distribution and the reconstructed 

conductivity distribution for 
square

σ = 0.4 S/m (contrast level-2) are shown in 

Figure 4.32(a) and Figure 4.32(b). For resistive case, the real conductivity 

distribution and the reconstructed conductivity distribution for 
squareσ = 0.1 S/m 

(contrast level-2) are shown in Figure 4.32(c) and Figure 4.32(d). 

 
 

(a) (b) 

  

(c) (d) 

Figure 4.32: Reconstruction by VGBz algorithm for Model-4, contrast level-2. (a) 
Real conductivity distribution for conductive case. (b) Reconstructed 
conductivity distribution for conductive case (after iteration 5). (c) Real 
conductivity distribution for resistive case. (d) Reconstructed conductivity 
distribution for resistive case (after iteration 5). 
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For conductive case, the square’s conductivity increases when the contrast level 

increases. But for resistive case the square’s conductivity decreases when the 

contrast level increases. The square error plots according to the change of the 

contrast level for both cases are shown in Figure 4.33. 
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Figure 4.33: Error plots of the square for 10 different contrast levels. 

 

As seen from Figure 4.33, if the difference between square conductivity value 

and background conductivity value are increased, the error value of the 

reconstructed square will increase. This means if the contrast is increased, the 

error will be high. 

In Figure 4.34, the plot of the real conductivity values of square and mean of the 

reconstructed conductivity values of square for each level are shown. As seen 

from figure that for resistive case, the performance of algorithm is better than the 

conductive case. 
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(b) 

Figure 4.34: Mean real conductivity and mean reconstructed conductivity versus 
10 different contrast levels. (a) For conductive case. (b) For resistive case.  

 

4.7.2.5 Results for Thorax Model 

The model shown in Section 4.2.5 is used to test the performance of VGBz for 

noise-free and noisy data. The reconstructed conductivity distributions are shown 

in Figure 4.35. The total reconstruction errors for noisy and noise free case are 

shown in Table 4.12. 

Table 4.12: Reconstructed error values for thorax model 

 Noise-free 

case 

SNR30 SNR20 SNR13 

,totalσε  (%) 65.52 65.76 65.93 66.67 
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(a) 

  

(b) (c) 

  

(d) (e) 

Figure 4.35: Reconstruction by VGBz algorithm for Thorax Model (all images 
for iteration 3). (a) Real conductivity distribution. (b) Reconstructed conductivity 
distribution, noise-free data. (c) Reconstructed conductivity distribution SNR 30. 
(d) Reconstructed conductivity distribution SNR 20. (e) Reconstructed 
conductivity distribution SNR 13. 

 

As seen from Figure 4.35, the reconstructed conductivity distributions for noisy 

data are good as noise free data. But there are artifacts at the corners of image 

because of the small electrode size. 
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4.7.3 Reconstruction by Sensitivity Matrix 

In this section, the reconstructed conductivity distributions of four different 

models are examined and discussed by using the Sensitivity Matrix algorithm 

explained in chapter 3. 

As explained in chapter 3, this algorithm uses only the z component of the 

magnetic flux density (Bz), which is parallel to the main magnetic field. A 

sensitivity matrix is produced according to the change of conductivity values of 

each pixel in the imaging slice. It is produced for only the initial conductivity 

distribution. The pseudo inverse of this matrix is calculated using Singular Value 

Decomposition (SVD). For models explained in this thesis, the singular values of 

sensitivity matrix, which are very close to zero, are truncated. Because, their 

values are very close to zero and gives wrong reconstructed conductivity values.  

Then, the perturbations in magnetic field measurements are calculated. At the 

end the conductivity distribution can be calculated by using the perturbation in 

element conductivity values which are calculated.      

 

4.7.3.1  Results for Model- 1 

As explained in Section 4.2.1, there are five different conductivity regions in the 

imaging slice and there are two orthogonal current injection patterns. 20 mA 

current is injected for both injection patterns. 

The real conductivity distribution for model-1 is shown in Figure 4.36(a). The 

reconstructed conductivity distributions for noise free data are shown in Figure 

4.36(b).  
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(a) (b) 

Figure 4.36: Reconstruction by Sensitivity Matrix for Model-1. (a) Real 
conductivity distribution. (b) Reconstructed conductivity distribution for noise 
free data. 

 

For noise free data, the reconstructed conductivity error values of all regions are 

shown in Table 4.13.  As seen from Table 4.13, the small circle, which has very 

small conductivity value than the other regions, is reconstructed with a high 

reconstruction error.  

Table 4.13: Reconstructed error values of all regions, noise free data 

 Noise free case 

,totalσε  (%) 31.39 

,backgroundσε  (%) 17.76 

,bigsquareσε  (%) 33.73 

,bigcircleσε  (%) 8.59 

,smallsquareσε  (%) 66.81 

,smallcircleσε  (%) 94.35 
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This reconstruction algorithm reconstructs a conductivity distribution with low 

total error. 

Then this reconstruction algorithm tested with different noise levels: SNR 30, 

SNR 20 and SNR 13. The reconstructed conductivity distributions are shown in 

Figure 4.37.  

The reconstructed conductivity errors of all regions are shown in Table 4.14. 

Table 4.14: Reconstructed error values of all regions for noise free and noisy data 

 Noise 

free case 

SNR 30 SNR 20 SNR 13 

,totalσε  (%) 31.39 32.41 33.43 35.93 

,backgroundσε  (%) 17.76 20.57 22.93 29.43 

,bigsquareσε  (%) 33.73 37.92 42.53 51.71 

,bigcircleσε  (%) 8.59 9.78 9.88 11.59 

,smallsquareσε  (%) 66.81 66.62 66.77 65.12 

,smallcircleσε  (%) 94.35 94.30 94.24 94.16 
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(a) 

  

(b) (c) 

  

(d) (e) 

Figure 4.37: Reconstruction by Sensitivity Matrix for Model-1. (a) Real 
conductivity distribution for Model-1. (b) Reconstructed conductivity 
distribution, noise free data. (c) Reconstructed conductivity distribution SNR 30. 
(d) Reconstructed conductivity distribution SNR 20. (e) Reconstructed 
conductivity distribution SNR 13. 
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As seen from Table 4.14, if we decrease the SNR value, the total error value will 

increase. In Figure 4.37, the effect of SNR can be seen. This algorithm 

reconstructs conductivity distributions for noisy case good as noise free case. If 

we increase the number of current injection patterns and amount of current, this 

algorithm will give good reconstructed conductivity results for lowest SNR 

values. 

The mean reconstructed conductivity values and the real conductivity values of 

regions are shown in Table 4.15. 

Table 4.15: Mean reconstructed conductivity values of all regions for noise free 
and noisy data 

Mean Reconstructed Conductivity  Real 
Conductivity 

Noise free  SNR 30 SNR 20 SNR 13 

backgroundσ  (S/m) 0.2 0.2312 0.2334 0.2357 0.2390 

bigsquareσ     (S/m) 0.1 0.0702 0.0709 0.0720 0.0758 

bigcircleσ      (S/m) 0.4 0.3768 0.3799 0.3851 0.3890 

smallsquareσ  (S/m) 2 0.6638 0.6677 0.6646 0.6987 

smallcircleσ   (S/m) 0.02 0.0011 0.0011 0.0012 0.0012 

 

Sensitivity matrix is produced for an initial conductivity distribution which is 

uniform. The Sensitivity Matrix algorithm reconstructs conductivity distribution 

of the imaging slice. This reconstructed conductivity distribution can be used as 

initial conductivity distribution to produce a new sensitivity matrix. This 

produced sensitivity matrix can be used during reconstruction. 

