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ABSTRACT

ELECTRONIC PROPERTIES OF DYE MOLECULES ADSORBED ON
ANATASE-TITANIA SURFACE FOR SOLAR CELL APPLICATIONS

Torun, Engin

M.S., Department of Physics

Supervisor : Yrd. Doc. . Dr. Hande TOFFOLI

Co-Supervisor : Prof. Dr. S. inasi Ellialtıog̃lu

August 2009, 59 pages

Wide band gap metal oxides have recently become one of the most investigated materials in

surface science. Among these metal oxides especially TiO2 attracts great interest, because of

its wide range applications, low cost, biocompatibility and ease of analysis by all experimental

techniques. The usage of TiO2 as a component in solar cell technology is one of the most

investigated applications of TiO2 . The wide band gap of TiO2 renders it inefficient for isolated

use in solar cells. TiO2 surface are therefore coated with a dye in order to increase efficiency.

This type of solar cells are called dye sensitized solar cells .

The efficiency of dye sensitized solar cells is directly related with the absorbed light portion of

the entire solar spectrum by the dye molecule. Inspite of the early dyes, recent dye molcules,

which are called wider wavelength response dye molecules, can absorb a larger portion of

entire solar spectrum. Thus, the efficiency of dye sensitized solar cells is increased by a

considerably amount.

In this thesis the electronic structure of organic rings, which are the fundamental components

of the dye molecules, adsorbed on anatase (001) surface is analyzed using density functional
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theory. The main goal is to obtain a trend in the electronic structure of the system as a function

of increasing ring number. Electronic structure analysis is conducted through band structure

and density of states calculations. Results are presented and discussed in the framework of

dye sensitized solar cells theory.

Keywords: density functional theory , dye sensitized solar cells , organic rings, titanium

dioxide, anatase
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ÖZ

GÜNES. PİLİ UYGULAMALARI İC. İN BOYA MOLEKÜLLERİ ADSORBE EDİLMİS.
ANATAZ-TİTANYA YÜZEYİNİN ELEKTRONİK ÖZELLİKLERİ

Torun, Engin

Yüksek Lisans, Fizik Bölümü Bölümü

Tez Yöneticisi : Yrd. Doc. . Dr. Hande TOFFOLI

Ortak Tez Yöneticisi : Prof. Dr. S. inasi Ellialtıog̃lu

Ag̃ustos 2009, 59 sayfa

Genis. bant aralıklı metal oksitler yüzey bilimde son zamanlarda üzerinde en c.ok calıs.ılan

malzeme olmaya bas.lamıs.tır. Bu metal oksitler arasında en büyük ilgiyi, genis. uygulama alan-

ları, düs.ük maliyet, bio-uyumluluk ve bütün deneysel tekniklerle kolaylıkla incelenebilmesi

gibi özellikleri nedeni ile TiO2 c.ekmektedir. TiO2 ’nin en yog̃un olarak konu edildig̃i alan-

ların bas.ında günes. pili kullanımı gelmektedir. Genis. bant aralıg̃ı nedeni ile verimlilig̃i yeter-

siz bulunan TiO2 ’nin verimini artırmak ic. in TiO2 yüzeyi ıs.ık harmanlayıcı boya maddesi ile

kaplanması gerekmektedir. Bu tür günes. pillerine boya sentezli günes. pilleri denmektedir.

Günes. pillerinin verimlilig̃i, boya maddesinin günes. spektumunun ne kadarını absorbe ettig̃i

ile ilis.kilidir. Gec.mis.te kullanılan boya maddelerinin aksine, genis. dalga boyuna duyarlı boya

maddeleri günes. spektumunun daha büyük bir miktarını absorbe etmektedir. Bu nedenle,

boya sentezli günes. pillerinin verimlilig̃i önemli ölc. üde artmıs.tır.

Bu tezde TiO2 anataz (001) yüzeyine bag̃lanmıs., boya maddelerinin biles.enlerinden biri olan

organik moleküllerin elektronik özellikleri yog̃unluk fonksiyoneli teorisi(DFT) ile incelenmis.tir.

Bu is.teki asıl amac. sistemin elektronik özelliklerinde artan halka sayısına göre bir trend

yakalamaya c.alıs.maktır. Sistemlerin elektronik özellikleri bant yapıları ve fiziksel durum
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yog̃unlug̃u yardımı ile incelenmis., sonuc. lar boya sentezli günes. pilleri teorisi c.erc.evesinde

tartıs.ılmıs.tır.

Anahtar Kelimeler: yog̃unluk fonksiyoneli teorisi, boya sentezli günes. pilleri, organik moleküller,

titanyum dioksit, anataz
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CHAPTER 1

INTRODUCTION

Due to their wide range of applications, experimental and theoretical studies on wide band gap

metal oxides have gained acceleration in recent years. Among these wide band gap metal ox-

ides TiO2 has become one of the most investigated metarials in surface science. Its wide range

of applications, low cost, biocompatibility and ease of analysis by all experimental techniques

make TiO2 a desirable metal oxides. TiO2 is used mostly in photocatalytic applications, solar

cell applications and electric devices, in addition it is used as a gas sensor, white pigments,

biometarials, memory devices and optical coatings [1, 2].

One of the most investigated applications of TiO2 is its usage as a component in solar cell

technology. Due to its wide band gap, TiO2 absorbs light in the near ultraviolet region. This

is a disadvantage for solar cell applications because this region is a small portion of the entire

solar spectrum. In order to increase its efficiency TiO2 should be coated with light harvesting

dye materials [3, 4]. This kind of solar cell is called dye sensitized solar cells and it was first

investigated by Grätzel using a few nanometers of TiO2 coated with a low cost light harvesting

dye molecules, for this reason the dye sensitized solar cells is also known as the Grätzel cell

[5].

The efficiency of conversion of solar energy to electric energy in a dye sensitized solar cell

is mostly proportional to the efficiency of the light harvesting dye coating the molecule un-

derneath. Early dyes, were sensitive to photons which are in the blue and ultraviolet region.

However, recent studies show that the efficiency of dye sensitized solar cells is increased by

a considerable amount by introducing wider wavelength response dye molecules. The wider

wavelength response dye molecules are very important for efficiency of dye sensitized solar

cells because they can absorb a larger portion of the solar spectrum than one wavelength sen-

sitive dye molecules so they have higher solar energy to electric energy conversion efficiency

1



[6, 7].

Another important issue to consider while constructing dye sensitized solar cells is the par-

ticular form of TiO2 used, since some TiO2 polymorphs do not have photocatalysis and pho-

tovoltaic properties. In nature, TiO2 can be found in mainly three different crystal struc-

tures: rutile, anatase and brookite. Rutile is the most stable crystal form of TiO2 , while the

other crystal forms can be converted to rutile by heating. Another crystal form of TiO2 is

anatase, which is widely used in photovoltaic devices because TiO2 nanoparticles are formed

in metastable anatase form instead of more stable rutile form. Unlike the other forms brookite

does not have photovoltaic and photocatalysis properties and it is rarely found in nature [1, 2].

The surfaces of most crystals are often found to enrich the material properties by introducing

new aspects. Especially, when the size of the material is decreased, the surface properties

appears more dominantly than the bulk properties. For instance, the photovoltaic and pho-

tocatalysis properties of TiO2 emerge more clearly when TiO2 forms as nanomaterials. In

addition, the surface properties of materials change when the facet of the surface changes,

for example the most stable facet of anatase form of TiO2 is (101) surface, however the most

active facet of it is (001) surface. Thus, in photovoltaic and photocatalysis devices anatase

(001) surface is widely used [2, 8, 9].

In the light of above discussions, in this thesis the electronic structure of organic rings, which

are the components of dye molecules, adsorbed on TiO2 anatase (001) surface is investigated

by using density functional theory (DFT). The organic rings are so inert that they can be

bonded to the surface only through anchor group molecules. Formic acid (RCOOH) and

phosphonic acid (RPO3H2), which are the most widely used anchor group molecules are

used as examples in this thesis. These anchors are adsorbed on surfaces with high binding

energy and they have ultrafast electron transfer property, favoring their usage as the anchor

molecules in this and other [2, 3, 6] studies. The electronic structure of the organic molecules

which have one to five rings adsorbed on TiO2 anatase [001] surface using two anchors is

analyzed separately. The aim of this work is to obtain a trend in the electronic property of

organic molecules as a function of number of rings [4, 10].

This thesis is composed of five chapters. The second chapter is a brief description of the theo-

retical method, namely DFT. In the third chapter, the crystal properties of TiO2 and DFT cal-

culations on bulk anatase and its [001] surface are introduced. In chapter four, the electronic

2



structure calculation results of linear series organic rings are given. The thesis is concluded

in chapter five with conclusion and future works.
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CHAPTER 2

DENSITY FUNCTIONAL THEORY

In physics, in order to understand the electronic structure of matter there are lots of approaches

such as tight binding, hartree-fock or free electron model. DFT is one of the most popular

quantum mechanical approaches to matter among them, it is used to calculate the binding

energy of molecules, band structure of crystals, superconductivity and magnetic properties of

matters successfully [11].

2.1 MANY-BODY HAMILTONIAN

To obtain information about a physical system the wavefunction of that system should be

found. The wavefunction can be calculated by solving Schrödinger’s equation [12].

Ĥψ(~r) = Eψ(~r) (2.1)

For the simplest case, if an electron is moving under influence of coulombic potential, the

Schrödinger’s equation become.

−

[
~2

2me
∇2
~r +

e2

4πε0r

]
ψ(~r) = Eψ(~r) (2.2)

In this case, this wavefunction can be written easily. However, bigger systems such as atoms

other than hydrogen atom as well as molecules and solids are analyzed, this wavefunction can

not be written so easily. In order to get many-body Hamiltonian some extra terms should be

added to the single body Hamiltonian. Then, using many-body Hamiltonian the Schrödinger’s

equation should be solved to find the wavefunction of system. For the general case the many-

body Hamiltonian has two parts:

Ĥ = T̂ + V̂ (2.3)

4



The kinetic energy of the particles T̂ and the potential energy V̂ , which includes the interaction

energy of the particles in the system.

The kinetic energy part contains the sum of kinetic energies of electrons and nuclei. However,

the nucleus is hundreds times heavier than electrons, so if there is a change in the position

of nucleus the electrons can arrange themselves immediately to the new position of nucleus.

It means that change in position of nuclei do not effect the electrons so their contribution to

kinetic energy term is neglected. This is called Born-Oppenheimer approximation [13].

The potential energy term contains three kinds of interactions; nucleus-nucleus , nucleus-

electron , electron-electron interaction.

It is assumed that the nuclei are classical particles in nucleus-nucleus interaction, and they

interact with Coulombic forces. The nucleus-electron interaction is also a Coulombic inter-

action; it is assumed that each electron interacts with nucleus separately. This part is replaced

by pseudopotentials in practise in DFT. The electron-electron interaction part is the part that

makes many-body Hamiltonian hard to handle and it is also a Coulombic interaction. The

electronic calculation methods are utilized to make this part simpler. The quality of calcula-

tion is mainly based on how well this part is approximated.

