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Mechanical Engineering, Başkent University
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ABSTRACT

A THEORETICAL ANALYSIS OF FIRE DEVELOPMENT AND FLAME SPREAD IN
UNDERGROUND TRAINS

Musluoğlu, Eren

Ph.D., Department of Mechanical Engineering

Supervisor : Prof. Dr. O. Cahit Eralp

August 2009, 312 pages

The fire development and flame spread in the railway carriages are investigated by performing

a set of simulations using a widely accepted simulation software called ‘Fire Dynamics

Simulator’.

Two different rolling stock models; representing a train made up of physically separated

carriages, and a 4-car train with open wide gangways; have been built to examine the effects

of train geometry on fire development and smoke spread within the trains. The simulations

incorporate two different ignition sources; a small size arson fire, and a severe baggage

fire incident. The simulations have been performed incorporating variations of parameters

including tunnel geometry, ventilation and evacuation strategies, and combustible material

properties.

The predictions of flame spread within the rolling stock and values of the peak heat release

rates are reported for the simulated incident cases. In addition, for a set of base cases the

onboard conditions are discussed and compared against the tenability criteria given by the

international standards.
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The predictions of heat release rate and the onboard conditions from the Fire Dynamics

Simulator case studies have been checked against the empirical methods such as Duggan’s

method and other simulation softwares such as CFAST program.

Keywords: Train Fire, Fire Development, Flame Spread, Heat Release Rate, Fire Dynamics

Simulator (FDS)
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ÖZ

METRO TRENLERİNDE YANGIN GELİŞİMİNİN VE YAYILMASININ TEORİK
ANALİZİ

Musluoğlu, Eren

Doktora, Makina Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. O. Cahit Eralp

Ağustos 2009, 312 sayfa

Yeraltı trenlerinde yangın gelişimi ve yayılması endüstride geniş bir kitle tarafından kabul

gören ‘Fire Dynamics Simulator’ programı kullanılarak yapılan bir dizi simülasyonla incelen-

miştir.

Trenin yapısı ve geometrisinin, tren içerisindeki yangın gelişimi ve duman yayılması üzerin-

deki etkisini incelemek üzere iki farklı tren modeli; birbirinden fiziksel olarak ayrılmış vagon-

lardan oluşan bir treni temsil eden bir vagon, ve birbiri arasında geçiş yapılabilen açık

aralıklı dört vagonlu bir tren modeli hazırlanmıştır. Simülasyonlarda, düşük güce sahip

bir kundaklama ve yüksek güçlü bir bagaj yangını olmak üzere iki farklı ateşleme kaynağı

kullanılmıştır. Yapılan simülasyonlarda, tünelin geometrisi, havalandırma ve yolcu tahliyesi

stratejileri, ve yanıcı madde özellikleri gibi birçok değişkenin yangın gelişimi üzerindeki etki-

leri de incelenmiştir.

Simülasyonlar sonucunda elde edilen tren içerisindeki yangının yayılma alanı ve ortaya çıkan

ısıl güç değerleri bu tezde raporlanmıştır. Ayrıca, seçilen bir dizi simülasyon çalışması için

tren içerisindeki koşullar tartışılmış ve bunlar uluslararası standartlarca belirlenen yaşam için

dayanılabilirlik limitleri ile karşılaştırılmıştır.
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Fire Dynamics Simulator programı kullanılarak elde edilen tren içerisindeki koşullar ve or-

taya çıkan ısıl güç değerleri diğer simülasyon programları, örneğin CFAST, ve basit aritmetik

yöntemler, örneğin Duggan methodu, ile karşılaştırılıp doğrulanmıştır.

Anahtar Kelimeler: Tren Yangını, Yangın Gelişimi, Alev Yayılması, Isıl Güç Değeri, Fire

Dynamics Simulator (FDS)
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

The interest in fire life safety in underground transportation systems increased considerably

in recent years. New regulations and guidelines are being set by the railroad administrations

on fire life safety addressing rail car design, flammability and smoke emission performance

criteria of the materials, fire detection and suppression systems, passenger evacuation and

their interaction. Research projects involving small scale tests to determine fire characteristics

of individual materials were performed, however there is not much information on real-scale

fire incidents involving the whole railroad car.

In the majority of fire cases, the most crucial question that can be asked by the person respon-

sible for fire protection is: ”What is the heat release rate of this fire?” Heat release rate is a

measure of the amount of energy that a material produces while burning. For a given confined

space (e.g. rail car interior), the air temperature increases as the heat release rate increases.

If passengers do not come into direct contact with the fire, they would most likely be injured

from the high temperatures, high heat fluxes, and large amounts of toxic gases emitted by the

materials involved in the fire. Accordingly, the life threat to passengers of these materials can

be directly correlated to the heat release rate of a real fire.

The prediction of the heat release rate variation in an underground train fire has also vital

importance on the design of the underground ventilation systems. The heat release rate is

one of the main parameters that define the magnitude of the critical velocity. The airflow

velocities provided by the tunnel ventilation fans shall be greater than the calculated critical

velocity in order to provide a smoke free evacuation path for the passengers. The required
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airflow velocity over the train on fire in a tunnel determines the airflow capacities of the

tunnel ventilation fans. The value of critical velocity depends on the design heat release rate,

in other words the design fire size. Therefore, for a higher value of design heat release rate,

higher ventilation capacities for the fans are required provided that all the other parameters

affecting the magnitude of the critical velocity kept constant. For the incidents in the stations,

the heat release rate variation with the flame spread pattern determines the temperature and

smoke distributions in the station, which may lead to the prediction of the limiting evacuation

times for the passengers.

1.2 FIRE DEVELOPMENT AND DETERMINATION OF FIRE

SCENARIOS

In a typical fire development process in an underground train, the fire starts with the ignition

source, which might be in the interior or exterior of the carriage. If the fire is unattended or not

suppressed, and there is sufficient amount of ventilation and fuel, fire would grow in intensity.

For interior car fire, the first item ignited by the ignition source would be the back of a seat or

the face panel in the driver console assembly depending on the fire scenario considered. For

an exterior fire, the first item ignited is likely to be the wiring under the car.

Fires grow in size either by increased burning rate, by flame spread over the first ignited item,

or by ignition of nearby surfaces. With sufficient amount of ventilation and fuel, the fire

could progress to involve the entire carriage in which all exposed combustible surfaces ignite

simultaneously, with a very rapid increase in heat release rate. This very rapid and sudden

transition from a growing fire to a fully developed fire is called the flashover. However, not

all fires would flashover, and there are certain conditions for fuel and ventilation within the

incident carriage that shall be satisfied for the fire to flashover. The flashover phenomenon is

examined further in the following chapters in this thesis.

The most probable fire scenario must be defined through the statistics of the most relevant

fires which have occurred within the Railway Companies. The analysis of the most important

reported fires which have happened in the last decade show that in recent years significant

fires in railway vehicles have decreased in a substantial way. This is often due to renewal of

the railway vehicles with materials in conformity with more severe standards about fire safety.
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The statistics of train fires and selection of fire scenarios are summarized in Sub-sections 1.2.1

to 1.2.3.

1.2.1 STATISTICS OF FIRES IN UNDERGROUND TRAINS

Analyzing the statistical data in the literature revealed that beside the electrical faults, for

interior fire scenarios, the ignition sources ranged from discarded cigarettes to flammable

liquid; and the locations of ignition sources were usually on the seat or on the floor. For

exterior fire scenarios, short circuit and overheating of equipment in the undercarriage were

the main causes of fires.

Statistical analysis of the fires occurring in interior of railway carriages by Briggs et al. [9]

indicated that fires caused by arson on a seat due to a cigarette lighter or burning newspaper

were the most probable. They have also identified high temperature in electrical equipment

due to electrical defects as one of the common fire scenarios.

It is also reported by Chiam [20] that the interior fire due to arson is the most probable scenario

with a percentage of 68% among the various causes of fires. It can be concluded that there

are mainly three causes of fire:

1. Arson (interior fire scenario),

2. Electrical faults (interior or exterior fire scenarios), and

3. An accident due to derailment or a collision followed by an electrical short circuit.

Fire due to a derailment or a collision followed by an electrical short circuit is the least proba-

ble and only observed in very old systems. Consequently, fire due to electrical faults and arson

are more frequent as the main causes of metro train fires which inline with the statistical data

found in literature.
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1.2.2 HISTORY OF TUNNEL FIRES

The railway systems clearly have a much higher potential for many casualties in the event of

a fire, compared to fires in road tunnels, since incidents generally involve trains, each with the

capacity for several hundred passengers. Two incidents in the last 15 years have highlighted

the dreadful scale of possible consequences of fires in metro systems: nearly 200 people died

following an arson attack on an underground railway train in South Korea (2003) and over

200 people died following an electrical fault on an underground railway train in Azerbaijan

(1995).

Fire disasters have also occurred on conventional and funicular railways. In 2000, a fire started

on a funicular railway near Kaprun in Austria. The fire was directly responsible for the deaths

of 155 people due to the confines of the tunnel. The handful of survivors were those who fled

down the tunnel, past the fire; those trying to escape the fire by going up the tunnel were all

killed by the smoke.

The reports on the Kaprun incident indicate that the majority of the passengers on the train did

not manage to get off the train before they were unable to resist against the poisonous smoke.

This was also the case in the fire incident on a Baku underground railway train in 1995. 220

passengers were found on the train itself while a further 80 passengers died due to the fumes

while making their way along the tracks towards the station.

In both these cases the lack of a safety management system was partly responsible for the

number of deaths; in the Kaprun incident the train was held to be ‘fire-proof’ so the conse-

quences of a fire onboard had never been considered, and the possibility that the passengers

could be carrying flammable materials, at least in the form of clothing, also appears to have

never been considered. In the Baku incident the lack of communication and the ad hoc oper-

ation of the ventilation system also led to fatalities; some 15 minutes after the fire started the

emergency ventilation system was switched on which directed the smoke towards the major-

ity of the passengers - those in the control room had no idea what was going on at the fire.

[21]

Aside from these incidents, large-scale fires rarely happen on passenger trains; there is com-

paratively little fuel to burn and usually many people are able to extinguish the fire while it is

still small.
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Some of the rail tunnel fire incidents occurred in the last decade are listed in Table 1.1.

Table 1.1: History of tunnel fires [21, 39]

2008, Channel Tunnel, France/UK

The fire was reported on 11 September 2008, on a Eurotunnel shuttle train carrying heavy
goods vehicles 11 kilometers from the French entrance in the North Tunnel. The blaze
spread to other trucks on the train during the evening, destroying six carriages and one
locomotive. The fire continued to burn overnight and lasted for 16 hours. More than 300
fire-fighters from both sides of the English Channel helped tackle the blaze. 32 people on-
board the train were led to safety down a separate service tunnel; 14 people suffered minor
injuries, including smoke inhalation.

2003, Jungangno underground railway station, Daegu, South Korea

An arson attack on an underground railway train in Jungangno Station, near Daegu city
center, led to the deaths of at least 189 people. The arsonist used a small quantity of
petrol and a cigarette lighter to start the fire on a stationary train in the station. The fire
quickly spread to all six carriages of the train within 2 minutes due to the highly flammable
interior of the train. After the underground railway operators were aware of the fire, a
second train entered the station and stopped near to the train on fire; the doors of this train
did not open. The fire spread to the second train where most of the fatalities occurred.

2003, Mornay Tunnel, France

In 2003, a fire broke out in a passenger carriage on an ‘autorail’ train. Once the fire as
detected the train stopped automatically, about 300m from the tunnel portal. The tunnel,
constructed in 1877, is a single-tube, single-track tunnel with no lighting and no ventilation
system. All of the 17 passengers on board were able to self-rescue before the arrival of the
fire brigade. On arrival, however, the fire brigade had to overcome major problems to fight
the fire. The fire took five hours to control.

2003, Guadarrama rail tunnel, Spain

An accident occurred in 2003 on a train near the tunnel portal. The crew on the train
escaped the tunnel before the smoke became too thick. Some 34 workers were trapped
about 3km inside the tunnel by heavy smoke for 5 hours before they were rescued. They
took refuge in an air pocket in the tunnel.
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Table 1.1 Cont’d: History of tunnel fires [21, 39]

2002, Motorway tunnel on A86, Versailles, France

In 2002, the engine of a train, carrying construction materials into a partially built motor-
way tunnel, exploded and started a fire which burned for 6 hours. The 19 construction
workers who were in the tunnel at the time took refuge in an airtight compartment in the
200m long tunnelling machine. Approximately 150 fire-fighters attended the scene and
none of the construction workers were injured.

2001, Howard Street Tunnel, Baltimore, USA

In 2001, a freight train passing through a tunnel in downtown Baltimore had an ‘emergency
brake application’. Following standard procedure, the drivers detached the locomotives
from the train and removed them from the tunnel. Of the 60 cars that made up the train,
eight were carrying hazardous materials, chemicals and various solvents. It took four days
to remove all the wreckage. The fire resulted in gridlock on the roads to Baltimore as all
the major routes were closed to traffic for about 12 hours.

2001, Düsseldorf underground railway tunnel, Germany

The roof of an underground railway train caught fire. There were two reported injuries.

2001, Kurt Schumacher Platz station, Berlin, Germany

In 2001, a fire was started by an arc lamp in the rear carriage of a 100m long train. Despite
the small size of the fire, the amount of smoke inside the carriage and the tunnel area
was considerable. No injuries were reported.

2000, Kitzsteinhorn funicular tunnel, Kaprun, Austria

In 2000, a fire broke out at the rear of the ascending train shortly after leaving the lower
terminal. The train stopped automatically 600m inside the tunnel. The doors of the train
failed to open. Twelve passengers escaped by smashing the windows and fleeing down
the tunnel. The remaining 150 people on the train died on the train or attempting to flee
up the smoke-filled tunnel. The fire on the supposedly fireproof train is thought to have
started by hydraulic oil leaking into the heater in the rear driver’s cab and spread via the
clothes and baggage of the passengers on the train.
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Table 1.1 Cont’d: History of tunnel fires [21, 39]

2000, New York City underground railway, USA

In 2000, two fires broke out in the electrical supply of the New York underground
railway system. All passengers were safely evacuated before the tunnels filled with
smoke, but the fire-fighting operations took over 2 hours and 20 underground stations
were closed for over 3 hours.

2000, Montreal underground railway, Canada

In 2000, a cable fire led to complete closure of the Montreal underground system for 6
hours. The fire filled several tunnels with smoke, triggered three explosions and brought
about the failure of the electrical, communication and ventilation systems on the entire
underground railway network. There were no recorded injuries.

2000, Toronto underground railway, Canada

In 2000, a fire broke out on an underground railway train being used to collect refuse
from Old Mill station on the Bloor-Danforth line of the Toronto Underground system
(TTC). Three people were treated for smoke inhalation. The line was closed for 24
hours.

It should be noted that Table 1.1 includes some of the tunnel fires reported from 2000 to date.

The details of many train fire incidents in and before 1999 can be found in the handbook of

tunnel fire safety. [21]

1.2.3 SELECTION OF FIRE SCENARIOS

The list of fire incidents in the rail tunnels, given in Table 1.1, show that the causes of fires

vary between engine failures to arson attacks. As discussed in Sub-section 1.2.1, arson attacks

are reported to be the most probable scenario among the various causes of fires in the railway

carriages.

In this thesis, a set of different ignition sources, ranging from a small-scale arson fire to a

more severe baggage fire ignition source, will be simulated. The small-scale arson fire source

would represent the ignition of a newspaper-filled trash bag, and will be placed on a passenger
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seat. The baggage fire source would have much higher intensity and would be placed on the

floor of the chosen carriage in a rolling stock.

The incidents will be assumed to occur under natural ventilation conditions. However, a set

of simulations will be performed to investigate the effects of ventilation on fire development

within the carriages.

The Class-378 rolling stock will be used in this study. The manufacturer’s claimed that all the

electricity cables and boxes would be fire resistant and fail-safe. In addition, it is reported that

the under-carriage and the passenger compartment are separated by a fire resistant partition.

Consequently, the under-carriage fires, and the onboard fires due to an electrical fault are not

considered in this thesis. The details of all the simulated fire incidents are given in Chapter 4.

1.3 AIM OF THE THESIS

This study is focused on fire incidents within the passenger compartments of the underground

railway carriages. The main purpose of the study is to investigate fire development and flame

spread within the underground rolling stock using 3-dimensional simulation methods with a

set of different initial and boundary conditions. The simulations will be used to identify the

cases where the fire would develop to involve the entire incident carriage, and cases with fire

spreading further to the adjacent carriages.

The predictions would clarify the conditions promoting or preventing the flame spread, and

help developing strategies that would minimize fire development within the rolling stock

therefore minimizing the damage to the rolling stock itself and to the infrastructure.

The predictions of fire development, along with the peak heat release rate values and the time

it takes to achieve these peak heat release rates, would be used indicatively in commenting on

the timescales for evacuation of passengers and suppression of fire by the local fire brigade.

Train onboard conditions will also be provided for the selected fire scenarios as a supple-

mentary information. The study will give an indication of the temperature, carbon-monoxide

concentration, and visibility levels within the rolling stock. The onboard conditions will be

linked to the evacuation of passengers, and the likelihood of survival of the passengers on-

board will be briefly touched on.
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CHAPTER 2

GOVERNING EQUATIONS

2.1 BURNING OF SOLIDS

In an underground train fire, the combustible materials are generally solid, and flame spread

over the solid surfaces. The simulation softwares that predict the fire development and flame

spread in an enclosure, such as the Fire Dynamics Simulator (FDS), assume that the fire is

an infinitely-fast reaction between fuel and oxygen. This reaction is not dependent on the

surrounding gas temperature. The softwares also assume that the reaction zone is an infinitely

thin sheet with fuel on one side and oxygen on the other. Consequently, the main part of the

governing equations is the relations derived for burning of solids.

The burning of a solid fuel requires chemical decomposition to produce fuel vapors which can

escape from the surface to burn in the flame. While the composition of the fuel vapors has

direct relevance to the combustion process and product formation, fire safety engineers nor-

mally bypass this complexity by relying on the results of small-scale tests to provide relatively

simple data which could be used in the assessment of the fire hazard of a given material. The

best known example is the Cone Calorimeter, but the performance of the material in the test

must be interpreted correctly. This requires a thorough understanding of the fire process and

careful analysis of the test results obtained using the test procedures defined by the standards.

A more detailed explanation on Cone Calorimeter is given in Chapter 4 under Clause C.1.

The rate of burning of solid materials can be expressed as:

ṁ′′ =
Q̇′′a − Q̇′′L

Lv
(2.1)
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where Q̇′′L represents the heat losses, and Lv is the latent heat of gasification. Q̇′′a is the heat

fluxes on the material, which will be discussed further in the text.

Surface temperatures of burning solids tend to be high, typically > 350◦C, so that radiative

heat loss from the surface is significant. The heat required to produce the volatiles or “heat of

gasification” (Lv) is considerably greater for solids, as chemical decomposition is involved.

Q̇′′a can be written in terms of its components, Q̇′′F and Q̇′′E which refer to the heat fluxes to the

surface from the flame and from the external radiant heaters respectively. The rate of burning

can be rewritten as:

ṁ′′ =
Q̇′′F + Q̇′′E − Q̇′′L

Lv
(2.2)

As the rate of burning is strongly dependent on the oxygen concentration, it can be defined

that Q̇′′F = ξ ηO2
α′ , where ξ and α′ are constants, and ηO2 is the mole fraction of oxygen in

the surrounding atmosphere. It was found that when Q̇′′E was held constant, ṁ′′ is a linear

function of ηO2 (i.e. α′ = 1) over a range of oxygen concentrations of 12% to 22% (Refer to

Figure 2.1). The slope of the line in the figure gives a value for ξ
Lv

provided that (Q̇′′E−Q̇′′L )
Lv

is

constant. The equation for burning rate becomes:

ṁ′′ =
ξ ηO2

Lv
+

Q̇′′E − Q̇′′L
Lv

(2.3)

 

Figure 2.1: Mass burning rate of polyoxymethylene as a function of mole fraction of oxygen
with no external heat flux [5]
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Similarly, if ηO2 is held constant, then a plot of ṁ′′ against Q̇′′E will give a straight line, which

has a slope of 1
Lv

(Refer to Figure 2.2).

Comparison of the value of heat transferred from the flame to surface of the fuel, Q̇′′F , with

those of Q̇′′L which have been calculated from Equation 2.2, identifies materials which will not

burn unless an external heat flux is applied to render the numerator of the equation positive.

 

Figure 2.2: Mass burning rate of polyoxymethylene as a function of external heat flux in air
(ηO2 = 0.21)[5]

It is proposed that the quantity:

ṁ′′ideal =
Q̇′′F
Lv

(2.4)

be used as a measure of the “burning intensity” of a material, i.e. the maximum burning rate

that a material could achieve if all heat losses were reduced to zero or exactly compensated

by an imposed heat flux Q̇′′E = Q̇′′L . While this gives results that appear to correlate reasonably

well with data from existing fire tests in literature, it would be more logical if heat loss by

surface re-radiation was included in ṁ′′ideal. This would seem to provide a means of calculating

burning rates under different heat gain and loss regimes, thus:

ṁ′′ = ṁ′′ideal +
Q̇′′E − Q̇′′L

Lv
(2.5)

In the event of a fire in an underground train, it can be considered that the combustible mate-

rials burn in an enclosure, in which the heat flux to the surface comes from general burning
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within the space. Therefore, the rate of heat release due to the combustion of the fuels in the

compartment can be expressed in terms of the burning rate of materials as follows:

Q̇c = ṁ′′ χ ∆Hc AF (2.6)

where ∆Hc is the heat of combustion of the volatiles, χ is an efficiency factor that takes into

account incomplete combustion, and AF is the fuel surface area. Writing Q̇′′net as the net heat

flux entering the surface, Equation 2.6 may be rewritten as follows:

Q̇c =
Q̇′′net

Lv
χ ∆Hc AF (2.7)

The ratio of heat of combustion to the heat of gasification, ∆Hc
Lv

, in Equation 2.7 is also known

as the ‘combustibility ratio’. It is given in the literature that χ, the combustion efficiency, lies

in the range of 0.4 to 0.7 for most of the solid fuels. Therefore, the combustibility ratio plays

an important role in the generated heat release rate during combustion.

2.2 FLAME SPREAD OVER SOLIDS

Unlike liquid fuels, the surface of a solid fuel can be at any orientation, which can have a

dominating effect on fire behavior. This is particularly true for the phenomenon of flame

spread as it is controlled by the mechanism by which heat is transferred ahead of the burning

zone. This is strongly influenced by the surface geometry and inclination.

The rate of flame spread over the solids also depends on the thickness of the fuel, the proper-

ties of the fuel; such as density, thermal capacity, and thermal conductivity; and the environ-

mental conditions; such as composition of the atmosphere and the imposed radiant heat flux.

These are briefly discussed in this section of the thesis.

2.2.1 SURFACE ORIENTATION

In general, solid surfaces can burn in any orientation, but flame spread is most rapid if it is

directed upwards on a vertical surface. Downward propagation is much slower, and the rate

less sensitive to change in orientation.
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Results of experiments with computer cards as thin fuel showed that the rate of spread is

approximately constant as the angle of orientation was changed from -90◦ (vertically down-

wards) to -30◦, while increasing more than threefold when the angle was changed from -30◦

to 0◦ (horizontal) (Refer to Figure 2.3).

       

Figure 2.3: Variation of rate of flame spread over a thin fuel (computer card) as a function of
angle of inclination (a) θ = -90◦ to θ = 0◦; (b) θ = 0◦ to θ = 30◦ [5]

Quite different behavior is observed with physically thick fuels. At intermediate orientations,

enhancement of upward spread is observed only when the inclination of the surface is in-

creased above 15-20◦. It is also reported that there is a switch from counter-current spread at

inclinations below about 15◦, to concurrent spread which is certainly operating at inclinations

of 25◦ and above. The critical angle depends on the geometry (Refer to Figure 2.4). [5]

Markstein and de Ris [5] observed that following an ignition at the bottom edge of the freely

suspended strips of fabric, there is a short period of laminar burning which quickly devel-

ops turbulence as the flame size increases. They also reported that downward spread (-90◦)

achieves a slow, steady rate of propagation almost immediately, but upward spread (+90◦) ac-

celerates toward a quasi-steady state. It was shown that the instantaneous rate of flame spread

was dependent on the length of the pyrolyzing zone, i.e. the zone from which the volatiles

were being released. As the rate of flow of volatiles determines the height of the flame, it also

determines the extent of preheating of the unaffected fabric which in turn determines how

quickly the fuel is brought to the firepoint. It is reported that:

Vp ∝ lp
n (2.8)
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where Vp is the rate of vertical spread, lp is the length of the pyrolysis zone, and n is a constant,

approximately equal to 0.5 (Refer to Figure 2.5).

 

Figure 2.4: Interaction between a spreading flame and the surface of a (thick) combustible
solid for different angles of inclination: (a) -90◦ ; (b) -45◦ ; (c) 0◦ ; (d) +45◦ ; (e) +90◦.
(a)-(c) are counter-current spread, while (d) and (e) are co-current spread. [5]

 

Figure 2.5: Upward spread of flame on a vertical strip of fabric (a) showing the burning
(pyrolysis) zone of length lp; (b) increase of rate of upward spread with increasing length of
the pyrolysis zone. Cotton broadcloth (103 g/m2) of width 0.457m and length 1.524m [5]
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2.2.2 PROPERTIES OF THE FUEL

The depth of heating is given approximately by (α t)1/2, where α is the thermal diffusivity

( k
ρ c ) and t is the time in seconds during which the surface of the solid is exposed to a heat

flux. For an advancing flame front, the exposure time for the unburnt fuel is l
V , where V is

the rate of spread and l is the “heating length”. The heating length is defined by the length of

sample perpendicular to the advancing flame over which the temperature rises from ambient

to the temperature corresponding to the firepoint.

A critical thickness, τcr for flame spread is then estimated from the expression:

τcr = (α l /V)0.5 (2.9)

Thin fuels may be treated by the lumped thermal capacity model for which the time to achieve

the firepoint (ti) under a given heat flux is directly proportional to the product ρ c τ. As the

rate of spread will be inversely proportional to ti, then:

V ∝ (ρ c τ)−1 (2.10)

In order to determine how thermal properties of a thick fuel influence the rate of spread, τ

must be replaced by an expression for depth of the heated layer at the surface of the material

(δ):

δ = (α l /V)0.5 → V ∝ (ρ c δ)−1 → V ∝
l

k ρ c
(2.11)

provided that l is constant. The thermal conductivity (k) of a solid is roughly proportional

to its density (ρ). Equation 2.11 shows that the rate of flame spread is extremely sensitive to

the density of the fuel bed; V ∝ ρ−2. This is why foamed plastics and other combustible

materials of low density spread flame and develop fire so rapidly.

2.2.3 GEOMETRICAL FEATURES OF THE FUEL

Flame spreads much more rapidly along an edge or in a corner than over a flat surface. This

has been studied using wedges and the findings are reported in the literature (Refer to Figure
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2.6). The rate of downward propagation at the edge was measured as a function of the angle

(θ), and the following dependence is found for 20◦ ≤ θ ≤ 180◦ :

V ∝ θ 4/3 (2.12)

The narrower the angle θ, the closer the edge of the solid approaches thin-fuel behavior, with

flame spreading down both sides. The rate of downward spread is a minimum for θ = 180◦.

If θ is greater than 180◦, the rate of downward spread is enhanced by cross-radiation near the

junction of the walls.
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6: Rate of downward spread of flame on edges and in corners (a) Definition of the
angle (θ) at an edge; (b) Variation of V for 20◦ ≤ θ ≤ 180◦; (c) Definition of θ for a corner
[5]

2.2.4 ENVIRONMENTAL CONDITIONS

Combustible materials will ignite more readily, spread flame more rapidly and burn more

vigorously if the oxygen concentration is increased. Any increase in oxygen concentration in

the air is accompanied by an increase in the rate of flame spread. This is because the flame is

hotter and can lose more heat to the fuel. It will lie closer to the fuel surface, thus increasing

the rate of heat transfer. It is reported in the literature [5] that the dependence of propagation

rate (V) on oxygen concentration is greater for ‘thick’ fuels than for ‘thin’ fuels, at least for

vertically downward spread.
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Increasing the temperature of the fuel increases the rate of flame spread. This is to be expected

as the higher the initial fuel temperature the less heat is required to raise the unaffected fuel

to the firepoint ahead of the flame. The following relations are reported in the literature:

Thin fuels:

V ∝
1

TP − T0
(2.13)

Thick fuels:

V ∝
1

(TP − T0)2 (2.14)

where TP is the minimum temperature at which decomposition occurs and T0 is the initial

fuel temperature.

An imposed radiant heat flux will cause an increase in the rate of flame spread, primarily by

preheating the fuel ahead of the flame front. However, the increased rate of burning behind

the flame front will give stronger flames which will provide additional forward heat transfer

and thus enhance the process. The effect of the radiant heat flux is significant during the

early stages of a compartment fire when the levels of radiant heat flux from the compartment

boundaries and the layer of hot smoky gases trapped below the ceiling are increasing. The

response of a surface to the imposed flux is not instantaneous and the effect of transient heating

must be considered if the flame begins to spread over the surface before thermal equilibrium

has been reached.

In general, confluent air movement will enhance the rate of spread of flame over a combustible

surface. It is reported that the rate will increase quasi-exponentially up to a critical level at

which extinction will occur, but there has been no fundamental study of this dependence. The

mechanism is understood to involve flame deflection which, combined with enhanced burning

behind the flame front, will increase the rate of forward heat transfer. If the direction of air

flow is opposed to the spread of flame, the net effect depends on the air velocity. Sufficiently

large velocities will cause the rate of spread to decrease and ultimately the flame to extinguish,

but low velocities promote flame spread.
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2.3 BURNING OF LIQUIDS

In this thesis, the emphasis is given to the fires within the passenger compartment. There-

fore, the focus is on flame spread over the solid surfaces. However, there might be incidents

involving pool fires, such as during a terrorist attack petrol could have been brought to the

passenger compartment and been ignited.

The rate of heat release in a pool fire from the combustion of the liquid fuel is calculated by:

Q̇ = ṁ ∆Hc, e f f (2.15)

where ṁ is the mass loss rate (kg/s), and ∆Hc, e f f is the effective heat of combustion (kJ/kg).

For fire hazard analysis purposes, liquid pool fires will rarely be significantly dangerous if

they are smaller than about 0.2m in diameter. Thus, it will often only be necessary to treat

pools burning in the radiative regime. In the radiative regime, it is reported in the literature

[5, 10] that data for most liquid fuels can be well correlated by:

Q̇ = ṁ′′∞ (1 − e−k β D) · A · ∆Hc, e f f (2.16)

where ṁ′′∞ is the mass loss rate per unit area per unit time (kg/m2s), D is the pool diameter

(m), and k β is the empirical constant (1/m), which is a fuel-specific value. The fuel-specific

empirical constants and the values of heat of combustion for a number of common fuels are

listed in ‘The SFPE Handbook of Fire Protection Engineering’ [10].

The burning rate of a given fuel is controlled by both its chemistry and its form. A particularly

important form factor is the surface area to mass ratio of the fuel, which is defined as the

surface area available to combust as compared to the total mass of the material.

The concept of burning duration is a way of characterizing the hazard of a compartment fire

in terms of the length of time the fuel in the compartment could be expected to burn, which

depends on the total amount of fuel available. A fire burning at a constant heat release rate

consumes fuel mass at a constant rate. Thus, if the mass of material being burned per second

and the amount of material available to be consumed are known, it is possible to estimate the

total burning duration of a fuel.
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In a pool fire, provided that sufficient amount of oxygen is available, the amount of surface

area of the given liquid becomes the defining parameter. Liquid pool fires with a given amount

of fuel can burn for long periods of time if they have a small surface area, or for short periods

of time over a large spill area. For a fixed volume of combustible liquid, the burning duration

for the pool fire is estimated using the following expression:

t =
4∀
πD2v

(2.17)

where ∀ is the volume of liquid, and v is the regression rate (m/s). The rate of burning, also

called the regression rate (v), is defined as the volumetric loss of liquid per unit surface area

of the pool per unit time, as illustrated by the following expression:

v =
∀̇

A
=

ṁ′′

ρ
(2.18)

where ṁ′′ is the mass burning rate of fuel per unit area, and ρ is the liquid fuel density.

2.4 FLASHOVER PHENOMENON

In a fire incident after localized burning has established, one of three following events may

happen:

1. the fire may burn itself out without involving other items of combustible material, par-

ticularly if the item first ignited is in an isolated position,

2. if there is inadequate ventilation, the fire may self-extinguish or continue to burn at a

very slow rate dictated by the availability of oxygen, or

3. if there is sufficient fuel and ventilation, the fire may progress to full enclosure involve-

ment in which all exposed combustible surfaces are burning.

Two important issues should be addressed for the latter scenario. These are the conditions

associated with the onset of flashover, and the factors which determine the duration of the

growth period. The latter is quite important as it has a major impact on life safety: if the time

to flashover is short, the time available for escape may be inadequate.

The transition from localized burning to the fully developed fire is referred to as “flashover”

and involves a rapid spread from the area of localized burning to all combustible surfaces
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within the enclosure. The transition is normally short in comparison to the duration of the

main stages of the fire and is sometimes considered to be a well-defined physical event, in

the same way that ignition is considered as an event. The duration of flashover depends on a

number of factors, including the nature and distribution of the combustible contents, as well

as the size and shape of the compartment.

In case of a fire in a compartment, the generated heat is not totally lost from the environs of the

fuel as fire gases will be deflected and trapped below the ceiling, which will be heated. If the

size of the fire is such that the natural flame height is greater than the height of the enclosure,

then the flame may extend as a ceiling jet and thus contribute significantly to the heat transfer

to the ceiling. This in turn will provide an increasing radiant heat flux back to the fuel as the

temperature of the ceiling rises. The effect on the burning fuel will be to increase the rate of

burning. However, more significantly, it will promote flame spread over the item first ignited

and to contiguous surfaces and adjacent items, thereby increasing the area of burning.

It has been discussed in the literature that the rate of increase in the area of burning is more

important than the rate of increase of burning rate of the fuel in determining the rate of fire

development to the flashover stage. It is reported that any scenario which leads to fast fire

spread - and hence a rapidly increasing area of burning - will promote the onset of flashover

[5].

Given that flashover marks the beginning of the fully developed fire, this term must be defined

more precisely in order that the factors which determine the duration of the growth period can

be examined. The most common definitions are:

1. the transition from a localized fire to the general conflagration within the compartment

when all the fuel surfaces are burning,

2. the transition from a fuel controlled fire to a ventilation controlled fire, and

3. the sudden propagation of flame through the unburnt gases and vapors collected under

the ceiling.

It is discussed in the literature that 2. is the result of 1. and is not a fundamental definition. The

third definition is based partly on an observation that flames often emerge from the window or

other ventilation openings at around the time full room involvement commences. Therefore

the first definition is selected to be the most appropriate, although it may not apply to very
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long or deep compartments in which it may be physically impossible for all the fuel to become

involved at the same time.

The fuel and ventilation conditions necessary for flashover can be derived by analyzing the

heat balance equation applied to the layer of hot gases below the ceiling.

Q̇c = (ṁa + ṁ f ) cp (T − T0) + hk AT (T − T0) (2.19)

where T and T0 are the temperatures of the upper layer and the ambient atmosphere respec-

tively. It is assumed that the layer is well mixed and its temperature is uniform. Writing

ṁg = ṁa + ṁ f (2.20)

and rearranging 2.19 gives

∆T
T0

=
Q̇c/(cp T0 ṁg)

1 + hk AT/(cp ṁg)
(2.21)

The mass flow rate of gas leaving the compartment above the neutral plane can be approxi-

mated by the expression developed for flow of air induced by a small fire:

ṁg =
2
3

Cd Aw H1/2ρ0

(
2g

T0

T

(
1 −

T0

T

))1/2 (
1 −

h0

H

)3/2

(2.22)

where h0 is the height of the neutral plane and Cd is the discharge coefficient. The equation

can then be reduced to the following proportionality:

ṁg ∝ g1/2 ρ0 Aw H1/2 (2.23)

where g = 9.81 m/s2 and ρ0 is the density of ambient air. Using this relationship Equation

2.21 can be rewritten as a function of two dimensionless groups:

∆T
T0

= f
(

Q̇c

g1/2 cp ρ0 T0 Aw H1/2 ,
hk AT

g1/2 cp ρ0 Aw H1/2

)

or
∆T
T0

= C X1
N X2

M (2.24)
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where X1 and X2 represent the two dimensionless groups, and the constant C and exponents

N and M remain to be determined.

It is reported in the literature that the analysis of experimental fires show that the steady

burning rates are achieved for the cases when the upper gas layer temperatures do not exceed

600◦C. Above 600◦C, flaming can occur intermittently within the layer and the assumptions

in the model break down. Therefore, in order to fit the experimental data with Equation 2.24,

it is necessary to obtain appropriate values for hk which depend on the duration of the fire

and the thermal characteristics of the compartment boundary. For a fire which burns with a

characteristic time tc greater than the thermal penetration time tp of the boundary, hk can be

approximated by:

hk =
k
δ

(2.25)

where k is the thermal conductivity of the material from which the compartment boundaries

have been constructed. If, on the other hand, tc is less than tp, the boundary will be storing

heat during the fire and little will be lost through the outer surface. Normally, this would

require detailed solution of the transient heat conduction equations but a simplification can be

achieved by replacing δ by (α tc)1/2, the effective depth of the lining material which is heated

significantly during the course of the fire. In these circumstances:

hk =
k

(α tc)1/2 =

(
k ρ c

tc

)1/2

(2.26)

For a compartment bounded by different lining materials, the overall value of hk must be

weighted according to the areas; thus, if the walls and ceiling (W,C) are of a different material

to the floor (F), then, if tc > tp:

hk =
AW,C

AT

kW,C

δW,C
+

AF

AT

kF

δF
(2.27)

But if tc < tp, then:

hk =
AW,C

AT

(
(k ρ c)W,C

tc

)1/2

+
AF

AT

(
(k ρ c)F

tc

)1/2

(2.28)

where AT is the total internal surface area.
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It is reported in the literature that the experimental results were found to fit satisfactorily to

the form in Equation 2.24. Further analysis allowed constants C,N and M be evaluated to

give:

∆T = 480 X1
2/3 X2

−1/3 (2.29)

in which T0 is taken to be 295K.

Equation 2.29 can be used to estimate the size of fire necessary for flashover to occur. If a tem-

perature rise of 500K is taken as a conservative criterion for the upper layer gas temperature

at the onset of flashover then substitution for X1 and X2 in the equation gives:

Q̇c =

g1/2 cp ρ0 T0
2
(

∆T
480

)31/2

(hk AT Aw H1/2)
1/2

(2.30)

with ∆T = 500K and appropriate values for g etc.:

Q̇FO = 610 (hk AT Aw H1/2)
1/2

(2.31)

where hk is in kW/m2K, AT and Aw are in m2 and H is in meters. Q̇FO is the rate of heat

output necessary to produce a hot layer at approximately 500◦C beneath the ceiling.

The square root dependence indicates that if there is 100% increase in any of the parameters

hk, AT or Aw, then the fire will have to increase in heat output by only 40% to achieve the

flashover criterion as defined.
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CHAPTER 3

LARGE EDDY SIMULATION (LES) APPROACH

3.1 INTRODUCTION

The most distinguishing feature of any Computational Fluid Dynamics (CFD) model is its

treatment of turbulence. There are three main techniques of simulating turbulence; Direct

Numerical Simulation (DNS), Reynolds-Averaged Navier-Stokes (RANS), and Large Eddy

Simulation (LES).

Three simulation techniques are grouped in two families. LES and DNS are of the same

category. While, both models compute directly the turbulent fluctuations in space and time,

LES calculates them only above a certain length scale. Below that scale, called the sub-grid

scale, the turbulence is modelled by semi-empirical laws. RANS model ignores the turbulent

fluctuations and aims at calculating only the turbulent-averaged flow.

The phrase LES in fire and combustion modelling refers to the description of turbulent mixing

of the gaseous fuel and combustion products with the local atmosphere surrounding the fire.

This process, which determines the burning rate in most fires and controls the spread of smoke

and hot gases, is extremely difficult to predict accurately. This is true not only in fire research

but in almost all phenomena involving turbulent fluid motion.

The basic idea behind the LES technique is that the eddies that account for most of the mixing

are large enough to be calculated with reasonable accuracy from the equations of fluid dynam-

ics. The underlying idea, which must ultimately be justified by comparison to experiments,

is that small-scale eddy motion can either be crudely accounted for or ignored. Therefore,

LES is used to model the dissipative processes; viscosity, thermal conductivity, and material
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diffusivity; that occur at length scales smaller than those that are explicitly resolved on the

numerical grid. This means that the equations describing the transport of mass, momentum,

and energy by the fire-induced flows cannot be used directly, but must be simplified so that

they can be efficiently solved for the fire scenarios of interest.

In general, because it is more accurate, DNS is the preferred method whenever it is feasible.

LES is the preferred method for flows in which the Reynolds number is high or the geometry

is too complex to allow application of DNS.

LES requires less computational effort than DNS but more effort than those methods that

solve RANS equations. The main advantage of LES over RANS approaches is the increased

level of detail it can deliver. While RANS methods provide averaged results, LES is able

to predict instantaneous flow characteristics and resolve turbulent flow structures. This is

particularly important in simulations involving chemical reactions. A domain where LES

is clearly coming close to practical industrial applications is the modelling of combustion

phenomena.

It is proposed to use Fire Dynamics Simulator (FDS) software for the analysis of fire devel-

opment and flame spread in the underground railway carriages. FDS uses LES technique in

simulating turbulence. The brief explanation of the software, and the governing equations are

given in Section 3.2.

3.2 FIRE DYNAMICS SIMULATOR (FDS) SOFTWARE

3.2.1 INTRODUCTION

The Fire Dynamics Simulator (FDS) was developed and is currently maintained by the Fire

Research Division in the Building and Fire Research Laboratory (BFRL) at the National In-

stitute of Standards and Technology (NIST).

The FDS is a Fortran 90 computer program that solves the governing equations of fluid dy-

namics. Smokeview is a companion program written in C/OpenGL programming language

that produces images and animations of the FDS simulation results.

FDS is a Computational Fluid Dynamics (CFD) model of fire-driven fluid flow. The model
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solves numerically a form of the Navier-Stokes equations appropriate for low-speed, thermally-

driven flow with an emphasis on smoke and heat transport from fires. The partial derivatives

of the conservation equations of mass, momentum and energy are approximated as finite dif-

ferences, and the solution is updated in time on a three-dimensional, rectilinear grid. Thermal

radiation is computed using a finite volume technique on the same grid as the flow solver.

Lagrangian particles are used to simulate smoke movement and sprinkler discharge.

Throughout its development, FDS has been aimed at solving practical fire problems in fire

protection engineering, while at the same time providing a tool to study fundamental fire

dynamics and combustion. FDS can be used to model the following phenomena:

• Low speed transport of heat and combustion products from fire,

• Radiative and convective heat transfer between the gas and solid surfaces,

• Pyrolysis,

• Flame spread and fire growth,

• Sprinkler, heat detector, and smoke detector activation, and

• Sprinkler sprays and suppression by water.

Although FDS was designed specifically for fire simulations, it can be used for other low-

speed fluid flow simulations that do not necessarily include fire or thermal effects. [24]

3.2.2 GOVERNING EQUATIONS IN FDS

3.2.2.1 FUNDAMENTAL CONSERVATION EQUATIONS

In fire modelling, similar to other studies which involve fluid flow, following conservation

equations should be satisfied within the flow domain. It should be noted that ~u in the conser-

vation equations represents the velocity vector ~u = (u, v,w) in three-dimensional domain.

Conservation of mass:

∂ρ

∂t
+ 5 · ρ~u = 0 (3.1)

This equation is also known as the Continuity Equation, which is an expression of the overall

mass conservation requirement and must be satisfied at every point in the flow. This equa-
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tion applies for a single species fluid, as well as for mixtures in which species diffusion and

chemical reactions may be occurring. The first term in Equation 3.1 describes the change in

density with time and the second term defines the mass convection.

