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ABSTRACT 

FUZZY CLASSIFICATION MODELS BASED ON TANAKA’S FUZZY LINEAR REGRESSION 
APPROACH AND NONPARAMETRIC IMPROVED FUZZY CLASSIFIER FUNCTIONS  

 

Özer, Gizem 

M.S., Department of Industrial Engineering 

Supervisor      : Prof. Dr. Gülser Köksal 

Co-Supervisor: Assoc. Prof. Dr. İnci Batmaz  

 

July 2009, 97 pages 

 

In some classification problems where human judgments, qualitative and imprecise 

data exist, uncertainty comes from fuzziness rather than randomness. Limited 

number of fuzzy classification approaches is available for use for these classification 

problems to capture the effect of fuzzy uncertainty imbedded in data. The scope of 

this study mainly comprises two parts: new fuzzy classification approaches based on 

Tanaka’s Fuzzy Linear Regression (FLR) approach, and an improvement of an 

existing one, Improved Fuzzy Classifier Functions (IFCF). Tanaka’s FLR approach is a 

well known fuzzy regression technique used for the prediction problems including 

fuzzy type of uncertainty. In the first part of the study, three alternative approaches 

are presented, which utilize the FLR approach for a particular customer satisfaction 

classification problem.  A comparison of their performances and their applicability 

in other cases are discussed. In the second part of the study, the improved IFCF 

method, Nonparametric Improved Fuzzy Classifier Functions (NIFCF), is presented, 

which proposes to use a nonparametric method, Multivariate Adaptive Regression 
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Splines (MARS), in clustering phase of the IFCF method. NIFCF method is applied on 

three data sets, and compared with Fuzzy Classifier Function (FCF) and Logistic 

Regression (LR) methods. 

 

Keywords: Fuzziness, Fuzzy Classification, Fuzzy Classifier Function, Improved Fuzzy 

Classifier Function, Fuzzy Linear Regression, Customer Satisfaction. 
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ÖZ 

TANAKA’NIN BULANIK DOĞRUSAL REGRESYON YAKLAŞIMINA DAYALI BULANIK 
SINIFLANDIRMA MODELLERİ VE PARAMETRİK OLMAYAN İYİLEŞTİRİLMİŞ BULANIK 

SINIFLANDIRMA FONKSİYONLARI 

 

Özer, Gizem 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi           : Prof. Dr. Gülser Köksal  

Ortak Tez Yöneticisi: Doç. Dr. İnci Batmaz 

 

Temmuz 2009, 97 sayfa 

 

İnsan değerlendirmeleri, niteliksel ve kesin olmayan verilerin yer aldığı bazı 

sınıflandırma problemlerinde, belirsizlik, rastgelelikten ziyade bulanıklıktan 

kaynaklanmaktadır. Böyle sınıflandırma problemlerinde veri içine gömülmüş bulanık 

belirsizliğin etkisini yansıtmak için sınırlı sayıda bulanık sınıflandırma yaklaşımı 

mevcuttur. Bu çalışmanın kapsamı temel olarak iki bölümden oluşmaktadır: 

Tanaka’nın Bulanık Doğrusal Regresyon (BDR) yaklaşımına dayalı yeni bulanık 

sınıflandırma yaklaşımları ve var olan İyileştirilmiş Bulanık Sınıflandırma 

Fonksiyonları (İBSF) yaklaşımının daha da iyileştirilmesi. Tanaka’nın BDR yaklaşımı 

bulanık yapıda belirsizlik içeren tahmin problemleri için kullanılan tanınmış bir 

bulanık regresyon yöntemidir. Çalışmanın ilk bölümünde, belirli bir müşteri 

memnuniyeti sınıflandırma problemi için BDR yaklaşımından yararlanan üç alternatif 

yaklaşım sunulmuştur. Bu yaklaşımların performanslarının karşılaştırması ve farklı 
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durumlarda uygulanabilirliği tartışılmıştır. Çalışmanın ikinci bölümünde ise, İBSF 

yönteminin kümeleme aşamasında, parametrik olmayan bir yöntem olan Çok 

Değişkenli Uyarlanabilir Regresyon Eğrilerini (ÇDURE) kullanmayı öneren iyilştirilmiş 

İBSF yöntemi, Parametrik Olmayan İyileştirilmiş Bulanık Sınıflandırma Fonksiyonları 

(POİBSF) yöntemi sunulmuştur. POİBSF yöntemi üç veri setine uygulanmış ve 

Bulanık Sınıflandırma Fonksiyonu (BSF) ve Lojistik Regresyon (LR) yöntemleri ile 

karşılaştırılmıştır. 

 

Anahtar Kelimeler: Bulanıklık, Bulanık Sınıflandırma, Bulanık Sınıflandırma 

Fonksiyonu, İyileştirilmiş Bulanık Sınıflandırma Fonksiyonu, Bulanık Doğrusal 

Regresyon, Müşteri Memnuniyeti. 
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CHAPTER 1 

INTRODUCTION 

For a very limited number of systems, the information content available can be 

known as certain with no imprecision, no vagueness and so on. Uncertainty can 

exist in various forms, which may be resulted from ignorance, from lack of 

knowledge, from various classes of randomness, from inability to perform adequate 

measurements or from vagueness (Ross, 2004). 

Most widely used conceptual basis for handling uncertainty is probability theory, 

which is concerned with the random type of uncertainty. Roots of probability theory 

dates back to 16th century when the rules of probability were recognized in the  

games of chance by Gerolamo Cardano (Ross, 2004).  From the late 19th century to 

the late 20th century, statistical methods based on probability theory dominated the 

methods formulated for handling uncertainty (Ross, 2004).   

Numerous statistical methods for classification exist in the literature such as Logistic 

Regression (LR) and Discriminant Analysis. These are the methods widely used for 

modeling the systems where the uncertainty comes from randomness. In these 

conventional statistical methods, deviations between observed and estimated 

output variables are supposed to be resulted from sampling errors and 

measurement errors (non-sampling errors). While sampling errors arise from the 

use of a sample to estimate a population characteristic instead of using the entire 

population, measurement errors refer to the errors generally resulted from the 

manner in which the observations are taken such as inaccurate measurements due 

http://en.wikipedia.org/wiki/Game_of_chance
http://en.wikipedia.org/wiki/Gerolamo_Cardano
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to poor processes or imperfect measuring device. Statistical methods handle crisp 

data, the members of which are just single valued real numbers. 

Handling uncertainty using probability theory was challenged by the introduction of 

the concept of fuzziness by Zadeh in 1965 (Ross, 2004). Zadeh introduced a 

different kind of uncertainty than randomness, called fuzziness. In systems in which 

human judgments, qualitative or imprecise data exist, fuzziness is the source of 

uncertainty rather than randomness. In these systems, deviations are supposed to 

be due to the indefiniteness of the system structure (Tanaka et al., 1982). Unlike 

statistical methods, fuzzy methods may work with fuzzy data as well as crisp data. 

Fuzzy data, the members of which are the fuzzy numbers, can be thought of as 

interval numbers, values within which have varying degrees of memberships.  

In order to model the systems having fuzzy type of uncertainty, several fuzzy 

classification methods have been developed. These include Fuzzy Classifier 

Functions (FCF), Improved Fuzzy Classifier Functions (IFCF), Adaptive Neuro Fuzzy 

Inference Systems (ANFIS), and Fuzzy Relational Classifier (FRC). These methods 

deal with fuzzy uncertainty imbedded in data in different ways. For example, FRC 

method deals with fuzzy type of uncertainty by modeling the relationship between 

cluster membership and class membership values. Methods based on fuzzy 

functions such as FCF and IFCF on the other hand, reflect the fuzziness of the 

system by adding crisp membership values of observations to the linear regression 

model as additional independent variables. 

In this study, different fuzzy classification approaches are developed and IFCF 

approach is improved. For these developments, we basically utilize two different 

fuzzy approaches; Tanaka’s FLR approach, which is a widely used fuzzy regression 

approach, and IFCF, which is a recently developed fuzzy classification approach.  
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We develop three alternative fuzzy classification approaches that utilize Tanaka’s 

FLR method for a particular case of building customer satisfaction classification 

models. In all of these approaches, the discrete dependent variable is converted 

into an equivalent continuous variable, first, and then, Tanaka’s FLR modeling 

approach is applied on the latter. The methods differ only in the way this 

conversion takes place. For the conversion, alternative ways reflecting random and 

fuzzy types of uncertainties in the data are considered.  Performances of the 

methods are compared and possible reasons behind their low and high 

performance results are discussed. Possible use of these approaches in other cases 

is also discussed. 

In the second main part of the study, IFCF approach developed by Çelikyılmaz 

(2008) is improved further. In order to overcome fitting problems encountered in 

clustering phase of the IFCF, we propose to use a nonparametric method, 

Multivariate Adaptive Regression Splines (MARS), in the clustering phase of the 

algorithm. We call this Nonparametric Improved Fuzzy Classifier Function (NIFCF) 

approach. The performance of the NIFCF is compared with another fuzzy 

classification approach, FCF and a statistical classification method, LR using two real 

life data sets, customer satisfaction and casting, collected for quality improvement; 

and one data set from physical sciences, ionosphere.  

This thesis is organized into six chapters. In the second chapter, some background 

information about classification, fuzziness, fuzzy modeling approaches and fuzzy 

clustering are given. In the third chapter, data sets used in the fuzzy classification 

applications are described. Three alternative classification models based on 

Tanaka’s FLR approach are presented in chapter four. In the fifth chapter, NIFCF 

approach is presented and its performance is compared with those of the FCF and 

LR methods. Conclusions and possible future works are mentioned in the last 

chapter. 
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CHAPTER 2 

LITERATURE SURVEY AND BACKGROUND 

2.1. Handling Uncertainty: Randomness versus 

Fuzziness 

Complexity of a system, the ground of the many of our problems today, increases 

with both the amount of information available and the amount of uncertainty 

allowed (Klir and Folger, 1988). Klir and Folger (1988) illustrate this issue with an 

example of driving a car. Driving a car with a standart transmission is more complex 

than driving a car with an automatic transmission since more information is needed 

when driving a car with a standart transmission. Also, driving a car in heavy traffic or 

on unfamiliar roads are more complex since we are more uncertain about when we 

will stop or swerve to avoid an obstacle. It is achieved by satisfactory trade-off 

between the amount of information available and the amount of uncertainty 

allowed to cope better with complexity (Klir and Folger, 1988). In many of the 

systems, more precision results in higher costs and less tractability of a problem 

(Ross, 2004). Hence, it is reasonable to increase the amount of uncertainty by 

sacrificing some amount of precision. Uncertainty can exist in various forms, which 

is resulted from ignorance, from lack of knowledge, from various classes of 

randomness, from inability to perform adequate measurements or from vagueness 

(Ross, 2004).  

For handling uncertainty, several approaches have been developed. Among these 

approaches, probability has been widely accepted by far, which provides a 

conceptual basis for handling random type of uncertainty. The history of probability 
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dates back to 16th century when rules of probability were firstly recognized in the 

games of chance by Gerolamo Cardano (Ross, 2004). Probability measures how 

likely an event occurs. For example, when it is stated that the probability it will rain 

tomorrow is 0.6, it means that there is %60 chance of rain tomorrow. 

Handling uncertainty using probability theory was challenged by the introduction of 

the concept of fuzziness by Zadeh in 1965 (Ross, 2004). Fuzziness is a type of 

uncertainty as randomness. However, fuzziness describes the uncertainty resulted 

from the lack of abrupt distinction of an event (Ross, 2004), which means that the 

compatibility of an event with the given concept is vague. In other words, an event 

may not be expressed as totally compatible or totally incompatible with the given 

concept. It may be compatible with the given concept to some degree. This 

vagueness is generally resulted from the use of linguistic terms, the meanings of 

which vary from person to person. Hence, fuzzy logic measures how compatible an 

event is with the given concept while probability measures how likely an event 

occurs. 

Klir and Folger (1988) illustrate fuzzy type of uncertainty using examples about 

description of weather and description of travel directions. They state that it is 

more useful to describe weather as sunny than giving exact percentage of cloud 

cover since it does not cause any loss in the meaning even if it is less precise. Also, it 

is more useful to describe travel directions using city blocks instead of giving exact 

inches. The uncertainty in these examples is resulted from the vagueness due to the 

use of linguistic terms. For example, the vagueness in the use of adjective ‘sunny’ is 

resulted from the lack of abrupt distinction between the types of weather, which 

can be described as sunny or not, according to particular amount of cloud cover. 

When the weather with %25 cloud cover is described as sunny, is it reasonable to 

describe weather with %26 cloud cover as not sunny? It is difficult to draw exact 

distinctions between these two terms; sunny and not sunny. As can be seen, there 

http://en.wikipedia.org/wiki/Game_of_chance
http://en.wikipedia.org/wiki/Gerolamo_Cardano
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should be a gradual transition between the levels of sunny and not sunny type of 

weather instead of abrupt distinctions. Thus, it is more reasonable to describe 

weather with %26 percent cloud cover as sunny but it is less compatible with the 

term sunny compared to weather with %25 cloud cover. This transition between 

the levels is achieved by the use of membership functions. In this example, 

membership function measures the degree to which weather can be described as 

sunny according to the percentage of cloud cover. In general, membership function 

describes the degree of compatibility of an individual with the given concept 

represented by a fuzzy set (Klir and Folger, 1988).  It is denoted by µA(X) where X 

denotes a universal set and A is a fuzzy set. µA(x) represents the membership 

degree of an element x, which is from the set X, to the fuzzy set A. Membership 

values take values between zero and one. That is, 

µA: X → *0, 1+.          

While zero degree of membership represents nonmembership, one degree of 

membership represents full membership. Membership values between zero and 

one express the partial membership. 

As can be seen, there is not any abrupt distinction between the members and 

nonmembers in the fuzzy sets and their membership values change between values 

zero and one. However, there is an abrupt distinction between the members and 

nonmembers in the crisp sets, in which only zero and one membership values exist 

representing nonmembership and membership, respectively. Thus, fuzzy sets can 

be seen as a more general form of the crisp sets, which allow intermediate 

membership levels between zero and one. While crisp sets provide a mathematical 

basis for the probability theory, fuzzy sets provide basis for the possibility theory 

(Zadeh, 1978). 
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 According to Zadeh (1978), imprecision resulted from linguistic terms is possibilistic 

rather than probabilistic since the concern is the meaning of information not the 

measure of information, which is the concern of probability theory. While 

probability theory copes with the uncertainties resulted from randomness, 

possibility theory copes with the uncertainties resulted from fuzziness. While a 

random variable represents a probability distribution, fuzzy variable, the 

distribution of which is given by a membership function, represents possibility 

distribution. Zadeh (1978) illustrates the distinction between probability and 

possibility by an example about the number of eggs that Hans ate. The possibility 

distribution, π(u) expresses the degree of ease that Hans can eat u number of eggs. 

However, probability distribution, P(u) gives information about occurrence of the 

event that Hans can eat u number of eggs. The probability and possibility 

distributions are given in Table 2.2 below (Zadeh, 1978). 

 

 

Table 2.1: The Probability and Possibility Distributions for u, the number of eggs 

u 1 2 3 4 5 6 7 8 

π (u) 

P(u) 

1 

0.1 

1 

0.8 

1 

0.1 

1 

0 

0.8 

0 

0.6 

0 

0.4 

0 

0.2 

0 

 

 

As can be seen from the table, while Hans has the ability to eat 3 eggs in a day, 

which is given by the possibility value of 1, it may not be so probable for him to eat 

such a high number of eggs in a day, which is given by 0.1 probability value. Hence, 

it can be inferred that high degree of possibility does not result in high degree of 

probability. However, there is a connection between possibility and probability. If it 

is impossible to eat 10 number of eggs for Hans, it is also improbable. Zadeh (1978) 
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named this connection between probability and possibility as possibility/probability 

consistency principle. 

2.2. Classification Methods and Performance 

Measures 

2.2.1. Classification Methods 

Classification problem refers to classifying objects into given classes. Thus, 

classification methods aim to construct models to predict class labels while 

prediction methods build models to predict continuous valued dependent variable. 

Many methods exist in the literature particularly for quality improvement, to be 

used for classification problems such as Decision Trees (DT), Support Vector 

Machines (SVM), Multivariate Adaptive Regression Splines (MARS) and Logistic 

Regression (LR) (Köksal et al., 2008). DT represents the models by tree like 

structures composed of root nodes, internal nodes, arcs and leaf nodes. These 

models are easy to understand and interpret. They do not need many classical 

assumptions as in other classification methods, thus they are widely used for many 

prediction and classification problems. MARS is a nonparametric regression 

method, which automatically models nonlinearities and interactions in the data 

using piecewise linear regression models. It is a flexible modeling technique that can 

be used for both high dimensional classification and prediction problems. Similar to 

DT, MARS does not need many classical assumptions as in the other classification 

methods and is easy to understand and interpret. Another classification method, LR 

models the frequency of an event. Unlike DT and MARS, this method requires the 

validation of assumptions such as independency of error terms. SVM is another 
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classification method that classifies objects by using a hyperplane achieving 

maximum distance between the data sets belonging to different classes.  

Moreover, some nonparametric classification approaches based on Multicriteria 

Decision Aid (MCDA) have been developed over the last three decades (Zopounidis, 

2002). The studies in this area can be divided into 2 groups: criteria aggregation 

models and model development techniques (Zopounidis and Doumpos, 2002). 

