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ABSTRACT

NUCLEAR SPINODAL INSTABILITIES IN STOCHASTIC MEAN-FIELD
APPROACHES

Er, Nuray
Ph.D., Department of Physics
Supervisor : Prof. Dr. Osman Yilmaz

Co-Supervisor : Prof. Dr. Sakir Ayik

August 2009, 81 pages

Nuclear spinodal instabilities are investigated in non-relativistic and relativistic stochas-
tic mean-field approaches for charge asymmetric and charge symmetric nuclear mat-
ter. Quantum statistical effect on the growth of instabilities are calculated in non-
relativistic approach. Due to quantal effects, in both symmetric and asymmetric mat-
ter, dominant unstable modes shift towards longer wavelengths and modes with wave
numbers larger than the Fermi momentum are strongly suppressed. As a result of
quantum statistical effects, in particular at lower temperatures, amplitude of density

fluctuations grows larger than those calculated in semi-classical approximation.

Relativistic calculations in the semi-classical limit are compared with the results of
non-relativistic calculations based on Skyrme-type effective interactions under similar
conditions. A qualitative difference appears in the unstable response of the system:
the system exhibits most unstable behavior at higher baryon densities around pp =
0.4 po in the relativistic approach while most unstable behavior occurs at lower baryon

densities around pp = 0.2 py in the non-relativistic calculations.
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Keywords: Spinodal instabilities, nuclear multi-fragmentation, stochastic mean-field
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STOKASTIK ORTALAMA ALAN YAKLASIMLARINDA NUKLEER SPINODAL
KARARSIZLIKLAR

Er, Nuray
Doktora, Fizik Bolumii
Tez YoOneticisi : Prof. Dr. Osman Yilmaz

Ortak Tez Yoneticisi : Prof. Dr. Sakir Ayik

August 2009, 81 sayfa

Relativistik ve relativistik olmayan stokastik ortalama alan yaklagimlar: kullanilarak
simetrik ve elektrik yiikii bakimindan asimetrik niikleer maddeler i¢in niikleer spi-
nodal karasizliklar incelendi. Kararsizliklarin gelisiminde kuantum istatistiksel et-
kiler relativistik olmayan yaklagimda hesaplandi. Kuantal etkilerden dolay1 simetrik
ve asimetrik niikleer maddenin her ikisinde de baskin kararsiz modlar uzun dalga
boylarina dogru kayar ve dalga numarasi Fermi momentumdan biiyiik olan mod-
lar 6nemini kaybeder. Kuantum istatiksel etkilerin sonucu olarak, ozellikle diigiik
sicakliklarda, yogunluk dalgalanmalarinin genligi yari-klasik yaklagimla elde edilen-

lerden daha hizli gelisir.

Yari-klasik limitteki relativistik hesaplar, benzer kosullar altindaki Skyrme-tipi etkin
etkilesimler baz alinarak yapilan relativistik olmayan hesaplarin sonuglar ile karsi-
lagtirildi. Sistemin kararsiz tepkisinde kalitatif farklar ortaya ¢ikar: Relativistik yakla-
simda sistemin en kararsiz davranisi pg = 0.4 pg yogunluklar: civarinda ortaya ¢ikar.

Buna kargin relativistik olmayan davranis pg = 0.2 p, civarindaki yogunluklarda ken-

vi



dini gosterir.

Anahtar Kelimeler: Spinodal kararsizliklar, niikleer pargalanma, stokastik ortalama

alan yaklagimi, zamana baglh Hartree-Fock teorisi, Vlasov denklemi.
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CHAPTER 1

INTRODUCTION

Nucleons are nearly two thousand times heavier than electrons, therefore the mass of
an atom more than 99.9% is found in nucleus which means that nucleus is more than
10'* times denser than normal matter. The normal nuclei, in equilibrium conditions
its density is around 0.16 fm=3, which consist of neutrons and protons and it is one of
the phases of nuclear matter. The other possible phases of nuclear matter are parame-
terized in terms of temperature and relative baryon density, the density compared with
ordinary nuclei. In heavy ion collisions, nuclear matter is excited and in these high
temperature and subnormal density conditions liquid-gas phase transition form nuclei
to nucleons takes place. Ordinary nuclear matter behaves like a Fermi liquid, quan-
tum mechanical fluid of fermions, with specific quantum numbers, so it is expected
that a change of phase shows the similar properties of a first order liquid-gas phase
transition, because there is similarity between van der Waals and nucleon-nucleon
interactions, which is attractive at long and intermediate ranges and repulsive at short
range. Density fluctuations in the Fermi fluid are named as zero sound by Landau
which is the longitudinal density vibrations. In the instability region the frequency of

sound waves are imaginary [1].

Dynamics of density fluctuations around equilibrium density have a fundamental role
in induced fission, heavy-ion fusion near barrier energies, spinodal instabilities and
nuclear multi-fragmentation processes. In this thesis our main interest is spinodal
instabilities and multi-fragmentation processes. The growth of small density fluctu-

ations around an equilibrium density is known as the spinodal decompositions. The



region in which the spinodal decompositions occurs is called as the spinodal region
where the system is unstable and in the spinodal boundary it changes phase and
multi-fragmentation takes place. For example, at intermediate energies of forceful
reactions, it can be observed that a hot and dense nuclear source expands and enters
into the unstable region , i.e. the spinodal region. Then, as a result of instability the
fluctuations of the local density grows and leads to a break-up of the nuclear system

into many fragments.

Mean field transport models in which fluctuation and dissipation takes places together
are needed for the explanation of dynamics of density fluctuation processes. But,
the approaches like time-dependent Hartree-Fock (TDHF) [2, 3] and the Boltzmann-
Uhling-Uhlenbeck (BUU) [4] do not have these features. Because TDHF includes,
the so called, one-body dissipation mechanism, interactions of a single nucleon with
the collective nuclear potential, but associated fluctuation mechanism is not incorpo-
rated into the model. Correspondingly, the extended TDHF and its semi-classical
approximation BUU model involves one-body and collisional dissipation, but the
associated fluctuation mechanisms are not included into the description. It is well
known that no dissipation takes place without fluctuations. In order to describe dy-
namics of density fluctuations, we need to develop stochastic transport models by
incorporating fluctuation mechanisms into the description. There are two different
mechanisms for density fluctuations: (i) collisional fluctuations generated by two-
body collisions and (ii) one-body mechanism or mean-field fluctuations. Much effort
has been given to improve the transport description by incorporating two-body dissi-
pation and fluctuation mechanisms. The resultant stochastic transport theory, known
as Boltzmann-Langevin model [5, 6, 7], provides a suitable framework for dynamics
of density fluctuations in nuclear collisions around Fermi energy. However, two-body
dissipation and fluctuation mechanisms do not play an important role at low energies.
At low bombarding energies, mean-field fluctuations provide the dominant mecha-
nism for fluctuations of collective nuclear motion. In a recent work, this question
is addressed [8]. Restricting the treatment at low energies, a stochastic mean-field
approach for nuclear dynamics is proposed, which incorporates one-body dissipation

and fluctuation mechanisms in accordance with quantal dissipation-fluctuation theo-



rem. Therefore, the stochastic mean-field approach provides a powerful microscopic
tool for describing low energy nuclear processes including induced fission, heavy-ion

fusion near barrier energies and spinodal decomposition of nuclear matter.

Much work has been done to understand the spinodal instabilities and their connec-
tion with liquid gas phase transformation in symmetric and more recently charge
asymmetric nuclear matter. Most of these investigations have been carried out in the
basis of semi-classical Boltzmann- Langevin (BL) type stochastic transport models
[1]. There are two major problems with these investigations. First of all, numerical
simulations of BL. model are not very easy, even with approximate methods, simula-
tions require large amount of numerical effort. The second problem is related with
the semi-classical description of spinodal decomposition of nuclear matter. Accord-
ing to previous works, quantal statistical effects play an important role in spinodal
dynamics [9, 10, 11, 12]. There are qualitatively two different regimes during evolu-
tion of nuclear collisions in Fermi energy domain. During the initial regime of heavy
ion-collisions, namely, from touching until formation of hot and compressed piece
of nuclear matter, collisional dissipation and fluctuations are substantially important.
On the other hand, during expansion of the system into mechanically unstable spin-
odal region, collisional effects may be neglected. In the spinodal region, local density
fluctuations, which are accumulated during the initial regime, are mainly driven by
the mean-field until system breaks up into clusters. Recently proposed stochastic
mean-field approach provides a useful tool for describing spinodal decomposition of
expanding hot piece of nuclear matter. The approach includes quantum statistical ef-
fects and at the same time, numerical simulations of the approach can be carried out

without much difficulty.

And also it has been shown in recent years that the nuclear many-body system is
in principal a relativistic system driven by dynamics of large relativistic attractive
scalar and repulsive vector fields. Both fields are not much smaller than the nucleon
mass and therefore the average nuclear field should be described by Dirac equation.
For large components of Dirac spinors, two fields nearly cancel each other leading

to relatively small attractive mean field. The small components add up leading to



a very large spin orbit term, which is known since early days of nuclear physics.
Relativistic models have been used with great success to describe nuclear structure. In
recent years, the approach has also been applied for description of nuclear dynamics
extended in the framework of time-dependent covariant density functional theory [13,
14]. A number of investigations have been carried out on spinodal instabilities in

nuclear matter employing relativistic mean-field approaches [15, 16, 17].

In chapter 2, we present a brief description of the time-dependent Hartree Fock the-
ory and the stochastic mean-field approach, and then we study early growth of density
fluctuations in charge asymmetric nuclear matter and investigate quantum statistical
effects on spinodal instabilities and on growth rates of dominant unstable modes on
the basis of stochastic mean-field approach, we calculate early growth of density fluc-
tuations, growth rates and phase diagram of dominant modes in charge asymmetric
systems, and study quantal effects on these quantities. In chapter 3, Walecka model is
introduced and the field equations of nucleons, the scalar meson and the vector meson
is derived and then we consider the stochastic extension of the relativistic mean-field
theory in the semi-classical approximation. Employing the stochastic extension of the
relativistic mean-field approach, we investigate spinodal instabilities and early devel-
opment of density fluctuations in symmetric nuclear matter. And the conclusions of

these investigations are given in chapter 4.

The main body of this thesis depends on two published papers;

1. S. Ayik, N. Er, O. Yilmaz and A. Gokalp, Nucl. Phys. A 812 (2008) 44.

2. S. Ayik, O. Yilmaz, N. Er, A. Gokalp and P. Ring, submitted to Phys. Rev. C.



CHAPTER 2

QUANTAL EFFECTS ON SPINODAL INSTABILITIES IN
CHARGE ASYMMETRIC NUCLEAR MATTER

2.1 Many-body Theory and Mean-field Approach

Many-body theory provides the framework for understanding the collective behavior
of big assemblies of interacting particles. Nuclear matter is also a many-body system
of interacting fermions, and it is generally very difficult to solve its equation for the
states of the system exactly. The many-body time-dependent Schrédinger equation of
nuclear matter is

.0 o,
[zha - H] O(r;, 1) = [lhE — { ,- ——V2 + Z u(i, J)}

i<j

DO(ri, 1) = 2.1)

where 7; collectively symbolizes the coordinates of i nucleon which includes po-
sition 7, z-component of spin s; = F1/2 and third component isospin #; = 1/2 for
neutrons, #; = —1/2 for protons (coordinates of i nucleon), and u(i, j) represents
interaction potential of two nucleons [2]. The great difficulty generated by the inter-
action terms in the Hamiltonian manifests itself when summing over all states. To
solve this difficulty mean field theory (MFT), i.e. self-consistent field theory, is used.
There is self-consistency because mean-field potential depends on local densities of
neutrons and protons in nuclear matter. The goal of MFT is to replace all interac-
tions with an average or effective one body interaction. This enables one to reduce
many-body problem into an effective many one-body problem. This reduction is very
worthwhile because the system at any time is defined by its one-body distribution

instead of the full many-body information.



In the mean-field characterization of a many-body system, the time-dependent wave
function ®(z) is an anti-symmetric wave function assumed to be a single Slater deter-

minant constructed with time-dependent single-particle wave functions ¢(r;, 1),

Gk, (ri,t) oo G (ra, 1)

O i () =| : (2.2)
Or,(ri,t) ... @, (rn, 1)

with eigenvalues Ej, x,

= &, + ..+ ¢, + ..., and for all times it stays as a Slater
determinant. Then, the motion of the system is described by the single particle density

matrix defined as follows,
PRFD = ) ¢i(F0ng (.0 (2.3)
J

here n; represents the occupation number of the single-particle states. Using Varia-

tional principle it is possible to derive the equation of motion of p(r, r’, t) as

0
H-ins
ey

<6(D(t) (I)(t)> =0 (2.4)

which gives the well-known time-dependent Hartree-Fock (TDHF) equation in dy-
namics

. Op _
th—— = [h(p).p] = 0 (2.5)

where h(p) is the single particle Hamiltonian (TDHF Hamiltonian). In the static limit
it is known as Hartree-Fock equation (HF) [A(p), o] = 0. In the semi-classical limit
TDHF equation reduces to Vlasov equation which gives the time evolution of the

phase space distribution function f(7, p, 1)
0 5 =4 - = 2 = - = 2
Ef(r, p.t) = V.7, p)-V,f(7,p,t) + V,h7, p)-V,f(7,p,t) =0. (2.6)

The detail of this semi-classical correspondence is presented in Appendix A.