In Figure 4.38, the reconstructed conductivity distributions for two different 

cases are shown.  

For case-1, the conductivity distribution is reconstructed by using sensitivity 

matrix which is produced from a uniform conductivity distribution.  

For case-2, the conductivity distribution is reconstructed by using sensitivity 

matrix which is produced from a reconstructed conductivity distribution.  
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The mean reconstructed conductivity values of all regions for two cases are 

shown in Table 4.16. 

 

  

(a) (b) 

Figure 4.38: Reconstructed conductivity distributions for two cases (for noise-
free data). (a) Case-1, reconstruction by sensitivity matrix produced from 
uniform conductivity distribution. (b) Case-2, reconstruction by sensitivity 
matrix produced from reconstructed conductivity distribution. 

 

Table 4.16: Mean reconstructed conductivity values of all regions for two cases 
(for noise free data). 

Mean Reconstructed Conductivity  Real 
Conductivity 

Case-1  Case-2 

backgroundσ  (S/m) 0.2 0.2312 0.2289 

bigsquareσ     (S/m) 0.1 0.0702 0.0798 

bigcircleσ      (S/m) 0.4 0.3768 0.4289 

smallsquareσ  (S/m) 2 0.6638 0.6824 

smallcircleσ   (S/m) 0.02 0.0011 0.0022 

 

As seen from Figure 4.38 and Table 4.16, reconstructed conductivity values for 

two cases are nearly same. For each case, the algorithm needs high computation 

time during sensitivity matrix production. If we choose initial conductivity 
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distribution sufficiently near to the true conductivity values, new sensitivity 

matrix production will be eliminated. 

In this study, the sensitivity matrix is calculated for only the initial conductivity 

distribution. Initial conductivity distribution is assumed 0σ =0.2 S/m. Then this 

matrix is used during conductivity distribution reconstruction. 

 

4.7.3.2 Results for Model-2 

As explained in Section 4.2.2, there are two square objects with different 

conductivity values than background, in the imaging slice and there are two 

orthogonal current injection patterns. 20 mA current is injected for both injection 

patterns. There are two cases for this model. First one is conductive case. For 

conductive case, the conductivities of squares are 2 S/m. The other case is 

resistive case. For resistive case, the conductivities of squares are 0.02 S/m. Also 

there are 10 different positions, which are shown in Table 4.17, used to test the 

spatial resolution performance of Sensitivity Matrix reconstruction algorithm by 

calculating the Full-Width-at-Half-Maximum (FWHM) values. 

Table 4.17: Number of pixels in the gap, for different positions 

Position 1 2 3 4 5 6 7 8 9 10 

Number of pixels in the gap 1 3 5 7 9 11 15 19 23 27 

 

In Figure 4.39, you can see reconstructed conductivity distribution for conductive 

case and resistive case. These results are taken for noise free data. 

 



 88 

  

(a) (b) 

  

(c) (d) 

Figure 4.39: Reconstruction by Sensitivity Matrix for Model-2, position-4. (a) 
Real conductivity distribution for conductive case. (b) Reconstructed 
conductivity distribution for conductive case. (c) Real conductivity distribution 
for resistive case. (d) Reconstructed conductivity distribution for resistive case.  

 

For conductive and resistive case, the Point Spread Function for the middle row 

of the imaging slice for position-1 is shown in Figure 4.40 and calculated FWHM 

values according to change of gap between two squares for all positions are 

shown in Figure 4.41. 
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Figure 4.40: PSF for middle row of imaging slice by Sensitivity Matrix algorithm 
for Model-2, position-1. (a) Conductive case. (b) Resistive case.  
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Figure 4.41: FWHM values according to change of gap between two squares for 
all positions.  

 

As seen from Figure 4.41, the reconstructed FWHM values are very close to the 

pixel size especially for conductive case. For position-1, the gap between two 

squares is 1 pixel. Only for position-1, two reconstructed squares are merged. 

The two square objects affect each other. But the other positions the FWHM 

values are very close to the size of a pixel. These results show that Sensitivity 

Matrix algorithm successfully reconstruct an object which is equal to a pixel size. 

It has a good spatial resolution performance for conductive and resistive cases.  
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4.7.3.3 Results for Model-3 

In Model-3, there are 9 small squares on the diagonal of the imaging slice. The 

sizes of the squares are equal to the size of a pixel. For this model, there are two 

cases which are conductive and resistive. Background conductivity is 0.2 S/m. 

Conductive square conductivity is 2 S/m and the resistive square conductivity is 

0.02 S/m. 

Reconstructed conductivity distributions for conductive case and resistive case 

are shown in Figure 4.42. These results are taken for noise free data. 

As seen in Figure 4.42, the Sensitivity Matrix algorithm successfully reconstructs 

conductivity distribution both for resistive case and conductive case. The effect 

of the one pixel sized square objects to the around neighboring pixels are very 

small. This is an advantage for this algorithm.  

The mean reconstructed conductivity values and the real conductivity values of 

squares are shown in Table 4.18. 

Table 4.18: Mean Conductivity values of squares  

Mean Conductivity(Conductive case) Mean Conductivity(Resistive case) 

,real squareσ  ,reconstructed squareσ  ,real squareσ  ,reconstructed squareσ  

2 0.5146 0.02 0.0136 
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(a) (b) 

  

(c) (d) 

Figure 4.42: Reconstruction by Sensitivity Matrix for Model-3. (a) Real 
conductivity distribution for conductive case. (b) Reconstructed conductivity 
distribution for conductive case. (c) Real conductivity distribution for resistive 
case. (d) Reconstructed conductivity distribution for resistive case. 

 

 

4.7.3.4 Results for Model-4 

In Model-4, there is a square at the center of the imaging slice. The size of the 

square is 2.25 cm x 2.25 cm. There are two different cases which are conductive 

case and resistive case. For conductive case, the square is more conductive than 

background. For resistive case, the square is more resistive than background. 

Also there are 10 different contrast levels. This means, for each level square has 

different conductivity value. These are shown in Table 4.3 in the Section 4.2.4. 
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For conductive case, the real conductivity distribution and the reconstructed 

conductivity distribution for 
square

σ = 0.4 S/m (contrast level-2) are shown in 

Figure 4.43(a) and Figure 4.43(b). 

For resistive case, the real conductivity distribution and the reconstructed 

conductivity distribution for 
square

σ = 0.1 S/m (contrast level-2) are shown in 

Figure 4.43(c) and Figure 4.43(d). 

 

 

  

(a) (b) 

  

(c) (d) 

Figure 4.43: Reconstruction by Sensitivity Matrix for Model-4, contrast level-2. 
(a) Real conductivity distribution for conductive case. (b) Reconstructed 
conductivity distribution for conductive case. (c) Real conductivity distribution 
for resistive case. (d) Reconstructed conductivity distribution for resistive case. 
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This algorithm successfully reconstructs conductivity distribution for Model-4 

and for all contrast levels. 

