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ABSTRACT

EXPERIMENTAL AND THEORETICAL INVESTIGATION OF

COMPLEX FLOWS BY ULTRASOUND DOPPLER VELOCIMETRY

Köseli, Volkan

                              Ph.D., Department of Chemical Engineering 

                              Supervisor: Assoc. Prof. Dr. Yusuf Uludağ

July 2009, 128 pages

Non-invasive and fast flow measurement techniques have had increasing importance 

for the last decades. Scientists are looking for such quick techniques to be able to 

monitor real velocities without disturbing flow itself. Ultrasound Doppler 

velocimetry (UDV) being one of such techniques promising with advantages of 

getting simultaneous velocity measurements from several points and of applicability 

for opaque liquids as well. UDV is a technique which is still being developed for 

new applications and analysis of complex flows. 

In this study effect of sinusoidal oscillating, turbulent (random) and viscoelastic fluid 

motions on UDV signals were investigated theoretically and experimentally. 

Obtained mathematical relations for random and viscoelastic motions were utilized 

to get statistics of flow and distribution of relaxation spectrum, respectively. 

Analytical analysis and numerical simulation of sinusoidal oscillating flow depicted 

that there is a critical value for the ratio of oscillation amplitude to oscillation 

frequency for a specified set of measurement parameters of UDV. Above this critical 

value UDV is not successful to determine mean flow velocity. Mathematical 

relations between velocity probability density function (PDF) – velocity auto 

correlation function (ACF) and UDV signal spectrum were obtained in the analysis 
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of flow with random velocity. Comparison of velocity ACFs from direct velocity 

measurements and from raw in-phase (I) and quadrature (Q) signals through derived 

relation, revealed that time resolution of UDV technique is not enough for getting a 

good velocity ACF and thus turbulence spectrum. Using I and Q signals rather than 

measured velocities to get velocity ACF, increased the time resolution in the order of 

number of pulses used for getting one velocity value (Nprn). 

Velocity PDF obtained from UDV spectrum was compared with the one obtained 

from measured velocities with the assumption of Gaussian PDF. Both velocity PDFs 

were consistent. Also some parameters of pipe turbulence from literature were 

compared with the presented findings from velocity ACF obtained from I and Q 

signals through derived relation. Results showed good compatibility. 

In the last part of the study, complex viscosity of a linear viscoelastic fluid 

mathematically related to spectrum of UDV for a pipe flow with small-amplitude 

oscillating pressure field. Generalized Maxwell model was employed to express 

complex viscosity terms. Zero frequency (mean flow) component of UDV spectrum 

was used to obtain an equation for relaxation viscosities of generalized Maxwell 

model. Results have revealed that UDV technique can also be used to probe some of 

viscoelastic material functions.

In conclusion, UDV is relatively new but a promising technique for the measurement 

and analysis of complex flows in a non-invasive manner. 

Keywords: Complex Flows, Linear Viscoelasticity, Non-invasive Flow 

Measurement, Pipe Turbulence, Random Signals, Ultrasonic Signal Processing, 

Ultrasound Doppler Velocimeter (UDV) 
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ÖZ

KOMPLEKS AKIŞLARIN ULTRASONİK DOPPLER HIZ ÖLÇÜM 

TEKNİĞİYLE DENEYSEL VE TEORİK OLARAK İNCELENMESİ

Köseli, Volkan

                                    Doktora, Kimya Mühendisliği Bölümü

                                   Tez Yöneticisi: Doç. Dr. Yusuf Uludağ

Temmuz 2009, 128 sayfa

Bir kaç on yıldan bu yana akışı rahatsız etmeyen ve hızlı ölçüm teknikleri artan 

öneme sahiptir. Bilim adamlarının, akış ortamındaki gerçek hızları akışı rahatsız 

etmeden ölçen bu tip hızlı tekniklere ihtiyacı vardır. Ultrasonik Doppler hız ölçümü 

(UDHÖ), eş zamanlı birçok noktada ölçüm yapabilme ve ışık geçirgenliği olmayan 

sıvılarla kullanılabilme gibi özellikleri sayesinde öne çıkan bir tekniktir. UDHÖ yeni 

uygulamalar ve karmaşık akışların analizi için hala geliştirilen bir tekniktir.

Bu çalışmada sinüssel salınımlı, türbülent (rasgele) ve viskoelastik akışkan 

hareketlerinin, UDHÖ sinyalleri üzerine etkisi teorik ve deneysel olarak 

incelenmiştir. Rasgele ve viskoelastik akışlar için elde edilen matematiksel 

ilişkilerden, sırasıyla akış istatistiğini ve gevşeme spektrumunun dağılımını elde 

etmek için yararlanılmıştır.

Sinüssel salınımlı akışın analitik analizi ve sayısal simülasyonu, belirli UDHÖ 

parametreleri için, akış salınım genliğinin akış salınım frekansına oranının bir sınır 

değerine sahip olduğunu göstermiştir. Bu kritik değerin üzerinde UDHÖ ortalama 

akış hızını belirlemede başarılı değildir. Hızın olasılık yoğunluk fonksiyonu (PDF) 

ve oto ilişki fonksiyonu (ACF) ile UDHÖ sinyal spektrumu arasındaki matematiksel 

ilişkiler, rasgele hızda akış analizi kısmında elde edilmiştir. Direkt hız ölçümlerinden 
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ve türetilen eşitlik sayesinde fazda (I) – dik fazda (Q) sinyallerinden elde edilen ACF 

lerin karşılaştırılması, UDHÖ tekniğinin hız ölçümlerinkedi zaman çözünürlüğünün 

iyi bir hız ACF si dolayısıyla türbülans spektrumu elde etmede yeterli olmadığını 

göstermiştir. Hız ACF si elde etmek için ölçülen hızlardan ziyade I-Q sinyallerini 

kullanmak zaman çözünürlüğünü, bir hız ölçümü yapmak için kullanılan sinyal 

sayısı (Nprn) oranında artırmıştır. 

UDHÖ spektrumundan elde edilen hız PDF si, Gaussian PDF varsayımıyla ölçülen 

hızlardan elde edilenle karşılaştırıldı. Her iki PDF ninde uyum içinde olduğu 

görüldü. Ayrıca türetilen eşitlikle, ölçülen I-Q sinyallerini kullanarak elde edilen 

ACF den hesaplanan bazı boru türbülansı parametreleri, literatür değerleriyle 

karşılaştırıldı. Sonuçlar iyi derecede uyum gösterdi. 

Çalışmanın son aşamasında, küçük genlikli salınımlı basınç alanına sahip boru akışı 

için doğrusal viskoelastik bir akışkanın kompleks viskozitesi, UDHÖ spektrumuyla 

matematiksel olarak ilişkilendirilmiştir. Kompleks viskozite terimleri genelleştirilmiş 

Maxwell modeliyle ifade edilmiştir. UDHÖ spektrumunun sıfır frekans (ortalama 

akış) bileşeni, genelleştirilmiş Maxwell modelindeki gevşeme viskoziteleri için 

eşitlik elde etmek amacıyla kullanılmıştır. Sonuçlar UDHÖ tekniğinin bazı 

viskoelastik materyal özelliklerinin belirlenmesindede kullanılabileceğini ortaya 

çıkartmıştır.

Sonuç olarak, UDHÖ görece yeni fakat karmaşık akışların rahatsız etmeden ölçümü 

ve analizi için gelecek vaad eden bir teknikdir.

Anahtar Kelimeler: Kompleks Akışlar, Doğrusal Viskoelastiklik, Rahatsız Etmeden 

Akış Ölçme, Boru Türbülansı, Rastgele Sinyaller, Ultrasonik Sinyal İşleme, 

Ultrasonik Doppler Hız Ölçümü (UDHÖ) 
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CHAPTER 1

INTRODUCTION

Flow measurement is an important issue in many industrial processes to control the 

properties of fluids and for system design economy. Rheological properties of foods 

and chemicals in a continuous flow system are very important for control and quality 

purposes [1]. Although sampling and off-line measurement techniques are available, 

these are not real time analysis and slow. In-line velocity profile measurement is a 

quick and useful way to get shear deformation of fluid. This knowledge can be used 

to get rheological properties of fluid with simultaneous pressure measurements.

Therefore in-line, non-invasive and fast measurement techniques are very useful not 

only for industrial applications but also for scientific studies [2]. Ultrasound Doppler 

velocimetry (UDV) is one of such techniques stands with many advantages over 

other techniques. Generally food and other industrial fluids are opaque. UDV is a 

suitable and low cost technique for measurement of such opaque materials.          

Ultrasound Doppler velocimetry (UDV) technique (also called as ultrasound velocity 

profiler (UVP), acoustic Doppler velocity profiler (ADVP)) was originally used in 

medical applications [3], especially in researches of blood flow [4, 5]. After some 

pioneering studies published in early 1990’s [6], fluid dynamics application of UDV 

in engineering field has considerably increased [7]. Different flow systems and fluids 

have been investigated such as hot liquid metals [8, 9], magnetic fluids [10], 

viscoelastic polymer melts [11], rheological properties of suspensions [12],

multiphase flow applications [13, 14] and flow through a porous bed [15].   

UDV is capable of obtaining velocity profile in short times (in a couple of ms), and 

of measuring velocity in opaque liquids. It is also a non-intrusive method. These 

features make this technique preferable compared to some older well established 
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methods such as laser Doppler velocimetry (LDV), magnetic resonance imaging 

(MRI) and particle tracking velocimetry (PTV) [16, 17].

In spite of its attractive features, UDV has some difficulties and limitations in flow 

measurements compared to the previously mentioned well established techniques. 

For example reflective particle concentration and size distribution have a strong 

impact on the quality of UDV data [18, 19]. Near wall measurements are not reliable 

because of high-pass filtering of signals employed to eliminate signals coming from 

wall interfaces. This process, on the other hand, decreases the sensitivity for low 

velocities encountered typically near the walls [13, 17, 20]. Time resolution of 

measurements is another limiting criterion for this technique which is bounded by 

the speed of sound in flow medium. Time resolution in LDV and MRI measurements 

is several times higher than that of UDV since signals propagate at the light speed in 

the former ones [17, 21, 22]. Time resolution is critical in quickly changing flow 

regimes like strong turbulent flows [23]. 

Spatial resolution is also crucial in flow measurements. In UDV diameter of 

ultrasound (US) probe and length of US pulse determine the spatial resolution of the 

measured velocity distribution. Beam shapes created by shape and size of probe has 

significant effects on spectrum of Doppler ultrasound [24]. Selection of correct size 

of probe compared to the size of the flow system is very important to obtain 

satisfactory spatial resolution. Shape of the measurement gates (pixels) is cylindrical 

with diameter close to that of probe and length equal to the half length of US pulses. 

Therefore point focusing is not possible for this technique like LDV which is critical 

in highly turbulent flows [25]. We can think of coming velocity information from a 

gate as averaging of all velocities within the volume. Coupling of US probe with 

flow conduit, gases within the fluid, knowing sound velocity in the flow medium are 

other important concerns of UDV technique [26].

Despite the listed resolution limitations of UDV compared to other methods, 

typically time and spatial resolutions about 20 ms and 0.7 mm are easily achieved in 

UDV measurements. These values correspond to a velocity resolution of 1 cm/s, 
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which is quite sufficient for most of the engineering studies including turbulent 

flows. Therefore UDV has already become a tool for process monitoring and control 

purposes. It is reported as a fast and useful in-line measurement tool to evaluate 

rheological properties of fluids by using with simultaneous pressure drop 

measurements [27, 28]. Capability of measuring velocity profiles of opaque liquids 

appears as an important advantage of UDV as most of the commercial chemicals and 

foods are opaque. 

There are some studies which aimed to improve the signal processing algorithm of 

commercial UDV method [29]. Some of them consider time resolution of the method 

and others deal with measurement of transverse (vertical to probe) velocities by 

using correlation algorithms [5, 30]. 

Experimental studies regarding UDV are generally encountered in the literature [31, 

32, 33]. However, theoretical or mathematical studies are very limited [34, 35].

Moreover many of experimental measurements are based on temporally averaged

velocities discarding exact time change of velocities and turbulence. Also studies of 

flow of complex fluids like viscoelastic fluids are very rare in literature [36, 37]. The 

emerging point of this study is then, to utilize the interaction between the sound 

signals and flow field in order to characterize the flow. Here crucial point is to 

develop mathematical models for the flow effects on the sampled signals [38, 39]. 

This study can be divided into three main parts. First part includes theoretical 

analysis of effects of oscillating flows on US signals. Results are verified through 

computer simulations. This part was first step in investigating turbulent flow which 

was considered in the second part. Relation between relevant statistical properties

(probability density function and auto-correlation function) of measured random 

velocities (turbulent velocity) and spectral properties of sampled US signals was 

established in this part. Experimental confirmation of these relations was also carried 

out after development of mathematical results. Finally another type of complex flow 

was considered. Effect of the relaxation spectrum of a flowing linear viscoelastic 

fluid on the spectrum of US signals was modeled. 
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CHAPTER 2

ULTRASOUND DOPPLER VELOCIMETRY AND DISCRETE SIGNAL 
PROCESSING

2.1 Ultrasound Doppler Velocimetry (UDV)

Doppler ultrasound technique initially used in medical field goes back to more than 

30 years [40]. Non-invasive, fast and easy setting-up features of pulsed Doppler 

ultrasound technique increased its use in other flow measurements noticeably. In 

UDV single probe is used to emit and then receive (listen) ultrasonic pulses [6, 41]. 

Hence probe is switched to the listening mode after sending short sound pulses to 

receive back reflected echoes. Actually, Doppler expression in the name is 

misleading for the basic principle of this method. In UDV velocities are obtained 

from position shifts of reflecting particles in flow (i.e. time shifts of consecutive 

pulses) by sampling the incoming echoes at the same time relative to the burst 

emission. Therefore Doppler shift is not the case as opposed to laser Doppler 

velocimetry (LDV).

UDV measures the velocity vector which is in the direction of probe in measurement 

point. Since only this velocity component is creating Doppler effect on ultrasound 

(US) signals. Therefore orientation and coupling of US probe is important to obtain 

good measurements [13]. UDV samples the echo of ultrasound pulse signals from a 

definite gate (volume) at a definite time which depends on sound velocity in flow 

medium and distance of measurement gate. Phase of back sampled ultrasound is 

changing related to the velocity of particles in measurement gate. This phase shift 

reveals as time shift in time domain and as frequency shift in frequency domain 

according to Doppler equation. This frequency shift can be obtained after 

demodulating and low-pass filtering by taking the F.F.T. (Fast Fourier Transform) of 
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back sampled pulses. This frequency can be used to obtain velocity along probe in 

measurement gate according to the Doppler equation,

d

0

c.f
U

2f


(2.1.1)

Simultaneously demodulated and low-pass filtered echo signals are phase shifted by 

/2 (quadrature part) to obtain flow direction.

For a single particle that is present along ultrasonic beam (Figure 2.1.1), its distance 

to the tip of transducer can be obtained from time difference (Td) between emission 

and sampling of signals as,

dc.T
P

2


(2.1.2)

where c is the sound velocity in flow medium.

Figure 2.1.1: Ultrasonic beam and moving particle in this field

The displacement of the particle between two consecutive emissions separated by 

time of Tprf can be expressed as,

2 1 d2 d1 prf

c
P P (T T ) V.cos .T

2
    
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If we change the time difference with phase shift, 

d
o d2 d1

o prf o

c.fc.
2 .f .(T T ) V

4 .f cos .T 2f cos


      

  
(2.1.3)

where fd appears as frequency shift and this final equation is the same as the Doppler 

frequency shift equation since both are based on the same physical phenomenon.

Therefore in the literature the term Doppler shift is used for the frequency change of 

US due to displacement of the source. In the case of randomly distributed particles, a 

combination of echoes from each particle will be received. Despite of random 

particle combination within measurement volume there should be a correlation 

between consecutive samples that is used to obtain velocity by digital signal

processing techniques [42]. Figure 2.1.2 schematically shows the installation of 

probe on a pipe and order of signal processing algorithms.   

Figure 2.1.2: Position of ultrasonic transducer on a pipe, measurement volumes 
(channels) and signal processing architecture of Ultrasound Doppler Velocimeter
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One of the most important features of the UDV technique is its ability to measure 

velocity values in many spatial points along ultrasonic emission axis. A window 

function is used to get the signals from wanted measurement range in the flow. 

Thereby receiver is switched to listening mode only for windowed time range. 

Channel width determines the spatial resolution and is given by the formula,

c
w

N .
l

2




(2.1.4)

where Nc is the number of cycles per pulse,  is the US wavelength. Width of 

channels can be half of the total length of pulse at maximum, since each signal must 

travel the same distance back to the receiver. Listening duration is equal to the time 

of traveling of length of pulse. Therefore width of channels maximum can be half of 

pulse length to capture signals throughout all desired region of the flow while 

excluding those originating beyond this region. Switching time of transducer is 

practically negligible compared to travelling time of pulses. Increasing number of 

cycles per pulse may cause channel width to be greater than channel distance leading 

to overlapping of two adjacent measurement channels. This phenomenon causes 

spatial averaging of velocities because of taking signals from neighboring channels 

of measurement channel which results in smoothing of velocity profile. This can be 

problematic for flows that have vigorous change of gradient.