2.2 Stochastic Mean-field Approach

A deterministic evaluation of the single-particle density matrix can be obtained using

the standard TDHF equations starting from a well defined initial state. The standard
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approach provides a good description for the average evolution of collective motion,
however it severely restricts fluctuations of collective motion [2, 3]. In order to de-
scribe fluctuations, we must give up single determinantal description and consider
superposition of determinantal wave functions. In the stochastic mean-field descrip-
tion, an ensemble of single-particle density matrices associated with the ensemble of
Slater determinants is generated in a stochastic framework by retaining only initial

correlations [8].

Correlation is an important concept in the probability theory and statistical physics
because it gives information about the strength and direction of a linear relationship
between two random variables [18]. In the stochastic mean-field approximation the
initial correlations are the source of stochasticity. Due to stochastic behavior of the
initial correlations it is impossible to find a well-defined single determinantal form of
the initial state. As a result, initial correlations can be integrated by dealing, instead of
a single initial state with a distribution of initial Slater determinants, and thus initial
correlations can be simulated in a stochastic description. To be able to build up a
stochastic description, enough number of unoccupied and occupied single-particle
states must be determined. A member of single-particle density matrix, indicated by

label A, can be expressed as,
PAEF 1) = > it Do O ) 15 D). 2.7)
ij

In this expression and in the rest of this thesis label a = n, p represents neutron and
proton species and (zlp (0)|j) are time-independent elements of density matrix deter-
mined by the initial correlations. The main assumption of the approach is that each
matrix element is a Gaussian random number specified by a mean value (zlp Oy =
0ijfy (i), 1.e. the mean-field Hamiltonian A at £ = 0 assumed uniform, and a vari-
ance of 0p,(0), which is measure of statistical dispersion of a random variable initial

correlation, is

1
UYAOIEIIAOLE 50a0ir 0 Sy (DI = (DI + foDIT = f5OIL - (2.8)

In these expressions {il5p}(0)|j) represents fluctuating elements of initial density ma-

trix, p,(j) denotes the average occupation number. At zero temperature, the average



occupation numbers are zero for unoccupied states and one for occupied states, and
at finite temperature, the average occupation numbers are given by the Fermi-Dirac
distribution,

fo() = (2.9)

e(fj_ﬂa)/T + 1
where u, is chemical potential of nucleons determined as u, = ez[1— (7%/12)(T/er)?]

in terms of Fermi energy e = (37%ny/2)*/? /2m with the equilibrium density n.

In each event, different from the standard TDHF, time-dependent single-particle wave
functions of neutrons and protons are determined by their own self-consistent mean-

field according to,

'6(1—), ar=2 4.
ma%@h@=%%@h@ (2.10)

where i} = p*/2m, + U,(n}, n}) denotes the mean-field Hamiltonian in the event, and
in the mean-field approach U,(n, ng) is the density dependent self-consistent mean-

field potential which depends on proton and neutron local densities n(r, 1).

We can express stochastic mean-field evolution in terms of single-particle density

matrices of neutrons and protons as
L0
ih=p(t) = [hglp;], (o)) (2.11)

where the collision term is neglected in the frame of mean-field approximation. In the
stochastic mean-field approach an ensemble of single-particle density matrices is gen-
erated associated with different events. In this approach, we can calculate, not only the
mean value of observables, also probability distribution of observables. Even if the
magnitude of initial fluctuations is small, in particular in the vicinity of instabilities
mean-field evolution can enhance the fluctuations, and hence events can substantially
deviate from one to another. By projecting on a collective path, it is demonstrated that
the stochastic mean-field approach incorporates one-body dissipation and one-body
fluctuation mechanisms in accordance with quantal dissipation-fluctuation relation

[8].

In this part of the thesis, we investigate the early growth of density fluctuations in

spinodal region in charge asymmetric nuclear matter. For this purpose it is sufficient



to consider the linear response treatment of dynamical evolution [1]. Only to the
early development of spinodal instabilities linear treatment is applied, if the density
fluctuations grow large the dynamics of the system becomes non-linear and more
complete treatment is needed. The small amplitude fluctuations of the single-particle
density matrix around an equilibrium state are determined by the linearized TDHF
equations. The linearized TDHF equations for fluctuations of neutron and proton
density matrices 6p(f) = p(f) — p?, are given by

ihgépﬁ(t) = [h3, 6041 + [8U, (), P, (2.12)

where the linearized effective one-body Hamiltonian is k[0 + Spl(0)] = p?/2m, +
Ualp° + 6pl(t)] = h° + 6U,(z). Since for infinite matter, the equilibrium state and the
associated mean-field Hamiltonian 4° are homogenous, it is suitable to analyze these

equations in the plane wave representations

(PITKS, 5p(0)] + [SUX@), 211 52)

le(P)) = &(POKPISPLDIP) + (PIISU (1), polIP5)

0
ih— {1160 (1) P>
l 6t<p1| 04 ( )p2)

(2.13)
where
(PUIBUL®. pIP5) = (PiloUL (1) f dpy' 195" X P> 1001 P5)
—(pilog f dpy 1Py X Py UL )
= f dpy (PUISU LIP3 ) 5 (2 )o(ps — pa)
- f dpy Py 16U P £ (D)1 — pi). (2.14)
and thus finally

0
ihaﬁwpﬁ(mm = [e(p)) — (PN DIP2)

~Lf5(P) = 5P KPISUL ()] p). (2.15)

The main assumption of stochastic mean-field approach is that, matrix elements of the

initial density matrix are Gaussian random numbers. In the plane wave representation

9



the second moments of the initial correlations are given by,

(P1ISpa 0P P 16ppO)PYY = 6ap2mh)°6(P) — p1)S(p> — Py
1
5 oA = () + (P = ()],
(2.16)

where the factor (277h)° arises from normalization of the plane waves.

2.3 The Skyrme Interaction

The Skyrme interaction is one of the phenomenological effective interactions used in
nuclear problems, like in nuclear self-consistent field or bulk properties of nuclei. For
nuclear Hatree-Fock calculations in the mean-field approximation Skyrme potential,
which is zero-range, density and momentum dependent, is an effective potential. The

original form of it with a two-body and a three-body term is
V="Vt > Vi (2.17)
i<j i<j<k
The range of nuclear force is very short, so to simplify the problem for the two-body

part it is useful to use short-range expansion where the radial dependence of force is

shown by d-function and a momentum dependence is used to simulate a finite range

1
Vip= o (1+ 2PN = 72) + 506 = P + K6(7 = 7))

+ 0kS(F — Bk + iWo(D — 3Nk x 8(7 — KK, (2.18)

here £ = 1 /2i(61 — 62) is the relative momentum operator, P’ is a spin-exchange
operator and the & is Pauli spin matrix. The zero range force form of the three body
part is

Vi = 136(F) — 5)0(F — 73). (2.19)

In these equations the constants fy, 11, 1, 13, ty, X9, Wy are fitted with experimental re-
sults of binding energies and nuclear radii, in literature for these constants there are

several sets [2, 19, 20].

10



In numerical calculations we employ the same effective Skyrme potential as in refer-

ence [21] for the local density dependent mean-field potential

6Hpot(nn ’ np)

Ua ns = 2.20
(1, 1) 50, (2.20)
where
An? B n**?* Cn? D - D -
Ho ns =t ———+ ——+ —=(V 2_—V,2. 2.21
por(Ts 1) = 50 a+ 208 2 g 5 (V"= 5 (Vi) @:21)

Thus the potential energy density is

n n\*"! n 1dC n”?
U,(ny,n,) =Al—|+B|— +C|—|1s+ =—— —-DAn+ D'An't,, (2.22)
no no no 2 dn ng

here n = n, + n, and n’ = n, — n, are total and relative densities, and the sign of
isospin 7, = +1 for neutrons and 7, = —1 for protons. The parameters A, B, C, D and
D’ are functions of Skyrme parameters, and their numerical values A = —356.8 MeV,
B = +303.9 MeV, @ = 1/6 and D = +130.0 MeV fm’ are adjusted to reproduce
the saturation properties of symmetric nuclear matter: The binding energy &, =
15.7 MeV/nucleon and zero pressure at the saturation density no = 0.16 fm™>, com-
pressibility modulus K = 201 MeV and the surface energy coefficient in the Weiz-
sacker mass formula ay,r = 18.6 MeV [22]. Magnitude of the parameter D’ =
+34 MeV fmd is close to the value given by the SkM* interaction [23]. The poten-
tial symmetry energy coefficient is C(n) = C; — Ca(n/ng)® with C; = +124.9 MeV
and C, = 93.5 MeV. These parameters for the symmetry energy coefficient in
Weizsacker mass formula, at saturation density gives ayy,, = €p(n9)/3 + C(ng)/2 =

36.9/3 +31.4/2 =28.0 MeV.

2.4 Spinodal Instabilities

2.4.1 Dispersion Relation

In this subsection, we apply the stochastic mean-field approach in small amplitude
limit to investigate spinodal instabilities in charge asymmetric nuclear matter [21].

We can obtain the solution of Eqn (2.15) by employing the standard one sided Fourier

11



transformation method, so the transformation of density fluctuation is

“ 1 a — - - - . — —
f dte"‘”E(pllépa(t)lpz) = —(p116pa(0)|p2) — iw{pilopa(w)p2),
0

(2.23)

where (p116p.(0)|p2) is the source part coming from initial conditions, and the trans-

formation of mean-field potential is

fo d1e (P U1 p2) = (PilUa(w)|P2)- (2.24)

Therefore, the Fourier transformed form of linearized TDHF equation becomes

Lfg(P) = f5(P2)]
[hw — £,(P1) + €4(P2)]
. (P116pa(0)|p>)
lh - >N\

[hw — £4(P1) + £4(P2)]

(Pilopa(w)lp2) = - (PiloUq(w)IP2)

(2.25)

By rewriting the momentum vectors as p, = j + hk/2, p> = p — hk/2 and using the
position space and momentum space representations in which we have the relations

[24]

1 .
2 — @i/ h)p-7
<r|ﬁ> - (27Th)3/2e
hE 1 . N
= — =i/ )P+ 5 )7
T RE
F1p-75) = (Qrhy 2 IR (2.26)
we obtain
LBk L Bk
(p+ Tlépa(w)lp - 7> =
LR hk hk
[ are [ [t T a0 1 707155,
0 —00 J -0
(2.27)

We evaluate f d’p integral of both sides and then use the orthonormality relation

f & pe (MY = Qah)ds(i - 7), (2.28)

()
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to obtain

L hk L hk
f &’ p(B + —|6pa(w)|F - =)
2 2
00 . 00 00 5 d3p N NPV R
:f dtezwtf f d37‘d‘ r/fme(—l/ NGas ).pe(—l/ )P+ ).k<’—.)| (Spa(t) | r—.”>
0 —00 J—00

= f dte™! f Pre ® sp (7, 1) = f dte 5p.(k, 1).
0 —00 0

Similarly, Fourier transform of the fluctuating part of mean-field potential

(2.29)

LBk L Bk
(p+ ?léUa((-‘))lp - 7)
00 . 00 0 h]g hlz
= f dte"‘”f f Erd’r (P + > | PP SUL() | PP | P — 5>
0 —00 J —00

0 ) < Pr o S _—
:f dtelwff —e(—l/h)(P+(h/2)k)'re(l/h)(ﬁ—(hﬂ)k)‘ré‘Ua(t)
0 o (27D)3

_ T e © dr —ik7
= | dte'”'6U (1) - (27rh)3e (2.30)

can be written as

-

L Bk L Bk
(p+ 7|5Ua(w)|19 - 7> =0U,(w), (2.31)

where (7| 6U,(t) | ¥) = 6U,()5(7 — 7), because mean-field potential is local.

We have the following quantity

~ 7 * d3p - e - e
Ong(k,w) =2 Iw ) (P + hk/2|0p(w)|p — hk/2) , (2.32)

which defines the Fourier transform of the local density fluctuations of neutrons and
protons, where the coefficient 2 is spin factor. In these expressions and in other for-
mulas in this section, we omit the event label A for clarity of notation. After Fourier

transformation and d*p/(2rh)? integration of Eq. (2.15) there results

R © P 93— hk/2) — f4(P + hk/2
s = 2 [ L2 s (P = k1D — 5P+ B2
oo (27°) By — €(P + Bk/2) + € — Fk/2)

© dp P+ hk/25p.(0)|F - hk/2)
oo 20) By — e(B + BRJ2) + €(F — BRJ2)

The fluctuation of mean field potential depends on both neutron and proton local

+ 2ih

(2.33)

density fluctuations, for neutron

> 0 n - 0 n oo
oU,(k,w) = (6U ) on,(k, w) + (#) 5np(k, w), (2.34)
0 np /o

n 14
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and for proton

> oUu,\ . - oU,\ . -
oU,(k,w) = | = Ofty(k, w) +|—| o7, (k, w), (2.35)
ony, /o on, /,
where, the equilibrium densities of neutron and proton has the same value 77y =
0.16 fm=3. In these expressions, derivative of the mean-field potential U.(n,,n,)
evaluated at the equilibrium density F’ g” = (0U,/0n,), denotes the zero-order Landau
parameters and the integral )(a(lz, w) is the Lindhard function associated with neutron
and proton distributions

" = Pp [ DkJ2) = fi(F + Dk[2)

Xa(k’ (,U) =-2 3 iy
—0 (27h) hw — P - hic/m

(2.36)

where —p - hl?/m = —¢,(p + hl?/Z) — (P — hl?/Z). The source terms Au(l?, w) are
determined by the initial conditions,

= d’p (P + hk/216pa(0)|7 — hk/2)
_w (27h)3 hw — B - hk/m

The angular integrations can be performed and the resulting expressions are presented

Ak, w) =2k

(2.37)

in Appendix B. Therefore, we obtain a set of coupled algebraic equations for the

Fourier transforms of fluctuating parts of local neutron and proton densities [25],
[1+ F (K, )67k, ) + FiP xu(k, )67, (K, w) = iA, (K, ) (2.38)
and

[1+ F2Px (K, )67, (k, w) + F2"x (K, )67, (k, w) = iAy(k, w). (2.39)

The solution of the coupled algebraic equations for Fourier transform of density fluc-

tuations are given by,

S 1+ FPy (k, )]A,(k, w) — F'y,(k, 0)A (K, w
6ﬁn(k,w):i[ o Xp(k, w)]AL( _)) o Xn(k, WA, (k, w) (2.40)
ek, w)

and

57 () = AL+ Fy! W, )]A (K, w) = FI"y (K, 0)A, (K, w)
e 8(]?, w) ’

(2.41)
where the quantity

ek, w) = 1+ Fy'xa(k, ) + FY x ok w) + [Fg"FYY = Fo Fy Lk, o)y (k, )

(2.42)
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denotes the susceptibility and s(lz, w) = 0 gives the dispersion relation. The sign of the
susceptibility gives information about the border of the spinodal region, in unstable
region s(l?, w) < 0 and in stable region s(l?, w) > 0. In the infinite nuclear matter
collective modes are characterized by wave number k. The solution of dispersion
relation gives characteristic frequencies +wy for every wave number, in the stable
region, p > P.riical, frequencies are real and for unstable modes, p < pPyisicar, they are

imaginary.