For the conductive case, the square’s conductivity increases when the contrast 

level increases. But for resistive case the square’s conductivity decreases when 

the contrast level increases. The square reconstruction error values according to 

the change of the contrast level for both cases are shown in Figure 4.44. 
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Figure 4.44: Error plots of the square for 10 different contrast levels. 

 

As seen from Figure 4.44, if we increase the difference between square 

conductivity value and background conductivity value, the error value of the 

reconstructed square will increase. Especially for resistive case the error values 

are very high for higher contrast levels. This means if the contrast is high, the 

error will be high. For conductive case, this algorithm has better reconstruction 

performance than resistive case for higher contrast levels. 

In Figure 4.45, the plot of the real conductivity values and mean of the 

reconstructed conductivity values of square for each contrast level can be seen. 

These results show that Sensitivity Matrix algorithm successfully reconstruct 

conductivity distributions for both cases. But the error values are high for high 

conductivity value differences between square and background.  
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Figure 4.45: Mean real conductivity and mean reconstructed conductivity versus 
10 different contrast levels. (a) For conductive case. (b) For resistive case.  

 

4.7.3.5 Results for Thorax Model 

The model shown in Section 4.2.5 is used to test the performance of Sensitivity 

matrix algorithm for noise-free and noisy data. The reconstructed conductivity 

distributions are shown in Figure 4.46. The total reconstruction errors for noisy 

and noise free case are shown in Table 4.19. 

Table 4.19: Reconstructed error values for thorax model. 

 Noise-free 

case 

SNR30 SNR20 SNR13 

,totalσε  (%) 57.82 57.90 57.98 58.20 
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(a) 

  

(b) (c) 

  

(d) (e) 

Figure 4.46: Reconstruction by Sensitivity Matrix algorithm for Thorax Model. 
(a) Real conductivity distribution. (b) Reconstructed conductivity distribution, 
noise-free data. (c) Reconstructed conductivity distribution SNR 30. (d) 
Reconstructed conductivity distribution SNR 20. (e) Reconstructed conductivity 
distribution SNR 13. 

 

As seen from Figure 4.46, the reconstructed conductivity distributions for noisy 

data are good as noise free data. The effect of noise to this algorithm is very 

small. 
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4.7.4 Reconstruction by Algebraic Reconstruction Algorithm 

In this section, the reconstructed conductivity distributions of four different 

models is examined and discussed by using the Algebraic Reconstruction 

algorithm explained in chapter 3. 

As explained in chapter 3, this iterative algorithm uses only the z component of 

the magnetic flux density (Bz), which is parallel to the main magnetic field. Same 

as Harmonic Bz algorithm, Algebraic Reconstruction algorithm uses Laplacian of 

Bz. Firstly, the Bz is taken and Laplacian of Bz is calculated. Then, the x-gradient 

and y-gradient of the current density for uniform case are calculated. At the end, 

the conductivity distribution can be calculated using the calculated logarithmic 

resistivity values.  

 

4.7.4.1 Results for Model- 1 

As explained in Section 4.2.1, there are five different conductivity regions in the 

imaging slice and there are two orthogonal current injection patterns. 20 mA 

current is injected for both injection patterns. 

The real conductivity distribution for model-1 is shown in Figure 4.47(a). The 

reconstructed conductivity distributions after iteration 2 and after iteration 8 are 

shown in Figure 4.47(b) and Figure 4.47(c). These results are taken for noise free 

data. 

After the iteration 2, the algorithm starts to be stable. This means after iteration 2 

the change in the reconstructed conductivity distribution is very small. It is easily 

seen from the total error figure which is shown in Figure 4.48(a). All regions’ 

error characteristics are shown in Figure 4.48. The reconstructed error values of 

all regions, for iteration 2 are shown in Table 4.20. 

As seen from Figure 4.47 and Figure 4.48, Algebraic Reconstruction algorithm 

reconstructs conductivity successfully without added noise. 
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                                                         (a) 

  

(b) (c) 

Figure 4.47: Reconstruction by Algebraic Reconstruction algorithm for Model-1 
(noise free data). (a) Real conductivity distribution for Model-1. (b) 
Reconstructed conductivity distribution after iteration 2. (c) Reconstructed 
conductivity distribution after iteration 8. 

 

Table 4.20: Reconstructed error values after 2 iterations 

,totalσε  

(%) 

,backgroundσε  

(%) 

,bigsquareσε  

(%) 

,bigcircleσε  

(%) 

,smallsquareσε  

(%) 

,smallcircleσε  

(%) 

27.05 22.72 43.66 18.27 55.96 208.23 
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Figure 4.48: Reconstructed conductivity errors by Algebraic Reconstruction 
algorithm for Model-1 (noise free data). (a) Total error. (b) Background 
error, Big Circle error, Big Square error. (c) Small Circle error, Small 
Square error. 
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As seen from Figure 4.48, the error values are very high after the first iteration. 

But after iteration 2, the error values become stable near an error value. 

Then this reconstruction algorithm tested with different noise levels, SNR 30, 

SNR 20 and SNR 13. The total error plot comparison is shown in Figure 4.49. 
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Figure 4.49: Comparison of reconstruction errors for Algebraic Reconstruction 
algorithm, for different SNR values and no noise case, for Model-1. 

 

In Figure 4.49 it is seen that if SNR equal to 30, the reconstruction error is very 

near to error for noise free data.  

The reconstructed conductivity distributions for noisy data and noise free data 

are shown in Figure 4.50. As seen from Figure 4.50 the reconstructed 

conductivity distribution are not good as noise free data. For lowest SNR values, 

this result is expected. Because Algebraic Reconstruction algorithm uses 

Laplacian of Bz, which means twice differentiation of both Bz and noise. For low 

SNR values, there are some dominant conductive pixels in the reconstructed 

conductivity distribution. According to these reasons it is seen that SNR must be 

high to take good results. Also increasing the number of current injection 

patterns and amount of current will give good reconstructed conductivity results 

with low SNR values. 
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(a) 

  

(b) (c) 

  

(d) (e) 

Figure 4.50: Reconstruction by Algebraic Reconstruction algorithm for Model-1 
(all images for iteration 2). (a) Real conductivity distribution for Model-1. (b) 
Reconstructed conductivity distribution noise free data. (c) Reconstructed 
conductivity distribution SNR 30. (d) Reconstructed conductivity distribution 
SNR 20. (e) Reconstructed conductivity distribution SNR 13. 
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4.7.4.2 Results for Model-2 

 

As explained in Section 4.2.2, there are two square objects with different 

conductivity values than background, in the imaging slice and there are two 

orthogonal current injection patterns. 20 mA current is injected for both injection 

patterns. There are two cases for this model. First one is conductive case. For 

conductive case, the conductivities of squares are 2 S/m. The other case is 

resistive case. For resistive case, the conductivities of squares are 0.02 S/m. Also 

there are 10 different positions, which are shown in Table 4.21, used to test the 

spatial resolution performance of Algebraic Reconstruction algorithm by 

calculating the Full-Width-at-Half-Maximum (FWHM) values. 

Table 4.21: Number of pixels in the gap, for different positions 

Position 1 2 3 4 5 6 7 8 9 10 

Number of pixels in the gap 1 3 5 7 9 11 15 19 23 27 

 

In Figure 4.51, the reconstructed conductivity distribution for both cases with 

position-4 can be seen. These results are taken without added noise. Also for 

each position, 2 iterations are used. Since, the algorithm becomes stable after 2nd 

iteration. 