Measurement window is distance between first and last measurement channels. This 

must be smaller than maximum measurable depth which is

max
prf

c
P

2f


(2.1.5)

where fprf  is pulse repetition frequency (i.e. 1/Tprf).  Also Nyquist sampling theorem 

limits the maximum detectable Doppler frequency which is fd,max= fprf/2. This means 

there would be a maximum detectable velocity given by equation (2.1.3).

prf
max

o

c f
V

4f


(2.1.6)
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Combining previous two equations gives the following constraint,

2

max max
o

c
V P

8f


(2.1.7)

which means increasing either maximum velocity or maximum depth limit causes 

the decreasing of the other one. Decreasing fo is a way to increase both maximum 

limit values but this cause the decreasing of spatial resolution. Velocity resolution is 

defined by the resolution of discrete Doppler spectrum which can be represented as 

[43],

o pc

c
V

2f T
 

(2.1.8)

Tpc is profile calculation time and equals to N×Tprf , where N is number of pulses that 

is used to determine velocity profile. Average time resolution of velocity 

measurements is equal to one profile calculation time (Tpc). The amplification of the 

received echo signals is needed to compensate attenuations due to physical medium. 

The signals from distant points experience more attenuation than those of closer 

locations. Parameters associated with signal amplification must be optimized to be 

able to get enough reflected signal energy for measurements. If the signals are weak, 

it might be useful to increase pulse repetition number (N) and/or number of cycles 

per pulse (Nc). But this will cause a decrease on time resolution and/or spatial 

resolution [44]. 

Ultrasonic waves emitted from probe propagate in a conical geometry. They are 

reflected and refracted by particles that have bigger size than their wavelength and 

have a different acoustic impedance (z=.c). This will change the propagation 

direction of ultrasonic waves which is not desired in this technique. If the size of the 

particles is smaller than wavelength, they will cause reflections of a small amount of 

ultrasonic energy back. This small amount of sampled reflections practically doesn’t 

affect the propagating waves [45].       
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Interface walls cause some artifacts on sampled signals. This makes measurements 

difficult for points close to the far interface. For example as shown in Figure 2.1.3 

below some ultrasonic signals are back reflected directly from particle at C while 

some signals are following A-B-C-A path to turn back to transducer. Total time of 

flying of second path is corresponding to a measurement point outside of the wall 

which normally doesn’t have any liquid or flow. This gives artificial velocity profile 

for depths beyond far wall interface. Hence one should be aware of the position of 

the wall interface. 

Figure 2.1.3: Artifact effect of far wall

Energy reflected by interfaces is stronger than the ones coming from particles in 

flow. Effects of stationary interfaces are eliminated by passing signals through a high 

pass filter. But this decreases the sensitivity to low velocities. If interface is moving 

and creates same frequency shift with flowing particles, it won’t be possible to 

eliminate its effect on measured velocity field. Interfaces cause many reflections 

which will interfere with the reflections from particles. 

Another important wall effect is amount of reflections and refractions when 

ultrasonic beam is passing from coupling medium to wall of conduit (Figure 2.1.4)

[13].
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Figure 2.1.4: Wall reflection and refraction

There is a critical value of incident angle α after which total reflection is observed. 

Critical angle for water-PVC interface is around 270. 

Amplitude of demodulated echo signals (I and Q signals) taken from a measurement 

gate fluctuates due to particles of different sizes and different acoustic impedances.

Sampled signal amplitude is a result of combined effect of these particles and 

demodulated signals will contain many Doppler frequencies because of different 

velocities within measurement volume. The frequency content of the sampled signals 

can be obtained from power spectrum which is FFT (Fast Fourier Transformation) of 

signals. Demodulated signals are passed through a high pass filter before 

computation of power spectrum for removing stationary components. Power 

spectrum (Figure 2.1.5) is given in logarithmic scale and frequency scale is 

converted to velocity by using Doppler equation (Eq. (2.1.3)).     

Figure 2.1.5: A typical power spectrum
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2.2 Basic Principles of Discrete-Signal Analysis

In the modeling of the effect of various flow and fluid properties, effects on the UDV 

signals the starting point will be discrete representation of the UDV signals. In 

addition FFT of the discrete time domain signals will be extensively employed. 

Therefore it is deemed useful to introduce the basic discrete signal analysis below.

In all cases of signals information is contained in some pattern of variations and 

signals are represented as function of one or more independent variables. 

Independent variable in a mathematical representation may be either continuous or 

discrete. Continuous time signals are called as analog signals. Besides discrete-time 

signals are called as digital signals. Discrete time signals can be created by sampling 

continuous time signals or directly from a discrete time process [46]. Discrete time 

signals are represented as sequences of numbers. The nth number in a sequence x is 

denoted as x[n]. n is an integer and such a sequence is obtained from periodic 

sampling of analog signals. Hence relation between discrete and analog values is 

x[n]=xa(n.T) where T is sampling period. X[n] is only defined for integer values of n 

and undefined for non-integer values. Original analog signal can be reconstructed 

from sequence of samples if the samples are taken frequently enough. Any sequence 

can be expressed as,

k

x[n] x[k] [n k]




  
(2.2.1)

where [n] is unit impulse function which is one when n=0 and zero otherwise.  Unit 

step sequence is defined as,

1 n 0
u[n]

0 n 0

 
   

or

k k 0

u[n] u[k] [n k] 1 [n k]
 

 

      

(2.2.2)

Unit impulse function can be represented in terms of unit step sequences as follows,
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[n] u[n] u[n 1]    (2.2.3)

Sinusoidal and complex exponential sequences are very important in signal analysis 

since they are occurring widely in physical systems. A sinusoidal sequence has 

general form,

ox[n] A cos(w n )  (2.2.4)

and a complex exponential sequence is,

oj(w n )
o ox[n] A e A cos(w n ) j A sin(w n )      (2.2.5)

where wo is frequency in radians and φ is phase of signals. n is always integer in here 

and this creates some differences on signals compared to continuous time signals. 

For example an oscillatory signal with frequency wo and wo+2πr (r is integer) are 

indistinguishable from one another. Hence we need to consider only frequencies 

within interval of 2π such as –π<wo<π. Another difference between continuous and 

discrete sinusoidal signals is interpretation of high and low frequencies. Oscillation 

of a continuous time sinusoidal signal is getting more and more rapid while 

oscillation frequency is increasing. However a discrete time sinusoidal signal 

oscillates more rapidly as wo increases from 0 to   and oscillates more slowly as wo

increases from   to 2. Since frequencies of 0 and 2 are identical in discrete case.  

Therefore the 0 frequency is referred to lowest frequency and  to highest frequency 

for discrete signals.    

If x[n] is input, output of a linear time-invariant (LTI) system can be represented as,

k

y[n] x[k]h[n k]




 
(2.2.6)

where h[n] is impulse ([n]) response of the system and h[n-k] is response to [n-k]. 

Equation (2.2.6) is called as convolution sum and depicted as,

y[n] x[n] h[n]  (2.2.7)
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Complex exponential and sinusoidal sequences play important role for representing 

discrete time signals. This is because complex exponentials are eigenfunctions of 

LTI systems. Response to a sinusoidal input is sinusoidal with the same frequency 

and with amplitude and phase determined by the system. This fundamental property 

of LTI systems makes useful representation of signals in terms of complex 

exponentials (Fourier representation).  For example if input sequence is x[n]= ejwn , 

output of the LTI system with impulse response h[n] will be,

jw(n k) jwn jw k

k k

H(w)

y[n] h[k]e e h[k]e
 

 

 

  


(2.2.8)

where frequency response H(w) is eigen value and ejwn is eigen function of the 

system. H(w) is generally complex and shows how amplitude of complex 

exponential input changes. Also H(w) is periodic in frequency with period 2π. 

2.2.1 Fourier Transform Representation of Signals     

Wide range of signals can be represented as linear combination of complex 

exponentials as,

kjw n
k

k

x[n] a e (2.2.1.1)

One way is to use Discrete Time Fourier Transform (DTFT):

jw n

jw n

n

1
x[n] X(w)e dw inverse DTFT {synthesis equation}

2

where X(w) x[n]e DTFT


















(2.2.1.2)

Frequency weighting function X(w),which determines the contribution of each 

complex exponential to synthesize x[n], is complex and can be written in polar 

notation as,

j X(w)X(w) X(w) e  (2.2.1.3)



14

where X(w) and X(w) are amplitude and phase of Fourier transform 

respectively. If any sequence is absolute summable i.e.
n

x[n]




     then Fourier 

transform exists.

Sequences taken from measurements are generally with finite duration. Fourier 

representation of these signals is referred to as discrete Fourier transform (DFT). 

DFT is a sequence also by itself which is composed of samples of Fourier transform 

of signal. Time domain discrete sequence is accepted to be periodic with total 

number of samples (N) and frequency domain DFT sequence will also be periodic 

with N in this transform. Frequency domain components appear at integer multiples 

of basic frequency wo=2/N. Discrete frequency is depicted with k while discrete 

time with n. DFT pairs are as follows,

N 1
j(2 /N)k n

k 0

N 1
j(2 /N)k n

n 0

1
x[n] X[k]e inverse DFT {synthesis equation}

N

where X[k] x[n]e DFT







 










(2.2.1.4)

2 stands for maximum sampling frequency which determines the limit of detectable 

frequency after DFT.  Nyquist sampling theorem says that minimum sampling 

frequency of a continuous time signal must be two times highest frequency that 

shown in Fourier spectrum in order to get continuous signal back from its samples 

(fs2fN). You can see properties of DFT and some DFT pairs in APPENDIX B.   

2.2.2 Random Signals and Their Statistics

A random variable (r.v.) is a function that assigns a value to the outcome of a 

random process (experiment). For example turbulent velocity (v) at a measurement 

point is a r.v. This turbulent velocity is a time function.  Values of random turbulent 

velocity at a specific time will be obtained by realization of turbulent flow several 

times with same boundary conditions and by measuring velocities at designated time. 

These measured values will give the ensemble of random turbulent velocity at a 
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specified time. All statistical analysis should be done on this ensemble of values. A 

discrete random variable can take only specific, isolated numerical values, like the 

outcome of tossing a die. On the other hand a continuous random variable can take 

any values within a continuous interval, like temperature in a room. Each assigned 

value of a r.v. has a probability. For example P{v=v} shows the probability of 

random velocity v of being v. Similarly P{vv} shows the probability of random 

velocity v of being equal or less then v. For any r.v. x, P{x=} = P{x=-} = 0. 

2.2.2.1 Distribution and Probability Density Functions

Cumulative Distribution Function (CDF) of r.v. x is defined as [51, Ch.4, 5],

Fx(x) = P{xx} defined for -  x  

Some properties of distribution function:

1) Fx(+) = 1 , Fx(-) = 0

2) If x1 < x2 then Fx(x1)    Fx(x2)

3) P{x>x} = 1- Fx(x)

4) P{x1< x  x2} = Fx(x2)- Fx(x1)

5) r.v. x is continuous if  Fx(x) is continuous.  x is discrete type if Fx(x) is a 

staircase function.

Derivative of Fx(x) is called as Probability Density Function (PDF) of r.v. x,

x
x

dF (x)
f (x)

dx


(2.2.2.1.1)

If x is discrete r.v. taking the values xi with probabilities pi [46, App.A],

x i i
i

f (x) p (x x )   (2.2.2.1.2)

where pi=P{x=xi}
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Some properties of PDF:

1) fx(x)  0

2)
x

x x x xF (x) f ( )d and F ( ) f (x) dx 1


 

      

3)
2

1

x

x 2 x 1 x 1 2

x

F (x ) F (x ) f (x)dx P{x x }     x

Normal or Gaussian is one of the most commonly encountered PDFs which is,

2 2(x ) /2
x

1
f (x) e

2
  

 
(2.2.2.1.3)

where  is mean value and  is standard deviation.  PDF of a r.v. y which is a 

function of r.v. x can be related to the PDF of x as following,

For y=g(x), if x1, x2, …, x3 are roots of this equation {i.e. y=g(x1)=g(x2)= … 

=g(xn)}and g '(x) is derivative of g(x) with respect to x.   

x 1 x 2 x n
y

1 2 n

f (x ) f (x ) f (x )
f (y) ...

g '(x ) g '(x ) g '(x )
   

(2.2.2.1.4)

2.2.2.2 Mean and Variance

The mean or expected value of a r.v. x is defined by 

x xE{ } x f (x)dx




   x
(2.2.2.2.1)

For discrete type r.v. this integral can be written as a sum.

i i
i

E{ } x px (2.2.2.2.2)
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where x takes discrete values xi with probability pi. Expected value of the function 

y=g(x) of r.v. x will be,     

y xE{g( )} g(x) f (x)dx




   x
(2.2.2.2.3)

If x is discrete type,

i i
i

E{g( } g(x )P{ x } x) x (2.2.2.2.4)

Linearity property of expected value operation gives, 

1 1 2 2 1 1 2 2E{a g ( ) a g ( ) b} a E{g ( )} a E{g ( )} b    x x x x (2.2.2.2.5)

The variance of a random variable x is,

2 2 2
x x x xE{(x ) } (x ) f (x)dx





    
(2.2.2.2.6)

x is called as standard deviation of r.v. x. For discrete type x, 

2 2
x i x i

i

(x ) p   (2.2.2.2.7)

Moments are another interest of r.v. studies. nth moment is defined as,

n n
n xm E{ } x f (x)dx





  x
(2.2.2.2.8)

nth central moment is,  

n n
n xE{( } (x ) f (x)dx





    x - )
(2.2.2.2.9)
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CHAPTER 3

INTRODUCTORY TURBULENCE AND VISCOELASTICITY

3.1 Introduction to Turbulence and Its Statistical Description

Definition of turbulence given by Taylor and Von Karman [47] is: “Turbulence is an 

irregular motion generally appears in fluids when they pass over a solid surface or 

even over a stream of same fluid.” Because of this irregularity it is not possible to 

describe the turbulent motion as a function of time and space in detail. Both Eulerian 

(fixed point measurements) and Lagrangian (moving particle measurements) 

velocities are irregular function of time in turbulent fluid motions. But turbulence is 

not an absolutely irregular motion since it can be described by the statistical laws. 

Turbulent flow of viscous fluids is a dissipative kind of motion which converts 

kinetic energy into heat. Hence without an external energy source turbulence is going 

to decay. Viscosity also makes turbulence more homogeneous. Gradient of average 

velocity for homogeneous turbulence would be constant throughout the flow field. If 

statistical properties don’t have any directional preference, turbulence is called as 

isotropic turbulence. Gradient of average velocity for isotropic turbulence would be 

zero. If mean velocity has a gradient, the turbulence is then termed as anisotropic 

[47, Ch.1]. Flows with constant periodicity (regular pattern) which are called as 

pseudo turbulent flows can be used to simulate and understand real turbulent flows. 

Turbulent flows can have different scales of patterns which are called as scale of 

turbulence. These scales are determined by the velocities and size of geometry in 

which turbulence occurs. For example time scale of pipe turbulence would be in the 

order of ratio of pipe diameter to mean velocity. Spatial scale is going to be in the 

order of pipe diameter. Another parameter characterizing the turbulence is intensity 

of turbulence which is given by root-mean square values of turbulent fluctuations 
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with respect to time ( v ' ). By definition mean value of velocity fluctuations ( v ' ) is 

zero. Turbulent velocity can be decomposed into summation of average value and 

fluctuating part (Reynold’s decomposition) as,

v V v '  (3.1.1)

Root-mean square (r.m.s.) of fluctuations,

 2v v ' (3.1.2)

Relative intensity of turbulence at a point is defined as,

v

V

(3.1.3)

Average velocity value can be obtained by taking time average if turbulent flow field 

is stationary random (i.e. statistical properties are constant). Otherwise average must 

be taken over large number of experiments with the same initial and boundary 

conditions. This is called as ensemble average. Space averaging can be possible if 

turbulence is homogeneous. These averaging techniques are useful for Eulerian 

velocity measurements. Averaging over large number of particles or ensemble 

averaging must be used for Lagrangian measurements. Lagrangian measurements are 

convenient to study turbulent transport or diffusion. Time averaging at a fixed point 

(xo) can be expressed mathematically as,

T

o oT
T

1
V(x ) lim v(x , t)dt

2T


 
(3.1.4)

Practically it is not possible to take time interval T as infinity but it should be large 

enough compared to turbulent time scale. Hence  

T

o o

T

1
V(x ) v(x , t)dt

2T 

 
(3.1.5)
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Turbulence consists of superposition of eddies of many sizes. But the size of the 

smallest eddies are determined by the viscosity of fluid since velocity gradients are 

biggest for these eddies which creates viscous shear stress and cease eddies. These 

smallest eddies in turbulent motion corresponds to minimum scales and maximum 

frequencies. Kinetic energy is distributed among these eddies of different sizes and 

frequencies which is called as energy spectrum. Size of the biggest eddies are 

determined by the size of the flow geometry where as size of smallest ones are 

determined by viscosity and mean velocity. Increasing mean velocity decreases the 

size of smallest eddies. Turbulent flows have a strong diffusive nature which makes 

turbulent transport more prominent. Turbulent kinetic energy is transferred through 

eddies from bigger to smaller and finally it is dissipated by viscous forces. 

Turbulent flows in circular pipes arise from laminar flows because of instabilities at 

Reynolds numbers (R×V×/µ) of around 2000. Diffusive nature of turbulence can be 

described by means of effective diffusivity (eddy diffusivity) but this causes to treat 

the turbulence as a property of fluid rather than a property of flow [48]. Conceptually 

this is not correct but it is sometimes useful in engineering applications. Dimensional 

analysis gives the scale of eddy diffusivity as follows,

v L (3.1.6)

where L is characteristic length scale (integral scale) of the flow. Expressions like 

this with experimentally determined coefficients are used in practical applications. 