Outranking relation and utility functions are the most widely used criteria 

aggregation models. Outranking relation is used to estimate the outranking degree 

of an object over another object. If an object outranks the other object, it means 

that it is at least as good as that object. In this method, objects are classified by 

assessing their outranking degree over the reference profile, rk, which distinguishes 

classes Ck and Ck+1. On the other hand, utility functions give overall performance 

measure of an object. After calculating utilities of each object, the objects are 

classified according to predefined utility threshold values. In model development 

techniques, which constitute the second group of the classification methods based 

on MCDA, optimal model parameters are specified by mathematical programming 

techniques if the model has a quantitative form. These techniques date back to 

1950’s when they were used to develop regression analysis and multiple criteria 

ranking models. In 1960’s, these techniques were started to be used for 

classification problems and gained popularity with the development of LP models 

used to develop discriminant functions proposed by Hand (1981) and Freed and 

Glover (1981) (Zopounidis and Doumpos, 2002). 

Apart from the classification methods based on the probability theory such as LR, 

fuzzy classification methods exist, which depend on the possibility theory. In fuzzy 

classification methods, uncertainty is supposed to be resulted from fuzziness of the 

system structure instead of randomness. These methods are explained in detail in 

Section 2.3. 
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In this section, general information about LR and MARS, which are the statistical 

classification methods used in this study, is given. 

2.2.1.1. Logistic Regression (LR) 

LR is a parametric modeling approach used for classification problems where the 

dependent variables are qualitative rather than continuous. It has similar general 

principles with linear regression analysis (Hosmer and Lemeshow, 2000). However, 

LR models the relationship between the independent variables and the probability 

of occurrence of an event, p(Y=1|X) while linear regression analysis models the 

relationship between independent variables and expected value of the dependent 

variable, E(Y|X), 

where 

X: Input Matrix, 

Y: Output Vector.  

Since change in the conditional mean gets smaller while getting closer to the values 

of 0 and 1, the distribution of conditional mean E(Y|X) for binary data resembles an 

S-shaped curve, which is called logistic function (Hosmer and Lemeshow, 2000). 

Logistic curve can be seen in Figure 2.1. Thus, a link function is used to connect the 

independent variables with the qualitative dependent variable, the mean value of 

which has a logistic distribution. One of the widely used link function in LR is logit 

transformation given by  

𝑔 𝐗 = 𝑙𝑛  
𝜋(𝐗)

1−𝜋(𝐗)
 = 𝛽0 + 𝜷𝐗 ,                (2.1) 

 



11 
 

 

where  

𝜋(𝐗): the conditional mean of Y for a given input matrix, X, when the logistic 

distribution is used, 

𝛽0        : intercept of the regression function, 

𝜷      : coefficient vector of the regression function.  

 

 

 

Figure 2.1: Logistic Curve 
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For the estimation of the logistic regression coefficients, maximum likelihood 

estimation method, which aims to maximize the probability of obtaining the 

observed values using a likelihood function,    

𝑙(𝜷) =  𝜋(𝑿𝒊
𝑁
𝑖=1 )𝑦𝑖  1 − 𝜋(𝑿𝒊) 

1−𝑦𝑖 ,                (2.2) 

is used (Hosmer and Lemeshow, 2000).  

The log-likelihood function, which is the logarithmic transformation of likelihood 

function, given below  

𝐿(𝜷) = 𝑙𝑛 𝑙(𝜷) =   𝑦𝑖𝑙𝑛 𝜋(𝑿𝒊) +  1 − 𝑦𝑖 𝑙𝑛 1 − 𝜋 𝑿𝒊   
𝑁
𝑖=1             (2.3) 

provides an easier mathematical equation to work on. 

Maximum likelihood estimators for the logistic regression parameters, 𝜷  are 

determined as the values that maximize the log-likelihood function. 

2.2.1.2. Multivariate Adaptive Regression Splines (MARS) 

MARS is a nonparametric flexible regression modeling approach developed by 

Friedman (1991). It automates the selection of variables, variable transformations 

and interactions between variables while constructing a model. Thus, it is a suitable 

approach for modeling high-dimensional relations and expected to show high 

performance for fitting nonlinear multivariate functions (Taylan et al., 2008). It can 

be used for both prediction and classification problems (Yerlikaya, 2008).  

MARS constructs relationship between dependent and independent variables by 

fitting piecewise linear regression functions, in which each pieces are named as 

basis functions.  Then, the model, 𝑓(𝐗), constructed by MARS for given input 

matrix, X, as the following: 
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𝑦 = 𝑓 𝐗 =  𝒂𝑚𝑩𝑚  𝐗 𝑀
𝑚=1 ,                (2.4) 

where 

𝒂𝑚 : coefficient vector for the mth basis function, 

𝑩𝑚 (𝐗): the mth basis function, 

M: the number of basis functions. 

MARS builds a model using an algorithm which has two phases: the forward and the 

backward stepwise algorithm, which are performed only once. 

The Forward Stepwise Algorithm: 

The forward stepwise algorithm starts with the formation of constant basis function 

consisting only intercept term and then continues with the forward stepwise search 

to choose the basis function, which gives maximum reduction in the sum of squared 

errors. This process continues until the maximum number of terms is reached, 

which is initially determined by the user. 

The Backward Stepwise Algorithm: 

In this phase, it is aimed to prevent over-fitting of the model constructed in the 

forward stepwise algorithm. Thus, a new model with better generalization ability is 

constructed by removing the terms that result in smallest increase in the sum of 

squared errors at each step. This process continues until the best model is selected 

according to the Generalized Cross Validation (GCV), measure whose formula is 

given below 

GCV=  
1

𝑁
    𝑦𝑖 − 𝑓𝑖 𝐗  

2
 1 − (𝑢 + 𝑑𝐾)/𝑁 2 𝑁

𝑖=1 ,              (2.5) 
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where 

yi: actual value of the ith dependent variable,  

𝑓𝑖 𝐗 : predicted value of ith dependent variable for a given input matrix, X, 

N: number of observations, 

𝑢: number of independent basis functions, 

d: cost of optimal basis,   

K: number of knots selected by forward stepwise algorithm. 

Finally, the model that has the minimum GCV value is selected as the best model. 

2.2.2. Performance Measures 

Several classification performance measures exist in the literature to be used for 

evaluating the performances of classification methods. Performance measures 

mentioned in the studies of Weiss and Zhang (2003) and Ayhan (2009) are 

explained in this section. 

The measures explained below use the inputs of confusion matrix, which illustrates 

the number of positive and negative observations classified correctly and 

incorrectly (see Table 2.1). True Positives (TP) and True Negatives (TN) represent 

the number of correctly classified actual positive and negative observations, 

respectively, while False Positives (FP) and False Negatives (FN) represent the 

number of positive and negative observations misclassified, respectively. 
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Table 2.2:  Confusion Matrix 

  Actual Class 

  Positive Negative 

Predicted 

Class 

Positive True Positives 
(TP) 

False Positives 
(FP) 

Negative False Negatives 
(FN) 

True Negatives 
(TN) 

 

 

Misclassification Rate (MCR): 

Misclassification rate (MCR) is the proportion of the misclassified observations in 

total number of observations, N. 

𝑀𝐶𝑅 =  (𝐹𝑃 +  𝐹𝑁)/𝑁                 (2.6) 

Percentage of Correctly Classified (PCC): 

Percentage of correctly classified (PCC) is the proportion of the correctly classified 

observations in total number of observations. 

𝑃𝐶𝐶 =  (𝑇𝑃 +  𝑇𝑁)/𝑁 = 1 − 𝑀𝐶𝑅               (2.7) 

Kappa: 

Kappa gives the chance-corrected proportion of the correctly classified 

observations, in which the probability of chance agreement is removed.  

𝐾𝑎𝑝𝑝𝑎 = (𝜃1 − 𝜃2)/( 1 − 𝜃2)                 (2.8) 
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where 𝜃1  and 𝜃2  denote the observed and chance agreement calculated by the 

Equations (2.9) and (2.10), respectively. 

𝜃1 = (𝑇𝑃 +  𝑇𝑁)/𝑁                                     (2.9) 

𝜃2 = 
[(𝑇𝑃 + 𝐹𝑁)/2] [(𝑇𝑃 + 𝐹𝑃)/2] + [(𝐹𝑃 + 𝑇𝑁)/2] [(𝐹𝑁 + 𝑇𝑁)/2]

𝑁2                (2.10) 

Precision: 

Precision is the proportion of the actual positive observations classified correctly in 

the total number of positive observations. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                            (2.11) 

Recall:  

Recall, which is also called sensitivity, gives the proportion of the correctly classified 

positive observations in the total number of correctly classified positive 

observations and misclassified negative observations. 

𝑅𝑒𝑐𝑎𝑙𝑙 = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                            (2.12) 

Specificity: 

Specificity is the proportion of correctly classified negative observations in the total 

number of correctly classified negative observations and misclassified positive 

observations. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
              (2.13) 
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F Measure: 

F measure is the weighted harmonic mean of the precision and recall. Since there is 

a tradeoff between recall and precision, F measure gives more valuable information 

about test’s accuracy by considering both recall and precision. F0.5, F1 and F2 are 

widely used F measures, which are calculated by: 

𝐹𝛽 =
 1+𝛽

2
  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑅𝑒𝑐𝑎𝑙𝑙 

𝛽
2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

             (2.14) 

Log-Odds Ratio: 

Log-Odds ratio is the natural logarithm of the odds ratio between the correctly 

classified and misclassified observations.  

𝐿𝑜𝑔𝑂𝑑𝑑𝑠 𝑅𝑎𝑡𝑖𝑜 = 𝑙𝑜𝑔  
 𝑇𝑃 (𝑇𝑁)
 𝐹𝑃 (𝐹𝑁)

                     (2.15) 

Stability: 

A classification model is said to be stable if its performance for testing data is close 

to its performance for training data.   

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ==
𝑃𝐶𝐶𝑇𝑅 − 𝑃𝐶𝐶𝑇𝐸

𝑃𝐶𝐶𝑇𝑅 + 𝑃𝐶𝐶𝑇𝐸
               (2.16) 

where PCCTR and PCCTE denote the percentage of the correctly classified values for 

the training and testing data sets, respectively.   

While the measure is getting closer to 0, the classification model is said to be more 

stable. 
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Area under ROC Curve (AUC): 

It measures the area under the ROC curve, which is a plot of the sensitivity versus 

 1 −  𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 .  

2.3. Fuzzy Modeling Approaches 

In general, fuzzy modeling methods can be grouped into three: Fuzzy Rule Based 

(FRB) approaches, Fuzzy Regression (FR) approaches and approaches based on fuzzy 

functions.   

2.3.1. Fuzzy Rule Based (FRB) Approaches 

FRB approach was firstly developed by Zadeh (1965 and 1975, as cited in Türkşen 

and Çelikyılmaz, 2006) and applied by Mamdani (1981, as cited in Türkşen and 

Çelikyılmaz, 2006). These models have been applied and improved by many 

researchers. Takagi and Sugeno (1985) have developed a mathematical tool to 

model a system by using fuzzy implications and reasoning. Thus, natural languages 

used in daily life can be added in the models by fuzzy reasoning and applications 

and input-output relations can be built. Sugeno and Yasukawa (1993) have 

developed a method to build a qualitative model, which is divided into two parts 

called fuzzy modeling and linguistic approximation.  

In addition, several other approaches have been developed to be used for building 

classification models based on FRB. These approaches mainly include methods 

based on fuzzy clustering and Adaptive Neuro Fuzzy Inference Systems (ANFIS). 

Fuzzy Classifier (FC) developed by Abe and Thawonmas (1997) and Fuzzy Relational 

Classifier (FRC) developed by Setnes and Babuşka (1999) are among the FRB 

methods depending on fuzzy clustering. In FC method, fuzzy clusters are 
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determined for each class and fuzzy rules are developed for each cluster 

determined. In the FRC method, the membership values are calculated by any 

clustering algorithm such as fuzzy c-means (FCM) and the fuzzy relation between 

cluster membership values and class membership values is built. Huang et al. (2007) 

have developed a classifier depending on ANFIS. This method is composed of two 

stages: feature extraction and ANFIS. In the stage of feature extraction, the inputs 

are selected by using orthogonal vectors and then in the final step ANFIS method is 

applied. 

2.3.2. Fuzzy Regression (FR) Approaches 

In this section, fuzzy regression approaches used for prediction problems are 

explained in three groups, which are possibilistic approaches, Fuzzy Least Squares 

Regression (FLSR) approaches and other approaches. 

2.3.2.1. Possibilistic Approaches 

Fuzzy Linear Regression (FLR) analysis was firstly developed by Tanaka et al. (1982) 

and generally named as “possibilistic regression”. In this regression approach, 

deviations between observed and estimated output variables are assumed to be 

resulted from the fuzziness of the system structure, not the measurement errors as 

in the conventional statistical methods (Tanaka et al., 1982). In order to be able to 

apply this method, observed independent variables must be crisp numbers. 

However, an observed dependent variable may be crisp or symmetrical triangular 

fuzzy number whose spread is represented by ei taking the value zero for crisp 

number and positive value for the fuzzy number. Spread is a meaure of dispersion 

of a fuzzy number. In symmetrical triangular fuzzy numbers, spread is calculated as 

the half width of the fuzzy interval. 
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This approach uses a Linear Programming (LP) model, in which total fuzziness of the 

regression coefficients are minimized when predicted intervals include observed 

intervals at a certain degree of fit.  The LP model is shown below: 

Min  𝐽 =    𝑐𝑗
𝑀
𝑗=0

𝑁
𝑖=1                             (2.17) 

s.t.  

  𝑚𝑗
𝑀
𝑗=0 𝑥𝑖𝑗 +  1 − 𝐻  𝑐𝑗

𝑀
𝑗=0  𝑥𝑖𝑗  ≥ 𝑦𝑖 +  1 − 𝐻 𝑒𝑖     for 𝑖 = 1, … , 𝑁       (2.18) 

          𝑚𝑗
𝑀
𝑗 =0 𝑥𝑖𝑗 −  1 − 𝐻  𝑐𝑗

𝑀
𝑗=0  𝑥𝑖𝑗  ≤ 𝑦𝑖 −  1 − 𝐻 𝑒𝑖   for 𝑖 = 1, … , 𝑁       (2.19)  

         𝑐𝑗 ≥ 0, mj free      for 𝑗 = 0, … , 𝑀       (2.20) 

where the variables are 

𝑥𝑖𝑗 :  value of the jth independent variable for the ith observation,  

𝑦𝑖  :  value of the dependent variable for the ith observation, 

and the parameters are 

𝑒𝑖   : spread of the dependent variable for the ith observation, 

H  :  target degree of belief, 

𝑚𝑗 :  midpoint of the jth regression coefficient, 

𝑐𝑗  :  spread of the jth regression coefficient, 

M : number of independent variables, 

N : number of observations. 
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Fuzzy regression coefficient parameters are estimated by solving this LP problem 

that minimizes the total fuzziness of the system. Total fuzziness of the system is 

expressed by the total half widths (spreads), cj; of the regression coefficients as 

shown in Equation (2.17). In this LP model, predicted intervals should include 

observed intervals at H level degree of fit, which is ensured by the constraints given 

in Equations (2.18) and (2.19).  

H level, which is determined by the user, is called the target degree of belief (Chang 

and Ayyub, 2001). It can be considered as a measure of goodness of fit for FLR 

method, which shows the compatibility between the FLR model and the data 

(Chang and Ayyub, 2001). According to the LP model, membership value of an 

observed dependent variable to its estimated fuzzy dependent variable, 𝑕𝑖 , must be 

at least H (Tanaka et al, 1982). 𝑕𝑖  value for crisp and fuzzy observed dependent 

variables is illustrated in Figure 2.2. As can be seen from the Figure 2.2, predicted 

fuzzy interval, Y 𝑖 , contain observed fuzzy interval, Y i  or observed crisp number, Yi  

for the membersip values equal to or below hi. Thus, 𝑕𝑖  is the maximum 

membership degree that predicted fuzzy interval contain observed fuzzy interval or 

crisp number. 

For a symmetrical triangular fuzzy number, 𝑕𝑖  is obtained by the following equation: 

𝑕𝑖 = 1 −
 𝑦 𝑖−  𝑚 𝑗

𝑀
𝑗 =0 𝑥𝑖𝑗  

 𝑐𝑗
𝑀
𝑗=0  𝑥𝑖𝑗  −𝑒𝑖

               (2.21) 

The LP model given above aims to find fuzzy regression coefficients under the 

constraints (2.18) and (2.19), which are derived from the inequality 𝑕𝑖 ≥ 𝐻 for 

𝑖 = 1, … , 𝑁. According to the LP model, midpoints of the predicted fuzzy regression 

coefficients are not affected by the H value, however, spread values of the 

predicted fuzzy regression coefficients increase with the increase in H value (Tanaka 

and Watada, 1988 as cited in Kim, Moskowitz and Köksalan, 1996).  
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Figure 2.2: Illustration of h value for a) fuzzy dependent variable and b) crisp 

dependent variable 

 

 

Since hi  value increases when the midpoints of predicted and observed dependent 

variable get closer, H level can be seen as the level of credibility or level of 

confidence desired (Kim, Moskowitz and Köksalan, 1996). Since it is determined by 

the user, proper selection of H level is important for the fuzzy regression model 

(Wang and Tsaur, 2000). Tanaka and Watada (1988) suggested to determine H 

value according to the sufficiency of the data (Wang and Tsaur, 2000). If the data 

set collected is sufficiently large, then H level should be determined as 0 and it 

should be increased with the decreasing volume of the data set. 
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This method has been criticized for having input scale dependencies and often 

having zero coefficient spread (Jozsef, 1992 as cited in Hojati et al., 2005).  To 

overcome these problems, Tanaka improved his method by replacing the objective 

function, representing total fuzziness of the coefficients, by the total fuzziness of 

the predicted values under the same constraints (Tanaka et al., 1989). In this case 

the LP model becomes as follows: 

Min   𝐽 =    𝑐𝑗
𝑀
𝑗 =0  𝑥𝑖𝑗  

𝑁
𝑖=1                (2.22) 

s.t.   