Also, the Point Spread Function for the middle row of the imaging slice for 

position-1 is shown in Figure 4.52. 

Calculated FWHM values according to change of gap between two squares for 

all positions are shown in Figure 4.53. 
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(a) (b) 

  

(c) (d) 

Figure 4.51: Reconstruction by Algebraic Reconstruction algorithm for Model-2, 
position-4. (a) Real conductivity distribution for conductive case. (b) 
Reconstructed conductivity distribution for conductive case. (c) Real 
conductivity distribution for resistive case. (d) Reconstructed conductivity 
distribution for resistive case. 
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Figure 4.52: PSF for middle row of imaging slice by Algebraic Reconstruction 
algorithm for Model-2, position-1. (a) For conductive case. (b) For resistive case. 
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Figure 4.53: FWHM values according to change of gap between two squares for 
all positions.  

 

As seen from Figure 4.53, the reconstructed FWHM values are very close to the 

pixel size especially for conductive case. As seen from Figure 4.52, for position-

1, the gap between two squares is 1 pixel. Only for position-1, two reconstructed 

squares are merged for resistive case. The two square objects affect each other.  

These results show that Algebraic Reconstruction algorithm successfully 

reconstruct an object whose size is equal to one pixel size. It has a good spatial 

resolution performance. 

4.7.4.3 Results for Model-3 

In Model-3, there are 9 small squares on the diagonal of the imaging slice. The 

sizes of the squares are equal to the size of one pixel. To test the performance of 

this algorithm, conductive and resistive cases, are used. Background conductivity 

is 0.2 S/m. Conductive square conductivity is 2 S/m and the resistive square 

conductivity is 0.02 S/m. 

Reconstructed conductivity distributions for conductive case and resistive case 

are shown in Figure 4.54. 
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(a) (b) 

  

(c) (d) 

Figure 4.54: Reconstruction by Algebraic Reconstruction algorithm for Model-3, 
(after iteration 2) (a) Real conductivity distribution for conductive case. (b) 
Reconstructed conductivity distribution for conductive case. (c) Real 
conductivity distribution for resistive case. (d) Reconstructed conductivity 
distribution for resistive case. 

 

As seen in Figure 4.54, the Algebraic Reconstruction algorithm successfully 

reconstructs conductivity distribution for resistive case and conductive case. This 

is an advantage for this algorithm.  The effect of the one pixel sized square 

objects to the around neighboring pixels are very small for conductive case and 

resistive case. But the effect for resistive case is more than the effect for 

conductive case.  
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4.7.4.4 Results for Model-4 

In Model-4, there is a square at the center of the imaging slice. The size of the 

square is 2.25 cm x 2.25 cm. There are two different cases which are conductive 

case and resistive case. For conductive case, the square is more conductive than 

background. For resistive case, the square is more resistive than background. 

Also there are 10 different contrast levels. This means, for each contrast level 

square has different conductivity value. These are shown in Table 4.3 in the 

Section 4.2.4. 

For conductive case and resistive case, 2 iterations are used for all contrast 

levels. The algorithm starts to converge at 2nd iteration. 

For conductive case, the real conductivity distribution and the reconstructed 

conductivity distribution for 
squareσ = 0.4 S/m (contrast level-2) are shown in 

Figure 4.55. 

For resistive case, the real conductivity distribution and the reconstructed 

conductivity distribution for 
squareσ = 0.1 S/m (contrast level-2) are shown in 

Figure 4.56. 

 

 
 

(a) (b) 

Figure 4.55: Reconstruction by Algebraic Reconstruction algorithm for Model-4, 
contrast level-2. (a) Real conductivity distribution for conductive case. (b) 
Reconstructed conductivity distribution for conductive case (after iteration 2). 
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(a) (b) 

Figure 4.56: Reconstruction by Algebraic Reconstruction algorithm for Model-4, 
contrast level-2 (a) Real conductivity distribution for resistive case. (b) 
Reconstructed conductivity distribution for resistive case (after iteration 2). 

 

For the conductive case, the conductivity of square increases as the contrast level 

increases. But for resistive case, the conductivity of square decreases when the 

contrast level increases. The square error plots according to the change of the 

contrast level for both cases are shown in Figure 4.57. 

As seen from Figure 4.57, if we increase the difference between square 

conductivity value and background conductivity value, the error value of the 

reconstructed square will increase. This means if the contrast is increased, the 

error will increase. 
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Figure 4.57: Error plots of the square for 10 different contrast levels 
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Also in Figure 4.58, the plot of the real conductivity values of square and mean 

of the reconstructed conductivity values of square for each level can be seen. 
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(b) 

Figure 4.58: Mean real conductivity and mean reconstructed conductivity versus 
10 different contrast levels. (a) For conductive case. (b) For resistive case.  

 

These results show that Algebraic reconstruction algorithm successfully 

reconstruct conductivity distributions for both cases. But the error values are high 

for high conductivity value differences between square and background. 
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4.7.4.5 Results for Thorax Model 

The model shown in Section 4.2.5 is used to test the performance of Algebraic 

reconstruction matrix algorithm for noise-free and noisy data. The reconstructed 

conductivity distributions are shown in Figure 4.59.  

 

(a) 

  

(b) (c) 

  

(d) (e) 

Figure 4.59: Reconstruction by Algebraic reconstruction algorithm for Thorax 
Model (all images are for iteration-4). (a) Real conductivity distribution. (b) 
Reconstructed conductivity distribution, noise-free data. (c) Reconstructed 
conductivity distribution SNR 30. (d) Reconstructed conductivity distribution 
SNR 20. (e) Reconstructed conductivity distribution SNR 13. 
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As seen from Figure 4.59, the reconstructed conductivity distributions for noisy 

data are not good as noise free data. The low SNR value affects Algebraic 

reconstruction algorithm. The total reconstruction errors for noisy cases and 

noise free case are shown in Table 4.22. 

 

Table 4.22: Reconstructed error values for thorax model. 

 Noise-free 

case 

SNR30 SNR20 SNR13 

,totalσε  (%) 74.31 74.66 88.76 167.58 

 

 

4.8 Comparison of Four Magnetic Flux Density Based 

Algorithms 

 

In this section, four magnetic flux density based reconstruction algorithms are 

compared under the same conditions for different computer models. 

4.8.1 Noise-free data 

For noise free data same conditions are used to test the performance of different 

algorithms. All models use two orthogonal current injection patterns. 20 mA 

current is injected for both injection patterns. 

Three of the reconstruction algorithms are iterative algorithm. For this reason, 

the iteration number, which makes system stable, is chosen to compare results for 

each algorithm. For non-iterative reconstruction algorithm, only error values are 

taken for comparison.  

First of all, the performance of each algorithm is compared according to the 

Model-1 explained in Section 4.2.1. The reconstructed conductivity distributions 

of Model-1 for each algorithm are shown in Figure 4.60. 
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(a) 

  

(b) (c) 

  

(d) (e) 

Figure 4.60: Reconstructed conductivity distributions for Model-1 (noise free 
data). (a) Real conductivity distribution for Model-1. (b) Reconstruction by 
Harmonic Bz after iteration 7. (c) Reconstruction by VGBz after iteration 9. (d) 
Reconstruction by Sensitivity Matrix. (e) Reconstruction by Algebraic 
Reconstruction after iteration 2. 