Since small scale motions have much smaller time scales compared to large scale 

motions we can assume them as statistically independent. Hence small scale motions 

are only dependent on the rate of energy supplying from main flow and kinematic 

viscosity. We can assume energy supply as equal to energy dissipation in small scale 

motions. This is the basis for Kolmogorov’s equilibrium theory of small scale 

structures. Hence Kolmogorov microscales can be expressed by using turbulent 

energy dissipation rate (ε, m2/s3) and kinematic viscosity (ν, m2/s) as follows,
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3
1/4( )


 


is Kolmogorov length scale

1/2( / )    is Kolmogorov time scale

1/4V ( . )     is Kolmogorov velocity scale

(3.1.7)

Kolmogorov scales are the smallest turbulent scales that occur in a turbulent flow 

and viscous dissipation is very strong at this scale [47, pp.223]. Reynolds Number 

with reference to this length and velocity scales is one.

Re

V.
N 1


 


(3.1.8)

Energy supply rate of the largest eddies can be given by multiplication of their 

kinetic energy and fluctuation frequency since they lose their energy generally after 

one cycle. Hence energy dissipation rate is of order,

  2 3
v .v / L v / L  (3.1.9)

This shows that viscous energy dissipation can be predicted from large scale 

dynamics and it is independent of viscosity. Hence we can conclude viscous 

dissipation as a passive process that proceeds at a determined rate by inviscid inertial 

large eddy motions. The non-linear mechanism of turbulence is dissipative since it 

creates smaller and smaller eddies until eddy sizes become so small that viscous 

dissipation dominates. Scale separation of small and large scale eddies are increasing 

with increasing Reynolds number. Therefore statistical independence of small scale 

eddies become clearer at high Reynolds numbers.  The main difference between two 

different turbulent flows with different Reynolds numbers and same integral scale is 

the size of the smallest eddies. Higher Reynolds number flows have finer small scale 

structures. Most of the vorticity is associated with small scale eddies while most of 

the energy is associated with large scale eddies. Vorticity of small scale motions 

should be proportional to reciprocal of their time scale since vorticity has the unit of 

frequency.
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3.1.1 Navier-Stokes Equation and Reynolds Averaging of Turbulence

Navier-Stokes equation for a Newtonian and incompressible fluid by invoking the 

equation of continuity ( i iv / x 0   ) is going to be,

2
i i i

j
j i j j

v v vP
( v )

t x x x x

  
    

    

(3.1.1.1)

After decomposing velocity and pressure terms as summation of mean and 

fluctuation values (Reynold’s decomposition) and taking time average of both sides, 

equation of motion for average quantities will be,

i i i
j i j

j i j j

V V P V
( V ) ( v 'v ')

t x x x x

    
      

    

(3.1.1.2)

i jv ' v '   appears as another stress term in addition to the pressure and viscous 

stresses. These double fluctuating velocity correlations are called as Reynold’s 

stresses. If i jv ' v ' 0 , vi and vj are correlated otherwise they are uncorrelated. 

Degree of correlation is determined by correlation coefficient which is,

2 2
ij i j i jc v ' v ' / v ' v ' (3.1.1.3)

Correlation is perfect if cij=±1. If there is no correlation (i.e. cij=0), there would be no 

turbulent momentum transport. But this correlation is not likely to be zero since 

turbulent momentum transport is a key property of turbulence. These fluctuations 

exchange momentum between turbulence and mean flow although mean momentum 

of turbulent velocity fluctuations is zero.

Reynolds stress tensor brings nine additional unknowns to the equation of motion. 

Hence we need some additional relations for these stresses. Relating them to the 

shear rates has been used frequently [48, 49].  Following relation from mixing length 

theory can be proposed as a closure equation for Reynolds stresses,
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

m

i
ji j 1

j

V
v 'v ' .c .v .

x



  






(3.1.1.4)

where m is eddy viscosity which relates turbulent stresses to mean velocity 

gradient. c1 is a numerical coefficient and  is mixing length. Eddy viscosity is a 

flow property rather than fluid. Hence it changes within the flow field. 

3.1.2 Statistics of Turbulence

Turbulence is generally treated as statistically steady which means average of 

fluctuating values are not function of time. A statistically steady function is called as 

stationary. The probability of a random variable v of being between v and v+dv is 

given by probability density function (PDF) of it (fv(v)) (Figure 3.1.2.1). 

Figure 3.1.2.1: PDF of turbulent velocity v

Hence summation of PDF from minus infinity to plus infinity must be one which is 

the probability of being between - and +  for random variable. Gaussian (normal) 

type of PDF is one of the mostly encountered and used distributions in turbulence 

studies. Mathematical representation of a Gaussian PDF for a turbulent velocity v is 

[50, pp.47],

2 2(v V) /(2 )
v

1
f (v) e

2
  


(3.1.2.1)
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Mean values can be evaluated by using PDF. Mean values of several powers of a 

random variable are called as moments. First moment is mean value which is defined 

as,

vV v.f (v) dv




 
(3.1.2.2)

fv(v) is PDF of fluctuating turbulent velocity which can be depicted as vf (V v ') . 

Hence PDF of fluctuations ( fv’(v’)) is shifted version of PDF of fluctuating velocity 

in the amount of mean value ( V ) . Moments formed with fv’(v’) and v’n are called as 

central moments. First central moment is zero as expected.  Second central moment 

is called as variance which is mean-square deviation from mean value. It is defined 

as,

2 2 2 2
v ' vv ' v ' f (v ')dv ' v ' f (v) dv

 

 

    
(3.1.2.3)

Square-root of 2 is called as standard deviation which is a measure of width of 

PDF. Second central moment is not affected by the anti-symmetry of PDF. Third 

central moment ( 3v ' ) on the other hand totally depends on the symmetry of PDF. If 

PDF is symmetric around the origin 3v ' 0 .  Non-dimensional measure of 

asymmetry is called as skewness which is,

3 3S v ' /  (3.1.2.4)

Another way of showing correlations is to use PDF for auto-correlation (variance) or 

joint PDF for correlation of different functions (covariance).

i ji j i j v ',v ' i j i jv ' v ' v ' v 'f (v ', v ') dv 'dv '
 

 

  
(3.1.2.5)

If i jv 'v ' =0 , vi’ and vj’ are uncorrelated but not necessarily independent of each 

other. Two variables are statistically independent if,
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i j i jv ',v ' i j v ' i v ' jf (v ', v ') f (v ') f (v ') (3.1.2.6)

The correlation between values of a function at two different times ( v '(t)v '(t ') ) is 

called as auto-correlation. For stationary variables, origin of time doesn’t make any 

difference on auto-correlation function (ACF). Time difference (=t’-t) is the only 

parameter that affects ACF. Since

v' v 'R ( ) R ( ) v '(t)v '(t ') v '(t ')v '(t)     (3.1.2.7)

ACF must be symmetric function of . Auto-correlation coefficient (ACC) for 

stationary variables is defined as,

v' v ' 2 2

v '(t)v '(t ') v '(t)v '(t ')
R ' ( ) R ' ( )

v ' (t) v ' (t ')
    

(3.1.2.8)

Schwartz’s inequality states that,

v ' v 'R ' ( ) R ' (0) 1   (3.1.2.9)

3.1.3 Power Spectrum

Fourier transform of ACF is called as power spectral density or simply power 

spectrum (S(w)). Power spectrum must be real and symmetric since ACF is 

symmetric (even function) and real respectively. Area under S(w) is 

2
v '2 .R (0) 2 .v '   . Mathematically S(w) is defined by,

j w
v'S(w) R ( )e d


 



  

or inverse transform gives: j w
v'

1
R ( ) S(w) e dw

2






 
 

(3.1.3.1)
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Power spectrum S(w) may be thought of as the energy distribution of v’(t) in a 

frequency range. Hence it shows the frequency content of the time domain velocity 

fluctuations.  

3.1.4 Ergodicity of Turbulence

It is not easy always to take ensemble sampling of a process. Because ensemble 

sampling requires conducting of many experiments to find out the statistical 

properties of measured function. For example ensemble sampling is almost not 

possible for a turbulent velocity. Time sampling is the mostly used technique for 

turbulence. A process is called as ergodic, if time statistical properties of the process 

approach to ensemble statistical properties while measurement time goes to infinity 

[51, pp.427]. Hence implicitly we assume turbulent velocity as an ergodic random 

variable in equation (3.1.5). An ergodic random variable is uncorrelated and 

statistically independent of itself for large time differences.    

3.1.5 Turbulence Parameters

Eulerian velocity ACC (Figure 3.1.5.1) is time correlation for fixed point velocity 

measurements which is,

u ' 2

u '(t).u '(t )
R ' ( )

u ' (t)

 
 

(3.1.5.1)

Where u ' is fluctuating Eulerian velocity in the direction of UDV probe. Over bar 

indicates time averaging and there is not a reference time [47].
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Figure 3.1.5.1: Eulerian ACC and time scales

TE is Eulerian integral time scale over which statistics of flow process are correlated. 

It corresponds to the main energy containing (largest) eddies and defined as [52, 

Ch.5],

E u '

0

T R ' ( )d


  
(3.1.5.2)

For homogeneous and stationary turbulence if U u ' Eulerian integral length scale 

is [47, pp.46, 47]

f EL U.T (3.1.5.3)

where U is mean velocity along probe. 

Another time scale is Eulerian micro time scale (E) which is defined by the 

curvature of the u 'R ' ( ) at the origin, 

2
u '

2 2
E 0

d R ' ( )2

d



 
 

(3.1.5.4)

If we take the Tylor series expansion of u 'R ' ( ) about =0 and truncate the higher 

order terms, for small  [48, pp.211],
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2

u ' 2
E

R ' ( ) 1


  


(3.1.5.5)

E corresponds to the smallest eddies in the flow. Hence it is related to the rate of 

dissipation of turbulent energy () [53]. Again for homogeneous and stationary 

turbulence we can write Eulerian micro length scale (f) as,

f EU.   (3.1.5.6)

where U is mean velocity along probe.

For homogeneous and stationary flow field and >TL (TL is Lagrangian integral time 

scale) eddy diffusion coefficient is,

2
L' (t)T  (3.1.5.7)

where the first term is square of Lagrangian r.m.s. value. 

Although TL and TE are not the same the shape of Eulerian and Lagrangian velocity 

ACCs are similar and using Eulerian r.m.s. value and integral time scale (TE) gives a 

good estimation of  [54], [55, Ch.2] ,

2
Eu ' (t)T (3.1.5.8)

For isotropic turbulence a good estimate of energy dissipation rate is [48, pp.67],

2 2

22 2
f E

15. .u ' 15. .u '

U .

 
  

 

(3.1.5.9)



29

3.2 Viscoelastic Fluids and Linear Viscoelasticity

Viscoelastic fluids are such fluids that show a combination of viscous and elastic 

responses for an imposed deformation. Stress is function of both strain (  ) and rate 

of strain ( 


) for these fluids. If stress and strain relation is linear fluid is called as 

linear viscoelastic fluid. Linear viscoelasticity is a case only for small deformations 

(strains). First consider an experiment on a Newtonian fluid between two parallel 

planes (Figure 3.2.1). Upper plane moves with velocity of V(t) and let’s assume two 

planes are close to each other and viscosity is high enough so that velocity 

distribution between two planes is linear in y direction. Then shear stress because of 

this shearing motion will be function of time only and is given by,

x
yxyx

V (y, t)
(t) (t)

y


     



 (3.2.1)

Where µ is viscosity and yx


is rate of strain tensor which is time function for 

unsteady flows. 

Secondly consider a Hookean elastic solid between two parallel planes (Figure 

3.2.1). There is no net stress at time to and upper plane undergoes a small 

displacement U(to,t) with time so that displacement of material between planes is 

linear function of y. Then shear stress for Hookean solid can be given as,

x o
yx yx o

U (y, t , t)
(t) G G (t , t)

y


   


(3.2.2)

where G is elastic modulus and note that strain tensor ( yx ) is time function referring 

to time to. A Hookean solid remembers its past until time to whereas a Newtonian 

fluid doesn’t have any memory of past events [56].
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Figure 3.2.1: Unsteady shear deformation of a Newtonian fluid (upper) and Hookean 
solid (lower) between two parallel plates.

Relaxation test is one of the methods to characterize the time dependent behavior of 

a viscoelastic material. A sudden strain (o) is applied and kept constant during 

relaxation test and there is no previous history of stress. It will be observed that the 

stress needed to maintain constant strain is decreasing with time (relaxation). For 

example stress will go to zero for an ideal thermoplastic polymer and to a constant 

value for a thermoset (cross-linked) polymer. Since stress is function of time and 

strain is constant, modulus will be function of time and it is called as relaxation 

modulus which is,

yx

o

(t)
G(t)






(3.2.3)

Limit values of relaxation modulus for a cross-linked polymer are called as initial 

modulus (Go when t=0) and equilibrium modulus (G when t).
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Another test is creep test for viscoelastic materials. A constant stress (o) is applied 

during test and strain increases with time which defines the parameter creep 

compliance (J) as,

yx

o

(t)
J(t)






(3.2.4)

In a creep test, strain will approach a constant value for a thermoset while it will 

increase continuously for a thermoplastic. Creep recovery is an important test also to 

see what happens to strain when stress is removed. Strain will go back to zero for an 

ideal thermoset material after a sufficient time. However a residual deformation 

(strain) will always remain for a thermoplastic material. In relaxation or creep test 

initial behavior of viscoelastic material is analogous to the behavior of elastic solid. 

o

o

G(t 0)


 


, o

o

J(t 0)


 


(3.2.5)

After long enough time in a creep test, time derivative of strain will be constant for a 

thermoplastic material which is characteristic of a fluid. 

Some mechanical models are used to understand creep and relaxation of viscoelastic 

liquids. The simplest mechanical models consist of a spring for elastic behavior and 

a damper (a dashpot that contains Newtonian fluid) for viscous behavior.  Axial 

elongation of a Hookean bar can be represented by a linear spring for elastic 

behavior of viscoelastic material. We can use elastic modulus instead of spring 

constant if force applied on spring is changed with normal stress and elongation of 

spring with strain (Eq. (3.2.2)). Viscous behavior of viscoelastic material can be 

represented by a Newtonian fluid within a dashpot that moves according to Newton’s 

law of viscosity. Spring and dumper elements can be combined in several ways to 

simulate the viscoelastic behavior. These models are very useful to understand the 

stress-strain relation in viscoelastic materials. The simplest combinations are serial 

connection (Maxwell model) and parallel connection (Kelvin model) of two 

elements [57].
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3.2.1 Maxwell Model

This model consists of a spring and a dashpot element in series (Figure 3.2.1.1). This 

model will give a sudden strain and then continuously increasing strain in a creep 

test like thermoplastic polymers. The stress will decay to zero in a relaxation for this 

model similar to thermoplastic polymers. 

Figure 3.2.1.1: Maxwell model

Relation between stress and strain for a mechanical model can be obtained by using 

equilibrium and kinematic conditions for the model and constitutive equations for the 

elements. For Maxwell model equilibrium says stress in spring and stress in damper 

are equal to stress applied to system. Kinematic condition is summation of strains of 

both elements gives the total strain on system. Combination of these equations will 

give the relation between stress and strain as,

yx
yxyx G t


    



 (3.2.1.1)

Hence stress-strain relation for a Maxwellian material is a differential equation. This 

is linear combination of the deformation rates for viscous behavior (first term on left) 

and elastic behavior (second term) [58]. Coefficient of stress rate is defined as 

relaxation time () which is a characteristic time constant. If we change the viscosity 

(µ) with zero shear rate viscosity (o) then,

yx
yxyx ot


     



 (3.2.1.2)

For steady-state motions this equation simplifies to constitutive equation of 

Newtonian fluids. For dominant elastic behavior sudden changes in stress will be 
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more important (second term at left side). Solution of simplified differential equation 

is going to give constitutive equation of Hookean solids. 

Solution of equation (3.2.1.2) for creep experiment (applying constant sudden shear 

stress-o) will be,

o
yx o o o

o o

t 1 t
(t) ( ) J(t)

G


        

 
(3.2.1.3)

Solution of Maxwell constitutive equation for relaxation experiment (applying 

constant sudden shear strain-o) will be,

t / t /
yx o o o(t) e Ge G(t)          (3.2.1.4)

These are the behavior of thermoplastic materials. Stress for relaxation experiment 

will be o/e , when time is equal to  (relaxation time). This knowledge allows one to 

determine relaxation time directly from experimental measurements. Real 

viscoelastic materials actually have a distribution of relaxation times.  

General solution of equation (3.2.1.2) (first order linear differential equation) will be,

t
(t t ')/o

yxyx (t) { e } (t ')dt '  




  


 (3.2.1.5)

Note that the term within braces is time dependent relaxation modulus for Maxwell 

fluid. Stress at time t depends on the history of rate of strain for all past times as well 

as rate of strain for current time. There is a weighting factor (relaxation modulus) in 

front of the rate of strain. It is decaying exponentially while time is going back which 

shows fading memory of material.   

3.2.2 Kelvin Model

This model consists of a spring and a dashpot element in parallel (Figure 3.2.2.1) and 

it is generally used for creep phenomena. This model will give an increasing strain 

but not a sudden jump in a creep test. Since damper (dashpot element) won’t allow it. 
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Kelvin elements will creep to a constant equilibrium strain similar to the response of 

a thermoset polymer. The stress will decay to an equilibrium value in a relaxation for 

this model like thermoset polymers. Simple stress relaxation test is not possible for 

this model since damper prevents sudden increase in strain. 

