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ABSTRACT 
 

ROBUST DESIGN WITH BINARY RESPONSE USING 
MAHALANOBIS TAGUCHI SYSTEM 

 

Yenidünya, Barış 

M.S., Department of Industrial Engineering 

Supervisor          : Prof. Dr. Gülser Köksal 

 

June 2009, 129 pages 

 

In industrial quality improvement and design studies, an important aim is to improve the 

product or process quality by determining factor levels that would result in satisfactory 

quality results. In these studies, quality characteristics that are qualitative are often 

encountered. Although there are many effective methods proposed for parameter 

optimization (robust design) with continuous responses, the methods available for 

qualitative responses are limited. In this study, a parameter optimization method for 

solving binary response robust design problems is proposed. The proposed method uses 

Mahalanobis Taguchi System to form a classification model that provides a distance 

function to separate the two response classes. Then, it finds the product/process variable 

settings that minimize the distance from the desired response class using quadratic 

programming.   

The proposed method is applied on two cases previously studied using Logistic Regression. 

The classification models are formed and the parameter optimization is conducted using 

the formed MTS models. The results are compared with those of the Logistic Regression. 

Conclusions and suggestions for future work are given. 

Keywords: Robust Design, Parameter Optimization, Mahalanobis Taguchi System, binary 

quality characteristics (response) 
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ÖZ 
 

MAHALANOBIS TAGUCHI SİSTEMİ KULLANARAK İKİLİ ÇIKTI İLE 
ROBUST TASARIM 

 

Yenidünya, Barış 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi             : Prof. Dr. Gülser Köksal 

 

Haziran 2009, 129 sayfa 

 

Endüstriyel kalite iyileştirme ve tasarım çalışmalarında önemli amaçlardan biri ürün/süreç 

kalitesinin hedeflenen kalite sonuçlarına ulaşmasını sağlayacak faktör seviyelerinin 

belirlenmesidir.Bu çalışmalarda nicel kalite özellikleri sık karşılaşılan bir durumdur. Sürekli 

çıktılarda parametre optimizasyonu (robust tasarım) için çok sayıda yöntem olmasına 

rağmen, nicel sonuçlar için geliştirilmiş metotlar kısıtlıdır. Bu çalışmada, ikili çıktılı robust 

tasarım problemleri için bir parametre optimizasyon metodu önerilmektedir. Önerilen 

metod  Mahalanobis Taguchi Sistemi kullanarak iki sonuç sınıfını ayıracak uzaklık 

fonksiyonunu sağlayan bir sınıflandırma modeli kurmakta, daha sonra da istenilen sonuç 

sınıfına uzaklığı en aza indirgeyecek ürün/süreç değişken seviyelerini kuadratik 

programlama kullanarak bulmaktadır.  

Önerilen yöntem daha önce Lojistik Regresyon kullanılarak incelenmiş iki vaka analizi 

üzerinde çalışılmıştır. Sınıflandırma modelleri kurulmuş ve kurulan modeller üzerinde 

parametre optimizasyonu uygulanmıştır. Sonuçlar Lojistik Regresyon sonuçları ile 

karşılaştırılmıştır. Sonuçlar ve ileride yapılabilecek çalışmalar için öneriler verilmiştir. 

Anahtar Kelimeler: Robust Tasarım, Parametre Optimizasyonu, Mahalanobis Taguchi 

Sistemi, İkili kalite özellikleri (çıktı) 
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CHAPTER 1 
 

 

1. INTRODUCTION 
 

 

In industrial quality improvement and design studies, an important aim is to improve the 

product or process quality by determining controllable design parameter levels that would 

result in satisfactory quality results. Robust design is an approach used to design 

products/processes which are insensitive to uncontrollable factors.  

Industrial quality experiments often result in quality characteristics that are qualitative. 

Common reasons for this are the technical difficulties and economical infeasibilities in 

accurately measuring factors. A common example to a qualitative response is the 

experiment output classified as defective or non-defective.  

Although there are many effective methods proposed for parameter optimization with 

quantitative response variables, the methods available for qualitative responses are 

limited. In this study, a parameter optimization method for design problems with a binary 

response is proposed. The aim is to find the controllable design parameter settings (target 

values) that yield desired (non-defective) outcomes no matter how noise factors behave in 

the system.  The proposed approach uses Mahalanobis Taguchi System (MTS) to model the 

relationship between the control factors and the response. This model actually measures a 

distance of a product/process realization (in terms of controllable parameter values) from 

the mean of normal (non-defective) class of observations. Then it finds the optimal design 

parameter levels by minimizing this distance equation.  

Mahalanobis Taguchi System is a multivariate classification method that defines a distance 

function to assign new observations to the most appropriate classes. It is commonly used 
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for binary classes (responses). It uses Mahalanobis Distance as a measurement scale in 

combination with Taguchi's robust design methods to select the variables that significantly 

contribute to the distance measurement. 

After the MTS model is formed and verified, the model function is used inversely, going 

from the response to the control factors to determine the optimum factor levels. This 

inverse problem is solved using quadratic programming.  

In Chapter 2, Mahalanobis Taguchi System is explained in detail. Data collection, model 

forming and model evaluation steps of Mahalanobis Taguchi System are explained in detail 

as well as the advantages and disadvantages of the method. In addition, robust design is 

explained and some other methods used for robust design with qualitative responses are 

presented. 

In Chapter 3, a threshold determination method for MTS is proposed. The proposed 

threshold method takes into consideration the performance measures, aiming to maximize 

the classification performance. 

In Chapter 4, use of Mahalanobis Taguchi System for parameter optimization with a binary 

response is described. A classification model based on the data collected for optimization is 

formed, and this model is solved using mathematical programming to find the optimal 

parameter levels that would result in the desired output. The desired output is typically 

producing more of the outputs belonging to the desired class. 

The proposed method is applied on two cases previously studied with Logistic Regression. 

The classification models are formed and the parameter optimization is conducted using 

the formed MTS model. The results are compared with the results of the Logistic 

Regression. 

In Section 4.3, the proposed method is compared with some others known in the literature 

to solve similar robust design problems. 

Finally, in Chapter 5 concluding remarks and future research directions are provided. 
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CHAPTER 2 
 

 

2. LITERATURE SURVEY AND BACKGROUND 
 

 

Even though there are effective methods developed optimization with quantitative 

response variables (Wu and Yeh 2006) (Taguchi 1991), the methods available for qualitative 

responses are limited. This study aims to use Mahalanobis Taguchi System for parameter 

optimization in cases with binary responses. The proposed approach aims to make use of 

Mahalanobis Taguchi System as a mean to understand the relationship between the control 

factors (decision variables) and the response. 

2.1. Mahalanobis Taguchi System 

Mahalanobis Taguchi System (MTS) is a multivariate diagnosis and forecasting method. MTS 

is a combination of Mahalanobis Distance (MD) and Taguchi's robust design methodologies. 

MTS uses MD as a distance metric to form a measurement scale that determines the 

distance of a unit to a particular reference group. 

 Taguchi and Jugulum (2000) state the objective of MTS as "to develop and optimize a 

diagnostic system with a measurement scale that measures abnormality.". However, MTS is 

used not only for diagnosis but also for classification and prediction in the literature.  

2.1.1. Mahalanobis Distance 

 

In one dimension, the Euclidean distance between two points y= (y1) and w= (w1) is  

𝐷 =   y1 − w1 2  [2.1] 
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In order to measure how many standard deviations two points are apart from each other, 

Euclidean distance can be divided to the standard deviation: 

SD =  
 y1−w 1 2

σ2  [2.2] 

This distance is called the statistical (or standardized) Euclidean distance. 

In Rn, the distance between points y= (y1, y2, …, yn) and w= ( w1, w2, …,wn) is  

𝐷 =   y1 − w2 2 +  y2 − w2 2 + ⋯ +  yn − wn 2 [2.3] 

which can be written as 

𝐷 =   𝐲 − 𝐰 T 𝐲 − 𝐰  [2.4] 

 

If W is the origin, the equation becomes 

D =   y1 − 0 2 +  y2 − 0 2 + ⋯ +  yn − 0 2  [2.5] 

or 

 y1 
2 +  y2 

2 + ⋯ +  yn 
2 = 𝐷2  [2.6] 

which is the equation of a spheroid.   

 In the multivariate case, the standardized Euclidean Distance becomes 

𝑆𝐷 =    
𝑦 𝑖𝑗 −𝑤𝑘𝑗

𝑠𝑗
 

2
𝑝
𝑗=1  [2.7] 

where sj is the standard deviation of the jth variable.  

This equation can also be written as: 

𝑆𝐷2 =  𝐲 − 𝐰 TS−1 𝐲 − 𝐰  [2.8] 

where S is the diagonal matrix S=(s1,s2,…,sn).  
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Although Standardized Euclidean Distance calculates how many standard deviations two 

points are apart, it does not take the correlations between the variables into consideration. 

If the correlations between the variables are also to be taken into consideration, S is 

replaced by the covariance matrix Σ.  

𝑀𝐷2 =  𝐲 − 𝐰 TΣ−1 𝐲 − 𝐰  [2.9] 

The inverse of the covariance matrix in the equation standardizes all variables to the same 

variance and removes the correlations between the variables. If the variables are not 

correlated, then the Mahalanobis distance is the same as the standardized Euclidean 

distance.  (Rousseeuw and van Zomeren 1990) 

This distance measure is known as Mahalanobis distance (MD). P C Mahalanobis developed 

Mahalanobis distance, a statistical distance measure based on the multivariate normal 

distribution. (Mahalanobis 1936) 

Originally, MD was developed to measure the distance between two multivariate normal 

distributions having different means but the same covariance matrix: N(µ1,Σ) and N(µ2,Σ) . 

(Dasgupta 1993) 

Probability Density Function of a multivariate normal distribution at xi is  

𝑓 𝑥𝑖 =
1

 Σ 
1
2(2π)p /2

e−
1

2
 x i−μ Σ−1(x i−π)T

 [2.10] 

If the probability density function fx(x1, x2,…, xp) is graphed in two dimensions, it can be seen 

that it has the shape of an ellipse. In Rn, points with equal densities can be found by taking 

the natural logarithm of f(x). After arranging, the result is: 

 𝐱 − 𝐲 TΣ−1 𝐱 − 𝐲 = 𝑐2 [2.11] 

which is the equation of the Mahalanobis Distance. Hence, points with equal density have 

the same Mahalanobis Distance. 
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2.1.2. The Steps of Mahalanobis Taguchi System 

1. Generation of the Normal Space 

Mahalanobis Taguchi System defines a reference group to construct a measurement scale 

that measures the distance of the samples to that particular group. This reference group is 

called the "normal group", and the samples that are outside this group are considered to be 

"abnormal" samples.     

The first step in MTS is to construct a basis (Mahalanobis Space) for a normal group. This 

constructed basis will be used as a reference to measure the normality of other 

observations.  

To construct the basis, the p variables that are considered to be important in the definition 

of normality are identified. Due to the effects of the number of variables and the number of 

observations in the data explained throughout in this study, the choice of important 

variables is an important step and it depends on the experience of the experimenters doing 

the experiment. (Taguchi and Jugulum 2000) 

The variables can either be continuous, discrete, or categorical. Discrete, and continuous 

variables can be used as they are without any modification. For categorical variables, it is 

suggested that they are converted into binary variables (For example, male=0 and 

female=1) If there are more than two levels in the variable, a series of dummy variables, 

each defining the presence of a level, can be used.  (Taguchi, Chowdhury and Yuin 2001) 

Although the Mahalanobis Distance was developed with the assumption of multivariate 

normal distribution, Taguchi state that MTS is a data analytic method with no distribution 

assumptions. However, this have been criticized in by Hawkins (2003) and Abraham and 

Variyath (2003), stating that normality assumption have to be checked, and 

transformations are made whenever required.    
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2. Collection of Samples To Construct the Normal Group  

In the second step, n samples that will be used to construct the normal group are collected. 

Taguchi and Jugulum (2000) state that the number of samples must be greater than the 

number of variables, which is a requirement to obtain a nonsingular correlation matrix of 

the variables. Still, this may not be sufficient. In cases where the correlation matrix of the 

population is not known and the sample correlation matrix is to be used, there is a lower 

limit on the number of samples in order to estimate a correlation matrix in a multivariate 

normal case. Several authors have provided different lower limits on the number of 

samples. 

In their work, Hirohisa et al. (2006) state that the MTS method "empirically requires that 

the number of samples is greater than three-times the number of variables.". Foley (1972) 

had also worked on this issue and had shown that "the ratio of the number of samples to 

the number of variables has to be greater than 3 in order to minimize the misclassifications 

in determining whether the samples are from the same multivariate distribution or not. 

Decreasing the sample size is shown to increase false negatives". 

Young (1978) has shown that although it is minimally required that the number of samples 

are as many as the number of variables in order to have a nonsingular correlation matrix, 

there is also a lower limit to the number of samples needed to "characterize a multivariate 

Gaussian process with n samples". If the sample size is small, difficulties arise in 

determining whether the samples are originated from the same multivariate normal 

distribution or not.  

Later in their work, Leese and Main (1994) has also shown that when number of samples 

forming the normal group is small, these samples have a large effect on the Mahalanobis 

Space formed. When the number of samples is small, adding or removing a new sample to 

the normal group may have significant effects.  

If in this step, the samples that would form the normal group cannot be clearly identified, 

Mahalanobis Space can be constructed using all samples believed to be normal and their 

MDs can be calculated. Then in an iterative process, outlier samples with high MDs can be 
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moved from the normal group to the abnormal group, and the MDs are calculated again. 

This should continue until no outlier is left in the normal group.  (Jugulum 2000) 

3. Calculation of the Mahalanobis Distance for Each Sample in the Normal Group 

Let Y Є Normal Group 

E(Y) =µ 

V(Y) =Σ 

The formula of Mahalanobis Distance of a sample X to a group with mean μ and covariance 

Σ is 

𝑀𝐷2 =  𝑋, 𝑌 𝑀 =  𝐱 − 𝛍 TΣ−1 𝐱 − 𝛍   [2.12] 

Σ:  the covariance matrix for the group.  

Taguchi and Jugulum (2000) use an alternative notation in their work, by first standardizing 

the variables and then using the correlation matrix. This is possible, as the correlation 

matrix is the covariance matrix divided by the products of standard deviations. 

 Also, in order to obtain a mean close to 1 regardless of the number of decision variables, 

the MD is scaled by dividing by the number of decision variables, p. 

In the first step the samples in the normal group are standardized using the mean 𝑥𝑖  and 

standard deviation σj for each variable.  

Zi =  
x i1−x 1

σ1
, … ,

x ip −x p

σp
   [2.13] 

𝐱i =  xi1, … , xip 
T

   : Vector corresponding to sample i, i=1,…, n 

x j    : Mean of variable j, j=1,…,p , x j =
1

n
 xij

n
i=1  
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σj    : Sample standard deviation of variable j , j=1,…,p 

Scaled MD for each sample from the normal group is computed using: 

MD2 =
1

p
ZTQ−1Z  [2.14] 

Q = Correlation matrix of p variables. 

For the sake of simplicity, scaled MD has been named as MD throughout this study. 

Jugulum (2000) provides a proof that the scaled MDs of the normal group [2.14] has a mean 

of 1 and a variance of 2/p, p being the number of variables. This proof is based on the fact 

that Mahalanobis Distances follow a chi square distribution with p degrees of freedom 

when the sample size n is large and all variables follow a normal distribution. Using this 

proof, Jugulum (2000) state the advantage of using scaled Mahalanobis Distance as being 

able to generalize the Mahalanobis Space to any number of variables with the expected 

mean MD being always 1.  However, later on in his thesis, he is urged to comment on each 

case study where the average of MD is not one, by saying that the average MD "approach 

to unity".  

Woodall et al. (2003) explain that the proof provided by Jugulum(2000) is actually an 

approximation based on chi-square distribution with p degrees of freedom. They also 

explain that "this is the probability distribution of (1 p )MD, provided that the sampling is 

from a multivariate normal distribution, the mean vector and variance-covariance matrix 

are assumed to be known and are used in the calculations instead of their estimates."  

In the case where it is assumed that the samples are from a multivariate distribution but 

the estimates of the mean vector and the covariance matrix are used, Woodall et al. (2003) 

explain that the marginal distribution of MDj is from a beta distribution and actually has a 

mean of (n-1)/n instead of 1. The mean of MDj is also (n-1)/n if the n observations of the 

normal group represent the entire population of the normal items. The average MD value 

for the samples in the normal group is always exactly, (n-1)/n.  
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 In their later response, Taguchi and Jugulum (2003) accepted that (n-1)/n is the correct 

formula instead of unity. This formula can also be checked in the examples provided in their 

work (Jugulum 2000) where the mean MDs are in fact (n-1)/n.         

The correlation matrix method of calculating MD has some shortcomings that arise in 

calculating the inverse of the correlation matrix.  It is clear that in order to calculate the 

inverse of the correlation matrix, the correlation matrix has to be invertible. Two reasons 

for not having an invertible matrix are the multicollinearity and singularity between the 

variables, and the number of samples. These issues are detailed in Section 2.2 

In their work, Taguchi and Jugulum (2000) suggested the use of Mahalanobis Taguchi Gram-

Schmidt Method (MTGS) in order to overcome such issues. MTGS is explained in Section 0. 

4. Removal of  the Outliers from the Normal Group 

After calculating the MD of the samples, the samples having higher MDs are found to be 

outliers should be removed from the normal group,  and the MDs should be recalculated 

using the remaining samples in the normal group. This process is repeated until a suitable 

MS with no outliers is generated. There are different methods regarding outlier detection. 

Mahalanobis Distance is actually a widely used method for multivariate outlier detection. In 

that context, Mahalanobis distance to the centroid follows a χ2 distribution with degree of 

freedom equal to number of variables, assuming the samples are from a multivariate 

distribution. If Mahalanobis Distance is greater than χ2(d.f.) at α=0.001,  then it can be 

considered to be a multivariate outlier. (Tabachnick and Fidell 2001) 

Hirohisa et al. (2006) propose that the samples having MD larger than 1+2σMD (where σMD is 

the standard deviation of the MDs of the normal group) are to be considered as outliers 

and must be removed from the normal group.  However, they also state that the n>3p rule 

must be followed and new samples must be collected if required.  

Russeeuw and van Zomeren (1990) also emphasize the n/p ratio in outlier detection. They 

state in their article that multivariate outliers can be masked where the ratio is low and that 
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there must be at least five observations per variable, that is n/p>5 in order to check the 

outliers.  

5. Gathering of r Samples from Outside the Normal Group 

In order to check whether the model formed is able to determine whether a sample is from 

outside the normal group or not, samples that are known to be outside the normal group 

must be collected.  

 Woodall et al. (2003) found the explanation of this step unclear. They state that a more 

clear definition of whether the abnormal samples should be selected from a statistical 

population or from extreme cases is unclear.  

In response, Jugulum and Taguchi (2003) explain that samples from different abnormality 

conditions must be collected and each sample outside the normal group is considered to be 

unique, not as a group.  

From the case studies provided by Taguchi et al. (2001) it is seen that the authors consider 

each abnormal sample to be from a different experiment. This point was also found vague 

by Woodall et al. (2003); as in other cases provided, examination of abnormals with 

different levels of severities is shown. Woodall et al. (2003) also express that "Because of 

the lack of clarity regarding the fundamental issues of sampling in MTS, we find its 

implementation ill advised."  

Taguchi and Jugulum (2000) explain that the abnormal samples should be collected in such 

a way that the MDs of the abnormal samples are "higher" than the normal samples, but the 

meaning behind the word "higher" is not clearly defined according to Woodall et al. (2003). 

If the MD of the abnormal samples should be greater than all the normal samples, this 

would limit the usefulness of MTS, and Type I and Type II errors should be taken into 

consideration. (Woodall, et al. 2003) 

6. Calculation of the MDs from outside the normal group. 

MD of each abnormal sample is calculated using the formula 
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MD2= 
1

𝑝
ZTΣ-1Z [2.15] 

where Z is the abnormal sample standardized using the means and standard deviations of 

the normal group.  Σ is the correlation matrix of the normal group, calculated in Step 3.  

