
 i 

 

AUTOMATIC WEB SERVICE COMPOSITION WITH AI PLANNING 

 

 

 

 

 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 

MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

 

 

BY 

 

 

 

MEHMET KUZU 

 

 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  

FOR  

THE DEGREE OF MASTER OF SCIENCE 

IN 

COMPUTER ENGINEERING 

 

 

 

 

 

 

JULY 2009 

 

 

 

 

 



 ii 

 

Approval of the thesis: 

 

 

AUTOMATIC WEB SERVICE COMPOSITION WITH AI PLANNING 

 

 

 

submitted by MEHMET KUZU in partial fulfillment of the requirements for the 

degree of Master of Science in Computer Engineering Department, Middle East 

Technical University by, 

 

 

 

Prof. Dr. Canan Özgen           _______________ 

Dean, Graduate School of Natural and Applied Sciences 

 

Prof. Dr. M üslim Bozyiğit                 _______________ 

Head of Department, Computer Engineering 

 

Assoc. Prof. Dr. Nihan Kesim Çiçekli 

Supervisor, Computer Engineering Dept., METU     _______________ 

 

 

 

Examining Committee Members: 

 

Assoc. Prof. Dr. Ali Doğru   

Computer Engineering Dept., METU           _____________________

      

Assoc. Prof. Dr. Nihan Kesim Çiçekli   

Computer Engineering Dept., METU           _____________________ 

 

Assoc. Prof. Dr. Halit Oğuztüzün  

Computer Engineering Dept., METU           _____________________ 

 

Asst. Prof. Dr. Pınar Şenkul  

Computer Engineering Dept., METU                    _____________________ 

 

Dr. Gökçe Banu Laleci Ertürkmen   

SRDC, METU               _____________________ 

 

 

 

   Date: 27.07.2009 

 

  



 iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also declare 

that, as required by these rules and conduct, I have fully cited and referenced 

all material and results that are not original to this work. 

 

 

 

      Name, Last name:  Mehmet Kuzu 

Signature       : 

 

 



 iv 

ABSTRACT 

AUTOMATIC WEB SERVICE COMPOSITION WITH AI 

PLANNING 

Kuzu, Mehmet 

M.S., Department of Computer Engineering 

Supervisor: Assoc. Prof. Dr. Nihan Kesim Çiçekli 

 

July 2009, 129 pages 

In this thesis, some novel ideas are presented for solving automated web service 

composition problem. Some possible real world problems such as partial 

observability of environment, nondeterministic effects of web services, service 

execution failures are solved through some mechanisms. In addition to automated 

web service composition, automated web service invocation task is handled in this 

thesis by using reflection mechanism. The proposed approach is based on AI 

planning. Web service composition problem is translated to AI planning problem 

and a novel AI planner namely “Simplanner” that is designed for working in highly 

dynamic environments under time constraints is adapted to the proposed system. 

World altering service calls are done by conforming to the WS-Coordination and 

WS-Business Activity web service transaction specifications in order to physically 

repair failure situations and prevent undesired side effects of aborted web service 

composition efforts. 

Keywords: Automatic Web Service Composition, Automatic Web Service 

Invocation, Semantic Web Services, AI Planning  



 v 

ÖZ 

YAPAY ZEKA PLANLAMA TEKNİKLERİ İLE OTOMATİK WEB 

SERVİS BİLEŞİMİ 

 

Kuzu, Mehmet 

                               Yüksek Lisans, Bilgisayar Mühendisliği Bölümü 

  Tez Yöneticisi: Doç. Dr. Nihan Kesim Çiçekli 

 

Temmuz 2009, 129 sayfa 

Bu tezde, otomatik örün servis birleşimi problemini çözmek için bazı yenilikçi 

düşünceler sunulmuştur. Çevrenin kısmen algılanabilirliği, örün servislerinin belirsiz 

etkileri, servislerin uygulama anı hataları gibi bazı gerçek hayat problemleri 

birtakım yöntemler aracılığı ile çözülmüştür. Otomatik örün servis birleşimine ek 

olarak, otomatik örün servis yürütme işlemi de dinamik programlama özellikleri 

kullanılarak bu tez kapsamında ele alınmıştır. Önerilen yaklaşım tarzı, yapay zekâ 

planlama tekniğine dayalıdır. Örün servisleri birleşimi problemi, yapay zekâ 

planlama problemine dönüştürülmüş; son derece dinamik ortamlarda ve zaman 

kısıtlaması altında çalışmak için tasarlanmış yenilikçi bir yapay zekâ planlama aracı 

olan "Simplanner" sisteme uyarlanmıştır. Çevresel değişim etkileri olan servis 

çağrıları, WS-Coordination ve WS-Business Activity örün servis hareketleri 

tanımlamalarına uygun olarak gerçekleştirilmektedir. Böylece hatalı durumların 

fiziksel onarımı yapılıp, yarıda kesilen örün servis birleşim  denemelerinin 

istenmeyen yan etkileri ortadan kaldırılmıştır. 

Anahtar Kelimeler: Otomatik Örün Servis Birleşimi, Otomatik Örün Servis 

Tetiklenmesi, Anlamsal Örün Servisleri, Yapay Zekâ ile Planlama  



 vi 

 

 

 

 

 

 

 

 

 

To my family 



 vii 

ACKNOWLEDGEMENTS 

I would like to express my sincere gratitude and appreciation to my supervisor 

Assoc. Prof. Dr. Nihan Kesim Çiçekli for her endless encouragement and support 

throughout this study. I am very lucky that I have such a friendly, intellectual, 

patient and benignant supervisor.   

I would like to thank Assoc. Prof. Dr.Nilufer Önder who gave me invaluable 

suggestions about my thesis. I want also thank to Çağla Okutan and Ertay Kaya who 

work on the same subject and helped me a lot for overcoming difficulties. 

I am deeply grateful to my parents who devoted their life to their children and my 

brother Ali Cem for their love and support. Without them, this work could not have 

been completed.  

I am deeply indebted to my friends, Gökhan Yaprakkaya, Hüseyin Yılmaz, Kurtçebe 

Eroğlu, Çağlar Şenaras, Özgür Karaaslan, Nedim Ozan Tekin and all the other 

colleagues at HAVELSAN whose suggestions and encouragement helped me a lot 

during my study. 

I would thank the Scientific and Technological Research Council of Turkey 

(TÜBİTAK) for providing the financial means throughout this study. 

Finally, my special thanks go to Asst. Prof. Dr. Oscar Sapena who is the creator of 

Simplanner that is the most important component of this thesis. He answered all my 

questions with patience and clarifies all the obscure points in my mind. 

 

 

 



 viii 

TABLE OF CONTENTS 

ABSTRACT ............................................................................................................... iv 

ÖZ  ............................................................................................................................... v 

ACKNOWLEDGEMENTS ...................................................................................... vii 

TABLE OF CONTENTS ......................................................................................... viii 

LIST OF FIGURES.................................................................................................... xi 

CHAPTERS 

1 INTRODUCTION .............................................................................................. 1 

2 BACKGROUND INFORMATION AND RELATED WORK ...................... 10 

2.1  Background Information ........................................................................ 10 

2.1.1 Web Services ................................................................................. 10 

2.1.2  OWL-S .......................................................................................... 13 

2.1.3  AI Planning ................................................................................... 15 

2.1.4  PDDL ............................................................................................ 16 

2.1.5  Web Service Composition ............................................................. 17 

2.2 Previous Works with Similar Approaches .............................................. 23 

2.2.1  Web Service Composition with SHOP2 HTN Planner ................. 23 

2.2.2  Web Service Composition with OWLS-XPLAN ......................... 24 

2.2.3  Web Service Composition with WSPLAN ................................... 25 



 ix 

2.2.4  IBM’s Service Creation Environment Based on End to End 

Composition of Web Services .......................................................... 26 

3 OVERALL SYSTEM ARCHITECTURE .................................................... 28 

3.1 Motivating Example ................................................................................ 28 

3.2 System Architecture ................................................................................ 33 

3.2.1  Preprocessing Phase ...................................................................... 34 

3.2.2  Planning Phase .............................................................................. 35 

3.2.3  Action Handling Phase .................................................................. 37 

3.2.4  Execution Phase ............................................................................ 38 

3.2.5  Unexpected Event Handling Phase ............................................... 40 

3.3 OWL-S/PDDL Mapping ......................................................................... 41 

4 AUTOMATED WSC WITH SIMPLANNER .............................................. 49 

4.1 Introduction to Simplanner ..................................................................... 49 

4.2 Simplanner Application to WSC Domain ............................................... 55 

4.2.1 Problem Statement to the Simplanner ........................................... 56 

4.2.2  Planner – Execution Component Integration ................................ 60 

4.2.3  Execution Component and Its Integration with Unexpected Event 

Handler Component ......................................................................... 64 

4.2.4  Unexpected Event Handler Component and Its Integration with 

Planner .............................................................................................. 67 

4.3 Advantages of Using Simplanner for WSC Domain .............................. 69 

5 AUTOMATED SERVICE INVOCATION ISSUES ................................... 73 



 x 

5.1 Automated Service Invocation ................................................................ 73 

5.2 Logical/Physical Map .............................................................................. 82 

5.3 Action Caching Mechanism .................................................................... 85 

6 TRANSACTION ISSUES FOR WEB SERVICE COMPOSITION ............ 90 

6.1 WS-Transaction Frameworks.................................................................. 91 

6.2 Integration of WS-Transaction Frameworks to the Proposed System .... 96 

7 CASE STUDY: TRAVEL DOMAIN ......................................................... 102 

7.1 Case 1: Information Unavailability ....................................................... 103 

7.2 Case 2: Service Unavailibality .............................................................. 109 

8 CONCLUSIONS AND FUTURE WORK ................................................. 114 

REFERENCES ........................................................................................................ 118 

APPENDIX A      TRAVEL ONTOLOGY ............................................................ 125 

 

 

 

 

 

 

 

 



 xi 

LIST OF FIGURES 

FIGURES 

Figure 2-1 OWL-S Model ......................................................................................... 14 

Figure 2-2 PDDL Domain File Format ..................................................................... 16 

Figure 2-3 PDDL Problem File Format .................................................................... 17 

Figure 2-4 Web Service Compostion Framework .................................................... 18 

Figure 2-5 WSC Requirements vs. Neoclassical Planners........................................ 21 

Figure 2-6 WSC requirements vs. Advanced Planners ............................................. 22 

Figure 2-7 WSC requirements vs. Simplanner ......................................................... 22 

Figure 3-1 Example Services in Motivating Example .............................................. 30 

Figure 3-2 Motivating Example ................................................................................ 31 

Figure 3-3 Preprocessing Phase ................................................................................ 34 

Figure 3-4 Planning Phase ........................................................................................ 36 

Figure 3-5 Action Handling Phase ............................................................................ 37 

Figure 3-6 Execution Phase ...................................................................................... 39 

Figure 3-7 Unexpected Event Handling Phase ......................................................... 40 

Figure 3-8 OWL Class – PDDL Type Mapping ....................................................... 42 

Figure 3-9 OWL Property – PDDL Predicate Mapping ........................................... 43 

Figure 3-10 OWL Individual – PDDL Object Mapping ........................................... 43 



 xii 

Figure 3-11 OWL-S Service – PDDL Action Mapping ............................................ 44 

Figure 3-12 PDDXML Precondition – PDDL Precondition Mapping ..................... 45 

Figure 3-13 PDDXML Effect – PDDL Effect Mapping ........................................... 45 

Figure 3-14 OWL-S Parameter – PDDL Paramter Mapping .................................... 46 

Figure 3-15 OWL State – PDDL State ..................................................................... 47 

Figure 4-1 System of  Simplanner ............................................................................ 51 

Figure 4-2 Simplanner Working Mechanism ............................................................ 52 

Figure 4-3 State Action Conditions........................................................................... 54 

Figure 4-4 High Level Software Agent Architecture ................................................ 56 

Figure 4-5 Logical Action Example .......................................................................... 57 

Figure 4-6 Example Initial State ............................................................................... 58 

Figure 4-7 Example Goal State ................................................................................. 59 

Figure 4-8 Information Gathering Request Example ................................................ 59 

Figure 4-9 Asserted Service Preconditions ............................................................... 61 

Figure 4-10 Example Logical Objects ...................................................................... 61 

Figure 4-11 Example Grounded Actions .................................................................. 62 

Figure 4-12 Initial Logical Statements Example ...................................................... 63 

Figure 4-13 Logical Action Example ........................................................................ 65 

Figure 4-14  Example Complex Type Parts .............................................................. 66 

Figure 4-15 Example Action Definition ................................................................... 69 



 xiii 

Figure 4-16  Simplanner Behaviour to Unexpected Events ...................................... 71 

Figure 5-1 Grounded Actions XML Structure .......................................................... 76 

Figure 5-2 Client Stub Generation Command .......................................................... 77 

Figure 5-3 PDDL Action – Physical Action Mapping XML Structure .................... 78 

Figure 5-4 Relevant WSDL parts of Example Service ............................................. 79 

Figure 5-5 Example PDDL Action – Physical Action Mapping.xml ....................... 80 

Figure 5-6 Dynamic Method Generation Example ................................................... 81 

Figure 5-7 Dynamic Method Invocation Example .................................................... 82 

Figure 5-8 Logical/Physical Map .............................................................................. 83 

Figure 5-9 Complex Action’s XML Structure .......................................................... 87 

Figure 5-10 Example Complex Action ..................................................................... 88 

Figure 6-1 WS-Business Activity Framework .......................................................... 92 

Figure 6-2 WS-Business Activity State Diagram ..................................................... 94 

Figure 6-3 WSDL Message with Transaction Parameter ......................................... 98 

Figure 6-4 Dynamic Transactional Method Construction ........................................ 99 

Figure 7-1 Example User Request .......................................................................... 103 

Figure 7-2 Initial Plan Generation ........................................................................... 104 

Figure 7-3 Unknow Information Scenerio .............................................................. 105 

Figure 7-4 Information Providing Service Scenario ............................................... 106 

Figure 7-5 Physical/Logical Map Update Scenario ................................................ 107 



 xiv 

Figure 7-6 User and Service Provided Inputs Scenario .......................................... 108 

Figure 7-7 Successful Termination Scenario .......................................................... 109 

Figure 7-8 Service Failure Scenerio ........................................................................ 110 

Figure 7-9 Unsolvable Problem Scenario ............................................................... 111 

Figure 7-10 Session Abort Scenario ....................................................................... 112 

 

 



 1 

CHAPTER 1 

1 INTRODUCTION 

Distributed computing is widely used in today’s software systems as it provides 

more scalable, more fault tolerant environment and it enables ready to use software 

components for others. In distributed software environment, interoperability is very 

important. The resources that are provided on the web are generally used by 

important amount of software applications. Loose coupling between those resources 

and consumer software applications should be assured, otherwise environment 

becomes unmanageable. Web services are the most important tools of distributed 

computing as they provide required loose coupling between distinct systems and 

interoperable distributed software environment. Web services provide ready to use 

functionalities through fixed interfaces for other applications by hiding the 

implementation details and they are commonly used in real world applications.  

Web is growing very fast and important amount of web services are available to use. 

Although a huge number of web services exist, sometimes they are not sufficient to 

satisfy user needs. Inexistence of a web service that responds to the user request 

does not mean that request cannot be handled. Web services can collaborate to 

satisfy the user request, that is, some new functionality can be produced by 

composing the existing functionalities to handle user requests. Since the number of 

web services and the possible collaboration scenarios are huge, manual analysis on 

them for achieving the user goal is very difficult and beyond the human ability. This 

web service composition process should be done by software agents automatically.  

The main goal of this thesis is to design and implement a software agent that 

automates the web service composition task in an effective manner in terms of time 

and adaptability to the real world environment. 



 2 

The aim of the proposed software agent is to find several web services and execute 

them according to discovered execution order for handling the user request, given a 

repository of services and the user goal.  There exist two commonly accepted 

approaches for solving the web service composition problem: workflow composition 

and AI planning [1]. AI planning approach is more flexible and adaptable, so that 

approach is widely accepted in the community. AI planning approach is adapted for 

the construction of the web service composer agent in this thesis. 

The motivation of this thesis is to solve some of the open issues of web service 

composition (WSC) problem. WSC problem involves distinct subproblems. First, 

the web service composition problem should be mapped to an AI planning problem. 

In order to do this mapping pure syntactic definition is not sufficient, semantic 

annotation is needed as well. Generally web services are described using WSDL [2] 

which presents the required physical execution information such as service endpoint, 

network communication protocol and syntactic service input and output message 

definitions. Those definitions are used by the web service invoker component of the 

proposed software agent but not the AI planner component. AI planner needs 

semantic information for solving the stated problem and that semantic information is 

provided by OWL/OWL-S ([3], [4]) semantic web languages. The whole aim of 

semantic web is to make web machine interpretable and ontology web language 

(OWL) is the most important and commonly accepted tool for describing web 

resources semantically. In this thesis, the software agent tries to fulfill user requests, 

which are stated in OWL, by using the web services that are marked with OWL-S 

semantic service descriptions.  AI planners mostly work with PDDL [5] data format 

like the SIMPLANNER [6] that is used in this thesis. Mapping the service 

composition problem to the AI planning problem requires some translation between 

distinct data formats, which is OWL-S/OWL to PDDL mapping in this work.  

After web service composition problem is mapped to the AI planning problem, AI 

planner should reason on the planning problem and produce a valid plan for 

satisfying the user needs. AI planner produces plans in an abstract level that is; it 

only considers semantic objects and their relations but not the syntactic counterparts.  



 3 

As a third step, abstract level solutions should be made concrete by using the 

syntactic information that is obtained from other resources such as WSDL 

definitions, users and other web services. Concrete plans should then be executed to 

handle the user request. The proposed software agent makes use of reflection 

mechanism to invoke services automatically.  During execution, some unexpected 

situations may arise such as service unavailability because of network failures or 

information unavailability. The software agent should handle such undesired 

situations. The proposed software agent is capable of handling such unexpected 

cases with the help of the used AI planner, namely SIMPLANNER and adapted WS-

Business Activity framework [7].  

Automated web service composition problem is a hot research topic. There are some 

excellent surveys ([8], [9], [10]) about the challenges of web service composition 

(WSC). Although many important works have been conducted in order to solve this 

challenging problem so far, still there exist many open issues.  In [10], some open 

issues are presented about the available WSC solutions that have been proposed up 

to year 2004. Many of those stated issues are still open. Some of the stated problems 

in [10] and the solutions to those problems provided as contributions of this thesis 

can be briefly described as follows:  

 If unexpected events that cause failures occur, replanning and some 

compensation mechanisms are required. 

In this thesis, this problem is solved in two levels. In the first level which is an 

abstract logical level, a novel AI planner that is specially designed for highly 

dynamic, nondeterministic environments is used. The proposed solution 

interleaves planning and execution. Planner keeps track of the current state by 

using the initially provided semantic state description and the semantic effects of 

executed actions. That state description includes all information about the 

environment. If something unexpected occurs, the web service composer agent 

informs the planner about the situation such as service unavailability through the 

provided semantic statements. The planner will then change the current state 

according to that information and does dynamic replanning for handling the 



 4 

unexpected situation.  If the planner is able to find a new solution after 

replanning, according to the new situation, the composition task continues. 

Sometimes it is possible that solution for handling the unexpected situation does 

not exist. In such a case the planner informs the service composer agent about 

the inexistence of a solution for the new situation.  If planner cannot find a new 

solution for the new state, the second level handling mechanism takes place. 

The second level is physical level and failure recovery is provided by using the 

WS-Business Activity framework. After the planner provides some abstract 

actions which are some semantic action definitions that are grounded with 

semantic objects, the service composer agent constructs physical counterparts 

with reflection mechanism by using some information resources such as WSDL 

and users themselves. When web services become ready to be physically 

invoked, some more analysis is conducted by the software agent. If the service to 

be invoked has some world altering affects, its call is not directly done but 

handled in collaboration with WS-Business Activity [7] coordinator as specified 

in WS-Business Activity specification. If some failure occurs which cannot be 

handled by the AI planner, software agent informs the coordinator which then 

sends required compensation signals to the participant web services. As a result, 

aborted service composition sessions do not cause undesired side effects. 

 Environment that is available during planning may not be the same as the 

environment during execution which is problematic. Interleaving planning 

and execution is desirable.  

In this thesis, the proposed web service composer agent interleaves planning and 

execution. Planning problems are generally very difficult problems to solve and 

generally requires exponential computation time. Huge time requirement is not 

acceptable since users look for responsive systems. For timely response, 

planners generally use some admissible heuristics and some decomposition 

techniques. Especially for decomposition, huge amount of domain knowledge is 

required which is not available most of the times. Another technique that is used 

for timely response is any time planning approach. In any time planning 



 5 

approach, the planner constructs a very quick initial solution which may include 

some wrong decisions, and improve that initial solution if time is available [6]. 

The adapted AI planner for this thesis namely “SIMPLANNER” is any time 

planner. It concentrates not on the total plan but the best initial action for the 

solution. The service composer agent requests that best initial action from the 

planner and does the real execution operation after doing the other required 

steps. During real service execution, planner continues to plan for finding a new 

best action. Generally service execution time is sufficient for the planner to 

produce the new best action. As a result interleaving planning and execution is 

done in a timely manner by using the features of Simplanner.   

 Web services may have some nondeterministic effects which should be 

tackled.  

The used AI planner allows state changes when required at any time during 

composition. If services have some nondeterministic effects, they can be 

observed by the service composer agent after real execution and state change 

request is made to the planner. The planner changes the state according to the 

occurred effect and continues to plan by considering that effect. 

 Service descriptions are provided once and they are not updated frequently. 

From time to time some availability checks should be done. 

The proposed solution interleaves planning and execution as mentioned before. 

Initially it is assumed that, all service descriptions are valid. Some logical 

statements that describe service availability are presented in the initial logical 

state, and preconditions of action definitions are updated with a logical statement 

that shows the availability of that particular action. After a real service call, if 

there exists some problem about the service. The service composer agent 

informs the planner and makes the logical counterpart of the problematic service 

unavailable. As a result, the planner does not consider that problematic service 

for further decisions and try to solve the problem using alternative services. 



 6 

 It is possible that, web services can produce new objects at run time. It is 

very difficult to model dynamic object generation with current AI planners, 

some other mechanism should be provided for handling such cases. 