 



 111 

The reconstructed conductivity error for all regions of Model-1 is shown in Table 

4.23. 

Also the comparison of three iterative algorithms according to the total error 

values and iteration numbers are shown in Figure 4.61. 

Table 4.23: Reconstructed error values of all regions for noise free data 

 Harmonic Bz  

 

(7 iteration) 

VGBz 

 

(9 iteration) 

Sensitivity 

Matrix 

Algebraic 

Reconstruction 

(2 iteration) 

,totalσε  (%) 33.83 42.44 31.39 27.05 

,backgroundσε  

(%) 11.17 20.11 

 

17.76 22.72 

,bigsquareσε  

(%) 23.05 30.82 33.73 43.66 

,bigcircleσε  

(%) 8.08 24.73 8.59 18.27 

,smallsquareσε  

(%) 72.67 83.70 66.81 55.96 

,smallcircleσε  

(%) 264.30 501.88 94.35 208.23 

 

Table 4.22 shows that the Algebraic reconstruction algorithm gives the lowest 

total error. But the total error value for Sensitivity Matrix algorithm is very close 

to the Algebraic Reconstruction algorithm’s error value. All of the iterative 

algorithms have high reconstruction errors for small object, which has small 

conductivity value. 

Also in Figure 4.60, it can be seen that, Sensitivity Matrix algorithm gives good 

results. Harmonic Bz algorithm and VGBz algorithm have blurring effects. The 

Harmonic Bz result seems good. If the conductivity image for Harmonic Bz 

algorithm is compared with the Sensitivity Matrix algorithm or Algebraic 

Reconstruction algorithm, it can be seen that the edges of objects for Sensitivity 
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Matrix algorithm and Algebraic reconstruction algorithm are sharper than 

Harmonic Bz image.  

Figure 4.60 shows that there are artifacts at the corners of the reconstructed 

conductivity distribution for VGBz algorithm. If we increase the size of the 

electrode, we will reduce these artifacts on corners of image. 
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Figure 4.61: Comparison of three iterative algorithms according to the total error 
values and iteration numbers. 

 

Figure 4.61 show that Algebraic Reconstruction algorithm has the lowest total 

error values in three iterative reconstruction algorithms. If the number of iteration 

increases, the reconstructed error values will decrease. Because this kind of 

algorithms correct themselves at each iteration until they converge a point. 

According to this, algorithms give good results for larger iteration numbers. But 

iteration is the main disadvantage for this kind of algorithms. Iterative algorithms 

need large computation times.  For example, a non-iterative Sensitivity Matrix 
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algorithm needs 822 seconds to reconstruct a conductivity distribution. An 

iterative Harmonic Bz algorithm needs 314 seconds for one iteration; this means 

for 7 iterations it needs 7*314=2198 seconds to reconstruct a good conductivity 

distribution.  

The spatial resolution performances of all algorithms are tested with different 

positions shown in Table 4.24. The spatial resolution performances of all 

algorithms are tested by calculating the Full-Width-at-Half-Maximum (FWHM) 

values. 

Table 4.24: Number of pixels in the gap, for different positions 

Position 1 2 3 4 5 6 7 8 9 10 

Number of pixels in the gap 1 3 5 7 9 11 15 19 23 27 

Models used in simulation have a pixel size equal to 0.225 cm x 0.225 cm. 

Model-2, which is explained in Section 4.2.2, is used to measure the FWHM 

values. The calculated FWHM values for all reconstruction algorithms are shown 

in Figure 4.62, for 10 different positions.  

Figure 4.62 shows that FWHM values for Sensitivity Matrix algorithm and 

Algebraic Reconstruction algorithm are very close to the pixel size. This means 

spatial resolution performances of these two algorithms are better than the other 

two reconstruction algorithms. The gap between two objects in Model-2 is equal 

to one for position-1. Only for position-1, two square elements are merged. This 

means two object affects each other for one pixel gap. But for other positions, 

these effect is disappeared.  

For resistive case and conductive case, the calculated FWHM values are 

independent from the position of two square elements. 
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Figure 4.62: Calculated FWHM according to the positions of two square 
elements. (a) Conductive case. (b) Resistive case. 

 

Model-4, explained in Section 4.2.4, is used to test the reconstruction 

performance according to the change of the difference between background 

conductivity and object conductivity.  

In Figure 4.63, the comparison plot of the real conductivity values and mean of 

the reconstructed conductivity values of square for each contrast level can be 

seen. 
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Figure 4.63: Comparison of mean real conductivity and mean reconstructed 
conductivity versus 10 different contrast levels, for all reconstruction algorithms.     
(a) For conductive case. (b) For resistive case. 

 

For conductive case, Algebraic Reconstruction algorithm reconstructs near 

conductivity values to the real conductivity values. For this reason, performance 

of Algebraic Reconstruction algorithm for conductive case is better than other 

reconstruction algorithms. But for resistive case, Harmonic Bz algorithm 

reconstructs similar conductivity values to the real conductivity values. For this 
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reason, performance of Harmonic Bz algorithm for resistive case is better than 

other reconstruction algorithms. Also in Figure 4.63(b) it is seen that, 

performance of Sensitivity Matrix is very near to the Harmonic Bz performance. 

If we increase the difference between square conductivity value and background 

conductivity value, the error value of the reconstructed square will increase. This 

means if the contrast is high, the error of the reconstructed conductivity values 

will be high. 

The reconstructed conductivity distributions of Thorax Model for each algorithm 

are shown in Figure 4.64. 

 

  

(a) (b) 

  

(c) (d) 

Figure 4.64: Reconstructed conductivity distributions for Thorax Model (noise 
free data). (a) By Harmonic Bz after iteration 2. (b) By VGBz after iteration 3. (c) 
By Sensitivity Matrix. (d) By Algebraic Reconstruction after iteration 4. 

 

For Thorax model, Sensitivity matrix algorithm has the best performance. 

Reconstructed conductivity image by VGBz has blurring effect. Also the effect of 
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line integral can be seen from Figure 4.64(a). All reconstruction algorithms could 

not reconstruct spinal cord which has high conductivity value. There is bone 

around the spinal cord. The conductivity of bone is very small. So the current can 

not flow inside the spinal cord. And the reconstruction algorithms can not 

reconstruct this region.  

  

4.8.2 Noisy data 

For noisy data, same conditions are used to test the performance of different 

algorithms. All models use two orthogonal current injection patterns. 20 mA 

current is injected for both injection patterns. SNR is chosen as 30 to test the 

performance of four reconstruction algorithms. 

Three of the reconstruction algorithms are iterative algorithm. For this reason, 

the iteration number, which makes system stable, is chosen to compare results for 

each algorithm. For non-iterative reconstruction algorithm only error values are 

taken for comparison.  

First of all, the performance of each algorithm is compared according to the 

Model-1 explained in Section 4.2.1. The reconstructed conductivity distributions 

of Model-1 for each algorithm are shown in Figure 4.65. 