The mass conservation equation is often written in terms of the mass fractions of the individual

gaseous species:

∂(ρYi)
∂t

+ 5 · ρYi ~u = 5 · ρDi 5 Yi + ṁi
′′′ (3.2)

where Yi represents the mass fractions. Summing these equations over all species yields the

original mass conservation equation. This implies that the sum of the mass fractions
∑

Yi = 1,

the sum of production/loss rates
∑

ṁi
′′′ = 0, and the sum of the diffusion terms

∑
ρDi5Yi = 0.

Conservation of Momentum (Newton’s Second Law):

The second conservation law relevant to the convection heat transfer problem is the Newton’s

second law of motion. For a differential control volume in a flow field, this requirement states

that the sum of all forces acting on the control volume must be equal to the rate of increase of

the fluid momentum within the control volume, plus the net rate at which momentum leaves

the control volume (outflow-inflow).

∂(ρ~u)
∂t

+ 5 · ρ~u ~u + 5p = ρ f + 5 · τi j (3.3)

The forces acting on the fluid may be categorized into body forces, such as the gravitational

force, and surface forces, such as the fluid static pressure and viscous stresses. Among the

forces acting on the fluid, gravitational body force is the most important from the fire science

point of view, since it represents the influence of buoyancy on the flow.

Conservation of Energy (First Law of Thermodynamics):

The conservation of energy equation is the first law of thermodynamics which states that

increase in energy of the control volume is equal to the heat added minus the work done

by expansion. In other words, the conservation of energy describes the balance between the

net rate of energy accumulation in a control volume and the various energy gain and loss

terms associated with the control volume that contribute to the net energy accumulation. The

conservation of energy equation can be written in terms of sensible enthalpy, h, as follows:
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∂(ρh)
∂t

+ 5 · ρh ~u =
Dp
Dt

+ q̇′′′ − 5 · q + Φ (3.4)

The sensible enthalpy, h, is a function of temperature: h =
∫ T

T0
cp(T ′) dT ′. In the energy

equation, q̇′′′ is the heat release rate per unit volume from a chemical reaction, 5·q represents

the conductive and radiative heat fluxes, and Φ, the dissipation function, is the rate at which

kinetic energy is transferred to thermal energy due to the viscosity of the fluid. The term Φ is

usually neglected because it is very small relative to the heat release rate of the fire.

Equation of State for a Perfect Gas:

The conservation equations are accompanied by the equation of state in fire modelling. One

of the assumptions that has to be made is the fluid obeys the perfect gas law. In FDS, the

equation of state for a perfect gas is given as:

p =
ρRT
M

(3.5)

3.2.2.2 COMBUSTION MODELLING EQUATIONS

There are two types of combustion models used in FDS. The choice depends on the resolution

of the underlying grid. For a DNS calculation, a global one-step, finite rate chemical reaction

is the most appropriate. However, in an LES calculation where the grid is not fine enough to

resolve the diffusion of fuel and oxygen, a mixture fraction based combustion model is used.

The actual chemical rate processes that control the combustion energy release are often un-

known in fire scenarios. Even if they were known, the spatial and temporal resolution limits

imposed by both present and foreseeable computer resources places a detailed description

of combustion processes beyond reach. Thus, the model adopted in FDS is based on the

assumption that all species of interest can be described in terms of a mixture fraction Z(x, t).

The mixture fraction combustion model is based on the assumption that large-scale convective

and radiative transport phenomena can be simulated directly, but physical processes occurring

at small length and time scales must be represented in an approximate manner. The nature of

the approximations employed is necessarily a function of the spatial and temporal resolution

limits of the computation, as well as the understanding of the phenomena involved.
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The most general form of the combustion equation is:

νF Fuel + νO O2 →
∑

i

νP,i Products (3.6)

The numbers νi are the stoichiometric coefficients for the overall combustion process that

react fuel “F” with oxygen “O2” to produce a number of products “P”. The stoichiometric

equation implies that the mass consumption rates for fuel and oxidizer are related as follows:

ṁ′′′F

νF MF
=

ṁ′′′O

νO MO
(3.7)

The mixture fraction Z is defined as:

Z =
sYF − (YO − Y∞O )

sY I
F + Y∞O

where s =
νO MO

νF MF
(3.8)

The value of Z varies from 1, in a region containing only fuel, to 0 where the oxygen mass

fraction takes on its undepleted ambient value, Y∞O . The term Y I
F in Equation 3.8 is the fraction

of fuel in the fuel stream. The quantities MF and MO are the fuel and oxygen molecular

weights.

The mixture fraction satisfies the conservation law:

ρ
DZ
Dt

= 5 · ρD 5 Z (3.9)

The reaction is assumed to proceed infinitely fast, meaning that all mixtures of oxygen and

fuel react instantaneously, such that both fuel and oxygen cannot coexist. This will result in

both fuel and oxygen vanishing at a certain instant where their mass fractions, Yi, drop to

zero. Therefore, Equation 3.8 can be simplified to obtain the flame mixture fraction, Z f :

Z f =
Y∞O

sY I
F + Y∞O

(3.10)

The flame mixture fraction, Z f , defines the flame by prescribing a two-dimensional surface,

commonly known as the flame surface, in a three dimensional space.

The assumption that fuel and oxidizer cannot coexist leads to the state relation between the

oxygen mass fraction, YO and the mixture fraction, Z:
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YO(Z) =

 Y∞O (1 − Z/Z f ) Z < Z f

0 Z > Z f

(3.11)

State relations for both reactants and products can be derived by considering the following

ideal reaction of a hydrocarbon fuel:

CxHy + η(x + y/4)(O2 + 3.76N2)→ max(0, 1 − η) CxHy + min(1, η) x CO2

+ min(1, η) (y/2)H2O + max(0, η − 1) (x + y/4) O2 + η(x + y/4) 3.76N2 (3.12)

Here η is a parameter ranging from 0 (all fuel with no oxygen) to infinity (all oxygen with no

fuel). A correspondence between η and Z is obtained by applying the definition of Z to the

left hand side of Equation 3.12.

An expression for the local heat release rate can be derived from the conservation equations

and the state relation for oxygen. The relationship for the heat release rate as a function of the

oxygen consumption can be written as:

q̇′′′ = ∆HO ṁO
′′′ (3.13)

where ∆HO is the heat release rate per unit mass of oxygen consumed.

The oxygen mass conservation equation:

ρ
DYO

Dt
= 5 · ρD 5 YO + ṁO

′′′ (3.14)

can be transformed into an expression for the local heat release rate using the conservation

equation for the mixture fraction and the state relation for oxygen YO(Z).

−ṁO
′′′ = 5 ·

(
ρD

dYO

dZ
5 Z

)
−

dYO

dZ
5 ·ρD 5 Z = ρD

d2YO

dZ2 | 5 Z|2 (3.15)

An expression for the oxygen consumption rate per unit area of flame sheet can be derived

from Equation 3.15 by integrating ṁO
′′′ over a small volume through which the flame sheet

cuts. It should be noted that dYO
dZ is constant on one side of the flame sheet and zero on
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the other, the volume integral can be rewritten as a surface integral over the flame sheet by

applying the divergence theorem and seeing that the two terms cancel at the exterior boundary

of the control volume. Therefore, it is more convenient to express the oxygen consumption

rate in units of mass per unit time per unit area of flame sheet:

−ṁO
′′ =

dYO

dZ

∣∣∣∣∣
Z<Z f

ρD 5 Z · ~n (3.16)

In the numerical algorithm, the local heat release rate is computed by first locating the flame

sheet, then computing the local heat release rate per unit area, and finally distributing this

energy to the grid cells cut by the flame sheet.

3.2.2.3 THERMAL RADIATION MODELLING EQUATIONS

The Radiative Transport Equation (RTE) for an absorbing/emitting and scattering medium is:

s · 5Iλ(x, s) = −[κ(x, λ) +σs(x, λ)] I(x, s) + B(x, λ) +
σs(x, λ)

4π

∫
4π

Φ(s, s′) Iλ(x, s′) dΩ′ (3.17)

where Iλ(x, s) is the radiation intensity at wavelength λ, s is the direction vector of the in-

tensity, κ(x, λ) and σs(x, λ) are the local absorption and scattering coefficients, respectively.

B(x, λ) is the emission source term.

In FDS, the radiative heat flux is computed using a Finite Volume approach in solving the

Radiative Transport Equation (RTE) for a non-scattering gas. In the case of a non-scattering

gas the RTE becomes:

s · 5Iλ(x, s) = κ(x, λ)[Ib(x) − Iλ(x, s)] (3.18)

where Ib(x) is the source term given by the Planck function.

In practical simulations the spectral dependence cannot be solved accurately. Instead, the

radiation spectrum is divided into a relatively small number of bands, and a separate RTE is

derived for each band. The limits of the bands are selected to give an accurate representation

of the most important radiation bands of CO2 and water.

The source term for each band can be written as a fraction of the blackbody radiation:
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Ib,n = Fn(λmin, λmax) σT 4/π (3.19)

where σ is the Stefan-Boltzmann constant. The references for the calculation of factors Fn

are given by McGrattan [24]. When the intensities corresponding to the bands are known, the

total intensity is calculated by summing over all the bands. It is reported that from a series of

numerical experiments it has been found that six bands are usually enough.

In most large-scale fire scenarios soot is the most important combustion product controlling

the thermal radiation from the fire and hot smoke. As the radiation spectrum of soot is contin-

uous, it is possible to assume that the gas behaves as a gray medium. The spectral dependence

is lumped into one absorption coefficient (N = 1) and the source term is given by the black-

body radiation intensity.

Ib(x) = σT (x)4/π (3.20)

In calculations of limited spatial resolution, the source term, Ib, in the RTE requires special

treatment in the neighborhood of the flame sheet because the temperatures are spread out

over a grid cell and are thus considerably lower than one would expect in a diffusion flame.

Because of its dependence on the temperature raised to the fourth power, the source term must

be modelled in those grid cells cut by the flame sheet. Elsewhere, there is greater confidence

in the computed temperature, and the source term can assume its ideal value there.

κIb =

 κσT 4/π Outside f lame zone

max( χr q̇′′′/4π , κσT 4/π) Inside f lame zone
(3.21)

where q̇′′′ is the chemical heat release rate per unit volume, and χr is an empirical estimate of

the local fraction of that energy emitted as thermal radiation.

In FDS, the radiative transport equation, Equation 3.18, is solved using techniques similar to

those for convective transport in finite volume methods for fluid flow, thus the name given to

it is the Finite Volume Method (FVM).

The radiant heat flux vector, ~qr is defined by:

~qr(x) =

∫
4π

s I(x, s) dΩ (3.22)
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The radiative loss term in the energy equation is:

− 5 · ~qr(x) = κ(x) [U(x) − 4π Ib(x)] where U(x) =

∫
4π

I(x, s) dΩ (3.23)

In words, the net radiant energy gained by a grid cell is the difference between that which is

absorbed and that which is emitted.

3.2.2.4 CONVECTION MODELLING EQUATIONS

The calculation of the convective heat flux depends on whether one is performing a Direct

Numerical Simulation (DNS) or a Large Eddy Simulation (LES). In a DNS calculation, the

convective heat flux to a solid surface q̇′′c is obtained directly from the gas temperature gradient

at the boundary:

q̇′′c = −k
∂T
∂n

(3.24)

where n is the spatial coordinate pointing into the solid.

In an LES calculation, the convective heat flux to the surface is obtained from a combination

of natural and forced convection correlations:

q̇′′c = h ∆T W/m2 ; h = max [C |∆T |1/3 ,
k
L

0.037 Re4/5Pr1/3] W/m2K (3.25)

where ∆T is the difference between the wall and the gas temperature, C is the coefficient for

natural convection (1.52 for a horizontal surface and 1.31 for a vertical surface), L is the char-

acteristic length related to the size of the physical obstruction, k is the thermal conductivity of

the gas, and Re and Pr are the Reynolds and Prandtl numbers based on the gas flowing past

the obstruction.

3.2.2.5 PYROLYSIS MODELLING EQUATIONS

A simple model for ignition and surface-flame spread, in which an ignition temperature is

assigned to the combustible surface, can be implemented in numerical calculations. The rate
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of pyrolysis being governed by a user prescribed constant which is either a rate of heat release

per unit of the surface area HRRPUA or a heat of vaporization (gasification) ∆Hv.

If HRRPUA is prescribed, the surface will burn like a burner when it has reached its ignition

temperature. If heat of vaporization is prescribed, the burning rate of the fuel will depend on

the net heat feedback to the surface from the fire. For thermoplastic fuel, the calculation of

net heat feedback will depend on whether the surface material is thermally-thick or thermally-

thin.

If the surface material is assumed to be thermally thick, one-dimensional heat conduction

equation for the material temperature Ts(x, t) is applied in the direction x pointing into the

solid (the point x = 0 represents the surface). The equation is given by:

ρs cs
∂Ts

∂t
=

∂

∂x

(
ks
∂Ts

∂x

)
; −ks

∂Ts

∂x
(0, t) = q̇′′c + q̇′′r − ṁ′′ ∆Hv (3.26)

where ρs , cs and ks are the temperature dependent density, specific heat and conductivity

of the material respectively; q̇′′c is the convective and q̇′′r is the net radiative heat flux at the

surface, ṁ′′ is the mass loss rate of fuel and ∆Hv is the heat of vaporization.

Fuel pyrolysis is assumed to take place at the surface thus the heat required to vaporize the fuel

is extracted from the incoming energy flux. The pyrolysis rate is estimated using a single-step

Arrhenius rate law of the first order, written as:

ṁ′′ = A ρs e−EA/RT (3.27)

where R is the universal gas constant. The value of the pre-exponential factor A and the

activation energy EA are chosen such that the burning takes place very close to a given ignition

temperature. These parameters are often difficult to obtain most of the fuels. The intent of

using the given expression for the mass loss rate is to mimic the behavior of burning objects

when details of their pyrolysis mechanisms are unknown. As referenced by Chiam [20], the

values found in the literature are not consistent with each other and an differ by one order of

magnitude or more. If A and EA are not known, which is usually the case, user can prescribe

the critical mass flux rate and the ignition temperature. This will direct the code to choose A

and EA so that the fuel burns at the critical mass flux rate when its surface temperature reaches

ignition temperature. [25]
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The latter method is used in the simulations reported in this thesis. Besides prescribing the

critical mass flux rate and the ignition temperature, the maximum burning rate of the fuel will

also be prescribed to prevent excess pyrolysis. The intent is to limit the burning rate of the

fuel to its measured maximum.

If the surface material is assumed to be thermally-thin, then its temperature is assumed uni-

form across its width, Ts(t) is affected by gains and losses due to convection, radiation and

pyrolysis. The thermal lag of the material is a function of the product of its density, specific

heat and thickness δ. The heat transfer equation is given by:

dTs

dt
=

q̇′′c + q̇′′r − ṁ′′ ∆Hv

ρs cs δ
(3.28)

The convective and radiative fluxes are summed over the front and back surfaces of the thin

fuel. The back surface is assumed to face an ambient temperature void by default in FDS

[24]. The pyrolysis rate for a thermally-thin fuel is the same as for a thermally-thick fuel and

estimated using Equation 3.27.

The heat transfer and pyrolysis for the charring fuels e.g. wood and liquid fuels e.g. methanol

are different from the thermoplastic fuels. They are not covered here since these fuels are not

likely to be involved in an underground train fire. However, the details of how these fuels are

handled in FDS can be found in FDS Technical Reference Guide [24].

3.2.3 ASSUMPTIONS AND INPUTS IN FDS FIRE MODELLING

There are few assumptions due to the limitations of the fire modelling equations or the compu-

tational techniques, which one shall define and accept before simulating the fire development

and flame spread behavior using numerical techniques. The main assumptions can be listed

as follows:

• The thermal properties such as the thermal conductivity and the specific heat are con-

stant during the course of the fire.

• The heat release rate properties for fuels such as the heat of combustion and the heat of

vaporization are constant. The time-averaged values can be used in simulations if they

are available.
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• Only one fuel combustion reaction can be defined in the input file. Even though there

might be more than one combustible material and accompanying combustion reaction,

the most suitable reaction shall be selected for the analysis.

• The following shall be defined in the input file:

– The heat release rate and burning duration of the ignition source

– The status of the openings, e.g. windows and doors, and any accompanying crite-

ria for failure or time-based status changes

– Material properties of each item within the enclosure, including density, specific

heat, and thermal conductivity if the surface is assumed to be thick

– The identification of combustible and non-combustible surfaces. For combustible

surfaces, the burning characteristics including ignition temperature, maximum

burning rate, and effective heat of combustion have to be defined.

• Additional assumptions specific for train fires can be listed as:

– The floor is fire-rated, therefore it would prevent an onboard fire from spreading

to under-carriage, and any fire in the under-carriage spreading to the passenger

compartment.

– Flame spread over the floor between adjacent carriages are not allowed for a train

made up of physically separated carriages. However, flame spread between adja-

cent carriages is possible for an open train, i.e. a train incorporating open wide

gangways.

3.2.4 VALIDATION OF FDS SOFTWARE

The validation of the algorithms within FDS program has been studied in depth and reported

widely in literature. [18, 24, 27, 29]

US Nuclear Regulatory Commission (NUREG) has conducted an extensive validation study,

in which the FDS predictions are compared with measurements collected from six sets of

large-scale fire experiments. They compared the predictions of FDS with the experimental

measurements of 13 quantities, presented under 9 groups of items. The findings from the

validation studies can be summarized as follows:
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• Hot Gas Layer Temperature and Height

– The FDS predictions of the hot gas layer temperature and height are, with few

exceptions, found to be within experimental uncertainty. NUREG concludes that

FDS is suitable for predicting hot gas layer temperature and height, with no spe-

cific cautions, in both the room of origin and adjacent rooms.

• Ceiling Jet Temperature

– It is reported that FDS is slightly less accurate in its prediction of the near-ceiling

temperature than of the overall hot gas layer temperature. However, inaccuracies

in its prediction tend to be averaged out when examining the bulk hot gas layer

temperature. Consequently, predictions of FDS is reported to be found within the

experimental uncertainty.

• Plume Temperature

– It is reported that FDS users should approach with caution to the predictions of the

plume temperature. It is stated that a fairly fine numerical grid near the plume is

required, which makes considerable computation time necessary to well-resolve

temperatures within the fire plume. Even with a relatively fine grid, it might still

be challenging to accurately predict plume temperatures, especially in the fire

itself or just above the flame tip.

• Flame Height

– It is noted that the flame height could only be measured through visible obser-

vations during experiments. Consequently, there is considerable uncertainty in

interpreting the photographs and videos, as there is in the definition of ‘flame

height’. It concluded that there is not enough information about flame heights

to reach any definite conclusions about FDS predictions of flame height, so the

predictions should be treated with caution.

• Oxygen and Carbon-dioxide Concentration

– The FDS mixture fraction model is capable of making predictions of major gas

species concentrations, assuming that the basic stoichiometry of the combustion

reaction is known and that the fire is well-ventilated. It is reported that with a few

exceptions, the FDS predictions of major gas species concentrations are within

experimental uncertainty.
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• Smoke Concentration

– FDS is capable of transporting smoke throughout a compartment, assuming that

the production rate is known and that its transport properties are comparable to

gaseous exhaust products. However, FDS does not have the ability to adjust the

production rate or the optical properties of smoke, and it has been found to over-

predict the smoke concentration, when compared against experimental results, in

a number of validation studies.

• Compartment Pressure

– The basic mass and energy conservation equations solved by FDS ensure reliable

predictions of compartment pressure. It is reported that compartment pressure

predictions are extremely sensitive to the leakage area and forced ventilation. The

predictions have generally been found to be within experimental uncertainty, with

an exceptional case related to the behavior of a ventilation fan.

• Radiation Heat Flux, Total Heat Flux, and Target Temperature

– FDS has the appropriate radiation and solid phase models for predicting the ra-

diative and convective heat flux to targets, and capable of predicting the surface

temperature of a target, assuming the targets are relatively simple in shape and

have uniform composition. Although, it is reported that FDS predictions of heat

flux and surface temperature are generally within experimental uncertainty, the

accuracy of the predictions generally decreases as the targets move closer to, or

go inside of, the fire.

• Wall Heat Flux and Surface Temperature

– FDS has the necessary radiation and solid phase sub-models for predicting the

radiative and convective heat flux to walls, and the subsequent temperature rise

within the walls, assuming the composition of the wall liner is uniform. Although,

it is reported that FDS predictions of heat flux and surface temperature are gen-

erally within experimental uncertainty, the accuracy of the predictions, as is for

targets, typically decreases closer to the fire or plume impingement region.

The validation studies conducted by NUREG [27] show that for a fire whose heat release

rate is known, FDS can reliably predict gas temperatures, major gas species concentrations,

and compartment pressures to within about 15%, and heat fluxes and surface temperatures to
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within about 25%. It is also stated that in the predictions of heat flux and surface temperature

FDS is noticeably better than the two-zone models, such as CFAST software, that are also

evaluated. It is also mentioned that FDS is overly time-consuming in comparison to the other

models.

The NUREG research team summarized their findings during the validation studies in a table,

where they assigned green, yellow, or red colors to the simulation softwares, based on their ca-

pability and accuracy in predicting the desired quantities. Figure 3.1, acquired from NUREG

research report [26], shows the evaluation of FDS program. In Figure 3.1 the color Green

indicates that the research team has concluded that the model physics accurately represent the

experimental conditions, and that the differences between model prediction and experimental

measurement are less than the combined experimental uncertainty. The color Yellow suggests

that one exercise caution when using the model to evaluate this quantity consider carefully

the assumptions made by the model, how the model has been applied, and the accuracy of its

results.

 
 

Figure 3.1: Results of the Validation & Verification of the Selected Fire Models by NUREG
[26]
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Wen et al. [29] simulated a medium-scale methanol pool fire using FDS program and com-

pared their predictions against the published experimental results by Weckman and Strong

[4]. The simulation used predominantly the existing features in FDS except that an additional

sub-grid scale combustion model based on the laminar flamelet approach was used alongside

the default mixture fraction combustion model for comparison. They reported that FDS with

its existing features can deliver accurate predictions for the most important parameters of

pool fires, including mean values of temperature and axial velocity distributions, and the air

entrainment ratios, that are of significance in the fire safety context. They concluded that the

predictions of the two different combustion models were in reasonably good agreement with

each other and the experimental data. The overall agreement between the predictions demon-

strates the robustness of the existing mixture fraction combustion model for medium-scale

pool fire predictions.

Hietaniemi et al. [18] performed a set of case studies where they compared predictions of

FDS with the data obtained from three experimental setups; Cone Calorimeter setup, SBI test

setup, and room corner test setup. They conducted experiments using upholstered furniture

and three construction materials; spruce timber, MDF board, and PVC wall carpet on gypsum

plasterboard, where they recorded the burning characteristics of these items in individual test

setups. The FDS simulations replicating experimental conditions show that the simulation

results and experimental predictions are in good agreement overall. They also noted some

discrepancies in the predictions of FDS program and the measured results. They suggested

that in order to achieve better agreement in comparison between FDS and test results, a model

to calculate heat transfer on layered products should be implemented in FDS, which would

make simulation of multi-layered products, such as building materials, more accurate.

FDS has been validated widely in the industry against controlled experiments, although some

of the works only provide a qualitative assessment of the model, concluding that the model

agreement with a particular experiment as ‘good’ or ‘reasonable’. In addition to the validation

studies reported herein, many others can be found in the literature.
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CHAPTER 4

FIRE DYNAMICS SIMULATOR (FDS) SIMULATIONS

4.1 INTRODUCTION

The Fire Dynamics Simulator (FDS) program is a Computational Fluid Dynamics (CFD)

model of fire-driven fluid flow, and was designed specifically for fire simulations. Therefore,

the FDS program is used as the main simulation program in this thesis.

In an FDS simulation, the initial and boundary conditions are defined in the computational

domain, and then the fire development in the carriage is solved naturally rather than being

specified in advance. During a fire incident, once the specified ignition criteria for the com-

bustible materials are reached, they become involved in the fire development. The flames

spread to adjacent items as the combustible surfaces are ignited in the computational domain,

yielding a gradual increase in the total heat release rate from the fire. If the intensity of the

ignition source is not sufficient to ignite the combustible items adjacent to the source, then the

fire could decay and suppress itself without any growth.

A typical rolling stock is modelled in FDS and the in-car fire development is analyzed under

various ventilation and evacuation conditions, and with different ignition sources.

The details of the CFD modelling including the dimensions of the tunnel and train geome-

tries, computational grid, material properties, and ventilation and evacuation conditions are

explained in Section 4.2.

The predictions from the simulations are discussed in detail and the effects of various param-

eters such as the tunnel length, number of open doors, location of the ignition source, the

forced ventilation and the material properties are summarized in Section 4.3.
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4.2 MODELLING APPROACH

4.2.1 ROLLING STOCK GEOMETRY

The FDS modelling has been carried out to examine heat and smoke spread in a Bombardier

Class-378 rolling stock, and to predict design heat release rate for an in-car fire incident.

The dimensions of the items that are believed to affect the fire development in the interior

of rolling stock, such as combustible surfaces, windows, and passenger and end doors, are

modelled accurately within the limits of the CFD program. However, it should be noted that

some simplification has been done during modelling of the items that have insignificant effect

on the fire development within the rolling stock.

The layout and sectional views of the rolling stock modelled are given in Appendix A.

The width of the rolling stock is 2.8m, which gives an internal width of 2.5m for the passenger

area. The height of the rolling stock is 2.75m with 2.2m of clear height inside the carriage.

The rolling stock is made up of four 20m long carriages, giving a total length of the rolling

stock as 80m.

The proposed layout includes open wide gangways between the adjacent carriages to form a

single vestibule. The gangways allow 1.5m wide and 2.0m high openings between the two

adjacent carriages. Each carriage has two pairs of side doors on each side, making four pairs

of doors per car. Each pair of side doors are 1.5m wide and 2.0m high.

In the event of a fire when the train is stopped in the twin-track tunnel, where a side walkway

for evacuation of the passengers is available, two pairs of side doors facing the walkway in

each carriage will be opened for ventilation and evacuation. The other pairs of side doors

remain closed for operational safety purposes. The rolling stock also includes end doors,

which will be used for evacuation of passengers in the event of a fire in the single-track

tunnel, where side walkway is not present. The end doors are 0.75m wide and 2.0m high.

The Bombardier Class-378 rolling stock incorporates open wide gangways. Consequently,

a train made up of four carriages form a single combined volume for fire development and

smoke spread. However, most of the traditional rolling stock models are made up of physi-

cally separated individual carriages. In this configuration, the flames are unlikely to spread to
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the adjacent carriages within the first 30 minutes from the ignition, due to physical separation

between the individual carriages. Therefore, in this thesis, the fire development and flame

spread in two different train models are investigated; a train made up of four carriages in-

corporating open wide gangways, and a single car representing a train model with physically

separated carriages.

The views of the single car model built in FDS are given in Figure 4.1.

Figure 4.1: Views of the single car FDS model

4.2.2 TUNNEL GEOMETRY

The CFD simulations have been performed at two different tunnel cross-sections; a single-

track tunnel and a twin-track tunnel. The tunnel cross-sections at which the train is stopped

are selected in accordance with the presumed evacuation scenarios.

The evacuation in case of an incident in the single-track tunnel will be by means of the end

doors, since there is no side walkway provided in this section of the running tunnel. The

evacuation during an incident at the twin-track tunnel section will be by means of the side

passenger doors. Therefore, the two types of the tunnel construction would provide and help

investigating different ventilation conditions over the developing fire within the rolling stock.

In the CFD simulations only a section of the tunnel is modelled rather than the full length

of the running tunnel in order to save computational time. In addition, it has been predicted
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that the length of the tunnel has insignificant effect on the in-car fire development. However,

the effect of the tunnel length on flame spread within the rolling stock has been investigated

through the sensitivity simulations, results of which are discussed further in this chapter.

The length of the computational domain, i.e. the tunnel length in FDS simulations, is initially

defined to be 120m for both simulation models involving the single car and the 4-car train

model with open wide gangways. The length of the domain is then reduced to 40m for the

simulations involving single car through the sensitivity simulations. The length of the domain

allows a 10m long tunnel from the edge of the single car on each side. The length of the

computational domain remains 120m where 4-car open train model is simulated.

The single-track tunnel is 4.0m high and has a cross-sectional area of 12.7m2. The twin-track

tunnel is 6.0m high with a cross-sectional area of 37.7m2. The tunnel geometries are defined

to be level, i.e. with 0% gradient for simplicity. The tunnel cross-sectional views are given in

Figure 4.2.

Figure 4.2: Cross-sections for single and twin-track tunnels

4.2.3 IGNITION SOURCES

In the FDS modelling, mainly two different types of ignition sources have been simulated;

arson fire, and baggage fire.
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The arson fire is defined to start on a seat and release 80kW of heat to its surroundings for 30

minutes. The heat release rate from the ignition source is defined to be constant during this

time interval. This ignition source is compliant to the British Standard BS 6853, and referred

to as the design condition by the rolling stock manufacturers.

The baggage fire is defined to start on the floor and grow according to a ’fast’ fire growth rate

to reach a peak heat release rate of 1.5MW. The peak heat release rate of ignition source is

reached within 3 minutes and maintained for 5 minutes. The ignition source is then defined to

decay exponentially. The fire development curve for the baggage fire source is given in Figure

4.3. The baggage fire ignition source releases 1.6GJ of energy, calculated from the area under

the heat release rate curve using the Trapezoidal Rule, over the 30 minutes burning duration.

The baggage fire source represents a particularly severe scenario for fire development within

the rolling stock and for the evacuation of passengers.
Fire development curve for 1.5 MW fire source
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Figure 4.3: Fire development curve for baggage fire source

The ignition source areas are defined to give a heat flux value between 550 kW/m2; arson fire;

and 750 kW/m2; baggage fire; at the ignition location. The fire size per unit area for baggage

fire is given to be slightly high compared to the typical range of values recommended by

the British Standard PD 7974-1 [14]. However, this value corresponds to a high stack of

luggage, and is considered acceptable for practical purposes when the ignition source area is

considered.
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In addition to the described arson and baggage fire ignition sources, a set of simulations has

been performed with modified baggage fire source and with liquid fuel source, as a part of

the sensitivity studies. The details of the ignition sources are explained further, along with the

cases simulated, in Section 6.4 in Chapter 6.

4.2.4 VENTILATION

In the FDS simulations, a stationary train on fire is simulated in a single-track and in a twin-

track section of the running tunnel. The fire development is defined to be under natural ven-

tilation conditions, i.e. without any mechanical ventilation, and the residual airflows due to

the train movements in the tunnels are not considered. The tunnel boundaries at both ends are

defined to be open to atmosphere during natural ventilation conditions.

The ventilation of the fire, i.e. airflow within the rolling stock, depends on the individual

scenario simulated. As mentioned earlier in Sub-section 4.2.2, the evacuation of passengers

and ventilation of an incident in a single-track tunnel are through the open end doors in the

absence of side walkways in the running tunnel. The fire is ventilated and the passengers

evacuate using the side doors in an incident in the twin-track tunnel section. These two distinct

cases help to investigate the effects of ventilation on the fire development.

In the simulations, the doors are defined to be open at the beginning of the simulation, i.e.

when the fire starts at time is equal to zero. It is assumed that when the fire is noticed inside

the rolling stock, passengers will inform the driver, and be able to open the doors as fire starts

to develop.

The windows are modelled as laminated safety glass which fails when the temperature at the

face of the window reaches 675◦C. The temperature at which the windows fail depends highly

on the quality of the glass and the seal that holds the glass. The temperature value defined in

the simulations is taken from the research work done by Chiam [20] on a similar subject for

practical purposes.

The window failure is simulated through monitoring the temperature at the center of the glass

surfaces facing the interior of the carriage. The windows are removed when the predefined

temperature limit is reached. In some cases, the windows are predicted to fail altering the in-

car ventilation conditions which assist extracting smoke and removing heat from the incident
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carriage.

The rolling stock is modelled as a sealed non-leaky enclosure. No leakage paths around

windows and doors are represented. The windows and doors are defined to be airtight, i.e.

they do not permit any airflow in to or out of the rolling stock unless they are open or failed

due to high temperature.

The Class-378 rolling stock is equipped with in-car air-conditioning systems, which include

smoke detectors. The air-conditioning units will be deactivated in the event of a fire in the

rolling stock. These units are not designed to extract smoke, and therefore have not been

represented in the FDS model.

In addition to the base cases, a set of sensitivity simulations incorporating different ventilation

conditions are performed. These investigate the effects of:

• the number of open doors in the incident carriage,

• the limited window failure in the incident carriage, and

• the mechanical ventilation

on fire development. The details of the sensitivity simulations are given in Chapter 6.

4.2.5 MATERIALS

The fire rating of the materials play an important role in fire development in the interior of

the rolling stock. The combustible materials in a typical rolling stock are classified based on

their flame resistance characteristics into three categories; 1a, 1b, and 2; in British Standard

BS 6853 [6]. It is proposed by the rolling stock manufacturers that the materials which will

be used in Class-378 rolling stock are highly fire retardant and classified as category 1a with

respect to British Standard BS 6853.

In the FDS simulations, the specific material properties for the rolling stock model are defined

for the body of the car, including walls and the ceiling, for the floor, for seats, and for the

electrical equipment inside the passenger compartment. The materials and equipments under

the carriage are not modelled in this study.

Once the materials in the rolling stock model are defined, they are further classified to be either

combustible or non-combustible. It is proposed by the rolling stock manufacturer, and also
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noted in the design specification of Class-378 rolling stock that the electrical equipment boxes

located at the ends of the carriages are fire-rated. Consequently, the electrical equipment

boxes are defined to be non-combustible in the FDS simulations.

It has been discussed and shown in previously published research and project reports that

the wall and ceiling materials of a typical rolling stock require very high heat flux levels to be

ignited. In addition, it has been shown that when these materials are ignited, their contribution

in the overall fire development is insignificant [11, 20, 35]. Consequently, the wall and ceiling

materials are modelled to be non-combustible in the FDS simulations.

In the simulation model, the non-combustible surfaces are defined to be thermally-thick. The

following physical properties, in addition to the thickness of the linings, are required for the

non-combustible materials:

• density,

• thermal conductivity, and

• the specific heat of the lining material.

The one-dimensional heat transfer equation is solved, using the parameters listed, across the

thickness of the material for the non-combustible surfaces.

The seats and the floor are defined to be the combustible surfaces in the simulations. It has

also been reported in the previous publications [11, 20, 35] that the highest contribution to the

development of fire are from these two surfaces in a typical rolling stock model.

For the combustible materials, in addition to the properties listed for the non-combustible

materials above, the parameters that affect the ignition and combustion have to be defined.

These properties include:

• ignition temperature,

• heat of vaporization,

• effective heat of combustion,

• maximum burning rate, and

• critical mass flux.

The parameters listed for combustible materials and the materials’ response while burning are

often acquired from Cone Calorimeter experiments. However, the burning characteristics of

the combustible materials change with the heat flux levels that they are exposed to.
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Therefore, for a combustible material, experiments are performed for a range of surface heat

flux levels during the Cone Calorimeter testing. In addition, the Cone Calorimeter experi-

ments should comply with the guidance and procedure given in ISO 5660-1:2002 standard.

Consequently, it is usually difficult to obtain a full set of experimental results for the required

materials due to lengthy and expensive testing methods.

The FDS simulations presented in this thesis can be divided into two groups in terms of the

combustible material properties used in the simulations. In the early stages of the research,

the burning characteristics of the materials used in Class-378 rolling stock were unavailable.

In the absence of Cone Calorimeter test results of the materials proposed for Class-378 rolling

stock, the material properties for Singapore Circle Line stock are used in the initial set of FDS

simulations. The burning characteristics of the materials used in Singapore Circle Line stock

are obtained from a published research study in the similar field of interest [20]. In the final

set of simulations, the burning characteristics of the materials proposed for Class-378 rolling

stock are used.

During the course of a fire incident in the rolling stock, the combustible materials are exposed

to different heat flux levels. However, the FDS simulation program allows only one charac-

teristic to be input to the code to reflect the behavior of combustible materials during the fire

development.

One accepted practice is to test the behavior of the materials under different heat flux levels,

and select a representative characteristic for each of the combustible materials. Chiam [20] in

his research performed a set of FDS cone calorimeter simulations for different levels of heat

flux, and calibrated the results with his predictions from the experiments. He has performed

simulations for 25, 35, 50, and 65kW/m2 heat flux levels, and selected the results for 35kW/m2

to be used as the representative characteristic.

Conversely, British Standard BS 6853 [6] specifies the surface heat flux levels that the com-

bustible materials should be tested according to their orientation. The standard states the

following values for the fire performance characteristics of the combustibles:

• 50kW/m2 for ceiling-like downward facing surfaces,

• 35kW/m2 for wall-like vertical surfaces, and

• 25kW/m2 for floor-like upward facing surfaces.
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It should be noted that if a single representative characteristic for a combustible material, pre-

dicted under a certain surface heat flux value, is used in the simulations, then the heat release

rate values could be under-predicted at lower heat flux levels and over-predicted at higher heat

flux levels. Therefore, a limiting value of maximum burning rate for the combustible mate-

rials should be specified to control and prevent excessively high values of heat release rates

during combustion. The single representative characteristic could also predict earlier ignition

at lower heat flux levels, and delayed ignition at higher heat flux levels. Consequently, the rep-

resentative characteristic should be selected wisely and the parameters that affect the burning

behavior of the combustibles should be calibrated in order to obtain a typical characteristic

that covers the entire range of surface heat flux levels.

Chiam [20] used a set of material properties calibrated at a surface heat flux of 35kW/m2 for

the combustibles in his research. The seats in the Singapore Circle Line stock are made of

FRP Polyester, and the floor material is a type of rubber, namely Styrene Butadiene. It should

be noted that these materials are not classified as category 1a according to BS 6853. However,

as mentioned earlier, in the initial set of simulations and in the sensitivity studies, the material

properties calibrated by Chiam are used since the experimental results for Class-378 rolling

stock materials were not available.

The material properties used in the initial and sensitivity simulations are given in Table 4.1.
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Table 4.1: Material properties used in the initial and sensitivity simulations

Combustible Materials Non-combustible Materials
Location Seats Floor Tunnel Walls Train Walls Train Ceiling Doors Windows
Material FRP Polyester Styrene Butadiene Concrete Glass wool sandwich Laminated

between aluminum panels safety glass
Density, ρ (kg/m3) 1795 1478 2100 119 176 276 1380

Thermal conductivity 0.295 0.19 1.1 0.038 0.038 0.038 0.049
(W/mK)

Specific heat, c (kJ/kgK) 1.393 5.805 0.88 0.68 0.68 0.68 0.84
Thickness, δ (m) 0.00216 0.00162 0.7 0.1 0.06 0.035 0.023

Ignition temperature (◦C) 448 419 - - - - -
Heat of vaporization 3700 6250 - - - - -

(kJ/kg)
Effective heat of 13670 14570 - - - - -

combustion (kJ/kg)
Maximum burning rate 0.0161 0.0079 - - - - -

(kg/m2s)
Critical mass flux 0.0044 0.0024 - - - - -

(kg/m2s)
ρ c δ (kJ/m2K) 5.4 13.9 - - - - -
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In an FDS simulation, the amount of heat released from the surface is calculated by multiply-

ing the density, thickness, surface area and effective heat of combustion, i.e. ρ · δ · A ·∆Hc,e f f .

Therefore, in order to reflect the correct amount of heat release from the combustible surfaces,

the lining thicknesses are adjusted based on the average amount of mass loss during the cone

calorimeter experiments. Consequently, the thicknesses given in Table 4.1 do not represent

the physical thickness of the surfaces, but the calibrated values to be used in simulations.

4.2.6 COMPUTATIONAL DOMAIN

The mesh in the computational domain in an FDS simulation is defined by the number of

cells on each of the three dimensional coordinates; x, y, and z. The number of cells and the

dimensions of the computational domain define the cell sizes, namely the edge length of an

element in the computational domain. In defining the mesh for the computational domain, a

uniform distribution along the length, height and width of the domain is sought. However,

this may not be possible if the geometry is complex.

In the rolling stock model, the mesh is defined to match the location of obstacles defining

the positions and dimensions of the openings such as doors and windows, and combustible

materials such as seats and floor. Once the critical cell edge lengths are decided, the mesh is

stretched or shrunk to represent the correct lengths of the critical items in the rolling stock.

The nominal cell edge lengths, used in the simulations, are selected as follows:

• x = 0.25m

• y = 0.125m

• z = 0.175m

The cell edge length in x-direction, i.e. in the longitudinal direction, varies between 0.125m

and 0.25m inside the rolling stock model. However, in order to make up for the total number

of cells, the cells are slightly expanding towards the tunnel boundaries from the edge of the

rolling stock model. The cell edge length never exceeds 0.25m in the interior of rolling stock

in any direction.

In assessing the accuracy of the predictions of FDS, it is important to keep in mind that the

software has the potential of producing ever-more accurate results as the numerical grid is

refined. However, FDS calculations require hours or days to complete, depending on the
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size of the numerical grid and the desired level of accuracy. Based on the requirement of

FDS program producing results in a reasonable amount of time, the following procedure is

recommended on what size grid to use for a given application that will produce good results

in a timely manner.

Therefore, the nominal cell size in x-direction is selected based on the calculated characteristic

fire diameter, D∗, using the following equation:

D∗ =

(
Q̇

ρ∞cpT∞
√

g

) 2
5

(4.1)

For a typical underground train, the value of the design heat release rate, Q̇, varies between

8MW and 15MW depending on the quality of the materials used. If a nominal design heat

release rate of 10MW is substituted in Equation (4.1) along with the appropriate values for

density, specific heat, and temperature then the characteristic fire diameter can be calculated

to be about 2.4m.

The quality of mesh in the computational domain for simulations involving buoyant plumes

is given by the non-dimensional expression D∗/δx. The greater the ratio D∗/δx, the more the

fire dynamics are resolved directly, and the more accurate the simulation. In the literature,

the values between 8.0 and 12.5 are used and recommended for similar type of simulations

[20, 27, 31]. It has been reported in NUREG’s research publications [27] that a ratio of 5

to 10 produces favorable results at a moderate computational cost, noted based on their past

experience. Consequently, the cell edge length in x-direction is selected to be 0.25m for

practical purposes, which also fall within the recommended range of D∗/δx.

The cell edge lengths given above are used in all simulations, unless otherwise specified.

Typical grid distributions in three planes are given in Figure 4.4.

A set of sensitivity simulations have been performed to investigate the effects of element size

in the computational domain on the predicted simulation results of fire spread simulations.

The predictions and results of these simulations are given in Chapter 6.
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Figure 3.1: Grid distribution for 1-car model in twin-track tunnel 
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Figure 3.1: Grid distribution for 1-car model in twin-track tunnel 
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Figure 3.1: Grid distribution for 1-car model in twin-track tunnel 

 

c. Grid distribution on x-z plane

Figure 4.4: Grid distribution for single-car model in twin-track tunnel
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4.3 SIMULATIONS

The Fire Dynamics Simulator (FDS) program is used to perform a set of simulations to

investigate the fire development and flame spread within the typical rolling stock models.

The simulations are classified and discussed in three groups:

• Initial Simulations,

• Parametric Sensitivity Studies, and

• Final Simulations.

In the initial simulations, two separate ignition sources are simulated in two different rolling

stock models immobilized in either a single-track or a twin-track tunnel. These cases con-

stitute the possible basic fire scenarios in a running tunnel. The purpose of the initial set of

simulations, in addition to gain a better understanding of the FDS program and fire develop-

ment phenomena, is to distinguish the developing fires from the localized fire incidents.

The results of the initial set of simulations are analyzed:

• to predict onboard conditions for the evacuating passengers, and

• to predict the peak heat release rate from the incident.

The onboard conditions are evaluated against the tenability limits given by the standards [16,

28] in terms of three variables; temperature, visibility, and carbon-monoxide concentration.

The published standards [16, 28] state that thermal burns to the respiratory tract can occur

upon inhalation of air above 60◦C when saturated with water vapor, which can occur when

water is used for fire extinguishment. The thermal tolerance data for unprotected skin of

humans suggest a limit of about 120◦C for convected heat. The NFPA 130 Standard [28]

gives the maximum exposure times, which lead incapacitation of passengers, for a range of

temperature values that the passengers could be exposed to during fire incidents. These limits

are given in Table 4.2. However, for the purposes of this study, the temperature limit for

tenability is taken to be 60◦C, as accepted and widely used in the industry.
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Table 4.2: Exposure temperature limits for tenability given by NFPA 130

Exposure Temperature (◦C) Maximum Exposure Time
Without Incapacitation (min)

80 3.8
70 6.0
60 10.1
50 18.8
40 40.2

Ability to escape through smoke depends upon the effects of irritancy and visual obscuration

on ability to move through enclosed spaces and ability to locate escape routes and exits.