Time dependence of Fourier transform of density fluctuations 671,1(12, 1) is determined
by taking the inverse transformation of Eqgs. (2.40) and (2.41) [26]. The inverse
Fourier transformations in time can be calculated with the help of residue theorem,

00+10"
Siig (k1) = f z—waﬁa(ﬁ, w)e (2.43)
_ JT

co+io

keeping only the growing and decaying collective poles at w = Fil’, because frequen-
cies are imaginary in the spinodal region. The details of this transformation is given

in Appendix B. Therefore we find

[1+ FPPx (K, iD)A(K, iT) = FiPy (K, iT)A (K, iT')
[0e(k, 0)/0w] i
[1+ F2Px,(k, —iD)]A,(k, —i0) = Fi"x,(k, —iD)A ,(k, =il)
[de(k, )/ 0wl e }

oty (k1) = %(Zm')i{

(2.44)

and

K L 1+ Fyyu(k, iD)A (K, i0) = F3"x (K, iD)A, (k, iT
orip(ks1) = 5 (27ri)i{[ ok, iD)]A (K, i0) = F§"x p(k, iD)A,(k, iT)
T

[0e(k, )/ 0w]-ir
[1+ Fi"xu(k, —iD)A (K, —iT) = F3"y,(k, ~iD)A, (K, —iT')
+ .
[98(K, ) /0w =i

(2.45)

Growth and decay rates at poles w = Fil'; are determined from the dispersion relation

s(l?, w) = 0, i.e. from the roots of susceptibility. Therefore in the short notation,

Sia(k, 1) = ont (K)e™ + on; (K)e ™, (2.46)

15



where the initial amplitude of density fluctuations are given by

n

o 1+ FPy (k, )]A,(k, w) — F'y,(k, 0)A (K,

sn* (0 = [ o Xp(k, w)] (960) o Xn(k, WA, (k, w) , (2.47)
oe(k, w)/0w .

and

[1+ Fyu(k, w)]A (K, w) = FP"y (K, 0)A, (K, ) (0.48)
88(1?, w)/0w w=TiT} '

(k) = - {

As an example, Fig. 2.1(a) shows the growth rates of unstable modes as a function of
wave number in the spinodal region corresponding to initial density n = 0.2 ny and
n = 0.4 ny for initial asymmetry I = 0.0 at a temperature 7 = 5 MeV. The initial
charge asymmetry is defined according to I = (n) — ng) / (ng + ng). In this figure and
also in other figures, solid-lines and dashed-lines show quantal and semi-classical re-
sults, respectively. Since, at low densities, wave numbers of most unstable modes are
comparable to Fermi momentum, long-wavelength expansion of the Linhard function
is not valid, and hence there is important quantal effect in the dispersion relation. For
example, for density n = 0.2 ng, the temperature T = SMeV and initial charge asym-
metry I = 0.0 the wave numbers of the most growing modes are around k ~ 0.8 fm™!
and for the same conditions the Fermi momentum is around k ~ 0.78 fm~!. At the
initial density n = 0.2 ny and the initial asymmetry / = 0.0 ,i.e. symmetric nuclear
matter, in the quantal calculations unstable modes are confined to a narrower range
centered around wavelengths 4 =~ 8 — 10 fm, as compared to a broader range centered
around 4 =~ 7 fm in the semi-classical calculations. Growth rates in semi-classical
framework are determined by the roots of semi-classical susceptibility, which is de-
fined as in Eq. (2.42) by taking the Lindhard functions )(a(l?, w) in the long wavelength
limit given by Eq. (2.58). As a result, in the quantal calculations, the source has a
tendency to break up into larger fragments as compared to the semi-classical calcu-
lations. Also, due to quantum effects, the maximum of dispersion relation is reduced
by about a factor 1/4. Therefore, fluctuations take more time to develop when quan-
tum effects are introduced. At higher initial density n = 0.4 n, , in both quantal and
semi-classical calculations, dispersion relation is shifted towards longer wavelengths

and it exhibits a similar trend as the one at the initial density n = 0.2 ny. This quantal
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Figure 2.1: Growth rates of unstable modes as a function of wave number in spinodal region
corresponding initial densities and at a temperature 7 = 5 MeV. (a) for initial asymmetry
I =0.0, (b) for initial asymmetry I = 0.5.

effect in dispersion relation of unstable modes was pointed out in the case of symmet-
ric matter in a previous publication [27]. Charge asymmetric nuclear matter exhibits
a similar behavior as seen from figure 2.1(b), which shows dispersion relation corre-

sponding to initial densities n = 0.2 ny and n = 0.4 n, for initial charge asymmetry
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Figure 2.2: Same as Fig. 2.1 but for temperature 7 = 1 MeV.

I = 0.5 (i.e. neutron rich nuclear matter) at a temperature 7 = 5 MeV. Similar results

can be seen for T = 1 MeV in Figs. 2.1(a) and 2.1(b).

Figs. 2.3(a) and 2.3(b) shows the boundary of spinodal region in density-temperature
plane corresponding to initial charge asymmetries / = 0.0 and / = 0.5 for the unstable

modes with wavelengths 4 = 9 fm and A4 = 12 fm, respectively. It is seen that with
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Figure 2.3: Boundary of spinodal region in density-temperature plane corresponding to initial
charge asymmetries / = 0.0 and / = 0.5 for the unstable mode: (a) with wavelength A =9 fm,
(b) with wavelength A = 12 fm.

increasing charge asymmetry, spinodal region shrinks to smaller size in both quantal
and semi-classical calculations. Furthermore, unstable modes are quite suppressed
by quantal effects as compared to the semi-classical results in both symmetric and

asymmetric matter. Results of semi-classical calculation are in agreement with the
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results obtained in reference [21].

2.4.2 Growth of Density Fluctuations

In order to characterize the density fluctuations 5ﬁa(lz, ) away from the ensemble
average i,(k,0) it is suitable to use the correlation function for the single particle
density matrix. For this purpose in this subsection, we calculate early growth of local
density fluctuations in charge asymmetric nuclear matter. Spectral intensity of density
correlation function &ab(l?, t) is related to the second moment of Fourier transform of

density fluctuations according to,

Fap(k, )21)*5(k = k') = 671, (K, 1)ST (=K', 1)

= Snt(Ryon; (—k)e™™ + snx(R)dny (—k') + Snz(R)Sn} (—k) + 6n (k)on; (—k')e 2.
(2.49)

For neutron-neutron we obtain

20t

e

STy (K, )07 (—K' 1) = —— _
[68(1(, a))/ﬁw] " [83(—k’,w)/8w]

w=ill

{[1 + FIPy PPA,(k, iDAL (=K, D) + [Fi x4, (K, ir)A,,(—J?,ir)}

e—ZFkt

de(k, w)/dw| __|0s(-k, w)/dw|

]
x{ 1+ FPPx  PALK, —iD)A, (=K', —iT) + [Filx, A (K, —ir)A,,(—l?f,—ir)}
2
[ae<1< w)/ow| _|de(-k, w)/dw]

w=—il"

{[1 + FIPx , PA,(k, iDA(—K, —iT) + [Fy x, A (K, ir)A,,(—l?,—ir)},
(2.50)
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for proton-proton

e2rkt

[E)s(l?, w)/ Gw]w:ir [38(—]?', w)/ (')a)]w

67t (K, )67, (—k', 1) =

=il

X {[1 + FI" Y PA (K, DA (=K', i) + [F"x, P A (K, iT)A(~K, iF)}

e—ZFkt

+ — >
de(k. )/0w|, |96~k w)/dw|

X {[1 + FIY A (K, —iD)A (=K, D) + [F2"x ) 2 A, (K, —iD)A, (=K, —ir)}
2
[68(/2, w)/ (%c)]w: [88(—]?’, w)/ 8w]w

i =—il’

+

X {[1 + Py lPAp(k, DA (=K', i) + [F"x ) PAK, DAL, —ir>} :

(2.51)

and neutron-proton

20t

e
[68(/2, w)/ ﬁw]w_ [68(—]?, w)/ 6w]w:ir

=i’

Siin(K, )57, (=K', 1) =

X {[1 + FEP Y IFD x p Ak, DA (=K, i)

1+ F 1Py, (R D)A (<R, iF)}

e—ZFkt

[68(—]?’, w)/ ﬁw]w

* [(98(/2, w)/ (?a)]w

=—i[ =—ill

x {[1 + EP " pA sk, D) A (=K, —iT)

1+ F I FaP y A (K, —iD)A (=K, —iF)}
2
[88(12, w)/ 6w]w_ [88(—/?’, w)/ Ba)]

=i w=—iI'

+

x {11+ Fyxp I P pAn(E DA (R, ~iT)

F[1+ F I x0A (R T)A (<R, —ir)}

where the cross terms of source correlations are zero, i.e. A,,(l?, iF)Ap(—l?', i =

A ,,(l?, iF)An(—l?’, il") = 0, because of the statistical independence of the different parts
of the source, the mean values of their products vanish. The details of these deriva-

tions can be seen in Appendix C.
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We calculate the spectral functions using the solution (2.46) and employing expres-

sion (2.24) for the initial correlations to find
2E,(k,il})

E* (k, il
Eo®lW)  orey pony 2 252
[[0e(k, w)/Ow] =i, ? [[0e(k, w)/Ow] =i, |?

a-ah(lg: t) =

where quantities £, (k il'v), a,b = n, p, are given by

EZ (K, iTy) = 412(1 + FIPx )2I7 + AR (Fiy )T (2.53)
E7 (k,iTy) = 4R3(1 + Fy'x,)* I + 412 (F"y )1, (2.54)

and
E? (k iTy) = —4R*(1 + FiPx  )F5 " x Iy = 40°(1 + Fy'x ) Fo xul, (2.55)

with

d’p (W) * (p ﬁk/m)2

+REID[ — F4B - hk/2)].  (2.56

a

In the semi-classical calculations, instead of the TDHF equation in quantal approach,
the Vlasov transport equation is used for the dynamics of the system. Semi-classical
limit of quantal expressions are obtained by replacing the integrals /7 and Xa(l?, w)
with following expressions in the long wave-length limit,

dp (AL F (3 - hk/m)?

I =
o () Qany’ (AT + (B - hk/m)2 )2

o (DI = f5 (P, (2.57)

and
00 3 =2 7 2

X-;C(E’ (,l)) = - Y
—eo (27h)3 (ATY2 + (B - Bk /m)? de”°

Figs. 2.4(a) and 2.4(b) shows spectral intensity 6',,,1(/3, t) of neutron-neutron density
correlation function as function of wave number at times t = 0 and ¢ = 50 fm/c for
density n = 0.4 ny and the initial charge asymmetry I = 0.5 at temperature 7 = 1 MeV

and T = 5 MeV, respectively.

As mentioned above, in all figures solid-lines and dashed-lines indicate quantal and
semi-classical results, respectively. As seen, in particular at towards the high end of
the wave number spectrum, considerable quantal effects are present at initial fluctu-

ations. Quantum statistical effects in the initial fluctuations become even larger at
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smaller temperatures. In fact at zero temperature, since the quantities 7} (sc) becomes
zero, spectral functions vanish &ab(/?, t) = 0. However, in quantal calculations spec-
tral functions remains finite even at zero temperature, reflecting quantum zero point
fluctuations of the local density. Looking at the results at ¢t = 50 fm/c , we observe that
largest growth occurs over the range of wave numbers corresponding to the range of
dominant unstable modes. At 7T = 5 MeV, magnitude of fluctuations is about the same
in both quantal and semi-classical calculations. At the lower temperature 7 = 1 MeV,
magnitude of fluctuations in the most unstable range is nearly doubled in quantal cal-
culations as compared to semi-classical calculations. Fig. 2.4(c) shows spectral in-
tensity 5',,,,(1?, t) as function of wave number at times ¢ = 0 and ¢ = 50 fm/c at a lower
density n = 0.2 ny for initial charge asymmetry / = 0.5 and temperature 7 = 5 MeV.
At the lower density, growth rates of dominant modes in the semi-classical limit are
considerably larger than those of quantal calculations. Consequently, the result of
semi-classical calculations at time ¢ = 50 fm/c overshoots the result of quantal cal-
culations over the range of dominant modes. Fig. 2.5 illustrates that the spectral
intensity for symmetric matter has similar properties as for asymmetric matter with

1=0.0.