Considering above information, the many-body Hamiltonian can be written in a closed form

Ĥ = T̂e + V̂ne + V̂ee + V̂nn (2.4)

There are Ne electrons and Nn nuclei in the system then the kinetic energy part of many-body

Hamiltonian is [14]

T̂e = −
~2

2me

Ne∑
i

∇2
i (2.5)

The nucleus-electron interaction in the potential part is written as

V̂ne = −
1

4πε0

Nn∑
I

Ne∑
i

QIe

|~ri − ~RI |
(2.6)

here ~ri defines the position of electrons and ~RI defines the position of nuclei also QI = ZIe.

There are Nn nuclei and Ne electrons in the system so the total interaction is obtained by

summing up all the one to one interaction. The rest of the terms in the potential part V̂ee and
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V̂nn are simple Coulombic interactions

V̂ee =
1
2

e2

4πε0

Ne∑
i

Ne∑
j,i

1
|~ri − ~r j|

(2.7a)

V̂nn =
1
2

e2

4πε0

Nn∑
I

Nn∑
J,I

ZIZJ

|~RI − ~RJ |
(2.7b)

The nuclei do not interact with themselves. Thus, in the inner sum the i = j and I = J terms

are excluded. Also 1
|~ri−~r j |

and 1
|~r j−~ri |

terms are the same, however, in the above sum both of

them are counted which is incorrect, so 1
2 factor is introduced to exclude the self interaction.

Same consideration holds for the second equation as well. Finally, everything can be put

together to get the many-body Hamiltonian .

Ĥ = −
~2

2me

Ne∑
i

∇2
i +

e2

4πε0

[
−

Nn∑
I

Ne∑
i

ZI

|~ri − ~RI |
+

1
2

Ne∑
i

Ne∑
j,i

1
|~ri − ~r j|

+
1
2

Nn∑
I

Nn∑
J,I

ZIZJ

|~RI − ~RJ |

]
(2.8)

This equation seems crowded due to the usage of SI units, where energy is in Joule and length

is in meters. When atomic units are used, where energy is in Hartree and the length is in

Bohr, this equation becomes much simpler. A Hartree is defined as ground state energy of an

electron in the hydrogen atom and a Bohr is its average ground state radius [15].

a0 =
4πε0~2

mee2 (2.9a)

Eh =
~2

mea2
0

=
e2

4πε0
(2.9b)

In order to rescale the many-body Hamiltonian by a0, 1
|r−r′ |

should be replaced with 1
a0 |r−r′ |

and the Laplacian operator in kinetic energy term will should be replaced with ∇
2

a2
0
. Then the

many-body Hamiltonian becomes,

Ĥ = −
~2

2mea2
0

Ne∑
i

∇2
i +

e2

4πε0a0

[
−

Nn∑
I

Ne∑
i

ZI

|~ri − ~RI |
+

1
2

Ne∑
i

Ne∑
j,i

1
|~ri − ~r j|

+

1
2

Nn∑
I

Nn∑
J,I

ZIZJ

|~RI − ~RJ |

] (2.10)

If the second constant is divided and multiplied by me
~2 and Eq. 2.9 is used then many-body

Hamiltonian will be

Ĥ = EH
ˆ̃H (2.11)

The hamiltonian is rescaled by EH and the new Hamiltonian becomes ˆ̃H finally, the rescaled

hamiltonian in atomic units is,

Ĥ = −
1
2

Ne∑
i

∇2
i −

Nn∑
I

Ne∑
i

ZI

|~ri − ~RI |
+

1
2

Ne∑
i

Ne∑
j,i

1
|~ri − ~r j|

+
1
2

Nn∑
I

Nn∑
J,I

ZIZJ

|~RI − ~RJ |
(2.12)
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The many-body Hamiltonian is simplyfied by writing it in atomic units but its exact solution

is still impossible to get. In order to find the solution of many-body Hamiltonian there are

two basic classes of methods in literature; density based approaches and wavefunction based

approaches, DFT approach is one of the best density based approaches .

2.2 TOTAL ENERGY IN TERMS OF DENSITY

It was stated before that solving many-body Schrödinger equation for ground state energy and

ground state wavefunction is impossible to handle for some systems. The aim in DFT is to

eliminate wavefunction dependence by writing all terms in terms of density.

2.2.1 Definition of density

Electron density n(~r) is the fundamental observable of the system and it can be found using

single-particle density operator.

n̂(~r) =
∑

i=1,N

δ(~r − ~ri) (2.13)

to find the density the expectation value of this operator should be found using many body

wavefunction.

n(~r) = 〈ψ|n̂(~r)|ψ〉 =
∑

i=1,N

∫
δ(~r − ~ri)|ψ(~r1, ..., ~rN)|2d~r1...d ~rN (2.14)

using the properties of dirac delta function Eq. 2.14 can be written as:

n(~r) =

∫
|ψ(~r, ~r2, ..., ~rN)|2d~r2d~r3...d ~rN +

∫
|ψ(~r1,~r, ..., ~rN)|2d~r1d~r3...d ~rN + ... (2.15)

In Eq. 2.15 there are N same integral so;

n(~r) = N
∫
|ψ(~r, ~r2, ..., ~rN)|2d~r2d~r3...d ~rN (2.16)

here ~r represents position of each electron. Also integrating the density over all space will

give the number of electrons. ∫
d~rn(~r) = N (2.17)

assuming that the wavefunction is normalized.

7



2.2.2 Energy in terms of density

As it was mentioned before the many-body Hamiltonian for a many-body system was

Ĥ = T̂e + V̂ne + V̂ee + V̂nn (2.18)

If the last term is taken as a constant, the electronic Hamiltonian is

Ĥe = T̂e + V̂ne + V̂ee (2.19)

In atomic units electronic Hamiltonian can be written as,

Ĥe = −
1
2

Ne∑
i

∇2
i −

Nn∑
I

Ne∑
i

ZI

|~ri − ~RI |
+

1
2

Ne∑
i

Ne∑
j,i

1
|~ri − ~r j|

(2.20)

The energy value of this electronic hamiltonian can be found by calculating the expectation

value of it. The expectation value of Ĥe is calculated using many body wavefunction and

it is assumed that this many body wavefunction is calculated from many-body Schrödinger

equation .

〈ψ(~r1, ...,~rn)|Ĥe|ψ(~r1, ...,~rn)〉 = 〈ψ(~r1, ...,~rn)|T̂e + V̂ne + V̂ee|ψ(~r1, ...,~rn)〉 (2.21)

This expectation value can be written as

〈ψ(~r1, ...,~rn)|Ĥe|ψ(~r1, ...,~rn)〉 = 〈ψ(~r1, ...,~rn)|T̂e|ψ(~r1, ...,~rn)〉 + 〈ψ(~r1, ...,~rn)|V̂ne|ψ(~r1, ...,~rn)〉

+〈ψ(~r1, ...,~rn)|V̂ee|ψ(~r1, ...,~rn)〉

(2.22)

and it can be written in terms of density term by term. The first term, which is kinetic energy,

has second order derivative so it is hard to collect the wavefunction and its conjugate to form

a simple norm squere.

〈ψ(~r1, ...,~rn)|T̂e|ψ(~r1, ...,~rn)〉 = −
1
2

Ne∑
i

∫
ψ(~r1, ...,~rn)∇2

i ψ(~r1, ...,~rn) (2.23)

To write the kinetic energy term in terms of density an important assumption is made, which

is that the density can be written in terms of single particle orbitals φn(~r).

n(~r) =

Ne∑
n

|φn(~r)|2 (2.24)

Eq. 2.24 says that instead of considering the system as a many body system, it can be consid-

ered as collection of single particles. Thus, the density of many body system can be written

in terms of single body orbitals. Note that, the ground state density of the collection of sin-

gle particle system is the same as the real system. These single particle orbitals are called

Kohn-Sham orbitals and they are formed using slater determinant.
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2.2.2.1 Slater determinant

Using Kohn-Sham orbitals the simplest many body wavefunction can be written as

Ψ(~x1, ~x2, ..., ~xN) = φ1(~x1)φ2(~x2)...φN(~xN) (2.25)

For the generality the ~xi is the generalized coordinate which contains spin part and spatial

part. However, this wavefunction is not satisfactory for the fermions because it fails to satisfy

antisymmetry condition. This condition states that fermion wavefunction change sign under

odd permutations.

P̂i jΨ(~x1, ..., ~xi, ~x j, ..., ~xN) = Ψ(~x1, ..., ~x j, ~xi, ..., ~xN) = −Ψ(~x1, ..., ~xi, ~x j, ..., ~xN) (2.26)

Here P̂i j is permutation operator. This condition will be satisfied when many body wavefunc-

tion is written as a determinant which is called Slater determinant [16].

Ψ(~x1, ~x2, ..., ~xN) =
1
√

N!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(~x1) φ2(~x1) ... φN(~x1)

φ1(~x2) φ2(~x2) ... φN(~x2)
...

...
...

...

φ1(~xN) φ2(~xN) ... φN(~xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.27)

This determinant can be written as

N!∑
i

(−1)P(i1,i2,...,iN )φi1(~x1)φi2(~x2)...φiN (~xN) (2.28)

and the wavefunction becomes

Ψ(~x1, ~x2, ..., ~xN) = −
1
√

N!

N!∑
i

(−1)P(i1,i2,...,iN )φi1(~x1)φi2(~x2)...φiN (~xN) (2.29)

There is N! terms in the determinant so the sum runs from one to N! and each one is multiplied

by one or minus one depending on the parity of the permutation. If it is odd permutation then

the terms get a minus one in front of them and if it is even then the constant will be one. Thus,

the wavefunction satisfies the antisymmetry conditions when it is writen as Slater determinant.

Due to the derivative in the kinetic energy term, it can not be written in terms of density but it

can be written in terms of Kohn-Sham orbitals by using the assumption in Eq.2.24.

T = −
1
2

Ne∑
n

∫
d~rφ∗n(~r)∇2φn(~r) + ∆T (2.30)
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The kinetic energies of Kohn-Sham orbitals obviously are not equal to the real many body

kinetic energy. Thus, the kinetic energy term is written in terms of single particle kinetic

energy term and a correction. When the energy is tried to be minimized with respect to

density this will not be a problem since minimization with respect to complex conjugates of

Kohn-Sham orbitals will be equal to the minimization with respect to density.

The second term in the electronic Hamiltonian which should be written in terms of density

is the nucleus electron potential energy. This has no derivative so the wavefunction and its

conjugate can be written as a simple norm-square.

〈ψ(~r1, ...,~rN)|V̂ne|ψ(~r1, ...,~rN)〉 = Ene = −

Ne∑
i

Nn∑
I

∫
ZI

|~ri − ~RI |
|ψ(~r1, ...,~rN)|2d~r1...d~rN (2.31)

It can be expanded over electron index

Ene = −

Ne∑
I

[ ∫ ZI

|~r1 − ~RI |
|ψ(~r1, ...,~rN)|2d~r1d~r2...d~rN+∫

ZI

|~r2 − ~RI |
|ψ(~r1, ...,~rN)|2d~r1d~r2...d~rN + ...

(2.32)

These integrals can be seperated

Ene = −

Ne∑
I

[ ∫ ZI

|~r1 − ~RI |
d~r1

∫
|ψ(~r1, ...,~rN)|2d~r2d~r3...d~rN+∫

ZI

|~r2 − ~RI |
d~r2

∫
|ψ(~r1, ...,~rN)|2d~r1d~r3...d~rN + ...