The reconstructed conductivity error for all regions of Model-1 is shown in Table 

4.25. 
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(a) 

  

(b) (c) 

  

(d) (e) 

Figure 4.65: Reconstructed conductivity distributions for Model-1 (SNR 30). (a) 
Real conductivity distribution for Model-1. (b) Reconstruction by Harmonic Bz 
after iteration 7. (c) Reconstruction by VGBz after iteration 9. (d) Reconstruction 
by Sensitivity Matrix. (e) Reconstruction by Algebraic Reconstruction after 
iteration 2. 
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Table 4.25: Reconstructed error values of all regions for noisy data 

 Harmonic Bz  

 

(7 iteration) 

VGBz 

 

(9 iteration) 

Sensitivity 

Matrix 

Algebraic 

Reconstruction 

(2 iteration) 

,totalσε  (%) 192.19 42.67 32.41 33.14 

,backgroundσε  

(%) 245.58 20.99 20.57 29.59 

,bigsquareσε  

(%) 445.13 31.09 37.92 52.86 

,bigcircleσε  

(%) 103.56 24.73 9.78 21.44 

,smallsquareσε  

(%) 51.44 83.75 66.62 55.19 

,smallcircleσε  

(%) 2744.00 504.20 94.30 210.32 

 

As shown in Figure 4.65 and Table 4.25, the reconstructed conductivity 

distribution are not good as noise free data. Especially Harmonic Bz algorithm is 

very sensitive to the noise. For noisy data, the performance of Harmonic Bz 

algorithm is poor because of the twice differentiation of noisy Bz data. Signal-to-

noise ratio must be high to take good results.  

The reconstruction algorithm which gives third lowest error is Variational 

Gradient Bz algorithm. Because VGBz algorithm uses only one differentiation of 

Bz.. So it works successfully for noisy data. But there is a blurring effect on 

VGBz reconstruction image.  

According to the Table 4.25, Sensitivity Matrix algorithm’s total reconstruction 

error value is the lowest error. The effect of noise is very low for this algorithm. 
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Also, Algebraic reconstruction algorithms’ error value is very near to Sensitivity 

Matrix error value. These two algorithms are not sensitive as Harmonic Bz 

algorithm.  As seen from Figure 4.65, the edges of objects for Sensitivity Matrix 

and Algebraic Reconstruction algorithms are sharper than the other two 

algorithms’ reconstructed images. 

The reconstructed conductivity distributions of Thorax Model for each algorithm 

are shown in Figure 4.66. 

 

  

(a) (b) 

  

(c) (d) 

Figure 4.66: Reconstructed conductivity distributions for Thorax Model 
(SNR30). (a) By Harmonic Bz after iteration 2. (b) By VGBz after iteration 3. (c) 
By Sensitivity Matrix. (d) By Algebraic Reconstruction after iteration 4. 

 

Sensitivity matrix algorithm has the best reconstruction performance for noisy 

data. The number of current patterns or the size of the electrode can be increased 

to improve results for noisy data. 
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4.9 Experimental Results for Magnetic Flux Density Based 

Reconstruction Algorithms 

 

In this section, the measured Bz data taken from 0.15 Tesla METU MRI system 

are shown. Four magnetic flux density based reconstruction algorithm are tested 

with the measured experimental data. 

For experimental data, the phantom, which is explained in Section 4.3, was used. 

Only z component of B
�

 was measured. Because, the reconstruction algorithms 

explained in this study use only one component of magnetic flux density. 

The following steps were used to extract magnetic flux density from an MRI 

image. 

1. First, for vertical current injection pattern, the phase image of slice was 

taken with positive current. 

2. For vertical current injection pattern, the phase image of slice was taken 

with negative current. 

3. For horizontal current injection pattern, the phase image of slice was 

taken with positive current. 

4. For horizontal current injection pattern, the phase image of slice was 

taken with negative current. 

5. To produce Bz data for vertical current, the phase image of vertical 

current injection pattern with negative current was subtracted from the 

phase image of positive current case. 

6. To produce Bz data for horizontal case, the phase image of horizontal 

current injection pattern with negative current was subtracted from the 

phase image of positive current case. 

7. The target regions of these images were taken by masking the undesired 

regions. 
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8. Each subtracted images were divided by gyromagnetic ratio ( γ ), current 

applied time per excitation (
CT ). Finally we produce z component of 

magnetic flux density. 

The measured Bz data for vertical current injection pattern and horizontal current 

injection pattern are shown in Figure 4.67. 

 

  

(a) (b) 

Figure 4.67: Experimental Bz data. (a) For vertical current injection pattern.       
(b) For horizontal current injection pattern.  

 

As explained in Section 4.3, the experimental phantom has three regions which 

have different conductivity values. There is a square object which is more 

resistive than background and there is a circle object which is more conductive 

than background.  

For reconstruction of conductivity distribution from the experimental data, two 

methods were used during the matrix inversion in Sensitivity Matrix algorithm. 

The first one is Singular Value Decomposition (SVD), the other one is Least 

Square Method (LSM) [25]. The true conductivity distribution and reconstructed 

conductivity distributions by Sensitivity Matrix algorithm are shown in Figure 

4.68. 
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(a) 

  

(b) (c) 

Figure 4.68: Reconstructed conductivity distributions for experimental phantom. 
(a) True conductivity distribution. (b) Reconstruction by Sensitivity Matrix 
algorithm with SVD. (c) Reconstruction by Sensitivity Matrix algorithm with 
LSM. (The unit of conductivity is S.m-1) 

 

The Sensitivity Matrix reconstruction algorithm successfully reconstructs 

conductivity distribution for experimental data. The error values for 

reconstructed conductivity distribution for Sensitivity Matrix reconstruction 

algorithm are shown in Table 4.26. 

 

Table 4.26: Error values of regions for Sensitivity Matrix algorithm 

 Sensitivity Matrix 

(by SVD) 

Sensitivity Matrix 

(by LSM) 

,totalσε   (%) 32.94 33.57 

,backgroundσε  (%) 14.83 15.67 

,squareσε  (%) 65.27 67.19 

,circleσε  (%) 47.29 47.78 
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As seen from Table 4.26, the total error value of experimental data with SVD is 

very close to the total error value of experimental data with LSM. The 

background conductivity distribution can be reconstructed with less error value 

than the other regions. 

The reconstructed conductivity distributions with Harmonic Bz reconstruction 

algorithm, VGBz reconstruction algorithm and Algebraic reconstruction 

algorithm are shown in Figure 4.69. 

The reconstructed conductivity distributions after iteration 1 and after iteration 4 

are shown in Figure 4.69. 

As seen in Figure 4.69, the Harmonic Bz reconstruction algorithm could not 

reconstruct conductivity distribution for experimental data. Harmonic Bz 

reconstruction algorithm is very sensitive to noise. The SNR is equal to 13 [24] 

for 0.15 Tesla METU MRI system. Also this algorithm use Laplacian of Bz and 

line integral during reconstruction. For this reason, the reconstruction by 

Harmonic Bz algorithm is not successful for this system.  