Logical actions can only be proposed by the planner to execute if the 

preconditions of those actions are satisfied and required logical objects for 

grounding the logical action are available. Sometimes, it is possible that such 

logical objects are not available in the initial state but can be produced by other 

services. For handling this case, the service composer agent constructs a logical 

object for each defined type and adds a logical statement to the initial sate in 

order to assert that users can provide the details of logical objects at run time. 

The precondition of each action is updated with the requirement that logical 

action parameters should be known before execution. If initial assumption does 

not hold, that is, the user cannot provide the details of logical objects, current 

logical state is updated. If the value of the service parameter cannot be provided 

by the user, the precondition of that particular action cannot be satisfied. In such 

a case, planner tries to find some other service that supplies those objects and 

changes the plan accordingly. Existence of one logical object for each type is not 

a problem, because in this level an abstract plan is constructed. Before the real 

service call, the real values are obtained from users or other web services and 

those values are destroyed after usage. One logical object in the planner level 

may correspond to multiple objects in the execution level. Some memory data 

structures are constructed for handling dynamic object generation. 

 Semantic web service descriptions should be connected to the real web 

services. 

Semantic web service descriptions are high level definitions that are used by the 

AI planner in this thesis. For real web service interaction, syntactic counterparts 

of these semantic service descriptions are needed. The bridge between the 

syntactic and semantic definitions is provided by using the definitions stated in 

the grounding section of OWL-S descriptions. The service composer agent that 

is proposed in this thesis makes use of that section and WSDL definitions of 



 7 

services for real service interaction. Real values of the syntactic counterparts are 

obtained either from the user or from other web services. By substituting the real 

values to the syntactic interfaces through reflection mechanism, service 

composer agent does the real interaction with web services. 

In 2007, IBM Research has published an article about the approaches for web 

service composition and execution [11]. In [11], some case studies presented along 

with the desirable properties of web service composition solutions. These desirable 

features are required in most of the real world scenarios. In the following, these 

features are summarized and the ability of the proposed system to satisfy these 

desirable features is discussed.  

  Adaptability: Changes in run environment should be handled.  

This thesis proposes highly adaptable web service composition solution. 

Interleaving planning and execution, and modifying the plan according to the 

outcomes of the executed services and user interactions continuously, make the 

proposed solution highly flexible. 

 Failure Resolution: Web service composition is done in a very dynamic and 

non reliable environment. As a result some failures may occur from time to 

time. Such undesired situations should be handled.  

One of the main goals of this thesis is to discover and resolve failures. The 

software agent is able to detect failures by making real service calls and by 

interacting with the user. If a failure situation is detected, recovery mechanisms 

are fired both in logical level and physical level. That is; logical state definitions 

are modified according to the encountered failure and if required, physical 

compensation is done through WS-Transaction frameworks ([7], [12], [13]). 

 User Interaction: The user should be capable of supervising the software 

agent. 

This thesis gives importance to user interaction. Initially users provide their 

requests in an abstract way and give details by interacting with the software 



 8 

agent continuously. According to the abstract level goal definition, software 

agent finds some high level solutions and the details of high level solutions are 

asked to the user during run time. Users have the option to say that they do not 

know the required information and direct the software agent to find some 

services that provide the particular information. After service execution, the 

results can be observable by the user. Although not implemented yet, a 

mechanism can be provided that enable users to invalidate some services 

manually according to their results easily by using the same approaches as 

automatic invalidations. 

 Scalability: There exist a huge amount of relevant and irrelevant services. 

This huge search space should be examined in a short period of time. 

Scalability is a very challenging issue, especially for the domain independent AI 

planners. Domain independent AI planners cannot respond if the search space is 

too big. Since domain knowledge is very limited for WSC, domain dependent 

planners cannot be adapted as well. Most of the current solutions like this one 

work on some particular domain not on the whole web. Scalability issue is not 

tackled in this thesis but considered as a future work. Some filtering mechanisms 

should be applied to the available services according to the user request and 

irrelevant services should be eliminated to some extent. The software agent that 

is proposed in this work assumes that those filtering are done a priori. 

This thesis tries to solve some open issues about automated web service composition 

and invocation problems as mentioned above. The organization of the thesis is as 

follows: In Chapter 2 some background information about the used technologies is 

presented. Some important works that have been conducted for the solution of WSC 

problem are described and their strengths and weakness with respect to this work are 

discussed. In Chapter 3, the general system architecture is presented. In Chapter 4, 

adapted AI planner, namely “Simplanner” is introduced and its application to WSC 

domain is described. In Chapter 5, automated web service invocation issues and 

proposed action caching mechanism are presented. In Chapter 6, transactional issues 

are discussed, WS-Transaction specifications are introduced and their integration to 



 9 

the system architecture is presented. In Chapter 7, a case study is conducted that 

clarifies the functionality of the proposed system. Finally in Chapter 8, the thesis is 

concluded and some future works are discussed. 



 10 

CHAPTER 2 

2 BACKGROUND INFORMATION AND RELATED WORK  

This chapter contains two parts. In the first part, some background information about 

the general concepts and terminology that is used in this thesis work is presented. In 

addition, the most important methodologies and the general system architecture that 

is applied for solving the web service composition problem are described in this 

part.  

In the second part, basic ideas behind the relevant work in the literature about web 

service composition with AI planning approach are described. Their strengths and 

weaknesses are discussed with respect to this thesis work. 

2.1 Background Information 

In this part, first some web service related concepts are described. Section 2.1.1 

gives information about web services and section 2.1.2 describes OWL-S which is 

the semantic web service description language. Then, concepts related to AI 

planning are discussed. In section 2.1.3, AI planning is presented and in section 

2.1.4, PDDL data format which is the input language of many AI planners is 

described. Lastly, in section 2.1.5 web service composition problem is defined and 

some general WSC arhitectures are presented. 

2.1.1 Web Services 

Interoperability between distributed and distinct systems is very important in today’s 

software applications. Service oriented architectures and the core of SOA “web 

services” are the commonly accepted approaches for building interoperable 

applications. 



 11 

The formal W3C definition of the web services is stated as follows “A Web service 

is a software system designed to support interoperable machine-to-machine 

interaction over a network” [14]. Web services are provided by some service 

providers and consumed by software agents according to some predefined rules. 

Web service providers present a functional interface for service consumers without 

giving any information about the internal implementation details of the service 

which assures loose coupling between different applications. Service clients can 

make use of provided services for their business needs in any hardware and 

operating system environment and with any programming language. 

Web services provide interoperability by means of assuring to conform to some 

standards. Web service specification declares standards such as WSDL for service 

descriptions, SOAP for messaging format and UDDI registry for presenting services 

to the community.  

WSDL: 

Web Service Description Language (WSDL) [2] is a language to define a web 

service syntactically. It allows defining input and output requirements of the service 

and it provides the physical location of the service (the host address and port 

combination). The formal WSC definition of the WSDL is stated as follows “WSDL 

is an XML format for describing network services as a set of endpoints operating on 

messages containing either document-oriented or procedure-oriented information” 

[2]. According to WSDL specification, it contains the following elements [2]: 

 Types: A container for data type definitions using some type system.  

 Message: An abstract, typed definition of the data being communicated.  

 Operation: An abstract description of an action supported by the service.  

 Port Type: An abstract set of operations supported by one or more 

endpoints.  



 12 

 Binding: A concrete protocol and data format specification for a particular 

port type.  

 Port: A single endpoint defined as a combination of a binding and a network 

address.  

 Service: A collection of related endpoints.  

SOAP: 

The message exchange format between a web service and its client is determined by 

Simple Object Access Protocol (SOAP) [15] specification. The formal W3C 

definition of SOAP and it is components is stated as follows “SOAP is a lightweight 

protocol for exchange of information in a decentralized, distributed environment. It 

is an XML based protocol that consists of three parts: an envelope that defines a 

framework for describing what is in a message and how to process it, a set of 

encoding rules for expressing instances of application-defined data types, and a 

convention for representing remote procedure calls and responses” [15]. SOAP is 

not a network communication protocol such as http, but an application level protocol 

that is used in conjunction with the available network communication protocols. 

SOAP message is transformed in XML format between collaborating parties. The 

exchanged XML messages contains three parts that are soap envelope, soap header 

and soap body. Envelope is the wrapper for the entire message, body is the container 

for the main information that is exchanged between peers and header contains some 

auxiliary, system-wide information such as transactional and security attributes. 

UDDI: 

Universal Description Discovery and Integration (UDDI) [16] registry is a kind of 

yellow pages of newspapers. It presents the available service definitions to the 

community in a central location. Therefore it becomes possible for business partners 

to find each other through provided service interfaces. The UDDI specification is 

determined by OASIS, for which formal definition is as follows: “Universal 

Description, Discovery and Integration, or UDDI, is the name of a group of web-



 13 

based registries that expose information about a business or other entity and its 

technical interfaces (or API’s).  These registries are run by multiple Operator Sites, 

and can be used by anyone who wants to make information available about one or 

more businesses or entities, as well as anyone that wants to find that information.” 

[16]. 

2.1.2 OWL-S 

Current web technology is generally based on syntactic constructs which prevents 

machine interpretability of the web. This necessitates human intervention for many 

of the web based tasks such as B2B and B2C applications. Web grows very fast. 

Every day thousands of new services are provided in web environment which makes 

manual operations on it so difficult, so making web, machine understandable is very 

important. For that purpose, semantic web and its mostly accepted language 

Ontology Web Lamguage (OWL) [3] has been constructed. The current syntactic 

web will disappear and it will be replaced by semantic web in near feature. From 

web services point of view, semantic web enables automatic service discovery, 

automatic service composition and automatic service invocation. There exist some 

semantic service description languages such as WSMO [17], SESMA [18] and 

OWL-S [4]. 

OWL-S which is based on OWL is the widely accepted semantic web service 

description language in the literature.  OWL-S specifies a higher ontology for 

semantic web service descriptions. This ontology consists of three parts Service 

Profile, Service Model and Service Grounding [4].  



 14 

 

Figure 2-1 OWL-S Model 

Figure 2-1 that is adapted from [4] shows the visual representation of the OWL-S 

components. According to OWL-S specification, the use of these components is as 

follows: 

ServiceProfile: “The service profile tells "what the service does", in a way that is 

suitable for a service-seeking agent to determine whether the service meets its needs. 

This form of representation includes a description of what is accomplished by the 

service, limitations on service applicability and quality of service, and requirements 

that the service requester must satisfy to use the service successfully” [4]. 

ServiceModel: “The service model tells a client how to use the service, by detailing 

the semantic content of requests, the conditions under which particular outcomes 

will occur, and, where necessary, the step by step processes leading to those 

outcomes. That is, it describes how to ask for the service and what happens when the 

service is carried out” [4]. 

ServiceGrounding: “Service grounding specifies the details of how an agent can 

access a service. Typically grounding will specify a communication protocol, 

message formats, and other service-specific details such as port numbers used in 

contacting the service. In addition, the grounding must specify, for each semantic 



 15 

type of input or output specified in the ServiceModel, an unambiguous way of 

exchanging data elements of that type with the service” [4]. 

2.1.3 AI Planning 

According to [19], the task of coming up with a sequence of actions that will achieve 

a goal is called planning.  Search based and propositional or first order logic based 

software agents can be thought as AI planning agents, but they are very primitive in 

the sense that they cannot be used in big domains, thus in real world applications. 

For instance, the instantiation of a simple service that provides direction between 

two addresses is infeasible for a particular problem if the number of available 

addresses is high, since the search space is the square of the number of available 

addresses. If there exist 1000 addresses, the search space contains 1 million nodes. 

So some heuristics and some useful domain knowledge are needed for extracting 

such heuristics.  

AI planners use some sort of languages such as PDDL [5] that give information 

about the domain and the problem itself. By using the representational power of 

these languages, important heuristics are extracted that prune the search space.  A 

planning problem is generally described by state and action combinations. States are 

conjunctions of some positive and negative literals that describe the world, and 

actions are the operators that can change the available state to another state. Actions 

have preconditions and effects. In order to execute an available action, its 

preconditions should be satisfied in the current state and if an action is executed, the 

current state changes with the effects of the executed action. 

There exist different planning paradigms. The basic ones are based on state space 

search such as forward chaining and backward chaining [19]. In forward chaining, a 

search is conducted for reaching the goal state from initial state and in contrary to 

this approach, backward chaining starts the search from goal state and tries to reach 

the initial state. Generally speaking, backward chaining is better than the forward 

chaining since it has lower branching factor. Both approaches find total order plans, 

and do not use effective heuristics, so they cannot be used in most of the real world 

problems because of their high computational complexity. A better approach is used 



 16 

by partial order planners (POP). Instead of finding total plans and considering the 

problem as a whole, POP subdivides the problem into smaller parts which decreases 

the computational complexity significantly [19]. A better one is graphplan, which 

makes use of very important heuristics such as mutex relations between literals and 

actions that are extracted from planning graphs, so it guides its search more 

intelligently [20]. The presented approaches are the basic underlying planning 

algorithms of various planners that are used in real world domains. Based on the 

ideas of presented general planning techniques, real world planners considers time 

constraints, nondeterminism, partial observability and scalability issues and make 

important additions to the basic algorithms. For instance HTN planners [19] are very 

similar to partial order planners but they make use of task decomposition which 

provides scalability in real world by reducing the time complexity, but they need 

some additional domain information to achieve this.  

2.1.4 PDDL  

PDDL [5] is the de-facto standard that is used as an input language by most of the 

AI planners [19]. It has sublanguages for STRIPS [21], ADL [22] and HTN 

domains. In this work STRIPS sublanguage is used. PDDL definitions are provided 

in two parts: domain.pddl and problem.pddl. In domain pddl, available actions and 

predicates are defined and in problem.pddl initial state, goal state and available 

objects are defined. As stated in [23], the format of domain.pddl is as in Figure 2-2. 

(define (domain <domain name>) 

<PDDL code for predicates> 

<PDDL code for first action> 

[...] 

<PDDL code for last action> 

) 

Figure 2-2 PDDL Domain File Format 



 17 

Predicates represent the object and data type properties that exist between objects. 

Actions represent the semantic meaning of the operations and they give information 

about the precondition and effects of the operations as well as input and output 

specifications.  The format of the problem.pddl is presented in Figure 2-3. 

(define (problem <problem name>) 

(:domain <domain name>) 

       <PDDL code for objects> 

        <PDDL code for initial state> 

        <PDDL code for goal specification> 

) 

Figure 2-3 PDDL Problem File Format 

Objects represent the available physical and conceptual components. Initial state 

represents the current states of the available objects. The goal representation shows 

the desired state of the available objects. 

2.1.5 Web Service Composition 

There exist many web services that are provided for some particular needs. These 

services can be combined to achieve more complex tasks what is called web service 

composition (WSC). The aim of service composition is to find several web services 

for obtaining an unavailable but a desired service. WSC is a hot research topic and 

there exist considerable amount of work in this area. The ones that are most similar 

to this thesis work are presented in section 2.2. The methodologies and general 

system architecture for web service composition that are adapted from many surveys 

about the topic (i.e. [24], [1], [11]) is summarized in this part. 



 18 

 

Figure 2-4 Web Service Compostion Framework 

Figure 2-4 that is adapted from [1] shows the general architecture of WSC 

frameworks. Most of the works that have been conducted on this topic (as well as 

this thesis) conforms to the presented abstract framework. The presented general 

framework has five phases that are as follows [1]: 

Presentation of single service: In this phase service signature is presented by 

service providers. The input and output parameters of the service as well as its 

semantic descriptions such as preconditions, information providing and world 

altering affects are provided. In addition to functional properties, nonfunctional 

attributes are described such as transactional and quality of service attributes. In this 

thesis WSDL is used for syntactic definitions and OWL-S is used for semantic 

descriptions. As a nonfunctional attribute transactional information is provided in 

WSDL files.  Generally UDDI registries contain mentioned information of services 

in a central repository, but in this thesis local file system is used as a service 

repository.  



 19 

Translation of the languages:  Generally, the language that is used for semantic 

web service descriptions and problem description languages of the clients are not 

directly interpretable by the solution providing engine: workflow engines and AI 

planners. Therefore usually a translation is needed for solution providing engines to 

understand the problem and available domain knowledge. In this thesis, service 

description language is OWL-S, initial state and goal description language is OWL 

and the language that is used by the used planner is PDDL. So a transformation 

between OWL-S/OWL to PDDL is required. 

Generation of composition process model:  This phase is the most important part 

of the WSC where workflow engines and AI planners come into play. The 

approaches applied in this part are the most important one that forms the distinction 

between different works. In this phase a solution for the problem of users is found. 

In this work a novel AI planner namely Simplanner is used for composite process 

generation.  

Evaluation of composite service:  In some cases, there exist more than one solution 

to the presented problems. In such cases human intervention can be needed or 

evaluation engine can decide on the better plan according to some heuristics. In this 

work Simplanner decides which to choose; human assistance is not used. 

Execution of composite service:   After a total solution or some partial solution is 

found to the problem, actions can be executed in the physical environment. After 

actions are determined, client stubs execute actions through rpc calls to the services. 

In this work, planning and execution phases are interleaved so the execution begins 

without total plan generation. 

There exist two commonly accepted approaches for WSC that are using workflow 

engines and that are using AI techniques [1].  Although workflows engines have 

been used in some works for WSC such as in EFlow [25], they are not as successful 

as the AI methodologies for WSC because important amount of human intervention 

is needed for workflow engines and their flexibility is limited. For instance in EFlow 

[25] case, the abstract service composition is generated manually; the only 

automation that is provided is to bind those abstract service definitions to the 



 20 

concrete services. Some more dynamic workflows engines exist that are applicable 

to WSC but they too require an important amount of human intervention as in 

Polymorphic Process Model (PPM) [26] case. In this work some abstract service 

composition is provided apriori but in addition to it, state transitions that are caused 

by the operations are stated as well which makes some flexibility possible by means 

of reasoning on the state machine. 

Most of the approaches for automated WSC are using AI planning techniques. The 

general models of AI planners defined and the applicability of their instances to 

WSC domain are discussed according to some important evaluation criteria [24]. 

From web service composition point of view, the core requirements of AI planners 

are determined as follows in [24]: 

 The domain complexity should support a significant subset of ADL: The 

planner namely Simplanner used in our work is based on STRIPS [21] 

language but it supports some ADL [22] constructs such as type assignments 

to variables. Almost all ADL sentences can be converted to STRIPS 

statements.  

 Support for complex goals i.e. hints that tell the planner which actions 

should precede which other actions: This is a challenging task that is not 

supported by Simplanner. Many of the available planners cannot handle 

complex goals that require iteration, selection or some ordering constraints. 

The ones that support complex goals to some extent generally need 

important amount of human intervention.  

 The ability to deal with incomplete information: One of the most 

important characteristics of the Simplanner is its ability to operate on 

partially observable domains. 

 Related to the problem of supporting sensing actions is the ability of 

planners to dynamically add (or remove) objects to (or from) the 



 21 

domains:  Simplanner enables to add and remove literals, as well as 

changing the values of numeric values any time. 

 There is a strong need for dealing with the nondeterministic behavior of 

services: Web service operations may fail during execution time or they 

may yield unexpected or undesired results: Simplanner keeps track of the 

states and it is able to change to previous state if something goes wrong. It 

can also do replanning to tolerate the unexpected situations. Simplanner is 

one of the most suitable planners that can be used in a nondeterministic 

environment as in WSC case. 

Figure 2-5 and Figure 2-6 that are adapted from [24] show the characteristics of 

commonly used AI planners with respect to the mentioned evaluation criteria that 

proves the importance of Simplanner in WSC domain. 

 

Figure 2-5 WSC Requirements vs. Neoclassical Planners 



 22 

 

Figure 2-6 WSC requirements vs. Advanced Planners 

 

 

 

Planner 
Domain 

Complexity 

Extended 

Goals 
Sensing 

Dymamic 

Objects 

Nondeterm. 

Actions 

Simplanner PDDL 2.1 No Yes ?  Yes 

Figure 2-7 WSC requirements vs. Simplanner 

 

 

 



 23 

In Figure 2-7, Dynamic Objects is represnted with “?”. In addition to the features of 

planner, application level support is needed for dynamic object representation. 

2.2 Previous Works with Similar Approaches  

There exist important previous works related to automated web service composition 

with AI planning. In this part, the most successful ones are briefly described and 

compared with this work. 

2.2.1  Web Service Composition with SHOP2 HTN Planner 

Hierarchical Task Network (HTN) planning approach is adapted for web service 

composition domain in [27]. SHOP2 [28] HTN planner is used for finding plans for 

achieving goals of the user. In this work DAML-S semantic service descriptions is 

used for constructing SHOP2 axioms,  which are then given input to the planner 

along with the problem and  goals to be achieved. Generally, since HTN planning is 

fast, it is preferred more than any other planning algorithm with respect to time 

requirements.This makes it very suitable for real world problems which contain 

huge search space as in the WSC case. Although HTN planners have very important 

performance advantages, they need reasonable amount of domain knowledge which 

is a strict requirement. Some DAML-S descriptions include domain knowledge such 

as information about the subtasks of a particular action in the process model part of 

it, but this is not the case most of the time. Using the additional information that is 

presented in the process model is a good idea for making planning process more 

effective but constructing the whole idea on top of the availability of such 

information is not so reasonable. The main information source of DAML-S 

descriptions that should be used for service discovery or composition purposes is 

profile part of DAML-S  and that part  contains atomic service descriptions only 

which does not provide task hierarchy that gives the main value to HTN based 

planners. In [27], execution and planning is interleaved as in our work, but with 

some limitations both in DAML-S service descriptions and in procedure. They only 

execute information providing services during plan generation in order not to alter 

the world state during plan generation. In order to achieve this, they have some strict 



 24 

assumptions about service descriptions. They make it compulsory to have only one 

of world altering effects or information providing effects in DAML-S descriptions. 

Executing world altering affects is not acceptable before total plan generation, since 

it may cause unintentional results if the whole plan could not be achieved. In our 

work we have solved this problem by using WS-Coordination [12] and WS-

Business Activity [7] frameworks which guarantee the atomicity of composed 

services. In our system there is no need to have any assumptions for DAML-S 

descriptions, and our work is able to totally interleave planning and execution. 

However, our work does not make use of the sub-process definitions that may be 

available in process model part of the OWL-S description.     

