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ABSTRACT 

 

 
VARIABILITY MODELING IN SOFTWARE PRODUCT LINES 

 

 

KaĢıkçı, BarıĢ Can Cengiz 

 

 

M.S., Department of Electrical and Electronics Engineering 

 

Supervisor: Prof. Dr. Semih Bilgen 

 

September 2009, 134 pages 

 

 

 

Software product lines provide enhanced means for systematic reuse when constructing systems 

within a particular domain. In order to achieve this, systems in a product line are expected to 

have a significant amount of commonality. Variability is what distinguishes these systems from 

one another and is spread across various product line artifacts. This thesis focuses on modeling 

and managing product line variability. The concept of concerns is proposed as a means of 

variability modeling. Another proposal is related to the use of context free grammars to represent 

product line variability and to guarantee that any application derived according to the variability 

framework thus defined will be a valid one. This approach is evaluated for an example domain, 

in the light of novel evaluation criteria that are also introduced in the scope of this thesis. 

 

 

Keywords: Software Product Lines, Variability Modeling, Software Reuse, Software Product 

Line Metrics, Traceability, Concerns. 
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ÖZ 

 

 
YAZILIM ÜRÜN HATLARINDA DEĞĠġKENLĠK MODELLEME 

 

 

KaĢıkçı, BarıĢ Can Cengiz 

 

 

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü 

 

Tez Yöneticisi: Prof. Dr. Semih Bilgen 

 

Eylül 2009, 134 sayfa 

 

 

 

Yazılım ürün hatları belirli bir alana özgü sistemlerin geliĢtirilmesi aĢamasında yeniden kullanım 

olanaklarını artırmak için geliĢkin araçlar sunmaktadırlar. Bunun sağlanması için ürün hattına ait 

sistemlerin önemli ölçüde ortaklık bilgisine sahip olması beklenmektedir. Bununla birlikte, 

çeĢitli ürün hattı varlıklarına yayılmıĢ olan değiĢkenlik bilgisi, bu sistemlerin birbirlerinden ayırt 

edilmelerini sağlamaktadır. Bu tez ürün hattındaki değiĢkenliğin yönetilmesine ve 

modellenmesine odaklanmaktadır. DeğiĢkenliğin modellenmesi için kaygı kavramı ortaya 

atılmıĢtır. Bir baĢka öneri de kaygıya dayalı değiĢkenlik modellerinin gösteriminde bağlamdan 

bağımsız gramerlerin kullanılması ve bu yolla geçersiz uygulamaların geliĢtirilmesinin 

engellenmesidir. Bu yaklaĢım örnek bir alan üzerinde, gene bu tez kapsamında ortaya atılan 

özgün değerlendirme ölçütleri kullanılarak değerlendirilmiĢtir. 

 

Anahtar Kelimeler: Yazılım Ürün Hatları, DeğiĢkenlik Modelleme, Yazılımın Yeniden 

Kullanımı, Yazılım Ürün Hattı Metrikleri, Ġzlenebilirlik, Kaygılar. 
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CHAPTER 1 

CHAPTERS 

 

1 INTRODUCTION 

 

 

 

1.1 Software Reuse, Product Lines and Variability 

 

Efficient reuse in software has always been subject to abundant interest. The primary aim in 

providing reusable software artifacts is obviously for reusing them in products with significant 

commonality and possibly in families of products. The common term when referring to the 

collection of such family of systems is software product lines (SPL).  

 

As explained in [11], a slight distinction exists between SPL and software families. The term 

software family is related to commonality of the asset base shared by the constituents of the 

product family. On the other hand the term “product line” is rather market-related. It describes a 

set of products sold on the market. Thus, it is common that a product line (PL) encompasses 

more than one product family, in accordance with market needs. However both product lines and 

product families demand a significant amount of asset commonality. The rest of the text uses 

terms product line (PL) and software product line interchangeably, since in this scope and 

domain, they are identical. 

 

Typical software system development processes focus on the delivery of a single product to a 

single customer, which means that such processes do not consider much the issue of reproducing 

reusable artifacts. Among others, processes centered on Object Oriented Analysis and Design 

(OOAD) are very popular (Object Oriented Role Analysis Method [75], Rational Unified 

Process [76], Object Modeling Technique [77]…). 
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It is a very common criticism from the viewpoint of PL centered approaches that, the classical 

OOAD based approaches don’t provide enough guidance in developing reusable artifacts [69]. 

Furthermore these classical OOAD methodologies are far from being lightweight ones. They 

have artifacts related to requirements, model, code and many others. Certainly, PL approaches 

bring in some additional overhead and artifact support compared to the ones aimed at delivering 

a single product. One of the many challenges in dealing with PL approaches is to manage the 

additional overhead in a systematic manner. 

 

A central point of interest other than the commonality in PL’s is variability. Arguably it is the 

true essence of a PL. Variability is the ensemble of properties of products which make them 

different from others.  Carefully examining the variability and systematically relating it to the PL 

process artifacts, is a fundamental responsibility of a successful PL. 

 

However, as stated in [12], there is a clear problem of variability tracking when current PL based 

approaches are considered. The variability information is presented through so called features –

see section 2.2.6– and most apparently documented in feature diagrams as initially explained in 

[14] as an AND/OR hierarchy of features. This method of presenting the variability information 

introduces yet another level of abstraction in addition to the classical abstractions of software 

artifacts (requirements, use cases, architecture, design and source code). However it should not 

be forgotten that the variability information is present across all artifacts and they are all 

conceptually linked to each other. The need of a mechanism relating all the variability 

information spread through several artifacts is required for the tracking and retrieval of that 

information. This need corresponds to the understanding of variability traceability within this 

work. Achieving this traceability is one of the primary goals of this thesis and foundations to 

realize this goal are explained. 

 

In light of the issues that are just presented, some questions arise: How to completely and 

conveniently model and express PL variability? Is it possible to come up with an approach for 

formally and powerfully expressing variability across multiple PL artifacts? What are the 

benefits of such an approach in terms of traceability? How would an existing product line 

approach benefit from the enhanced traceability support for its variability information? Does 

such an approach add an important value to the conventional PL modeling techniques? Answers 

to these questions are sought throughout this work. 
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1.2 Purpose of the Study 

 

In this thesis, the concept of concerns is introduced as a means of modeling variability of PL 

artifacts and establishing traceability among these artifacts. Although further discussed in 

Chapter 3, a few words are necessary about concerns to clarify the concept and to better grasp 

the purpose of this study.  

 

Concerns are an extension of decisions. Decisions were discussed originally in [20] as an 

instrument for better variability modeling, supporting the traceability of variability among PL 

assets that lie in different levels of abstraction of software artifacts. They are proposed in the 

scope of this thesis and their usefulness for representing variability in a PL and system 

specification is discussed. 

 

Concerns provide more detailed traceability information than decisions do. They separate the 

variability information into two complementary categories, namely that of horizontal and 

vertical variability, thus providing more complete view into the assets that make up the PL. Also, 

ultimately they are expected to initiate the formation of a domain specific language (DSL) for 

specifying new products with greater ease and further accuracy than decisions would do.  

 

That being said, this study intends to introduce concerns as a more general replacement for the 

decisions mentioned in [12]. It is argued that any approach aimed towards the formation of a PL 

–or more specifically towards managing variability across a PL– will benefit from the usefulness 

of concerns.  Among others, most expected yields of this approach are, more realistic set of 

possible products due to the fact of many artifacts’ interactions’ being revealed;  reduced feature 

interaction problems; further ease of specification and composition of new products due to span 

of concerns over all artifacts.  

 

Another proposal presented in this thesis is the representation of PL variability using context free 

grammars (CFG). In this way, validity of systems developed in the PL, represented as strings 

generated via the CFG, may be effectively controlled. 
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1.3 Outline 

 

The rest of the thesis is organized in the following way: 

 

Chapter 2 presents a literature review performed in order to grasp notions related to PL, reuse, 

aspects, embedded systems, frameworks, reference architectures (RA) and other relevant topics. 

Embedded systems and some other related literature terms are introduced because the 

experimental work in this thesis is related with this field. Other than that, the ideas presented in 

this work are applicable to any major software development sub-domain (web applications, user 

interface design, network technologies).  

 

Chapter 3 introduces concerns as a means of tracking software PL variability. The discussion 

builds over decisions and extends them to introduce concerns. Use of CFG’s for representing PL 

variability using concerns is discussed. 

 

In Chapter 4, experimental work involving the study of real time scheduling algorithms (RTSA) 

domain is presented, first, supported by a classical PL approach, namely Feature Oriented Reuse 

Method (FORM) and then, with the same approach supported via concerns. Reasons for 

selecting this particular domain and PL approach are also indicated. 

 

In Chapter 5 two novel evaluation criteria for PL variability modeling effectiveness are 

proposed. The success of the PL approach using concerns is compared to the bare PL approach 

using these evaluation criteria. 

 

Finally, Chapter 6 concludes the subject by reviewing the contributions, achievements and 

shortcomings of the work. There is also an investigation for possible future research and 

application in this area.
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CHAPTER 2 

 

 

2 LITERATURE SURVEY  

 

 

 

2.1 Introduction 

 

The following section presents a survey of topics that are relevant to the subject of this study. 

Among others, software reuse, software product lines and decisions are discussed by 

emphasizing on the interrelations of these subjects, whenever necessary and possible. Real time 

embedded systems modeling approaches are also briefly reviewed because of the pertinence of 

the subject in the context of the experimental application of the proposed variability modeling 

approach.  

 

The idea relayed by decisions and concerns and the purpose of this study are tried to be linked 

with each possible item that is presented in the literature survey. 

 

Aspects and aspect oriented programming find their place in the following discussion because 

they have conceptual resemblance with the concept of concerns and decisions that are central to 

this study. They complement each other in many ways. This resemblance is further clarified in 

the survey. 
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2.2 Literature 

 

2.2.1 Software Reuse 

 

The root of the discussion for this work lies in efforts for establishing a convenient and efficient 

reuse environment. Software reuse is defined as the usage of previously acquired software 

artifacts or knowledge in order to construct new ones [63]. 

 

The first solid reuse idea was presented in [64], where components have been proposed as a 

means of achieving so called “software industrialization”. It has been argued that, in order to 

achieve useful reuse, software components that are classified in terms of precision, robustness, 

performance and other parameters are needed to be constructed. 

 

The evolution of the understanding of software reuse is particularly interesting for the sake of 

this work since it brings the discussion to PL’s and proactive ways of treating reuse, which are 

central ideas that this work is based on. Traditional software reuse can be classified into two 

major categories as code reuse and conceptual reuse. 

 

Code reuse can mean reusing bare code or organizing it in the form of libraries or more 

elaborately as frameworks. Bare code reuse generally relies on the knowledge of the software 

people so it is expected to be inefficient in terms of staff utilization. Furthermore it can be risky 

for its adopters, considering possible organizational restructurings. Using libraries to achieve 

reuse is a more structured approach compared to using bare code, yet libraries allow a small 

amount of extendibility. Also applications built on top of these libraries tend to be highly 

dependent on them. Frameworks described in section 2.2.14 are more sophisticated and they 

have relations with SPL’s. 

 

Conceptual reuse means reusing the abstract knowledge about a problem and its solution. This 

kind of reuse dates back to the introduction of software design patterns [65]. Software design 

patterns denote the ensemble of problem, forces, solution and consequences to recurring 
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software problems. They are not reused as code; rather they are needed to be integrated to 

designs according to the needs.  

 

A more abstract version of conceptual reuse is that of architectural design patterns [66]. They are 

the highest level patterns and they define the fundamental application structure. Generally such 

architecture is composed of several views and is considered to be a vital part of a software 

system and therefore needs consideration in early phases of system development. 

 

Ideas of design patterns and ultimately architectural reuse were influential for the foundations of 

Software Product Lines (SPL) and reference architectures which are further discussed in sections 

2.2.2 and 2.2.13 respectively.  

 

In short, a product line (PL) aims to achieve what is called proactive reuse. Reuse idea is meant 

to be integrated to processes and tools. Furthermore the goal is to reuse several aspects of 

software such as requirements, test cases, components, features, scenarios and not only code or 

patterns as in the classical approaches.  

 

2.2.2 Software Product Line Engineering (SPLE) 

 

The main driving force for constructing software PL’s is to satisfy varying customer needs. The 

fundamental question to answer is how to produce more and more personalized products at a 

lower cost with greater ease. The reuse scope in SPL’s is broad. It can include requirement, 

feature, component, test-case and architecture reuse. The essence of a solid PL lies in the 

thorough exploration of commonalities and variability for the considered family of products. A 

sound amount of commonality is essential for establishing the base of a successful PL. SPL 

commonality manifests itself in the form of common modules, components, classes in PL as 

described in [9]. As indicated in [8] and restated in many other resources [17], [14] and [29]; 

Software Product Line Engineering (SPLE) framework has two major engineering processes: 

 

1. Domain engineering, where commonality and variability for the PL are explored. A 

reference architecture is established at this point. In brief, essential domain engineering 

activities are: 
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o Domain Analysis: Definition of commonality and variability for the product 

family. The variability must be explicitly documented. This point is critical for 

establishing the traceability of variability. 

o Domain Design: Establishing a reference architecture. 

o Domain Realization: Detailed design involved in constructing reusable 

components. 

o Domain Testing: Quality assurance purposes, at PL level.  

It is important to note that these activities are not sequential. Moreover, 

sometimes they are not present and sometimes they are more elaborate or further 

decomposed into sub-steps in several PL approaches
1
. 

 

2. Application engineering, where the actual product is built by reusing the domain assets 

and focusing on the PL variability. Variability is resolved in domain engineering 

artifacts to lead to concrete products. 

 

It can be fairly stated that domain engineering is the principal theme around which all PL 

approaches revolve. Application engineering is expected to be rather trivial once the domain 

engineering internals are solid and the mapping methods from the domain to the particular 

application are well described. Traditionally, domain engineering stands for SPLE. Although the 

first explicitly named SPL methodology was PuLSE [70], other methodologies which were 

essentially presented as domain engineering approaches (e.g. Feature Oriented Reuse Method 

(FORM)), cover the essential core items of SPLE. For such historical reasons, the terms domain 

engineering and SPLE could be used interchangeably throughout the text. 

 

It is possible to observe previously mentioned PL phases in Figure 2-1, this figure is rather a 

mixture of FORM Engineering processes in [27] and the SPLE framework presented in [8].  

 

 

 

                                                 

 

 

1
 In the scope of this work, domain testing is not considered. 
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Figure 2-1 Software Product Line Engineering Processes (Adapted from [34] p. 7 and [27] 

p. 8) 

 

 

 

 

The items depicted in Figure 2-1 are encountered almost in every description of SPLE processes. 

The primary operation is to identify domain requirements in order to fully understand the 

domain (domain analysis). Then a methodology to indicate how to build related systems by 

expressing which items will be present considering the needs of the particular domain needs to 

be established (domain design). Then the bits and pieces to build those systems must be 

considered (domain implementation). Finally testing at a PL scope is required (domain testing).  

 

The arrow from the application engineering process to the domain engineering process in Figure 

2-1 indicates that domain engineering is open to any evolutionary feedback from application 

engineering. Also note that the arrow from the feature model to user requirement analysis 

indicates the usage of the feature model in requirements specification. 
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Obviously SPLE is not the best solution for any software problem. There are cases when it is 

more feasible to proceed without SPLE support. However any software process adapted at an 

institution, which has the potential to develop a family of software, is expected to benefit from 

domain engineering –thus SPLE–. 

 

Several SPLE methods are available which fit to the previously outlined process template. In the 

following discussion, some of these will be briefly reviewed. Particular attention to FORM and 

Feature Oriented Domain Analysis (FODA) [14] is paid, for the former is extended and used as 

the example method to demonstrate the usefulness of concerns in variability traceability 

management and the latter is the parent method of the former.  

 

A chronological layout of Domain Engineering and SPLE methodologies is presented in Figure 

2-2 to give a temporal evolution idea. A selection of the SPLE methods is discussed later in the 

literature survey. 

 

 

 

1985 2005

1986

DRACO

Neighbors [77]

1990

FODA (Feature Oriented Domain Analysis),

Kang et al. [13]

1993

JODA(Joint Integrated Avionics 

Working Group Object Oriented

Domain Analysis, Holibaugh [78])

1997

RSEB, Reuse Driven 

Software Engineering 

Business, 

Jacobson et al. [79]

1998

FORM (Feature Oriented 
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2.2.3 Variability Tracking 

 

As indicated in the section on SPLE, variability –and therefore its management and tracking– is 

a fundamental element of a successful PL. Traditionally, PL variability is defined as the 

ensemble of differences in between systems that belong to a PL in terms of features and 

requirements [55]. The item that varies in a PL is termed as the variation point (VP) whereas the 

actual instance of this variation –the actual value that this variation takes- is called the variant 

[56]. 

 

As it is just indicated, traditionally, SPL approaches such as FODA or FORM [27] attribute this 

variability to diversity of features of the systems that make up the PL and try to express 

individual systems in terms of these features. These approaches use features to parameterize 

their artifacts. 

 

However, as indicated in [9], PL variability actually has different characteristics, when 

requirements and design are considered separately. Techniques developed for modeling such 

variability are feature modeling for the former and parameterization techniques for the latter.  

 

Furthermore, in [56], it has been stated that the variability in a PL requires explicit decisions 

from product management, software architects, developers and maintenance staff. This 

ultimately brings in the need of variability management at a broader scope that covers several 

artifacts. It has also been indicated that the complexity of variability increases as the refinement 

level of PL artifacts increase along the so called “variability pyramid”. The layers on the 

mentioned variability pyramid are features, requirements, design, realization and test in the order 

of increasing refinement. Therefore, the importance of consistent and correct tracking of 

variability across various levels of refinement is emphasized. In order to achieve this, particular 

attention must be paid to conditional implications of multi layer variability in a PL –such as the 

inclusion of a particular feature because some other feature has been selected– as well as to the 

methods of representing the variability across different artifacts that form the PL.   

 

However, as evaluated in [12], modeling PL variations with the aid of features and feature 

models lack consistency and scalability and most importantly traceability. This problem has also 

been investigated by the work in [57] and it has been stated that feature models capture both 
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commonality and variability information which complicates them. Furthermore the inability of 

tracking variability information consistently across many PL artifacts with mere feature usage 

has been outlined. 

 

Such limitations of feature models in tracking variability ultimately led to the introduction of 

several approaches such as Orthogonal Variability Model [56] and decision based modeling 

[12]. These approaches both consider variability separately from all the artifacts and relate this 

information to those artifacts to be able to track it at an independent level. The concept of 

concerns takes decisions - section 2.2.4- as primary foundation and extends it in several ways as 

described in Chapter 3. 

 

2.2.4 Decision (Decision Point)  

 

The concept of decisions is crucial for modeling the variability and establishing its traceability to 

relevant PL artifacts. Decisions are presented in [20] as being modeling concepts that extend 

variation points. They constrain other variation points –which is an attribute of variation points 

as described in some other PL methods– and they provide a question which must be answered at 

the application engineering time in order to resolve the variability associated with the decision. 

Furthermore, a decision model is defined as a model that captures and tracks all variation points 

of all assets in a PL. By all assets, a range from product definitions to implementation and to 

user manuals is implied. Figure 2-3 shows a metamodel of a decision.  
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Figure 2-3 Decision metamodel (adapted from [20], p. 124) 

 

 

 

Decision metamodel is quite readable. A decision model is composed of several decisions and 

possibly their interdependencies. As pointed out before, decisions are generalizations of 

variation points. Variation points are represented via variability. Domain concepts have several 

variability items and are obviously associated with some decisions. The discussion of decisions 

further introduces simple decisions and dependencies (decisions, whose resolutions affect or 

depend on the resolution of other decisions). The constraint that ties a decision to another 

decision is called a resolution constraint. In the decision model this is how dependency between 

decisions is expressed. A constraint condition is used to represent the logical expression that 

relates several decisions –e.g. as alternatives–. Hence, resolution constraints make up constraint 

conditions.  

 

The question associated with the resolution of a simple decision is a simple “yes or no” question. 

In the case of a dependency, a decision constrains several variation points and therefore a simple 
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question is not able to express the variability relations that need to be resolved at application 

engineering time  and more elaborate expressions are used.  

 

Although it is true that feature models represent a “decision space” for software development as 

indicated in [27], decisions –also concerns– are more successful in doing so because they track 

variability further into artifacts due to their multilayer-spanning nature. 