] (2.33)

The second integral at each term is the definition of density so this equation can be written as

Ene = −
1

Ne

Ne∑
I

[ ∫ ZI

|~r1 − ~RI |
d~r1n(~r1) +

∫
ZI

|~r2 − ~RI |
d~r2n(~r2) + ...

]
(2.34)

It is assumed that the ~ri values can be replaced by dummy variables so all density terms

becomes equal.

Ene = −

Ne∑
I

∫
n(~r)

ZI

|~r − ~RI |
d~r =

∫
n(~r)Vne(~r)d~r (2.35)

The final term in the electronic Hamiltonian which should be written in terms of density is

the electron electron potential energy term.

〈ψ(~r1, ...,~rN)|V̂ee|ψ(~r1, ...,~rN)〉 = Eee =

Ne∑
i

Ne∑
i, j

∫
1

|~ri − ~r j|
|ψ(~r1, ...,~rN)|2d~r1...d~rN (2.36)

the terms can be expanded over electron index

Eee =
1
2

[" 1
|~r1 − ~r2|

d~r1d~r2

∫
|ψ(~r1, ...,~rN)|2d~r3d~r4...d~rN+"

1
|~r1 − ~r3|

d~r1d~r3

∫
|ψ(~r1, ...,~rN)|2d~r2d~r4...d~rN + ...

] (2.37)
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The second integral at each term is similar to the definition of density. Using same considera-

tion which is used when writing the nucleus electron interaction the electron electron energy

can be written as

Eee =
1
2

1
N2

e

[" n(~r1,~r2)
|~r1 − ~r2|

d~r1d~r2 +

"
n(~r1,~r3)
|~r1 − ~r3|

d~r1d~r3 + ...
]

(2.38)

Again the variables in the definition of density can be replaced by dummy indices so this

equation becomes

Eee =
1
2

[" n(~r,~r′)
|~r − ~r′|

d~rd~r′
]

(2.39)

Here n(~r,~r′) means the probability of being one electron at point ~r and the other being at ~r′

. Because of this term the many body problem is hard to solve. In addition to this, DFT

does not support two particle density, so this term should be approximated considering two

electrons are uncorrelated.

n(~r,~r′) = n(~r)n(~r′) + ∆n(~r,~r′) (2.40)

Two particle density is written as product of one particle densities plus a correction. Consid-

ering this approximation, the electron electron energy can be written with a correction term.

Eee =
1
2

"
n(~r)n(~r′)
|~r − ~r′|

d~rd~r′ + ∆Eee (2.41)

When all terms are put together, the ground state electronic energy can be written as

Ee = −
1
2

Ne∑
n

∫
d~rφ∗n(~r)∇2φn(~r)+

∫
n(~r)Vne(~r)d~r+

1
2

"
n(~r)n(~r′)
|~r − ~r′|

d~rd~r′+∆Eee+∆T (2.42)

The last two terms can be collected under one term which is called the exchange-correlation

term.

Exc = ∆Eee + ∆T (2.43)

2.3 THE HOHENBERG-KOHN THEOREMS

The Hohenberg-Kohn theorems are the most important theorems for DFT because they make

it possible. The first Hohenberg-Kohn theorem states that if the ground state electron density

of a system is known, then any ground state property can be found [17]. It is assumed that

there are N electrons in the system which move under influence of an external potential. The

Hamiltonian of this system can be written as Eq. 2.20, considering the effect of nucleus on
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electrons as external potential

−

Nn∑
I

Ne∑
i

ZI

|~ri − ~RI |
=

N∑
i=1

Vext(~ri) (2.44)

due to simplify the last term of equation 2.20, it can be written as

1
2

Ne∑
i

Ne∑
j,i

1
|~ri − ~r j|

= V(~r1,~r2, ...,~rN) (2.45)

Then the Hamiltonian of N electron system which moves under influence of external potential

is

Ĥ = −
1
2

N∑
i

∇2
i +

N∑
i=1

Vext(~ri) + V(~r1,~r2, ...,~rN) (2.46)

It is assumed that there are two different potentials Vext,1 and Vext,2 acting on the same system

seperately, so there should be two different hamiltonian. It is also assumed that these two

potentials are differed by more than a constant.

Ĥ1 = −
1
2

N∑
i

∇2
i +

N∑
i=1

Vext,1(~ri) + V(~r1,~r2, ...,~rN) (2.47a)

Ĥ2 = −
1
2

N∑
i

∇2
i +

N∑
i=1

Vext,2(~ri) + V(~r1,~r2, ...,~rN) (2.47b)

Also there should be two different wavefunctions for the ground states ψ1 and ψ2.

Ĥ1ψ1 = E1ψ1 (2.48a)

Ĥ2ψ2 = E2ψ2 (2.48b)

Here ψ1 , ψ2. However, the basic assumption is that ψ1 and ψ2 give the same density.

n(~r) = 〈ψ1|n̂(~r)|ψ1〉 = 〈ψ2|n̂(~r)|ψ2〉 (2.49)

Then the variational principle says that there is no wavefunction ψ which can give less energy

than the ground state wavefunction of each Hamiltonian.

〈ψ1|Ĥ1|ψ1〉 = E1 < 〈ψ|Ĥ1|ψ〉 (2.50)

The random wavefunction can be chosen as ψ2 ,

〈ψ2|Ĥ1|ψ2〉 > E1 (2.51)

Ĥ2 can be added to and substracted from the first term of 2.51. Then, using Eq. 2.47 and the

definition of density Eq. 2.51 can be written as

E1 − E2 <

∫
n(~r)

[
Vext,1(~r) − Vext,2(~r)

]
d~r (2.52)
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The same procedure can be used in the case of changing ψ1 with ψ2

E2 − E1 <

∫
n(~r)

[
Vext,2(~r) − Vext,1(~r)

]
d~r (2.53)

The equations 2.52 and 2.53 are in a contradiction. These two equations can not be true

simultaneously. This means that the basic assumption; ψ1 and ψ2 give the same density, is

not correct. The conclusion of first Hohenberg-Kohn theorem is that two different external

potentials can not produce the same electron density [15]. The density is uniquely determined

for the external potential. Thus, the ground state properties of interacting particles system can

be uniquely defined by only knowing the electron density.

The second Hohenberg-Kohn theorem is based on variational principle. It is considered that

the treatment of kinetic energy and the internal potential energy is the same for all systems.

Thus, these two energies can be assigned to universial functional F[n]. Then the electronic

energy can be written as

Ee[n] = F[n] +

∫
Vext(~r)n(~r) (2.54)

This energy is equal to the ground state energy if n(~r) is the ground state electron density and

ψ is the ground state wavefunction. Thus, the ground state electronic energy can be written as

Ee[n] = minψ→n〈ψ|Ĥe|ψ〉 (2.55)

Then a different density n′(~r) can be used instead of n(~r). Since the densities are different,

they can not be constructed from same wavefunctions. Using the new density the electronic

energy is

Ee[n′] = minψ′→n′〈ψ
′|Ĥe|ψ

′〉 (2.56)

The new wavefunction can not be the ground state of the system so the expectation value

electronic Hamiltonian should give a higher energy than the exact ground state energy.

Ee[n′] > Ee[n] (2.57)

The conclusion of second Hohenberg-Kohn theorem is that the electronic energy can be writ-

ten in terms of density and the correct density that minimizes the electronic energy is then

ground state density. If the universial functional F[n] is known and it is simple then determin-

ing ground state energy and density will be easier. Throught the proof of each Hohenberg-

Kohn theorems it is considered that the energy levels are non-degenerate. If they are degen-

erate, then the first theorem can not be proven.
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2.4 KOHN-SHAM EQUATIONS

Practical usage of Hohenberg-Kohn theorems are provided by Kohn and Sham [18]. The

second Hohenberg-Kohn theorem states that for the exact ground state density the electronic

energy Ee[n] will be minimum. Thus, change in density do not make any variation to the

ground state energy

δEe[n] ≡ Ee[n + δn] − Ee[n] = 0 (2.58)

assuming the change in n do not change the total number of electrons. Then using Lagrange

multipliers method this equation can be written as

δ
[
Ee[n(~r)] −

∑
i, j

λi, j(〈φi|φ j〉 − δi j)
]

= 0 (2.59)

Using the properties of functional derivatives this equation becomes

δ

δφ∗i (~r)
[
Ee[n(~r)] −

∑
i, j

λi, j(〈φi|φ j〉 − δi j)
]

= 0 (2.60)

The main idea was minimization of total energy with respect to density but kinetic energy

term can not be written in terms of density so it is prefered to perform the minimization with

respect to complex conjugate of orbitals instead of density. As it was stated before both of

them give the same result, then this equation can be written

δ

δφ∗i (~r)

[
−

1
2

Ne∑
n

∫
d~rφ∗n(~r)∇2φn(~r)

]
+

δ

δn(~r)

[ ∫
n(~r)Vne(~r)d~r+

1
2

"
n(~r)n(~r′)
|~r − ~r′|

d~rd~r′ +
∫

d~rn(~r)εxc(n(~r))
]
δn(~r)
δφ∗i (~r)

= εiφi(~r)

(2.61)

Again using the properties of functional derivative and considering εxc(n(~r)) is also a func-

tional of n(~r) Eq. 2.61 becomes,

−
1
2
∇2φi(~r) +

[
Vne(~r) +

∫
n(~r′)
|~r − ~r′|

d~r′ + εxc[n(~r)] + n(~r)
δεxc[n(~r)]
δn(~r)

]
φi(~r) = εiφi(~r) (2.62)

In fact equation 2.62 is a set of equations. If they are solved simultaneously, they represent

the many-particle system in terms of single particle orbitals. Second term in the parenthesis

is called Hartree potential, the third and the final terms are called exchange correlation poten-

tial. All the terms in the parenthesis can be assigned to Ve f f . Then each equation becomes

Schrödinger like equations.

[T̂ + Ve f f ]φ(~r) = εiφi(~r) (2.63)
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This set of equation is called Kohn-Sham equations. The trick of Kohn-Sham equations is that

instead of the real many particle system, a fictitious system of non-interacting particles which

has the same energy and density as the real system is considered and these non-interacting

particles move under external potential Ve f f [15]. The difference between each Kohn-Sham

equation and Schrödinger equation is that the Ve f f directly depends on density and indirectly

depends on orbitals. This situation is a little unusual because if there is a change in orbitals

then the potential which depends on orbitals will also change so, Kohn-Sham set of equations

should be solved self-consistently. The eigenvalues of Kohn-Sham equations do not have a

significance since considering the interacting many particle system as a collection of nonin-

teracting single-particle systems is not correct. However, the Kohn-Sham orbitals give quite

accurate results for description of band structures and bonding characters.

2.5 PLANEWAVE EXPANSION

In order to solve Kohn-Sham equations easily, it should be expanded in terms of suitable basis,

for example planewave basis. Then, it should be converted to matrix equation in reciprocal

(momentum,coefficient) space.

2.5.1 Reciprocal space

The solids are actually finite systems with bounding surfaces. However, they are considered

as infinite systems for practical purposes. This consideration imposes periodicity in all three

dimensions for the wavefunction.