Figure 3.2.2.1: Kelvin model

Equilibrium condition for this model says total stress is equal to the summation of 

stresses on both elements. Kinematic condition is strain on each element is equal to 

each other and to the strain of the system. If we combine equilibrium, kinematic and 

constitutive equations for this model, result will be,

yx oG
t


    


(3.2.2.1)

Solution of this equation for creep loading will be,

t/o
o(t) (1 e ) J(t)

G
 

    
(3.2.2.2)

There is not an initial elasticity for this model since damper prevents sudden strain of 

system. Also because of this reason Kelvin model is not useful to understand the 

relaxation phenomenon. Strain goes to a constant equilibrium value (=o/G) for a 

very large time which is the behavior of a thermoset polymer. This time  is called as 

retardation time and can be determined experimentally.   
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3.2.3 Generalized Maxwell Model

Several Maxwell elements can be connected in parallel (Figure 3.2.3.1) to represent 

the actual stress-strain behavior of viscoelastic materials. 

Figure 3.2.3.1: Generalized Maxwell model

Equilibrium and kinematic conditions for this system are,

1 2 n

1 2 n

....

......

       
       

(3.2.3.1)

Differential equations for each Maxwell elements will be,

yx,1
yx,1yx,1 1 o,1

yx,2
yx,2yx,2 2 o,2

yx,n
yx,nyx,n n o,n

t

t

t


     




     



     











(3.2.3.2)

These equations can be combined to obtain an nth order differential equation of 

stress. One should solve this nth order differential equation to get a relation between 

stress and strain or solve each first order differential equations to get stresses for 

each Maxwell element. Summation of stresses of Maxwell elements is going to give 
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the total stress of the system. Solution of differential equations for a relaxation test 

will be,   

1

2

n

t /
yx,1 o 1

t /
yx,2 o 2

t /
yx,n o n

(t) G e

(t) G e

(t) G e

 

 

 

  

  

  



(3.2.3.3)

Superposition of these solutions will give the stress behavior of the system.

1 2 n k

k k
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t / t / t / t /

yx o 1 o 2 o n o k
k 1
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   

 

         


  





 
(3.2.3.4)

As many Maxwell elements as possible in the system, representation of actual 

behavior will be more accurate.  Integration of equation (3.2.3.2) to solve each stress 

term and knowing that total stress is the addition of all stresses on Maxwell elements 

will give the following integral form of Generalized Maxwell Model,

k

t n
o,k ( t t ')/

yxyx
k 1 k

(t) { e } (t ')dt '  




  


 (3.2.3.5)

Again the term within braces is time dependent relaxation modulus of system 

composed of many Maxwell elements. When we compare integral form of equations 

(3.2.1.5) and (3.2.3.5), we see that they are in the same form: integral over all past 

times of relaxation modulus multiplied by rate of deformation. Thereby we can write 

a generalized expression for linear viscoelastic fluids as follows,

t

yxyx (t) G(t t ') (t ')dt '


   
 (3.2.3.6)

G(t-t’) is relaxation modulus. First term in this integral depends on nature of fluid 

and second depends on nature of flow. This equation is the starting point for the 

description of the rheology of incompressible viscoelastic fluids for small 
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displacement motions. For steady-state shear flow (i.e. for constant velocity gradient

yx


) preceding equation will be,



o

st

yx yx yxyx o

0

G(t t ')dt ' G(s)ds






         
  



(3.2.3.7)

This is a behavior of Newtonian fluids. 

3.2.4 Relaxation Spectrum

Combination of many Maxwell elements will have a distribution of relaxation times 

with amplitudes of Gk corresponding to relaxation times λk. This distribution is 

called as discrete relaxation spectrum. Molecular weight distribution of polymeric 

materials creates this relaxation spectrum. Hence wider molecular weight 

distribution is wider relaxation spectrum for a polymeric viscoelastic material [59, 

pp.59, 60].  If number of Maxwell elements (n) would be increased infinitely, 

equation (3.2.3.4) can be written in continuous form as,

t/
k

0

G(t) G ( )e d


   
(3.2.4.1)

Here kG ( ) is called as relaxation spectrum. It is a continuous and kind of a 

probability density function. For example k 1 1G ( ) G ( )     is relaxation spectrum 

for a single Maxwell element which will give relaxation modulus as 1t /
1G(t) G e  . 

Relaxation spectrum for generalized Maxwell model would be,

n

k k k
k 1

G ( ) G ( )


    
(3.2.4.2)

Sufficient number of elements can represent a real viscoelastic material [57, pp.208-

210]. 
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3.2.5 Dynamic Oscillation Tests

Viscoelastic properties are often determined by steady-state oscillation tests. Let’s 

assume a viscoelastic fluid between two plates that upper one is imposing an 

oscillative motion to the fluid (Figure 3.2.5.1). 

Figure 3.2.5.1: Dynamic oscillation of fluid between two plates.

Upper plate is oscillating with amplitude of Vo(h) and radial frequency of w. We 

expect fluid between plates to oscillate with same frequency w and with decreasing 

amplitude towards bottom plate because of viscous effects but with different phases 

in y direction because of viscoelastic effects. Shear strain, shear rate and shear stress 

will be in complex notation,

o

yx

o jwt o
yx yx yx

o
yx yx

yx o jwt x
yx yx

(y)

(y, t) Re{ j (y)e } where is complex

and at y h (h, t) (h)sin(wt)

d (y, t) dV (y, t)
(y, t) Re{w (y) e }

dt dy


    

   


    







x

o

V (y,t ) y yo o
jwt jwt

yx yxx

0 0 0

V (y)

o jwt
x

o

o
x

dV Re{ (y) e }dy Re{e (y) dy}

V (y, t) Re{V (y)e }

whereV (y) is complex and at y h it is real so;

V (h, t) V (h) cos(wt)

    







  
 



(3.2.5.1)
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Moreover shear stress to maintain the oscillatory motion is not necessarily in phase 

with shear rate which is due to viscoelasticity. There is no phase difference between 

shear stress and shear strain for an elastic material while it is 900 for a Newtonian 

fluid. This phase shift is between 00 and 900 for a viscoelastic fluid. 

o jwt
yx yx(y, t) Re{ (y) e }   (3.2.5.2)

where o
yx is complex. Constitutive equation is,

t
x

yx

V (y, t ')
(y, t) G(t t ') dt '

y


  


(3.2.5.3)

If we combine last two equations and put velocity from previous derivations,



o
jwt 't

yxo jwt
yx

s

o jwt
yx

Re{e (y) dy c}
Re{ (y) e } G(t t ') dt '
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(y) e


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  








jwtG(s) e 

*

0 o
jws

yx

o
o jws

yxyx

0

(w)

e (y)ds

(y) G(s)e ds (y)












  










(3.2.5.4)

where *=’-j’’ is complex viscosity and ’ is called as dynamic viscosity. Then 

time dependent shear stress is going to be,

o
jwt

yxyx (y, t) Re{( ' j '') (y)e }     
 (3.2.5.5)

At upper plate (i.e. y=h) this will be,

o o

yx yxyx (h, t) ' (h)cos(wt) '' (h)sin(wt)      
  (3.2.5.6)

First term is called as viscous part since it is in-phase with shear rate (rate of strain). 

Second term is elastic part hence it is in-phase with shear strain. For a Newtonian 

fluid ’’=0, ’=µ. If we assume a linear relationship between stress and strain, we 

can write the shear stress as following,
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o
yx

* o jwt
yx yx(h, t) Re{ jG (h) e }



   


(3.2.5.7)

Where G* is complex modulus and note that stress is in-phase with strain (sine 

oscillatory) in the limit of elastic solid (G* is real). Also we can write the following 

linear relationship between stress and rate of strain,

o
yx

o
* jwt

yxyx (h, t) Re{ (h)e }



   




(3.2.5.8)

Here stress is in-phase with rate of strain (cosine oscillatory) in the limit of 

Newtonian fluid (* is real). From last two expressions,

* o
yxjG (h) 

o
* * o

yx yx(h) w (h)     


* *G jw G ' jG '' jw( ' j '')

G ' w '' and G '' w '

        
    

(3.2.5.9)

Therefore we can write shear stress also in terms of real and imaginary parts of 

complex modulus as follows,

o jwt o o
yx yx yx yx(h, t) Re{ j(G ' jG '') (h)e } G '' cos(wt) G ' sin(wt)         (3.2.5.10)

First term on the right side is in phase with rate of strain which is viscous response 

and second term is in phase with strain which is elastic response. Thereby G’ is 

called as storage modulus and G’’ as loss modulus. For an elastic solid G’’=0 and 

G’=G hence shear stress will be,

o
yx yx(h, t) G (h)sin(wt)   (3.2.5.11)

Now let’s try to write complex viscosity for Generalized Maxwell Model. Since 

relaxation modulus for this model is,

ko,k s/

k 1 k

G(s) e


 







(3.2.5.12)



41

Complex viscosity is going to be,
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(3.2.5.13)
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CHAPTER 4

ANALYTICAL AND NUMERICAL INVESTIGATION OF EFFECT OF 
CONSTANT AND OSCILLATING FLOWS ON SPECTRUM OF 

ULTRASOUND DOPPLER SIGNALS

4.1 Mathematical Representation of Sampled Ultrasound Signals

It is assumed that the flow medium is homogeneous, linear and lossless for US 

signals in analytical derivations and numerical simulations. Also back sampled 

signals were assumed as coming from identical particles within a measurement 

volume. We expect a Gaussian type distribution of back sampled signal energy 

because of particle distribution in measurement volume. Considering this effect will 

make analytical derivations highly complicated. Assuming all particles following 

fluid perfectly means just considering maximum energy component in the Gaussian 

distribution which is related to mean velocity in the volume. This is practically an

accurate approximation.        

A series of pulses are sent and then back reflected echoes are sampled to analyze in 

UDV (Figure 4.1.1). Although sampling time is the same for a measurement gate,

sampled data would change if reflecting particles move. This position change causes 

phase change in sound signals and results in a frequency shift in frequency domain. 

Therefore Fourier transform of sampled signals gives a characteristic frequency-

amplitude distribution (Doppler spectrum) related to velocity at the measurement 

point through Doppler equation.  
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Figure 4.1.1: Representation of sampled signal values (right) of nine consecutive 
pulses (left) back reflected from a moving target (black point).

If Nc is the number of cycles and center of these cycles is set at zero time then 

emitted signals can be designated as,

c
o

o

N
j2 f (t )

2fs ''(t) A e
 


(4.1.1)

But this is valid if emission is continuous.  For emission of finite length pulses we 

must multiply this with a function E(t) which is,

c c

o o

N N
1 when t

2f 2fE(t)

0 else

      
  

(4.1.2)

Negative is used for time before the reference time of zero. Then emitted signals will 

be,

c
o

o

N
j2 f ( t )

2fs '(t) s ''(t).E(t) A e .E(t)
 

 
(4.1.3)

Received signals would be the time delayed form of emitted signals since they are 

back reflected from particles in flow medium. This time delay (td) depends on the 
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position of particles in measurement volume. Also amplitude change on signal will 

be occurred because of attenuations. If received signals have amplitude of Ao then 

they are,

c
o d

o

N
j2 f ( t t )

2fo
d o d

A
s(t) s '(t t ) A e .E(t t )

A

  

   
(4.1.4)

Sampling time is fixed (to) which is total time of flight of an US pulse. It depends on 

the distance (do) between probe tip and measurement volume and sound speed (c).

o
o

d
t 2

c


(4.1.5)

If the real distance of reflecting particles in measurement volume is,

od d d '  (4.1.6)

Time delay will be,

o
d

d d '
t 2

c




(4.1.7)

Then sampled signals become,
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  (4.1.8)

where

c c

o o

c.N c.N
1 when d '2d '

4f 4fE( )
c

0 else

       
  

(4.1.9)

Note that c

o

c.N

4f
is a quarter of the total cycle length. We can show d ' as d ' u.t '

where u is velocity of particles along probe axis and t ' is total time of motion of 
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particles (reference is emission of first pulse).  If n is number of samples, total 

motion time ( t ' ) for each sample will be,

o
prf

d
t '[n] (n 1)T

c
  

(4.1.10)

Then sampled signals in discrete form can be represented as,

c o
o prf

o

N d2
j2 f ( u[(n 1)T ])

2f c c o
o prf

d2
s[n] A e .E( u[(n 1)T ])

c c

   

   
(4.1.11)

where

c o c
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4f c 4fE( u[(n 1)T ])
c c
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c 4f

0 else

cN d1
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T 4f u c

0 else

 
     

 
 
      
 
 

(4.1.12)

4.2 Measurement Volume of Constant Velocity Flow

Let z and i be the axial flow direction (in a pipe or a channel) and number of 

measurement volume (gate) respectively. There is only axial flow component for 

laminar (constant velocity) pipe or channel flow. But even if measurement gate has 

other velocity components since derived equations show the analysis of velocity 

component in probe direction, they are still useful. If the distance (in the direction of 

US beams) between probe tip and measurement gate i is do,i , sampled  U.S. signals 

can be represented by equations (4.1.8) and (4.1.9).

Let’s assume, particles in the gate can be represented by a single particle initially at 

the center (do,i) of the gate. The position of particle with respect to US probe changes

with time because of fluid motion. id ' is the component along US beams of this time 
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and velocity dependent position change for ith gate. Then distance (di) between probe 

tip and particle in measurement gate will be,

i o,i i i i i i id d d ' where d ' d ' (t, ) and (t)   V V V (4.2.1)

Vi is fluid velocity in vector form for ith gate. For laminar flow there is only axial 

velocity component i.e. Vi=vz,i . So particle migration in the direction of US beams 

can be depicted as, 

t

i i

0

d ' V cos dt 
(4.2.2)

and for axial flow,

t

i z,i

0

d ' v cos dt 
(4.2.3)

where Vi , vz,i are magnitudes of vectors and  is angle between probe axis and 

velocity vector Vi. t is absolute time starting at the emission of first pulse. This time 

is time of encountering of US signals with particles for nth pulse, so t has discrete 

values. It can be related to the discrete time (or pulse number) by,

o,i
prf

d
t (n 1)T

c
  

(4.2.4)

where Tprf is time period between two pulse emissions. If we combine all equations 

above and write the sampled signals in discrete form,

do,i ( n 1)Tprfc
c

o z,i
o 0

N 2
j2 f ( ( v cos dt ))

2f c

os[n] A e

 

  
 (4.2.5)

We assumed E function is one for all taken samples. Otherwise there won’t be 

sampled signals. This equation is valid for any medium attenuation and any axial 

velocity function. First assume that attenuated signals always have amplitude of Ao. 

We don’t consider the effects of velocity distribution of multiple particles and shape 

of US beams. For laminar flow vz,i is constant with respect to time. Then the signal 

is,
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
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(4.2.6)

It should be noted that n is changing between 1 and Nprn (total number of transmitted 

pulses) while m is changing between 0 and Nprn-1. Hence m represents discrete time. 

Discrete Fourier Transform of s[m+1] then becomes,

o,io
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

This is Doppler frequency in Hz corresponding to the constant flow velocity. 2 is 

corresponding to the maximum sampling frequency which is fprf in D.F.T. Then at 

this Doppler frequency the signal is,
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3 prn
o prn

a N
Amplitude of signal S[ ] A N

2
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(4.2.8)

3 prn
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      (4.2.9)

As it is seen from this result coherent velocity value is captured by the phase of 

signal spectrum.

4.3 Measurement Volume of Oscillating Velocity Flow

Before investigating the effects of turbulence or velocity fluctuations on the UDV 

signal, a simpler case involving an oscillating velocity is considered. The axial 

velocity is composed of a constant mean value and a superimposed oscillating part 

with a specific amplitude and frequency represented as,

z,i z,iz,i f fv v A v sin(2 f t)   (4.3.1)

where z,iv is mean velocity, Af is a percentage of z,iv so that Af z,iv represents 

amplitude of the oscillating part and ff is oscillation frequency in terms of Hz. If 

there is only axial component of the velocity (vz,i), from equation (4.2.5) sampled US

signals in discrete form become,

do,i (n 1)Tprfc
c

z ,i z ,io f f
o 0

N 2
j2 f ( ( (v cos A v cos sin(2 f t ))dt ))

2f c

os[n] A e

 

    
 (4.3.2)

where all E values are again assumed as one for the sampling period. After 

evaluating the integral and making simplifications,

7 3 4 5 6j(a a (n 1) a cos(a a (n 1)))
os[n] A e      (4.3.3)
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After decomposing sampled signals in equation (4.3.3) into cosine and sine parts, 

evaluating DFT of both parts and combining results (details can be seen in Appendix 

A.1) give the DFT of sampled signals as,
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Amplitude of the signal is,
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Phase of the signal is,
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(4.3.6)

4.3.1 Limits of the Spectrum

It may be interesting to examine the behavior of the oscillating flow UDV signal at 

some critical oscillation amplitudes and frequencies.
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Both limits of oscillation frequency goes to zero and amplitude goes to infinity give 

the same amplitude of zero for all spectrum. This makes impossible the 

determination of mean flow velocity. This may be caused from infinite amplitude of 

flow oscillation will spreads the coherent US energy as noise. Also limited sampling 

of very slowly changing flow won’t be enough to capture its Doppler spectrum.  

4.3.2 Critical Point of the Spectrum

If we look at the amplitude of spectrum ( S[k] ) and change of Bessel function of 

first kind (Jn) for integer orders (i.e. n=0, 1, 2,...), there seems a critical value for a4

around 1.45. After this value, amplitudes of side frequency components start to 

dominate the amplitude of spectral component corresponding to the mean velocity. 

Therefore if this value is exceeded by increasing flow oscillation amplitude and/or 

decreasing oscillation frequency, the ambiguity of spectrum increases in terms of 

determining mean flow.   