 𝑚𝑗
𝑀
𝑗=0 𝑥𝑖𝑗 +  1 − 𝐻  𝑐𝑗

𝑀
𝑗=0  𝑥𝑖𝑗  ≥ 𝑦𝑖 +  1 − 𝐻 𝑒𝑖   for 𝑖 = 1, … , 𝑁        (2.23) 

         𝑚𝑗
𝑀
𝑗=0 𝑥𝑖𝑗 −  1 − 𝐻  𝑐𝑗

𝑀
𝑗 =0  𝑥𝑖𝑗  ≤ 𝑦𝑖 −  1 − 𝐻 𝑒𝑖   for 𝑖 = 1, … , 𝑁        (2.24) 

        𝑐𝑗 ≥ 0 , mj free      for 𝑗 = 0, … , 𝑀       (2.25) 

As a solution of this LP problem, symmetrical triangular fuzzy regression coefficients 

are obtained, which are denoted by 𝐴 𝑗 =  𝑚𝑗 , 𝑐𝑗   (see Figure 2.3).   

 

 

 

Figure 2.3: Triangular fuzzy number with mean m and spread c 
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In this method, the predicted dependent variables are triangular fuzzy numbers as a 

result of the fuzzy regression model including symmetrical triangular fuzzy 

regression coefficients and crisp independent variables. Illustration of a simple FLR 

model can be seen from Figure 2.4 below. 

 

 

 

Figure 2.4: Graph of Simple FLR Model 

 

 

Tanaka’s method was criticized for its sensitivity to outliers (Peters, 1994), 

requirement of crisp independent variables and linearity assumption between 

dependent and independent variables (Sakawa and Yano, 1992), lack of 

interpretation of fuzzy intervals (Wang and Tsaur, 2000), uncertainty in the field of 

forecasting (Savic and Pedrycz, 1991 as cited in Wang and Tsaur, 2000) and 

existence of multicollinearity (Wang and Tsaur, 2000) and increasing spreads for 

estimated outputs (Nasrabadi and Nasrabadi, 2004) with increased  number of 

independent variables. In addition, increasing number of constraints with the 

increase in the number of data results in problems about the capacity of softwares 

used to solve LP problems (Chang and Ayyub, 2001).  
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Tanaka’s model has been improved several times by researchers to overcome these 

problems. Wang and Tsaur (2000) propose several improvements addressing some 

of these criticisms; they prove that the midpoints (Yh=1) are the points that best 

represent the given fuzzy interval when the fuzzy regression coefficients are 

symmetrical triangular fuzzy numbers (Wang and Tsaur, 2000). Savic and Pedrycz 

(1991) (as cited in Chung and Ayyub, 2001) have developed a method, in which 

regression coefficient spreads are predicted by Tanaka’s method while midpoints 

are calculated using the least-squares regression method. Sakawa and Yano (1992) 

have developed an iterative algorithm for the case where both dependent and 

independent variables are fuzzy. Peters (1994) has developed a model, in which 

predicted intervals are allowed to intersect observed intervals rather than including 

them in order to reduce the sensitivity of the FLR method to outliers. Hung and 

Yang (2006) have developed an approach that proposes to omit outliers for 

Tanaka’s FLR method to overcome the problems resulted from the existence of 

outliers. In this approach, the outliers are tried to be determined by examining the 

effect of omitted variables on the objective function value and by using several 

visual statistical graphs such as box plots. Kim and Bishu (1998) have revised the 

objective function by minimizing the difference between membership values of the 

observed and predicted fuzzy numbers. Ozelkan and Duckstein (2000) have 

developed a method that minimizes the difference between the observed and 

predicted intervals’ upper and lower bounds when the predicted intervals intersect 

the observed intervals. Hojati et al. (2005) have developed a method similar to 

Ozelkan and Duckstein (2000) but their method tries to obtain narrower intervals by 

minimizing the difference between the upper and lower bounds of the observed 

and predicted dependent variable values whether the predicted intervals intersect 

the observed intervals or not. Kao and Chyu (2002) have developed a method 

depending on two phases. In the first phase, fuzzy observations are converted to 

crisp numbers by defuzzification and regression coefficients are calculated by the 
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classical least squares regression method. In the second phase, the error term of 

the model is determined by using the calculated regression coefficients. Since 

regression coefficients are crisp numbers, problems resulting from increasing 

spreads because of the increase in the number of independent variables as in many 

other fuzzy regression methods are not encountered.  

Several variable selection algorithms have been proposed in order to overcome the 

multicollineraity problems resulted from the increased number of independent 

variables. Wang and Tsaur (2000) have developed a variable selection algorithm 

based on minimizing the sum of squared errors. However, this algorithm does not 

guarantee the optimal solution.  D’urso and Santoro (2006) have developed variable 

selection algorithms that depend on coefficient of determination (R2), adjusted 

coefficient of determination (Adjusted-R2) and Mallows Cp statistics. 

Another possibilistic regression approach is interval regression analysis. Ishibuchi 

(1992) has developed interval regression analysis by assuming that fuzzy data and 

fuzzy coefficients behave like interval numbers having no membership function. In 

this model, regression coefficients, which are interval numbers, are tried to be 

determined by an LP minimizing total predicted interval lengths while predicted 

intervals include observed intervals, as in the Tanaka’s method (1982 and 1989).  

2.3.2.2. Fuzzy Least Squares Regression (FLSR) Approaches 

Another fuzzy regression approach is Fuzzy Least Squares Regression (FLSR) 

approach developed by Diamond (1988). Celmins (1987) has applied FLSR approach 

with using conic dependent membership functions. Wang and Tsaur (2000) have 

developed a new FLSR method used for crisp independent variables and fuzzy 

dependent variables and compared this method with Tanaka’s FLR method and 

conventional statistical least squares regression method. They conclude that their 
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proposed method performs better than Tanaka’s method in terms of prediction 

power and more efficient than statistical least squares regression method in terms 

of computational efficiency. D’Urso and Gastaldi (2000) have proposed doubly 

linear adaptive fuzzy regression model. In this method, two different models are 

constructed, which are called core regression model and spread regression model 

for explaining centers and spreads of fuzzy numbers, respectively. In this approach, 

models are formed in such a way to consider the relationship between centers and 

spreads. D’Urso (2003) has improved the method developed by D’Urso and Gastaldi 

(2000), which can be applied for only crisp independent and fuzzy dependent 

variables, in order to be used for every combination of crisp/fuzzy independent and 

dependent variables.  

2.3.2.3. Other Approaches 

In addition to the approaches mentioned above, different approaches have also 

been developed to capture the effect of fuzzy type of uncertainty in the data. 

Hathaway and Bezdek (1993) have developed fuzzy c-regression approach. They 

have developed an algorithm in which both problems of clustering of dataset and 

determination of regression coefficients are tried to be solved simultaneously. In 

this algorithm, sum of the squared errors between observed and predicted 

dependent variables weighted with membership values is minimized. 

Another fuzzy regression approach has been developed by Bolotin (2005). He 

proposes to replace indicator variables by membership values in linear regression 

models with indicator variables and predict crisp regression coefficients by least 

squares regression method. Thus, in this method, fuzziness in the data is captured 

by using the membership values replacing the indicator variables while the fuzziness 

is reflected by the fuzzy regression coefficients in the possibilistic FLR models. By 
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the use of this model, common problems aroused from the use of possibilistic FLR 

models are aimed to be accomplished. 

2.3.3. Approaches Based on Fuzzy Functions 

In this section, approaches based on fuzzy functions developed for both prediction 

and classification problems are explained.  

2.3.3.1. Fuzzy Functions (FF) 

Türkşen (2008) has developed Fuzzy Functions (FF) approach, the conceptual origin 

of which is based on the studies of Demirci (1998, 2003 and 2004, as cited in 

Türkşen, 2008). FF approaches are proposed to be determined by Least Squares 

Regression (LSR) and Support Vector Machines (SVM). This method depends on 

construction of one fuzzy function for each cluster after partitioning the data with 

fuzzy c-means (FCM) clustering algorithm.  Membership values of the observations 

for each cluster obtained from a clustering algorithm and their possible 

transformations are taken as new input variables in addition to the original input 

space and functions are constructed to explain input-output relationship for each 

cluster using the new input space, which are called “Fuzzy Functions” (Çelikyılmaz, 

2008). The final estimate for output variable is obtained by weighted average of the 

estimates obtained for each cluster with related membership values. 

Türkşen and Çelikyılmaz (2006) compare the performance of the FF method with 

the FRB approaches of Sugeno and Yasukawa (1993) and Takagi and Sugeno (1985). 

The comparison results indicate that FF methods show better performance than 

other methods for most of the data sets used. Moreover, they state that the 

proposed approach is more suitable for the analysts, who are familiar with the 

applications of conventional statistical regression but do not master all the aspects 
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of the fuzzy theory since it only requires basic understanding of membership 

functions and the use of fuzzy clustering algorithms. 

2.3.3.2. Fuzzy Classifier Functions (FCF) 

Fuzzy Classifier Functions (FCF) approach is the adaptation of FF approach to 

classification problems (Çelikyılmaz et al., 2007). This method is very similar to FF 

method, but a classification method is used for building a model for each cluster 

rather than a prediction method as in FF approach. LR or SVM classification 

methods are proposed to be used for building linear or nonlinear fuzzy classifier 

functions for each cluster. The training and testing algorithms of the FCF approach 

are given below. 

Steps of the training algorithm for FCF: 

1. Set initial parameter α, which is the level used for eliminating the points farther 

away from the cluster centers.  

2. Calculate cluster centers for input-output variables using the FCM algorithm for c 

number of clusters and m degree of fuzziness. 

𝒗 𝑿𝑌 𝒊 =  𝑣 𝑥1 𝑖 , … , 𝑣 𝑥𝑝 
𝑖
, 𝑣 𝑦 𝑖   

where, 

𝑣 𝑥𝐽 𝑖
: cluster center of the jth independent variable for the ith cluster, 

𝑣 𝑦 𝑖  : cluster center of the dependent variable for the ith cluster. 

3. For each cluster 𝑖 = 1, … , 𝑛 

3.1. For each observation number 𝑘 = 1, … , 𝑁   



30 
 

Using cluster centers for input space, 𝒗 𝑿 𝒊 =  𝑣 𝑥1 𝑖 , … , 𝑣 𝑥𝑝 
𝑖
   

3.1.1. Calculate membership values for input space, 𝑢𝑖𝑘 . 

𝑢𝑖𝑘  =    
 𝑿𝒌−𝒗 𝑿 𝒊 

 𝑿𝒌−𝒗 𝑿 𝒋 
 

2

𝑚 −1𝑛
𝑗 =1  

−1

                                           (2.27) 

3.1.2. Calculate alpha-cut membership values,  𝜇𝑖𝑘  . 

      𝜇𝑖𝑘 =  𝑢𝑖𝑘 ≥ 𝛼                 (2.28) 

3.1.3. Calculate normalized membership values, 𝛾𝑖𝑘  . 

             𝛾𝑖𝑘 = 
𝜇 𝑖𝑘

 𝜇 𝑗𝑘
𝑛
𝑗=1

                                (2.29) 

3.2.  Determine the new augmented input matrix for each cluster i, 𝚽𝐢, using 

observations selected according to α-cut level. 𝚽𝐢 matrix is composed of 

input variable matrix, 𝐗𝐢
𝛂, vector of normalized membership values for the 

cluster i, 𝜸𝒊, and the matrix composed of their selected 

transformations, 𝜸𝒊
′ , such as 𝜸𝒊

2
, 𝜸𝒊

3
, 𝜸𝒊

m, exp(𝜸𝒊),  log((1-𝜸𝒊)/ 𝜸𝒊).  

𝚽𝐢 𝐗, 𝜸𝒊 =  𝐗𝐢
𝛂 𝜸𝒊 𝜸𝒊

′      

where, 

𝐗𝐢
𝛂 =  𝒙𝒌 ∈ 𝐗  𝑢𝑖𝑘 𝒙𝒌 ≥ 𝛼, 𝑘 = 1, … , 𝑁  

3.3.  Using LR or SVM as a classifier, calculate a local fuzzy function using new 

augmented matrix 𝚽𝐢 𝐗, 𝜸𝒊  . 

   3.3.1. For each observation 𝑘 = 1, … , 𝑁 



31 
 

3.3.1.1. Using the local fuzzy classifier function constructed at step 

3.3, calculate posterior probabilities, 𝑝 𝑖𝑘 (𝑦𝑘
𝛼 = 1/𝚽𝐢(𝒙, 𝜸𝒊)).          

4. For each observation 𝑘 = 1, … , 𝑁 

4.1. Calculate a single probability output 𝑝 𝑘 , weighting the posterior 

probabilities, 𝑝 𝑖𝑘 , with their corresponding membership values, 𝛾𝑖𝑘 .  

    𝑝 𝑘=    
 𝛾𝑖𝑘 𝑝 𝑖𝑘 (𝑦𝑘

𝛼 =1/𝜱𝑖(𝑿,𝜸𝒊) )𝑛
𝑖=1

 𝛾𝑖𝑘
𝑛
𝑖=1

                          (2.30) 

Steps of testing algorithm for FCF: 

1. Standardize testing data. 

2. For each observation 𝑟 = 1, … , 𝑁𝑡𝑒𝑠𝑡   

2.1.  For each cluster 𝑖 = 1, … , 𝑛    

2.1.1. Calculate improved membership values, 𝑢𝑖𝑟
𝑡𝑒𝑠𝑡 . 

 𝑢𝑖𝑟
𝑡𝑒𝑠𝑡 =    

 𝒙𝒓
𝑡𝑒𝑠𝑡– 𝒗(𝑿)𝑖 

 𝒙𝒓
𝑡𝑒𝑠𝑡– 𝒗(𝑿)𝑗 

 

2
(𝑚−1) 

𝑛
𝑗=1  

−1

                           (2.31) 

where, 

𝒙𝒓
𝑡𝑒𝑠𝑡 : testing data input vector for the rth observation,  

 𝒗(𝑿)𝑖 : the ith cluster centers for input variables calculated using 

training data set at the FCM algorithm. 

2.1.2. Calculate alpha-cut membership values, 𝜇𝑖𝑟
𝑡𝑒𝑠𝑡 . 

 𝜇𝑖𝑟
𝑡𝑒𝑠𝑡 =  𝑢𝑖𝑟

𝑡𝑒𝑠𝑡 ≥ 𝛼                 (2.32) 
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2.1.3. Calculate normalized membership values, 𝛾𝑖𝑟
𝑡𝑒𝑠𝑡 .   

  𝛾𝑖𝑟
𝑡𝑒𝑠𝑡 =   

𝜇 𝑖𝑟
𝑡𝑒𝑠𝑡

 𝜇𝑞𝑟
𝑡𝑒 𝑠𝑡𝑛

𝑞=1
              (2.33) 

2.1.4. Determine the new augmented input vector, 𝚽𝐢𝐫
𝐭𝐞𝐬𝐭 which is 

composed of testing data input vector for the rth observation, 

𝒙𝒓
𝑡𝑒𝑠𝑡 , normalized membership value of the rth observation for the 

ith cluster, 𝛾𝑖𝑟
𝑡𝑒𝑠𝑡 , and the vector composed of their 

transformations,  𝜸𝒊𝒓
𝑡𝑒𝑠𝑡  ′  used at the 3.2. step of the training data 

algorithm of FCF.  

  𝚽𝐢𝐫
𝐭𝐞𝐬𝐭 𝒙𝒓

𝑡𝑒𝑠𝑡 , 𝛾𝑖𝑟
𝑡𝑒𝑠𝑡  =   𝐱𝐫

𝑡𝑒𝑠𝑡 𝛾𝑖𝑟
𝑡𝑒𝑠𝑡  𝜸𝒊𝒓

𝑡𝑒𝑠𝑡 
′
    

2.1.5. Using the fuzzy classifier function constructed at step 3.3 of FCF 

training data algorithm, calculate posterior probabilities, 

𝑝 𝑖𝑟
𝑡𝑒𝑠𝑡 𝑦𝑟

𝑡𝑒𝑠𝑡 = 1/ 𝚽𝒊𝒓
𝒕𝒆𝒔𝒕 . 

2.2. Calculate a single probability output 𝑝 𝑟
𝑡𝑒𝑠𝑡 , weighting the posterior 

probabilities, 𝑝 𝑖𝑟
𝑡𝑒𝑠𝑡 , with their corresponding membership values, 𝛾𝑖𝑟

𝑡𝑒𝑠𝑡 .   

𝑝 𝑟
𝑡𝑒𝑠𝑡  =  

 𝛾𝑖𝑟
𝑡𝑒𝑠𝑡 𝑝 𝑖𝑟

𝑡𝑒𝑠𝑡  (𝑦𝑟
𝑡𝑒𝑠𝑡 =1/ 𝚽𝐢𝐫

test )𝑛
𝑟=1

 𝛾𝑖𝑟
𝑡𝑒𝑠𝑡𝑛

𝑖=1

                         (2.34) 

The use of the transformations of the membership values as new input variables in 

both FF and FCF methods ensures that data points closer to the cluster center have 

more impact on the model constructed for this cluster since they have greater 

membership values than the others that are farther away from the related cluster 

center (Çelikyılmaz et al., 2007). 



33 
 

2.3.3.3. Improved Fuzzy Functions (IFF) 

Improved Fuzzy Functions (IFF) approach has been developed by Çelikyılmaz (2008). 