7. Defining  the Optimal System by Identifying Useful Variables 

After forming the Mahalanobis Space, the model formed will be optimized in such a way 

that the discrimination between the normal and abnormal samples is the highest possible. 

As Mahalanobis Distance is a measurement scale that does not contain information about 

the direction, discrimination power is measured by the largeness of the MDs of the 

abnormal samples. Jugulum (2000) states that the MDs of the abnormal samples have to be 

significantly higher than the MDs of the normal samples. However, this has been criticized 

by Woodall et al. (2003) as there is no clear definition of how large the abnormal items' 

MDs have to be.  

In order to select significantly useful variables, Taguchi's robust design methods are used. 

Orthogonal arrays and Signal to Noise (S/N) ratios are used in this step to examine the 

effects of the variables on the response. Although it is preferred that a full factorial design 

is used to examine all variable combinations, this usually requires a significant 

computational effort. The use of Orthogonal Arrays is suggested as a means to examine the 

effect of each variable with less number of runs.  

Orthogonal arrays (OA) are used to examine the effects of forming models with different 

variable combinations. Each variable is assigned to a column of a two level orthogonal array 

where level 1 is to use a variable, and level 0, is not to use variable. A row in the orthogonal 

array represents a variable combination.   
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Table 1 L8(27) Orthogonal Array 

Run X1 X2 X3 X4 X5 X6 X7 

1 1 1 1 1 1 1 1 

2 1 1 1 0 0 0 0 

3 1 0 0 1 1 0 0 

4 1 0 0 0 0 1 1 

5 0 1 0 1 0 1 0 

6 0 1 0 0 1 0 1 

7 0 0 1 1 0 0 1 

8 0 0 1 0 1 1 0 

 

Table 1 shows an L8(27) OA. There are 8 different variable combinations seen in the table. 

For example, the first row shows the case where all of the variables are included. In the 

second row, only the first 3 variables are included.  

For each row of the orthogonal array, the previous steps of MTS are redone and the MDs of 

the abnormal samples are recalculated. MDs of the normal samples do not have to be 

calculated again, as only the abnormal samples are used in calculating the Signal to Noise 

ratios. 

After calculating the MDs for the abnormal samples using different combinations of the 

variables, S/N ratios are calculated for each row of the OA. Signal to Noise ratios (S/N) are 

used both to determine which variables are useful in discriminating and to evaluate the 

performance of the constructed scale.  

Taguchi and Jugulum (2000) define S/N as "the measure of accuracy of the measurement 

scale for predicting the abnormal conditions in decibel (dB) units".  As the error decrease, 

S/N ratio does increase.  

Using the calculated S/N ratios, the gain obtained from each variable is calculated. The gain 

is the difference between the average S/N ratio of the runs that include the variable and 

the average S/N ratio of the runs that do not include the variable. If including a variable 

increases the S/N ratio, that variable is included into the model.  



14 
 

Among different S/N ratios, the use of dynamic S/N ratio is suggested for it would give 

more accurate results. (Jugulum 2000) However, dynamic S/N requires prior knowledge 

about the severity of the abnormality – the actual distance of the abnormal samples to the 

normal group. In many cases, it is not possible to provide this information. In cases where 

the response is binary or ordered categorical (where the response is defective/not 

defective etc.), it is not possible to determine the actual distance of the samples to the 

normal group. Taguchi and Jugulum (2000) state that larger-the-better type can also be 

used in such situations.  

Although the use of OA's and S/N ratios are suggested, there are some reported 

disadvantages of the use of OA’s and S/N ratios to determine important variables.  

The first drawback is that the use of OA’s does not always give the optimal combination of 

variables. Evaluating all possible combinations of variables is a more guaranteed way. For 

the medical case provided by Taguchi and Jugulum (2000), it was shown that by evaluating 

all possible combinations of variables, a better solution in the sense of S/N ratio was 

obtained. (Woodall, et al. 2003) 

If the number of variables is large, it may actually not be computationally feasible to try all 

possible combinations of variables. For example, if 50 variables are used, the number of 

runs required to try all possible combinations would be 250 =1,1259E+15. As an alternative, 

Abraham and Variyath (2003) proposed a forward selection procedure where the variables 

are added one by one. The first variable is selected by looking at each single variable and 

taking the one that has the maximum S/N ratio. The second variable is the one that gives 

the maximum S/N ratio together with the previously selected variable. The process 

continues until further improvement is not possible. If the number of variables is needed to 

be further reduced, variables with very small S/N gains may also be removed from the 

model.  

The second and the major drawback come from the way variables are allocated to 

orthogonal arrays. When the variables are not as many as to fill all the columns of an OA, 

they are assigned to the first k columns. This way of use comes from the assumption that 

there are no interactions between the variables, and that the variables can be allocated in 

any possible way. However, it was shown that changing the order the variables are 
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allocated to the OAs do change the selection of useful variables. (Jugulum 2000) When the 

variables are allocated to different columns, the resulting main effects change. The 

selection of items are done using the main effects without any statistical tests,  As a result, 

the selection of useful variables differ when dynamic S/N is used, but they remain the same 

when using larger-the-better S/N ratio. (Abraham and Variyath 2003) 

 

Larger-the-Better (S/N) Ratio 

 

If the actual distance of the abnormal samples to the normal group is not known or they 

cannot be separated into severity groups, the combination of variables can be chosen in 

such a way that the discrimination is the highest. This could be ensured by obtaining MDs of 

the abnormals that are as large as possible.  

Let MDj j=1,…,t be the MD values for the abnormal samples. The larger-the-better S/N ratio 

is calculated by:  

S N  Ratio = −10log   
1

t
   

1

MD j
 

2
t
j=1    [2.16] 

 

2.2. Handling Small and Imbalanced Data in MTS 

 

It was explained in Section 2.1.2 that one drawback of the MD calculation in MTS arises in 

the calculation of the inverse correlation matrix present in the distance formula.  

𝑀𝐷2 =  𝐱 − 𝐲 TΣ−1 𝐱 − 𝐲   [2.17] 

 

Calculation of the Mahalanobis Distance requires taking the inverse of the covariance 

matrix. If the covariance matrix is not invertible, Mahalanobis Distance cannot be 
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calculated. An n x n matrix is invertible only if it is a full rank matrix, that is, it is square and 

the rank of the matrix is equal to n. 

There are two reasons for not having an invertible covariance matrix in MD calculation. The 

first reason can be the high correlation between the variables. High correlation results in 

multicollinearity or singularity.  

The second reason is insufficient number of samples in forming the Mahalanobis Space, 

where the number of samples is less than the number of variables. This was examined in 

Section 2.1.2. 

 

 

2.2.1. Multicollinearity and Singularity 

 

High correlation between the variables causes multicollinearity or singularity. 

Multicollinearity is present when the variables are very highly correlated (>0.90). 

Multicollinearity often occurs when cross-products or powers of variables are included in 

the analysis together with the original variables.  

Singularity, on the other hand, is seen if one of the variables is a combination of two or 

more of the other variables. Such variables are actually redundant variables.  

Thus, if there is multicollinearity or singularity between the samples forming the normal 

group, there are actually fewer variables than it appears, and the correlation matrix is not 

of full rank because there are not actually as many variables as columns.  

Either bivariate or multivariate correlations can create multicollinearity or singularity. If a 

bivariate correlation is too high, it can be seen in the correlation matrix as a correlation 

above 0.90. Deleting the redundant variables will solve the problem. However, if 

multivariate correlations are high, multivariate statistics have to be used to find the 

variables that cause the problem. (Tabachnick and Fidell 2001) 
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Inverse of a matrix can be calculated using the following formula: 

A−1 =
1

detA
Aadj   [2.18] 

 

Aadj = adjoint matrix of matrix A 

detA = determinant of matrix A 

In the singularity case, the determinant is zero, and thus the inverse matrix cannot be 

calculated. 

In multicollinearity, the determinant is not exactly zero, but it is very close to zero. The 

matrix is invertible, however the calculations become unstable. Division by a near-zero 

determinant produces very large and unstable numbers in the inverted matrix. The sizes of 

numbers in the inverse matrix fluctuate wildly with only minor changes in the sizes of the 

correlations in A. Use of an unstable inverse matrix in calculations will also make the steps 

following inverse calculation unstable. (Tabachnick and Fidell 2001). 

In multivariate analysis, several methods are proposed to overcome singularity and 

multicollinearity. For singularity, redundant variables can be removed to solve singularity. 

For multicollinearity, these methods include transformation, removal of univariate outliers, 

and removal of multivariate outliers.  (Tabachnick and Fidell 2001) 

Univariate outliers may be determined by considering a range of 3 standard deviations 

from the variable mean. If the sample is more than 3 standard deviations from the mean in 

a variable, it is considered to be a univariate outlier.  

For multivariate outliers, Tabachnick and Fidell (2001) suggest the use of Mahalanobis 

Distance. If a sample is from a multivariate normal distribution, then its MD to the centroid 

of the normal group follows a χ2 distribution with degree of freedom equal to number of 

variables. If Mahalanobis Distance is greater than χ2(d.f.) at α=0.001,  then it is considered 

to be a multivariate outlier. A chi-square random variable with p degrees of freedom is 

defined as the sum of squares of p independent standard normal random variables.  
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(Tabachnick and Fidell 2001) This method, however, can be difficult to apply if the 

Mahalanobis Distance cannot be calculated at all. 

Two solutions were proposed by Jugulum (2000) for the inversion problem. The first 

solution is the use of orthogonal vectors instead of the original variables via Mahalanobis 

Taguchi Gram-Schmidt Method (MTGS). The second solution is the use of adjoint matrix 

instead of the inverse matrix.  These are explained in Appendices IV and V respectively. 

Aside from solutions provided by Jugulum (2000), it is also possible to use generalized 

inverses in cases where matrix inversion is not possible. Generalized inverses are explained 

in Appendix D. 

2.3. Robust Design 
 

Robust design is a method developed for design optimization of the products or processes 

so that the desired outputs are obtained. Robust design aims to make the performance of 

the product/process insensitive to variations in the production process and the variations 

present in the materials that are used in the production process.  (Phadke 1989) 

In robust design, a designed experiment is set up to study the effects of the decision 

variables on the outputs.  For this, orthogonal arrays are used to reduce the number of 

experiments required. To measure the quality of the output, Signal-to-Noise ratios are 

used.  

A product/process can be represented using the Parameter Diagram shown in Figure 1. As 

shown in the figure, three different types of parameters influence the response of the 

product. 

The response of the product is denoted by Y. This response, or the output of the 

product/process function, can be any suitable quality characteristic such as defect level. 
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Phadke (1989) defines these factors as follows: 

Signal factors (M) are the parameters set by the user or operator of the product to express 

the intended value for the response of the product. For example, the speed setting on a 

table fan is a signal factor with resulting in 3-4 different types of output. The signal factors 

can be one or more, depending on the problem. If the signal factor takes a constant value, 

such problems are called static problems. Otherwise, the problem is called a dynamic 

problem. 

Noise factors (z) are the parameters that cannot be controlled. The factors that are difficult 

or expensive to control are also taken as noise factors. As there is no control on the noise 

factors, they differ in each case, causing the response to deviate from the aimed target.  

Noise factors can be related to the environment (Temperature, humidity etc.) or the 

production process /input material properties. 

Control factors (x) are the parameters that can be determined by the decision maker. Each 

control factor can take different values, or levels. The aim is to determine the best values of 

these parameters. 

Product/Process 

z 

Y 

Response 

M 

Signal Factor 

Noise 

Factors 

Control 

Factors 

x 

Figure 1 P Diagram 
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In each problem studied, it is important to identify the signal factors, noise factors, control 

factors and the response. As the relationship between these factors and the response is not 

known at the beginning, they are observed in a designed experiment. 

A designed experiment is a set of experiments where different settings of control factors 

are examined to understand their effects on the response. Each experiment is called a run 

or a treatment. Orthogonal arrays are commonly used to set up experiments efficiently 

with low number of runs. 

Table 2 shows an example with four factors and their chosen levels. The starting levels 

(levels before conducting the experiment) are identified by the subscript 0 in the table. The 

others are the alternate levels that are tried in the designed experiment. 

 

 

Table 2 Factors and their levels 

Factor Levels 

1 2 3 

Factor 1 F10-50 F10 F10+50 

Factor 2 F20 F20+5 F20+10 

Factor 3 F30-30 F30 F30+30 

Factor 4 F40 F40+10 F40+20 

 

Table 3 is a designed experiment with nine separate experiments. The rows are the 

experiments, and the columns show the factors and their levels in consideration. The 

matrix experiment consists of nine individual experiments corresponding to the nine rows. 

The estimation of the factor effects is found using the response.  
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Table 3 Designed experiment 

Experiment No Column Number and Factor Assigned Response 

Factor 1 Factor 2 Factor 3 Factor 4 

1 1 1 1 1 Y1 

2 1 2 2 2 Y2 

3 1 3 3 3 Y3 

4 2 1 2 3 Y4 

5 2 2 3 1 Y5 

6 2 3 1 2 Y6 

7 3 1 3 2 Y7 

8 3 2 1 3 Y8 

9 3 3 2 1 Y9 

 

Steps in Robust Design 
 

Having defined the basics of robust design, robust design method can be divided into its 

steps. These are given by Phadke (1989) as follows: 

Planning the experiment 

1. Identify the main function, side effects, and failure modes 

In this step, the production process is tried to be understood. The production 

process and the problems associated with it are examined to determine what to 

focus on. 

 

2. Identify noise factors and the testing conditions for evaluating the quality loss 

The factors that cannot be controlled in the production process are identified and 

the testing conditions that can be used to measure the importance of the noise 

factors are determined.  

 

3. Identify the quality characteristic to be observed and the objective function to be 

optimized 

The response of the production function that can be measured is determined in this 

step. Also, the objective function, which is a function of the response measured is 

determined. 
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4. Identify the control factors and their alternate levels. 

The control factors that can be changed to reach the desired response are 

identified. Their alternate levels that can be observed in the designed experiment 

are determined. 

 

5. Design the matrix experiment and define the data analysis procedure. 

The matrix experiment (or the designed experiment) is formed. The data analysis 

procedure, defining how the results of the matrix experiment will be analyzed is 

formed. Data analysis usually consists of determining the main effects of the 

variables and performing Analysis of Variance 

Performing the experiment 

6. Conduct the designed experiment 

The experiments are conducted by examining the different combinations of control 

factors defined in the runs of the designed experiment. 

Analyzing and verifying the experiment results 

7. Analyze the data, determine optimum levels for the control factors, and predict 

performance under these levels 

The results of the experiments are analyzed, and the effects of the control factors 

on the response are determined. Using this information, the optimum levels for the 

control factors are determined. 

 

8. Conduct the verification experiment and plan future actions 

The optimal levels of the control factors are tried in a verification experiment to 

understand whether the results obtained are valid 

Mahalanobis Taguchi System can be used in robust design as a mean to understand the 

function between the control factors and the response.  
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2.4. Threshold Determination  
 

In Mahalanobis Taguchi System, it is important to decide on a Mahalanobis Distance value 

that would act as a threshold, separating normal and abnormal groups. Taguchi and 

Jugulum (2000) state that MD of the abnormal samples is "higher" than the normal 

samples. However, no clear definition for the word "higher" was provided.  The case studies 

provided in Taguchi and Jugulum  (2000) and in Taguchi et al.  (2001) portray abnormal 

samples having very large MDs.  However, Woodall et al. (2003) express that such a wide 

and clear distinction between the normal and abnormal groups is not always possible, 

contrary to the case studies provided. They state that if the expectation is that MDs of the 

abnormals are greater than all of the normals in all cases, usefulness of MTS would be 

limited as it is often the case that two classes overlap. Jugulum et al.  (2003) answer this 

criticism by explaining that the statement "higher than" is a relative concept.  "Higher than" 

is relative to the severity of the abnormality and, more important, they state, to the cost of 

savings due to correctly classifying an observation to be abnormal. They also suggest that 

selecting a threshold value that balances two types of mistakes is preferable in quality 

engineering.  In cases where the discrimination between the normal and the abnormal 

samples is not clear, Taguchi et al. (2001) suggest the use of loss function in order to 

balance misclassification of the members of the two classes. They explain the use of loss 

function in quality assurance context in the following way: 

The samples can be examined using MTS method and be classified as defective or non-

defective. Then the samples that are found defective can be inspected to see if they are 

actually defective or not. Threshold value used to determine whether a sample should be 

classified as defective and put into a complete examination, denoted by D, is calculated as 

follows: 

D=  
A

A0
T∗      [2.19] 

A = The cost of completely examining a sample 

A0 = The loss caused by not examining a sample throughout and the sample being 

abnormal.  
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T*= Mean MD of the believed to be abnormal group. 

Woodall et al. (2003) argue that the above formula is not clear as choice of the group 

believed to be abnormal is unclear.   

In their later work, Taguchi et al. (2006) suggested the use of adjoint matrix of the 

correlation matrix instead of the inverse. Although this method is proposed to solve 

multicollinearity problems, the scale is different from the unit scale as the determinant in 

the denominator is removed from the inverse formulation to obtain the adjoint matrix. 

Thus, pronouncing a threshold value that could be used in general is impossible.  

Although Taguchi and his colleagues do not take distribution assumptions into 

consideration, it was elaborated previously that Mahalanobis Distance is based on 

multivariate normal distribution (Dasgupta 1993). As Mahalanobis Distance is used to 

detect multivariate outliers, Mahalanobis distance of a sample from the centroid of a 

known group follows a χ2 distribution with d.f. equal to number of variables. If Mahalanobis 

Distance is greater than χ2(d.f.) at α=0.001,  then it is a multivariate outlier (Tabachnick and 

Fidell 2001). This method can also be used to determine the cut-off point where the 

samples above will be regarded as abnormal. 

In their article, Itagaki et al. (2007) used MD     + 2σ as a threshold with the assumption of 

normality for the MD of the normal samples. They state that the probability of normal 

samples being between MD     ± 2σ is %95.44.  

Su and Hsiao (2007) propose Probabilistic Thresholding Method (PTM) as an alternative to 

Exhaustive Search Method. Exhaustive search is a simple but time consuming method 

where all possible solutions are systematically tried. Su and Hsiao state that "*…+ real 

applications always use the “exhaustive search method” (ESM) to search the threshold that 

results in the highest classification accuracy on the training set".  The computational effort 

of searching through a range of thresholds and the probability of overfitting the model to 

the training set are two underlined disadvantages of Exhaustive Search Methods.  

Chebyshev’s inequality is used to develop PTM where Chebyshev’s inequality provides an 

upper limit on the probability of getting a value larger than mean plus a multiple of 

standard deviation.  
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Chebyshev’s inequality provides the probability of getting a value that is more than a 

multiple of standard deviation from the mean. 

P(μx + rσx ≤ X) ≤
1

r2  [2.20] 

 

where μx  and σx  are the mean and the standard deviation of the random variable X. The 

probability of getting a value at more than r standard deviations from the mean is at most 

1

r2 

Su and Hsiao use this theorem on the MDs of the normal group. Regarding the MD of a 

normal sample as a random variable Xmd coming from a probability distribution with µmd 

and σmd as the mean and the standard deviation, probability of obtaining a normal MD 

larger than the threshold is P(T≤Xmd). Using this probability, and the overlap percentage of 

the normal and abnormal samples in the training set, the r value and the threshold are 

determined.  This method can be detailed as follows: 

1. Removal of the outliers from the abnormal group 

Samples with MDs less than three standard deviations from the mean of the MDs of the 

normal group are removed for being outliers. 