4.3.3 Simulations

The effect of particles moving with the fluid was simulated by a MATLAB program, 

which is based on the tracking of particles during the experiment. All particles in 

measurement volume were assumed to have the same velocity. Amplitude of 

transmitted ultrasonic pulses (A) was taken as unity and attenuation due to physical 

medium was neglected. During measurement period new particle cluster was 

assumed to be entering the measurement volume after previous cluster leaves the 

measurement volume. Hence ‘E’ function can always be taken as one for 

homogeneously distributed particles in fluid and continuous flow.

Simulation program determines the position of particle cluster when ultrasonic pulse 

comes to the measurement volume. Afterwards it determines the sampled signal 

value according to the particle position. Therefore it can simulate sampled signal 

sequence coming from any flow medium if the velocity can be mathematically
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represented. After getting sampled signals their spectral analysis are conducted to 

obtain ultrasonic spectrum and velocity distribution.  

4.3.4 Comparison of Simulation and Analytical Results

Spectrum, maximum amplitude change and total energy change were obtained from 

both analytical equation (4.3.5) and simulation for center of pipe (i.e. r=0 mm). 

Radius of pipe is 0.023 m and parabolic velocity profile was assumed for NRe=2662. 

Parabolic velocity profile seems to be reasonable for transition from laminar flow to 

turbulent. Local mean velocity at pipe center is 0.1157 m/s and UDV parameters are: 

Nc=8, Nprn=4096, fprf=7246 Hz, θ=70o, 33 measurement gates.

Maximum amplitude corresponding to mean velocity in ultrasonic signal spectrum is 

decreasing towards the corner of increasing oscillation amplitude and decreasing 

frequency (i.e. increasing a4) (Figure 4.3.4.1). This means there is attenuation on the 

energy of spectral component corresponding to mean velocity because of oscillating 

part. Smoother results in the case of analytical solution is due to the continuous 

functions involved as opposed to the simulation results which are obtained by 

sampling discrete signals with respect to time.   
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Figure 4.3.4.1: Change of scaled maximum amplitude in ultrasonic spectrum with 
amplitude and frequency of oscillating velocity component. Upper one is from 
analytical equation (4.3.5), lower one is from simulation. These surfaces are for 

measurement gate at the center of pipe. White line of fences shows the border where 
a4 is getting bigger than 1.45
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Total energy of signals in spectrum is constant for all oscillating velocity 

components (Figure 4.3.4.2) which can be defined as,

prn
2N 1

tot
k 0 prn

S[k]
E

N





 
(4.3.4.1)

where 
2

prn

S[k]

N
is energy spectral density (ESD).

Since it was assumed in the analysis that there is not any attenuation due to physical 

medium, all transmitted energy is recovered back in the reflected signal. 
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Figure 4.3.4.2: Change of scaled total energy in ultrasonic spectrum with amplitude 
and frequency of oscillating velocity component. Upper one is from analytical

equation (4.3.5), lower one is from simulation. These surfaces are for measurement 
gate at the center of pipe.
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Parabolic mean velocity profiles obtained from spectrum of each gates and spectrum 

of US signals coming from maximum velocity gate (pipe center) are shown below

(Figures 4.3.4.3 – 4.3.4.6). Velocity scale corresponds to the Doppler frequency 

distribution (through Doppler Eq. (2.1.3)) for a discrete gate at a radial position. An 

oscillating part was superimposed on this parabolic velocity value for each 

measurement gate at a specified amplitude and frequency. Spectrums of gate at the 

pipe center obtained by simulation and analytically are well compatible. As it is seen 

some part of spectral energy is distributed between main (dominant) spectral 

components in simulation because of discrete frequency interval which is set by 

sampling frequency and number of samples. Superimposed oscillation components 

are distributing the spectral energy to other frequencies and creating ghosts. 

Spectrums of this kind of flows are dominated by the mean flow component and 

ghost components at multiples of flow oscillation frequency around Doppler 

frequency of mean flow. However their amplitudes are determined by the ratio of 

oscillation amplitude to frequency.

As it is seen from simulation and analytical results, separation of ghosts from mean 

velocity profile is determined by oscillation frequency of fluctuating part.  While 

keeping other parameters constant, decreasing oscillation frequency (or increasing 

a4) increases the intensity of ghosts and decreases the intensity of mean velocity 

profile. Increasing oscillation amplitude has the same effect on intensity of ghosts 

and mean velocity as decreasing oscillation frequency (Figure 4.3.4.1). Intensity of 

ghosts towards center of the pipe is increasing since oscillation amplitude was taken 

as percentage of local mean velocity.

Number of ghosts around mean velocity profile is increasing and they are becoming

more and more dominant with increasing a4 value (Figures 4.3.4.3 – 4.3.4.6). This 

means ambiguity for the determined velocity profile is increasing. After a certain 

limit of a4 (~1.45), it becomes unreliable to determine mean velocity profile by UDV 

signals.
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Figure 4.3.4.3: Laminar velocity profile in pipe (upper): red line shows mean 
velocity profile, black-white colors show the distribution of frequencies (velocities) 

for related gates by UDV simulation. Darker regions correspond to the bigger 
amplitudes. Spectrum for center of pipe (below): both spectrums obtained 

analytically and from simulation are seen.
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Figure 4.3.4.4: Oscillating velocity profile in pipe with 20% amplitude and 80 Hz 
frequency (upper): a4 is 0.53, red line shows mean velocity profile, black-white 
colors show the distribution of frequencies (velocities) for related gates by UDV 

simulation. Darker regions correspond to the bigger amplitudes. Spectrum for center 
of pipe (below): both spectrums obtained analytically and from simulation are seen.
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Figure 4.3.4.5: Oscillating velocity profile in pipe with 20% amplitude and 40 Hz 
frequency (upper): a4 is 1.07, red line shows mean velocity profile, black-white 
colors show the distribution of frequencies (velocities) for related gates by UDV 

simulation. Darker regions correspond to the bigger amplitudes. Spectrum for center 
of pipe (below): both spectrums obtained analytically and from simulation are seen.
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Figure 4.3.4.6: Oscillating velocity profile in pipe with 20% amplitude and 20 Hz 
frequency (upper): a4 is 2.14, red line shows mean velocity profile, black-white 
colors show the distribution of frequencies (velocities) for related gates by UDV 

simulation. Darker regions correspond to the bigger amplitudes. Spectrum for center 
of pipe (below): both spectrums obtained analytically and from simulation are seen.
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CHAPTER 5

ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF THE 
EFFECTS OF RANDOM VELOCITY STATISTICS ON ULTRASOUND 

DOPPLER SIGNALS

5.1. Velocity Probability Density Function (PDF)

The following derivations start from equations (4.1.11) and (4.1.12) that represents 

sampled ultrasonic signals in discrete form.    
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Here velocity fluctuations can be handled in two ways: Velocity u can either be 

taken as a random variable or it can be can be decomposed to u (average velocity) 

and u ' (fluctuating random part). For the first case, discrete auto-correlation 

function (ACF) of the US signal s[n] is,

*
sR [ ] E{s[n].s [n ]}    (5.1.2)

where E is expected value operator and * denotes complex conjugate.
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where fu(u) is the PDF of random velocity u. Since 2.u has unit of radial frequency 

(radians/s), lets 2
2 2

w 1
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 
and by using the relation between 

PDFs of two random variables [51, pp.93],
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Since we are analyzing Nprn discrete signals we should write this in discrete form. 
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We can also write ACF in terms of energy spectrum as follows (see Appendix A.2 

for derivation),
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(5.1.4)

where E[-k] is energy spectral density (ESD) at –k. Therefore ACF is inverse DFT of 

energy spectrum. If we equalize expressions (5.1.3) and (5.1.4) for ACF,
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where wo is basic frequency of sampling.
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This result shows the mathematical relation between PDF of random velocity and 

amplitude of Doppler US spectrum. It is clear from this result that PDF of random 
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velocity is directly related to the energy spectrum of US signals after scaling with 

some measurement parameters. Frequency axis is converted to velocity axis through 

Doppler relation according to equation (5.1.5). This is a meaningful result since each 

random velocity value at the measurement gate is expected to create a spectral 

component in US spectrum with an intensity related with its probability.

To validate the expression by a simple case, amplitude of US spectrum for laminar 

flow from previous derivations (Eq. (4.2.8)) can be substituted for the US signal 

spectrum. Then,
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(5.1.6)

This result implicates that PDF is unit impulse at Vz,icosθ which is the laminar 

velocity value along probe axis. This is an expected result. If the analytical result of 

oscillating flow spectrum (Eq. (4.3.5)) is substituted in equation (5.1.5),
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Equation (5.1.7) shows a PDF which is distributed around mean velocity. Maximum 

PDF value is seen at mean velocity value.   



64

If u= u u ' is considered, the relation between PDF of  u ' and amplitude of 

Doppler US spectrum becomes,
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(5.1.8)

This PDF is shifted version of PDF of whole random variable u by the amount of u . 

If the spectrum of constant velocity flow (without any fluctuation) is substituted in 

equation (5.1.8),
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(5.1.9)

PDF of fluctuating part of random velocity has impulse at zero. This means there is 

no fluctuating part for constant velocity flow as expected.

5.2 Experimental Set-Up

Experimental measurements of velocity, In-phase and Quadrature (I-Q) signals were 

performed by means of a water flow system (Figure 5.2.2) and DOP 2125 UDV 

(Signal Processing, Switzerland). PVC pipe of 46 mm inside diameter and 2 mm 

thickness was used in the flow system. Length of measurement point from pipe 

entrance is 4.5 meters and a part of 1.5 meters from pipe exist was left to prevent end 

effects. This entrance length is quite enough to have a fully developed turbulent flow 

for used interval of Reynolds numbers [61, Ch.8]. Rotameter, pressure transducer 

and two storage tanks were used in the flow system. Height of upper tank is 3 meters 

from bottom one. Flow was driven by a centrifuge water pump. Flow rate was 

controlled by a gate valve. 4 MHz ultrasonic probe with inclination of 700 (Doppler 

angle) was located in a condom filled with water on pipe. This gave the best US 

coupling in our studies. Probe didn’t have any direct contact with the pipe in order to 

prevent the effect of flow system vibrations on probe position. Level of upper tank 

was kept constant by overflowing water. Normal tap water with added Griltex co-

polyamide particles (60% 50µm – 40% 80µm, Signal Processing, Switzerland) was 
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used. Concentration of 10 g Griltex/140 L water gave good measurement results.

Some pictures of ultrasound Doppler velocimeter, ultrasonic probes and their 

coupling are depicted below (Figure 5.2.1). 

Figure 5.2.1: Ultrasound Doppler Velocimeter-DOP 2125 (top left), ultrasound 
probes and ultrasonic coupling condom on pipe (bottom).
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Figure 5.2.2: Recirculation water flow system

5.3 Verification of PDF and Spectrum Relation by Experimental UDV 

Measurements

Experimentally velocity and I-Q signal measurements were carried out to verify the 

relation (5.1.5) between PDF of velocity and spectrum of sampled ultrasound 

signals. Measurements were done at two different Reynolds Numbers and at the 

center of pipe (ID=46 mm). A Gaussian PDF was assumed for measured 4096 

velocities. Also spectrum of sampled raw signals was displayed from FFT of total 

signal (i.e. I + jQ). A Gaussian function was fitted to the amplitude of this spectrum 

and both Gaussian curves of spectrum and velocity PDF were compared with 

equation (5.1.5). All measurements and calculations were done for the velocity 

component in the probe direction. UDV measurement parameters are,

I-Q signal measurements: Nprn=8000, c=1480 m/s, fo=4 MHz, Tprf=0.138 ms, =700
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Velocity measurements: 4096 velocity, 128 pulses/velocity, c=1480 m/s, fo=4 MHz, 

Tprf=0.138 ms, =700

Spectrum of sampled ultrasound signals is,

oS[k.w ] F.F.T.{I jQ}  (5.3.1)

Frequency axis was converted to velocity by Doppler equation

3o

o

k.w c
u 10 mm / s

2f
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(5.3.2)

Negative sign is used to ensure that velocities away from probe become positive. 

Amplitude of sampled signals was obtained by using the following averaging

operation. 

2 2
oA I Q  (5.3.3)

Spectrum of US signal is presented in the form of amplitude versus velocity for 

Reynolds number of 16733 in Figure 5.3.1. The figure can also be considered as the 

distribution of various velocities occurring in the fluctuating flow. In the figure solid 

line represents a fitted Gaussian function. Close fit indicates that the distribution of 

the velocities around the average follows a Gaussian pattern which is clearly 

depicted in Figure 5.3.2. In the figure PDFs obtained from measured velocities and 

from US spectrum are shown. The first one is obtained after processing the US 

signals to extract the velocity data while the second one is calculated directly from 

the sampled signals. Velocity PDFs obtained from measured velocities are slightly 

narrower compared to the one obtained from ultrasound spectrum. This might be due 

to longer durations and averaging while measuring velocities. It should be noted that 

time resolution for measured velocities are 128×Tprf whereas it is Tprf for sampled 

ultrasonic signals (I-Q), which means higher time resolutions in the case of US 

spectrum. Although both PDFs are well correlated, the one obtained from ultrasound 

spectrum seems more reliable because of higher time resolution.   
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Figure 5.3.1: Amplitude of ultrasound spectrum and fitted Gaussian function for 

NRe=16733.  Gaussian function is: 
2u 145.9

( )
4o 33.96

o prf
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S[u ] 5.175 10 e

4 f T



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Figure 5.3.2: Gaussian PDFs obtained from measured velocities and amplitude of 
ultrasound spectrum (|S[u]|) through equation (5.1.5). Ao=91,mean velocity at pipe 

center is 146.2 mm/s and standard deviation is 11.2 mm/s for NRe=16733.
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Received average signal amplitude (Ao) is increasing from 91 to 147 while NRe is 

increasing from 16733 to 26295. Increasing NRe also increases the standard deviation 

of US spectrum and velocity PDF as shown in Figures 5.3.3 and 5.3.4 respectively. 

Figure 5.3.3: Amplitude of ultrasound spectrum and fitted Gaussian function for

NRe=26295.Gaussian function is: 
2u 222.0
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o prf
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
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Figure 5.3.4: Gaussian PDFs obtained from measured velocities and amplitude of 
ultrasound spectrum (|S[u]|) through equation (5.1.5). Ao=147,  mean velocity at pipe 

center is 221.8 mm/s and standard deviation is 16.8 mm/s for NRe=26295.
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5.4. Velocity Auto-Correlation Function (ACF)   

Velocity auto-correlation function (ACF) of velocity component (u) in the direction 

of probe axis is investigated in this section. U has been taken as a random variable 

(r.v.) throughout this analysis and it is positive when going away from probe. In the 

case of pipe flow, statistical properties of axial flow velocity (v) can be deduced 

from statistical properties of u, since u=v.cos  where  is angle between probe axis 

and axial flow direction. Derivations were started from equation (5.1.1) which 

represents sampled ultrasonic signals in discrete and complex form for a

measurement volume of i. it should be noted that u is random variable and some 

function of discrete time n in this equation. For the signals of E[n] =1,

1 2 4j( u.n u)
1 2 4

o o

s[n] s[n]
e ln( ) j( u.n u)

A A
         

If s[n] is demodulated complex Doppler signal, it can be expressed in terms of In-

phase (I) and Quadrature (Q) parts as, s[n]=I[n]+jQ[n]=Ao[n]ej[n]. Amplitude and 

phase of s[n] in terms of I and Q signals will be,  

2 2
o

1

s[n] I [n] Q [n] A [n]

Q[n]
[n] {s[n]} Tan { }

I[n]


  

  

(5.4.1)

(5.4.2)

Therefore we can show I and Q parts of s[n] as, 

o oI A [n]cos( [n]) , Q A [n]sin( [n])    .

oA [n]
ln(

j [n]

o

e

A [n]



1 2 4) j( u.n u)

j

     

[n] j  1 2 4( u.n u)    

After taking DFT of both sides to find the spectrum of random velocity u, obtained 

velocity auto correlation function is (see Appendix A.3 for details),
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prn

prn

prn

2N 1 j k.
2 N1

u u
N

k 0prn prn

1 1
R [ ] D.F.T. {S [k]} { lim U[k] }.e

N N

 





   

4 4

prn 2 prn 2

prn

2j.2 . j.2 .kk k
N . N .1

u prn 4 1 prn
N

prn prn 2 0

1 j.2
R [ ] D.F.T. { lim N u [k] e ( N [k])e dk }

N N

   


 




       

 
(5.4.3)

The amplitude of U[k] {i.e. |U[k]|} cannot be obtained analytically from equation

(5.4.3) since it depends on phases of each part of U[k]. But it can be evaluated 

numerically by putting discrete phase sequence {Tan-1(Q/I)} which is obtained from 

UDV. 

We can check equation (5.4.3) analytically and numerically. If flow is constant 

velocity flow from equation (4.2.6),

4 1 2 4[k] D.F.T.{ s[n]} D.F.T.{ u.n u}        (5.4.4)

where u is constant velocity and n is discrete time between 1 and Nprn.

4 4

prn 2 prn 2

4

prn 2

2
prn

4 1 prn 4 prn 2

j.2 . j.2 .2k kk k
N . N .prn

4 1 prn 4 prn 2

0 0

j.2 .2 k k
N .prn 2

4 prn

0

4 prn

N d [k]
[k] N [k] u N [k] u( j )

2 dk

N d [k]
( N [k])e dk ( u N [k] u j )e dk

2 dk

N u d [k]
u N [k] j e dk

2 dk

u N

   
 

 



        




          



 
   





 


4

prn 2

j.2 .2 k k
N .prn 2 4

prn 20

2
prn

4 prn

N u j.2 .
[k] j ( e [k]dk)

2 N .

N
u N [k] j

 
  

    
 

  



2 u

2
j. 2 4

prn

.