 

Concerns are introduced, because it is believed that the variability information within a 

particular abstraction level of an asset cannot be accurately handled by using decisions. This is 

simply because the resolution of variability
1
 at a particular asset abstraction level may not be 

unique, or may require the resolution of several decisions within that level. This is one of the 

points that are addressed by concerns.  

 

Also it should be noted that decisions are good candidates for forming domain specific 

languages. Potential candidates could range from easy to use, check-boxed decision based user 

interfaces to more sophisticated generative languages with decisions –or concerns– as their 

foundation. The reason for this is that it is convenient for one to specify products in terms of the 

vocabulary and artifacts that are derived from that domain.  

 

2.2.5 Domain and Domain Specific Language 

 

The dictionary description of the term domain is “a sphere of knowledge, influence, or activity” 

[31].  

 

Prior to being considered in the scope of PL’s, domains were considered as being the real world 

counterparts of software entities and they were modeled in an artifact called domain model in the 

scope of object oriented (OO) analysis. A domain model, as explained in [19], describes all the 

                                                 

 

 

1
 The expression “resolution of variability” means selecting the appropriate variability items at application 

engineering stage to come up with the actual product from the variability model of the PL. 
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domain object types and the relationships among their instances, which collectively describe the 

domain space. In OO context, a domain model is a representation which is human readable and 

which, when read, makes sense in describing the solution to the problem in question. Domain 

model is a pictorial representation of the problem in terms of the conceptual objects (not 

necessarily objects as in object oriented programming (OOP)) that constitute the problem 

domain. Although they are not meant to be software objects, they have considerable influence 

over actual software objects’ derivations. 

 

The second interpretation of the term domain is central for the discussion of PL’s. Domain, in 

the context of SPL defines the scope of systems that are included in the PL. According to [17], 

the term domain, when considered in the scope of SPLE, also encompasses the knowledge to 

build software systems in that particular area. Therefore, better understanding of a domain that 

makes up a family of software systems, is expected to increase the chances of reuse for that 

particular family.  

 

According to [18] , domains are classified into the following complementary classes: 

 

1. Vertical domains span entirety of systems. As noted in [17], the application of domain 

engineering to a vertical domain is likely to result in reusable software in the form of 

domain specific framework –or at least initially a reference architecture–. 

2. Horizontal domains occupy defined parts of a system. Therefore if domain engineering 

is applied to a horizontal domain, it will most probably yield reusable components. 

 

The distinction between vertical and horizontal domains can be observed in Figure 2-4. In this 

picture the stripped parts represent the domain scope whereas the solid parts are system scopes. 

It can be seen that in the case of vertical domain, domain scope is identical to system scope. 
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Figure 2-4 Vertical and Horizontal Domains (adapted from [17] p. 42) 

 

 

 

A horizontal domain could further be decomposed as: 

 

1. Encapsulated domains which are localized properly by maintaining their integrity inside 

the systems 

2. Diffused domains which are made up of dispersed constituents. 

 

The distinction between an encapsulated and diffused domain is depicted in Figure 2-5. 

 

 

System 3

System 2

System 1

System 3

System 2

System 1

Horizontal Encapsulated 

Domains

Horizontal Diffused 

Domains

 

Figure 2-5 Horizontal encapsulated and diffused domains (adapted from [17] p. 42) 
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An essential activity in SPLE is to determine the scope of the domain for the PL. Several domain 

analysis methods have a dedicated process component for the identification of the domain scope 

such as FODA [14]. FODA defines this particular process component as context analysis and 

provides several context diagram-alike output artifacts in order to depict the scope of the 

domain.  

 

A topic related with domain and SPL’s is Domain specific languages (DSL). As the name 

indicates a DSL is a particular language aimed at satisfying the needs of a certain domain. As 

stated in [53] a DSL brings enhanced expressiveness to the domain it represents. Some famous 

DSL examples are Microsoft’s Excel Macros [51], Linux Kernel Configuration interface 

(menuconfig) [50] and HTML. Also as indicated in [52] many other examples are available such 

as PIC, SCATTER, YACC, CHEM, LEX, and Make.  

 

DSL’s are usually considered as being declarative languages and their usage generally leads to 

the generation of applications. The final applications can be complete binary entities. For 

instance, Linux kernel configuration tool will allow the Linux kernel code to be generated and 

therefore the binary file associated with it. Another possibility is the generation of partial 

skeletal code structure that needs further refinements. As an example, a unified modeling 

language (UML) profile that allows a particular domain to be modeled can be considered. In 

such a profile, in order to finalize the application, further coding is necessary.  

 

2.2.6 Feature  

 

A feature is defined as a prominent part or characteristic of an entity [31]. The idea of using 

features as a means of specifying system characteristics is a central one for the purposes of SPLE 

methods. The first to do so was FODA [14], which uses features mainly for requirements 

engineering. On the other hand, FORM [50] bases the entire lifecycle including component 

parameterization and realization on features. 

 

As indicated, in FODA, features are considered to be somewhat more end-user visible 

capabilities of applications. FORM, being a successor to FODA adopts the same definition and 
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elaborates slightly indicating features are unique functional abstractions that are used to 

communicate with the users, which should be implemented, tested, delivered and maintained.  

 

In Product Line UML based Software Engineering (PLUS) [9], a feature is considered to be a 

requirement or a characteristic that distinguishes the members of a PL, thus clarifying the 

commonalities and variability among them. It is expressed clearly in PLUS, and it is a known 

fact from the FORM and FODA methodologies’ perspective that features are used to track 

variability and establish commonality across constituents of a PL.  

 

There are several clusters of features identified by different methodologies. Based on [14], these 

can be listed as: 

 

1. Services  

2. Operations (user interactions) 

3. Presentation (what part(s) of the system exposed to users) 

4. Performance 

5. Hardware platform 

6. Cost 

7. Quality 

 

The idea of using features for system specification is a natural one. As an application domain 

matures, the developers, analysts and users tend to describe relevant systems in terms of well 

known terminology. For example if we consider the domain of operating systems scheduling 

algorithms, a partial system specification could be “priority based preemptive scheduling with 

round robin support”. 

 

In FODA and FORM, the fundamental shortcoming related to tracking variability by features is 

that such an approach merely considers users’ views of variability. Thus it won’t help in tracking 

some fundamental aspects of system properties deep into other PL asset levels. Although a 

layering of features is present both in FODA and FORM, this is a layering for the user’s point of 

view of systems in the PL and thus still does not cover PL artifacts completely. 
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As it has been the case for the work in [17], feature definition and understanding of Organization 

Domain Modeling (ODM) is more suitable for the transition of one’s state of mind from features 

to decisions –and ultimately to concerns- for tracking and modeling PL variability. In ODM, 

features are again considered to be uniquely identifiable properties of a system yet from the 

point of view of any stakeholder. What are relevant to a particular stakeholder may be just 

requirements, architecture, models or code and not only features. This is particularly true for 

domains where features –deemed as user visible capabilities– are not well suited for modeling 

variability. One such large domain is embedded systems software in general where user 

involvement is minimal and the parties involved into interactions with systems are other 

components, sub-systems or systems. 

 

2.2.7 Feature Modeling 

 

Feature modeling intends to demonstrate the common and variant features and the 

interrelationships in between these features, possibly on a convenient model. This concept has 

been introduced in [14]. For the purposes of this work, feature modeling techniques of FODA –

and therefore FORM- are relevant, therefore in the following discussion a summary of these 

techniques is presented as a feature modeling example. For a further discussion of various 

feature modeling techniques, a comprehensive collection can be found in [49]. 

 

For feature modeling, FODA is mainly focused on services provided by the applications and the 

operating environment that those applications run on. Features are organized in a diagram called 

the feature model.  Features are classified in three major categories, namely mandatory, optional 

and alternative (feature sets among which only one can be selected) features, along with 

compositional rules such as “mutual exclusion” and “requirement” in between them. An 

example FORM feature model could be seen in Figure 4-4
1
. 

 

                                                 

 

 

1
 Mutual exclusion and requirement relations are shown using UML stereotype notation in feature 

diagrams in this work without using a specific diagrammatic line style as in FORM. 
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FODA features are also categorized into three main classes in terms of their “bind time”. (By 

“bind time” the actual instantiation of the feature model for resolving the variability to represent 

a real product is meant). These are: 

 

1. Compile time features: features fixed in the packaging of the software. 

2. Load time features: features selected or defined at the beginning of the execution of 

applications. 

3. Run-time features: features that could be changed at operation time. 

 

Also, FODA and later on FORM classify features into four other main categories classified 

according to levels of abstraction. These are operating environments, capabilities, domain 

technology and implementation techniques. 

 

Then, the task is to find features matching these categories; classify them and validate the entire 

feature model against several applications that fit into the domain. At this point an input from 

domain experts is necessary.  

 

2.2.8 FODA (Feature Oriented Domain Analysis) 

 

As the name of the methodology implies, FODA is a domain analysis method with feature 

analysis as its prime driver. It dates back to times when the term “software product lines” were 

not common and it was launched as being a domain engineering methodology. FODA arose out 

of the need to discover commonality across several related applications, which forms the 

foundations of a solid PL. FODA, has been described in [14] and the following discussion 

constitutes a brief summary of the original text. 

 

Three principal activities (process components or sub processes) are defined in FODA as being 

context analysis, domain modeling and architecture modeling. These components as well as their 

resulting products are illustrated in Figure 2-6.  
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Figure 2-6 Domain analysis in FODA (adapted from [14] p. 7)  

  

 

 

During context analysis, the primary objective is to determine the scope of the domain. This 

includes many things such as project constraints, identification of stakeholders and most 

importantly determining the scope of the product. This sub process’ outputs are structure 

diagrams, context models and block diagrams. 

 

After the scope of the domain has been determined, in the domain modeling phase, commonality 

and variability for the systems that make up the domain are explored. Domain modeling phase is 

further broken down into 3 modeling activities. These are feature analysis and modeling, entity-

relationship modeling and functional analysis.  

 

FODA feature modeling has been described as part of feature modeling in section 2.2.7 which 

treats the subject individually. 
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Second task in domain modeling is that of entity relationship modeling. Entity relationship 

models usually consists of domain objects (entities) and their relationships such as “is a” and 

“consists of” and their primary goal is to represent the domain information in a more readable 

form. Entity-relationship diagrams are inspiring for the actual system structures. 

 

Final task for domain modeling is functional analysis of the domain. This task is necessary in 

order to specify functions and behaviors that must be fulfilled by the system. Functions are 

represented via activity diagrams and behaviors via statecharts. Feature modeling and entity 

relationship modeling has lots of inputs for functional decomposition. FODA also demands that 

features be integrated into the functional model. In this way traceability between the functional 

specification and feature model could be established. Also an analyst dealing with the 

specification of functions needs to understand the consequences of his/her decisions in 

constructing an actual product out of the functional model. The same argument is valid for the 

feature model too. For this purpose, FODA provides decisions –not the decisions in section 

2.2.4– in order to make clear for the analyst the various implications of actual calls.  

 

It should be noted that by integrating features into functional model, variability information 

present in features are somehow inserted into the model too. However it should also be 

understood that the level of variability introduced into functional specification is limited with 

that of features. 

 

The final activity in FODA is architecture modeling. This activity aims to produce a reference 

architecture as an artifact from which it would be possible to bring the design to a more clear and 

detailed level and ultimately construct the components. FODA aims to construct a four tier 

architecture.  

 

In this layered structure, FODA focuses primarily on the top two levels. The highest level, 

namely that of domain architecture, focuses on processes at the domain scope, their concurrent 

behavior and interconnections among them. The level below that is the domain utilities layer and 

it shows the decomposition of functions and objects residing in modules and the module 

interactions. Elements of the common utilities layer are common across domains and those of 

systems layer are lower level facilities such as the ones provided by the operating system.  
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FODA suggests embedding feature-related information into the architecture model. Also, FODA 

acknowledges the fact that many of the design decisions are left out until implementation and 

that the architectural modeling phase of the methodology needs to gather these in the form of 

issues –standing partially for decision points described in 2.2.4– and decisions – standing for 

actual instances of decision points with resolved variability– in the model.  

 

FODA uses Design Approach for Real Time Systems (DARTS) method described in [28] to 

construct mainly the domain architecture and domain utilities layer of its architectural model. 

However this method is not applied in the experimental work and for further details one can 

refer to [14] and [28]. 

 

Another important thing that is mentioned in the feasibility study is that the domain analysis 

efforts’ outputs should be verified against at least one product that has been left out during the 

analysis yet still believed to belong to the domain. Such an effort is necessary to demonstrate the 

applicability of the analysis to products that are likely to fall into the same domain.  

 

2.2.9 FORM (Feature Oriented Reuse Method) 

 

FORM makes the distinction of domain engineering and application engineering clear as it is 

depicted in the general template for SPLE methodologies in Figure 2-1. Actually FORM is 

proposed as an extension to FODA. Being feature oriented, FORM tries to capture the 

commonalities and variability among several systems in a domain in terms of features just as 

FODA does and from that information it tries to build domain architectures and components. 

FORM has been initially introduced in [27] and the following is primarily a summary of the 

original text. 

 

The construction of a feature model is essential in FORM as it is in FODA. Previous methods 

mostly focused on the usage of features for the requirements engineering phase and had little or 

no emphasis on software design and implementation. Also, FORM explicitly mentions the 

application engineering process that represents the process flow related to individual 

applications. Therefore what FORM tries to achieve is to map the feature based analysis into 
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modules that are identified by those features which have the capability to represent each product 

in the PL. 

 

FORM identifies several so-called engineering principles to construct architectures and 

components. These principles are an improvement that FORM brings over FODA. Briefly 

summarized, they are: 

 

 Classification of reusable artifacts in different abstraction layers. These are subsystem 

models, process models, module models, module specifications and implementations. 

 Parameterization of artifacts using features. Using this method, features are embedded 

into components and remain untouched until instantiation. Therefore it is possible to 

relate feature selections with the component instantiations. Here it should be noted that 

FORM acknowledges that this parameterization could be achieved up to only a certain 

degree. The limitation is due that of features and their limited power in expressing 

variability.  

 FORM advises the usage of a layered architectural framework. This layering is 

compliant with the layering of features as described in FODA. The basic layering of the 

architecture in FORM is:  

o Subsystem 

o Process 

o Module 

 

It should be noted that parameterization of artifacts is a central idea in all PL centered 

approaches. The parameterization technique should be appropriately selected according to the 

needs of the particular domain that is under consideration. 

 

Regarding the process aspects of FORM, as in all PL approaches, two principal engineering 

activities are present. These are domain and application engineering. The flow is practically the 

same as that in Figure 2-1 with several details and omissions inherent to the methodology itself. 

 

FORM mentions nothing related to the testing of a family of products neither in the domain nor 

in the application engineering phases. This could be considered as a lack in a complete PL 

approach but this is another debate. This information is provided so that the Figure 2-1 could be 
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regarded with a filtered view, for it represents a more general picture. At the time of the writing, 

testing in PL’s is another hot topic of discussion which is out of the scope of this work. 

 

FORM elaborates on the original model specified by FODA although the main activities are the 

same. FORM considers context analysis and feature modeling as a whole to contribute to the 

“feature space” whereas architectural modeling is considered as belonging to the “artifact 

space”.  

 

Concerning first of the feature space related activities, namely context analysis, the receipt for its 

success is indicated as choosing a domain with high amount of commonality. The question is, 

how to be sure about the amount of commonality in a domain? FORM considers domains with 

available standards and well established histories as wise candidates for successful PL’s.  

 

Following the domain context determination, the essential activity of a PL, namely that of 

feature analysis should be performed. This is described in section 2.2.7 on feature modeling 

which describes this process for FODA which is ultimately adopted by FORM.  

  

Feature classification of FORM helps in identifying the systems from different points of view. 

Capabilities could be thought of as the services provided by the systems, whether they are 

functional, non-functional or performance related. The operating environment features are pretty 

clear from their name, they are related to the platform and operating systems related aspects of 

systems. Domain technologies and implementation techniques are more low level and their 

respective feature classes are apparent from their names.  

 

Moving on to the artifact space, domain engineering has the principal responsibility of clearly 

establishing a reference architecture. To better grasp FORM’s layered architectural approach, the 

reference architecture spot of Figure 2-1 needs elaboration. This elaboration can be seen in 

Figure 2-7. (For more detailed discussion on reference architecture concept, refer to Section 

2.2.13) 
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Figure 2-7 Detailed Reference Architecture in FORM (adapted from [27], p. 8) 

 

 

 

As it is the case with all PL approaches, one of the most crucial activities is to map features to 

the architectural components. In doing so, FORM adopts two major philosophies: 

 

1. Differentiate between functional and non-functional features. The former will be used 

to identify the components and the latter to classify them and determine types of 

connectors in-between them. This phase makes use of the previously mentioned 

engineering principles of FORM. 

2. Use the feature hierarchy to map features into FORM architectural layering. Briefly 

each level deal with the following: 

a. For the subsystem model, fundamental decomposition of the system 

functionality must be considered. For this model, prime input is the capability 

related features. 
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b. Process model is related with the internals of a subsystem. Obvious from its 

name, this model aims to achieve a decomposition of features with regard to 

factors such as transiency, residency, periodicity, performance among others.  

c. It is particularly important to note that, module models are affected by the 

feature models of all levels. As a matter of fact FORM underlines certain 

similarity between the feature decomposition hierarchy and the decomposition 

within a module. Module structure’s feature parameterization could be done via 

popular parameterization techniques such as generalization or template 

instantiation. 

 

For what concerns application engineering, user requirements related to a specific application 

must be identified and features from the feature analysis should be matched with these 

requirements. The feature model - user requirement matching mechanism should check any 

discrepancies that might arise due to restrictions in the feature model and guide the users. A 

more sound idea about FORM application engineering can be obtained from the experimental 

work in section 4.4.  

 

2.2.10 Feature Oriented Product Line Engineering (FOPLE) 

 

FOPLE is an extension to FORM which itself is an extension to FODA. Actually the work in 

[29] introducing FOPLE, does not represent major novelty over FORM, rather it simply polishes 

the method to fit better with the contemporary ones. It introduces the fancy term “product line 

engineering” in FORM by taking into account marketing and product planning aspects of a PL. 

It was mentioned in the introduction (Chapter 1) that the term software product lines is mostly 

related to market aspects. PuLSE made this term more popular, and FORM, which already was a 

SPLE methodology, officially acquired that title. 

 

As a part of FOPLE, Marketing and Product Plan (MPP) is introduced. MPP is described as the 

initial step in gathering PL assets. As the name indicates a marketing plan is an artifact that 

states clearly the potential possibilities for selling the product. This includes identifying the 

potential user profile, clarifying major high level features, quality issues and legal constraints 

among others. MPP requires feedback from PL requirements analysis. Also MPP fixes some 
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quality attributes that should be present in all aspects that make up the system. Therefore, it is of 

fundamental importance from a user’s point of view. 

 

The product plan phase of MPP is related to more specific product features that are suitable for 

the previously established marketing plan. Feature analysis is also a key factor in achieving this. 

It helps developing products that are scalable, so that they can be related easily with many users’ 

requirements.  

 

2.2.11 PLUS 

 

PLUS is one of the most recent and comprehensive PL engineering approaches that takes 

advantage of UML constructs. It has been described in [9] and the following discussion briefly 

summarizes the methodology. PLUS methodology is covered in the literature survey because it 

emphasizes traceability of feature variations throughout the PL process which pertains to the 

goals of this work.  

 

In PLUS, one can identify five major phases for constructing a PL. These are requirements 

modeling, analysis modeling, design modeling, component implementation and testing. As with 

all PL approaches, this flow manifests itself in two lanes, namely that of domain and application 

engineering.  

 

The key novelty about PLUS is that it uses UML constructs such as use cases, class diagrams, 

collaboration diagrams and many others to represent PL concepts such as PL requirements, 

feature diagrams and object interactions among PL objects. PLUS introduces several stereotypes 

–such as optional or mandatory– in order to express relationships that are common among PL 

artifacts.  

 

In the requirements model, use cases and features are related to provide traceability. 

Furthermore, for each feature that is identified in the requirements modeling phase, traceability 

must be established between it and the software object that implements this feature in the 

analysis modeling phase. Hence, PLUS applies the idea of variability tracking in several PL 
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artifacts such as requirements and design elements where features are mainly used to explore the 

variability.  