    

2.2.2 Web Service Composition with OWLS-XPLAN 

In [29], a WSC model is proposed based on Xplan and OWLS2PDDL conversion. 

OWLS2PDDL mapping is something trivial and it enables the usage of many 

planners for WSC which is very important. In SHOP2 [27] case, OWLS descriptions 

are converted to SHOP2 axioms, so the problem can only be solved using SHOP2 

planner. In this case a much more general problem statement approach is used by 

using PDDL. Most of the planning algorithms can be used after the first phase 

(owls2pddl mapping) instead of Xplan. As mentioned before, if hierarchically 

structured action execution patterns is available, HTN planners outperforms the 

other planners but if this is not the case, the action based planners are better.  XPlan 

is constructed based on this idea. It is a hybrid planner that is built on action based 

Fast Forward planner [30] with HTN component.  OWLS-XPLAN finds the whole 

plan before execution so it does not work well on partially observable domains and 

it is not time efficient solution. Apart from these problems, this work does not 

handle nondeterminism that is naturally available in web services. If a found plan is 

interrupted because of some reason such as a network failure, a new plan is needed 

to be generated from scratch. More seriously, if some actions with world altering 

affects are executed before the interruption of the plan, inconvenient and undesired 

states may be constructed. This thesis has common characteristics with [29] as the 

initial phase of the WSC process which is mapping between owls and pddl. For that 



 25 

part, we have used the owsl2pddl mapping convention and ideas that are presented 

in [29] but with some extensions that are necessary in nondeterministic 

environments. In contrast to [29], this thesis both interleaves planning and 

execution. In addition, the transactional properties are preserved in this thesis which 

prevents undesired states. This thesis proposes more flexible and adaptable solution 

for real world environments with respect to [29]. However, [29] is more scalable 

than our solution since Xplan contains HTN components. 

2.2.3 Web Service Composition with WSPLAN 

In work [31] and [32], a different approach is proposed. They also use PDDL as 

input language to the planner but they propose a totally new idea for semantic web 

service annotation. Instead of using OWL-S, they constructed a new semantic 

description language, called SESMA [18] that is designed for WSC purposes. It has 

the same power as OWL-S with regards to representational aspects but it is not 

based on OWL. The main advantage of using SESMA is its simplicity but this is not 

worth to use it, since there exist a de-facto standard that is accepted by the semantic 

web community which is OWL-S. After mapping SESMA to pddl, they have used 

AI planning too, but with a different approach.  

According to [31], using one planning approach for all WSC tasks is not 

appropriate. For instance, if resource optimization is required Metric-FF [30] 

planner is more suitable; if planning with typed variables and lifted actions is 

required VHPOP [33] is more suitable; and if durative actions are required LPG [34] 

planner is better [31]. Because of these facts, they propose to plug in any planner 

instead of using a particular planner. Although the idea seems good initially, it is not 

concrete.  Planners will have different characteristics in fact but in order to use the 

differences between them, one needs to understand which one to use for a particular 

problem by inspecting the properties of the problem. This is a very challenging task 

for machines and it is not examined in [31]. The work talks about nondeterminism in 

WSC but the proposed solution is a naïve one. Handling nondeterministic cases is 

ascribed to application logic which is totally contradictory to the service oriented 

architecture. They have also mentioned about complex goal definitions that include 



 26 

selection and iteration constructs. However, the proposed solution is not a desirable 

one; they propose to embed these constructs into the application logic with hard 

coding. This thesis has many advantages with respect to [31] in terms of adaptability 

to dynamic and unreliable environments. Complex goal definitions are allowed in 

[31] which is not the case in this thesis. However, the proposed complex goal 

definition mechanism of [31] is not a desirable one because of the previously 

mentioned problems.  

2.2.4 IBM’s Service Creation Environment Based on End to End Composition 

of Web Services 

The approach in [35] is different from the other existing work and this thesis. The 

main focus is not to satisfy user needs as in our case but to construct new services by 

using the existing ones by means of BPEL [36] constructs. In order to construct a 

new service, first its functional (input, output, precondition, effect) and 

nonfunctional requirements (quality of service, time constraints, etc) are described. 

Then a two-phase process is applied for service composition: logical composition 

and physical composition. Logical composition provides functional requirements of 

the new service that are described through OWL-S. The execution engine does not 

exist in this work, so problems that can arise during execution are not handled. 

Logical composition is done by using Planner4J framework [37] which is a kind of 

contingency planner that adds some branches to the plan according to distinct 

outcomes of sensing actions. After logical composition, physical composition phase 

starts, in which concrete service matching is done. In logical composition some sort 

of type matching is conducted. There may exist more than one concrete service 

compositions that provide such a type matching. The choice between multiple 

possible services is done in physical composition phase according to nonfunctional 

attributes that are stated in new service request. The most attractive part of this work 

is the filtering part. They propose to eliminate irrelevant services before planning, 

Available AI planners cannot deal with too many actions which makes WSC 

applicable only in a particular domain but not in the whole web.  They mention 

about an important experiment.  On a problem having a 7-step plan, the planner can 

return a solution in 4 seconds if filter is enabled when 100,000 irrelevant service 



 27 

types/actions are present. However it takes hours without a filter. Filtering 

determines the irrelevant actions with the specified goal, but the underlying 

algorithm about this filter and its computational complexity are not presented. 

    



 28 

CHAPTER 3 

3 OVERALL SYSTEM ARCHITECTURE 

In this chapter, an overall architecture of the proposed automated web service 

composition and the service invocation infrastructure are presented along with a 

motivating example.  The main component of the proposed system is Simplanner [6] 

which is an effective domain independent AI planner.  Simplanner works with 

PDDL [5] data format as most of the other on the shelf planners. Therefore, before 

using Simplanner, semantic service descriptions and user requests are converted 

from OWL-S format to PDDL data format. The translation of OWL/OWL-S format 

to PDDL format is described in detail in this chapter.  

3.1 Motivating Example 

Today web is growing very fastly. A variety of new services are added to the web 

everyday. The problem is that, it is very difficult for human beings to find out the 

relevant services and their collaboration requirements for achieving their goals. The 

whole aim of the semantic web is to make web machine interpretable in order to 

make such difficult problems solvable by machines. As a result, humans do not need 

to conduct manual analysis on the web for achieving their goals which is a very time 

consuming task. Instead they only provide their requests to the software agents 

which handle the problem automatically.  

Manual analysis on web services for discovering the relevant ones and their possible 

collaborations for achieving a request is very difficult because of the existence of a 

huge search space. In addition to this difficulty, some more problems exist such as 

unreliability and partial observability of the web. 



 29 

Software agents should also consider these difficulties during handling the user 

request, otherwise unintentional side effects might be generated. 

A sample scenario that clarifies the mentioned problems can be stated as follows: 

Suppose a user is planning to travel; he/she needs to reserve a flight from a source 

airport to a destination airport in a specific time period and he/she also needs to 

reserve a vehicle transport from his/her home to the source airport.  Both of these 

two requirements are atomic. If requested flight is not provided, vehicle transport 

should not be booked either. If the user cannot reserve vehicle transportation to the 

airport, there is no way for him/her to reach airport so flight booking should not be 

done in such a case either.  In this scenario, there is a need to use six different web 

services in order to achieve the user’s goal. The required services and their functions 

are listed in Figure 3-1. The user provides his/her request logically; he/she says that 

“I want to book flight from A to B and I want to book transportation from C to A”. 

The details of the request are determined at run time by the software agent. For this 

problem a particular solution that will be provided by the software agent is shown in 

Figure 3-2. 

 

 

 

 

 

 

 

 

 



 30 

CreateVehicleTransportAccount: This service creates a vehicle transport account 

for a particular person. The user provides personal information such as name, 

address, password, etc. and the service creates a transport account that is required 

for reservation in later stages. 

RegisterPersonWithTransport: This service reserves a particular transport to a 

particular person. It requires that person has a transport account and it requires 

transport id information. If requirements of the service are provided, it books the 

transport for the person. 

RequestTransport: This service provides a transport id corresponding to request 

parameters such as source and destination locations and arrival time. 

CreateFlightAccount: This service creates a flight account for a particular person. 

The user provides personal information such as name, address, password, etc. and 

the service creates a flight account that is required for reservation in later stages. 

BookFlight: This service reserves a particular flight to a particular person. It 

requires that person has a flight account and it requires flight id information. If 

requirements of the service are provided, it books the flight for the person. 

ProposeFlight: This service provides a flight id corresponding to request 

parameters such as source and destination locations and arrival time. 

 

Figure 3-1 Example Services in Motivating Example 

 

 

 



 31 

 

 

Figure 3-2 Motivating Example 



 32 

“BookFlight” and “RegisterPersonWithTransport” are the main services that solve 

the user’s problem. These two services require “validtransport account” and 

“validflight account” that are provided by the “CreateFlightAccount” and 

“CreateVehicleTransportAccount” services. Also booking services need information 

that is “flight id” and “transport id” respectively. If this information cannot be 

provided by the user which is the case in this scenario, “ProposeFlight” and 

“RequestTransport” services provide that information according to user provided 

flight and transport parameters.  

Initially, “CreateVehicleTransportAccount” service is fired. It prompts the user 

account data request which is the physical counters (obtained from WSDL) of 

logical account data that is provided in domain ontology. The user provides the 

required information and the service executes. As a result of the execution, a valid 

transport account is created for the user. Then, “RegisterPersonWithTransport” 

service is fired and requests transportid information from the user. Since the user 

could not provide the requested transportid information, another service, namely 

“RequestTransport” service is discovered by the software agent which provides the 

needed information. The user provides required transport parameters such as source 

and destination locations, and the service produces a transportid. This information is 

conveyed to the “RegisterPersonWithTransport” service and the service is fired 

again with its requirements satisfied. At the end, a vehicle transport is reserved for 

the user. Similar operations are conducted for the other goal which is booking a 

flight.  

During all these operations some unexpected situations may arise such as service 

execution failure or non observable information. For instance in this scenario, during 

booking operation, transport and flight ids are needed which are not known by the 

user. Luckily, another service can provide this information so a valid solution can be 

extracted. If such a service could not be discovered, session should be terminated. 

This problem occurs for service failures as well, if service execution fails, it is not 

considered as a valid service and another alternative service is tried to be found for 

achieving the user’s goal. If such a service could not be found, the session should be 

aborted again. Such unintentional failures are very dangerous; they may cause side 



 33 

effects in the state of the world, if world altering services are executed up to failure 

point in the session. In this particular scenario, four of six services produce world 

altering affects. For instance, in this scenario assume that there is a problem with 

“CreateFlightAccount” service. Up to the execution of that service, three services 

are executed. A vehicle transportation account is constructed for the user and a 

particular transport is booked for him/her. During “CreateFlightAccount” execution, 

if a problem occurs and another solution could not be found by the software agent, 

travel bookings should be postponed to another time. The problem is that two side 

effects are generated by the previously executed services which should be rolled 

back. In our system, world altering executions are done in a transactional 

environment and roll back operations are conducted to prevent undesired side effects 

of unsuccessful solution attempts. 

This sample scenario shows the motivation of the system that is presented in this 

thesis. Even in such a simple problem, six different services are used and some 

collaboration is conducted between them. Extracting these services and most 

importantly discovering the collaboration between them for achieving a goal is 

cumbersome for human beings in a short period of time. Software agents should be 

used for performing such difficult tasks. However, software agents should consider 

the unexpected situations; otherwise they cannot be used in real world problems 

since undesired results cannot be accepted in most of the real world problems. 

The proposed system in this work can solve the mentioned scenario automatically 

without any human assistance. The user only states her goal and provides the 

required information for web service arguments. The system can also handle the 

possible unexpected situations effectively. 

3.2 System Architecture 

In this subsection, the general system architecture of the proposed automated web 

service composition and invocation framework is presented. The architecture that is 

described in this section is a high level architecture. The details of the system will be 

explained later. The general architecture is composed of five phases which are 



 34 

preprocessing, planning, action handling, executing and unexpected event handling 

phases. The proposed architecture provides a highly dynamic, interactive, flexible 

and time efficient service composition and invocation framework. 

3.2.1 Preprocessing Phase 

Preprocessing phase prepares all the required objects for the upcoming phases. In 

this phase, the system uses semantic and syntactic service descriptions that are 

located in the service repository, user provided domain ontology, and the initial state 

and goal state ontologies. These information resources are used for producing the 

required information in specific data format and the required service client codes.  

The graphical representation of this phase is given in Figure 3-3. 

 

Figure 3-3 Preprocessing Phase 



 35 

In this phase, the software agent produces domain knowledgebase in PDDL data 

format by using the OWL-S semantic service descriptions that are provided by the 

service providers in the service repository and selected domain ontologies by the 

service requester. The software agent also produces problem information in PDDL 

data format by using the selected domain ontology and the user request. The user 

request is provided by using OWL, the initial state and goal state are represented by 

the help of OWL.  The user request can contain both world altering and information 

gathering requests. Generated information in PDDL specification will then be used 

by the AI planner in planning phase. 

Another important operation of this phase is the generation of physical counterparts 

of logical actions that are represented in domain knowledgebase. In order to achieve 

this, initially OWL-S-WSDL mapping is extracted from the grounding part of the 

OWL-S files in order to find syntactic requirements of domain actions and their 

parameters. In the physical state, logical actions and their parameters are represented 

by machine interpretable codes and types respectively. By using WSDL descriptions 

of services, client stubs are automatically generated which contain both service 

client implementations and complex type implementations that are defined in WSDL 

files by the service providers.  As a last step PDDL action- Physical action mapping 

information is constructed by using the automatically generated codes and OWLS-

WSDL mapping. This information will then be used by the executor in the service 

execution phase. 

3.2.2 Planning Phase 

In this phase, all required work is handled by Simplanner. Initially, Simplanner does 

grounding by using the available PDDL objects and PDDL action definitions and 

produces the possible logical action instances. After grounding, it constructs an 

initial plan and continues to plan in the lifetime of the session.  The graphical 

representation of the planning phase is described in Figure 3-4. 

 



 36 

 

Figure 3-4 Planning Phase 

Simplanner is any time planner: it produces a quick logical action and continues to 

planning as time permits. The planner continuously collaborates with the action 

handle/execution module and unexpected event handle module. The planner tells a 

logical action to the action handle/execution module one at a time. During real 

service execution period that is conducted by the executor, Simplanner continues to 

operate in order to refine the current plan. During service execution some problems 

may appear such as information unavailability or service execution failures. In such 

cases unexpected event handler examines the state and informs the planner about the 

unexpected situations. Simplanner will then produce a new plan according to the 

current state. 



 37 

3.2.3 Action Handling Phase 

In this phase, the logical action that is provided by the planner is handled in order to 

satisfy the user needs. The graphical representation of this phase is given in Figure 

3-5. 

 

Figure 3-5 Action Handling Phase 

Action evaluator initially examines the parameters of a given action and finds the 

real values of the parameter objects in the logical/physical information mapping. If 

the information is unknown in the mapping, information needed signal is fired and 

information collector prompts the user and requests the required information by 

using the syntactic counterparts of logical parameters that are obtained from WSDL. 

If the user provides the required information, logical/physical information mapping 

is updated and the execution continues. Otherwise, information collector sends the 



 38 

missing information signal to the unexpected event handler which tries to resolve the 

encountered problem.  

After successful termination of a user service request session, the executed action 

sequence is cached and a new complex action is added to the domain 

knowledgebase. The precondition of the new complex action is the initial state of the 

current session and the effect of the new action is the goal state of the current 

session. If such a cached action is proposed by the planner for future problems, the 

action sequence extractor gives the saved action sequence and the execution 

continues with that action list. After the action handling procedure is completed, 

execution starts.   

3.2.4 Execution Phase 

In this phase, real service call is performed. Execution handling is done in two ways 

according to service behavior. If only an information gathering service is executed, 

it is done as a usual service call. However, if a world altering service is executed, the 

service is not called directly but indirectly that is conformant with WS-Business 

Activity and WS-Coordination specifications. The graphical representation of this 

phase is given in Figure 3-6. 



 39 

 

Figure 3-6 Execution Phase 

In this phase, dynamically generated service client codes and PDDL action- physical 

action mappings are used in order to make a real service call. The objects are 

dynamically constructed at run time by using the mentioned information resources 

and by the help of reflection mechanism [38]. The real values of service call 

arguments are collected from the logical/physical information map and the 

constructed object instances are modified with the collected real data with reflection. 

If the service provides information, provided information is taken to the 

logical/physical information map and consumed information is deleted from the 

logical/physical information map (explained in Chapter 5). If the service to be called 

has world altering effects, its call is done through business activity coordinator 

which is generated at the beginning of each session.  



 40 

3.2.5 Unexpected Event Handling Phase 

During service execution and during information collection, some unexpected 

situations may appear. Service execution may fail because of network problems or 

wrongly provided arguments or the user may not know the information that is 

required by the service. Such unexpected situations are handled in this phase. The 

operations of this phase are described in Figure 3-7. 

 

Figure 3-7 Unexpected Event Handling Phase 

At the initial state, it is assumed that all services that are specified in the service 

repository are available for execution and all the required information of services 

can be provided by the user. If service execution fails, the failed service is logically 

made unavailable. As a result, the logical action that causes the invocation of the 

failed service is not considered by the planner in later steps. Planner tries to find 

alternative services to achieve the user goal. If alternative actions do not exist, no 

plans can be found to satisfy user needs.  



 41 

Most of the time, web service requires some input information. If information could 

not be provided by the user, the logical state that assumes all the required 

information is going to be provided by the user at runtime is modified. The logical 

counter of the information which is not known by the user is removed from the state. 

As a result planner tries to find a service that provides the required information or an 

alternative path that does not require that particular information. If planner is able to 

find such a service, execution continues; otherwise the session is terminated. 

If replanning cannot produce new ways to achieve goals of the user after the 

occurrence of unexpected events, the transactional operations are rolled back. The 

business initiator sends the necessary signal (i.e. compensate) to all participant 

services through business activity coordinator. This prevents side effects of 

unsuccessful attempts. 

3.3 OWL-S/PDDL Mapping 

OWL-S/OWL to PDDL mapping is an important step for automated web service 

composition with AI planners. Most of the AI planners use PDDL data format for 

domain and problem representation as in the Simplanner case. On the other hand, 

semantic web services are described using OWL-S and users can provide their 

requests using constructs that are defined in domain ontologies which are most 

probably defined using OWL. Therefore some sort of translation is needed between 

these distinct formats.  

 OWL-S/OWL has many common characteristics with PDDL which enables to 

translate from one format to another straightforwardly. There exist previous works 

to perform this translation. They all propose similar things with some small 

distinctions. In works [29], [39], [40] some techniques are proposed for OWL-

S/OWSL to PDDL conversion that are very similar to each other. In [39], the most 

important difference is the usage of KIF language for precondition and effect 

representation which is one of the recommended languages in OWL-S 1.1 

specification. In work [29], a custom language namely PDDXML [29] is used for 

precondition and effect representation which is acceptable. In OWL-S 1.1 



 42 

specification, the language that is used for precondition and effect representation is 

not determined explicitly so custom languages can be used as in [29].  In work [39], 

input and output parameters of OWL-S actions are directly converted to PDDL 

parameters. In [29], as well as same conversion a new predicate is generated for 

PDDL representation, namely agentHasKnowledgeAbout(X) which is used to show 

information availability.  AgentHasKnowledgeAbout(X) construct is necessary for 

web service composition domain, especially for the cases where information is 

partially observable. In this thesis, this construct is used to decide about the 

information gathering resource: is it the user or is it another web service? This thesis 

accepted the approach that is presented in [29] with some modifications that are 

needed to handle nondeterministic cases such as service failures. For handling 

service failures, new predicates are generated for each web service that represent 

their availability. In this work, for precondition and effect representation, PDDXML 

is used as in [29], which is easy to use and sufficient for the required information 

representation. The conversion rules are adapted from [39] and [29] except for the 

predicates that are used for service availability. The service availability predicates 

are proposed in this work for handling nondeterministic service executions. The 

conversion rules between OWL-S/OWL and PDDL are as follows: 

 OWL classes are converted to PDDL types, class-subclass hierarchy is 

preserved during conversion. 

OWL Definition PDDL Definition 

<owl:Class rdf:ID="Region"/>           (:types  Region – object)    

<owl:Class rdf:ID="ConsumableThing"/>           

 

<owl:Class rdf:ID="PotableLiquid">  

  <rdfs:subClassOf     

rdf:resource="#ConsumableThing" /> 

</owl:Class>  

(:types ConsumableThing – object 

PotableLiquied  - ConsumableThing)  

 

Figure 3-8 OWL Class – PDDL Type Mapping 



 43 

 OWL properties (object properties, data type properties, functional 

properties...) are converted to PDDL predicates. 

OWL Definition PDDL Definition 

<owl:Class rdf:ID="Wine”/> 

 

<owl:Class rdf:ID="WineGrape”/> 

 

<owl:ObjectProperty rdf:ID="madeFromGrape">  

  <rdfs:domain rdf:resource="#Wine"/> 

  <rdfs:range rdf:resource="#WineGrape"/>  

</owl:ObjectProperty> 

(:types  Wine – object 

 WineGrape – object)  

(:predicates (madeFromGrape ?WineParameter – 

Wine  ?WineGrapeParameter  –  WineGrape)) 

Figure 3-9 OWL Property – PDDL Predicate Mapping 

 OWL individuals that are instances of OWL classes are converted to the 

PDDL objects. 

OWL Definition PDDL Definition 

<owl:Class rdf:ID="Region”/> 

 

<Region rdf:ID="CentralCoastRegion" />  
 

(:types Region – object)  

(:objects CentralCoastRegion – Region) 

Figure 3-10 OWL Individual – PDDL Object Mapping 

 



 44 

 OWL-S service description is converted to PDDL action. The domain.pddl is 

constructed through OWL-S descriptions. valid[ServiceName] predicate is 

added to the preconditions of each service. 

OWL Definition PDDL Definition 

<service:Service rdf:ID="BookFinderService"> 

<service:presents 

rdf:resource="#BookFinderProfile"/> 

<service:describedBy 

rdf:resource="#BookFinderProcess"/> 

<service:supports 

rdf:resource="#BookFinderGrounding"/> 

</service:Service> 

 (:predicates validBookFinderService) 

(:action  BookFinderService 

(:precondition (validBookFinderService))) 

Figure 3-11 OWL-S Service – PDDL Action Mapping 

As mentioned before for precondition and effect representation, PDDXML language 

that is presented in [29] is used. PDDXML [29] is a very simple xml language that 

uses OWL properties and OWL-S service parameters to describe preconditions and 

effects. 