ψ(~r) = ψ(~r + N1~a1) = ψ(~r + N2~a2) = ψ(~r + N3~a3) (2.64)

These boundary conditions are called Born-von Karman boundary conditions. These boundry

conditions imply that the physical properties such as charge density and magnetic moment

density, are invariant under T̂ (n1, n2, n3) for crystals [19].

f (~r + T̂ (n1, n2, n3)) = f (~r) (2.65)

where T̂ (n1, n2, n3) = n1~a1 + n2~a2 + n3~a3 and ai , i = 1, 2, 3 are primitive translational vectors.

The Fourier components of those periodic functions are easier to handle than real space com-

ponents under same circumstances. The forward Fourier component of any periodic function,
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using q as a wavevector defined in reciprocal space as;

f (~q) =
1

Ωcrystal

∫
Ωcrystal

d~r f (~r)e−(i~q.~r) (2.66)

Each component of the periodic function should satisfy Born-Von Karmen boundary condi-

tions. If a translation vector T (n1, n2, n3) is added to ~r the Fourier component of periodic

function will still be the same.

f (~q) =
1

Ωcrystal

∑
n1,n2,n3

∫
Ωcrystal

d~r f (~r)e−(i~q.(~r+T (n1,n2,n3))

=
1

Ncell

∑
n1,n2,n3

e−iq.T (n1,n2,n3) 1
Ωcell

∫
Ωcell

d~r f (~r)e−(i~q.~r)

=
1

Ncell

∏
i

∑
ni

e−(iq.~ai)
ni 1

Ωcell

∫
Ωcell

d~r f (~r)e−(i~q.~r)

(2.67)

This equation is written using the property in equation 2.65. Equations 2.66 and 2.67 should

be equal to each other. This concludes that

e(i~q.~a1)ni
= 1 (2.68)

Equation 2.68 yields a restriction and a quantization rule on the wavevector ~q .

~q.~ai = 2πm (2.69)

where m is an integer. The set of q’s that satisfy the condition in equation 2.69 create recipro-

cal lattice. The minimal set of q vectors which can span all the reciprocal space can be defined

as bi, i = 1, 2, 3 and the relation to the space lattice vectors is that

~bi.~a j = 2πδi j (2.70)

Any point on the reciprocal space can be defined by

~G(m1,m2,m3) = m1~b1 + m2~b2 + m3~b3 (2.71)

where the reciprocal space vectors bi’s can be written in terms of real space vectors as

~bi = 2π
~a j × ~ak

~ai(~a j × ~ak)
(2.72)

Then the Fourier transform of periodic function is written

f ( ~G) =
1

Ωcrystal

∫
Ωcrystal

d~r f (~r)e−(i ~G.~r) (2.73)
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2.5.2 Bloch’s theorem

Similar to the periodic functions, the Hamiltonian operator is also invariant under lattice trans-

lation. This means that the Hamiltonian commutes with the translation operator.

[Ĥ, T̂~n] = O (2.74)

The translation operator can be defined as

T̂~n = ~n1~a1 + ~n2~a2 + ~n3~a3 (2.75)

It is known that if two operators commutes with each other, they have common eigenfunctions

Ĥψ(~r) = εψ(~r)

T̂~nψ(~r) = t~nψ(~r)
(2.76)

where t~n is the eigenvalue of translation operator. If this operator acts on the eigenfunction N

times, according to the Born-Von Karman boundary conditions, the eigenfunction will remain

unchanged.

T̂~nψ(~r) = (t~n)Nψ(~r) = ψ(~r) (2.77)

This equation leads to

(t~n)N = 1 (2.78)

Then the eigenvalue of translation operator can be written as

t~n = eik.T̂~n (2.79)

using Eq. 2.79 the equation 2.77 becomes

T̂~nψ(~r) = eik.T̂~nψ(~r) (2.80)

where

~k =
n1

N
b1 +

n2

N
b2 +

n3

N
b3 (2.81)

Equation 2.79 is the Bloch’s Thorem and it says that the lattice periodic Hamiltonian’s wave-

function takes a phase factor when translational operator acts on it. Here ~k is a reciprocal

space vector and it is restricted to the first Brillouin zone which is the primitive cell of the

lattice in reciprocal space. In Bloch’s formalism the wavefunction in equation 2.80 can be

written as

ψ(~r) = ei~k.~ru~k(~r) (2.82)

17



u~k(~r) is lattice periodic function which has the three-dimensional periodicity of the crystal

lattice

u~k(~r + ~Tn) = u~k(~r) (2.83)

By using Bloch theorem, the wavefunction of the system is divided into lattice periodic func-

tion and a phase factor on it. Then the Schrödinger equation can be written in terms of Bloch

wavefunctions given in Eq. 2.82.

Ĥψi,~k(~r) = εi,~k(~r)ψi,~k(~r)

Ĥei~k.~rui,~k(~r) = εi,~k(~r)ei~k.~rui,~k(~r)
(2.84)

If Eq. 2.84 is multiplied by complex conjugate of the phase factor,

e−i~k.~rĤei~k.~rui,~k(~r) = εi,~k(~r)ui,~k(~r)

Ĥ~kui,~k(~r) = εi,~k(~r)ui,~k(~r)
(2.85)

Where Ĥ~k is wavevector dependent Hamiltonian. If the new Hamiltonian is solved for each

wavevector inside the Brillouin zone, a spectrum of eigenvalues for each wavevector will be

observed. This spectrum is very important for analyzing electronic properties of the crystal

and is called the band structure.

The Kohn-Sham equations can be handled easier when it is converted to the matrix equation in

coefficient space. The Kohn-Sham orbitals should be converted to the reciprocal space using

plane waves as a basis set. The plane wave basis have some adventage over the other basis

sets such as atomic wavefunctions. Plane waves are mathematically simple functions and they

form complete a set in Hilbert space. Moreover, they cover the space equally. However, when

the system has nonuniform electron density, this property is no longer an adventage.

[T̂ + Ve f f ]φ(~r) = εiφi(~r)

Ĥe f fφ(~r) = εiφi(~r)
(2.86)

The Kohn-Sham orbitals can be expanded in terms of planewaves as

φi(~r) =
∑
~q

ci,~q
1
√

Ω
e(i~q.~r) (2.87)

in Bra-Ket notation

φi(~r) =
∑
~q

ci,~q|~q〉 (2.88)

The inner product of planewaves

〈~q′|~q〉 =
1
Ω

∫
Ω

d~re−i~q′.~r′ei~q.~r = δ~q,~q′ (2.89)

18



The Kohn-Sham equation can be converted to matrix equation in coefficient space by multi-

plying the equation 2.86 with 〈~q′| and integrating in real space.∑
~q

〈~q′|Ĥe f f |~q〉ci,~q = εi

∑
~q

〈~q′|~q〉ci,~q = εici,~q (2.90)

This is the matrix equation and it can be written simply as

HC = εiC (2.91)

For the general ~q = ~k + ~Gm and ~q′ = ~k + ~Gm′ can be used. The terms in Kohn-Sham equations

can be converted term by term. The first term is the kinetic energy term which has diagonal

form

〈~k + ~Gm′ | −
1
2
∇2|~k + ~Gm〉 = −

1
2
|~k + ~Gm|

2δ~k+ ~Gm′ ,~k+ ~Gm
(2.92)

The potential part can be converted using Fourier transform.

Ve f f (~r) =
∑

m

Ve f f ( ~Gm)ei ~Gm.~r (2.93)

This can be converted to a matrix equation as

〈~k + ~Gm′ |Ve f f |~k + ~Gm〉 =
∑

m

〈~k + ~Gm′ |Ve f f ( ~Gm)|~k + ~Gm〉ei ~Gm.~r (2.94)

The ket |~k + ~Gm〉 is equal to ei(~k+ ~Gm).~r then this equation can be written as

〈~k + ~Gm′ |Ve f f |~k + ~Gm〉 =
∑

m

Ve f f ( ~Gm)〈~k + ~Gm′ |~k + 2 ~Gm〉

=
∑

m

Ve f f ( ~Gm)〈 ~Gm′ − ~Gm| ~Gm〉

(2.95)

For a specific ~k, the sum over ~q in equation 2.90 can be converted to sum over m.∑
m

〈~k + ~Gm′ |Ĥe f f |~k + ~Gm〉ci,m = εici,m′ (2.96)

Similar to equation 2.85 in Bloch theorem this equation can be written with ~k-dependence.∑
m

Hm′,m(~k)ci,m(~k) = εi(~k)ci,m′(~k) (2.97)

where Hm′,m(~k) =
1
2
|~k + ~Gm|

2δm′,m + Ve f f ( ~Gm − ~Gm′) using equation 2.92 and 2.95.

2.5.3 Ve f f in Terms of Planewaves

The Ve f f ( ~Gm − ~Gm′) includes external potential term, Hartree potential term and exchange

correlation potential term as it can be seen in equation 2.62, so these terms should be written

in terms of planewaves in reciprocal space also.
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2.5.3.1 Hartree potential term in terms of planewaves

The Hartree potential term was

VH(~r) =

∫
d~r′

n(~r′)
|~r − ~r′|

(2.98)

Using equation 2.73 the fourier component of hartree potential term can be written as

VH( ~G) =
1

Ωcrystal

∫
Ωcrystal

d~rVH(~r)e−(i ~G.~r)

=
1

Ωcrystal

∫
Ωcrystal

∫
d~rd~r′

n(~r′)
|~r − ~r′|

e−(i ~G.~r)
(2.99)

using the identity

n(~r) =
∑
~G

n( ~G)e−i ~G.~r (2.100)

equation 2.108 can be written as

VH( ~G) =
1

Ωcrystal

∑
~G′

∫
Ωcrystal

∫
d~rd~r′

n( ~G′)
|~r − ~r′|

e−(i ~G′.~r′)e−(i ~G.~r) (2.101)

make change of variable ~u = ~r − ~r′

VH( ~G) =
1

Ωcrystal

∑
~G′

n( ~G′)
∫

Ωcrystal

d~r′e−i( ~G+ ~G′)~r
∫

d~ue−(i ~G.~u) (2.102)

The first integral gives the Kronecker delta and the second integral can be calculating using

volume integral

VH( ~G) =
1

Ωcrystal

∑
~G′

n( ~G′)Ωcellδ ~G, ~G′

∫ 2π

0
φ

∫ ∞

0

∫ 1

−1
u2du(−dcosθ)

e−iGucosθ

u
(2.103)

using the Kronecker delta and taking the dcosθ integral

VH( ~G) = 2πn( ~G)
∫

eiGu − e−iGu

−iG
du (2.104)

This integral cen be calculated using regulator u = u + iµ.