We note that quantal effects enter into the spectral density in two different ways:
(1) quantal effects in growth rates of modes and (ii) quantum statistical effects on
the initial density fluctuations, which becomes increasingly more important at lower
temperatures. We also note that in determining time evolution of 5171(1?, t) with the help
of residue theorem, there are other contributions arising from non-collective poles of
susceptibility 8(1?, w) and from poles of Aa(lz, w). These contributions, in particular
towards short wavelengths, are important at the initial state, however they damp out
in a short time interval [28]. Therefore the approximate expression (2.52) for the
spectral intensity 5'(1?, t) of density fluctuations becomes more accurate for increasing

time.

Local density fluctuations én,(7, r) are determined by the Fourier transform of 5%(/?, 1).
In terms of spectral intensity &ab(l?, 1), which is defined in Eq. (2.49), equal time den-

sity correlation function as a function of distance between two space locations is
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expressed as,

TG (R D). (2.59)

d’k
)3

T =710y =m0 = [

In a homogenous isotropic medium, the correlation function depends only on the
magnitude r = |F — 7| of the distance between two space points. In the limit r — oo,
the fluctuations at the points 77, 73 are statistically independent, therefore correlation
function becomes zero [29]. Total density correlation function is given by sum over
neutrons and protons and cross-term, o(|F — 7’|, 1) = 0, (|F = 7|, ) + 07,,(|[F = 7’|, ) +
20,,(I7 = 7’|, ). The behavior of density correlation function as a function of initial
density and temperature carries valuable information about the unstable dynamics of
the matter in the spinodal region. As an example, Figs. 2.6(a) and 2.6(b) illustrate
total density correlation function as a function of distance between two space points
at times = 0 and 7 = 50 fm/c at density n = 0.4 njy and the initial charge asymmetry
I = 0.5 for temperatures T = 1 MeV and T = 5 MeV, respectively. At temperature
T =5 MeV, quantal effects are not important, and hence semi-classical calculations
provide good approximation for density correlation function. However, at lower tem-
perature T = 1 MeV, semi-classical calculations severely underestimates peak value
of density correlation function. Fig. 2.6(c) shows density correlation function at times
t =0andt =50 fm/c at alower density n = 0.2 ny for initial charge asymmetry
I = 0.5 and a temperature 7 = 5 MeV. On the other hand, at lower density, semi-
classical approximation overestimates the peak value of the correlation function. As
indicated above, this is due to the fact that growth rates of dominant modes in semi-
classical limit are considerable larger than those obtained in quantal calculations. For
asymmetry I = 0.0, as seen from Fig. 2.7, behavior of density correlation function
is similar to the charge asymmetric case. Complementary to the dispersion relation,
correlation length of density fluctuations provides an additional measure for the aver-
age size of primary fragmentation pattern. We can estimate the correlation length of
density fluctuations as the width of correlation function at half maximum. Correla-
tion length depends on density, and to some extend, depends on temperature as well.
From these figures, we can estimate that the correlation length of density fluctuations

is about 3.5 fm at density n = 0.4 ny, and about 3.0 fm at density n = 0.2 ny.
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During spinodal decomposition, initial charge asymmetry shifts towards symmetry
in liquid phase while gas phase moves toward further asymmetry. As a result, pro-
duced fragments are more symmetric than the charge asymmetry of the source. This
interesting fact is experimentally observed and it may provide a useful guidance to
gain information about symmetry energy in low density nuclear matter. For each
event, we can define perturbation charge asymmetry during early evolution of density
fluctuations as,

_ony (R — np(P1)  [6nu(R 0T — [6ny(P, D]
P S, (F 1) + ony(Ft)  [0nu(F 1) + ony(F 02

(2.60)

We are interested in the ensemble average value of this quantity, which can approxi-

mately be evaluated according to

T O-nn(t) - O-pp(t)
P n(0) + 207,(0) + 0 (D)

(2.61)

where 0,,(1) = ou4(x = 0,1). The average value of the perturbation asymmetry is
nearly independent of time. As an example, Fig. 2.8 shows this quantity as function of
initial asymmetry at temperature 7 = 5 MeV for densities n = 0.2 ny and n = 0.4 ny.
As a result of the driving force of symmetry energy, perturbation asymmetry drifts
towards symmetry. At this temperature quantal effects do not play an important role

and these calculations are consistent with results of ref. [21].
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Figure 2.4: Spectral intensity &,m(ié, 1) of neutron-neutron density correlation function as func-
tion of wave number k at times ¢ = 0 and ¢ = 50 fm/c for the initial charge asymmetry / = 0.5:
(a) for density n = 0.4 ng at temperature T = 1 MeV, (b) for density n = 0.4 ng at temperature
T =5 MeV , (c) for density n = 0.2 ng at temperature 7' = 5 MeV.
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two space points at times ¢t = 0 and t = 50 fm/c and the initial charge asymmetry I = 0.5 :
(a) for density n = 0.4 ng at temperature 7 = 1 MeV, (b) for density n = 0.4 ng at temperature
T =5 MeV, (c) for density n = 0.2 ng at temperature 7' = 5 MeV.
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CHAPTER 3

SPINODAL INSTABILITIES IN SYMMETRIC NUCLEAR
MATTER IN A RELATIVISTIC MEAN-FIELD APPROACH

In the first part of this thesis, we use non-relativistic kinematics to investigate the spin-
odal instabilities in nuclear matter, because the relevant Fermi momenta and Fermi
energy are small compared to the rest mass of the nucleons at those energies and den-
sities. However, it has been shown in the recent years that the nuclear many-body
system is in principle a relativistic system driven by the dynamics of large relativistic
scalar and vector fields [30, 31]. In the nuclear interior we have an attractive scalar
field ¢ of roughly —350 MeV and a repulsive vector field V, of roughly +300 MeV.
Both fields are by no means small against the nucleon mass of 939 MeV and therefore
the dynamics has to be described by the Dirac equation. For the large components
of the Dirac spinors the two fields nearly cancel each other and this leads to a rel-
atively small attractive field of roughly —50 MeV and to a relatively small Fermi
energy. However, for the small components both fields add up. This leads to a very
large spin-orbit term known since the early days of nuclear physics [32, 33]. In the
second part of the thesis, we use Quantum Hadrodynamics (QHD) as the framework
to investigate the spinodal instabilities in symmetric nuclear matter. We employ the
relativistic model introduced by Walecka [34, 35] known as QHD-I in the mean field

approximation.
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3.1 Relativistic Mean Field Model (Walecka Model)

The nuclear many-body as a relativistic system of baryons and mesons is described
in a framework of quantum hydrodynamics (QHD) [30]. In the Walecka model the
interaction between the nucleons are mediated by a scalar o and a vector meson w.
A simple relativistic quantum field theory model for the nuclear many-body system
is the Walecka model, known as QHD-I, consisting of baryon field ¢, neutral scalar

meson field ¢ and neutral vector meson field V,.

The Lorentz invariant Lagrangian density of QHD-I is given by

L= 0] (8- 8Vi) ~ O - )]0+ 50,00

1 1 , 1
= S = EnF  SmV, VY, (3.1

where M is nucleon mass, m, scalar meson mass and m, vector meson mass, and the
coupling constants of the mesons and the nucleon are denoted by g, and g, respec-
tively, and F,, = d,V, — 0,V,. Using this Lagrangian density, one-meson exchange
graphs evaluated in the limit of heavy, static baryons, result in an effective nucleon-

nucleon potential of the form

2 —myr 2 —mgr

gve 8s¢e ™
V(r) = — - = , 3.2
(") 4 r dr r (3-2)

which for the appropriate choices of the coupling constants and meson masses, is
attractive at large distances and repulsive at short distances, as the observed nucleon-
nucleon potential. The parameters in the Lagrangian density are obtained by the fit-
ting of experimental data of nuclear matter in the mean field approximation. The equi-
librium properties of nuclear matter, k) = 1.3fm™" corresponding to py = 0.15fm™>
and binding energy per nucleon (E/A)y = —15.75 MeV are obtained with the choice

of the coupling constants [32, 33]

M? M?
C?= gg(m—g) =3574, C’= g%(W) =273.8. (3.3)
In this approximation, the nuclear compression modulus is obtained as K = 545 MeV
which is larger than the experimental value, and the effective nucleon mass is M* /M =

0.541.
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The resulting field equations in QHD-I are

0,0 +m)¢ = g (3.4)
O F" +mlV = gy'y (3.5)
[0, — Vi) - (M - g)|y = 0 (3.6)

These are non-linear coupled quantum field theory equations and their exact solutions
are extremely complicated. However, there is an approximate nonperturbative solu-
tion that can be used as starting point in analyzing the physical content of the above
Lagrangian. For a uniform system of N nucleons in a volume V, as the nucleon den-
sity increases, the source terms in the above equations also increase, and when the
source terms are large the meson fields in the mean-field approximation are consid-
ered as classical fields with the nucleons as their sources. Furthermore, if the nucleon
density does not change appreciably in a time and space interval determined by the
Compton wavelength of the mesons, the retardation effects for the meson fields can be
neglected, and the time and space dependence of the meson fields will closely follow
the time and space dependence of nucleon fields. In this local density approximation
we can neglect the time and space derivatives in the meson field equations and obtain

meson field as

mVo = gl¥'v) = gups, (3.7)
mV = g W) = g (3.8)

and
mip = g) = gsps, (3.9)

in terms of nucleon (baryon) density pg, the scalar density p, and the current den-
sity py. For a static uniform system at equilibrium the classical fields ¢ and V|, are

constants and V vanishes.
In mean-field theory, therefore, the nucleons are described by the Dirac equation

[Yuid — g V") = (M = g®) |y = 0 (3.10)

which is linear in the classical meson fields. Dirac equation for the nucleons may be

solved directly [30]. In our investigation of spinodal instabilities in nuclear matter,
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we use a semi-classical approximation based on a relativistic Vlasov equation, thus
we neglect anti-baryon degrees of freedom. Therefore, the baryon density and energy

density are given by [36]

8
pp = (zﬂ)gfcﬁpfo@ (3.11)
g% 2
eps.T) = 55pp (3.12)

where the spin-isospin degeneracy factor is g = 2 for neutron matter and g = 4 for

nuclear matter and the effective mass M* is defined as,
M =M - g, (3.13)

therefore at thermodynamic equilibrium, the self-consistency relation

gs
m2 ps = m2 (27r)3 ‘/

must be satisfied. In these expressions, the thermal distribution function is defined by

¢ = fo(ﬁ) (3.14)

fo(p) = (3.15)

(E*—ll ) + 1

where £, = /p* + M*2 and " = u — g, Vo.

3.1.1 Stochastic Relativistic Mean-Field Theory

The stochastic mean-field approach is based on a very appealing stochastic mode
proposed for describing deep-inelastic heavy-ion collisions and sub-barrier fusion
[37, 38, 39]. In that model, dynamics of relative motion is coupled to collective sur-
face modes of colliding ions and treated in a classical framework. The initial quantum
zero point and thermal fluctuations are incorporated into the calculations in a stochas-
tic manner by generating an ensemble of events according to the initial distribution
of collective modes. In the mean-field evolution, coupling of relative motion with all
other collective and non-collective modes are automatically taken into account. In
the stochastic extension of the mean-field approach, the zero point and thermal fluc-
tuations of the initial state are taken into account in a stochastic manner, in a similar

manner presented in Refs. [37, 38, 39]. The initial fluctuations, which are specified

34



by a specific Gaussian random ensemble, are simulated by considering evolution of
an ensemble of single-particle density matrices. It is possible to incorporate quantal
and thermal fluctuations of the initial state into the relativistic mean-field description

in a similar manner.

In Refs. [26, 36], the authors derived a relativistic Vlasov equation from the Walecka
model in the local density and the semi-classical approximation. The details of this
derivation can be seen in Appendix D. Introducing phase space distribution func-
tion f(7, p, 1) for the nucleons, the following relativistic Vlasov equation has been

obtained,
Of (7, 1) + Voh(F. B) - V. f (. B t) = V,h(F, ) -V f(F, pot) = O (3.16)

where ﬁph(?,ﬁ) =V =p"/e" and h = € + g,V,. In these expressions j* = 7 — g,V
and € = (p*? + M"?)!/? with M* = M — g.¢. In the mean-field approximation, the
meson fields are treated as classical fields and their evolutions are determined by the
field equations,

[0 = V2 + mAp(P, 1) = gops(7, 1) (3.17)

and

[02 = V2 + m2IVA(P, 1) = g (P D). (3.18)

In these expressions, the baryon density po(7, t) = pg(7, 1), the scalar density py(7, 1),
and the current density g, (7, ) can be expressed in terms of phase-space distribution

function as follows,

d3
pe(7.1) = g f /B, (3.19)
d’p M*
pu71) = g f G e [P0, (3.20)
and
d3 >
PED=8 | SIS R, (3.21)

The original Walecka model gives a nuclear compressibility that is much larger than

the one extracted from the giant monopole resonances in nuclei. It also leads to an
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effective nucleon mass which is smaller than the value determined from the analysis
of nucleon-nucleon scattering. In order to have a model which allows different values
of nuclear compressibility and the nucleon effective mass, it is possible to improve the
Walecka model by including the self-interaction of the scalar mesons or by consider-
ing density dependent coupling constants. However, in the present thesis, we employ

the original Walecka model without including the self interaction of the scalar meson.