The tenability criterion that defines the ability to locate the escape routes is defined by the

visibility term. The British Standards [16] suggest that people move as if in darkness at

a visibility of five meters in irritant smoke in small enclosures and for short travel distances.

The standard suggests a visibility of 10m as the tenability limit for large enclosures and longer

travel distances. For the purposes of this study, a visibility of 5m is taken as the tenability limit

for onboard conditions. A visibility of 10m is widely used in industry in fire simulations at

underground stations and atriums. Although the visibility does not directly cause fatalities, it

would hinder the evacuating passengers. The parameter can also be used as an indication of

timescales for smoke filling of the enclosure.

In a fire calculation using the mixture fraction approach, the smoke is tracked along with

all other major products of combustion. The visibility in a space is assessed by the light

extinction coefficient, K. The intensity of monochromatic light passing a distance L through

smoke is attenuated according to:

I
Io

= e−KL (4.2)

The light extinction coefficient, K, is a product of the density of smoke particulate, ρYs , and

a mass specific extinction coefficient that is fuel dependent.

K = Km ρ Ys (4.3)

Estimates of visibility through smoke can be made by using the equation:
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S =
C
K

(4.4)

where C is a non-dimensional constant characteristic of the type of object being viewed

through the smoke, i.e. C = 8 for a light-emitting sign and C = 3 for a light-reflecting

sign. Since K varies from point to point in the domain, the visibility S does as well.

Three parameters control smoke production and visibility. They are:

• Soot Yield, which is the fraction of fuel mass that is converted to soot,

• Mass Extinction Coefficient, Km in Equation 4.3 above, has a default value of 7600m2/kg

in FDS program, and

• Visibility Factor, C in Equation 4.4 above, has a default value of 3 in FDS program.

One of the asphyxiant gases important with respect to incapacitation and death in fires is

carbon-monoxide. Asphyxiant gases have little or no immediate effect on exposed passen-

gers, but when a sufficient exposure dose has been inhaled during the course of a fire, then

incapacitation occurs due to collapse and loss of consciousness. If the passengers are not

rescued immediately after incapacitation occurs, death is likely within a few minutes. The

NFPA 130 Standard [28] gives the maximum exposure times, which lead incapacitation of

passengers, for a range of carbon-monoxide concentration in air that the passengers could be

inhaling during fire incidents. These limits are given in Table 4.3.

Table 4.3: Exposure air carbon-monoxide content limits for tenability given by NFPA 130

Tenability Limit Exposure Concentration Maximum Exposure Time
of Air Carbon-monoxide Content Without Incapacitation

Maximum 2000 ppm few seconds
Averaging 1150 ppm first 6 min
Averaging 450 ppm first 15 min
Averaging 225 ppm first 30 min
Averaging 50 ppm remainder of exposure

The fire development and flame spread in the rolling stock are illustrated with the burning rate,

also referred as the mass loss rate per unit area, of the combustible surfaces. The scale is set to

be between 0.0, shown in dark blue representing surfaces that have not yet ignited or already

been burnt out, and 1.0 g/m2s, shown in red representing actively burning surfaces. The com-
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ments on fire development within the incident rolling stock are based on and supplemented

with the fire spread images in each case discussed.

The sensitivity simulations focus on the development of fire and flame spread within the un-

derground rolling stock under various initial and boundary conditions. The effects of ignition

source characteristics and ventilation conditions on the fire development are investigated in

the cases simulated. In addition, a set of simulations has been performed to assess the ac-

curacy of predictions through changes in the computational parameters, such as the domain

length and grid size.

The final simulations include re-running the selected cases from the initial and sensitivity

simulations with the revised material properties. The cases that will be simulated are selected

based on the importance of their predictions with the initial material properties. The revised

material properties of the combustibles should be used in FDS simulations only after their

combustion characteristics are calibrated against the experimental results. Consequently, final

simulations include cone calorimeter modelling for the calibration of new materials.

The details of the initial, sensitivity, and the final simulations are given in the subsequent

chapters. It should be noted that the same tenability criteria, listed above, are applied in all

sets of simulations. In addition, where fire development and flame spread discussions are

supplemented by the images of burning rates of the combustible surfaces, the same scale as

noted above is used in the figures.
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CHAPTER 5

INITIAL SIMULATIONS

5.1 INTRODUCTION

This chapter gives brief information on the initial cases simulated. The purpose of the initial

set of simulations is:

• to explore the capabilities of FDS program,

• to gain insight into fire modelling,

• to identify localized or developing fire incidents, and

• to predict heat release rate variations and onboard conditions for typical rolling stock

and running tunnel models.

The simulations have been performed for two different possible rolling stock models; phys-

ically separated carriages and single vestibule with open wide gangways. The model in-

corporating physically separated carriages is represented by only one carriage based on the

assumption that it is unlikely for fire to spread to adjacent carriages in the case of physical

separation.

The simulations incorporate two different sections of running tunnel. These are selected

specifically to create various evacuation and ventilation scenarios. The open or closed doors

are defined in accordance with the tunnel geometry modelled in each specific case simulated.

In the initial set of simulations, the material properties derived and published by Chiam [20]

are used.

The simulations have been performed for 30 minutes, with the ignition defined at 0 seconds.

In all simulations, the initial temperature is taken to be 25◦C, and the maximum visibility is
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defined to be 30m for smoke-free conditions.

5.2 CASE-01: 1-CAR, 80kW SOURCE, SINGLE-TRACK TUNNEL

The first case of the initial set of simulations incorporates an arson ignition source, which

releases a constant heat of 80kW for the entire duration of the incident. The ignition source is

placed on the seat at opposite end of the carriage from the cab.

For an arson fire incident in the single-track tunnel, it is assumed that the end door close to the

ignition source is inaccessible due to the high temperature and smoke produced by the fire in

the vicinity of the ignition source. Therefore, in this case only the driver cab door is assumed

to be open for evacuation of passengers and ventilation of fire.

5.2.1 FIRE DEVELOPMENT

The simulation shows that for the 80kW arson fire incident, the heat flux from the ignition

source and the temperature around the ignition location are not sufficient to ignite the adjacent

combustibles in the incident carriage.

Therefore, once the ignition source is placed on the seat, it is predicted that only the adjacent

seats are involved in the fire development. The floor or the other combustible items at the far

end of the carriage are not ignited and therefore not contributed to the fire development.

The fire development for this incident, illustrated with the burning rate of the combustible

surfaces is given in Figure 5.1.

The peak heat release rate is predicted to be 125kW for this incident. The heat release rate

variation during the course of the incident is shown in Figure 5.2. Since the fire burns locally

on the seat, this case cannot be used to assess the design heat release rate of the railway

carriages. However, this case can be used to assess the onboard conditions to comment on the

safety of the passengers in the rolling stock.
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Figure 5.1: Fire spread, 1-car, 80kW source, single-track tunnel
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Case-01:            1-car,         80kW source, single-track tunnel
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Figure 5.2: Heat release rate, 1-car, 80kW source, single-track tunnel

5.2.2 ONBOARD CONDITIONS

As mentioned earlier, for an incident in the single-track tunnel, only the driver cab door is

open for ventilation of heat and smoke from the fire.

It is predicted from the simulation that even though the power of the ignition source is small,

temperature increases and visibility drops quickly within the enclosed railway carriage. The

results show that the temperature at the center of the carriage exceeds the 60◦C limit within

the first minute at 1.5m above the floor, and within four minutes at seat level. The maximum

temperatures at the center of the carriage are predicted to be about 140◦C at 1.5m above

the floor, and about 100◦C at seat level. The temperatures within the carriage do not reach

the limiting temperature for window failure, therefore the simulation does not predict any

window failure within 30 minutes from the ignition. The temperature variations at three

points along the carriage are given in Figures 5.3 and 5.4, at 1.5m and 1.0m above the floor

level, respectively.

The simulation shows that visibility drops below 5m within the first minute at the center of

the carriage at 1.5m above the floor level and at the seat level. The loss of visibility is caused

by smoke produced by the fire. The loss of visibility does not directly cause fatalities, but

hinder the evacuating passengers.
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Temperature variation at 1.5m above the floor level

0

20

40

60

80

100

120

140

160

180

200

0 300 600 900 1200 1500 1800

Time (s)

Te
m

pe
ra

tu
re

 (°
C

) 
Center of car

End of car -
near ignition

Driver cab
door

Figure 5.3: Case-01: Temperature variation at 1.5m above the floor level

Temperature variation at 1m above the floor level
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Figure 5.4: Case-01: Temperature variation at 1.0m above the floor level

In an arson fire case, the ignition source is placed on the seat, and the smoke is predicted to

accumulate at ceiling level due to the buoyancy forces. Therefore, although the visibility is

predicted to drop below 5m within the first minute at the center of the carriage at 1m and

above, the results show that better visibility could be maintained at levels below 1m in the

incident carriage. The variations of visibility at 1.5m and 1.0m above the floor level are

given in Figures 5.5 and 5.6, respectively. The figures are given only for five minutes from the

ignition since once the visibility is vanished in the incident carriage, it has not been recovered.
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Visibility at 1.5m above floor level
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Figure 5.5: Case-01: Visibility variation at 1.5m above the floor level
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Figure 5.6: Case-01: Visibility variation at 1.0m above the floor level

It is predicted from the simulation that the average carbon-monoxide concentration in the in-

cident carriage at 1.5m above the floor level is about 685ppm over a 30 minute exposure time.

The average carbon-monoxide concentration at seat level is predicted to be about 300ppm

within the first 30 minutes from the ignition. The variations of carbon-monoxide concentra-

tion at 1.5m and 1.0m above the floor level are given in Figures 5.7 and 5.8, respectively.
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Figure 5.7: Case-01: Carbon-monoxide concentration at 1.5m above the floor level
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Figure 5.8: Case-01: Carbon-monoxide concentration at 1.0m above the floor level

The carbon-monoxide concentration predicted at seat level is slightly above the limiting value

of 225ppm for 30 minutes exposure, recommended by the NFPA standards [28]. Once the

predictions of carbon-monoxide concentration and temperature are combined, it can be con-

cluded that the conditions are tenable in the incident carriage at seat level and above.

The temperature, visibility and carbon-monoxide slices on a longitudinal section through the

center of the carriage are given in Figures B.1 to B.3 in Appendix B.
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5.3 CASE-02: 1-CAR, 80kW SOURCE, TWIN-TRACK TUNNEL

The fire incident from an 80kW ignition source is also simulated using the 1-car model in

the twin-track tunnel section. For an incident in the twin-track tunnel, the evacuation of

passengers and ventilation of smoke from the incident are through the open side doors.

5.3.1 FIRE DEVELOPMENT

The fire development and flame spread simulation within the incident carriage shows that the

fire is localized around the ignition source and does not ignite any other combustible items in

the carriage, except the seats adjacent to the ignition source. The peak heat release rate for

this incident is predicted to be 135kW.

The predicted heat release rate variation for this incident is shown in Figure 5.9.

The fire development for this incident, illustrated with the burning rate of the combustible

surfaces, involving an 80kW ignition source in the 1-car model in a twin-track tunnel is given

in Figure 5.10.
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Figure 5.9: Heat release rate, 1-car, 80kW source, twin-track tunnel
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Figure 5.10: Fire spread, 1-car, 80kW source, twin-track tunnel
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5.3.2 ONBOARD CONDITIONS

The results of the simulation of an incident, involving an 80kW ignition source, in a rolling

stock in a twin-track tunnel show that the temperatures at 1.5m above the floor level exceed

the 60◦C limit within two minutes at the center of the incident carriage. The temperatures at

the center of the carriage at 1.5m increases to 73◦C during the course of the incident.

The smoke and hot gases, generated at incident location, tend to move upstream in the incident

carriage away from the ignition source due to buoyancy forces and residual airflows. Although

most of the smoke is ventilated effectively through the open side doors, a plume of smoke

moves upstream and builds up a smoke layer between the driver’s cab and the first set of side

doors, until the steady state conditions are reached within the incident carriage. This smoke

layer causes temperatures to increase to 86◦C at 1.5m above the floor at that section of the

carriage. The temperatures exceed the 60◦C limit at 1.5m just after the first minute of the

ignition, at a section between the driver’s cab and the first set of side doors.

The predicted temperature variations at three points along the incident carriage at 1.5m above

the floor level are given in Figure 5.11.
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Figure 5.11: Case-02: Temperature variation at 1.5m above the floor level
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The temperatures at seat level are predicted to be within the acceptability limit of 60◦C in the

entire carriage for this incident. The temperatures at 1.0m above the floor level are predicted

to increase to 48◦C, near the ignition source. An instantaneous increase of temperature at

1.0m is predicted at the section of incident carriage between the driver’s cab and the first set

of side doors, due to the plume of smoke moving upstream in the carriage, as discussed above.

The predicted temperature variations in the incident carriage at 1.0m above the floor are given

in Figure 5.12.
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Figure 5.12: Case-02: Temperature variation at 1.0m above the floor level

The visibility levels at 1.5m in the incident carriage are predicted to drop below the accept-

ability level of 5m within the first minute from the ignition. During the course of the incident,

an increase in the visibility at 1.5m near the ignition source is predicted. The change in vis-

ibility is due to the unsettled movement of smoke between the 4th and the 6th minute from

the ignition. The effects of smoke movement within this interval is also apparent in the tem-

perature variation. However, once the steady state conditions are reached, temperature and

visibility levels remain constant for the rest of the incident.

The predicted visibility levels at 1.5m are given in Figure 5.13. It should be noted that the visi-

bility levels are given only for 10 minutes of the incident, since the visibility levels drop below

the acceptability level within this interval and remain constant for the rest of the incident.

69



0

5

10

15

20

25

30

0 60 120 180 240 300 360 420 480 540 600

Time (s)

Vi
si

bi
lit

y 
(m

) 

Center of car

End of car -
near ignition

Driver cab
door to side
door

Figure 5.13: Case-02: Visibility variation at 1.5m above the floor level

The visibility at 1.0m above the floor level is predicted to be greater than 5m in the entire

carriage for this incident. The simulation shows an exception within the first minute, where

the visibility drops below 5m locally. However, the visibility levels remain above 11.5m from

the 4th minute and onwards, as conditions converge towards the steady state. The predicted

variation of visibility at 1.0m in the incident carriage is given in Figure 5.14. In Figure 5.14,

variations for only the first 10 minutes of the incident are given, since the visibility levels

remain above 5m for the rest of the incident.
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Figure 5.14: Case-02: Visibility variation at 1.0m above the floor level
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The simulation shows that the instantaneous carbon-monoxide concentrations within the inci-

dent carriage at 1.5m above the floor level increase to about 175ppm near the ignition source,

280ppm at the center of the carriage, and about 380ppm at the section between the driver’s

cab and the first set of side doors. The average carbon-monoxide concentrations over the first

30 minutes are predicted to be 95ppm, 200ppm, and 305ppm at respective locations given

above. The predicted carbon-monoxide concentrations are within the tenability limits at most

of the incident carriage for the first 30 minutes.

The exception is predicted adjacent to the driver’s cab door. However, the carbon-monoxide

concentrations are within the tenability criterion when averaged over the first 15 minutes.

The predicted variation of carbon-monoxide concentrations at 1.5m in the incident carriage is

given in Figure 5.15.

The simulation shows that the carbon-monoxide concentration at 1.5m above the floor level

at the section of incident carriage close to the driver’s cab door is higher than the values pre-

dicted closer to the ignition source at the same height. This is predicted since the buoyancy

forces and residual airflows move the smoke and toxic gases away from the ignition location.

This causes thicker smoke layer being built up closer to the driver’s cab door, due to relatively

stagnant airflows in that section. This is also observed in the slice of carbon-monoxide distri-

bution at a longitudinal section through the center of the carriage, as shown in Figure B.6 in

Appendix B.

The carbon-monoxide concentration at higher levels, i.e. at heights closer to the ceiling level,

are predicted to be higher near the ignition source, as expected.

It should be noted that although the carbon-monoxide concentrations at 1.5m above the floor

level could be judged as within the tenability limits, the final decision on the tenability should

be made in conjunction with the temperature predictions.

The carbon-monoxide concentrations at seat level are predicted to be within the acceptability

criterion for the entire carriage. The predicted variations of carbon-monoxide concentrations

at 1.0m above the floor level are given in Figure 5.16.
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Figure 5.15: Case-02: Carbon-monoxide concentration at 1.5m above the floor level

The temperature, visibility and carbon-monoxide slices on a longitudinal section through the

center of the carriage are given in Figures B.4 to B.6 in Appendix B.
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Figure 5.16: Case-02: Carbon-monoxide concentration at 1.0m above the floor level
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5.4 CASE-03: 4-CAR, 80kW SOURCE, SINGLE-TRACK TUNNEL

The fire incident due to 80kW arson ignition source is also simulated in the 4-car train, incor-

porating open wide gangways, in the single-track tunnel. In this case, open wide gangways

allow smoke to be exchanged between the incident carriage and the adjacent carriages. In this

particular case, the ventilation of smoke and evacuation of passengers will be through the end

doors at both front and the back of the train.

5.4.1 FIRE DEVELOPMENT

The simulation shows that the fire is localized around the ignition source, and would not

spread to the incident carriage or to the adjacent carriages. It is predicted that fire only spreads

to the adjacent seat in the premises of the initial ignition location.

The peak heat release rate for this incident is predicted to be 125kW. The predicted heat

release rate variation for this incident is shown in Figure 5.17.

The fire development for this incident, illustrated with the burning rate of the combustible

surfaces, involving an 80kW ignition source in the 4-car model in the single-track tunnel is

given in Figure 5.18.
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Figure 5.17: Heat release rate, 4-car, 80kW source, single-track tunnel
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Figure 5.18: Fire spread, 4-car, 80kW source, single-track tunnel
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5.4.2 ONBOARD CONDITIONS

The simulation, incorporating an 80kW ignition source in the 4-car rolling stock in a single-

track tunnel, shows that the temperature at the center of the incident carriage at 1.5m above

the floor level exceeds the 60◦C limit within the first minute from the ignition. In this incident,

the smoke is ventilated through the end door of the incident carriage. However, the amount

of smoke generated is greater than the amount extracted from the end door. Consequently, a

plume of smoke moves to the adjacent carriages through open wide gangways.

The dispersion of smoke changes the onboard conditions in the adjacent carriage and in the

rest of the rolling stock. The temperature at 1.5m above the floor level at the center of the

carriage, adjacent to the incident, is predicted to exceed 60◦C at 8 minutes. The temperature

at the same height at the center of third carriage exceeds the acceptability criterion at 27

minutes from the ignition. The temperature is predicted to remain below 60◦C at the center of

last carriage, which is the farthest away from the incident, within the simulated time interval.

The predicted temperature variations at the center of each carriage at 1.5m above the floor

level are given in Figure 5.19.
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Figure 5.19: Case-03: Temperature variation at 1.5m above the floor level
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The temperature at seat level in the incident carriage is predicted to exceed 60◦C at the 21st

minute from the ignition. The simulation shows that temperatures remain below the accept-

ability criterion at 1.0m in the rest of the rolling stock within the first 30 minutes. The tem-

peratures increase to 52◦C at the center of the carriage, adjacent to the incident, measured at

1.0m above the floor level. The variations of temperature at 1.0m above the floor level at the

center of each carriage are given in Figure 5.20.
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Figure 5.20: Case-03: Temperature variation at 1.0m above the floor level

The simulation shows that the visibility level at 1.5m above the floor level at the center of the

incident carriage drops below the recommended value of 5m within the first minute from the

ignition. It is predicted that the visibility levels at 1.5m at the center of the carriages in the

rest of the rolling stock drop gradually as the smoke disperses and builds up layers in each

carriage.

The visibility levels are predicted to drop below 5m within one minute intervals between the

successive carriages. Consequently, the visibility at the specified height at the center of the

carriage, adjacent to the incident, drops below 5m within two minutes. The visibility drops

below the acceptability criterion within the third and the fourth minutes at the center of the

third and the fourth carriages, respectively.

The predicted visibility levels at 1.5m are given in Figure 5.21. It should be noted that the

visibility levels are given only for 10 minutes of the incident, since they drop below the

acceptability level within this interval and remain constant for the rest of the incident.
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Figure 5.21: Case-03: Visibility variation at 1.5m above the floor level

The simulation shows that the visibility drops below 5m just after the first minute from the

ignition at 1.0m above the floor level at the center of the incident carriage. The dispersion of

smoke causes visibility to drop within the entire rolling stock. The visibility is predicted to

drop below 5m in the rest of rolling stock within the first 5 minutes from the ignition. The

predicted variations of visibility at 1.0m at the center of the carriages are given in Figure 5.22.
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Figure 5.22: Case-03: Visibility variation at 1.0m above the floor level
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It is predicted from the simulation that the carbon-monoxide concentration at 1.5m above

the floor level at the center of the incident carriage increases to 595ppm during this incident.

Although the carbon-monoxide level at the specified height is found to be well below the fatal-

ity limit, when the concentration is averaged over the 15 minute and 30 minute intervals, the

values exceed the incapacitation limits defined by the standards [28]. The carbon-monoxide

concentration at 1.5m above the floor level at the center of the incident carriage is predicted

to be 510ppm and 540ppm, when averaged over 15 minutes and 30 minutes, respectively.

The carbon-monoxide concentrations at 1.5m above the floor level at the center of the remain-

ing carriages are predicted to increase to about 365ppm during the incident. The concentra-

tions averaged over the 30 minutes vary between 275ppm to 295ppm, lowest being in the

farthest carriage. Although these values exceed marginally the defined acceptability limit for

30 minutes, once they averaged over the 15 minute interval they indicate tenable conditions.

The carbon-monoxide concentrations predicted at 1.5m at the center of the carriages are given

in Figure 5.23.

The carbon-monoxide concentration at 1.0m above the floor level at the center of the incident

carriage is predicted to increase to about 190ppm. The open end door assists ventilation of

smoke in the incident carriage, and keeps carbon-monoxide concentrations within the accept-

ability limits at 1.0m height, measured from the floor level.

The simulation shows that the maximum carbon-monoxide concentration levels in the rest

of the rolling stock at 1.0m above the floor level vary between 300ppm to 325ppm. Once

averaged over the 30 minute interval, carbon-monoxide concentrations at the center of the

carriages are predicted to change between 215ppm and 235ppm. It can be stated that some of

the predicted average concentrations marginally exceed the acceptability criterion of 225ppm

for a period of 30 minutes. However, one can also conclude that the conditions are within

the tenability limits just below the 1.0m height, measured from the floor level, in terms of

carbon-monoxide concentrations.

The carbon-monoxide concentrations predicted at 1.0m at the center of the carriages are given

in Figure 5.24.
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Figure 5.23: Case-03: Carbon-monoxide concentration at 1.5m above the floor level

The temperature, visibility and carbon-monoxide slices on a longitudinal section through the

center of the rolling stock are given in Figures B.7 to B.9 in Appendix B.
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Figure 5.24: Case-03: Carbon-monoxide concentration at 1.0m above the floor level
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5.5 CASE-04: 4-CAR, 80kW SOURCE, TWIN-TRACK TUNNEL

The arson fire ignition source, releasing 80kW of heat to its surroundings for 30 minutes, is

also simulated using the 4-car model, incorporating open wide gangways, in the twin-track

tunnel section. As mentioned previously, for an incident in the twin-track tunnel, side doors

are defined to be open for smoke ventilation and passenger evacuation. This case is labelled

as Case-04 in this thesis.

5.5.1 FIRE DEVELOPMENT

The simulation of fire development and flame spread shows that only the combustible seats

adjacent to the ignition location are involved in the fire. It is predicted that burning takes place

locally over few seats, and the floor would not be involved in the fire. The peak heat release

rate for this incident is predicted to be 135kW.

The predicted heat release rate variation for this incident is shown in Figure 5.25.

The fire development for this incident, illustrated with the burning rate of the combustible

surfaces, involving an 80kW ignition source in the 4-car model in the twin-track tunnel is

given in Figure 5.26.
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Figure 5.25: Heat release rate, 4-car, 80kW source, twin-track tunnel
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Figure 5.26: Fire spread, 4-car, 80kW source, twin-track tunnel

81



5.5.2 ONBOARD CONDITIONS

The simulation incorporating an 80kW ignition source in the 4-car rolling stock with open

wide gangways and open side doors shows that the smoke and hot gases generated during the

fire incident are very well ventilated. The temperature at 1.5m at the center of the incident

carriage is predicted to increase to 62◦C, marginally exceeding the acceptability criterion of

60◦C. The temperatures at the same height at the center of the remaining carriages are found

to be less than 35◦C, which corresponds to 10◦C above the initial air temperature defined

within the rolling stock.

The peak temperature at 1.0m above the floor level at the center of the incident carriage is

predicted to be about 38◦C within the first 30 minutes from the ignition. Temperatures at

1.0m at the center of the remaining carriages are predicted to increase only slightly from the

defined initial air temperature. The temperatures at the center of the remaining carriages are

found to be less than 28◦C.

The predicted variations of temperature at the center of the carriages at 1.5m and 1.0m above

the floor level are given in Figures 5.27 and 5.28, respectively.
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Figure 5.27: Case-04: Temperature variation at 1.5m above the floor level
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Figure 5.28: Case-04: Temperature variation at 1.0m above the floor level

The simulation shows that the visibility at 1.5m at the center of the incident carriage drops

below the recommended value of 5m within the first minute from the ignition. The visibility

levels at the same height at the center of the remaining carriages are found to remain above

6.1m during the first 30 minutes of the incident. The minimum visibility is predicted at the

26th minute, as the thickness of the smoke layer marginally increases after the 20th minute

from the ignition.

It is predicted from the simulation results that the visibility at 1.0m above the floor level at

the center of the carriages remains above 5m during the first 30 minutes of the incident. A

drop of visibility is predicted within the first minute at the center of the incident carriage.

However, higher visibility levels are restored, once the airflow distribution within the rolling

stock is stabilized. A minimum visibility level of 10.3m is predicted at the center of the fourth

carriage at the 29th minute of this incident.

The predicted variations of visibility at the center of the carriages at 1.5m and 1.0m above the

floor level are given in Figures 5.29 and 5.30, respectively. It should be noted that only the

first 10 minutes are shown in the figures, since they reflect the general trend of the variations.
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Figure 5.29: Case-04: Visibility variation at 1.5m above the floor level
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Figure 5.30: Case-04: Visibility variation at 1.0m above the floor level

The simulation results show that the carbon-monoxide concentration at 1.5m above the floor

level at the center of the incident carriage increases to 210ppm during this incident. The

carbon-monoxide concentration is found to be 140ppm when averaged over the 30 minute

interval. It can be concluded that the predicted carbon-monoxide concentrations are well

below the acceptability criterion of 225ppm over the first 30 minutes of the incident at 1.5m

height, measured from the floor level.
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The carbon-monoxide concentrations at 1.0m at the center of the carriages are predicted to

remain below 40ppm. The exception is predicted at the center of the incident carriage within

the first minute, where the concentration increases to 60ppm. The concentrations are very

well below the incapacitation limits given by the standards [28].
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Figure 5.31: Case-04: Carbon-monoxide concentration at 1.5m above the floor level
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Figure 5.32: Case-04: Carbon-monoxide concentration at 1.0m above the floor level

The temperature, visibility and carbon-monoxide slices on a longitudinal section through the

center of the rolling stock are given in Figures B.10 to B.12 in Appendix B.
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5.6 CASE-05: 1-CAR, 1.5MW SOURCE, SINGLE-TRACK TUNNEL

The first of the baggage fire incidents is simulated with 1-car model in a single-track tunnel.

The ignition source is placed on floor opposite end of the carriage from the driver cab. As

in the case of arson fire incident, it is assumed that the end door close to the ignition source

is inaccessible, therefore defined to be closed during the entire duration of the simulation.

Consequently, this case assumes only the driver cab door is open for evacuation of passengers

and ventilation of fire.

5.6.1 FIRE DEVELOPMENT

5mins: The fire starts to develop in the carriage and the seats adjacent to the ignition source

are involved in fire.

The high temperature smoke and gases from the fire accumulated at ceiling level within the

carriage could not be ventilated effectively due to the limited opening area. Therefore, the hot

layer develops and starts to ignite the rest of the seats in the incident carriage.

8mins: It has been predicted from the results that between 7th and 8th minute, the pairs of win-

dows, on both sides of the carriage, closest to the ignition source fail due to high temperature

inside the incident carriage.

10mins: All the seats in the incident carriage are involved in the fire development, and the fire

has started to propagate on the floor.

15mins: The window of the detrainment door, close to the ignition source, fails just before

the 15th minute from the ignition. At 15 minutes and shortly after, the entire floor is involved

in the fire development.

16mins: At 16th minute, the conditions for flashover are achieved and it has been predicted

from the simulation that all the combustible surfaces in the incident carriage, except a pair

of burnt-out seats, are involved in fire. This results in a rapid increase in the predicted heat

release rate. (See Figure 5.33)

The peak heat release rate for this case is predicted to be 6.0MW. The peak heat release rate

is predicted to remain constant for about 2 minutes.
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It has been predicted from the results that between 16th and 17th minute, three pairs of win-

dows at the central section of the incident carriage fail as the predefined temperature criterion

has reached.

In the following minute, the windows adjacent to the side doors and the windows of the side

doors close to the ignition source fail due to high temperature within the incident carriage.

This introduces additional openings for heat and smoke extract.

18mins: After 18th minute, the fire loses its intensity as all the combustible items start to

burn-out. The simulation shows that in the following two minutes, most of the seats are

burnt-out, and the fire on floor reduces to a localized area between the side doors close to the

ignition source. In conjunction with these occurrences, a steep decrease in heat release rate is

predicted after the 18th minute from the ignition.

The fire development in the incident carriage, illustrated with the burning rate of the com-

bustible surfaces, is given in Figure 5.34.
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Figure 5.33: Heat release rate, 1-car, 1.5MW source, single-track tunnel
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Figure 5.4: Fire spread, 1-car, end door open, window failure (1.5MW 
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Figure 5.34: Fire spread, 1-car, 1.5MW source, single-track tunnel
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The fire development during this incident and prediction of flashover conditions are further

discussed in Sub-section 5.10.

The energy released during this incident is estimated through the calculation of area under

the time history curve of heat release rate using the Trapezoidal Rule with 1.0s intervals. The

energy released during this incident is calculated to be 3.9GJ.

5.6.2 ONBOARD CONDITIONS

For an incident in the single-track tunnel, the heat and smoke from the fire is ventilated

through the open end door. The limited smoke extract area with rapidly growing ignition

source results in untenable conditions in the incident carriage fairly quickly.

It is predicted from the simulation that the temperature at the center of the carriage exceeds

the 60◦C limit just after the first minute at 1.5m above the floor, and within 1.5 minutes at seat

level. The temperatures in the incident carriage are predicted to exceed 600◦C at the onset of

flashover. The peak temperatures increase to about 1100◦C above the ignition source during

flashover period. Then the temperatures in the carriage decrease as the fire loses its intensity.

The temperature variations at three points along the carriage are given in Figures 5.35 and

5.36, at 1.5m and 1.0m above the floor level, respectively.
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Figure 5.35: Case-05: Temperature variation at 1.5m above the floor level
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Temperature variation at 1m above the floor level
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Figure 5.36: Case-05: Temperature variation at 1.0m above the floor level

The simulation shows that the visibility drops below 5m within the first minute at 1.5m above

the floor level at the center of the carriage. The visibility at seat level is predicted to drop to

5m just after the first minute from the ignition. Although the loss of visibility does not directly

cause fatalities, the parameter can be used as an indication of how quickly the carriage is filled

with smoke produced from the fire. The variations of visibility at 1.5m and 1.0m above the

floor level are given in Figures 5.37 and 5.38, respectively. The figures are given only for five

minutes from the ignition since once the visibility is vanished in the incident carriage, it has

not been recovered even though some of the windows fail during the course of the incident.

It is predicted from the simulation that the carbon-monoxide concentration in the incident

carriage exceeds the limiting value of 2000ppm between 2 and 2.5 minutes from the ignition.

This concentration of carbon-monoxide is reported to be the fatality limit for passengers, even

for few seconds of exposure, in the published standards [28].

The variations of carbon-monoxide concentration at 1.5m and 1.0m above the floor level are

given in Figures 5.39 and 5.40, respectively. The figures are given only for five minutes from

the ignition since the limiting value for the passengers’ life safety has been reached within

this time interval.
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Visibility at 1.5m above floor level
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Figure 5.37: Case-05: Visibility variation at 1.5m above the floor level

The reported values of temperature and carbon-monoxide concentration within the incident

carriage confirm that the 1.5MW ignition source is too severe for assessing the onboard con-

ditions for passenger life safety.
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Figure 5.38: Case-05: Visibility variation at 1.0m above the floor level
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CO concentration at 1.5m above floor level
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Figure 5.39: Case-05: Carbon-monoxide concentration at 1.5m above the floor level

The temperature, visibility and carbon-monoxide slices on a longitudinal section through the

center of the carriage are given in Figures B.13 to B.15 in Appendix B.
CO concentration at 1m above floor level

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 30 60 90 120 150 180 210 240 270 300

Time (s)

C
O

 c
on

ce
nt

ra
tio

n 
(p

pm
) Center of car

End of car -
above ignition

Driver cab
door

Figure 5.40: Case-05: Carbon-monoxide concentration at 1.0m above the floor level
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5.7 CASE-06: 1-CAR, 1.5MW SOURCE, TWIN-TRACK TUNNEL

The baggage fire incident has also been simulated in a twin-track tunnel using the 1-car model.

The location of the ignition source remains the same as explained in Case-05. In this case, the

side doors facing the walkway are assumed to be open during the course of the incident.

The doors are assumed to be open at time is equal to zero, i.e. when the fire starts, in this

particular case. However, effects of a delay in opening the side doors are investigated as a part

of the sensitivity studies.

5.7.1 FIRE DEVELOPMENT

5mins: The fire starts to develop in the carriage and the seats adjacent to the ignition source

are involved in fire.

In contrast to an incident in the single-track tunnel, the smoke and high temperature gases can

be ventilated more effectively through the open side doors. This prevents earlier ignition of

the seats at the far end in the incident carriage away from the ignition location.

8mins: The simulation shows that the fire spread to the folded seats located next to the doors

on both sides of the carriage between the 6th and 8th minute from the start of the fire.

It has been predicted from the results that two large windows, on both sides of the incident

carriage, and a smaller window on one side, closest to the ignition source fail due to high

temperature just after the 8th minute from the ignition.

Further investigation shows that the temperature at the face of the smaller window that remains

intact increases to 600◦C, and the temperature increases to 611◦C at the center of the back end

door window at 8th minute. Since the failure criterion is defined to be 675◦C, both windows

remain undamaged.

The peak heat release rate for this case is predicted to be 2.5MW, reached after 8 minutes

from the ignition. The peak heat release rate remains constant about one minute. The fire is

predicted to spread farthest, until it involves the folded seats closer to the ignition location,

within this interval.
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10mins: At 10 minutes from the ignition, the fire is predicted to be contained around the

ignition location. The smoke and hot gases are ventilated through the open side doors and

through the broken windows. Therefore, the fire loses its intensity and has not propagated

since the ignition temperature of the adjacent combustible items is not reached.

15mins: After 11 minutes from the ignition, the seats close to the ignition location start to

burn-out. At 15 minutes, most of the seats have completely consumed, and the floor starts to

be exhausted.

20mins: At 20 minutes and onwards, the fire is localized on floor around the ignition source,

and the heat release rate from the fire decreases gradually as the ignited combustible items are

consumed.

The simulation shows that less than half of the carriage is involved in fire during this incident.

In addition, there is no sudden increase in the predicted heat release rate during the course of

the incident. Therefore, flashover is not predicted for this case.

The fire development in the incident carriage, illustrated with the burning rate of the com-

bustible surfaces, is given in Figure 5.42.
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Figure 5.41: Heat release rate, 1-car, 1.5MW source, twin-track tunnel
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Figure 5.42: Fire spread, 1-car, 1.5MW source, twin-track tunnel
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The energy released during this incident is estimated to be 2.9GJ through calculation of area

under the heat release rate curve using the Trapezoidal Rule.

5.7.2 ONBOARD CONDITIONS

The heat and smoke from an incident in the twin-track tunnel are ventilated more effectively

through the open side doors compared to an incident in the single-track tunnel. However, the

rapidly growing ignition source, once again, results in untenable conditions in the incident

carriage.

It is predicted from the simulation that the temperature at the center of the carriage exceeds

the 60◦C limit within 1.5 minutes at 1.5m above the floor, and within 2 minutes at seat level.

The temperatures in the incident carriage increase to about 730◦C above the ignition source

at 1.5m above the floor level. The temperatures in the carriage then decrease as some of the

windows fail and the fire starts to lose its intensity. The temperature variations at three points

along the carriage are given in Figures 5.43 and 5.44, at 1.5m and 1.0m above the floor level,

respectively.
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Figure 5.43: Case-06: Temperature variation at 1.5m above the floor level
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Figure 5.44: Case-06: Temperature variation at 1.0m above the floor level

The visibility is predicted to drop to 5m within the first minute at 1.5m above the floor level,

and within 1.5 minutes at seat level at the center of the carriage. The variations of visibility

at 1.5m and 1.0m above the floor level are given in Figures 5.45 and 5.46, respectively. The

figures are given only for five minutes from the ignition since once the visibility is vanished in

the incident carriage, it has not been recovered even though some of the windows fail during

the course of the incident.
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Figure 5.45: Case-06: Visibility variation at 1.5m above the floor level
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Figure 5.46: Case-06: Visibility variation at 1.0m above the floor level

It is predicted from the simulation that the carbon-monoxide concentration at the center of the

incident carriage exceeds 1500ppm in 2.5 minutes at 1.5m above the floor level, and reaches

the limiting value of 2000ppm just after 5 minutes from the ignition.

The carbon-monoxide level at the center of the carriage at seat level remains below 1150ppm

for about 5 minutes, and increases to 1800ppm when the fire reaches at its peak heat release

rate.

The simulation shows that the carbon-monoxide concentrations at each end of the incident

carriage are higher than the predicted values at the center of the carriage. This is expected

since the center of the carriage is ventilated better by means of open side doors compared to

the relatively stagnant air movements at both ends of the carriage.

The reported values of carbon-monoxide concentrations will cause fatalities in such an inci-

dent. However, the critical timescale in terms of passenger life safety is defined by the time

that the temperature in the carriage exceeds the limiting value of 60◦C as reported above in

this Sub-section.

The variations of carbon-monoxide concentration at 1.5m and 1.0m above the floor level are

given in Figures 5.47 and 5.48, respectively. The figures are given only for ten minutes from

the ignition since the limiting value for the passengers’ life safety has been reached within

this time interval.
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Figure 5.47: Case-06: Carbon-monoxide concentration at 1.5m above the floor level
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Figure 5.48: Case-06: Carbon-monoxide concentration at 1.0m above the floor level

The reported values of temperature and carbon-monoxide concentration within the incident

carriage once again confirm that the 1.5MW ignition source is too severe for assessing the

onboard conditions for passenger life safety. In addition, the timescales indicate that for a

rolling stock made up of physically separated carriages, a severe ignition source would cause

fatalities irrespective of the side doors or the end door left open for ventilation.

The temperature, visibility and carbon-monoxide slices on a longitudinal section through the

center of the carriage are given in Figures B.16 to B.18 in Appendix B.
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5.8 CASE-07: 4-CAR, 1.5MW SOURCE, SINGLE-TRACK TUNNEL

The baggage fire incident has also been simulated in a 4-car rolling stock with open wide

gangways. The first of the two incident cases, incorporating the single vestibule rolling stock

model, has been simulated in the single-track tunnel. The location of the ignition source

remains the same as explained in Cases-05 and 06.

In this particular case, two end doors, at the front and back of the rolling stock, are defined to

be open for evacuation of passengers and ventilation of fire.

5.8.1 FIRE DEVELOPMENT

The simulation results show that at the initial stages of the fire development, heat and smoke

from the fire dissipates into the non-incident carriages fairly quickly. While this heat and

smoke dissipation affects the onboard conditions in all carriages, it reduces the intensity of

the fire in the incident carriage. Therefore, slightly delayed ignition of combustibles is pre-

dicted in the open rolling stock model compared to a model made up of physically separated

carriages.

5mins: The fire initially starts to develop in the carriage on the floor at five minutes from the

ignition. The seats adjacent to the ignition source are predicted to be ignited at 5th minute.

However, it takes two additional minutes for all the surfaces of these seats be involved in the

fire development.

10mins: It has been predicted from the results that at 10 minutes from the ignition, the top

surfaces of the folded seats, closest to the ignition location, are involved in fire. The fire also

spread along the floor in both upstream and downstream directions. However, the fire is still

localized around the ignition location. The simulation shows that the large windows, on both

sides of the incident carriage, closest to the ignition source fail just after the 10th minute due

to high temperature around the ignition source.

12mins: At 12 minutes from the ignition, the back of the seats and top of the folded seats in

the incident carriage start to burn. However, the temperatures at slightly lower height, such as

at the base of the seats, do not reach ignition temperatures of the combustibles.
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The peak heat release rate for this incident is predicted, just after the 12th minute, to be

2.7MW. At that instant, the base of the seat closest to the driver cab is involved in fire devel-

opment. The fire on the floor spread towards the folded seats in the upstream direction, and

towards the adjacent carriage via open wide gangway in the downstream direction. The peak

heat release rate is maintained for about two minutes.

14mins: The simulation shows that the smaller windows, on both sides of the incident car-

riage, closest to ignition location fail at 14 minutes. In addition, the seats closest to the ignition

source start to burn-out. The fire starts to lose its intensity from this point onwards.

18mins: The seats adjacent to the ignition source are consumed between 17 and 18 minutes.

At 18th minute, combustibles on floor around the ignition source start to burn-out. However,

the fire on floor slowly continue to progress in both directions, and reach the adjacent carriage

at the downstream end.

It is predicted from the simulation that in the later stages of this incident, the flames on the seat

bases in the incident carriage could not be maintained. In addition, the spread of fire along

the floor is not intense enough to involve the adjacent carriage in fire development. The heat

release rate from the fire is predicted to decrease as the ignited floor in the incident carriage

burns-out gradually in time, and the contribution of the recently ignited items is not sufficient

to increase the rate of heat release within the first 30 minutes from the ignition.
variation of hrr, corrected window, 4car end doors
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Figure 5.49: Heat release rate, 4-car, 1.5MW source, single-track tunnel
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Figure 5.50: Fire spread, 4-car, 1.5MW source, single-track tunnel
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The energy released during this incident is estimated to be 3.1GJ through calculation of area

under the heat release rate curve using the Trapezoidal Rule.

5.8.2 ONBOARD CONDITIONS

As mentioned earlier in the text, the open wide gangways allow smoke and hot gases to spread

from incident carriage to the adjacent carriages, which causes onboard conditions deteriorate

from the initial tenable conditions. In the event of a severe baggage fire incident, the rapid

production of heat and smoke at the incident carriage results in untenable conditions in the

entire rolling stock fairly quickly.

The simulation of the baggage fire incident in the 4-car rolling stock in the single-track tunnel

shows that the temperature at the center of the incident carriage at 1.5m above the floor level

increases to about 495◦C. The temperature at the center of the incident carriage at the given

height is predicted to exceed the 60◦C limit just after the first minute of the incident. It is

predicted that the temperatures at 1.5m at the center of the remaining carriages exceed the

acceptability limit within the first 3 minutes from the ignition, including the carriage farthest

to the incident.

The temperature at 1.0m above the floor level at the center of the incident carriage is predicted

to increase to about 425◦C. In this incident, since the rate of smoke produced is greater than

the rate of smoke extracted from the rolling stock, the conditions at 1.0m above the floor level

are not significantly different from the conditions at 1.5m. The temperature tenability limit

at 1.0m is reached at the center of the carriages approximately half a minute later than the

predicted times for points at 1.5m above the floor level. The temperature at the center of the

incident carriage at 1.0m above the floor level is predicted to exceed the acceptability limit at

1.5 minutes from the ignition. The temperatures at the same height in the remaining carriages

are predicted to exceed the 60◦C limit within 3.5 minutes of the incident.