 

2.2.12 Component 

 

2.2.12.1 Component Definition 

 

Although the literature on the definition of a component is very rich, there is wide agreement on 

some aspects of it. As cited in [7], a component is a unit satisfying predefined needs through its 

interfaces. Interface definitions are mostly related to the functional expressiveness of a 

component.  

 

As defined in [22], the interface of a component can be defined as the description of its access 

point. Interfaces of a component seem to be compliant with the interface definition in object 

oriented world such as with Java interfaces and with abstract classes in C++ (ones providing at 

least a single pure virtual method) in that they do not provide any implementation related aspects 

and allow interface extendibility by remaining backward compatible.  

 

Usually a proper component possesses distinct interfaces for providing multiple unrelated 

services or at least this is preferable for the clearer description of the interfaces. Here by a 

service, a logical grouping of provided/required functionality is meant. According to the 

definition of multiple interfaces it can be suggested that the components have test interface, 

configuration interface, event triggering interface and so on depending on the needs.  

As explained previously, the mere specification of an interface is depicting the functional 

properties of components but usually lack in expressing the extra-functional ones. These 

properties are quality attributes such as accuracy, availability, latency and security as indicated 

in [24]. To overcome these limitations, component specification by contracts is an alternative 

[25], however interface based description is sufficient for the purposes of this work. 
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2.2.12.2 Component Oriented Software Engineering and 

Architectural Mismatch 

 

The ultimate goal of component oriented approaches is to build systems out of components that 

are readily available from different vendors, a task often called “component wiring”.  

 

Although plausible, this idea is idealistic in the fashion that it is presented currently, because this 

approach seems to underestimate fundamental concerns such as system architecture and 

performance. In fact it is a very painful task to try building components that could suit the needs 

of any application. This situation of architectural component mismatch is clearly stated in [10]. 

The authors have faced several harsh difficulties such as abundant code, poor performance and 

need of fundamental modification in external packages due to the fact that some components 

deemed off-the-shelf, required serious updates to suit their needs. Furthermore it has been stated 

that the mismatch could nearly always be attributed to architectural roots.  

 

This generally happens because components built to suit the needs of a large span of developers 

usually contain excessive and unnecessary infrastructural support or worse, they may not even 

contain the mandatory infrastructure for the application in question. Moreover control structure 

of components –event loops and main thread of control- could be a significant spot of mismatch.  

Also the assumptions related with the representation and traffic of data in between components 

is open for inconsistencies. A similar problem is emphasized in [22], that component based 

systems have problems of sensitivity to change and this situation usually manifests itself in the 

form of unexpected failure occurrences with the introduction of application level changes to 

constituent components of the system. 

 

At this point, the central question to ask is that whether component definitions really need to be 

uniform and have a lot in common or does it make more sense to  specialize their definitions 

according to a particular domain’s needs? Answer to this question is sought in section 2.2.12.3. 
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2.2.12.3 Components and Software Product Lines 

 

Even within a defined software family domain, there are debates on the definition of a 

component. As indicated in [1], several consider a component as a process in the embedded 

systems domain. On the other hand, some assume that compositions of components are 

components themselves. These last two arguments are not likely to fit together due to possible 

different priority levels that the processes may possess and combination problems associated 

with it. 

 

As a further example, a common clustering criterion for components in embedded systems – 

note that this could still be achieved using interfaces in a single component – is to separate data 

and control related entities. This kind of separation is a bit more high level than that of separate 

interfaces for logically separate functionality. FORM [29] adopts as an engineering principle the 

allocation of control functionality and data processing functionality to different components. 

Furthermore in [30], it has been indicated that components that take care of control or data 

manipulation should be placed in two separate planes namely that of data and control plane. 

Such separation has been required due to the fundamentally separate issues that these planes 

address. It has been stated that the primary aim of a control plane element is to assure 

correctness whereas for the data plane, efficiency is the most important concern.  

 

Resolution of the conflict related to component definition is one of the early steps to be taken, if 

end products of SPL efforts are expected to be true reusable components. The current presence 

of such discrepancies between component specifications is promising for the increasing success 

of PL approaches. Many developers face the mentioned integration problems in their everyday 

work. This is because usually different product domains demand different architectural 

structures.  

 

All these difficulties point out that, reusable components may make more sense when they are 

considered within a PL. Discrepancies just mentioned within the embedded systems domain 

further reveal that the size and scope of the domain is also important for accurate and valid 

component specification. The domain of embedded systems software therefore could be 

considered as being too broad. 
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Therefore, it can be suggested that a component definition specifically targeted towards a 

particular PL’s needs is expected to be more resilient and reliable. The size and the completeness 

of the services provided by components could render them unusable in platforms restricted in 

terms of resources. This brings in a tradeoff between reusability and usability. That being said, if 

the ultimate goal in developing components is reusability without any consideration of usability, 

there may be inter-violations of system and/or performance requirements in-between 

components developed with that goal. 

 

Mismatch between components of the same product family is less expected than that between 

ones with little functional intersection. Furthermore although it cannot be claimed that 

components in the same product family are usually constructed with the same architectural 

approach, it is believed that they should be. This can only be achieved by imposing several 

restrictions related to the component internals and interactions via the reference architecture of a 

PL. The purpose of such architecture is made clearer in section 2.2.13, but briefly it can be 

considered as a first step architecture to initiate product construction and a set of rules and 

practices that facilitate the integration efforts for components that make up the systems in the 

PL.  

 

Although not much attention has been paid to component construction in PL’s as part of this 

work, the component understanding previously mentioned reflects an important part of the 

general understanding of a PL approach. This is because variability modeling techniques 

described in this thesis are expected to be applied for constructing components that are 

developed with the mentioned philosophy in mind. 

 

2.2.13 Reference Architecture 

 

The term reference architecture has several different interpretations depending on the context. In 

[60], reference architectures are considered in different contexts such as that of customer, 

technical architecture and business architecture.  

 

As an example of the non-technical view of reference architectures, the description in [4] 

suggests that a reference architecture is a consistent set of best practices to be used by all the 
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teams in a organization. In this respect, creation of reference architecture is considered as an 

organizational issue; in the sense that the structure, content and management of reference 

architecture should be based on the organization’s own needs. Actually this view of reference 

architecture is representing the general idea of reference architecture, without paying particular 

attention to PL’s. 

 

The definition in terms of PL’s is to be considered mainly under technical reference architecture. 

In the technical side, reference architecture is related to a high level architecture. However, as 

indicated in [5], reference architecture should not be confused with architectural style. 

Architectural styles are well known recurring patterns related with high level conceptual reuse, 

which, when applied lead to known results. The well known examples are layered architecture, 

pipe and filter, client-server and so on. So unlike an architectural style which consists of some 

rules of thumb which when followed, allows arriving to the system architecture, the reference 

architecture is already intrinsically present in the system architecture, so it is an architecture but 

a generic one. Notable technical reference architecture examples are ADAGE of IBM [62] from 

avionics domain and KOALA project from Phillips [61] from consumer electronics.  

 

With all types of reference architecture, assets from prior efforts in real projects are considered 

as beneficial when shaping the reference architecture. Furthermore, reference architecture is 

practically always considered as a living thing and to keep it up to date is essential for its 

success. 

 

2.2.14 Framework 

 

A framework is a structure that imposes several rules and restrictions upon its constituents [1]. 

These are meant to be present for the betterment of the systems built using those frameworks. As 

an example, the constraint that serial channel communication items are byte streams enhances 

the reusability of the protocol among parties that want to use it to exchange data. This definition 

is compliant with the definition of reference architecture –mostly technical reference 

architecture-which itself imposes several rules of composition, structure and communication. 
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In the scope of PL’s, frameworks can be considered as the extended and enhanced versions of 

reference architectures, providing tools and facilities to construct systems as scoped by the 

reference architecture. Ultimately, PL frameworks should supply the tools and mechanisms to 

their users to build systems within the PL scope. In the meantime such frameworks should assure 

that during the composition and creation of these new systems, fidelity to the reference 

architecture is kept. However in addition to being based on the reference architecture, a 

framework needs to provide full support for expressing variability of the domain it represents.  

 

Up until now several very successful frameworks have been developed, but it is disputable 

whether they are fitting the framework definition that has just been provided for SPLE. As an 

example Rhapsody
1
 is an integrated development environment (IDE) that supports Model 

Driven Development (MDD) through the use of UML and has an extensive object oriented 

framework which helps to build platform independent systems, which later can be specialized 

into platform specific ones via the tool’s built in support.  

 

In order to benefit from such a framework, its domain scope should be carefully selected. Since 

frameworks are assumed to be useful composition environments for new systems, it is believed 

that the ultimate and most productive outcome of domain engineering methods is domain 

specific frameworks. A similar view has been stated in [26], that a framework is an incomplete 

template for a system within a specific domain.  

 

In section 2.2.12 which is related to components, the difficulty of wiring components was 

mentioned and the primary reason for such a mismatch was indicated to be architectural 

mismatch. It has been indicated that restriction of the components to a certain domain could help 

in overcoming such difficulty. This is further eased if the components’ presences are managed 

via the framework that they are embodied in.  

  

As a matter of fact, several framework structures have been suggested to handle such a problem. 

One such infrastructure to overcome architectural mismatches is to opt for a framework that is 

                                                 

 

 

1
 Rhapsody is a registered trademark of IBM Rational. 
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comparable to a circuit board with empty slots into which components could be inserted to 

create a working product instance as described in [6]. This view of component oriented 

frameworks is presented in Figure 2-8. In a circuit board, among other facilities that are 

provided, the rack has fundamental infrastructural support to supply power to boards and provide 

the inter-board communication infrastructure. 

 

Consistent with this analogy; the components have no existence without the depicted variant free 

framework skeleton. It is this variant free skeleton that assures proper communication among 

components and it is what gives the vitality to components. This architectural structure for the 

framework is initially suggested in a work from Philips [32]. 

 

 

 

Pluggable 

components

Variant free 

skeleton

 

Figure 2-8 Component Frameworks with plug-ins (Adapted from [6] p.218) 
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In Figure 2-8, it can be seen that there is no independent deployment of ground skeleton 

components as well as pluggable components. Furthermore the reuse strategy in such 

frameworks is composition based and composition requirements are specified in detail via 

interfaces. Obviously composition has the advantage of run-time interchangeability over 

inheritance in OO reuse. Pluggable components introduce variability into the overall application 

and we suggest that all of the –common and variable– components are compliant in terms of 

architectural criterion.  

 

2.2.15 Aspects and Aspect Oriented Programming  

 

In the context of aspect oriented programming (AOP), an aspect is a cross-cutting concern that is 

spread through many modules in a software system and that cannot be properly separated away 

from those modules. The effort to integrate aspects –such as error handing, logging, performance 

criteria- to a code usually results in what is called a tangled code [15].  

 

The idea of aspects grew out of the limitations of programming paradigms that were used prior 

to the paradigm of AOP. The main logic behind procedural and object oriented programming 

(PP, OOP) paradigms is to divide the concerns making up a software system so that they are well 

encapsulated; as subroutines in the former approach and as classes in the latter. But some 

obvious concerns like the ones mentioned before could not be encapsulated properly inside 

modules. This lack of expression power gave birth to the concept of aspects. 

 

In [15] aspects are defined as properties of a system that cannot be cleanly localized in a general 

procedure as with OOP and PP, that are not parts of the functional decomposition of a system. 

The aspect definition has an important relation with software reuse. Other than several 

inefficient and awkward ways, the usual means by which cross-cutting concerns are incorporated 

into systems built without direct aspect support is by introducing that proper cross-cutting issue 

into each and every encapsulated module that requires it. Then a possible change about the issue 

for a brand new system will require a series of changes in every encapsulated element. This is a 

poor practice in terms of reuse; actually very few items, if any could be reused in the original 

design at all. 
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Hence, proper identification and incorporation of aspects into systems designed without 

considering aspects will have a positive effect on reuse. The controversy is that aspects require 

several language support mechanisms in order to be used, which is not always possible.  

 

Identifying these cross cutting concerns and ascertaining them as dispersed information is a 

fundamental way of reasoning about any kind of modeling scheme. The initial intent was aimed 

at easing some odd parts related to procedural and object oriented modeling. This intent has been 

another source of inspiration for a different modeling approach for PL’s in this work. 

 

When regarded from a PL perspective, several important aspects are present in the artifacts that 

constitute the PL itself. Of central importance and consideration is variability. Variability can be 

considered as an aspect that is dispersed through PL artifacts, which when not managed 

effectively, results in “tangled” PL models and assets.  

 

The aim in using concerns is to reduce this tangling of variability information, representing it 

neatly for the user of the model. Moreover, usage of concerns aims to bring significant ease and 

efficiency in resolving the variability to build real systems by considering variability as an 

artifact that is present in all of the PL assets.  

 

A distinction must be made between the aspect language in which the aspects are specified and a 

component language in which the hierarchically –or functionally– decomposed units are 

specified. Keeping this distinction in mind, several important terms need to be defined in order 

to proceed with the discussion of AOP. 

 

Join Point: A join point is either a built in construct or is an element specified in any possible 

manner of the component language as defined in [15]. It is the exact point where the cross-

cutting concern cuts the component language. In other words it is the point where the aspect 

should be present.  

 

Point Cut: According to [16], point cuts are a means to refer to the join points. They can be 

considered as a collection of join points since they specify that collection.  
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Advice: Advices are method-like constructs that are used to define the additional behavior at 

join points. 

 

In terms of the AOP jargon, the triplet ensemble of join point, pointcut and advice form an 

aspect. The information model of an aspect as it is originally described can be seen pictured in 

Figure 2-9.  
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Figure 2-9 Aspect metamodel 

 

 

 

Although original ideas were presented back in 1997, the consequent research on aspect oriented 

programming mainly focuses on how to integrate the aspects into an existing language in many 

ways. The literature is very populated with such work (Java, C, C++ …).  

 

However, from the AOP point of view, a joint point model can be conceptually interpreted in a 

different way than it is interpreted for general purpose programming languages.  
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With all the debate going on about AOP and its applicability, the foundations it provides could 

be used for novel models resembling join point models. This is achievable when we think in line 

with the consideration of variability as a different aspect. The question is: What if we have a 

central aspect called variability, our join points are carefully and hierarchically distributed 

throughout all –or some- of our PL artifacts and finally our pointcuts are specified with the aid 

of a higher level, DSL? The essential argument is that variability traceability is expected to be 

easier to achieve with such an approach. 

 

2.2.16 Real Time Embedded Software  

 

Experimental work performed within the scope of this study is based on real time scheduling 

algorithms. Real time scheduling algorithms are primarily used in real time operating systems 

(RTOS). A vast amount of real time embedded systems software run on RTOS’s. Scheduling of 

processes in an RTOS is a fundamentally critical and is one of the core elements for RTOS’s 

making them clearly different than a regular operating system (OS). This difference of 

scheduling mechanisms has its roots in the difference between embedded application internals 

and other applications. Understanding embedded systems’ properties is helpful for grasping the 

objectives of real time scheduling algorithms (RTSA). 

 

In very general terms, an embedded system is a computer system designed for a specific 

dedicated purpose. As specified in [2], to regard embedded software just as software on small 

computers is inappropriate, since embedded systems exhibit more fundamental differences 

compared to desktop computing.  

 

The essential difference is that embedded systems need an interaction with the physical world 

and this interaction requires a fairly sound understanding of the physical world itself. This gives 

rise to the fact that embedded software needs to be more dependable and it should be able to 

sustain its integrity regardless of the possible unexpected external behavior. It is expected that 

embedded systems operate for very long periods of time, with -usually- clear timing 

requirements and responsiveness.  

 



 40 

Timeliness is a particularly important concern in real time systems. A real time system is one 

which, as the name implies needs to fulfill some real time constraints, such as operational 

deadlines. Real time systems are classified in two major groups, namely hard and soft real time 

systems. As stated in [3], in the case of hard real time systems, a missed deadline constitutes an 

erroneous computation and system failure. Thus late data is useless and wrong. On the contrary, 

soft real time systems are characterized by time constraints which can be missed depending on 

the particular circumstance or by small deviations or completely in some cases. Obviously, real 

time scheduling mechanisms that such real time software is operating against are critically 

important for the sake of such systems. 

 

In addition to timeliness, different classes of embedded software have different performance, 

reliability, availability, quality of service (QoS) etc. requirements. 
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CHAPTER 3  

 

 

3 USING CONCERNS FOR TRACING VARIABILITY IN 

SOFTWARE PRODUCT LINES 

 

 

 

3.1 Introduction 

 

This chapter introduces the concept of concerns. The reasons for the necessity of concerns are 

outlined. Since the concept of concerns is derived from decisions, the relation of concerns with 

decisions and their differences are discussed. 

 

3.2 Concerns 

 

The concept of concerns that is introduced in the scope of this thesis is closely related to the 

concept of decisions. Concerns intend to be a powerful way of tracing variability across all 

assets that make up a product line (PL). A concern is an ensemble of variants organized in 

vertical and horizontal hierarchies in order to represent the variability of a PL. A concern model 

of a PL is a model which represents the PL via the usage of concerns. It is a snapshot of 

variability for the artifacts of a PL. 

 

During the course of this study, it has been observed that some features’ selection criteria are 

deeply affected by some underlying technical and non-technical issues which are not directly 

obvious from the mere feature specification. The roots of such constraints lie deeper in the 

abstraction hierarchy that makes up the systems in the PL. Decisions try to track this variability 

to some extent. 



 42 

Concerns address several open points in decisions. As mentioned in section 2.2.4, decisions do 

not provide a separate mechanism for addressing the variability information spread inside a 

particular asset abstraction layer. When using concerns, an explicit distinction must be made 

between variability that is present in each asset abstraction layer and the variability spread within 

a single layer, as vertical and horizontal variability respectively to overcome this limitation. 

Vertical variability idea is present in decisions, but as an example of horizontal variability, one 

can consider the variability existing within possible choices of a communication protocol -

typically this would be in the software design and/or source code level- for a particular 

variability item that is resolved at a higher abstraction level. 

 

Concerns are introduced as covering variability in four major vertical artifact spaces. In other 

words variation points are considered at four different levels of abstraction. These are product 

features, requirements, software design and finally source code. It is possible to make a removal 

from or add an extension to these layers as needed (A candidate could be test artifacts that have 

been deliberately left outside of the discussion). In addition, any necessary amount of horizontal 

variation may be represented in any particular vertical variation level. To better visualize the 

situation, consider the Algorithm concern from real time scheduling algorithm (RTSA) domain 

in Figure 3-1. The concern is located to the left side of the figure enclosed in a box named 

Algorithm. Actual variability items in the PL artifacts are on the right side of the picture. 

 

Note that inside a concern, actual variability items are referred to by their symbolic names. The 

numbering scheme is up to the modeler; the only thing that is imposed is that all variation points 

need to be represented by a different substitute name. However if the suggested convention is 

followed, it is expected to ease modeling task  For convenient reference, variation points at 

different layers of a concern are referred to by a numbering scheme which is prefixed with the 

uppercase version of the initial letter of the name of the related layer. These initials are P, R, D, 

S standing for product features, requirements, software design and source code respectively. 

Therefore if one wishes to refer to a source code variation point it could be of the form “S 1”. 

Note that it is not mandatory to have one level numbering, one could have chosen to enumerate 

the variations to end up with two or more levels of numbering such as “S 1.2”.  
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Figure 3-1 Example Concern “Algorithm” and corresponding actual variability 

 

 

 

When it comes to variants related to these variation points, their representation is initiated by the 

lowercase letter of the related concern abstraction layer. Numbering starts one level indented 

with respect to the related variation point numbering. For instance, if a variation point named “S 

1” has 3 possible variants they will be numbered as “s 1.1”, “s 1.2”, “s 1.3”. 

 

The purpose of this uppercase and lowercase differentiation will make more sense in the formal 

treatment of concerns in section 3.3. Furthermore the naming convention forbids a number as a 

prefix to any uppercase letter. This reason also becomes clear in section 3.3. 

 

In order to establish traceability between actual variability and the concern representation, one 

should observe traceability symbols in the actual artifacts. In this proper case, actual artifacts 

have variants marked with the related symbol notation on all artifacts. Feature diagrams, as an 
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exception, have also the variation point traceability symbols since variation points are inherent in 

feature diagrams. For other artifacts, it is obvious to derive variation points from variants. 