In the stochastic mean-field approach an ensemble { f4(#, 7, £)} of the phase-space dis-
tributions is generated in accordance with the initial fluctuations, where A indicates
the event label . In the following for simplicity of notation, since equations of mo-
tions do not change in the stochastic evolution, we do not use the event label for the
phase-space distributions and also on the other quantities. However it is understood
that the phase-space distribution, scalar meson and vector meson fields are fluctuating
quantities. Each member of the ensemble of phase-space distributions evolves by the
same Vlasov equation [1] according to its own self-consistent mean-field, but with
different initial conditions. The main assumption of the approach in the semi- classi-
cal representation is the following: In each phase-space cell, the initial phase-space
distribution f(7, 7, 0) is a Gaussian random number with its mean value determined

by f(7#, p,0) = fo(7, P), and its second moment is determined by [8, 40]

f@ PO, 7, 0) = Qrk))s(F = 7)6(F — P o7, P1 — fo?, P)] (3.22)

where the overline represents the ensemble averaging and fo(7, p) denotes the average
phase-space distribution describing the initial state. In the special case of a homoge-
nous initial state, it is given by the Fermi-Dirac distribution fy(p) = 1/[e‘07/T + 1].
In this expression i = po — (gv/my)*p where py is the chemical potential and p} is

the baryon density in the homogenous initial state.

In this part of the thesis our aim is using the linearized relativistic Vlasov equation
around the equilibrium to investigate instabilities and early development of density
fluctuations in symmetric nuclear matter. For this purpose, it is sufficient to consider

the linear response treatment of dynamical evolution. The small amplitude fluctua-
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tions of the phase-space distribution around an equilibrium state fo(p) is,
of(7 p,0) = f(7, p,1) = fo(P) (3.23)

and with the density fluctuations

Sps(7, 1) = py(#, 1) — Py (3.24)
Sps(P 1) = py(7 1) — p{ (3.25)
5B (7 1) = By(7, 1) (3.26)

here p? is a dynamical quantity whose equilibrium quantity must be calculated self-
consistently, and equilibrium current density 3 vanishes because at equilibrium we
have a stationary and uniform system. Therefore, the linearized relativistic Vlasov

equation can then be obtained by neglecting second order fluctuation terms,
OSFF,P.0) + Vo - Vo f (7. p.0) = V.Sh(P 3,0 -V, fo(H = 0. (3.27)

. . . — _ — * . * 92 *2
In these expression the local velocity is defined as Vo = j/¢; with €5 = /> + M;”,

« — a — « a
M} = (M — goo) and V. fy = %v,,eo = 3_2)3\70'

The mean-field Hamiltonian can be linearized around equilibrium & = hy + 6h

h= NG - VP + (M= gdP + g Vo = € +8.Vo (3.28)

and

]’l() = 68 + gVVO. (329)

The small fluctuations of mean-field Hamiltonian is functions of baryon, scalar meson

and vector meson fields

oh oh oh
oh(7, p,t) = |=—] oVi+|=—] 6V, —1 6 3.30
w50 = (7)o () o (o o0
where
oh
i = 31
((WO ) 8v (3.31)
oh M;
- = —g— (3.32)
(8‘?5 0 ¢ €
oh Di
— = —g,— 3.33
(c’)V, 0 & 65 ( )
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and it is given by

1 M;
Sh(7, p.1) = =Dy— - 6 — Dy—>6ps + D\Spg (3.34)
€ )
with the coefficients
2
D, = 8sv (3.35)

222
—w* + k* + g,

The equilibrium fields are Vy = 0, ¢y = 500, Vo = £p). The small fluctuations of

the scalar and vector mesons are determined by the linearized field equations,
(67 = V> + m1o¢(7, 1) = g.0p(F. ) (3.36)

and

[02 = V2 + m216V(7, 1) = gu603,(7, 1). (3.37)

so the relations between the field fluctuations and density fluctuations are

0p(7, 1) = Dsops(7, 1), (3.38)

oVo(7, 1) = D,opp(7, 1), (3.39)
and

SV(R, 1) = Dyopy(7,1). (3.40)

3.2 Spinodal Instabilities

3.2.1 Dispersion Relation

In this section, we employ the stochastic relativistic mean-field approach in small am-
plitude limit to investigate spinodal instabilities in symmetric nuclear matter. We can
obtain the solution of linear response equations Eqs. (3.27)-(3.34) and Egs. (3.36)-
(3.37) by employing the standard method of one-sided Fourier transform in time [28].

It is also convenient to introduce the Fourier transform of the phase-space distribution

in space,
A * iwt * d3r ik i =
of(k, p,w) = dte e " f(r,p,0) (3.41)
0 —00 (271')3
(K, W) = e e i\r, .
P 0 Lot f
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here i denotes the current, the scalar and the baryon densities, and the one-sided
Fourier transform of the small amplitude fluctuations of the phase-space distribution

function is

ot

where 6 f (l?, P, 0) denotes the Fourier transform of the initial fluctuations. This leads

© 6 ~ > . ~ > ~ >
f —Of(k, p, e dt = —=6f(k, p,0) — iwd f (k, P, w) (3.43)
0

to the relativistic Vlasov equation

~ = > 6‘];(’)']? > 2 P
w0mw>=—lj—;m:p&mmm
w-Vy-k €
M; sf(k, B,0
+D—L5py(k, w) — D,6pp(k, w) —ZM. (3.44)
€ w— V- K

In this expression, the fluctuations of the meson fields are expressed in terms of
Fourier transforms of the scalar density (5[35(1?, w), the baryon density 6pg (I?, w) and the
current density 65\,(]?, w) fluctuations by employing the field equations Eq. (3.36) and
Eq. (3.37). In Eq. (3.44) only the initial fluctuations of the phase-space distribution
1) f (lg, P, 0) is kept, but the initial fluctuations associated with the scalar and the vector
fields are neglected. In the spinodal region since it is expected to have a small contri-
bution, we neglect the frequency terms in the propagators, i.e., —w?> +k*+m? ~ k* +m?
and —w? + k*> + m2 ~ k* + m2. Small fluctuations of the baryon density, the scalar den-
sity and the current density are related to the fluctuation of phase-space distribution

function & f(%, 7, w) according to,

> d? 5>
pulkw) =g [ ST B (345)
- d3 M M ~ =
5p R w) = g Q;[()ﬁ@ ,*w]
O
_ d3p MO =y 2,7 p ~ /7 MS 7 o
=8 | e [(Dv & P - 6py(k, w) — Dy 55&(/@ w)) o : w)]
(3.46)
and
pukw) = g QPHgﬁwwgﬁ@ﬁ%
d*p 1
= ¢ | Guy Dﬁpwﬂw)D S0
M ~
-mg%mmwﬁwwgwwﬁw} (3.47)
0 0
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Multiplying both sides of Eq. (3.44) by j/e;, M;/€;, 1, and integrating over the
momentum, we deduce a set of coupled algebraic equations for the small fluctuations
of the current density, the scalar density and the baryon density which can be put
in to a matrix form. We present these equations for zero and finite temperatures
in Appendix E. Here we investigate spinodal dynamics of the longitudinal unstable
modes. For longitudinal modes the current density oscillates along the direction of
propagation, 55v(l?, w) = 6;3V(I€, w)k. Then, for the longitudinal modes, the set of

equations become,

Al Ay As || opulk, w) Sk, w)
B, B, B; || pkw) |=i| §.k w) (3.48)
Ci G C; )\ 6k, w) § (K, w)

where the element of the coefficient matrix are defined according to,

A Ay A —Dy(kw)  —Dyk,w) 1+ Dypk w)
Bl B, B; |=| -Djpkw) 1+Dgkw) +Dy kK w) |- (349
C, C, GC; 1+ Dok, w) —Dy(k,w)  +Dyyy(k, w)

The full expressions of the coefficients A;, B; and C; are presented in Appendix E.
In this expression, XB(]:, w), Xs(l?, w) and XV(I:, w) denote the long wavelength limit
of relativistic Lindhard functions associated with baryon, scalar and current density

distribution functions,

(K, w) p Pkl T
> P *VpJolp
— sjer | — 222 3.50
Xk, w) 1
and the stochastic source terms are determined by
S,k w p- K/ € .
- of(k, p,0)
Sk, w) —gf M e |—— (3.51)
anp | Mlo | TR
w 1

Other three elements of the coeflicient matrix in Eq. (3.49) are given by,

vk w) =g G k| 1, (3.52)

d’p B klM*E'ﬁpfO(ﬁ)
Eo a)—\_/)()'k
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o &Ep | p? M2E-V ()
Wk w =g f s | ) - = . (3.53)
(2m)° | € € w—vVy-k
and
o &Ep €2 =G k)? (F-02k-V,fo(P)
falo) =g [ GBS g - TR s
( 71') Eo 60 w — Vo -k

We obtain the solutions by inverting the algebraic matrix equation, which gives for

the current, scalar and baryon density fluctuations,

(B>C3 = ByC2)Sp(k, @) + (A3Cs — A2C5)S (K, ) + (A2B5 — A3B2)S (K, )
s(l?, w) ’

opu(k, w) = i
(3.55)

_ > (BsCy = BiCy)Sy(k,w) + (4,03 — AC)S(k, w) + (A3 By — A, B3)S (K, )
0ps(k,w) =i 5 ,
ek, w)

(3.56)
and

- 5 (BiCy = ByC)Sp(k, w) + (A2C) — A1 C2)S (K, w) + (A1 B, — A,B))S (K, w)
opplk,w) =i -
ek, w)

(3.57)

where the susceptibility is

ek, w) = A\(B,C3 — B3Cy) — Ay(B,Cs — B3C)) + A3(B,Cy — B,Cy). (3.58)

Zero sound waves are longitudinal waves, therefore the propagation direction of 5Py
is parallel to the propagation direction of zero sound waves, i.e. 6,3v // k, and ﬁp Jo k=

(Vpfo)kcos.

We investigated our relativistic problem for symmetric nuclear matter in two cases:
at zero temperature and at finite temperature. At zero temperature, phase-space dis-

tribution function of equilibrium state f,(7) is represented by step function,

* * 1’ #6 > 65
fo(p) = Oy — &) = (3.59)
0, uy<eg
here the reduced chemical potential is p; = u — ’%pg. At finite temperature the equi-

librium phase space distribution function fy(p) is Fermi Dirac distribution function

fo(p) = (3.60)

1+ PGH)
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For the zero temperature case of the problem, we have

ﬁ\pfo(ﬁ)

V0045 - &) = ~ 20045 - )
0

—PS(p — 5 = (Mp)* = =ps(p — p1) (3.61)

where ¢ represents Kronecker delta, p is unit vector in the momentum direction and

P1 = A /,u;“f - M(*;z. Using the self-consistency conditions at equilibrium, it is possible

to calculate the equilibrium chemical potential both at zero and finite temperature

cases from

d*p
Py =8 G op) (3.62)

and

2 3 *

. 85 d’p M,
M;=M-=— . 3.63
0 mgg (27T)3 (p2 + MSZ)I/ZfO(p) ( )

Time-dependency of density fluctuations 5;3,-(1?, t) are determined by taking the inverse
transformation of 6/3,(1?, w) with the residue theorem [26]. Keeping only growing and

decaying collective poles are as follows,
5pi(k, 1) = (©p:) (R)e™™ + (Spi) ™ (Rye™ (3.64)

where i = v,s,B is used to denote vector, scalar and baryon density fluctuations
respectively and the initial amplitude of density fluctuations are as follows,
SpT (k) =
(B - B3C)Sp(k, ) + (AsCy — AyC3)S (K, w) + (A2B3 — A3B))S (K, w)
c’)s(l?, w)/0w w=Fil ,

(3.65)

o7 (k) =
(B5C — B,C3)Sp(k, w) + (A1Cs3 — A3C))S (K, w) + (A3B — A B3)S (k. w)
68(/?, w)/0w - ’

(3.66)

and
Spp(k) =
[ B1Cy = B,C)Sp(k, w) + (AsC1 = A1Co)S (K, ) + (A1 By = A2B1)S (K, w)
(98(]?, w)/o0w w=Fil

(3.67)
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where

Oe 0A, 0B, 0C;  0Bs 0C,

= +—(B,C3 - B;C) + A | —C3+ Bp— - —C, — B3—
ow (9a)(23 3C) + 4y dw > Tw  dw T w
0A, 0B, 0C; 0Bs oC,
—-—(B,C3 - B;Cy) - Ay | —C3+ Bj— - —C; — B3—
é)(1)(13 3C1) 2130 &3 e o’ 30
043 0B, 0C, 0B, oC,
+—(B,C, — B,Cy) + A3s| —Coy+ Bj— - —C; — B,—
Gw(lz (1) 5 et Big — 2, ¢~ B
(3.68)
with
’ * * afo
m =] -p, gﬁﬁdpl%%%hmraﬁ, (3.69)
0
A p
0 lu=sir Dy p3e]_;; %Lu:ﬁl"
My 9K
%L”:j”r D o p4¥§ 5_w2|w=¢ir Of
’ (M*)z C 0
%Lﬂir =| -Ds |8 kf(; dp| p’ 6603 %LU:WT (')_6(’;’ (3.70)
OB "
and
"
%Lu:xir —D, p4g§’ %Lu::ir
’ * M 6f()
%%L“:w =| -D, |g& kfo dp p4EOTg %L,::ir Ees (3.71)
0
ac
6_0)3|w=IiF +Dy P4;iz %Lu:nr
where the integrals % = f_ 11 (wx_i ifc)z with a = ‘e’—f are used.
0
The time-dependent baryon density fluctuations is denoted by,
spek, ) = SpiR)e™ + spp(K)e ™ (3.72)
and the complex conjugate of it is
pn(K, 1) = 6p (k) € + Spp (k) e (3.73)

here, the amplitudes of baryon density fluctuations associated with the growing and

decaying modes at the initial instant are given by,

D8 5(k, w) + D58 ((k, w) + D38 (k, w)