The predicted variations of temperature at the center of the carriages at 1.5m and 1.0m above

the floor level are given in Figures 5.51 and 5.52, respectively.
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Figure 5.51: Case-07: Temperature variation at 1.5m above the floor level
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Figure 5.52: Case-07: Temperature variation at 1.0m above the floor level

The visibility level at 1.5m at the center of the incident carriage is predicted to drop below 5m

within the first minute from the ignition. At the center of the remaining carriages, it takes less

than 2.5 minutes for visibility to drop below the recommended value, at targets points 1.5m

above the floor level.

The visibility at 1.0m at the center of the incident carriage drops below 5m limit just after the

first minute of the incident. The visibility at the same height in the remaining carriages are
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predicted to fall below the recommended value within the first 3 minutes from the ignition.

The variations of the visibility at the center of the carriages at 1.5m and 1.0m above the floor

level are given in Figures 5.53 and 5.54, respectively. It should be noted that only the first five

minutes of the incident is given in the figures, since the visibility levels remain constant for

the rest of the simulation.
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Figure 5.53: Case-07: Visibility variation at 1.5m above the floor level
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Figure 5.54: Case-07: Visibility variation at 1.0m above the floor level
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The simulation of a severe baggage fire incident in the 4-car rolling stock in the single-

track tunnel shows that the carbon-monoxide concentration levels exceed the fatality limit

of 2000ppm just after the 3rd minute from the ignition at the center of the incident carriage at

1.5m above the floor level. The maximum allowable carbon-monoxide concentration limit is

reached within 6.5 minutes at the center of the remaining carriages at the same height.

The predictions of carbon-monoxide concentration show that the fatality limit is also ex-

ceeded at 1.0m above the floor level within the rolling stock. The concentration levels exceed

2000ppm within 4 minutes at the center of the incident carriage and within 8 minutes at the

center of the remaining carriages at 1.0m, measured from the floor level.

The predicted variations of carbon-monoxide concentrations at 1.5m and 1.0m above the floor

level are given in Figures 5.55 and 5.56, respectively. It should be noted that only the first 10

minutes of the incident is given in the figures, since the fatality limit for the carbon-monoxide

concentration is reached and exceeded within this interval.

The temperature, visibility and carbon-monoxide slices on a longitudinal section through the

center of the carriage are given in Figures B.19 to B.21 in Appendix B.
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Figure 5.55: Case-07: Carbon-monoxide concentration at 1.5m above the floor level
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Figure 5.56: Case-07: Carbon-monoxide concentration at 1.0m above the floor level

5.9 CASE-08: 4-CAR, 1.5MW SOURCE, TWIN-TRACK TUNNEL

The last case of the initial simulations includes a baggage fire incident in the 4-car rolling

stock incorporating open wide gangways. The rolling stock is defined to come to a rest in the

twin-track tunnel, and all doors on one side of the train is defined for ventilation of smoke and

evacuation of passengers.

The location, physical size, and the power of the ignition source in this case are kept as

simulated in Cases 05 to 07. This incident is labelled as Case-08 in this thesis.

5.9.1 FIRE DEVELOPMENT

As predicted and explained in Case-07, the open wide gangways in the 4-car rolling stock

allow heat and smoke produced by the fire to be carried from the incident carriage and be

dispersed to the adjacent non-incident carriages. It is predicted from the simulation that this

dissipation of heat and smoke alters the intensity of fire and the associated flame spread char-

acteristic within the rolling stock.
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5mins: In this incident, fire initially starts to develop on the floor, then spreads to the seat

adjacent to the ignition location on the same side with the open doors at 4 minutes from the

ignition. At the 5th minute, flames cover the base of the ignited seat.

10mins: The simulation shows that fire develops further on floor between the 5th and the 10th

minutes, and cover the section bounded by the pair of seats at the end of the incident carriage.

The pair of seats on both sides of the incident carriage, which are in the premises of ignition

source, are also found to be involved in fire within this interval. However, flames have not

yet spread to the folded seats, located just adjacent to the side doors, or have not spread to the

adjacent non-incident carriage over the floor.

It is predicted that the small window, located on the same with open doors above the burning

seats, fails at the 10th minute.

13mins: The predictions of flame spread show that fire on the floor propagates further in both

directions from the 10th minute and onwards. It is predicted that just after 12 minutes from

the ignition, flames cover a region between the center of the folded seats, at upstream end,

and the center of the gangway, at downstream end, on the floor. The sides of the folded seats

are also ignited between the 12th and the 13th minutes. However, the seats that ignited first in

this incident are completely burnt out by 13 minutes.

The peak heat release rate for this incident is predicted, between the 12th and the 13th minutes

from the ignition, to be 3.2MW.

The simulation shows that at 13 minutes, the pair of windows at the opposite side of the open

doors, located above the burning seats, fail due to high temperature.

15mins: At 15 minutes, the flames on floor is predicted to move further upstream to the edge

of the open side doors. The flames continue to burn the sides of the folded seats within this

interval. However, simulation shows that the bases of the seats, adjacent to the ignition source,

are mostly burnt out by 15 minutes.

The predicted and reported failure of windows reduce the intensity of the fire within the rolling

stock. The simulation shows that starting from the 13th minute and onwards, the heat release

rate decreases as the areas of the combustibles that are burning out are greater than the areas

of the combustibles being introduced in fire.
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20mins: At 20 minutes, some of the floor material around the ignition source is completely

burnt out. However, burning is predicted to continue on floor around the folded seats and

around the gangway area at the end of the incident carriage.

For the rest of the simulation, a localized fire between the edge of the open side door and the

center of the gangway, between the incident carriage and the adjacent carriage, is predicted.

The predicted variation of the heat release rate for this incident is shown in Figure 5.57.

The fire development in the rolling stock, illustrated with the burning rate of the combustible

surfaces, is given in Figure 5.58 for this incident.

The energy released during this incident is estimated to be 3.0GJ through calculation of area

under the heat release rate curve using the Trapezoidal Rule.
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Figure 5.57: Heat release rate, 4-car, 1.5MW source, twin-track tunnel
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Figure 5.58: Fire spread, 4-car, 1.5MW source, twin-track tunnel
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5.9.2 ONBOARD CONDITIONS

The simulation of a severe baggage fire incident in the 4-car open train in the twin-track tunnel

shows that the smoke and hot gases produced at the incident carriage spreads to the adjacent

carriages and alters the onboard conditions in the entire rolling stock. It is predicted that even

though the smoke is dispersed into relatively large enclosure compared to 1-car model and is

ventilated through a pair of side doors per carriage, the tenability limits are exceeded fairly

quickly in the incident carriage and in the adjacent carriage to incident.

The simulation shows that the temperatures at 1.5m above the floor level at the center of the

incident carriage and the adjacent carriage exceed the acceptability limit of 60◦C within the

first two minutes from the ignition. The effective ventilation of smoke through the side doors

keeps the temperatures below 60◦C at the same height at the center of the third and the fourth

carriages for 3 and 8 minutes, respectively, where the reported durations are taken from the

ignition. The temperatures are predicted to increase to 390◦C at 1.5m at the center of the

incident carriage during this incident.

It is predicted that the temperatures at 1.0m above the floor level at the center of the inci-

dent carriage exceeds 60◦C within the first two minutes from the ignition. In this incident,

temperature at the same height at the center of carriage adjacent to the incident exceeds the

acceptability limit at the 9th minute. The temperatures at 1.0m at the center of the third and

the fourth carriages remain below 60◦C for the simulated duration of this incident.

The predicted variations of temperature at the center of the carriages at 1.5m and 1.0m above

the floor level are given in Figures 5.59 and 5.60, respectively.

The results of the simulation show that the visibility at 1.5m above the floor level at the center

of the incident carriage drops below the recommended value of 5m just after the first minute

from the ignition. The visibility at the same height at the center of the adjacent and the third

carriages is predicted to fall below the acceptability limit within the following minute. The

visibility level drops below 5m at the center of the fourth carriage, which is the farthest away

from the incident, at the height of 1.5m within the 3rd minute of the incident.
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Figure 5.59: Case-08: Temperature variation at 1.5m above the floor level
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Figure 5.60: Case-08: Temperature variation at 1.0m above the floor level

In this case, even though the fire is ventilated more effectively, compared to other cases sim-

ulated, by means of the open side doors, the simulation shows that the smoke fills the rolling

stock rapidly. This is also reflected in the predicted values of visibility at 1.0m above the floor

level.
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The visibility level at 1.0m at the center of the incident carriage is predicted to drop below 5m

just after the first minute of the incident. The visibility levels at the same height at the center

of the remaining carriages are predicted to drop below the recommended value between the

3rd and the 4th minutes from the ignition.
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Figure 5.61: Case-08: Visibility variation at 1.5m above the floor level

0

5

10

15

20

25

30

0 30 60 90 120 150 180 210 240 270 300

Time (s)

Vi
si

bi
lit

y 
(m

) 

Center of car 1

Center of car 2

Center of car 3

Center of car 4

Figure 5.62: Case-08: Visibility variation at 1.0m above the floor level
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The predicted variations of visibility levels at the center of the carriages at 1.5m and 1.0m

above the floor level are given in Figures 5.61 and 5.62, respectively. It should be noted that

only the first five minutes of the incident is given in the figures showing visibility, since the

visibility levels do not change significantly over the rest of the simulation.

The simulation results show that the carbon-monoxide concentration at 1.5m above the floor

level at the center of the incident carriage increases to a peak value of 2240ppm, predicted

between the 12th and the 13th minutes from the ignition. It is predicted that at the same

height the average values of carbon-monoxide concentrations at the center of the carriages,

including the incident carriage, are within the acceptability criterion of 1150ppm for the first

6 minutes, but exceed the acceptability limit of 450ppm when values averaged over the first

15 minutes. The average values of concentration vary between 185ppm and 760ppm over the

first 6 minutes, and between 480ppm and 1240ppm over the first 15 minutes at 1.5m above

the floor level.

The carbon-monoxide concentration at 1.0m above the floor level at the center of the inci-

dent carriage is predicted to remain within the acceptability criterion when averaged over the

first 6 minutes. However, the carbon-monoxide concentration exceeds the defined criterion

when averaged over the first 15 minutes. The average values are predicted to be 390ppm and

780ppm, for 6 and 15 minute intervals, respectively. The carbon-monoxide concentrations at

1.0m above the floor at the center of the remaining carriages are predicted to vary between

145ppm and 200ppm, when averaged over the first 30 minutes, which leaves them within the

acceptability criterion of 225ppm.

The predicted variations of carbon-monoxide concentrations at the center of the carriages

at 1.5m and 1.0m above the floor level are given in Figures 5.63 and 5.64, respectively. It

should be noted that only the first 10 minutes of the incident is given in the figures showing

carbon-monoxide concentrations, since the concentration levels reflect the general trend of

the variations.
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The temperature, visibility and carbon-monoxide slices on a longitudinal section through the

center of the carriage are given in Figures B.22 to B.24 in Appendix B.
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Figure 5.63: Case-08: Carbon-monoxide concentration at 1.5m above the floor level
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Figure 5.64: Case-08: Carbon-monoxide concentration at 1.0m above the floor level
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5.10 DISCUSSION ON PREDICTIONS OF INITIAL SIMULATIONS

A set of simulations has been performed using the FDS program to predict fire development

and flame spread in the underground trains in the event of an arson fire incident and a more

severe baggage fire incident. The cases have been simulated using two rolling stock models,

1-car model representing a train made up of physically separated carriages and a 4-car rolling

stock incorporating open wide gangways.

The simulations incorporating an 80kW ignition source show that regardless of the position

or number of doors defined open, or the configuration of the rolling stock being set either to

incorporate physically separated carriages or to incorporate open wide gangways, fire would

be localized and would not spread to involve the entire carriage or rolling stock. In all 4 cases

simulated, fire is predicted to remain in the premises of the initial ignition location. The peak

heat release rate in the simulated cases is found to be about 135kW.

The simulations incorporating a severe baggage fire ignition source, releasing 1.5MW heat

at its peak, show that the fire development and flame spread characteristics vary with the

ventilation strategies, i.e. areas and the positions of open doors, and with the configuration

of the rolling stock. The peak heat release rate, amongst the cases simulated, is predicted to

be 6.0MW in the 1-car model, when the train is defined to be immobilized in the single-track

tunnel section, where ventilation of smoke is through the single open end door. This case was

labelled as Case-05 in this thesis.

In Case-05, the fire starts to develop at the end of the carriage, farthest away from the driver’s

cab. During the initial stages of the incident, fire is under-ventilated as the smoke is extracted

only through the single open door. As the fire develops, the temperatures near the windows

reached the predefined target values, and therefore window failures are predicted. The failure

of windows increased smoke extract and caused fresh air entrainment to the incident carriage,

which altered the conditions from under-ventilated to well-ventilated fire. The fire has also

changed characteristics from fuel-controlled to ventilation-controlled during this phase. The

predictions of sudden increase in the heat release rate through involvement of all surfaces in

the carriage in fire development, and temperatures exceeding 600◦C confirmed the occurrence

of flashover phenomenon.

A set of calculations is performed to find the values of required heat release rates at the onset
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of flashover conditions for the selected cases from the initial simulations. The calculations

would support the discussion on observation of the flashover phenomenon.

In the calculations of flashover onset conditions, the material properties and the surface areas

associated with these materials are taken as defined in the initial FDS simulations. The first

calculation is performed for Case-05, where the only opening is defined to be one end door,

having a cross-sectional area of 1.5m2. The areas of the floor, the seats, and the walls and

ceiling are calculated for the DMOS type carriage, as this type is modelled in Case-05. The

layouts of the carriages are given in Appendix A.

k f loor = 0.19 W/m.K kseats = 0.295 W/m.K kwalls−ceil = 0.038 W/m.K

δ f loor = 0.00162 m δseats = 0.00216 m δwalls−ceil = 0.1 m

A f loor = 39.6 m2 Aseats = 22.7 m2 Awalls−ceil = 58.8 + 37.0 m2

Atotal = A f loor + Aseats + Awalls−ceil

Atotal = 158.1 m2

Using Equation 2.27: hk−ave =
A f loor

Atotal

k f loor

δ f loor
+

Aseats

Atotal

kseats

δseats
+

Awalls−ceil

Atotal

kwalls−ceil

δwalls−ceil

hk−ave = 49.216 W/m2.K

Hopen = 2.0 m ; Aopen = 1.5 m2

Using Equation 2.31: QFO = 610 (hk−ave · Atotal · Aopen · Hopen
1/2)

1/2

QFO ≈ 2480 kW

It should be noted that the window failures are defined in the simulations. Therefore, the area

of the opening changes during the course of the incident simulated in Case-05. Since the value

of heat release rate at the onset of flashover condition depends on the area of the openings,

this occurrence should be taken into account in the calculations. The results of Case-05 show
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that within 15 minutes from the ignition, a total of 5 windows including the window of the

back end door fail due to high temperatures within the carriage. At that instant, the total open

area for smoke ventilation becomes:

Aopen = 1.5︸︷︷︸
front door

+ 2 · 0.5 · 0.85︸            ︷︷            ︸
small windows

+ 2 · 1.5 · 0.85︸            ︷︷            ︸
large windows

+ 0.5 · 0.85︸      ︷︷      ︸
back-end window

Aopen = 5.325 m2

If all the parameters are assumed to be identical, and the opening area is revised in the calcu-

lation of heat release rate, then:

Hopen = 2.0 m ; Aopen = 5.325 m2

Using Equation 2.31: QFO = 610 (hk−ave · Atotal · Aopen · Hopen
1/2)

1/2

QFO ≈ 4670 kW

The heat release rate at the onset of flashover is calculated to be about 4.7MW. This value

matches with the predictions in Case-05, as shown in Figure 5.33. Consequently, the obser-

vation of flashover phenomenon is confirmed.

On the contrary, if Case-06 is considered, where the same ignition source and the same car-

riage is modelled but two side doors are defined open for smoke ventilation, it can be con-

cluded that the fire in the incident carriage is localized and burns steadily. Although the extent

of the fire spread is limited and therefore much less window failures are predicted in Case-

06 compared to Case-05, the initial openings were much larger in Case-06. The incident in

this case can be classified as well-ventilated, and therefore is fuel-controlled for the entire

duration of fire. The effective ventilation of the incident decreased the temperatures onboard,

which slowed down the flame spread and therefore limited the amount of fuel brought into

the region of influence of fire.

Therefore, flashover conditions are not predicted for the incident simulated in Case-06. This

can also be confirmed through the calculation of heat release rate at the onset of flashover for
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this case. If the areas and properties of the materials within the carriage are kept constant, the

heat release rate for an incident in the twin-track tunnel, where two side doors each having an

area of 3.0m2 defined open, can be calculated as follows:

Hopen = 2.0 m ; Aopen = 6.0 m2

Using Equation 2.31: QFO = 610 (hk−ave · Atotal · Aopen · Hopen
1/2)

1/2

QFO ≈ 4960 kW

The predicted variation of heat release rate during the incident in Case-06, given in Figure

5.41, shows that the peak value never reaches to the calculated value of heat release rate

required for the flashover condition. The calculated value of about 5.0MW at the onset of

flashover is much greater than the predicted peak value of 2.5MW. Consequently, the state-

ment of localized and steady burning, or flashover conditions’ not being achieved, can be

confirmed with this analysis.

It should be kept in mind that the empirical equation to predict the heat release rate at the

onset of flashover assumes the conditions are available for fire to flashover. However, in long

compartments like railway rolling stock, it may not be possible for all the materials be in-

volved in fire at the same time. The fire development and flame spread predictions for Cases

07 and 08 show that flashover conditions are not achieved in the rolling stock incorporating

open wide gangways. The increase in the enclosed space, and relatively more effective ven-

tilation of smoke compared to Case-05 resulted in slightly lower onboard temperatures and

limited flame spread within the rolling stock.

It has been shown that ventilation plays an important role in the predicted fire development and

flame spread characteristics, and therefore the value of peak heat release rate, in the event of a

fire within the underground trains. A number of sensitivity cases has also been simulated and

reported in Chapter 6, including cases with limited window failure and mechanical ventilation.

Table 5.1 summarizes the cases simulated and the predicted peak values of heat release rate

in each case.
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Table 5.1: Summary of the initial simulations with predicted peak heat release rates

Case ID Ignition Source Characteristics Tunnel Section Rolling Stock Model Ventilation Openings* Predicted Peak HRR
Arson fire, releasing 1-car representing a train 1-end door

Case-01 constant 80kW heat, Single-track tunnel made up of physically on the driver’s < 0.2MW
located on a passenger seat separated carriages cab end

Arson fire, releasing 1-car representing a train 2-side doors,
Case-02 constant 80kW heat, Twin-track tunnel made up of physically on one side < 0.2MW

located on a passenger seat separated carriages of carriage
Arson fire, releasing 4-car rolling stock, 2-end doors at

Case-03 constant 80kW heat, Single-track tunnel incorporating open each end of the < 0.2MW
located on a passenger seat wide gangways rolling stock

Arson fire, releasing 4-car rolling stock, 2-side doors per
Case-04 constant 80kW heat, Twin-track tunnel incorporating open carriage, 8 doors < 0.2MW

located on a passenger seat wide gangways in total on one side
Baggage fire on floor, 1-car representing a train 1-end door

Case-05 releasing peak heat of 1.5MW Single-track tunnel made up of physically on the driver’s 6.0MW
following fast-growth curve separated carriages cab end

Baggage fire on floor, 1-car representing a train 2-side doors,
Case-06 releasing peak heat of 1.5MW Twin-track tunnel made up of physically on one side 2.5MW

following fast-growth curve separated carriages of carriage
Baggage fire on floor, 4-car rolling stock, 2-end doors at

Case-07 releasing peak heat of 1.5MW Single-track tunnel incorporating open each end of the 2.7MW
following fast-growth curve wide gangways rolling stock

Baggage fire on floor, 4-car rolling stock, 2-side doors per
Case-08 releasing peak heat of 1.5MW Twin-track tunnel incorporating open carriage, 8 doors 3.2MW

following fast-growth curve wide gangways in total on one side
* This column shows only the initial ventilation openings defined in the input files. The window failures are defined implicitly in
all cases, in some of which failures are predicted as reported in the text above.
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The initial simulations show that for an 80kW arson fire incident in an underground train, the

number and size of the ventilation openings are crucial in assessing the onboard conditions.

The incident simulated using the 1-car model in a single-track tunnel resulted in untenable

conditions due to high temperature and high level of carbon-monoxide concentration. How-

ever, the simulation of an 80kW ignition source in the 4-car open train in the twin-track tunnel

shows that onboard conditions are tenable for the first 30 minutes from the ignition. A num-

ber of open doors effectively ventilate the smoke produced, and a larger enclosure assisted

dilution of smoke within the rolling stock.

The initial simulations incorporating a severe baggage fire incident show that the conditions

become untenable within the incident carriage, and in the rest of the rolling stock where open

wide gangways are implemented, within few minutes from the ignition. The temperatures

within the incident carriage are found to exceed the acceptability criterion within the first two

minutes, whichever the rolling stock model is used or ventilation strategy is implemented.

It has been predicted that for the 4-car open train, a severe baggage fire incident would result

in loss of tenability in the entire rolling stock within the first 4 minutes of the incident, when

the fire is ventilated through the open end doors. The simulations show that the conditions can

be maintained tenable for 9 minutes in the adjacent carriage to incident, and for 30 minutes

in the carriages farthest away from the incident, if the side doors are opened in the 4-car open

train.

Consequently, in order to maintain the onboard conditions tenable longer, and to reduce the

risk of flashover, a fire should be suppressed as soon as possible within the rolling stock

before it gains intensity and starts to spread. In addition, if it is reasonably safe to open the

side doors in the event of fire in a rolling stock, the risk of flashover would be reduced and

the smoke from fire would be ventilated more effectively. It can be concluded that increasing

the ventilation areas, by opening doors or breaking windows, at the early stages of fire would

slow down the development of fire within the rolling stock. However, increasing ventilation

areas during a developing fire with intense power could lead to flashover conditions.
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CHAPTER 6

PARAMETRIC SENSITIVITY STUDIES

6.1 INTRODUCTION

The initial set of simulations helped distinguishing a localized fire from a developing one,

shed light on the conditions required for an incident to develop, and gave the extent of flame

spread along with an indicative set of design fire sizes for the selected base cases.

The initial simulations also showed that the intensity of the selected arson ignition source is

not sufficient for the fire to develop or to be sustained within the rolling stock. However, flame

spread and fire development were predicted in the simulations with the baggage fire ignition

source.

The initial simulations incorporated only a fixed length of tunnel with the described grid

size, and had been undertaken under natural ventilation conditions where the ignition source

location was defined to be the same in each subset of cases. Consequently, a set of simulations

has been performed to check the sensitivity of the results to computational aspects; such as

the tunnel length and the grid size; to ignition source; such as the location of the source and

the ignition source characteristics; and to ventilation; such as the window failure, the number

of open doors, and the activation of mechanical ventilation. The findings and the results of

the simulations are summarized in the following Sections. In the sensitivity simulations only

the baggage fire ignition source is used, except in Section 6.4 where the effects of the ignition

source characteristics are investigated.
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6.2 THE TUNNEL LENGTH

The length of domain in the base case simulations involving 1-car model, representing a train

made up of physically separated carriages, is defined to be 40m. Two simulations have been

undertaken to investigate the effects of the length of the computational domain on the fire

development within the incident carriage. Since the main aim is to examine the effects on the

fire development and flame spread, the baggage fire ignition source is used in the simulations.

In the sensitivity simulations, the length of the computational domain is increased from 40m

to 120m.

The first of the two cases involves an incident in the twin-track tunnel, in which the side

doors are open for smoke ventilation and passenger evacuation. This incident is labelled as

Case-09a in this thesis. The simulation shows that the fire development and flame spread

within the incident carriage is almost identical to the case simulated in the 40m long domain.

Consequently, it is predicted that the length of the domain does not have significant effect on

the fire development for this incident.

The variations of heat release rate predicted from an incident in the 40m long and in the 120m

long domains are given in Figure 6.1 for comparison.
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Figure 6.1: Heat release rate, 1-car, 1.5MW source, twin-track tunnel, 120m long domain
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The sensitivity of fire development and flame spread predictions to the length of the computa-

tional domain has also been investigated through an incident in the single-track tunnel. This

case is labelled as Case-09b in this thesis. The single-track tunnel has much smaller cross-

sectional area compared to the twin-track tunnel modelled in the simulations. Consequently,

for a certain length of tunnel, single-track cross-section could hold much less smoke than a

twin-track section. In other words, smoke is ventilated better over a fixed length of tunnel for

an incident in the single-track tunnel.

It is predicted from the simulation that the fire development and flame spread follow the same

trend as predicted for the case with shorter tunnel. However, the simulation shows that when

the tunnel length is increased, the peak heat release rate is achieved slightly earlier and with

slightly greater magnitude. The peak heat release is predicted to be 6.4MW, achieved at 15

minutes from the ignition. The peak heat release rate and flashover onset conditions for the

incident in longer tunnel are predicted about 2.5 minutes earlier than the values predicted for

shorter tunnel.

The variations of heat release rate predicted from an incident in the 40m long and in the 120m

long single-track tunnels are given in Figure 6.2 for comparison.
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Figure 6.2: Heat release rate, 1-car, 1.5MW source, single-track tunnel, 120m long domain
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The fire development in the incident carriage, illustrated with the burning rate of the com-

bustible surfaces, in a 120m long single-track tunnel is given in Figure 6.3.

The differences in the predictions of simulations incorporating single-track tunnel are due to

the heat feedback from smoke stored in the tunnel. For the shorter tunnel, smoke is venti-

lated through the portals, which reduces effects of smoke layer being built up in the tunnel.

However, when the tunnel length is increased, it takes longer to ventilate the smoke from the

portals which promotes additional heat feedback from the smoke layer accumulated within

the tunnel. However, this effect has not been observed in the twin-track tunnel cases, since

the tunnel cross-section is large enough to moderate the additional heat feedback from smoke.

The sensitivity simulations of increased tunnel length show that:

• fire development and flame spread patterns are almost identical for the incidents in the

twin-track tunnel, irrespective of the length of the computational domain.

• the peak heat release rate and flashover onset conditions are achieved slightly earlier

for an incident in the single-track tunnel, compared to an incident in the shorter tunnel.

• there are no significant differences in flame spread patterns or overall burning behavior

within the incident carriage in a single-track tunnel, when the tunnel length is increased.

• increasing the tunnel length three-fold adds 92 hours of additional computational time

for an incident in the twin-track tunnel, and adds 28 hours for an incident in the single-

track tunnel.

It can be concluded that increased domain length does not affect the predicted fire develop-

ment and flame spread patterns significantly. The peak heat release rate is predicted to be only

7% higher with increased tunnel length, even in an incident where flashover is observed. In

addition, increasing domain length, increases the computational time by 133%, for an incident

in single-track tunnel, and by 177%, for an incident in the twin-track tunnel. Consequently,

by the reasons listed, it has been decided to undertake simulations involving an incident in the

1-car model using the shorter domain length.

125



 
 
 

48

 

 
 

Ignition 

15 minutes 

20 minutes 

30 minutes 

10 minutes 

5 minutes 

Figure 6.3: Fire spread, 1-car, 1.5MW source, 120m long single-track tunnel
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6.3 THE LOCATION OF IGNITION SOURCE

A case has been simulated with the 4-car rolling stock with open wide gangways where the

ignition source is moved to the second car. This case has been simulated to investigate the

sensitivity of the results to the location of ignition source. This case will be referred as Case-

10 in this thesis.

In this case, the baggage fire ignition source is placed at the center of the second car of a

4-car rolling stock with open wide gangways. The ignition source is moved from the end of

the carriage to the center, since there are more combustible items, in the form of seats around

the ignition source, at the center of the carriage. In addition, fire spread to adjacent carriages

would be delayed in the case where the ignition source is moved to the center of the carriage.

The predicted heat release rate variation shows that there are two peaks during the course of

this incident. The flames spread and the fire develops gradually within the first 13 minutes

from the ignition. At the 13th minute, all the seats in the incident carriage are involved in

fire, and the flames spread in both directions on the floor. The first window failure is also

predicted in this minute. One of the windows at the center of the incident carriage fails at the

13th minute. This is followed by the failure of three other windows within the next minute,

leaving two broken windows on each side of the incident carriage. The peak heat release rate

is predicted to be 4.5MW in this interval.

At the 15th minute from the ignition, the remaining pair of windows at the center of the

incident carriage and the pair of windows above the folded seats fail due to high temperature.

The failure of windows assists ventilation of heat and smoke from the incident which reduces

the intensity of the fire. From the 15th minute and onwards, the fire on the floor starts to spread

in the downstream direction towards the third carriage. However, the seats at the center of the

incident carriage starts to burn-out, which prevents a significant variation in the heat release

rate.

It is predicted from the simulation that just after the 16th minute from the ignition, the pair

of large windows at the downstream end of the incident carriage fail. From the 16th minute,

the flames on the floor do not propagate further in downstream direction, however, continue

to burn steadily until the 19th minute. From the 19th minute to the 23rd minute, the fire on the

floor in the downstream direction dies out gradually.
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The simulation shows that from the 23rd minute and onwards, the flames on the floor start

to spread in the upstream direction towards the first carriage. The flames reach to the first

carriage and the pair of seats closest to the incident carriage are involved in the fire at the

25th minute. The second peak in the heat release rate is predicted at the 27th minute, at which

the flames cover the half of the incident carriage in the upstream direction and spread to the

seats of the first car at its downstream end. The simulation shows that all the windows in the

upstream half of the incident carriage fail between the 26th minute and the 27th minute. Once

again, multiple window failure reduces the intensity of the fire and the rate of heat release.

The peak heat release rate is predicted to be 5.5MW for this incident.

The variation of heat release rate for this incident and its comparison to the initial case simu-

lated are given in Figure 6.4.

The fire development in the rolling stock, illustrated with the burning rate of the combustible

surfaces, is given in Figure 6.5.
variation of hrr, corrected window, 4car end doors
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Figure 6.5: Fire spread, 4-car, 1.5MW source, single-track tunnel, ignition at second car
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6.4 THE IGNITION SOURCE CHARACTERISTIC

It has been predicted from the simulations that for the fire to develop within the rolling stock,

a powerful ignition source that is intense enough to ignite combustibles in the premises of

ignition location is required. However, the selected baggage fire ignition source, reaching a

peak heat release rate of 1.5MW in three minutes, could be considered as severe by some

authorities. Consequently, a sensitivity case is simulated using a slightly relaxed ignition

source.

The new ignition source follows a fast growth rate as the baggage fire source, however the

peak heat release rate is defined to be 1.0MW, reached at 2.5 minutes from the ignition. The

peak heat release rate of the ignition source remains constant at 1.0MW for 4.5 minutes. The

source is then set to decay exponentially from 7 minutes and onwards. The heat release rate

variations of the 1.0MW and 1.5MW ignition sources are given in Figure 6.6 for comparison.

A fire incident incorporating the new ignition source is simulated using the 1-car model in the

single-track tunnel. This case is selected since the highest peak heat release rate is predicted

for this particular case and conditions for flashover were achieved with the 1.5MW baggage

fire ignition source. This case is labelled as Case-11a.

In the simulation, all the parameters including the ignition source area are set identical to the

values defined in Case-05, except the growth curve of the ignition source. Consequently, the

peak value of heat flux per unit area is 500 kW/m2, when the ignition source reaches its peak

heat release rate.

It is predicted from the simulations incorporating 1-car model in a single-track tunnel that

the fire development and flame spread within the carriage result in similar patterns for both

of the ignition sources. Figure 6.7 shows the variations of heat release rate for both cases,

incorporating an ignition source with a peak heat release rate of 1.0MW and 1.5MW, for

comparison.
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Consequently, the new ignition source, reaching a peak heat release rate of 1.0MW, delivers

almost the same conclusions derived from the simulations incorporating the 1.5MW ignition

source. It can be concluded that the severity of the assumed baggage fire ignition source is

comparable to the new source with peak heat release rate of 1.0MW, which is more readily

accepted by the authorities.
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Figure 6.7: Heat release rate, 1-car, single-track tunnel, 1.0MW and 1.5MW sources
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In the event of a fire incident in an underground train, there could be high number casualties

and even fatalities. The vulnerability of the underground railway systems made those possi-

ble targets for terrorists as much as arsonists. In order to represent a terrorist attack to the

underground train, a set of simulations has been performed during which an amount of liquid

fuel is assumed to be brought into the rolling stock.

In the cases simulated, the liquid fuel is selected to be gasoline, and the amount of fuel is

defined to be between 2.0 and 10.0 liters. The governing equations for liquid fuel, or pool

fires, are given in Chapter 2. As noted by the equations, apart from the volume of the liquid

fuel, the fuel spill area has a significant effect on the burning duration and the peak heat release

rate. A sample calculation with a set of values assumed for volume of fuel and spill area is

given below.

ρGasoline = 740 kg/m3 [10]

∆Hc,Gasoline = 43.7 MJ/kg [10]

ṁ′′max = 0.055 kg/m2s [10]

∀ = 2.0 lt ; A = 2.0 m2 [Assumed]

Mass of fuel: ρGasoline · ∀ = 740 · 0.002 = 1.48 kg

Energy of fuel: ∆Hc,Gasoline · m f uel = 43.7 · 1.48 = 64.68 MJ

Mass burning rate: ṁ′′max · A = 0.055 · 2.0 = 0.11 kg/s

Heat release rate (HRR): ∆Hc,Gasoline · ṁ f uel = 43.7 · 0.11 = 4.8 MW

Burning duration: E f uel / Q̇ f ire = 64.68 / 4.8 = 13 s

Table 6.1 shows the data set defined in the respective simulations performed. It should be

noted that for a fixed volume of liquid fuel, the energy content remains constant. Conse-

quently, the burning duration and the intensity of the fire solely depend on the fuel spill area

assumed, provided that the mass loss rate flux (ṁ′′) is constant.
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It should also be noted that the free spill of fuel is not allowed and the spill area is limited

between 0.5 and 2.0m2. This is done since, when the area is increased the intensity of the fire

increases, which causes the duration of the burning to decrease significantly. Consequently, a

range of values are selected in the simulations to represent a reasonable set of parameters for

the analysis.

Table 6.1: Data set for incident cases involving liquid fuel

Case-11b Case-11c Case-11d Case-11e Case-11f
∀ (lt) 2.0 2.0 2.0 10.0 10.0

A (m2) 1.0 2.0 0.5 1.0 0.5
m f uel (kg) 1.48 1.48 1.48 7.4 7.4
E f uel (MJ) 64.68 64.68 64.68 323.4 323.4
ṁ f uel (kg/s) 0.055 0.11 0.0275 0.055 0.0275
HRR (MW) 2.4 4.8 1.2 2.4 1.2
tburning (s) 27 13 54 135 270

The cases are simulated using the 1-car model in a single-track tunnel, since this case was

shown to be the most critical. All the parameters are set to remain as they are defined for

Case-05 in the simulations. However, the reaction has changed from the burning of the seat

material to the chemical reaction of benzene. This is done to correctly represent the effective

heat of combustion and the production of soot and carbon-monoxide from the combustion of

the liquid fuel.

The simulations show that a very short duration of burning is not sufficient to ignite com-

bustible items and to sustain burning in the rolling stock, even though the intensity of the fire

is high. The variations of the heat release rates for the cases simulated are given in Figure 6.8.

It should be noted that since the durations of incidents are short, the timescale in Figure 6.8 is

set to be 600s. The predictions of peak heat release rate and the actual burning durations are

given in Table 6.2.
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Figure 6.8: Heat release rate, 1-car, single-track tunnel, incidents involving liquid fuel

Table 6.2: Predicted peak heat release rate and duration of fire incidents for cases involving
liquid fuel

Case-11b Case-11c Case-11d Case-11e Case-11f
Peak HRR (MW) 3.3 6.1 1.7 3.5 2.5

t f ire (s) 32 22 58 310 390

The simulations show that the duration of the fire within the incident carriage depends largely

on the burning duration of the liquid fuel. This is predicted since the liquid fuel ignition

source either is not intense enough to ignite the floor material, or burns for a short period so

that the fire on the floor is not sustained.

The fire development, illustrated with the burning rate of the combustible surfaces for Case-

11f is given in Figure 6.9. This case is selected since the burning is sustained longer compared

to the other cases involving liquid fuel. It should be noted that the fire development is given

only for 8 minutes, since the fire dies out within this interval in Case-11f.
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Figure 6.9: Fire spread, 1-car, single-track tunnel, 10lt gasoline fuel spilled to 0.5m2 area

6.5 THE WINDOW FAILURE

The simulations show that the development of fire within the rolling stock depends strongly

on the ventilation of heat and smoke from the incident. It has been found that ventilation

could promote the fire development, as discussed in Case-05, or could reduce the intensity of

the fire if multiple window failures happen, as discussed in Case-10.

Therefore, two cases have been simulated to investigate the sensitivity of the results to the

failure of windows in the rolling stock. The fire development in the 1-car model with only

one end door open, and in the 4-car rolling stock with both end doors open are investigated in

separate cases.
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The 1-car model with limited window failure will be referred as Case-12a. In this case, the

heat detectors that measure the temperatures at the center of the inner surfaces of the windows

located on the right hand side of the carriage with respect to its direction of travel, and of the

window of closed end door are displaced into the windows by 1.0cm.

The FDS simulation results show that the windows with misplaced heat detectors do not fail,

since the predefined temperature criterion for failure has not been reached. Consequently, it

is found that while the windows on one side of the incident carriage fail, the windows on

the other side and the end door window remain intact during the course of the incident. This

case could be considered as hypothetical, however, yields different ventilation conditions that

would affect the fire development within the rolling stock.

The results show that the fire development and flame spread within the carriage follow the

similar trend as in the original case, where windows fail normally, for the first 10 minutes

from the ignition.

As the fire starts to develop in the carriage, the seats adjacent to the ignition location are

involved in fire within five minutes. In ten minutes all the seats are involved in the fire de-

velopment, and the fire has started to grow on the floor. Since the high temperature gases

are collected at high level within the carriage, all the seats are ignited before all the floor is

involved in the fire. After 15 minutes from the ignition, more than half of the floor is involved

in the fire. However, the seats adjacent to the ignition location are burnt completely within

this interval.

At the 20th minute, the entire floor is involved in the fire development. At that instant, most

of the seats located along the midway of the carriage have burnt out in addition to the section

of floor next to the ignition location. After 30 minutes from the ignition, it is predicted that

all the seats have burnt completely. However, most of the floor has still been burning when

the simulation is terminated. The peak heat release rate is predicted to be 3.3MW for this

incident.

It is predicted for this incident that before the entire floor has been involved in the fire develop-

ment, most of the seats have been burnt completely. Consequently, flashover is not predicted

for this case.
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The results of the simulation show significant differences in the predicted peak heat release

rates and the flame spread characteristics compared to the original case with normal window

failures. In the case with limited window failure, Case-12a, the rate of increase in the ven-

tilation opening areas, in other words the failure of the windows, is such that the seats burn

out faster due to higher temperatures within the carriage and surface heat flux levels that the

seats are exposed to. In Case-12a, the rate of burning of the seats does not coincide with the

progress of fire spread over the floor. Consequently, lower peak heat release rate and almost

steady burning characteristics are predicted. In the case with normal window failure, Case-05,

the burning of seats are sustained longer due to lower surface heat flux levels. This results

in a rapid increase in the heat release rate, when simultaneous burning of seats and increas-

ing flame spread over the floor are achieved. The window failures in Case-05 assist effective

ventilation of the smoke generated by the fire, and promote flame spread within the carriage.

The comparison of the predicted heat release rates for Case-05 and Case-12a are given in

Figure 6.10.

The fire development, illustrated with the burning rate of the combustible surfaces, in 1-car

model with limited window failure is given in Figure 6.11.
Case-05: 1-car, 1.5MW source, single-track tunnel
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Figure 6.10: Heat release rate, 1-car, 1.5MW source, single-track tunnel, limited window
failure
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Figure 6.11: Fire spread, 1-car, 1.5MW source, single-track tunnel, limited window failure
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The baggage fire incident, i.e. an ignition source following a fast growth curve with a peak

heat release rate of 1.5MW, is also simulated in the 4-car rolling stock with limited window

failure. The train is defined to stop in a single-track tunnel, therefore the end doors are open for

ventilation of smoke and evacuation of passengers. This incident simulation will be referred

as Case-12b. In this case, as it was mentioned in Case-12a, the heat detectors on the windows

are displaced into the windows by 10cm on one side of the train. Consequently, a group of

windows on one side of the rolling stock do not fail since the predefined temperature criterion

for failure is not achieved.

The simulations show almost identical fire development and flame spread characteristics for

the incidents with limited window failure and with normal window failure for the first 15

minutes from the ignition.

At the 15th minute a pair of large windows and a pair of small windows adjacent to the

ignition location fail in the case with normal window failures. No further window failures are

predicted for this case.

However, in the case with limited window failure, one large window and a small window

adjacent to the ignition source fail within the first 15 minutes from the ignition. This created

a slightly different environment within the rolling stock, especially in the incident carriage. It

is predicted from the simulation that three more windows, adjacent to the broken ones, in the

incident carriage fail at the 19th minute. The simulation shows that additional four windows

fail within the following five minutes. The windows fail one by one, approximately at a rate

of one window per minute, along the incident carriage towards the driver’s cab. From the 24th

minute and onwards, no more window failures are predicted for the incident carriage. How-

ever, two more windows, closest to the incident location, in the adjacent carriage are predicted

to fail between the 28th and the 29th minutes. The sequence of window failures assisted ven-

tilation of smoke and provided fresh air entrainment to the incident carriage, which promoted

the fire development and flame spread in the rolling stock.

The largest extent of flame spread in the rolling stock is predicted for this case. At 20 minutes

from the ignition and onwards, the seats and the floor in the adjacent carriage are involved

in the fire development. As the fire develops further in the rolling stock, higher peak heat

release rate is predicted in this case compared to the case with normal window failure, where

localized burning was observed. With the flame spread over the floor of incident carriage
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and the involvement of the adjacent carriage, a smooth increase in the heat release rate is

predicted. However, the conditions are in favor of steady burning characteristics rather than

the flashover conditions. The peak heat release rate is predicted to be 4.8MW for this incident,

and the fire develops to an extent of about one and a half carriage in terms of the surface area

involvement.

The comparison of the predicted heat release rates for Case-07 and Case-12b are given in

Figure 6.12.

The fire development, illustrated with the burning rate of the combustible surfaces, in 4-car

model with limited window failure is given in Figure 6.13.
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Figure 6.12: Heat release rate, 4-car, 1.5MW source, single-track tunnel, limited window
failure
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Figure 6.13: Fire spread, 4-car, 1.5MW source, single-track tunnel, limited window failure
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6.6 THE NUMBER OF OPEN DOORS

The effects of ventilation on the fire development within the rolling stock have also been

investigated through simulations incorporating different conditions at the passenger doors.

The first case is the baggage fire incident in the 1-car model, simulated in the twin-track tunnel

section, with all four doors of the carriage defined open. In this case, the end doors are defined

to be closed, two of the doors facing the walkway are open for passenger evacuation, and the

other two doors are defined to be open to assist the ventilation of smoke generated by the fire.

This case is labelled as Case-13a in this thesis.

The fire development and flame spread in the carriage are predicted to be similar to the case in

which only two side doors are open (Case-06). The results show that when all four side doors

are open, the fire development is slightly delayed. Since the smoke is ventilated more effec-

tively, it takes slightly longer to reach the ignition temperatures of the combustibles within

the rolling stock, which results in a slight delay in achieving the peak heat release rate.

The peak heat release rate is predicted to be 2.6MW, which is quite close to the predicted

peak heat release rate value of 2.5MW for the case with only two side doors open. However,

it takes two additional minutes for the fire to reach its peak size. The peak heat release rate

is achieved at 10 minutes from the ignition for Case-13a. The simulations also show that the

extent of flame spread for Case-06 and Case-13a are quite similar.

The comparison of the predicted heat release rates for Case-06 and Case-13a are given in

Figure 6.14.