This approach proposes to use Improved Fuzzy Clustering (IFC) algorithm developed 

by Çelikyılmaz (2008), which is explained in detail in Section 2.4.2, in the clustering 

phase of the FF approach. As mentioned above, the membership values obtained 

from the FCM algorithm are used as new predictors to estimate output variable for 

constructing fuzzy functions. However, they may not be optimum membership 

values to be used as predictors since they are calculated by the FCM algorithm 

which considers only data vectors’ distances as similarity measure while partitioning 

data. Thus, a new clustering algorithm, IFC has been proposed by Çelikyılmaz (2008) 

in order to obtain optimum membership values to be used for FF approaches, which 

are used as new predictors. By using IFC, it is aimed that the prediction error is 

minimized by improving prediction power of membership functions. The prediction 

power of membership values are tried to be increased by considering also the 

relationship between actual output values and membership values of related 

cluster and their transformations without including original input variables. The 

model constructed to estimate output value using only membership values and 

their transformations is called interim fuzzy function. The squared error term 

between the actual output and the estimated output of the interim fuzzy function is 

added to the objective function of the FCM algorithm as seen below 

𝐽𝐼𝐹𝐶 =   𝜇𝑖𝑘
𝑚𝑁

𝑘=1
𝑛
𝑖=1 𝑑𝑖𝑘

2 +   𝜇𝑖𝑘
𝑚𝑁

𝑘=1
𝑛
𝑖=1 (𝑦𝑘 − 𝑓(𝝉𝑖𝑘 ))2.           (2.35) 

 

After optimum membership values are obtained by the IFC algorithm, FF method is 

applied. The training algorithm of IFF is exactly the same as the training algorithm of 

FF method except that it uses the membership values calculated by the IFC 

algorithm rather than the FCM algorithm. However, in the testing algorithm of IFF, 

FCM  
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the actual value of output variable is needed in order to calculate the squared error 

term. Thus, in the testing algorithm of IFF, k-nearest neighbor algorithm is used to 

find an estimate for squared error term using the actual values of k-nearest 

neighbors from the training data set. 

Çelikyılmaz and Türkşen (2008) propose to use LSR as a linear function estimation 

method and SVM as a nonlinear function estimation method for estimating interim 

fuzzy functions in the IFC algorithm.  

Çelikyılmaz and Türkşen (2008) compare the IFF approach with other fuzzy 

modeling approaches; FRB, FF and ANFIS and non-fuzzy approaches, SVM and 

Neural Networks (NN) using three data sets. The results of the experiments indicate 

that the IFF method gives better performance results. 

2.3.3.4. Improved Fuzzy Classifier Functions (IFCF) 

As FCF, Improved Fuzzy Classifier Functions (IFCF) approach is the extension of IFF 

method, which is used for prediction problems, to be used for classification 

problems. In the IFCF algorithm, classifier functions are used for constructing both 

interim fuzzy functions in the clustering phase of the algorithm and local fuzzy 

functions instead of regression functions. SVM and LR classification methods are 

proposed to be used for the construction of local fuzzy classifier functions.  

2.4. Fuzzy Clustering  

Clustering means grouping of objects into subclasses, which are called clusters. The 

members of the clusters bear more mathematical similarity among each other than 

other members of the clusters (Ross, 2004). Similarity between objects in a cluster 

is generally defined by a distance measure. Clustering analysis can be performed by 
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two types of clustering methods: hard clustering and fuzzy clustering. While hard 

clustering methods partition data with hard boundaries, the boundaries between 

clusters determined by fuzzy clustering methods are vague. Thus, an object may 

belong to several clusters with different membership values in the fuzzy clustering 

methods, not fully belong to only one cluster as in the hard clustering methods.  

In this section, two fuzzy clustering methods, FCM and IFC, which are used to find 

sub-grouping of objects for the methods applied in this study and the validity 

measures used to find optimum parameters for these clustering algorithms are 

explained. 

2.4.1. Fuzzy c-Means (FCM) Clustering 

As indicated above, FCM is among the fuzzy clustering methods, which provides 

fuzzy partitioning of data by assigning membership degrees to each object 

describing their belongings to the related clusters. FCM algorithm has been 

developed by Bezdek (1981) (as cited in Ross, 2004).  

FCM clustering algorithm aims to find fuzzy partitions that minimize the objective 

function 𝐽 𝑿; 𝑼, 𝑽  given by 

 𝐽 𝑿; 𝑼, 𝑽 =   𝜇𝑖𝑘
𝑚𝑁

𝑘=1
𝑛
𝑖=1  𝒙𝒌 − 𝒗𝒊 

2,               (2.36) 

subject to the constraints 

  𝜇𝑖𝑘 = 1𝑛
𝑖=1    

 0 <  𝜇𝑖𝑘 < 𝑁𝑁
𝑘=1  

𝜇𝑖𝑘 ∈ [0, 1] 
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where 

n: number of clusters, 

m: degree of fuzziness, 

N: number of observations, 

 𝒗𝒊: center of the ith cluster, 

 𝒙𝒌: the kth observation vector, 

 𝜇𝑖𝑘 : membership value of the kth observation for the ith cluster.  

The algorithm of FCM provided by user guide of Fuzzy Clustering Toolbox is given 

below. 

Steps of FCM algorithm: 

1. For a given data set X, determine the number of clusters, n, degree of fuzziness, 

m and termination tolerance, ε.  Initialize the partition matrix 𝑈(0) =  𝜇𝑖𝑘   where 

𝜇𝑖𝑘  denotes the membership value of the kth object for the ith cluster. 

2. Compute the cluster centers, 𝑣𝑖
(𝑙)

 for the ith cluster. 

     𝑣𝑖
(𝑙)

=  
  𝜇 𝑖𝑘

(𝑙−1)
 
𝑚

𝒙𝑘
𝑁
𝑘=1

  𝜇 𝑖𝑘
(𝑙−1)

 
𝑚

𝑁
𝑘=1

    for ∀𝑖 = 1, … , 𝑐             (2.37) 

3. Calculate distances 𝑑𝑖𝑘  of the kth observation for the ith cluster.  

     𝑑𝑖𝑘 =  𝒙𝒌 − 𝒗𝒊 
2  for ∀𝑖 = 1, … , 𝑛              (2.38) 

 for ∀𝑘 = 1, … , 𝑁 

4. Update the partition matrix 𝑈(𝑙) =  𝜇𝑖𝑘
(𝑙)

 . 
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 𝜇𝑖𝑘
(𝑙)

=   
1

 (𝑑𝑖𝑘 /𝑛
𝑗=1 𝑑𝑗𝑘 )1/(𝑚 −1)

              (2.39) 

 until  𝑈(𝑙)  −  𝑈(𝑙−1) < 𝜀 

2.4.2. Improved Fuzzy Clustering (IFC) 

IFC approach has been developed by Çelikyılmaz (2008). This proposed algorithm 

aims to transform membership values into powerful predictors to be used for 

approaches based on fuzzy functions. Therefore, while partitioning data, the 

relationship between input and output variables is considered in addition to the 

similarity based on distance measures in order to minimize the modeling error of 

fuzzy functions.  

The prediction power of membership values are tried to be increased by using a 

function called interim fuzzy function, which is constructed to estimate output 

variable by using only membership values and their transformations. LSE and SVM 

methods are proposed to be used for construction of interim fuzzy functions 

(Çelikyılmaz, 2008). The squared error between the predicted output of interim 

fuzzy functions, 𝑓(𝝉𝑖𝑘 ), and actual output, 𝑦𝑘 , is considered as additional similarity 

measure and added to the objective function of the FCM clustering algorithm as 

given below:   

𝐽𝑚
𝐼𝐹𝐶 =   𝜇𝑖𝑘

𝑚𝑁
𝑘=1

𝑛
𝑖=1  𝒙𝒌 − 𝒗𝑖 

2 +   𝜇𝑖𝑘
𝑚𝑁

𝑘=1
𝑛
𝑖=1 (𝑦𝑘 − 𝑓(𝝉𝑖𝑘 ))2 ,         (2.40) 

where 𝝉𝑖𝑘  is the row vector composed of the membership value of the kth 

observation for the ith cluster and its transformations. Improved membership values 

are calculated by minimizing this objective function under the same constraints with 

FCM. 
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By the use of proposed objective function, it is aimed both to calculate membership 

values that are good predictors to be used for local fuzzy functions and to ensure 

proper partitioning of data according to distance similarity measure (Çelikyılmaz, 

2008). 

The algorithm of IFC is very similar to the FCM algorithm. In the IFC algorithm, the 

initial partition matrix is calculated using the FCM or any other clustering algorithm. 

Then, the cluster centers are computed using the same equation in the second step 

of the FCM algorithm. In the IFC algorithm, the distance function is changed to 

include squared error term between actual output and predicted output value as 

below: 

𝑑𝑖𝑘
𝐼𝐹𝐶 =   𝒙𝒌 − 𝒗𝒊 

2 + (𝑦𝑘 − 𝑓(𝝉𝑖𝑘 ))2 .             (2.41) 

 

Thus, the membership values, 𝜇𝑖𝑘 ,  

𝜇𝑖𝑘 =   
𝑑𝑖𝑘

𝐼𝐹𝐶

𝑑𝑗𝑘
𝐼𝐹𝐶  

1/(1−𝑚)

=𝑛
𝑗=1    

𝑑𝑖𝑘
𝐹𝐶𝑀 +(𝑦𝑘−𝑓(𝝉𝑖𝑘 ))2

𝑑𝑗𝑘
𝐹𝐶𝑀 +(𝑦𝑘−𝑓(𝝉𝑖𝑘 ))2 

1/(1−𝑚)
𝑛
𝑗 =1 ,        (2.42) 

are calculated using the distances calculated in Equation (2.41). 

To the IFC algorithm for classification problems, the procedure is the same except 

that the interim fuzzy functions are constructed by using a classifier function instead 

of a regression function. When Logistic Regression (LR) is used, the distance 

function becomes 

 𝑑𝑖𝑘
𝐼𝐹𝐶 =   𝒙𝒌 − 𝒗𝒊 

2 + (𝑦𝑘 − 𝑝 𝑖𝑘 𝑦𝑘 = 1 𝝉𝑖𝑘  )2 ,              (2.43) 

𝑑𝑖𝑘
𝐹𝐶𝑀  
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where 𝑝 𝑖𝑘 𝑦𝑘 = 1 𝝉𝑖𝑘   denotes the posterior probability of the kth observation for 

a given 𝝉𝑖𝑘  vector, which is composed of membership value of the kth observation 

for the ith cluster and its transformations. 

LR, SVM and NN are proposed to be used as a classifier for constructing interim 

fuzzy functions for classification problems (Çelikyılmaz, 2008). 

Çelikyılmaz (2008) compares the results of the FCM and IFC algorithms using an 

artificial data set. The prediction power of membership values calculated by the 

FCM and IFC algorithms are compared by evaluating the significance of fuzzy 

functions, which are constructed by these membership values and their log-odds 

transformations, using F-value and p-value measures. The comparison results 

indicate that membership values calculated by the IFC algorithm are better 

predictors of the output variable than the membership values calculated by the 

standard FCM algorithm.  

2.4.3. Validity Indices 

Before the application of a clustering algorithm, initial parameters such as degree of 

fuzziness, the number of clusters, must be determined. Several validity indices are 

proposed to be used for the determination of optimum parameter values in the 

literature. Some of the widely used validity indices are given in the handbook of 

Fuzzy Clustering and Data Analysis Toolbox of MATLAB for N number of 

observations, which are listed in Table 2.3. Since none of the indices is reliable only 

by itself, the handbook proposes to choose optimum parameter value by evaluating 

several validity indices. 
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Table 2.3: Validity Indices 

Validity Index Equation Objective 

Partition Coefficient (PC) 
1

𝑁
  𝜇𝑖𝑗

2

𝑁

𝑗 =1

𝑛

𝑖=1

 Max 

Classification Entropy (CE) −
1

𝑁
  𝜇𝑖𝑗 𝑙𝑜𝑔⁡(

𝑁

𝑗 =1

𝑛

𝑖=1

𝜇𝑖𝑗 ) Min 

Partition Index (SC)  
 𝜇𝑖𝑗

𝑚 𝑥𝑗 − 𝑣𝑖 
2𝑁

𝑗 =1

𝑁   𝑣𝑘 − 𝑣𝑖 2𝑛
𝑘=1

𝑛

𝑖=1

 Min 

Separation Index (S) 
  𝜇𝑖𝑗

2  𝑥𝑗 − 𝑣𝑖 
2𝑁

𝑗 =1
𝑛
𝑖=1

𝑁 𝑚𝑖𝑛
𝑖,𝑘

 𝑣𝑘 − 𝑣𝑖 2
 Min 

Xie and Beni’s Index (XB) 
  𝜇𝑖𝑗

𝑚 𝑥𝑗 − 𝑣𝑖 
2𝑁

𝑗 =1
𝑛
𝑖=1

𝑁 𝑚𝑖𝑛
𝑖,𝑗

 𝑥𝑗 − 𝑣𝑖 
2  Min 

Dunn’s Index (DI) 𝑚𝑖𝑛
𝑖∈𝑐

 𝑚𝑖𝑛
𝑗∈𝑐,𝑖≠𝑗

 

𝑚𝑖𝑛
𝑥∈𝐶𝑖 ,𝑦∈𝐶𝑗

𝑑(𝑥, 𝑦)

𝑚𝑎𝑥
𝑘∈𝑐

{𝑚𝑎𝑥
𝑥,𝑦∈𝐶

𝑑(𝑥, 𝑦)}
   Max 

Alternative Dunn’s Index 

(ADI) 
𝑚𝑖𝑛
𝑖∈𝑐

 𝑚𝑖𝑛
𝑗∈𝑐,𝑖≠𝑗

 

𝑚𝑖𝑛
𝑥𝑖∈𝐶𝑖 ,𝑥𝑗∈𝐶𝑗

 𝑑 𝑦, 𝑣𝑗  − 𝑑(𝑥𝑖 , 𝑣𝑗 ) 

𝑚𝑎𝑥
𝑘∈𝑐

{𝑚𝑎𝑥
𝑥,𝑦∈𝐶

𝑑(𝑥, 𝑦)}
   Max 
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CHAPTER 3 

DESCRIPTIONS OF DATA SETS USED IN THE FUZZY 

CLASSIFICATION APPLICATIONS 

In this study, three different data sets named as customer satisfaction, casting and 

ionosphere data sets are selected to be used in fuzzy classification applications. 

Descriptions of  these data sets are presented in the following sections.  

3.1. Customer Satisfaction Data Set 

One of the data sets that we use for fuzzy classification applications is the customer 

satisfaction data set, which is a real life data set from the field of quality 

improvement. This data set was collected by Çabuk (2008), which included 

information about satisfaction levels of customers from a driver seat of a particular 

vehicle. The data set was preprocessed and then analyzed in the study of Çabuk 

(2008).  For the purpose of improving the design of the driver seat, a “customer 

satisfaction classification model” was built using LR to predict how much a 

particular customer is likely to be satisfied with the driver seat.  

In collecting the data, a survey was applied on 80 customers from predetermined 

customer segments. Customer segments used in the survey were determined by 

considering survey results conducted in 2006 by marketing department of the 

company, experts’ advice, information from the after sale service of the company 

and studies about anthropometric measurements in literature (Çabuk, 2008). Since 

it was important to observe customers while using the vehicle, the survey was     

applied on the customers using the same seat from a particular vehicle in a selling 
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and service center with a high operation volume, where customers come to buy a 

vehicle or to use advantages of service opportunities (Çabuk, 2008). The survey 

includes questions about the satisfaction levels of customers from the driver seat, 

demographic features, vehicle usage and anthropometric measurements. 

In the study, overall satisfaction grade of customers was used as the dependent 

variable of the model. It was initially measured on a Likert scale with 7 levels, which 

can be seen in Table 3.1.  

 

 

Table 3.1: Scale for Overall Satisfaction Grade 

Very Bad Bad 
Somewhat 

Bad Neutral 
Somewhat 

Good Good Very Good 

1 2 3 4 5 6 7 

 

 

In the data preprocessing stage of the study, these seven levels were converted to 

two levels because of zero or low frequencies of levels 1, 2, 3 and 5, as seen from 

Figure 3.1. As a result of this conversion, somewhat bad, neutral and somewhat 

good levels were represented by “somewhat satisfied”; and good and very good 

levels were represented by “highly satisfied” as it is seen from Table 3.2. 

 

 

Table 3.2: Previous and New Levels for Overall Satisfaction Grade 

Previous Levels New Levels Explanation 

1,2 Removed No one selected 

3,4,5 1 Somewhat satisfied 

6,7 2 Highly satisfied 
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Figure 3.1: Frequency of the Answers 

 

 

Finally, nine significant variables were determined as a result of a factor analysis 

followed by the stepwise procedure of LR (Çabuk, 2008). In our study, we have used 

these variables in developing the classification models.  

The dependent variable of the data set, overall satisfaction level of a customer, is 

measured using linguistic terms such as “good” and “bad”. Because of this 

qualitative assessment, which may vary from person to person, fuzzy type of 

uncertainty is supposed to exist in the data. Fuzziness resulted from the data 

involving human judgments leads us to use fuzzy classification approaches to build a 

classification model for this data set as well. 
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3.2. Casting Data Set 

Casting data set is also a real life data set provided by a manufacturing company 

from the metal casting industry, which was studied by Bakır (2007). The study aims 

to improve the quality of a product by determining the influential process variables 

that can cause defects and to optimize them by modeling the relationship between 

process variables and defect types in order to reduce the percentage of defective 

items. In the study, the data for a particular product, the cylinder head, was studied, 

which is seen as an important part because of its effect on the performance of 

another part, the internal combustion engine. After preprocessing of data, 36 

process variables and 7 quality variables including continuous variables such as 

frequencies of total defective items or frequencies of defective items having certain 

defect types in a batch and binary variables such as existence of defective items or 

existence of defective items having certain defect types in a batch, for 92 cases 

chosen to form basic data set. In our study, we use the existence of nitrogen gas 

cavity defect types in a batch as dependent variable. 

The process variables were taken as the average of the values measured in the day 

the observations are taken. Thus, the upper and lower values of the chosen value 

are also possible values for that process variable. Since, the chosen values of 

process variables are not the only possible value and since the possible values can 

take numerous values around this value, the fuzzy type of uncertainty is supposed 

to exist in the data. In addition, defective items are determined by a personal 

judgment in inspection process, which brings additional fuzzy type of uncertainty. 