Spr(k) = —
Pa(l) (98(]?, w)/0w

(3.74)

a):ﬂl"k
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with the short notations,

D,

B,C; - B,C,
D2 = A2C1 —A1C2

D3 = A]Bz—AzBl (375)

The growth and decay rates of the modes are obtained from the dispersion rela-
tions, 8(/?, w) = 0, i.e. from the roots of susceptibility. Solutions for the scalar
density 5;35(12, w) and the current 5,5V(1?, w) fluctuations can be expressed in a simi-
lar manner. In the original Walecka model, there are four free parameters, coupling
constants and meson masses. The binding energy per nucleon at saturation density
determines the ratios of coupling constants to masses. The standard values of the
ratios (g,/my)M = 16.55 and (g;/m;)M = 18.90 give binding energy per nucleon
15.75 MeV at saturation density [32, 33]. In numerical calculations, we take for the
vector meson mass m, = 783 MeV, and for the scalar meson mass, m, = 500 MeV.
As an example, Fig. 3.1 shows the growth rates of unstable modes as a function
of wave number in the spinodal region corresponding to the initial baryon density
pg = 0.2 pp and pg = 0.4 py at a temperature 7 = 2 MeV in Fig. 3.1(a) and at
a temperature 7 = 5 MeV in Fig. 3.1(b). The results of non-relativistic approach
with an effective Skyrme force for the same densities, but only at a temperature
T = 5 MeV and symmetric case ,i.e. the asymmetry parameter / = 0.0, can be
seen in chapter 2 in Fig. 2.1(a). Although direct comparison of these calculations
is rather difficult, we observe there are qualitative differences in both calculations.
The range of most unstable modes in relativistic calculations is concentrated around
k=0.6 f m~! in both densities, while most unstable modes shift towards larger wave

numbers around k = 0.8 fm™!

at density pg = 0.2 py towards smaller wave num-
bers around k = 0.5 fm™! at density pg = 0.4 po. Growth rates of most unstable
modes at density pg = 0.4 py in relativistic calculations are nearly factor of two larger
than those results obtained in the non-relativistic calculations, while at low density
ps = 0.2 py the growth rates are smaller in relativistic calculations. Fig. 3.2 illustrates

growth rates of the most unstable modes as a function of density in both relativistic

and non-relativistic approaches. We observe the qualitative difference in the unstable
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Figure 3.1: Growth rates of unstable modes as a function of wave numbers in the spinodal
region at baryon densities pg = 0.2 pg and pg = 0.4 pg at a temperature (a) T = 2 MeV, (b)
T =5MeV.

response of the system: the system exhibits most unstable behavior at higher densities
around pg = 0.4 p, in the relativistic approach while most unstable behavior occurs in
the non-relativistic calculations at lower densities around pg = 0.2 py. As an example

of phase diagrams, Fig. 3.3 shows the boundary of spinodal region for the unstable
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Figure 3.2: Growth rates of the most unstable modes as function of baryon density in the
spinodal region at temperature 7 = 5 MeV in relativistic calculations (solid line) and in non-

relativistic calculations (dashed line).

mode of wavelength 4 = 9.0 fm in upper panel of figure and 4 = 12.0 fm in lower
panel of figure. Again, we observe that in both wavelengths the unstable behavior

shifts towards higher densities in relativistic calculations.

3.2.2 Growth of Baryon Density Fluctuations

In this part, we calculate the early growth of baryon density fluctuations in nuclear

matter. Spectral intensity of density correlation function (k. 1) is related to the

variance of Fourier transform of baryon density fluctuation according to,

Gk, NQ2m3s(k —K) = ope(k, 65k, 1)

Spi ()3 (Ky €™ + g (K)dpg Ky e

+0p; (K65 (K)* + Sp5(k)Spy (k)" (3.76)
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tic calculations (solid line) and in non-relativistic (dashed line) for the unstable mode with
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where
1

‘[68(/?, w)/0/ w]w

5p (k)55 () = 5 | D18 (K, @) + D15 (K, )" + D3S (K, w)* |

=il
x[DiS (K, w)* + D,§ (K. )" + D38 (K, w)*|

(3.77)
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Using the main assumption of the stochastic mean-field approach in the semi classical
representation, the second moment of the initial phase-space distribution function

5f (%, P, 0) is determined by

5F(K, B, OYS (K, ,0) = 2n)* by’ s(k — K)s(F - B) folks DI — folk, )] (3.78)

for a homogenous initial state instead of fo(l?, P), the average phase-space distribution
function is denoted by fo(p). The spectral intensity is defined according to Eq. (3.72)
and Eq. (F.6) as follows,

S Ex(k 2E=(k
ek, 1) = - p(k) (¥ 4 72y 4 - s (k) (3.79)
[0e(k, w)/d] W] =it |* [0e(k, w)/0] W] =it |*
where
Ei(K) = |D\PK}, +|D,PKS, + |DsPK, + 2D D,KT,
Ez(K) = |D\PK;, +|D,PK;, — |Ds* K3, + 2D\ D,K;, (3.80)
with the integrals
. 1
Kll )
M*
K3 d* (—" 2% (v - k)
= :2f p|\s) 0 L@ - KB (B8
K3, (27h) @)[ﬂﬂmhw
; &
K7, My
s:;

the detail of these derivations can be seen in Appendix F.

Upper and lower panels of Fig. 3.4 at a temperature T = 2 MeV and Fig. 3.5 at a
temperature 7 = 5 MeV show the spectral intensity of the baryon density correlation
function as a function of wave number at times t = 0, t = 20 fm/c, t = 30 fm/c
and t = 40 fm/c in relativistic calculations at densities pg = 0.2 pg and pg = 0.4 py,
respectively. We observe that the largest growth occurs over the range of wave num-
bers corresponding to the range of dominant unstable modes. Spectral intensity in the
vicinity of most unstable modes of k = 0.6 fm~! grows about a factor of ten at density
pB = 0.2 pg and about a factor of six at density pg = 0.4 p, during the time interval of
t =40 fm/c. In Fig. 3.5 for the same densities but at temperature 7 = 5 MeV similar

trend can be seen. And also we can compare the results of temperature 7 = 5 MeV
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and for same densities of non-relativistic calculations in Fig. 2.5. We notice that at
density pg = 0.2 py and at temperature 7 = 5 MeV the behavior of spectral intensity
is rather similar in relativistic and non-relativistic approaches. However, at higher
density pg = 0.4 py and temperature T = 5 MeV, the spectral intensity grows slower
in the non-relativistic calculations than those obtained in the relativistic approach. We
note that in determining time evolution dpg (12, t) with the help of the residue theorem,
there are other contributions arising form the non-collective pole of the susceptibility
s(lz, w) and from the poles of source terms S V(l?, w), S S(I?, w) and S B(l?, w). These
contributions, in particular towards the short wavelengths, i.e. towards higher wave
numbers, are important at the initial stage, however they damp out in a short time
interval [28]. Since, we do not include effects from non-collective poles, we termi-
nates the spectral in Fig. 2.5 at a cut-off wave number k. ~ 0.7 fm™' — 0.8 fm™'.
Consequently, the expression (3.79) provides a good approximation for 5'(1?, t) in the

long wavelength regime below k..

Local baryon density fluctuations §pg(7, t) are determined by the Fourier transform of
6pp(7, 1). Equal time correlation function of baryon density fluctuations as a function
of distance two space locations can be expressed in terms of the the spectral intensity

as

=2 4 =2 - d3k iﬁ- —7) ~ 7
ops(|F = 71, 1) = Spg(7, £)6pp(, 1) = f @ek“’ gk, 1). (3.82)

The baryon density correlation function carries useful information about the unsta-
ble dynamics of the matter in the spinodal region. As an example, the upper and
lower panels of Fig. 3.6 illustrates the baryon density correlation function as a func-
tion distance between two space points at times ¢ = 0, t = 20 fm/c, t = 30 fm/c
and t = 40 fm/c at temperature 7 = 2 MeV in relativistic calculations at densities
ps = 0.2 py and pg = 0.4 p, respectively. Complementary to the dispersion rela-
tion, correlation length of baryon density fluctuations provides an additional measure
for the size of the primary fragmentation pattern. We can estimate the correlations
length of baryon density fluctuations as the width of the correlation function at half
maximum. From Fig. 3.6 at temperature 7 = 2 MeV and Fig. 3.7 at temperature

T =5 MeV, we estimate that the correlation length is about the same at both densi-
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Figure 3.4: Spectral intensity &BB(E 1) of baryon density correlation function as a function
of wave number at times t = 0, t = 20 fm/c, t = 30 fm/c and r = 40 fm/c at temperature
T =2 MeV in relativistic calculations at density (a) pg = 0.2 pg and (b) pg = 0.4 po.

ties and temperatures around 3.0 fm, which is consistent with the dispersion relation
presented in Fig. 3.1. Baryon density fluctuations grow faster at pg = 0.4 p, than
ps = 0.2 py at both temperatures. This is consistent with results of the non-relativistic

calculations in Fig 2.7 [40]. The correlation length is around 4.0 fm at pg = 0.4 py
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Figure 3.5: Same as Fig 3.4 but for temperature 7 = 5 MeV.

and 3.0 fm at the lower density pg = 0.2 pg. However, unlike the relativistic calcula-
tions, the baryon density fluctuations grow faster at lower density pg = 0.2 py than at

ps = 0.4 py, which is consistent result presented in Fig 3.2.
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CHAPTER 4

CONCLUSION

Recently proposed stochastic mean-field theory incorporates both one-body dissipa-
tion and fluctuation mechanisms in a manner consistent with quantal fluctuation-
dissipation theorem of non-equilibrium statistical mechanics. Therefore, this ap-
proach provides a powerful tool for microscopic description of low energy nuclear
processes in which two-body dissipation and fluctuation mechanisms do not play im-
portant role. The low energy processes include induced fission, heavy-ion fusion
near barrier energies, spinodal decomposition of nuclear matter and nuclear multi-

fragmentations.

In the first part of this thesis we investigate quantal effects on spinodal instabilities
and early growth of density fluctuations in charge asymmetric nuclear matter using
time-dependent Hartree Fock formalism. For this purpose it is sufficient to consider
the linear response treatment of the stochastic mean-field approach. Retaining only
growing and decaying collective modes, it is possible to calculate time evolution of
spectral intensity of density correlation function and the density correlation function
itself including quantum statistical effects. Growth rates of unstable collective modes
are determined from a quantal dispersion relation, i.e. from the roots of susceptibil-
ity. Due to quantal effects, growth rates of unstable modes, in particular with wave
numbers larger than the Fermi momentum, are strongly suppressed. As a result, dom-
inant collective modes are shifted to longer wavelengths than those obtained in the
semi-classical description with the same effective interaction, in both symmetric and

asymmetric matter. The size of spinodal zone associated with these modes is re-
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duced by the quantal effects. In calculation of density correlation function, quantal
effects enter into the description through the growth rates of the modes and through
the initial density fluctuations. Quantum statistical influence on density correlation
functions grows larger at lower temperatures and also at lower densities. Quantal ef-
fects appear to be important for a quantitative description of spinodal instabilities and
growth of density fluctuations in an expanding nuclear system. Stochastic mean-field
approach incorporates both one-body dissipation and fluctuations mechanisms in a
manner consistent with dissipation-fluctuation theorem. Therefore, it will be very
interesting to investigate spinodal decomposition of an expanding nuclear system in
this framework. We also note that numerical effort in simulation of stochastic mean-
field approach is not so much greater than the effort required in solving ordinary three

dimensional time dependent Hartree-Fock equations.

In the second part of this thesis, in a similar manner, it is possible to develop an exten-
sion of the relativistic mean-field theory by incorporating the initial quantal zero point
fluctuations and thermal fluctuations of density in a stochastic manner. For this pur-
pose, by employing the stochastic extension of the relativistic mean-field approach,
we investigate spinodal instabilities in symmetric nuclear matter in the semi-classical
framework. We determine the growth rates of unstable collective modes at different
initial densities and temperatures. Stochastic approach also allows us to calculate
early development of baryon density correlation functions in spinodal region, which
provides valuable complementary information about the emerging fragmentation pat-
tern of the system. We compare the results with those obtained in non-relativistic cal-
culations under similar conditions. Our calculations indicate a qualitative different be-
havior in the unstable response of the system. In the relativistic approach, the system
exhibits most unstable behavior at higher baryon densities around pg = 0.4 p,, while
in the non-relativistic calculations most unstable behavior occurs at lower baryon
densities around pp = 0.2 po. In the present thesis, we employ the original Walecka
model without self-interaction of scalar meson. The qualitative difference in the un-
stable behavior may be partly due to the fact that the original Walecka model leads
to a relatively small value of nucleon effective mass of M* = 0.541 M and a large

nuclear compressibility of 540 MeV. On the other hand, the Skyrme interaction that
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we employ in non-relativistic calculations gives rise to a compressibility of 201 MeV
[40]. It will be interesting to carry out further investigations of spinodal dynamics
in symmetric and charge asymmetric nuclear matter by including self-interaction of
the scalar meson and also including the rho meson in the calculations. Inclusion of
the self-interaction of scalar meson allows us to investigate spinodal dynamics over
a wide range of nuclear compressibility and nuclear effective mass. We also note
by working in the semi-classical framework, we neglect the quantum statistical ef-
fects on the baryon density correlation function, which become important at lower

temperatures and also at lower densities.
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APPENDIX A

WIGNER TRANSFORMATION

In quantal description of nuclear dynamics the TDHF equation is a good starting
point.

. Op _
th—— = [h(p).p] = 0 (A.)