2. Compute the percent of non-overlapping normal samples 

The percent of samples with MDs smaller than the minimum MD of the abnormal samples 

are calculated, and denoted by w. As some of the abnormal samples are removed for being 

outliers, a small parameter  (w>>0) is created, in order to adjust w to the actual 

overlapping percentage. Thus, under the MD boundary covering w- of the normal 

distribution, the abnormal samples are predicted perfectly. Maximum false alarm 

percentage is 1-(w-) for the normal group. 

As a result, the upper bound of the false alarm probability P(T≤Xmd) ≤1-(w-). 

3. Apply Chebyshev's theorem 

If the mean µmd and σmd are known, and w and  are known,  
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Let  1-(w-)=
1

r2 , and 𝑟 =  
1

1−(w−)
 

Thus,  

T=µmd + σmd  
1

1−(w−)
 

 

2.5. Performance Measures 
 

In order to measure how well a machine learning method works, different performance 

measures have been defined. In this section performance measures that will be used to 

assess the effectiveness of MTS are defined.  

Table 3 below is the confusion matrix for the two class classification problem. The rows 

show the actual classes, and the columns show the predicted classes. In machine learning 

literature, the minority class is usually labeled positive (defective), and the majority class is 

labeled negative (non-defective).  True positives are the positive samples classified to be 

positive. True negative, on the other hand, are the samples that are negative and are 

classified to be negative. True Positive and True Negative values show the samples that are 

classified correctly. False Positive samples are the samples that are actually negative but 

have been classified to be in the positive class. False Negative samples are the samples that 

are actually positive but are classified to be in the negative class. 

Table 4 Confusion Matrix 

 Predicted Positive Predicted Negative 

Actual Positive True Positive False Negative 

Actual Negative False Positive True Negative 
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From the values in the confusion matrix, different performance measures can be 

calculated: 

Precision: Precision is the ratio of True Positives to all samples predicted to be positive. 

Precision is the correct classification rate for the samples that are classified to be positive.  

Precision =
TP

TP +FP
 [3.1] 

 

Recall: Recall (or Sensitivity) is the ratio of True Positives to all actual positives. Recall is the 

classification rate of the positive samples.   

Recall =
TP

TP +FN
 [3.2] 

 

Specificity: Specificity is the ratio of True Negatives to all actual negatives. Specificity is the 

classification rate of the negative samples. 

Specificity =
TN

TN +FP
             [3.3] 

 

G-mean: G-mean is the geometric mean of recall and specificity 

G − mean =  SpecificityRecall  [3.4] 

 

F-Measure: F-Measure is an accuracy measure, combining precision and recall.  

β in the formula is the parameter used to give different weights to precision or recall. Most 

commonly used β values are 0.5, 1, and 2. β=0.5 weights precision twice as much as recall, 

while β=2 weights recall twice as much as precision. β=1 gives equal weights to precision 

and recall. These will be designated as F05,F1, and F2 in the sequel. 
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F − measure =
 1+β2  Precision ∗Recall  

 β2∗Precis ion +Recall  
  [3.5] 

Accuracy: Accuracy (or Percent Correctly Classified), is the ratio of True Positives and True 

Negatives to all samples. It shows the correct classification rate for the classifier. 

Accuracy = 
TP +TN

TP +FP +TN +FN
                 [3.6] 

Kappa: (Cohen's) Kappa is a measure of the agreement between the two different methods 

of classification. In this case, Kappa measures the agreement between the actual classes 

and the predicted classes.  

θ1 =
TP + TN

N
 

 

θ2 =  
TP + FN

N
  

TP + FP

N
 +  

TN + FN

N
  

FP + TN

N
  

 

Kappa = 
θ1−θ2

1−θ1
   [3.7] 

 

In imbalanced datasets, accuracy can be a misleading performance measure. Even if all of 

the minority class samples are misclassified, the correct classification rate would still be 

high as a result of the imbalance.   For this reason it would be more appropriate to measure 

the separate classification rates of both classes. Thus it can be said that in imbalance 

datasets, the main aim would be to improve the classification rate of the minority class 

(recall) without decreasing the classification rate of the majority class (precision). These 

two goals often cannot be achieved together, as precision and recall affects each other 

negatively. For this reason, F-measure is often used as a single measure combining 

precision and recall. If more importance is given to one class than the other, β can be 

changed to give different weights to precision and recall.   (Chawla 2005)  
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Receiver Operating Characteristic (ROC) curve have been widely used in summarizing the 

classifier performance in imbalanced datasets. In the ROC curve, True Positive Rate 

(Sensitivity) is plotted against False Positive Rate (1-Specificity). ROC curve displays the 

performance of the classifier over a range of trade-offs between the TPR and FPR by 

changing the threshold. The point (0,1) is the best point in the graph, where all the positive 

samples are correctly classified, and none of the negative samples are incorrectly classified. 

The line y=x shows the case where classification is made randomly. A point on the graph 

can be chosen considering the trade-offs between true positive rate and false positive rate.    

(Bradley 1997).  

 

 

 

Figure 2 ROC curve (Bradley 1997) 

 

 

Area Under ROC Curve (AUC) is a measure that represents how well the model classifies 

considering all the threshold values.  It is a commonly used way to measure the classifier 

performance of a method. As it does not depend on the decision threshold chosen, it is 



30 
 

commonly used to compare the different classification methods. It is a preferred method 

when a single performance measure indicator is required or when a threshold has not been 

determined. (Bradley 1997)   

 

2.6. Resampling Methods for Small and Unbalanced Data in MTS 

Classification 
 

A data set is called imbalanced if one class has more examples than the other classes. In 

imbalanced data sets, the class having more examples is called the majority classes and the 

class having fewer examples is called the minority class. The use of machine learning 

methods in quality problems aims to predict the defectives, which usually make up the 

minority class. The main question when dealing with imbalanced datasets is whether the 

imbalance between the classes affects the prediction performance or not.   

There has been a lot of research done on the effects of class imbalancedness on machine 

learning methods. Contrary to the idea that the natural distribution of the dataset should 

be kept while modeling the classification model, Weiss and Foster (2001) show that if the 

dataset is imbalanced, the natural distribution is not the best choice for modeling. 

According to their work, correct classification of the minority class is much lower than that 

of the majority class. By modifying the class distribution, it has been shown that correct 

classification rate and AUC improved.  

In MTS, imbalance in the dataset has different effects. It was explained previously that in 

order to form a model from the normal group, normal group must have as many samples as 

the number of variables in order for the correlation matrix to be nonsingular. However, 

research shows that although this is a minimal requirement for calculating the inverse of 

the correlation matrix, there is also a lower limit to the number of samples needed to 

"characterize a multivariate Gaussian process with n samples"  (Foley 1972) (Young 1978) 

This issue is one of the reasons that oversampling in the normal sample is desired. In 

addition, Jugulum (2000) states that as the sample size increases, the variance of the MD in 

the normal group approaches to one, and for this reason it is desired to have as many 

normal samples as possible  
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A resampling method was as a joint study with Berna Bakır and Dilber Ayhan. This method 

was proposed in order to study the effects of class imbalance in classification have been 

developed. The method is based on SMOTE and the aim is to study the effects of class ratio 

and sample size on MTS classification performance. This approach generates datasets with 

different ratios and sample sizes, using the original dataset. Oversampling is done using 

SMOTE method. The details of this study can be found in Ayhan (2009). 

 

2.6.1. SMOTE 

 

Chawla et al. (2002) developed an oversampling approach for imbalanced datasets. In this 

method new "synthetic" samples from the samples in the minority class are used to 

oversample the minority class.   Synthetic samples are formed along the line segments 

joining any/all of the k minority class nearest neighbors. The parameter k is chosen 

according to the number of synthetic samples to be created. If the number of synthetic 

samples will be twice the number of minority class, two neighbors from the k nearest 

neighbors are chosen randomly.  

Synthetic samples are generated using the pseudo code provided by Chawla et al. (2002):  

 

Dataset : The data that will be oversampled 

T : The number of samples in the dataset 

N : Percent of oversampling 

k : Number of neighbors that will be used in oversampling 

 

numattrs : the number of attributes 

 

 

N=N/100 

 

for each sample in the Dataset 
 

Find k nearest neighbors for each sample 

 
for u=1:N 

 

Select a random neighbor from the determined k neighbors 

  
for attr=1:numattrs 
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dif = (Attribute value of the neighbor)-(Attribute value 

of the sample) 

 

gap = random number between 0 and 1 
 

synthetic_sample_attribute = (Attribute value of the 

sample) + gap*dif 

 
end 

  

  
end 

Figure 3 Pseudocode of SMOTE (Chawla et al.(2002)) 

 

 

2.7. Methods for Robust Design with Qualitative Responses 
 

In quality experiments it is usually desired that the response is quantitive, as a continuous, 

measurable response would allow better evaluation of the effects of the parameters. 

However, obtaining a quantitative response may not be possible because of the technical or 

economical difficulties in accurate measurement of a continuous response. 

 Qualitative, or categorical, variables can be binary (defective/non-defective), ordered 

categorical (low defect/mild defect/ high defect) or nominal (no ordering of the response). 

Different methods have been developed for modeling and optimizing data with qualitative 

response.  

 

2.7.1. Logistic Regression 

 

Logistic Regression is a type of generalized linear models commonly used for predicting a 

discrete response. The independent variables used in Logistic Regression can be binary, 

ordered categorical or nominal. Although there are applications for ordered categorical and 

nominal cases, the dependent variable in logistic regression is usually binary where the 

dependent variable takes the value of 1 with a probability p, or the value of 0 with a 

probability 1-p. (Tabachnick and Fidell, 2001) ; (Erdural,2006) 
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In logistic regression, the relations between the independent variables and the dependent 

variable are described by the logistic function: 

f z =
ez

1+ez  [4.1] 

 

Using the logistic function, the dependent variable takes a value between 0 and 1, 

regardless of the values of the independent variables. 

The probability of being a member of class 1, P(Y=1) is calculated using the formula 

E Y = P(Y = 1) =
ez

1+ez       [4.2] 

where the variable z is 

z = β0 + β1x1 + β2x2 + ⋯ + βjxj  

β0 is the constant, and βi  is the coefficient of the independent variable xi  

One advantage of logistic regression is that there is no assumption about the distribution of 

the independent variables.  

 

2.7.2. Accumulation Analysis 

 

Accumulation Analysis (AA) is a method introduced by Taguchi (1991) for the analysis of 

ordered categorical data. In AA, the cumulative response categories are determined. 

Cumulative response categories are separate response ranges (For example, Y<5,Y<10 etc.). 

The effects of factor levels on the cumulative probability distributions by the categories are 

calculated using an ANOVA-like procedure. Using this information, the optimal factor levels 

required for a desired cumulative category is calculated. (Erdural 2006) (Nair 1986) (Wu and 

Yeh 2006) 

Consider a one-factor experiment with factor A with I levels. For each level of A, there are n 

observations. These observations are separated into K ordered categories.   
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Let us denote cumulative frequencies by 

Cik =  Yij
k
j=1   [4.3] 

where Yik  is the observed cumulative frequency of level i in category k, k=1,…,K and i= 1, …, 

I. 

The averages of the cumulative frequencies across the factor levels are  

Ck =  
C ik

I

I
i=1   [4.4] 

The sum of squares for factor A is calculated as 

SSA = n   
 C ik −Ck  2

 Ck  n−Ck   
I
i=1

K−1
k=1   [4.5] 

and the sum of squares for error term is 

SSe = n   
 Cik  n − Cik   

 Ck n − Ck  

I

i=1

K−1

k=1

 

The expectation of SSe  is  n n − 1 I2(K − 1)/(In − 1) ≈ I n − 1 (K − 1). As a result of 

this, Taguchi uses I n − 1 (K − 1) as degree of freedom for SSe  and using the statistic 

FA =
MS A

MS e
  

to test the effect of factor A. 

Nair (1986) and Box and Jones (1986) stated that in AA, SSe  depends on the effect of the 

other factors. Therefore, the sum of squares are not independent as it is in ANOVA. 

Similarly, it was also noted that the effects of the factors are also dependent to other 

factors.   

Accumulation Analysis have been widely criticized by Nair (1986) and Hamada and Wu 

(1986) for being inefficient and unnecessarily complicated. They suggest that scoring 

methods are simpler and more efficient for ordered categorical data. 
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2.7.3. Scoring Schemes 

 

Nair (1986) presented two scoring schemes to identify the location and dispersion effects 

separately. An investigation recommended using the mean square to identify a prominent 

effect. The optimal factor settings of location and dispersion effects can be obtained by the 

contribution of each control factor on both effects. The final optimal factor settings are 

obtained by adjusting between the location and dispersion effects. 

Hamada and Wu (1986) explained the scoring methods using a case with J categories. Let qj 

be the overall proportion of observations in category j, j=1,2,...,J. The mid-rank of category 

j, τj is defined as 

τj =  qk +
qj

2 

j−1

k=1

 

So that τj is proportional to the mid-rank for category j.  

Location scores are calculated as 

Ij = τ j/   qjτ j
2J

j=1  
1/2

 j=1,2,...,J 

where τ j = τj −  qjτj
J
j=1 = τj − 0.5 

And the dispersion scores are calculated as 

 

dj = ej/   qjej
2j

j=1  
1/2

 j=1,2,...,J 

 

where 

ej = Ij(Ij −  qjIj
3) − 1

j

j=1
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Using the location and the dispersion scores, ordered categorical data is analyzed. For the 

ith run, frequencies of each category are multiplied by these scores and summed for each 

category to obtain location/dispersion pseudo-observations, Li and Di 

Li =  fij lj , i = 1,2, … , n

J

j=1

 

Di =  fij dj , i = 1,2, … , n

J

j=1

 

where fij is the frequency of category j at the ith run. 

Location sum of squares for factor A at I levels is calculated by 

SSA l =  Li
2/ni

I

i=1

 

Dispersion sum of squares is calculated by 

SSA l =  Di
2/ni

I

i=1

 

where ni is the total number of observations at the ith level of factor A. 

To determine the factor level that results in the minimum dispersion, Nair calculated the 

mean of dispersion pseudo-observations for each level of that factor and selected the level 

with the minimum dispersion pseudo-observation as the optimal. 

 

2.7.4. Weighted Signal-to-Noise Ratio 

 

 Weighted Signal-to-Noise Ratio (WSNR) is a method developed by Taguchi. In this method, 

a weight proportional to the quality loss is assigned to each response category. The 

categorical response is used as it is continuous and smaller-the-better SNR is used. The 

optimal parameter levels are the ones that results in the maximum SNR. 
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For each response category, three weights are determined: lower bound, middle bound, 

and upper bound. If there are J categories and fij , j=1,2,…,J are the observed frequency of 

the jth category at the ith run, the smaller-the-better SNR is calculated using the following 

formula: 

ni = −10 ∗ log  
1

n
 wj

2fij

J

j=1

  

Using the SNR, factor effects are calculated, and the factor levels that result in the highest 

SNR are chosen as optimal levels. 
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CHAPTER 3 
 

 

3. PROPOSED THRESHOLD DETERMINATION METHOD 
 

 

As the threshold determination in MTS is not an extensively studied area, it is proposed 

that Exhaustive Search Method (ESM) is used to determine a threshold where all possible 

thresholds are systematically tried. It is clear that a single, static threshold value cannot be 

used for every MTS model. A new threshold must be determined in each case. This 

threshold should be chosen depending on the desired classification properties. It is 

proposed that the threshold value is chosen so that the selected performance measure, 

such as correct classification rate, reaches its best value. In this method, a performance 

measure is selected, and the range of thresholds is searched incrementally to determine 

the threshold that maximizes the selected performance measure. Depending upon the 

importance given to a performance measure, the determined threshold will change. For 

example, it may be desired to determine defective samples (abnormal samples) in a 

production environment to the best degree for the classification of non-defective samples 

(normal samples) defective can be much less costly than classifying defective samples non-

defective.  In this case, a conservative threshold can be chosen by aiming the maximization 

of the classification rate of the defective samples. 

 In majority of the MTS cases found in literature, the dataset is used as a whole, and is not 

separated into training and testing groups. However, using the proposed method, this 

would cause overestimation of the performance measures as the threshold is chosen so 

that the performance measure is maximized. In our case, the data is separated into 3 

groups using stratified cross validation. The threshold is determined on the training set and 

the obtained threshold value is applied to the testing set.  
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For this study, 3 different well known datasets are selected from UCI Machine Learning 

repository (2009). Used datasets are Pima Indian Diabetes, Wisconsin Breast Cancer and 

Magic Gamma Telescope.  Table 5 lists some information about the used datasets. 

 

Table 5 Dataset Information 

Dataset 
# of 

Classes 

Total 

Items 

# of 

attributes 

# of 

class 0 (-) 

# of 

class  1 

(+) 

Ratio of Minority 

Class to All Dataset 

Pima Indian Diabetes 2 768 8 500 268 0.35 

Wisconsin Breast 

Cancer (Diagnostic) 
2 569 30 357 212 0.37 

Magic Gamma 

Telescope 
2 19020 10 12332 6688 0.35 

 

It can be seen that all three datasets have two classes with approximate minority ratios of 

0.35. In these cases, it would be difficult to label these datasets as imbalanced.  In these 

datasets, the threshold that maximizes the selected performance measure is selected by 

searching through a threshold range 0-10. As a result of the properties of the Mahalanobis 

Distance detailed in Section 2, it is very uncommon for a sample in the normal group to 

take a MD value larger than 10. Thus, maximum threshold to be tried was set to be 10.  

The threshold obtained from the training set is tested on the testing set and the 

performance measures of PCC, F05, F1, F2, and G-mean (See Section 2.5) are calculated. For 

each performance measure, the threshold is found by selecting the one that maximizes the 

selected performance measure. 

In addition, two more methods have been used. 

Euclidean: It was explained that the best point in the ROC graph is the (0,1) point where the 

false classification rate is 0 and correct classification rate is 1. As explained in Section 2.5, 

ROC graph shows the tradeoffs between correct and false classification rates, where each 

point is the corresponding correct and false classification rates for the selected threshold.  

This method tries to find the threshold that minimizes the Euclidean distance of the point 
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corresponding to the threshold point in the ROC curve to the best point in the ROC graph, 

where correct classification rate is 1 and false classification rate is 0. 

Mean + 3 Standard Deviation:  This method sets the threshold to 3 standard deviations of 

MDs of the normal group away from the mean MDs of the normal group. Aside from the 

fact that this distance is used commonly to detect outliers, it was also suggested by Watabe 

(2005) 

PTM: Probabilistic Threshold Method (PTM) was developed by Su and Hsiao (2007). The 

threshold is determined using PTM method. 

The methods are experimented on 3 replications where the groups are reformed randomly 

stratified in each replication. Using 3-fold stratified cross validation in 3 replications, 9 

different results from the test groups for each performance measure are obtained. The 

performance measures explained in Section 2.5 were used to assess the performance of the 

models. The results below show the averages of these results for each threshold method 

and dataset.  

The proposed threshold determination method can be listed as follows: 

1. Separate the data into training and testing sets 

In classification studies, the dataset is usually divided into training and testing sets. The 

model is formed using the training set and tested on the testing set. In this case, n-fold 

stratified cross validation is used, n changing depending on the sample size. Also, in order 

to overcome the effects of the random assignments of the samples to the groups, whole 

process can be examined in different number of replications. In this work, 3 replications are 

prepared. 

2. Form the MTS model 

The MTS model is formed using the training sets. As the response of the process, the MDs 

of each sample are obtained as a result. 

3. Select the performance measure to be maximized  



41 
 

Depending on the classification performance that is most important, a performance 

measure is chosen. For example, if overall classification rate of the samples is important, 

PCC is chosen to be the important performance measure. As another example, if detecting 

the defective samples is important, the classification rate of the abnormal class (recall) can 

be chosen.   

4. Try all possible threshold values on the calculated MDs. Calculate the performance 

measures.  

Starting from 0, threshold values are tried one by one incrementally on the MDs of the 

training set. For each threshold, the selected performance measure is calculated.  