For that reason, fuzzy classification methods are considered to be used for modeling 

the relationship between process variables and existence of defect types in a batch.  

Since the usage of high number of independent variables in fuzzy methods causes 

some shortcomings  such as increasing spreads for estimated outputs (Nasrabadi 
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and Nasrabadi, 2004) , collinearity  between variables and increase in calculation 

time (Wang and Tsaur, 2000),  36 process variables are decided to be reduced by 

using a variable selection procedure. However, the variable selection procedures 

developed for fuzzy methods is very limited in number and they are proposed for 

only specific fuzzy methods. Moreover, the data set is used for FCF and NIFCF 

methods, which employs conventional statistical methods after adding membership 

values as new independent variables to the model. Hence, variable selection 

procedure of a statistical method, LR is decided to be used for the selection of 

significant variables. By using LR forward stepwise procedure of SPSS 9.0 with 0.15 

entrance and 0.20 removal levels, 36 process variables are reduced to eight process 

variables. One can refer to Appendix A.1. for the implementation details of the 

selection procedure applied.  

3.3. Ionosphere Data Set 

Ionosphere data set from the area of physical sciences is taken from the UCI 

Machine Learning Data Repository web-site. Our desire to increase the reliability of 

the performance tests conducted for our developed NIFCF method leads us to use 

an additional data set from a different field. This data set aims to classify the radar 

returns from the ionosphere as either “good” or “bad”. Since the levels “good” and 

“bad” are the qualitative terms expressing human judgments, the data is thought to 

include fuzzy type of uncertainty as it is the case in customer satisfaction data.  

The data is composed of 34 continuous independent variables and a binary 

dependent variable with an observation number of 351. Because of the same 

reasons mentioned in Section 3.2, 34 independent variables are reduced to 14 

independent significant variables by using LR forward stepwise procedure of SPSS 

9.0 with 0.15 entrance and 0.20 removal levels. The SPSS 9.0 output is given in 

Appendix A.2. 
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After variable selection procedure is carried out, all data sets described above are 

partitioned using a 3-fold and 3-replicate cross validation method in order to 

compare the performances of the methods applied in this study. According to this 

approach, the data is randomly (with stratification) divided into three parts three 

different times (replicates). For each replicate, classification models are developed, 

each time using two different parts (folds) of the data, and the models are tested on 

the third part using several classification measures. 
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CHAPTER 4 

TANAKA BASED FUZZY CLASSIFICATION MODELS FOR 

CUSTOMER SATISFACTION DATA 

In this chapter, we propose three alternative approaches for building classification 

models for the customer satisfaction survey data, based on Tanaka’s FLR approach. 

4.1. Alternative Approaches 

As stated in Section 2.3.2.1, Tanaka’s FLR approach is used for the prediction 

problems having fuzzy type of uncertainty. Thus, it is not appropriate to use this 

method directly for classification problems, which include discrete dependent 

variables. We show on a case problem that this widely used fuzzy regression 

approach can be used for classification purposes after the discrete dependent 

variable is converted into an equivalent continuous fuzzy variable. 

The extensive literature on this subject shows that uncertainty imbedded in data 

can be interpreted in several ways and reflected in models via different ways as 

stated in Chapter 1. Three alternative approaches are developed by considering 

different types of uncertainties in data and interpreting and reflecting these 

uncertainties in data in different ways (Özer et al., 2009). These approaches are 

used for building classification models based on the customer satisfaction data set 

as explained in detail in Section 3.1 in order to predict the general satisfaction level 

of a particular customer. Based on this information, it is aimed to determine the 

factors that affect satisfaction levels of customers and as a result to improve the 

design of the driver seat to increase the general satisfaction levels of customers. 
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In order to compare the alternative methods developed, a 3-fold and 3-replicate 

cross validation approach is used. Then, some classification performance measures 

are calculated using the observed dependent variables and midpoints of predicted 

dependent variables of testing data sets, since the  midpoints of symmetrical fuzzy 

triangular numbers are the points that best represent the given fuzzy interval 

(Wang and Tsaur, 2000). 

4.1.1. Alternative 1 – Fuzzy Classification Model Based 

on The Dependent Variable with 7 Levels 

This alternative approach proposes to apply Tanaka’s FLR method using the overall 

satisfaction grade based on seven levels as the fuzzy dependent variable.  

In this approach, we assume that the uncertainty comes from fuzziness. Since the 

overall satisfaction grade depends on human perception, there exists a fuzzy type of 

uncertainty (Zadeh, 2000). For example, while a person expresses his/her 

satisfaction for the driver seat as “somewhat good”, another person having exactly 

the same sensation and experience from the seat, who is more perfectionist and 

demanding, can express his/her satisfaction as “neutral”. Hence, the dependent 

variable can be considered as a fuzzy one. 

As stated in Section 3.1, overall satisfaction grades expressed in linguistic terms 

such as “very bad” and “good” are represented by a numeric scale from one to 

seven. In this method, this discrete numeric scale is converted to a continuous 

scale, on which membership functions of overall satisfaction grades are 

constructed. It can be considered as reasonable because, a person, who chooses an 

expression indicating her/his overall satisfaction level, may be undecided between 

its former or latter levels and chooses the level which expresses her/his feelings 

best. However, if s/he were given an additional level between the levels s/he is 
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undecided about, s/he would choose that one. For example, a person, who is 

undecided whether to express her/his overall satisfaction level with “somewhat 

good” or “good”, can choose overall satisfaction the level, “somewhat good”. 

However, this person may have neither “somewhat good” nor “good” satisfaction 

level. S/he may, instead, have a satisfaction level in between them, but s/he must 

choose one of these qualitative discrete levels, because s/he is asked to do so. If 

s/he were allowed to express her/his satisfaction grade with a continuous numeric 

scale from one to seven, s/he might express his/her overall satisfaction level by 5.5, 

which is between the  “somewhat good” and “good” levels represented by five and 

six, respectively. As can be seen, oversimplification of data by the use of linguistic 

terms can cause some information loss and this loss can be compensated by the use 

of fuzzy membership functions (Chang and Ayyub, 2001). Thus, the membership 

functions of these satisfaction grades composed of linguistic terms are constructed 

on a continuous numeric scale from one to seven (see Figure 4.1).  

 

 

 

Figure 4.1: Membership Function of the Dependent Variable Measured Using 7 

Levels 
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As can be seen from Figure 4.1, the membership function of an overall satisfaction 

level except for “very bad” and “very good” is symmetrical triangular fuzzy number 

bounded by its former and latter levels. However, membership functions 

representing “very good” and “very bad” levels are not symmetrical triangular fuzzy 

numbers, which is a requirement of Tanaka’s FLR method. Since the frequency of 

“very bad”  level is zero and the frequency of “very good” level is low, they are also 

thought of as symmetrical triangular fuzzy numbers with spread one and the same 

LP model is used in order to overcome this problem without making it more 

complicated. 

Since the discrete numerical scale used for representing qualitative overall 

satisfaction levels are converted to a continuous scale, the Tanaka’s FLR method can 

be used for building a classification model for the customer satisfaction data, which 

is given in Section 2.3.2.1.  

Finally, the predicted class is determined for each observation by using the 

midpoint of the fuzzy predicted value obtained from the fuzzy linear regression 

model. The predicted overall satisfaction level is determined as the level, which has 

the highest membership value for the midpoint of the predicted continuous 

dependent variable. For example, an observation for which the midpoint of the 

predicted continuous dependent variable is 6.3 should be classified as “good” since 

its membership value for the level “good” is the greatest among the others. Thus, 

1.5 and lower predicted values are expressed by “very bad” level, values between 

1.5 and 2.5 are expressed by “bad” level, values between 2.5 and 3.5 are expressed 

by “somewhat bad” level and so on.  

In order to be able to compare this classification model with the other classification 

models explained in the following sections, the predicted classes are converted to 

two levels, since the other models are based on a binary dependent variable. For 

this conversion, “very bad”, “bad”, “somewhat bad”, “neutral” and “somewhat 
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good” overall satisfaction levels are represented by “somewhat satisfied” and 

“good” and “very good” overall satisfaction levels are represented by “highly 

satisfied”, which is consistent with the conversion explained in Section 3.1. 

4.1.2. Alternative 2 – Fuzzy Classification Model Based 

on Logistic Regression 

This alternative approach proposes to apply Tanaka’s FLR method using the 

posterior probabilities obtained from Logistic Regression (LR) as crisp dependent 

variables. 

In this approach, we assume that the uncertainty comes from both fuzziness and 

randomness. As stated in the previous section, the fuzzy type of uncertainty 

imbedded in the customer satisfaction data set is resulted from the linguistic terms 

reflecting human judgments. In addition to fuzziness, another type of uncertainty, 

randomness is supposed to exist in the data since there can be factors that 

randomly vary in the process, which have some influences on the overall 

satisfaction level of the customer. For example, a person, who has skeletal 

problems such as hunchback or neck hernia, may have a low level of overall 

satisfaction, while another person having exactly the same demographic features, 

vehicle usage and anthropometric measurements but healthy skeletal structure 

may express her/his satisfaction level with “very good”.  

In order to take these types of uncertainties resulted from randomness into 

consideration, we benefit from the methods of probability theory. Hence, Tanaka’s 

FLR approach is used to model the frequencies of customers choosing the level 

“highly satisfied” instead of modeling directly overall satisfaction levels as in 

Alternative 1, which is expected to capture the effect of randomness. While, 

frequencies are modeled by maximum likelihood estimation method in LR, which is 
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a statistical method that depends on probability theory, this approach proposes to 

model frequencies by using a fuzzy regression method that depends on the 

possibility theory. Since our classification approach cannot handle repetitive 

measures, the frequencies of customers who choose the level “highly satisfied” are 

estimated by the posterior probabilities obtained from LR. After obtaining the 

posterior probabilities, Tanaka’s FLR method is applied using them as crisp 

dependent variable values. The LP model is as shown below: 

Min   𝐽 =    𝑐𝑗
𝑀
𝑗 =0  𝑥𝑖𝑗  

𝑁
𝑖=1                  (4.1) 

s.t.    

  𝑚𝑗
𝑀
𝑗 =0 𝑥𝑖𝑗 +  1 − 𝐻  𝑐𝑗

𝑀
𝑗 =0  𝑥𝑖𝑗  ≥ 𝑝 𝑖 𝑦𝑖 = 1|𝐱𝐢    for  𝑖 = 1, … , 𝑁          (4.2) 

          𝑚𝑗
𝑀
𝑗 =0 𝑥𝑖𝑗 −  1 − 𝐻  𝑐𝑗

𝑀
𝑗=0  𝑥𝑖𝑗  ≤ 𝑝 𝑖 𝑦𝑖 = 1|𝐱𝐢    for  𝑖 = 1, … , 𝑁          (4.3) 

         𝑐𝑗 ≥ 0,  𝑚𝑗  free                 for 𝑗 = 0, … , 𝑀           (4.4) 

where the variable 

 𝑝 𝑖 𝑦𝑖 = 1|𝐱𝐢 : LR estimate for the probability that the ith customer is highly 

satisfied with the driver seat for the given input vector, 𝐱𝐢, about him/her.    

As a result, while the fuzzy uncertainty in the data is reflected in the model with 

fuzzy regression coefficients, the uncertainty resulted from randomness is reflected 

by the use of posterior probabilities.  

In this alternative, two classes, “highly satisfied” and “somewhat satisfied”, are used 

for both of the training and testing data sets. The predicted classes are determined 

by using the midpoints of the predicted fuzzy dependent variable values. If the 

midpoint of the prediction is greater than 0.5, then the observation is classified as 

“highly satisfied”, otherwise as “somewhat satisfied”.  
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4.1.3. Alternative 3 - Fuzzy Classification Model Based 

on FCM 

This alternative proposes to apply Tanaka’s FLR method using the membership 

values obtained from FCM clustering algorithm as crisp dependent variables. 

In this approach, we assume that the uncertainty comes from both fuzziness and 

randomness as in Alternative 2. It evaluates the type of uncertainty in the data in a 

way that is similar to Alternative 2, in which, fuzzy uncertainty is considered to be 

resulted from the human judgments and randomness is resulted from the factors 

randomly varying in the process. Recall that Alternative 2 proposes to apply 

Tanaka’s FLR approach using the posterior probabilities obtained from LR in order 

to cope with these uncertainties. However, it may be inappropriate to use these 

posterior probabilities directly as dependent variable values in Tanaka’s FLR 

method. Since these posterior probabilities are estimated using maximum 

likelihood estimation, they may not be as accurate and precise as estimates 

obtained directly from a large number of repetitive observations at the same levels 

of independent variables. Hence, we think that this imprecision brings additional 

uncertainty to the data, which should be handled. Although one may choose to 

handle it using probability theory (distribution of the estimation error), we treat it 

as a fuzzy type of uncertainty. 

For this purpose, an approach similar to that of Bolotin (2006) is adopted. Fuzziness 

in data is captured by membership values replacing the indicator variables in the 

study of Bolotin (2005). Similarly, we propose to use membership values of 

posterior probabilities obtained from LR as crisp dependent variable values in 

Tanaka’s FLR method. So, this alternative can be seen as the mixture of two 

methods, Tanaka’s FLR method and Bolotin’s method. While Bolotin’s method uses 

the least squares regression to estimate the membership values of indicator 
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variables, our approach uses Tanaka’s FLR method. The membership values of 

posterior probabilities for “somewhat satisfied” and “highly satisfied” levels are 

determined by using the FCM algorithm. In applying the FCM algorithm, number of 

clusters is taken as 2, which are assumed to represent “highly satisfied” and 

“somewhat satisfied” levels, and degrees of fuzziness are determined by using 

several validity measures such as separation index, Xie-Beni index and so on (see 

Section 2.4.3). As a result of the application of the FCM algorithm, the membership 

functions of “somewhat satisfied” and “highly satisfied” levels are obtained, which 

looks similar to Figure 4.2.  

 

 

 

Figure 4.2: Membership functions of “somewhat satisfied” and “highly satisfied” 

levels 

 

 

 Then, Tanaka’s FLR method is applied using the membership values of “highly 

satisfied” level as dependent variable values, since the membership values of 

“highly satisfied” and “somewhat satisfied” levels sum up to one. Hence, in this 
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alternative, possibility of overall satisfaction is tried to be modeled rather than the 

probability of satisfaction as in Alternative 2. The LP model of this approach is given 

below: 

Min  𝐽 =    𝑐𝑗
𝑀
𝑗=0  𝑥𝑖𝑗  

𝑁
𝑖=1                  (4.5) 

s.t.  

  𝑚𝑗
𝑀
𝑗=0 𝑥𝑖𝑗 +  1 − 𝐻  𝑐𝑗

𝑀
𝑗 =0  𝑥𝑖𝑗  ≥ 𝜇 𝑝 𝑖 𝑦𝑖 = 1|𝐱𝐢     for 𝑖 = 1, … , 𝑁         (4.6) 

       𝑚𝑗
𝑀
𝑗=0 𝑥𝑖𝑗 −  1 − 𝐻  𝑐𝑗

𝑀
𝑗=0  𝑥𝑖𝑗  ≤ 𝜇 𝑝 𝑖 𝑦𝑖 = 1|𝐱𝐢    for 𝑖 = 1, … , 𝑁         (4.7) 

       𝑐𝑗 ≥ 0,  mj free       for 𝑗 = 0, … , 𝑀        (4.8) 

where the variable 

𝜇 𝑝 𝑖 𝑦𝑖 = 1|𝐱𝐢  : membership value of the posterior probability 𝑝 𝑖 𝑦𝑖 =

1|𝐱𝐢  obtained from LR for the ith observation.  

Finally, the predicted membership values are obtained as fuzzy numbers with 

midpoints and spreads. If the midpoint is greater than 0.5, the observation is 

classified as “highly satisfied”, otherwise as “somewhat satisfied”. As can be seen, in 

this alternative, we classify the observations according to membership values rather 

than probabilities.  

4.2. Discussion and Performance Analysis 

Three alternatives described in the previous sections approach the classification 

problem from different ways by considering the types of uncertainties and 

interpreting them in the data in alternative ways. While in Alternative 1, the 

uncertainty is assumed to be resulted from fuzziness, other alternatives consider 

the type of uncertainties in the data as both fuzziness and randomness as stated in 
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previous sections. When we compare Alternative 1 with the other alternatives, 

Alternatives 2 and 3 are expected to outperform Alternative 1, since they also take 

the other dimension of uncertainty, randomness, into account, which is included in 

the data inherently as fuzziness. 

Alternatives 2 and 3 are similar approaches, but Alternative 3 takes into account the 

fuzziness, which is brought by the imprecision resulted from the use of estimated 

frequencies in the model, in addition to other types of uncertainties that are 

common with those of Alternative 2. Since Alternative 3 copes with all the 

uncertainties in the data, better results can be expected from Alternative 3. 

However, when we look at the posterior probabilities obtained from LR and 

membership values calculated by the FCM algorithm, we see that they are very 

close to each other, which is considered as expected, since membership values take 

values between zero and one as probabilities and their values are expected to 

increase with the increase in probabilities. So, there may not be any significant 

difference between the performances of Alternative 2 and Alternative 3. 

All LP models are coded in MATLAB 7.3.0 using functions from its optimization 

toolbox. The midpoints and spreads of fuzzy regression coefficients are calculated 

for each training data set at H=0.1 target degree of belief.  H level is determined as 

0.1 according to the sufficiency of the customer satisfaction survey data. Recall that  

if the data set collected is sufficiently large, H level should be determined as 0 and it 

should be increased with the decreasing volume of the data set (Tanaka and 

Watada, 1988 as cited in Wang and Tsaur, 2000). Since 80 observations exist for 9 

selected independent variables, the volume of data set can be seen as almost 

sufficient. Thus, a small value for H level is decided to be selected. In fact, as 

mentioned in Section 2.3.2.1, midpoints, which are used for the determination of 

predicted classes, are not affected by the H value. However,  spread values increase 

with the increase in H value (Tanaka and Watada, 1988 as cited in Kim, Moskowitz 
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and Köksalan, 1996). The spread values increase by inversely proportional to (1-H) 

value. By determining 0.1 target degree of belief, it is expected to have smaller 

spreads with respect to the solutions obtained using larger target degree of belief 

values.  