In classical physics phase-space distribution function f(7, 7,1) defines the position
and momentum simultaneously at time t. But in quantum mechanics this kind of
simultaneity is impossible because of uncertainty relation [2]. By using Wigner [41]
transformation which provides a conventional connection between the quantal density
matrix p(7, 7, t) and classical distribution function f(7, j, 1) it is possible to overcome

this difficulty by the Wigner transformation as

FF Bt = f dqe PP + §|p<t>|?— §> (A2)

and Wigner transform of the Hartree-Fock Hamiltonian 4[p] is named as the quasi-
particle energy e(7, j, t)

h(F, p) = f dqe AR + glh[p]|7— g>. (A3)

Since single particle density operator and related hamiltonian are Hermitian, applying

Wigner transformation to both sides of the TDHF equations, we have

0
ih= f(7.7.0) = (hlplp@®)y = (eOhlpDy &.4)

h(?, B)e ™R f (@, B, 1) — [, B, 0P hR, B, 1)

. - &= &2 . . . . .
here in the operator A = V.V, — V ,V, the direction of arrows indicates the acting

direction of the gradient operators from left or right. In the semi-classical limit for
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small 7 using the expansion

we obtain

0
h_ —)’ —)’t
i atf(r pit)

WX — 1 4 (iRJ2)R = [iRJ2)R /3! + ... (A.5)

o 2 = h = g 2> =

h7 P f# p, 1)+ zzh(r, PIAS(P, P, 1)

2> = = h 2> = P12 =2
~f (7, p, Hh(7, p) — lzf(r, P, DAR(F, p, 1)
1 - 22 =2 2 = P2 2
5 [h(r’ﬁ)/\f(r’pa l) _f(r’pa l)/\h(r’pa t)]
1 = - A 2 = = - = -2 =2
3 [V,h(r,p -V, Af(F, p,t) — V,,h(r,ﬁ) -V.Af(#, p,t)
V£, B.0) -V, RR(F B 1) + Y, f (7, . 1) -V, Rh(F, p.1)]

(A.6)

where terems involving higher orders of & gives zero in the semi-classical limit. As

a result, after Wigner transformation and 7 — 0 limit the quantal TDHF equation

reduces to the semi-classical Vlasov equation without collision term as

0 2> =2 = = = > = = - = 2 =
a—tf(r,P, 1) = V(7 p) - Vo f(7, p,1) + Vh(F, P) - V. f(F, p, 1) = 0. (A.7)
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APPENDIX B

TIME DEPENDENCY OF DENSITY FLUCTUATIONS

The time dependent density fluctuation including growing and decaying collective

poles is,
Sk, 1) = 6 (R)e™ + 6n; (K)e ™. (B.1)
Time dependence of density fluctuation Sia(k, 1) is determined by calculating the in-

verse transformation of 6ﬁa(l?, w) and for example by keeping only growing and de-

caying collective poles for neutron density fluctuation, we have

d S
f 8D s, (k. w)e "
2

f dw [1+ F2x,(k, )]A(k, 0) — Fi yu(k, A,k w) .
—1 = e .
c 2w e(k, w)

S7in(K, 1)

(B.2)

We will interested in only the singularities of a(l?, w). For a contour integral, which

includes all the singularities, has the form of

e
fc FQ)dz = fc 9 (B3)

and if there is a singularity at z,, which means g(z) = finite const.# 0, h(z9) = 0 and

hW(z) = g—’;| # 0, Cauchy-residue theorem gives [42]

ff(z)dz = 2niRes| f(2), z20] = ZﬂiZ Ry (B.4)
¢ k
where the residue of the function is defined by R, = lim__,; ;f(—(zz)) Our problem has a

this kind of singularity at poles w = Fil" and these singular points are inside of the
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contour, so we can use this theorem in our problem and obtain

1+ FiPxp(k, )]An(k, w) = FyPxuk, o)A,k w)
l S e
ek, w)
[1+ F2x,(k, )] An(k, ) — FiPx,(k, w)A (K, w)
e

1wt
.9(/?, w)

R 1
Siig(k, 1) = 2—2m'{
T

w=il"

w=—i1"}

Therefore, the initial amplitudes of density fluctuations for growing and decaying

+ i

(B.5)

poles are
ot @) = i +Fé’po(k,w)]An(k;w)—ng)(n(k, w)A,(k, w) (B.6)
oe(k, w)/0w Wil
R 1+ FPx ,(k, w)]A (R, w) — F xu(k, 0)A (K,
=@ = L+ Fyxp(k w)] (f)) 0 Xn(k, 0)A,(k, w) B.7)
oe(k, w)/ 0w "
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APPENDIX C

QUANTAL LINHARD FUNCTIONS

The properties of quantal Linhard functions
Xa(ksiT) = o, =i0) = Yo(=K, iT) = xu(=K, i)

and their derivatives

akw)| Ok w)
ow o ow o
w=il' w=—il"
Oy a(k, ) 3 N ul—k, )
ow o ow o
w=il' w=ill
with the resultant property of susceptibility
68(/?, w) _ (98(—]2, w)
Ow o ow .
w=ill w=ill
58(]2, w) GS(E, w)
ow o ow _
w=il' w=—il"

The spectral intensity of neutron-neutron density correlation function is

Tk, )21)*5(k = k') = 671, (K, 1)671, (=K', 1)

= ont(K)Sn; (=K + dnt(K)on- (=K' + on-(R)Sn (—k') + on- (K)dn:- (=K )e ¥,
(C.1)
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where

1

S (R)omy (—k') = —— -
|08k, w)/0w| __[de(-Fk, w)/dw|

{[1+ Py @) [1+ Fap (=R D) An(E DA (R i)

[ Fiya i [Fo (R, i) A, K, ir)Ap(—l?,ir)},

(C.2)
Snt(K)on: (k') = !
" ! [68(1?, w)/ 6w]w:ir [58(—]:', w)/ ﬁw]w:_ir
{ [1+ E2y,RiD)| [1+ FLx (<R, ~iD)] Au(K, DA (~F, ~iT)
[FiyuB iU | [Fix( =R, —iT| A, (R DA(F, —iF)} :
(C.3)
sn-(Kyon* (k) = — 1
" ! [88(1?, w)/ 8w]w:_l_r [(98(—]2’, w)/ 6w]w:ir
{[1 + FYxp(k, D)1 + F§"x (=K iD)| A, (K, =iD)A, (=’ iT")
[Fxen =T [ Fi xR iT| 4, (R ~iD)A (<R D
(C.4)
and
sn-(K)on-(=k") :
l’ln l’ln - = — =y -
|08k, w)/0w| __|ds(-k,w)/dw|
{[1 + Py p(k, =D |1+ FiPx (=K, ~iD)| A, (K, —iD)A, (=K', ~iT)
[F x| [F2 xR, ~iT| AR, ~iD)A(-F, —ir)}

(C.5)
where the cross terms of source correlations are zero A,,(I?, iF)A,,(—I?’,iF) =
Ap(lz, iF)A,,(—I?’, iI") = 0. In the source expression

S © P hik/2 hk/2
AR w) = 2h p (p+hk/ |5pa(0)|p / > (C.6)

w (27h)} hw — 7 - Bk /m
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. g . g .
if we use —k instead of k, the source expression becomes

- 00 d3 _)_h]?26a0 5 h]?z
A -k, w) = 2h p (P~ Tik/216p.O)Ip + hik/2)

S (C.7)
o0 (27R)3 hw + B - hik/m
Therefore, the source correlations in equations (C.18-C.21) can be written as
S S © (* dPpd’p
Ak, iD)A, (=K', iT) = 4h?
n(k, DA, (=K', iT') = 4k fwfw Q)
(P + k] 2180,(0)F — Bk |20 — hk/2l6p, (0P’ + k' /2 >
(T — - Bk /m)GRT + ' - KR’ Jm) ’
(C.8)
S S Y e d3pd3p'
A, (k, iD)A,(=k', —i) = 4h?
(ALK, =) LL 2l
(P + k] 2160,(0)F — Bk [2)(F — hk/2l6p, (0P’ + Bk’ /2 >
(ihT — 3 - hic/m)(=ikT + 7 - KR [m) ’
(C.9)
- - 0 0 d3pd3p,
A, (k,—iD)A,(=k’, i) = 4h?
(e, —IDALK ) Lf_m 2l
(P + k) 2160,(0)F — Bk |20 — hk/2l6p, (0P’ + Bk’ /2 >
(—ihT — j - BR/m)GRT + 7 - hR [m) ’
(C.10)
and
> > 0 0 d3pd3p,
Ak, iD)A, (k' ,iT) = 4h?
n(k, DA, (=K', iT) = 4h IML Q)
(P + k[ 218p,(0)F — Wk |20 — 1/ 2l6p, (0P’ + k' /2 >
(—ikl = 3 - hk/m)(—ikT + p - Kk’ Jm) ’
(C.11)

using the the second moments of the initial correlations in the plane wave representa-

tion

(P + 1K/ 216pa(0)| = BK' |20P — Bk [ 2180, (0P’ + Tik' /2 > =

(218K ~ K)QrhY'S(5 ~ )pu(P + hk/2) [1 = pu(F = hk[2)] (C.12)
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we can reduce the source correlations in equations (C.8-C.11) into two simple forms

as follows,

A, (&, iD)A, (=&, iT) = —2n)*6(k — k')
“ dp 1

4K?
oo QTN (R0 4 (- BRJm)?

Pu(B + hK/2) |1 = pu(§ — hk/2)]

(C.13)

and

A, (k, iD)A, (k' , —iT) = —2n)*6(k — &)
e f“’ dp (WD)~ (3 hk/m)’
o QI [0y + (- Wk fm?]

500 + HK[2)[1 = pu(F ~ hk/2)]

(C.14)

There is a relation in the other elements of source correlations
Ak, =D A=K, iT) = Ak, DAL (~K', —iT) (C.15)
Ak, —iD)A (=K', —iT) = —A,(k,iT)A(—k,iT). (C.16)

The polar parts of these integrals are evaluated analytically and then in the evaluation

of the resultant integrals numerical methods are used.

For the spectral intensity of proton-proton correlations replace letter n by letter p in
neutron-neutron expressions. But in the spectral intensity of neutron-proton correla-

tions function we need some more changes

Fp (ks )Q2) (K — k') = i, (K, 1)57,(—K', 1)

= on; (K)6nt (=k)e™ ™ + 6nyt (K)6ny(=k") + Sny, (R)Sn(=K') + Smy, (R)one, (—K e M,

(C.17)
here
> > 1
5 (Rom(—R)) = ——— _
|08k, w)/0w| __|0e(-k, w)/dw|
{ [1+ F27x &, i) [F2"s (R, iT)| An(R, ID)AL (=R, T)
| Fr @i | [1 4+ Fan(=R,iT| A, R DA (R, ir)} :
(C.18)
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1

Sy (k)om, (—K') = — [0k w)/00]__[06(F )00

w=—iI"

{[1 + FL D) [ 2 (<R, —iD)] AR, DAL (R, ~iT)

| Foxu R | |1+ Fyxn(—R, ~iT | ,,(/?,ir)Ap(—/?',—ir)},
(C.19)

1
[(98(/?, w)/ 6w]w:_ir [(98(—]?’, w)/ (%u]

Sn, (kK)o (—k') = —

w=il"

{[1 + FYx ok, =iD)| [ F3"x (=K' iD) | Ay(k, =D)AL (=K', iT)

| FaxaR—iT| |1+ Fyn(—R, iT| A, (K, —ir)A,,(—E',ir)},
(C.20)

and

1

w=—iI'

{[1 + FI xR, =) [FL (=R, ~iT)| AR, ~DYA(~F', ~iD)

| Ptk ~iT| [1 + Fyu (<K', —iT| A, (&, —ir)A,,(—l?',—ir)}
(C21)
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APPENDIX D

DERIVATION OF RELATIVISTIC VLASOV EQUATION

In the mean-field approximation, the nucleons are described by the Dirac equation

i = |a@- (7 - gV)+BM - g.9) + 2.V |y (D.1)

where in the following notations p* = j — gv‘7 and M* = M — g,¢ are used.

As for free particle, the stationary state solution for a uniform system is in the form

of plane waves, ¥ = (3, 1)e"P¥<®D where

(P, 1) :{ v ] (D.2)

s
is a four-component Dirac spinor with ¢, large component and ¢y small component
and A indicates the spin index. In terms of large and small components the Dirac

equation can be written as two coupled equations
i = ¢ Fs + | M* + 2.V |y
i0ys = &y + |[-M"c + g,V°|uss. (D.3)
In the local density approximation, the nucleons are considered to the moving locally

in constant fields, therefore one can obtain the approximate solution between large

and small components as,

& & p
= d = D.4
YL - M*l//S and s pr M*lﬂL (D.4)

where € = /p*> + M*2. This coupling reduces equations in Eq. (D.3) into the single

equation and operator form of it is
(%0 = [E + g, V| w(% 1) (D-5)
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with the effective one-body Hamiltonian 7 = E* + g,V°, here E* is operator form of

€*. From Eq. (D.5) it follows that
(D.6)

i0; WP, 00" (7, 1)| = REOW L D (P, ) = w(E DY (P)R()
where (7, 1) and ¢ (7, t) are the single particle wave functions not field operators and

WP, O (%, 1) = p(7), i, t) is the single particle density matrix, therefore we have
(D.7)

i@,p(?l, 72, I) = h(l’_')l)p(?], 17')2, l) — h(f)z)p(?l, 72, l).