As there is a limit to the MDs normal samples can take (defined by the mean and the 

variance of the MDs of the normal group), the trial can be continued until a large MD value 

(such as 10, which is a very high MD for a normal group sample) 

5. Choose the threshold that maximizes the selected threshold 

After the performance measures are calculated for a range of thresholds, select the 

threshold resulting in the highest performance measure value for each training set. 

The thresholds determined for each training set are averaged to find the threshold. 

6. Verify the threshold 

MTS models formed for each threshold is applied to the respective testing sets, and the 

threshold value is used the find the performance of the model on the testing set. 

 

3.1.1. Wisconsin Breast Cancer Dataset 

 

Wisconsin Breast Cancer Dataset is also a widely used dataset in machine learning 

literature. Healthy patients form the majority group with 357 samples and sick patients 

form the abnormal group with 212 samples.  
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In this dataset, the mean values of the correct classification rates are close to each other in 

each method. Mean+3sigma acts poorly in determining the minority class (see: Table 6). As 

expected, F05 and F2 predicted the classes that these performance measures give more 

weight to better.  Figure 4 shows the average of the performance measures over 

replications for each threshold method, using the best threshold chosen. For example, For 

the G-mean performance measure, the average of the total of 9 best thresholds (3 

replications with 3 folds) is 1.944 (See Table 6). Using the best threshold in each case, the 

averages of the performance measures are calculated.  

 

Table 6 Wisconsin Breast Cancer Dataset Performance Measures 

 

  

Average of 
Best 

Thresholds 
PCC         KAPPA Precision       Recall Specificity G-mean F05 F1        F2 AUC Stability 

F05 3.3 0.873 0.866 0.901 0.742 0.951 0.840 0.862 0.811 0.768 0.956 0.016 

F1 2.111 0.888 0.881 0.834 0.879 0.893 0.886 0.841 0.854 0.868 0.956 0.017 

F2 1.533 0.861 0.853 0.752 0.946 0.81 0.875 0.783 0.837 0.899 0.956 0.018 

Euclidean 1.889 0.882 0.875 0.81 0.899 0.872 0.885 0.826 0.851 0.879 0.956 0.018 

PCC 2.133 0.887 0.88 0.835 0.874 0.894 0.884 0.842 0.853 0.865 0.956 0.018 

G-mean 1.944 0.883 0.876 0.812 0.898 0.874 0.886 0.827 0.852 0.879 0.956 0.019 

Mean+3Std 3.093 0.875 0.868 0.899 0.747 0.951 0.843 0.863 0.815 0.772 0.956 0.011 

PTM 1.857 0.886 0.879 0.811 0.909 0.873 0.891 0.828 0.857 0.887 0.956 0.014 

 

3.1.2. Pima Indian Diabetes Dataset 

 

In Pima Indian Diabetes data set, normal (healthy) group form the majority group. The table 

6 and Figure 2 show the average of the performance measure values of the testing sets for 

the selected thresholds.. For example, when F05 is used for the threshold determination, 

the threshold is found to be 1.267.  This threshold resulted with an average correct 

classification rate of %67.7 in the testing sets. It is also observed that in the testing set, the 

best F05 mean value is not obtained by using this threshold. The best F05 results (0.548) 

are actually obtained by using the threshold that maximizes the average g-mean or the 

Euclidean distance of the point corresponding to that threshold to the best point of the 

ROC graph.  
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4. Table 7 Performance Measures of the Pima Indian Diabetes Dataset 

 
  

Average of 
Best 

Thresholds 
PCC         KAPPA Precision       Recall Specificity G-mean F05 F1        F2 AUC Stability 

F05 1.267 0.677 0.659 0.538 0.563 0.738 0.645 0.540 0.545 0.555 0.723 0.014 

F1 0.822 0.646 0.625 0.497 0.771 0.579 0.668 0.534 0.603 0.693 0.723 0.008 

F2 0.411 0.486 0.468 0.400 0.940 0.242 0.477 0.452 0.561 0.740 0.723 0.012 

Euclidean 0.944 0.668 0.649 0.519 0.711 0.645 0.677 0.548 0.600 0.662 0.723 0.008 

PCC 1.600 0.680 0.665 0.549 0.447 0.804 0.599 0.520 0.487 0.461 0.723 0.015 

Mean+3Std 3.813 0.665 0.662 0.651 0.085 0.976 0.288 0.276 0.149 0.102 0.723 0.004 

G-mean 0.944 0.668 0.649 0.519 0.711 0.645 0.677 0.548 0.600 0.662 0.723 0.008 

PPM 1.918 0.683 0.670 0.577 0.356 0.859 0.553 0.512 0.439 0.385 0.723 0.004 

 

Probabilistic Threshold Method results in high correct classification rates but its recall 

(classification rate of the minority group) is the second lowest.  Although the majority class 

is predicted well, minority class performed poorly. 

Although setting the threshold to mean+3*standard deviation results in the best 

classification rate for the majority group, this also results in a very high threshold of 3.815, 

placing %91.5 of the minority samples into the wrong class. Looking at the performance 

measures, it is seen that F1, Euclidean, and G-mean yield similarly good results in all 

performance measures.   

Pima Indian Diabetes dataset is not a clearly imbalanced dataset and many of the threshold 

methods have resulted in similarly good results except for F2 and Mean+3 Std. Dev.  

In this dataset, the majority group was the healthy patients. As MTS model is formed using 

the normal group, it was expected that the larger the group used to form the model, the 

better the model is. In order to observe the results when the normal group is the minority, 

the dataset was made imbalanced by randomly removing samples from it until the normal 

group is %20 percent of all data. The results are given in Table 8 and Figure 6. 
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Table 8 Performance Measures of Pima Indian Diabetes Dataset with Normal Group Reduced to %20 of the 
Dataset 

 

  

Average of 
Best 

Thresholds 
PCC         KAPPA Precision       Recall Specificity G-mean F05 F1        F2 AUC Stability 

F05 0.7 0.718 0.707 0.826 0.797 0.471 0.613 0.818 0.809 0.801 0.699 0.03 

F1 0.244 0.741 0.739 0.765 0.952 0.086 0.286 0.796 0.847 0.906 0.699 0.02 

F2 0.078 0.758 0.758 0.759 0.998 0.012 0.109 0.797 0.862 0.938 0.699 0.001 

Euclidean 0.922 0.685 0.67 0.855 0.705 0.621 0.662 0.819 0.771 0.73 0.699 0.019 

PCC 0.411 0.74 0.735 0.785 0.908 0.216 0.443 0.806 0.84 0.879 0.699 0.025 

G-mean 0.911 0.684 0.67 0.852 0.708 0.61 0.657 0.817 0.771 0.732 0.699 0.022 

Mean+3Std 3.598 0.318 0.307 0.863 0.118 0.942 0.333 0.376 0.206 0.142 0.699 0.016 

PTM 1.838 0.496 0.475 0.879 0.389 0.83 0.568 0.701 0.539 0.438 0.699 0.035 

 

When the dataset is imbalanced, F1, F2, and PCC perform poorly in determining the normal 

(and also minority) class. PTM on the other hand, performs better in determining the 

normal class but does not classify the samples in the abnormal group correctly.  From these 

results, it is seen that the best results on the average are given by maximizing the Euclidean 

Distance and G-mean measures in the training set. Although they do not result in the best 

average PCC values, they act equally well for both classes.  

 

1.1.1. Magic Gamma Telescope Dataset 

 

Magic Gamma Telescope Dataset contains 12332 normal (no gamma ray reflected from the 

atmosphere) and 6688 abnormal (detected gamma ray reflection from the atmosphere) 

observations. From the results, it is seen that all threshold methods except F2 give equal 

average correct classification rates. PTM and Mean+3sigma give very good results in 

average precision but they result in low average recall values. The best measure for 

determining the abnormal samples is F2, but that measure performed poorly on the other 

measures. F1, Euclidean and G-mean give the most balanced average results in all 

performance measures.   
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1. Table 9 Performance Measures of Magic Gamma Telescope Dataset 

 

  

Average of 
Best 

Thresholds 
PCC         KAPPA Precision       Recall Specificity G-mean F05 F1        F2 AUC Stability 

F05 2.067 0.774 0.765 0.79 0.487 0.929 0.673 0.702 0.602 0.527 0.818 0.001 

F1 1.167 0.74 0.724 0.61 0.725 0.748 0.736 0.629 0.662 0.698 0.818 0.001 

F2 0.6 0.585 0.565 0.456 0.922 0.403 0.610 0.507 0.61 0.765 0.818 0 

Euclidean 1.167 0.74 0.724 0.61 0.725 0.748 0.736 0.629 0.662 0.698 0.818 0.001 

PCC 1.9 0.775 0.766 0.764 0.525 0.911 0.692 0.699 0.622 0.56 0.818 0.001 

G-mean 1.167 0.74 0.724 0.61 0.725 0.748 0.736 0.629 0.662 0.698 0.818 0.001 

Mean+3Std 5.899 0.721 0.716 0.953 0.217 0.994 0.464 0.567 0.353 0.256 0.818 0 

PTM 2.595 0.764 0.756 0.851 0.398 0.962 0.619 0.693 0.542 0.446 0.818 -0.001 

 

This dataset was made imbalanced by randomly removing samples from the majority 

group. In this case, a very large imbalance was created by removing all but 67 samples in 

the normal group. This way, the abnormal class is now 100 times more than the normal 

class.  

 

Table 10 Performance Measures of Threshold Methods in Imbalanced Magic Gamma Telescope Dataset 

  
Average of 

Best 
Thresholds 

PCC         KAPPA Precision       Recall Specificity G-mean F05 F1        F2 AUC Stability 

F05 0 0.987 0.987 0.987 1 0 0.000 0.99 0.993 0.997 0.769 0 

F1 0 0.987 0.987 0.987 1 0 0.000 0.99 0.993 0.997 0.769 0 

F2 0 0.987 0.987 0.987 1 0 0.000 0.99 0.993 0.997 0.769 0 

Euclidean 1.267 0.683 0.682 0.995 0.682 0.748 0.714 0.91 0.808 0.727 0.769 -0.001 

PCC 0 0.987 0.987 0.987 1 0 0.000 0.99 0.993 0.997 0.769 0 

G-mean 1.333 0.666 0.665 0.995 0.665 0.748 0.705 0.903 0.795 0.711 0.769 -0.003 

Mean+3Std 3.244 0.344 0.342 0.997 0.336 0.92 0.556 0.711 0.501 0.387 0.769 -0.006 

PTM 1.718 0.566 0.565 0.997 0.562 0.862 0.696 0.861 0.717 0.615 0.769 0.001 
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The effect of such a significant imbalance can be seen in the average performance 

measures. Bu setting the threshold to 0, a correct classification rate of %98.7 is obtained. 

The recall is 1, meaning that all the samples in the abnormal group are correctly classified. 

However, Specificity is 0, indicating that all the normal samples are put into the abnormal 

class. In this highly imbalanced case, the best measures are observed to be G-Mean and 

Euclidean. 

Depending on the importance of classifying each class, a different method can be used. In 

imbalanced datasets, measures such as PCC can be misleading. It is observed above that 

misclassification of the minority group does not affect PCC in highly imbalanced cases. 

Recall and Specificity are better measures to observe in imbalanced datasets. In order to 

obtain a threshold that would act well for both classes, measures such as Euclidean or G-

mean can be used. G-mean is a commonly used performance indicator in imbalanced cases, 

and setting a threshold that maximizes G-mean did in fact resulted in good results in the 

testing sets.  Thus, it is suggested that for cases where classification performance of each 

class is important, the threshold value that maximizes g-mean is used. 

In the cases studied in this thesis, G-mean will be used to determine the threshold as the 

datasets in the quality context are often imbalanced.  
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CHAPTER 4 
 

 

4. PARAMETER OPTIMIZATION USING MTS WITH BINARY 

RESPONSE 

 

 

In this thesis, the use of Mahalanobis Taguchi System is proposed for parameter 

optimization for the first time to the best of our knowledge. The aim of parameter 

optimization, or robust design, as explained in Section 2.3 is to determine the levels of 

parameters that optimize a defined response for quality and to minimize the variation 

caused by noise factors.  

The proposed approach aims to make use of Mahalanobis Taguchi System as a mean to 

understand the relationship between the control factors (x) and the response (y). After the 

MTS model is formed and verified to be representing the problem, the model function can 

be solved inversely, going back from the response to the control factors to determine the 

optimum factor levels. 

This inverse problem is solved and optimized using quadratic modeling. The approach is 

demonstrated on quality problems, where the desired response is the targeted quality 

level, such as non-defective product, or high customer satisfaction. 

 

4.1. The Approach 

In the proposed approach Mahalanobis Taguchi System (MTS) is used to build a 

classification model that would be representing the relationship between the control 

factors and the response. Since MTS is a method developed for classification problems with 
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binary responses, the two response categories can be normal/abnormal, non-

defective/defective, conforming/nonconforming, and so on.   

Figure 1 show the parameter diagram commonly used in robust design problems. In our 

study, static problems with only one signal factor level are considered. 

The proposed approach is presented in the Figure 9. The first 5 steps of the approach are in 

accordance with the robust design steps provided in Phadke (1989). 6th and 7th steps are 

the steps related to forming the classification model. Starting from the 8th step, the 

mathematical programming model is formed and optimized. The last step is the verification 

of the results. If the classification model does not perform as expected or if the optimal 

solution found is away from the desired class, the process have to be started from the start, 

checking the variables inserted into the model.  

The proposed approach starts with understanding the production function and defining the 

factors that can or cannot be controlled to change the output of the process (controllable 

and noise factors, respectively). In the second step, the separation between the noise 

factors and the control factors should be made clear. Only control factors (x) should be 

included in the MTS model, noise factors should not be included.  

After the factors are defined, the response that will be measured to observe the quality 

level is selected. 

It is important that the samples that are collected before starting the building of the MTS 

model be a result of a designed experiment. The levels of the control factors are 

determined and combinations of these levels are experimented using an appropriate matrix 

experiment. The levels that are experimented have to be the nominal levels of the control 

factors, that is, they are not the levels that are measured but the levels that are set by the 

experimenter. The levels set by the experimenter can differ due to noise factors during the 

experiments.   

After a matrix experiment is designed and is used to collect samples, the responses of these 

samples are measured. These responses are used in the first step of MTS, defining the 

reference class. The reference class is used to develop the classification model that will be 

used to determine whether the other observations are from the reference class or not. If 
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the response of the process is continuous or ordered categorical, it must first be converted 

into a two class response. 

 

Identify the 

Process Function

Identify the 

Controllable and 

Noise Factors

Identify the 

Response to be 

Measured

Design the Matrix 

Experiments

Conduct the 

Designed 

Experiment

Seperate 

Observations into 

Normal/Abnormal 

Groups

Form 

Classification 

Model using MTS

f(x)=MD

Define Factor 

Constraints

Form 

Mathematical 

Programming 

Model

Optimize 

Mathematical 

Model

Verify Results

 

Figure 9 Proposed Approach 
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The classification model formed using MTS can be used to determine the distance of any 

observation to the reference class. This model, a function of the control factors, can then 

be solved inversely, going back from the desired response to the optimal control factor 

levels. As the response of the MD function is the distance to the desired output (the 

reference class), the objective is to minimize the distance to the center of the reference (or 

normality) region, while satisfying any constraints placed on variables. The constraints may 

include manufacturing or technology limitations, boundaries on the variables and integer 

variables.  

The Mahalanobis Distance formula is used as the objective function of the optimization 

problem. The Mahalanobis Distance from an observation x={x1,x2,…,xp} to the center of the 

group  m=,µ1, µ2,…, µn } was defined as 

𝑀𝐷2 =  𝐱 − 𝐦 TΣ−1 𝐱 − 𝐦           

where Σ is the covariance matrix of the variables.  

From the Mahalanobis Distance formula it is seen that the lowest Mahalanobis distance is 

obtained when the variables are equal to the mean values of the variables in the normal 

group. When xi=µi for all i=1,…,p, MD is equal to 0. However, if there are constraints on the 

variables, this may not be allowed. If the variables are integer or binary, this creates 

constraints on the variables, where it may not be able to assign these variables their 

respective means. The other reason may be the mean value of the normal group being out 

of the specification limits. In these situations, nonlinear optimization methods can be used 

to find the optimal values of the decision variables. 

The objective function of the problem, the MD formula, is a quadratic function. If the 

objective function is quadratic, but the constraints are linear, the optimization problem 

becomes a special case of nonlinear optimization problems, a quadratic program (QP).  
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The quadratic program is defined as: 

Minimize (or Maximize) f x = 𝐜𝐱 +
1

2
𝐱T𝐐𝐱 

Subject to  

𝐀𝐱 ≤ 𝐛 

𝐱 ≥ 0 

where c={c1, c2,…,cp} are the coefficients of the linear terms in the objective function, and Q 

is an pxp symmetric matrix describing the coefficients of the quadratic terms. The variables 

are denoted by the p-dimensional column vector x, and the constraints are defined by an 

(mxp) A matrix and an m-dimensional column vector b.  

When the objective function f(x) is strictly convex for all feasible points, the problem has a 

unique local minimum which is also the global minimum. A sufficient condition to 

guarantee strictly convexity is for Q to be positive definite.   

The difficulty of solving the quadratic programming problem depends largely on the nature 

of the matrix Q. In convex quadratic programs, which are relatively easy to solve, the matrix 

Q is positive semidefinite. If Q has negative eigenvalues - nonconvex quadratic 

programming - then the objective function may have more than one local minimizer. For 

positive definite Q, the problem can be solved in polynomial time.  

An nxn real symmetric matrix Q is positive definite if 𝐱′Q𝐱 > 0 for all non-zero vectors x 

with real numbers. Matrix Q is positive definite if and only if all eigenvalues are positive.  

Three properties of positive definite matrices are also important to mention: 

a. Every positive definite matrix is invertible and its inverse is also positive definite 

b. If Q is positive definite and r>0 is a real number, then rQ is positive definite 

c. Since the product of eigenvalues of a matrix equals its determinant, the 

determinant of a positive definite matrix Q is positive.  
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The quadratic programming model in the proposed method can be defined as  

Minimize 𝑓 𝑥 = 𝐜𝐳 +
1

2
𝐱TQ𝐱                                                                                              [4.1] 

where c=0 , 𝐳 =  𝐱 − 𝐦  , Q = Σ−1 

 

subject to 

𝐱 ≤ upper limits 

𝐱 ≥ lower limits 

 

and Σ is the covariance matrix. 

In order to claim that the problem has a unique global optimum, the covariance matrix has 

to be positive-definite. From the definition of covariance matrix, it is known that covariance 

matrices are positive-semidefinite.  

Covariance matrix is calculated by the following: 

Σ = E  𝐱 − E(𝐱) ′ 𝐱 − E(𝐱)   

In order for Σ to be positive-semidefinite, 

 
𝐚′   𝐱 − E(𝐱) ′ 𝐱 − E(𝐱)  𝐚 ≥ 0 for any 𝐚 ≠ 0 

or 

  𝐱 − E 𝐱  𝐚   𝐱 − E 𝐱  𝒂 ≥ 0 

which is always correct. 
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4.1.1. Generation of Mahalanobis Space 

 

The most important step in MTS is the generation of Mahalanobis Space. Mahalanobis 

Space is the reference (or "normality") region defined by p variables. Generation of 

Mahalanobis Space includes determination of variables, and collection of samples from the 

normal group. If there are any outliers, they will also have to be removed. There are 

different methods to determine the outliers as explained in Section 2.1. In this study, 

samples with MDs larger than 3 standard deviations from the mean MD of the normal 

group are regarded as outliers and are removed. 

In the first step, n observations that best represent the normal class are selected. The 

"normal" group must be the group that is expected to be reached and also the group which 

is as homogeneous as possible. As the means and the covariance matrix of this group is 

used in model forming, the samples forming the normal group have to be sharing some 

common properties.  

In quality problems, the normal group must be the non-defective/conforming group. This 

group is expected to be more homogenous than the defective group, as different types of 

defects can be present among the defectives. In addition, the optimal parameter levels 

found are the levels that result in an optimal point that is as close to the selected normal 

group as possible. 