The performances of these alternative approaches are tested using several 

classification performance measures such as MCR, KAPPA and AUC for each testing 

data set. (see Section 2.2.2). The average values of the classification performance 

measures for the nine testing data sets can be seen in Table 4.1.  

 

Table 4.1: Average Classification Measures of the Alternative Approaches 

Measure (Avg.) Alternative 1 Alternative 2 Alternative 3 

MCR 0.3804 0.2094 0.2179 

PCC 0.6196 0.7906 0.7821 

KAPPA 0.6002 0.7819 0.7717 

Precision 0.4444 0.6844 0.6572 

Recall 0.8750 0.5972 0.6667 

Specificity 0.5062 0.8765 0.8333 

F0.5 0.4918 0.6567 0.6505 

F1 0.5866 0.6264 0.6489 

F2 0.7296 0.6062 0.6564 

Log-Odds Ratio 1.7141 2.3521 2.3333 

Stability 0.0022 0.0471 0.0480 

AUC 0.6772 0.7255 0.7368 
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It can be seen from Table 4.1 that the average application results of Alternatives 2 

and 3 are very similar to each other and they outperform Alternative 1 according to 

many of the performance measures such as MCR, PCC, AUC, KAPPA and precision, 

as expected.  

These 3 alternatives are statistically compared by using one-way ANOVA in order to 

see whether there is a statistically significant difference between these alternatives 

using Minitab 15. Firstly, residual plots are controlled to check the assumptions of 

ANOVA. For the performance measures that the assumptions of ANOVA are not 

satisfied, logarithmic transformations of them are used. The one-way ANOVA 

results for each classification measure can be seen in Table 4.2, where DF, SS, MS, F 

and P stand for degrees of freedom, sum of squared error, mean squared error, F 

value and P value, respectively. 

Since the sum of MCR ad PCC is one as indicated in Section 2.2.2, MCR and PCC 

performance measures result in same ANOVA results. As can be seen from Table 

4.2, three alternative approaches significantly differ from each other with respect to 

the measures MCR, PCC, KAPPA, precision, recall, specificity and F0.5 at the 

significance level of α=0.01.  
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Table 4.2: One-Way ANOVA Results for Each Classification Measure 

Measure Source DF SS MS F P 

MCR, PCC 

Method 2 0.1670 0.0835 21.4700 0.0000 

Error 24 0.0934 0.0039 
  

Total 26 0.2603 
   

 

KAPPA 

Method 2 0.1876 0.0938 22.2100 0.0000 

Error 24 0.1014 0.0042 

  Total 26 0.2890       

Precision 

Method 2 5.9872 2.9936 12.6800 0.0000 

Error 24 5.6645 0.2360 

  Total 26 11.6517       

Recall 

Method 2 11.3336 5.6668 6.2300 0.0070 

Error 24 21.8334 0.9097 

  Total 26 33.1670       

Specificity 

Method 2 0.7382 0.3691 54.7300 0.0000 

Error 24 0.1618 0.0067 

  Total 26 0.9000       

F0.5 

Method 2 2.9624 1.4812 8.6000 0.0020 

Error 24 4.1315 0.1721 

  Total 26 7.0939       

F1 

Method 2 0.3925 0.1963 0.9100 0.4140 

Error 24 5.1484 0.2145 

  Total 26 5.5409       

F2 

Method 2 1.0170 0.5085 1.0400 0.3690 

Error 24 11.7527 0.4897 

  Total 26 12.7696       

Log-Odds Ratio 

Method 2 0.1780 0.0890 0.0500 0.9540 

Error 24 45.5080 1.8960 

  Total 26 45.6860       

Stability 

Method 2 0.0124 0.0062 1.7900 0.1880 

Error 24 0.0827 0.0034 

  Total 26 0.0951       

AUC 

Method 2 0.0181 0.0090 1.6800 0.2070 

Error 24 0.1288 0.0054 

  Total 26 0.1469       
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A multiple comparison analysis is applied in order to see which alternative method 

performs better than the others. The alternative approaches are compared using 

Tukey’s multiple comparison test. The test is conducted using “ANOVA with General 

Linear Model (GLM)” tool of Minitab 15 with the family error rate of 0.05. The p-

values of Tukey’s multiple comparison test for the classification measures MCR, 

PCC, KAPPA, precision, recall, specificity, F0.5 and AUC, in which methods 

significantly differ, are given in Table 4.3. Notations, “>” and “<” indicate that the 

method in the column list shows higher and lower performance than the method in 

the row list, respectively. 

 

 

Table 4.3: p-values of Tukey’s Multiple Comparison Test 

Measures 

Alternative 

Approaches Alt 2 Alt 3 

MCR, PCC 
Alt 1 0.0000 (>) 0.0000 (>) 

Alt 2 

 

0.9547 

KAPPA 
Alt 1 0.0000 (>) 0.0000 (>) 

Alt 2 

 

0.9416 

Precision 
Alt 1 0.0003 (>) 0.0015 (>) 

Alt 2 

 

0.7929 

Recall 
Alt 1 0.0077 (<) 0.0329 (<) 

Alt 2 

 

0.8046 

Specificity 
Alt 1 0.0000 (>) 0.0000 (>) 

Alt 2 

 

0.5138 

F0.5 
Alt 1 0.0029 (>) 0.0059 (>) 

Alt 2   0.9522 

 

 

According to Table 4.3, Alternatives 2 and 3 significantly outperform Alternative 1 

according to measures MCR, PCC, KAPPA, precision, specificity and F0.5. The only 

measure that Alternative 1 has better performance than the others is recall, which 

measures the proportion of the customers highly satisfied with the driver seat, 
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which are correctly identified. However, it can be neglected since Alternatives 2 and 

3 give significantly better performance results than Alternative 1 according to 

F1measure, which weights precision twice as much as recall. As stated in Section 

2.1.2, when there is a tradeoff between recall and precision as in this case, F 

measure gives more valuable information about test’s accuracy, since it considers 

both recall and precision by calculating their weighted harmonic mean. 

However, there is not any statistically significant difference found between 

Alternatives 2 and 3, as expected. The use of membership values obtained by the 

FCM algorithm in Alternative 3 rather than probabilities as in Alternative 2 does not 

bring any significant improvement to the classification performance. It may be 

because of that the use of membership values in order to cope with the additional 

fuzziness resulted from the use of posterior probabilities predicted by LR may not 

be necessary, since the fuzziness included in posterior probabilities might be 

negligible. In other words, Tanaka’s FLR approach can be sufficient on its own to 

overcome both types of fuzzy uncertainties in the data and the additional 

operations may not be needed to cope with fuzzy uncertainties. 

According to Hojati et al. (2005), the fuzzy number spreads should be both narrow 

enough for the ease of use and wide enough to contain maximum number of 

observations. Thus, Alternatives 2 and 3 are also decided to be compared using 

their spread values in addition to the classification performance measures 

mentioned above, according to which they do not differ significantly. As it is seen 

from the LP models used for Tanaka’s FLR analysis given in Section 2.3.2.1, the 

objective is to decrease total fuzziness, which is described by sum of half widths of 

the predicted fuzzy intervals or sum of half widths of the fuzzy regression 

coefficients while giving fuzzy intervals wide enough to contain all of the 

observations. Thus, in order to evaluate the spread values of the alternatives, we 

use the sum of half widths of the predicted fuzzy intervals and sum of half widths of 
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the fuzzy regression coefficients as stated in the study of Hojati et al. (2005). The 

average values of these measures for nine testing data sets are given in Table 4.4.   

 

 

Table 4.4:  Total Fuzziness Measures of Alternative 2 and Alternative 3 

Measures  Alt 2 Alt 3 

Sum of half-widths of the fuzzy predicted intervals 5.5 17.20 

Sum of half-widths of the fuzzy regression coefficients 0.48 0.78 

 

 

As it is seen from Table 4.4, Alternative 2 gives FLR models that have less total 

fuzziness than Alternative 3. In other words, Alternative 2 results in narrower 

spreads for both fuzzy predicted intervals and fuzzy regression coefficients as 

desired. Thus, it can be inferred that the use of membership values obtained by the 

FCM algorithm in Alternative 3 rather than probabilities as in Alternative 2 increases 

the total fuzziness of the model. As a result, it can be said that Alternative 2 has 

better performance than Alternative 3 according to the total fuzziness measures 

while its performance is very similar to Alternative 3 according to classification 

performance measures. 

These three alternative approaches developed for a particular case of building 

customer satisfaction classification models can also be used for other similar 

classification problems. In these problems, it is required that the independent 

variables are crisp and the dependent variable can be treated as a fuzzy one. For 

some classification problems, uncertainty in the dependent variable is only resulted 

from the use of linguistic terms, qualitative, and fuzzy data, and there is not any 

type of uncertainty resulted from the factors randomly varying in the process. For 
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these classification problems, Alternative 1 can be used after the proper conversion 

of crisp dependent variable to a continuous fuzzy dependent variable in a similar 

manner explained in the above case. However, in some cases, it may not be 

preferred to use the dependent variable as a fuzzy number, for example, when the 

observed dependent variable values are crisp numbers and they are not preferred 

to be fuzzified. In this case, the dependent variable can be treated as a crisp one the 

left and right hand side spreads of which are zero.  

In many cases, fuzzy and random types of uncertainties coexist in the data. Thus, 

both types of uncertainties, fuzziness and randomness, should be handled for 

proper modeling of these classification problems. Alternative 2 and Alternative 3 

propose an appropriate framework for these classification problems since they both 

utilize the tools of probability theory and fuzzy modeling approach, Tanaka’s FLR 

approach to handle both types of uncertainties imbedded in the data. For the cases 

in which frequencies of occurrence of an event are obtained directly from large 

numbers of repetitive observations at the same levels of the independent variables, 

Alternative 2 can be used without the use of LR. In this case, the frequencies are 

used as crisp dependent variable values and Tanaka’s method for crisp dependent 

variables is applied. However, when these frequencies do not exist, Alternative 2 

and Alternative 3 can be applied after predicting frequencies from LR. Alternative 3 

aims to handle the additional type of uncertainty resulted from the use of predicted 

probabilities, which is treated as fuzziness in our case. However, performance 

analysis results of these alternative approaches show that the use of Alternative 3 

to handle this additional fuzzy type of uncertainty does not bring any significant 

improvement for our case. However, in other cases Alternative 3 might be worth 

trying. 
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CHAPTER 5 

NONPARAMETRIC IMPROVED FUZZY CLASSIFIER 

FUNCTIONS 

In this chapter, a method, called Nonparametric Improved Fuzzy Classifier Function 

(NIFCF) is proposed. It presents an improvement of the IFCF approach. Its 

performance is compared with another fuzzy classification method, FCF and a 

statistical classification method, LR. 

5.1. Motivation 

As stated in Section 2.3.3.4, the IFCF method is the improved version of FCF 

method, which uses the IFC algorithm rather than the FCM algorithm. In the IFC 

clustering algorithm, the prediction power of the membership values are tried to be 

increased by adding the term,  squared deviation between  the actual output and 

the estimated output of the model constructed by using only the membership 

values and their transformations as input variables, to the objective function of the 

FCM algorithm.  

𝐽𝑚
𝐼𝐹𝐶 =   𝜇𝑖𝑘

𝑚𝑁
𝑘=1

𝑛
𝑖=1 𝑑𝑖𝑘

2 +   𝜇𝑖𝑘
𝑚𝑁

𝑘=1
𝑛
𝑖=1 (𝑦𝑘 − 𝑓(𝝉𝒊𝒌))2                    (5.1) 

where 

 𝜇𝑖𝑘  : membership value of the kth observation for the ith cluster, 

 𝑑𝑖𝑘  : distance value of the kth observation for the ith cluster, 
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 𝑦𝑘  : actual observed class of the kth observation, 

𝑓(𝝉𝒊𝒌): predicted value calculated for the kth observation and the ith cluster 

for a given input vector, 𝝉𝑖𝑘 , 

𝝉𝒊𝒌: row vector, the elements of which are the membership values of the kth 

observation for the ith cluster and their chosen transformations, 

m: the degree of fuzziness 

n: number of clusters 

N: number of observations 

Using an algorithm, this function is minimized to specify variables, 𝜇𝑖𝑘   subject to 

the constraints 

 𝜇𝑖𝑘 = 1𝑛
𝑖=1    

 0 <  𝜇𝑖𝑘 < 𝑁𝑁
𝑘=1  

𝜇𝑖𝑘 ∈ [0, 1] 

According to this algorithm explained in Section 2.4.2, in order to be able to 

partition data into clusters using the IFC algorithm, a model should be fitted at each 

iteration in a loop to calculate the distance values. If a model cannot be formed at 

any iteration of the loop, the algorithm is terminated and the data cannot be 

clustered. However, it may not always be possible to fit a model using a parametric 

classification method. A parametric method may not able to find a significant 

relationship between the response and predictor variables and so, fit a model, since 

the output variable is tried to be modeled by using only membership values and 

their transformations rather than actual predictors of the data in the clustering 

phase of IFC.  
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When we try to apply the IFC algorithm using LR as a classifier, we face with fitting 

problems at the clustering phase of the algorithm as mentioned above. After 

several trials of IFC application using different membership transformation 

matrices, number of clusters and degree of fuzziness levels, we can achieve 

clustering for a very limited number of training data sets.  In addition, the 

determination of optimized values of parameters by assessing the values of validity 

indices at different levels of parameters cannot be performed since the data cannot 

be clustered for each value of parameters. 

In order to overcome all of these fitting problems encountered, we propose to use a 

non-parametric method, MARS, in the clustering phase of the IFC method, which 

automates the model formation and selection of transformations of predictors as 

well as the selection of variables to find a best model fit. By the use of MARS, it is 

intended to achieve clustering of data for every level of parameters in order to be 

able to perform both selections of optimum model parameters and achieve the 

method application, which needs the outputs of the IFC clustering algorithm as 

input data. The clustering method, which proposes to use a nonparametric method, 

MARS, as a classifier, and the fuzzy classifier method, which proposes to use this 

method as a clustering algorithm are called Nonparametric Improved Fuzzy 

Clustering (NIFC) and Nonparametric Improved Fuzzy Classifier Function (NIFCF), 

respectively (Özer et al., 2009). 

5.2. The Method 

As a starting phase of the NIFCF algorithm, clustering should be performed using 

the NIFC clustering algorithm, the steps of which are given in detail below. 
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Steps of the NIFC algorithm: 

1. Set the initial parameters, 

 n     : number of clusters, 

 m   : degree of fuzziness, 

 ε     : termination constant, 

 nmax: maximum number of iterations. 

2. Standardize the data.  

3. Apply FCM algorithm to find initial membership values fi
(0) and cluster centers vi

(0) 

for the ith cluster. 

4. For each iteration 𝑡 = 1, … , 𝑛𝑚𝑎𝑥   

4.1. For each cluster 𝑖 = 1, … , 𝑛 

4.1.1. Construct interim fuzzy classifier function, 𝑓 𝝉𝒊𝒌 ,  using actual 

outputs, 𝑦𝑘  as dependent variables and membership values of the kth 

observation for the ith cluster, 𝑓𝑖𝑘
(𝑡−1)

 calculated from previous 

iteration, (t-1) as independent variables with a nonparametric 

method, MARS.  

4.1.2. For each observation 𝑘 = 1, … , 𝑁  

 4.1.2.1. Calculate squared error term 𝑆𝐸𝑖𝑘
(𝑡)

 using the interior fuzzy 

function calculated at step 3.1.1. 

𝑆𝐸𝑖𝑘
(𝑡)

=  𝑦𝑘 − 𝑓(𝝉𝒊𝒌) 2                               (5.2) 
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where 

   𝑦𝑘  : actual observed class of the kth observation, 

𝑓(𝝉𝒊𝒌): predicted value calculated for the kth observation and 

the ith cluster for a given input vector, 𝝉𝒊𝒌, 

𝝉𝒊𝒌: row vector the elements of which are the membership 

values of the kth observation for the ith cluster, 𝑓𝑖𝑘
(𝑡−1)

 

calculated from the previous stage, (t-1) and their 

transformations selected by MARS. 

  4.1.2.2. Calculate the distance values, 𝑑𝑖𝑘
(𝑡)

   

𝑑𝑖𝑘
(𝑡)

=  (𝒙𝒌, 𝑦𝑘) – 𝒗𝒊
(𝒕−𝟏)

(𝐗Y) 2 + 𝑆𝐸𝑖𝑘
(𝑡)                 (5.3) 

where  

𝒗𝒊
(𝒕−𝟏)

(𝐗Y): the ith cluster center of the variables calculated 

from previous iteration (t-1) for input-output matrix, XY, 

(𝒙𝒌, 𝑦𝑘) : row vector of input-output values for kth 

observation.  