 PDDXML preconditions are converted to PDDL action precondition. 

 

 

 

 



 45 

PDDXML Definition PDDL Definition 

<precondition>  

<and> 

<pred name="validPersonalFlightAccount"> 

      <param>?Person</param> 

       <param>?AccountData</param> 

</pred> 

</and> 

</precondition> 
 

(:action ServiceName 

:parameters ( ?Person - Person  ?AccountData - 

Account) 

:precondition  (validPersonalFlightAccount 

?Person  ?AccountData) 

) 

Figure 3-12 PDDXML Precondition – PDDL Precondition Mapping 

 PDDXML effects are converted to PDDL action effects. 

PDDXML Definition PDDL Definition 

<effect> 

<and>  

<pred name="isBookedFor"> 

     <param>?Flight</param> 

     <param>?Customer</param> 

</pred> 

</and> 

</effect> 
 

(:action ServiceName 

:parameters ( ?Flight - Flight  ?Customer            

- Person) 

:effect (isBookedFor ?Flight  ?Customer) 

) 

Figure 3-13 PDDXML Effect – PDDL Effect Mapping 



 46 

 OWL-S input parameters and output parameters are converted to the PDDL 

parameters. AgentHasKnowledgeAbout predicate is placed to the 

preconditions of actions for each input and it is placed to effects part of 

actions for each output parameter. 

OWL-S Definition PDDL Definition 

<profile:hasInput> 

 <process:Input rdf:ID="Flight"> 

 <process:parameterType     

rdf:datatype=TravelOntology.owl#Flight 

</process:parameterType> 

</process:Input> 

</profile:hasInput> 

(:action ServiceName 

:parameters ( ?Flight - Flight) 

:precondition  

(agentHasKnowledgeAbout ?Flight ) 

) 

<profile:hasOutput> 

 <process:Output rdf:ID="VehicleTransport"> 

 <process:parameterType     

rdf:datatype=TravelOntology.owl#Transport 

</process:parameterType> 

</process:Output> 

</profile:hasOutput> 

 

(:action ServiceName 

:parameters (?VehicleTransport               

- Transport) 

:effect          

(agentHasKnowledgeAbout   

?VehicleTransport  - Transport) 

) 

Figure 3-14 OWL-S Parameter – PDDL Paramter Mapping 



 47 

 The initial state and goal state of the user request are described in OWL and 

they are converted to init and goal descriptions of problem PDDL. 

In the beginning, it is assumed that all required information can be provided by 

the user except for the particular information that is included in goal statement 

that requires information gathering activity. In such a case the user explicitly 

says that he/she does not know that particular information and intends to learn 

that information. So, for all defined object instances for which the user does not 

explicitly state unavailability in problem description, 

“agentHasKnowledgeAbout (obj)” predicate is added to the initial state for all 

PDDL objects. All services are assumed to operate initially and for all service 

definitions “validServiceName” predicates are added to the initial state. 

OWL Definition PDDL Definition 

 

Initial State: 

 

<VehicleTransport  rdf:ID = 

“TransportToHospital”/> 

 

<Patient  rdf:ID = “Patient_0”/> 

 

Goal State: 

 

<VehicleTransport  rdf:ID = 

“TransportToHospital”/> 

 

<Patient  rdf:ID = “Patient_0”/> 

 

 <VehicleTransport 

rdf:resource="#TransportToHospital"> 

    <isBookedFor rdf:resource="#Patient_0"/> 

</VehicleTransport> 
 

  (:objects TransportToHospital                               

– VehicleTransport Patient_0   –   Patient) 

(:init (validService1) 

(validService2) 

………………… 

(agentHasKnowledgeAbout 

TransportToHospital) 

(agentHasKnowledgeAbout  Patient_0) 

…………… 

) 

(:goal (and (isBookedFor TransportToHospital 

Patient_0)))) 

Figure 3-15 OWL State – PDDL State 



 48 

In the example above, the user represents his/her request through OWL statements. 

The user defines logical objects and the desired state about the logical objects. If the 

user needs information but not a state change, a logical object “obj” is defined as in 

the example above and “agentHasKnowledgeAbout obj” is added to the goal 

definition. In such a case “agentHasKnowledgeAbout obj” is removed from the init 

definition. 

 

 



 49 

CHAPTER 4 

4 AUTOMATED WSC WITH SIMPLANNER 

Simplanner is a very suitable planner for web service composition domain; since it 

provides the ability to handle partially observable, nondeterministic environments in 

a time efficient manner. The application of Simplanner to the WSC domain is 

presented in this chapter with a brief introduction to Simplanner algorithm. This 

chapter concludes with a discussion about the advantages that Simplanner provides 

for WSC domain. 

 Simplanner [6] is a kind of domain independent AI planner that is designed to 

operate on highly dynamic, partially observable environments with time limitations. 

Simplanner is any time planner, that is, it finds an initial solution to the presented 

problem very quickly and tries to refine the initial solution as time permits. 

Simplanner is also an online planner which makes it highly resistant to the 

unexpected situations: the plan execution can start without a total plan is generated. 

Lastly it allows modifying the current state to another desired state which enables to 

deal with incomplete information and unexpected situations. As a result, the 

required flexibility for real world problems can be obtained. 

4.1 Introduction to Simplanner 

One of the most important features of Simplanner is its responsiveness in real time. 

Planning problems are generally very complex problems to solve and their 

computational complexity is generally exponential so it is very difficult to give a 

solution in a short period of time.



 50 

There exist distinct approaches for producing solutions in a timely manner such as 

precompiled solutions to the problems and any time planning approaches [6]. In 

most of the real world cases as in the WSC, using precompiled solutions is out of the 

question since there exist millions of possible problems and solutions, so what is 

needed is to use any time approach like Simplanner. By using anytime approach, 

Simplanner gives an initial solution in polynomial time which is reasonable and it 

continues to plan up to the execution point. As mentioned before, the execution can 

start any time before the total plan generation. After each execution step, Simplanner 

considers the current state and produces a plan for the current situation [6]. 

Achieving any time planning is a very difficult task and generally requires important 

amount of domain knowledge as in HTN case that uses domain information for task 

decomposition. Using HTN based solutions is limited in most of the real world 

problems since there does not exist sufficient domain knowledge in most of the 

cases. For instance for WSC domain, such a task decomposition information can be 

obtained from complex process definitions of OWL-S descriptions but it is very 

limited. The main aim of those complex process definitions is to show the 

interaction details for the service requester but not to give information about the 

domain and in most of the cases such complex interactions are not available. What 

we need is a domain independent any time planner for time critical operations.  The 

novelty of the Simplanner comes from the fact that it achieves anytime planning 

without any need to domain specific information.  

Figure 4-1 adapted from [6], represents the integrated architecture of planning and 

execution steps of Simplanner. 

 



 51 

 

Figure 4-1 System of  Simplanner 

Simplanner continuously interacts with the custom executor logic. It provides 

logical high level actions to the executor and gets the information about the 

unexpected events from the executor. If an unexpected event occurs, planner rejects 

the current plan and tries to find out a new plan that is suitable for the current state. 

If everything goes well, planner does not try to find a new plan from scratch but to 

improve the current plan by searching the state space as time permits [6].  

The aim of the Simplanner is to find a complete solution to the presented problem as 

other AI planners, but Simplanner has also another goal which is very important and 

provides the main distinction from other planners. Simplanner concentrates on the 

initial action but not on the whole plan because of the anytime principles. The 

algorithm of the Simplanner is based on the depth limited heuristic search that can 

be interrupted at any time. If interruption occurs, planner returns the most promising 

action that will be used to reach the goal state. Otherwise it continues to provide 

better solutions [6]. 



 52 

Figure 4-2 that is presented in [6] shows the working mechanism of Simplanner very 

briefly. 

 

Figure 4-2 Simplanner Working Mechanism 

“S0” represents the initial state. The planner starts to search for the most useful 

action in the current state for reaching the goal. If the planner is interrupted at any 

time because of a request for an action, it provides the best action that it has found 

up to that point and stores the other actions as alternatives. After selecting an action, 

the planner changes the current state to the state that is resulted from executing the 

proposed action. The negative effects of the executed actions are removed from the 

current state and positive effects are added to the current state and the current state is 

changed to the newly constructed state and search continues [6]. 

The search continues until the goal state is reached or a depth limit is reached. Even 

if the goal is reached, the expansion procedure does not terminate. The planner tries 

to find better solutions for the problem until interrupted by external entities. The 

expansion procedure is not a backtracking but a back jumping. That is, expansion 



 53 

continues with the nodes located at higher levels since initial actions are more 

important for the rest of the plan and those actions are executed at the points that are 

farthest to the goal state [6]. 

Due to the characteristics of the general Simplanner algorithm, the most important 

focus is on producing a promising action at a time, so the most important part of the 

Simplanner algorithm is its action selection procedure. Simplanner achieves to 

produce an initial plan very quickly but by losing completeness. It is not guaranteed 

to find the plan even if it exists. This is an undesired property but it is necessary to 

work with real world problems in a timely manner.  

Simplanner algorithm is based on goal decomposition and searching with heuristics 

obtained from relaxed planning graph (RPG) [41]. RPG is a rich source of 

information and it is used by most of the AI planners especially by the domain 

independent ones. 

The algorithm of the Simplanner [6] contains three important steps. Some brief 

descriptions of these steps are provided below in order to get the idea at least 

intuitively. The details of the algorithm can be found in [6]. 

Relaxed Plan Graph generation 

In this phase classical RPG is constructed but with some modifications that are used 

for handling unknown situations. RPG consists of literal and action levels and shows 

mutex relations between them. By using RPG, one can estimate the distance to the 

goal. Goal can be obtained on the literal level that does not contain any mutex 

relations between goal literal pairs. RPG is used as an important information source 

in other steps of Simplanner algorithm [6]. 

Subplan Construction 

In this phase, goals are decomposed and subplans are generated for achieving each 

goal in order to find a solution to the problem in polynomial time. Logical statement 

that is a part of the sub goal with the highest cost is selected to be provided, since 

repairing such costly cases is difficult in later stages. Cost is determined from the 



 54 

RPG and after logical statement is selected, action selection procedure starts. In 

action selection, the action with the lowest cost is selected. Action selection that 

produces desired logical statement depends on the cost which is obtained from 

action evaluation function of the Simplanner. This function considers reachability 

costs of preconditions of action, and some other properties such as negative 

interactions of the other effects of the action with the other action steps of the 

subplan [6]. 

Subplan construction may not be completed when planning is interrupted for an 

action request. It is guaranteed that, first action of the plan that is found so far is a 

valid action that can be executed. However, some problems may exist in 

forthcoming action steps of the plan. As a result the search continues to repair partial 

plans up to the next interruption of the planner. Figure 4-3 that is obtained from [6] 

shows graphically the subplan and why it is needed to continue the search process 

after initial action is provided. Some discovered actions in later steps may destroy 

the preconditions of the previously discovered actions. 

 

Figure 4-3 State Action Conditions 

Here, the state “Sfail” that contains the preconditions of action “afail” is destroyed by 

prior actions such as “a0” and “a1”, so subplan should be repaired.  

 



 55 

Subplan Ordering 

When the planner is interrupted for an action request, subplans should be ordered 

and the action “a0” of the first subplan according to the ordering process should be 

returned. For ordering process, RPG and some loop detection mechanisms are used. 

By using those resources negative interactions and positive interactions are tried to 

be found. As a result, the required ordering is conducted among subplans and the 

first action (a0) of the subplan that is ordered first is returned to the action requester 

[6].   

Simplanner’s paradigm (that is producing one action at a time for problem solution 

very quickly) is a very important property and it is very usable especially for WSC 

domain. Experimental results that are presented in [6] also show that it is highly 

competitive with other domain independent AI planners. 

4.2 Simplanner Application to WSC Domain 

Some features of Simplanner such as its ability to deal with unexpected situations 

and the reactivity that it provides are very valuable for WSC domain. In this thesis, 

these features of Simplanner are used and a service composition agent is constructed 

that is competitive with the ones that are available in the literature.  

Simplanner application and the use of its features are provided by means of four 

ways. First, service composition problem is stated in PDDL data format at a higher 

level since planner is working with PDDL data format. Second, service invocation 

component is integrated with Simplanner through some communication interfaces. 

Real execution component requests high level logical actions from planner and 

planner provides them to the execution component. As a third step, the execution 

component performs some processing and informs the unexpected event handler 

about the unexpected events. Lastly, an interface is provided between the planner 

and unexpected event handler component. Handler requests state changes from the 

planner that are suitable to the current situation. High level architecture is presented 

in Figure 4-4. 



 56 

 

Figure 4-4 High Level Software Agent Architecture 

The details of the steps can be described as follows: 

4.2.1 Problem Statement to the Simplanner 

Simplanner requires information about the domain and about the problem in PDDL 

data format. The domain information is constructed by using the OWL-S semantic 

descriptions of web services and domain ontology that is used for describing those 

services and user’s problems. High level logical action definitions as well as type 

and predicate definitions are constructed using these resources according to the rules 

described in section 3.3 (OWL-S/OWL to PDDL mapping part).  

Action definitions that are constructed during problem statement part are considered 

high level, logical actions since both actions and their parameters do not exist in the 

real physical world. Therefore, they cannot be used directly. For instance, consider 

the PDDL action in Figure 4-5 which is obtained from an OWL-S service 

description after the required translation is applied in travel domain. 



 57 

 

(:action BookFlightAtomicProcess 

: parameters (?Customer – Person  ?AccountData - Account ?Flight - Flight) 

: effect (and (isBookedFor ?Flight ?Customer)) 

) 

Figure 4-5 Logical Action Example 

“BookFlightAtomicProcess” is considered as a logical action, since it is not an 

executable action. There is no information for performing the real execution. For 

instance, service endpoint is not provided: the host and port combination that serves 

this action is unknown. The communication protocol that is needed to call the 

service is not known either. 

Similar problems exist for parameters, preconditions and effects as well. For 

instance the type of the parameter “?Customer” is “Person” in the example above, 

but “Person” type is a semantic type which cannot be used at the execution level. 

The generated effect is a logical effect as well. Some other physical operations 

should be done for a real effect.  

After the logical domain knowledge is constructed, one needs to present the logical 

problem to the Simplanner as well. The problem can only be stated logically in this 

level because of the same reasons mentioned above. The information that is 

presented to the planner is always some semantic knowledge which is necessary for 

the planner to operate. Real operations require syntactic knowledge that is handled 

in later stages. 

The problem is provided by the user through logical statements using OWL 

individual definitions and relations between OWL individuals. Those statements that 

are represented in ontology web language are translated to the PDDL objects and 

PDDL initial and goal states according to the rules defined in section 3.3. Both 

OWL statements and PDDL statements are logical high level constructs and gives 



 58 

the same information. The difference between the two lies in their syntax; otherwise 

the meanings of the statements are totally the same. Users provide their requests 

abstractly and the details of the request are extracted by the software agent in later 

stages by asking the user the required information. The simple example provided 

below clarifies the mentioned things here.  

Suppose the user wants to make a transportation reservation to the hospital for a 

person. The user defines his request by using the domain ontology constructs and 

defines the initial state and the desired state. In the initial state, the statements in 

Figure 4-6 are provided by the user to show the logical availability of a particular 

person and a particular transportation.  

<Person rdf:ID="Patient_0"/> 

<VehicleTransport rdf:ID="TransportToHospital"/> 

Figure 4-6 Example Initial State 

In the goal statement, the user shows the availability of the same logical objects and 

presents the desired relation between these two logical objects. They are all logical; 

there is no information about the details of a particular transportation and particular 

person. In this level, the only useful information is semantic types of objects which 

are sufficient in this phase.  

 

 

 

 

 



 59 

<Person rdf:ID="Patient_0"/> 

<VehicleTransport rdf:ID="TransportToHospital"/> 

<VehicleTransport rdf:resource="#TransportToHospital"> 

     <isBookedFor rdf:resource="#Patient_0"/> 

 </VehicleTransport> 

Figure 4-7 Example Goal State 

OWL statements in Figure 4-7 describe that, there is a desire to book a thing whose 

semantic meaning is “VehicleTransport” to another thing whose semantic meaning 

is “Person”. The semantic details are going to be obtained by the actions proposed 

by the planner and syntactic details are going to be obtained by the service composer 

agent by asking questions to the user. 

Sometimes users do not request a change in the world state but they only need to 

find out information. In such cases, agentHasKnowledge(X) construct of [29] is 

used. In this case, users provide limited information about their requests. For 

instance, suppose the user wants to find out the flight number of a particular flight. 

In such a case he/she presents the statements in Figure 4-8 to the system initially. 

Init: 

 <Flight rdf:ID="Flight"/> 

Goal: 

<Flight rdf:ID="Flight"/>   

<agentHasKnowledgeAbout rdf:resource=”#Flight”> 

Figure 4-8 Information Gathering Request Example 



 60 

The details of the flight such as its source and destination locations and arrival time 

are all unknown at this stage. The system only knows that user wants to retrieve the 

flight number of a particular flight. 

It is possible to collect more details about the problem at the initial stage, but this is 

an ineffective way. The user cannot know all of the required information that will be 

needed in later stages. In such a scenario the user should provide too much 

information, important amount of which is not used most probably. As a result that 

solution is unacceptable. In our work, we propose to request only necessary 

information from the user after understanding their problem in a higher level. 

4.2.2 Planner – Execution Component Integration 

After high level problem and domain information are presented to the planner, it 

tries to find out a logical solution to the current problem. Two important 

assumptions are made at the beginning of planning. First, all the actions that are 

available in the domain knowledge base are executable. Second, all the necessary 

information that will be required in later stages can be provided by the user. These 

assumptions are the initial assumptions. The validity of these assumptions is 

determined after some interactions with the user and web services. If the 

assumptions are wrong, they are handled easily by the features of Simplanner.  

The initial assumptions mentioned above are asserted to the planner through the use 

of two predicates: “validService” and “agentHasKnowledgeAbout”.  Each logical 

action definition that corresponds to a physical web service operation includes 

statements with these predicates in their precondition part.  In order to execute any 

service, it should be physically available and the parameters that are required for 

executing that service should be known apriori. Consider the example in Figure 4-9: 

 

 

 



 61 

(:action BookFlightService 

: parameters ( ?Customer - Person ?AccountData - Account ?Flight - Flight) 

: precondition (and (validBookFlightService) 

(agentHasKnowledgeAbout ?Customer) 

(agentHasKnowledgeAbout ?AccountData) 

(agentHasKnowledgeAbout ?Flight) 

) 

Figure 4-9 Asserted Service Preconditions 

“BookFlightService” is the logical counterpart of the service operation that does 

booking operation. The service requires three parameters, the semantic types of 

which are “Person”, “Account” and “Flight” respectively. The precondition 

statements show the mentioned idea. The parameters should be known and service 

should be available. 

The action definitions provided in the domain.pddl are generic action definitions, so 

they cannot be used directly even logically. Simplanner does a grounding operation 

on actions with the defined pddl objects in problem.pddl before searching for a plan. 

The result of grounding process is real logical actions. For instance, for the logical 

instantiation of the action “BookFlightService”, three logical objects with the 

required types are necessary. Suppose such objects are defined in the problem.pddl 

with the corresponding types as in Figure 4-10: 

(: objects Person1 - Person  Person2 – Person  Account1 – Account Flight1 – Flight)  

Figure 4-10 Example Logical Objects 



 62 

The logical action definitions that are obtained after action instantiation of the 

“BookFlightService” are as follows: 

BookFlightService Person1 Account1 Flight1 

BookFlightService Person2 Account1 Flight1  

Figure 4-11 Example Grounded Actions 

At the initial problem statement, the user defines some logical objects and represents 

the relationship between them, but some other objects with other types may be 

necessary to solve the problem. Suppose the user wants to do a booking and 

represents his/her problem as described in “Problem Statement to the Simplanner” 

part. Initially the user does not know that “BookFlightService” is going to be used 

for the solution of the problem, so he/she does not know the required parameters of 

the service either. As a result, some of the required logical objects that are necessary 

for the problem solution are not provided by the user. This is an important issue. For 

the “BookFlightService” example, the logical service instantiation needs some 

“Account” typed object. If it is not defined by the user in the problem statement, the 

service cannot be used even if it is required for the solution. That is a problem and in 

this work the solution to that problem is provided by constructing one logical object 

corresponding to each PDDL type if not constructed by the user explicitly.    

The instantiation of any action becomes possible after logical object construction 

with each PDDL type but the instantiation is not sufficient for logical execution. As 

mentioned before, each logical object that is used as a parameter by the logical 

action should be converted to the physical ones. Before the physical execution, the 

software agent asks for the values of those logical objects and acts according to the 

answer.  



 63 

Considering the action “BookFlightService”, the statements in Figure 4-12 are not 

available in problem.pddl before the planning procedure starts. They are constructed 

by the software agent after examining the user request. 

(:objects  PersonObj - Person  AccountObj – Account FlightObj – Flight)  

(:init (and 

(validBookFlightService) 

(agentHasKnowledgeAbout PersonObj) 

(agentHasKnowledgeAbout AccountObj) 

(agentHasKnowledgeAbout FlightObj) 

)) 

Figure 4-12 Initial Logical Statements Example 

If some logical objects are constructed with types “Person”, “Account” or “Flight” 

in the user request, another object with the same type will not be constructed again. 

As mentioned before the pddl objects are logical objects, so same objects can be 

used for instantiation of distinct actions. The real values of these logical objects are 

obtained at run time so the use of the same logical object by distinct services does 

not mean that distinct services are called with the same arguments. Suppose 

“service1” uses “obj1” as a parameter and “service2” uses “obj1” as a parameter 

again. During “service1” call, the real value of “obj1” is requested from the user or 

from another service the details of which are described later. During “service2” call, 

the same procedure is applied from scratch. Therefore, distinct arguments are used 

for the same logical objects. In conclusion, one logical object for each pddl type is 

sufficient and they do not cause confusion during real service call since physical 

values obtained in later stages.  