VH( ~G) = 2πn( ~G) lim
µ→0

eiG(u+iµ) − e−iG(u+iµ)

G2 (2.105)

When the limit when µ → 0 is taken, Fourier representation of the Hartree potential can be

written as

VH( ~G) = 4π
n( ~G)
G2 (2.106)
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2.5.3.2 Exchange correlation potential term in terms of planewaves

The exchange correlation potential was

Vxc = εxc[n(~r)] + n(~r)
δεxc[n(~r)]
δn(~r)

(2.107)

again using 2.73 the Fourier component of exchange correlation potential can be written as

Vxc( ~G) =
1

Ωcrystal

∫
Ωcrystal

d~rVxc(~r)e−(i ~G.~r)

=
1

Ωcrystal

∫
Ωcrystal

d~r(εxc[n(~r)] + n(~r)
δεxc[n(~r)]
δn(~r)

)e−(i ~G.~r)
(2.108)

This equation can be seperated

Vxc( ~G) =
1

Ωcrystal

∫
Ωcrystal

d~rεxc[n(~r)]e−(i ~G.~r)+
1

Ωcrystal

∫
Ωcrystal

d~rn(~r)
δεxc[n(~r)]
δn(~r)

e−(i ~G.~r) (2.109)

The first term is look like the Fourier component of ε[~r] and the identity in equation 2.100

can be used;

Vxc( ~G) = εxc( ~G) +
1

Ωcrystal

∫
Ωcrystal

d~r
∑
~G′ ~G′′

n( ~G′′)e−(i ~G′′.~r) δεxc( ~G′)

δn( ~G′)
e−(i ~G′.~r)e−(i ~G.~r) (2.110)

then the exponential term is put to together

Vxc( ~G) = εxc( ~G) +
∑
~G′ ~G′′

n( ~G′′)
δεxc( ~G′)

δn( ~G′)

1
Ωcrystal

∫
Ωcrystal

e−i( ~G.~r+ ~G′.~r+ ~G′′.~r)d~r (2.111)

using the property of Kronecker delta. This equation can be written as

Vxc( ~G) = εxc( ~G) +
∑
~G

nxc( ~G − ~G′)
dεxc

dn
( ~G′) (2.112)

2.5.3.3 External potential term in terms of planewaves

Consider a system which contains nsp different species of atoms each species haveing nk iden-

tical atoms at ~τκ, j. Then the external potential can be written as the sum of these components

Vext(~r) =

nsp∑
κ

nκ∑
j=1

∑
~T

Vκ(~r − ~τκ, j − ~T ) (2.113)

using equation 2.73 Fourier component of this term can be written as

Vext( ~G) =
1

Ωcrystal

∫
Ωcrystal

d~rVext(~r)e−(i ~G.~r)

=
1

Ωcrystal

∫
Ωcrystal

d~r
nsp∑
κ

nκ∑
j=1

∑
~T

Vκ(~r − ~τκ, j − ~T )e−(i ~G.~r)
(2.114)
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make change of variable ~u = ~r − ~τκ, j − ~T

Vext( ~G) =
1

Ωcrystal

nsp∑
κ

nκ∑
j=1

∑
~T

∫
Ωcrystal

d~uVκ(~u)e−i ~G.(~u+~τκ, j+~T ) (2.115)

using the formulas

N−1∑
n=0

einx =
1 − eiNx

1 − eix

ex =

∞∑
n=0

xn

n!

(2.116)

Equation 2.115 can be written as

Vext( ~G) =
1

Ωcrystal

nsp∑
κ

nκ∑
j=1

∫
Ωcrystal

d~uVκ(~u)e−i ~G.(~u+~τκ, j)
∑
~T

e−i ~G.~T

=
1

Ωcrystal

nsp∑
κ

nκ∑
j=1

∫
Ωcrystal

d~uVκ(~u)e−i ~G.(~u+~τκ, j)Ncell

(2.117)

The exponential can also be seperated and the relation Ωcrystal = NcellΩcell is known

Vext( ~G) =
1

Ωcell

nsp∑
κ

∫
Ω

d~uVκ(~u)e−(i ~G.~u)
nκ∑
j=1

e−(i ~G.~τκ, j) (2.118)

The integral is equal to Vκ( ~G)Ωk using equation 2.73

Vext( ~G) =

nsp∑
κ

Ωk

Ωcell
Vκ( ~G)

nκ∑
j=1

e−(i ~G.~τκ, j) (2.119)

The second sum is called structure factor S κ( ~G)

Vext( ~G) =

nsp∑
κ

Ωk

Ωcell
Vκ( ~G)S κ( ~G) (2.120)

this implies that the Fourier component of external potential is divided to Fourier component

of the isolated atomic potential and the sum of planewaves which is the periodic part.

2.5.4 Density in terms of planewaves

The electron density in real space is written

n(~r) =

Ne∑
n

|φn(~r)|2 (2.121)
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and the planewave is

φi(~r) =
1
√

Ω

∑
~k

ci,~kei~k.~r (2.122)

put this in equation 2.121 and impose the k dependence to the density

ni,~k( ~G) =
1
Ω

∑
m

c∗i,m(~k)ci,m′′(~k) (2.123)

All the terms in the Eq. 2.123 are written in terms of planewaves but the complete expansion

of planewaves can not be considered. Thus, in DFT codes the planewaves are cut off by giving

a parameter to the code. The code takes the planewaves which satisfy

1
2
| ~G|2 < Ecut (2.124)

This cut off parameter is defined by performing a convergence study [20].

2.6 EXCHANGE and CORRELATION ENERGY FUNCTIONALS

The crucial point in density functional theory is exchange-correlation energy functional. Ba-

sically there are two different functionals in literature, the local density approximation (LDA)

and generalized gradient approximation (GGA).

2.6.1 The Local density approximation

In LDA [17], exchange-correlation energy is equal to the integral of exchange-correlation

energy density which is taken to be the same with homogeneous electron gas having same

density. More generally LDA is called local spin density approximation (LSDA) [15]

ELS DA
xc [n↑, n↓] =

∫
d3rn~rεhom

xc (n↑(~r), n↓(~r))

=

∫
d3rn~r[εhom

x (n↑(~r), n↓(~r)) + εhom
c (n↑(~r), n↓(~r))]

(2.125)

The exchange and the correlation terms can be seperated linearly. LSDA can be formulated

using spin up densities n↓(~r) and spin down densities n↑(~r) or it can be formulated using the

total density n(~r) which is called LDA in that case. The fractional spin polarization is that

ξ(~r) =
n↑(~r) − n↓(~r)

n(~r)
(2.126)
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It is assumed that the Exc[n↑, n↓] is universal and it is same as that for the homogeneous

electron gas. The exchange correlation energy functional of homogeneous electron gas is

known, its exchange energy is calculated using simple analytic function and the correlation

part is calculated using Monte Carlo simulations. Thus, the LSDA exchange correlation en-

ergy functional can be calculated. LSDA is a good approximation when the system is really

homogeneous however, it is insufficient when the density of the system changes abruptly for

example at the surface of the crystal.

2.6.2 The Generalized gradient approximation

The generalized gradient approximation(GGA) contains the density and the gradient of den-

sity at that point.

EGGA
xc [n↑, n↓] =

∫
d3rn~rεxc(n↑, n↓, |∇n↑|, |∇n↓|, ...)

=

∫
d3rn(~r)εhom

x Fxc(n↑, n↓, |∇n↑|, |∇n↓|, ...)
(2.127)

where εhom
x exchange energy of the unpolarized gas and the Fxc is the dimensionless func-

tional. For nonuniform charge densities GGA is more appropriate because it includes the

gradient of density as well as the density itself at that point.

2.7 PSEUDOPOTENTIAL

In order to reduce the complexity of many body problem, the effect of core electrons can

be replaced by a potential which is called pseudopotential. The core electrons in the atom

are less affected from the change in the environment such as formation of a chemical bond.

In addition, the valence state wavefunctions are rapidly oscillating near the core regions. It

is obvious that the expansion of rapidly oscilating wavefunction in terms of planewaves is

difficult. In order to to make the wavefunction simple rapidly oscillating parts of the wave-

function should be replaced by a smoother wavefunction, which can be done by introducing

a pseudopotential. Considering these discussions any valance state ψ can be written in terms

of superposition of a smoother wavefunction φ and the core states χn [20].

|ψ〉 = |φ〉 +

core∑
n

an|χn〉 (2.128)
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To find the an, above equation should be multiplied with 〈χm|.

〈χm|ψ〉 = 〈χm|φ〉 +

core∑
n

an〈χm|χn〉 (2.129)

The core states χm are orthogonal to each other which means 〈χm|χn〉 = δmn, also the valence

states are orthogonal to core states,

〈χm|ψ〉 = 〈χm|φ〉 +

core∑
n

anδmn

0 = 〈χm|φ〉 + am

am = −〈χm|φ〉

(2.130)

thus, the valance state can be written as

|ψ〉 = |φ〉 −
∑

n

〈χn|φ〉|χn〉 (2.131)

this equation is put into the single particle Schrödinger equation.

Ĥ[|φ〉 −
∑

n

〈χn|φ〉|χn〉] = E[|φ〉 −
∑

n

〈χn|φ〉|χn〉]

Ĥ|φ〉 −
∑

n

〈χn|φ〉En|χn〉 = E|φ〉 − E
∑

n

〈χn|φ〉|χn〉

(2.132)

When the similar terms are collectrd on the same side

Ĥ|φ〉 −
∑

n

(En − E)〈χn|φ〉|χn〉 = E|φ〉 (2.133)

Equation 2.133 can be written as

[−
1
2
∇2 + V̂ps(~r)]φ(~r) = Eφ(~r) (2.134)

This equation is the same as the single particle Schrödinger equation with smooth wave-

function. The pseudowavefunction gives the same eigenenergy with the real valance wave-

function. There are two different pseudopotentials in literature which are norm-conserving

pseudopotential [21] and ultrasoft pseudopotential [22].

2.7.1 Norm-conserving pseudopotential

While generating norm conserving pseudopotential there are some properties that the pseu-

dopotential and the pseudowavefunction should obey.
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1. Real and the pseudo valance state wavefunction should agree in terms of eigenvalues

for an atomic configuration.

[−
1
2
∇2 + V̂(~r)]ψ(~r) = Eψ(~r)

[−
1
2
∇2 + V̂ps(~r)]φ(~r) = Eφ(~r)

(2.135)

2. Beyond a chosen core radius rc the pseudo and the real wavefunction should be equal

to each other.

φ(~r) = ψ(~r) where r ≥ rc (2.136)

3. For r > rc the integral of real and pseudo charge densities should be equal.This is the

norm-conservation property. ∫ r

0
|φ|2r2dr =

∫ r

0
|ψ|2r2dr (2.137)

4. The logaritmic derivative and the first energy derivative of the real wavefunction and

the pseudowavefunction should be equal when r > rc

[(rφ(~r))2 d
dE

d
dr

lnφ(~r)]r = [(rψ(~r))2 d
dE

d
dr

lnψ(~r)]r (2.138)

The last property improves the transferability of the pseudopotential. The norm-conservative

pseudopotential is generated by solving the all-electron system considering above propeties.

Vps(~r) = ε −
[ l(l + 1)

2r2 −

d2

dr2φ(~r)

φ(~r)

]
(2.139)

The rc values are important while generating the norm-conservative pseudopotential. If rc is

small, the generated pseudopotential has good transferability. On the contrary, if rc is large

then the pseudopotential becomes smoother. To generate a good pseudopotential the rc value

should be chosen carefully.