 4.2. Calculate the membership values, 𝑓𝑖𝑘
(𝑡)

  

             𝑓𝑖𝑘
(𝑡)

=    
𝑑𝑖𝑘

(𝑡)

𝑑𝑗𝑘
(𝑡) 

1/(𝑚−1)
𝑛
𝑗=1  

−1

                                            (5.4) 

4.3. For each variable 𝑗 = 1, … , 𝑝  

 4.3.1. For each cluster 𝑖 = 1, … , 𝑛  
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      4.3.1.1. Calculate the ith cluster center, 𝑣𝑖𝑗
(𝑡)

 for the jth variable 

𝑣𝑖𝑗
(𝑡)

= 
 𝑓𝑖𝑘

𝑚 𝑥𝑗𝑘 𝑦𝑘
𝑁
𝑘=1

 𝑓𝑖𝑘
𝑚𝑁

𝑘=1

              (5.5) 

where  

  𝑥𝑗𝑘  : value of the jth variable for the kth observation,  

     𝑦𝑘  : actual observed class of the kth observation, 

4.4. Terminate if the maximum change between the membership values 

calculated at iteration, t and previous iteration (t-1) does not exceed 

termination constant, ε:  

 𝑚𝑎𝑥 𝑓𝑖𝑘
(𝑡)

− 𝑓𝑖𝑘
(𝑡−1)

 < 𝜀  

After the data is partitioned into clusters using the NIFC method, NIFCF method is 

applied. In this method, one classifier for each cluster is constructed by LR using 

membership values obtained from NIFC and their transformations as new 

independent variables. The algorithm of the NIFCF method with LR, which can be 

used for the training data sets, can be seen below. 

Steps of training algorithm for NIFCF: 

1. Set initial parameter, α, which is the level used for eliminating the points farther 

away from the cluster centers. 

2. Calculate cluster centers for input-output variables, 𝒗 𝑿𝑌 𝒊 and interim fuzzy 

functions for each cluster using NIFC algorithm. 

𝒗 𝑿𝑌 𝒊 =  𝑣 𝑥1 𝑖 , … , 𝑣 𝑥𝑝 
𝑖
, 𝑣 𝑦 𝑖   
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where 

𝑣 𝑥𝑗  𝑖
 :cluster center of the jth independent variable for the ith cluster, 

𝑣 𝑦 𝑖   :cluster center of dependent variable for the ith cluster, 

3. For each cluster 𝑖 = 1, … , 𝑛 

3.1. For each observation number 𝑘 = 1, … , 𝑁  

Using cluster centers for input space, 𝒗 𝑿 𝒊 =  𝑣 𝑥1 𝑖 , … , 𝑣 𝑥𝑝 
𝑖
   

3.1.1. Calculate membership values for input space, 𝑢𝑖𝑘 . 

𝑢𝑖𝑘  =    
 𝑿𝒌−𝒗 𝑿 𝒊 

2+𝑆𝐸𝑖𝑘

 𝑿𝒌−𝒗 𝑿 𝒋 
2+𝑆𝐸𝑗𝑘

 

1

𝑚 −1𝑛
𝑗 =1  

−1

          (5.6) 

where 

𝑆𝐸𝑖𝑘 : squared error term between the actual output and predicted 

output value of the kth observation using interim fuzzy function 

calculated for the ith cluster at step 2. 

3.1.2. Calculate alpha-cut membership values, 𝜇𝑖𝑘 . 

 𝜇𝑖𝑘 =  𝑢𝑖𝑘 ≥ 𝛼                   (5.7) 

3.1.3. Calculate normalized membership values, 𝛾𝑖𝑘 .  

        𝛾𝑖𝑘 = 
𝜇 𝑖𝑘

 𝜇 𝑗𝑘
𝑛
𝑗=1

                  (5.8) 

3.2.  Determine the new augmented input matrix for each cluster i, 𝚽𝐢, using 

observations selected according to α-cut level. 𝚽𝐢 matrix is composed of 
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input variable matrix, 𝐗𝐢
𝛂, vector of normalized membership values for 

the cluster i, 𝜸𝒊, and the matrix composed of their selected 

transformations, 𝜸𝒊
′ , such as 𝜸𝒊

2
, 𝜸𝒊

3
, 𝜸𝒊

m, exp(𝜸𝒊),  log((1-𝜸𝒊)/ 𝜸𝒊).  

𝚽𝐢 𝐗, 𝜸𝒊 =  𝐗𝐢
𝛂 𝜸𝒊 𝜸𝒊

′      

where 

𝐗𝐢
𝛂 =  𝒙𝒌 ∈ 𝐗  𝑢𝑖𝑘 𝒙𝒌 ≥ 𝛼, 𝑘 = 1, … , 𝑁  

3.3.  Using LR as a classifier, calculate a fuzzy classifier function using new 

augmented matrix 𝚽𝐢 𝐗, 𝜸𝒊 .  

 𝑃𝑖 𝑦𝑖
𝛼 = 1 𝚽𝐢 𝐗, 𝜸𝒊  = 1/ 1 + 𝑒−𝛽0+𝜷𝑻𝚽𝐢 𝐗,𝜸𝒊              (5.9) 

where 

𝑦𝑖
𝛼 =  𝑦𝑘 ∈ 𝐲  𝑢𝑖𝑘  𝑦𝑘 ≥ 𝛼, 𝑘 = 1, … , 𝑁  , 

𝜷 : vector of estimated regression coefficients, 

𝛽0: estimated regression coefficient for the intercept. 

 3.3.1.  For each observation 𝑘 = 1, … , 𝑁 

3.3.1.1. Using the fuzzy classifier function constructed at step   

3.3, calculate posterior probabilities, 

𝑝 𝑖𝑘 𝑦𝑘
𝛼 = 1 𝚽𝐢 𝐗, 𝜸𝒊  .   

4. For each observation 𝑘 = 1, … , 𝑁 

4.1. Calculate a single probability output 𝑝 𝑘 , weighting the posterior 

probabilities, 𝑝 𝑖𝑘 , with their corresponding membership values, 𝛾𝑖𝑘 .    
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      𝑝 𝑘  =
 𝛾𝑖𝑘 𝑝 𝑖𝑘  𝑦𝑘

𝛼 =1 𝚽𝐢 𝐗,𝜸𝒊  
𝑛
𝑖=1

 𝛾𝑖𝑘
𝑛
𝑖=1

             (5.10) 

After construction of classification models for each cluster using training data set, 

the following algorithm is used to classify new data.  

Steps of testing algorithm for NIFCF: 

1. Set initial parameter k, which is a positive integer used for k-nearest neighbor 

algorithm. 

2. Standardize testing data. 

3. For each observation 𝑟 = 1, … , 𝑁𝑡𝑒𝑠𝑡   

3.1. Find k-nearest neighbors from training data set, the Euclidean distances to 

corresponding testing data r and actual output values of which are 

represented by vectors dr
 and yr: 

 𝒅𝒓 =  𝑑𝑟1 … 𝑑𝑟𝑗 … 𝑑𝑟𝑘    

𝒚𝒓 =  𝑦𝑟1 … 𝑦𝑟𝑗 … 𝑦𝑟𝑘   

where 

𝑑𝑟𝑗 : distance of the rth observation to its jth nearest neighbor, 

𝑦𝑟𝑗 : actual output value of the jth nearest neighbor of the rth testing data 

observation. 

3.2.  For each cluster 𝑖 = 1, … , 𝑛 

 3.2.1. For each nearest neighbor 𝑗 = 1, … , 𝑘  
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  3.2.1.1. Calculate squared error term, 𝑆𝐸𝑟𝑖𝑗 .  

𝑆𝐸𝑟𝑖𝑗 =  𝑦𝑟𝑗 −  𝑓(𝝉𝒓𝒊𝒋) 
2
                   (5.11) 

where 

𝑓(𝝉𝒓𝒊𝒋): predicted value of the jth nearest neighbor of the rth 

testing data vector for a given input vector, 

𝜏𝑟𝑖𝑗  , which is calculated at 4.1.2.1. step of the NIFC 

algorithm, 

𝝉𝒓𝒊𝒋: row vector, the elements of which are membership 

values of the jth nearest neighbor of the rth testing data 

vector for the ith cluster. 

3.2.1.2. Calculate weights, ƞ
rj

 of the nearest neighbors by  

  ƞ
rj

= 1 − (𝑑𝑟𝑗 /  𝑑𝑟𝑠
𝑘
𝑠=1 )             (5.12) 

3.2.2. Calculate weighted squared error term, 𝑆𝐸𝑖𝑟
𝑡𝑒𝑠𝑡  for testing data. 

 𝑆𝐸𝑖𝑟
𝑡𝑒𝑠𝑡 =  ƞ

𝑖𝑞
𝑆𝐸𝑟𝑖𝑞

𝑘
𝑞=1               (5.13) 

3.2.3. Calculate improved membership values, 𝑢𝑖𝑟
𝑡𝑒𝑠𝑡 . 

 𝑢𝑖𝑟
𝑡𝑒𝑠𝑡 =    

 𝒙𝒓
𝑡𝑒𝑠𝑡– 𝑣(𝑿)𝑖 

2
+𝑆𝐸𝑖𝑟

 𝒙𝒓
𝑡𝑒𝑠𝑡– 𝑣(𝑿)𝑗 

2
+𝑆𝐸𝑗𝑟

 

1
(𝑚−1)

𝑛
𝑗=1  

−1

         (5.14) 

where  

𝒙𝒓
𝑡𝑒𝑠𝑡 : testing data input vector for the rth observation,  
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  𝑣(𝑿)𝑖 : the ith cluster centers for input variables calculated using the 

NIFC algorithm. 

3.2.4. Calculate alpha-cut membership values, 𝜇𝑖𝑟
𝑡𝑒𝑠𝑡 . 

  𝜇𝑖𝑟
𝑡𝑒𝑠𝑡 =  𝑢𝑖𝑟

𝑡𝑒𝑠𝑡 ≥ 𝛼                 (5.15) 

3.2.5. Calculate normalized membership values, 𝛾𝑖𝑟
𝑡𝑒𝑠𝑡 .   

  𝛾𝑖𝑟
𝑡𝑒𝑠𝑡 =   

𝜇 𝑖𝑟
𝑡𝑒𝑠𝑡

 𝜇𝑞𝑟
𝑡𝑒𝑠𝑡𝑛

𝑞=1
              (5.16) 

3.2.6. Determine the new augmented input vector, 𝚽𝐢𝐫
𝐭𝐞𝐬𝐭 which is 

composed of testing data input vector for the rth observation, 

𝒙𝒓
𝑡𝑒𝑠𝑡 , normalized membership value of the rth observation for the 

ith cluster, 𝛾𝑖𝑟
𝑡𝑒𝑠𝑡 , and the vector composed of their 

transformations,  𝜸𝒊𝒓
𝑡𝑒𝑠𝑡  ′  used at the 3.2. step of training data 

algorithm of the NIFCF.  

  𝚽𝐢𝐫
𝐭𝐞𝐬𝐭 𝒙𝒓

𝑡𝑒𝑠𝑡 , 𝛾𝑖𝑟
𝑡𝑒𝑠𝑡  =   𝐱𝐫

𝑡𝑒𝑠𝑡 𝛾𝑖𝑟
𝑡𝑒𝑠𝑡  𝜸𝒊𝒓

𝑡𝑒𝑠𝑡 
′
    

3.2.7. Using the fuzzy classifier function constructed at step 3.3 of the 

NIFCF training data algorithm, calculate posterior probabilities, 

𝑝 𝑖𝑟
𝑡𝑒𝑠𝑡 𝑦𝑟

𝑡𝑒𝑠𝑡 = 1/ 𝚽𝒊𝒓
𝒕𝒆𝒔𝒕 . 

3.3. Calculate a single probability output 𝑝 𝑟
𝑡𝑒𝑠𝑡 , weighting the posterior 

probabilities, 𝑝 𝑖𝑟
𝑡𝑒𝑠𝑡 , with their corresponding membership values, 𝛾𝑖𝑟

𝑡𝑒𝑠𝑡 .   

𝑝 𝑟
𝑡𝑒𝑠𝑡 =  

 𝛾𝑖𝑟
𝑡𝑒𝑠𝑡 𝑝 𝑖𝑟

𝑡𝑒𝑠𝑡  (𝑦𝑟
𝑡𝑒𝑠𝑡 =1/ 𝚽𝒊𝒓

𝑡𝑒𝑠𝑡 )𝑛
𝑟=1

 𝛾𝑖𝑟
𝑡𝑒𝑠𝑡𝑛

𝑖=1

              (5.17) 

All algorithms are coded in MATLAB 7.3.0. For the clustering part of the algorithm, 

functions of Fuzzy Clustering and Data Analysis Toolbox are used. The best models 
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constructed by MARS are automatically read from R 2.8.1 by using MATLAB R-Link 

Toolbox.  

5.3. Applications and Performance Analysis 

NIFCF method is applied on three data sets: customer satisfaction, casting and 

ionosphere, which are explained in detail in Chapter 3, and its performance is 

compared with FCF and LR methods. 

5.3.1. Applications 

Before the application of FCF and NIFCF methods, the data have to be fuzzy 

partitioned using the FCM and NIFC algorithms, respectively. However, initial 

parameters have to be determined before starting clustering. The optimal number 

of clusters and degree of fuzziness is determined in a way that is stated in the 

Handbook of Fuzzy Clustering and Data Analysis Toolbox. In the handbook, it is 

suggested that the optimal values of parameters should be determined using and 

comparing the results of several validity indices since no validation index is reliable 

only by itself. Validity indices in the toolbox: partition coefficient, classification 

entropy, partition index, separation index, Xie Beni’s index, Dunn’s index and 

alternative Dunn’s index, which are explained in the Section 2.4.3, are used for the 

determination of optimum parameter values. Optimum number of clusters is 

determined using the outputs of optnumber function of the toolbox. The 

optnumber function provides visual graphs for each validity index, which shows the 

change of the values of the validity index for different levels of cluster numbers. By 

using these graphs, the optimum number of clusters is determined by selecting the 

most appropriate value that optimizes the validity index values. For the 

determination of optimum degree of fuzziness, a new function is coded in MATLAB 
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called optfuzziness, which is very similar to optnumber.  Both functions optnumber 

and optfuzziness use the membership values obtained from the FCM algorithm, so 

the values of the parameters determined using these functions are optimum for the 

FCM clustering method. By using the NIFC algorithm instead of the FCM algorithm 

in the functions, optimum parameter values for the NIFC clustering method are 

obtained. By using optnumber and optfuzziness functions, the optimum pairs for 

number of clusters and degree of fuzziness values are determined by using training 

data sets for both methods, FCF and NIFCF. The optimal values of number of 

clusters and degree of fuzziness for each data set are given in Appendix B. 

Other parameters, termination constant, ε, maximum number of iterations, nmax 

and alpha-cut level, α are determined as 10-12, 100 and 0.1, respectively. For the 

testing algorithm of the NIFCF method 5 nearest neighbors are decided to be used 

to find the estimated membership values of testing data. 

Finally, transformations of membership values to be used for the FCF and NIFCF 

methods are determined. Logit transformation, log((1 − 𝜸𝒊)/ 𝜸𝒊), which is one of 

the suggested transformations that can increase the performance of the model 

more than others since the distribution of the membership values are generally 

Gaussian (Çelikyılmaz, 2008), and power transformation, 𝛾𝑖
3 to represent higher 

order terms in case of significance of higher order terms, are selected to be used for 

both of the methods. Thus, the input matrix used for constructing fuzzy functions 

for each cluster is composed of original input variables, membership values of the 

related cluster and their log-odds and power transformations, 𝚽𝐢 𝐗, 𝜸𝒊 =

 𝐗𝐢
𝛂 𝜸𝒊 𝜸𝒊

𝟑   log((𝟏 − 𝜸𝒊)/ 𝜸𝒊) .   

In addition to the methods based on fuzzy functions, LR is also applied for three 

data sets in order to compare the performance of NIFCF with a conventional 

statistical classification method based on probability theory. The residual checks are 

performed before the application of LR.  



77 
 

Finally, using the posterior probabilities obtained, observations are classified 

according to 0.5 threshold level for all of the methods applied. 

5.3.2. Performance Analysis 

Performances of the methods, FCF, NIFCF and LR applied on three data sets are 

tested using several classification performance measures. The average values of 

these classification measures calculated for each set of each replication can be seen 

in Table 5.1. 

 

Table 5.1: Average Application Results for LR, FCF and NIFCF 

  
Customer Satisfaction Casting Ionosphere 

Measure  

(Avg.)  
LR FCF NIFCF LR FCF NIFCF LR FCF NIFCF 

MCR 0.222 0.205 0.197 0.123 0.087 0.069 0.116 0.099 0.097 

PCC 0.778 0.795 0.803 0.877 0.913 0.931 0.884 0.901 0.903 

KAPPA 0.768 0.786 0.794 0.874 0.911 0.930 0.878 0.896 0.898 

Precision 0.663 0.690 0.729 0.963 0.969 0.967 0.882 0.904 0.907 

Recall 0.611 0.681 0.736 0.888 0.926 0.952 0.947 0.947 0.947 

Specificity 0.852 0.846 0.833 0.822 0.844 0.822 0.772 0.820 0.825 

F05 0.639 0.670 0.694 0.947 0.959 0.963 0.894 0.912 0.914 

F1 0.618 0.658 0.685 0.923 0.946 0.958 0.913 0.925 0.926 

F2 0.610 0.664 0.707 0.901 0.934 0.954 0.933 0.938 0.938 

Log-Odds 

Ratio 
2.158 2.572 2.684 3.367 3.574 3.775 4.254 4.458 4.504 

Stability 0.059 0.077 0.023 0.066 0.046 0.013 0.023 0.035 0.014 

AUC 0.721 0.747 0.772 0.786 0.815 0.819 0.851 0.873 0.876 
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Table 5.1 indicates that the NIFCF method gives more satisfactory results than 

others for almost all classification measures for each data set. The only measure 

that the NIFCF does not outperform other methods is specificity for two data sets, 

which measures the proportion of the customers somewhat satisfied with the 

driver seat, which are correctly identified. In addition, FCF gives more satisfactory 

results compared with LR for all performance measures except stability. It seems 

that LR gives more stable results.   

These 3 methods are statistically compared by using two-way ANOVA in order to 

see whether there is a statistically significant difference between these methods 

according to classification measures mentioned above. Two-way ANOVA test is 

performed using Minitab 15. The classification measures are entered as response 

variable and the methods and the data sets that represent blocking variable are 

entered as factors. Firstly, the assumptions of ANOVA for each measure are checked 

with residual plots. For the performance measures that the assumptions of ANOVA 

are not satisfied, logarithmic transformations of them are used. The two-way 

ANOVA results for each classification measure can be seen in Table 5.2. 