 64 

At the user request examination step of the software agent, information gathering 

requests are determined. If such a request is available, the software agent 

understands that the user does not have any information about the logical object that 

is mentioned in the request statement about the information gathering activity. The 

software agent then does not make the assumption that user can provide information 

about the particular logical objects and removes those particular objects from the list 

of known objects. For instance, if the user presents an information gathering request 

as in Figure 4-8; the software agent will not construct an object with type “Flight” 

and it does not add “agentHasKnowledgeAbout Flight1” statement to the init section 

of the problem pddl. 

After the initial problem is given to the planner, the planner tries to find a solution. 

The execution module requests an action from the planner after some deliberation 

time. When the request comes from the executor, the planner returns the most 

promising logical action (that is grounded action with logical objects) to the 

executor. While the executor is doing its own job (real service execution, 

information collection from user, etc…), the planner continues to search for a better 

solution and repair any problems that may occur in later steps of the proposed initial 

solution. The planning procedure continues until an interruption by the executor 

again. 

4.2.3 Execution Component and Its Integration with Unexpected Event 

Handler Component  

After the execution component retrieves the logical action to be executed from the 

planner, its turn starts. As mentioned before, logical actions are not complete and not 

executable. Some processing is needed for making them executable.  

Real service execution is described in Chapter 5 in detail. Before real service 

execution, some more steps are needed. Action handler component which has very 

important function in the whole system does its processing. It prepares logical 

actions for execution in two ways.  



 65 

First, it tries to collect real parameters that are physical counterparts of logical action 

parameters from the user or from other web services. For instance, the planner 

provides a logical action like in Figure 4-13: 

BookFlightService Person1 Account1 Flight1 

Figure 4-13 Logical Action Example 

“Person1”, “Account1” and “Flight1” are the objects that are defined in 

problem.pdll description as discussed earlier. The only information about these 

logical objects is their semantic types at this stage, which is not usable for real 

service execution. 

Logical/Physical map, which is an in memory information holder is the core of the 

mechanism that associates logical entities with their physical counterparts. During 

the beginning of each session, a fresh Logical/Physical map is constructed (the 

details are presented in Chapter 5). The Logical/Physical map contains syntactic 

counterparts of semantic objects and their current values. Syntactic counterparts of 

semantic objects are obtained by processing the grounding part of OWL-S service 

descriptions and WSDL descriptions of services. Initially all real values of the 

syntactic counters of logical entities are unknown. During the processing, those 

values are obtained from the user or from other services. 

When a logical action is presented to the action handler, it extracts the parameters 

from the logical action and it looks up to the Logical/Physical map to find out their 

real values. If Logical/Physical map is able to provide that information, the action 

handler directs the action to the real executor. If the answer “unknown” is returned 

from the Logical/Physical map, information collector’s turn starts. Initially, the 

information collector gets the syntactic details of logical objects from the 

Logical/Physical map. For instance, a logical object “Request” whose semantic type 



 66 

is “RequestParameters” is contained in the parameters of the current action 

definition. The WSDL counterpart of “RequestParameters” that is obtained from 

OWL-S grounding section is “RequestInfo” type. It has a complex type definition in 

the WSDL. Suppose “RequestInfo” complex type contains the parts that are 

presented in Figure 4-14. 

DestinationLocation – xsd:string  

SourceLocation – xsd:string  

ArrivalTime – xsd:dateTime  

Figure 4-14  Example Complex Type Parts 

When the information collector requests the details of “Request” object, 

Logical/Physical map provides all the syntactical details and the information 

collector asks the user for the values of “DestinationLocation”, “SourceLocation” 

and “ArrivalTime”. The user will provide “DestinationLocation”, “SourceLocation” 

and “ArrivalTime” for the example above. If the user could not provide the 

requested information, some other strategy should be used. As an example, suppose 

the user tries to book a flight and for booking a flight a flight number is needed by 

the booking service. The above procedure is applied by the software agent and the 

value of the flight number is asked to the user. If the user does not know the value, 

he/she tells the software agent that the value is not known. In this case an 

unexpected situation signal is fired. The details of unexpected event are sent to the 

Unexpected Event Handler Module.    

The second role of Action Handler is to extract the details of cached actions. Action 

caching is a mechanism for making use of previous experiences in order to speed up 

the system. (Action caching is described in chapter 5 in detail). When a cached 

action is proposed by the planner, the procedure that is used for non-cached actions 

cannot be applied. There does not exist any information about the details of cached 



 67 

actions in Logical/Physical Map and the details of the actions are obtained from 

other resources, details of which can be found in Chapter 5. 

After the action handler performs its function, the real executor does the remaining 

steps for calling the web service which is described in Chapter 5. When the real 

execution is conducted some problems may arise because of network problems or 

other external reasons. In such cases the executor informs the the Unexpected Event 

Handler about the unexpected situation and completes its work about that particular 

action. 

4.2.4 Unexpected Event Handler Component and Its Integration with Planner  

The executor component sends two kinds of unexpected events to the Unexpected 

Event Handler: service unavailability and unknown information. The Unexpected 

Event Handler tries to solve these problems in collaboration with the planner. 

The Unexpected Event Handler keeps the logical state that is valid before the service 

execution. If some problem occurs, it uses this saved state and the information 

returned from the executor about the problem for constructing a new state that 

describes the current situation. After a new logical state is constructed, it is 

presented to the planner and the planner starts to find a solution according to the 

current situation. Simplanner allows state changes at any time. After a state change 

request is taken by the planner, the logical actions that it provides to the executor are 

conformant with the current situation afterwards. 

When the service unavailability message comes from the executor to the unexpected 

event handler, it requests a state change from the planner. The new state is 

constructed by removing “validServiceName” predicate from the last saved state. 

For instance if there is a problem during the execution of  the booking service 

“BookFlightService”, the unexpected event handler removes the 

“validBookFlightService” predicate from the newly constructed state and informs 

the planner. After that point, “BookFlightService” cannot be used, since its 

precondition “validBookFlightService” is not satisfied.  The planner will not 

consider this logical action again and it tries to find other ways for solving the 



 68 

problem. There may exist alternative ways to solve the same problem. The planner 

constructs a new solution with alternative services if available. Otherwise, the 

session is terminated unsuccessfully. If session is terminated without totally 

completed, there may exist some side effects in the environment because of the 

previously executed world altering services. These side effects are undesired and are 

not acceptable in most of the cases. In this work, transactional execution is used for 

world altering services. If session is uncompleted because of unexpected events, side 

effects are compensated by the used transaction mechanism. The session termination 

condition and used transactional mechanism are described in Chapter 6 in detail. 

The other unexpected event is information unavailability. The information collector 

component of the execution module asks the user the values of physical counterparts 

of logical objects as described before. If the user could not provide the requested 

information, the unexpected event handler changes the logical state for stating the 

planner that the particular logical information is not known by the user. Suppose 

there is a logical object “Flight1” which has a semantic type of Flight. Initially, the 

logical state contains “agentHasKnowledgeAbout Flight1” predicate which assures 

the user can provide the required information about logical object “Flight1”. If the 

information collector cannot get the necessary information about “Flight1” from the 

user, it tells the situation to the unexpected event handler. The unexpected event 

handler removes the “agentHasKnowledgeAbout Flight1” predicate from the last 

saved state and tells the state change request to the planner. After that state change, 

the planner has two alternatives. First, it can search for other actions that do not 

require the unknown information and that can be used for problem solution. Second, 

it can try to find other services that provide the required information. Suppose an 

action, partial definition of which is presented in Figure 4-15 exists: 

 

 

 

 



 69 

(:action ProposeFlight 

(:parameters ( ……..         ?Flight – Flight)  

(:effect  (and  …….… 

(agentHasKnowledgeAbout ?Flight))) 

Figure 4-15 Example Action Definition 

This action is grounded with “Flight1” during Simplanner action grounding 

procedure and it can provide the required information about the logical object 

“Flight1”. If the planner proposes this information gathering action to the executor, 

the executor does the real service call. The physical counterpart of the logical object 

“Flight1” is constructed with the reflection mechanism (details are provided in 

Chapter 5). Then, real values of these physical counterparts are updated in 

Logical/Physical map. When an action that requires the information about “Flight1” 

is proposed by the planner again, the action handler can get the real values that are 

required for the service call from the Logical/Physical map without any need to ask 

the user again. An important issue about the Logical/Physical map is that, if real 

values of the physical counterparts of logical objects that are provided by either the 

user or by another web service are once used, those real values are cleared from the 

map even if they are required in later steps because of the reasons described in 

Logical/Physical map section of Chapter 5.    

The details of the information collection procedure from services and users, and 

Logical/Physical map are presented in Chapter 5 and the details of session 

termination and the transactional mechanism are described in Chapter 6.  

4.3 Advantages of Using Simplanner for WSC Domain 

As it can be understood from the discussions above, Simplanner is very suitable for 

the automated web service composition problem. It’s anytime planning mechanism 

and its feature that enables starting execution before complete plan generation and 



 70 

its domain independent working principle are very valuable for service composition 

problem.  

Some important surveys about the behaviors of AI planners are conducted as 

described in Chapter 2 and some important criteria are determined to evaluate the 

success of AI planners in this domain. In Chapter 2, the importance of Simplanner is 

shown for this domain when compared with the other AI planners according to those 

evaluation criteria.  

The most important advantages that usage of Simplanner provides in automated web 

service composition domain can be summarized as follows: 

 Timely response 

In web service composition domain, timely response is very important. Humans 

present their request to the system and wait for a quick response. Solving 

planning problems is a very difficult task and generally requires exponential 

computation time which is not reasonable for this domain. As mentioned before, 

Simplanner finds a very quick initial solution and tries to refine the problem for 

finding more optimal solutions. For instance a three step plan is more optimal 

than a five step plan for the same problem but if finding the three step plan 

requires hours while the five step plan can be found in seconds, finding five step 

plan is much more desirable for this domain.  

Simplanner provides timely response that the user of the system does not feel the 

passing time. If the domain that is worked on is too big, the planner cannot 

provide timely responses but this is the problem of all domain independent 

planners. The scalability issues about Simplanner and what “too big” means is 

discussed in Chapter 7.   

 Dealing with Nondeterminism Effectively 

One of the most important advantages that Simplanner provides is its ability to 

deal with unexpected situations. Web is a very dynamic environment and 

classical techniques that assume everything is observable and the results of each 



 71 

action are known apriori is out of question. Simplanner interleaves planning and 

execution, which provides an important amount of flexibility. Some unknown 

things and nondeterministic executions can be determined by performing some 

real operations. Through state change requests, the collected information is 

presented to the planner which is used for later decisions by the planner. Some 

other planners provide effective solutions for dealing with nondeterministic 

cases, but most of them consider all possible situations before execution which is 

not usable when there exist too many things to consider.   

Dealing with nondeterminism at run time is very important if there exist too 

many unknown things as in WSC case. Dealing with nondeterminism is not 

sufficient but that operation should be conducted in a short period of time in 

order not to lose responsiveness. The Figure 4-16 that is taken from [6] shows 

the effectiveness of Simplanner for dealing with unexpected situations.   

 

Figure 4-16  Simplanner Behaviour to Unexpected Events 

Figure 4-16 shows the required time for producing an action. At initial steps, 

since the goal is far away, deliberation time is more with respect to the final 



 72 

steps. As can be seen from the figure above, unexpected situations do not 

increase the action production time, so dealing with unexpected situations can be 

done in a responsive way. 

 Parallel Execution and Planning 

As Simplanner allows interleaving and planning, the execution and plan 

refinement procedure are done totally in parallel. The deliberation time that is 

provided to the planner is the real service execution time. During service 

execution, the planner continues its process for finding a solution. As a result, 

the planning time has almost no time cost for the system.  

 Domain Independence 

Dealing with complex planning problems in a timely manner generally requires 

important amount of knowledge about the worked domain as in the case of  HTN 

planners. In WSC domain, the only information available is OWL-S service 

descriptions and the only extra knowledge that can be found about the services 

are provided in the process definition part where the interaction details to the 

web services are provided. However, that information is very limited and does 

not provide any more knowledge than the information presented in profile part 

for most of the cases.  Producing solutions very fast without using any domain 

knowledge is a very important property for WSC domain. Simplanner provides 

that important feature. 

 

 

 

 

 



 73 

CHAPTER 5 

5 AUTOMATED SERVICE INVOCATION ISSUES 

Automated web service invocation module is one of the core components of the 

proposed framework.  Service invocation module enables dynamic service calls 

without any need to human intervention. Service invocation mechanism uses on the 

shelf technologies such as java reflection mechanism [38], web service invocation 

framework (WSIF) [42], WSDL2JAVA tool of Apache Axis [43] framework and 

integrate them in an efficient manner for achieving automated service call. During 

service invocation, the arguments that are needed for the service calls are obtained 

from the in memory data structure namely Logical/Physical map. This data structure 

provides the communication between the service invocation mechanism and the user 

provided or service provided input values. After the termination of each successful 

session, the system caches the action sequence that is used for handling the current 

problem, in order to use them directly when a similar problem comes.  

Section 5.1 presents the mechanism that is used for automated service invocation, 

section 5.2 describes the Logical/Physical map and section 5.3 describes the action 

caching mechanism.  

5.1 Automated Service Invocation 

After the planner provides a logical action to the execution module of the system, 

the action handler prepares the logical action for real service invocation with the 

help of information collector and unexpected event handler which are described in 

Chapter 3 and Chapter 4 in detail.  



 74 

Action handler makes sure that, the parameters of logical actions have desired 

syntactic counterparts in logical/physical map, so real service executor can get the 

required service argument values from the logical/physical map. If the required 

arguments cannot be supplied by the user or by another service, the planner tries to 

find an alternative path. If an alternative path could not be disvovered, the session is 

terminated before reaching the automatic service invocation phase. 

There exist two kinds of real service executions in the system. One is information 

gathering service call and the other is world altering service call. If a service has 

both information gathering and world altering effects, it is considered as a world 

altering service call. The difference between them can be understood from their 

names: world altering service call provides side effects so in order not to change the 

world in an unintended way, one makes sure that their call should be made 

transactional. The mechanisms that are used to call these two kinds of services are 

different. The information gathering services are called as usual but the world 

altering ones are called by conforming to the WS-Business Activity and WS-

Coordination standards [7], [12]. The details about transactional calls and the 

required information about the web service transaction frameworks are presented in 

Chapter 6.  

Some preprocessing is conducted for automated web service invocation purposes as 

well. Simplanner uses the semantic knowledge extracted from OWL-S service 

descriptions but the real service executor needs syntactic information to operate. The 

syntactic information is collected from WSDL descriptions of the used web services. 

WSDL contains all details for service calls such as syntactic types of operation 

arguments, service end point, required communication protocol, etc. 

For a real service call, some machine codes are required which are produced 

automatically by using WSDL2JAVA tool of Apache Axis [43] framework in this 

thesis. WSDL2JAVA tool produces all required service client codes and the 

implementations of all defined complex types in WSDL. Service client 

implementations are compiled and the metadata about the compiled codes are stored 

to the PDDL Action - Physical Action mapping.xml file. This file holds the 



 75 

information about the real implementations of logical actions and their parameters 

that are produced through the mechanism described above. For constructing PDDL 

Action - Physical Action mapping.xml file, it is not sufficient to use only the 

information that is obtained from client stub generator.  The mapping between the 

logical actions and logical parameters and their physical counterparts are also 

required. This mapping information is obtained from the grounding section of  

OWL-S semantic service descriptions. 

In order to extract the relationship between semantic types and syntactic types (that 

is, to associate logical actions and their logical parameters with their physical 

counterparts), the grounding extractor processes the grounding part of OWL-S 

descriptions. It produces OWLS-WSDL mapping.xml file which contains the same 

information as the grounding part of OWLS but it is a much easier version to be 

processed by the software agent. PDDL Action - Physical Action mapping.xml file 

is constructed by using the OWLS-WSDL mapping and the metadata of the 

dynamically generated code. It holds all the required metadata for a real service call.  

The steps that are described above can be explained in a more concrete way as 

follows: 

 The grounding extractor constructs “OWLS-WSDL mapping.xml” file that 

associates logical objects and their physical counterparts.  

The parts of the grounding section that are processed in this system are the following 

[2]:  

 wsdlDocument: Represents the URI of the WSDL.   

 wsdlOperation: Represents the URI of the WSDL operation, only atomic 

processes are considered in this work. 

 wsdlInputMessage: Represents the URI of the WSDL message definition 

that carries the inputs of the process.  



 76 

 wsdlInput: This part represents the mapping between OWLS input 

parameters and WSDL counterparts. If WSDL counterparts contain complex 

definitions, such as, user defined custom types with sequence, choice, etc. 

constructs, XSLT transformations are generally used for conducting the real 

mapping. Although such XSLT scripts are required, they are not available in 

most cases since semantic descriptions are rare currently and the available 

ones that are constructed for research purposes do not contain those scripts. 

So the alternative way is adapted in this work. The details of complex types 

are extracted by parsing the WSDL file and stored in the “OWLS-WSDL 

mapping.xml” file for associating OWL-S and WSDL types even if there 

exist complex type mappings without XSLT transformation scripts.  

 wsdlOutputMessage: Represents the URI of the WSDL message definition 

that carries the outputs of the process.  

 wsdlOutput: This part represents the mapping between OWLS output 

parameters and their WSDL counterparts. The mentioned issues about 

wsdlInput are valid for wsdlOutput too. 

The format of the xml file that is produced by the grounding extractor is as shown in 

Figure 5-1. 

<actions> 

<action name= “LogicalOperation” wsdlOperation=”PhysicalOperation” /> 

 <inputs> 

  <input wsdlName = “LogicalInput” owlsName = “PhysicalInput” /> 

   ....................... 

 </inputs> 

 <outputs> 

                  <output wsdlName = “LogicalOutput” owlsName = “PhysicalOutput” /> 

……………. 

 </outputs> 

</action> 

……………………. 

</actions> 

Figure 5-1 Grounded Actions XML Structure 



 77 

The produced information does not contain any other information than the 

information provided in OWL-S file, but this information is more easily processible 

for upcoming phases. 

 The client stub generator produces the required machine codes for web 

service clients by using the WSDL2JAVA tool of Apache Axis framework 

with the required parameters.  

During client generation, the schemas that are required for transactional aspects are 

presented to Axis. Apache Kandula [44] is used for transactional service execution, 

details of which are described in Chapter 6. The script that is used by the client stub 

generator is shown in Figure 5-2.  

Java  org.apache.axis.wsdl.WSDL2Java -s                                                                                        

-Nhttp://schemas.xmlsoap.org/ws/2004/08/addressing= org.apache.axis.message.addressing                                                                                   

-Nurn:test=test.ceng.metu.edu.tr                                                                                                         

-Nhttp://schemas.xmlsoap.org/ws/2004/08/addressing= org.apache.axis.message.addressing                                                                                                                                     

-Nhttp://schemas.xmlsoap.org/ws/2004/10/wsba=org.apache.kandula.wsba                                                                                           

-Nhttp://schemas.xmlsoap.org/ws/2004/10/wscoor=org.apache.kandula.wscoor                             

-xhttp://wsba.kandula.apache.org                                                                                                       

-xhttp://wscoor.kandula.apache.org                                                                                                   

-xhttp://schemas.xmlsoap.org/ws/2004/10/wsba                                                                               

-xhttp://schemas.xmlsoap.org/ws/2004/08/addressing                                                                       

-xhttp://schemas.xmlsoap.org/ws/2004/10/wscoor   WSDLURI 

Figure 5-2 Client Stub Generation Command 

After machine codes of client stubs are generated, the mapping between the logical 

action and logical parameters and their physical implementations are constructed. 

The information that is produced by the grounding extractor is used in this step. In 

addition, parsing WSDL for extracting details about complex types is conducted at 



 78 

this stage. The output of this phase is “PDDL Action- Physical Action 

mapping.xml” file. 

The structure of this file is shown in Figure 5-3. 

<actions><action name=”LogicalOperation” class=”ImplementationClass” endpoint= 

“ServiceEndPoint”> 

<inputs> 

<input name=”Input” class=”ImplementationClass”> 

 <subtype name=”SubType” class=”ImplementationClass”/> 

 ……………………………………. 

 </input> 

…………………………………… 

</inputs> 

 <outputs> 

<output name=”Output” class=”ImplementationClass”> 

   <subtype name=”SubType” class=”ImplementationClass”/> 

  ……………………………………. 

   

 </output> 

  …………………………………… 

 

</outputs> 

</action> 

…………………………………… 

</actions> 

Figure 5-3 PDDL Action – Physical Action Mapping XML Structure 

The stated information that is prepared in preprocessing stage is used during real 

service call that is described later in this chapter.  As an example, consider a service 

which has a WSDL definition as follows (only the relevant parts of WSDL are 

presented): 

 

 

 

 



 79 

 

<definitions name="RequestTransport" 

targetNamespace="http://ceng.metu.edu.tr/services/wsdl/RequestTransport" 

<types> 

<element name = "TransportParameters"> 

       <complexType> 

         <sequence> 

          <element name="DepartureLocation" type="xsd:token" /> 

          <element name="ArrivalLocation" type="xsd:token" /> 

          <element name="Vehicle" type="xsd:token" /> 

        </sequence> 

      </complexType> 

    </element> 

    </schema> 

  </types> 

  <message name="RequestTransportInputMsg"> 

    <part name="transportparameters" element="tns:TransportParameters" /> 

  </message> 

  <message name="RequestTransportOutputMsg"> 

    <part name="transportid" type="xsd:int" /> 

  </message> 

  <portType name="RequestTransportPortType"> 

    <operation name="RequestTransportOperation"> 

    <input message="tns:RequestTransportInputMsg" name="RequestTransportInput" /> 

<output message="tns:RequestTransportOutputMsg" name="RequestTransportOutput" /> 

    </operation> 

  </portType> 

  <service name="RequestTransportService"> 

    <port name="RequestTransportPort" binding="tns:RequestTransportSoapBinding"> 

      <soap:address location="http://localhost:8181/axis/services/RequestTransportPort" /> 

    </port> 

  </service> 

Figure 5-4 Relevant WSDL parts of Example Service 

 

 

 

 



 80 

After parsing WSDL file, the information about the service end point, operation 

URL, details of type information are obtained and put into the xml file as follows for 

future uses. 