2.7.2 Ultrasoft pseudopotentials

The difference between ultrasoft pseudopotential and the norm-conservative pseudopotential

is the number of planewaves they use. While generating ultrasoft pseudopotentials the norm-

conservation constraint is relaxed so it requires less planewaves than the norm-conserved

pseudopotentials, that is why they are called ultrasoft.
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CHAPTER 3

ELECTRONIC STRUCTURE ANALYSIS OF TiO2 (001)

ANATASE SURFACE

The metal oxides constitute a new and developing area of surface physics due to their wide

range of applications in device physics and technology. Among these metal oxides TiO2 be-

come one of the most investigated materials in surface science. There are some properties that

make TiO2 such a desirable molecule, such as its ease of analysis by all kinds of experimental

techniques, its wide range of applications, its low cost and biocompatibility [1].

3.1 APPLICATION OF TiO2

The popularity of TiO2 comes mainly from its wide range of applications. It is used as a

photocatalyst in heterogeneous catalysis, gas sensor, white pigments, biometarials, memory

devices and optical coating. It is also used in solar cells, ceramics, electric devices and the

new generation of metal oxide semiconductor field effect transistor (MOSFET) [1, 2].

3.1.1 Photocatalysis application

TiO2 is a very stable molecule under visible light, in this region it has no absorption so its

color is white. However, TiO2 becomes active when it is exposed to ultraviolet light because

its band gap energy can be overcome by a photon in the ultraviolet region [23]. This activity

can induce some chemical reactions on it which is called photocatalysis. The photocatalytic

activity of matter is related to its ability of electron-hole pair production. The incoming photon

excites an electron from valence band to the conduction band of TiO2 which leads to a hole

in the valance band and an electron in the conduction band. This electron–hole pair can start
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the redox reaction with the molecules that adsorb on the surface of TiO2 [24].

The first photocatalysis observation was done by mixing various organic solvents such as

alcohol and hydrocarbons with TiO2 powders under Hg lamp. After putting them together the

autooxidation of solvents and the formation of H2O2 was observed [25]. In addition, using

this photocatalyst property of TiO2 the water can be decomposed into oxygen and hydrogen

without using any external voltage [26]. This hydrogen production from water and organic

compounds, which are used for avoiding back reaction, is considered as a new energy source.

However, TiO2 can absorb only 3% of all spectrum due to its wide band gap. Thus, TiO2

photocatalysis is not efficient for hydrogen production [23]. Due to this fact the direction of

research was changed to the destruction of pollutants from water or air which can be done

using TiO2 powders [27]. It was reported that the stearic acid (C17OH35OCH) decomposed

into CO2 when it is coated on TiO2 layer [28]. This observation suggests that the materials

which are coated with TiO2 can be kept clean. In addition, it has been shown that under

standard conditions CO2 could be transferred to methane gas when it interacts with TiO2

pellets and with H2O under ultraviolet radiation so photocatalytic activity of TiO2 can be used

to reduce the CO2 from the environment [29]. Another photocatalytic application of TiO2 is

its antibacterial effect. Especially when it is deposited with copper or silver an efficient and

safe antibacterial effect is obtained even under weak ultraviolet light [30, 23, 31].

3.1.2 Solar cell applications

Another important application of TiO2 is its usage as a component in solar cell technology.

The first TiO2 solar cell was made by a few nanometer thick film of optically transparent TiO2

which is coated with light harvesting dye to transfer the charge. This dye-sensitized solar cell

(DSSC) is also known as Grätzel cell [5].

The widely used semiconductor solar cells are made of silicon based p-n junctions. The p–n

silicon junction is obtained by combining the p-type and n-type silicons together. The DSSC

are good alternatives to p–n junction photovoltaic devices economically. In p-n junction solar

cells the light absorption and the charge transfer occurs at the same place, however, in DSSC

these two operations happen at different places; the light is absorbed by a dye molecule and

charge transfer is done to the wide band gap semiconductor. The light excites the electron of

the dye to its conduction band. Then, the excited electron is directly diffused to the conduction
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band of the TiO2 which has lower energy than lowest unoccupied molecular orbital (LUMO)

of the light harvesting dye molecule. The missing electron of the dye is supplied by the

electrolyte solution immediately. The conducting glass and the cathode plate is linked with a

wire so that the electron in the TiO2 conduction band can complete the circuit. In conclusion,

without any permanent chemical transformation, the electrical energy can be produced [32,

33].

In order to get an efficient photovoltaic or photocatalytic device, the absorbed light portion

of solar spectrum by the dye-TiO2 systems should be increased by decreasing the band gap

energy of these systems [34, 35]. This can be done by doping transiton metal ions (Cr, Fe,

Ni) inside TiO2 [36], creating oxygen vacancies, or coating TiO2 with the light harvesting dye

molecules [37, 38] .

3.2 DENSITY FUNCTIONAL THEORY CALCULATIONS OF ANATASE (001)

SURFACE

3.2.1 Crystal structure of TiO2

In nature TiO2 occurs in mainly three different crystal structures: rutile, anatase, and brookite

[39]. There are also some high pressure forms such as monoclinic baddeleyite [40] and or-

thorhombic α - PbO2 [41].

3.2.1.1 Rutile

Rutile is the most common and stable form of TiO2 , meaning the other crystal forms can be

converted to rutile by heating [42]. The rutile has tetragonal unit cell as shown Fig. 3.1,

where the grey balls are titanium atoms and the red ones are oxygens. The cell parameters

of rutile form of TiO2 are a = b = 4.584 Å and c = 2.953 Å [1]. According to ab initio

calculations, (110) surface of rutile has the lowest surface energy and the (001) has the high-

est surface energy. The other surfaces have energies between these values [43]. Thus (110)

surface of rutile is the most stable surface.
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Figure 3.1: Unit cell of TiO2 in rutile form, (a) front view, (b) side view, and (c) top view

3.2.1.2 Anatase

Anatase is another crystal form of TiO2 . Similar to rutile, it has tetragonal unit cell (Fig. 3.2)

and its cell parameters are a = b = 3.782 Å and c = 9.502 Å [1]. The anatase form of TiO2 are

used especially in photocatalytic and photovoltaic applications. The photocatalytic reactions

become more efficient when the powder is a mixture of anatase and rutile forms with a ratio

of 3:1 [44]. TiO2 nanoparticels whose sizes up to 14 Å do not occur in the rutile form, but

instead they form a metastable anatase form [2]. Thus, most of the photovoltaic cells contain

anatase form of TiO2 .

Figure 3.2: Unit cell of TiO2 in anatase form, (a) front view, (b) side view, and (c) top view

3.2.1.3 Brookite

The third well known TiO2 structure is brookite. Unlike the other forms, brookite has rhom-

bohedral unit cell with cell parameters a = 5.436 Å , b = 9.166 Å and c = 5.135 Å.
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Figure 3.3: Unit cell of TiO2 in brookite form, (a) front view, (b) side view, and (c) top view

Compared to other forms brookite form of TiO2 can be found rarely; and also it does not

have photocatalytic activity. [1].

3.2.2 Bulk calculations

The efficiency of DSSC depends on both the dye molecules and the semiconductor materials

used. The most commonly used semiconductor is TiO2 , but other wide band gap semicon-

ductors that are also used such as ZnO and Nb2O5 [45]. In addition to the semiconductor kind,

the crystal structure of semiconductor is also important. The anatase form of TiO2 is more

favorable than other modifications of TiO2 in solar cell applications because the anatase have

largest surface area among crystal structures of TiO2 . According to the absorption spectra

of TiO2 films, the dye molecules can adsorb on anatase 35 % more than other crystal forms

[46]. Thus, in this work the adsorption of aromatic rings, which are the component of dye

molecule, on the TiO2 anatase surface is considered for solar cell applications.

In order to analyse the electronic properties of anatase TiO2 the lattice parameters of the

tetragonal unit cell of anatase bulk should be calculated. As it was stated before the real lattice

parameters of anatase bulk are a = b = 3.782 Å and c = 9.502 Å. The lattice parameters were

calculated using an extended Lagrangian algorithm which is based on cell relaxation [47]. In

order to find the optimum positions of the atoms, the algorithm changes the coordinates of

each atom and size of the unit cell until the total force on each atom is less than a tolerance

value which is taken as 10−4 Ry/au in this work. Another important convergence parameter
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is set for the total energy. The relaxation procedure consists of numerous self consistent field

(SCF) calculations. Every SCF calculation ends with a converged total energy value of the

system. If the energy difference between two consecutive SCF steps is less than the total

energy convergence threshold then the convergence criteria is satisfied. In this work total

convergence threshold is taken to be 10−4 Ry. In order to obtain optimum atomic coordinates

succeefully both criteria must be satisfied.

While doing the bulk calculations 6×6×6 k-point mesh is used. This k-point set causes 32

k-points in reciprocal space, so total energy is calculated at these 32 k-points. After satisfying

both of the convergence criteria, the lattice parameters are found a = b = 3.808 Å and

c = 9.5146 Å, and the volume of unit cell is 136.25 Å3. The calculated lattice parameters

agree with experimental values upto 0.6% for a and b, 0.12% for c.

The density functional theory calculations are made using PWSCF (Plane-Wave Self-Consistent

Field) code of Quantum - ESPRESSO package [48]. Moreover, the GGA-PBE exchange-

correlational functional and the ultrasoft pseudopotentials are used [49, 22]. Well-converged

results were obtained for 35 Ry kinetic energy cut off and 350 Ry augmentation charge den-

sity cutoff.

Figure 3.4: Projected band structure of anatase bulk
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Fig. 3.4 shows the electronic energy band structure of TiO2 anatase bulk crystal projected

on the surface Brillouin zone (SBZ) for the (001) 2 × 2 surface reconstruction. Energy band

structure supplies very important information about the electronic properties of the system.

The energy levels of electrons which are bound to an atom are discrete, however, when lots

of atoms come together the degenerate atomic orbital levels are split and they form molec-

ular orbitals. The energy interval between these molecular orbitals is so small that they are

considered as a continuum, namely, bands. Then, if the energy of electron is calculated at

consecutive k-points, the dispersed band structure is obtained. The projected band structure is

determined as the projection of the 3D reciprocal lattice to 2D reciprocal lattice by calculating

energy values for the same direction with different kz points, then project them on the same

plot. In this work, the direction of reciprocal space is defined as

Γ(000)→ J(010)→ K(110)→ J′(100)→ Γ(000)→ K(110). (3.1)

The energy region where there is no state is called the band gap. The energy band gap is

defined as the energy difference between the valance band top and the conduction band bottom

of the crystal so it is also equal to the energy that is needed to make the outer shell electrons

free. The experimental band gap value of TiO2 anatase is 3.2 eV, however, the band gap value

obtained using DFT in this work for this system is only about 2.1 eV. This underestimation of

the gap is due to an artifact of the DFT method.

3.2.3 Surface calculations

In the real world every crystal structure should have a surface because actually there is no ideal

bulk which can grow to infinity in nature. Thus, analyzing the surface properties of crystals

will be more reasonable. Especially nanomaterials have different and great properties than

their bulk phases such as TiO2 nanoparticles which is used in photocatalysis, photovoltaic,

photonic crystals and sensing. In addition, different facets of the surface have different prop-

erties. The most stable facet of TiO2 anatase is (101) surface, however, the chemically more

active facet is (001) surface [8]. The (001) crystal facets have great importance in the reac-

tivity of anatase nanoparticles [2]. Additionally, according to the recent studies TiO2 anatase

nanosheets exhibit 89% (001) facets and high photocatalytic properties [9]. Due to these rea-

sons throughout this work TiO2 anatase (001) surface is investigated.
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Figure 3.5: The anatase slab which is used in this work a) Front view, b) Side view, c) Top
view

The surface studies are done in a 6-layer slab (Fig. 3.5) and the initial stoichiometric slab

which has 72 atoms is directly obtained from bulk TiO2 by truncation. The optimum atomic

positions of the slab and the bulk TiO2 are different due to the surface reconstruction. Surface

structure leads to extra forces on atoms that are especially close to the surface due to their un-

saturated bonds. In order to get rid of these extra forces a relaxation procedure is performed.