N



2
4 prn 4 prn[k] u N [k] u N [k] 0       

(where integration by parts i.e. cycle
aroundcycle cycle
k 0

0

f[k] '[k]dk f[k] [k] f '[k] [k]dk


     


is 

used)

Since integral in equation (A.3.1) is zero,
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1
prn u

prn

1
U[k] N u [k] R [ ] D.F.T. {

N
      2

prnN
2 2

u [k]} u for all  

Velocity ACF is constant for all time lags. This shows constant velocity is fully 

correlated with itself which is an expected result.

If we put analytical phase expressions {Tan-1(Q/I)} from previous derivations for 

constant velocity (Eq. (4.2.6)) and single frequency oscillating (Eq. (4.3.3)) flows 

and solve numerically, the velocity spectrums (from Eq. (A.3.1)) and velocity auto-

correlation coefficients (ACC) (from Eq. (5.4.3)) are obtained as in Figures 5.4.1 to 

5.4.6.

For constant velocity flow: 1
1 2 4

Q
Tan ( ) u.n u

I
      

For oscillating velocity flow: 1
1 2 4 4 4 5 6

Q
Tan ( ) u.n u a a cos(a a (n 1))

I
          

where f o,io f
4 5 6 f prf

f

2 f d2f u A
a = ,a = ,a =2 f T

c.f c




Af  is oscillation amplitude as percentage of mean velocity and ff is oscillation 

frequency as Hz.  For the parameters of mean velocity of u =0.01m/s , Nprn=8001, 

Nc=4 , fo=4MHz, c=1480m/s, Tprf=0.138ms  and  do,i=0.035m , obtained velocity 

spectrums and velocity ACCs would be as following.

Spectrum of constant velocity (Figure 5.4.1) contains only an impulse function at 

zero frequency and velocity is fully correlative with itself (Figure 5.4.2) as expected.  
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Figure 5.4.1: Amplitude of spectrum of constant velocity from equation (A.3.1)

Figure 5.4.2: Velocity ACC for constant velocity from equation (5.4.3)

Spectrum of oscillating part of velocity contains a component at oscillation 

frequency and other components around it (Figures 5.4.3, 5.4.5). Correlation is going 

to zero around time difference of half of the oscillation period (Figures 5.4.4, 5.4.6).



74

Figure 5.4.3: Amplitude of spectrum of fluctuating part of velocity for Af=10% 
oscillation amplitude and ff=5Hz oscillation frequency from equation (A.3.1)

Figure 5.4.4: Velocity ACC of fluctuating part of velocity for Af=10% oscillation 
amplitude and ff=5Hz oscillation frequency from equation (5.4.3)
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Figure 5.4.5: Amplitude of spectrum of fluctuating part of velocity for Af=10% 
oscillation amplitude and ff=10Hz oscillation frequency from equation (A.3.1)

Figure 5.4.6: Velocity ACC of fluctuating part of velocity for Af=10% oscillation 
amplitude and ff=10Hz oscillation frequency from equation (5.4.3)
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5.5 Experimental Velocity ACC and Turbulence Measurements

5.5.1 Velocity ACC and Energy Spectrum of Turbulence 

Velocity and I-Q signal measurements were performed at Reynold’s number of 

13148 and center of pipe (ID=46mm).  Mean velocity along probe axis at this point

( u ) is 116.32 mm/s and r.m.s. (root mean square of fluctuating part of velocity, u ') 

along probe axis is 9.68mm/s. 4096 velocity values were measured. 128 

pulses/velocity were used with fprf=1/Tprf=7246 Hz, Nc=4 , fo=4MHz, c=1480m/s. 

8000 I and 8000 Q signals were taken. Angle between probe and pipe was 70o. Then 

velocity ACC for fluctuating part of velocity ( u ') can be defined as,

u '

u '[n].u '[n ]
R ' [ ]

u '[n].u '[n]

 
 

(5.5.1.1)

where n and  are discrete times.

Time resolution of velocity ACC obtained from equation (5.4.3) by using I-Q signals 

is period of pulse sending (Tprf) while it is 128×Tprf for velocity ACC obtained from 

measured velocity values. Time resolution of velocity ACC obtained from measured 

velocities doesn’t seem enough to capture real correlation (Figure 5.5.1.1) while it is 

much reasonable for the one obtained from equation (5.4.3) (Figure 5.5.1.2). These 

results are compatible with study of Garcia et al [63]. They defined a parameter F for 

turbulent flows which is the ratio of frequency of velocity sampling to frequency of 

large eddies present in the flow. They showed that the higher the ratio F, the better 

the description of turbulence is achieved from measurements. They said F should be 

bigger than 20 and shouldn’t be less than 1. 

vel.samp. prf

large eddy c

f f / N
F

f v / D
 

(5.5.1.2)

Where N is number of pulses to measure one velocity value, D is characteristic 

length which is pipe diameter, vc is convective velocity. If we approximate vc as 
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average velocity ( v ), F value for velocity measurements with the specified 

parameters is 7.66. However F value for I-Q signal measurements is 980.05. This 

large increase of F value explains the improvement of velocity ACC while using I-Q 

signals directly through equation (5.4.3) rather than using measured velocity values.         

Figure 5.5.1.1: Velocity ACC of fluctuating part of measured velocities. Time 
resolution is 21.3 ms

Figure 5.5.1.2: Velocity ACC of fluctuating part of velocity. This is obtained from 
measured I-Q signals by using equation (5.4.3). Time resolution is 0.138 ms
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Moreover spatial resolution must be taken into account in UDV measurements. Our 

probe has a diameter of 5mm which is large compared to the pipe diameter 46mm. 

This means all I-Q signals were taken from a measurement volume of a cylinder with 

~5 mm diameter and ~0.5 mm height. More accurate velocity ACCs can be obtained 

by using finer probes. 

Energy spectrum of fluctuating part of velocity at pipe center was obtained which is 

simply the DFT of velocity ACC (Figure 5.5.1.3). Energy distribution over 

longitudinal turbulent length scales was obtained from energy spectrum by using 

longitudinal r.m.s. value. Energy cascade can be seen here (Figure 5.5.1.4). Energy 

scale is decreasing with decreasing eddy sizes (from integral to Kolmogorov length 

scales) or increasing frequencies. 

Figure 5.5.1.3: Energy spectrum of turbulence at pipe center by using velocity ACC 
from equation (5.4.3). Energy axis is scaled with maximum value. NRe=13148
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Figure 5.5.1.4: Energy distribution of turbulent length scales at pipe center. Energy 
axis is scaled with maximum value. NRe=13148

5.5.2 Turbulence Parameters

If random variable u is statistically stationary and if number of velocity 

measurements and measurement period are large enough, we can use measured 

velocity values by means of UDV to obtain statistical properties of velocity. 4096 

velocity measurements to obtain mean ( v ) and r.m.s. ( u ) values were performed for 

each flow rate. 8000 I-Q signals were taken to obtain VACC through equation 

(5.4.3) for each flow rate.  UDV measurement parameters are the same as mentioned 

in previous part.  First measurements were carried out at the center of pipe for 11 

different Reynolds numbers and then at a single Reynolds number, measurements 

were done for 6 different radial positions. 

Changes of turbulence parameters in probe direction with Reynolds number and 

radial position in pipe are given below. 
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Turbulence parameters in probe direction for center of pipe

Centerline mean velocities are depicted in Figure 5.5.2.1 with respect to NRe. In 

addition velocity fluctuation variation with NRe is shown in Figure 5.5.2.2. High NRe

flow has fluctuations of lower fraction of local mean velocity. This is compatible 

with the study of Gad el Hak et al [53] in which they determined the axial turbulence 

intensity at pipe center as changing from 2.42% to 2.08% while NRe is changing from 

3506 to 7544. All length scales show an increasing type of trend with increasing 

Reynolds number (Figures 5.5.2.3., 5.5.2.4. and 5.5.2.6) indicating larger eddy sizes 

associated with higher flow rates at pipe center. Gad el Hak’s LDV measurements 

for the center of 4mm ID pipe gave the same kind of increasing trends for integral 

and micro length scales [53]. Eddy diffusion coefficient is increasing with increasing 

Reynolds number (Figure 5.5.2.7) because of increasing strength of convective 

motion at pipe center. Energy dissipation rate is decreasing with increasing Reynolds 

number (Figure 5.5.2.5) because of decreasing turbulence intensity based on the 

mean velocity at pipe center (Figure 5.5.2.2). F value from equation (5.5.1.2) is 

changing between 14.36 and 4.01.   

Figure 5.5.2.1: Mean longitudinal velocity at pipe center
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Figure 5.5.2.2: Amplitude of velocity fluctuations in probe direction as percentage of 
longitudinal mean velocity (turbulence intensity) at pipe center

Average value of turbulence intensity in probe direction (Figure 5.5.2.2) is 2.85. 

Axial and radial turbulent intensities are in nearly equal importance at pipe center 

[64]. Hence average percentage of turbulent intensity in the direction of probe which 

is installed with 70o angle on pipe will be 2.88 from study of Gad el Hak et al [53].

This intensity is average of several Reynolds number measurements from transition 

to 7544 and it is very close to our finding. 
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Figure 5.5.2.3: Eulerian integral length scale at pipe center from equation (3.1.5.8)

Figure 5.5.2.4: Eulerian micro length scale at pipe center from equation (3.1.5.6)
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Figure 5.5.2.5: Rate of energy dissipation at pipe center from equation (3.1.5.9)

Figure 5.5.2.6: Kolmogorov length scale at pipe center from equation (3.1.7)
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Figure 5.5.2.7: Eddy diffusion coefficient at pipe center from equation (3.1.5.8)

Turbulence parameters in probe direction for NRe=16733

A sixth order polynomial with even powers was fitted to the measured average 

velocity data with no-slip boundary constraints (Figure 5.5.2.8) to obtain wall shear 

rate [28]. Wall shear rate from fitted polynomial is 126.25 s-1 and shear stress is 

0.12625 Pa. Friction velocity wU /    will be 0.01124 m/s. Blasius empirical 

relation of wall shear stress for turbulent pipe flow is [65],

2 0.25
w av Re

1
. .v where 0.316 / N

8
     

(5.5.2.1)

vav is average velocity in the pipe. w from this equation is 0.4596 Pa and U is 

0.02144 m/s.   
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Figure 5.5.2.8: Longitudinal average velocity in pipe measured by UDV for 
NRe=16733 and fitted constrained polynomial (V=-4.367×10-6.r6 + 8.711×10-4.r4 + 

402.71) 

r.m.s. measurements of Laufer [64] for radial and axial directions and their 

correlation were used to get r.m.s. values in =70o probe direction through relation,

 2 2
2 2

2 2 2

u v ' ' v ' '
cos sin 2cos sin

U U U U   

 
      

(5.5.2.2)

where v ' is axial and ' is radial velocity fluctuations. As it is seen from Figure 

5.5.2.9 measured r.m.s. distribution in probe direction is close and exhibiting the 

same behavior with data from Laufer’s study. Far half measurements of pipe flow 

are giving better results in terms of velocity fluctuations as expected. This is because 

of near wall effects on UDV signals. Here the results of using theoretical friction 

velocity for normalization seem more reasonable and accurate. Since small decrease 

of fluctuation amplitudes with decreasing Reynolds number is expected. Near wall 

measurements of UDV is not accurate for the sizes of pipe and probe used.       
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Figure 5.5.2.9: Normalized r.m.s. distribution in probe direction along diameter of 
pipe for NRe=16733

Eddy diffusion coefficient increases from pipe center to wall (Figure 5.5.2.16)

because of increasing turbulence intensity towards pipe wall (Figure 5.5.2.11). This 

is indicating that turbulent mixing is getting stronger towards pipe wall. It is evident 

that viscous effects are playing an important role in this phenomenon. Although 

integral and micro length scales (Figure 5.5.2.12 and 5.5.2.13) are not showing a 

systematic change while going away from center of pipe, Kolmogorov length scale is 

decreasing (Figure 5.5.2.15) because of increasing energy dissipation rate towards 

wall (Figure 5.5.2.14). Hence size of biggest eddies are not showing a systematic 

change from pipe center to one third of radius whereas size of smallest eddies are 

clearly decreasing towards pipe wall. This is braking turbulent kinetic energy coming 

from larger eddies in to smallest ones for complete viscous dissipation. F value for 

pipe center is 6.1.
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Figure 5.5.2.10: Mean longitudinal velocities at NRe=16733

Figure 5.5.2.11: Amplitude of velocity fluctuations as percentage of mean velocity
(turbulence intensity) at NRe=16733
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Figure 5.5.2.12: Eulerian integral length scale at NRe=16733 from equation (3.1.5.8)

Figure 5.5.2.13: Eulerian micro length scale at NRe=16733 from equation (3.1.5.6)
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Figure 5.5.2.14: Rate of energy dissipation at NRe=16733 from equation (3.1.5.9)

Figure 5.5.2.15: Kolmogorov length scale at NRe=16733 from equation (3.1.7)
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Figure 5.5.2.16: Eddy diffusion coefficient at NRe=16733 from equation (3.1.5.8)
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CHAPTER 6

OBTAINING GENERALIZED MAXWELL MODEL PARAMETERS FOR A 
LINEAR VISCOELASTIC FLUID BY UDV: A THEORETICAL APPROACH

In this part of the study viscoelastic behavior of a non-Newtonian fluid is 

investigated by UDV. A mathematical relation between rheological properties and 

UDV parameters is established. The fluid is assumed to be obeying a linear 

viscoelastic model which is an accurate approximation in the case of small strain in 

the fluid. In order to probe viscoelastic behavior of a fluid, flow should be time 

dependent, e.g. oscillating. This can be achieved by means of an oscillating piston

assembly in a pipe (Figure 6.1). 

Figure 6.1: Oscillating piston system to drive an oscillating pipe flow. Angular 

velocity of disk (2ff) determines the frequency whereas radius of disk (L) 
determines the amplitude of flow oscillations.

Then oscillating pressure gradient in complex notation is,

fj2 f todP
Re{P e }

dz
 

(6.1)

where ff is flow oscillation frequency (Hz) and oP can be complex for a phase shift 

because oscillation can start from any phase point.  | oP | must be taken as very small 

for the sake of linear viscoelasticity. We can postulate,
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fj2 f to
z z rV (r, t) Re{V (r)e },V 0,V 0

   (6.2)

       fj2 f to
rz rz(r, t) Re{ (r)e }   (6.3)

where o
zV and o

rz are complex for a viscoelastic fluid since both velocity and

shear stress are out of phase with pressure. 

Next governing differential equations for a flowing fluid are considered. Here flow is 

assumed to be incompressible and uni-directional. End effects are neglected.

Equation of Continuity:



z z
z

0
(incompressible)

( V ) V
0 0 V f (z)

t z z

  
      

  
(6.4)

z-Component of Equation of Motion:




z z
z rz z

0
0 (gravity)

(fromcontinuity)

V V P 1
( V ) (r. ) . g

t z z r r

   
      

   
(6.5)

Constitutive Equation:

rz

t
z

rz

(r,t ')

V (r, t ')
(r, t) G(t t ') dt '

r




   






(6.6)

If we substitute equations (6.1), (6.2) and (6.3) into (6.5) and (6.6),

f f f

f

j2 f t j2 f t j2 f to o o
z f rz

j2 f to
z f

1
Re{V (r) j2 f e } Re{P e } (r.Re{ (r)e })

r r

Re{ V (r) j2 f e

  




    



  fj2 f to} Re{P e  fj2 f te  o
rz

1 d
(r. (r))}

r dr


o o o
f z rz

1 d
j2 f V (r) P (r. (r))

r dr
    

(6.7)

and 
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
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 
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   


(6.8)

G(s) is relaxation modulus and * is complex viscosity. If we combine (6.7) and 

(6.8),

o
o oz

f z

dV (r)1 d
* (r ) j2 f V (r) P

r dr dr
    

(6.9)

This is a Bessel differential equation. Using the boundary conditions,

o
z

o
z

B.C.s r R, V 0

r 0, V is finite.

 



solution gives,

f
oo

o
z

f f
o

j2 f
J ( r)

*P
V (r) (1 )

j2 f j2 f
J ( R)

*

 



 

   




(6.10)

At the center of pipe (r=0),

f

o
o

z
f f

o

o
j2 f t

z
f f

o

P 1
V (r 0) (1 )

j2 f j2 f
J ( R)

*

P 1
V (r 0, t) Re{ (1 )e }

j2 f j2 f
J ( R)

*



  
   



   
   




(6.11)

If infinite series representations of Bessel functions [60, pp.360] is employed up to 

the second term,



94

m 2m
n

n 2m n
m 0

( 1) x
J (x) x
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





   , where  is gamma function
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f f
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j2 f 4 * j2 f R*
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* 4 4 *

 


         
 

(6.12)

The truncated series solution of the Bessel expression is an accurate approximation 

for small oscillation frequencies. For example for low density poly ethylene (LDPE) 

melt (complex viscosity from [56, pp.274],  at 150 oC is 780Kg/m3 [66, pp.94]) and 

for R=2.5cm, real part of error for this approximation is very close to zero while it is 

less than 0.2% for imaginary part of error up to oscillation frequency of ff=50 Hz. 

This means the results of experiments even until 50 Hz are very useful without any 

significant error because of this series approximation.

With the approximated form of the Bessel function, the velocity at pipe center 

becomes,
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If oP is real,

1 2

3

o 2 o 2 2
f f f

z 2 2 2
f

4P R 'cos(2 f t) P R (2 f R 4 '') sin(2 f t)
V (r 0, t)

16 ' (2 f R 4 '')

 



       
 

     

 



1 f 2 f
z

3

cos(2 f t) sin(2 f t)
V (r 0, t)

   
 


(6.15)



95

where 1, 2 and 3 depend on material properties and ff.