<action name="RequestTransportOperation" 

class="tr.edu.metu.ceng.wsdl.RequestTransport.RequestTransportSoapBindingStub" 

endPoint="http://localhost:8181/axis/services/RequestTransportPort"> 

<inputs> 

<input name="transportparameters"  

class="tr.edu.metu.ceng.wsdl.RequestTransport.TransportParameters"> 

  <subtype name="DepartureLocation" class="org.apache.axis.types.Token" />  

  <subtype name="ArrivalLocation" class="org.apache.axis.types.Token" />  

  <subtype name="Vehicle" class="org.apache.axis.types.Token" />  

  </input> 

  </inputs> 

  <outputs> 

  <output name="transportid" class="int" />  

  </outputs> 

</action> 

Figure 5-5 Example PDDL Action – Physical Action Mapping.xml 

The class values represent the compiled machine codes that are obtained by the 

client stub generator. The primitive types such as “int, double” does not have custom 

implementation classes as “TransportParameters” as expected since they are built in 

types and their handling mechanism is different during run time which is described 

later in this chapter.  

 Real service call is done.  

The steps that are described up to now are all preprocessing steps. The component 

that makes the real service call uses all the metadata and all the machine codes that 

are produced previously.  

Since the services that will be called and the real values of the parameters that are 

needed for calling the services are not known before computation begins (but are 

determined during run time), a mechanism is needed that provides the ability to 

change run time behavior of applications. Such a mechanism is provided by java 



 81 

reflection infrastructure [38] and it is extensively used in this work for real service 

invocation. 

After some logical action with its logical parameters is provided to the executor by 

the planner and the action handler does its processing, the real service invoker starts 

execution. Initially, the service invoker discovers the implementation code of the 

requested operation and its parameters by using the metadata that are produced 

before, and it constructs a dynamic method for real service invocation. For instance, 

“BookFlightService Param1 Param2” logical action is produced and 

“BookFlightService” has an implementation, namely “BookFlightServiceClass”, 

Param1 and Param2 have implementations, “Param1Class” and “Param2Class” 

respectively, and BookFlightService has an endpoint namely 

“BookFlightServiceEndpoint”. The parameters may have subtypes as mentioned 

before and they may have distinct implementations too, but for this example it is 

omitted for simplicity purposes. The mechanism that is described for this example 

can be applied recursively for subtype cases as well. 

Class c = Class.forName(“BookFlightServiceClass”);   

Constructor construct = c.getConstructor(new Class[] {URL.class, Service.class})  

Object stb = construct.newInstance(new URL("BookFlightServiceURL”, null);  

Class partypes[] = new Class[2]; 

partypes[0] = Class.forName(Param1); 

partypes[1] = Class.forName(Param2); 

Method meth = c.getMethod("BookFlightOperation", partypes); 

Figure 5-6 Dynamic Method Generation Example 

The java code in Figure 5-6 shows how a service call method is dynamically 

generated for the “BookFlightService” case.  The information that is needed for 

dynamically generating a service call method is collected during preprocessing 

phase of the system and it is written to the metadata files as described before.  

Actually, it is not sufficient to generate only a method for service invocation. The 

values of the method arguments are needed as well. The Logical/Physical map is 



 82 

used for this purpose. The action handler makes sure that map contains the required 

syntactic values of logical parameters before the real service execution begins. After 

method construction, service invoker gets the real values of the logical parameters 

from Logical/Physical map and instantiate the dynamically constructed methods 

with the obtained values. The java code for the instantiation of the example above 

and the real service call is shown in Figure 5-7. 

Object arglist[] = new Object[2]; 

 arglist[0] = “Param1Value”; 

 arglist[1] = ”Param2Value”;    

 meth.invoke(stb, arglist); 

Figure 5-7 Dynamic Method Invocation Example 

Param1Value and Param2Value are the real values of Param1 and Param2 logical 

objects respectively that are obtained from the Logical/Physical map. If the called 

service is an information providing service, it returns some values and handlings of 

these values are done with a similar mechanism that is applied for inputs with the 

help of reflection mechanism and java beans. If the returned type is a complex type, 

the sub-parts are obtained by using the properties of java beans. The generated code 

for complex types is in the form of java beans which provides a static interface for 

reaching the subcomponents of the returned values so the handling of them can be 

done automatically without a need for human assistance.  The service invocation is 

automatically done by the software agent by using the mentioned mechanisms. 

5.2 Logical/Physical Map 

The logical/physical map is a very important structure for the proposed framework. 

It maps the logical objects that are used as action parameters by the planner and their 

syntactic counterparts and values of those syntactic counterparts which are required 

for real service calls. The graphical representation of the internal structure of the 

map is shown in Figure 5-8. 



 83 

 

Figure 5-8 Logical/Physical Map 

The Logical Object is the one that is used by the planner and it is defined in objects 

section of problem.pddl file. Physical parts are the WSDL counterparts of semantic 

types. Syntactic counterpart of a semantic type may be a complex type and it may 

contain subcomponents. Therefore more than one physical part may exist for a 

sematic type as shown in Figure 5-8. For the real service call, the values of the 

physical parts are needed and they are stored in real value parts.  

Before each service call, the real values are obtained from either the user or other 

services; otherwise service invocation process does not happen.  At the beginning of 

each session, that is, at the beginning of each user request, a fresh map is 

constructed. The syntactic counterpart of each PDDL object is constructed by 

associating the semantic and syntactic types as described earlier in this chapter. The 

constructed metadata files are used for this purpose and after physical parts are 

formed; their values are initialized to the value “unknown”. 

When a logical action with logical object parameters comes to the execution 

module, the action handler examines the values of logical objects in the map. If they 

have real value components with value “unknown”, the information collector is 



 84 

fired. The information collector asks the user for the real values of the physical 

components of logical objects if they are “unknown” in the map. If the user provides 

the values, the map is updated with these values and service invocation begins. If the 

user does not know the values asked, he/she tells the system that he/she does not 

know about that particular information through the provided user interfaces. In such 

a case, the unexpected event handler and planner collaboration tries to find a service 

that can provide that particular information. If such a service is found, the current 

plan changes and the information providing service is invoked with the same steps 

applied. The map is updated with the values that are collected as a result of calling 

the information providing service. Then, the action handler discovers that the 

required information is available in the map and allows service invocation to 

operate. As mentioned before, if the required information cannot be collected before 

the real service call, that is, if the map contains “unknown” values for the required 

logical object counterparts, the service invocation is not allowed .  

A fresh map is initialized at the beginning of each session. The construction of the 

map is dynamic and it is done through out the current session according to the 

logical action definition. There may be several logical actions that are grounded with 

some logical objects but the syntactic structure of distinct services may be different. 

For instance consider the services  

“BookFlightService ?Flight  –  Flight  ?Person  –  Person” and  

“BookMedicalFlightService ?Flight – Flight  ?Person  –  Person”  

and pddl objects “Flight1  – Flight and Person1 – Person”.  The two services given 

above are two distinct services, but their semantic parameter types are the same. 

After the planner performs grounding, two distinct logical actions are generated with 

the same logical object parameters as follows: 

BookFlightService Flight1 Person1 

BookMedicalFlightService Flight1 Person1 

The intended semantic meaning of “Flight1” and “Person1” objects is the same in 

two grounded services, since “Flight1” and “Person1” are used with the same 

meaning in mind by the user.  However, some syntactic differences may occur for 



 85 

the physical definition of logical objects. For instance “Flight” type may have a 

WSDL counterpart such as “xsd: int” for “BookFlightService”, but a complex type 

counterpart that contains both a string and integer values “sequence (xsd: int, xsd: 

string)” for “BookMedicalService”. In this work, this problem is solved to some 

extend by destroying the map after each service call. When “BookFlightService” is 

invoked or it is discovered that it cannot be invoked because of some unavailable 

information or service unavailability, the physical counterparts of logical objects 

“Flight1 and Person1” are destroyed. When “BookMedicalFlightService” is called, 

physical counterparts of Flight1 and Person1 objects are constructed again according 

to the definitions found in the WSDL of “BookMedicalFlightService”. If destruction 

is not conducted after each action call, syntactic incompatibilities may arise. 

The proposed destruction mechanism is not sufficient especially when the required 

information is gathered not from the user but from another service. For instance 

service “A” requires information which can be produced by service “B”. What “B” 

provides to “A” is desired in semantic level but not in syntactic level. For the above 

case, “BookFlightService” requires the information about the object “Flight1” which 

has a semantic type “Flight” and “ProposeFlightService” produces the value of 

“Flight1” object which has a semantic type “Flight”. However there may be 

syntactic differences between the requested and the provided “Flight1” object. This 

problem is not so difficult, since the agent just needs to make some syntactic 

analysis before placing the values to the map. However in this work, it is assumed 

that, if particular semantic information is requested by another service, the provided 

information is syntactically compatible for simplicity purposes. This problem will be 

solved in future extensions of this work. 

5.3 Action Caching Mechanism 

Planning problems are generally very complex and time consuming problems to 

solve. Although the use of Simplanner provides an important amount of advantage 

with respect to time, precompiled solutions are still very valuable. The planner 

requires some deliberation time before proposing an action and it may also give 



 86 

wrong decisions for the initial solution and needs some more steps for recovering 

the wrong decisions that is given because of insufficient time. 

Since the number of distinct user requests from the service composer agent can be 

infinitely many, it is impossible to hold the answer of each request in advance; but 

this does not mean that previously found solutions are not usable. Users may have 

similar requests from the system, so if previously found solutions are saved, they 

can be used directly later. 

In this work, such a previous experience caching mechanism is proposed.  After 

each successful session, the pddl action definitions are updated with some 

supporting metadata. During the processing of each session, the software agent 

keeps track of successfully executed services and the initial and final logical states 

of the current session. After the successful termination of the session, the software 

agent constructs a new pddl action with a precondition which represents the initial 

state of the current session and with an effect which represents the final state of the 

current session. Parameters of the action are determined according to the 

requirements of the constructed precondition and effect parts. After constructing the 

new pddl action, the agent compares the available pddl actions with the one that is 

currently constructed. If there does not exist any pddl action with the same 

precondition and effect, the new pddl action is added to the pddl action definitions in 

domain pddl file. After the addition of the newly constructed action to the 

domain.pddl, the metadata of the new action is written to an xml file namely 

“complexActions.xml”. The metadata contains the successfully executed logical 

actions in an order which represents the components of the constructed complex 

action. The structure of xml file that holds the components of the complex action is 

shown in Figure 5-9. 

 

 

 

 



 87 

<complexActions> 

<action name=”LogicalActionName”> 

<subAction name= “SubAction1”> 

<subAction name=“SubAction2” > 

……………………………….. 

</action> 

………………………………. 

</complexActions> 

Figure 5-9 Complex Action’s XML Structure 

Simplanner usually proposes the shortest path to the solution. If a new problem is 

posed to the system that is similar to the ones that were already solved by the system 

before, Simplanner will most probably propose the use of the already constructed 

complex action which achieves the goal in much less number of steps. Less number 

of steps is valid only for logical actions; physically, the same number of steps is 

required for performing the goal.  

At the beginning of each session, an in memory data structure is formed that 

contains the information about complex actions by parsing the 

“complexActions.xml” file.  If the planner proposes a complex action to the 

execution module, the action handler component of the execution module examines 

the action and decides if it is a complex action or a usual action by using the 

information that is available in the data structure constructed for complex actions.  

If a complex action is proposed by the planner, the action handler detects it and it 

performs the grounding of subactions by using the parameters of the complex action 

and the other automatically generated logical objects. The execution handler does 

not request any other action from the planner until the termination of the real 

execution of subactions.  During real execution of subactions, unexpected problems 

may arise as in usual actions such as service and information unavailability. In that 

case, the same unexpected event handling procedure is applied with some small 

modifications. If the service that corresponds to a subaction is unresponsive, it is 

invalidated by the unexpected event handler. The planner does not consider 

invalidated services for other decisions. In complex action case, a similar approach 



 88 

is used. Instead of just invalidating the subaction that is unresponsive, the complex 

action itself is invalidated too by the unexpected event handler. The transactional 

service execution strategy is preserved for complex actions too but some more 

processing is needed for complex actions that are described in Chapter 6 where 

transactional issues for WSC are discussed. 

In order to clarify the mentioned approach, consider the following example. Suppose 

the user requests a goal “<isBookedFor Flight1 Person1>” with the logical objects 

“Flight1 – Flight and Person1 – Person” and the initial state is empty. The software 

agent executes “CreateFlightAccount”, “ProposeFlight” and “BookFlight” services 

respectively with required parameters to solve the problem. If the request is 

successfully handled, an action definition is added to the domain pddl definition, and 

the components of the complex action are added to the “complexActions.xml” file 

as in Figure 5-10: 

(:action newAction 

:parameters (?Flight – Flight  ?Person - Person) 

:precondition (and (valid newAction) 

(agentHasKnowledgeAbout ?Flight) 

(agentHasKnowledgeAbout ?Person) 

) 

:effect (and  (isBookedFor ?Flight ?Action)) 

) 

<complexActions> 

<action name = “newAction”> 

<subaction name=”CreateFlightAccount”/> 

<subaction name=”ProposeFlight”/> 

<subaction name=”BookFlight”/> 

</action> 

</complexActions> 

Figure 5-10 Example Complex Action 

The planner proposes “complexAction” as a logical action when a problem similar 

to the one solved previously is given to the system. In the example above, when the 

planner proposes “newAction FlightObj PersonObj” to the execution module, the 

action handler will understand that it is a complex action and it will get the 



 89 

subcomponents of “newAction” which are “CreateFlightAccount”, “ProposeFlight” 

and “BookFlight”.  The action handler does the grounding of these actions by 

examining the parameter types and available logical objects. If an object is needed 

with type “Flight” or “Person”, the parameters of “newAction”, namely “FlightObj” 

and “PersonObj” will be used. If a parameter is needed with some other type, logical 

objects that are automatically generated at the preprocessing phase are used for 

grounding. After grounding of the subactions, the operation that is applied to the 

usual actions is applied with no distinction except for the transactional issues 

discussed in Chapter 6. The executor does not request any other new action from the 

planner until the completion of real execution of subactions, as mentioned before. 

 

 

 

 

 

 

 

 

 



 90 

CHAPTER 6 

6 TRANSACTION ISSUES FOR WEB SERVICE COMPOSITION 

One of the most important goals about the automated web service composition that 

this work focuses is to deal with nondeterminism of services and partial 

observability of the environment. Simplanner that is chosen for logical action 

construction for WSC is very effective for dealing with these problems. The service 

and information unavailability is effectively handled by the planner. In case of such 

problems, the planner tries to find alternative paths for solving the problem. 

However, sometimes it is not possible to discover alternative ways when unexpected 

situations arise, so the session should be terminated unsuccessfully. 

The planner handles unexpected situations at the logical level which is not sufficient 

in fact. Some physical mechanisms are also needed for handling such cases. The 

proposed system works step by step and executes actions physically. If any problem 

occurs in later steps of processing and the previously executed actions have some 

world altering effects, some undesired situations may arise.Transactional execution 

is the solution that we propose to solve the mentioned problem.  Transaction is a 

concept generally related with databases. It represents the logical unit of work for 

database management systems. Although transaction concept is very tightly coupled 

with databases, it is widely used in distributed systems for the same purposes in an 

application level. 

Some specifications, such as WS-Coordination, WS-Atomic Transaction and WS-

Business Activity, are proposed to enable transactional features during web service 

collaboration ([7], [12], [13]). In this work such mechanisms are used for recovering 

undesired effects. In section 6.1 an introduction to the WS-Transaction frameworks 

is presented. In section 6.2, the integration of these frameworks to the presented 

system is discussed. 



 91 

6.1 WS-Transaction Frameworks 

The aim of using transactions is to provide ACID properties (i.e. atomicity, 

consistency, isolation and durability) to the execution of a composed web service. 

ACID properties are defined as follows [45]: 

 Atomicity: If the result is successful, then all operations happen, and if it is 

unsuccessful, then none of the operations happen.  

 Consistency: The application performs valid state transitions at completion.  

 Isolation: The effects of the operations are not shared outside the transaction 

until it completes successfully.  

 Durability: Once a transaction successfully completes, the changes survive 

failure. 

In order to achieve ACID properties for applications that involve multiple web 

services collaborating with each other, some specifications are proposed. These 

specifications are WS-Coordination [12], WS-Atomic Transaction [13] and WS-

Business Activity [7]. WS-Coordination specification is the base of the other two 

specifications.  

WS-Atomic Transaction is generally used for business activities that do not require 

too much time to be completed. WS-Atomic transaction specification provides all 

ACID properties by applying two-phase commit protocol. That is, all sub-operations 

of the transaction will be entirely conducted successfully or none of the sub-

operations will be performed. The intermediate results of the whole operation are 

not visible by the users.   

WS-Business Activity specification [7] is more flexible but does not provide all 

ACID features. This specification is designed for long running business activities. In 

this case, the intermediate results are visible to the users (isolation property is not 

provided) and effects of the sub-operations are conducted before the commit 

command. Therefore, instead of using usual rollback operation, some compensation 



 92 

techniques are needed.  During compensation some problems may arise which may 

disturb atomicity. In such cases human intervention is needed.  

WS-Business Activity specification does not provide a complete transactional 

behavior but on the other hand it brings an important advantage. In two-phase 

commit protocol which should be used for complete transactional behavior in 

distributed systems, some locking mechanisms are used. As a result, the same 

resources cannot be used by other users until the business activity ends. If business 

activity takes long time and the number of system users is high, the system cannot 

be responsive which is not acceptable.  

As mentioned before both of the specifications that are described above are based on 

WS-Coordination specification. WS-Coordination specification has three 

components which are activation service, registration service and coordination 

service. Figure 6-1, adapted from [45], shows the structure of WS-Coordination 

framework graphically. 

 

Figure 6-1 WS-Business Activity Framework 



 93 

The main application and participating web services communicate through the 

coordinator. The same architecture is used for both WS-Atomic transaction and WS- 

Business Activity with some differences in lower level details. According to [45], 

the functionality of WS-Coordinator can be stated as follows: 

Activation Service: 

The main use of activation service is to start a fresh business activity. 

Registration Service: 

The registration service enables distinct web services that are participants of the 

current business activity to be enrolled to the activity.  

Coordination Service: 

The coordination service controls the operations of participating services, the current 

states of them and gives commands to the services for final decision of the 

conducted transaction using the selected coordination protocol.  

The details of the mechanisms and some sample scenarios can be found in [45] and 

[46]. 

The WS-Business Activity framework specification which is used in this thesis has a 

shortcoming. The specification does not include the protocol between the 

application and the coordinator. It only defines the protocol between the coordinator 

and the web service. However, in [47], a protocol between the main application and 

the coordinator is proposed namely “Web Services – Business Activity Initiator 

Protocol” which is an extension to the previously described WS-Business Activity 

protocol. This extension is used in this thesis. 

As mentioned in [47], WS-Business Activity has two types of coordination 

mechanisms: BusinessAgreementWithParticipantCompletion protocol and 

BusinessAggrementWithCoordinatorCompletion protocol. In the first protocol, the 

participating web service performs its activity immediately after a service request 

comes from the main application and informs the coordinator when it finishes its job 

either successfully or unsuccessfully.  In the latter case, the web service does not 



 94 

complete its job but waits for a command from the coordinator for completion. The 

remaining mechanisms are same for both protocols. The decision about which 

coordination protocol is to be used depends on the choice of the service provider. 

Figure 6-2 adapted from [47] shows the possible states of participants during the 

execution of the transaction and possible messages between the coordinator and 

participants. 

 

Figure 6-2 WS-Business Activity State Diagram 

The states shown in the figure are defined for the 

BusinessAgreementWithParticipantCompletion coordination protocol. The states for 

the other protocol are similar and can be found in [47].  

When a request comes to a participating web service, it starts its work, and it is in 

active state during that period. If it finishes its work successfully, it sends the 

command “Completed” to the coordinator and the coordinator changes the state of 

the participant to “Completed”. If the service could not do its job because of some 

unexpected failure it sends “Fault” message to the coordinator, and the coordinator 



 95 

changes the status of the participant to “Faulting” state. After the coordinator gets 

the decision commands from the business initiator, it sends commit or rollback 

commands to the participants. If a commit decision is made, “Close” signal is sent to 

all participants by the coordinator. If a rollback decision is made, “Compensate” 

signal is sent to all participants by the coordinator and the required state changes are 

conducted as in Figure 6-2. If a problem occurs during compensation of one of the 

services, atomicity is destroyed and human intervention is needed. Some other 

commands exist between the coordinator and participants such as exit and cancel. 

The details of them can be found in [47]. 

The messages that are sent by the coordinator to the participants such as “Close”, 

“Compensate” are sometimes needed to be dictated by the main application. “Web 

Services – Business Activity Initiator Protocol” proposes some other commands for 

such cases. Business activities may contain sub-transactions which are atomic 

themselves but they are independent from other sub-transactions. In order to handle 

such cases, WS-Business Activity framework allows mixed outcomes, in which 

independent participants may have independent target states. For instance, suppose a 

sub-transaction compensates but other participants commits. If mixed outcome is not 

required, the atomic outcome is used, that is the target state for all participants is the 

same; participants all commit or all compensate. In “Web Services – Business 

Activity Initiator Protocol”, there exists commands for handling both mixed 

outcomes and atomic outcomes. In this work, the use of atomic outcome is 

sufficient, so only commands of atomic outcome are required in this work. The 

commands that are provided by Web Services – Business Activity Initiator for 

atomic outcome are as follows [47]: 

listParticipants: As a result of  firing this command, the coordinator provides the 

status of each participant to the main application.  

closeAllParticipants: As a result of  firing this command, the main application 

dictates that the transaction should be committed. After the coordinator receives this 

command, it sends “Complete” command to each participant. 



 96 

cancelOrCompensateAllParticipants: As a result of  firing this command, the 

main application dictates that the transaction should be aborted. After the 

coordinator receives this command, it sends “Cancel” or “Compensate”command to 

each participant according to their status. If participant is active, “Cancel” command 

is sent, otherwise “Compensate” command is sent. As mentioned before if any 

problem occurs during compensation, human intervention is needed to ensure 

atomicity. 

The details of the mentioned commands and information about some other utility 

commands can be found in [47]. 

6.2 Integration of WS-Transaction Frameworks to the Proposed System 

The unexpected event handler of the proposed system uses two mechanisms for 

handling the undesired situations. The recovery of the logical state is done by the 

help of planner as described in Chapter 3 and Chapter 4 and the physical recovery is 

done by the help of WS-Business Activity framework. 