It should be noted that opening all four doors in the incident carriage requires additional safety

and operational procedures for the evacuating passengers, and is therefore not preferred by the

railway operators. Since opening all doors does not provide significant improvement on the

predicted design fire size and on the predicted onboard conditions for such an incident, it is

not recommended. Figure 6.15 shows the temperature predictions for Case-06 and Case-13a

at the center of the carriage at 1.0m and 1.5m above the floor level.
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Figure 6.14: Heat release rate, 1-car, 1.5MW source, twin-track tunnel, 4-doors open

The fire development, illustrated with the burning rate of the combustible surfaces, in 1-car

model with all four doors open is given in Figure 6.16.
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Figure 6.15: Temperature predictions for Case-06 and Case-13a at the center of the carriage
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Figure 6.16: Fire spread, 1-car, 1.5MW source, twin-track tunnel, 4-doors open
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The results of the simulations reported in this thesis until now show that the fire development

and flame spread within the railway carriages strongly depend on the imposed ventilation

conditions. Another case has been simulated with all doors of the rolling stock defined closed

for the entire duration of the incident. This case has been investigated to predict the fire

development within the trains, which would either yield to a developing fire incident due to

air entrainment through gradually breaking windows, or die out before spreading due to lack

of oxygen within the rolling stock. This case is labelled as Case-13b in this thesis.

In Case-13b, no leakage through the windows or doors is defined, as per the other cases

simulated and reported herein. This could be considered as a hypothetical case, however

would show how long the fire can survive under limited oxygen levels in the rolling stock

during such an incident. In this case, the baggage fire ignition source is placed at the center

of second carriage, as described in Case-10.

It is predicted that the fire follows the ignition source heat release rate curve up to 5 minutes.

However, the fire starts to decay just after 5 minutes from the ignition. The simulation shows

that during the entire course of this incident none of the windows fail since the predefined

failure criterion for windows has not been reached. The peak temperature at the windows is

predicted to be 405◦C, just after the 6th minute from the ignition. The fire is predicted to die

out in 13 minutes.

The comparison of the predicted heat release rates for Case-10 and Case-13b are given in

Figure 6.17.

In such an incident, since there is no means of smoke extract through doors or windows,

smoke fills the entire rolling stock fairly quickly. This obviously results in fatal conditions for

the passengers onboard. The simulation shows that the carbon-monoxide concentration levels

reach the critical limit of 2000ppm in two minutes in the incident carriage, and within four

and a half minutes in the entire rolling stock. The predicted carbon-monoxide concentrations

at 1.5m above the floor level at the center of the carriages are given in Figure 6.18. The figure

is given only for eight minutes from the ignition since the limiting value for the passengers’

life safety has been reached within this time interval.
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Figure 6.17: Heat release rate, 4-car, 1.5MW source, single-track tunnel, all doors closed

Consequently, closing doors is not recommended when there are passengers onboard. Even-

tually, during such an incident, even though the doors fail at closed position, human instinct

would compel passengers to force open the doors or break windows for smoke extract. On the

contrary, this case could represent an incident in the rolling stock parked in an underground

depot.
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Figure 6.18: Case-13b: Carbon-monoxide concentration at 1.5m above the floor level
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In all cases reported herein, except Case-13b, the doors are defined to be open at the start of

the simulations, i.e. at time is equal to zero, which is the accepted approach in the industry

for similar type of analysis. In principle, once the fire has been spotted in the rolling stock,

it should immediately be reported to the driver and to the central control room, who are re-

sponsible to stop the rolling stock at the safest possible location and open doors for passenger

evacuation, as soon as possible.

However, there might be a short delay in opening the doors in real life situations. Cases 13c

and 13d investigate the effects of a delay in opening the doors on fire development and flame

spread within the rolling stock.

In Case-13c, the side doors are assumed to be opened at 3 minutes from the ignition. The

simulation shows that the fire develops based on the predefined ignition source heat release

rate curve for 2.5 minutes. Thereafter, the fire starts to decay due to lack of oxygen within the

incident carriage. However, once the doors are opened at the 3rd minute, fire gains intensity as

smoke is ventilated and fresh air is brought into the carriage. At the moment the doors open,

a sudden peak in the heat release rate is observed. The peak heat release rate is predicted

to be 3.5MW, however it lasts only for about 15 seconds. Opening doors causes sudden

exchange of heat and mass between the tunnel and the incident carriage, which results in

numerical instability for a very short duration. This sudden increase in heat release rate does

not affect flame spread, or is not a consequence of flame spread within the incident carriage.

The simulation shows that at 3.5 minutes and thereafter the fire development and flame spread

are quite similar to the predictions of Case-06, where the side doors are defined to be open at

the start of the ignition. The peak heat release rate is predicted to be 2.5MW for this incident,

if the sudden increase in heat release rate due to numerical instability is ignored.

The variation of heat release rate for Case-06 and Case-13c are given in Figure 6.19 for

comparison.

Another case has been simulated in which the passenger doors are assumed to be opened at 6

minutes from the ignition. This case can be considered as extreme, however could be possible

if the communication between the driver and the incident carriage is lost and the doors fail at

closed position. This case is labelled as Case-13d in this thesis.
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Figure 6.19: Heat release rate, 1-car, 1.5MW source, twin-track tunnel, doors opening at 3
min. or 6 min.

The simulation shows that fire follows the ignition source heat release rate curve for 2.5

minutes, as predicted for Case-13c, after which it starts to decay as the oxygen level in the

carriage starts to drop. The fire is predicted to decay within the first four minutes from the

ignition. However, within this interval incident carriage is filled with smoke and hot gases

generated by the fire. The temperature increases to 412◦C at the center of the carriage at 1.5m

above the floor level within the first 4 minutes.

The simulation shows that once the doors open, heat release rate suddenly increases to about

8.3MW. However, this peak heat release rate lasts only for few seconds. As discussed in Case-

13c, this sudden increase in the heat release rate is due to an instantaneous exchange of the

compressed hot gases and smoke between the incident carriage and the relatively fresh air in

the running tunnel. The entrainment of fresh air ramps up the fire once again, as instability in

the heat release rate is predicted during the very next minute the doors open. The temperature

at 1.5m above the floor level at the center of the carriage is predicted to increase to 621◦C,

just after the doors are opened.

It is predicted from the simulation that the heat release rate from the fire becomes stable

after the 7th minute from the ignition, in other words a minute after the doors are opened.

Thereafter, the heat release rate is predicted to follow the same trend as predicted for Cases

06 and 13c, with a delay of approximately four minutes. The heat release rate for design
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purposes is predicted to be 2.6MW for this incident, if the instability in the heat release rate is

ignored. The design heat release rate is predicted to be quite similar to the values in Cases 06

and 13c. However, in Case-13d the design fire size is achieved at the 12th minutes, whereas

in Cases 06 and 13c it was achieved around 8 minutes from the ignition.

The variation of heat release rate for Case-13d along with Cases 06 and 13c are given in

Figure 6.19 for comparison.

The fire development, illustrated with the burning rate of the combustible surfaces, in 1-car

model with doors opening at 6 minutes is given in Figure 6.20. As it can be judged from the

fire spread predictions, the sudden increase in heat release rate does not affect flame spread,

or is not a consequence of flame spread within the incident carriage.

The simulations show that:

• Opening passenger doors at 3 minutes from the ignition does not have significant effect

on the predicted flame spread within the carriage. Once the conditions are restored in

the carriage, within 30 seconds of opening the doors, the heat release rate and flame

spread are predicted to be quite similar to the case in which the doors are defined open

at time is equal to zero.

• Opening passenger doors at 6 minutes from the ignition slightly affects the predicted

heat release rate. Once the conditions are restored in the carriage, which takes about one

minute after the doors open, the heat release rate follows the same trend as predicted

for the case in which the doors are defined open at time is equal to zero. A delay of

about four minutes is predicted in achieving the design heat release rate for Case-13d,

after the conditions stabilize in the incident carriage.

• In both cases, a sudden increase in the heat release rate is predicted once the passenger

doors are opened. This is due to instantaneous exchange of smoke and relatively fresh

air between the incident carriage and running tunnel. The conditions are predicted to

be restored within a short time in both cases.

• In both cases, the severe baggage fire ignition source causes fatal conditions within the

incident carriage. However, the conditions were also predicted to be untenable for the

case in which the doors are defined open at time is equal to zero.
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Figure 6.20: Fire spread, 1-car, 1.5MW source, twin-track tunnel, doors open at 6 minutes
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6.7 THE MECHANICAL VENTILATION

Another case has been simulated using the 1-car model in the twin-track tunnel with the

mechanical ventilation applied at the tunnel end.

It is common practice to provide longitudinal ventilation in the event of fire in the running

tunnels. The purpose of the longitudinal ventilation is to push the smoke and hot gases in

the downstream direction and to provide smoke-free evacuation path for the passengers in the

upstream direction. The direction of ventilation is selected based on the location of fire along

the rolling stock, and is applied so that the smoke is ventilated over the shorter length of the

train.

The magnitude of the required minimum ventilation velocity to push the smoke only in the

downstream direction, also referred as the critical velocity, depends on various parameters

including the cross-sectional areas of the tunnel and the train, the height of the tunnel, the

gradient of the tunnel, the temperature of the fire site gases, and the design fire size. The

relevant equations and the calculation methodology can be found in the paper by Kennedy et

al. [2] and in Annex D of NFPA 502 Standard [33].

In the first case simulated, the ventilation direction is defined to be towards the driver cab,

since the DMOS type carriage is modelled. The ignition source is selected to be the baggage

fire, and the location of the source is kept as defined in Case-06. In the absence of the design

peak heat release rate, the critical airflow velocity cannot be calculated. Consequently, an

airflow velocity of 2.5m/s is applied at the tunnel boundary as recommended by NFPA 130

Standard.

It is predicted that the fire development and flame spread are quite similar to the case simu-

lated with natural ventilation conditions, Case-06. The smoke is extracted and ventilation is

provided through the open side doors, therefore the mechanical ventilation has only an influ-

ence on the fire development when the fire spread beyond the side doors area. Consequently,

the flame spread in the carriage within the first 10 minutes is almost identical to the case with

natural ventilation conditions.
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The simulation shows that the large windows at each side of the carriage closest to the ig-

nition source failed at the 6th and the 8th minute from the ignition. The failure of windows

increased the amount of smoke extracted from the carriage, but has insignificant effect on the

fire development. It is predicted from the results of the simulation that the back end door

window fails just before the 10th minute. The failure of the window at back end allows addi-

tional smoke extract from the incident carriage. It also allows some fresh air entrainment into

the carriage. The longitudinal airflow velocity predictions just before and after the window

failures are shown in Figure 6.21. It should be noted that the scale of the longitudinal veloci-

ties are defined to be between -2.0 and +2.0m/s in Figure 6.21 in order to clearly indicate the

exchange of air and smoke through the back end door window.

The fresh air entrainment through the broken end window could be slightly lower in the ac-

tual model of a rolling stock incorporating physically separated carriages, since the adjacent

carriage is not modelled and its blockage effect is overlooked in the simulation. However, the

results are within the acceptable margin since they predict smoke extract through the end door

window, which also confirms that the assumed magnitude of the airflow velocity at the tunnel

boundary is reasonable. The smoke extract from the end door window is expected, as is the

fresh air entrainment through the same window, in this simulation.

The simulation results show that with the additional fresh air entrainment through the broken

end window, the flames propagate further towards the open side doors, compared to the case

under natural ventilation conditions. However, the airflow ventilates the smoke effectively so

that the overall effect on the peak heat release rate is insignificant. The peak heat release rate

for this case is predicted to be 2.7MW. The simulation also shows that the assumed boundary

condition of 2.5m/s airflow velocity is sufficient to push all the smoke downstream to create

smoke-free evacuation path in the upstream direction.

The variation of heat release rate for this incident and the identical case under natural ventila-

tion conditions are given in Figure 6.22 for comparison.

The fire development in the rolling stock, illustrated with the burning rate of the combustible

surfaces, is given in Figure 6.23.

152



 
 
 

A-39

 
 

 

 

 

 

  
 

5 minutes 

8 minutes 

10 minutes 

Figure 6.21: Airflow velocity predictions at a longitudinal plane through the center of the
incident carriage, 1-car, mechanical ventilation
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Figure 6.22: Heat release rate, 1-car, 1.5MW source, twin-track tunnel, mechanical
ventilation
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Figure 6.23: Fire spread, 1-car, 1.5MW source, twin-track tunnel, mechanical ventilation
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The effects of mechanical ventilation on the fire development have also been investigated

using the 4-car rolling stock with open wide gangways. In this case, the incident is simulated

in the single-track tunnel, therefore the end doors are defined to be open for smoke ventilation

and passenger evacuation. This case is labelled as Case-14b in this thesis.

In Case-14b, open end doors allow airflow to pass through the entire rolling stock from one

end to the other. The simulation shows that unlike the other cases simulated, seats adjacent

to the ignition source are not involved in the fire development in the initial stages of the

incident. The bases of the seats adjacent to the ignition source do not contribute to the fire

development within the first 15 minutes from the ignition, therefore the fire development is

governed mainly by flame spread over the floor.

The flame spread within the rolling stock is predicted to be only in the imposed airflow direc-

tion. The mechanical ventilation, while keeping the temperatures in the incident carriage low

enough to delay ignition of the seats, promotes flame spread over the floor in the ventilation

direction. However, the fire spread is predicted to be localized due to reduced temperatures

and effective ventilation of smoke. The simulation predicts a steady burning behavior with

a peak heat release rate of about 2.0MW, reached after 17 minutes from the ignition. The

variation of heat release rate for this incident and the identical case under natural ventilation

conditions are given in Figure 6.24 for comparison.
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Figure 6.24: Heat release rate, 4-car, 1.5MW source, single-track tunnel, mechanical
ventilation
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The fire development in the rolling stock, illustrated with the burning rate of the combustible

surfaces, is given in Figure 6.26.

The mechanical ventilation has a significant impact on the onboard conditions in the event

of a fire incident, especially if the airflow is allowed to pass through the rolling stock. If the

ventilation velocity is greater than the critical velocity required to push smoke and hot gases

in the downstream direction, passengers would be safe in the upstream direction, not only in

the running tunnel but also in the rolling stock. The predictions of temperature and visibility

in the rolling stock is given in Figures 6.25 and 6.27, for the selected minutes during the

course of the incident. Simulation shows that the predefined velocity at the tunnel boundary

is sufficient to maintain tenable conditions in most of the rolling stock.
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Figure 6.25: Temperature predictions at a longitudinal plane through the center of the rolling
stock, 4-car, mechanical ventilation

In Cases 14a and 14b, the mechanical ventilation is activated at time is equal to zero, i.e. at

the beginning of the simulation. It is assumed that the train has stopped in the tunnel prior to

the fire incident, due to possible congestion or signalling failure, during which the ventilation

is provided to cool down the heat released from the brakes of the train to the tunnel.
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Figure 6.26: Fire spread, 4-car, 1.5MW source, single-track tunnel, mechanical ventilation
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Figure 6.27: Visibility predictions at a longitudinal plane through the center of the rolling
stock, 4-car, mechanical ventilation

However, there could be cases where the fire starts on the train, and then the authorities at the

control center is informed of the fire, who are responsible for activating the tunnel ventilation

system. In such an incident, there would be delay in achieving the required airflow rates in

the running tunnel. Although a case has not been simulated to reflect this occurrence, the fire

development can be estimated using the predictions of the other cases simulated. In such an

incident in the 4-car rolling stock in a single-track tunnel:

• The conditions would be identical to that predicted in Case-13b until the doors are

opened.

• Once the doors are opened, fire development and onboard conditions slightly diverge

from the predictions of Case-13b and converge towards the predictions of Case-07. In

Case-07, both end doors were defined to be open, in agreement with an incident in the

single-track tunnel. In addition, natural ventilation conditions were simulated, which

could reflect a stage in the incident where the doors are opened for evacuation but

ventilation has yet to be activated.

• Once the tunnel ventilation fans are energized, conditions diverge from the predictions

of Case-07 and converge towards the predictions of Case-14b, provided that the as-

sumed ventilation velocity matches for both cases.
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6.8 MESH SENSITIVITY

The grid cell size is an important numerical parameter in FDS. CFD models solve an approxi-

mate form of the conservation equations of mass, momentum and energy on a numerical grid.

The error associated with the discretization of the partial derivatives is a function of the size

of the grid cells and the type of differencing used.

FDS uses second-order accurate approximations of both the temporal and spatial derivatives

of the Navier-Stokes equations, meaning that the discretization error is proportional to the

square of the cell size. In theory, reducing the grid cell size by a factor of 2 reduces the

discretization error by a factor of 4. However, it also increases the computing time by a factor

of 16; a factor of 2 for the temporal and each spatial dimension. Clearly, there is a point of

diminishing returns as one refines the numerical mesh.

Two cases have been simulated to investigate the effects of reducing the grid size on the pre-

dicted fire development and flame spread patterns during an incident within the underground

rolling stock. In the mesh sensitivity analysis, only the cases involving the single carriage

model are simulated in order to optimize the time and effort spent on the studies.

The sensitivity simulations showed that ventilation plays an important role on the fire de-

velopment and flame spread within the rolling stock. Consequently, in the mesh sensitivity

studies two extreme cases are simulated. These are:

• An incident in the single-track tunnel with only one end door open for ventilation and

evacuation, and no window failure is allowed.

• An incident in the twin-track tunnel with two side doors open for ventilation and evac-

uation, and window failures are allowed as defined in the initial simulations.

The first of the two cases represents an under-ventilated fire, analysis of which would confirm

the peak heat release rate predicted from the simulation with the original grid size. It would

also show the extent of flame spread, which would be used to confirm that the progress of

flame spread is not under-or-over-predicted when the original grid size is implemented in the

simulations.

The second case of the mesh sensitivity analysis involves re-running of Case-06 of the initial

simulations with the revised grid size. The initial simulations predicted localized burning
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around the ignition location, since the incident was shown to be well ventilated. The initial

simulations also predicted window failures that assisted ventilation of smoke. The second

case of the mesh sensitivity analysis would confirm the predictions of localized burning and

window failures.

Table 6.3 shows the nominal edge lengths in the computational domain in each of the cases

simulated during the mesh sensitivity analysis. It should be noted that Case-15a and Case-06

incorporate the original element size that has been used in the initial and sensitivity simula-

tions. Cases-15b and 15c incorporate the refined computational domain, with reduced grid

size.

Table 6.3: Labels and nominal edge lengths of the mesh sensitivity cases

Single-car, one end door open Single-car, two side doors open
window failures not allowed window failures allowed as usual

Label Case-15a Case-15b Case-06 Case-15c
Longitudinal (x) 0.25m 0.125m 0.25m 0.125m

Across (y) 0.125m 0.125m 0.125m 0.125m
Vertical (z) 0.175m 0.0875m 0.175m 0.0875m

The simulations, incorporating the original grid and the refined grid, of the baggage fire in-

cident in a single carriage with only one end door open show that both simulations predict

similar peak heat release rate values and flame spread patterns. However, few differences are

predicted in the variation of heat release rate during the course of the incident along with few

localized differences in the burning characteristics of combustibles.

The simulation with the refined grid, Case-15b, shows slightly earlier ignition of the com-

bustibles compared to the results of simulation with the original grid size, Case-15a. However,

earlier ignition along with predicted slightly faster burning causes combustibles being burnt

out quicker than it is found from the simulation of Case-15a. The first difference between the

two simulations is predicted between the 4th and the 7th minutes of the incident. Case-15b

predicts slightly earlier ignition of some of the seats and a small area of floor adjacent to the

ignition location in the downstream direction. This occurrence becomes apparent in the flame

spread predictions for two incidents, given in Figure 6.28. However, it should be noted that

the overall trend of flame spread predicted for both cases agree reasonably well.
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The faster flame spread, predicted by Case-15b, in the initial stages of the fire results in higher

heat release rates compared to predictions of Case-15a. The peak heat release rate for Case-

15b is predicted to be 2.5MW at 5 minutes from the ignition. The heat release rate decreases

between the 5th and the 10th minutes, although the flames continue to progress within carriage

in the upstream direction. This is due to the combustibles’, which are ignited at the very early

stages of fire development, being burnt out within this interval. The heat release rate is found

to remain constant at about 1.5MW for the rest of the simulation.

The simulation with original grid size shows slightly smoother transition and slightly longer

burning of the combustibles. This results in peak heat release rate being predicted just after

the 7th minute from the ignition. When two cases are compared, the flame spread predictions

agree very well within the first 10 minutes, with minor exceptions such as a pair of burnt

out seats in Case-15b observed at 10 minutes. Slight differences are predicted by 15 minutes

and onwards, with slightly larger area of combustibles being involved in fire in Case-15a.

However, the trend and the key ignition parameters, such as the ignition of floor near the

driver’s cab door, the extent of flame spread on floor, and the number of seats involved in fire,

largely match between the two cases.

Differences are predicted in the form of burning rates between two cases at and after 20

minutes from the ignition. The burning rates of the surfaces show that in Case-15a a larger

area of combustibles is involved in fire, burning at a slower rate, compared to the predictions

of Case-15b. The results show that as the mesh is refined a sharper and clearer distinction

between the burning items and the burnt out combustibles can be observed. However, with

the original element size, the burning rate of combustibles seems to be averaged over the

ignited surfaces.

It should be noted that both cases incorporate identical material properties, which were cal-

ibrated using a single cone calorimeter model with a fixed grid size that matches with the

original grid size used in the simulations. Therefore, in order to get exact results between two

simulations of mesh sensitivity analysis material properties, in Case-15b, would have to be

re-calibrated using a cone calorimeter with refined grid size. Consequently, the findings are

only to be used to assess the robustness of the material properties and the simulation model

in predicting the peak heat release rate and flame spread patterns.

161



 
 
 

42

 

 

 

 

 

 

Ignition 

5 minutes 

10 minutes 

15 minutes 

20 minutes 

30 minutes 

Figure 6.28: Fire spread, 1-car, single-track tunnel, mesh sensitivity analysis, Case-15a (left) and Case-15b (right)
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The predicted variations of heat release rate for Case-15a and Case-15b are given in Figure

6.29.
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Figure 6.29: Heat release rate, 1-car, single-track tunnel, mesh sensitivity analysis

In the refined grid used in Case-15b, the element sizes have been halved in longitudinal (x)

and vertical (z) directions. Therefore, the number of elements in the computational domain is

quadrupled. The simulations incorporating the single-track tunnel show that the CPU require-

ment for Case-15a is about 0.76s/iteration, whereas in Case-15b the requirement increases to

2.53s/iteration. They also show that it takes twice as many number of iterations required in

Case-15b to achieve a solution for 1800s. Consequently, it takes about 6.7 times longer to

achieve a solution if one uses the refined grid in the simulation involving single-track tunnel.

The second of the two cases of mesh sensitivity analysis involves an incident in the twin-track

tunnel. The results of the simulation incorporating the initial grid size are discussed under

Case-06, in Section 5.7. The case incorporating the refined grid size is labelled as Case-15c

in this thesis.

The simulations show that the trend of the heat release rate curves and the flame spread pat-

terns match well between Case-06 and Case-15c. However, as predicted for the incident in

the single-track tunnel, the simulation incorporating the refined grid reacts faster in spreading

the flames over the floor and in igniting the passenger seats in the premises of the ignition

source. Consequently, in the early stages of the fire development, Case-15c produces greater
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heat release rate than Case-06, where original grid size was used. The peak heat release rates

are predicted to be 3.0MW and 2.5MW for Case-15c and Case-06, respectively. Although in

Case-15c the rate of increase in heat release rate is higher compared to Case-06, the peak heat

release rate for both cases are reached within 8 minutes from the ignition.

The simulation incorporating the refined grid size also shows that the decay curve for the heat

release rate, just after it reaches the peak value, is sharper than the predictions of the same

incident with the original grid size. The slope of heat release rate during the decay period

has been affected by the predicted window failures in Case-15c. The results of simulation

show that the pair of large windows closest to the ignition source fail around 6 minutes from

the ignition, slightly earlier than the predictions of Case-06. Additionally, in Case-15c the

window of back end door is also predicted to fail at the 8th minute. The failure of this win-

dow increases the effectiveness of smoke ventilation and prevents any further increase in the

heat release rate. The temperatures at the face of back end door window were predicted and

reported to be just below the failure criterion for the same incident with the original grid size.

Contrary, failure of a small window on one side of the carriage was predicted in Case-06.

This failure is not predicted in the simulation with refined grid size due to relatively reduced

temperatures around that window caused by the failure of back end door window. Overall,

the ventilation opening areas for both cases are predicted to be same.

The predicted variation of heat release rate and flame spread patterns within the incident

carriage show quite similar results with minor differences. Despite the differences in the

predicted peak heat release rate values and burning behavior of some of the seats, both simu-

lations resulted in localized burning around the ignition source, between the end door and the

first pair of side doors.

Figure 6.30 shows the fire development in the incident carriage, illustrated with the burning

rate of the combustible surfaces, for both cases. The predicted variations of heat release rates

for Case-06 and Case-15c are given in Figure 6.31 for comparison.
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Figure 6.30: Fire spread, 1-car, twin-track tunnel, mesh sensitivity analysis, Case-06 (left) and Case-15c (right)
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Figure 6.31: Heat release rate, 1-car, twin-track tunnel, mesh sensitivity analysis

The simulations incorporating the twin-track tunnel show that the CPU requirement for Case-

06 is about 2.11s/iteration, whereas in Case-15c the requirement increases to 12.10s/iteration.

They also show that it takes about 2.3 times the number of iterations of Case-06 to achieve a

solution in Case-15c for 1800s simulation time. Consequently, it takes about 13 times longer

to achieve a solution if one uses the refined grid in the simulation involving twin-track tunnel.

Once again, the combustible materials used in Case-15c were calibrated through cone calorime-

ter simulations for the computational cell sizes that are suitable for the grid size selected in

the initial simulations. Consequently, there is a slight difference in burning behavior of these

materials once the grid size is refined. Additionally, the change in ventilation conditions due

to altered instances and locations of the window failures affected the overall flame spread pat-

terns in the case with refined grid. However, the differences predicted between the two cases

are within acceptable levels.

It can be concluded that although simulations incorporating refined grid sizes result in slightly

altered variations of heat release rate and flame spread patterns, they produce identical trend

and similar peak heat release rate values in the expense of significantly increased compu-

tational time and effort to achieve the desired solution. Consequently, the results produced

by the proposed grid size, which has been used in the initial and sensitivity simulations, are

reliable and acceptable.
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6.9 CONCLUDING REMARKS FROM SENSITIVITY SIMULATIONS

The initial simulations provided the basic insight on the fire development and flame spread

within the two types of rolling stock; incorporating individual carriages, and incorporating a

single vestibule with open wide gangways. A further set of simulations has been performed,

hereby labelled as sensitivity simulations, to investigate the effects of individual parameters

on fire development and flame spread patterns in the underground trains. The parameters

include computational variations such as the tunnel length and the grid size, and variations on

the boundary and initial conditions such as ignition source characteristics, location of ignition

source, and activation of mechanical ventilation.

TUNNEL LENGTH

The simulations incorporating two different tunnel lengths; 40m and 120m, show that in-

creasing the tunnel length has an insignificant effect on the predicted peak heat release rate

and flame spread patterns in the event of a fire incident in an underground train. It can be

concluded from the results that the predicted variation of heat release rates are almost iden-

tical for the incident in the twin-track tunnel, since the smoke extracted from the incident

carriage is collected in the tunnel at high level, and the tunnel cross-section is large enough to

accommodate the amount of smoke produced during this incident.

However, minor differences are predicted for an incident in the single-track tunnel. Increas-

ing the tunnel length in the simulations, increased the predicted peak heat release rate from

6.0MW to 6.4MW, which corresponds to a 7% increase in value, and shortened the duration

to reach the peak heat release rate by 2.5 minutes, from 17.5 to 15 minutes. This is predicted

since the cross-sectional area of the single-track tunnel is not large enough to accommodate

all the smoke produced by the incident. Therefore in a short tunnel, the smoke is ventilated

better through the portals compared to a longer tunnel. The main reason behind the prediction

of an increase in the peak heat release rate is the heat feedback from the smoke that is kept

longer in the longer tunnel.

Increasing the tunnel length three-fold in the flame spread simulations adds 92 hours of ad-

ditional computational time for an incident in the twin-track tunnel, and adds 28 hours for an

incident in the single-track tunnel. The CPU requirement for the simulations is also predicted
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to increase from 0.94s/iteration to 2.19s/iteration, for an incident in the single-track tunnel,

and from 2.11s/iteration to 5.85s/iteration, for an incident in the twin-track tunnel. The values

correspond to an increase in the computational time by a factor between 2.3 and 2.8 of the

initial computational time.

LOCATION OF IGNITION SOURCE

The results of the simulation incorporating an ignition source at the center of the second car-

riage in a 4-car rolling stock with open wide gangways show that the location of the ignition

source has an influence on the predicted variation of the heat release rate. An ignition source

located adjacent to an increased amount of combustibles, i.e. at the center of carriage rather

than closer to one end, resulted in an increased peak heat release rate value. The instanta-

neous peak heat release rate is predicted to increase from 2.7MW to 4.5MW, when the source

is moved to the center. In addition, the rise in the heat release rate is predicted to continue

an additional minute, until the first drop in heat release rate is predicted at the 13th minute,

compared to the predicted duration of 12 minutes with ignition source located at one end. The

simulation shows that although the heat release rate increases to a greater value, the failure

of windows in the premises of the ignition source reduces the intensity of fire. The simula-

tion also shows that the flame spread patterns change direction in parallel with the predictions

of window failure. As windows fail, smoke and hot gases are ventilated better in particular

sections of the rolling stock, and fire tends to sustain burning through spreading in the other

direction where local temperatures are high, until the windows fail in that section as well.

IGNITION SOURCE CHARACTERISTICS

The simulation incorporating a modified baggage fire ignition source, which releases 1.0MW

heat at its peak, shows that the fire development and flame spread predictions are almost

identical to the ones obtained from the same incident case simulated with the original baggage

fire ignition source increasing to 1.5MW at its peak. Therefore, it can be concluded that once

the ignition source is powerful enough for the flames to spread and sustain burning, then there

are minor variations in the predicted peak heat release rate and flame spread patterns.

The simulations involving up to 10 liters of liquid fuel show that the peak heat release rate

and the duration of the fire depend on the intensity of the ignition source, calculated through
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volume and spillage area of the fuel. Incident cases with large spill areas resulted in shorter

burning durations but higher peak heat release rates, and cases with smaller spillage areas tend

to yield smaller peak heat release rates but longer burning durations. This is predicted since

a constant volume of fuel is assumed in the simulations, while the effects of the variation in

the spill areas on fire development are investigated. The peak heat release rates are predicted

to be in the range between 1.7MW and 6.1MW, with burning durations changing from 22s to

390s.

WINDOW FAILURE

The simulations of fire development and flame spread showed that the ventilation openings

play an important role on the development of fire and rate of heat released during an incident.

It is predicted from the simulation of an incident in the 1-car model, where a set of windows is

assumed to be fail-safe, the change in ventilation conditions alter the fire development signifi-

cantly. While the case incorporating window failures in a normal manner predicting flashover

conditions with a peak heat release rate of 6.0MW, the case with limited window failure pre-

dicted a steady burning behavior and a peak heat release of 3.3MW. This is predicted due

to the change in onboard conditions, which are inevitably affected by the change in smoke

extract rate from the incident carriage. The onboard temperatures caused rapid burning of

seats in the limited window case, whereas the burning of seats was slower and longer in the

case with normal window failure, in which a state of simultaneous burning of seats and floor

is achieved resulting in observation of flashover.

Another case simulated using the 4-car rolling stock with open wide gangways showed that

the fire is localized around the ignition source when windows are defined to fail in a normal

manner. However, for the same incident when a set of windows is set to be fail-safe, fire

is predicted to spread to the entire incident carriage and also spread through the open wide

gangway to involve about half of the adjacent carriage. Once again, failure of windows alters

the onboard temperatures, either decreasing them to a value where flames get weaker and

cannot spread, or keeping temperatures at a value sufficient for the flames to sustain burning

and spread over the floor in the rolling stock. In the simulations latter is predicted with limited

window failure, which resulted in a peak heat release rate of 4.8MW, compared to the value

of 2.7MW predicted for the localized incident.
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NUMBER OF OPEN DOORS

The simulation of a baggage fire incident within the twin-track tunnel with all four doors de-

fined open shows that the development of fire and flame spread patterns are almost identical

to the same incident with only two side doors open. The peak heat release rate for the incident

with all four doors open is predicted to be 2.6MW, which is marginally greater than the value

of 2.5MW predicted for the case with two doors open. Opening all four doors reduces the pre-

dicted onboard temperatures, however, the temperatures still exceed the acceptability criterion

within few minutes. Since opening all four doors would introduce additional safety require-

ments and operational procedures, and does not bring significant improvements to onboard

conditions, this option is not recommended.

The simulation incorporating the 4-car rolling stock with open wide gangways, but with all

doors closed, showed that the fire follows the heat release rate curve of ignition source for

about 5 minutes. The fire is predicted to decay shortly after 5 minutes and burn out completely

in 13 minutes due to lack of oxygen within the rolling stock. During this incident, none of

the windows are predicted to fail, and therefore no smoke could be extracted from the rolling

stock, and no air entrainment is allowed. This case could be considered as hypothetical since

obvious fatalities would occur, however the results showed how long the fire can survive under

limited oxygen levels, and the importance of air entrainment for the fire to develop.

The simulations incorporating a time delay in opening the doors of the rolling stock during

an incident showed that once the conditions are restored, fire development and flame spread

patterns converge to the original case with the doors defined open at the beginning of the

simulation. Two simulations of the same kind showed that once the doors are opened, there

would be a sudden exchange of smoke trapped within the incident carriage and the running

tunnel, during which an amount of air enters the carriage to ventilate the fire. In both cases, at

that instant a sudden increase in the heat release rate is predicted. The considerable amount of

combustion gases’ being extracted from the incident carriage within a very short space of time

is referred to a phenomenon called backdraft. In the simulations, the instantaneous peak heat

release rates of 3.5MW and 8.3MW are predicted for the cases where the doors are defined to

open at 3 and 6 minutes, respectively.
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MECHANICAL VENTILATION

A set of simulations has been performed to investigate the effects of mechanical ventilation on

fire development and flame spread within the underground rolling stock. In the simulations,

in the absence of the full data set to identify the required minimum airflow velocity to control

the movement of smoke, a mean velocity of 2.5m/s is assumed and applied at one of the tunnel

boundaries.

The simulation incorporating an incident within the single carriage in the twin-track tunnel

section with mechanical ventilation energized showed that the fire development and flame

spread patterns are mostly identical to the case without the mechanical ventilation. The dif-

ferences between the two cases become apparent once the window of the back end door fails,

and air flows through the incident carriage. Until the failure of that window, airflows gener-

ated by the mechanical ventilation affect the conditions around the incident carriage, but do

not alter the onboard conditions. The effect of the mechanical ventilation is predicted as a drop

in the heat release rate, soon after the window of back end doors fails. The peak heat release

rate for the incident incorporating mechanical ventilation is predicted to be 2.7MW, which is

marginally greater than the value of 2.5MW predicted for the case with no ventilation.

The second of the two simulations incorporating mechanical ventilation involves an incident

within the 4-car open train with open wide gangways in the single-track tunnel. The airflows

generated by the mechanical ventilation directly affect the fire development and flame spread

patterns, since the end doors are defined to be open for evacuation and ventilation. The peak

heat release rate is predicted to be 2.0MW in the case where the ventilation is activated. The

predicted peak heat release rate is considerably lower than 2.7MW, predicted with no ventila-

tion, since airflows through the entire rolling stock not only reduce the onboard temperatures

to impede the ignition of combustibles, but also prevent flames spreading in the upstream

direction.

MESH SENSITIVITY

The accuracy of the predicted flame spread patterns and peak heat release rate values has

been assessed through mesh sensitivity analysis. Two cases; an under-ventilated and a well-

ventilated fire incident; have been simulated with the original and the refined grid sizes, and

the predictions have been compared.
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The simulations incorporating under-ventilated fire show that the combustible surfaces ignite

slightly earlier in the case with the refined grid size. This resulted in the peak heat release

rate value to be achieved slightly earlier compared to the same incident, where the original

grid size is used. However, the peak heat release rate values are predicted to be quite simi-

lar; 2.6MW with the original grid size, and 2.5MW with the refined grid size. Overall, the

variation of heat release rates and flame spread patterns are predicted to be similar for both

cases.

The earlier ignition and slightly faster burning of the combustible surfaces in the case with

refined grid size showed that burning behavior of the combustibles are altered with the change

in element size in the computational domain. The material properties used in the initial and

sensitivity simulations were calibrated using a cone calorimeter model that had grid sizes

compatible with the original grid size used in the simulations. Consequently, refining the

grid in the computational domain resulted in sharper responses to ignition and slightly faster

combustion. This has become apparent in the flame spread patterns as a clear distinction

between the burning and burnt-out items in the case with refined grid, compared to relatively

smooth transition of burning of items in the case with the original grid size. However, it

should be noted that the case with the original grid size captures all key parameters in the

incident with minor differences to the same case with refined grid.

The second incident incorporating a well-ventilated fire showed that the overall variation of

heat release rate and flame spread patterns agree reasonably well between the two cases with

original and refined grid sizes. However, earlier ignition and slightly faster burning of the

combustibles are also predicted during this incident. The changes in the burning behavior of

the combustibles due to altered grid size increased the peak heat release rate slightly above

the value predicted for the same incident with original grid size. The peak heat release rates

are predicted to be 2.5MW and 3.0MW with the original and refined grid sizes, respectively.

In the second incident, both simulations predicted window failures. The case with refined grid

size predicted failure of the two large windows in the premises of the ignition source slightly

earlier. As the combustibles burn faster, and produce more heat, the temperature criterion

for failure of these windows are achieved about 2 minutes earlier than predicted for the same

case with original grid size. However, once the conditions within the incident carriage are

stabilized, the total area of the ventilation openings are predicted to be the same between the
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two cases.

Once again, the solution with the original grid size captures the key parameters of fire devel-

opment and flame spread within the incident carriage, and represents accurately with minor

differences the conditions predicted with the refined grid size.

The simulations show that halving the element sizes in longitudinal direction along the length

of the incident carriage and in vertical direction along the height increases the required com-

putational time significantly. The required computational time is estimated to be increased

by 6.7 times for an incident in the single-track tunnel, and by 13 times for an incident in the

twin-track tunnel.

It can be concluded that the results produced by the original grid size, which has been used in

the initial and sensitivity simulations, are acceptable, reliable, and require much less compu-

tational time and effort compared to the same incidents with the refined grid size.

Table 6.4 summarizes the sensitivity cases simulated and the peak values of predicted heat

release rate in each case.
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Table 6.4: Summary of the sensitivity simulations with predicted peak heat release rates

Case ID Ignition Source Characteristics Tunnel Section Rolling Stock Model Ventilation Openings* Predicted Peak HRR
Baggage fire on floor, 1-car representing a train 2-side doors,

Case-09a releasing peak heat of 1.5MW Twin-track tunnel made up of physically on one side 2.6MW
following fast-growth curve (120m long) separated carriages of carriage

Baggage fire on floor, 1-car representing a train 1-end door
Case-09b releasing peak heat of 1.5MW Single-track tunnel made up of physically on the driver’s 6.4MW

following fast-growth curve (120m long) separated carriages cab end
Baggage fire ignition 4-car rolling stock, 2-end doors at

Case-10 source at the center of the Single-track tunnel incorporating open each end of the 5.5MW
second carriage, on floor wide gangways rolling stock

Baggage fire on floor, 1-car representing a train 1-end door
Case-11a releasing peak heat of 1.0MW Single-track tunnel made up of physically on the driver’s 6.3MW

following fast-growth curve separated carriages cab end
Liquid fuel ignition 1-car representing a train 1-end door

Case-11b-11f source with volumes from Single-track tunnel made up of physically on the driver’s 1.7MW - 6.1MW
2.0lt to 10.0lt, on floor separated carriages cab end (t f ire: 22s to 390s)
Baggage fire on floor, 1-car representing a train 1-end door on the

Case-12a releasing peak heat of 1.5MW Single-track tunnel made up of physically driver’s cab end 3.3MW
following fast-growth curve separated carriages (limited window failure)

Baggage fire on floor, 4-car rolling stock, 2-end doors at each
Case-12b releasing peak heat of 1.5MW Single-track tunnel incorporating open end of the train 4.8MW

following fast-growth curve wide gangways (limited window failure)
* This column shows only the initial ventilation openings defined in the input files. The window failures are defined implicitly in
all cases, in some of which failures are predicted as reported in the text above.
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Table 6.4 Cont’d: Summary of the sensitivity simulations with predicted peak heat release rates

Case ID Ignition Source Characteristics Tunnel Section Rolling Stock Model Ventilation Openings* Predicted Peak HRR
Baggage fire on floor, 1-car representing a train 2 doors per side,

Case-13a releasing peak heat of 1.5MW Twin-track tunnel made up of physically i.e. all 4 doors 2.6MW
following fast-growth curve separated carriages of carriage

Baggage fire ignition 4-car rolling stock, All doors in all
Case-13b source at the center of the Single-track tunnel incorporating open carriages are defined 1.5MW

second carriage, on floor wide gangways to be closed (t f ire: 13 min.)
Baggage fire on floor, 1-car representing a train 2-side doors, on one

Case-13c,13d releasing peak heat of 1.5MW Twin-track tunnel made up of physically side of carriage 3.5MW, 8.3MW
following fast-growth curve separated carriages (tdelay: 3, 6 min.) (instantaneous)

Baggage fire on floor, 1-car representing a train 2-side doors, on one
Case-14a releasing peak heat of 1.5MW Twin-track tunnel made up of physically side of carriage 2.7MW

following fast-growth curve separated carriages (mechanical ventilation)
Baggage fire on floor, 4-car rolling stock, 2-end doors at each

Case-14b releasing peak heat of 1.5MW Single-track tunnel incorporating open end of the train 2.0MW
following fast-growth curve wide gangways (mechanical ventilation)

Baggage fire on floor, 1-car model with refined 1-end door on the
Case-15a, 15b releasing peak heat of 1.5MW Single-track tunnel computational domain driver’s cab end 2.6MW, 2.5MW

following fast-growth curve grid size no window failures
Baggage fire on floor, 1-car model with refined 2-side doors,

Case-15c releasing peak heat of 1.5MW Twin-track tunnel computational domain on one side 3.0MW
following fast-growth curve grid size of carriage

* This column shows only the initial ventilation openings defined in the input files. The window failures are defined implicitly in
all cases, in some of which failures are predicted as reported in the text above.

175



CHAPTER 7

FINAL SIMULATIONS

7.1 INTRODUCTION

The results of initial and sensitivity simulations revealed the variations in fire development

and flame spread patterns in underground trains with respect to changes in the initial and

boundary conditions, including changes in ignition source characteristics and ventilation con-

ditions. However, in these simulations, the same material properties, which were taken from

the previously published research study [20], have been used.

In the final simulations, the material properties proposed for the Class-378 rolling stock will

be used. The seats and the floor will remain as the only combustible items in the rolling stock,

walls and ceiling of the carriages remain non-combustible. Final simulations will include a

set of selected cases, which have been shown to be eminent through initial and sensitivity

simulations.

The burning characteristics of the materials proposed for Class-378 rolling stock are acquired

through the results of Cone Calorimeter experiments undertaken by Bayer Industry GmbH &

Co. laboratories. It should be noted that the raw experimental results are not in the form that

can directly be used as input in the FDS simulations.

Consequently, the material properties that would be derived from the Cone Calorimeter ex-

periments should have to be calibrated and rearranged in a form that can be used in the FDS

simulations. In order for the material properties to be calibrated, an FDS model of the Cone

Calorimeter has been built, simulations have been performed using this FDS model, and the

predictions are checked against the experimental results until they reasonably match.
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The Cone Calorimeter modelling and the calibrated material properties for the combustibles

in the proposed Class-378 rolling stock are discussed in detail in Section C.1 of Appendix C.

The final simulation results are discussed in Section 7.2 of this thesis.

7.2 SIMULATION RESULTS

A set of selected cases is simulated using the new set of combustible material properties.

The cases are selected based on their eminent predictions during the initial and sensitivity

simulations. The findings from the new simulations are summarized in the following Sub-

sections.

7.2.1 A TEST CASE; CASE-16: 1-CAR, 1.5MW SOURCE, SINGLE-TRACK

TUNNEL

The performance of calibrated material properties during an incident in a rolling stock is

tested through a simulation of a baggage fire incident in the 1-car model. This case would be

re-simulation of Case-05, and will be labelled as Case-16 in this thesis.