The phantom used in experiments uses electrodes with small sizes. VGBz 

reconstruction algorithm could not reconstruct the conductivity distribution for 

experimental data. Because of the poor performance of VGBz algorithm for 

small sized electrodes. Also Algebraic reconstruction algorithm could not 

reconstruct conductivity distribution for experimental data. Since, the SNR value 

of the system is low.   
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4.69: Reconstructed conductivity distributions for experimental phantom. 
(a) By Harmonic Bz, 1 iteration. (b) By Harmonic Bz, 4 iteration.  (c) By VGBz, 
1 iteration. (d) By VGBz, 4 iteration. (e) By Algebraic reconstruction, 1 iteration. 
(f) By Algebraic reconstruction, 4 iteration.   
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Then the conductivity values of the elements in experimental phantom are 

changed. The same conductivity value is used for background which is equal to 

0.2 S/m. The conductivity value of circle object is increased to 1.9 S/m. And an 

insulator square object is used. With these changes, we increase the contrast 

between background and objects which are placed in background.  

For new experimental phantom, the measured Bz data for vertical current 

injection pattern and horizontal current injection pattern are shown in Figure 

4.70. 

 

  

(a) (b) 

Figure 4.70: Experimental Bz data. (a) For vertical current injection pattern.       
(b) For horizontal current injection pattern.  

 

For reconstruction of conductivity distribution from the new experimental data, 

SVD and LSM methods were used during the matrix inversion in Sensitivity 

Matrix algorithm. The true conductivity distribution and reconstructed 

conductivity distributions by Sensitivity Matrix algorithm are shown in Figure 

4.71.  

The error values for reconstructed conductivity distribution for Sensitivity Matrix 

reconstruction algorithm are shown in Table 4.27. 
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(a) 

  

(b) (c) 

Figure 4.71: Reconstructed conductivity distributions for experimental phantom. 
(a) True conductivity distribution. (b) Reconstruction by Sensitivity Matrix 
algorithm with SVD. (c) Reconstruction by Sensitivity Matrix algorithm with 
LSM. (The unit of conductivity is S.m-1) 

 

Table 4.27: Error values of regions for Sensitivity Matrix algorithm 

 Sensitivity Matrix 

(by SVD) 

Sensitivity Matrix 

(by LSM) 

,totalσε   (%) 80.60 81.00 

,backgroundσε  (%) 39.18 58.23 

,squareσε  (%) 392.57 391.13 

,circleσε  (%) 82.22 54.39 

 

As seen from Table 4.27, the total error value of experimental data with SVD is 

very close to the total error value of experimental data with LSM. As seen from 

Figure 4.71, Sensitivity Matrix reconstruction algorithm successfully 

reconstructs conductivity distribution for experimental phantom which has 

elements with high conductivity differences. 
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The reconstructed conductivity distributions with Harmonic Bz reconstruction 

algorithm, VGBz reconstruction algorithm and Algebraic reconstruction 

algorithm are shown in Figure 4.72. 

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4.72: Reconstructed conductivity distributions for experimental phantom. 
(a) By Harmonic Bz, 1 iteration. (b) By Harmonic Bz, 4 iteration.  (c) By VGBz, 
1 iteration. (d) By VGBz, 4 iteration. (e) By Algebraic reconstruction, 1 iteration. 
(f) By Algebraic reconstruction, 4 iteration.   
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As seen in Figure 4.72, the Harmonic Bz reconstruction algorithm could not 

reconstruct conductivity distribution for experimental data. Harmonic Bz 

reconstruction algorithm is very sensitive to noise. Since, this algorithm uses 

twice differentiation of noisy Bz data and line integral.  

For VGBz reconstruction algorithm and Algebraic reconstruction algorithm, the 

total reconstruction errors of all regions are shown in Table 4.28. 

 

Table 4.28: Error values of all regions for VGBz algorithm and Algebraic 
reconstruction algorithm 

VGBz Algebraic  

After 1 

iteration 

After 4 

iteration 

After 1 

iteration 

After 4 

iteration 

,totalσε   (%) 96.20 100.14 191.41 102.96 

,backgroundσε  (%) 85.01 237.99 646.83 231.38 

,squareσε  (%) 6.25 33.14 1354.2 641.38 

,circleσε  (%) 459.74 409.30 397.46 385.33 

 

As seen from Figure 4.72 and Table 4.28, reconstruction performance of 

Algebraic reconstruction algorithm and VGBz algorihm is very poor for 

experimental data. The phantom used in experiments uses electrodes with small 

sizes. Because of the small sized electrodes, VGBz reconstruction algorithm 

could not reconstruct good conductivity distribution for experimental data. 

Especially at the corner of the image there are artifacts. These artifacts spread 

into the image at iterations. Also Algebraic reconstruction algorithm’s 

reconstruction performance is not satisfactory. In this algorithm twice 

differentiation of noisy Bz is used during reconstruction. For low SNR values, the 

effect of noise on Algebraic reconstruction algorithm is very high. 
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4.10  Comparison of Simulation and Experimental Results 

 

In this section, reconstructed conductivity distributions are shown for simulated 

and experimental data. 

As explained in Section 4.9, two phantoms are used during experiments. Each 

phantom has different conductivity regions. The conductivity values for each 

phantom are shown in Table 4.29. 

 

Table 4.29: Experimental phantoms’ conductivity values 

Conductivity values (S/m) Region Object 

Phantom-1 Phantom-2 

1 Background 0.2 0.2 

2 Square 0.1 Insulator 

3 Circle 0.4 1.9 

 

The reconstructed conductivity distributions of simulated data and experimental 

data for Phantom-1 are shown in Figure 4.73.  

Birgül et al  [24] shows that the system SNR for 0.15 T  METU MRI scanner is 

equal to 13.  A random Gaussian noise, which is explained in Section 4.4, is used 

for simulations. Several random noise distributions with SNR 13 are produced 

and the noise distribution, which gives the best reconstructed conductivity 

distribution, is used for simulated data. 

For Phantom-2, the reconstructed conductivity distributions of simulated data 

and experimental data are shown in Figure 4.74. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Figure 4.73: Reconstructed conductivity distributions for Phantom-1 (after 4 
iterations). (a) Experimental, Harmonic Bz. (b) Simulation, Harmonic Bz. (c) 
Experimental, VGBz. (d) Simulation, VGBz. (e) Experimental, Sensitivity. (f) 
Simulation, Sensitivity. (g) Experimental, Algebraic. (h) Simulation, Algebraic.  
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Figure 4.74: Reconstructed conductivity distributions for Phantom-2 (after 4 
iterations). (a) Experimental, Harmonic Bz. (b) Simulation, Harmonic Bz. (c) 
Experimental, VGBz. (d) Simulation, VGBz. (e) Experimental, Sensitivity. (f) 
Simulation, Sensitivity. (g) Experimental, Algebraic. (h) Simulation, Algebraic. 



 133 

As seen in Figure 4.73 and Figure 4.74, the Harmonic Bz reconstruction 

algorithm could not reconstruct conductivity distribution for experimental data.  

Also the performance of Harmonic Bz reconstruction algorithm is very poor for 

simulated data. Harmonic Bz reconstruction algorithm is very sensitive to noise. 

Since, this algorithm uses line integral and twice differentiation of noisy Bz data. 