It was explained in Section 2.2.1 that size of the normal group must be significantly larger 

than number of variables p. If the number of samples is less than the number of variables, a 

singular correlation matrix will appear, rendering the calculation of MD impossible.  

In cases where the data is already present and it is not possible to collect any more 

samples, it must be assured that the number of samples are at least as many as the number 

of variables. In this step, a resampling method can be used in order to satisfy the sample 

size requirement and also to have more stable estimation of the correlation matrix. Among 

many resampling methods, SMOTE is selected to be a suitable oversampling method. 

SMOTE, as explained in SECTION 5.1, is an oversampling method that creates "synthetic" 

samples from the actual samples.  Using SMOTE, new samples are created without actually 

growing the normality region determined by the original samples.   



59 
 

In the next step, the MDs of the samples in the normal group are calculated. If new 

synthetic samples are created and inserted into the normal group, their MDs should be 

calculated as well. Using the calculated distances, samples that make the normal group 

should be checked for outliers. If the samples that have large MDs are outliers, they have to 

be removed from the normal group. This prevents samples that are actually away from the 

group from enlarging the normality region. For this reason, the samples that are more than 

3 standard deviations away from the mean of the normal group MDs can be removed in an 

iterative process. After each step, Mahalanobis Distances are recalculated with the new 

variable means and covariance matrix.  This removal is continued until no outlier is left. 

It is also important that the sample size limitations are satisfied while removing outliers. If 

the number of samples becomes less than the number of variables, new samples have to be 

collected and inserted into the normal group. If it is not possible to collect new samples, 

SMOTE can be used to create new synthetic samples.   

Having removed outliers, the samples left make up the reference group that are used in the 

proceeding steps.  

 

4.1.2. Evaluation of Discrimination Power and Selection of Important Variables 

 

After determining the normal samples used as the reference, the discrimination power of 

MTS model is optimized using Taguchi's robust design methodologies. In order to do this, 

samples that are known to be outside the normal group are used. Although the normal 

group members should be from the same population and uniform, abnormal samples can 

be from any condition outside the normality conditions. The abnormal samples are used to 

select the important variables that result in best discrimination.  

In order to select significantly useful variables, orthogonal arrays and Signal to Noise (S/N) 

ratios are used in this step to examine the effects of the variables on the MDs.  

Orthogonal arrays (OA) are used to examine the effects of forming models with different 

variable combinations. Each variable is assigned to a column of a two level orthogonal array 
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where level 1 is to use a variable, and level 0, is not to use variable. Each row in the 

orthogonal array represents a variable combination.  For each variable combination, the 

distances of the abnormal samples to the normal group mean are recalculated. MDs of the 

normal samples do not have to be calculated again, as the model is based on the 

assumption that they are normal and form a uniform normality region.  

The use of Orthogonal Arrays is suggested as means to examine the effect of each variable 

with less number of runs. However, if the variables are not as many as to forbid trial of each 

variable combination, it is suggested that a full factorial design is used.   

After calculating the MDs for the abnormal samples for different combinations of the 

variables, Signal to Noise ratios (S/N) are used both to determine which variables are useful 

in discriminating and to evaluate the performance of the constructed scale. For each row of 

the orthogonal array, S/N ratio is computed for these two purposes. 

Among different S/N ratios, larger-the-better type is selected as it is desired that the 

formed model makes the distances of the abnormal samples to the Mahalanobis Space as 

high as possible. 

In the next step, S/N ratios of all variable combinations in OA are calculated and Analysis of 

Variance is performed. The null hypothesis is whether including a variable changes the 

mean S/N ratio or not. α is selected as 0.10. For the variables that are determined using 

ANOVA to significantly affect S/N ratios, the gains obtained are calculated. The gain is the 

difference between the average S/N ratio of the runs that include the variable and the 

average S/N ratio of the runs that do not include the variable. If including a variable 

increases the S/N ratio, it is included into the model.  

The variables found using S/N gains are used to form the MTS model. Mahalanobis 

Distances of the normal and the abnormal samples are recalculated using the selected 

variables. Although this step is not directly required for optimization, it is important in 

order to compare the performance measures of the original and reduced models.  
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4.1.3. Threshold Selection 

 

In 4.1.2, the MTS model that best separates the abnormal samples from the normal 

samples in the overall are determined. To decide on whether a sample is in the normality 

region or not, a threshold must be determined after forming the MTS model and calculating 

the MDs of the normal and the abnormal samples. Samples having lower MDs than the 

threshold will be classified normal, while the others will be classified as abnormal. For 

threshold determination, it was proposed in Section 3 that an exhaustive search method is 

used, with the objective of maximizing the selected threshold. It was determined that for 

imbalanced datasets, the threshold is chosen so that g-means measure is maximized. 

Although this step is not a requirement for using the MTS model in parameter optimization, 

assessing the classification performance gives insight about the usability of the MTS model 

in parameter optimization. If the classification performance is poor, different actions can be 

taken to ensure that the model describes the case studied as best as possible. The variables 

used in modeling can be questioned, the models can be reformed etc. to increase the 

classification performance. 

 

4.1.4. Parameter Optimization using Quadratic Programming 

 

In 4.1.2, the MTS model that best classifies the normal and abnormal samples is formed. 

Using the mean, and the covariance matrix from the normal group, the quadratic program 

is constructed with the objective of minimizing the Mahalanobis Distance. The solution to 

this quadratic model [4.1] gives the parameter values that result in the smallest 

Mahalanobis Distance possible to the centroid of the normal group, subject to parameter 

constraints. 
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4.2. Applications 

 

4.2.1. Casting Defect Problem 

 

The proposed approach is applied to a real life dataset, originated from a Six-Sigma project 

performed in an Iron-Casting company of reducing defects in an iron-casting process. 

Details about this case can be found in İşkol et al. (2005). This dataset was also studied by 

Erdural (2006) in his thesis for developing a method for "robust design of products or 

processes with categorical response".  

The data used includes 7 process variables. The observations in this problem are not 

collected using a designed experiment. 138 different combinations of the 7 variables have 

been experimented for a total of 12417 times each times producing a casting. Thus, there 

are 138 rows in the dataset. It is assumed that the levels of the 7 variables are not the 

actually observed levels, but are the nominal levels.  

The number of trials (items produced) for each combination and the number of defectives 

produced are available as the response.  

The variable combinations were observed in the range of 7 to 180, depending on how many 

items are produced under each combination with the defects occurring at most 8 times in 

these combinations.  For each row, the total produced and the defectives observed are the 

two responses from these experiments. 

The first step of MTS is to determine the samples that will be forming the normal group. As 

this dataset contains repeated measurements in 138 variable levels, there is not a binary 

response that can be used directly. The two attributes that can be used to select the normal 

samples are the total number produced in that variable combination and the number of 

defectives produced as a result of this production. 

The acceptable defect rate was defined as %5 by the process owners, İşkol et al. (2005). 

Therefore, the samples meeting this criterion have to be used to form the normal group. 

However, this is not a designed experiment, and variable combinations (rows) have been 

observed in different quantities. For example, the samples 6 and 128 both have zero 
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defects. Looking at the total produced, sample 6 have been produced 160 times while the 

sample 128 has been produced only 8 times. Selecting both of these samples to be in the 

normal group by looking at the defective ratio may be misleading. In order to take the 

sample size into consideration, hypothesis testing is used. 

It is desired to test the hypothesis that in n samples, the defect rate p is smaller than the 

acceptable defect rate p0 =0.05,.  

H0: p ≥ po    

H1: p < po  

To test this hypothesis, the following statistic is used: 

𝑍0 =

 
 
 

 
 
 x + 0.5 − np0

 np0 1 − p0 
 if x < 𝑛p0

 x − 0.5 − np0

 np0 1 − p0 
 if x > 𝑛p0

  

As the hypothesis is one-sided, the null hypothesis is rejected if Z0 ≤ −Zα (Montgomery 

2005) 

The samples in which it is not possible to reject the null hypothesis are included into the 

normal group. For alpha=0.10, the samples are rejected if Z0 < −1.28  

Following these rules, 75 rows are selected to be producing non-defective products. These 

will be used as the normal group. The remaining 63 samples are regarded as abnormals.  

Prior to modeling the data with MTS, it is possible to examine the variables in the dataset. 

Examining the means of the normal and abnormal groups, it is seen that for variables X1, 

X2, X3, X4 and X6 , the mean of the normal group is larger than the abnormal group. For X7, 

the abnormal group has a higher mean than the normal group. In X5, both groups have very 

close means. 

Table 11 Mean values of the variables for the normal and abnormal groups 

  X1 X2 X3 X4 X5 X6 X7 

Normal -0.267 -0.243 -0.147 -0.138 0.009 -0.214 0.243 

Abnormal 0.318 0.289 0.175 0.165 -0.010 0.251 -0.289 
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Figure 10 Mean values of the variables for the normal and abnormal groups 

 

In the same way, the standard deviations of the groups are provided in Table 12. 

 

Table 12 Standard deviations of the normal and abnormal groups 

  X1 X2 X3 X4 X5 X6 X7 

Normal 0.773 0.747 0.736 0.769 0.902 0.811 1.072 

Abnormal 1.136 1.171 1.188 1.164 1.113 1.141 0.825 
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Figure 11 Standard Deviations of the Normal and Abnormal Groups 

 

 

The standard deviations of the variables in the abnormal groups are higher than the 

variables in the normal group, except the variable X7. It can also be seen that the standard 

deviations are much higher than the variable means.  

The minimum and the maximum values for the variables are shown in Table 13. 

 

Table 13 Minimum and maximum values of the variables 

  X1 X2 X3 X4 X5 X6 X7 

Min. Normal -1.704 -1.419 -1.610 -1.597 -2.002 -1.416 -0.778 

Min. 
Abnormal 

-1.704 -1.419 -1.681 -1.673 -2.397 -1.947 -1.328 

Max. Normal 0.809 1.127 2.036 1.841 1.946 0.796 1.973 

Max. 
Abnormal 

3.044 2.747 3.608 3.904 3.130 2.478 2.083 
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Figure 12 Minimum and maximum values of the variables 

 

 

It is seen that although the minimum values in each group are very close to each other, the 

maximum values are higher in the abnormal group.  

From the information about the variables, even though there are differences between the 

groups when each information is checked separately, there is actually no clear distinction 

between the two groups.  

As the normal group will be used as a reference to understand the correlations between 

the variables, the correlation matrix can also be examined. If there are variables that are 

highly correlated to other variables, they can cause multicollinearity, or even singularity. As 

such a case prevents from calculating the Mahalanobis Distances; the variables causing this 

problem have to be removed before forming the model. The correlation matrix of the 

variables for the normal groups is given in Table 14. 
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Table 14 Correlation Matrix 

  X1 X2 X3 X4 X5 X6 X7 

X1 1.000 0.865 -0.323 -0.214 0.006 0.866 -0.782 

X2 0.865 1.000 -0.413 -0.228 0.017 0.894 -0.809 

X3 -0.323 -0.413 1.000 0.599 -0.140 -0.435 0.407 

X4 -0.214 -0.228 0.599 1.000 -0.078 -0.288 0.226 

X5 0.006 0.017 -0.140 -0.078 1.000 0.223 -0.417 

X6 0.866 0.894 -0.435 -0.288 0.223 1.000 -0.930 

X7 -0.782 -0.809 0.407 0.226 -0.417 -0.930 1.000 

 

 

It is seen that there is a high positive correlation between the variables X1, X2, and X6 . 

Also, X7 has a high negative correlation with variables X1, X2, and X6. Finally, X3 has high 

positive correlation with X4. The correlations of the variables can be seen in Figure 13. 

There are 75 normal and 63 abnormal samples in this case. The first step is to remove the 

outliers from the normal group.  To do this, the Mahalanobis distances of the samples are 

calculated. The samples that have distances more than 3 standard deviations away from 

the average MD of the normal group are discarded for being outliers. After removal of 

outliers, Mahalanobis Distances of the samples are recalculated, and outliers are searched 

in an iterative process until no outlier is left.  

Out of the 75 samples in the normal group, 1 sample is removed for being an outlier. The 

remaining 74 samples are used as the normal group. 
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Figure 13 Correlation graphs of the variables 

Having defined the samples in the normal group, the MD of the normal and the abnormal 

samples can be calculated. 

Using all variables, the resulting MDs are given in Table 14. The mean of the abnormal 

samples is 7.387, a much higher value than the mean of the normal group. However, the 

standard deviation of the abnormal group MDs is also large. The minimum MD value of the 

abnormal group is 0.205, which is actually lower than the minimum MD of the normal 

group samples. 

 

Table 15 Basic statistics of the MTS model using all variables 

  Normal Abnormal 

Mean 0.986 7.387 

Standard 
Deviation 

0.549 11.777 

Minimum 0.260 0.205 

Maximum 2.508 46.715 

 

The resulting performance measures are seen in Table 15. From Figure 12 it was seen that 

there is an overlapping of both classes. There is no clear distinction between the classes. As 

the threshold was chosen so that the g-mean is maximized (See Section 2.4), it is important 
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first to check the g-mean. The g-mean value is 0.635. Recall and Specificity shows that the 

normal samples are classified better (0.524 vs. 0.747) than the abnormal samples.   

 

Table 16 Performance measures of the MTS model with all variables 

Threshold   1.300 

PCC              0.645 

KAPPA             0.623 

G-mean 0.635 

Precision         0.625 

Recall            0.524 

Specificity       0.747 

F05               0.609 

F1                0.574 

F2  0.543 

AUC 0.665 

 

Looking at the overall prediction rate, Percent Correctly Classified (PCC) is 0.645. KAPPA 

measure of 0.623 shows that there is a moderate agreement between the actual classes 

and the predicted classes.  

After the results are observed using all variables, useful variables that actually increase the 

discrimination between the classes have to be determined. Originally, S/N ratios and 

Orthogonal Arrays are used to find the variables that are increasing the discrimination 

between the two classes significantly. To do this, calculation of MDs will be redone for 

different combinations of variables. The reason OAs are used is to reduce the number of 

runs. In this problem, the number of variables is 7. Thus it is computationally feasible to try 

all possible combinations of variables. 27-1 = 127 variable combinations are tried.  

For each combination, the larger-the-better S/N ratios are calculated using the normal 

samples. To observe the direction of the change in S/N ratios, main effects of the variables 

are calculated. The variables that actually contribute positively to the discrimination power 

when included into the model.  
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Alternatively, as all possible variable combinations are tried, the variable combination that 

maximizes the S/N ratio can be selected. In this case, the maximum SNR is obtained using 

the variables X1, X2, X3, X5, and X7. These variables result in a S/N ratio of 117. 

 

Table 17 Parameter levels that result in the maximum S/N 

X1 X2 X3 X4 X5 X6 X7 

1 1 1 0 1 0 1 

 

Table 18 shows some basic statistics about the MDs calculated. Comparing to the all 

variable case, it is now seen that the mean of the abnormal group decreased from 7.387 to 

4.9519. Also, the maximum MS have decreased from 46.715 to 25.9905. 

 

Table 18 Basic statistics of the optimized MTS model 

  Normal Abnormal 

Mean 0.9865 4.9519 

Standard Deviation 0.5950 7.2003 

Minimum 0.1385 0.2796 

Maximum 2.8804 25.9905 

 

Although the average Mahalanobis Distances are observed to decrease, the performance 

measures given in the table below show that performance of the model have in fact 

increased as seen in Table 19. 

It is seen that the classification rate of both classes increased, therefore increasing the g-

mean value from 0.635 to 0.694. The overall classification rate also increased from 0.645 to 

0.681. Aside from there mentioned, all other performance measures increased by removing 

the variables X4 and X6. 

Looking at the classification performance of the model, it is seen that the defective samples 

were predicted poorly.  Classification results can also be seen in Figure 15. 
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Table 19 Performance Measures of the Optimized Model 

Threshold   1.410 

PCC              0.681 

KAPPA             0.662 

G-mean 0.694 

Precision         0.657 

Recall            0.540 

Specificity       0.800 

F05               0.656 

F1                0.607 

F2  0.565 

AUC 0.697 

 

The model built using MTS can then be used to determine whether new samples are 

defective or not. The Mahalanobis Distance can be calculated using the covariance matrix 

and the means of the variables for the normal group.  

The covariance matrix is given in Table 20. 

For the normal group, the mean of the variables are provided in Table 21. 

This information is sufficient to determine the values the parameters should take in order 

to produce non-defective samples. Looking at the Mahalanobis Distance formula, it is 

evident that the optimal parameter values are equal to the means of the normal group. 

However, there are production limitations that may prevent us from setting the parameters 

to the mean values. The limitations for this case are provided by Erdural (2006). It was also 

added that these production limitations are based on economical rationales. These 

production limits are given in the Table 22. 
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Table 20 Mean Values of the Variables 

Variable Mean 

X1 -0.251 

X2 -0.230 

X3 -0.150 

X4 -0.156 

X5 0.014 

X6 -0.206 

X7 0.249 

 

Table 21 Covariance Matrix of the Variables 

 
X1 X2 X3 X4 X5 X6 X7 

X1 8.851 -3.101 -0.761 0.210 1.202 -4.223 0.875 

X2 -3.101 12.342 1.149 -0.743 1.744 -6.492 1.055 

X3 -0.761 1.149 3.419 -1.722 0.056 0.065 -0.392 

X4 0.210 -0.743 -1.722 2.770 0.112 1.531 0.849 

X5 1.202 1.744 0.056 0.112 2.569 0.704 3.024 

X6 -4.223 -6.492 0.065 1.531 0.704 23.463 10.436 

X7 0.875 1.055 -0.392 0.849 3.024 10.436 10.328 

 

The limits for the variables X3 and X4 were not provided by Erdural (2006) as they were not 

present in the LR models. For these variables the minimum and maximum values for these 

variables observed from the dataset are used.  

Looking at the production limits on the variables, it is seen that the mean of X6 and X7 are 

outside their production limits. X7, being in the model, is outside the specified limits if the 

production is made using the mean values of the normal group. As the samples had to be 

discretized to be used in MTS, the means of the defined normal group did fall outside the 

specified limits. Even though discretization of the samples into two classes does change the 

means of the variables, there are only 17 samples with X7 within the specifications, out of 
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138 samples. Thus, it is possible that the while doing the experiments, the production limits 

were not followed. 

Table 22 Production Limits of the Parameters 

 

Lower 

Limit 

Upper 

Limit 

X1 -0.86 0.25 

X2 -1.19 -0.03 

X3 -1.68 3.6 

X4 -1.68 3.9 

X5 -1.6 0.37 

X6 -1.68 -0.97 

X7 1.53 1.97 

 

This limitation prevents using mean values for any of the variables because of the 

correlations between the variables. If a variable cannot be set to the mean, then there may 

be points closer to the centroid of the normal group where every variable takes different 

values.   

This information about the normal region will then be used to find the point closest to the 

center of the normal space while satisfying the constraints. Excel Premium Solver with 

XPRESS solver engine was used to solve the problem. XPRESS Solver Engine uses primal-

dual-path following Interior Point and Newton-Barrier method, based on Mehrotra 

predictor-corrector method.  

The optimization model is  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 f x =
1

p
 𝐱 − µ TΣ−1 𝐱 − µ  

subject to 

−0.86 ≤ x1 ≤ 0.25 

−1.19 ≤ x2 ≤ −0.03 
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−1.68 ≤ x3 ≤ 3.6 

−1.68 ≤ x4 ≤ 3.9 

−1.6 ≤ x5 ≤ 0.37 

−1.68 ≤ x6 ≤ −0.97 

1.53 ≤ x7 ≤ 1.97 

µ =

 
  
 

  
 
−0.251
−0.230
−0.150
−0.156
0.014
−0.206
0.249  

  
 

  
 

 

 

Σ−1 =inverse of the covariance matrix. 

 

Solving this quadratic model, the optimal parameter values are found are shown in Table 

23. 