The simulation of Case-16 shows that the seats have not been ignited for the first 3 minutes

from the ignition. At 4 minutes, the top section of back of seats closest to the ignition location

is predicted to start burning. The flames are predicted to spread to the base of the seats and to

the folded seats next to the side doors within the following minute. However, the simulation

shows that the seats burn slowly and weakly, i.e. at burning rates much lower than 1.0 g/m2s.

At the 8th minute, the seats closest to the ignition location, and the folded seats next to the side

doors, are predicted to burn at their maximum burning rate. The seats at far end of the incident

carriage are predicted to start burning at a very slow rate within this minute. Between the 9th

and 11th minutes, the fire on the seats, which are ignited at the early stages of the incident, is

predicted to die out. From the 11th minute and onwards, the fire starts to spread on the floor,

and the seats at the center of the incident carriage become involved in the fire development.

The seats at the central section of the incident carriage are predicted to burn between the 11th

and the 13th minutes of this incident.
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During this incident, the pair of small windows closest to the ignition location is predicted

to fail at the 13th minute. This is followed by the failure of a single small window above the

folded seats on one side of the carriage at 16 minutes from the ignition.

Fire on the floor is predicted to remain localized around the ignition location and the back end

door. The simulation shows that flames spread in the downstream direction from 11 minutes

and onwards, but they are not intense enough to make fire spread in the upstream direction

towards the open end door.

The peak heat release rate is predicted to be 2.1MW for this incident. The predicted variation

of heat release rate during this incident is given in Figure 7.1. The fire development, illustrated

with the burning rate of the combustible surfaces is given in Figure 7.2.
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Figure 7.1: Heat release rate, 1-car, 1.5MW source, single-track tunnel, revised material
properties

Once the simulation results have been investigated, it has come to attention that the flames

from the ignition source are not intense enough to ignite the combustible surfaces within the

rolling stock model. In other words, the calibrated material properties are too good to let the

combustibles catch fire. This become apparent in the simulation results in terms of delayed

ignition of seats, and very localized fire on floor.
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Figure 7.2: Fire spread, 1-car, 1.5MW source, single-track tunnel, revised material properties
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However, once the initial and the calibrated material properties are compared, the following

are expected based on the differences observed in variation of heat loads of combustibles as

given in Figure 7.3:

• Seats

– Slightly earlier ignition,

– Shorter burning duration, and

– Lower heat release rate.

• Floor

– Similar or slightly earlier ignition times,

– Longer burning duration, and

– Higher heat release rate.
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Figure 7.3: Comparison of the calibrated and the initial material properties used in the
simulations
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Consequently, it can be concluded that the assumed ignition temperatures are quite high for

the calibrated seat and floor materials. In the absence of reported data, the ignition tem-

peratures were selected to be 505◦C and 560◦C for seat and floor materials, respectively.

These values have been selected during the calibration process based on their positive effect

on matching the decay trend of heat load curves of the combustibles. The ignition tempera-

tures for seat and floor materials in the initial simulations were taken to be 448◦C and 419◦C,

respectively.

The temperatures are predicted to increase to about 740◦C at 1.0m above the ignition, and to

be between 580◦C and 635◦C in the rest of the carriage at the same height, during this incident.

The predicted temperatures are not high enough to maintain continuous exposure of floor to

temperatures at and above 560◦C, for successful ignition and successive flame spread over the

floor. Consequently, it has been decided to re-calibrate the combustibility characteristics of

seat and floor materials with lower ignition temperatures. The findings from this analysis are

summarized in Sub-section 7.2.2.

7.2.2 CALIBRATION OF MATERIAL PROPERTIES REVISITED

A large number of simulations has been performed during calibration of the combustible mate-

rial properties. The following have been observed from the FDS cone calorimeter simulations:

• Increasing effective heat of combustion of the specimen;

– Increases the peak value of the heat load (kW/m2), and

– Increases the rate of growth and decay, i.e. results in steeper slope in heat load

predictions.

• Increasing heat of vaporization of the specimen;

– Decreases the peak value of the heat load (kW/m2), and

– Decreases the rate of growth and decay, i.e. results in smoother slope in heat load

predictions.

• Increasing the ignition temperature;

– Delays the ignition of the specimen, i.e. the curve showing predicted heat load

variation moves towards right along the time axis.
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– Slight reduction in the rate of growth and decay is also predicted during the FDS

simulations.

• Increasing the product (ρ c δ) delays the ignition of the specimen.

• Increasing the thickness of the specimen increases the burning duration, i.e. the peak

value of heat load is maintained longer.

In addition to the listed parameters above, maximum burning rate and the rate of burning at

ignition are set in FDS simulations to prevent excessive pyrolysis and limit the peak value of

heat load.

Consequently, one can find more than one set of parameters to replicate the experimental cone

calorimeter predictions as far as the constraints allow to do so. Needless to say, one should

consider the physical meaning of the parameters and apply reasonable limits in setting values

for each of the parameters.

It was noted in Sub-section 7.2.1 that the ignition temperatures for the combustibles in the

rolling stock model were selected to be too high in the first stage of the calibration process.

Therefore, it has been decided to reduce the ignition temperatures and calibrate the remain-

ing properties to match the experimental predictions. The combustible material properties

obtained from the second stage of the calibration process are given in Table 7.1.

The predicted variation of heat loads of the combustibles are given in Figures 7.4 and 7.5 for

comparison with the experimental data and the predictions of the first stage of the calibration

process.

The performance of the re-calibrated material properties in the event of an incident has been

assessed through re-simulation of Case-16, described above. The new case incorporates the

re-calibrated material properties labelled as Set 2 in Table 7.1. The re-run of Case-16 is

labelled as Case-16b.
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Table 7.1: Calibrated material properties through FDS Cone Calorimeter simulations

Compin/Pegasus Seats Tiflex/Plywood Floor
Set 1 Set 2 Set 1 Set 2

Density, ρ † (kg/m3) 121.4 121.4 944.4 944.4
Thermal conductivity � 0.56 0.56 0.12 0.12

(W/mK)
Specific heat*, c (kJ/kgK) 10.66 11.77 0.234 0.505

Thickness, δ* (m) 0.0017 0.0021 0.0235 0.0235
Ignition temperature* (◦C) 505 435 560 430

Heat of vaporization* 4000 4000 4340 5520
(kJ/kg)

Effective heat of 11350 9050 15430 12970
combustion* (kJ/kg)

Maximum burning rate* 0.0185 0.0185 0.018 0.018
(kg/m2s)

Critical mass flux* 0.012 0.012 0.009 0.009
(kg/m2s)

ρ c δ* (kJ/m2K) 2.2 3.0 5.2 11.2

†: Calculated from the Cone Calorimeter data by dividing the initial
mass by the initial volume.

�: Derived from the books. [8, 10]
*: Calibrated through a set of FDS Cone Calorimeter simulations.

The simulation of Case-16b shows that reducing the ignition temperatures of combustibles

has insignificant effect on the predicted variation and the peak value of heat release rate, as

far as the overall burning characteristics of the combustibles remain unchanged. As reported

in Table 7.1, in order to match the experimental predictions, the effective heat of combustion

is reduced and the product ρ c δ is increased, once the ignition temperatures are reduced.

Therefore, although the individual parameters vary between the reported Set 1 and Set 2

material properties, the overall burning characteristics during an incident within a rolling

stock remain unaffected.

The results of Case-16b show that the peak heat release rate increases to 1.8MW just after the

15th minute from the ignition. The overall flame spread characteristics and burning behavior

of the combustibles in Case-16b are predicted to be similar to the predictions of Case-16.

Minor differences are predicted between the two cases when the rate of burning of floor is

examined closely. The reduction in ignition temperatures causes the materials to burn at

slightly higher rates, which becomes apparent when the flame spread predictions of the two
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cases are compared. However, key characteristics of the incident such as seats being burnt-out

and fire being localized on floor around the ignition location remain unchanged.
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The predicted variations of heat release rates for Cases 16 and 16b are given in Figure 7.6 for

comparison.
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Figure 7.6: Heat release rate, 1-car, 1.5MW source, single-track tunnel, revised material
properties with lower ignition temperatures

The fire development, illustrated with the burning rate of the combustible surfaces, in the

incident carriage incorporating calibrated material properties with lower ignition temperatures

is given in Figure 7.7.

It has been decided from the predictions of Cases 16 and 16b to use combustible material

properties with lower ignition temperatures in the rest of the final simulations. The decision

has been made based on predicted increase in burning rate of combustible surfaces within the

carriage during an incident. In addition, revised ignition temperatures are closer to the values

used in the initial and sensitivity simulations for FRP polyester seats and styrene butadiene

floor, which would make comparisons of fire development predictions easier.

Although the ignition temperatures of the combustible materials are reduced in Case-16b,

the fire development and flame spread within the incident carriage were found to be slow

and steady. Another parameter that has been revised during the final simulations was the

combustion reaction. The effects of the combustion reaction on the predicted flame spread

and fire development have also been investigated, and the findings are reported in Sub-section

7.2.3.
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Figure 7.7: Fire spread, 1-car, 1.5MW source, single-track tunnel, revised material properties
with lower ignition temperatures
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7.2.3 COMBUSTION REACTION REVISITED

In Cases 16 and 16b, the combustion reaction was defined to be the chemical reaction of

burning wood, since it was proposed that the fire development within the rolling stock is

governed by flame spread over the floor. However, the proposed combustion reaction has

lower energy release per unit mass of oxygen consumed and higher soot yield. Consequently,

the energy released during burning of combustibles within the incident carriage is smaller

compared to the same incident where chemical reaction of burning seats is used.

The seat manufacturer for Class-378 rolling stock, Compin, offers moquette as their basic

surface finish on their Pegasus model seats [41]. Moquette is type of fabric with a thick, dense

pile. Its durability makes moquette the preferred choice for carpeting and upholstery. The

fire resistance of moquette fabrics could be increased by polyester additives. The polyester

moquette fabrics in which the two ply yarns are arranged in ground portions meet the flame-

retardant standard without a flame proof finish because they contain rayon, in addition to their

high strength [42].

In Case-16c, the combustion reaction for wood floor material has been replaced by the reac-

tion for polyester seats. The chemical reaction in the rest of final simulations, which was also

used in the initial and sensitivity simulations, has the following form:

C5.77H6.25O1.63 + 6.5175 (O2 + 3.76N2)→ 5.77 CO2 + 3.125 H2O + 24.5 N2

The key parameters for this combustion reaction can be listed as follows [20]:

• Soot yield: 0.062 kg/kg

• Carbon-monoxide yield: 0.0705 kg/kg

• Radiative fraction: 0.35

• Energy release per unit mass of oxygen consumed: 11900 kJ/kg.

Once again, using the same chemical reaction for initial and final simulations would make

flame spread and fire development comparisons easier, and would show the differences in the

performance of the combustible materials more distinctively.
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The severe baggage fire incident is simulated using the single car model, where the calibrated

material properties having reduced ignition temperatures and the combustion reaction for the

seat material are used. This case is labelled as Case-16c in this thesis.

The simulation shows that in contrast to the predictions of Cases 16 and 16b, the seats closest

to the ignition location start to burn and flames start to spread over the floor within the first 3

minutes of the incident. Increased value of energy release in the combustion reaction assisted

earlier ignition of seats and floor, both of which burn at rates 1.0 g/m2s or higher when ignited.

It is predicted that within 5 minutes from the ignition, the seats closest to the ignition location

are burnt out. This is expected since the burning duration of seats were found to be quite short

from the cone calorimeter experiments.

The simulation also shows that the pair of large windows closest to the ignition location

fail just after the 5th minute. This is followed by the failure of the back end door window

just before the 7th minute. The failure of large windows allows fresh air entrainment to the

incident carriage, which resulted in an instantaneous increase in the heat release rate. The

peak heat release rate is predicted to be 3.1MW for this incident just after the 5th minute,

when the largest number of seats are burning simultaneously with an increasing burning area

over the floor.

It is predicted from the results that within the first 7 minutes of the incident, while some of

the seats are being ignited by the flames, others that are ignited initially burn out. In addition,

window failures ventilate the fire and reduce the rate of flame spread within the incident

carriage. This resulted in fluctuations in the predicted heat release rate.

The results show that almost all seats are burnt out within the first 9 minutes of the incident.

From the 9th minute and onwards flames spread slowly and steadily over the floor. It is

predicted that one of the small windows closest to the ignition location fails just after the 15th

minute. However, it has insignificant effect on the fire development. The simulation shows

that only half of the floor area of the incident carriage is involved in fire within the first 30

minutes of this incident.

The fire development for this incident, illustrated with the burning rate of the combustible

surfaces within the carriage, is given in Figure 7.8. The predicted variation of heat release

rate during this incident is shown in Figure 7.9.
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Figure 7.8: Fire spread, 1-car, 1.5MW source, single-track tunnel, combustibles with lower
ignition temperatures and combustion reaction written for seats
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Figure 7.9: Heat release rate, 1-car, 1.5MW source, single-track tunnel, combustibles with
lower ignition temperatures and combustion reaction written for seats

7.2.4 CASE-17: 1-CAR, 80kW SOURCE, SINGLE-TRACK TUNNEL

The performance of the revised material properties is also assessed through the design case,

where an incident is simulated due to an 80kW arson fire ignition. This case would be re-

simulation of Case-01 with the combustible material properties revised as given in set 2 of

Table 7.1.

The simulation shows that the flame spread is limited to only a pair of seats around the initial

ignition location. Simulation of this incident has confirmed that the 80kW source is not pow-

erful enough to ignite the floor or the seats far away from the initial ignition location. The

same conclusion was derived from the results of the simulated Cases 01 to 04 of the initial

simulations.

The peak heat release rate during this incident is predicted to be 125kW. However, the overall

heat release rate is in the order of 110kW, slightly less than the values predicted in Cases 01 to

04. This is expected since the revised properties of seats reflect smaller heat load and shorter

burning duration. The predicted variation of the heat release rate during this incident is given

in Figure 7.10, along with the heat release rate curve of Case-01 for comparison.
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Figure 7.10: Heat release rate, 1-car, 80kW source, single-track tunnel, calibrated material
properties

7.2.5 CASE-18: 4-CAR, 1.5MW SOURCE IN SECOND CARRIAGE, SINGLE-TRACK

TUNNEL

It was predicted during the sensitivity simulations, reported in Chapter 6, that a severe bag-

gage fire ignition source placed at the center of the second carriage produced the peak heat

release amongst the other cases simulated using the 4-car rolling stock incorporating open

wide gangways. This incident was simulated in a single-track tunnel, and was labelled as

Case-10 in the sensitivity simulations.

The performance of the calibrated material properties during an incident has also been checked

through re-simulation of Case-10 of the sensitivity simulations. The incident simulated using

the revised material properties, given in set 2 of Table 7.1, is labelled as Case-18 in the final

simulations.

The simulation shows that fire starts to develop by igniting the three pairs of seats at the

center of the incident carriage and by spreading on floor in both upstream and downstream

directions within the first 5 minutes of the incident. Between the 6th and the 9th minutes

from the ignition, it is predicted that the three pairs of seats ignited at early stages of the

incident are completely burnt out. However, within this interval, the remaining seats of the

incident carriage are involved in fire, and fire continues to grow on floor in both directions.
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One of the large windows is predicted to fail just before the 10th minute. While this window

failure hinders the growth of fire in the downstream direction, it promotes flame spread in the

upstream direction.

At the 11th minute, another window failure is predicted at the center of the incident carriage.

This window lies on the upstream end of the incident carriage and prevents further spread of

flame by reducing the intensity of the fire. This is reflected as a sudden drop in the predicted

variation of heat release rate just after the 11th minute of the incident. By 11 minutes, all the

seats in the incident carriage are found to be burnt out.

Fire regains its intensity and continues to spread in both upstream and downstream directions

between the 11th and 16th minutes. In addition to fire development on floor of the incident

carriage, some of the seats in the adjacent carriages are found to be ignited by the hot gases

produced by the fire. However, the seats burn at a very slow rate within this interval. Another

window failure at the center of incident carriage is predicted just after the 16th minute. How-

ever, this had insignificant effect on the fire development. This is followed by the failure of

one of the remaining large windows at the center of the incident carriage just after the 20th

minute.

By 20 minutes, the flames at the downstream end of the incident carriage are predicted to

reach the adjacent carriage. Flames consume the remaining combustibles on the seats located

at the end of the adjacent carriage closest to the incident. Between the 22nd and the 23rd

minutes, three small windows, two on one side and the remaining one on the opposite side,

next to the passenger doors at the downstream end of the incident carriage are predicted to

fail. These failures brought fresh air to the fire, and promoted further flame spread at the

downstream end.

The fire development and flame spread during this incident can be classified as steady and

progressive. Although flames spread to most of the incident carriage and even spread to the

adjacent carriage, sudden increase in heat release rate is not observed. The peak heat release

rate for this incident is predicted to be 3.7MW. The fire development is deemed to continue

further, when the simulation has stopped at 30 minutes. However, it is assumed that the fire

brigade would arrive at the scene and control further development of fire within 30 minutes

from the ignition.
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The predicted variation of heat release rate for this incident is given in Figure 7.11, along with

the predictions of same incident simulated within the scope of sensitivity simulations.

The flame spread within the rolling stock, illustrated with the burning rate of the combustibles,

is given in Figure 7.12 for this incident.
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Figure 7.11: Heat release rate, 4-car, 1.5MW source, single-track tunnel, ignition at second
car, revised material properties

7.2.6 CASE-19: 4-CAR, 1.5MW SOURCE, SINGLE-TRACK TUNNEL, LIMITED

WINDOW FAILURE

It was predicted during the sensitivity simulations, reported in Chapter 6, that the failure of

windows has a significant influence on the predicted fire development and flame spread within

the rolling stock. It has been predicted that if windows on one side of the rolling stock are

defined to be fail-safe, then the change in ventilation conditions results in the largest extent

of flame spread within the rolling stock when a severe baggage fire incident is simulated in

the 4-car open train in the single-track tunnel. This incident was labelled as Case-12b in the

sensitivity simulations.
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Figure 7.12: Fire spread, 4-car, 1.5MW source, single-track tunnel, ignition at second car, revised material properties
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The performance of the calibrated material properties has been checked through re-simulation

of the identical scenario defined in Case-12b. This incident is labelled as Case-19 in the final

simulations, and involves revised material properties given in set 2 of Table 7.1.

The simulation shows that flames spread to the pair of seats adjacent to the ignition location,

and fire starts to grow on the floor around the ignition source from the 3rd minute of the

incident. Between the 5th and the 7th minutes from the ignition, while the seats that are

ignited at the very early stages of the fire development burn out, flames propagate further on

the floor in the upstream direction and ignite the folded seats next to the passenger side doors.

At the 9th minute of the incident, the seats at the center of the incident carriage are predicted

to be involved in the fire development. In addition, flames continue to propagate in both

upstream and downstream directions within this interval. Flames spread to the passenger

doors area in the upstream direction, and reach gangway area in the downstream. At the 9th

minute, the seats closest to the ignition source in the adjacent carriage are ignited. However,

they burn at slow rates.

The first window failure is predicted just before the 10th minute. The large window closest to

the ignition source fail, however this failure has insignificant effect on the fire development.

By 12 minutes from the ignition, most of seats in the incident carriage are predicted to burn

out. However, flames continue to propagate on floor, and involvement of seats of the adjacent

carriage in fire development continues as fire retains its intensity.

The small window adjacent to the ignition location is predicted to fail at the 13th minute,

which is followed by failure of the passenger door windows within the next minute. These

window failures assist ventilation of smoke and bring fresh air to the fire. It is predicted that

the failure of these windows promote flame spread, especially in the upstream direction. The

simulation shows that most of the seats in the adjacent carriage are burnt out, and flames

spread to three-quarters of the incident carriage and to about a quarter of the adjacent carriage

by the 18th minute from the ignition. Within this minute, failure of two small windows on

both sides of the passenger doors in the incident carriage and failure of a small window in the

adjacent carriage are also predicted.
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The simulation shows that fire reaches to its maximum extent by 25 minutes, when about one

and a half carriage floor area is involved in the fire. Within this minute, multiple window

failures are also observed in the adjacent carriage. In the rest of the simulation, while flames

propagate further in the adjacent carriage in the downstream direction, the intensity of the fire

at its upstream end is predicted to get smaller. Consequently, the extent of flame spread of

one and a half carriage floor area remains as maximum.

The peak heat release rate during this incident is predicted to be 4.6MW. The variation of heat

release rate is predicted to be quite similar to the predictions of Case-12b. Figure 7.13 shows

the predicted variation of heat release rate during this incident.

The flame spread within the rolling stock, illustrated with the burning rate of the combustibles,

is given in Figure 7.14 for this incident.
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Figure 7.13: Heat release rate, 4-car, 1.5MW source, single-track tunnel, limited window
failure, revised material properties
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Figure 7.14: Fire spread, 4-car, 1.5MW source, single-track tunnel, limited window failure, revised material properties
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7.2.7 SENSITIVITY ON FINAL SIMULATIONS

7.2.7.1 WINDOW FAILURE CRITERION

In all the simulations reported herein, the window failure criterion was defined to be 675◦C.

This value was claimed to be high regarding windows of Class-378 rolling stock by some of

the authorities. Consequently, Cases 18 and 19 have been re-simulated with window failure

criterion set to 400◦C, as a part of the sensitivity analysis.

The simulation of the baggage fire incident at the center of the second carriage of a 4-car

rolling stock showed that a pair of windows fail just after the 4th minute from the ignition.

This is followed by two individual window failures between the 5th and the 7th minutes.

The failure of windows in the close premises of the ignition source reduced the intensity of

fire significantly. The fifth window failure at the center of the incident carriage is predicted

to be just after the 11th minute. The fire is predicted to be too weak and remain localized

around the initial ignition location. The growth rate of the fire is found to be too small due to

effective ventilation of smoke during this incident. The peak heat release rate is predicted to

be 2.5MW. Figure 7.15 shows the variation of heat release rate for this incident. The predicted

flame spread within the rolling stock is given in Figure 7.16.
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Figure 7.15: Heat release rate, 4-car, 1.5MW source, single-track tunnel, ignition at second
car, revised material properties and window failure criterion
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Figure 7.16: Fire spread, 4-car, 1.5MW source, single-track tunnel, ignition at second car, revised material properties and window failure criterion
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The second of the sensitivity simulations involves Case-19, where the windows on one side of

the rolling stock were defined to be fail-safe. The simulation showed that windows closest to

the ignition location fail at the 4th and the 6th minutes. Although the failure of these windows

slowed down the fire development, flames continue to spread over the floor at reduced rates.

A group of windows is predicted to fail at the 10th minute, when a marginal reduction in the

heat release rate is observed. The simulation shows that by 20 minutes from the ignition,

all the windows on one side of the incident carriage fail along with four small windows and

a large window of the adjacent carriage. As reported in the sensitivity simulations, gradual

air entrainment to the rolling stock due to failure of windows promoted fire development and

flame spread during this incident. However, the intensity of the fire is smaller in this case,

compared to Case-19, due to slightly earlier failure of windows. Consequently, at 25 minutes

the extent of flame spread was limited to half of the incident carriage and a small section of the

adjacent carriage. The peak heat release rate is predicted to be 4.4MW during this incident.

Figure 7.17 shows the variation of heat release rate for this incident. The predicted flame

spread within the rolling stock is given in Figure 7.18.
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Figure 7.17: Heat release rate, 4-car, 1.5MW source, single-track tunnel, limited window
failure, revised material properties and window failure criterion
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Figure 7.18: Fire spread, 4-car, 1.5MW source, single-track tunnel, limited window failure, revised material properties and window failure criterion
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7.2.7.2 CONE CALORIMETER MODELLING

The combustible material properties that have been used in the initial and sensitivity case

studies were calibrated through FDS cone calorimeter simulations incorporating a nominal

element size of 8mm. This was claimed to reflect the burning behavior of the combustibles

during an incident within the rolling stock with the assumption that the design fire size would

be in the order of 10MW [20].

However, in the final simulations, combustible materials for Class-378 rolling stock were

calibrated through FDS cone calorimeter simulations incorporating a nominal element size

of 5mm. The grid size was revised based on the peak heat release rate predictions of about

6.5MW during the initial and sensitivity simulations. Consequently, a final attempt has been

made to investigate the effect of the calibration model on the predicted fire development and

flame spread within the rolling stock.

The inner wall temperatures of the cone calorimeter model are re-calibrated to impose the

required surface heat flux on the combustible specimen, since the cone calorimeter model is

revised to incorporate larger element sizes. The required inner wall temperatures of the new

cone model are determined to be 693◦C and 729◦C in order to get surface heat flux levels of

30kW/m2 and 35kW/m2, respectively. The inner wall temperatures for the cone calorimeter

model incorporating smaller element sizes were determined and reported to be 645◦C and

680◦C for the required surface heat flux levels, respectively, as given in Table C.2 in Appendix

C.

The seat and the floor materials are re-calibrated using the revised cone calorimeter model,

at surface heat flux levels of 30kW/m2 and 35kW/m2, respectively, due to reasons listed in

Section C.1 of Appendix C. The re-calibrated material properties using the cone calorimeter

model incorporating larger grid size are given as Set 3 in Table 7.2.

Initially, the material properties listed as Set 2 in Table 7.2, which were used in Cases 16b

to 19b, have been tested using the revised cone calorimeter model. It is predicted from the

simulations that the material properties given in set 2 result in reduced heat loads, when

analyzed using the cone calorimeter model with increased element size.

202



Table 7.2: Calibrated material properties through FDS Cone Calorimeter simulations, 5mm
and 8mm grid sizes

Compin/Pegasus Seats Tiflex/Plywood Floor
Set 2 Set 3 Set 2 Set 3

Density, ρ † (kg/m3) 121.4 121.4 944.4 944.4
Thermal conductivity � 0.56 0.56 0.12 0.12

(W/mK)
Specific heat*, c (kJ/kgK) 11.77 15.56 0.505 0.568

Thickness, δ* (m) 0.0021 0.0018 0.0235 0.0220
Ignition temperature* (◦C) 435 435 430 430

Heat of vaporization* 4000 4000 5520 5520
(kJ/kg)

Effective heat of 9050 10150 12970 14900
combustion* (kJ/kg)

Maximum burning rate* 0.0185 0.0185 0.018 0.018
(kg/m2s)

Critical mass flux* 0.012 0.012 0.009 0.009
(kg/m2s)

ρ c δ* (kJ/m2K) 3.0 3.4 11.2 11.8

†: Calculated from the Cone Calorimeter data by dividing the initial
mass by the initial volume.

�: Derived from the books. [8, 10]
*: Calibrated through a set of FDS Cone Calorimeter simulations.

Consequently, it has become apparent that the effective heat of combustion of the materials

have to be increased in order to match the desired peak heat load values. In addition, the

thickness of the seat and floor materials are revised to match the burning durations predicted

by the cone calorimeter experiments. Finally, the product ρ c δ is corrected to get an accurate

representation of the ignition times.

The predicted variation of heat loads of the combustibles are given in Figures 7.19 and 7.20 for

comparison with the experimental data. As noted during the calibration of material properties

given in set 2 above, the re-calibration of the properties involve matching the overall trend of

the experimental predictions and the corresponding energy release during combustion.

The performance of the material properties, given in Set 3 above, in the event of an incident

has been analyzed through re-simulation of Case-16c. The incident in a single carriage, incor-

porating material properties listed as set 3 in Table 7.2, in the single-track tunnel is labelled

as Case-20 in this thesis.
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The simulation of Case-20 shows that the fire development and flame spread patterns are

quite similar to the predictions of Case-16c, at least for the first 25 minutes of the incident.

The ignition times and burning durations of the seats are observed to match principally in

both cases. Within the first 25 minutes of the incident, only marginal differences between the

predicted variations of the heat release rates are predicted. Slightly higher heat release rates

are predicted in Case-20 due to higher effective heat of combustion of the floor material used

in the simulation.

However, in Case-20 a significant increase in the heat release rate is predicted after the 27th

minute of the incident. The intensity of the fire and the flame spread area over the floor

are found to be greater in Case-20, compared to Case-16c, throughout the 30 minute long

simulation. Consequently, the intensity of fire was found to be strong enough to maintain

fire development and flame spread within the incident carriage. The sudden increase in heat

release rate is predicted to be in conjunction with involvement of the upstream half of the

incident carriage in fire development. The simulation shows that while the floor area ignited

in the early stages of fire around the ignition source continue to burn, additional floor area is

involved in fire as flames propagate further after the 27th minute, which resulted in an increase

in the peak heat release rate. Figure 7.21 shows the predicted variation of heat release rates

for Cases 16c and 20 for the 30 minute long simulations.

Following the predictions of 30 minute simulation of Case-20, it has been decided to increase

the simulation time for further investigation of fire development in the incident carriage. It

is worth noting that the curve for baggage fire ignition source given in Figure 4.3, is also

extended for further 15 minutes in its decay period. The extended simulation covers an addi-

tional 15 minutes of analysis of fire development.

The extended simulation shows that the peak heat release rate, achieved at the 29th minute,

remains almost constant for about 8.5 minutes. The peak heat release rate is reached when

the most of the floor area is involved in fire and burning simultaneously. The decrease in the

heat release rate is predicted once the combustibles on floor around the ignition source start

to burn out. The peak heat release for this incident is predicted to be 4.9MW. The variation of

heat release rate in Case-20 for the 45 minute long simulation is given in Figure 7.22. Figure

7.23 shows the fire development within the carriage during this incident.
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Figure 7.23: Fire spread, 1-car, 1.5MW source, single-track tunnel, combustible material
properties calibrated using cone calorimeter model with 8mm grid size
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Figure 7.23 Cont’d: Fire spread, 1-car, 1.5MW source, single-track tunnel, combustible

material properties calibrated using cone calorimeter model with 8mm grid size

The comparison of the simulated Cases 16c and 20 show that a slight increase in the heat of

combustion of the materials increase the intensity of the fire and result in faster flame spread

within the incident carriage. The faster flame spread resulted in simultaneous burning of most

of the floor area of the single carriage model during an incident in the single-track tunnel.

The prediction of sudden increase in the heat release rate and of the peak value amongst other

cases simulated keep the single carriage model in the single-track tunnel as the design case,

as noted in the initial and sensitivity simulations.
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7.3 CONCLUDING REMARKS FROM FINAL SIMULATIONS

The final simulations involve revising the combustible material properties in the simulation

model to reflect the burning behavior of seat and floor materials during an incident within the

Class-378 rolling stock. In order to incorporate the properties of the proposed combustible

materials in the simulations, a cone calorimeter model is built and parameters affecting the

burning behavior of the materials are calibrated against the acquired cone calorimeter experi-

mental results.

During the calibration of the material properties, it has been found that two different sets

of parameters could lead to almost identical heat load curves. However, it is worth noting

that one should pay attention to the physical meanings of the parameters and the associated

limitations in assigning values to each property. Two sets of combustible material properties

are derived for seat and floor materials in this thesis. The first set involves higher ignition

temperatures than that defined for the second set. In order to match the experimental predic-

tions, once the ignition temperatures are reduced, the effective heat of combustion values are

decreased and the product ρ c δ is increased.

It has been predicted from the simulation results that the incidents involving either sets of

material properties, i.e. with higher ignition temperatures or with lower ignition temperatures,

result in quite similar predictions of heat release rate variations. Although, there are few

differences predicted in flame spread patterns, overall trend and the peak heat release rate

values are found to be marginally different. The peak heat release rates for these incidents are

predicted to be as low as 2.1MW, with combustibles having high ignition temperatures, and

1.8MW, where combustibles have lower ignition temperatures.

Following the predictions of calibrated material properties, it has been decided to revise the

combustion reaction. The combustion reaction is revised to involve the chemical reaction for

seat material, which has higher energy release per unit mass of oxygen consumed and lower

soot yield compared to the reaction for the floor. The simulations show that revised reaction

produces enough energy to increase the intensity of the fire and promote flame spread within

the carriage. The peak heat release rate for the identical incident case is predicted to increase

from 1.8MW to 3.1MW, once the combustion reaction is revised from the one for floor to the

one for the seats.
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The simulation of an 80kW ignition source on a passenger seat is predicted to yield localized

burning around the initial ignition location. The spread of flame or fire development are not

predicted for this incident. The peak heat release rate is found to be about 125kW.

The simulation of an incident in the 4-car open train in the single-track tunnel, where the

ignition source is at the center of the second carriage, shows that the flames tend to spread

in the upstream direction towards the open end door at the early stages of fire development.

However, the predicted window failures altered the intensity of the flame front through in-

creased ventilation of smoke. Once the ventilation conditions are settled within the carriage,

the flames are predicted to spread on both directions equally. It has been observed that the

flames reach the adjacent carriages through spreading over the floor by 20 minutes from the

ignition. The overall trend of the fire development is predicted to be steady, and the peak heat

release rate for this incident is found to be 3.7MW.

The simulation performed to assess the performance of the revised material properties in the

4-car open train in the single-track tunnel showed that when all the windows on one side of

the rolling stock are defined to be fail-safe, the fire develops steadily with increasing floor

area involvement throughout the simulated 30 minute interval. The simulation shows that the

seats in the adjacent carriage to the incident are involved in fire development within 9 minutes

from the ignition. While the fire is predicted to grow predominantly in the incident carriage,

it is predicted to spread to the adjacent carriage through open wide gangways, as well. The

fire is predicted to reach its maximum area of influence by 25 minutes from the ignition, when

it covers about one and a half carriages of floor area. The variation of heat release rate for

this incident is found to be quite similar to the predictions of the same case simulated in the

scope of sensitivity simulations given in Chapter 6, even though the flame spread patterns are

observed to be different. The peak heat release rate is predicted to be 4.6MW for this incident.

A set of sensitivity simulations has also been performed to investigate the effect of window

failures in the final simulations. The window failure criterion has been revised from 675◦C

to 400◦C in the sensitivity cases. It has been predicted in the case, where the ignition source

is placed at the center of the second carriage, that a number of windows at the center of the

incident carriage fails at the very early stages of the fire development. These window failures

increased effectiveness of the smoke ventilation, and reduced the rate of flame spread. The

fire is predicted to remain localized, with peak heat release rate increasing only to 2.5MW,
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during this incident.

The revised window failure criterion has also been simulated using the 4-car rolling stock

model where all windows on one side are defined to be fail-safe. The simulation shows

that successive failure of windows slowed down the flame spread within the rolling stock

significantly. However, the intensity of the fire is found to be strong enough to sustain burning

and to continue to spread even though the effectiveness of smoke ventilation is increased. The

simulation resulted in reduced rate of increase of heat release rate, however, produced a peak

value of 4.4MW, which is quite close to the predictions of the same incident with the original

window failure criterion.

The simulations incorporating revised material properties showed that the burning characteris-

tics tend to be steady and progressive, with slow rate of increase in the amount of heat released

during the incidents. This is due to the low heat load and short burning durations of the seats,

which lead to consumption within minutes of ignition during the incidents. Consequently, the

fire development within the rolling stock is governed by the combustion of the floor material,

effectively the burning of a single item, which results in progressive flame spread predictions.

A final attempt has been made to investigate the effect of cone calorimeter model on the

calibrated values of material properties. The cone calorimeter calibration process, incorpo-

rating larger element size in the computational model, required an increased effective heat of

combustion for the seat and floor materials in order to match the experimental predictions.

The performance of the re-calibrated material properties are tested during an incident in the

single carriage model in the single-track tunnel. The re-calibrated material properties pro-

duced slightly increased heat release rates and flame spread areas throughout the simulation.

One significant difference is predicted after the 27th minute of this incident. The intensity of

the fire and the increased flame spread area over the floor are predicted to promote further

flame spread to involve the upstream half of the incident carriage in fire. This resulted in

significant increase in the heat release rate values. The peak heat release rate is predicted to

be 4.9MW, which is observed to be maintained for about 8.5 minutes. This case showed that

the incident in the single carriage model in the single-track tunnel remains the design case for

the estimations of fire size, due to the predicted rapid increase in the rate of heat released.

Table 7.3 lists the final cases simulated and the predicted peak values of heat release rates.
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Table 7.3: Summary of the final simulations with predicted peak heat release rates

Case ID Ignition Source Characteristics Tunnel Section Rolling Stock Model Ventilation Openings* Predicted Peak HRR
Baggage fire on floor, 1-car model with revised 1-end door

Case-16,16b releasing peak heat of 1.5MW Single-track tunnel combustible materials & on the driver’s 2.1MW, 1.8MW
following fast-growth curve reaction for floor cab end

Baggage fire on floor, 1-car model with revised 1-end door
Case-16c releasing peak heat of 1.5MW Single-track tunnel combustible materials & on the driver’s 3.1MW

following fast-growth curve reaction for seat cab end
Arson fire, releasing 1-car model with revised 1-end door

Case-17 constant 80kW heat, Single-track tunnel combustible materials & on the driver’s < 0.2MW
located on a passenger seat reaction for seat cab end

Baggage fire ignition 4-car rolling stock with 2-end doors at
Case-18 source at the center of the Single-track tunnel revised combustibles & each end of the 3.7MW

second carriage, on floor reaction for seat rolling stock
Baggage fire ignition 4-car rolling stock with 2-end doors at each

Case-18b source at the center of the Single-track tunnel revised combustibles & end of the train & 2.5MW
second carriage, on floor reaction for seat window failure at 400◦C

Baggage fire on floor, 4-car rolling stock with 2-end doors at each
Case-19 releasing peak heat of 1.5MW Single-track tunnel revised combustibles & end of the train 4.6MW

following fast-growth curve reaction for seat (limited window failure)
Baggage fire on floor, 4-car rolling stock with 2-end doors at each end

Case-19b releasing peak heat of 1.5MW Single-track tunnel revised combustibles & of the train, limited 4.4MW
following fast-growth curve reaction for seat window failure at 400◦C

Baggage fire on floor, 1-car model with reaction 1-end door
Case-20 releasing peak heat of 1.5MW Single-track tunnel for seat & re-calibrated on the driver’s 4.9MW

following fast-growth curve material properties cab end
* This column shows only the initial ventilation openings defined in the input files. The window failures are defined implicitly in
all cases, in some of which failures are predicted as reported in the text above.
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CHAPTER 8

EMPIRICAL METHODS APPROACH

8.1 DUGGAN’S METHOD

8.1.1 BACKGROUND INFORMATION

Duggan’s method is a simplistic process carried out to estimate the peak heat release rate for a

fire incident in a rolling stock, and is named after Gary J. Duggan’s work for London Under-

ground rolling stock [11, 17]. This method has been accepted by London Fire & Emergency

Planning Authority (LFEPA) and widely used in the industry.

The method is commonly used to estimate the peak fire sizes of different types of rolling stock.

However, the approach is pessimistic since it assumes that the entire load of combustible items

becomes involved in fire development at the same time. In addition, the method makes no

attempt to reflect how a fire might develop in terms of progressive fire spread from one item

in the rolling stock to another component.

In this method, the major combustible surfaces within the rolling stock are identified as the

first step. Then, these are grouped by type and orientation in accordance with the British

Standard BS 6853 [6]. The power output of these combustible surfaces are obtained from

cone calorimeter experiments, that have been carried out in accordance with ISO 5660-1

standard [12].

The cone calorimeter experiments generate a series of curves for the combustible surfaces

where heat load (kW/m2) vs time relationship is described. The data is then scaled for the

nominal area of the surfaces within the rolling stock to obtain heat release rate (kW) vs time

curve. Then these curves are summed to give the cumulative power vs time curve.
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There is a requirement for the data in the final curve to be smoothed to merge peaks, remove

noise and improve resolution of the data obtained from the cone calorimeter experiments in

order for the final curve to reflect a real fire scenario. If too much smoothing is applied to the

curve then the peaks can be continuously flattened giving a false view as to the scale of the

incident. In order to avoid this, Duggan [11] suggests that the smoothing period should be se-

lected so that peaks merged during the smoothing process are not demerged as the smoothing

period is increased.

Duggan [11], in his assessment of peak fire size for London Underground rolling stock, and

Hall [35], for the East London Line rolling stock, suggested using 60s as the smoothing

interval to merge peaks in the final heat release rate curve. Duggan predicted some minor

demerging of the peaks in the curves when 120s smoothing period is used. Consequently, a

60s smoothing interval will be used in this thesis in agreement with the earlier project reports

on the same field.

8.1.2 DUGGAN’S METHOD TO VERIFY FDS PREDICTIONS OF HEAT RELEASE

RATE

The Duggan’s method explained in this chapter can be used to verify the design fire sizes

predicted from the FDS simulations.

The heat release rate time history of the combustible items defined in the simulations will be

used in the Duggan’s analysis for verification of the peak heat release rate. The contribution

of combustibles at particular sections of the rolling stock will be set in Duggan’s analysis in

agreement with the predicted burning rate of the surfaces in FDS simulations.

In the FDS simulations, details of which given in Chapter 4, two main combustible items,

seats and the floor, are chosen for the analysis. The properties of the combustibles used in

the simulations are taken from the cone calorimeter experiments performed at a surface heat

flux of 35kW/m2, as discussed in Chapter 4. The test results are given in Figure 8.1 for

convenience.

The two cases, Case-05 and Case-12b, are analyzed in this section due to the extent of flame

spread predicted in the simulations.
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Figure 8.1: Cone calorimeter results used in verification of FDS simulations by Duggan’s
method

The areas of combustible items estimated from the 1-car simulation model is given in Table

8.1. It should be noted that there is a slight difference between the values listed herein and the

areas provided by Bombardier for the actual rolling stock. The differences in areas are due to

the assumptions and simplifications made during the FDS modelling. It should be noted that

the discrimination for seat bases and seat backs is not necessary in this analysis, since both of

them can only be represented with one characteristic curve in FDS simulations.

Initially, Case-05 is analyzed using the Duggan’s method. The surface areas of the burning

combustibles, which will be used in the analysis, are derived from the FDS predictions of

flame spread represented by the burning rates of these surfaces. (See Figure 5.34)

215



Table 8.1: Areas of combustibles in the FDS model of DMOS carriage

Area (m2)
Standard Seats 18.0
Folded Seats 8.2

Saloon Floor 43.7
Drivers Cab Floor 3.3

The entire course of fire development is divided in intervals based on the observations of

burning rates predicted from the simulation. The contribution of the combustibles in the fire

development can be summarized as follows:

• 5 mins: seats: 6.1m2 floor: 2.0m2

• 10 mins: seats: 20.1m2 floor: 3.2m2

• 15 mins: seats: - floor: 19.7m2

• 17 mins: seats: - floor: 5.8m2

It should be noted that the surface areas given above represent the individual contributions

to the overall fire development within the carriage, effective by the time defined from the

ignition. In other words, the given areas do not represent the cumulative burning surface areas

at a given time.

The breakdown of the contributions of the combustible items listed above defines all the seats

are involved in the fire development at 10 minutes from the ignition. This assumption matches

with the flame spread predictions given in Figure 5.34.

It should also be noted that not all the floor is involved in the Duggan’s analysis. The careful

examination of the FDS simulation predictions of fire spread showed that some of the surfaces

under a number of seats are not ignited. These areas are excluded from the analysis for the

purposes of comparison of two predictions.

The time at which the combustibles involved in the fire development is derived from the

burning rates of these surfaces. The given times are based on the burning rates reaching

1.0 g/m2s, in other words when the surfaces appear as red in Figure 5.34. Since the red

surfaces show the combustibles are already ignited and burning, an assumption is made to

correct the ignition times of the surfaces in the Duggan’s analysis. It is assumed that it would
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take one minute for the combustibles to reach 1.0 g/m2s burning rate once they are ignited.

Consequently, one minute is deducted from the times given above.

Another assumption is made on the contribution of the ignition source to the overall fire

development. In the Duggan’s method, neither is there a reference to the ignition source, nor

is it included in the predictions of the design fire size. For the purposes of comparison of

two methods, the ignition source will be included in the analysis, as it is defined in the FDS

simulations.

The variation of heat release rate in time is given in Figure 8.2. The peak heat release rate is

predicted to be 4.5MW with the Duggan’s analysis.
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Figure 8.2: Predicted heat release rate variation using Duggan’s method for single car, 1.5MW
source, single-track tunnel

The comparison of the predictions of heat release rate variation is shown in Figure 8.3. The

results show that the heat release rate variations predicted from the Duggan’s analysis and

FDS simulations match quite well for the first 11 minutes of the incident. However, Duggan’s

analysis predicts higher heat release rate between the 11th minute and the 14th minute from

the ignition, and lower heat release rate between the 16th and the 19th minute when compared

to the predictions of FDS simulations. The variations of predicted heat release rates follow a

similar trend after the 19th minute, as the fire starts to decay.
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Figure 8.3: Comparison of the predicted heat release rate variations from the FDS simulation
and the Duggan’s analysis, 1-car model

The main difference between the Duggan’s method and the FDS simulation is the predicted

peak heat release rate. The Duggan’s method for this particular case predicts the peak heat

release rate 25% smaller than the value predicted from the FDS simulation. In addition, the

peak heat release rate is predicted four minutes earlier than predicted by the simulation.