 

The relationships between variability items within a concern are represented by the same 

mechanism used for features of Feature Oriented Reuse Method (FORM) as described in 

sections 2.2.9 and 4.4.2.2. Note the “requires” and “excludes” relationships that diverge out of 

the concern. Their presence knowledge comes from the interrelationships of the artifacts in the 

domain and at the other end of this relationship a variant -which is possibly from a different 

abstraction layer- in a different concern should be expected. Note that in this way, variation 

points and/or variants from different abstraction layers are related with each other. By indicating 

these relationships, concerns aim to find a means to lift such information buried deep down into 

non-user visible parts of a system to a manageable level, discover its possible effects on features 

–such as inclusion and exclusion of several more features– that were not spotted at first sight 

with mere feature analysis. This ultimately makes it possible for the end user to compose more 

reasonable systems.  

 

Requires and excludes relationships are shown for relations between different concerns. 

Following question needs further clarification: Isn’t it possible to have inclusion and mutual 

exclusion relationships within a single concern? This is very likely to happen. As an example 

consider R 1.2 and R 1.3 in Figure 3-1. These requirements come from the same requirements 

specification document namely from that for System I in APPENDIX C. These two requirements 

come hand in hand from the requirements specification so it is obvious that they mutually 

require each other. This could have been depicted as a “requires” relationship between the two 

variants which would crowd the picture. Also the handling of these kinds of relationships brings 

additional complexity. Therefore even if such relations exist within a single concern, the 

tendency is not to show them on the pictorial concern model. 

 

3.3 Concerns to Context Free Languages 

 

The essential question to answer concerning variability modeling is “how to represent 

conveniently all the rules that govern the relations between variation points and variants?” A 

suitable candidate to define these rules appears to be context free grammars (CFG). The idea of 
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representing feature diagrams via grammars has been suggested in [71]; however, instead of 

using CFG’s, special production rules and notation have been preferred. Also [72] introduces an 

iterative grammar using structures as one or more (+) or zero or more (*) and special notations to 

denote optional features. Furthermore it has been pointed out in [72] context free languages 

(CFL) are generally inadequate for the complete modeling of variability. This criticism will be 

treated later on. 

 

A CFG is more formally defined in [67] but in short, where a capital letter denotes a non-

terminal (say A) and where lower case denotes a terminal and/or nonterminal string (say α),  if 

all the production rules of a grammar are of the form A → α, then this defines a CFG.  

 

Remembering the notation presented in section 3.2, variation points correspond to non-terminals 

and variants correspond to terminals of the CFL defined by the CFG of transformation rules. 

Thus any string of non-terminals is obliged to comply with the rules of the related CFG in order 

to represent a valid system in the PL. 

 

The question is why it is important to represent variation relation in a formal way. The reason is 

that it is straightforward to obtain a parser from a CFG that can validate whether a given string 

of terminals represent a valid item –a valid string within the CFL– in the PL. 

 

However, the production rules are not very straightforward at first glance. How to denote 

optional, mandatory and alternative variants as production rules? What happens for relations in 

between different layers of concern abstraction? How to represent exclusion and inclusion? All 

these questions need to be answered to clarify production rule representations for concerns. In 

order to consider possible variability relationships, consider Figure 3-2.  
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Figure 3-2 Possible Variation point and Variant Relations 

 

 

 

The situation in a) denotes no variability at all. It is plain commonality and the rules are as in 

Listing 3-1. Although not helpful for variability modeling purposes, this is mentioned for 

completeness. 

 

A → a b 

Listing 3-1 Commonality 

 

Listing 3-2 corresponds to b) in Figure 3-2 and introduces an optional variant to the relations in 

a. Note that Λ is the null string. If the transformation A2 → c | Λ is chosen in the favor of Λ then 

the optional variant c is not included in the string that describes a potential system in the 

language. Also note that intermediate non-terminals A1 and A2 are introduced –this is a single 

indentation level as there is a single number after the original non-terminal– which does not 

appear on Figure 3-2 just to clearly represent transformation rules. This technique is commonly 

used in a CFG. 

 

A → a A1 

A1 → b A2 

A2 → c | Λ 

Listing 3-2 Optional Variability  
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In Listing 3-3, the case c) of Figure 3-2 is expressed. This is the case of alternative variants. The 

item d) in Figure 3-2 represents a “logical A or B” relationship is which is expressed as in 

Listing 3-4.  

 

A → a | b 

Listing 3-3 Alternative Variability 

 

A → a | b | a b 

Listing 3-4 Logical “Or” Relationship 

 

A slightly complex example is depicted in e) of Figure 3-2. The fundamental pieces of this 

variation have been described previously and it leads to the CFG snippet in Listing 3-5. 

 

A → A1 A2 | Λ 

A1 → b | c | d | Λ 

A2 → a | e | a e | Λ 

Listing 3-5 Mixed Variation with Alternative and Optional Variants 

 

Since concerns are organized in several abstraction layers, it is required to convey a particular 

string of terminals to the next abstraction layer for complete specification of systems. As an 

example, consider the hypothetical partial concern in Figure 3-3.  
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Figure 3-3 Partial concern abstraction layers  
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The forbidden notation of inserting a number prefix in front of an upper case non-terminal in 

section 3.2 makes use in defining the transition. The Listing 3-6 describes this transition along 

with production rules for the partial concern in Figure 3-3. Note that this sequence of rules 

defines the most general possible transitions from one layer to the other (The transition is from 

D1 to S1 or S2 or both or none of them). The arrow from 1D to 1S denotes the general nature of 

this transition. In a particular case this transition could be specialized. 

 

D1 → d1.1 d1.2 D1.1 1D 

D1.1 → d1.3 | Λ 

1D → 1S | Λ 

1S → S1 | S2 | S1 S2 | Λ 

S1→  s1.1 | s 1.2 

S2 →  s2.1 | s2.2 | Λ 

Listing 3-6 Grammar for Concern Layer Transition 

 

Note that when the non terminal D1.1 is used in the production rule (D1.1 → d1.3 | Λ), the 

convention stated in section 3.2, that the terminals remain a single numbering level indented 

below the non-terminal they were produced from was not followed. This is not important as this 

non-terminal was merely used to ease the expression of an intermediate production step. It 

should also be stated why there is the production rule 1D → Λ. If this production rule is applied, 

this results in a partial system specification where variability is not resolved within all 

abstraction layers that the concern represents –in this particular example, unresolved variability 

would be in the source code. This special production rule can be particularly important in the 

case where variability is not modeled in all concern abstraction layers due to resource 

constraints. This feature is referred to as partial applicability of a concern model. 

 

Furthermore, it is likely to expect multiple occurrences of a single variation point throughout the 

concern model. This is not a problem; production rules follow the same rules. As an example 

consider the hypothetical partial concern model in Figure 3-4. 
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Figure 3-4 Multiple Occurrence of a Variation Point in the Concern Model 

 

 

 

The grammar defining this partial concern model is listed in Listing 3-7. 

 

D1 → d1.1 | d 1.2 | d1.3 | d1.1 d1.2 | d1.1 d1.3 | d1.2 d1.3 | d1.1 d1.2 d1.3 | Λ 

D2→ d2.1 | d2.2 | d1.1 

Listing 3-7 Grammar for Multiple Occurrence of a Variant 

 

However this situation may cause the following dilemma. Suppose the person modeling the 

system decides by barely considering D1, that d1.1 should be included in the system. However, 

if the very same person also requires that either d2.1 or d2.2 be included in the system, then 

since d1.1 is an alternative to these; such a selection would not be possible. The modeler should 

take care when considering variation points with multiple occurrences or, the parser representing 

the grammar will and should warrant such an illegal selection. 

 

The last remaining relation is that of inclusion and exclusion. Treatment of exclusion and 

inclusion is however tricky and therefore not managed via a context free grammar. The first 

reason for this is that exclusion relationships that exist between variability items suggest that a 

particular production rule which is able to govern the exclusion relationship as if it were a valid 

production, needs to be excluded from the grammar. Consider the “excludes” relation between d 

1.1 and s 1.2 represented in Figure 3-5. 

.  
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Figure 3-5 Concern Interrelationships 

 

 

 

A non-terminal “T” has been introduced in order to represent the production rule which can be 

seen in Listing 3-8. The last line of the listing indicates a transition via the usage of the non-

terminal T. This transition includes the string composed of the variant d.1.1 in the language 

generated by the respective grammar.  

 

D1 → d1.1 T | d1.3 T | d1.1 d1.2 T | d1.1 d1.3 T | d1.2 d1.3 T | d1.1 d1.2 d1.3 T | Λ  

T → s1.2 

Listing 3-8 Production Rules Defining Complement of Excludes Relationship 

 

However, the actual grammar that is desired needs to exclude this particular rule. In order to 

demonstrate this with a CFG, any other valid string production rule needs to be explicitly stated. 

This is because in a CFG the productions that are not allowed are simply not included in the 

production rules. The valid production rules for this fairly simple example with partial concerns 

are as in Listing 3-9.  
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D1 → d1.1 T1 | d 1.2 T2 | d1.3 T2 | d1.1 d1.2 T1 | d1.1 d1.3 T1 | d1.2 d1.3 T2 | 

d1.1 d1.2 d1.3 T1 | Λ 

T1 → s1.1 | s1.3 | Λ 

T2 → s1.1 | s1.2 | s1.3 | Λ 

Listing 3-9 Production Rules Defining Excludes Relationship 

 

Note that T1 and T2 are used to relate d1.1, d1.2, d1.3 to the variants in Concern 1 in Figure 3-5. 

Notice how complicated the rules can become and anticipate the volume of all the rules that need 

to be included to represent all possible production rules just in order to denote a single exclusion 

rule for a larger model. This effort makes representation of exclusion relationships with a CFG 

undesirable.  

 

There is another inconvenience that also applies to exclusion relationships. There appears to be a 

clear problem of keeping the coherence of the relationships in the model. To picture the 

situation, consider Figure 3-5, Listing 3-8 and Listing 3-9 again. Imagine that the excludes 

relationship is modified somehow so that d 1.1 now excludes another terminal. This means the 

diagrammatic representation of the excludes relation in Figure 3-5 and all the production rules 

Listing 3-8 Listing 3-9 need to be changed. This is a serious overhead. 

 

The third inconvenience is related with both requires and excludes relationships. It has been seen 

that in order to express inclusion and exclusion relationships, as it can be seen in Listing 3-8 

through Listing 3-9 additional non-terminals need to be introduced which brings significant 

overhead and complicates the overall grammar and consequently the language.  

 

As indicated before, [72] advocated that a CFG grammar has problems in adequately modeling 

variability and to justify this claim proposes several relations that are difficult to express via a 

CFG such as  “A includes B or C or D”. This difficulty is recognized in the present study as well, 

concern based modeling and such complex relations are treated together with the just mentioned 

exclusion and inclusion relations apart from the CFG based modeling. In theory, a Turing 

machine can handle these relationships. In application, this can be represented by a 

postprocessor program that checks the strings that are specified using concerns. A string that 

defines a potential system is first passed through the parser generated using the rules of the CFG 
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and then passed to the post processor checking the simple/complex requires excludes 

relationships. The motivation here is that individual pieces of this two step approach are both 

strong and simple in what they do. The infrastructural application model for using concerns in 

system specification can be seen in Figure 3-6. 

 

 

 

Postprocessing

(complex and 

simple requires/

excludes checks)

CFL parser 

(javacc)
Concern 

Model
String of variants 

defining the 

product

Postprocessed

string of 

variants

Product

String of

variants that 

passed CFG

rules

 

 

Figure 3-6 Using Concerns for System Specification 

 

 

 

The tree-like representation of the concern model can be considered as a domain specific 

language (DSL) that is driven by the variability information of the PL. The preferred parser 

generator for this work is javacc [73]. If a string of variants can pass without any violation 

through the CFL parser and the postprocessor, this means that it defines a proper system in the 

PL. 
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3.4 Benefits of Concerns  

 

One of the primary topics that concerns address is that of realizable system composition using 

available assets. In this respect, the bare usage of features may be insufficient because of 

inadequate variability modeling and tracing. As a general difficulty of PL’s, it has been indicated 

in [29] that selection of meaningful feature combinations leading to reasonable products for all 

combinations is particularly difficult. This is because although only features are used for system 

specification, feature modeling alone is insufficient for revealing correct feature relationships 

accurately. Feature relationships have dynamics that have foundations buried in several artifacts 

of a PL which could be elaborately modeled using concerns. 

 

A second important point that is addressed by concerns –as a direct consequence of the first 

point that has been just mentioned– is the feature interaction problem. Feature interaction 

problem, as the name suggests, occurs when the mutual presence of more than one feature of a 

product is somehow impeding the overall system operation. This topic is widely covered in 

telecommunication systems to a point where specific workshops have been held –first called the 

feature interaction workshop (FIW) and later the International Conference on Feature 

Interactions (ICFI) - [68]. The extent to which this problem can have an impact varies based on 

the criticality of the system. Feature interaction problem is expected to increase with the 

increasing variability since the chances of possible feature interactions are increased. Concerns, 

by managing variability more accurately and relating various product artifacts aim to reduce this 

feature clash. 

 

The real outcomes of the benefits that are explored in this section are sought later in Chapter 5. 

For this purpose two evaluation criteria are defined and the advantages of concerns are assessed.  

 

Although not assessed by any evaluation criterion in Chapter 5, it is helpful to mention a 

supplementary benefit of concerns. Since concerns are expected to establish traceability of 

variability among all SPL assets, they remain in contact with every aspect of the PL at any 

abstraction level. Since when using concerns, any particular application is created by the 

resolution of the variability at several asset abstraction layers in the concern model, any 

feedback from the user side to the actual application is traceable to all related assets in all 

abstraction levels in the domain model if the appropriate links exist. It should be noted that 
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without concerns, a feedback from the user side would remain as a feedback targeted solely to 

an asset at a single particular level. Although that could be helpful, such a feedback would 

usually affect only the asset collection at the particular spot that has been aimed and its impact to 

other abstraction layers would be concealed. 
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CHAPTER 4  

 

 

4 DOMAIN ENGINEERING OF REAL TIME SCHEDULING 

ALGORITHMS 

 

 

 

4.1 Introduction 

 

In the first part of this chapter the example domain of real time scheduling algorithms (RTSA) in 

operating systems (OS) will be briefly introduced along with the reasons for the selection of this 

domain.  

 

In the second part of this chapter the reason why feature oriented reuse method (FORM) has 

been chosen as the domain engineering approach for modeling efforts is discussed. Then the 

example domain of RTSA will be modeled using a version of FORM that is explained together 

with the modeling.  

 

Following that, concerns are added to the modeling efforts of FORM to enhance variability 

tracking capabilities, as presented in Chapter 3, and the same domain of RTSA is modeled with 

this modified version of FORM.  

 

4.2 Real Time Scheduling Algorithms 

 

The most important thing before moving on to software product line engineering’s (SPLE) 

domain and application engineering phases, is to consider what kind of a product could be a 
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financial success in that particular technology domain. This need is obvious from the definition 

of PL’s as being a market centered concept. In Feature Oriented Product Line Engineering 

(FOPLE) this part is referred to as the Marketing and Product Plan (MPP).  

Classification of horizontal (encapsulated and diffused) and vertical domains were explained in 

section 2.2.5. Furthermore, as indicated in [17], analysis of vertical domains is targeted towards 

constructing domain specific frameworks and that of horizontal domains towards reusable 

components. For a thesis effort aiming to demonstrate feasibility of a novel approach, analyzing 

a vertical domain is a colossal effort. Moreover since this work does not consider MPP critical 

for the points that are wished to be made, the potentials of salability of the products of RTSA 

domain are not explored.  

 

It is indicated in [27] that a small domain with a high level of commonality is appropriate for an 

initial effort in establishing a PL. Moreover it has been stated in Feature Oriented Domain 

Analysis (FODA) [14] that the target domain need not be at a particular abstraction level, it can 

well be part of another broader domain. 

 

The primary goal of this work is to demonstrate usefulness of concerns in capturing and tracing 

variability and the ease that they bring in system specification in a PL. For the just mentioned 

constraints of size and resource and for the relation of the domain to the author’s personal 

expertise, the domain of RTSA is an ideal fit. 

 

4.3 FORM as a Domain engineering approach 

 

As it is mentioned on several occasions, FORM has been selected as the approach to adopt and 

modify for the experimental work. Also as indicated previously, FORM is based on FODA and 

although it is placed among the domain engineering approaches, it has been revised in [29] to 

become a full SPLE methodology named FOPLE. 

 

This work is not paying extensive attention to the MPP phase of FOPLE as this phase is non-

crucial for proving the actual point of the contribution that is aimed to be made. Therefore 

FORM has been mentioned as the principal approach that has been used rather than FOPLE. 
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Then why is FORM chosen as the experimental approach? The reason will be more apparent 

when the example domain is investigated, but in short it is the appropriate approach to model the 

chosen domain of RTSA.  

 

It has been indicated in [21] that, different products in different scopes need different domain 

engineering approaches. For instance, a software product line (SPL) approach supported with 

use case modeling is introduced in [33]. Such an approach is more helpful in the context of a 

systems involving abundant user interaction. Use case modeling is least helpful when user 

involvement is minimal, such as in low level embedded systems software. 

 

Is FORM a one to one match for operating on such low level software domain? Perhaps this is 

not the case either, however; as it will be seen, during the modeling of the RTSA domain, 

FORM is both trimmed and extended to fit the needs of this domain wherever necessary. But 

one fundamental reason for selecting FORM as the PL approach to model RTSA domain is its 

maturity and completeness. For instance, compared to FODA, FORM focuses more completely 

on domain modeling –constructing a reference architecture– and on domain design –construction 

of reusable components. 

 

4.4 Modeling the RTSA Domain with FORM 

  

FORM, in its complete specification has far too many items to consider when the RTSA domain 

is considered. Such items are just not necessary for the purpose of this particular domain. 

Furthermore, FORM does not dictate a particular way to specify the reusable components that 

are constructed in the domain engineering efforts, rather it suggests several engineering 

principles and design guidelines to help achieving this task. Due to this fact, a discussion related 

with the tailoring of FORM is presented before modeling RTSA domain using it. The 

philosophy of adapting the FORM method to tailor it for the domain of RTSA is compliant with 

the approach that suggests having a proper SPLE method per domain [17]. 
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In the following discussion, the RTSA domain is modeled with a tailored version of FORM 

approach. Due to the experimental nature of this work, justification of models and the overall 

engineering effort is performed by relying on domain expertise rather than relying on the support 

provided via a third party expert. Furthermore, this work emphasizes domain engineering sub-

process of FORM since that is the part related with the expected effects of concerns in the scope 

of this work. 

 

4.4.1 Domain Scoping 

 

A textual description of the domain is a first step in determining the context of the domain. 

Several assumptions are necessary to further narrow down the domain to be considered in this 

study. The true classification of the example domain is RTSA algorithms for OS designed to run 

on uniprocessor, non-distributed hardware platforms. This distinction is visible in the feature 

analysis part of this domain engineering effort in section 4.4.2.2. 

 

There are two primary reasons for this reduction of domain scope: 

 

1. Scheduling problems are among the most difficult computational problems. In the 

broadest sense, they are classified as NP hard problems. That is, non-deterministic 

Turing machines that solve the considered problem in polynomial time may not exist. 

Domain engineering over a larger class of scheduling algorithms is beyond the scope 

and resources of this study.  

2. The primary aim of this study is to demonstrate the usefulness of concerns in capturing 

variability information spread across many artifacts of a PL and using this information 

to support decision making and ease system construction. Therefore any domain of 

reasonable size is acceptable which serves the previously mentioned purpose. 

 

The structure of the RTSA domain is depicted in Figure 4-1. This model is obtained by 

considering several operating system architectures such as that of Windows NT [36], Sun Solaris 

[35], UNIX [37] , QNX Neutrino [38] and it shows where the scheduler resides in the domain of 

operating systems.  
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Figure 4-1 Structure diagram for RTSA domain 

 

 

 

Here it should be noted that the scheduler block stands for the RTSA domain and other blocks 

for their respective domains. Such an abstraction is necessary to more accurately represent the 

entities in the structure diagram. This is because in the actual implementation, it is not the RTSA 

domain that interacts with the other entities in the structure diagram; rather it is the scheduler 

component itself. However scheduler component of an OS provides a little more than the 

scheduling of tasks. Among other things, it interacts with the memory manager and makes some 

hardware specific calls. Nevertheless, the principle goal of a scheduler is to determine the 

schedule for a set of tasks it is responsible of. Therefore in text we refer to the scheduler 
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component as if referring merely to the component that realizes the scheduling algorithms of real 

time systems, whereas this is not entirely true.  