Next step is to use this velocity expression in the equation of sampled UDV signals 

from center of pipe (Eq. (4.2.1)). This equation was derived for one particle traveling 

in the measurement volume. This is a good approach if measurement volume is small 

enough and velocities of all particles within the volume are well correlated. 

The reference time for this motion is starting time of measurement and if there is 

only axial velocity Vz(t) at the measurement point, 

t

z

0

d ' V (t) cos dt 

where t in discrete form is,

o
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d
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1 f 2 f

30
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Then phase of the signal will be,

6 2 4 5 3 4 5Arg{s[n]} a a sin(a a (n 1)) a cos(a a (n 1))       (6.16)

6 2 4 5 3 4 5

c

s

j(a a sin(a a (n 1)) a cos(a a (n 1)))
o

s [n ]

o 6 2 4 5 3 4 5

o 6 2 4 5 3 4 5

s [n]

s[n] A e

A cos(a a sin(a a (n 1)) a cos(a a (n 1)))

jA sin(a a sin(a a (n 1)) a cos(a a (n 1)))

       

      
     




(6.17)

where        o o o1 2
1 c 2 3 4 f

f 3 f 3

4 f 4 f dcos cos
a N , a , a , a 2 f ,

c 2 f . c 2 f . c

    
     

   

5 f prf 6 1 3a 2 f T , a a a   

We expect the ultrasound spectrum to be centered around zero frequency for long 

enough measurements (Tprf.Nprn  1/ff) since there isn’t net motion. Therefore we can 

use the amplitude of spectrum at zero frequency to determine the viscoelastic 

properties of fluid.
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After evaluating the DFT of sampled signals in equation (6.17) (see Appendix A.4 

for details), amplitude of US spectrum at zero frequency (k=0) is,

l
o o 2 o 3 2l 2 2l 3

l 1

S[k 0] A N J (a ) J (a ) 2 ( 1) J (a ) J (a ) [k]




    
(6.18)

The second term makes equation quite complicated to solve. Fortunately we can 

neglect this term compared to the first term for small a2 and a3 values which means 

for small ratio of oscillation amplitude (Po) to frequency (ff) depending on the

properties of fluid and some UDV parameters (see Figure 6.4). 

o o 2 o 3S[k 0] A N J (a ) J (a ) [k]    (6.19)

Below are some graphical comparisons of numerically and analytically obtained 

spectrums from pipe center for UDV measurement parameters of: Ao=1, Nc=4, fo=4 

MHz, c=1500m/s, =700 ,  fprf=7246 Hz, Nprn=7246. Pipe radius is assumed as 

R=0.025 m and amplitude of oscillation of pressure gradient as 50000 Pa/m.  LDPE

melt at 150 0C (=780 Kg/m3) is taken as the viscoelastic fluid and generalized 

Maxwell model is used to obtain ' and '' .

m m m f
2 2

m mm f m f
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   
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Relaxation time (m) and corresponding viscosity (m) data of LDPE for generalized 

Maxwell model is taken from literature [56, pp.274] (Table 6.1).

Table 6.1: Linear viscoelastic parameters in Generalized Maxwell Model for LDPE

m m (s) m (Pa.s)
1 103 1.00×103

2 102 1.80×104

3 101 1.89×104

4 100 9.80×103

5 10-1 2.67×103

6 10-2 5.86×102

7 10-3 9.48×101

8 10-4 1.29×101
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The analyzed velocity of LDPE with velocity change of a fictitious fluid and a 

Newtonian fluid are seen in Figure 6.2. Velocities are obtained from equation (6.15)

and they are phase shifted for LDPE and fictitious viscoelastic fluid compared to the 

negative pressure gradient. It should be noted that phase of pressure oscillation is 

same with phase of negative pressure gradient. Phase shift of LDPE is more than that 

of fictitious viscoelastic fluid while there is not any phase shift for Newtonian fluid. 

This is because of faster relaxation spectrum of fictitious fluid (Figure 6.2.2) which 

gives more viscous but less elastic behavior to the fluid. Viscosity of Newtonian 

fluid was obtained from the limit value of real part (dynamic viscosity) of the 

complex viscosity while oscillation frequency goes to zero.

Figure 6.2: Phase shift of oscillating velocities with frequency of 10 Hz at the center 
of pipe compared to the negative pressure gradient (from Eq. (6.15)).

Both analytically (from Eq. (A.4.1)) and numerically obtained ultrasound spectrums 

are almost identical (Figure 6.3). Doppler frequency axis was converted to velocity 

through Doppler equation (Eq. (2.1.3)). 
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Figure 6.3: Numerically and analytically obtained amplitude of spectrum of 
ultrasonic signals taken from center of pipe for ff=10 Hz oscillating flow

( o
fP / f 5000 ).

The simplification on equation (6.18) by neglecting second term introduces 

considerable difference compared to numerical and whole analytical solutions 

especially at small flow oscillation frequencies under 5 Hz. This also depends on 

UDV measurement parameters, flow oscillation amplitude, pipe radius and fluid type 

through parameters a2 and a3. Analytically and numerically obtained spectral 

amplitudes at zero frequency of the UDV spectrum seem compatible (Figure 6.4). 
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Figure 6.4: Numerically and analytically obtained amplitudes at center of UDV 
spectrum (zero frequency) corresponding to different flow oscillation frequencies.

6.1 Obtaining Generalized Maxwell Model Viscosities Using UDV Spectrum

Equation (6.19) can be used to get many viscosities corresponding to fluid relaxation 

times in Generalized Maxwell Model. This requires measurements at different flow 

oscillation frequencies and employing equation (6.19) for each frequency. But 

obtained set of equations is highly non-linear and requires some numerical solutions 

like non-linear least square minimization. If Generalized Maxwell Model is used to 

express ' and '' , then a2 and a3 in equation (6.19) becomes,
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Here M is number of parameters in Generalized Maxwell Model. Therefore number 

of experimental measurements (i.e. equations) must be equal or greater than M. 

Equation (6.19) was tried to be solved in MATHEMATICA for model of 8 Maxwell 

elements. First S[k 0] values for different oscillation frequencies were obtained 

by using 8 Generalized Maxwell Model parameters taken from literature (Table 6.1). 

‘Nminimize’ command for non-linear least-square minimization was used. It was 

used to minimize following objective function (sum of squares),

Ne
2

q o o 2,q o 3,q
q 1

( S A N J (a ) J (a ) )



(6.1.3)

where Ne is number of oscillation frequencies that measurements have been done. 

Firstly 8 viscosity values ( m m=1,2,...,8) were obtained by minimizing 8 equations 

for 8 different oscillation frequencies (ff=5,6,…,12 Hz). Secondly 20 equations (for 

ff=5,6,…,24 Hz) were used to obtain these 8 viscosity values corresponding to 8 

different relaxation times. Both minimizations gave quite close results to real 

viscosity values and objective functions were obtained very close to zero. 

For 8 equations:

|Sq|={2889.768, 3295.413, 3645.061, 3945.655, 4202.894, 4422.329, 4609.306, 

4768.746} 

Objective function is 8.47546×10-18

Viscosities as Pa.s are 1= 106 473, 2=19 194.9, 3=17 586.7, 4=9 814.04, 5=2 

669.99, 6=586, 7=94.7997, 8=12.9005
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For 20 equations:

|Sq|= {2889.768, 3295.413, 3645.061, 3945.655, 4202.894, 4422.329, 4609.306, 

4768.746, 4905.003, 5021.822, 5122.368, 5209.280, 5284.748, 5350.583, 5408.279, 

5459.071, 5503.984, 5543.867, 5579.429, 5611.261}

Objective function is 2.14935×10-14  

Viscosities as Pa.s are 1= 375 619, 2=54 186.9, 3=10 694.1, 4=9 884.84, 5=2 

669.93, 6=586, 7=94.7998, 8=12.9003

This implies that the non-linear equation (6.19) can be solved numerically after 

getting enough number of UDV measurements to obtain viscosities of Generalized 

Maxwell Model. After getting parameters of Maxwell elements one can easily obtain 

relaxation spectrum for viscoelastic fluid of interest. As it is seen viscosity values 

corresponding to longer relaxation times (m 1s) are not close to the real values. 

This may be related with measurement period of UDV which is 1s in our analysis.

6.2 Effects of Material Type and Oscillation Frequency on Spectrum

5300 is critical value for o
fP / f for defined measurement and material parameters of 

LDPE. When it gets bigger than this value, side bands around zero frequency 

become stronger than zero frequency amplitude (Figure 6.2.1). 
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Figure 6.2.1: Numerically obtained amplitude of spectrum of ultrasonic signals taken 

from center of pipe for flow oscillating at 8 Hz ( o
fP / f 6250 ).

Relaxation spectrums of LDPE and a fictitious viscoelastic fluid are seen at Figure 

6.2.2. Spectrum of fictitious fluid is dominant at small relaxation times compared to 

the spectrum of LDPE which means relaxation dynamics of fictitious fluid is faster 

than LDPE. Therefore fictitious fluid has a more viscous but less elastic structure 

compared to the LDPE.
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Figure 6.2.2: Analyzed two different discrete relaxation spectrums of Generalized 
Maxwell Model for two different fluids.

As it is seen from velocity changes in Figure 6.2.3, for the same oscillation 

frequency, amplitude of velocity oscillations for fictitious viscoelastic fluid is less 

than that of LDPE because of much faster stress relaxation. Oscillation amplitude for 

Newtonian fluid is close to the fast relaxing fictitious fluid since it has an immediate 

relaxation mechanism which decreases stress and hence acceleration of fluid. For 

LDPE increasing of oscillation frequency from 10 Hz to 20 Hz is increasing the 

oscillation amplitude. But there is not a significant change for fictitious viscoelastic 

fluid in the case of this frequency change. This may be because of these oscillation 

frequency or time scales are very fast for LDPE which doesn’t have a complete 

relaxation time for such fast changing loadings. For faster oscillations (20 Hz) 

material has less time to be relaxed which causes increase on oscillation amplitude. 

On the contrary for fictitious viscoelastic fluid these oscillations (time scales of 0.1 

sec. and 0.05 sec.) are not faster than relaxation speed of material. Therefore this 

frequency change of oscillation doesn’t create an important amplitude change on 

velocity oscillations. We can say that material’s relaxation dynamics is fast enough 

so that it can’t be altered by such a change on flow dynamics.   
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Figure 6.2.3: Oscillating velocities at pipe center for three different fluids and two
different oscillation frequencies (from Eq. (6.15)).

Numerically obtained US spectrum amplitudes from center of pipe for flow of three 

different fluids and two oscillation frequencies are seen in Figure 6.2.4. Zero 

frequency component of US spectrum is highest and it stands for average velocity 

which is obviously zero in our oscillating flow case. Side components appear at the 

positive and negative multiples of flow oscillation frequency. It is easy to see that 

increasing amplitude of flow oscillation (for LDPE) decreases the frequency 

component of UDV at center of spectrum and spreads the energy around center 

which is caused from increasing variance of velocity at measurement point. It can be 

said that variance of US spectrum for viscoelastic fluid with longer relaxation times 

(more elastic LDPE) is higher than variance of US spectrum for viscoelastic fluid 

with shorter relaxation times (more viscous fictitious fluid). US spectrum of a 

viscoelastic fluid goes to the spectrum of a Newtonian fluid when elastic properties 

of fluid disappear.      
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Figure 6.2.4: Numerically obtained Ultrasound Doppler spectrums from center of 
pipe for three different fluids and two different oscillation frequencies
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CHAPTER 7

CONCLUSIONS

Mathematical relations which show effect of some complex flows on UDV signals 

were obtained in this study. Analysis was started from single frequency oscillating 

flows. Analytical results revealed that ratio of oscillation amplitude to frequency is a 

critical parameter which has a critical value according to frequency and speed of 

sound. Critical value for dimensionless a4 parameter is determined as nearly 1.45. 

Average velocity profiles determined by UDV technique don’t seem reliable if this 

critical value is exceeded. Beyond this limit ghost profiles appear around mean 

velocity profile which eventually gets stronger than mean velocity values. Speed of 

sound I comes across as a limiting factor of time resolution. Numerical results also 

confirmed analytical results in this part of the study. 

In the second part statistical properties of a random velocity were related to the 

properties of back sampled US signals. This kind of analysis is particularly useful to 

investigate turbulent flows and to obtain turbulent parameters with a few seconds 

measurement. Probability density function (PDF) of velocity is one important 

statistical property which was related to spectrum of US signals. Both PDF values 

obtained from velocity measurements and US spectrum compared well with each 

other. Results have indicated that PDF of random velocity creates the distribution 

pattern of US spectrum. Velocity auto-correlation function (ACF) which is another 

statistically important parameter was obtained from both measured velocity values 

and raw in-phase and quadrature (I-Q) parts of signals by using derived analytical 

relation. Time and spatial resolution of UDV measurements were limiting factors for

rapidly changing flows. Time resolution (0.138 ms) of ACF obtained from I-Q 

signals was several times higher compared to the one (21.3 ms) obtained from 

velocity measurements. This improved velocity ACF was used to calculate some 
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turbulent parameters for different Reynolds Numbers and radial positions in a pipe.

Local average velocity based intensity of pipe turbulence was obtained as decreasing 

at pipe center with increasing NRe, while it was increasing towards pipe wall at a 

fixed NRe. Eddy diffusion coefficient was increasing both with increasing NRe and 

increasing radial position within the pipe. Measured turbulence intensities along 

radial direction have given a good compatibility with literature values. Results 

indicated UDV as a valuable technique to measure turbulent parameters in very short 

times. Size of probe compared to the size of flow geometry is very important to catch 

spatial changes correctly. 

In the last part of study linear viscoelastic material properties were related to US 

spectrum theoretically. This study just stayed in theoretical bases because of 

experimental difficulties of maintaining flow of a polymeric viscoelastic material.

Dynamic oscillation experiment of a viscoelastic fluid was analyzed. US spectrum 

obtained from oscillating flow of such a fluid was derived in terms of complex 

material functions. Complex material functions were expressed by Generalized 

Maxwell Model and zero frequency components in spectrum were used to get 

viscosities corresponding to relaxation times. Although obtained relation between 

Generalized Maxwell Model viscosities and UDV spectrum is highly non-linear and 

complicated, it has been showed that such non-linear least square problems can be 

solved by means of modern computer programs like Mathematica. UDV technique 

was proposed as a useful tool to get relaxation spectrum of a viscoelastic material 

after conducting some experimental measurements.

As a result UDV is a promising technique for process monitoring in a quick and non-

invasive way. Technique has lived many improvements especially for the last two 

decades but still has some limitations to be solved. Time and spatial resolutions are 

two of them. Using a complementary measurement technique (LDV, PTV) might be 

necessary as some authors suggest. More detailed theoretical analysis is required to 

understand US signals after interacting with complex flow media. In spite of many 

simplifications that were made in our analysis, results are encouraging and useful for 

future detailed analysis.  
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APPENDIX A

MATHEMATICAL DERIVATIONS

A.1 DFT of Sampled US Signals for Measurement Volume of Oscillating 

Velocity Flow

If sampled signal is expressed in terms of cosine and sine components,

c s o 7 3 4 5 6

o 7 3 4 5 6

c o 7 3 4 5 6

o

s[n] s [n] js [n] A cos(a a (n 1) a cos(a a (n 1)))

jA sin(a a (n 1) a cos(a a (n 1)))

from cos(x y) cos x.cos y sin x.sin y and

sin(x y) sin x.cos y cos x.sin y

s [n] A cos(a a (n 1) a cos(a a (n 1)))

A {co

       
     

  
  

     
 7 3 4 5 6

7 3 4 5 6

s o 7 3 4 5 6

o 7 3 4 5 6

7 3 4 5 6

s(a a (n 1))cos(a cos(a a (n 1)))

sin(a a (n 1))sin(a cos(a a (n 1)))}

s [n] A sin(a a (n 1) a cos(a a (n 1)))

A {sin(a a (n 1))cos(a cos(a a (n 1)))

cos(a a (n 1))sin(a cos(a a (n 1)))}

   
    

     
    
    

If n is replaced by m and then m-1 is substituted by n, cosine (real) and sine 

(imaginary) parts of the signal become,

c o 7 3 4 5 6

7 3 4 5 6

s o 7 3 4 5 6

7 3 4 5 6

s [n 1] A {cos(a a .n)cos(a cos(a a .n))

sin(a a .n)sin(a cos(a a .n))}

s [n 1] A {sin(a a .n)cos(a cos(a a .n))

cos(a a .n)sin(a cos(a a .n))}

   
  

   
  

It should be noted that m is changing between 1 and Nprn (total number of pulses) 

while n is between 0 and Nprn-1(like a discrete time signal). Discrete Fourier 

transform (DFT) of the sampled periodic signal is:
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1c 2c

3c 4c

c s

c o 7 3 4 5 6

f [n] f [n]

7 3 4 5 6

f [n] f [n]

c o

D.F.T.{s[n 1]} D.F.T.{s [n 1]} jD.F.T.{s [n 1]}

s [n 1] A {cos(a a .n) cos(a cos(a a .n))

sin(a a .n)sin(a cos(a a .n))}

D.F.T.{s [n 1]} A {D.