The reasons for differences in the predictions of two methods can be listed as follows:

1. In Duggan’s analysis two characteristic curves for the combustibles are used, whereas

in FDS simulations a set of data derived from these characteristic curves are used as

input.

2. As a consequence of item 1, Duggan’s analysis follows factoring these curves by the

surface areas, whereas in FDS simulations the input data could lead different burning

characteristics under different ventilation conditions and more importantly surface heat

flux levels. The FDS simulations are the more sophisticated method as the burning rates

of the surfaces depend on the heat feedback from the fire.

3. The method used herein to compare Duggan’s analysis and the FDS simulation re-

sults depends on the observation and the assumptions made in contribution of the com-

bustibles to the fire development.
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Despite the differences in the comparison of two techniques, predictions of Duggan’s analysis

matched well with the overall trend of the variation of heat release rate predicted from the FDS

simulation. However, it predicted lower peak heat release rate compared to the simulation

results.

It has been estimated that in order to achieve the design fire size predicted by FDS simulation,

the peaks of heat release rate curves for seats and the floor should match around 17 minutes

from the ignition. This estimation does not match with the predicted burning rates of surfaces.

However, the hypothetical combination leads to the possible maximum heat release rate to be

predicted from this incident. This hypothetical combination of contribution of combustibles

to fire development to replicate the FDS simulation results is given in Figure 8.4.
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Figure 8.4: Hypothetical combination of curves in Duggan’s analysis to match FDS
predictions

In addition, a simple sum can also give an indication of the design fire size for this incident.

However, it should be noted that the surface area of floor estimated from the simulation results

is used in the equation, rather than the entire floor area.

Qpeak = 148 kW/m2︸       ︷︷       ︸
Peak HRR for seats

· 26.2 m2 + 78 kW/m2︸      ︷︷      ︸
Peak HRR for floor

· 30.7 m2 � 6.3 MW (8.1)
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The Duggan’s method is also compared against FDS simulation predictions for a steady fire

development. Case-12b, a baggage fire incident in a rolling stock with open wide gangways

in a single-track tunnel, is selected for the analysis. The FDS simulation shows that with

the limited window failure, fire develop steadily and spread to the adjacent carriage to the

incident.

The contribution of the combustibles is derived from the FDS predictions of burn rates of the

surfaces (See Figure 6.13). The areas of the combustible surfaces that are involved in the fire

development during this incident can be listed as follows:

• 5 mins: seats: - floor: 2.5m2

• 8 mins: seats: 5.1m2 floor: 0.5m2

• 11 mins: seats: 5.7m2 floor: 3.0m2

• 14 mins: seats: 13.9m2 floor: 2.7m2

• 19 mins: seats: 7.5m2 floor: 18.6m2

• 23 mins: seats: - floor: 9.8m2

• 28 mins: seats: 16.0m2 floor: 5.1m2

• 29 mins: seats: 3.0m2 floor: -

Once again, the given surface areas represent the individual contributions of the combustibles

to the overall fire development at the specified time during the course of the incident.

In this analysis, the total surface area of the burning seats is predicted to be 51.2m2, which

includes all seats in the incident carriage and most of the seats in the adjacent carriage to the

incident. It is predicted that the first set of seats in the incident carriage is involved in fire at

the 8th minute from the ignition. The remaining seat surfaces are involved in fire gradually

until the 19th minute. The surface area given at the 19th minute includes the remaining 1.5m2

of the seats in the incident carriage and 6.0m2 of the seat surfaces from the adjacent carriage.

The reported seat areas after the 19th minute correspond to the seats in the adjacent carriage.

Similar to the seats, the floor of the adjacent carriage is also involved in fire during this

incident. The simulation shows that the flames progress on floor to the adjacent carriage after

23 minutes from the ignition. The first significant contribution of floor of the adjacent carriage

is predicted at the 28th minute during the course of the incident.

In the analysis of this case, it is assumed that it would take one minute for the combustibles to

220



reach 1.0 g/m2s burning rate once they are ignited, as it was assumed in the analysis of 1-car

model. Consequently, one minute is deducted from the times given above, as before.

The variation of heat release rate in time is given in Figure 8.5. The peak heat release rate

is predicted to be 4.7MW with the Duggan’s analysis, which was predicted to be 4.8MW

through FDS simulation.
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Figure 8.5: Predicted heat release rate variation using Duggan’s method for 4-car rolling
stock, 1.5MW source, single-track tunnel

The comparison of the predictions of heat release rate variation is shown in Figure 8.6. The

results show that the heat release rate variations predicted from the Duggan’s analysis match

quite well with the predictions of FDS simulation. In addition, two methods predict almost

the same value for the design fire size for this incident. However, differences are predicted

between the 25th and the 29th minute during this incident. In this interval Duggan’s analysis

predicts lower heat release rates than the FDS predictions by almost 1.0MW. The reasons

for the differences in predictions are the same as listed for the analysis of single car model.

Despite the differences in the two methods and the simplicity of the Duggan’s analysis, the

predictions are within the acceptable margins for verification.

It can be concluded that the Duggan’s analysis predicts the heat release rate variation reason-

ably well for the steadily developing fire incidents.
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Figure 8.6: Comparison of the predicted heat release rate variations from the FDS simulation
and the Duggan’s analysis, 4-car model

If the flashover conditions are achieved within the rolling stock then most of the combustible

surfaces would be involved in fire at once. In that case Duggan’s analysis predicts slightly

lower design fire sizes than expected, since the method relies upon the cone calorimeter results

of the individual combustibles. In order to match with the expected design fire size, the

Duggan’s method requires the peaks of the heat release rate curves of combustibles coincide

at one instance during the course of the incident.

It should be noted that the Duggan’s method relies on the observations of FDS predictions

when it is being used for the verification of results. If the simulation results are not present

then the method relies upon the assumptions on the contribution of the combustible surfaces.

However, an advantage of the method is it’s allowing different heat release rate curves for the

combustibles to be used during the analysis, to account for different heat flux levels that the

surfaces are exposed during a fire incident.
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8.2 CFAST SIMULATIONS

8.2.1 BACKGROUND INFORMATION

CFAST, Consolidated Model of Fire Growth and Smoke Transport, simulation program is

a two-zone fire model used to calculate the evolving distribution of smoke, fire gases and

temperature throughout compartments of a constructed enclosure during a fire incident. In

CFAST, each compartment is divided into two gas layers. [22, 23]

The zone models, like CFAST, use two control volumes to describe a compartment - an upper

layer and a lower layer. The two-layer approach has evolved from observation of such layering

in real-scale fire experiments. The zone modelling relies upon hot gases being collected at the

ceiling to form upper layer, and filling the compartment from the top in time. While the real-

scale fire experiments show some variation in conditions within the layers, these are small

compared to the differences between the layers. Therefore, the zone models can produce

realistic results under many common conditions.

The CFAST model consists of a set of ordinary differential equations to compute the environ-

ment in each compartment and a collection of algorithms to compute the mass and enthalpy

source terms required by the differential equations.

The modelling equations used in CFAST take the mathematical form of an initial value prob-

lem for a system of ordinary differential equations. These equations are derived using the

conservation of mass, the conservation of energy, the ideal gas law and relations for den-

sity and internal energy. These equations predict pressure, layer height and temperatures as

functions of time, given the accumulation of mass and enthalpy in the two layers.

The CFAST input files contain information about:

• the enclosure geometry such as compartment sizes, material properties, and materials

of construction,

• the openings such as doors, windows, vertical flow openings in ceilings, and mechanical

ventilation connections,

• the fire properties such as fire size and species production rates,

• the specifications for detectors and sprinklers, such as position, size, and heat transfer

and flow characteristics where applicable.
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Materials are defined by their thermal conductivity, specific heat, density, thickness, and burn-

ing behavior in CFAST simulations.

The outputs of CFAST are the sensible variables that are needed for assessing the environ-

ment in an enclosure subjected to a fire. These include temperatures of the upper and lower

gas layers within each compartment, the ceiling/wall/floor temperatures within each compart-

ment, the visible smoke and gas species concentrations within each layer, target temperatures

and sprinkler activation time where applicable.

The CFAST model has been subjected to extensive validation studies by the National Institute

of Standards and Technology (NIST). Although some differences between the model and the

experiments were evident in these studies, they are typically explained by limitations of the

model and uncertainty of the experiments. The most well-known difference was found during

the studies to be the overprediction of gas temperature often attributed to uncertainty in soot

production and radiative fraction. Still, studies typically show predictions accurate within

10% to 25% of measurements for a range of scenarios. Like all predictive models, the best

predictions come with a clear understanding of the limitations of the model and of the inputs

provided to the calculations.

8.2.2 CFAST SIMULATIONS TO VERIFY FDS PREDICTIONS OF ONBOARD

CONDITIONS

A set of CFAST simulations has been performed to predict onboard conditions in the event of a

fire incident within the rolling stock, and to compare the findings against the FDS predictions.

As discussed in Sub-section 8.2.1, CFAST predicts the conditions for two layers; the upper

layer and the lower layer. The layer height within the rolling stock depends on the smoke pro-

duction rate of the predefined heat release rate history of the ignition source. Consequently,

the layer height changes with the size of the domain simulated and the defined ignition source.

In the CFAST simulations, since fire spread has not been simulated the heat release rate pre-

dictions of FDS simulations will be input for comparison of onboard conditions.

In the CFAST simulations only the interior of the rolling stock is modelled as a simple volume,

as opposed to the detailed model of rolling stock in a section of tunnel used in the FDS

simulations. This approach is acceptable since simple smoke-filling method is used in CFAST
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and the onboard conditions are the main interest rather than conditions within the tunnels. The

ventilation openings, such as open doors and window failures, are modelled in the CFAST

simulations.

Two different train models are used in the analysis. These are 1-car model and the 4-car

model with open wide gangways. The single carriage is modelled as a 2.2m high, 2.5m wide

and 20.0m long rectangular volume. The 4-car model is constructed by joining four of these

volumes one after another. The end doors or the side doors are defined to be open depending

on the case being simulated.

8.2.2.1 80kW IGNITION SOURCE

The two significant cases, one with the single carriage model and the other with the 4-car

open train, have been simulated using the 80kW arson fire ignition source for the comparison

of onboard conditions.

The FDS simulations predict a constant heat release rate of 125kW in all the cases simulated

with the arson ignition source. Consequently, the fire in the CFAST simulations is defined to

be constant at 125kW during the course of the incident.

The FDS simulations predict the smoke spread within the carriages, however, they do not

discriminate volumes within the carriages as upper layer and lower layer. The conditions in

the rolling stock are recorded at the center of the carriages at 1.0m, 1.5m and 2.0m above

the floor level. Consequently, in order to compare the CFAST predictions against the FDS

predictions the first step is to identify the layer heights in the carriages.

Figures 8.7 and 8.8 show that the hot smoke layer, also referred as the upper layer, remains

above 1.0m from the floor level in the carriages in most of the cases simulated. The exception

is predicted at the second car of a 4-car train, when only two end doors open for ventilation.

However, in that case, the upper layer temperature increases to the order of 50◦C which might

be considered to be too low to define a hot smoke layer. Similarly, the layer heights in the

third and the fourth carriages are also predicted to decrease to 0.6m measured from the floor

level. The upper layer temperatures are predicted to be in the range of 30◦C to 40◦C in these

carriages. Therefore, the distinction between the upper layer and the lower layer should be

made in agreement with the predicted layer temperatures.
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Figure 8.7: Layer height predictions for 1-car and 4-car models in a single-track tunnel

Consequently, it is assumed that the upper layer conditions predicted by the CFAST simu-

lations reflect the conditions at a point 2.0m above the floor level in the FDS simulations.

Similarly, the lower layer conditions will be compared against the predictions of FDS simu-

lations at 1.0m above the floor level.
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The smoke spread from the incident carriage to the adjacent carriages can be predicted through

the variations in layer height. It is worth noting that the results of CFAST simulations given in

Figures 8.7 and 8.8 can be used to identify the effects of ventilation openings on smoke-filling

of the carriages of a rolling stock incorporating open wide gangways.

1-CAR, SINGLE-TRACK TUNNEL

The comparison of the temperature predictions for CFAST and FDS simulations is shown in

Figure 8.9, and the results are summarized in Table 8.2. The results show that FDS predicts

higher temperatures at a point 2.0m above the floor level than the upper layer temperatures

predicted by the CFAST simulation. However, the predicted upper layer temperatures match

quite well with the FDS predictions at a point 1.5m above the floor.

In the CFAST program, each of the carriages is treated as a volume of two layers. However, in

the FDS program, the computational domain is defined by a number of cells in three dimen-

sions, which allows predictions of variables at different points along the length, width and the

height of the rolling stock. Consequently, FDS predicts more accurate results with gradual

changes in the parameters within the computational domain, rather than giving a value that

corresponds to a proportion of the total volume of the enclosure as in the CFAST simulations.
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Figure 8.9: Comparison of CFAST and FDS predictions of temperature for 1-car model with
1 end door open
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Table 8.2: Comparison of CFAST and FDS predictions of temperature for 1-car model with 1
end door open

Max Temperature (◦C) Average Temperature (◦C)
CFAST Upper layer 124 116

Lower layer 37 34

FDS At 2.0m center 189 167
At 1.5m center 141 122
At 1.0m center 96 78

The gradual change in the temperature along the height of the carriage can be observed in

Table 8.2. The layer height for this case is predicted to be about 1.25m from the CFAST

simulations when the fire has reached the steady state conditions. Therefore, the reported

upper layer temperature is the average temperature of the volume above 1.25m from the floor

level.

Since the hot layer accumulates at high level and the temperature of the layer drops as the

height decreases, it is reasonable to compare the predictions of FDS at 1.5m above the floor

level with the CFAST predictions of the upper layer conditions.

The upper layer temperature is predicted to increase to 124◦C in the CFAST simulation. The

FDS simulation shows that the peak temperature increases to 141◦C at the center of the car-

riage at 1.5m above the floor level. The difference between the temperatures is about 17◦C,

which is acceptable when the differences in the treatment of the computational domain and

the solution methodology are considered. The difference corresponds to a 14% variance in

the predictions.

The CFAST simulation predicts a maximum temperature of 37◦C in the lower layer. However,

FDS simulation predicts higher values of temperatures with 96◦C at a point 1.0m above the

floor level. The difference between the predicted maximum temperatures by the two simula-

tion programs, once again, depends on the definition and the treatment of the computational

domains. Since the layer height is predicted to be 1.25m, the temperatures predicted from the

FDS simulation are influenced by the hot layer above the target point, where the temperatures

are measured.

The predictions of the lower layer temperatures by the two methods will be shown to match
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well for the layer heights well above 1.0m from the floor level in the following cases.

4-CAR, TWIN-TRACK TUNNEL

The comparison of the upper layer and lower layer temperature predictions from the CFAST

and FDS simulations of an arson fire incident in a 4-car open train at a twin-track tunnel

section are given in Figures 8.10 and 8.11, respectively.
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Figure 8.10: Comparison of CFAST and FDS predictions of the upper layer temperature for
4-car model with 8 side doors open

The layer heights for all the carriages are predicted to be above 1.6m by the CFAST simula-

tion. This indicates that the incident is well ventilated and the hot smoke layer remains at high

level in all carriages, including the incident carriage. The results also show that there is only a

slight change in the temperatures within the fourth carriage, farthest to the incident location,

due to effective ventilation of smoke produced by the fire. Consequently, it can be expected

for this case that the temperature predictions of FDS program at 2.0m and 1.0m should agree

well with the CFAST predictions of upper and lower layer temperatures, respectively.
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Figure 8.11: Comparison of CFAST and FDS predictions of the lower layer temperature for
4-car model with 8 side doors open

Table 8.3: Comparison of CFAST and FDS predictions of temperature for 4-car model with 8
side doors open

Max Temperature (◦C) Average Temperature (◦C)
CFAST Upper layer Car 1 98 94

Car 2 56 53
Car 3 34 32
Car 4 26 26

FDS At 2.0m center Car 1 110 102
Car 2 60 53
Car 3 37 33
Car 4 29 27

CFAST Lower layer Car 1 30 29
Car 2 26 26
Car 3 25 25
Car 4 25 25

FDS At 1.0m center Car 1 38 32
Car 2 28 27
Car 3 27 26
Car 4 26 26
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The summary of the temperature predictions of the two simulation programs for this case is

given in Table 8.3. The results show that the FDS predictions of maximum temperature at the

center of the carriages at 2.0m above the floor match quite well with the CFAST predictions of

upper layer temperatures, as expected. In addition, the temperatures recorded at 1.0m through

FDS simulation agree very well with the CFAST lower layer temperature predictions.

In most cases, the difference between the temperature predictions of two simulation programs

is as small as 5◦C. The exception is predicted for the temperatures within the incident car-

riage. However, the differences are only about 8 - 12◦C, which are acceptable considering the

differences in the methodology.

The following conclusions can be drawn from the comparison of the temperature predictions

of the FDS and CFAST simulations:

• FDS records the temperature history at the user defined points throughout the course

of the incident, whereas CFAST divides the volume into two layers, and predicts and

updates the temperatures of the layers as the layer height varies.

• The temperature predictions match well in most of the cases, especially when the target

points in FDS lie within the upper and lower layers predicted from the CFAST simula-

tions. However, as FDS predicts gradual variation of the temperature along the height

of the rolling stock, some differences are predicted between the results of the simulation

programs, especially when the layer height is below 1.5m.

• Almost perfect matches in the results are predicted for the 4-car open train with open

side doors, since the layer heights are predicted above 1.5m. Consequently, the temper-

atures recorded at 2.0m and 1.0m agree very well with the upper layer and lower layer

temperatures of CFAST, since the points lie almost exactly at the centers of the layers.

• The difference between the predictions depends on how well the target point represents

the temperature of the layers. For example, if the layer height is found to be less than

1.0m, then the temperature predictions of FDS at a point well below 1.0m should be

used in comparison of lower layer temperatures.
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8.2.2.2 1.5MW IGNITION SOURCE

All four cases described in Chapter 5 are simulated with the 1.5MW ignition source. From the

FDS simulations incorporating the baggage fire ignition source, the fire is predicted to spread

within the rolling stock and produce different variations of heat release rate under different

ventilation conditions. As discussed earlier in Sub-section 8.2.1, the fire development is not

analyzed in the CFAST simulations, hence the predicted heat release rate histories from the

FDS simulations are used as the fire curves in the CFAST cases simulated. In addition, in

order for the correct representation of the ventilation in the rolling stock, window failures

predicted from the FDS simulations are incorporated in the individual CFAST cases.

1-CAR, SINGLE-TRACK TUNNEL

The heat release rate history predicted from the FDS simulation of a baggage fire incident in

a 1-car model in the single-track tunnel is analyzed and replicated in the CFAST simulation

of the same case. The heat release rate curve is simplified by a set of data points which are

input to the CFAST run. The heat release rate variations obtained from the two simulation

programs are given in Figure 8.12 for information and comparison.

FDS simulations predicted rapid spread of smoke and hot gases, leading to untenable con-

ditions fairly quickly within the rolling stock. This prediction could be confirmed by the

CFAST simulation through careful observation of the predicted layer height for this incident.

The predicted layer height is given in Figure 8.13.

Figure 8.13 shows that the layer height for this incident drops below 0.5m within the first

three minutes from the ignition. The layer height is predicted to drop further to 0.3m within

the consecutive four minutes. The first relaxation on the layer height is predicted between

the 7th and 8th minutes when the pairs of windows on both sides of the carriage, closest to

the ignition source, fail as predicted by the FDS simulation. The failure of the windows is

predefined in the CFAST simulation, in agreement with the predictions of the FDS simulation.
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Figure 8.12: The heat release rate histories obtained from the FDS and CFAST simulations
for baggage fire in a 1-car model in the single-track tunnel

Once the layer height drops below 1.5m within the first minute, it is predicted to remain below

1.5m for the rest of the simulation. The thickness of the hot smoke layer changes during the

course of the incident as the heat release rate changes and the window failures are introduced.
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Figure 8.13: Layer height prediction for 1-car model in a single-track tunnel for baggage fire
incident
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The comparison of the temperature predictions for CFAST and FDS simulations is shown in

Figure 8.14. The figure shows that the variation of temperature at 1.0m, 1.5m, and 2.0m above

the floor level increases rapidly as the smoke and hot gases fill the carriage during the initial

development of the fire. The upper layer temperature of the CFAST simulation is predicted to

follow the same trend with similar values predicted from the FDS run.

The predicted upper layer temperature matches quite well with the FDS predictions at the

initial stages of the fire development. The decrease in the temperature, just after the failure

of the first pair of windows between the 7th and 8th minute from the ignition, is well captured

by the CFAST simulation. However, between the 8th and the 18th minute CFAST predicts

slightly lower temperatures compared to the FDS predictions. Within this interval, due to the

consecutive window failures, the layer height varies with time, but does not go beyond the

1.0m mark.
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Figure 8.14: Comparison of CFAST and FDS predictions of temperature for a baggage fire
incident in 1-car model in a single-track tunnel

After the 18th minute, the layer height is predicted to be constant around 1.5m above the

floor level, when the amount of smoke produced becomes equal to the amount that is being

extracted. The temperature profiles predicted by the FDS simulation at 1.5m and by the

CFAST simulation for the upper layer are predicted to match significantly well, in the last

stages of this incident.
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As discussed earlier, the temperature histories of the points below 1.0m are not recorded

in the FDS simulations. Consequently, there is no reference for comparison of the lower

layer temperatures predicted by the CFAST simulation, however, it can be concluded that the

temperature in the lower layer exceeds the tenability limit of 60◦C most of the time during the

course of the incident. The layer heights being as low as 0.3m with temperatures increasing

to 180◦C, this incident results in untenable conditions within the carriage.

1-CAR, TWIN-TRACK TUNNEL

The baggage fire incident in the 1-car model has also been simulated in a twin-track tunnel,

where the smoke and hot gases are ventilated through the open side doors. The analysis of fire

spread through FDS simulations showed that the fire is localized around the ignition source,

and produce much less heat release rate compared to an incident in the single-track tunnel.

Consequently, the fire source in the CFAST simulations is redefined for this case to represent

the predicted heat release rate from the FDS simulation. The heat release rate histories of

FDS and CFAST simulations are given in Figure 8.15.
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Figure 8.15: The heat release rate histories obtained from the FDS and CFAST simulations
for baggage fire in a 1-car model in the twin-track tunnel
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Figure 8.16: Layer height prediction for 1-car model in a twin-track tunnel for baggage fire
incident

The predicted variation in the layer height is given in Figure 8.16. The figure shows that

the layer height within the carriage drops to about 1.0m within the first 8 minutes from the

ignition. The predicted failure of the windows between the 8th and 9th minutes improved

ventilation of smoke, resulting in an increase in the layer height.
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Figure 8.17: Comparison of CFAST and FDS predictions of temperature for a baggage fire
incident in 1-car model in a twin-track tunnel
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It is predicted from the layer height variation that almost steady state conditions have been

achieved after 15 minutes from the ignition. After the 15th minute, only a slight change in the

layer height is observed.

The predicted temperature histories are shown in Figure 8.17. The variations of temperature

agree with the failure of windows between the 8th and 9th minutes, during which reduction in

temperatures is predicted. The effects of window failure on temperatures are more significant

in the results of FDS simulation, whereas CFAST results show a slight reduction. This is due

the CFAST simulations averaging the temperature over the upper layer volume. However,

FDS simulations record the values of temperature at specific points.

The upper layer temperature predicted from the CFAST simulations agrees very well with

the FDS predictions at 1.5m above the floor level, within the first 8 minutes. Since then, the

window failures change the layer height and the corresponding upper layer volume. As the

layer height increases, the temperature is averaged within a smaller volume, which results in

higher temperatures than predicted at 1.5m by the FDS simulation. As the midpoint of the

upper layer lies between 1.5m and 2.0m, the values of predicted upper layer temperature are

between the FDS predictions of temperature at 1.5m and 2.0m above the floor level.

The lower layer temperature is predicted to increase to 61◦C from the CFAST simulation.

However, the temperature values at 1.0m above the floor level predicted by the FDS simulation

are much higher than the CFAST predictions. FDS predicts gradual temperature variation

along the height of the carriage, however CFAST predicts temperature for the lower layer

volume. Consequently, since 1.0m mark is too close to the interface height between the upper

and lower layers, higher temperature values are expected than the volume averaged lower

layer temperature. For a better comparison, temperatures well below 1.0m should have been

checked against the CFAST predictions.

Further analysis showed that the FDS predictions of temperature at 1.0m above the floor

match very well with the average of the upper and lower layer temperatures of the CFAST

predictions for the first 8 minutes. Since the layer height is about 1.0m until the windows fail,

the average temperature represents similar values with the FDS predictions at 1.0m. After the

15th minute, as the layer height increases to about 1.4m, the FDS predictions of temperature

at 1.0m are lower than the average of the upper and lower temperatures of the CFAST run.

Consequently, the temperature variations predicted by two simulation software match well
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where data can be compared directly, and produce expected and acceptable results where

direct comparison is not possible.

4-CAR, SINGLE-TRACK TUNNEL

Following the baggage fire incidents in the single car model, the simulations have also been

performed using the 4-car rolling stock incorporating open wide gangways. The first of the

two cases involves a train stopping in a single-track tunnel, where the evacuation and ventila-

tion are through the detrainment doors at each end of the rolling stock. The heat release rate

variation predicted from the FDS simulation for this case is defined as input in the CFAST

simulation. The heat release rate variations predicted from the two simulation programs are

given in Figure 8.18.
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Figure 8.18: The heat release rate histories obtained from the FDS and CFAST simulations
for baggage fire in a 4-car model in the single-track tunnel

The predicted layer heights for this incident, given in Figure 8.19, show that the smoke and

hot gases spread to all carriages fairly quickly. It is predicted that the layer height in the

incident carriage drops to about 0.8m within the first 5 minutes from the ignition. The layer

heights in all carriages drop to 0.5m, measured from the floor level, within 10 minutes from

the start of the fire.
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Figure 8.19: Layer height prediction for 4-car model in a single-track tunnel for baggage fire
incident

The first pair of windows are predicted to fail between the 10th and the 11th minute from

the FDS simulations. The window failure results in an increase in the layer heights as the

amount of smoke extract increases. The second pair of windows fail between the 13th and

14th minute, during which further increase in the layer heights are predicted. The layer heights

then increase slightly towards the end of the simulation, as the fire loses its intensity.

The predicted temperatures from the two simulation programs are given in Figures 8.20 and

8.21. The FDS predictions of temperature at a point 2.0m above the floor in the incident

carriage are too high compared to the volume averaged upper layer temperature predictions of

CFAST simulation, since the layer height in the incident carriage remains below 1.2m during

most of the simulation time. However, the results show that the upper layer temperature

predictions from the CFAST simulation match very well with the values of temperature at

1.5m predicted by the FDS program for the incident carriage. In the rest of the rolling stock,

the upper layer temperatures are lower than the temperatures predicted at 1.5m from the FDS

simulation.

The results show that the lower layer temperatures predicted from the CFAST simulation are

much lower than the temperatures predicted at 1.0m by FDS.
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Figure 8.20: Comparison of CFAST and FDS predictions of the upper layer temperature for
a baggage fire incident in 4-car model in a single-track tunnel

Once again, since the layer heights in all carriages are either close to or below 1.0m mark,

the lower layer temperatures should have been compared against values well below 1.0m.

However, the gradual temperature predictions by FDS confirm that the values are as expected

and acceptable.
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Figure 8.21: Comparison of CFAST and FDS predictions of the lower layer temperature for
a baggage fire incident in 4-car model in a single-track tunnel
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4-CAR, TWIN-TRACK TUNNEL

The heat release rate histories obtained from the simulations of a baggage fire incident in a

twin-track tunnel using the FDS and CFAST programs are given in Figure 8.22. The heat

release rate curve is predicted from the FDS simulation and is simplified by a set of data

points which are input to the CFAST run, as noted for the previous cases.
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Figure 8.22: The heat release rate histories obtained from the FDS and CFAST simulations
for baggage fire in a 4-car model in the twin-track tunnel

The predicted layer heights for the carriages in this incident are given in Figure 8.23. The

results show that the layer height in the incident carriage varies between 1.0m and 1.5m during

most of the simulation. The increase in the layer height just after 10 minutes and 13 minutes

are due to the window failures defined for this case, as predicted from the FDS simulation.

The layer heights are predicted to be above 1.5m in the rest of the rolling stock.

The variation of layer heights shows that the smoke is ventilated more effectively when the

side doors are open compared to a case in which the ventilation is through the open end doors.

The predicted upper and lower layer temperatures are shown in Figures 8.24 and 8.25. The

results show that upper layer temperature for the incident carriage matches very well with the

FDS predictions of temperature at 2.0m. The upper layer temperature for the second car is

found to be between the temperatures predicted at 1.5m and 2.0m from the FDS simulation.
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Figure 8.23: Layer height prediction for 4-car model in a twin-track tunnel for baggage fire
incident

The predicted upper layer temperature in the third carriage matches very well with the pre-

dictions of temperature at 1.5m from the FDS simulations. In the fourth carriage, upper layer

temperature is less than the values obtained from FDS at 1.5m.
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Figure 8.24: Comparison of CFAST and FDS predictions of the upper layer temperature for
a baggage fire incident in 4-car model in a twin-track tunnel
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The comparison of temperatures shows that as the target point moves away from the incident

carriage in the rolling stock, the upper layer temperatures match better with the FDS predic-

tions at points away from the ceiling. This statement agrees with the predicted layer heights in

the incident and the adjacent carriages. However, the layer heights are predicted to be above

1.8m in the third and the fourth carriages, where the upper layer temperatures match with

the FDS predictions at 1.5m or lower. This is due to the CFAST programs’ predicting the

upper layer temperatures lower than the predictions of FDS program, since CFAST gives a

temperature for the upper layer volume whereas FDS predicts temperatures at specific target

points.
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Figure 8.25: Comparison of CFAST and FDS predictions of the lower layer temperature for
a baggage fire incident in 4-car model in a twin-track tunnel

The lower layer temperatures for this incident are predicted to be below 60◦C from the CFAST

simulations. FDS predicts significantly high temperatures at 1.0m above the floor level in the

incident carriage. This is due to the gradual temperature predictions of the FDS program.

The hot smoke layer in the incident carriage drops below 1.2m, which causes FDS to predict

high temperatures at 1.0m. For the rest of the rolling stock, FDS predictions of temperature

at 1.0m match well within the acceptable limits with the lower layer temperature predictions

of CFAST program.
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8.2.2.3 CONCLUDING REMARKS

The comparison of the predictions of CFAST and FDS shows that the results match quite well

for most of the time, especially for the upper layer temperature. This has been shown for a set

of simulations including various parameters. (Refer to Figures 8.10, 8.14, 8.20, and 8.24)

CFAST predicts temperature values for the upper and lower layer volumes, whereas FDS

predicts temperature values at specific predefined target points. Therefore, some differences

in the temperature values are also predicted, especially when the layer volumes are large, or

the height of the points defined in FDS simulations do not agree well with the layer height

predictions.

It should be noted that although CFAST program uses empirical relations, it is reliable in

predicting indicative smoke spread in the event of a fire in the rolling stock. Therefore, it is

acceptable to use CFAST to compare the predictions of FDS program.

In addition, the run-time for a CFAST simulation is as low as few minutes, which makes it

superior compared to any other simulation software. However, if a more detailed analysis is

required, the FDS program is the preferred software, especially if fire spread modelling or

prediction of design fire size is required.
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CHAPTER 9

DISCUSSION & CONCLUSION

9.1 INTRODUCTION

The purpose of this research study is to investigate fire development and flame spread within

the underground rolling stock using 3-dimensional simulation methods. A set of simulations

is performed using FDS simulation software with various initial and boundary conditions to

achieve this aim. This study is focused on fire incidents within the passenger compartments

of the underground railway carriages.

The cases simulated are divided into three groups of simulations in this thesis; the initial, the

sensitivity, and the final simulations. The purpose of the initial simulations is to identify the

developing fire incidents and gain an insight on how the fires might develop within under-

ground rolling stock. The sensitivity simulations incorporate variations in the ignition source

characteristics and the ventilation conditions, and investigate their effects on fire development

and flame spread. The final simulations include re-running of the selected cases from the

initial and sensitivity simulations with revised material properties. The final simulations are

performed to investigate the effects of the change in combustible material properties on flame

spread characteristics and on the peak value of heat release rate.

The design fire size, in other words the peak heat release rate, in the event of a fire incident

in the underground rolling stock has also been investigated using empirical methods. The

Duggan’s method, named after Gary J. Duggan’s work for London Underground rolling stock,

is chosen and implemented in this study. In addition, the predictions of FDS simulations for

the selected cases are checked against the predictions of the Duggan’s method.

In the initial set of simulations, the onboard conditions have also been predicted and re-
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ported. The predicted onboard conditions are verified using the CFAST program, a two-zone

fire model used to calculate the evolving distribution of smoke, fire gases and temperature

throughout compartments of an enclosure during a fire incident.

The predictions and the conclusions derived from them are summarized in the following Sec-

tions.

9.2 COMMENTS ON FDS SIMULATIONS

9.2.1 INITIAL SIMULATIONS

The predictions from the initial simulations are discussed under two headings; fire develop-

ment and onboard conditions. The findings are summarized in the following Sub-sections.

9.2.1.1 FIRE DEVELOPMENT

The simulations incorporating an 80kW arson fire ignition source show that the fire is lo-

calized around the initial ignition location and would not spread to the adjacent combustible

items or would not grow to involve the entire carriage of an underground rolling stock. It

has been shown in four different case studies that the fire remains localized, only igniting the

very adjacent seats to the initial ignition location, irrespective of the rolling stock model or

the ventilation option selected.

The 80kW arson ignition source is compliant to the British Standard BS 6853, and referred to

as the design condition by the rolling stock manufacturers. It is assuring that with this ignition

source the fire would be localized with peak heat release rate of about 135kW.

A set of simulations incorporating a severe baggage fire ignition source, following fast growth

rate and reaching to 1.5MW at its peak, show that the fire would grow and, if the conditions

allow, could lead to flashover phenomenon. Amongst the simulated cases, an incident in a

single carriage with only one end door open results in the highest peak heat release rate of

6.0MW. In this case, the severity of the ignition source along with the change in ventilation

conditions, by means of window failures, promote the fire to develop and involve the entire

carriage, where the flashover is predicted.
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It has been predicted from the remaining set of simulations that if the initial ventilation open-

ings are large enough to ventilate the smoke effectively, or the volume of the enclosure is

large enough to dilute the smoke within the rolling stock, as in the 4-car train with open wide

gangways, the fire burns locally and the risk of flashover is reduced significantly. The peak

heat release rates are predicted to be between 2.5MW and 3.2MW, in these cases.

9.2.1.2 ONBOARD CONDITIONS

The simulations incorporating an 80kW arson fire ignition source show that the number and

size of the ventilation openings are crucial in assessing the onboard conditions. The incident

case in a single carriage with only one end door open resulted in untenable conditions for the

passengers onboard due to high temperature and high level of carbon-monoxide concentra-

tion.

However, the onboard conditions are predicted to be within the acceptability criteria, defined

for temperature and carbon-monoxide concentrations by the British and NFPA Standards, at a

height 1.0m and below, measured from the floor level, for incidents involving a single carriage

with open side doors and a 4-car rolling stock with open wide gangways and open end doors.

Exceptions are predicted locally in these cases where temperature and carbon-monoxide levels

exceed the defined criteria marginally. However, these remain acceptable when evacuation

periods of 15 minutes to 20 minutes are considered. The 80kW arson fire incident in a 4-car

rolling stock with open wide gangways and open side doors resulted in tenable conditions at

1.5m and below, measured from the floor level, within the first 30 minutes from the ignition.

An increased number and area of the open doors, and a larger enclosure in the cases of 4-car

open train, assisted effective ventilation and dilution of the smoke produced, maintaining the

conditions tenable longer.

The visibility levels at 1.5m in all the cases simulated drop fairly quickly below the rec-

ommended acceptability criterion of 5m. However, it should be noted that the reduction in

visibility does not directly cause fatalities, but it would hinder the evacuating passengers.

The initial simulations incorporating a severe baggage fire ignition source show that the condi-

tions become untenable within the incident carriage, and in the rest of the rolling stock for the

4-car train with open wide gangways, within few minutes from the ignition. The temperatures
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within the incident carriage are found to exceed the acceptability criterion within the first two

minutes, whichever the rolling stock model is used or ventilation strategy is implemented.

It has been predicted that for the 4-car open train, with the smoke being ventilated through the

open end doors, a severe baggage fire incident would result in loss of tenability in the entire

rolling stock within the first 4 minutes of the incident. The simulation results show that the

tenable conditions are maintained for 9 minutes in the adjacent carriage to incident, and for

30 minutes in the carriages farthest away from the ignition, if the side doors are opened in

the 4-car open train. Once again, the number and the area of the ventilation openings define

whether the onboard conditions would be tenable or not.

It can be concluded that

• in order to maintain the onboard conditions tenable longer, and to reduce the risk of

flashover, a fire should be taken care of before it grows in size and starts to spread.

• opening side doors, as far as doing so is reasonably safe, would reduce the risk of

flashover and would assist effective ventilation of smoke from the fire.

• the recommended ignition source of 80kW for design considerations is suitable to check

the onboard conditions.

• a severe ignition source is required for the fire to develop within the rolling stock and

to assess the design fire size of an incident.

9.2.2 SENSITIVITY SIMULATIONS

The sensitivity simulations have been performed to investigate the individual effects of the

computational domain length, the location of the ignition source, a change in the ignition

source characteristics, the window failures, a change in the amount of air entrained through

the open doors, the mechanical ventilation, and the grid size in the computational domain,

on the fire development and flame spread patterns within the underground rolling stock. The

predictions from the sensitivity simulations are discussed and the conclusions derived from

the analysis are summarized in the following Sub-sections.
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9.2.2.1 TUNNEL LENGTH

The simulations showed that an incident in the twin-track tunnel section produces almost

identical heat release rate curves for domain lengths of 40m and 120m. The cross-section of

the twin-track tunnel is large enough to accommodate most of the smoke produced during the

incident, which reduces the effects of portal ventilation significantly.

The simulation of an incident in the 120m long single-track tunnel showed that increasing the

domain length increases the peak heat release rate marginally, and results in slightly earlier

prediction of the peak value, compared to an incident in the 40m long domain. It is predicted

from the simulations that the peak heat release rate increases from 6.0MW to 6.4MW, with

the peak value being achieved 2.5 minutes earlier, when the domain length is increased from

40m to 120m.

The simulations also showed that increasing the domain length three-fold increases the com-

putational time required to achieve the solution by a factor of 2.3 for an incident in the single-

track tunnel, and by a factor of 2.8 for an incident in the twin-track tunnel.

It has been concluded that increasing domain length does not affect the predicted fire de-

velopment and flame spread patterns significantly, yet requires additional computing power.

Consequently, it has been decided to perform the simulations involving the single carriage

using the short tunnel model.

9.2.2.2 LOCATION OF IGNITION SOURCE

The simulation of an incident where the ignition source is moved from one end of the car-

riage to the center in a 4-car rolling stock with open wide gangways showed that the incident

produces much greater peak heat release rate when the source is placed at the center of the car-

riage. The rate of fire development, and therefore increase in the heat release rate, is predicted

to be quite similar in the early stages of the fire development for both cases, with ignition

source located either at one end or at the center of a carriage. However, the incident develops

further, since an increased surface area of combustibles is readily available in the premises of

the ignition source, when the fire is assumed to begin at the center of the carriage.

It has also been predicted from the simulations that the fire starts to spread in both directions
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within the rolling stock. As the fire develops, it tends to spread further in one direction

as far as the conditions are favorable. The simulation showed that the failure of windows

in the direction of fire spread slows down and even stops further propagation of flames, as

the temperatures are reduced in the vicinity of broken windows. However, as fire loses its

intensity in the initial direction of spread, the flames regroup and start to spread in the reverse

direction. Consequently, during such an incident two peak values of heat release rate are

predicted from the simulation. The peak heat release rate during the initial development of

fire is predicted to be 4.5MW. A second peak of 5.5MW is predicted after the flames regroup

and fire regains its intensity. Both of the values are much higher than the fire size of 2.7MW,

predicted for an incident with the ignition source is located at one end of the carriage.

9.2.2.3 IGNITION SOURCE CHARACTERISTICS

The simulation incorporating a modified baggage fire ignition source, defined to release

1.0MW heat at its peak, show that this ignition source is powerful enough to promote flame

spread and to sustain burning in the rolling stock. The simulation incorporating 1-car model

in a single-track tunnel with modified baggage fire ignition source predicted flashover con-

ditions and produced quite similar results to the same incident with the original baggage fire

source. The peak heat release was predicted to be 6.3MW, when the flashover conditions were

achieved with the modified baggage fire source.

The set of simulations involving liquid fuel showed that the intensity of the fire depends on

volume and spillage area of the fuel. The simulations predicted that for an assumed volume of

fuel, increasing the spill area results in higher heat release rates but shorter burning durations.

The peak heat release rates for a volume of fuel varying between 2.0 and 10.0 liters are

predicted to vary between 1.7MW and 6.1MW, with burning durations ranging from 22s to

390s. The spillage area in the simulations were taken to be between 0.5 and 2.0m2.

9.2.2.4 WINDOW FAILURES

The simulations showed that the flame spread and fire development within the incident car-

riage and in the rest of the rolling stock depend strongly on ventilation through the failed

windows. The simulation of an incident within a single carriage, where the windows along
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one side of the carriage and the window of the back end door are defined to be fail-safe,

showed that altered ventilation conditions change the fire development pattern from flashover

conditions to steady burning behavior. The peak heat release rate for this incident is predicted

to be 3.3MW, with steady burning conditions at 10 minutes from the ignition and onwards.

Although the failure of windows provided fresh air entrainment into the incident carriage and

assisted ventilation of smoke, the rate of exchange was found to be sufficient only to sus-

tain burning. Limited oxygen concentration within the carriage prevented achieving flashover

onset conditions.

The incident in a 4-car rolling stock with open wide gangways and fail-safe windows on one

side of the rolling stock showed that the extent of flame spread exceeds a single carriage.

The fire development in this incident was found to be identical for the same case with normal

window failures for the first 13 minutes of the incident. However, differences in the window

failure patterns changed the ventilation conditions by the 15th minute, after which gradual

increase in air entrainment and smoke extract from the incident carriage have been predicted

in the limited window failure case. This gradual change in ventilation conditions sustained

burning longer and promoted flame spread, however, the fire development is predicted to be

progressive rather than sudden. The peak heat release rate for this incident is predicted to be

4.8MW.

9.2.2.5 NUMBER OF OPEN DOORS

The sensitivity of fire development and flame spread within the underground rolling stock

to the number of open doors has been investigated through an incident within the twin-track

tunnel section, where all four doors of the incident carriage are assumed to be open. The

simulation incorporating an incident in an individual carriage showed that opening all four

doors slightly delays the development of fire, however, has insignificant effect on the predicted

peak heat release rate. In an incident caused by a severe ignition source, opening all four doors

of the incident carriage marginally altered the onboard conditions, and was not sufficient to

maintain the conditions within the tenability criteria. Consequently, opening all four doors of

the incident carriage in the event of an incident is not recommended, since the benefits are

marginal and doing so would introduce additional safety and operational requirements.

Another incident simulated using the 4-car rolling stock with open wide gangways, but all
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doors defined closed, has shown that fire follows the ignition source development curve for

the first five minutes, after which it starts to decay and dies out within the next eight minutes

due to lack of oxygen within the rolling stock. This simulation could be considered as a

hypothetical case but has confirmed that if there is no flow exchange between the rolling

stock and the running tunnel, the temperatures at the face of windows do not increase to the

predefined failure criterion. Consequently, smoke and toxic gases produced by the fire fill the

entire carriage and consume all the available oxygen. This case verifies the importance of the

air entrainment in development of fire within the constant volume enclosures.