 

Obviously the OS’s used for constructing the structure diagram in Figure 4-1 have several 

derivatives and versions but the general idea beyond their structure is considered to derive a 

context model for the RTSA domain.  

 

A strategy could have been to place the scheduler inside a logical unit called process controller 

which can include several other modules responsible of interprocess communication and 

memory management (see the rectangle with dashed line boundaries in Figure 4-1). This would 

have reflected the case for some OS’s and not the others. What is common to all of them is that 

in any case the blocks responsible from scheduling are in interaction with other major parts of 

the OS. Therefore the structure model encompasses fundamental OS building blocks. 

 

The context diagram showing the interaction of these major OS parts with the scheduler can be 

observed in Figure 4-2. This architecture represents mostly the Linux kernel architecture and 

interdependencies of its subsystems, as explained in [39] as well as those of µCOS-II [40] and 

BeRTOS [41] (Note that Linux can be operated as both real time and non-real time whereas the 

other two are both pure real time kernels). The flows imply both data and control interactions; 

however this distinction is not made explicit for the purpose of the context diagram which is a 

broad picture of interactions.  
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Figure 4-2 Context diagram for RTSA domain 

 

 

 

Several points that are expressed through the aid of the context diagram can be further detailed 

as: 

 

1. Schedulers are classified as being part of the OS kernel; therefore they have relatively 

less user interaction compared with more user related structures such as the OS shell. 

However there is usually still some user interaction via the system call interface that is 

aimed towards enabling and disabling scheduling in order to provide mutual exclusion 

for shared variables and any global data. This fact can be observed on the context 

diagram.  

2. Practically all subsystems inside the kernel require scheduler functionality –i.e. basically 

running the scheduling algorithm and modifying/updating several data structures-. This 

fact is visible in the Kernel scope in Figure 4-2.  
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3. Hardware specific calls may be necessary in order to disable/enable interrupts, check 

register statuses, suspend/resume tasks and perform context switch. 

4.4.2 Domain Analysis 

 

4.4.2.1 Entity Relationship Modeling 

 

Rather than any strict regulation about entity relationship modeling, a casual approach to draw 

the diagram is preferred. 

 

The entity relationship diagram in Figure 4-3 shows major common parts that make up a 

scheduler component in a real time kernel. The construction of such a diagram is mainly based 

on the real time scheduler classification efforts in [42], [43], [45], [46] as well as on the review 

of several open source software –only µCOS-II [40] is closed source, yet its source is usable for 

educational purposes-. The reviewed scheduler codes are from: 

 

1. µCOS-II [40] 

2. POLIS
1
 [44] 

3. S.Ha.R.K
2
 [54] 

4. Stream
3
 [58] 

5. OS/161
4
 [59] 

                                                 

 

 

1
 POLIS is in fact a framework for realizing hardware/software codesign. However it involves a tiny 

operating system with various real time scheduler supports.  

2
 S.Ha.R.K is a configurable kernel that can be soft/hard/non real time. Thus it supports various 

schedulers. [54] 

3
 Stream is the stream data manager that handles stream data management over media such as sensor 

networks or telecommunication systems. This system has built in scheduling facility. [58] 

4
 OS/161 is an operating system built for educational purposes that includes a standalone kernel. [59] 
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It should be noted that this selection has been made to cover a sufficient amount of scheduler 

codes– both from OS’s and also from other systems that require scheduling-. This particular 

selection represents a set that has been readily available and more importantly consisting of terse 

scheduler implementations. Figure 4-3 presents the entity-relationship model of the RTSA 

domain. 
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Figure 4-3 Entity Relationship Diagram for RTSA domain 

 

 

 

The attributes and constraints on these attributes are as follows (Note that some attributes and 

constraints are only present under the presence of some features. This fact is expressed by 

indicating the associated feature in between square brackets next to the relevant item):  
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1. Main Scheduler attributes: 

 Main scheduler operations: 

o schedule 

o isFeasible [Feasibility Calculation] 

o updateTaskInfoList [Modification] 

o init 

o deinit [Deinitialize] 

o start 

o stop [Disable] 

 Internals: 

o Task Information List 

 

2. Task Information List attributes: 

 Task Information List operations: 

o sort  

o add [Add to /Remove from Ready List] 

o remove [Add to /Remove from Ready List] 

 Internals: 

o Task Information pointers 

3. Task Information attributes 

 Internals 

o Task ID 

o Period [Periodic] 

o Deadline 

o Computation Time 

o Release Time 

4. Ready List attributes 

 Internals 

o Task ID 
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For the implementation concerning the scheduler component, global variables are not preferred. 

Whenever possible, interface functions
5
 should be preferred to access data within components 

and sub-components.  

4.4.2.2 Feature Modeling 

 

Feature diagram of FORM is slightly extended to increase its modeling power. The first 

extension is that, inclusion relationships may or may not be directional –in the sense that x 

requires y can mean they both require each other or only x requires y and vice versa. Such a 

distinction is not available in FORM. This fact is illustrated using directed lines for feature 

interrelationships on the feature diagram. In the complete feature relations section in 

APPENDIX B, these relations are already assumed as being single way so if they are 

bidirectional this is understandable by examining both ends of the respective relations. 

 

The four-level feature diagram can be seen in Figure 4-4 through Figure 4-7. Note that these 

figures show the features clustered into respective FORM groups. The symbolic names that 

appear adjacent to features and feature groups are for concern modeling purposes as described in 

section 3.2. Feature exploration and classification is based on the same resources and references 

mentioned in section 4.4.2.1. It should be noted that feature diagrams involve only variability 

information. This is generally not the case since feature modeling is necessary also in exploiting 

commonality and also constructing a reference architecture (RA). The reason for not presenting 

commonality on the feature diagrams is because the central focus of this work is variability. 

 

 

 

                                                 

 

 

5
 In case C++ is the implementation language, interface functions are true interfaces that the scheduler 

component implements, however in the case C is the implementation language, interface functions are 

meant to be functions used to access data that is internal to the scheduler. 
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Figure 4-4 Feature diagram for RTSA domain-I Capability Layer  

 

 

 

Note that, in the following discussions clarifying various feature diagrams, the feature variation 

points and feature variants are indicated inside curly brackets and square brackets, respectively. 

Also note that feature groups stand for the variation points and features for the variants. 

Regarding several feature variants, issues and decisions section in APPENDIX A provides 

further explanations. Please note that, when referring to issues and decisions, the term decision is 

not used in the same meaning as in [12] and in section 2.2.4, but in a strictly FORM-defined 

manner. That is, a decision is a particular way of resolving an issue related with the selection of 

features from a feature group. 

 

The capabilities layer represents the different functional and non-functional aspects of the RTSA 

domain. In this case the functional aspects are gathered under the top level {Service} feature 

group. Generally, a real time kernel provides basic management facility over the scheduler. 

There should at least be a means to initialize and get the scheduler running. Since these are 

considered as commonality spots, they are not represented in the feature diagram in Figure 4-4 

Stopping the scheduler [Disable] and deinitializing it [Deinitialize] are included optionally. 
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Depending on the nature of the algorithm used, the scheduler may need to allow other 

subsystems and certainly the kernel to make some modifications {Modification} on its data 

fields. These modifications are particularly made on the tasks and the task list that the scheduler 

maintains. 

 

{Reliability} is another feature group –non-functional one– that plays an important role for 

critical real time applications. Calculating feasibility is an integral part of several scheduling 

algorithms such as rate monotonic scheduling (RMS) and earliest deadline first (EDF) 

[Feasibility calculation]. Absolute feasibility calculation requires a lot of information about the 

tasks to be scheduled which may not be available most of the time. For priority based 

preemptive algorithms, in systems that take into account dependent tasks, avoiding priority 

inversion can be of great importance [Priority Inversion Avoidance]. Finally several proprietary 

measures can be taken to increase the reliability of task scheduling [Proprietary Reliability 

Measures]. 

 

{Optimality} is another non-functional criterion that affects the users of the scheduler. This 

feature is closely related with the [Feasibility Calculation] feature grouped under {Reliability}. 

A feasibility calculation is expected to lead some sort of optimality. In this context by optimality 

absolute optimality is implied. Feasibility calculation can provide optimality to some extent but 

real optimality comes only with very detailed knowledge about the tasks to be scheduled and is 

referred to as theoretical optimality [46].  Optimal scheduling algorithms such as RMS, EDF, 

Least Laxity First (LLF) and Deadline Monotonic Scheduling (DMS) are optimal under some 

harsh and arguably unrealistic assumptions. As an example, in the case of RMS negligible 

preemption costs, no task interdependency, presence of solely periodic tasks are assumed [42]. 

 

As it is specified in FODA [14], depending on the particular application area, one can choose to 

selectively apply feature modeling at each particular level in the four level feature hierarchy that 

was presented (This should not be confused with the four level hierarchy of concerns, these are 

the feature layers in FODA and FORM). If the information obtained from one of the levels in the 

hierarchy is not applicable to the domain in question, than feature modeling at that level can be 

omitted partially or completely. For the RTSA domain, all the feature layers are of equal 

importance except the operating environment layer. This is because a good scheduling algorithm 
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software should work in a wide range of hardware and software platforms. Thus it is expected 

that such a system supports practically any possible combination that can be suggested in the 

feature model. There are however several operating environment layer features, presented for 

model completeness. The feature model for the operating environment layer can be seen in 

Figure 4-5. 
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Figure 4-5 Feature diagram for RTSA domain-II Operating Environment Layer 

 

 

 

The simple nature of operating environment layer is possible if hardware specific code is omitted 

from the scheduler and portable code is written. As indicated in domain scoping in section 4.4.1, 

although the component associated with the RTSA domain is selected to be the scheduler, 

scheduler component includes more information than the RTSA domain covers. In fact, the 

algorithmic part of the scheduler component has practically no hardware relation other than data 

types that are restricted by the particular hardware environment due to differences of particular 

processor architectures. This distinction is made clear in the processor type selection {Target 

Processor Type}.  

 



 69 

The implementation language selection at the operating environment layer {Language} is 

restricted to either C or C++. One can argue that the correct layer to place such a feature 

classification is the implementation technique layer. However domain experience shows that the 

selection of the implementation language has fundamental effects on practically all layers in the 

feature model. Therefore it has been decided that the most appropriate layer to place this feature 

variation point is the operating environment layer. 

 

In the domain technology layer in Figure 4-6, there are two main clusters of scheduling 

algorithms {Algorithm Type}. These are either online or offline algorithms. Offline algorithms 

require minimal run time computation and they need prior information about a task; in contrast, 

dynamic algorithms perform scheduling related operations during run-time and therefore are 

more demanding in terms of processor needs [43]. Sometimes in the literature, this classification 

is made by using static for the term offline and dynamic for online [42]. The distinction is that an 

offline algorithm has stricter constraints compared to a static one. An offline algorithm is 

considered as performing every scheduling related computation in the pre run time phase. This 

distinction is omitted in this work and static-dynamic classification is only used for priorities.  
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Figure 4-6 Feature diagram for RTSA domain-III Domain Technology Layer 

 

 

 

 The {Algorithm Core} feature group is of central importance for all feature layers and for the 

entire domain analysis. The actual value of this feature group determines the main operation 

principle of the scheduler. The features in this feature group and its child feature group – 

{Fundamental Algorithm Structure}– for the RTSA domain are not restricted to the ones on 

Figure 4-6, however a restriction has to be made to represent the most common ones. The reason 

for having a sub feature group under {Algorithm Core} is that priority driven and round robin 

algorithms can both be intermixed with the other fundamental algorithms [Fundamental 

Algorithm Structure].  
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{Task nature} is another feature group that classifies tasks in terms of temporal matters. Periodic 

tasks are obvious from their name. Aperiodic tasks are tasks with unknown activation instants 

and they possibly occur at an unbounded and unknown rate. Sporadic tasks are like aperiodic 

tasks but they occur at a bounded rate [42]. Periodic tasks are important as they are the main 

utensil of fundamental scheduling algorithms.  

 

{Task selection criteria} is introduced after noticing the distinction that is present in [44] for task 

selection. Some algorithms explicitly select tasks based on a priority value whereas others put 

them in a particular order based on criteria such as laxity, rate or deadline. Although one can 

argue that such an ordering boils down to the same point as prioritization, a distinction makes 

the actual purpose clearer. 

 

{Priority Inversion Avoidance Algorithm} feature group is particularly important when tasks 

share resources and they have the ability to block each other. A real time system that   supports 

task interactions by using semaphores, mutual exclusion mechanisms, signals and events is more 

realistic and frequently encountered in real life. However the priority inversion problem occurs 

in some cases and [Priority Ceiling] and [Priority Inheritance] are two major techniques to 

overcome this problem. For further details on the subject, [47] provides detailed treatment. 

 

{Task Interaction} is a feature group that describes task interrelationships. Tasks can be 

dependent to each other - [Dependent] - meaning that they share global variables, a shared 

printer or any resource and they are synchronized using rendezvous, semaphores or mutexes. 

This is the usual case in a large real time system and most of the algorithms overlook this fact 

and develop their models according to more hypothetical foundations. It has been shown in [48] 

that scheduling algorithms considering task dependencies –specifically those using semaphores– 

are NP-Hard; therefore one cannot be sure of finding polynomial-time solutions to such 

problems.  

 

{Context Switch} is the feature group that represents the policy that the tasks base their 

preemption strategies upon. A preemptive strategy allows the exclusion of a lower priority task 

in favor of a high priority task whenever the higher priority task is ready to run [Preemptive]. A 



 72 

non preemptive scheduler provides cooperative multitasking, a multitasking scheme used in 

early computer systems [Non-Preemptive].  

 

{Priority Scheme} is a feature group related to the determination method of a task’s priority. It 

should not be confused with the {Algorithm Type} feature group. If it is possible to change the 

priority of a particular scheduling algorithm at runtime then this feature has the value [Dynamic 

Priority] and vice versa.  

 

Implementation technique layer, as the name implies clarifies issues that pertain to the 

implementation strategies applied in constructing real time schedulers. The related feature 

diagram can be seen in Figure 4-7. 

 

Here, clarification is necessary, which also points to some limitations of FORM. One should not 

confuse implementation techniques with the actual implementation. An implementation 

technique is a methodical element leading to different implementation strategies – such as 

choosing a particular sorting algorithm over another one. Therefore, inside the actual 

implementation, more intricate details reside that could be related to other domain constituents in 

a way that is unpredicted from bare investigation of the implementation technique. FORM, by 

not capturing such details, could be accused of missing some important domain information. 
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Figure 4-7 Feature diagram for RTSA domain-IV Implementation Technique Layer 

 

 

 

{Automated Code Generation Technique} feature group refers to the method used for software 

generation using the model information provided by FORM. The choice [Template 

Metaprogramming] is only possible if the implementation language is C++. It is a special 

technique used in the context of generative programming. {Preprocessor Directives} is one of 

the classical approaches for parameterization in C and C++. {Task Sorting Algorithm} is a 

collection of different sorting algorithms. 

 

{Sorting Algorithm Source} can be a private library [Proprietary Algorithm Library] or a 

standard library such as Standard Template Library (STL) [STL Sorting Algorithms] or the 

standard C library [C Standard Library]. Obviously, [Proprietary Algorithm Library] allows a 

wider range of {Task Sorting Algorithm} selections whereas in the case of other two, the choice 

is already made by the actual library implementations.  
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{Data Structure Type} is a feature group that specifies the particular data representation method 

that is used for representing relevant items in the domain. Either one of the feature variants can 

be selected or the data could be represented via a mixture of these two possible alternatives. 

 

Since it is difficult to represent all feature dependencies inside a particular feature diagram layer 

as well as in between different feature model layers, a textual summary is necessary. This can be 

found in APPENDIX B in a casual format. 

 

4.4.2.3 Reference Architecture 

 

The usual three tiered layering in the reference architecture of FORM is not suitable for RTSA 

domain. Although the domain is clearly expressed in context analysis phase, it is worth 

mentioning at this point that RTSA for distributed systems is out of the scope of this study. 

Therefore a subsystem model is unnecessary.  

 

Furthermore, schedulers are very demanding in terms of performance; therefore it is usually not 

preferable to allocate several processes -tasks- to accomplish this job. Some OS’s prefer to use a 

single high priority task to handle scheduling whereas others have different strategies. For such 

reasons, it is usually not preferred to have many interacting processes in OS scheduler 

architecture. Therefore no process model is necessary in the reference architecture either. Other 

than that classical FORM guidelines are usable for constructing the reference architecture. 

4.4.2.4 Functional Modeling 

 

Functional modeling comprises functional and behavioral analysis. The behavioral part of the 

functional model has less emphasis since the domain is rather of algorithmic nature. Therefore 

the functional side is more relevant. The behavioral model represents some states that the 

scheduler goes through during its operation and can be seen in Figure 4-8. Notice the 

parameterizations with features in square brackets. 
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Figure 4-8 Statechart for the behavioral model of RTSA domain 

 

 

 

The functional model emphasizes on the scheduling operation itself. Unlike the original way of 

specifying the functional model by using activitycharts of Statemate
6
, classical UML activity 

diagrams are used. The functional model can be seen in Figure 4-9. Again, features that are 

directly associated with the action states are indicated on the diagram in square brackets. 

 

 

 

                                                 

 

 

6
 Statemate is currently a trademark of IBM Rational and of i-Logix Inc back at the time of the 

introduction of FODA. 
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Figure 4-9 Activity Diagram for the functional model of the RTSA domain 

 

4.4.2.5 Domain Design and Reusable Components 

 

Although implementation of the systems belonging to the RTSA domain is not directly 

considered in this work, the approach to follow is indicated for completeness. For modeling the 

RTSA domain, it is convenient to be more restrictive in terms of what concerns the components 

and their structure.  FORM advocates the usage of one the following reuse strategies when 

constructing modules in its module model [27]: 

 

1. Selection of existing components to build up the model. 

2. Template instantiation by providing external parameters. 

3. Selecting and completing a skeleton code. 
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Since the scheduler needs to maintain close interactions with system properties, it should offer 

its services and demand its requests across a clean and handy interface. For this reason a proper 

architecture inside the module model is necessary.  

 

FORM advices to use the concepts “modularity”, “information hiding” and “data abstraction” 

which are almost universal. Module construction should be carried out by clearly building 

interfaces primarily based on the capability layer features. Particular attention should be paid to 

separate data and control flows. 

 

It is important into note that at this stage, the structure and interfaces of the components that 

constitute the architecture are laid out. A layered architecture that corresponds to the feature 

hierarchy is generally preferred.  

 

For the particular domain of RTSA, the language of choice for implementation is either C or 

C++ depending on the domain’s requirements. Interfaces at module’s boundaries should be 

realized using clearly defined functions on a per file basis in the former case and as pure virtual 

functions in latter. Language choice reflects the demanding nature of the domain in terms of 

performance.  

 

4.5 Modeling Real Time Scheduling Algorithms Domain with FORM and 

Concerns 

 

In this section, variability tracking capabilities of FORM are challenged. Regarding other aspects 

of domain engineering for the RTSA PL, FORM is assumed to cover the ground. Concerns have 

as primary target to more thoroughly model the variability that is covered otherwise via feature 

diagrams in FORM. In order to achieve this, concerns need to model variability at a larger scope 

than features do. 

 

Regarding the scope of this work, there is a limit of actual real scheduling strategies to be 

considered when concern modeling is in question. The concern model presented in section 3.2 

represents a four level hierarchy for the concerns. Regarding size and resource constraints, only 
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the top 3 levels of the concern model artifacts are considered. Furthermore the concern model 

itself is not constructed covering all these three layers, but the assets that relate to the concern 

model at different abstraction layers are indicated in the various artifacts in APPENDIX C and 

APPENDIX D for investigating their effects which will be discussed in Chapter 5.   

 

Due to the same resource restriction reasons, only three actual algorithms are considered when 

constructing PL artifacts for concern layers below the product feature layer. These are: 

 

1. Rate monotonic (RM) scheduling. 

2. Earliest deadline first (EDF) scheduling. 

3. Priority based preemptive scheduling with round robin (RR) support for equal priorities. 

 

For ease of reference, these systems are referred to as system I, system II and system III in the 

respective order that they are presented throughout the rest of the text. The requirements and 

software design elements associated with these systems can be found in APPENDIX C and 

APPENDIX D respectively.  