To derive the Vlasov equation, we need to make Wigner transformation for density
=2
X =

matrix to obtain function f(7, 7, t) and using transformation ¥ = (7 + 7)/2,

(7 = 1),
- > 3. —ipX /=2 'f - 'f
f(p’r’t): d’xe pp(r+§’r_§’t) (D8)
and for hp in Eq. (D.7)

Uolw = h(B, P’ f(B,F) (D.9)

. . — e e
here W denotes Wigner transformation and A denotes the operator A = V.V -V V.

(D.10)

y— h—
Nl A+
2

for small A in the semi-classical approximation and then taking Wigner transform of

[N

If we use the expansion
¢

(D.11)

both sides of Eq. (D.10),
1 — _

we obtain the relativistic Vlasov equation
(D.12)

0.f (7. ) = VP, ) - N, f 7. ) = V h(7 B) - V.o f (. ).
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APPENDIX E

THE COUPLED ALGEBRAIC EQUATIONS OF DENSITY
FLUCTUATIONS

After the linearization of relativistic Vlasov equation, we have three coupled equa-
tions with source terms for the baryon density, the scalar density and the current

density fluctuations. At zero temperature these equations are

> d*p 1 kcos85(p — py)
opy(k, D, — cos 6
Pk, w) g (n)d e w—Lkcoso p
0

S d*p Mg kcos65(p — p1)

+0p,(k, D,
Pl NSDs | e o Zkcosd
0

d*p kcos85(p — py)
(2n)* w— Lkcos6
0

+6pp (K, w) [1 — gD,

&p  Sf(k, p,0)
QY w - Lkcos’
0

(E.1)
R &p | M; M kcos85(p — p1)
5oL, oD, _ cos 8
Oy ( w){ 8 (2n)3 683 0 652 w-ﬁkcos@ P
0
} &p | 2 My* kcos 05(p — py)
+p(k, 1 + gD a0t
yoX( w){ 8 f(2ﬂ)3 6(4;3f0 632 w — gkCOSG
0
R d*p M kcos05(p — p1)
+(()‘~ k, - Dv
ok, w) |—g ) € - LkcosO
0
[ &p My 5f(K, B,0)
= 1 ’
8 (2r)3 € w— e%kcos@
0
(E.2)
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0
5Bk, w){1+gD f(z )3[€0f fopcos pcos 6

€ w-—Lkcosd
0

L d3p
6ps(k’w){_gDsf(2ﬂ_)3

d*p pcosfkcosb5(p — p1)

pcosfkcosB5(p — p1) }}
- pcos6

My . M, kcos65(p — p1)

€? w—%kcosf
€

P COs 9}

5pp(k, w) | -gD

Qny € w - —k cos

dp pcos® Sfk, 7,0)
2m)? € w——kcos@

:ig

(E.3)

and for the finite temperature case

d*p 10fyp kcosé 0
————————pcos
(27)3 € € €5 w — f—*kcosep
0

6/3V(lz9 (,U) _DV

Q)3 € 0€; €5 w— Lkcosd
0

d’p 6f0£ k cos 6
(2n)* 0€; € w — Lkcos O
0

+(5ﬁs(l?, w)|—Dsg

dpMafop kcos 6 ]

+6pp(k, w) |1 + Dyg

&p sfk, p,0)
2n)* w — £kcos 6’
0

(E4)

P COs 9}

2f MPofy p  kcosb
*3 52 Oe; e(’;a)—s%kcose

d*p
(2m)3

+6ps(k w){l +D5g~f(2 5|

d*p Myofyp kcosh

3 * * % _ﬁ
(2r)’ € O¢; €5 w 6Skcosé’

M; M;dfo p  kcost
632 O€; €5 w — %kcos 2

5py(k, w) {—Dvg

+5pp(k, w) | D

&p My §f(k, p,0)
(2n)* € w— Lkcos§’
0

= lg
(E.5)
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N d? 1 cos @
5pv(k,w){1+Dvgf#L fo - fop pcosf
0

00 kcos 8
_pcos ﬁ r cos cos 9]}

> O€; € w— —kcos@

d3p

M; +M36f0£ kcos@
(2m)?

%2 * % _ P
€ 0€; ) w ESkcosG

+6p(k, w) {—Dsg

P Ccos 0}

+5pp(k, w) | D

@2nm)?} g Oe e w— —k cosf

d’p pcos@@fop kcos @ }

dBp pcos® Sf(k, p,0)
Q2m)} ¢ w- —kcos@

:lg

(E.6)

The full expressions of the coefficients A;, B; and C; for finite temperature are as

follows,
3 Bokk-V
A= -Dyg [Lp P RETND (E7)
) & =tk
3 Mik -V
Ar = -Dyg [ L0 Mok VohoP) (E8)
ORI
3y k- V
A3:1+Dvgf d’i ”fo@, (E.9)
(27T)w_\7’0.k
ME R, o)
—fo(p) — — 1, (E.10)
o [ >3[ S e R
3 LM kv
Br=l+g dPSﬁ-k{ *(2),,—1‘0({), (E.11)
2m) & w—1y-k
3y Mk -V
B, = +D.g [ L2 Mok Vohop) (E.12)
(277)60 a)—\_/)()'k
43 2 _ (5. k k2]?
C1:1+Dvgf L% (f; )fo()—(p ) ”fO(p), (E.13)
(2m) € & w-7-k
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Bp p-kk-V, [P

C, = -D,
2 & (2m) € w—Vo-k

(E.14)

Bp p-kk-V, [P

C; =+D,
3 e e ootk

(E.15)
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APPENDIX F

DERIVATIONS OF RELATIVISTIC CORRELATIONS

The spectral intensity of baryon density fluctuations is defined by

sk, DQrY's(k - k) = opp(k, )oK, 1)

Spy(k)spk e + Spp(R)Sp(K) e

+0p(K)opy(R")* + Sp5(k)Sp (K" (F.1)

with initial amplitudes,

o2 | DSk w) + DyS(k w) + DS (K, w)

opp(k) = > (F2)
ek, w)/dw a——
For growing pole the correlation of initial amplitudes baryon density
o o 1
opp(K)oppk)" = —— S
|08k, w)/0]w| __|0s®,w)/djw|
X | D185k, )" + DyS (K, )" + D3S (K, w)"|
x [DiSp®, w)* + DS (K, w)* + D38 (K w)*|
(F.3)
for the elements of this correlation, the first source term is
. &*p sf(k, 3,0
S0y’ p o0 (E4)
2 ir — v, - k
its complex conjugate is
C o &p 5F K, p,0)
(Sa®. )" p oL P (E5)

Qr) —iT vy - &
and its correlation can be written using the second moment of the initial phase-space

distribution function & f (l?, p,0)

5F(K, B,OYS (', 7, 0) = @n)*rh)’s(k — K)6(B - P) oD = fo(D)]  (F6)
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as follows

Ep fHPLL = fo(p)]
2 T2 (vy- k)2

Spk, 0y Sk, 0w = FQnYsk - k) f (

(F7)
Similarly, the other terms are
- d*p M} 5f(k, p,0)
Sy = g | G5t - (E8)
) €& iI'—vy-k
L dBp M:sF @k, p
G@,wyy = g [ 2Ll E R0 (E9)

2n)} € —ir—v, -k

3 *\ 2 _
SS(I:, (.U)+(§s(]?,, (,l))+)* — 82(27()36(]?_ ]z/)f d P (MO) .ﬁ)(ﬁ)[l fO(ﬁ)]

Q2m3i\ g Fz—(vo-l?)z ’
(F.10)
and

o &p cp.5fE, B,0)

Sk =g | g ’;% J&7.0) E11)
) €& iI'—vy-k
3 Fr D =

(gv(l?’w)+)* — dp CpZ 6f (k’paol (Flz)

Qn) € —iC—vy -k

3 2 _
$ K w) S F 0w = £Qnsk - k) f 4p (2) P = fo(p)]

2r)3 € T2 — (v - ]}))2
(F.13)

here p, = p cos 6, and mixed terms are

IR d’p Mj fo(PI1 — fo(P)]
20n736(k - & f d

Sk, w)* (S (K, w)*)*

S (&, w) (S gk, w)*)* (F.14)

and also

N3

sk, w)* (8 (K, w)*)* = §,(k, w)* S gk, w)*)* =

(o1}

S ok, w)*(S (&, w) ) = §,(k, w)* (S (K, w)*) = 0 (F.15)
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xX'dx
x2+a?

because the integral f

vanishes for odd n. Therefore the correlations of baryon

density fluctuation amplitudes initially for growing poles are

|D1|2Kf-1+ + |D2|2K;2+ + |D3|3I(3+3+ + 2D1D2Kf2+
[9e(k, )]0/ w]amirl?

b

Sp(spLR) = 2m)*s(k — k)

(F.16)
with the integrals,
&Ep fo(PIL - fo(P)]

K =g F.17
H QrP T2 4 (v - k)2 (EL7)

Ep (M\' fP - fo(P)]
K = Zf—(—o) F.18
228 | enile) s (vo - k)2 (F15)

&*p (pz)z P = fo(P)]
Kii=g¢g | =—==(Z F.19
3 3\ T2+ vy k2 E19)
K =g d’p Mg fo(PI1 - fo(ﬁ)]‘ (F20)

QY € T2+ (v k)>
In a similar manner for decaying pole we have the following expressions

1

Spz(R)Spp(K) = ——
‘[ag(k, w)/0]w|,

5 | D18 Bk, )™ + DS (K, )™ + D33k, w) |
=—il’

x[DiSp(K, @)™ + D28 (K, @)™ + D38 (K, )|

(F21)
3 Y o
Sp(k,w) dp ofkp.0) (F.22)
Q2r) _ir — vy - k
3 Feo o
S, w) ) ap 07650 (F.23)
(27T) il — Vo k
3 _
Splk,w) Sk, w)) = gQ2n’sk—Fk) f ’p ool f“fﬁ”,
27)* T2 4 (vy - k)2
(F.24)
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& 7 d*p M 57k, p.0)
S k7 N =
S( CU) 8 (271.)% 60 —lr—Vo k

(F.25)

. Bp M: 57K, B,0)
Sk, w)y) = g p Yootk p.0 (F.26)

Q2n) € T —vy-k

2 HPIL = folP)]

24 (v K2
(F27)

Sk, w)» Sk, wy) = Frisk -k ')f (M)
s\, S H (27T)3

and

d*p p. 5fk, p.0)

(2”)3 E() —iI' - Vo k

S (&, w) (F.28)

o ) —\* d3 Z 6 N*(]z’ _)a 0)
S K 0))y = g p_p:0f (k. p.0. (F.29)

2 e T - Vo k

Jo@I1 - fo(P)]

24 (v K2
(F30)

Sk G @ory = genad-k) [ <zn>3(eo)

Therefore, it is possible to write,

Spk)5p3(k) = Sp5(k)Sp5(K )", (F31)

Finally, for the mixed growing and decaying poles, these expressions take form

Sk, w)*(Spk, w>->* =

—F2+(v0 k)2
21’ (k- K f 1 -

L0 -F) | G T P~ o]

(F32)
§k, w)* Sk, w) ) =
M\’ =T + (v - k)?

21k - K -

gem’s(k - k) f (W( 0) S L)
(F33)
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Sk, w)* (S (K, w) ) =

T2 + (v - k)2
236k — ik 1-
g2 (2m)’s( )f(zﬂ)3( o) = +(vo-l?)2]2f0(ﬁ)[ So(P)]

(F.34)
Sp(k, w)* (S (K, w) )" =
oy [ 4p My I+ (v kP
2m)°0 1 —
Y e e L)
(F.35)

|D‘19|2K1+1‘ + |D§|2K;2‘ + |D§|3K;3‘ + 2D‘19D§K1+2‘
I[0e(k, w)/d] W]w=ir|*

Spk)spz(ky = 2r)’s(k - k')
(E.36)

where,

+— _ d3p F2 - (VO k)2
ki=¢ [ 52 o Ep M = ) (F37)

_)

d3 M* 2 2 _ .
K =¢ ( ) u )2]2f0<ﬁ>[1 ~ @ (E38)

(27T)3 [1"2+(VO
- d3p (Pz)2 rz_(vo.]g)z
K =g = I - F.39
528 ) @i le) oy e PN AP (F.39)

d*p Mip. T2 = (v k)

+— _ 2 _
K =8 | Gy e & moron e P~ AP (F40)

Zi

Consequently, the spectral intensity of baryon density correlation function can be
written using these expressions
| K 1D1 2 + K3, |Dol? + K35|Ds? + K, Dy D |
[8e(k, )]/ W) weir 2
2K} IDiP + K5,|Daf? = Ki|DsP? + K, Dy Dy |
[0k, @)/ omir P
_ E}(k,iT) (@ 2 2E5(k, iT)

[0k, w)/d] W] peir, [0k, w) /8] W] peir,
(E41)

2I =2I
kl_l_e kl)

() (e
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where the expressions E;(I:, il') are

Eji(k) = |D\K}, + D2 K5, + D3P K3, + 2D Dy K,

Eg(/?) = |D\’K;, + D2’ K5, — |D3* K5, + 2D D1 K, (F.42)

in these expressions Dy, D, are real but Dj is imaginary, and the integrals have the
forms
Fp  T2F (v k)

K$ — 2
H 8 Q2R T2 4 (v - K)2]?

JoI1 = fo(P)] (F.43)

N &Pp (M T2F (v - k)
F _ 2 0 _
K22 = &8 (27Th)3 ( ES ) [F2 4 (VO ] E)z]sz(p—))[l fo(ﬁ)] (F44)
- dp (p s (vo - /?)2
F _ 2 rz _
Ko = & | Ga (es) P (Fa)
- 2 &p My T2 F (v - k)
K, = ¢ S - fo(P)] (F.46)

(2rmh)3 € T2 + (v - ]}’)2]2
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