Two additional cases have been simulated where a time delay of three and six minutes have

been applied in opening the doors of the rolling stock during an incident. The simulations

showed that once the flow exchange and onboard conditions are restored, fire development

and flame spread patterns converge to the original cases where the doors were defined open

at the beginning of the simulation. In both cases, once the doors are opened, a sudden ex-

change of smoke and fresh air between the incident carriage and the running tunnel has been

predicted, which has led to an instantaneous increase in the predicted heat release rates. The

two cases showed examples of the backdraft phenomenon, caused by considerable amount

of combustion gases’ being extracted from the incident carriage within a very short space of

time. The instantaneous peak heat release rates are predicted to be 3.5MW and 8.3MW, where

the doors are defined to open at three and six minutes, respectively.

9.2.2.6 MECHANICAL VENTILATION

The simulation of an incident in an individual carriage in a twin-track tunnel showed that

the effect of mechanical ventilation on fire development and flame spread within the incident

carriage is insignificant until the window of back end door fails. Failure of that window

allows forced air to flow through the incident carriage, and reduces the rate of heat released

by the fire. It has been concluded that the mechanical ventilation system, modelled as a mean

airflow velocity at the tunnel boundary, ventilates smoke effectively, preventing any further

flame spread within the incident carriage.

A second case simulated to investigate the influence of mechanical ventilation on fire de-

velopment involves an incident within the 4-car rolling stock with open wide gangways in

the single-track tunnel. In this case, forced airflows penetrate through the entire rolling stock,
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since the end doors are defined to be open for evacuation and ventilation. The airflows prevent

flames spreading in the upstream direction and ventilate smoke effectively retaining the heat

release rate at significantly lower values. The peak heat release rate is predicted to be 2.0MW

in this case, which is considerably lower than 2.7MW, predicted under natural ventilation

conditions.

9.2.2.7 MESH SENSITIVITY

The accuracy of the fire development and flame spread predictions has been assessed through

the grid sensitivity simulations. An under-ventilated and a well-ventilated fire incident have

been re-simulated with element sizes halved in the longitudinal direction along the length,

and in the vertical direction along the height of the rolling stock.

The variations of heat release rates and flame spread patterns predicted from the simulations

incorporating refined grid size were found to be quite similar to the predictions of identical

cases simulated with the original grid. A common exception has been predicted for both

cases during the growth period of the fire. In both cases, the rate of increase in heat release

rate is found to be higher in the results of simulations with refined grid. The cause of the pre-

dicted differences highly relies on the change of the burning behavior of combustible materials

within the incident carriage, due to alteration in the grid size.

The combustible material properties had been calibrated using a cone calorimeter model that

had grid size compatible with the original grid size used in the initial and sensitivity simula-

tions reported in this thesis. Consequently, refining the grid in the mesh sensitivity analysis

resulted in sharper responses to ignition and slightly faster combustion. However, predictions

of overall trend of fire development and flame spread match well between the simulated cases

incorporating different grid sizes. The peak heat release rate is predicted to be 2.5MW for the

under-ventilated incident, and 3.0MW for the well-ventilated fire, from the simulations with

refined grid sizes. The peak heat release rates were found to be 2.6MW and 2.5MW for under-

ventilated and well-ventilated incidents incorporating the original grid size, respectively.

The simulations of mesh sensitivity analysis have also shown that halving the element sizes in

longitudinal and vertical directions in the computational domain increases the computational

time required to achieve a 30-minute solution by 6.7 times for an incident in the single-track
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tunnel, and by 13 times for an incident in the twin-track tunnel.

It can be concluded that original grid size used in the initial and sensitivity simulations cap-

tures the key parameters of fire development and results in reliable peak heat release rate

estimates within reasonable computational time and effort.

9.2.3 FINAL SIMULATIONS

The final simulations incorporate the revised material properties to reflect the combustible

seat and floor materials proposed for the Class-378 rolling stock. The combustible materials

that are input in the final simulations are calibrated through FDS cone calorimeter simulations

against the acquired experimental predictions. Their performance during an incident in the

rolling stock has been assessed through selected set of simulations.

In the first stage of the calibration process, ignition temperatures for the combustible seat and

floor were chosen to be 505◦C and 560◦C, respectively, in the absence of the specified values

in the experimental data. Once the calibrated material properties have been tested through an

incident in the single car model in the single-track tunnel, it has been found that the surfaces

resist ignition, and even when ignited burn at very slow rates. The incident is predicted to

produce a peak heat release rate of 2.1MW.

In the second stage of the calibration process, ignition temperatures for seats and the floor are

reduced to 435◦C and 430◦C, respectively. As the ignition temperatures were reduced, the

effective heat of combustion of the materials had to be reduced, and the product ρ c δ had to

be increased to match the experimental predictions. The calibration process has shown that

two different sets of material properties could yield quite similar burning characteristics and

heat loads, as far as all the parameters used in the set of properties are within the physical

limitations. It is predicted that the same incident in the rolling stock, mentioned above for the

first stage of the calibration process, produces a peak heat release rate of 1.8MW when the

material properties with lower ignition temperatures are incorporated in the model. However,

an increased area of ignited combustibles is observed.

In the two simulations performed using different sets of calibrated material properties, a com-

bustion reaction for the floor material was used, since the initial and sensitivity simulations

identified that the fire development within the rolling stock is governed by the flame spread
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over the floor. The simulations were predicted to yield much lower heat release rate values

than predictions of the initial and sensitivity simulations. Consequently, the combustion reac-

tion has been revised from floor material to the seat material, due to increased energy release

per unit mass of oxygen consumed during the combustion of seats. The same incident, men-

tioned above in two cases of the final simulations, is predicted to produce a peak heat release

rate of 3.1MW with much larger surface area involvement in fire, when the calibrated material

properties having lower ignition temperatures and reaction for seats are incorporated in the

model. Therefore, it has been decided to use the combustion reaction for seats and material

properties with lower ignition temperatures in the rest of the final simulations.

An 80kW arson fire ignition source in the single carriage model in the single-track tunnel has

been simulated with the revised material properties to assess their performance for the design

case. It is predicted from the simulation results that the fire is localized on seat around the

initial ignition location and produces a peak heat release rate of 125kW during this incident.

The performance of the calibrated material properties has also been checked through the sim-

ulation of an incident within the 4-car rolling stock in the single-track tunnel, where the

ignition source is placed at the center of the second carriage. This case was selected, since it

was predicted to produce the highest peak heat release rate for the 4-car open train amongst

the cases simulated in the initial and sensitivity simulations. The simulation shows that flames

spread evenly in both upstream and downstream directions within the incident carriage, with

an exception predicted at the early stages of the incident where flames tend to spread in the

upstream direction towards the front end of the train. The fire development is predicted to be

steady with peak heat release rate of 3.7MW. The flames are predicted to reach the adjacent

carriages within 20 minutes from the ignition, during this incident.

The simulation of an incident in the 4-car rolling stock in the single-track tunnel, with all the

windows on one side of the train defined fail-safe, showed that the heat release rate from the

fire increases steadily with progressive flame spread over the floor within the rolling stock.

The flames are predicted to spread mainly in the incident carriage, however, involvement of

adjacent carriage in fire is also observed during this incident. The seats in the adjacent car-

riage are predicted to be involved in the fire development within 9 minutes from the ignition.

The peak heat release rate for this incident is predicted to be 4.6MW at the 25th minute of

the incident, when the extent of fire reaches to its maximum value of about one and a half
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carriages. Even though the flame spread patterns are observed to be different, the variation

of heat release rate for this incident and the same incident simulated with the initial material

properties are found to be quite similar.

In all the simulations reported herein, the window failure criterion was defined to be 675◦C. It

has been claimed by some of the authorities that this value is too high for the proposed window

material and composition for the Class-378 rolling stock. Two incidents within the 4-car

rolling stock incorporating open wide gangways, described above under the final simulations,

have been re-simulated with the revised window failure criterion of 400◦C. The simulation

of the incident at the center of the second carriage showed that a number of windows in the

premises of the ignition source fails at the very early stages of the fire development. These

failures result in increased effectiveness of ventilation of smoke, localized flame spread, and

a peak heat release rate of 2.5MW. The simulation of the incident, incorporating fail-safe

windows on one side of the 4-car rolling stock, showed that the windows fail in a successive

manner, and the fire retains its intensity and sustains flame spread within the rolling stock. The

failure of windows reduced the rate of flame spread and fire growth significantly, however, the

peak heat release rate is predicted to be 4.4MW, which is quite close to the value predicted

for the same incident with original window failure criterion.

A final attempt has been made to investigate the effects of cone calorimeter model on the

calibrated material properties. The cone calorimeter simulations incorporating larger element

sizes resulted in the requirement to increase the effective heat of combustion values for seats

and floor in order to match the experimental predictions. The last simulation incorporating

the re-calibrated material properties in a single carriage in the single-track tunnel showed that

increased heat of combustion of the materials increases slightly the predicted heat release

rate during the incident, due to slightly increased area of influence of the fire. However, a

significant increase in the heat release rate is predicted at the 27th minute of the incident,

when the flames spread further to involve the upstream half of the incident carriage. The peak

heat release rate during this incident is predicted to be 4.9MW, maintained constant over 8.5

minutes, after which fire starts to decay.

It can be concluded from the final simulations that due to the short burning duration and low

heat loads of the seats, the values of the peak heat release rates highly depend on the rate

of flame spread over the floor. The seats were found to be consumed fairly quickly after
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the ignition, therefore floor solely acts as the dominant combustible within the rolling stock.

In addition, the simulations show that the single carriage model in the single-track tunnel

remains the design case for estimation of the design fire size of the rolling stock, due to

predicted sudden increases in the values of heat release rate.

9.3 COMMENTS ON EMPIRICAL METHODS

The most important benefit of the empirical methods and the two-zone fire model simulations

is their reliable predictions within a relatively short period of time, compared to the detailed

FDS simulations. On the other hand, the accuracy of the predictions mostly relies on the initial

conditions and the assumptions being made during the analysis. The conclusions derived from

the analysis with the empirical methods are summarized in the following Sub-sections.

9.3.1 DUGGAN’S METHOD

The Duggan’s method is an empirical approach that is being used to predict the design heat

release rate of a rolling stock in the event of a fire incident, and is widely accepted by the

industry. The Duggan’s method uses the experimental cone calorimeter predictions of fire

load, i.e. heat release rate per unit area, of the combustible items in a rolling stock. However,

how much of the total area of combustibles and when they are involved in fire development

in a rolling stock depend on the engineering judgement.

In this thesis, the Duggan’s method has been used to verify the FDS predictions of heat release

rate variations during an incident within the rolling stock. Two cases; an incident in a single

carriage with only one end door open, and an incident in the 4-car rolling stock incorporating

open wide gangways but with limited window failure; have been analyzed. These cases are

selected since the incident in the single carriage produces the peak heat release rate, and the

incident in the 4-car rolling stock results in the largest flame spread area amongst the other

cases simulated. The flame spread areas are estimated from the images of burning rates of the

combustibles produced by the FDS simulations. The cone calorimeter curves are factored by

the estimated areas, and their contributions to the overall heat release rate are introduced at

certain instances derived from the FDS predictions. The contribution of the ignition source is

also added in the predictions of variation of overall heat release rate. This is introduced to the
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Duggan’s method in order to get the heat release rate estimates accurately for the verification

of results, since the ignition source is already included in the FDS simulations.

The analysis of Duggan’s method for the two cases described to verify the FDS predictions

show that the empirical method predicts the variation of heat release rate reasonably well for

an incident with steady burning behavior. The peak heat release rate of the incident within the

4-car open train with steady burning characteristic and progressive flame spread is predicted to

be 4.7MW by Duggan’s method and 4.8MW by the FDS simulation. However, in a flashover

case, the Duggan’s method estimated the peak heat release rate much lower than the FDS

prediction. It has been noted that in order to get the peak value of heat release rate accurately

in a flashover case, the peak values of the two individual burning curves of combustibles

should match at the same instant. With that assumption the peak heat release rate can be

predicted within 5% accuracy.

There are two main disadvantages of this verification method that should be noted. The ac-

curacy of the verification methodology relies upon the accuracy of the observation and the

frequency of the data input in the empirical analysis. The second drawback is the Duggan’s

methods’ allowing a number of curves tested under different heat flux levels for the same ma-

terial, such as seat bases and seat backs. In FDS simulations, a set of properties has been used

to reflect the behavior of the combustibles and to account for the heat feedback from the fire.

Consequently, under certain circumstances, minor variations between the two methods might

be expected.

9.3.2 CFAST SIMULATIONS

A set of CFAST simulations has been performed to predict the onboard conditions in the event

of a fire incident within the rolling stock. The results have been used to verify the predictions

of FDS simulations for the identical incident scenarios.

One advantage of the CFAST program is its’ producing reliable results in a very short space

of time. However, the program divides each compartment into two layers and predicts values

averaged over the upper and lower layer volumes. Therefore, the results highly depend on the

layer heights, which separate the upper and lower layers, predicted for each carriage. On the

contrary, onboard conditions can be monitored and recorded at any point within the computa-

tional domain in FDS simulations. For the purposes of this research, onboard conditions were
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recorded at 1.0m, 1.5m, and 2.0m above the floor level in the FDS simulations. The CFAST

program can not predict flame spread and fire development within the carriages. Therefore in

order to create the same onboard conditions, the heat release rate variations predicted for each

case by the FDS simulations are input as the ignition source in CFAST case studies. Simi-

larly, the window failures are considered in CFAST simulations by introducing new openings

in agreement with the FDS predictions.

The simulations of an 80kW arson fire ignition source showed that almost identical variations

of temperature are predicted, between the CFAST and FDS software, for an incident in the

4-car open train with open side doors. The layer heights for this incident are predicted to

be higher than 1.5m, therefore the temperatures recorded by the FDS target points at 2.0m

and 1.0m above the floor agree very well with the upper layer and lower layer temperature

predictions of CFAST, respectively.

However, slight differences between the temperature predictions of the two softwares are ob-

served especially for the incident in the single-track tunnel. For an incident in the single-track

tunnel, the smoke ventilation openings are limited to the open end doors, which inevitably

alter the effectiveness of smoke extract and the predicted layer heights. The simulation of

an incident in the single carriage model shows that the upper layer temperatures match rea-

sonably well with the FDS predictions at 1.5m above the floor level. However, lower layer

temperatures are predicted to be much lower than the temperatures at 1.0m obtained from the

FDS simulations. These variations are acceptable, since ineffective ventilation of an incident

in the single-track tunnel causes layer heights to drop, and therefore the target points in FDS

do not lie within the center of the layers of the CFAST case anymore. In such cases, the

lower layer temperatures should be checked against FDS predictions of temperature recorded

at target points lower than 1.0m height.

Similar to the observations and comments made for the cases involving an 80kW ignition

source, temperature predictions of the two softwares are found to agree very well with each

other in cases involving a severe ignition source, when the target points in FDS model match

the centerline of the layers defined by the CFAST program. The results show that upper

layer temperatures match reasonably well with the FDS predictions in the incident carriage

at 1.5m above the floor level, when the incident is in the single-track tunnel. The upper layer

temperatures in the incident carriage are found to match with the predictions of FDS at 2.0m,
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when the incident is at the twin-track tunnel section. In cases involving 4-car open train, as

the target points move away from the incident carriage, few differences are observed between

the predictions of two program. These differences are solely due to the change in the layer

heights, and therefore are acceptable.

It is worth noting that the incident carriage and all the carriages of an open train are filled

with smoke fairly quickly during incidents involving severe ignition source. Consequently,

the layer heights during these incidents were predicted to be as low as 0.3m in some cases.

Therefore, in most of these cases, the lower layer temperatures were found to be too low even

for the temperature predictions of FDS at 1.0m above the floor level. As noted above, these

temperatures should be checked against the predictions at target points much lower than 1.0m

for better agreement.

It can be concluded that FDS predicts gradual variation, and therefore results in more accurate

description of temperature distribution within the rolling stock in the event of a fire incident.

However, CFAST delivers temperature values averaged over the two volumes defined by the

smoke layer height, and therefore results in approximate predictions. In addition, CFAST

can not solve flame spread and fire development within the rolling stock. Consequently, in

order to predict onboard conditions, either estimated variations of heat release rates should

be implemented or design fire size should be used as a conservative approach. Nevertheless,

the ease of modelling and the speed of obtaining results, to have an idea of what might be

expected during an incident scenario, shall not be overlooked.

9.4 CONCLUDING REMARKS

Fire development and flame spread within the underground trains have been studied exten-

sively through computer simulations. The following conclusions have been drawn from the

predictions of the simulations:

• Ignition Source:

– An arson fire ignition source on a passenger seat releasing 80kW heat, represent-

ing a trash bag filled with paper, is not intense enough to promote flame spread

within the rolling stock. This source is to be used in assessing the onboard condi-

tions for tenability.
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– A severe baggage fire ignition source on floor, following the fast growth curve and

releasing 1.5MW heat at its peak, is powerful enough to ignite the seats and pro-

mote flame spread over the floor. This source is to be used in assessing the design

fire size of an incident in the rolling stock. This source can yield flashover condi-

tions within the rolling stock if the ventilation conditions and material properties

are in favor of rapid fire development.

– The modified baggage fire source on floor, releasing 1.0MW heat at its peak,

is found to be sufficient to achieve flashover conditions within the underground

rolling stock. Consequently, it is recommended to suppress the fire before it

reaches to 1.0MW whenever it is possible to do so to prevent flashover.

• Rolling Stock Model:

– In a train made up of physically separated carriages, the volume of enclosure and

the areas of ventilation openings are smaller compared to a train incorporating

open wide gangways. The individual enclosures limit the extent of flame spread to

a single carriage. However, the temperatures and toxic gas concentrations would

be higher in the event of an incident, and even an arson fire source could result

in untenable conditions within the incident carriage. Smaller enclosure, when

combined with limited ventilation, could also yield flashover conditions if the

ignition source and material properties are in favor of rapid fire development.

– In the event of an incident in a rolling stock incorporating open wide gangways,

the smoke produced by the fire spreads from the incident carriage to the entire

rolling stock fairly quickly. If the incident produces high volumes of smoke and

toxic gases, the conditions could be untenable in the entire rolling stock. However,

open wide gangways allow passengers to move away from the incident carriage

to a safe haven faster than a train made up of physically separated carriages. On

the other hand, the open wide gangways also allow flame spread over the floor

in the incidents involving a powerful ignition source, unless a fire barrier on floor

between the carriages has been implemented. However, the extent of flame spread

is generally found to be limited to a single carriage through the simulations with

only one exception. The rolling stock incorporating open wide gangways behave

as a single vestibule diluting the smoke from fire, and therefore moderating the

temperatures within the incident carriage. Consequently, the results of simulations
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showed that the risk of flashover is reduced significantly when the open wide

gangways are implemented.

• Ventilation:

– It has been predicted through simulations in this research that ventilation has a

significant effect on fire development within an underground rolling stock. In

a typical twin-track tunnel where the side walkways are present, opening side

doors for evacuation of passengers and ventilation of smoke helps maintaining

onboard conditions tenable for longer durations in the event of a small size fire

incident. Increased effectiveness of smoke ventilation through opening side doors

in the event of a severe incident results in reduced onboard temperatures yielding

localized burning, and therefore reduced risk of flashover.

– For incidents in tunnel sections with relatively small cross-sectional area, the de-

velopment of fire is found to be highly dependent on window failures, i.e. supple-

mentary ventilation of smoke. It has been predicted that if windows are defined

to be highly fire retardant, the fire burns steadily with relatively low heat release

rates, due to limited oxygen levels within the incident carriage and in the rest of

the rolling stock. However, successive failures of windows ventilate smoke from

the incident carriage and deliver relatively fresh air to the fire, which promote

flame spread and fire development. It has been predicted that successive window

failures could lead to flashover phenomenon through a change in the characteris-

tics of fire from fuel-controlled to ventilation-controlled.

– In most of the modern railway systems, mechanical ventilation is provided to

achieve and maintain control over the movement of smoke in the event of an

incident. The case studies show that once the mechanical ventilation is energized

to provide a mean airflow velocity of 2.5m/s at the tunnel cross-section, the forced

ventilation controls the development of fire and reduces the rate of heat released

if the airflows penetrate through the rolling stock. The simulations show that

mechanical ventilation has insignificant effect on the fire development until the

forced air flows through the incident carriage over the developing fire. It has

been concluded that activation of mechanical ventilation at rates sufficient to gain

control over the smoke movement would slow down the fire development and

keep heat release rates at relatively low values, reducing risk of flashover.
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• Risk of Flashover:

– The case studies simulated to assess the individual effects of the parameters that

have influence on the fire development and flame spread within underground

rolling stock show that a number of conditions have to be satisfied to achieve

flashover phenomenon. A powerful ignition source and favorable ventilation con-

ditions that would promote flame spread in a rolling stock are required essentially.

The incidents involving a rolling stock incorporating open wide gangways showed

steady burning behavior and often localized flame spread around the ignition lo-

cation. The resistance of combustible materials to fire also has a significant effect

on flame spread behavior within the rolling stock leading either to steady burning

or flashover.

Amongst a number of cases simulated only one combination of parameters has led

to flashover phenomenon. Therefore, it can be concluded that the risk of flashover

is quite small compared to all possible variations of incidents, but it could still

occur however small the chance is. Figure 9.1 shows the necessary conditions

required for an ignition source to yield flashover conditions.

• Design Fire Size:

– The results of the case studies show that fire spreads progressively within a rolling

stock incorporating open wide gangways. However, flashover conditions could

be achieved during an incident in a rolling stock made up of physically separated

carriages, which would lead to the prediction of the peak heat release rate. Con-

sequently, the design case for the prediction of fire size is the incident in a single

carriage.

– The incident cases simulated in this thesis, using typical combustible materials

for an underground rolling stock, resulted in a peak heat release rate of 6.3MW.

It can be concluded that the predictions have confirmed the proposed design fire

size of 8.0MW for Bombardier Class-378 type rolling stock. It should be noted

that in predictions of the design fire size, spread of flame to under-carriage and

failure of rubber bellows or roof structure have not been considered. It has been

assumed that the fire barrier between the floor and the under-carriage would pre-

vent any flame spread between two regions, and the integrity of the bellows and

roof structure are not compromised within the first 30 minutes from the ignition.
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Figure 9.1: Parameters that affect fire development and their relation to risk of flashover
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Appendix A

BOMBARDIER CLASS-378 ROLLING STOCK

A.1 SECTIONAL AND PLAN VIEWS OF THE MODELLED ROLLING STOCK

Figure A.1: Sectional view of the typical carriage
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Figure A.2: Overall view of the rolling stock
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Figure A.3: Plan view of the DMOS type carriage
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Figure A.4: Plan view of the MOS type carriage
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Figure A.5: Plan view of the PTOS type carriage
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Appendix B

FIGURES: INITIAL SIMULATION RESULTS
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B.1 CASE-01: 1-CAR, 80kW SOURCE, SINGLE-TRACK TUNNEL
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Figure B.1: Temperature, 1-car, 80kW source, Single-track tunnel
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Figure B.2: Visibility, 1-car, 80kW source, Single-track tunnel
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Figure B.3: Carbon-monoxide concentration, 1-car, 80kW source, Single-track tunnel
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B.2 CASE-02: 1-CAR, 80kW SOURCE, TWIN-TRACK TUNNEL
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Figure B.4: Temperature, 1-car, 80kW source, Twin-track tunnel
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Figure B.5: Visibility, 1-car, 80kW source, Twin-track tunnel
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Figure B.6: Carbon-monoxide concentration, 1-car, 80kW source, Twin-track tunnel
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B.3 CASE-03: 4-CAR, 80kW SOURCE, SINGLE-TRACK TUNNEL
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Figure B.7: Temperature, 4-car, 80kW source, Single-track tunnel

280



 
 
 

A-30

 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

Ignition 

20 minutes 

15 minutes 

30 minutes 

10 minutes 

5 minutes 

Figure B.8: Visibility, 4-car, 80kW source, Single-track tunnel
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Figure B.9: Carbon-monoxide concentration, 4-car, 80kW source, Single-track tunnel
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B.4 CASE-04: 4-CAR, 80kW SOURCE, TWIN-TRACK TUNNEL
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Figure B.10: Temperature, 4-car, 80kW source, Twin-track tunnel
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Figure B.11: Visibility, 4-car, 80kW source, Twin-track tunnel
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Figure B.12: Carbon-monoxide concentration, 4-car, 80kW source, Twin-track tunnel
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B.5 CASE-05: 1-CAR, 1.5MW SOURCE, SINGLE-TRACK TUNNEL
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Figure A.1: Temperatures, 1-car, end door open (1.5MW source) 
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Figure B.13: Temperature, 1-car, 1.5MW source, Single-track tunnel
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Figure A.2: Visibility, 1-car, end door open (1.5MW source) 
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Figure B.14: Visibility, 1-car, 1.5MW source, Single-track tunnel
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Figure B.15: Carbon-monoxide concentration, 1-car, 1.5MW source, Single-track tunnel
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B.6 CASE-06: 1-CAR, 1.5MW SOURCE, TWIN-TRACK TUNNEL
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Figure B.16: Temperature, 1-car, 1.5MW source, Twin-track tunnel
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Figure B.17: Visibility, 1-car, 1.5MW source, Twin-track tunnel

290



 
 
 

A-2

 

 
 

 
 

 
 

 
 

 
 

 

 

Twin-track CO 

Ignition 

15 minutes 

20 minutes 

30 minutes 

10 minutes 

5 minutes 

Figure B.18: Carbon-monoxide concentration, 1-car, 1.5MW source, Twin-track tunnel
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B.7 CASE-07: 4-CAR, 1.5MW SOURCE, SINGLE-TRACK TUNNEL
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Figure B.19: Temperature, 4-car, 1.5MW source, Single-track tunnel
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Figure B.20: Visibility, 4-car, 1.5MW source, Single-track tunnel
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Figure B.21: Carbon-monoxide concentration, 4-car, 1.5MW source, Single-track tunnel
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B.8 CASE-08: 4-CAR, 1.5MW SOURCE, TWIN-TRACK TUNNEL
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Figure B.22: Temperature, 4-car, 1.5MW source, Twin-track tunnel
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Figure B.23: Visibility, 4-car, 1.5MW source, Twin-track tunnel
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Figure B.24: Carbon-monoxide concentration, 4-car, 1.5MW source, Twin-track tunnel
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Appendix C

CONE CALORIMETER MODELLING

C.1 CONE CALORIMETER MODELLING

For the analysis of fire development in a confined space, such as rail car interior, the ignition

properties and the heat release rates of the materials involved in fire should be analyzed. The

combustibility characteristics of passenger train car materials are measured using the Cone

Calorimeter setup. A sample set of measurements for rail car materials is published by the

National Institute of Standards and Technology (NIST) [7].

The Cone Calorimeter is a single test apparatus which provides a measurement of heat re-

lease rate (HRR), specimen mass loss, smoke production, and combustion gases. The ASTM

E 1354 standard for the Cone Calorimeter defines the design and operational details of the

apparatus. The general view of the Cone Calorimeter is given in Figure C.1.

The design and the data of Cone Calorimeter are based on an engineering understanding

of fire; therefore the device has wider applicability and better assessment of flammability

compared to the traditional test methods.

Test specimens are nominally 100x100mm and up to 50mm thick. For materials that expand

during the burning process, a wire grid is placed over the specimen surface to prevent the

material from expanding into the cone heater and increasing the burning rate and heat release

rate. Smoke measurements are made on the effluent flow by means of a helium-neon laser

beam projected across the exhaust duct. This results in an instantaneous measure of the optical

smoke density.
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5-2

Figure 5-1.  General View of the Cone Calorimeter (ASTM E 1354, ISO 5660)

To address these limitations, NIST developed a new and more practical instrument, known as the

Cone Calorimeter (Figure 5-1).  The Cone Calorimeter is a single test apparatus which provides a

measurement of HRR, specimen mass loss, smoke production, and combustion gases.  The 

ASTM E 1354 standard for the Cone Calorimeter defines the design and operational details of

the apparatus [1].  Many traditional devices for assessing flammability were not based on

realistic fire conditions, nor were measurements taken which have quantitative engineering

significance.  As a result, they could only be used to pass or fail a specimen, according to some

selected regulatory requirements.  

Because both its design and its data are firmly based on an engineering understanding of fire, the

Cone Calorimeter has wider applicability than other test methods.  It can be used to:

Figure C.1: General view of the Cone Calorimeter [7]

The characteristic data measurements obtained from the Cone Calorimeter include:

• Ignition time: a measure of how easily a material can be ignited,

• Time to peak HRR: a measure of the speed of fire growth,

• Peak HRR: a measure of how large a fire will result from a burning material,

• Specific extinction area: a measure of smoke production of the material, and

• Effective heat of combustion: a measure of the amount of heat released from a burning

material per unit mass of sample burned.

The British Standard BS 476 part 15 and International Standard ISO 5660 also give informa-

tion on Cone Calorimeter apparatus and explain the test procedure to measure the rate of heat

release of the materials [1, 12]. Figures C.2 and C.3 show the sectional view of the conical

heater and the overall view of the Cone Calorimeter, respectively. In the figures presented the

nominal dimensions in millimeters are also indicated.
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Figure C.2: Sectional view through the heater [1]

Figure C.3: Overall view of Cone Calorimeter apparatus [1]
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Based on the dimensions provided in BS 476 part 15, an FDS model of Cone Calorimeter

is built. For the purpose of the study, only the conical heater and the test specimen under

examination are modelled. The dimensions of the domain are defined as 0.2m x 0.2m x 0.2m,

and the cell edge length is selected to be 5.0mm in all three dimensions.

The cell edge length, used in the Cone Calorimeter model, is selected in agreement with

the nominal cell edge length used in the model to predict the heat release rate variation of

a train fire. The cell edge length in two models should be selected so that the fractions of

characteristic fire diameter over the nominal cell edge length in two models would be the

same.

The relation between the characteristic fire diameter and the heat release rate from a fire is

given as follows:

D∗ =

(
Q̇

1100

) 2
5

(C.1)

where D∗ is the characteristic fire diameter in meters, and Q̇ is the heat release rate from fire

in kW.

The nominal peak heat release rate from a train fire is predicted to be about 6.5MW. The

nominal cell edge length in computational domain used in the FDS simulations of a train fire

is 0.175m. The Cone Calorimeter simulations show that the peak heat release rate from the

specimen is about 1.0kW. Consequently, a nominal cell edge length of about 5.0mm is accept-

able in modelling the Cone Calorimeter. The grid size derivation is summarized in Table C.1.

The values of D∗/δx in two models should match for better representation. However, in order

to match 11.66, an edge length of 5.2mm should be used in the Cone Calorimeter model.

Since, an accuracy of 0.2mm in the grid size is unrealistic in terms of numerical computation,

a nominal cell edge length of 5.0mm is used in the Cone Calorimeter model.
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Table C.1: Comparison of grid sizes between the train fire domain and the Cone Calorimeter
domain

Train fire Cone Calorimeter
Q̇ (kW) 6500 1
D∗ (m) 2.04 0.06
δx (m) 0.175 0.005
D∗/δx 11.66 12

δx: nominal cell edge length

The FDS cone calorimeter model will be used to calibrate the properties of the combustible

materials to reflect the correct ignition time, and correct amount of heat release from the

materials in an event of fire in the carriage. The results of FDS cone calorimeter simulations

will be checked against the cone calorimeter experiments of combustible materials, and the

burning characteristics of the materials will be calibrated in the FDS input files. The cone

calorimeter model would allow simulating different set of materials to examine the effects of

material properties on the fire development. The prepared FDS model of the cone calorimeter

is shown in Figure C.4, with representations of computational grid and brief explanations.

 a. Front view of Cone Calorimeter b. Isometric view of Cone Calorimeter

Figure C.4: Views of the FDS Cone Calorimeter model
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The calibration process starts with setting the correct inner wall temperature of the cone to

get the required heat flux on the surface of the specimen. The combustible materials are

often tested at heat fluxes of 25 to 50kW/m2 measured at the surface of the specimen, as

recommended by the standards [1, 6, 12].

The inner wall temperatures of the cone, which would give the desired surface heat flux values

on the specimen, are determined after trial-error simulations . Table C.2 shows the estimated

wall temperatures of the cone calorimeter. During the prediction of the surface heat fluxes,

the specimen is assumed to be non-combustible to prevent any interference in the predicted

heat flux values due to the ignition of specimen.

Table C.2: Cone Calorimeter wall temperatures and predicted surface heat fluxes on specimen

Inner wall temperature Surface heat flux
of the cone (◦C) on specimen (kW/m2)

600 25
645 30
680 35
710 40
770 50

Once the temperature is adjusted to give the required heat flux on the specimen, the following

combustibility parameters are to be calibrated in the FDS cone calorimeter simulations against

the experimental data acquired:

• ignition temperature,

• the product of specific heat, thickness and density of the combustible (c δ ρ),

• maximum burning rate, and critical mass flux at ignition temperature,

• heat of vaporization, and heat of combustion.

The combustion properties of the materials, listed above, play a significant role in predicting

the flame spread within the rolling stock, since they would define whether the materials are

flame-retardant or could easily be ignited at low temperatures. Although the flammability

properties of the combustible materials are fixed for a certain material, the behavior of the

material changes under different surface heat fluxes.
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However, in an FDS simulation, only one set of material properties could be defined for com-

bustibles predicted under certain heat flux level. For example, a set of properties is selected

for seats, say calibrated under 30kW/m2 heat flux. Although the seats could behave in a dif-

ferent manner under various heat flux levels, a compromising value of surface heat flux, at

which the material properties are to be calibrated , should be selected in agreement with the

observations from the full-scale experiments.

It is reported in the literature [20] that at lower heat flux levels, the single representative

characteristic could lead slightly under-predicted heat release rate values, and would predict

earlier ignition. At higher heat flux levels, the representative characteristic could over-predict

heat release rate, but would delay the ignition. Consequently, as mentioned briefly in Section

4.2.5, in order to overcome this drawback, two additional properties for the combustibles,

namely critical mass flux and the maximum burning rate, are defined in the simulations. These

parameters would control the mass loss rate of the combustible surface at ignition temperature

and limit the burning rate to prevent excessive heat release rates.

The maximum burning rate is used to limit the mass loss rate of the fuel to its measured max-

imum. This parameter is often used to prevent excess pyrolysis to predict the correct amount

of heat release from the combustion of fuels. The ‘burning rate max’ parameter in FDS is

used to set the maximum heat release rate of a specimen in cone calorimeter simulations, in

accordance with the experimental data acquired.

As mentioned earlier in the text, only the seats and the floor are considered to be combustible

within the rolling stock that is being studied. The selection of surface heat flux levels, at which

the material properties are going to be calibrated, is based on the recommendations of British

Standards’ code of practice for fire precautions in the design and construction of passenger

carrying trains, BS 6853 [6]. The standard suggests that the burning characteristics of

• downward facing surfaces should be tested at a heat flux of 50kW/m2,

• vertical surfaces should be tested at a heat flux of 35kW/m2, and

• upward facing surfaces should be tested at a heat flux of 25kW/m2.
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It should be noted that although the standard provides guidance on testing, it may not always

be possible to apply the recommendations to the simulation work. For example, the passenger

seats consist both horizontal and vertical sections, namely bases and backs. Consequently, if

a set of material properties is to be used for seats in the simulations, an average surface heat

flux value is to be selected. Therefore, the material properties of the seats are calibrated at

30kW/m2 heat flux in this thesis.

According to the recommendations of BS 6853, the floor material should be tested at a surface

heat flux of 25kW/m2. However, the acquired experimental results only include a range of

surface heat flux values between 30kW/m2 and 50kW/m2. Once the experimental predictions

are investigated, it has been found out that the floor material has different burning character-

istics at 30kW/m2 than the remaining test results, which are all in agreement implicitly. The

experimental results of floor material tested at 30kW/m2 show a significant spike about 22nd

minute through the testing.

The proposed floor material, Tiflex/Plywood, for Class-378 rolling stock is composed of three

layers; Tiflex layer, an epoxy glue, and the plywood as the third layer. Bayer laboratories

noted that the spike predicted during the experiments at 30kW/m2 heat flux corresponds to

the stage when the epoxy glue starts to burn. Consequently, if these experimental results

were used in the simulations, the combustion characteristics would be based on burning of

the internal epoxy glue layer rather than the composite floor material. The heat release rate

results predicted from the experiments performed at surface heat flux levels of 35kW/m2 and

above do not show this behavior. In addition, the experimental results do show combustion of

all three layers of the composite floor. Consequently, the material properties of the floor are

calibrated at 35kW/m2 heat flux in this thesis.

Figure C.5 shows the results of FDS cone calorimeter simulation with the calibrated seat ma-

terial properties at 30kW/m2 surface heat flux, along with the acquired experimental results,

given for comparison.
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Figure C.5: Heat release rate per unit area, Seat material, FDS Cone Calorimeter calibration

Once the experimental results are examined, it can be seen that there are more than one peak

in the predicted variation of heat release rate. This is due to combustion of different layers of

materials in the composite form of passenger seat. However, since only one set of parameters

can be defined in FDS, the cone calorimeter simulations would only give one peak value for

heat release rate.

Consequently, the calibration process is based on the total energy released per unit area of the

specimen. In other words, although the peak values in heat release curves of simulation and

experimental data might not match, the area under the curves should reasonably agree each

other. Therefore, in the calibration of seat material, although the highest peak value and the

second peak are not achieved in the simulations, predicted results in FDS match reasonably

well with the experimental findings in terms of shape of the curve and the area under it.

Figure C.6 shows the results of FDS cone calorimeter simulation with the calibrated floor ma-

terial properties at 35kW/m2 surface heat flux, along with the acquired experimental results,

given for comparison.
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Figure C.6: Heat release rate per unit area, Floor material, FDS Cone Calorimeter calibration

Similar to the discussion above, since only one set of material properties can be defined for the

composite floor material, the peaks in heat release rate observed during experimental work can

not be obtained in FDS simulations. The three peaks predicted in the experiments correspond

to the combustion of three layers of the floor specimen. During calibration of floor material

in FDS, a representative peak heat release rate value and the trend of decay conditions are

sought. Once again, the material properties are selected so that the amount of energy released

in the experiments match reasonably well with the predictions of the simulations.

The calibrated material properties are given in Table C.3. The properties of non-combustible

surfaces, such as walls and ceiling, are kept as defined in the initial simulations, since they

represent reasonably well the non-combustible surfaces in Class-378 rolling stock.
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Table C.3: Material properties used in the final simulations

Combustible Materials Non-combustible Materials
Location Seats Floor Tunnel Walls Train Walls Train Ceiling Doors Windows
Material Compin/Pegasus Tiflex/Plywood Concrete Glass wool sandwich Laminated

between aluminum panels safety glass
Density, ρ (kg/m3) 121.4† 944.4† 2100 119 176 276 1380

Thermal conductivity 0.56� 0.12� 1.1 0.038 0.038 0.038 0.049
(W/mK)

Specific heat, c (kJ/kgK) 10.66* 0.234* 0.88 0.68 0.68 0.68 0.84
Thickness, δ (m) 0.0017* 0.0235* 0.7 0.1 0.06 0.035 0.023

Ignition temperature (◦C) 505* 560* - - - - -
Heat of vaporization 4000* 4340* - - - - -

(kJ/kg)
Effective heat of 11350* 15430* - - - - -

combustion (kJ/kg)
Maximum burning rate 0.0185* 0.018* - - - - -

(kg/m2s)
Critical mass flux 0.012* 0.009* - - - - -

(kg/m2s)
ρ c δ (kJ/m2K) 2.2* 5.2* - - - - -

†: Calculated from the Cone Calorimeter data by dividing the initial mass by the initial volume.
�: Derived from the books. [8, 10]
*: Calibrated through a set of FDS Cone Calorimeter simulations.
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In an FDS simulation, in addition to the combustible material properties, a chemical reaction

should be defined for the combustion, where the soot and carbon-monoxide yields can be

defined along with the amount of energy released per unit mass of oxygen consumed during

the combustion reaction.

In the initial and sensitivity simulations, the combustion reaction for the seat material was

used in agreement with the comments from the published research study, from which the

calibrated material properties were taken [20]. The reaction for the seat material, i.e. for FRP

Polyester, was given as:

C5.77H6.25O1.63 + 6.5175 (O2 + 3.76N2)→ 5.77 CO2 + 3.125 H2O + 24.5 N2

For this reaction, the following additional parameters were defined [20]:

• Soot yield: 0.062 kg/kg

• Carbon-monoxide yield: 0.0705 kg/kg

• Radiative fraction: 0.35

• Energy release per unit mass of oxygen consumed: 11900 kJ/kg.

In the final simulations, since the material properties are calibrated to reflect the combustible

surfaces in Class-378 rolling stock, the combustion reaction and the associated parameters

have to be revised accordingly.

The initial and sensitivity simulations show that the flame spread over the floor defines the

extent of the fire development, and indicates whether flashover conditions are achieved or

not. Consequently, it can be concluded that the fire development within the rolling stock is

governed by the combustion of the floor material. Following on from this discussion, the

combustion reaction is revised based on Tiflex/Plywood material as follows:

CH1.7O0.74 + 1.055 (O2 + 3.76N2)→ CO2 + 0.85 H2O + 3.97 N2

In the absence of detailed chemical composition of the Tiflex/Plywood floor material, the

chemical reaction for wood [10], given above, is used in the final simulations. It should be
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noted that the chemical composition has very little influence on the heat release rate variation

and onboard conditions predicted from the simulations.

The amount of energy release per unit mass of oxygen consumed for the assumed reaction is

calculated using the following equation [25]:

∆H ≈
νO2 MO2

ν f M f
∆HO2 (C.2)

where ∆H is the heat of combustion; 12400 kJ/kg for wood [10]; νO2 is the stoichiometric

coefficient of oxygen; 1.055 for the assumed reaction; and MO2 is the molecular weight of

oxygen; 32 g/mol. If the appropriate values for the stoichiometric coefficient of fuel; 1; and

molecular weight of fuel; 25.5 g/mol; are inserted in Equation C.2, then the energy release

per unit mass of oxygen consumed during this reaction can be found to be about 9370 kJ/kg.

The soot and carbon-monoxide yields during the combustion of seat and floor materials within

the Class-378 rolling stock are derived from the experimental cone calorimeter data. The

experiments have produced the following results:

• Compin/Pegasus seat tested at 30kW/m2 surface heat flux

– Mean carbon-monoxide yield: 0.067 kg/kg

• Tiflex/Plywood floor tested at 35kW/m2 surface heat flux

– Mean carbon-monoxide yield: 0.031 kg/kg

The relationship between the carbon-monoxide yield and the soot yield is given by the fol-

lowing equation [25]:

yCO =
12 x

M f ν f
0.0014 + 0.37 ys (C.3)

where x is the number of carbon atoms in a fuel molecule, and yCO and ys are the carbon-

monoxide and soot yields, respectively. It should be noted that Equation C.3 refers to well-

ventilated fires. In the absence of reported data for soot production during the combustion

of seat and floor materials in cone calorimeter experiments, soot yield for the combustion

reaction will be estimated from Equation C.3 and defined in the final simulations.
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As noted earlier, only one combustion reaction can be defined in an FDS simulation. How-

ever, the rolling stock simulation model incorporates two combustible surfaces, seat and floor,

each of which has different yields of hazardous combustion products. Consequently, a com-

promising value for carbon-monoxide and soot yields are estimated and input in the FDS

simulations.

The carbon-monoxide concentration for the reaction in the final simulations is defined based

on the area-averaged yields of the two combustibles. The carbon-monoxide concentration is

calculated, based on a DMOS type carriage, to be:

yCO−total =
yCO−seats · Aseats + yCO− f loor · A f loor

Aseats + A f loor

yCO−total =
0.067 · 22.7 + 0.031 · 39.6

22.7 + 39.6
= 0.044

The soot yield is calculated using Equation C.3 and area-averaged carbon-monoxide yield as:

ys = (yCO −
12 x

M f ν f
0.0014) / 0.37

ys = (0.044 −
12 · 1

25.5 · 1
0.0014) / 0.37 = 0.117

To summarize, the following parameters have been used in the final simulations for the com-

bustion reaction:

• Soot yield: 0.117 kg/kg

• Carbon-monoxide yield: 0.044 kg/kg

• Radiative fraction: 0.37 [10]

• Energy release per unit mass of oxygen consumed: 9370 kJ/kg.
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