 

The principle piece of work done in this section has been to construct the application model as 

described in section 3.3. When doing this, only the features are considered in constructing the 

context free grammar (CFG) both because of resource restrictions and also because features are 

the common means for system specification both when using or not using concerns for 

variability management. This is achieved by using the partial applicability property of the 

concern model. However, the outcome of considering three layers of concerns on system 

specification is reflected in the application model by considering the effects of concerns on the 

postprocessor in Figure 3-6. This is necessary to be able to contrast the advantages of both 

approaches. 

 

The CFG representing the features layer of the concern model can be seen Table 4-1. The left 

side column stands for the variation point for which the grammar rule is defined. The actual 

feature group and feature counterparts of the symbolic names can be seen in figures from Figure 

4-4 through Figure 4-7.  
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Table 4-1 CFG for RTSA domain, features layer 

Variation Point CFG Production Rule 

Management (P1) P1 → p1.1 | p1.2 | p1.1p1.2 | Λ 

Modification (P2) P2 → p2.1 | p2.2 | p2.1p2.2 | Λ 

Information Retrieval (P3) P3 → p3.1| p3.2 | p3.3 | p3.4 | p3.1p3.2 | 

p3.1p3.3 | p3.1p3.4 | p3.2p3.3 | p3.2p3.4 | 

p3.3p3.4 | p3.1p3.1p3.3 | p3.1p3.2p.3.4 | 

p3.2p3.3p3.4| p3.1p3.3| p.34 | 

p3.1p3.2p3.3p3.4 | Λ  

Reliability (P4) P4 → p4.1 | p4.2 | p4.3 | p4.1p4.2 | p4.1p4.3 | 

p4.2p4.3 | p4.1p4.2p4.3 | Λ 

Optimality (P5) P5 → p5.1 | p5.2 

Target Processor Type (P6) P6 → p6.1 | p6.2 | p6.3 

Language (P7) P7 → p7.1 | p7.2 

Algorithm Type (P8) P8 → p8.1 | p8.2 

Algorithm Core (P9) P9 → p9.1 | p9.2 | p9.1p9.2 | Λ 

Fundamental  Algorithm Structure (P10) P10 → p10.1 | p10.2 | p10.3 

Task Nature (P11) P11 → p11.1 | p11.2 | p11.3 

Task Selection Criteria (P12) P12 → p12.1 | p12.2 | Λ 

Priority Inversion Avoidance Algorithm (P13) P13 → p13.1 | p13.2 | Λ 

Task Interaction (P14) P14 → p14.1 | p14.2 

Context Switch (P15) P15 → p15.1 | p15.2 

Priority Scheme (P16) P16 → p16.1 | p16.2 | Λ 

Automated Code Generation Technique (P17) P17 → p17.1| p17.2 | p17.1p17.2 | Λ 

Task List Sorting Algorithm (P18) P18 → p18.1 | p18.2 | p18.3 | p18.4 | p18.5 | Λ 

Sorting Algorithm Source (P19) P19 →  p19.1| p19.2 | p19.3 | Λ 

Data Structure Type (P20) P20 → p20.1 | p20.2  
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As indicated before, the application model uses javacc to construct the parser from the rules in 

Table 4-1. Javacc is first responsible of making the lexical analysis of the input stream and then 

it parses recognized tokens to see whether the rules of the grammar are followed. Since the 

composition of variants express candidate systems in the PL, each variant should be treated as a 

token by javacc. Sample token declaration for the {Management} variation point can be seen in 

Listing 4-1. As an example, symbolic name for the variant string p1.1 is P1_1.  

 

TOKEN: { < P1_1: "p1.1" > } 

TOKEN: { < P1_2: "p1.2" > } 

TOKEN: { < P1_1P1_2: "p1.1p1.2" > } 

 

Listing 4-1 Token Declaration for Management Variation Point 

 

There is an important remark regarding the nature of tokens. Token declarations are made in 

such a way that all possible variant selection combinations are uniquely represented by a single 

token. This can be seen in Listing 4-1, as the selection of both p1.1 and p1.2 is represented by 

the string p1.1p1.2 and the symbolic name P1_1P1_2. Also note that, in the following text, 

tokens derived from the same variation point are referred to as token groups. 

 

Obviously lexicographer logic is directly implemented by javacc once the tokens are defined. 

However parsing logic is more complex and must be separately implemented. Normally parsers 

are specified in the Backus-Naur Form (BNF). However if such a specification is used, it is 

difficult to implement it so that during parsing, the arrival order of the tokens don’t matter. Such 

a requirement is intrinsic to the concern application model. The appearance sequence of variants 

is not important for system specification purposes, their bare presence is important. In order to 

handle this nature of the concern application model, slightly more powerful means for parser 

specification is used rather than BNF scripts. It is possible to invoke straight java code from 

within javacc scripts by using the keyword JAVACODE. The main parser logic is implemented 

using this strategy.  
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A snippet from the method implementing this logic can be seen in Listing 4-2.  The method will 

implement the parser logic and return to its caller method 3 possible flags indicating the status of 

the parsing operation. A return value of 1 indicates successful operation whereas 2 indicates a 

failure case in which a redundant double token is present in the system specification file (SSF). 

Finally a return value of 3 still indicates a failure case where end of the SSF has been reached, 

yet not all mandatory variations have been resolved.  

Line 5 normally initializes flags that retain the presence information of all tokens, in this case for 

simplicity only one flag initialization is provided. Line 9 retrieves the first token from the input 

SSF and line 10 saves it for later use. At line 11 the loop that implements the logic checking 

token presences starts. As it can be seen from line 13, a switch statement over the token kinds is 

in place. The case statements are grouped regarding token groups as can be seen in lines 15 

through 18. This makes sense since only a single selection can be made from a particular token 

group. Then, for each token group, a similar logic is applied. The check in line 18 is made to 

assure that a particular token does not occur more than once in system specification. If this is not 

the case, the flag indicating the presence of that token is set to true. Similar logic is applied for 

each token group.  

 

1- // 0 : continue 1: success  , 2: duplicate token 3:not all   

2- //mandatory items are present but EOF reached  

3- int retVal = 0;  

4- // initialize all token checker flags 

5- boolean p1RetVal = false; // here single one present for     

6- //example 

7- 

8- Token tok; 

9- tok = getNextToken(); // retrieve the first token 

10- saveToken(tok);  

11- while(0 == retVal) 

12- { 

13-  switch(tok.kind) 

14-  { 

15-   case P1_1:  

16-   case P1_2: 

17-   case P1_1P1_2: 

18-   if(p1RetVal) 

19-     retVal = 2;  

20-    else 

21-     p1RetVal = true; 

22-    break; 
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23-   case P2_1: 

24-   //do similar check for all other variants… 

25-  } 

26-  //check that all mandatory items are selected, end of   27- 

 //tokens in the input file is reached and no double     28- 

 //entries exist 

29-  if 

30-  (   

31-  (true == (p5RetVal && p6RetVal && p7RetVal && p8RetVal && 

32-  p10RetVal && p11RetVal && p14RetVal && p15RetVal &&     33- 

 p20RetVal)) &&  

34-  (tok.kind == EOF) &&  

35-  (retVal != 2) 

36-  ) 

37-   retVal = 1; 

38-  //end of file reached but not all mandatory items are    39- 

 //selected 

40-  else if (tok.kind == EOF)  

41-   retVal = 3; 

42-  else if(0 == retVal) 

43-  { 

44-   tok = getNextToken(); 

45-   saveToken(tok); 

46-  } 

47- } 

48- if(retVal == 1) 

49-  System.out.println("Parsing Successful!, System valid    50- 

 according to CFG rules");  

51- else if(retVal == 2) 

52-  System.out.println("Parsing Failed, Redundant double entry 

53-  exists"); 

54- else if(retVal == 3) 

55-  System.out.println("Parsing Failed, All mandatory       56- 

 variability points must be resolved"); 

57- return retVal; 

 

Listing 4-2 Parser Code for RTSA Domain, Snippet from Method tryAllRules 

 

After each token group is processed, there are three options to check. The first option –on lines 

29 through 37- checks that all the mandatory item flags are set to true, end of the file has been 

reached and no duplicate items have been processed from the SSF. This indicates a successful 

SSF in terms of the CFG rules. The second option –on lines 40-41– is that end of file has been 

reached but not all mandatory items have been encountered in the SSF. The last possible option 
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–on lines 42 to 46– indicate that processing is successful until now and therefore retrieves the 

next token from the SSF to continue back again from line 11. When an option different from 0 is 

obtained, looping ends and the parsing result is displayed as can be seen on lines 48 to 57. 

 

Usage of javacc is handy for processing an input text stream from file or from the standard input. 

The post processor part of the concern application model is constructed using a logic that assures 

the mutual presence or absence of particular variants. However token parsing facilities of javacc 

are used. This is achieved by saving the valid tokens that are present in the system specification 

string during the lexical analysis and parsing phase of the concern application model for later 

use in the postprocessor as previously explained. The postprocessor reflects requirement and 

exclusion relations simply as can be seen in Listing 4-3. The switch statement on line 3 is over 

the token kinds. For each token there is a treatment for requires and excludes relationships. If 

any of these treatments end up with a failure concernCheck method returns false otherwise if 

these checks succeed the method returns true by default indicating a successful check.  

 

1-  private static boolean concernCheck(int tokKind) 

2- { 

3-  switch(tokKind) 

4-  { 

5-    //previous cases for each token before 

6-  

7-    case P4_3: 

8-    //Requires 

9-   if(!tokens[P2_1] || !tokens[P2_1P2_2] || !tokens[P8_2] 10-       

|| !tokens[P16_1])  

11-    return false; 

12-   //Excludes 

13-   if(tokens[P10_1] || tokens[P8_1] || tokens[P16_2]) 

14-    return false; 

15-    break; 

16-   

17-   //following cases for each token after 

18-  } 

19-  return true; 

20- } 

 

Listing 4-3 Postprocessor Code for RTSA Domain, Snippet from Method concernCheck 
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Checks for requires statements make sure that, for the particular token considered within the 

switch clause, all of the items in the if clause are present in SSF or otherwise the check fails. On 

the contrary, for an excludes relationship, check is made to assure that none of the elements in 

the if clause are present in the SSF, or otherwise the check fails. 

 

The logic in these code snippets forms the backbone of the concern application model. 

Postprocessor checks in the concern application model reflect feature relations derived from the 

consideration of the requirements and software design artifacts in APPENDIX C and 

APPENDIX D respectively can be seen in APPENDIX E (which would also be present in the 

concern application model for a complete system specification). Note that these relations have a 

direct affect on the postprocessing in concern application model and therefore dramatically 

change accuracy of system specification as validated in the next chapter. The counting of valid 

systems in terms of the concern application model rules is straightforward by simply 

incrementing a counter variable when both of the just mentioned checks succeed. Note that the 

post processor rules can be modified to reflect just the rules derived from feature analysis or the 

rules derived from feature analysis combined with concern modeling. 
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CHAPTER 5  

 

 

5 EVALUATION OF CONCERNS 

 

 

 

5.1 Introduction 

 

This chapter discusses the benefits of concerns. In the first part of this chapter, two evaluation 

criteria are introduced that assess concerns’ benefits which may be actually used to evaluate any 

PL approach. In the second part, these criteria are used to determine whether or not the benefits 

mentioned in section 3.4 are congruous in the light of the experimental work in Chapter 4.  

 

5.2 Evaluation Criteria for Product Lines 

 

It is worth explaining why this section has “evaluation criteria” in its title instead of “metrics”. 

The reason is that, no matter the usefulness of the criteria presented in this section is obvious, the 

criteria are subjective in the sense that they are not as concrete as some metrics in the software 

community such as lines of code, number of methods, number of classes, etc… 

 

The actual topic that could be discussed is whether objective criteria are really always useful in 

order to assess concepts that are themselves not very objective in the first place. However such a 

discussion is out of the scope of this work and it has been preferred to call the following two 

assessment entities as evaluation criteria rather than metrics.  

  

Concerns’ primary aim is to track variability effectively. As a secondary impact this is expected 

to bring an enhancement to system specification using domain engineering artifacts. A 



 86 

successful domain engineering effort is expected to yield the users of that effort to a point where 

it is possible to derive numerous applications that are valuable and useful from the domain 

engineering products. 

 

The first criterion that is proposed is the permissibility ratio. Whether it is any bare PL approach 

or an approach that has been supported with the usage of concerns, there is a way of specifying –

possibly via merely using features in the former and via using concerns in the latter– actual 

systems in the application engineering phase. Therefore, systems are specified using the 

variability infrastructure that they are represented with. These specifications are checked versus 

the rules that are present amongst the artifacts of the product line (PL) in order to determine 

whether they are valid or not. The permissibility ratio is defined as the ratio of systems that 

comply with the imposed rules of the PL to the total possible system combinations as in 

Equation 5-1. 

 

Nt
NaPR  

Equation 5-1 Permissibility Ratio 

The symbols in Equation 5-1 stand for: 

 

PR: The permissibility ratio (PR) 

Na: Number of acceptable systems considering domain expert views and customers. 

Nt: Number of total systems that can be generated using PL artifacts, taking into account 

constraints and relationships in between the artifacts. 

 

The value of this ratio is ideally one when the relations and constraints among a PL define 

systems that are all valid from the point of view of actual customers –or domain experts–. As it 

will be demonstrated in the next section, such an ideal ratio is far from being achievable for a PL 

of reasonable magnitude. 

 

Although very instructive, this ratio is difficult to obtain. The difficulty lies in validating any 

possible number of combinations –Nt– to obtain all the acceptable systems –Na–. Such an 

attempt demands a significant validation task for a number of items that is proportional to the 

square with the amount of variability expression items used in system specification. 
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Furthermore it is not straightforward to find a common ground for comparison between several 

PL approaches modeling variability in a different manner. Consider the example case where a 

PL is modeled using Feature Oriented Reuse Method (FORM) and also FORM with concerns. 

For the simplicity of the following discussion, let us call the former as model 1 and the latter as 

model 2.  

 

The variability model of model 2 is expected to have fairly more variation points –and thus 

variants– compared to the feature model of model 1. Therefore both of the figures Na and Nt are 

expected to be higher for model 2 compared to model 1. However, if PR is calculated using the 

values of model 2, its relative value with respect to the ratio obtained for model 1 is 

unpredictable (in the sense that such a ratio could equally be smaller or greater than the ratio 

obtained using model 1). This is simply because it is not possible to determine the amount by 

which the model 2 differs from model 1 in terms of number of variability items.  

 

If the variability items that are used in specifying systems are the same for different PL modeling 

approaches then there is an easier way of comparison. This means that if – for the sake of 

comparison – only the features layer of concerns are used in system specification from model 2 

versus features themselves from model 1, the amount of permitted systems are expected to be the 

same. In other words Na for both models will be the same under the assumption that same set of 

criteria is used by the customer and/or PL experts in validating possible systems that can be 

derived from the models. Consider the PR’s for model 1 and model 2 in Equation 5-2. For the 

above mentioned case, since Na1 is equal to Na2, the expression in Equation 5-3, namely the 

relative permissibility ratio (RPR) is obtained. 

 

1

1
1 Nt

Na
PR   

2

2
2 Nt

Na
PR  

Equation 5-2 Permissibility Ratio for Two Models 
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2

2
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Nt

Nt
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PR
 

Equation 5-3 Relative Permissibility Ratio for Two Variability Models 
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The RPR in Equation 5-3 is helpful in comparing the relative values of artifact numbers that 

can be generated taking into account constraints of the variability model. The closer this ratio is 

to zero, the more accurately does the variability modeling of model 2 represents actual realizable 

systems.  

 

The second criterion is somewhat related to the first one. Inaccurate variability modeling is 

expected to increase the possibility of encountering feature interaction problems as described in 

section 3.4. Since it is expected that concerns reveal a higher number of feature interactions 

compared to a case lacking their support, feature interaction problems are also expected to 

diminish. In variability models, feature interaction problems are identified and avoided by 

excludes relationships. Therefore if for the same set of variation points and variants, if some 

approach is able to identify a larger number of exclusion relationships, that particular approach 

is more preferable in avoiding feature clashes.  

 

An increase amount in terms of a percentage is helpful in demonstrating the effect of a particular 

variability modeling approach in avoiding feature interaction problems. The relative increase in 

the percentage for avoiding feature interaction problems – the variable A representing avoidance 

– is defined as in Equation 5-4. 

 

100
1

2
2,1
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A  

Equation 5-4 Relative Feature Interaction Problem Avoidance Percentage 

 

The fields in Equation 5-4 can further be clarified as:  

 

A1,2: Relative feature interaction avoidance percentage for variability models 1 and 2. 

En1: Exclusion relationship number for model 1. 

En2: Exclusion relationship number for model 2. 

 

The value of A1,2 is expected to be greater than hundred if model 2 is more effective in 

discovering exclusion relationships in the variability model and vice versa.  Needless to say, for 

an approach supported with concerns, the exclusion relationships to be considered are the ones 
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among the features in the layer “product features” of concerns. Introduction of concerns are 

expected increase the exclusion relationships among features and therefore cause an increase in 

feature avoidance.  

5.3 Evaluating Concerns’ Impact on Domain Engineering  

 

In this section, the evaluation criteria described in section 5.2 are used to compare variability 

modeling approaches presented in sections 4.4 and 4.5. This script is presented in APPENDIX F. 

The computation of the items related to the evaluation criteria has been carried out using the 

infrastructure explained in section 4.5 and the results in APPENDIX E derived using the artifacts 

in APPENDIX C and APPENDIX D. The Nt1, Nt2 and corresponding RPR1,2 values are 

calculated as 18911232, 2285568,  0.12 respectively. The number of excludes relations for 

model-1 and model 2 are 63 and 96 respectively, so A1,2  turns out to be %52.4. 

 

These results clearly indicate that even the partial application of concerns is valuable in 

constructing a more realistic system specification infrastructure. The value of RPR1,2 indicates 

that model-2 describes actual realizable system combinations about 9 times more accurately 

compared to model-1. The number of excludes in model-2 are about %50 higher compared to the 

original case, resulting in the reduction of feature interaction problems.  
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CHAPTER 6  

 

 

6 CONCLUSION 

 

 
 

Reuse is one of the fundamental issues that software engineering methodologies try to address. 

Different strategies and reuse levels have been suggested for different kind of reuse problems. 

The problem that has been addressed in this work is reuse within a software product line. 

Approaches related with software product lines try to address the problem of systematically 

producing reusable artifacts for a family of systems rather than for a particular system as 

conventional software development methods do.  

 

Satisfying the needs of a product line (PL) approach is generally significantly harder compared 

to single system development. This is because software analysis, design and development 

artifacts such as features, requirements, architecture and source code are considered for several 

systems rather than for a particular system. However the expected yield of such approaches is to 

obtain significantly reusable artifacts. When reuse is mentioned in the scope of PL’s, a proactive 

sense of reuse for all PL-related artifacts is implied. 

 

Obviously, for a set of systems to constitute a PL, there must be a significant amount of 

commonality in between them. Without enough commonality, the artifacts of the PL will tend to 

be far from being reusable and therefore violate a fundamental PL property. Necessary 

commonality must be at the initial phases. PL approaches tend to handle this during a context 

determination phase. 

 

On top of commonality, variability information of a PL is essential to be able to construct new 

systems with similar properties but individualized according to customer needs. Variability in a 

PL is present in all the artifacts that make up the PL. However, traditional approaches tend to 
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track variability by merely using features. This results in incomplete variability information and 

therefore leads to several shortcomings during system specification. 

 

To overcome this problem, concerns have been proposed in this thesis as a means to model and 

track variability in a PL. Concerns aim to be simple enough to enable straightforward modeling, 

however powerful enough to formally specify variability elements. Concerns cover the 

multidimensional nature of variability items by modeling items in a multilayer variability model. 

Concerns model basic variation point-variant relationships via the usage of a context free 

grammar and use a post processor checker to cover the remaining kinds of variant relationships 

such as simple or complex requires/excludes relationships.  Two separate considerations for 

variability modeling enable the usage of a context free grammar for the first kind of relations, 

which are both simple and powerful due their formality. The postprocessor phase covers the 

second kind of relationships; is simple on its own and achievable using a simple rule generator 

program. This split modeling technique is essential for the simplicity and formality of the 

approach. Furthermore this formal foundation is what brings the traceability to the approach. 

That is if for some reason, an error has been made in the system modeling phase which violates 

constraints and requirements of the variability information inside the concern model, this will be 

detected by the context free language (CFL) parser of the application model. 