Table 23 Optimal Parameter levels of the MTS model 

X1 X2 X3 X5 X7 

-0.860 -0.874 -0.710 -0.847 1.530 

 

It is seen that X1 and X7 are on their lower limits. X2, X3 and X5 are closer to their lower 

limits. 

These parameters result in a MD of 0.309, which is lower than the threshold of 1.41. 

According to this model, these parameters result in a non-defective solution that is close to 

the centroid of the normal group. 
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Comparison with the Logistic Regression Solution 

 

Casting Defect Dataset have been previously studied in İşkol et al. (2005) and Erdural (2006) 

using Logistic Regression (LR). The optimal factor levels in these two studies compared to 

the results of this study are given in Table 24. 

Table 24 Comparison of the proposed factor levels 

 İşkol et al. (2005) Erdural (2006) Proposed Method 

X1 -0.86 0.25 -0.860 

X2 -1.19 -1.19 -0.874 

X3 -1.68 Insignificant -0.710 

X4 Insignificant Insignificant Insignificant 

X5 -1.6 -1.6 -0.847 

X6 -1.68 -1.68 Insignificant 

X7 1.97 1.97 1.530 

 

 

It is seen that there are differences in the solutions. In the solution of İşkol et al. (2005), 

variable X4 is found insignificant. In Erdural (2006) work, the variables X3 and X4 are 

declared as insignificant. Using MTS, X4 and X6 are found insignificant and are not included 

into the model.  

It is also seen that the variables in İşkol et al. (2005) and Erdural (2006) reached their limits. 

In the proposed method, 2 variables, X1 and X7 do take boundary values.  

As the parameter levels are different in 3 of the methods and as there is not a verified 

optimal solution, it is best to compare the methods by looking at the differences in the 

classification of the samples.  

The classification rate (PCC) of the LR model is calculated as %81.5 using a cutoff point of 

c=0.023. Cutoff point is the probability value that the samples with P(Y=1)>c are considered 

to be in the 1st class (Erdural 2006) Although the classification rate is high, it is measured 

differently in Logistic Regression Model than MTS. In the LR model, the classification rate is 
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calculated using each of the 12574 production runs, not each of the 138 repeated 

production results. For example, the first row in the dataset is a parameter combination 

that has been experimented 180 times with 4 defectives. In Erdura (2006), defining this 

combination as non-defective adds 176 (180-4) samples to correctly classified samples, and 

4 samples to incorrectly classified samples. However, it was also explained before that 

considering each item produced as a separate sample, the dataset achieves defective/total 

ratio of 220/12574, making the dataset highly imbalanced. Non-defectives produced are 

0.983 of all production. Thus, even if all of the samples are classified as non-defective a 

correct classification rate of %98.3 would be obtained. 

In MTS calculations, the samples had to be classified into defective and non-defective 

classes before the model is built. Therefore, the correct classification rate is measured 

according to the discretized response of the dataset.  

Erdural (2006) formulated probability of having a defective product, P(Y=1) by the formula:  

P  Y = 1 = exp(−4.32801 + 0.16207(X1) + 0.63291(X2) − 0.05438(X5) −

0.50325(X6) − 0.43786(X7) + 0.36527(X1) ∗ (X6) − 0.33881(X5) ∗ (X6)) 

The probability of obtaining a non-defective product is 

P  Y = 0 = 1 − P  Y = 1  

These two models can be compared by observing the classification results of the samples. 

The Figure 16 shows the MDs of the samples versus the probability of being defective 

(P(Y=1)).  

In order to observe the results more clearly, the results of Logistic Regression and MTS 

were both log transformed. The lines on the graph represent the thresholds for both 

methods. The threshold for MTS was determined to be 1.4. For the Logistic Regression 

model, the cutoff point was selected as 0.023 by Erdural (2006). Using these thresholds, the 

samples that have both MD and P(Y=1) smaller than these thresholds are the samples that 

are agreed to be non-defective by both methods. The following confusion matrix shows the 

comparison of both methods. 
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Table 25 Confusion Table of the MTS and LR models 

 Logistic Regression 

MTS 

 Defective Non-defective 

Defective 14 35 

Non-defective 17 72 

 

The results given in Table 25 are the predictions of both methods. To measure the 

agreement level of both methods, Cohen's kappa measure can be used. From these results, 

Kappa=0.6075. Kappa measure ranges from 0 to 1, 1 being perfect agreement. This result 

shows that there is a moderate agreement between both methods in this case. From the 

classification table, it is seen that the disagreement mainly arises from the points that are 

labeled defective by MTS, but are labeled non-defective by the LR model. 

If MTS is formed using the variables used in LR, the performance measures are as given in 

Table 26. 

 

 

Figure 16 MD vs. P(Y=1) graph of the samples 
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Table 26 Comparison of the Original MTS and the MTS formed using LR variables 

 
Original MTS LR Variables 

Threshold   1.41 1.310 

PCC              0.681 0.652 

KAPPA             0.662 0.631 

G-mean 0.694 0.647 

Precision         0.657 0.631 

Recall            0.54 0.524 

Specificity       0.8 0.760 

F05               0.656 0.618 

F1                0.607 0.579 

F2  0.565 0.545 

AUC 0.697 0.671 

 

 

Using X1, X2, X5, X6 and X7, it is seen that there is a slight decrease in all of the 

performance measures. The classification table in Table 27 shows that there are actually 

two samples that are classified as defective by MTS, but were originally classified as non-

defective. These two samples have thus decreased the classification performance of the 

model. 

 

Table 27 Confusion table for the MTS (using LR variables) and LR Models 

 Logistic Regression 

MTS 

 Defective Non-defective 

Defective 15 36 

Non-defective 16 71 

 

After the models are formed, the next step is the determination of the optimal parameter 

values. 
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Using the probability of having a defective product as the objective function, and using the 

variable limits as constraints, a nonlinear programming model was formed by Erdural 

(2006) as 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 f x = P(Y = 1) 

subject to 

−0.86 ≤ x1 ≤ 0.25 

−1.19 ≤ x2 ≤ −0.03 

−1.6 ≤ x5 ≤ 0.37 

−1.68 ≤ x6 ≤ −0.97 

1.53 ≤ x7 ≤ 1.97 

 

The optimal solution to this Logistic Regression model is given in Table 28. 

Table 28 Optimal parameter levels of the LR model 

x1 x2 x5 x6 x7 

0.25 -1.19 -1.6 -1.68 1.97 

 

These parameter values result in P(Y=0) = 1-P(Y=1) = 0.997612. 

It is seen that the optimal values are different in the MTS optimization and LR optimization. 

As the used variables are different in these methods, the optimal values of a model cannot 

be inserted into the other to observe if there is any agreement between the methods. 

Different from LR, MTS has X3 instead of X6.  

To compare the two methods, the parameter values of the two cases can be substituted 

into the each other. MTS and LR have X1, X2, X5 and X7 in common.  
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In the first case, the optimal values of X1, X2, X5 and X7 are taken from LR and inserted into 

the MTS model. The optimal levels are found by keeping these variables constant and 

changing X3.  

Optimizing MTS model using LR variables result in the following solution in Table 30. 

 

Table 29 Optimal Parameter Levels of MTS using LR variables 

x1 x2 x3 x5 x7 

0.250 -1.190 -1.585 -1.600 1.970 

 

The resulting MD is 7.513, which is classified as abnormal by the MTS method. 

In the second case, the optimal values of X1, X2, X5 and X7 are taken from MTS and 

inserted into the LR model. The optimal levels are found by changing X6. The optimal 

parameter levels are as follows, as given in Table 30. 

 

 

Table 30 Optimal Parameter Levels of LR using MTS variables 

x1 x2 x5 x6 x7 

-0.860 -0.874 -0.847 -0.970 1.530 

 

 

These parameter levels result in P(Y=0) = 0.994118588, which is %0.35 worse than the 

original optimal LR solution.  

When the parameter values found using MTS model are inserted into the LR model, the 

result is only %0.35 less than the optimal parameters of the LR Model. Thus the difference 

is small. On the contrary, if the parameter values of the LR model are inserted into the MTS 
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model, the MD found is 7.513, which is a large MD that would be classified as abnormal by 

the MTS model. 

 The comparison of the optimal parameter levels of both models are shown in Table 31. 

 

Table 31 Comparison of the Optimal Solutions of MTS and LR 

 
MTS Model LR Model 

MTS Parameters 0.309 0.994118588 

LR Parameters 7.513 0.997611995 

 

It can be seen from the optimal solutions that Logistic Regression is less sensitive to the 

changes in the variables. Although the MTS parameters result in satisfactory non-defective 

probabilities in LR, the use of LR variables in the MTS model results in a highly defective 

case.  

Unless the suggested MTS solution is tested in a real setting, it is not possible to reach a 

strong conclusion about which method is better for this case. 

 

4.2.2. Customer Satisfaction from a Driver's Seat Case 

 

As a second case, the customer satisfaction data from the thesis work of Çabuk (2008) have 

been used. This dataset includes questions from a questionnaire used to study the factors 

affecting the satisfaction from the driver's seat. In the questionnaire, there are 75 questions 

asked to customers. In addition, there are 14 anthropometrical measurements of the 

customers. In her thesis, Çabuk analyzed the results of the questionnaire using Logistic 

Regression. This problem does not exactly fit into the area of robust design. Therefore, the 

function between the control factors and the response is solved inversely, trying to find the 

factor levels required to reach the desired response class.    
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Out of a total of 89 variables, Question 63 – Overall Satisfaction with the Vehicle- was used 

as the response of the questionnaire. The response is binary, where 1 denotes "Somewhat 

Satisfied" customers and 2 denotes "Highly Satisfied" customers. 

17 questions have ordered categorical, and 2 questions have nominal categorical answers.  

14 anthropometrical questions have continuous measurements as answers. The remaining 

57 variables have binary answers. 

In her work, Çabuk removed some of the questions after preprocessing. As a result, 12 

categorical variables, 4 continuous variables and 28 binary variables are now present in the 

data set. The variables are given in Table 32. 

Upon further investigation, it is observed that Question 32 and Question 33 are equal to 

each other for the highly satisfied customers. This means one of them is redundant, and 

would result in singularity in taking the inverse of the covariance matrix. As Question 33 is 

used in the Logistic Regression model, Question 32 is removed.  

The dataset contains 21 "Somewhat satisfied" customers and 51 "Highly Satisfied" 

customers. Here, the reference class that would be used to form the normal group is 

selected to be "Highly Satisfied" customers.  

2 nominal categorical answered questions, question 4 and 12, are also removed prior to 

forming MTS model. In order to calculate Mahalanobis distances using a nominal variable 

with k levels, k dummy binary variables have to be used, each representing a level. 

However, in datasets where the number of variables is large compared to the number of 

samples, addition of new variables may result in the number of variables exceeding the 

number of samples, preventing the calculation of the Mahalanobis Distances. Even if not, it 

was shown that a low ratio of sample size/variable causes the sample correlation matrix to 

be falsely estimated. (Young 1978) 
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Table 32 Variables of the Customer Satisfaction Dataset 

Variables 

Question1 Question31 

Question2 Question32 

Question3 Question33 

Question4 Question34 

Question5 Question37 

Question6 Question38 

Question7 Question39 

Question8 Question41 

Question10 Question42 

Question11 Question43 

Question12 Question44 

Question13 Question45 

Question14 Question46 

Question15 Question47 

Question16 Question48 

Question18 Question53 

Question22 Question56 

Question24 Question58 

Question26 Question76 

Question27 Question78 

Question28 Question85 

Question29 Question87 

 

 

In the Customer Satisfaction case, question 4 has 3 levels and question 12 has 4 levels. 

Although dummy variables can be included without exceeding the number of samples, 

these questions have been removed from the dataset as they are not used in the Logistics 

Regression model formed by Çabuk.   

The reference group was selected as the highly satisfied customers. The aim is to determine 

if the customers will be highly satisfied or not. There are 51 highly satisfied and 21 

somewhat satisfied customers in the dataset. 
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The properties that form the reference group are the correlation matrix, the mean and the 

standard deviations of the variables. Thus, these can be examined prior to modeling the 

dataset with MTS. 

The mean values show that in X2, the normal group has a mean significantly larger than the 

abnormal group. Similarly, in variables X36, X37 and X38, abnormal group has higher 

means. 

Standard deviations in Figure 18 show that high standard deviations make it difficult to 

conclude that any mean of the variables are different.  

 

 

Figure 17 Mean Values of the Questions 
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Figure 18 Standard Deviations of the Questions 

 

 

Figure 19 Mean Values of the Anthropometric Measurements 
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Figure 20 Standard Deviations of the Anthropometric Measurements 

 

Using the remaining 41 variables, the MTS model is formed. As stated before, there are 51 

samples in the normal group. 

The first step is the removal of outliers from the normal group. Outliers were defined as the 

samples with MD larger than the mean+3*standard deviation. In this case, none of the 

samples were found to be outliers. 

In the next step, the Mahalanobis Distances of the samples are calculated using all of the 

variables. Basic statistics of the resulting MDs are given in Table 33. 

 

Table 33 Basic Statistics of the Normal/Abnormal Groups 

  Normal Abnormal 

Mean 0.980 21.85548 

Standard Deviation 0.124 16.32707 

Maximum 1.196 68.73277 

Minimum 0.714 1.590844 
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It can be seen that the mean of the abnormal group is 21.855, a much higher value than the 

mean of the normal group.  The minimum MD of the abnormal group is higher than the 

maximum of the normal group, indicating that the two classes do not overlap.  

The MDs of the normal and abnormal groups are plotted in Figure 21.  

From Figure 21, it can also be seen that the abnormal group is separated from the normal 

group. 

To measure how well the classification is done, a threshold value must be selected. The 

threshold was selected by determining the value that maximizes g-mean. The threshold 

maximizing g-mean was found to be 1.2 by searching through the possible thresholds. 

The performance measure results of the MTS model formed with all the variables is as 

given in Table 34. 

 

Table 34 Performance Measures of the MTS Model Using All Variables 

MTS 

Threshold 1.200 

PCC         1 

KAPPA 1 

Precision       1 

G-Mean 1 

Recall 1 

Specificity 1 

F05 1 

F1        1 

F2 1 

AUC 1 

 

Using 41 variables, the MTS model classified all the samples correctly.  

In the next step, S/N ratios of different combinations of variables are examined to check if 

the discrimination power of the model can be improved. Since all the samples were 

correctly classified using all variables, the expectation is that the classification is at least as 
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good as the prior one while removing some of the variables. Decreasing the number of 

variables would decrease the required minimum number of samples for the normal group. 

From the ANOVA table in Appendix A, it is seen that there are 23 variables with p value less 

than 0.1. These 23 variables are determined to be changing the S/N ratio when included in 

the model.  These variables are X3, X6, X10, X11, X12, X15, X16, X17, X18, X20, X21, X22, 

X25, X27, X28, X29, X30, X32, X33, X34, and X36. 

Still, the change may be in the positive or in the negative direction. To determine the 

direction, the main effects of the variables are plotted. The main effects plots of the 

variables are provided in Appendix B. 

The main effects plot shows that although there are other variables that have positive main 

effects, they were not found significant by ANOVA. In the end, remaining 23 variables will 

be used in model forming. 

Using the selected 23 variables, the MTS model is constructed. Basic statistics of the 

calculated MDs in comparison with the 41 variable case are shown in Table 35. 

 

Table 35 Basic Statistics of the two MTS models 

 
41 Variables 23 Variables 

  Normal Abnormal Normal Abnormal 

Mean 0.980 21.85548 0.980 5.152 

Standard Deviation 0.124 16.32707 0.344 2.389 

Maximum 1.196 68.73277 2.131 10.483 

Minimum 0.714 1.590844 0.514 0.962 

 

The results show that the discrimination did not improve in this case. The maximum value 

of the normal group increased while the minimum value of the abnormal group decreased 

below the mean of the normal group. It is clear that the abnormal group got closer to the 

normal group. Figure 22 shows the MDs of the normal and abnormal groups using the 23 

variables.  

Table 36 shows the performance measures of the two cases. 
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Table 36 Comparison of two MTS models 

 
41 Variables 23 Variables 

Threshold 1.200 2.140 

PCC         1 0.972 

KAPPA 1 0.971 

Precision       1 1.000 

G-Mean 1 0.951 

Recall 1 0.905 

Specificity 1 1.000 

F05 1 0.979 

F1        1 0.950 

F2 1 0.922 

AUC 1 0.975 

 

It is seen that all performance measures decreased when the variables are reduced. This 

reduction is caused by the false classification of 2 abnormal samples. 

In the literature, it was discussed that the use of OAs did not always result in the optimal 

selection of variables. (Abraham and Variyath 2003). The allocation of the variables to 

different columns of an OA did result in different S/N ratios. Jugulum also pointed out this 

situation as a future research topic. This issue can be a reason of the decrease in the 

performance measures.  

The second possible reason may be the use of ANOVA. It was seen in the main effects plot 

that some variables that had a positive gain were not included into the model as their effect 

were not found significant by ANOVA. Whether this is a reason for the performance 

decrease or not can be tested by using only the main effect plots for the determination of 

the variables to include.  

Using only the main effect plot given, 34 variables are selected. The basic statistics are 

shown in Table 37. 
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Table 37 Basic Statistics of the MTS model with 34 Variables 

  Normal Abnormal 

Mean 0.980 7.759 

Standard Deviation 0.207 4.034 

Minimum 1.442 15.095 

Maximum 0.612 0.839 

 

It is seen that the abnormal class got closer to the normal class. Figure 23 shows the MDs of 

all samples. It is observed that although the abnormal class got closer to the normal class, 

there is still a separation between the classes. 

The performance of the MTS model using these 34 variables is shown in Table 38. 

Table 38 Performance Measures of the MTS model with 34 variables 

34 Variables 

Threshold 1.450 

PCC         0.986 

KAPPA 0.986 

Precision       1.000 

G-Mean 0.976 

Recall 0.952 

Specificity 1.000 

F05 0.990 

F1        0.976 

F2 0.962 

AUC 0.966 

 

It is seen that 11 variables that had small positive gain but were not found significant by 

ANOVA did in fact increase the performance of the classifier. The increase in recall is the 

result of correctly classifying an additional abnormal sample. 
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Comparing all 3 cases, it is clear that it was not possible to reduce the number of variables 

used using S/N ratios or Orthogonal Arrays. The best performance is obtained when all 

variables are included into the model.  

The MTS model will then be used for optimization. For this purpose, a quadratic 

programming model has been set up. The model is 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 f 𝐱 =
1

p
 𝐱 − 𝐦 T𝚺−1 𝐱 − 𝐦  

subject to 

x1 ,  x2,  x3 , x5 , x6 , x7 , x8, x10 , x11 , x13 , x14 , x15 , x16 , x18 , x22 , x24 , x26 , x27 , x28 , x29, x31 ,  

x33 , x34 , x37 , x38 , x39 , x41 , x42 , x43 , x44 , x45 , x46 , x47 , x48 , x53 , x56 , x58 , x76 , x78 , x85 , x87  

x8,  x10 ,  x13 ,  x14 ,  x15 ,  x16 ,  x18 ,  x22 ,  x24 ,  x26 ,  x27 ,  x28 ,  x29 ,  x31 ,  x33 ,  x34 , x37 ,  x38 ,  x39, x41 , 

x42 ,  x43 , x44 ,  x45 ,  x46 ,  x47 ,  x48 ∶ binary 

x1 ,  x2,  x3,  x6 ,  x7,  x11 ,  x53 ,  x56 ,  x58 ∶ integer 

x76 ,  x78 ,  x85 , x87 ∶ continuous 

1 ≤ x1 ≤ 2 

1 ≤ x2 ≤ 9 

1 ≤ x3 ≤ 4 

1 ≤ x6 ≤ 7 

1 ≤ x7 ≤ 3 

0 ≤ x11 ≤ 3 

0 ≤ x53 ≤ 2 

0 ≤ x56 ≤ 2 



95 
 

0 ≤ x58 ≤ 2 

50 ≤ x76 ≤ 125 

62.1 ≤ x78 ≤ 82.4 

37.5 ≤ x85 ≤ 56 

64 ≤ x87 ≤ 87.5 

M = means of the variables 

Σ = covariance matrix 

Means of the variables are calculated as given in Table 39. 