Among the available WS-Transaction frameworks, WS-Business Activity 

framework is more suitable for the proposed system because long running sessions 

are usually conducted in the system. Generally a high amount of user interaction is 

needed for information collection and planner needs some deliberation time before 

the real service execution all of which require time. If WS-Atomic Transaction 

framework is adapted to the system, system cannot respond to other users’s requests 

since resources are locked during each session which prevents the calling of the 

same services concurrently.  

WS-Business Activity framework is used for coordinator-participant communication 

and Web Services – Business Activity Initiator Protocol is used for the 

communication between the service composer agent and the coordinator in the 

proposed system.  The implementations of both protocols are done by Apache 

Kandula project [44] and Kandula is adapted to the proposed system. 



 97 

 The coordinator implementation of the Kandula [44] project is deployed as a web 

service and the world altering service calls are done through the coordinator. When 

the service composer agent decides to make a real service call, it checks to see if the 

service is a world altering or information gathering service by examining the logical 

effects of the logical action that corresponds to the service to be executed. If it is an 

information gathering service, the procedure that is described in Chapter 5 is used. If 

it is a world altering service, the service composer agent invokes that service in 

transactional activity. 

World altering services are assumed to implement WS-Business Activity participant 

specification in this work. This assumption is not needed in fact, because it is 

possible to find out if the web services implement that specification or not from their 

WSDL definitions. However, such an assumption is still made for simplicity 

purposes. If such an assumption is not made, WSDL definition of each world 

altering service should be examined and if they do not satisfy the needs of the 

specification, they must be removed from the search space of the planner. 

The coordinator that is deployed as a web service keeps status of all world altering 

web service participants through interfaces provided by the WS-Business Activity. 

However, all commands that are sent to the participants by the coordinator are 

determined by the service composer agent itself. The service composer agent sends 

the commands to the coordinator through Web Services – Business Activity Initiator 

protocol according to its decisions. The coordinator works as a proxy that conveys 

commands from the service composer agent to the web services. 

The service composer agent constructs a coordination context at the beginning of 

each session, and it starts a new business activity by conducting the required 

communication with the coordinator that is deployed as web service beforehand. 

The service composer agent starts a business activity with an atomic outcome. The 

mixed outcome that allows nested transactions is not required in this system. The 

mixed outcome choice may be helpful for complexActions case described in 

Chapter 5, but another strategy is used for handling transactional issues of 

complexActions, which is described later. After a business activity is started by the 



 98 

agent, a coordination context is requested by the coordinator before a call is made 

for each world altering service.  This context is sent to the web service with other 

service arguments. After the message is delivered to the web service, it registers 

itself to the current activity by communicating with the coordinator and then starts 

its work. After the completion of its work, it informs the coordinator about its status 

and sends the outputs of the request to the service composer agent if it can.  

As mentioned before, WSDL definitions of world altering web services include the 

transactional features as well. For instance, a booking flight service with inputs 

“user account”, “flight number” and “personname” has input message part as 

follows in its WSDL definition. 

  <message name="BookFlightInputMsg"> 

    <part name="transactionalContext" type="tns:contextChoiceType" /> 

    <part name="useraccount" element="tns:UserAccount" /> 

    <part name="flightnumber" type="xsd:int" /> 

    <part name="personname" type="xsd:token" /> 

  </message> 

Figure 6-3 WSDL Message with Transaction Parameter 

The type “contextChoiceType” is defined according to the “WS-Business Activity” 

specification.  

When transaction is required, the dynamic service call mechanism that is described 

in Chapter 5 changes slightly. The coordination context that is requested by the 

service composer agent from the coordinator is transported to the web service. For 

the example above, the first input argument represents the context and it is sent to 



 99 

the real service by the dynamically constructed method. The additional required data 

can be stated for the example above as in Figure 6-4.  

Constructor transconstruct = transcls.getConstructor(new Class[]{CoordinationContext.class}); 

arglist[0] = transconstruct.newInstance(ctx);   

partypes[0] = ContextChoiceType.class; 

Figure 6-4 Dynamic Transactional Method Construction 

 “arglist[0]” is the context that is returned from the coordinator for a particular web 

service and “partypes[0]” is the implementation code of custom type definition. 

“partypes[0]” along with the other input argument types is used for constructing the 

method and “arglist[0]” is used along with the other input values for calling the 

dynamically generated method. The mechanism used is described in Chapter 5 in 

detail. 

When the software agent decides that the current session can be terminated 

successfully, it sends the command “closeAllParticipants” to the coordinator which 

informs each participant about the situation.  The execution component of the agent 

controls if there exists a remaining goal to be achieved before requesting a new 

action from the planner. If there does not exist any remaining goals, that is all 

requests are handled, the software agent decides to terminate the session 

successfully and informs the world altering services about the decision by means of 

issuing the command “closeAllParticipants”. 

When the software agent decides that the current session should be aborted, it sends 

the command “cancelorCompesnateAllParticipants”. The planner tries to find some 

alternative paths when an unexpected situation arises. It is possible that such paths 

do not exist from time to time. In such cases a solution cannot be found for the 

requested goal and sometimes even if unexpected events do not happen, it is 



 100 

understood that planner cannot provide a solution to the problem after some steps.  

In such cases, the software agent issues the command 

“cancelorCompensateAllParticipants” to the coordinator for the current activity and 

the coordinator informs the web services for executing their compensation 

operations. 

The problem of demonstrating the inexistency of a plan is very difficult for not only 

Simplanner but all existing planners. Generally the whole search space should be 

examined which is impossible for big environments such as WSC domain since a 

huge amount of time is needed. Some admissible heuristics are needed for 

understanding the plan inexistency. In WSC case, it is very rare that the same 

service is called with the same input values in a single session. Although sometimes 

a need for such calls occurs, such rare cases are not considered for timely response 

of all other cases. In this system abort decision is made if the same service call is 

proposed by the planner with the same logical object parameters and with the same 

physical values (obtained from the physical/logical map). Some more restricted 

admissible heuristics can be applied such as considering the current logical state. 

That is, abort decision is made if the same service call is proposed by the planner 

with the same logical object parameters and with the same physical values in the 

same current state. In fact all these session abort heuristics are domain dependent 

and they cannot be used in domain independent manner.  

As described in Chapter 5, action caching mechanism is implemented in the 

proposed system. In such cases a logical action is composed of multiple physical 

actions. The service calls of the physical action components are done by conforming 

the transactional rules mentioned before, that is, world altering service component 

calls are done through the coordinator. Suppose a complex logical action is proposed 

by the planner where one of the physical service calls that is a part of that 

complexAction failed. In such a case, the logical complexAction and logical actions 

that correspond to the faulted physical service are excluded from the logical state 

and some other paths are tried to be discovered by the planner. If some other path is 

found and the problem is solved successfully without using the previously used 

complexAction some problems occur. If a new path is found that enables the 



 101 

solution of the problem, successful termination message is sent by the service 

composer agent to the coordinator, and compensation actions are not called for the 

executed physical action components of the failed complexAction.  

In order to prevent such undesired situations, the effects of complexActions are 

made visible after not all physical action components are called but each physical is 

called. The logical effects of each physical service component are made visible after 

each service call. Therefore, the planner finds alternative paths in case of a 

complexAction failure by considering the logical effects of successfully called 

physical components of the complexAction. As a result, when successful 

termination decision is made by the software agent, the compensation operations of 

physical components of failed complexAction are not needed to be called since the 

planner considers their logical effects during discovering the new path. If alternative 

path could not be found, usual compensation mechanism is applied to all the 

previously executed world altering services. 

 

 

 

 

 

 

 

 

 

 

 



 102 

CHAPTER 7 

7 CASE STUDY: TRAVEL DOMAIN 

In this chapter, a simple case study is presented in order to illustrate the 

implementation and functionality of the proposed system. The system is highly 

resistant to unexpected real world situations and it provides timely response.  The 

current system is applicable in relatively small environments. It is applicable in 

some particular domains or some prefiltered environments. Although the proposed 

system provides very valuable features for real world web service composition 

scenarios, it is not scalable. Therefore it cannot be used in an environment where 

millions of web services exist. 

The scalability problem occurs because of the used AI planner. Not only the used AI 

planner (Simplanner) but all domain independent AI planners have the same 

problem. They cannot work with big domains where more than a few thousands of 

actions exist. Some domain knowledge is needed to make the planner scalable, but 

in WSC domain such domain knowledge is very limited. The scalability might be 

provided not in the planner level but in preprocessing level. According to the user’s 

request, some smart elimination on available services can be done for reducing the 

search space [35]. Such a prefiltering mechanism can be added to this work in future 

extensions. Here, the case study is conducted with the assumption that prefiltering 

has been done beforehand.  

This case study is based on a travel domain which is used as a data set in [48]. (The 

used travel ontology is provided in Appendix).  The web services presented in 

Figure 3-1 are used together with some additional web services. 



 103 

Additional web services are “BookMedicalFlight”, “CreateMedicalFlightAccount” 

and “RequestMedicalFlight”. These three services provide the same functionality as 

“BookFlight”, “CretaeFlight” and “RequestFlight” services given in Figure 3-1. 

They only have some syntactical differences. This case study contains two parts that 

focus on information and service unavailability respectively. 

7.1 Case 1: Information Unavailability 

In this scenario, the user requests to reserve a vehicle transportation using the 

constructs of the available travel ontology (see Figure 7-1). 

<Patient rdf:ID="Patient_0"/> 

<VehicleTransport rdf:ID="TransportToHospital"> 

    <isBookedFor rdf:resource="#Patient_0"/> 

</VehicleTransport> 

Figure 7-1 Example User Request 

This request is a high level request that is constructed using the travel ontology 

constructs (some OWL individuals and their relationships). This request, along with 

the constructs generated by the software agent, is converted to PDDL and the 

planner starts to work on the problem. The service “RegisterPersonWithTransport” 

does the booking operation, but it has a precondition that it requires a valid customer 

account and some other inputs. The service “CreateVehicleTransport” satisfies the 

precondition of   the service “RegisterPersonWithTransport”. As a result the planner 

produces a plan given in Figure 7-2. 

 



 104 

 

Figure 7-2 Initial Plan Generation 

The planner proposes an action with some logical parameters such as 

“desiredaccount”, “emacc” and “emaworker” for this particular case.  Before service 

composition begins, the logical/physical map is constructed and the physical 

counterparts of all logical objects are written to the map by using the OWL-S 

grounding part and WSDL definitions of services.  “Input Dialog” is prompted by 

the software agent to the user in order to get the physical values of logical objects. 

The user inputs the required information and the map is updated with the given 

values. By using the provided inputs and previously constructed service client stubs, 

the software agent does the real service call.   

 



 105 

 

Figure 7-3 Unknow Information Scenerio 

Since, “CreateVehicleTransport” service has world altering effects, its call is done 

through the WS-Business Activity coordinator that is constructed at the beginning of 

the session. The service “CreateVehicleTransport” implements the 

“BusinessAgreementWithParticipantCompletion” protocol that is described in 

Chapter 6 and the coordinator changes its state to “Completed”.  After calling 

“CreateVehicleTransport”, the precondition of “RegisterPersonWithTransport” is 

satisfied and the agent prompts the “Input Dialog” to the user that asks physical 

counterparts of the logical parameters. The user does not know the “transportid” so 

that input cannot be provided. “Transportid” field is the physical counterpart of 

“transporttohospital” logical object. Since its real value is left “unknown”, the 

software agent removes the “agentHasKnowledgeAbout transporttohospital” logical 

statement.  “RegisterPersonWithTransport” requires that 

“agentHasKnowledgeAbout transporttohospital” is true, so the planner searches for 



 106 

a service that provides that effect. In other words, the planner searches for an action 

that provides the input that is required but the user does not know. 

 

Figure 7-4 Information Providing Service Scenario 

Since the required inputs for “RegisterPersonWithTransport” service could not be 

provided by the user, it is not called. Some other service “RequestTransport” service 

is able to provide the missing information and therefore the planner discovers that 

service. The required inputs are requested from the user for firing the 

“RequestTransport” service and after the required information is collected, the real 

service call is done. 



 107 

 

Figure 7-5 Physical/Logical Map Update Scenario 

The service “RequestTransport” is called with the user provided input arguments 

and the returned value is displayed to the user. The returned value is also put in the 

logical/physical map. In some rare cases, human intervention is needed since 

dynamically constructed objects do not have versioning as the ones provided 

initially. The dynamically constructed objects are destroyed after each service call, 

but in some special cases the same dynamic object can be requested by more than 

one action prior to its consumption. In such cases, users will change the values 

according to the returned values.  Since “RequestTransport” service does not have a 

world altering affect but only provides information, it is called directly, not in 

collaboration with the business activity coordinator. 

 



 108 

 

Figure 7-6 User and Service Provided Inputs Scenario 

Since the “transportid” is provided by another service, the required inputs for 

“RegisterPersonWithTransport” service become ready to be executed and real 

service call is done by the software agent by using these inputs. 



 109 

 

Figure 7-7 Successful Termination Scenario 

After the service “RegisterPersonWithTransport” is executed, the session is 

terminated successfully since the user’s goal is reached. 

“RegisterPersonWithTransport” service has a world altering effect. Therefore, its 

call is done through the business activity coordinator. After a successful session, the 

software agent sends “closeAll” signal to the coordinator which then sends it to each 

participant. Participants change their state to “Closed” and “Ended” respectively 

according to the WS-Business Activity specification. 

7.2 Case 2: Service Unavailibality 

The presented scenario in Case 1 is a simple scenario that demonstrates the working 

mechanism of the proposed system. However it does not illustrate all possible 



 110 

situations that might be encountered. Some other important situations are 

demonstrated as another case.  In this case, the user tries to reserve a flight and some 

unexpected situations occur (i.e. service failures). Only the most important parts of 

this case are presented in order not to repeat the similar things. 

 

Figure 7-8 Service Failure Scenerio 

Initially the software agent discovers a plan which contains services “CreateFlight”, 

“ProposeFlight” and “BookFlight”. The services “CreateFlight” and “ProposeFlight” 

are successfully executed, but during the execution of “BookFlight” service, the 

execution fails because of some network problems. The software agent then removes 

“validbookflightatomicprocess” logical statement form the current state and tries to 



 111 

find some alternative paths in order to respond the user request. Since 

“validbookflighatomicprocess” statement is a precondition for firing “BookFlight” 

service and it is not available any more, that service becomes unavailable for the 

planner. The planner discovers a new path for achieving the goal by doing some 

dynamic replanning. The new plan contains “CreateMedicalFlight”, 

“ProposeMedicalFlight” and BookMedicalFlight” respectively. 

 

Figure 7-9 Unsolvable Problem Scenario 

The services “CreateMedicalFlight” and “ProposeMedicalFlight” are executed 

successfully. During the execution of “BookMedicalFlight” service, a failure occurs 

because of service unavailability. The software agent removes 

“validbookmedicalflightatomicprocess” from the current state so that the service 



 112 

will not be considered as an available action any more for this particular session. 

This time planner cannot produce an initial plan but proposes the best available 

action that is “CreateVehicleTransport” service. 

 

Figure 7-10 Session Abort Scenario 

After the service “BookMedicalFlight” is failed, the planner cannot find a new plan 

and starts to search the state space. During that state space search, the same action, 

with the same logical parameters, is proposed by the planner. However this causes to 

abort the session.  All of the services that are executed up to the abort decision have 

world altering effects in this scenario. Therefore their calls are conducted through 

the business activity coordinator. After the abort decision is made, the software 

agent sends “compensateAll” signal to the coordinator which then transmits it to the 



 113 

participants. The participant services fire their compensation mechanisms. As a 

result, undesired side effects of the previously executed actions are prevented. 

 



 114 

CHAPTER 8 

8  CONCLUSIONS AND FUTURE WORK 

Web becomes more important for human beings day by day. Humans perform 

important amount of B2B and B2C operations using functionalities provided on 

web. Those functionalities are generally provided by means of web services. Web 

services provide operating system and programming language neutral environment 

which enables interoperability between distinct systems so they are widely used in 

real world. Although many ready to use web services exist, it is very difficult for 

human beings to analyze their functionalities and possible collaborations among 

them.  As a result, this process should be automatically handled. Efforts on semantic 

web intend to make web machine interpretable and enables the automation of 

composing web services. This thesis proposed a novel solution for performing 

automated web service composition and invocation. Users present their request to 

the proposed software agent and the agent handles the required analysis. It finds 

required web services, the execution order of found web services and possible data 

transfers among them. In the literature, a considerable amount of work on automated 

WSC problem has been conducted, but still there exist many open issues. This thesis 

proposed solutions for some of the open issues by using the features of an AI 

planner namely “SIMPLANNER” and it also proposed integrating the web service 

transaction frameworks (i.e. WS-Coordination and WS-Business Activity) to its 

automatic web service invocation mechanism.   The solution that is proposed by this 

thesis is highly adaptable which makes it appropriate for real word applications.  

The important features of the proposed “automated web service composition and 

invocation framework” can be summarized as follows:



 115 

 It is highly fault tolerant which is very important for real world applications. 

The proposed system interleaves planning and execution. If some problems 

occur during service execution such as service unavailability because of network 

problems, wrongly provided inputs, etc. or information unavailability that is the 

user or another web service cannot provide the required inputs for services, the 

unexpected event handler is fired. The unexpected event handler initially tries to 

resolve the problem in a high level by using the dynamic replanning features of 

Simplanner. If it cannot solve the problem in high level some physical 

operations are conducted. Since world altering service calls are done by 

conforming the WS-Business Activity specification, in failure situations 

compensation mechanisms are fired which prevent undesired side effects. 

 It is responsive; users do not to wait for long periods of time for getting the 

results of their requests. 

The component that determines the time for responding to the user is the AI 

planner, since computationally complex operations are handled by it. One of the 

design principles of Simplanner is its timely response. It is designed for real time 

operations. Simplanner is any time planner. It concentrates not on the whole plan 

but on the first action. It finds the first best action in polynomial time and during 

real execution it finds the next action. Deliberation time required by the planner 

is too short, and sometimes this short deliberation time can be eliminated. The 

system has an action caching mechanism. If a similar problem is previously 

solved by the software agent, precompiled solutions are directly used. Shortly, 

the proposed system is highly responsive. 

 Users do not need to provide excessive amount of information initially; the 

software agent asks only the required ones during the composition process. 

It is impossible for users to know which services are going to be used for 

handling their requests, so they cannot provide all required inputs initially. In the 

proposed system, users initially give a very high level description of their 



 116 

requests. The software agent discovers the required services for the high level 

definitions and asks the user the required input. If users cannot provide the input, 

the software agent discovers new paths that do not require that particular 

information or if possible, discovers some other web services that can provide 

that particular information. 

 Dynamic object generation of web services is modeled by using some in-

memory data structures and with continuous user interactions.  

Web services sometimes produce information which is not available initially. 

This information is represented as objects in the planning domain and it is very 

difficult to represent dynamic objects in AI planning. In this system, the software 

agent constructs an object for each type definition of the worked domain. Their 

availability and unavailability is represented by using some logical statements 

and determined according to user interactions. 

This thesis provided these important contributions to the automated web service 

composition and invocation problem. However, some important future work still 

exists.  The most important future work is providing scalability. Almost all domain 

independent AI planners fail to work with more than thousands of actions which is a 

very small number for real world cases. One of the possible solutions is to do some 

filtering before stating the problem to the planner. Filtering operation will eliminate 

irrelevant web services according to the user’s goal and give the planner a problem 

with a reasonable search space. Filtering may eliminate some relevant services as 

well but it is acceptable, otherwise the proposed system cannot be used in real world 

where there exist millions of web services. 

Another future work is to include some more syntactic analysis to the system. In the 

current system, sometimes inputs of the service cannot be provided by the users but 

by some other services. In that case, semantic types are compared. However 

semantic type similarity does not mean that syntactic types are equal all the time. 

For instance, the output of service A provide the input of service B, that is; the 

output of A and the input of service B has same semantic type, but their WSDL 



 117 

counterparts may be different. Such cases are rare but they are problematic 

situations which should be solved by some syntactic analysis.  

Another future work is to involve the user to the WSC procedure more. The user can 

see the results of the executed services immediately and according to those results 

they might be able to direct the software agent. If a service returns an undesired 

result, they will be able to invalidate that service for that session through some 

interfaces. In the current system, service invalidations are conducted automatically 

for some unexpected situations.  This mechanism can easily be used by the users 

themselves manually when desired.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 118 

9 REFERENCES 

[1] Rao J., Su X. A Survey of Automated Web Service Composition Methods. 

Proceedings of 1
sth 

International Workshop on Semantic Web Services and Web 

Process Composition, pages 43-54, 2004. 

[2] Christensen E., Curbera F., Meredith G., Weerawarana S. Web Services 

Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl, last visited on 

21.07.2009.  

[3] Smith M.K., Welty C., McGuinness D. L. OWL Web Ontology Language 

Guide, http://www.w3.org/TR/owl-guide/, last visited on 21.07.2009. 

[4] Martin D., Burstein M., Hobbs J., Lassila O., McDermott D., McIlraith D., 

Narayanan S., Paolucci M., Parsia B., Payne T., Sirin E., Srinivasan N., Sycara 

K. OWL-S: Semantic Markup for Web Services, 

http://www.w3.org/Submission/OWL-S/,  last visited on 21.07.2009. 

[5] Ghallab M., Howe A., Knoblock C., McDermott D., Ram A., Veloso M., Weld 

D., Wilkins D. PDDL: The Planning Domain Definition Language, AIPS-98 

Planning Committee, 1998. 

[6] Sapena O., Onaindia E. Planning in Highy Dynamic Environments: An Anytime 

Approach for Planning Under Time Constraints. Journal of Applied Intelligence, 

Volume 29, Number 1, pages 90-109, August 2007. 

[7] OASIS Web Services Business Activity Specification, http://docs.oasis-

open.org/ws-tx/wsba/2006/06, last visited on 21.07.2009. 

[8] Milanovic N., Malek, M. Current Solutions for Web Service Composition. IEEE 

Transactions on Internet Computing, Volume:8, Issue:6, pages 51-59, 2004. 