 

As an additional property, concern models contain information that can be selectively applied 

because not all the variability modeling artifacts of all layers are needed to be used. This brings 

scalability to the approach in terms of resource utilization since it may not be possible to model 

variability in all abstraction layers due to resource constraints. 

 

Concerns are a means to track and model PL variability and therefore they are meant to be used 

with an existing PL approach by replacing its intrinsic variability modeling technique. In the 

particular context of this work concerns are used to replace the traditional feature-oriented 

variability modeling strategy of feature oriented reuse method (FORM). 

 

As a means to assess the benefits of using concerns as a replacement of variability modeling of a 

particular PL approach, novel evaluation criteria are introduced and advantages of concerns are 

assessed following the modeling of an example domain with FORM and with FORM and 

concerns in the light of these criteria. Furthermore, selective applicability of concerns is used 
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due to resource constraints. Tools for both supporting the concern application model presented 

in section 3.3 and measurement have been developed. Concerns are shown to significantly 

ameliorate variability modeling considering the evaluation criteria. The expectation is that these 

values will change further in the favor of concern based modeling when variability modeling is 

performed in all asset abstraction layers. This must be considered as a natural next step after the 

present study. 

 

The following step to take after this work is to begin the construction of a tool core that realizes 

the underlying formal foundation of the suggested approach. Then a wrapper environment that 

suits the needs of a particular organization can be developed on top of this core foundation. This 

wrapper can possibly be a visual environment to express various PL artifacts. In this way the 

modeler would be isolated from the intricate details of formal modeling and could then focus on 

the actual task that he/she is involved with. 

 

Concerns provide a sound amount of configuration knowledge over all domain artifacts, 

therefore they may be considered as an important foundation for domain specific languages. 

Furthermore, the ultimate objective of using variability information spread into various PL 

artifacts is considered to be able to use them to actually create systems rather than only specify 

them. For the very same reason concerns in the context of reflective and generative 

programming deserve to be explored as future work as well as their relations and inputs to 

DSL’s. 

 

Also, a promising study subject is the measurement of the effort required to apply the suggested 

variability approach that uses concerns. Such a study is necessary to see whether it is worth 

investing in building a concern model to express the variability information in a PL.  
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APPENDIX A: RTSA ISSUES AND DECISIONS 

APPENDICES 

A. RTSA ISSUES AND DECISIONS 

This section presents the issues and decisions raised during the feature analysis activities of 

RTSA domain.  

 

 Issue: Algorithm reliability 

 

Description: The decision of whether a particular scheduling algorithm should provide a 

mechanism of reliability check. 

 

Raised at: Reliability 

 

Decision: Feasibility Calculation 

Note that here another level for online and offline feasibility check could have been 

introduced, however for matters of simplicity this is avoided. 

Description: Provides feasibility calculation support to ensure reliability of an 

algorithm. In some cases this is determined offline and in others online 

(Here it should be noted that in literature sometimes online-offline and 

static-dynamic distinctions are used interchangeably, however this is not 

absolutely correct as the distinction has been made in this section).  

Rationale:  Offline feasibility analysis is less costly in terms of CPU resources. 

They are more predictable as with static algorithms. 

Online feasibility analysis goes in line with online scheduling 

algorithms, so they are more flexible in the respect that they can handle 

tasks arriving at runtime.  
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Decision: Proprietary Reliability Measures 

Description: As the name suggests this kind of measures are dependent on the 

particular implementation. This could be totally ad-hoc or systematic. 

This is mostly relevant when no explicit feasibility check is performed 

yet the system does its best to assure system reliability. Such measures 

are related generally with dynamic best effort algorithms. 

Rationale: System reliability is increased. Real time behavior is under control and 

proactively checked. 

 

Decision: Priority Inversion Avoidance 

Description: Priority inversion is a problem that occurs when a lower priority task 

hinders the execution of a higher priority task because of some shared 

resource. Several techniques exist that can avoid this problem such as 

priority inheritance and priority ceiling protocols. 

Rationale: Helps avoiding priority inversion problem whenever some resources are 

shared amongst tasks.  

 

 Issue: Core of Scheduling Algorithm 

 

Description: This is related with the determination of the principal operation logic behind a 

scheduling algorithm.  

 

Raised at: Algorithm Core 

 

Decision: Priority Driven 

Description:  Priority is generally a positive integer that is assigned to a particular 

task representing its importance and urgency [42]. Even cooperative 

multitasking where there is no preemption mechanism requires 

priorities. The concept of a task requires that a priority field is 

associated with it. Only background/foreground processes as explained 
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in [40] do not require a priority concept since they do not provide true 

multitasking.  

Rationale: Assigning priorities to tasks is necessary in order to achieve some sort 

of true multitasking. Task importance is expressed through priority 

levels. 

 

Decision: Table Driven 

Description: Table driven approaches are generally offline scheduling algorithms –

also static table driven approaches–. Such an algorithm constructs a 

table that indicates task scheduling information for duration equal to the 

least common multiple of all the periods of all tasks [42]. Then this 

table is used for scheduling information. Note that it is mandatory that 

tasks are periodic or at least they are modeled as being periodic. 

Rationale:  Scheduling predictability is highly increased. Run time overheads are 

significantly reduced. No preemption is necessary, hence this brings an 

ease of implementation. 

 

Decision: Planning Based 

Description: These are mainly considered under online [Algorithm Type] feature and 

they perform their checks based on several criteria such as resource 

constraints and worst case execution times [46].  They are dynamic, 

because they perform feasibility checks during run time and the task 

that successfully passes this check is guaranteed to be scheduled by the 

scheduler at runtime [42]. 

Rationale: They require a small amount of knowledge about the tasks. They are 

flexible and provide better response to aperiodic and soft real time tasks 

[42].  

 

Decision: Best Effort 

Description: These algorithms try to provide a high amount of benefit to the tasks 

they schedule. These algorithms do not provide an explicit feasibility 

check [46], they simply try to determine the best possible scheduling 



 102 

scheme possible under overload conditions [42], In order to achieve 

this, they try to optimize a certain energy function that takes into 

account either the minimum task laxity or the earliest deadline or the 

highest number of tasks completed under load [46] etc. They are mostly 

in the form of priority driven preemptive scheduling algorithms with 

practically no assumptions about tasks. 

Rationale: Proves to be successful in overload conditions. Although they are sub-

optimal due no feasibility calculation, they are more realistic and cover 

a wide range of task characteristics spectrum. 

 

 Issue: On line and Off-line Scheduling Algorithms 

 

Description: Determination of whether an algorithm will determine the whole schedule before 

run time or after run time. 

 

Raised at: Algorithm Type 

 

Decision: Online 

Description:  An online scheduling algorithm is one that runs scheduling algorithms 

while the system is running and therefore does not require any 

knowledge about tasks that aren’t ready for scheduling [42]. Also if any 

feasibility check is carried out, this is done at run-time too. They are 

much more flexible than offline scheduling algorithms which need to 

generate a whole new schedule every time task characteristics change. 

Note that online algorithms can be static or dynamic “priority” based. 

Rationale: Since no knowledge about non-scheduled tasks is assumed, online 

algorithms are extremely flexible and adaptive to the changes in the 

system [42].  

 

Decision: Offline 
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Description: All of the scheduling related decisions are performed in pre-run time 

phase. An offline algorithm requires practically any knowledge 

necessary to construct the schedule prior to system execution. This 

knowledge could be maximum delay, minimum delay, run time, 

deadline etc [42]. The actual contents of this knowledge depend on the 

particular offline algorithm applied. Also, if feasibility –schedulability– 

analysis is carried out, this is realized at compile time [46].  This kind of 

scheduling requires that the scheduled tasks be periodic –or modeled as 

being periodic–. 

Rationale: Whenever run time overhead of a scheduling algorithm is desired to be 

minimized, offline scheduling is appropriate.  Furthermore, since tasks 

are scheduled completely offline, their deadlines will be met under 

worst case conditions [46], which means they are more predictable.  

 

 Issue: Priority assignment mechanism 

 

Description: The determination instant of a task’s priority if a priority based scheduling is used.  

 

Raised at: Priority scheme 

 

Decision: Static 

Description: Priorities are assigned and do not change during entire system 

operation.  

Rationale: Small amount of on-line resources are utilized [42]. Implementation 

complexity is significantly reduced. 

 

Decision: Dynamic 

Description: Priorities can change during system operation.  

Rationale: Enables higher CPU utilization due more flexible scheduling. 

Algorithms are more flexible. This scheme proves to be powerful for 

handling soft real time and aperiodic tasks. [42]  
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  Issue: Task switching policy. 

 

Description: The decision whether a task execution is based on priority of tasks that are ready to 

run at any instant or not. 

 

Raised at: Context Switch 

 

Decision: Preemptive 

Description:  A preemptive algorithm will stop the execution of a task if some task 

with higher priority becomes available for running and allocates the 

CPU to the higher priority task.  

Rationale: The mechanism that allows a real-time behavior. High priority tasks are 

run whenever lower priority tasks can wait, therefore a more responsive 

system behavior is observed in terms of critical jobs.  

 

Decision: Non-Preemptive  

Description: A non-preemptive algorithm is one which lets a particular task run until 

completion whenever it has occupied the CPU. Multitasking is provided 

by running task after task. Such a scheme is called cooperative 

multitasking. 

Rationale: The execution of tasks cannot be involuntarily stopped. Such an 

infrastructure is much easier to realize.  

 

 Issue: Task interdependency 

 

Description: The choice of whether tasks will be allowed to communicate with each other via 

several shared communication media. 

 

Raised at: Task Interaction 
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Decision: Independent 

Description: Independent tasks are ones that do not share data or communicate with 

each other.  

Rationale: They allow much easier treatment of scheduling characteristics. 

Algorithms based upon the assumption of using independent tasks are 

reliable and predictable (for example EDF and RMS).  

 

Decision: Dependent 

Description:  Dependent tasks share data and/or communicate with each other.  

Rationale:  Real time systems are more accurately modeled using dependent tasks 

since this is more realistic and is the actual case in general. Systems 

designed with this strategy are more likely to succeed in a broad range 

of real time applications. 



 106 

APPENDIX B: RTSA COMPLETE FEATURE RELATIONS 

DEDUCED BY APPLYING FORM 

B. RTSA COMPLETE FEATURE RELATIONS DEDUCED BY APPLYING 

FORM 

It has been observed that capturing all feature relations for the analysis with FORM in 4.4 on 

feature diagrams is difficult and leads to a cumbersome picture. Therefore on the diagrams only 

major relations have been indicated. Furthermore several relations exist in between diagrams 

that are on different FORM feature layers which bring the impossibility of representing them on 

a diagram. In this section all of the feature relations are detailed for completeness.  

 

To derive these relations, a feature matrix has been constructed and domain expertise has been 

used to determine all the relationships in between features. It should be noted that these set of 

relations are not unique and represent the modeling effort of this thesis work.  

 

Feature name: [Task Priority Modification] 

 Requires: [Dynamic Priority] 

 Excludes: [Offline Scheduling], [Table Driven], [Static Priority], [Order Based] 

 

Feature name: [Feasibility Calculation] 

 Requires: - 

 Excludes: [Best Effort] 

 

Feature name: [Proprietary Reliability Measures] 

 Requires: - 

 Excludes: [Best Effort] 

 

Feature name: [Priority Inversion Avoidance] 

 Requires: [Online], [Dynamic Priority], [Task Priority Modification] 

 Excludes: [Offline Scheduling], [Table Driven], [Static Priority] 
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Feature name: [Optimal] 

 Requires: [Periodic]  

 Excludes: [Non Optimal], [Planning Based], [Best Effort], [Aperiodic], [Sporadic] 

 

Feature name: [Non Optimal] 

 Requires: - 

 Excludes: [Optimal] 

 

Feature name: [8 bit] 

 Requires: - 

 Excludes: [16 bit], [32 bit] 

 

Feature name: [16 bit] 

 Requires: - 

 Excludes: [8 bit], [32 bit] 

 

Feature name: [32 bit] 

 Requires: - 

 Excludes: [8 bit], [16 bit] 

 

Feature name: [C] 

 Requires: - 

 Excludes: [Class], [Template Metaprogramming], [STL Sorting Algorithms], [C++] 

 

Feature name: [C++] 

 Requires: - 

 Excludes: [C] 

 

Feature name: [Priority Driven] 

 Requires: [Online], [Dynamic Priority] 

 Excludes: [Offline], [Static Priority] 

 

Feature name: [Table Driven] 
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 Requires: [Periodic], [Offline] 

 Excludes: [Task Priority Modification], [Priority Inversion Avoidance], [Planning Based], [Best 

Effort], [Aperiodic], [Sporadic], [Online], [Dynamic Priority] 

 

Feature name: [Planning Based] 

 Requires: [Feasibility Calculation], [Online] 

 Excludes: [Optimal], [Table Driven], [Best Effort], [Offline] 

 

Feature name: [Best Effort] 

 Requires: [Online] 

 Excludes: [Optimal], [Table Driven], [Planning Based], [Offline] 

 

Feature name: [Round Robin] 

 Requires: - 

 Excludes: [Proprietary Algorithm Library], [STL Sorting Algorithms], [C Standard Library], 

[Introsort], [Quicksort], [Heapsort], [Radixsort], [Bubblesort] 

 

Feature name: [Periodic] 

 Requires: - 

 Excludes: [Aperiodic], [Sporadic] 

 

Feature name: [Aperiodic] 

 Requires: [Online] 

 Excludes: [Optimal], [Table Driven], [Periodic], [Sporadic], [Offline] 

 

Feature name: [Sporadic] 

 Requires: [Online] 

 Excludes: [Offline], [Periodic], [Aperiodic],  [Table Driven], [Optimal] 

 

Feature name: [Priority Based] 

 Requires: [Priority Driven] 

 Excludes: [Order Based] 
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Feature name: [Order Based] 

 Requires: - 

 Excludes: [Priority Based] 

 

Feature name: [Offline] 

 Requires: [Periodic] 

 Excludes: [Task Priority Modification], [Priority Inversion Avoidance], [Planning Based], [Best 

Effort], [Aperiodic], [Sporadic], [Online], [Dynamic Priority] 

 

Feature name: [Online] 

 Requires: - 

 Excludes: [Table Driven], [Offline] 

 

Feature name: [Dynamic Priority] 

 Requires: [Task Priority Modification], [Priority Driven], [Online] 

 Excludes: [Table Driven], [Order Based], [Offline] 

 

Feature name: [Template Metaprogramming] 

 Requires: - 

 Excludes: [C] 

 

Feature name: [Preprocessor Directives] 

 Requires: - 

 Excludes: - 

 

Feature name: [Proprietary Algorithm Library] 

 Requires: - 

 Excludes: [STL Sorting Algorithms], [C Standard Library] 

 

Feature name: [STL Sorting Algorithms] 

 Requires: [C++] 

 Excludes: [C], [Proprietary Algorithm Library], [C Standard Library],  
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Feature name: [C Standard Library] 

 Requires: - 

 Excludes: [Proprietary Algorithm Library], [STL Sorting Algorithms] 

 

Feature name: [Introsort] 

 Requires: - 

 Excludes: [Quicksort], [Heapsort], [Radixsort], [Bubblesort] 

 

Feature name: [Quicksort] 

 Requires: - 

 Excludes: [Introsort], [Heapsort], [Radixsort], [Bubblesort] 

 

Feature name: [Heapsort] 

 Requires: - 

 Excludes: [Introsort], [Quicksort], [Radixsort], [Bubblesort] 

 

Feature name: [Radixsort] 

 Requires: - 

 Excludes: [Introsort], [Quicksort], [Heapsort], [Bubblesort] 

 

Feature name: [Bubblesort] 

 Requires: - 

 Excludes: [Introsort], [Quicksort], [Heapsort], [Radixsort] 

 

Feature name: [Structure] 

 Requires: - 

 Excludes: - 

 

Feature name: [Class] 

 Requires: [C++] 

 Excludes: [C] 

 

Feature name: [Add/Remove from Ready List] 
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 Requires: - 

 Excludes: - 

 

Feature name: [Missed Deadline] 

 Requires: - 

 Excludes: - 

 

Feature name: [Missed Worst Case Execution Time] 

 Requires: - 

 Excludes: - 

 

Feature name: [Missed Activation] 

 Requires: - 

 Excludes: - 

 

Feature name: [Ready Group Display] 

 Requires: - 

 Excludes: - 

 

Feature name: [Independent] 

 Requires: - 

 Excludes: [Dependent] 

 

Feature name: [Dependent] 

 Requires: - 

 Excludes: [Independent] 

 

Feature name: [Preemptive] 

 Requires: - 

 Excludes: - 
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Feature name: [Non Preemptive] 

 Requires: - 

 Excludes: - 
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APPENDIX C: RTSA EXAMPLE REQUIREMENTS 

SPECIFICATIONS 

C. RTSA EXAMPLE REQUIREMENTS SPECIFICATIONS 

 

Note that each item in the requirement specification is terminated by a symbolic name between 

parentheses. These symbolic names are utilized in the concern model and provided here for 

cross reference. Next to several requirement clauses, enumerations are provided to establish a 

cross reference between the clause and a corresponding derived feature relation listed in 

APPENDIX E. 

 

Requirements Specification for System I, RM Scheduler 

 

[SRS 1.1] The language of implementation is C regarding performance constraints. R.18, 

R.19, R.20 

[SRS 1.2] The scheduler will use a rate monotonic algorithm. 

[SRS 1.3] All tasks should be of periodic nature. 

[SRS 1.4] There won’t be any attempt to convert any aperiodic or sporadic task into a 

periodic one. 

[SRS 1.5] Context switch will be based on preemptive policies. R.4, R.6, R.11, R.24, R.25 

[SRS 1.6] Priorities –derived from the periods- are statically assigned to the tasks to be 

scheduled. 

[SRS 1.7] Kernel space should have the ability to initialize the scheduler. 

[SRS 1.8] Kernel space should have the ability to deinitialize the scheduler. 

[SRS 1.9] Kernel space and the user space should have the ability to start scheduling 

whenever desired. 

[SRS 1.10] Kernel space and the user space should have the ability to stop scheduling 

whenever desired. 

[SRS 1.11] The scheduler should have a mechanism to determine whether the predicted 

schedule is feasible or not. R.22, R.3 
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[SRS 1.12] It is required that the scheduling be optimal. However, absolute optimality is not 

aimed and optimality definitely requires that there be a feasibility check. However to 

be closest as possible to being optimal, every assumption in the favor of optimality has 

to be made. R.1, R.2, R.4, R.5, R.6, R.12, R.13, R.14, R.15, R.21, R.22, R.23, R.25 

[SRS 1.13] For assuring optimality, any proprietary reliability check measure is despised. 

Optimality should be based on feasibility calculation that uses related algorithm 

criteria. R.3, R.22 

[SRS 1.14] The scheduler will sort its items using C standard library’s quick sort function. 

[SRS 1.15] The scheduler should allow an interface function that enables adding a new item 

into the scheduler’s ready list. 

[SRS 1.16] The scheduler should allow an interface function that enables removing an 

existing item from the scheduler’s ready list. 

[SRS 1.17] The scheduler should have a predetermined size for the maximum size of its 

ready list.  

[SRS 1.18] The ordering of the ready list must be re-determined each time a new task is 

added to the ready list. 

[SRS 1.19] The ordering of the ready list must be re-determined each time a task is removed 

from the ready list. 

[SRS 1.20] The scheduler should display the list of ready tasks upon request. 

[SRS 1.21] The scheduler should provide and interface to report the erroneous operations 

when desired. 

[SRS 1.22] The scheduler operates inside an OS running on a 32 bit platform. R.7, R.8, R.9, 

R.10, R.16, R.17, R.19  

 

Requirements Specification for System II, EDF Scheduler 

 

[SRS 2.1] The language of implementation is C, regarding performance constraints. R.18, 

R.19,  R.20 

[SRS 2.2] The scheduler uses earliest deadline first algorithm. 

[SRS 2.3] There won’t be any attempt to convert any aperiodic or sporadic task into a 

periodic one. 

[SRS 2.4] Context switch will be based on preemptive policies. R.4, R.6, R.11, R.25, R.24  
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[SRS 2.5] Priorities –derived from the deadlines of the tasks- are statically assigned to the 

tasks to be scheduled. 

[SRS 2.6] Kernel space should have the ability to initialize the scheduler. 

[SRS 2.7] Kernel subsystem should have the ability to start scheduling whenever desired. 

[SRS 2.8] Kernel subsystem should have the ability to stop scheduling whenever desired. 