 

Table 39 Mean Values of the Variables 

X1 X2 X3 X5 X6 X7 X8 X10 X11 

1.039 5.275 2.588 1.941 3.588 1.765 0.725 0.784 1.608 

X13 X14 X15 X16 X18 X22 X24 X26 X27 

0.510 0.412 0.118 0.902 0.216 0.843 0.882 0.667 0.588 

X28 X29 X31 X33 X34 X37 X38 X39 X41 

0.627 0.902 0.961 0.961 0.922 0.824 0.902 0.922 0.824 

X42 X43 X44 X45 X46 X47 X48 X53 X56 

0.588 0.980 0.863 0.275 0.235 0.510 0.333 0.627 0.569 

X58 X76 X78 X85 X87 
    

0.6078 82.1157 73.6569 46.4745 74.9976 
    

 

Solving this QP, the optimal parameter values are found are given in Table 40. 

The optimal MD of 0.424 is obtained with these parameters. With the threshold of 1.45, 

this point is within the normal group and is close to the centroid of the normal group. 
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Table 40 Optimal Parameter Levels of the MTS model 

X1 X2 X3 X5 X6 X7 X8 X10 X11 

1 5 1 2 4 1 1 1 2 

X13 X14 X15 X16 X18 X22 X24 X26 X27 

1 1 0 1 0 1 1 1 0 

X28 X29 X31 X33 X34 X37 X38 X39 X41 

1 1 1 1 1 1 1 1 1 

X42 X43 X44 X45 X46 X47 X48 X53 X56 

0 1 1 0 0 1 1 0 0 

X58 X76 X78 X85 X87 
    

0 86.53 70.74 46.87 76.76 
    

 

The MTS model formed can also be used to find the point that is furthest from the centroid 

of the normal group. In order to do this, the QP model is maximized. The results are 

provided in Table 41. 

 

Table 41 Parameter Levels for Maximum Distance From the Normal Group 

X1 X2 X3 X5 X6 X7 X8 X10 X11 

1 9 1 2 1 1 1 0 0 

X13 X14 X15 X16 X18 X22 X24 X26 X27 

1 1 0 0 0 0 1 0 1 

X28 X29 X31 X33 X34 X37 X38 X39 X41 

1 1 0 1 1 0 1 1 0 

X42 X43 X44 X45 X46 X47 X48 X53 X56 

1 1 1 1 1 0 0 0 2 

X58 X76 X78 X85 X87 
    

2 125 83 37.5 64 
    

 

 

These parameters result in a MD of 727 to the normal group. Although this is a very distant 

point to the normal group, it is not exactly possible to state that these parameters would 

lead to the least satisfaction level. As explained in Appendix D, it is not possible to assess 

the direction of the point relative to the normal group. Mahalanobis Distance is a 

dimensionless scale, and the point may be abnormal in either "good" or "bad" way. 
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Therefore, if it is desired to find the parameter levels with least satisfaction, it is suggested 

that the dataset is remodeled using the less satisfied customers as the reference group. 

 

Comparison to Logistic Regression Solution 

 

Originally, this dataset was modeled by Çabuk (2008) using Logistic Regression in her thesis. 

The model formed is 

P  Y = 2 = 1 −
eg(x1 ,…,x9)

1 + eg(x1 ,…,x9)
 

where 

𝑔 𝑥 =  3.517 + 4.147(1 − x13) − 3.157x24 + 1.882(1 − x27) − 5.079x33 − 4.055x42

− 6.015x43 + 2.393x7 − 1.046x8 + 1.101x9  

P  Y = 2  is the probability that the customer will be "Highly Satisfied". Out of 44 variables, 

9 variables entered the model.  

Using the P  Y = 2  equation, the samples with probability greater than the specified cutoff 

level are labeled as "Highly Satisfied" and the samples with probability less than the cutoff 

point are labeled as "Somewhat Satisfied". This cutoff point can be determined using the 

dataset, or it can be set to a dataset independent value. In this case, cutoff point is selected 

as 0.5. 

According to this cutoff point, the performance measures of Logistic Regression model 

compared to the MTS results are shown in Table 42. 

Using a cutoff point of 0.5, correct classification rate of the model is %93.1. Area Under ROC 

Curve (AUC) is 0.896, which shows the model is very good in the sense of prediction. Highly 

satisfied customers were predicted %92.3 percent correctly while less satisfied customers 

were predicted %90.5 correctly. From the obtained performance measures, it is seen that 

MTS performed better in classifying the customers.   

 



100 
 

Table 42 Performance Measure of the LR and the MTS models 

 

Logistic Regression 

(Cutoff=0.5) 
MTS 

PCC         0.931 1.200 

KAPPA 0.927 1 

Precision       0.864 1 

Recall 0.923 1 

Specificity 0.905 1 

F05 0.941 1 

F1        0.872 1 

F2 0.884 1 

AUC 0.896 1 

 

As MTS correctly classified all the samples, the performance of the LR model is actually 

tested on itself. The confusion matrix of the LR model is given in Table 43. 

 

Table 43 Confusion matrix for the LR model 

 Logistic Regression 

Actual 

 Somewhat Satisfied Highly Satisfied 

Somewhat Satisfied 19 3 

Highly Satisfied 2 48 

 

 

It is seen that 3 abnormals have been classified as normal, and 2 normals have been falsely 

classified as abnormal. The graph below shows this agreement between the methods. Out 

of 55 highly satisfied customers, 48 were correctly classified by both methods. The results 

are also shown in Figure 24. The red lines indicate the thresholds used in both methods.  
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Çabuk (2008) used this Logistic Regression model to optimize the parameters so that the 

probability of high satisfaction of maximized. The model is 

Maximize P  Y = 2 = 1 −
eg(x1 ,…,x9)

1 + eg(x1 ,…,x9)
 

Subject to 

𝑔 𝑥 =  3.517 + 4.147x13 − 3.157x24 + 1.882x27 − 5.079x33 − 4.055x42 − 6.015x43

+ 2.393x7 − 1.046x8 + 1.101x9  

x8 = Std76 =
x76 − 81.14

13.96
 

x9 = Std85 =
x85 − 46.59

3
 

x13 , x24 , x27 , x33 , x42 , x43 = 0,1 

x7 = 1,2,3 

50 ≤ x76 ≤ 125 

37.5 ≤ x85 ≤ 56.5 

0 ≤ P  Y = 2 ≤ 1 

The optimal parameter levels for this model are given in Table 44. 

 

Table 44 Optimal Parameter Levels of the LR model 

X13 X 24 X27 X 33 X 42 X 43 X 7 X 76 X 85 

1 1 1 1 1 1 1 125 37.5 

 

The resulting optimal solution obtained from these parameters is: 

 P(Y=2) =0.99994677111614200 
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In MTS and LR, the variables used are different.  In MTS all the variables are used, but only 9 

variables are present in the LR model. As the variables were different in MTS and LR, the 

optimal parameter levels can be compared in different ways.  

If the levels of 9 variables used in LR model are taken from the optimal MTS solution, the 

resulting probability of high satisfaction is  

P(Y=2) = 0.98152235292466600 

This result is %1.84 less than the optimal solution found in the LR solution. 

Next, MTS model is optimized, using the optimal parameter levels of the optimal LR 

solution. The optimal values are shown in Table 45. 

The optimal MD, fixing the common variables in this case is 1.37. As the defined threshold s 

1.2, this MD value signals a parameter combination that is slightly outside the high 

satisfaction region.  

 

 

Figure 24 P(Y=1) vs. MD graph for the observations 
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Table 45 Optimal parameter levels of the MTS model using optimal LR solution 

X1 X2 X3 X5 X6 X7 X8 X10 X11 

1 6 3 2 4 1 1 0 3 

X13 X14 X15 X16 X18 X22 X24 X26 X27 

1 0 0 1 0 1 1 0 1 

X28 X29 X31 X33 X34 X37 X38 X39 X41 

0 1 1 1 1 1 1 1 1 

X42 X43 X44 X45 X46 X47 X48 X53 X56 

1 1 1 0 0 1 1 1 0 

X58 X76 X78 X85 X87 
    

0 125 67.53 37.5 76.35 
    

 

Next, the MTS model is formed using the variables of LR.  The performance measures of the 

resulting model are given in Table 46. 

 

Table 46 Performance measures of the MTS model formed with LR variables 

MTS with LR 

Variables 

Threshold 
1.530 

PCC         
0.875 

KAPPA 
0.870 

Precision       
0.800 

Recall 
0.838 

Specificity 
0.762 

F05 
0.922 

F1        
0.792 

F2 
0.780 

AUC 
0.769 
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As expected, correct classification rate has decreased from 100% to 87.5%. 4 normals have 

been misclassified as abnormals and 5 abnormals have been misclassified as normals. 

Optimizing this MTS model results in the optimal variables provided in Table 47. 

 

Table 47 Optimal parameter levels for the MTS model formed using LR variables 

X7 X13 X24 X 27 X 33 X42 X 43 X 76 X 85 

2 0 1 1 1 1 1 81.23 45.04 

 

The optimal Mahalanobis Distance is found to be 0.296. With the threshold of 1.53, this 

solution is also within the normal group. When these parameter values are inserted into 

the LR model, P(Y=2) = 0.99970768763702600. This probability is only %0.024 smaller than 

the probability obtained by optimizing the LR model. 

 

 

Figure 25 P(Y=1) vs. MD graph for the observations 
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From these results, it is seen that in classification of the customers, MTS performed well. All 

the samples in the dataset were correctly classified using the MTS model. In the 

optimization phase, it was possible to obtain parameter combinations that are close to the 

centroid of the group. Inserting the solution found in MTS into the LR model also resulted in 

high probability of satisfaction. However, it was seen that MTS model was more sensitive to 

changes in the variables. This sensitivity mainly results from the anthropometric variables. 

LR is less sensitive to changes in the anthropometric variables. The most significant 

difference between the optimal solutions of the MTS and the LR model are observed in X76. 

This variable takes the upper bound, 125 in the optimal LR solution and 86.5 in the optimal 

MTS solution. In the LR model, the difference in high satisfaction probability P(Y=2) when 

assigning the lower bound of 50 and the higher bound of 125 to X76 while keeping the 

other variables constant is  -0.0003%. However, changing the value of X76 from 86.5 to 50 

and 125 in the MTS model changes the solution 1118.3% and 1240.4% respectively.     

 

4.3. Comparison of the Proposed Method and Other Robust Design 

Methods 

 

Different methods have been developed for modeling and optimizing based on data with 

qualitative responses. Some of these methods have been summarized in Section 2.7.  In 

addition, the performance of the proposed method was compared to that of the logistic 

regression in the two case studies provided. 

From the studies, it was seen that MTS is particularly suitable for robust design with a 

binary categorical response. However, as MTS uses the properties of the reference group to 

form the model, selection of the reference group is very important.  It is required that the 

reference, or the normal, group is originated from the same distribution and it is as uniform 

as possible. This requirement is not present for the observations outside the normal group, 

namely the abnormals. If the wrong group is chosen as the reference, then the classification 

performance may be limited. Therefore, it is more appropriate that the normal class is 
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formed using the non-defective samples in a defective vs. non-defective case. Although 

there can be different types of defects, the non-defective samples are more likely to be 

uniform.     

This problem was observed in the Casting Defect Case. The data consisted of 

measurements from different production cases. As the aim of the original experiment was 

to reduce the nitrogen gas defects in the casting process, the outcome of the experiments 

were selected as the presence of nitrogen defects.  However, there was no information on 

whether the group that has no nitrogen defects is actually free of other defects or not. 

From the classification results, it is seen that the classification performance of MTS is not 

well. One of the main results of this is that the two responses are taken as the number of 

defectives produced and the total produced. This is not from a designed experiment, and 

the parameter combinations have been tested different number of times. For the 

parameter combinations with small number of runs, the actual defect rates cannot be 

estimated accurately from this number of runs. Even though that combination might be 

actually good, the effect of total produced was taken into consideration using hypothesis 

testing. However, it is seen from the classification performance at the end that either the 

variables were not properly representing the response, or the separation of the samples 

into two groups was not very successful.   

At the optimization phase, it was seen that the optimal solution obtained with the MTS 

model did also result in low defect probability when inserted into the LR model. The LR 

model was less sensitive to changes in the variables, and the MTS solution did also result in 

a good solution. This shows that although the classification performance of the MTS model 

is not as good as the LR model, MTS could result in good optimal solutions. 

In the Customer Satisfaction case, the response is binary. It was seen that the classification 

performance of the MTS model is better than the LR model. A clear definition of the normal 

class (highly satisfied customers) did result in good classification of classes.  

Although the performance measure of MTS is better in the Customer Satisfaction case, the 

number of variables present in the model is much higher than the number of variables in 

the LR model. There are 41 variables in the MTS model, but there are only 7 in the LR 

model. The increase in the number of variables increases the computational effort in the 
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optimization phase. From the experiments, it was observed that when the number of 

variables exceeds 20, the quadratic model cannot be solved using the standard Excel solver 

add-in. Other mathematical modeling programs specialized in QP problems have to be 

used. Optimization of the LR model requires much less computational effort. 

As the core of MTS method is the MD, which is a dimensionless metric, it is not possible to 

examine the direction of an observation relative to the reference group. Therefore, it is 

possible to say that location and dispersion effects cannot be analyzed separately using 

MTS. Although Jugulum (2000) aimed to use Mahalanobis Taguchi Gram-Schmidt (MTGS) 

method for this purpose, this work has been highly criticized.  

 Accumulation Analysis (AA) is also a method introduced by Taguchi (1991) for the analysis 

and optimization of ordered categorical data. In AA, the cumulative response categories are 

determined and the effects of factor levels on the probability distributions by the 

categories are calculated using an ANOVA-like procedure. Using this information, the 

optimal factor levels can be calculated.   

Accumulation Analysis has been widely criticized by Nair (1986) and Hamada and Wu (1986) 

for being inefficient and complicated. The use of this method in categorical data is not 

suggested (See Section 2.7.2).   

Scoring Schemes method assigns two scores to the categories and tries to identify the 

location and dispersion effects separately. Nair (1986) As these effects are considered 

separately, two different optimal factor settings for location and dispersion effects are 

calculated. This limits the use of scoring schemes, for it can be difficult to choose factor 

settings using two different optimal factor calculations obtained for location and dispersion 

effects.  

Weighted Signal-to-Noise Ratio (WSNR) is another method developed by Taguchi (1991). In 

this method, a weight proportional to the quality loss is assigned to each response 

category. The categorical response is used as it was continuous and smaller-the-better SNR 

is used. The optimal parameter levels are the ones that results in the maximum SNR. This 

method is preferred to AA and Scoring Schemes method as one single optimization solution 

can be obtained.  
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In their work, Wu and Yeh (2006) apply Taguchi methods on a continuous production case 

study data for parameter optimization. Then they categorize the variables and use AA, 

WSNR and two different Scoring Schemes methods to obtain optimal parameter levels. 

These results from the categorized data are compared to those of the continuous data. It is 

concluded that WSNR method is both simpler and more efficient than the other methods. 

Accumulation analysis, Scoring Schemes and WSNR methods are all methods developed 

solely to be used with data with categorical independent variables and categorical 

response. It is not possible to use a continuous variable in these methods before 

categorizing. This is a loss of information that is present. In addition, the optimal parameter 

levels obtained are also limited to the categorical data; it is not possible to obtain a 

continuous variable level. 

MTS can be preferable to these methods as different types of independent variables can be 

used in forming the model. One clear disadvantage of MTS to these methods is the sample 

size limit. Due to the formula of Mahalanobis Distance, the sample size must be at least as 

many as the number of variables. 

The use of OAs in MTS is also criticized.  It was also shown in the case studies that the use 

of OAs together with SNR did not always give the best model. 

Taguchi and Jugulum (2000) state that there are no assumptions present for the MTS 

method. However, Mahalanobis distance metric used in MTS is originally developed with 

the assumption of normality of the groups. Although there is a normality assumption, this 

assumption is not taken into consideration in the MTS literature without any reported 

problems. 

Most important limitation of MTS comes from the use of correlation matrix in the MD 

formula. In order to calculate MD, there must be satisfactory number of samples to 

calculate the correlations between the variables, and the variables must not be highly 

correlated. The variables with high correlation must be removed prior to model forming. If 

the sample size is not enough, either additional samples must be collected or some of the 

variables must be removed.    
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CHAPTER 5 
 

 

5. CONCLUSION & FUTURE WORK 
 

 

In this study, an optimization method for robust design with a binary response is proposed. 

The proposed method uses Mahalanobis Taguchi System to form a classification model, and 

optimizes the model using quadratic programming.  Mahalanobis Taguchi System is a 

multivariate classification method that is specifically useful for experiments with binary 

responses (or two classes) 

The proposed method was applied into two different datasets. These datasets have been 

previously studied using Logistic Regression, and thus the performance of MTS and LR in 

classification and optimization could be compared.   

In the proposed method, ANOVA was used in variable selection process in combination 

with main effects calculations. A threshold selection method was also proposed, in order to 

select a threshold that would be suitable for the performance measures found important. 

Quadratic Programming was used in the parameter optimization process. Excel Premium 

Solver Add-In in combination with the XPRESS solver engine was used. Different programs 

designed for quadratic programming models can also be used. 

The first dataset studied was the Casting Defect Dataset. The number of variables was 7, 

allowing the trial of all variable combinations. Thus a full factorial design was used. Due to 

the fact that the response could not be accurately categorized into two classes, the 

classification performance of MTS was not satisfactory. The variables entering the model 

and the optimum levels were different from two previous studies. However, it was also 

observed that the optimal levels obtained using the MTS model did result in low defect 

probabilities when entered into the LR model. 
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The second dataset studied was the Customer Satisfaction Dataset. This data includes 

survey questions asked to customers and the anthropometric measurements of the 

customers. It was observed in this dataset that the solution obtained using OAs did not 

always result in the best model. Using all the variables, MTS classified all the customers 

correctly. The optimal solutions obtained using MTS did also result in high satisfaction 

probabilities when inserted into the LR model. However, LR solution results in a MD slightly 

outside the normal region.  

In the two cases studied, it was observed that there are differences in optimal solutions of 

the compared methods. A better comparison with other methods can be made by doing 

verification experiments. 

From these cases studied, it was also seen that the variable selection phase of MTS does 

not always work as intended. As it was pointed out by various authors, the use of OA is 

problematic as the way the variables are assigned to the OA columns changes the 

calculated factor effects. This variable selection phase could be a further study area, where 

variable selection is made using heuristic algorithms or heuristic methods.  