    
   

  

  





1c 2c 3c 4c

o 1c 2c 3c 4c
prn prn

F.T.{f [n].f [n]} D.F.T.{f [n].f [n]}}

1 1
A { D.F.T.{f [n]}*D.F.T.{f [n]} D.F.T.{f [n]}*D.F.T.{f [n]}}

N N



 

where * is convolution sum. By using reference [60, pp.361]

7 7prn prn 3 prn 3ja ja
c 1c

N N a N a
A [k] D.F.T.{f [n]} [e . [k ] e . [k ]]

2 2 2
      

 

5 5

c 2c

6 prn 6 prnj2la j2lal
prn o 4 2l 4

l 1

B [k] D.F.T.{f [n]}

2l.a N 2l.a N
N {J (a ). [k] ( 1) J (a )(e [k ] e [k ])}

2 2








        
 

7 7
3 3

j(a ) j( a )prn prn 3 prn 32 2
c 3c

N N a N a
C [k] D.F.T.{f [n]} [e . [k ] e . [k ]]

2 2 2

 
 

      
 

5 5

c 4c

6 prn 6 prnj(2l 1)a j(2l 1)al
prn 2l 1 4

l 0

D [k] D.F.T.{f [n]}

(2l 1)a N (2l 1)a N
N { ( 1) J (a )(e [k ] e [k ])}

2 2


  





 

      
 

DFT of cosine part after evaluating the convolutions is, 

7 7

7 5 5

7

o
c c c c c

prn

o prn prn 3 prn 3ja ja
o 4 o 4

prn 3 6 prn prn 3 6 prnja j2la j2lal
2l 4

l 1

ja

A
D.F.T.{s [n 1]} {A [k]*B [k] C [k]*D [k]}

N

A N N a N a
{J (a ).e [k ] J (a ).e [k ]

2 2 2
(N a 2l.a N ) (N a 2l.a N )

e ( 1) J (a )(e [k ] e [k ])
2 2

e










  

     
 

 
      

 





5 5prn 3 6 prn 6 prn prn 3j2la j2lal
2l 4

l 1

(N a 2l.a N ) (2l.a N N a )
( 1) J (a )(e [k ] e [k ])

2 2






 
     

 
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7
5

5

7
5

5

3
j(a ) prn 3 6 prnj(2l 1)al2

2l 1 4
l 0

prn 3 6 prnj(2l 1)a

3
j( a ) prn 3 6 prnj(2l 1)al2

2l 1 4
l 0

pj(2l 1)a

(N a (2l 1)a N )
e ( 1) J (a ).(e [k ]

2

(N a (2l 1)a N )
e [k ])

2
(N a (2l 1)a N )

e ( 1) J (a ).(e [k ]
2

(N
e [k

  




 

  




 

 
   


 

  


 
   



  




rn 3 6 prna (2l 1)a N )

])}.
2

 



Similarly for the sine component of complex signal,

1s 2s

3s 4s

s o 7 3 4 5 6

f [n] f [n]

7 3 4 5 6

f [n] f [n]

s o 1s 2s 3s 4s

o

s [n 1] A {sin(a a .n)cos(a cos(a a .n))

cos(a a .n)sin(a cos(a a .n))}

D.F.T.{s [n 1]} A {D.F.T.{f [n].f [n]} D.F.T.{f [n].f [n]}}

1
A {

   

  

   







1s 2s 3s 4s
prn prn

1
D.F.T.{f [n]}*D.F.T.{f [n]} D.F.T.{f [n]}*D.F.T.{f [n]}}

N N


By using reference [60, pp.361]

7 7
3 3

j(a ) j(a )prn prn 3 prn 32 2
s 1s

N N a N a
A [k] D.F.T.{f [n]} [e . [k ] e . [k ]]

2 2 2

 
  

      
 

5 5

s 2s

6 prn 6 prnj2la j2lal
prn o 4 2l 4

l 1

B [k] D.F.T.{f [n]}

2l.a N 2l.a N
N {J (a ). [k] ( 1) J (a )(e [k ] e [k ])}

2 2








        
 

7 7prn prn 3 prn 3ja ja
c 3s

N N a N a
C [k] D.F.T.{f [n]} [e [k ] e [k ]]

2 2 2
      

 

5 5

s 4s

6 prn 6 prnj(2l 1)a j(2l 1)al
prn 2l 1 4

l 0

D [k] D.F.T.{f [n]}

(2l 1)a N (2l 1)a N
N { ( 1) J (a )(e [k ] e [k ])}

2 2


  





 

      
 
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DFT of sine part after evaluating the convolutions becomes, 

7 7

7
5 5

o
s s c s s

prn

3 3
j(a ) j(a )o prn prn 3 prn 32 2

o 4 o 4

3
j(a ) prn 3 6 prn prn 3j2la j2lal2

2l 4
l 1

A
D.F.T.{s [n 1]} {A [k]*B [k] C [k]*D [k]}

N

A N N a N a
{J (a ).e [k ] J (a ).e [k ]

2 2 2
(N a 2l.a N ) (N a 2

e ( 1) J (a )(e [k ] e [k
2

 
  

  



   

     
 

 
      


7

5 5

7 5

5

6 prn

3
j(a ) prn 3 6 prn 6 prn prn 3j2la j2lal2

2l 4
l 1

prn 3 6 prnja j(2l 1)al
2l 1 4

l 0

prn 3j(2l 1)a

l.a N )
])

2

(N a 2l.a N ) (2l.a N N a )
e ( 1) J (a )(e [k ] e [k ])

2 2

(N a (2l 1)a N )
e ( 1) J (a ).(e [k ]

2

(N a (2l
e [k

   









 


 

      
 

 
   


 

  





7 5

5

6 prn

prn 3 6 prnja j(2l 1)al
2l 1 4

l 0

prn 3 6 prnj(2l 1)a

1)a N )
])

2
(N a (2l 1)a N )

e ( 1) J (a ).(e [k ]
2

(N a (2l 1)a N )
e [k ])}.

2


 




 


 

   


 
  





If cosine and sine parts are combined,


j
2

7

7 5

5

7

(e )

c s

prn 3ja
o prn o 4

prn 3 6 prnja j2lal
o prn 2l 4

l 1

prn 3 6 prnj2la

j(a ) l2
o prn

D.F.T.{s[n 1]} D.F.T.{s [n 1]} j D.F.T.{s [n 1]}

N a
A N J (a ).e [k ]

2
(N a 2l.a N )

A N e ( 1) J (a )(e [k ]
2

(N a 2l.a N )
e [k ])

2

A N e ( 1) J












    

  



    




 


 



5

5

prn 3 6 prnj(2l 1)a
2l 1 4

l 0

prn 3 6 prnj(2l 1)a

(N a (2l 1)a N )
(a ).(e [k ]

2

(N a (2l 1)a N )
e [k ])

2







 

 
  


 

 



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prn

7 3

7 5 6 3

5 6 3

2
j( )k.1

N

prn 3j(a a )
o prn o 4

prn 3 6ja j(2l(a a ) a )l
o prn 2l 4

l 1

prn 3 6j(2l(a a ) a )

since S[k] D.F.T.{s[n]} D.F.T.{s[n 1]}.e

N a
S[k] A N J (a ).e [k ]

2
N (a 2l.a )

A N e ( 1) J (a )(e [k ]
2

N (a 2l.a )
e [k ])

2







 



  

  

   



   




  






7
5 6 3

5 6 3

j(a ) prn 3 6j((2l 1)(a a ) a )l2
o prn 2l 1 4

l 0

prn 3 6j((2l 1)(a a ) a )

N (a (2l 1)a )
A N e ( 1) J (a ).(e [k ]

2

N (a (2l 1)a )
e [k ])

2

    




   

 
  


 

  




A.2 Auto-Correlation Function in Terms of Energy Spectrum

prn

prn prn prn

prn prn

prn prn

prn prn

N 1
*

s
n 0prn

2 2N 1 N 1 N 1j ( k ').n j ( k).(n )
N N*

n 0 k ' 0 k 0prn prn prn

2 2N 1 N 1 j k. j k '.n
N N*

3
k ' 0 k 0 nprn

1
R [ ] (s[n].s [n ])

N

1 1 1
( S[ k '].e )( S [ k].e )

N N N

1
S[ k '] S [ k].e e

N





      

  

    

 

    

 

  



  

 
prn

prn

prn

prn prn

prn prn

2N 1 j k.n
N

0

N [k ' k]

2 22N 1 N 1j k. j k.
N N*

2
k 0 k 0prn prn prn

e

S[ k]1 1
S[ k].S [ k].e .e

N N N





 

   

 


   



 



prn

prn

2N 1 j k.
N

k 0prn

1
E[ k].e

N

 



 

A.3 Velocity Auto-Correlation Function (ACF)   

1 2 4[n] u.n u      

If DFT of both sides is taken,  
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1 2 4

prn1
1 prn 2 4

D.F.T.{ [n]} D.F.T.{ } D.F.T.{ u.n} D.F.T.{ u}

NQ U[k]
D.F.T.{Tan ( )} N [k] j U[k]

I 2 k


      


      

 

where U[k] is discrete spectrum of u[n].

 

prn 2 1
4 1 prn

prn 2 1
4 1 prn

2 3
41

1 2 3 4

N U[k] Q
j U[k] N [k] D.F.T.{Tan ( )}

2 k I
since U[k] is only function of k,

N dU[k] Q
j U[k] N [k] D.F.T.{Tan ( )}

2 dk I

dU[k]
U[k] [k]

dk





 


 
       

 


      



       



This is inhomogeneous 1st order ODE. 4 parameter can be obtained from sampled 

and demodulated I-Q Doppler signals. If we solve this differential equation [62, 

pp.792], 

2 2 2

1 1 1

kk k k

4 3
1 0

1
U[k] e ( [k])e dk U[0] [k]e

  
 
       

 

U[k] is spectrum of velocity and it can be used to find U[0] as follows,

prn

prn

prn

2N 1 j k.n
N

n 0

N 1

prn
n 0 prn

U[k] u[n]e when k 0

U[0]
U[0] u[n] u U[0] u.N

N

 







 

    





Nprn is number of emitted signals or number of velocity values affecting these signals 

and u is average velocity. 

2 2 2

1 1 1

4

4 4

prn 2 prn 2

kk k k

4 3 prn
1 0

j.2 . j.2 .kk k
N . N .1

prn 1 prn
prn 2 0

1
U[k] e ( [k])e dk N u [k]e

j.2 Q
U[k] N u [k] e (DFT{Tan ( )} N [k])e dk

N I

  
 
  


   


 

     



     








(A.3.1)
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where   

1 c

o prf
2

o prf o prf o,io o,i
4 2 2

N

4 f T

c
4 f T 4 f (c.T d )4 f d

c c c

  


 

  
   

First term in equation (A.3.1) corresponds to the spectral component coming from 

mean part of velocity and second term for randomly fluctuating part of velocity. 

Auto-correlation function of discrete velocity function u[n] can be written in terms of 

energy spectrum and amplitude of spectrum of u[n] as follows,

prn

prn

prn

4 4

prn 2 prn 2

prn

2N 1 j k.
2 N1

u u N
k 0prn prn

2j.2 . j.2 .kk k
N . N .1

u prn 4 1 prnN
prn prn 2 0

1 1
R [ ] D.F.T. {S [k]} { lim U[k] }.e

N N

1 j.2
R [ ] D.F.T. { lim N u [k] e ( N [k])e dk }

N N

 





   


 



  


       







A.4 DFT of Sampled US Signals for Measurement Volume of Viscoelastic Fluid 

Flow

Sampled US signals are,

6 2 4 5 3 4 5

c

s

j(a a sin(a a (n 1)) a cos(a a (n 1)))
o

s [n ]

o 6 2 4 5 3 4 5

o 6 2 4 5 3 4 5

s [n]

s[n] A e

A cos(a a sin(a a (n 1)) a cos(a a (n 1)))

jA sin(a a sin(a a (n 1)) a cos(a a (n 1)))

      

      
     





where        o o o1 2
1 c 2 3 4 f

f 3 f 3

4 f 4 f dcos cos
a N , a , a , a 2 f ,

c 2 f . c 2 f . c

    
     

   

5 f prf 6 1 3a 2 f T , a a a   

After using following trigonometric identities,

cos(x y) cos x cos y sin x sin y

sin(x y) sin x cos y cos x sin y

  
  
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DFT of s[n] can be obtained from DFT of cosine (in phase) and sine (quadrature) 

parts. After using following identities [60] and convolutions,

o 2k
k 1

2k 1
k 0

cos(z sin ) J (z) 2 J (z) cos(2k )

sin(zsin ) 2 J (z)sin((2k 1) )










   

   





spectrum of shifted signal s[n+1] will be,

4

4 4

c s

j2l.al 5
o 1 2 o 2 o 3 o 2 2l 3

l 1

j2l.a j2l.al 5 5
o 2 2l 3 o 3 2l 2
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where 1 6 2 6C cos(a ) , C sin(a ) 

Actual spectrum is phase shifted form of the given spectrum above since,
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
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(A.4.1)
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Zero frequency component of the US spectrum and its amplitude become,   
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APPENDIX B

SIGNAL PROCESSING TABLES

Table B.1: Properties of DFT

Periodic sequence (period N) DFT (period N)

x[n] X[k]

x1[n], x2[n] X1[k], X2[k]

a.x1[n] + b.x2[n] a.X1[k] + b.X2[k]          (linearity)

X[n] N.x[-k]                          (duality)

x[n-m] e-j(2/N)k.m X[k]               (time shift)

j(2 /N) ne   x[n] X[ k   ]                      (frequency shift)

N 1

1 2
m 0

x [m]x [n m]




     (periodic convolution)
X1[k].X2[k]

x1[n].x2[n] N 1

1 2
0

1
X [ ]X [k ]

N








  (periodic convolution)

x*[n] X* [-k]

x*[-n] X* [k]

x[n]        (if real) X[k]=X*[-k]            (symmetry property)

Table B.2: Some DFT pairs [67]

Discrete sequence DFT

x[n] X[k]

x[n-no] X[k] o ojk w ne
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     Table B.2 Continued

x[a.n] 1 k
X( )

a a

X[n] N.x[-k]

n.x[n] N X[k]
j

2 k


 

N 2N d [k]
j

2 dk




m

m

d x[n]

dn

(j kwo)
m X[k]

[n] 1

[n-no] o ojk w ne

1 N.[k]

an u[n]     (|a|<1)
ojkw

1

1 a.e

1 T / 2 n T / 2n
rect[ ]

0 elseT

   
  
 

o
o

o

sin[kw T / 2]
T T.sinc[kw T / 2]

kw T / 2


sinc[B.n / 2] okwN
rect[ ]

B B

ojw ne ow N
N [k ]

2
 



cos[wo n] o ow N w NN
( [k ] [k ])

2 2 2
    

 

sin[wo n] o ow N w NN
( [k ] [k ])

2 j 2 2
   

 



126

Table B.3: Some useful relations in signal processing

Relation Explanation

jx jxe e
cos(x)

2




Cosine part of a complex exponential

jx jxe e
sin(x)

2j




Sine part of a complex exponential

jxcos(x) jsin(x) e  Euler identity

N 1 N 1
2 2

n 0 k 0

1
E x[n] X[k]

N

 

 

  
Parseval’s relation: total energies in time and 
frequency domain are equal.  

2N 1 N 1
2

n 0 k 0

X[k]1 1
P x[n]

N N N

 

 

  
Power in time and frequency domains. 

2

x
N

1
X [k] lim X[k]

N


Energy spectrum of x[n] in terms of amplitude 
of spectrum of x[n]

x xX [k] DFT{R [ ]}  Energy spectrum in terms of ACF of x[n] 



127

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name                    : Köseli, Volkan
Nationality   : Turkish (T.C.)
Date and Place of Birth          : 4 July 1978 , Ankara
Marital Status                       : Married
Email        : vkoseli@yahoo.com

                    

EDUCATION

Degree Institution     Year of Graduation
M.Sc. Hacettepe University, Chemical Engineering 2002
B.Sc. Hacettepe University, Chemical Engineering 2000
High School Kazan High School, Ankara 1995

WORK EXPERIENCE

Year Place Enrollment

2003 -
present

METU, Department of Chemical Engineering Research 
Assistant

2008 - 2009 University of California, Davis Visiting 
Scholar

2000 - 2003 Hacettepe University, Department of Chemical 
Engineering

Research 
Assistant

FOREIGN LANGUAGES

Advanced English

INTERNATIONAL SYMPOSIUMS

5th International Symposium on Ultrasonic Doppler Methods for Fluid Mechanics 
and Fluid Engineering (ISUD), 12-14 September 2006, Swiss Federal Institute of 
Technology (ETHZ), Zürich, Switzerland



128

PUBLICATIONS

1. Sevil Dinçer, Volkan Köseli, Hande Kesim, Zakir M.O. Rzaev, Erhan Pişkin, 
‘Radical copolymerization of N-isopropylacrylamide with anhydrides of 
maleic and citraconic acids’, European Polymer Journal, Vol.38, pp.2143-
2152, 2002

2. Volkan Köseli, Zakir M.O. Rzaev, Erhan Pişkin, ‘Bioengineering Fuctional 
Copolymers. III. Synthesis of Biocompatible Poly[(N-isopropylacrylamide -
co-maleic anhydride )-g-poly(ethylene oxide)]/Poly(ethylene imine)
Macrocomplexes and Their Thermostabilization Effect on the Activity of the 
Enzyme Penicillin G Acylase’ , Journal of Polymer Science: Part A: Polymer 
Chemistry, Vol.41, 1580-1593, 2003

3. Volkan Köseli, Şerife Zeybek, Yusuf Uludağ, ‘Online Viscosity 
Measurement of Complex Solutions Using Ultrasound Doppler Velocimetry’, 
Turk J. Chem., Vol.30 , pp.297-305, 2006


	Volkan Koseli_Thesis_initials.pdf
	Volkan Koseli_Thesis.pdf