During relaxation procedure the atoms in the slab are not fixed, but free to move until the

forces on each atom is diminished down to 10−4 Ry/au. The distance between oxygen atoms

and the nearest neighbor titanium atoms is equal 1.93 Å in the bulk. However, after the re-

laxation procedure the oxygen atoms on the top of the slab slide through one of the nearest

neighbor titanium atom. Thus, distances between oxygen atoms and the nearest neighbor ti-

tanium atoms are unequal, one of them shortens to 1.74 Å and the other elongates to 2.23 Å

as shown in Fig. 3.6. For the surface relaxation procedure 3× 3× 1 k-point mesh is used. The

total energy of the slab is calculated for these five special k-points. In order to determine the

positioning of the surface states clearly the surface band structure is plotted on the projected

bulk band structure (Fig. 3.7). The states which are in the band gap of the bulk anatase above

the valance band are coming from the dangling bonds of the surface. Due to this surface states

the band gap of the system is decreased to approximately 1.9 eV. The states may be chosen at

an arbitrary k-point, say Γ, and their partial charge density, |ψ|2 can be depicted for each band.

Fig. 3.8 shows the twofold degenerate states (coming from both surfaces of the slab) above

the valence band falling into the gap are localized on the surfaces.
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Figure 3.6: Distance between oxygen atom and the titanium atoms at the surface of slab (a)
before and (b) after relaxation

Figure 3.7: Anatase (001) surface bands projected on bulk band structure

Figure 3.8: Partial charge densities of surface states at Γ

35



CHAPTER 4

ELECTRONIC STRUCTURE ANALYSIS OF AROMATIC

MOLECULES, ADSORBED ON TiO2 (001) ANATASE

SURFACE

In order to obtain an efficient photovoltaic device, the absorbed light portion of solar spectrum

by TiO2 based systems should be increased. This can be supplied by attaching covalently the

functional aromatic molecules which are called dye molecules, on the TiO2 surfaces [50].

Aromatic rings, which are the backbones of many dye molecules are a convenient means of

modelling the main ingredients of their working principle. However, due to their inertness, the

chemical adsorption of these aromatic rings to the underlying substrate can only be achieved

through an anchor molecule such as formic acid, phosphonic acid or β-diketones groups [4].

Anchor group molecules also supply electron transfer from the dye molecules to the TiO2

surface [10].

4.1 ADSORPTION OF ANCHOR GROUP MOLECULES

The anchor group molecules play an important role in designing solar cells and optoelectronic

devices which need ultrafast surface electron transfer. The most widely used anchor groups

are formic (carboxylic) acid and phosphonic acid.

4.1.1 Formic acid adsorption

Formic acid is the most widely used and the simplest carboxylic acid with the chemical for-

mula of R-COOH, where R can be replaced by a hydrogen atom or any aromatic molecule.
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The most efficient dye sensitized solar cells are designed by using ruthenium dyes which con-

tain formic acid anchor groups supplying good electron transfer from aromatic adsorbate to

the wide-gap semiconductor [51].

Figure 4.1: Formic acid molecule (a) front view, (b) side view and c) top view.

The relaxed structure of formic acid can be seen in Fig. 4.1. Here the dark red balls represent

oxygen atoms, the blue small ones are hydrogens and the light yellow one is the carbon. The

hydrogen connected to carbon can be replaced by aromatic adsorbates.

Figure 4.2: Formic acid adsorption on TiO2 anatase (001) 2 × 2 surface (a) front view (b) side
view and (c) top view.

The formic acid molecules are adsorbed symmetrically on both of the surfaces of the six layer

symmetrical TiO2 slab (only half of which) is shown in Fig. 4.2. The symmetric adsorption

configuration is prefered in order to prevent unequivalent band gap states from the each sur-
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face but obtain identical (degenerate) surface bands from both. After geometric optimization

the two oxygens of the formic acid bonds to the two titanium atoms of the reconstructed sur-

face. In addition, the hydrogen of OH group in formic acid breaks away from the molecule

and bonds to a surface oxygen. The main contribution of the formic acid to the band struc-

ture of the system (Fig. 4.3) is to the states which are in the vicinity of valence band top,

the oxygen-titanium interaction does not bring any localized states into the energy band gap.

Thus, formic acid can not functionalize the anatase surface by itself because it can not narrow

the band gap, but is rather used binding other functional groups to the semiconductor surface.

Figure 4.3: Band structure along the symmetry lines of the surface Brillouin zone and density
of states of (a) clean TiO2 surface (b) formic acid adsorbed on anatase (001) surface. Shaded
region shows the bulk band projected on the same surface Brillouin zone. The top of the bulk
valence band is taken to be zero.

Due to the saturation of dangling bonds on the surface by adsorbing the formic acid, the

surface states disperse through the valence band continuum. Thus, the band gap of the system

increased comparing with the clean surface. The band gap value of this configuration is found

as 2.31 eV. The contribution of formic acid to the total density of states can be seen in Fig. 4.4

by calculating the molecule’s partial density of states. Another important information is that

the binding energy of molecules. Binding energy gives an idea about how strong the molecule
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is adsorbed on the surface. It is formulated as:

Ebinding = Emolecule+slab − (Eslab + Emolecule) (4.1)

where Emolecule, Eslab, and Emolecule+slab are the total energies of the isolated molecule, clean

slab, and the combined system which are all relaxed. According to 4.1 the binding energy of

formic acid is found as −3.05 eV.

Figure 4.4: Density of states of the whole system (blue line) and the partial density of states
due to the formic acid (shaded in red)

4.1.2 Phosphonic acid adsorption

Phosphonic acid is another promising alternative anchor group, which binds to the TiO2 sur-

face more strongly than the formic acid, with the chemical formula of R-PO3H2 [50]. In

addition, phosphonic acid supplies long term stability because it desorbs relatively slowly in

the presence of water compared to formic acid [52]. The optimized structure of phosphonic

acid can be seen in Fig. 4.5, the red dark balls are oxygens, the blue small ones are hydrogens

and the green light big one is the phosphorous. The hydrogen bonded to phosphorous, just

like in the formic acid case, can be replaced by aromatic adsorbates. The phosphonic acid

is adsorbed on TiO2 anatase (001) surface which we modelled by a six-layer slab (Fig. 4.6).

The two oxygen of the anchor group are attached to the titanium atoms of the reconstructed
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Figure 4.5: Phosphonic acid a) Front view b) Side view c) Top view

surface. These bond formations help saturating the dangling bonds on the surface remove

the surface bands in the gap (Fig. 4.7a), acid push them into the valence band ((Fig. 4.7b)).

In addition, the two namely flat bands appear in the gap ((Fig. 4.7b)), however, they have

different origin namely due to the rest of the acid. The nature of these states can be identified

using partial density of states which can give the contribution of atoms to the total density of

states of the system.

Figure 4.6: Phosphonic acid adsorption on TiO2 anatase (001) surface. (a) Front view, (b)
side view, and c) top view

Partial density of states calculations shows that (Fig. 4.8) the p-orbitals of the oxygen atoms

and the s-orbital of the hydrogen atom bonded to phosphorous are responsible for the extra

states in the band gap. The band gap is decreased to 1.64 eV for this case. The nature of

these states can also be verified by visualizing the partial charge density. Fig. 4.9 shows that

the electron probability density for each of these gap states is localized around the adsorbed

molecule and has no contribution from the substrate. The binding energy of phosphonic acid

is calculated to be 4.384 eV, and it is bigger than the binding energy of the formic acid, so,

phosphonic acid binds more strongly than formic acid on TiO2 anatase (001) surface.
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Figure 4.7: Band structure along the symmetry lines of the surface Brillouin zone and density
of states of (a) Clean surface and (b) Phosphonic acid adsorbed on anatase (001) surface.
Shaded region shows the bulk band projected on the same surface Brillouin zone. The top of
the bulk valence band is taken to be zero.

Figure 4.8: Density of states of the whole system (blue line) and the partial density of states
due to the phosphonic acid (shaded in red).

Figure 4.9: Charge density plots for (a) the upper lying gap state and (b) the lower lying gap
state.
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4.2 AROMATIC RING ADSORPTION ON ANATASE (001) SURFACE

In photocatalysis and photovoltaic researches identified so far TiO2 appears to be the most

appropriate material among other semiconductors. Due to its wide band gap, TiO2 can absorb

wavelengths below 400 nm, which corresponds to ultraviolet region of the spectrum. How-

ever, the wavelength range of the sun coming to the earth is 300–2000 nm. Thus, in order

to get an efficient photovoltaic device, the adsorbed light portion of the TiO2 system should

be increased. This problem can be handled by coating the TiO2 surface with dye material

such as aromatic and polyaromatic compounds, transition metal polypyridine complexes and

carotenoid compounds [3, 4]. It is observed that TiO2 film electrodes coated with a monolayer

of dye (photosensitizer) molecules can produce higher photocurrents than electrodes without

dye molecules [5].

The early works showed that the organic dyes on TiO2 give a relatively low solar energy

to electricity conversion efficiency which is of about 1.3 % only. However, recent studies

on organic dyes have improved this by far. The merocyanine organic dye which contains

carboxylic acid as anchor to the surface of the semiconductor was observed to show a high

efficiency of about 4.2 % [6]. Organic coumarin dye derivatives can absorb light in the 400–

700 nm wavelength region, with an efficiency of up to 5.6 % [7]. This progress encouraged

the researchers to look for more efficient organic dyes.

In this work, the electronic structure of the simplest linear series of aromatic rings adsorbed

on TiO2 (001) anatase surface is investigated. These aromatic rings which are the components

of organic dye molecules, are anchored on TiO2 (001) anatase surface via carboxylic acid and

phosphonic acid. The goal is to find a trend as a function of number of rings which is expected

to be an important step in designing a setup with a controllable parameter.

4.2.1 Adsorption of aromatic rings anchored by formic acid

The linear series of aromatic rings are anchored on anatase (001) surface using formic acid

as shown in Fig. 4.10. The geometric structure of the surface is found to be not affected by

the addition of aromatic rings. Moreover, the distance between aromatic rings and the surface

are also not affected by the addition of aromatic rings. The distance between rings and the

surface is found to be 2.08 Å. The aromatic rings are made to adsorb on both surfaces of the
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slab symmetrically, in order to get degenerate molecular energy levels in the band structure of

the system. The effect of the aromatic rings on the electronic structure of the system is ana-

lyzed by using aromatic molecules which have up to five aromatic rings. The band structures

and the density of states of these systems are shown, in Fig. 4.10 are shown in Fig. 4.11(a)

to (f), respectively. When the aromatic molecules which have one aromatic ring are adsorbed

on the surface (Fig. 4.10(b)) with formic acid as the anchor, a flat going extra state appears

in the band gap shown in (Fig. 4.11(b)). This state occurs approximately 0.1 eV above the

valence band top of the previous system and due to this gap state the band gap of the system

is decreased to 2.18 eV.