Finally, after studying the use of MTS method in multi-class problems, this study can be 

extended to robust design problems with more than 2 qualitative responses. 
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APPENDIX A  

ANOVA TABLE OF CUSTOMER SATISFACTION DATASET 

 

Table 48 Anova Table of Customer Satisfaction Dataset 

 

 

 

 

'Source' 'Sum Sq.' 'd.f.' 'Singular?' 
'Mean 

Sq.' 'F' 'Prob>F' 

'X1' 0.623233 1 0 0.623233 0.544119 0.461825 

'X2' 0.871198 1 0 0.871198 0.760607 0.384462 

'X3' 32.60171 1 0 32.60171 28.46319 3.26E-07 

'X4' 0.068261 1 0 0.068261 0.059596 0.807452 

'X5' 2.95823 1 0 2.95823 2.582707 0.110033 

'X6' 15.46313 1 0 15.46313 13.50021 0.000326 

'X7' 2.943721 1 0 2.943721 2.57004 0.110902 

'X8' 7.856342 1 0 7.856342 6.859043 0.009678 

'X9' 2.750062 1 0 2.750062 2.400964 0.123261 

'X10' 5.002293 1 0 5.002293 4.367292 0.038237 

'X11' 22.62536 1 0 22.62536 19.75326 1.65E-05 

'X12' 2.752837 1 0 2.752837 2.403387 0.123074 

'X13' 0.020525 1 0 0.020525 0.017919 0.893681 

'X14' 0.012312 1 0 0.012312 0.010749 0.917556 

'X15' 54.30139 1 0 54.30139 47.40827 1.28E-10 

'X16' 10.2394 1 0 10.2394 8.939592 0.003238 

'X17' 5.302125 1 0 5.302125 4.629064 0.032954 

'X18' 43.67262 1 0 43.67262 38.12874 5.37E-09 

'X19' 2.099153 1 0 2.099153 1.832683 0.177744 

'X20' 9.78187 1 0 9.78187 8.540142 0.003984 

'X21' 36.98121 1 0 36.98121 32.28675 6.24E-08 

'X22' 12.92344 1 0 12.92344 11.28292 0.000981 

'X23' 0.022199 1 0 0.022199 0.019381 0.889457 

'X24' 2.915959 1 0 2.915959 2.545802 0.112586 

'X25' 4.528481 1 0 4.528481 3.953627 0.048498 

'X26' 0.368115 1 0 0.368115 0.321386 0.57158 

'X27' 11.14724 1 0 11.14724 9.732193 0.002153 

'X28' 23.24149 1 0 23.24149 20.29117 1.29E-05 

'X29' 83.25166 1 0 83.25166 72.68354 1.15E-14 

'X30' 14.38159 1 0 14.38159 12.55596 0.00052 

'X31' 2.059471 1 0 2.059471 1.798038 0.181874 
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          Table 49 Anova Table of Customer Satisfaction Dataset 

 

'X32' 3.163927 1 0 3.163927 2.762292 0.098493 

'X33' 4.904907 1 0 4.904907 4.282269 0.04014 

'X34' 11.73744 1 0 11.73744 10.24747 0.001655 

'X35' 0.006768 1 0 0.006768 0.005909 0.938824 

'X36' 8.045854 1 0 8.045854 7.024498 0.008858 

'X37' 2.013331 1 0 2.013331 1.757755 0.186818 

'X38' 0.00012 1 0 0.00012 0.000105 0.991843 

'X39' 0.03008 1 0 0.03008 0.026261 0.871471 

'X40' 11.72834 1 0 11.72834 10.23952 0.001662 

'X41' 67.89007 1 0 67.89007 59.27198 1.40E-12 

'Error' 180.9731 158 0 1.145399 [] [] 

'Total' 704.2605 199 0 [] [] [] 
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APPENDIX B  

MAIN EFFECTS PLOT FOR CUSTOMER SATISFACTION DATASET 
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APPENDIX C 

MAHALANOBIS TAGUCHI GRAM-SCHMIDT SYSTEM 

 

An alternative way of evaluating Mahalanobis Distance using the Gram-Schmidt 

orthogonalization process (GSP) is present. (Jugulum 2000) Two motives are stated by 

Jugulum (2000) for using MTGS instead of regular correlation matrix method. The first 

motive arises from situations when the normal method cannot function because the 

inverse of the correlation matrix cannot be calculated. MTGS can be used even when the 

sample size is smaller than the number of variables. The other reason is that although the 

Mahalanobis Distances can be calculated, whether the abnormality is in the "good" 

direction or in the "bad" direction cannot be calculated using the regular method. That is, 

although the sample is outside the Mahalanobis Space, it may be off the limits in the good 

direction.  (Jugulum 2000) 

The steps of MTGS are the same as those of MTS. The major difference is that orthogonal 

vectors are formed from the original variables and are used. Among different 

orthogonalization methods, Taguchi and Jugulum (2000) used Gram-Schmidt Method in 

their work.  

 

Gram-Schmidt Method 

 

Gram-Schmidt process forms an orthogonal basis from a set of vectors where an orthogonal 

basis  

v = {v1,…,vn } ∈ Rn  

is constructed from the set  

w = {w1,…wn}  
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These orthogonal elements are constructed sequentially one at a time. The steps of Gram-

Schmidt process is explained by Olver and Shakiban  (2006) as follows:  

(1) Any element of W can be used as the first orthogonal basis element v1 as there is no 

limitation. Thus, the first vector in W is used 

v1=w1   

 

(2) The second basis vector is constructed so that it is orthogonal to the first  

<v1, v2> = 0 

Let v2=w2-cv1 where c is a scalar to be determined. The orthogonality condition is 

0=<v2, v1> = <w2, v1> - c <v1, v1> = <w2, v1> - c||v1||2  

Rearranging this equation yields 

c=<w2, v1> /||v1||2  [2.39] 

Substituting [2.39] into [2.38], 

v2=w2-(<w2,v1>/||v1||2 ) v1  

(3) Next orthogonal vector v3 is constructed by subtracting a linear combination of the 

first two orthogonal basis elements from w3.  

v3=w3-c1v1-c2v2     

 v3 must be orthogonal to both v1 and v2. Since v1 and v2 are already orthogonal, 

0=<v3,v1> = <w3,v1>-c1<v1,v1> 

0=<v3,v2>=<w3,v2>-c2<v2,v2> 

Solving for the scalars c1 and c2 , 

c1=<w3,v1>/||v1||2 

c2=<w3,v2>/||v2||2 

Substituting c1 and c2 into their places in Eq. 5  , 
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v3= w3-<w3,v1>/||v1||2   *v1 – (<w3,v2>/||v2||2)v2  

The remaining orthogonal vectors v4,….,vn are constructed as linear combinations of W in 

the same manner. 

The general Gram-Schmidt formula is therefore 

𝑣𝑘 = 𝑤𝑘 −  
<𝑤𝑘 ,𝑣𝑗 >

 𝑣𝑗 

𝑘−1
𝑗=1 𝑣𝑗  , 𝑘 = 1, … , 𝑛   

If the orthogonal vectors are normalized by dividing them to their norms orthonormal 

vectors with unit length are obtained: 

𝑢𝑘 =
𝑣𝑘

 𝑣𝑘 
  k=1,….,n  

In the general Gram-Schmidt formula, 
<𝑤𝑘 ,𝑣𝑗 >

 𝑣𝑗 
 are called the Gram-Schmidt coefficients. 

Although the original Gram-Schmidt Process is easier in hand computations, in large scale 

computations it can be subject to numerical instabilities and the round-off errors can lead 

to vectors that are non-orthogonal. Thus, modifications were made on Gram-Schmidt 

Process to overcome this problem. The algorithm for obtaining orthonormal vectors is as 

follows: 

𝑢1 =
𝑤1

 𝑤1 
    

To ensure that the other vectors will be orthogonal to u1, appropriate multiples of u1 is 

subtracted from all of the remaining basis vectors in W: 

wk
(2) =wk- <wk, u1>u1  k=2,…,n   

where the superscript (2) denotes the second stage computations. 

The second orthonormal basis vector u2 is then obtained by normalizing:  

𝑢2 =
𝑤2

2

 𝑤2
2 

    

In a similar way, it must be ensured that the remaining basis vectors are orthogonal to u2:  
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wk
(3)=wk

(2)-<wk
(2),u2>u2, k=3,…,n  

As a result, they are orthogonal to both u1 and u2.  𝑢3 =
𝑤3

3

 𝑤3
3 

 is the next orthonormal basis 

element, and the process continues.  

The algorithm starts with the initial basis vectors wj
(1)  from wj=wj

(1) , j=1,…,n and then 

recursively computes 

uj=wj
(j)/||wj

(j)||, wk
(j+1)=wk

(j) <wk
(j),uj>uj, j=1,….,n k=j+1,…,n  

𝑢1 =
𝑤1

 𝑤1 
  [2.49] 

wk
(j+1)

= wk
(j)

−< wk
(j)

, uj > uj  , j = 1, … , n k = j + 2, … , n   

The modified Gram-Schmidt process forms the same orthonormal basis vectors in a more 

numerically stable way. 

 

The Steps of Mahalanobis Taguchi Gram Schmidt System 

1. Generation of the Normal Space 

The first step in MTGS is to construct a basis for a normal group. This basis will be used as a 

reference to measure the normality of other observations. This step is the same as the first 

step in MTS. The p variables that are considered to be important in the definition of 

normality are determined.  

2. Collection of Samples To Construct the Normal Group  

In the second step, samples that will be used as the members of the normal group are 

collected.  Different from MTS, the number of samples does not have to be greater than the 

number of variables if Gram-Schmidt Process will be used. However, if other matrix 

decomposition methods such as QR decomposition will be used to obtain orthogonal 

vectors, the number of samples has to be greater than or equal to the number of variables.  
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3. Calculation of the Mahalanobis Distance for Each Sample in the Normal Group 

In a case where the number of samples in the normal group is n and the number of 

variables is p, each variable has n values from the samples.  Considering each variable, 

there are p variable vectors of size 1xn.  

Similar to the original MTS method, variables are standardized to obtain 

Zi=( zi1, zi2, …, zin) i=1,…,p 

Standardized vectors are then orthogonalized using Gram-Schmidt Orthogonalization 

Process, to obtain k orthonormal vectors: 

Ui=(ui1, ui2, …, uin) i=1,…,p 

After orthonormalization, the jth sample becomes 

uj= (u1j, u2j,…, upj)
T  

Scaled Mahalanobis Distance is calculated using the orthonormal vectors of the vectors. 

MD2 =
1

p
uTΣ−1u   

Σ is the covariance matrix of variable vectors U1… ,Up .  

As the variables are orthonormalized, their vectors are orthogonal to each other and they 

are uncorrelated. Thus the covariance matrix is 

Σ =

 

 
 
σU1

2 0 … 0

0 ⋱ 0 ⋮
⋮ 0 ⋱ 0
0 … 0 σUp 1

2

 

 
 

 

The inverse of the correlation matrix is 
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Σ−1 =

 

 
 
 
 

1

σU1

2 0 … 0

0 ⋱ 0 ⋮
⋮ 0 ⋱ 0

0 … 0
1

σUp 1

2
 

 
 
 
 

 

 

Therefore, MD corresponding to the jth observation of the sample is computed using the 

equation 

MDj =
1

k
 

u1j
2

σU 1
2 +

u2j
2

σU 2
2 + ⋯ +

upj
2

σU p
2   𝑗 = 1, … , 𝑛   

 

The MD values calculated using the two methods are shown to be approximately equal to 

each other. (Taguchi and Jugulum 2000) 

The following steps of MTGS are the same as the steps of MTS. In calculation of the MD of 

the abnormal samples, means, standard deviations and the Gram-Schmidt coefficients of 

the normal samples are used. 

4. Removal of  the Outliers from the Normal Group 

After calculating the MD of the samples, the samples having higher MDs should be 

removed as outliers and MDs should be recalculated with the remaining samples. This 

process is repeated until a suitable MS with no outliers is generated. Although Taguchi and 

Jugulum (2000) suggest the removal of outliers from the normal group; they do skip this 

step in the examples provided. (Jugulum 2000), (Taguchi and Jugulum 2000) , (Taguchi, 

Chowdhury and Yuin 2001) 

5. Gathering of r Samples from Outside the Normal Group 

In order to check whether the model formed is able to determine whether a sample is from 

outside the normal group or not, samples that are known to be outside the normal group 

must be collected. This step is the same for MTS and MTGS. 
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6. Calculation of the MDs from outside the normal group. 

In calculation of the MD of the abnormal samples, means, standard deviations and the 

Gram-Schmidt coefficients of the normal samples are used. Abnormal samples enter Gram-

Schmidt Orthogonalization Process. Rather than orthogonalizing, the variables are 

processed using the orthogonalization information of the normal group, that is, the normal 

group coefficients. 

The Gram-Schmidt orthogonalization formula was given as 

𝑣𝑘 = 𝑤𝑘 −  
< 𝑤𝑘 ,𝑣𝑗 >

 𝑣𝑗 

𝑘−1

𝑗=1

𝑣𝑗  , 𝑘 = 1, … , 𝑛 

 

where 
<𝑤𝑘 ,𝑣𝑗 >

 𝑣𝑗 
 is the Gram-Schmidt coefficient. 

 

7. Defining  the Optimal System by Identifying Useful Variables 

 

Similar to MTS, S/N ratios are used to find the variables that are contributing to the 

discrimination in a positive manner. Jugulum (2000) argue that "S/N ratios can be 

computed for all the variables directly from the orthonormal vectors, if the effects of partial 

correlations are not significant." If the effects of partial correlations are significant, then 

OA's will be used just like in MTS.  

If partial correlations are not significant, the suggested larger-the-better S/N ratio for 

determining useful variables is calculated as follows: 

 

S/Ni = −10log  
1

r
   

1

 
U ij

σ i
 

2
r
j=1   i = 1, … , p      

 

Ui = (ui1,ui2,…,uir) : Orthonormalized vector for the ith variable. i=1,…,p 

r: The number of abnormal samples 
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σi: The standard deviation of the ith variable.  

 

Jugulum (2000) suggests that the orthonormal variables U1,U2,...,Up correspond to the 

original variables X1,X2,...,Xp respectively. Thus after calculating the Signal to Noise ratio for 

each variable, the variables that have positive S/N values are included in the model.  

However, Hawkins (2003) state that selection of important variables using orthogonal 

counterparts is not possible since a variable Uj is a function of all of X1,X2,...,Xj . Uj is 

computed using all of the first jth variables.  

It was shown that in Gram-Schmidt orthogonalization process orthogonalization is 

performed sequentially for each variable. For this reason the process depends on the 

ordering of the variables, especially the starting variable. Hawkins et al state that there are 

p! different orderings of the variables, where each ordering will produce a different 

orthonormalization. Different combinations of important variables are shown to be found 

in each case. Because of these two major drawbacks, the determination of useful original 

variables from the orthonormal vectors is inappropriate. (Hawkins 2003) (Woodall, et al. 

2003) 

Jugulum  (2000) also has pointed out that the orthogonalized vectors depend on the first 

vector. Therefore, the effects of variables depend on the order of variables. It was shown 

using examples that the useful set of variables changed when the order of 

orthogonalization changed. He adds that further research on this area is required.  Actually, 

the process not only depends on the first variable, but on the entire ordering. (Woodall, et 

al. 2003) 

Hawkins (2003) also state that the S/N ratios of the MTGS involve means of the inverse 

squares of the W (for the larger-the-better S/N ratio) In the idealized case, each Wj follows 

a distribution with mean 0 and standard deviation 1. Thus Hawkins (2003) points out that 

these squared inverses have a "hugely heavy tailed distribution". This makes S/N 

calculations highly sensitive to small changes in the data, such as "minute details of how the 

data were recorded and rounded". Also considering the fact that the order of the variables 

changes the selected variables, the use of S/N in MTGS is problematical.  
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Determination of the Direction of Abnormalities. 

 

In some cases, the relative position of the sample to the normal group is important. Even if 

a sample is not inside the normality region and is found to be abnormal, it may be a "good" 

or a "bad" sample. One example for such situation may be exam grades. In this example, 

there can be very good and very bad grades, both being away from the general results of 

the students. Mahalanobis distance is a one dimensional distance metric that cannot 

separate these two cases. As a result, MTS method cannot be used to determine whether 

an abnormality is "good" or "bad". For this issue, it is suggested that MTGS method is used. 

Jugulum  (2000) suggests the use of Gram-Schmidt coefficients to determine the direction 

of the vectors.  

As the variable vectors were standardized prior to orthogonalization, the mean of the 

orthogonal vectors Ui=( ui1, ui2,…, uin) i=1,…,k are zero. For a variable j, uij is can be above or 

below zero. Based on the value uij takes, Jugulum proposes, the abnormals can be classified 

as "good" or "bad".   

The approach is to determine if each ui is better if large or small. Jugulum states that as the 

elliptical shape of the Mahalanobis space does not change even if the orthogonal vectors 

are used, the original variables can be used to find this information.  After determining the 

directions each variable gets better, values of uij are used to determine whether the sample 

is a "good" abnormal or not.  

Jugulum (2000) provides a two variable case to explain this process: 

If both of the original variables W1, W2 are better if they are larger, then their 

orthogonalized vectors U1, and U2 should also be larger. Since the mean of the standardized 

vectors is zero, it is sufficient to check if they are greater than zero or not.  It is also known 

that the sample must have a MD larger than the threshold so that it is labeled as abnormal. 

Thus, for the jth sample, 

w1j>0 or  u1j>0 and w2j>0 or  u2j>0  

MDj>T 
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where T is the threshold. 

As a result, the sample satisfying these conditions is marked to be a "good" abnormality, if 

not; it is a "bad" abnormality.  

This procedure can be applied to the cases where there is knowledge about the direction 

the variable gets better. If there is no clear distinction for the variables, then this procedure 

cannot be used.  

It was previously explained that Hawkins had put forth some major shortcomings of this 

method. As a result of the way orthogonal vectors are constructed, Gram Schmidt variables 

(Uij) cannot be used to determine the important variables as U is a function of all original 

variables. It was explained previously that the Gram Schmidt variables depends on the 

ordering of the variables and different orderings in the orthogonalization process may lead 

to different significance results of the variables. (Hawkins 2003) 

It is usually not possible to determine whether a variable is better when it is larger or 

smaller in classification problems. Combined with the two major drawbacks Hawkins has 

explained, the procedure for the determination of the direction of abnormalities requires 

further research.    
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APPENDIX D 

OTHER METHODS IN HANDLING SMALL DATA IN MTS 

 

Adjoint Matrix Approach 

Adjoint matrix of a square matrix is the transpose of its cofactor matrix. Cofactor matrix for 

an n x n matrix A is the matrix whose value in A(i,j) is the cofactor Cij of A. Cofactorij of A can 

be defined as 

Cij = (−1)i+j𝑀𝑖𝑗   

where 

Mij =the minor of entry in A(i,j). Minor is the determinant of the matrix A with where row i 

and column j is deleted.   

Previously, it was stated that the inverse of a matrix A can be calculated using the formula 

A−1 =
1

detA
Aadj  

In cases where the determinant is zero (singularity), or very close to zero (multicollinearity), 

Jugulum (2000) suggests the use of adjoint matrix instead of the inverse.  

MDA2 =
1

k
ZTAadj Z  

Although MDA is similar to a MD value, because of the removal of the determinant in from 

the formula, the average MDA is not n/ (n-1).  

Although the use of adjoint matrix of the covariance matrix instead of the inverse of the 

covariance matrix solves the calculation issues, the change in the mean of the MD of the 

normal group makes comparison between different MTS scales difficult. A distance 

measured in one scale cannot be compared to a distance in another scale in this method. 

Even different combinations of variables present in OA would yield different scales. 
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In this thesis, the research is aimed towards parameter optimization. Various MTS models 

are formed and their resulting Mahalanobis Distances are compared to each other to assess 

the performance of the models. The need of comparison of the different MTS models 

prohibits the use of Adjoint Matrix approach in our research. 

Generalized Inverse 

Another solution to the invertibility problem is the use of generalized inverse of the 

covariance matrix instead of its inverse. 

Let A be any m x n matrix. A has a pseudoinverse if and only if there is a n x m matrix X 

satisfying  

(1) AXA =A 

(2) XAX=X 

(3) (AX)*=AX 

(4) (XA)*=XA 

where * denotes the conjugate transpose. 

Generalized inverse X of a matrix A is a matrix satisfying one or more of the properties 

above. If it satisfies all of the properties, it is commonly called Moore-Penrose 

pseudoinverse. (Piziak 2007) 

If A is a non-singular square matrix, then its pseudoinverse is equal to its ordinary inverse. If 

it is not possible to take the inverse of a matrix, pseudoinverse provides an estimate of the 

inverse that meets the four properties of an inverse given above. Singular Value 

Decomposition (SVD) method is commonly used to accurately calculate the pseudoinverse 

of a matrix.  

In MTS, pseudo inverse X of a matrix A can also be used where inverse cannot be 

calculated. Due to the fact that pseudoinverse is actually an estimate solution for a problem 

with no solution, its use is not preferred in this study.  

 