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/owl-guide/
http://www.w3.org/Submission/OWL-S/
http://docs.oasis-open.org/ws-tx/wsba/2006/06
http://docs.oasis-open.org/ws-tx/wsba/2006/06
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(milanovic%20%20n.%3cIN%3eau)&valnm=Milanovic%2C+N.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20malek%20%20m.%3cIN%3eau)&valnm=+Malek%2C+M.&reqloc%20=others&history=yes


 119 

[9]  Srivastava B., Koehler J. Web Service Composition – Current Solutions and 

Open Problems. ICAPS 2003 Workshop on Planning for Web Services, 2003. 

[10] Polleres A. AI Planning For Web Service Composition. Presentation, Ilog, 

Paris, France, 2004. http://axel.deri.ie/~axepol/presentations/20040907-paris-

ilog-AIplanning4WSC.ppt, last visited on 21.07.2009. 

[11] Agarwal V., Chafle G., Mittal S., Srivastava B. Understanding Approaches for 

Web Service Composition and Execution, IBM Research Report, August 2007. 

[12] OASIS Web Services Coordination Specification, http://docs.oasis-

open.org/ws-tx/wscoor/2006/06, last visited on 21.07.2009. 

[13] OASIS Web Services Atomic Transaction Specification, http://docs.oasis-

open.org/ws-tx/wsat/2006/06, last visited on 21.07.2009.  

[14] Haas H., Brown A. Web Services Glossary, http://www.w3.org/TR/ws-gloss/, 

last visited on 21.07.2009. 

[15] Box D., Ehnebuske D., Kakivaya G., Layman A., Mendelsohn N., Nielsen H. 

F., Thatte S., Winer D. Simple Object Access Protocol (SOAP) 1.1, 

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/, last visited on 

21.07.2009.  

[16] Bellwood T., UDDI Version 2.04 API Specification, 

http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-

20020719.htm#_Toc25137692, last visited on 21.07.2009. 

[17] Web Service Modeling Ontology (WSMO), http://www.wsmo.org/, last 

visited on 21.07.2009. 

[18] Peer J. Semantic Service Markup with SESMA. Proceedings of International 

World Wide Web Conference 2005, 2005. 

[19] Russel S., Norvig P. Artificial Intelligence: A Modern Approach, 3
rd

 edition, 

2003. 

http://axel.deri.ie/~axepol/presentations/20040907-paris-ilog-AIplanning4WSC.ppt
http://axel.deri.ie/~axepol/presentations/20040907-paris-ilog-AIplanning4WSC.ppt
http://docs.oasis-open.org/ws-tx/wscoor/2006/06
http://docs.oasis-open.org/ws-tx/wscoor/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://www.w3.org/TR/ws-gloss/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137692
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm#_Toc25137692
http://www.wsmo.org/


 120 

[20] Blum A., Furst M., Fast Planning Through Planning Graph Analysis. 

Proceedings of 14
th

 International Joint Conference on Artificial Intelligence, 

pages 1636-1642, 1995. 

[21] STRIPS language, http://en.wikipedia.org/wiki/STRIPS, last visited on 

21.07.2009. 

[22] ADL language, http://en.wikipedia.org/wiki/Action_description_language, last 

visited on 21.07.2009. 

[23] Helmert M., An Introduction To PDDL, 

http://www.cs.toronto.edu/~sheila/2542/w09/A1/introtopddl2.pdf, last visited on 

21.07.2009. 

[24] Peer J. Web Service Composition as AI Planning – a Survey. Technical report, 

Univ. of St. Gallen, 2005. 

[25] Casati F., Ilnicki S., Jin L. Adaptive and Dynamic Service Composition in 

EFlow. Proceedings of 12
th

 International Conference on Advanced Information 

Systems Engineering, 2000. 

[26] Schuster H., Georgakopoulos D., Cichocki A., Baker D. Modeling and 

Composing Service-Based and Reference Process-Based Multi-Enterprise 

Processes. Proceedings of 12
th

 International Conference on Advanced 

Information Systems Engineering, 2000. 

[27] Sirin E., Parsia B., Wu D., Hendler J., Nau D., HTN Planning for Web Service 

Composition Using SHOP2, Journal of Web Semantics, pages 377-396, 2004. 

[28] Nau D., Au T.C., Ilghami O., Kuter U., Murdock W., Wu D., Yaman F. 

SHOP2: An HTN Planning System, JAIR Volume 20, pages 379-404, 2003. 

[29] M. Klusch, A. Gerber, M. Schmidt. Semantic Web Service Composition 

Planning with OWLS-XPlan. Proceedings of the AAAI Fall Symposium on 

Semantic Web and Agents, Arlington VA, USA, AAAI Press, 2005. 

http://en.wikipedia.org/wiki/STRIPS
http://en.wikipedia.org/wiki/Action_description_language
http://www.cs.toronto.edu/~sheila/2542/w09/A1/introtopddl2.pdf


 121 

[30] Hoffmann, J. The Metric-FF planning system: Translating Ignoring Delete 

Lists to Numeric State Variables. Journal of Artificial Intelligence Research 

(JAIR) vol 20, 2003. 

[31] Peer J. A PDDL Based Tool for Automatic Web Service Compostion. 

Proceedings of 2
nd

 International Workshop on Principles and Practice of 

Semantic Web Reasoning, pages 149-163, 2004. 

[32] WSPlan, http://sourceforge.net/projects/wsplan/, last visted on 21.07.2009. 

[33] Younes, H.L.S., Simmons, R.G.: VHPOP: Versatile Heuristic Partial Order 

Planner. Journal of Artificial Intelligence Research (JAIR), 2003. 

[34] Gerevini, A., Saetti, A., Serina, I: Planning through Stochastic Local Search 

and Temporal Action Graphs.  Journal of Artificial Intelligence Research, 2003. 

[35] Agarwal V., Dasgupta K., Karnik N., Kumar A., Kundu A., Mittal S., 

Srivastava B. A Service Creation Environment Based on End to End 

Composition of Web Services, Proceedings of the 14th international conference 

on World Wide Web, 2005. 

[36] WS-BPEL, http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsbpel, last visited on 

21.07.2009. 

[37] Srivastava B. A Software Framework for Building Planners. Proceedings of 

Knowledge Based Computer Systems, 2004. 

[38] Java Reflection, http://java.sun.com/docs/books/tutorial/reflect/index.html,  

last visited on 21.07.2009. 

[39] Kim H., Kim I., Mapping Semantic Web Service Descriptions to Planning 

Domain Knowledge. Proceedings of IFMBE, Volume 14, pages 388-391, 

Springer Berlin Heidelberg, July 2007.  

http://sourceforge.net/projects/wsplan/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://java.sun.com/docs/books/tutorial/reflect/index.html


 122 

[40] OWLS2PDDL tool, http://projects.semwebcentral.org/projects/owls2pddl/, 

last visited on 21.07.2009. 

[41] Bryce D., Kambhampati S. A Tutorial on Planning Graph-Based Reachability 

Heuristics, AI Magazine, Vol 28, No 1, 2007. 

[42] WSIF, Web Services Invacation Framework, http://ws.apache.org/wsif/, last 

visted on 21.07.2009. 

[43] Axis, Apache Web Services Project, http://ws.apache.org/axis/, last visited on 

21.07.2009. 

[44] Kandula, Apache WS-Transaction Project, http://ws.apache.org/kandula/, 

http://ws.apache.org/axis/, last visited on 21.07.2009. 

[45] Freund T., Storey T. Transactions in the world of Web services, Part 1. An 

overview of WS-Transaction WS-Coordination, 

http://www.ibm.com/developerworks/webservices/library/ws-wstx1/, last visited 

on 21.07.2009. 

[46] Freund T., Storey T. Transactions in the world of Web services, Part 2. An 

overview of WS-Transaction WS-Coordination, 

http://www.ibm.com/developerworks/webservices/library/ws-wstx2/, last visited 

on 21.07.2009. 

[47] Erven H., Hicker G., Huemer C., Zaptletal M. The Web Services-

BusinessActivity-Initiator (WS-BA-I) Protocol: an Extension to the Web 

Services-BusinessActivity Specification. IEEE International Conference on Web 

Services 2007, 2007. 

[48] OWLS-XPLAN, http://projects.semwebcentral.org/projects/owls-xplan/, last 

visted on 21.07.2009. 

[49] Berners-Lee T., Hendler J., Lassila O., The Semantic Web, Scientific 

American Magazine, 2001. 

http://projects.semwebcentral.org/projects/owls2pddl/
http://ws.apache.org/wsif/
http://ws.apache.org/axis/
http://ws.apache.org/kandula/
http://ws.apache.org/axis/
http://www.ibm.com/developerworks/webservices/library/ws-wstx1/
http://www.ibm.com/developerworks/webservices/library/ws-wstx2/
http://projects.semwebcentral.org/projects/owls-xplan/


 123 

[50] Kuster U., Stern M., Konig-Ries B., A Classification of Issues and Approaches 

in Automativ Service Composition. 1
sth 

Intermational Workshop on Engineering 

Service Compositions, 2005.  

[51] Kuter U, Sirin E., Parsia B., Nau D., Hendler J. Information Gathering During 

Planning for Web Service Composition. Proceedings of ICAPS-P4WGS 2004, 

2004. 

[52] Oh S.C., Lee, D., Kumara S. A Comparative Illustration of AI Planning based 

Web Service Composition, ACM Sigecom Exchanges, Volume 5, pages 1-10, 

2006. 

[53] Pistore M., Bertoli P., Barbon F., Shaparau D., Traverso P. Planning and 

Monitoring Web Service Composition. Proceedings of 14
th

 International 

Conference on Automated Planning and Scheduling, 2004.  

[54] Sheshagiri M. Automatic Composition and Invocation of Semantic Web 

Services, MS Thesis, Faculty of the Graduate School of the University of 

Maryland, 2004. 

[55] Zhang R. Ontology Driven Web Services Composition Techniques. MS. 

Thesis, Faculty of the Graduate School of The University of Georgia, 2004. 

[56] Sirin E., Hendler J., Parsia B. Semi-automatic Composition of Web Services 

Using Semantic Descriptions.  Web Services: Modeling, Architecture and 

Infrastructure workshop in ICEIS 2003, 2003. 

[57] Rao D., Jiang Z., Jinag Y. Fault Tolerant Web Service Composition as 

Planning. Proceedings of International Conference on Intelligent Systems and 

Knowledge Engineering 2007, 2007.  

[58] Sheshagiri M., Desjardins M., Finin T. A Planner for Composing Services 

Described in DAML-S. Proceedings of the AAMAS Workshop on Web Services 

and Agent-based Engineering, 2003. 



 124 

[59] Onaindia E., Sapena O., Sebastia L., Marzal E. SimPlanner: An Execution-

Monitoring System for Replanning in Dynamic Worlds. Lecture Notes in 

Computer Science, Progress in Artificial Intelligence, Volume 2258, pages 393-

400, Springer Berlin Heidelberg, 2001. 

[60] JUNG, Java Universal Network/Graph Framework, 

http://jung.sourceforge.net/, last visted on 21.07.2009. 

 

 

 

 

http://jung.sourceforge.net/


 125 

APPENDIX A  

TRAVEL ONTOLOGY 

<?xml version="1.0"?> 

<rdf:RDF 

    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 

    xmlns="http://127.0.0.1/health-scallops/ontology/Health-

Scallops_Ontology.owl#" 

    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 

    xmlns:owl="http://www.w3.org/2002/07/owl#" 

  xml:base="http://127.0.0.1/health-scallops/ontology/Health-

Scallops_Ontology.owl"> 

  <owl:Ontology rdf:about=""/> 

  <owl:Class rdf:ID="Transport"/> 

  <owl:Class rdf:ID="Airport"/> 

  <owl:Class rdf:ID="ArrivalAirport"> 

    <rdfs:subClassOf> 

      <owl:Class rdf:about="#Airport"/> 

    </rdfs:subClassOf> 

  </owl:Class>  

  <owl:Class rdf:ID="DepartureAirport"> 

    <rdfs:subClassOf> 

      <owl:Class rdf:about="#Airport"/> 

    </rdfs:subClassOf> 

  </owl:Class>  

  <owl:Class rdf:ID="Flight">  

    <rdfs:subClassOf> 

      <owl:Restriction> 

        <owl:allValuesFrom> 

          <owl:Class rdf:about="#Airport"/> 

        </owl:allValuesFrom> 

        <owl:onProperty> 

          <owl:ObjectProperty rdf:about="#hasDepartureLocation"/> 

        </owl:onProperty> 

      </owl:Restriction> 

    </rdfs:subClassOf>



 126 

<rdfs:subClassOf> 

      <owl:Restriction> 

        <owl:allValuesFrom> 

          <owl:Class rdf:ID="FlightParameters"/> 

        </owl:allValuesFrom> 

        <owl:onProperty> 

          <owl:ObjectProperty rdf:resource="#hasParameters"/> 

        </owl:onProperty> 

      </owl:Restriction> 

    </rdfs:subClassOf> 

    <rdfs:subClassOf> 

      <owl:Restriction> 

        <owl:onProperty> 

          <owl:ObjectProperty 

rdf:resource="#hasDestinationLocation"/> 

        </owl:onProperty> 

        <owl:allValuesFrom> 

          <owl:Class rdf:about="#Airport"/> 

        </owl:allValuesFrom> 

      </owl:Restriction> 

    </rdfs:subClassOf> 

  </owl:Class> 

  <owl:Class rdf:ID="MedicalTreatment"/> 

  <owl:Class rdf:about="#Airport"> 

    <rdfs:subClassOf> 

      <owl:Class rdf:ID="Location"/> 

    </rdfs:subClassOf> 

  </owl:Class> 

  <owl:Class rdf:ID="Creditcard"/> 

  <owl:Class rdf:ID="MedicalFlightParameters"> 

    <rdfs:subClassOf> 

      <owl:Class rdf:about="#FlightParameters"/> 

    </rdfs:subClassOf> 

    <owl:equivalentClass> 

      <owl:Restriction> 

        <owl:onProperty> 

          <owl:ObjectProperty 

rdf:resource="#assuresMedicalTreatment"/> 

        </owl:onProperty> 

        <owl:someValuesFrom> 

          <owl:Class rdf:resource="#MedicalTreatment"/> 

        </owl:someValuesFrom> 

      </owl:Restriction> 

    </owl:equivalentClass> 

    <owl:disjointWith> 

      <owl:Class rdf:about="#FlightParameters"/> 

    </owl:disjointWith> 

  </owl:Class> 

  <owl:Class rdf:about="#FlightParameters"> 

    <owl:disjointWith rdf:resource="#MedicalFlightParameters"/> 

    <rdfs:subClassOf> 

      <owl:Class rdf:ID="TransportParameters"/> 

    </rdfs:subClassOf> 

  </owl:Class> 

  <owl:Class rdf:ID="Category"/> 

  <owl:Class rdf:ID="Account"/> 

  <owl:Class rdf:ID="Time"/> 

  <owl:Class rdf:ID="FlightCategory"> 



 127 

    <rdfs:subClassOf rdf:resource="#Category"/> 

  </owl:Class> 

  <owl:Class rdf:ID="Address"/> 

  <owl:Class rdf:ID="VehicleTransport"> 

    <rdfs:subClassOf rdf:resource="#Transport"/> 

  </owl:Class> 

  <owl:Class rdf:ID="Patient"> 

    <rdfs:subClassOf> 

      <owl:Class rdf:ID="Person"/> 

    </rdfs:subClassOf> 

  </owl:Class> 

  <owl:Class rdf:ID="VehicleTransportParameters"> 

    <rdfs:subClassOf rdf:resource="#TransportParameters"/> 

    <owl:disjointWith> 

      <owl:Class rdf:ID="MedicalVehicleTransportParameters"/> 

    </owl:disjointWith> 

  </owl:Class> 

  <owl:Class rdf:ID="Hospital"> 

    <rdfs:subClassOf rdf:resource="#Location"/> 

  </owl:Class> 

  <owl:Class rdf:about="#MedicalVehicleTransportParameters"> 

    <owl:equivalentClass> 

      <owl:Restriction> 

        <owl:onProperty> 

          <owl:ObjectProperty rdf:about="#assuresMedicalTreatment"/> 

        </owl:onProperty> 

        <owl:someValuesFrom rdf:resource="#MedicalTreatment"/> 

      </owl:Restriction> 

    </owl:equivalentClass> 

    <rdfs:subClassOf rdf:resource="#VehicleTransportParameters"/> 

  </owl:Class> 

  <owl:Class rdf:ID="Company"/> 

  <owl:Class rdf:ID="Vehicle"/> 

  <owl:Class rdf:ID="ProvidedFlight"> 

    <rdfs:subClassOf rdf:resource="#Flight"/> 

  </owl:Class> 

  <owl:Class rdf:ID="ProvidedTransport"> 

    <rdfs:subClassOf rdf:resource="#VehicleTransport"/> 

  </owl:Class> 

  <owl:Class rdf:ID="ValidAccount"> 

    <rdfs:subClassOf rdf:resource="#Account"/> 

  </owl:Class>  

  <owl:ObjectProperty rdf:ID="isBookedFor"> 

    <rdfs:domain rdf:resource="#Transport"/> 

    <rdfs:range rdf:resource="#Person"/> 

  </owl:ObjectProperty> 

  <owl:ObjectProperty rdf:ID="assuresMedicalTreatment"> 

    <rdfs:domain rdf:resource="#TransportParameters"/> 

    <rdfs:range rdf:resource="#MedicalTreatment"/> 

  </owl:ObjectProperty> 

  <owl:ObjectProperty rdf:ID="hasCategory"> 

    <rdfs:domain rdf:resource="#FlightParameters"/> 

    <rdfs:range rdf:resource="#FlightCategory"/> 

  </owl:ObjectProperty> 

  <owl:ObjectProperty rdf:ID="hasParameters"> 

    <rdfs:domain rdf:resource="#Transport"/> 

    <rdfs:range rdf:resource="#TransportParameters"/> 

  </owl:ObjectProperty> 



 128 

  <owl:ObjectProperty rdf:ID="hasDepartureLocation"> 

    <rdfs:domain rdf:resource="#Transport"/> 

    <rdfs:range rdf:resource="#Location"/> 

  </owl:ObjectProperty> 

  <owl:ObjectProperty rdf:ID="hasArrivalTime"> 

    <rdfs:domain rdf:resource="#TransportParameters"/> 

    <rdfs:range rdf:resource="#Time"/> 

  </owl:ObjectProperty> 

  <owl:ObjectProperty rdf:ID="hasDestinationLocation"> 

    <rdfs:domain rdf:resource="#Transport"/> 

    <rdfs:range rdf:resource="#Location"/> 

  </owl:ObjectProperty> 

  <owl:ObjectProperty rdf:ID="isOwnedByPerson"> 

    <rdfs:domain rdf:resource="#Creditcard"/>  

    <rdfs:range rdf:resource="#Person"/> 

  </owl:ObjectProperty> 

  <owl:ObjectProperty rdf:ID="isOwnedByCompany"> 

    <rdfs:domain rdf:resource="#Creditcard"/>  

    <rdfs:range rdf:resource="#Company"/> 

  </owl:ObjectProperty>  

  <owl:ObjectProperty rdf:ID="hasDepartureTime"> 

    <rdfs:domain rdf:resource="#TransportParameters"/> 

    <rdfs:range rdf:resource="#Time"/> 

  </owl:ObjectProperty> 

  <owl:ObjectProperty rdf:ID="validPersonalFlightAccount"> 

    <rdfs:range rdf:resource="#Account"/ 

  </owl:ObjectProperty> 

  <owl:ObjectProperty rdf:ID="validMedicalFlightAccount"> 

    <rdfs:range rdf:resource="#Account"/> 

  </owl:ObjectProperty> 

  <owl:ObjectProperty rdf:ID="medicalFlightParameters"> 

    <rdfs:range rdf:resource="#FlightParameters"/> 

  </owl:ObjectProperty> 

  <owl:ObjectProperty rdf:ID="personalProvidedFlight"> 

    <rdfs:range rdf:resource="#Flight"/> 

  </owl:ObjectProperty> 

  <owl:ObjectProperty rdf:ID="medicalProvidedFlight"> 

    <rdfs:range rdf:resource="#Flight"/> 

  </owl:ObjectProperty> 

  <owl:ObjectProperty rdf:ID="medicalProvidedTransport"> 

    <rdfs:range rdf:resource="#VehicleTransport"/> 

  </owl:ObjectProperty> 

  <owl:ObjectProperty rdf:ID="medicalVehicleParameters"> 

    <rdfs:range rdf:resource="#VehicleTransportParameters"/> 

  </owl:ObjectProperty> 

  <owl:ObjectProperty rdf:ID="personalProvidedTransport"> 

    <rdfs:range rdf:resource="#VehicleTransport"/> 

  </owl:ObjectProperty> 

  <owl:ObjectProperty rdf:ID="validPersonalTransportAccount"> 

    <rdfs:range rdf:resource="#Account"/> 

  </owl:ObjectProperty> 

  <owl:ObjectProperty rdf:ID="validMedicalTransportAccount"> 

    <rdfs:range rdf:resource="#Account"/> 

  </owl:ObjectProperty> 

  <owl:FunctionalProperty rdf:ID="hasNearestAirport"> 

    <rdfs:domain rdf:resource="#Address"/> 

    <rdfs:range rdf:resource="#Airport"/> 

  </owl:FunctionalProperty> 



 129 

  <owl:FunctionalProperty rdf:ID="usesVehicle"> 

    <rdfs:domain rdf:resource="#VehicleTransportParameters"/> 

    <rdfs:range rdf:resource="#Vehicle"/> 

  </owl:FunctionalProperty> 

  <owl:FunctionalProperty rdf:ID="hasAddressLocation"> 

    <rdfs:domain rdf:resource="#Location"/> 

    <rdfs:range rdf:resource="#Address"/> 

  </owl:FunctionalProperty> 

  <owl:FunctionalProperty rdf:ID="hasAddressPerson"> 

      <rdfs:domain rdf:resource="#Person"/> 

 <rdfs:range rdf:resource="#Address"/> 

  </owl:FunctionalProperty> 

  <owl:FunctionalProperty rdf:ID="hasAddressCompany"> 

      <rdfs:domain rdf:resource="#Company"/> 

 <rdfs:range rdf:resource="#Address"/> 

  </owl:FunctionalProperty> 

</rdf:RDF>  

 