Figure 4.10: Geometry optimized TiO2 anatase (001) 2 × 2 surfaces with varying number of
aromatic rings anchored via formic acid

When the second ring is attached shown in Fig. 4.10(c), another extra gap state is intro-

duced approximately 0.7 eV above the previous state as shown in Fig. 4.11(c). Due to this

state the band gap of the system is decreased futher to 1.46 eV. With the introduction of the

third ring, this trend is broken. When the aromatic molecules which have three aromatic rings

(napthalene) are adsorbed on the surface in Fig. 4.10(d), no extra gap states occur in addition

to the states in the two-ring system. In this case, the upper lying gap state seems to move

upward towards the conduction band edge (CBE), approximately 0.5 eV, thus the band gap

of the system is now decreased to 0.95 eV (Fig. 4.11(d)). In the four-ring case, shown in

Fig. 4.10(e), there are three states in the band gap. In addition to the extra states in three-ring

case, another state emerges below the states existing in the previous case, which are as a result

pushed up to higher energies. This causes the band gap of the system to become 0.61 eV (Fig.
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4.11(e)). In the five-ring case, (Fig. 4.10(f)) the band gap is further reduced and has become

0.35 eV, as can be seen in Fig. 4.11(f).

Figure 4.11: Band Structures of aromatic ring adsorption on anatase (001) surface anchored
via formic acid. (a) Formic acid adsorbed system, and the number of rings in figures (b), (c),
(d), (e), (f) are 1, 2, 3, 4, 5 respectively

In order to verify the origin of the gap states as molecular, a partial charge density analy-

sis is conducted by plotting the norm square of the Kohn-Sham orbitals for a k-point along

the highest occupied dispersionless band. As seen in Fig. 4.12 these states are found always

to be localized around the molecule verifying that they are introduced into the gap by the

molecule. The contribution of the molecules to the electronic structure of the system can

be identified by using partial density of states calculation. The total density of states of each

system is displayed as blue line and the contribution of the molecule to the density of state is

displayed as shaded in red in Fig. 4.14 from one-ring to five-ring, respectively. The density of
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Figure 4.12: Partial charge densities for the gap states at Γ point. The number of rings in figure
(a) , (b), (c), (d), (e) are 1, 2, 3, 4, 5 respectively. The first plot in (b) and (c) corresponds to
the upper lying gap state, the second one corresponds to the lower lying gap state. In (d) and
(e) the first plot corresponds to the upper lying gap state, the second one corresponds to the
state which is in the middle and the third one corresponds to the lower lying gap state
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states in negative energies belongs to the valence band and positive energy region includes the

gap and the conduction band of the system. According to the partial density of states calcula-

tion the highest occupied molecular orbital (HOMO) of the system belongs to the p-orbitals

of the carbon rings (Fig. 4.14).

The lowest unoccupied level of the molecule (LUMO) whose position is important for several

photovoltaic applications, can also be identified by using partial density of state analysis,

which is in the conduction band of the system. The energy gap between HOMO and the

LUMO levels of the molecule is 4.76 eV, shown in Fig. 4.14(a) for the system which has

one aromatic ring. In the two-ring case, in addition to the displaced HOMO level, the LUMO

level of the molecule also moves up to the CBE, so the energy gap between them is decreased

to 3.40 eV. This trend continues for the other systems, the energy gap between HOMO and

LUMO levels become 2.35 eV for the three ring system, 1.65 eV for the four-ring system and

about 1.15 eV for the five ring system. The decrease in HOMO–LUMO energy difference can

be seen in Fig. 4.13. The binding energy of the molecules is also important for the stability of

the system. These values and the other electronic properties of adsorbed molecules are listed

in Table 4.1.

Figure 4.13: HOMO–LUMO energy differences of adsorbed molecules versus the number of
aromatic rings

4.2.2 Adsorption of aromatic rings anchored by phosphonic acid

The linear series of aromatic rings are anchored on surface using phosphonic acid as in Fig.

4.15. Similar to the previous analysis, the electronic structure of aromatic rings are analyzed
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Table 4.1: Binding energy and the gaps for each system with formic acid as the anchor.

Binding energy (eV) HOMO–LUMO Gap (eV) HOMO–CBE gap (eV)
Clean surface - 1.90 1.90
Formic acid -3.05 7.00 2.31
One-ring -2.37 4.76 2.18
Two-ring -2.59 3.40 1.46
Three-ring -2.70 2.35 0.95
Four-ring -2.88 1.65 0.61
Five-ring -3.11 1.15 0.35

up to five aromatic rings. The distance between rings and the surface is found to be as 4.03

Å. The aromatic rings are adsorbed on both surface of the slab symmetrically like in formic

acid case (Fig. 4.15). The band structure and the density of states of the systems are shown in

Fig. 4.15 can be seen in Fig. 4.16(a) to (f) respectively.

When the molecules which have one aromatic ring are adsorbed on surface, four flat going

extra state appears in the band gap, shown in Fig 4.16(b). Due to these states the band gap of

the system is decreased to to 1.64 eV. When the aromatic molecules have two aromatic rings,

the upper lying gap state seems to move upward towards higher energies. Thus, the band gap

become to 0.90 eV. In the third-ring case, in addition to the states in the previous system,

another extra gap state emerges in the band gap and the upper lying gap state shift through the

CBE. Thus, the band gap energy is decreased to 0.56 eV.
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Figure 4.14: Contribution of molecule’s partial density of states to the total density of states.
Valence band top of the bulk projection is at 0 eV. The number of rings in figure (a), (b), (c),
(d), (e) are 1, 2, 3, 4, 5 respectively. The HOMO and the LUMO level of the isolated rings is
shown above the each of the panel.
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Figure 4.15: Geometry optimized TiO2 anatase (001) 2 × 2 surfaces with varying number of
aromatic rings anchored via phosphonic acid

Figure 4.16: Band Structures of aromatic ring adsorption on anatase (001) surface anchored
via phosphonic acid. (a) Phosphonic acid adsorbed system, and the number of rings in figures
(b), (c), (d), (e), (f) are 1, 2, 3, 4, 5 respectively
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Figure 4.17: Partial charge densities for the gap states at Γ point. The number of rings in
figure a,b,c,d,e are 1,2,3,4,5 respectively. The first plot in a, corresponds to upper lying gap
state in Fig. 4.16(b), the second and the third one corresponds to middle gap state and the
final one corresponds to lower lying gap state. The plots in figure b,c,d,e are the partial charge
densities of gap states in Fig. 4.16(c),(d),(e) and ordered as above respectively

The contribution of molecules to the total density of states is shown in Fig. 4.18. Similar
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Table 4.2: Binding energy and the gaps for each system with phosphonic acid as the anchor

Binding energy (eV) HOMO–LUMO Gap (eV) HOMO–CBE gap (eV)
Clean surface - 1.9 1.9
Phosphonic acid -4.38 7.00 1.65
One-ring -3.20 4.54 1.64
Two-ring -4.00 3.35 0.90
Three-ring -3.95 2.30 0.56
Four-ring -5.12 1.62 0.29
Five-ring -4.36 1.15 0.10

to the formic acid case the energy gap between HOMO and LUMO levels of the molecule

decreases when the number of rings in the molecule is increased. In the one ring-case, the

gap between HOMO and LUMO levels is 4.54 eV and it decreases to 1.15 eV for the five-ring

case, this trend can be seen easily in Fig. 4.19.

The binding energy and other electronic properties of adsorbed molecules are listed in Table

4.2. In addition, the HOMO-CBE energy differences of aromatic rings adsorbed systems for

two different anchor group molecules are shown in Fig. 4.21.
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Figure 4.18: Contribution of molecule’s partial density of states to the total density of states.
Valence band top of the bulk projection is at 0 eV. The number of rings in figure (a), (b), (c),
(d), (e) are 1, 2, 3, 4, 5 respectively. The HOMO and the LUMO level of the isolated rings is
shown above the each of the panel.
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Figure 4.19: HOMO-LUMO energy difference of adsorbed aromatic rings

Figure 4.20: Variation energy difference between HOMO–CBE of the systems versus number
of rings

Figure 4.21: Energy difference between HOMO-LUMO gap of the systems versus number of
rings
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CHAPTER 5

CONCLUSION

In this thesis, the electronic structure of aromatic rings, which are the basic building blocks

of linear dye molecules, adsorbed on TiO2 anatase (001) surface is investigated using density

functional theory. In experimental applications, dye molecules are adsorbed on the TiO2

surfaces in order to enable visible light absorption. This study investigates the possibility of

visible absorption efficiency enhancement through the adsorption of linear aromatic molecules

of varying length. Due to the inertness of aromatic rings, formic (R-COOH) and phosphonic

acid molecules (R-PO3H2), which are the most widely used anchor groups are employed to

enable the adsorption. The results indicate that both anchor group molecules are adsorbed on

anatase (001) surface with high binding energies although the phosphonic acid is adsorbed

on the surface more strongly than the formic acid with a difference of 1.3 eV. In addition, the

phosphonic acid causes a narrowing in the band gap of the TiO2 anatase system, whereas,

formic acid does not make any contribution to the band.

Having identified the most favorable adsorption locations for the anchors, linear aromatic

molecules comprising one to five rings were attached followed by a geometric relaxation

in each case. The geometric structure of the TiO2 anatase (001) surface were found to be

unaffected by the addition of the aromatic molecules. This fact manifests itself in the band

structure of the full system where the bands originating from the surface and the adsorbed

species are mutually unchanged.

In order to provide a controllable parameter to the design efforts of dye sensitized solar cells

(DSSC), the possibility of a trend in the Highest occupied molecular orbital (HOMO) – Low-

est unoccupied molecular orbital (LUMO) gap and the HOMO–conduction band edge energy

difference was sought. The HOMO–LUMO gap was observed to decrease in a monotonic

fashion with increasing ring number. In order to get efficient photovoltaic device the po-
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sitions of HOMO and LUMO levels of the molecule are also important in addition to the

energy difference between HOMO and the conduction band edge of these systems. The best

performance of these systems is achieved when the HOMO level of the molecule is in the

band gap so visible light will be absorbed and the LUMO level is in the conduction band of

the system so that the excites electron will immidiately passed to the TiO2 substrate [53]. The

positions of the HOMO and LUMO levels of the molecules are found under consideration are

in accordance with this criterion in our work.

All aromatic rings studied in this work have been found to bind strongly to the substrate via

the anchor molecules. Furthermore, LUMO levels were observed to be located within the

conduction band of the TiO2 substrate while the HOMO levels display an upward shift with

increasing ring number. In light of these findings, the aromatic ring chains were identified as

favorable candidates for tunable design of DSSCs. Among the linear chains studied, the most

appropriate molecule for use in a single frequency DSSC is likely to be the three-ring chain

due to its intermediate size gap. However, the simultaneous use of molecules with varying

lengths will have the effect of providing adsorption of a larger portion of the visible spectrum.

This conclusion is drawn from the observation of several states introduced in the band gap by

each molecule, providing new channels for optical transitions.
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