Table 5.2 shows that there are significant differences among the methods according 

to classification measures MCR, PCC, KAPPA, F0.5 and AUC at the significance level of 

α=0.05.  
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Table 5.2: Two-Way ANOVA Results of LR, FCF and NIFCF methods 

Measure (Avg.) Source DF SS MS F P 

MCR, PCC 

Method 2 0.0155 0.0077 9.7300 0.0290 

Dataset 2 0.2177 0.1089 137.0500 0.0000 

Interaction 4 0.0032 0.0008 0.3500 0.8400 
Error 72 0.1611 0.0022 

  Total 80 0.3975       

KAPPA 

Method 2 0.0165 0.0082 9.8300 0.0290 

Dataset 2 0.2410 0.1205 143.8500 0.0000 

Interaction 4 0.0034 0.0008 0.3400 0.8480 
Error 72 0.1760 0.0024 

  Total 80 0.4368       

Precision 

Method 2 3.3810 1.6900 3.6700 0.1240 

Dataset 2 90.8460 45.4230 98.7300 0.0000 

Interaction 4 1.8400 0.4600 0.5300 0.7120 

Error 72 62.1110 0.8630 

  Total 80 158.1780       

Recall 

Method 2 7.1590 3.5790 2.7800 0.1750 

Dataset 2 46.1970 23.0980 17.9600 0.0010 

Interaction 4 5.1440 1.2860 0.7100 0.5870 

Error 72 130.2720 1.8090 

  Total 80 188.7720       

Specificity 

Method 2 0.3906 0.1953 1.3900 0.3480 

Dataset 2 2.4402 1.2201 8.7000 0.0350 

Interaction 4 0.5610 0.1402 0.2400 0.9170 

Error 72 42.6514 0.5924 

  Total 80 46.0431       

F0.5 

Method 2 1.6440 0.8220 11.7500 0.0210 

Dataset 2 88.9620 44.4810 636.0300 0.0000 

Interaction 4 0.2800 0.0700 0.2600 0.9020 

Error 72 19.2620 0.2680 

  Total 80 110.1470       

F1 

Method 2 2.3710 1.1850 5.0600 0.0800 

Dataset 2 78.7690 39.3840 168.1000 0.0000 

Interaction 4 0.9370 0.2340 0.7300 0.5750 

Error 72 23.1180 0.3210 

  Total 80 105.1940       
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Table 5.2 (cont’d): Two-Way ANOVA Results of LR, FCF and NIFCF methods 

F2 

Method 2 4.0847 2.0424 3.0100 0.1590 

Dataset 2 71.9752 35.9876 53.0900 0.0010 

Interaction 4 2.7113 0.6778 0.9700 0.4300 

Error 72 50.4193 0.7003 

  Total 80 129.1906       

Log-Odds Ratio 

Method 2 23.2280 11.6140 5.5500 0.0700 

Dataset 2 33.4510 16.7260 7.9900 0.04 

Interaction 4 8.3740 2.0930 0.8400 0.503 

Error 72 178.8280 2.4840 

  Total 80 243.8820       

Stability 

Method 2 0.0212 0.0106 5.9700 0.0630 

Dataset 2 0.0115 0.0058 3.2400 0.1450 

Interaction 4 0.0071 0.0018 1.1800 0.3270 

Error 72 0.1082 0.0015 

  Total 80 0.1480       

AUC 

Method 2 0.8691 0.4346 33.8800 0.0030 

Dataset 2 7.3853 3.6926 287.9300 0.0000 

Interaction 4 0.0513 0.0128 0.0700 0.9910 

Error 72 12.9762 0.1802 

  Total 80 21.2819       

 

 

The multiple comparison analysis is applied in order to see which method performs 

significantly better than others for the classification measures in which methods 

significantly differ. The methods are compared in pairs using Tukey’s test. The test is 

conducted using “ANOVA with General Linear Model (GLM)” tool of Minitab 15 with 

the family error rate 0.05. The p-values of Tukey’s multiple comparison test for the 

classification measures MCR, PCC, KAPPA and AUC, in which methods significantly 

differ, are given in Table 5.3. Notations, “>” and “<” indicate that the method in the 

column list shows higher and lower performance than the method in the row list, 

respectively.  
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Table 5.3: p-values of Tukey’s Multiple Comparison Test for MCR, PCC, KAPPA, F0.5 

and AUC 

Measures Methods FCF NIFCF 

MCR, PCC 

LR 0.0797 0.0276 (>) 

FCF 
 

0.4956 

KAPPA 

LR 0.0782 0.0272 (>) 

FCF 
 

0.4954 

F0.5 
LR 0.0715 0.0193 (>) 

FCF 
 

0.3461 

AUC 

LR 0.0117(>) 0.0029 (>) 

FCF 
 

0.128 
 

 

Table 5.3 shows that the NIFCF method has significantly better performance than LR 

according to MCR, PCC, KAPPA and AUC classification measures and the FCF gives 

significantly better results for AUC measure than LR.  However, there is not any 

significance difference detected between fuzzy classification methods, FCF and 

NIFCF.  

5.4. Discussion 

Performance analysis study on LR, FCF and NIFCF indicates that fuzzy classification 

methods give better performance results than the conventional statistical 

classification method, LR, for data sets including fuzzy type of uncertainty. In 

addition, NIFCF gives more satisfactory results than FCF when average values of 

classification measures are considered even if there is not any significant difference 

detected.  

Moreover, the use of a nonparametric method, MARS in the clustering phase of the 

algorithm, enables clustering of the data for each level of parameters. So, the 

selection of optimum model parameters by examining validity measures depending 
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on the clustering results at different levels of the parameters is achieved and proper 

application of the method is guaranteed. In addition, the selection of variable 

transformations is automated. 

Apart from the advantages mentioned above, there is also a disadvantage of using 

NIFCF method according to the other methods, FCF and LR. Native communication 

between two softwares, MATLAB 7.3.0 and R 2.8.1, which is necessary for getting 

MARS results automatically from R 2.8.1, causes program to slow down. So, the run 

of the MATLAB 7.3.0 program for the NIFCF method takes considerably longer time 

than the other methods. For example, while the run time of FCF method is 

approximately 15 seconds for one training data set of Ionosphere data, it takes 

almost 6 minutes to run NIFCF method for the same data set.  



83 
 

CHAPTER 6 

CONCLUSIONS AND FURTHER STUDIES 

Classification techniques have a wide range of application area in industrial 

engineering such as determination of customer satisfaction, dividing customers into 

groups according to their specific features, assignment of personnel into 

appropriate occupation groups (Zopounidis and Doumpos, 2002). Statistical 

classification methods are mainly used for these classification problems. However, 

statistical classification methods, which handle crisp data, may not answer the 

needs of this application area since in many applications in industrial engineering, 

we should deal with non crisp data resulted from the use of human judgments or 

linguistic terms. For example, qualitative information exists as well as quantitative 

information in regarding relationship between customer attributes and engineering 

characteristics in quality function deployment (Kim, Moskowitz and Köksalan, 1996) 

or expert judgments have an important role in the decision making processes in 

industrial engineering. Such data brings fuzzy type of uncertainty, which should be 

handled by the use of an appropriate fuzzy classification method. These fuzzy 

classification methods are very limited in number in the literature but needed for 

many applications from many fields especially for industrial engineering area, where 

qualitative information has an important role as well as quantitative information. 

This study brings two contributions to the field of fuzzy classification by developing 

Tanaka based fuzzy classification models and NIFCF. 

Firstly, different classification models based on Tanaka’s FLR approach are 

developed and compared using the customer satisfaction survey data. We have 

shown how Tanaka’s FLR approach can be used for classification problems after 
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converting the discrete dependent variable to a continuous variable by considering 

different types of uncertainties in data and interpreting and reflecting these 

uncertainties in different ways. Three alternative approaches are developed and 

tested using several classification measures. These alternative approaches differ 

only in the way the discrete dependent variable is converted to the equivalent 

continuous variable. After the conversion takes place, Tanaka’s FLR approach is 

applied in all alternative approaches without any modification. As a result of the 

comparison of these approaches, it is observed that the alternative approaches, 

which consider both randomness and fuzziness included in the data inherently, 

outperform the other alternative approach, which considers only fuzzy type of 

uncertainty.  

As a second contribution, the IFCF method is further improved by using a 

nonparametric method, MARS, in the clustering phase of it, instead of multiple 

linear regression.  By the use of MARS, better fitting models can be developed in the 

clustering phase and the selection of appropriate variable transformations is 

automated. The proposed NIFCF method is compared with the FCF and LR methods 

using three data sets: customer satisfaction, casting and ionosphere. The NIFCF 

method gives more satisfactory results compared with the other methods. The only 

disadvantage of the NIFCF method is identified as slower running of the program as 

a result of native communication between two programs, which are MATLAB 7.3.0 

and R 2.8.1. 

As a future study, different classification models can be developed based on 

different FLR methods such as Peters’ (1994) and Ozelkan and Duckstein’s (2000) 

using similar conversions of discrete dependent variables into continuous fuzzy 

variables or different fuzzy linear regression methods can be developed and used 

for classification purposes. As an example, the objective function of the LP model of 
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Tanaka’s FLR approach can be changed to minimize the maximum fuzziness of the 

predicted fuzzy intervals instead of total fuzziness.  

In addition, performance of the NIFCF method can be tested using more data sets 

from several fields. Moreover, the methods can be compared according to their 

sensitivity to the parameters such as the number of clusters or the degree of 

fuzziness. Furthermore, the computational time of the NIFCF algorithm can be 

reduced by increasing the efficiency of the code and/or use of different 

nonparametric/robust methods instead of MARS. 
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APPENDIX A 

VARIABLE SELECTION 

A.1. Variable Selection Output for Casting Data Set 

Logistic Regression 
 

       

Total number of cases:      92 (Unweighted) 

      Number of selected cases:   92 

      Number of unselected cases: 0 

 

      Number of selected cases:                 92 

      Number rejected because of missing data:  0 

      Number of cases included in the analysis: 92 

 

 

 

Dependent Variable Encoding: 

 

Original       Internal 

Value          Value 

     ,00       0 

    1,00       1 

 

 

 

 

Dependent Variable..   Y 

 

Beginning Block Number  0.  Initial Log Likelihood Function 

 

-2 Log Likelihood   81,821557 

 

* Constant is included in the model. 

 

 

Beginning Block Number  1.  Method: Forward Stepwise (COND) 

 

 

       Improv.             Model             Correct 

Step   Chi-Sq.  df   sig   Chi-Sq.  df   sig Class %     Variable 

   1    15,631   1  ,000    15,631   1  ,000   80,43   IN: X21 

   2     6,477   1  ,011    22,108   2  ,000   82,61   IN: X8 
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   3     8,621   1  ,003    30,729   3  ,000   84,78   IN: X7 

   4     7,203   1  ,007    37,932   4  ,000   88,04   IN: X14 

   5     6,980   1  ,008    44,912   5  ,000   90,22   IN: X29 

   6     6,623   1  ,010    51,535   6  ,000   93,48   IN: X35 

   7     6,305   1  ,012    57,840   7  ,000   93,48   IN: X11 

   8    23,982   1  ,000    81,822   8  ,000  100,00   IN: X27 

 

No more variables can be deleted or added. 

 

 

End Block Number 1   PIN =     ,1500  Limits reached. 

 

Final Equation for Block 1 

 

Estimation terminated at iteration number 26 because 

a perfect fit is detected.  This solution is not unique. 

 

 -2 Log Likelihood         ,000 

 Goodness of Fit           ,000 

 Cox & Snell - R^2         ,589 

 Nagelkerke - R^2         1,000 

 

                     Chi-Square    df Significance 

 

 Model                   81,822     8        ,0000 

 Block                   81,822     8        ,0000 

 Step                    23,982     1        ,0000 

 

>Warning # 18582 

>Covariance matrix cannot be computed.  Remaining statistics will 

be 

>omitted. 
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A.2. Variable Selection Output for Ionosphere Data 

Set 

Logistic Regression 
 

 

      Total number of cases:      351 (Unweighted) 

      Number of selected cases:   351 

      Number of unselected cases: 0 

 

      Number of selected cases:                 351 

      Number rejected because of missing data:  0 

      Number of cases included in the analysis: 351 

 

The variable X2 is constant for all selected cases. 

Since a constant was requested in the model, 

it will be removed from the analysis. 

 

 

 

Dependent Variable Encoding: 

 

Original       Internal 

Value          Value 

     ,00       0 

    1,00       1 

 

Dependent Variable..   Y 

 

Beginning Block Number  0.  Initial Log Likelihood Function 

 

-2 Log Likelihood   458,28371 

 

* Constant is included in the model. 

 

 

Beginning Block Number  1.  Method: Forward Stepwise (COND) 

 

 

       Improv.             Model             Correct 

Step   Chi-Sq.  df   sig   Chi-Sq.  df   sig Class %     Variable 

   1   105,715   1  ,000   105,715   1  ,000   79,49   IN: X3 

   2    74,512   1  ,000   180,227   2  ,000   84,05   IN: X1 

   3    34,880   1  ,000   215,107   3  ,000   86,61   IN: X5 

   4    26,718   1  ,000   241,824   4  ,000   88,03   IN: X8 

   5    12,569   1  ,000   254,393   5  ,000   88,89   IN: X34 

   6     7,241   1  ,007   261,634   6  ,000   89,74   IN: X7 

   7     7,248   1  ,007   268,882   7  ,000   89,17   IN: X6 

   8     6,434   1  ,011   275,316   8  ,000   88,32   IN: X22 

   9     7,694   1  ,006   283,010   9  ,000   90,03   IN: X27 

  10    13,312   1  ,000   296,322  10  ,000   90,31   IN: X30 
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  11    11,871   1  ,001   308,193  11  ,000   90,88   IN: X25 

  12     7,643   1  ,006   315,836  12  ,000   90,60   IN: X31 

  13     2,877   1  ,090   318,714  13  ,000   91,17   IN: X16 

  14     3,364   1  ,067   322,078  14  ,000   92,31   IN: X18 

 

No more variables can be deleted or added. 

 

 

End Block Number 1   PIN =     ,1500  Limits reached. 

 

Final Equation for Block 1 

 

Estimation terminated at iteration number 10 because 

Log Likelihood decreased by less than ,01 percent. 

 

 -2 Log Likelihood      136,206 

 Goodness of Fit        240,675 

 Cox & Snell - R^2         ,601 

 Nagelkerke - R^2          ,824 

 

                     Chi-Square    df Significance 

 

 Model                  322,078    14        ,0000 

 Block                  322,078    14        ,0000 

 Step                     3,364     1        ,0666 

 

Classification Table for Y 

The Cut Value is ,50 

                    Predicted 

                   ,00    1,00     Percent Correct 

                     0      1 

Observed         

   ,00      0     217      8     96,44% 
                 
   1,00     1      19    107     84,92% 
                 
                           Overall  92,31% 

 

---------------------- Variables in the Equation ------------------

----- 

 

Variable           B      S.E.     Wald    df      Sig       R    

Exp(B) 

 

X1          -19,8136   24,5570    ,6510     1    ,4198   ,0000     

,0000 

X3           -2,7225     ,7517  13,1172     1    ,0003  -,1558     

,0657 

X5           -2,3033     ,8941   6,6367     1    ,0100  -,1006     

,0999 

X6           -3,2288     ,8540  14,2956     1    ,0002  -,1638     

,0396 

X7           -2,3778     ,8170   8,4694     1    ,0036  -,1188     

,0928 

X8           -2,7251     ,7105  14,7122     1    ,0001  -,1665     

,0655 
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X16           1,7593     ,9591   3,3645     1    ,0666   ,0546    

5,8085 

X18          -1,1656     ,6647   3,0749     1    ,0795  -,0484     

,3117 

X22           2,4357     ,7382  10,8879     1    ,0010   ,1393   

11,4237 

X25          -1,8347     ,6374   8,2846     1    ,0040  -,1171     

,1597 

X27           3,9619     ,9008  19,3435     1    ,0000   ,1945   

52,5577 

X30          -3,9982    1,0390  14,8076     1    ,0001  -,1672     

,0183 

X31          -2,1467     ,8735   6,0401     1    ,0140  -,0939     

,1169 

X34           3,4899     ,9033  14,9274     1    ,0001   ,1680   

32,7811 

Constant     23,0048   24,5930    ,8750     1    ,3496 
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APPENDIX B 

OPTIMUM PARAMETER VALUES FOR FCM AND NIFC 

ALGORITHMS 

Table B.1: Optimum parameter values for three data sets 

 
Customer Satisfaction Casting Ionosphere 

 
FCM NIFC FCM NIFC FCM NIFC 

 
m n m n m n m n m n m n 

R1Tr1 1.65 3 1.65 3 2 3 1.85 3 1.75 6 1.8 6 

R1Tr2 1.65 2 1.6 3 1.95 2 1.9 2 1.75 4 1.75 5 

R1Tr3 1.6 3 1.65 3 1.95 2 1.9 2 1.7 6 1.65 5 

R2Tr1 1.65 2 1.65 3 2.15 3 1.75 3 1.8 6 1.8 6 

R2Tr2 1.6 3 1.7 3 2.05 3 2.05 3 1.7 5 1.6 5 

R2Tr3 1.65 3 1.7 3 1.8 3 1.8 3 1.7 6 1.7 5 

R3Tr1 1.6 4 1.65 3 2 2 1.7 3 1.65 7 1.6 5 

R3Tr2 1.65 3 1.65 3 2 2 1.95 3 1.65 5 1.7 6 

R3Tr3 1.65 2 1.65 3 1.8 3 2.05 3 1.8 6 1.8 5 
 

m: degree of fuzziness 

n: number of clusters 

 

 