[SRS 2.9] The scheduler should have a mechanism to determine whether the predicted 

schedule is feasible or not. R.22, R.3 

[SRS 2.10] It is required that the scheduling be optimal. However, absolute optimality is not 

aimed and optimality absolutely requires that there be a feasibility check. However to 

be closest as possible to being optimal, every assumption in the favor of optimality has 

to be made. R.1, R.2, R.4, R.5, R.6, R.12, R.13, R.14, R.15, R.21, R.22, R.23, R.25 

[SRS 2.11] The results of the feasibility test should indicate missed deadlines in the case of 

failure of the feasibility check. 

[SRS 2.12] For assuring optimality, any proprietary reliability check measure is despised, 

optimality should be based on feasibility calculation using related algorithm criteria. 

[SRS 2.13] The scheduler should allow an interface function that enables adding a new item 

into the scheduler’s ready list. 

[SRS 2.14] The scheduler should allow an interface function that enables removing an 

existing item from the scheduler’s ready list. 

[SRS 2.15] The scheduler should have a varying size for the maximum size of its ready list. 

An interface to manage this size should be present. 

[SRS 2.16] The ordering of the ready list must be re-determined each time a new task is 

added to the ready list. 

[SRS 2.17] The ordering of the ready list must be re-determined each time a task is removed 

from the ready list. 

[SRS 2.18] The scheduler will sort items in its ready list using an optimized proprietary 

sorting algorithm. 

[SRS 2.19] The scheduler operates inside an OS running on a 16 bit platform. R.7, R.8, R.9, 

R.10, R.16, R.17 
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Requirements Specification for System III, Priority Based Preemptive Scheduler 

with RR support 

 

[SRS 3.1] The scheduler will use a priority driven scheduling policy. 

[SRS 3.2] The scheduler will also support round robin scheduling for tasks of equal priority. 

[SRS 3.3] Context switch will be based on preemptive policies. R.11, R.24, R.25  

[SRS 3.4] Tasks are generally aperiodic. They can be periodic and sporadic also. 

[SRS 3.5] Priorities can be dynamically assigned to the tasks anytime. 

[SRS 3.6] The scheduler should have an interface function to change the priorities of tasks. 

[SRS 3.7] Kernel space should have the ability to initialize the scheduler. 

[SRS 3.8] Kernel subsystem should have the ability to start scheduling whenever desired. 

[SRS 3.9] Kernel subsystem should have the ability to stop scheduling whenever desired. 

[SRS 3.10] Scheduler is suboptimal since it does not provide any feasibility guarantees. R1, 

R2, R4, R.5, R.6, R.12, R.13, R.14, R15, R.21, R.22, R.23 

[SRS 3.11] The implementation language is C++. This is because already sub-optimality is 

assumed. Therefore, architectural structure and compliance to data-function separation 

is more important. R.18, R.19, R.20 

[SRS 3.12] Priority inheritance technique is used to overcome priority inversion problem. 

[SRS 3.13] The scheduler will sort items in its ready list using an optimized proprietary 

sorting algorithm. 

[SRS 3.14] The scheduler should allow an interface function that enables adding a new item 

into the scheduler’s ready list. 

[SRS 3.15] The scheduler should allow an interface function that enables removing an 

existing item from the scheduler’s ready list. 

[SRS 3.16] The scheduler should have a varying size for the maximum size of its ready list. 

An interface to manage this size should be present. 

[SRS 3.17] The ordering of the ready list must be re-determined each time a new task is 

added to the ready list. 

[SRS 3.18] The ordering of the ready list must be re-determined each time a task is removed 

from the ready list. 

[SRS 3.19] The scheduler operates inside an OS running on a 32 bit platform. R.7, R.8, R.9, 

R.10, R.16, R.17, R.19 
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APPENDIX D: RTSA EXAMPLE SOFTWARE DESIGN ELEMENTS 

D. RTSA EXAMPLE SOFTWARE DESIGN ELEMENTS 

 

Note that each item in the software design artifacts possesses a symbolic name in parentheses 

adjacent to it. These symbolic names are utilized in the concern model and provided here for 

cross reference. Within several design artifacts, enumerations are provided –in bold typeface– to 

establish a cross reference between the particular artifact and a corresponding derived feature 

relation listed in APPENDIX E. 

 

Use Case Diagrams and Use Cases 

 

Figure 7-1 displays the combined use case diagram for System I, II and III. The distinction of 

use cases with respect to individual systems can be made considering the symbolic names on the 

diagram. The surrounding boundary is the system boundary for the scheduler. Note that although 

the Scheduling use case is present, its description is not very elaborate. This is because it has a 

detailed algorithmic nature and therefore is not described very well using a use case. Rather, a 

sequence diagram is used to represent the scheduling activity. 

 

Note that it is not necessary to separately consider the use cases for each system since they 

basically state the same kind of flow of action. In the mean time it should be noted that use cases 

do not provide information that is directly valuable for the concern models (Obviously they have 

links to the model however they do not tend to reveal feature relationships that escaped bare 

feature modeling). They are present since they ease the construction of more design-related 

artifacts such as the class diagrams and the sequence diagrams. However, it should be noted that 

the reason for use cases’ non-direct influence is due to the particular nature of the domain which 

lacks user interactions. Had the domain involved many user interactions, then use cases’ inputs’ 

would have been more direct to the concern model. 
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Initialize Scheduler

Stop Scheduler

Start Scheduler

«Actor»

Microkernel «Actor»

User Space

Add Task to Ready List

Remove Task from Ready List

Deinitilaize Scheduler

<<Subsystem>>

Scheduler

Schedule

 

Figure 7-1 Use Case Diagram for System I, II, III 

 

 

 

One can see the descriptions of the use cases in Figure 7-1 from Table 7-1 through Table 7-7. 
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Table 7-1 Use Case Initialize Scheduler 

 

Name Initialize Scheduler 

Identifier UC 1.1  

Description Initialize the scheduler components by setting up initial values necessary 

for its proper operation. 

Preconditions None in terms of scheduler, the basic OS initializations must have been 

done. 

Post conditions The scheduler will be ready to start operation. 

Basic Course of 

Action 

1. The use case begins when the Microkernel wants to initialize the 

Scheduler. 

2. The Scheduler initializes all its state information.  

3. The Scheduler initializes the ready task list. 

4. The Scheduler checks that all initialization is done properly. [Alt 

Course A] 

5. The Scheduler terminates the initialization and lets the 

Microkernel learn the result. 

Alternate Courses Alternate Course A: The scheduler initialization checks fail 

A 1. The scheduler does necessary cleanup, before warning the 

Microkernel. 
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Table 7-2 Use Case Deinitialize Scheduler 

 

Name Deinitialize Scheduler 

Identifier UC 1.2  

Description Deinitialize the scheduler components by cleaning up necessary fields. 

Preconditions The Scheduler must have been initialized. 

Post conditions The Scheduler is inactive and all its fields are cleaned up. 

Course of Action 1. The use case begins when the Microkernel wants to deinitialize 

the Scheduler. 

2. The Scheduler resets all its state information. 

3. The Scheduler cleans up its ready list. 

4. The Scheduler checks that all deinitialization is done properly. 

[Alt Course A, Deinitialization fails] 

5. The Scheduler terminates the deinitialization and lets the 

Microkernel learn the result. 

Alternate Courses Alternate Course A, Deinitialization fails: 

A 1. The scheduler does necessary cleanup, before warning the 

Microkernel. 
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Table 7-3 Use Case Start Scheduler 

Name Start Scheduler 

Identifier UC 1.3  

Description Begin scheduling of the ready tasks. 

Preconditions The Scheduler must have been initialized. 

Post conditions The scheduler is operating. 

Course of Action 1. The use case begins when Microkernel or the User Space wants to 

start the scheduler. 

2. The Scheduler state is set to running. 

3. The task scheduling algorithm is run on the current list of ready 

tasks. 

4. The initial scheduling succeeds. [Alt Course A, Scheduling fails] 

5. The Scheduler terminates the startup and lets the Microkernel or 

the User Space learn the result. 

Alternate 

Courses 

Alternate Course A, Scheduling fails: 

A 1. The scheduler does necessary cleanup, before warning the 

Microkernel. 
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Table 7-4 Use Case Stop Scheduler 

 

Name Stop Scheduler 

Identifier UC 1.4 End the scheduling of tasks. 

Description End the task scheduling. 

Preconditions The scheduler must have been initialized and started. 

Post conditions The scheduler stops operating. 

Course of Action 1. The use case begins when Microkernel or the User Space wants to 

stop scheduling. 

2. The scheduler checks that there are tasks present in the ready list 

waiting for scheduling. [Alt Course C, No Tasks in the Ready 

List] 

3. The scheduler state is set to not running. 

4. The Scheduler stops running and lets the Microkernel or the User 

space know the result. 
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Table 7-5 Use Case Schedule 

 

Name Schedule 

Identifier UC 1.5  

Description Run the scheduling algorithm. 

Preconditions The scheduler must have been started. 

Post conditions The task scheduled according to the algorithm is running. 

Course of Action 1. The use case begins when Microkernel wants to trigger 

scheduling. This could be when a new task is added to or an 

existing task is removed from the ready list.  

2. The scheduling succeeds on the current set of ready tasks. [Alt 

Course A, Scheduling fails] 

3. The current running task is updated. 

4. The Scheduler ends scheduling and lets the Microkernel learn the 

result. 

Alternate 

Courses 

Alternate Course A, Scheduling fails: 

Scheduling fails due to some reason. Necessary error code preparation 

is made. The use case proceeds from step 4 in the main course of 

action. 
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Table 7-6 Use Case Add Task to Ready List 

 

Name Add Task to Ready List 

Identifier UC 1.6  

Description Add a task to the ready list to make it available for scheduling. 

Preconditions The Scheduler must have been started. 

Post conditions Task is added to the ready list. 

Running task is modified if necessary. 

Course of Action 1. The use case begins when Microkernel or the User Space wants to 

add a new task to the ready list. 

2. The Scheduler checks whether there is space in the task list. [Alt 

Course A, No space in the ready list] 

3. The scheduler checks whether the task to be added is already in 

the ready list. [Alt Course B, Task already in the ready list] 

4. The task is inserted into the ready list. 

5. State of the Scheduler is updated according to the newcomer task. 

6. Task scheduling algorithm is run on the current list of ready tasks. 

7. Scheduling succeeds. [Alt Course C, Scheduling fails] 

8. The Scheduler terminates the addition of the task and lets the 

Microkernel or the User Space learn the result. 

Alternate 

Courses 

Alternate Course A, No Space in the Ready List: 

A 1. There is not enough space in the task list. Necessary error code 

preparation is made. The use case proceeds from step 8 in the 

main course of action. 

Alternate Course B, Task already in the ready list: 

B 1.No task addition performed. Necessary error code preparation is 

made. The use case proceeds from step 8 in the main course of 

action. 

Alternate Course C, Scheduling fails: 

C 1.Scheduling fails due to some reason. Necessary error code 

preparation is made. The use case proceeds from step 8 in the 

main course of action. 
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Table 7-7 Use Case Remove Task from Ready List 

 

Name Remove Task from Ready List 

Identifier UC 1.7  

Description Remove a task form the ready list 

Preconditions The scheduler must have been started. 

Post conditions Task is removed from the ready list. 

The running task is modified if necessary. 

Course of Action 1. The use case begins when Microkernel or the User Space wants to 

remove a new task from the ready list. 

2. The scheduler checks whether there are some tasks present in the 

ready list. [Alt Course A, No tasks in the ready list] 

3. The scheduler checks whether the task to be removed is present in 

the ready list. [Alt Course B, Task not present in the ready list] 

4. The task is removed from the ready list. 

5. State of the Scheduler is updated according to the removed task. 

6. Task scheduling algorithm is run on the current list of ready tasks. 

7. Scheduling succeeds. [Alt Course C, Scheduling fails] 

8. The Scheduler terminates the removal of the task and lets the 

Microkernel or the User Space learn the result. 

Alternate 

Courses 

Alt Course A, No tasks in the ready list: 

A 1. There are no tasks in the task list. Necessary error code 

preparation is made. The use case proceeds from step 8 in the 

main course of action. 

Alt Course B, No tasks in the ready list: 

B 1. No task removal performed. Necessary error code preparation is 

made. The use case proceeds from step 8 in the main course of 

action. 

Alt Course C, Scheduling fails: 

C 1.Scheduling fails due to some reason. Necessary error code 

preparation is made. The use case proceeds from step 8 in the 

main course of action. 
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Component Diagrams 

 

The only component diagram of the scheduler that realizes the RTSA domain can be seen in 

Figure 7-2. The reusable component displays several ports related with the services provided by 

the component and the required and provided interfaces on these ports. Again, as with the use 

cases, the primary aim in showing the component diagram is to provide a foundation for the 

lower layers to build upon. Note that ports are used to make a major logical partitioning for the 

services, which are expressed through several required or provided interfaces, which in turn are 

represented by collection of methods. Methods associated with the interfaces are shown in 

Figure 7-3. In both figures, methods and interfaces that are specific to some of the systems of the 

PL are explicitly indicated. 

 

 

 

Tasks

Task Information
Algorithm

Result

Scheduling 

Information

Error Information

Feasibility 

Information

Operation

Scheduling 

Algorithm

System I,II

 

 

Figure 7-2 Component Diagram for System I, II, III 
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+reportSchedulingErros()

«interface»

Error Information

+isTaskSetSchedulable()

«interface»

Feasibility Information

+updateRunningTasks()

«interface»

Scheduling Information

+init()

+deinit()

+start()

+stop()

+schedule()

«interface»

Scheduling Algorithm

+addTaskToReadyList()

+removeTaskFromReadyList()

«interface»

Task Information

System I,II

 

 

Figure 7-3 Interfaces for the scheduler component and methods 

 

 

 

Class Diagrams 

Although the realization language for some of the schedulers in this domain analysis is chosen to 

be C, which is a non-object oriented language, conventional UML class diagrams can still be 

used to express the structure information of  a system realized using C [74]. Evidently, since 

there are no classes in C, there are no methods in the OO sense. Data groups are implemented 

using structs and the functions that operate on those data are enlisted as if they were methods. 

 

Class diagrams for systems I, II and III are shown on a single diagram in Figure 7-4. Again as 

with the component diagram, methods and interfaces that are specific to some of the systems of 

the PL are explicitly indicated. Also note the presence of symbolic names for cross reference 

purposes to derived feature relations in APPENDIX E. 
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+init() : int

+deinit() : int

+start() : unsigned int

+stop() : int

+addTask() : int

+removeTask() : int

+isTaskAlreadyInReadyList() : int

+compareTaskPeriods() : int

+runCurrTask() : void

+schedule() : void

+printReadyList() : void

+isFeasible() : int

+isHighestPrioTaskCurrTask()

+curRunner : Task

+isEnabled : int

+isRunning : int

Scheduler {Active}

+isRunning : int

+deadline : int

+taskID : int

+period : int

-priority : int

Task

{active}

GlobalUtils

1

*

1 1

«defines»

+orderReadyList() : void

+isReadyListEmpty() : int

+isReadyListAltered() : int
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+retrieveTask() : Task

+taskListAltered : int

+readyTaskIdx : int

ReadyList

1 1

System III

System I, II

System I, II

System I

 

Figure 7-4 Class Diagram for System I, II, III 

 

 

 

Sequence Diagrams 

 

The sequence diagram that is preferred at this stage is a service level diagram rather than a 

system level one. This is because it is considered that system level sequence diagrams are quite 

sufficiently covered by use cases. For what concerns the service level sequence diagrams, the 

main focus is on the scheduling operation, since it is its algorithmic nature and specific demands 

that reveals several hidden feature relationships. 

 

The sequence diagram related with the schedule operation for System I, II and III can be seen in 

Figure 7-5. The sequence diagram shows a happy path scenario, since, due to the comprehensive 

nature of this case, most of the unapparent feature relations are unraveled. In this case, the 

scheduling logic is basically same for all the systems except for the ordering of the ready list, 

D.3, D.4, D.5, D.6, D.7, D.8, D.9,  

D.10, D.11, D.12, D.23, D.24 
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where the strategy depends on the particular algorithm. Again as with the class diagram, 

symbolic names are indicated for cross reference purposes with APPENDIX E. 

 

schedulerCore state

isEnabled()

schedule()

isRunning()

false

true

true

readyList

isReadyListEmpty()

isReadyListAltered()

true

getHighestPrioTaskID()

isHigestPrioTaskCurrTask()

false

updateCurrRunningTask()

orderReadyList()

 

 

Figure 7-5 Sequence Diagram for System I, II, III 

D.1, D.2, D.11, D.12, D.13, D.14, 

D.15, D.16, D.17, D.18, D.19, 

D.20, D.21, D.22, D.23, D24 

D.10, D.11, D.12, D.23, D.24 
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APPENDIX E: FEATURE RELATIONS DERIVED USING THE 

CONCERN MODEL 

E. FEATURE RELATIONS DERIVED USING THE CONCERN MODEL 

 

Note that the relationships introduced here are in addition to those in APPENDIX B. All these 

new relations are marked with an enumeration –in bold typeface– to establish a cross reference 

with the requirement and design artifacts in APPENDIX C and APPENDIX D. 

 

Feature name: [Feasibility Calculation] 

 Requires: [Independent] R.1 

 Excludes: [Dependent] R.2 

 

Feature name: [Optimal] 

 Requires: [Feasibility Calculation] R.3, [Preemptive] R.4 

 Excludes: [Template Metaprogramming] D.1, [Preprocessor Directives] D.2, [Class] 

D.3, [Dependent] R.5, [Non Preemptive] R.6. 

 

Feature name: [8 Bit] 

 Requires: - 

 Excludes: [C++] D.4, [Template Metaprogramming] D.5, [STL Sorting Algorithms] 

R.7, [C Standard Library] R.8, [Class] D.6.   

 

Feature name: [16 Bit] 

 Requires: -  

 Excludes: [C++] D.7, [Template Metaprogramming] D.8, [STL Sorting Algorithms] 

R.9, [C Standard Library] R.10, [Class] D.9.   

 

Feature name: [C++] 
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 Requires: -  

Excludes: [Dependent] D.10 

 

Feature name: [Table Driven] 

 Requires: -  

Excludes: [Preemptive] R.11 

 

Feature name: [Planning Based] 

 Requires: [Non-Optimal] R.12 

Excludes: - 

 

Feature name: [Best Effort] 

 Requires: [Non-Optimal] R.13 

Excludes: - 

 

Feature name: [Offline] 

 Requires: [Independent] R.14 

Excludes: [Dependent] R.15 

 

Feature name: [Template Metaprogramming] 

 Requires: [Optimal] D.11 

Excludes: [8 Bit] R.16, [16 Bit] R.17 

 

Feature name: [Preprocessor Directives] 

 Requires: [Optimal] D.12 

Excludes: - 

 

Feature name: [STL Sorting Algorithms] 

 Requires: [Introsort] D.13 

Excludes: - 

 

Feature name: [C Standard Library] 
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 Requires: [Quicksort] D.14  

Excludes: [Introsort] D.15, [Heapsort] D.16, [Radixsort] D.17, [Bubblesort] D.18 

 

Feature name: [Introsort] 

 Requires: - 

Excludes: [C Standard Library] D.19 

 

Feature name: [Heapsort] 

 Requires: - 

Excludes: [C Standard Library] D.20 

 

Feature name: [Radixsort] 

 Requires: - 

Excludes: [C Standard Library] D.21 

 

Feature name: [Bubblesort] 

 Requires: - 

Excludes: [C Standard Library] D.22 

 

Feature name: [Structure] 

 Requires: - 

Excludes: [Class] R.18 

 

Feature name: [Class] 

 Requires: - 

Excludes: [8 Bit] R.19, [Structure] R.20 

 

Feature name: [Independent] 

 Requires: - 

Excludes: [Optimal] R.21 

 

Feature name: [Dependent] 
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 Requires: - 

Excludes: [Feasibility Calculation] R.22, [Optimal] R.23 

 

Feature name: [Preemptive] 

 Requires: [Priority Driven] D.23, [Priority Based] D.24 

Excludes: [Order Based] R.24 

 

Feature name: [Non Preemptive] 

 Requires: - 

Excludes: [Optimal] R.25 
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APPENDIX F: SOURCE CODE OF APPLICATION MODEL FOR RTSA 

DOMAIN 

F. SOURCE CODE OF APPLICATION MODEL FOR RTSA DOMAIN 

Please see the enclosed CD. 

 