Reconstruction performance of Algebraic reconstruction algorithm and VGBz 

reconstruction algorithm is very poor for experimental data. The phantoms used 

in experiments use electrodes with small sizes. Because of the small sized 

electrodes, VGBz reconstruction algorithm could not reconstruct good 

conductivity distribution for experimental data. For simulated data, the effect of 

electrode size can be seen in Figure 4.73(d) and Figure 4.74(d). Especially at the 

corner of the image there are artifacts. These artifacts spread into the image at 

iterations. Also, Algebraic reconstruction algorithm’s reconstruction performance 

is not satisfactory. In this algorithm, twice differentiation of noisy Bz is used 

during reconstruction. For SNR 13, the effect of noise on Algebraic 

reconstruction algorithm is very high. 

The Sensitivity Matrix reconstruction algorithm successfully reconstructs 

conductivity distributions for experimental data. Sensitivity Matrix algorithm has 

good reconstruction performance for experimental phantom-2 which has 

elements with high conductivity differences. For simulated data, the performance 

of this algorithm is satisfactory for two phantoms. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

MREIT reconstructs images of electrical conductivity distribution based on 

magnetic flux density ( B
�

) measurements. This magnetic flux density is 

generated by an externally applied current on the object. And generated B
�

 is 

measured by MRI scanner. There are several methods to reconstruct conductivity 

distribution. MREIT reconstruction algorithms are classified into two groups. 

The first group use current density distributions. To produce current density 

distribution, three components of B
�

 are used. For this purpose, object must be 

rotated inside the MRI scanner. These kinds of reconstruction algorithms are 

called J-based reconstruction algorithms. On the other hand, the second group 

reconstruction algorithms use only one component of B
�

, which is parallel to 

main magnetic field of MRI system. These kinds of reconstruction algorithms are 

called B-based reconstruction algorithms. Using only one component of B
�

, 

eliminates the object rotation inside MRI scanner. 

In this thesis, four magnetic flux density based MREIT reconstruction algorithms 

were examined. The examined algorithms are: Harmonic Bz reconstruction 

algorithm, Variational Gradient Bz (VGBz) reconstruction algorithm, Sensitivity 

Matrix reconstruction algorithm and Algebraic reconstruction algorithm. These 

reconstruction algorithms were proposed by several research groups. 

To test the performance of reconstruction algorithms, different cases were used. 

Algorithms were tested with noise-free data, SNR 30 data, SNR 20 data and SNR 

13 data. Also different models were used. Four different computer models and 
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one experimental phantom were used. For each model four electrodes were used 

to inject two different and orthogonal current. Reconstructed conductivity 

images, reconstruction errors and spatial resolutions were compared for four 

different reconstruction algorithms. 

First, the algorithms are compared for noise free data. All reconstruction 

algorithms successfully reconstruct conductivity distributions for noise free data. 

Algebraic reconstruction algorithm gives the lowest total error which is equal to 

27.05 %. Also, the total error values for Sensitivity Matrix algorithm and 

Harmonic Bz algorithm are very close to each other. The total error values are 

31.39 % and 33.83 %, respectively. As said before, three of the reconstruction 

algorithms are iterative algorithms, Harmonic Bz, VGBz and Algebraic 

reconstruction. All of the iterative algorithms have high reconstruction errors for 

small object, which has small conductivity value. Harmonic Bz algorithm and 

VGBz algorithm have blurring effects. The Harmonic Bz result seems good. If the 

conductivity image for Harmonic Bz algorithm is compared with the Sensitivity 

Matrix algorithm or Algebraic Reconstruction algorithm, it can be seen that the 

edges of objects for Sensitivity Matrix algorithm and Algebraic reconstruction 

algorithm are sharper than Harmonic Bz image. For VGBz reconstruction 

algorithm, the reconstructed conductivity distribution at the corners of the 

imaging slice is not good as the reconstructed conductivity distribution at the 

other areas. This is a result of the differentiation of Bz along x and y directions. 

Especially at the edges of electrodes, differentiation can affect the reconstructed 

conductivity distribution. This artifact starts from electrode edges and goes to the 

corners of image. If we increase the size of the electrode, we will reduce this 

artifact on corners of image. 

For iterative algorithms, if the number of iteration increases, the reconstructed 

error values will decrease. Because this kind of algorithms correct themselves at 

each iteration until they converge a point. For this reason, algorithms give good 

results for larger iteration numbers. Because of the large computation time, 

iteration sometimes is a disadvantage. For example a non-iterative, Sensitivity 

Matrix algorithm needs 822 seconds to reconstruct a conductivity distribution. 

An iterative Harmonic Bz algorithm needs 314 seconds for one iteration; this 
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means for 7 iterations it needs 7*314=2198 seconds to reconstruct a good 

conductivity distribution. 

The spatial resolution performances of all algorithms are tested by calculating the 

Full-Width-at-Half-Maximum (FWHM) values. The calculated FWHM values 

are very near to one pixel size for Algebraic reconstruction algorithm. Also 

Sensitivity Matrix reconstruction algorithm has similar results with Algebraic 

reconstruction algorithm. 

To test the noise performance of reconstruction algorithms, SNR 30, SNR 20 and 

SNR 13 are used. The reconstructed conductivity distributions are not good as 

noise free data. Especially Harmonic Bz algorithm is very sensitive to the noise. 

For noisy data, the performance of Harmonic Bz algorithm is poor because of the 

twice differentiation of noisy Bz data. Signal-to-noise ratio must be high to take 

good results. Sensitivity Matrix algorithms’ total reconstruction error value is the 

lowest error. It is equal to 32.41 %. The effect of noise is very low for this 

algorithm. Also Algebraic reconstruction algorithms’ error value is very near to 

Sensitivity Matrix error value. The total error is 33.14 %. These two algorithms 

are not sensitive as Harmonic Bz algorithm. 

The reconstruction algorithm, which gives third lowest error, is the Variational 

Gradient Bz algorithm. Because VGBz algorithm uses only one differentiation of 

Bz.. So it works successfully for noisy data. But there is a blurring effect on 

VGBz reconstruction image. 

The number of current patterns, amount of injected current and the size of the 

electrode can be increased to improve results for noisy data. 

The performance of four magnetic flux density based reconstruction algorithms 

can be compared from performance chart which is shown in Figure 5.1. The 

related parameters for this performance chart are shown in Table 5.1. 
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Figure 5.1: Performance chart for four B-based reconstruction algorithms. 

 

Table 5.1: The parameters used for performance chart 

 Harmonic 
Bz 

VGBz Sensitivity 

Matrix 

Algebraic 

,totalσε  (%) (No noise) 33.83 42.44 31.39 27.05 

,totalσε  (%) (SNR 30) 192.19 42.67 32.41 33.14 

,totalσε  (%) (SNR 13) 463.33 47.75 35.93 63.71 

Reconstruction Time 

(minute) 

36.67  47.60 13.70 15.00 

Reconstructed Image 

Quality 

2 4 1 3 

In Figure 5.1, the algorithm, which is placed outer part of the performance chart, 

has the better reconstruction performance. The algorithm, which is placed near to 

the origin of the performance chart, has the worse reconstruction performance. 
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So Sensitivity Matrix reconstruction algorithm is the best reconstruction 

algorithm in four B-based MREIT reconstruction algorithms.  

 

5.2 Future work  

In this thesis study, four magnetic flux density reconstruction algorithms are 

explained, implemented and tested with different models and conditions. Some 

of the possible future work can be:  

i) Testing these reconstruction algorithms with more experimental 

data. 

ii) Improve the noise performance of these reconstruction algorithms, 

by this way small amount of currents can be injected to object.  
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